

— Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page vii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS 1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possibie that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “© (your company name) (year) All Rights Reserved.”

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

PM Programming Reference

—

About this Book

The Presentation Manager Programming Reference is a detailed technical reference, in three
volumes, for application programmers creating programs using the Presentation Manager interface.

Chapter 1 contains important information. You should read it before using this book.
This reference does not give guidance on how to use the functions, nor does it contain information

about how the functions are related to each other. It is intended to be used in conjunction with the
Programming Guide Volumes Il and Iil.

Prerequisite Knowledge

The 0S/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which 0S/2 programs can be written. The information in the
Technical Library assumes that you are new to programming with 0S/2 and the Presentation
Manager. You should understand the OS/2 services available to users.

Related Publications

The Application Design Guide and the Programming Guide Volumes 1, Il, and Hi introduce the
programming concepts that you should understand before you begin developing applications to run
on the 0S/2 operating system. Getting Started describes the online programming books, tools,
programming aids, and sample programs that make up the IBM Developer’s Toolkit for 0S/2 2.0.

Organization of this Book

This book is in three volumes. The contents of each volume are as follows:

Volume | (Functions)

Chapter 1, “Introduction” on page 1-1

You should read this chapter before using this book.
Chapter 2, “Device Functions” on page 2-1
Chapter 3, “Direct Manipulation Functions” on page 3-1
Chapter 4, “Dynamic Data Formatting Functions” on page 4-1
Chapter 5, “Graphics Functions” on page 5-1

Chapter 6, “Profile Functions” on page 6-1

Chapter 7, “Spooler Functions” on page 7-1

Volume Il (Functions and Workplace)

Chapter 8, “Window Functions” on page 8-1

Chapter 9, “Workplace Classes, Instance Methods, and Class Methods” on page 9-1

About this Book iii

Volume il (Related Information and Data Types)

iv

Chapter 10, “Functions Supplied by Applications” on page 10-1

Chapter 11, “Introduction to Message Processing” on page 11-1

Chapter 12, “Default Window Procedure Message Processing” on page 12-1
Chapter 13, “Button Control Window Processing” on page 13-1

Chapter 14, “Entry Field Control Window Processing” on page 14-1

Chapter 15, “Frame Control Window Processing” on page 15-1

Chapter 16, “List Box Control Window Processing” on page 16-1

Chapter 17, “Menu Control Window Processing” on page 17-1

Chapter 18, “Multi-Line Entry Field Control Window Processing” on page 18-1
Chapter 19, “Prompted Entry Field Control Window Processing” on page 19-1
Chapter 20, “Scroll Bar Control Window Processing” on page 20-1

Chapter 21, “Spin Button Control Window Processing” on page 21-1
Chapter 22, “Static Control Window Processing” on page 22-1

Chapter 23, “Title Bar Control Window Processing” on page 23-1

Chapter 24, “Container Control Window Processing” on page 24-1

Chapter 25, “Notebook Control Window Processing” on page 25-1

Chapter 26, “Slider Control Window Processing” on page 26-1

Chapter 27, “Value Set Control Window Processing” on page 27-1

Chapter 28, “Clipboard Messages” on page 28-1

Chapter 29, “Direct Manipulation (Drag) Messages” on page 29-1

Chapter 30, “Dynamic Data Exchange Messages” on page 30-1

Chapter 31, “Help Manager Messages” on page 31-1

Chapter 32, “Resource Files” on page 32-1

Chapter 33, “Graphics Orders” on page 33-1

PM Programming Reference

PN

7

Chapter 34, “Code Pages” on page 34-1

Appendix A, “Data Types” on page A-1

Appendix B, “Error Codes” on page B-1

Appendix C, “Error Explanations” on page C-1

Appendix D, “Standard Bit-Map Formats” on page D-1

Appendix E, “Fonts Supplied with 0S/2” on page E-1

Appendix F, “The Font-File Format” on page F-1

Appendix G, “Format of interchange Files” on page G-1

Appendix H, “Initialization File Information” on page H-1

Appendix 1, “Virtual Key Definitions” on page I-1

About this Book

v

vi

PM Programming Reference

e

o

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends

to make these available in all countries in which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only IBM’s product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectible rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The following terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM
Corporation in the United States and/or other countries:

IBM

Common User Access

CUA

Operating System/2

08S/2

Presentation Manager

SAA

System Application Architecture

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of other
companies as follows:

Adobe Adobe Systems Incorporated
Helvetica Linotype AG

LaserJet Hewlett-Packard Company
Intel Intel Corporation

Microsoft Microsoft Corporation
PostScript Adobe Systems incorporated
Times New Roman Monotype Corporation
Windows Microsoft Corporation

Notices vii

viii PM Programming Reference

A

Related information and Data Types

Chapter 10. Functions Supplied by Applications 10-1
DialogProc — DialogProcedure 10-2
ThunkProc — Pointer-ConversionProcedure 10-3
WndProc — Window Procedure 10-4
CheckMsgFilterHook — Check Message FilterHook 10-5
CodePageChangeHook — Code PageChangeHook 10-7
DestroyWindowHook — DestroyWindowHook 10-8
FindWordHook — FindWordHook niene... 10-9
HelpHook — HelpHook 10-10
InputHook — InputHook e 10-13
JournalPlaybackHook — Journal Playback Hook 10-14
JournalRecordHook — JournalRecordHook 10-15
LoaderHook — LoaderHook 10-16
MsgCtlHook — Message Control Hook nuen.. 10-18
MsgFilterHook — Message FilterHook uiu.... 10-20
RegisterUserMsg — Register User MessageHook 10-21
SendMsgHook — SendMessageHook 10-23
Chapter 11. Introduction to Message Processing 11-1
MeESSage TYPOS i i e e e e e e e e 11-1
Notation Conventions e 11-3
Chapter 12. Default Window Procedure Message Processing 12-1
Reserved Messages it e 12-1
General Window Styles e 12-1
General Window MesSsages ittt e 12-3
Default Dialog Processingttt 12-70
Default File Dialog Processing i 12-73
Default Font Dialog Processingttt 12-75
Language Support Window Processing 12-80
Language Support Dialog Processing, 12-83
Chapter 13. Button Control Window Processing 13-1
Button Control Styles e 13-1
ButtonControl Data e e 13-2
Default Colors e e e 13-2
Button Control NotificationMessages 13-3
Button Control Window Messages i innnen.. 13-56
Chapter 14. Entry Field Control WindowProcessing 14-1
Entry Field Control Styles e 14-1
Entry Field Control Data e 14-2
Default Colors e e e e 14-2
Entry Field Control NotificationMessages 14-3
Entry Field Control Window Messageso, 14-4
Chapter 15. Frame Control Window Processing 15-1
Frame Creation Flags i e e 15-1
Frame Control Styles e 15-3
Frame Control Data e 15-3
Default Colors e e 15-3
Frame Control Notification Messages 15-4
Frame Control Window Messages 15-6
Chapter 16. List Box Control Window Processing 16-1
ListBox Control Styles e 16-1
ListBox Control Data e 16-1
Default Colors e 16-1
List Box Control NotificationMessages, 16-2

Related Information and Data Types

List Box Control Window Messages ittt ennnnneson 16-5

Chapter 17. Menu Control Window Processing 17-1
Menu Control Styles e PRI 17-1
Menultem Styles 17-2
Menu ltem Attributes L L e e e e 17-2
Default Colors e 17-3
Menu Control Notification Messages e 17-4
Menu Control Window Messages e 17-8
Chapter 18. Multi-Line Entry Field Control Window Processing 18-1
Multi-Line Entry Field Control Styles 18-2
Multi-Line Entry Field Control Data e 18-2
Multi-Line Entry Field Control Notification Messages 18-3
Multi-Line Entry Field Window Messages, 18-7
Chapter 19. Prompted Entry Field Control Window Processing 19-1
Combo Box Control Styles e 1941
ComboBoxControl Data e 19-1
Default Colors e e e 19-2
Combo Box Control NotificationMessages 19-2
Combo Box Control Window Messages 19-4
Chapter 20. Scroll Bar Control Window Processing 20-1
Scroll Bar Control Styles e e e e 20-1
ScrollBarControl Data e e e 20-1
Default Colors e e e 20-2
Scroll Bar System Values e e 20-2
Scroll Bar Control Notification Messages, 20-3
Scroll Bar Control Window Messages 20-4
Chapter 21. Spin Button Control Window Processing 21-1
PUIPOSE L e e e e e e e e e e e 21-1
Spin Button Control Styles e e 211
Spin Button Control NotificationMessage 21-2
Spin Button Control Window Messages 21-3
Chapter 22. Static Control Window Processing 221
Static Control Styles 22-1
Static Control Data e e e 22-2
Default Colors e e e e 22-2
Static Control Notification Messages i 22-2
Static Control Window Messagesttt e 22-3
Chapter 23. Title Bar Control Window Processing 23-1
Title Bar Control Styles 23-1
TitleBarControl Data e 23-1
Default Colors e e e 23-1
Title Bar Control Notification Messages 23-2
Title Bar Control Window Messages i i ittt ittt i 23-2
Chapter 24. Container Control Window Processing 24-1
PUIPOSe e e e e e 24-1
Container Control Window Words e e 24-1
Container Control Styles and Selection Types 24-2
Container Control Data i e 24-3
Container Control NotificationMessages 24-4
Container Control NotificationCodes 24-8
Container Control Window Messages i 24-22
Chapter 25. Notebook Control Window Processing 25-1
Purpose PSP 25-1
Notebook Control Styles e e e 25-1

PM Programming Reference

P

Notebook Control Data i it e e e e e e 25-2

Notebook Control Notification Messages 25-3
Notebook Control Window Messages iinnennna. 25-4
Chapter 26. Slider Control Window Processing 26-1
PUIPOSE L e e e e e e e e e e e e e e 26-1
Slider Control Styles e e e e e e e e e 26-1
Slider Control Data e e e e e e e e e e e 26-3
Slider Control Notification Messages 26-4
Slider Control Window MesSsages ittt m ittt et et e e 26-7
Chapter 27. Value Set Control Window Processing 27-1
PUIPOSE L e e e e e e e e e e e e 27-1
Value SetControl Styles e 271
ValueSetControl Data e 27-4
Value Set Control Notification Messages 27-5
Value Set Control Window Messages, 27-8
Chapter 28. Clipboard Me8sagesttt ittt 28-1
Chapter 29. Direct Manipulation (Drag)Messages 29-1
Chapter 30. Dynamic Data ExchangeMessages 30-1
Chapter 31. Help Manager Messagest nenann 311
Chapter 32. ResourceFilest 32-1
How to Read the Syntax Definitions 32-1
Definitions Used inall Resources ittt 32-2
Resource Script File Specification e 32-2
Templates, Control Data, and Presentation Parameters 32-19
Resource (.RES) File Specification i, 32-27
Chapter 33. Graphics Orders 33-1
DataTypes e e e e e e e e e e e e e e 33-1
Arc at a Given Position./ Arc at Current Position 33-3
Begin Area e e e e 33-3
BeginElement e e e e e e e 33-4
Begin Image at Given Position / Begin Image at Current Position 33-5
Begin Path e e e e e e e 33-5
Bezier Curve at Given Position / Bezier Curve at CurrentPoition 33-6
Bitblt . . . L e e e e e e e 33-7
Box at Given Position / Box at Current Position e e e e e e e e e e e 33-8
Call Segment e e e e e e e e e 33-9
Character String at Given Position / Character String at Current Position 33-9
Character String Extended at Given Position / Character String Extended at Current Position 33-10
Character String Move at Given Position / Character String Move at Current Position 33-11
Close Figure i e e e e e 33-12
oMMt e 33-12
End Area e 33-13
End Element e e e e e e e e e e 33-13
Endlmage e e e e e e e e e e e 33-13
End of Symbol Definition e e e e 33-14
EndPath e e e e e e e e e e e e e e e e e e .. 33-14
End Prolog e e e e 33-14
CESCAPE . . . e 33-15
Extended EScape e e e e e e e e e e e e 33-15
Fill Path e e e e e e e e e e e e e 33-16
Fillet at Given Position / Fillet at CurrentPosition 33-16
Full Arc at Given Position / Full Arc at Current Position 33-17
Image Data e e e e e e e e e e e 33-17
Label e e e e e e e e e e e e 33-18
Line at Given Position / Line at Current Position 33-18

Related Information and Data Types

Marker at Given Position / Marker at Current Position 33-18

Modify Path e e e e e e e 33-19
NO-Operation e e e e e e e e e e e e 33-19
Outline Path e e e e e e e e e e e 33-19
Partial Arc at Given Position / Partial Arc at Current Position 33-20
POlYgONS . . e e e e e e e e e e e e e e e e e e e 33-20
2o T 2 33-21
Relative Line at Given Position / Relative Line at Current Position 33-22
Segment Characteristics 33-22
Set Arc Parameters / Push and Set Arc Parameters 33-23
Set Background Color / Push and Set Background Color 33-23
Set Background Indexed Color / Push and Set Background Indexed Color 33-24
Set Background Mix / Push and Set Background Mix 33-25
Set Character Angle / Push and Set Character Angle 33-26
Set Character Break Extra / Push and Set Character BreakExtra 33-26
Set Character Cell / Push and SetCharacterCell 33-27
Set Character Direction / Push and Set Character Direction 33-28
Set Character Extra / Pushand SetCharacterExtra 33-28
Set Character Precision / Push and Set Character Precision 33-29
Set Character Set / Push and Set CharacterSet 33-30
Set Character Shear / Push and Set CharacterShear 33-30
Set Gl Path e e e e e e e e e e e e 33-31
SetColor/Pushand Set Color ittt et e e e 33-31
Set Current Position / Push and Set Current Position 33-32
Set Extended Color / Push and SetExtended Color, 33-32
Set Fractional Line Width / Push and Set Fractional LineWidth 33-33
Set Indexed Color / Push and Setindexed Color 33-34
Set Individual Attribute / Push and Set Individual Attribute 33-35
SetLineEnd/Pushand SetLineEnd iiininean 33-36
SetlLineJoin/Pushand SetLinedoin 33-36
SetLine Type/Pushand SetLineType 33-37
Set Line Width / Push and SetLineWidth, 33-38
Set Marker Cell / Pushand SetMarkerCell 33-39
Set Marker Precision / Push and Set Marker Precision 33-40
Set Marker Set/ Pushand SetMarkerSet 33-40
Set Marker Symbol / Push and Set Marker Symbol 33-41
SetMix/Pushand Set Mix it e e e e 33-41
Set Model Transform / Push and Set Model Transform 33-42
Set Pattern Reference Point / Push and Set Paftern ReferencePoint 33-43
Set Pattern Set/ Pushand SetPatternSet 33-44
Set Pattern Symbol / Push and Set PatternSymbol 33-44
Set Pick Identifier / Push and Set Pick Identifier 33-45
SetSegmentBoundary e 33-45
Set Stroke Line Width / Push and Set Stroke LineWidth 33-46
Set Text Alignment / Push and Set Text Alignment 33-47
SetViewing Transform L e 33-48
Set Viewing Window / Push and Set ViewingWindow 33-48
Sharp Fillet at Given Position / Sharp Fillet at Current Position 33-50
Chapter34. CodePagesttt 34-1
Windowed PM Applications e 34-1
0S/2 Code Page Options for PM Applications 34-3
0S/2 Font Support for Multiple CodePages 34-4
ASCH Code Pages i i ittt it e e it s e e e 34-11
EBCDIC Code Pages ittt ittt e e e e e e 34-16
DBCS SUPPOIt e e e e e e e e e e e 34-23

PM Programming Reference

Chapter 10. Functions Supplied by Applications

This chapter describes dialog procedures, window procedures, and hooks. It shows the input
parameters and returns that the operating system expects an application to use in application
procedures and that can be called by the operating system in response to certain events.

Procedures and hooks are application code that is called by the system in response to certain
events. :

The names and parameter lists of functions are contained in header files that are incorporated into
the application when it is compiled. Their addresses are contained in .LIB files that are incorporated
at link time.

The names of procedures and hooks are defined by the application, and their parameter lists are
defined by the system. Function prototypes for these procedures and hooks are in PMWIN.H. The
prototypes have sample names that can be changed by the programmer before they are inserted into
the application source code.

The application passes the address of these procedures and hooks in the following ways:

Dialog procedures During the WinLoadDIg, WinDigBox, WinFileDlg, or WinFontDIg function

Window procedures During the WinRegisterClass or WinSubclassWindow functions

Hooks During the WinSetHook function

Thunks During the WinSetClassThunkProc or WinSetWindowThunkProc
functions.

The following table shows the procedures and hooks in alphabetic order.

C Name C Name

Procedures
DialogProc WndProc
ThunkProc

Hooks

CheckMsgFilterHook JournalRecordHook
CodePageChangeHook LoaderHook
DestroyWindowHook MsgCtlHook
FindWordHook MsgFilterHook
HelpHook RegisterUserMsg
InputHook SendMsgHook
JournalPlaybackHook

Chapter 10. Functions Supplied by Applications 10-1

DialogProc —
Dialog Procedure

#define INCL_WINDIALOGS /* Or use INCL_WIN or INCL_PM. Also in COMMON section */

MRESULT DialogProc (HWND hwnd, USHORT usmsg, MPARAM mpParam1,
MPARAM mpParam2)

This is a window procedure that automatically subclasses each instance of a dialog box.

Parameters
hwnd (HWND) - input
Handle of the window to which the message applies.

usmsg (USHORT) — input
Message identity.

mpParam1 (MPARAM) — input
Message parameter 1.

mpParam2 (MPARAM) — input
Message parameter 2.

Returns
Message-return data.

Remarks
This procedure is the same as any other window procedure, except that it can receive predefined
window messages specific to dialog box windows.

Note: It does not receive the WM_CREATE message, but the same information is carried by the
WM_INITDLG message, that is generated during the creation of a dialog-box window.

hwnd is always the window handle of the dialog-box window.

The dialog procedure typically processes only some of the messages passed to it. Any messages
that it does not process must be passed to WinDefFileDIgProc if the dialog box is the standard file
selection dialog, WinDefFontDIgProc if the dialog box is the standard font selection dialog box, or for
all other dialog boxes, WinDefDIgProc (not WinDefWindowProc), because these perform the standard
dialog-box processing for those messages.

Related Messages
e WM_CREATE
e WM_INITDLG

10-2 PM Programming Reference

~-

ThunkProc —
Pointer-Conversion Procedure

MRESULT ThunkProc (HWND hwnd, USHORT usmsg, MPARAM mpParami,
MPARAM mpParam2, PFNWP pWndProc)

This procedure provides pointer conversion for application-defined messages.

Parameters
hwnd (HWND) — input
Window handle.

usmsg (USHORT) — input
Message identity.

This is an application-defined message. The value is greater than or equal to WM_USER.

mpParam1 (MPARAM) — input
Message parameter 1.

mpParam2 (MPARAM) — input
Message parameter 2.

pWndProc (PFNWP) — input
Window-procedure identifier.

Returns
Message-return data.

Remarks
Pointer conversion is normally performed automatically by the operating system. An application
needs to provide its own pointer-conversion procedures only for application-defined messages which
may be passed from 16-bit code to 32-bit code.

A pointer-conversion procedure is associated with a window by the WinSetWindowThunkProc and
WinSetClassThunkProc functions.
The logic of the pointer-conversion procedure is as follows:

1. Convert each message parameter, if necessary. This may include converting any data
structures to which the parameter points.

2. Call the window procedure referenced by the pWndProc parameter, supplying as arguments
hwnd, usmsg, mpParam1 and mpParam?2.

3. Collect the return value and, if necessary, convert it.
Note that structures to which the return value might point cannot be converted.

4. Convert any structures referenced by message parameters which might have been modified by
the window procedure. Note that the pointer-conversion procedure should ensure that the
original memory is still available before converting the structures.

A pointer-conversion procedure should process only those messages that it recogmzes On
receiving unrecognized messages, it should set usmsg to 0.

Chapter 10. Functions Supplied by Applications 10-3

WndProc —
Window Procedure

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN or INCL_PM. Also in COMMON section */

MRESULT WndProc (HWND hwnd, USHORT usmsg, MPARAM mpParam1,
MPARAM mpParam2)

This defines the window procedure provided by an application.

Parameters
hwnd (HWND) — input
Window handie.
usmsg (USHORT) — input
Message identity.

mpParam1 (MPARAM) — input
Message parameter 1.

mpParam2 (MPARAM) — input
Message parameter 2.

Returns
Message-return data.

Remarks
This procedure is associated with a window by the pWndProc of the WinRegisterClass function.

The window procedure typically processes only some of the messages passed to it. Those

messages it does not process must be passed on to the WinDefWindowProc function, which performs
the standard window processing for those messages.

10-4 PM Programming Reference

CheckMsgFilterHook -—
Check Message Filter Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL CheckMsgFilterHook (HAB hab, PQMSG pQmsg, USHORT usFirst, USHORT usLast,
USHORT fsOptions)

This hook is called whenever WinGetMsg, WinWaitMsg, or WinPeekMsg are used to filter message
identities.

Parameters
hab (HAB) - input
Anchor-block handle.
pQmsg (PQMSG) — input
The QMSG data structure of the message currently being reviewed.

usFirst (USHORT) — input
First message identity specified on a call to the WinGetMsg, WinPeekMsg or WinWaitMsg
function.

usLast (USHORT) — input
Last message identity specified on a call to the WinGetMsg, WinPeekMsg or WinWaitMsg
function.

tsOptions (USHORT) — input
Message removal options:

PM_REMOVE Message is being removed from queue

PM_NOREMOVE Message is not being removed from queue.

Returns

Processing indicator:

TRUE The message is accepted by the filtering. Any further Check Message Filter Hooks in
the chain are ignored, any filtering specified by the ulFirst and ulLast parameters of
the WinGetMsg, WinPeekMsg or WinWaitMsg functions are ignored, and processing of
the message continues.

A hook that always returns TRUE effectively switches off message filtering.

FALSE The message is passed on to the next Check Message Filter Hook in the chain. If the
end of the chain has been reached, the filtering specified by the ulFirst and ulLast
parameters of the WinGetMsg, WinPeekMsg or WinWaitMsg functions is applied.

Remarks
This hook enables an application to apply a very specific message filtering, for example, based on
the values of message parameters.

Chapter 10. Functions Supplied by Applications 10-5

CheckMsgFilterHook —
Check Message Filter Hook

This hook is called after window handle filtering and before message filtering. Window handie
filtering is controlled by the hwndFilter parameter of the WinGetMsg or WinPeekMsg functions.
Message filtering is controlled by the ulFirst and ulLast parameters of the WinGetMsg, WinPeekMsg
or WinWaitMsg functions.

This hook is called if the message passes window handle filtering and if non-null message filtering is
specified. This means that, on entry to this hook:

* The hwndFilter parameter of the WinGetMsg or WinPeekMsg function is either NULLHANDLE or
it specifies the window (or a parent of the window) referenced in the pQmsg structure.

* Atleast one of the usFirst and usLast parameters are nonzero.

* The msg field of the pQmsg structure might or might not lie inside the range specified by the
usFirst and usLast parameters.

10-6 PM Programming Reference

S

CodePageChangeHook

Code Page Change Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

VOID CodePageChangeHook (HMQ hmgq, USHORT usOidCodePage,
USHORT usNewCodePage)

This hook notifies that a message queue code page has been changed.

Parameters
hmq (HMQ) — input
Message-queue handle.
The handle of the message queue that is changing its code page.

usOldCodePage (USHORT) — input
Previous code page.

usNewCodePage (USHORT) — input
New code page.

Returns
The return value is VOID.

Remarks

This hook is sent to all hooks chained under HK_CODEPAGECHANGE, regardless of the return value.

The new code page is set before this hook is called.

Chapter 10. Functions Supplied by Applications

10-7

DestroyWindowHook —
Destroy Window Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

VOID DestroyWindowHook (HAB hab, HWND Hwnd, ULONG fiReserved)

This hook is called whenever a window is destroyed.

Parameters
hab (HAB) — input
Anchor-block handle.
Hwnd (HWND) — input
The handle of the window being destroyed.

fiReserved (ULONG) — input
Reserved.

Returns
The return value is VOID.

Remarks

This hook is sent after the WM_DESTROY message has been sent and just before the window
becomes invalid.

Related Messages
* WM_DESTROY

10-8 PM Programming Reference

FindWordHook —
Find Word Hook

s
#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */
BOOL FindWordHook (USHORT usCodepage, PSZ pszText, ULONG cb, ULONG ich,
PULONG pichStart, PULONG pichEnd, PULONG pichNext)
This hook allows an application to control where the WinDrawText function breaks a character string
that is too long for the drawing rectangle.
Parameters
usCodepage (USHORT) — input
Codepage to use.
This parameter contains the codepage identifier of the string to be formatted.
" pszText (PSZ) — input
Text to break.
This parameter contains a pointer to the actual string.
cb (ULONG) - input
Maximum text size.
This parameter contains a value specifying the number of bytes in the string.
ich (ULONG) - input
Break near here.
) This parameter contains the index of the character in the string that intersects the right edge of

the drawing rectangle.

pichStart (PULONG) — output
Where break began.

This parameter contains the index of the starting character of the intersecting word.

pichEnd (PULONG) — output
Where break ended.

This parameter contains the index of the ending character of the intersecting word.

) pichNext (PULONG) — output
Where next word begins.

This parameter contains the index of the starting character of the next word in the string.

Returns
Success indicator:

TRUE If the find-word hook function returns TRUE, WinDrawText will only draw the string up
to, but not including, the specified word.

FALSE If the find-word hook function returns FALSE, WinDrawText formats the string in the
default manner.

Remarks
The system calls this hook from within the WinDrawText function, if the DT_WORDBREAK fiag is set.
It lets the application have control of where the function WinDrawText should break for a string that is
too iong.
A

Chapter 10. Functions Supplied by Applications 10-9

HelpHook
Help Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

‘BOOL HelpHook (HAB hab, SHORT sMode, SHORT sTopic, SHORT sSubTopic,

PRECTL prclPosition)

This hook processes help requests.

Parameters
hab (HAB) — input
Anchor-block handle.

sMode (SHORT) — input
Help mode.

This has one of the following values, indicating the mode from which help has been requested:

HFM_MENU Menu mode
HFM_MB Message-box mode
‘HFM_WINDOW Standard (standard window)

HFM_APPLICATION Application mode.

sTopic (SHORT) — input
Topic identifier.

* In menu mode this is a pull-down window identity
* In'message-box mode this is the message-box identity
¢ In standard mode this is-a window identity.

sSubTopic (SHORT) — input
Subtopic identifier.

* In menu mode this is a command identity
* |In message-box mode this is a control identity
* In standard mode this is the identity of the window with the focus (—1 if none).

preiPosition (PRECTL) — input
Rectangle.

This indicates the screen area (in screen coordinates) from where the help was requested. Itis
provided to enable the help library to avoid covering that area.

* In menu mode it is the bounding rectangle of the selected item, or othe top Ievel menu if
value of the sSubTopic parameter is —1.
In message-box mode it is the bounding rectangle of the button.

* Instandard mode it is the bounding rectangle of the window with the focus, or of the window
sent the message if the value of the sSubTopic parameter is —~1.

Note: The data type WRECT can also be used, if supported by the language.

Returns
Indicator as to whether next hook in the chain is called.

The message is always passed to the application.
TRUE The next hook in the chainis not called.
FALSE The next hook in the chain is called.

10-10 PM Programming Reference

——

e

HelpHook —
Help Hook

Remarks
This hook can be called directly by an application or in the default-processing associated with
windows, menus, and message boxes.

Help-processing is done in two stages. The first stage is the creation of the WM_HELP message.
This is done:

From a WM_CHAR message by ACCELERATOR table translation, when the HELP accelerator
option is specified.

From an action-bar selection, when the MIS_HELP style is specified on the action-bar button.
From a dialog-box pushbutton, when the BS_HELP style is specified on the pushbutton.
From a message box, when the MB_HELP style is specified on the message box.

The WM_HELP message is sent to the active window, but will be seen by a modal loop if one is
active.

The second stage of processing of help is the processing of the WM_HELP message.

The frame window procedure sees the WM_HELP message because the frame is usually the active
window. It processes the WM_HELP message as follows:

If the window with the focus is the FID_CLIENT frame control, it passes WM_HELP to the
FID_CLIENT window.

If the parent of the window with the focus is the FID_CLIENT frame control, it calis the help hook,
specifying:

sMode = HFM_WINDOW

sTopic = frame-window id

sSubTopic = focus-window id.

If the parent of the focus window is not the FID_CLIENT frame control (for example, it may be the
frame itself, or a second-level dialog control), it calls the hook, specifying:

sMode = HFM_WINDOW
sTopic = focus-window parent id
sSubTopic = focus-window id.

The message box window procedure sees the WM_HELP message, because it subclasses the frame
window. It processes the WM_HELP message by calling the help hook, specifying:

sMode = HFM_MESSAGE
sTopic = message id
sSubTopic = control id.

Chapter 10. Functions Supplied by Applications 10-11

HelpHook —
Help Hook

The menu window procedure sees the WM_HELP message because it runs a modal loop. It
processes the WM_HELP message by calling the help hook, specifying:

sMode = HFM_MENU
sTopic = menu id of pulldown
sSubTopic = menu id of item.

The WinDefWindowProc function sees the WM_HELP message for a FID_CLIENT window if the client
does not handle it itself. It calls the help hook, specifying:

sMode = HFM_WINDOW
sTopic = active-window id
sSubTopic = focus-window id.

An application sees the WM_HELP message in its dialog procedure. The application can ignore the
WM_HELP message, in which case the frame-window procedure action occurs (as described above)
or it can simulate a call to the help hook itself, using:

sMode = HFM_APPLICATION
sTopic = any value
sSubTopic = any value.

The input focus is never given to any of the standard frame controls, so help for these cannot be
obtained.

Related Messages
e WM_CHAR
* WM_HELP

10-12 PM Programming Reference

N4

T

InputHook

Input Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or iINCL_PM */

BOOL InputHook (HAB hab, PQMSG pQmsg, USHORT fsOptions)

This hook filters messages from the input queue.

Parameters
hab (HAB) — input
Anchor-block handle.

pQmsg (PQMSG) — input
A QMSG data structure.

fsOptions (USHORT) — input
Message removal options:

PM_REMOVE Message is being removed from queue
PM_NOREMOVE Message is not being removed from queue.

Returns
Processed indicator:

TRUE The message is not passed on to the next hook in the chain or to the application

FALSE The message is passed on to the next hook in the chain or to the application.

Remarks

This hook is called when messages are removed from an application queue, before being returned

by WinGetMsg or WinPeekMsg. It is called from within these functions just before resuming the

application with the message that is returned. There are no restrictions on calls that may be made at

this time.

Chapter 10. Functions Supplied by Applications

10-13

JournalPlaybackHook —
Journal Playback Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

LONG JournalPlaybackHook (HAB hab, BOOL fSkip, PQMSG pgmsg)

This hook plays back recorded messages.

Parameters
hab (HAB) — input
Anchor-block handle.
fSkip (BOOL) — input
Indicator as to whether the next message should be played back:

TRUE The journal playback hook skips to the next message. The pgmsg parameter is NULL
in this case. The next hook in the chain is not called.

FALSE The journal playback hook returns the next available message. The same message is
returned each time, until it is skipped with a call where this parameter is TRUE.

pgmsg (PQMSG) — input
Data structure where the message to be played back is returned.

When this hook is called, the time field of the QMSG structure is initialized to the current time.
This can be used to determine whether the next message is ready or not. This value must be
used for any delta calculations performed by the hook procedure, rather than the result of
WinGetCurrentTime

Returns
Waiting time.

The time to wait (in milliseconds) before processing the current message.

Remarks
This hook is called whenever a message is required to be played back.

10-14 PM Programming Reference

o

JournalRecordHook -
Journal Record Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL JournalRecordHook (HAB hab, PQMSG pgmsg)

This hook records user-input messages.

Parameters
hab (HAB) — input
Anchor-block handle.

pamsg (PQMSG) — input
Data structure that contains the message to be recorded.

The hwnd field of the QMSG structure is also set when the hook is called.

Returns
The return value from this hook is ignored.

Remarks
This hook is called after raw input is transiated to WM_CHAR or WM_BUTTON1DBLCLK messages.

The next hook in the chain is always called, and the message is always passed to the application.

JournalPlaybackHook hook does not receive any input played back by this hook. This prevents
feedback situations where input is played back a number of times.

Related Messages
* WM_CHAR
* WM_BUTTON1DBLCLK

Chapter 10. Furnctions Supplied by Applications 10-15

LoaderHook —
Loader Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL LoaderHook (HAB hab, SHORT sContext, PSZ pszlibname, PHLIB phiibLibhandie,
PSZ pszprocname, PFN pwndproc, PBOOL pfSuccess)

This hook allows the library and procedure loading and deleting calls to be intercepted.

Parameters
hab (HAB) — input
Anchor-block handle.

sContext (SHORT) — input
Origin of call to hook.

LHK_DELETELIB WinDeleteLibrary
LHK_DELETEPROC WinDeleteProcedure
LHK_LOADLIB WinLoadLibrary
LHK_LOADPROC WinLoadProcedure

psziibname (PSZ) — input
Library name.

This is the same as the library name in the pszLibname parameter of the WinLoadL ibrary
function.

phlibLibhandle (HLIB) — input/output
Library handle.

This is the same as the library handle in the hlibLibhandle parameter of the WinLoadProcedure
function or the hlibLibhandle parameter of the WinDeleteLibrary function.

If the sContext parameter is set to LHK_LOADLIB, then this hook must set the value of this
parameter to the handle of the loaded library or to NULLHANDLE if the load fails.

pszprocname (PSZ) — input
Procedure name.

This is the same as the procedure name in the pszProcname parameter of the
WinLoadProcedure function.

pwndproc (PFN) — input
Window procedure identifier.

This is the same as the library name in the pwndproc parameter of the WinDeleteProcedure
function.

If the sContext parameter is set to LHK_LOADPROC, then this hook must set the value of this
parameter to the handle of the loaded procedure or to NULL if the load fails.

pfSuccess (PBOOL) — input/output
Success indicator:

TRUE Library or procedure loaded or deleted successfully.

FALSE Library or procedure not loaded or deleted successfully.

10-16 PM Programming Reference

g

g

LoaderHook -—
Loader Hook

Returns
Processing indicator:

TRUE Do not call next hook in chain
FALSE Cali next hook in chain.

Remarks
If the hook attempts a load or deletion which is unsuccessful, then the hook must establish the
relevant error information.

Chapter 10. Functions Supplied by Applications 10-17

MsgCtiHook —
Message Control Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL MsgCtiHook (HAB hab, SHORT sContext, HWND hwnd, PSZ pszClassName,
USHORT usMsgClass, SHORT sControl, PBOOL pfSuccess)

This hook allows the call which determine the flow of messages to be intercepted.

Parameters
hab (HAB) — input
Anchor-block handle.

sContext (SHORT) — input
Origin of call to hook.

MCHK_CLASSMSGINTEREST WinSetClassMsginterest
MCHK_MSGINTEREST WinSetMsginterest
MCHK_MSGMODE WinSetMsgMode
MCHK_SYNCHRONISATION WinSetSynchroMode

hwnd (HWND) — input
Window handle.

This is the same as the window handle in the hwnd parameter of the WinSetMsglnterest function.

pszClassName (PSZ) — input
Window class name.

This is the same as the window class name in the pszClassName parameter of the
WinSetClassMsginterest function.

usMsgClass (USHORT) — input
Message class.

This is the same as the message class in the u/MsgClass parameter of the WinSetMsglnterest
and the WinSetClassMsginterest functions.

sControl (SHORT) — input
Control setting.

The setting varies with the value of the sContext parameter.

For MCHK_CLASSMSGINTEREST, it can be SMI_INTEREST, or SMI_NOINTEREST, or
SMI_AUTODISPATCH.

For MCHK_MSGINTEREST, it can be SMI_INTEREST, or SMi{_NOINTEREST, or SMI_RESET, or
SMI_AUTODISPATCH.

For MCHK_MSGMODE, it can be SMD_DELAYED or SMD_IMMEDIATE.

For MCHK_SYNCHRONISATION, it can be SSM_SYNCHRONOUS, or SSM_ASYNCHRONOUS, or
SSM_MIXED.

pfSuccess (PBOOL) — input/output
Success indicator:

TRUE Mode or interest successfully set.

FALSE Mode or interest not successfully set.

10-18 PM Programming Reference

F 4

~_

MsgCtiHook —
Message Control Hook

Returns
Processing indicator:

TRUE Do not call next hook in chain
FALSE Call next hook in chain.

Remarks
If the hook is unable to alter the message control state, then the hook must establish the relevant
error information.

Chapter 10. Functions Supplied by Applications 10-19

‘MsgFilterHook —
Message Filter Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL MsgFilterHook (HAB hab, PQOMSG pQmsg, USHORT usContext)

This hook filters messages from inside a mode loop.

Parameters
hab (HAB) - input
Anchor-block handle.

pQmsg (PQMSG) — input
A queue message data structure.

usContext (USHORT) — input
Context in which the hook has been calied:

' MSGF_DIALOGBOX Dialog-box mode loop.
MSGF_MESSAGEBOX Message-box mode loop.

MSGF_TRACK Window-movement and size tracking. When this hook is used the
TRACKINFO structure specified the ptiTrackinfo parameter of the
WinTrackRect function is updated to give the current state before the
hook is called. Only the rc/Track and the fs parameters are updated.

MSGF DRAG Direct manipulation mode loop.
MSGF_DDEPOSTMSG DDE post message mode loop.

Returns
Processed indicator:

TRUE The message is not passed on to the next hook in the chain or to the application

FALSE The message is passed on to the next hook in the chain or to the application.

Remarks
This hook is called inside any of the system-mode loops, for instance, during size-tracking or
move-tracking, or while a dialog box or menu is displayed.

The WM_QUIT message is passed to this hook, if it occurs during a mode loop.

Related Messages
s WM QUIT

10-20 PM Programming Reference

RegisterUserMsg —
Register User Message Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

BOOL RegisterUserMsg (HAB hab, SHORT sContext, USHORT usMsgid, SHORT sType1,
SHORT sDir1, SHORT sType2, SHORT sDir2, SHORT sTyper,
SHORT sCount, PSHORT asTypes, PBOOL pfSuccess)

This hook allows user messages and user data types to be registered.

Parameters
hab (HAB) - input
Anchor-block handle.

sContext (SHORT) — input
Origin of call to hook.

RUMHK_DATATYPE Register User Data type
RUMHK_MSG Register User Message

usMsgid (USHORT) — input
Message identifier.

If the origin of the calil is ‘Register User Data Type’, this parameter is not set.

sType1 (SHORT) — input
Data type of message-parameter 1.

If the origin of thé call is ‘Register User Data Type’, this parameter contains the data type code
to be registered. :

sDirt (SHORT) — input
Direction of message-parameter 1.

If the origin of the call is ‘Register User Data Type’, this parameter is not set.

sType2 (SHORT) — input
Data type of message-parameter 2.

If the origin of the call is ‘Register User Data type’, this parameter is not set.

sDir2 (SHORT) — input
Direction of message-parameter 2.

If the origin of the call is ‘Register User Data Type’, this parameter is not set.

sTyper (SHORT) — input
Data type of message reply.

If the origin of the call is ‘Register User Data Type’, this parameter is not set.

sCount (SHORT) - input
Number of elements.

If the origin of the call is ‘Register User Message’, this parameter is not set.

asTypes (PSHORT) — input
Data types of structure components.

If the origin of the call is ‘Register User Message’, this parameter is not set.

piSuccess (PBOOL) — input/output
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Chapter 10. Functions Supplied by Applications 10-21

RegisterUserMsg —
Register User Message Hook

Returns

Processing indicator:
TRUE Do not call next hook in chain
FALSE Call next hook in chain.

10-22 PM Programming Reference

~—

~—_

SendMsgHook

Send Message Hook

#define INCL_WINHOOKS /* Or use INCL_WIN or INCL_PM */

VOID SendMsgHook (HAB hab, PSMHSTRUCT psmhssmh, BOOL finterTask)

This hook filters messages sent by the WinSendMsg function.

Parameters
hab (HAB) — input
Anchor-block handle.

psmhssmh (SMHSTRUCT) - input
Send message hook structure.

This parameter is a structure that contains the parameters to the WinSendMsg function.

finterTask (BOOL) — input
Intertask indicator:

TRUE The message is sent between tasks (intertask)

FALSE The message is sent within a task (intratask).

Returns
The return value is VOID.

Remarks
This hook may be called whenever a window procedure is called via the WinSendMsg function.

It is called in the context of the sender, whereby if the sender has a queue hook installed it is called,

but if the receiver has a queue hook installed it is not called.

The next hook in the chain is always called.

Chapter 10. Functions Supplied by Applications

10-23

10-24 PM Programming Reference

Chapter 11. Introduction to Message Processing

Messages are processed by window and dialog procedures.

Every window has a window procedure. Windows can also be combined into standard windows or
dialog boxes. These are special cases of groups of windows that also have their own procedures. A
window or dialog procedure must be capable of processing any message. This can be achieved by
delegating some message types to the default window, or dialog, procedures by use of the
WinDefWindowProc and WinDefDigProc functions respectively.

Control windows are a special type of child windows. They take the form of objects such as buttons,
scroll bars, list boxes, and text entry fields. These child windows process mouse and keyboard input
and notify its owner of significant input events. Procedures for these child window controls are
inside the Presentation Manager and are often called system-provided window procedures.

All messages have the following form:
QMSG Message structure.

A typedef struct _QMSG {
! HWND hwnd;
ULONG msg;
MPARAM mpl; -
MPARAM mp2;
ULONG time;
POINTL ptl;
} QMSG;

hwnd (HWND)
Window handle.

msg (ULONG)
Message identity.

mp1 (MPARAM)
Parameter 1.

mp2 (MPARAM)
Parameter 2.

time (ULONG)
Message time.

ptl (POINTL)
) Pointer position when message was generated.

~—

Message Types
There are two types of window procedure message processing:
* Default window and dialog procedure message processing
* Control window message processing.

These types are described below along with the notation conventions used in the message
descriptions. The messages are described in the following chapters.

Default Window and Dialog Procedure Message Processing
These window procedures provide default processing for application window procedures:

* Default window and dialog procedure

* Language support window and dialog procedures, which are used if the application specifies a
null window procedure

¢ Defauit AVIO window procedure.

~—

Chapter 11. Introduction to Message Processing 11-1

These messages are described in Chapter 12, “Default Window Procedure Message Processing” on
page 12-1. The system-provided window procedures take no action on messages that are not
defined in this chapter, and return NULL.

Control Window Message Processing

Controls are predefined classes of child windows that any application can use for input and output.
These control classes are predefined:

WC_BUTTON

WC_COMBOBOX -

WC_CONTAINER

WC_ENTRYFIELD

WC_FRAME

WC_LISTBOX

WC_MENU

WC_MLE

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

Consists of buttons and boxes that the operator can select by clicking the
pointing device or using the keyboard. These messages are described in
Chapter 13, “Button Control Window Processing” on page 13-1.

Consists of an entry field control and a list box control merged into a single
control. The list, which is usually limited in size, is displayed below the entry
field and offset one dialog box unit to its right. These messages are
described in Chapter 19, “Prompted Entry Field Control Window Processing”
on page 19-1.

Consists of a visual component whose specific purpose is to hold objects
such as executable programs, word processing files, graphics images, and
database records. Messages are described in Chapter 24, “Container
Control Window Processing” on page 24-1.

Consists of a single line of text that the operator can edit. These messages
are described in Chapter 14, “Entry Field Control Window Processing” on
page 14-1.

Consists of a composite window. These messages are described in
Chapter 15, “Frame Control Window Processing” on page 15-1.

Presents a list of text items from which the operator can make selections.
These messages are described in Chapter 16, “List Box Control Window
Processing” on page 16-1.

Presents a list of items, which may be text displayed horizontally as action
bars or verticaily as pull-down menus. Menus are usually used to provide a
command interface to applications. These messages are described in
Chapter 17, “Menu Control Window Processing” on page 17-1.

Consists of a rectangular window that displays multiple lines of text that the
operator can edit. When it has the focus, the cursor marks the current
insertion or replacement point. These messages are described in

Chapter 18, “Muliti-Line Entry Field Control Window Processing” on

page 18-1.

Consists of a visual component whose specific purpose is to organize
information on individual pages so that a user can find and display that
information quickly and easily. Messages are described in Chapter 25,
“Notebook Control Window Processing” on page 25-1.

Consists of window scroll bars that allow the operator to make a request to
scroll the contents of an associated window. These messages are described
in Chapter 20, “Scroll Bar Control Window Processing” on page 20-1.

Consists of a visual.component whose specific purpose is to allow a user to
set, display, or modify a value by moving the slider arm along the slider
shaft. Messages are described in Chapter 28, “Slider Control Window
Processing” on page 26-1.

Presents a scrollable ring of choices from which the operator can select.
These messages are described in Chapter 21, “Spin Button Control Window
Processing” on page 21-1.

Consists of simple display items that do not respond to keyboard or pointing
device events. These messages are described in Chapter 22, “Static Control
Window Processing” on page 22-1.

112 PM Programming Reference

N T

WC_TITLEBAR

WC_VALUESET

Displays the window title or caption and allows the operator to move its
owner. These messages are described in Chapter 23, “Title Bar Control
Window Processing” on page 23-1.

Consists of a visual component whose specific purpose is to allow a user to
select one choice from a group of mutually exclusive choices. A value set
can use graphical images (bit maps or icons), as well as colors, text, and
numbers, to represent the items that a user can select. Messages are
described in Chapter 27, “Value Set Control Window Processing” on

page 27-1.

Owner-Notification Messages: Controls are useful because they notify their owners when significant
events take place. A control notifies its owner by sending a WM_CONTROL message or by posting a
WM_COMMAND or WM_HELP message.

e WM_CONTROL
e WM_COMMAND

Param2 contains information that indicates the source of the WM_COMMAND message:

CMDSRC_PUSHBUTTON Posted by a pushbutton control
CMDSRC_MENU Posted by a menu control
CMDSRC_ACCELERATOR Posted by WinTranslateAccel
CMDSRC_FONTDLG Posted by a font dialog.
CMDSRC_OTHER Other source.

¢ WM_HELP
Param2 contains information that indicates the source of the WM_HELP message:
CMDSRC_PUSHBUTTON Posted by a pushbutton control
CMDSRC_MENU Posted by a menu control
CMDSRC_ACCELERATOR Posted by WinTranslateAccel
CMDSRC_OTHER Other source.

Notation Conventions

Each message description contains:

Cause

Parameters

Remarks

The message name; a 2-byte identity unique to a message. Messages generated by
the system have an identity below the constant WM_USER; see “Reserved
Messages” on page 12-1.

Applications generating their own messages must use a value higher than
WM_USER.

For all messages, the first two or three characters of the name indicate the type of
window that is related to the message; for example:

LM List box control
SBM Scroll bar control.

The principal reason that caused the generation of the message.
Input and output parameters pertinent to the message.

There are always two parameters (param1 and param2) and one return value. Any
or all of the parameters can be NULL.

An explanation of the relationship between the parameters in the context of the
message and an indication of the expected processing of the message.

A definition of how the default window procedures (provided by the system) process
the message.

Note: A message is not equivalent to a call of the same name.

Chapter 11. Introduction to Message Processing 11-3

11-4 PM Programming Reference

e

R

Chapter 12. Default Window Procedure Message
Processing

This system-provided window procedure processes the actions that control the operation of
windows.

Purpose
General window messages are used for standard processing. These messages can be requested
from the system or sent to the system for information, or for actions such as create window, validate
window, track mouse movement, and select and deselect actions.

Reserved Messages

These message ranges are reserved:

WM_USER All messages below this value are reserved for system use. Private messages should
have an identifier with a value of WM_USER or higher.

General Window Styles

The window is the mechanism by which the application communicates with the operator. Each
window can have a window style that controls the appearance and behavior of the window. There
are also class styles that apply to all the windows of a particular class (class being FRAME, BUTTON,
and so on).

Window Class Styles

These window class styles are available:

CS_SIZEREDRAW Determines whether a window will be redrawn when sized. This
style is to be used for a window whose contents are sensitive to the
size of the window. For example, the data in some windows can be
scaled up or down to fit the size of the Client Area. In other
windows, the data remains the same size whatever the size of the
window; it is merely clipped if the window is made smaller. The
CS_SIZEREDRAMW style is to be used in the first instance but not in
the second. For more information, see WM_CALCVALIDRECTS.

CS_SYNCPAINT Window is synchronously repainted. This style causes
WS_SYNCPAINT to be set for all windows of this class.
CS_MOVENOTIFY This class style should be used by a child window if it wants to be

notified with a WM_MOVE message when its parent is moved. For
more detail, see the WM_MOVE message description.

CS_CLIPCHILDREN Causes a window of style WS_CLIPCHILDREN to be created,
regardless of whether this style bit is specified on the create window
function.

CS_CLIPSIBLINGS Causes a window of style WS_CLIPSIBLINGS to be created,
regardless of whether this style bit is specified on the create window
function.

CS_PARENTCLIP Causes a window of style WS_PARENTCLIP to be created,
) regardliess of whether this style bit is specified on the create window
function.

CS_SAVEBITS Causes a window of style WS_SAVEBITS to be created, regardless of
whether this styie bit is specified on the create window function.

Chapter 12. Default Window Procedure Message Processing 12-1

CS_PUBLIC

CS_HITTEST

CS_FRAME

Window Styles

These window styles are available:
WS_SYNCPAINT

Causes a public window class to be registered. It is an error if this
parameter is specified on any process other than the shell process.

If set, causes a WM_HITTEST message to be sent to the window,
before sending any pointing device message.

If not set, no WM_HITTEST message is sent, and it is assumed that
the window returns HT_NORMAL if the window is not disabled, and
HT_ERROR if the window is disabled.

Top-level frame windows do not have CS_HITTEST set.

If set, all windows of this class are expected to behave as frame
windows.

Window is synchronously repainted.

This style is set for windows that have Class Style CS_SYNCPAINT.
Applications can then turn this style on and off to vary the window
processing.

System-Provided Window Styles:
WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_DISABLED
WS_MAXIMIZED

WS_MINIMIZED
WS_PARENTCLIP

WS_SAVEBITS

WS_VISIBLE

Styles for Windows in Dialogs
WS_GROUP

WS_TABSTOP

12-2

PM Programming Reference

This specifies that the area occupied by the children of a window is
to be excluded when drawing in that window. Normally, it is
included.

This specifies that the area occupied by the siblings of a window is
to be exciuded when drawing in that window. Normally, it is
included.

This specifies that the window is disabled. The default is enabled.
This specifies that the frame window is to be created maximized.

When a window is moved or sized in the normal way at least one
border should remain on the screen. When a window is maximized
and the maximum size is as large as the screen all borders should
be positioned just outside the screen.

This specifies that the frame window is to be created minimized.

This controls how a window is clipped when a drawing action takes
place into the window.

Generally, a WS_PARENTCLIP window is not to draw outside its
window rectangle.

This specifies that the screen image of the area under a window of
this style be saved when the window is made visible.

This specifies that the window is visible. The default is invisible.

Note: A window can still be visible, in this sense, even if it cannot
be seen because it is covered by other windows.

This identifies the dialog items that make up a group.

This style is to be specified on the first window of any group.
Subsequent windows of the group must not have this style. The
windows of the group must be adjacent siblings. This can be done
by listing the windows consecutively in templates (see “Dialog
Template” on page 32-19) or by inserting each new window in the
group behind the previous one (WinCreateWindow).

This identifies a dialog item as one to which the operator can TAB.

———

General Window Messages

This section describes the window procedure actions upon receiving the following messages.

PL_ALTERED

This message is broadcast to all frame windows when the PrfReset function is issued.

Parameters
parami

hiniUser (HINI)
Handle of the new user profile.

param2

hiniSystem (HINI)
Handie of the new system profile.

Returns
fireply (ULONG)
Reserved.

0 Reserved value, must be 0.

Remarks

Applications should refresh their defaults from the user or system profile.

Default Processing

The default window procedure takes no action on this message, other than to set fireply to 0.

WM_ACTIVATE

This message occurs when an application causes the activation or deactivation of a window.

Parameters
param1

usactive (USHORT)
Active indicator:

TRUE The window is being activated
FALSE The window is being deactivated.

param2

hwndhwnd (HWND)
Window handle.

In the case of activation, hwndhwnd identifies the window being activated. In the case of

deactivation, hwndhwnd identifies the window being deactivated.

Returns
fireply (ULONG)
Reserved.

0 Reserved value.

Chapter 12. Default Window Procedure Message Processing

12-3

Remarks

A deactivation message (that is, a WM_ACTIVATE message with usactive set to FALSE) is sent first to
the window procedure of the main window being deactivated, before an activation message (that is, a

WM_ACTIVATE message with usactive set to TRUE) is sent to the window procedure of the main
window being activated.

Any WM_SETFOCUS messages with usfocus set to FALSE, are sent before the deactivation message.

Any WM_SETFOCUS messages with usfocus set to TRUE, are sent after the activation message.

If WinSetFocus is called during the processing of a WM_ACTIVATE message, a WM_SETFOCUS
message with usfocus set to FALSE is not sent, as no window has the focus.

If a window is activated before any of its children have the focus, this message is sent to the frame
window or to its FID_CLIENT, if it exists.

Note: Except in the instance of a WM_ACTIVATE message, with usactive set to TRUE, an application

processing a WM_ACTIVATE, or a WM_SETFOCUS message should not change the focus
window or the active window. If it does, the focus and active windows must be restored
before the window procedure returns from processing the message. For this reason, any
dialog boxes or windows brought up during the processing of a WM_ACTIVATE, or a
WM_SETFOCUS message should be system modal.

Default Processing
The default window procedure takes no action on this message, other than to set fireply to 0.

WM_APPTERMINATENOTIFY

This message is posted when an application (started by another application) terminates.

Parameters
param1

happhapp (HAPP)
Application handle.

param2

firetcode (ULONG)
Return code from the terminating application.

Returns
fireply (ULONG)
Reserved.

0 Reserved value; must be 0.

Remarks
The WM_APPTERMINATENOTIFY message provides the capability for the starting application to be
notified when the started application terminates.

Default Processing
The default window procedure takes no action on this message, other than to set fireply to 0.

12-4 PM Programming Reference

S

A4

WM_ADJUSTWINDOWPOS

This message is sent by the WinSetWindowPos call to enable the window to adjust its new position or
size whenever it is about to be moved.

Parameters
param1i

plpswp (PSWP)
SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the proposed move
or size data. The control can adjust this new position by changing the contents of the SWP
structure. It can change the x or y fields to adjust its new position; or the ¢x or cy fields to
adjust its new size, or the hwndinsertBehind field to adjust its new z-order.

param2

fizero (ULONG)
Zero.

Returns
reply

fiIResult (ULONG)
Window-adjustment status indicators.

These indicators are passed on to the WM_WINDOWPOSCHANGED message that is sent
after the window state change has occurred. Bits 0 through 15 of this parameter are
reserved for system use and bits 16 through 31 are available for application use.

0 No changes have been made
AWP_MINIMIZED The frame window has been minimized.
AWP_MAXIMIZED The frame window has been maximized.
AWP_RESTORED The frame window has been restored.
AWP_ACTIVATE The frame window has been activated.
AWP_DEACTIVATE The frame window has been deactivated.

Remarks
Frame controls can respond to this message to reposition themselves or resize themselves in the
window frame.

Menu controls respond to this message as follows:

MS_ACTIONBAR not specified: The SWP cx and SWP cy fields are set so that the menu window
exactly contains all of the items in the menu. The SWP x and SWP y fields are not changed.

MS_ACTIONBAR specified and MS_TITLEBUTTON not specified: The items in the menu are
arranged such that all of the items are visible within the width specified by the SWP cx field. This
formatting may cause the menu items to be arranged in multiple lines. The SWP cx field is set to
include all of the lines of the menu. The SWP x and SWP y fields are not changed.

MS_ACTIONBAR specified and MS_TITLEBUTTON specified: The SWP cx value is set to the
accumulated width of the items in the menu. The height specified in the SWP cy field is not changed.
In both instances, the SWP cx and SWP cy fields are only aitered if SWP_SIZE is specified in the f/
field. Instead, the width of MS_TITLEBUTTON menus is determined by the accumulated width of the
items in the menu.

A list box does two things:

* Changes the height so as to accommodate an exact number of items.

* Automatically outsets its border. This means, for example, that the x, y, width, and height fields
in the resource file specify the working area of the listbox. The border is drawn outside this
area.

Chapter 12. Default Window Procedure Message Processing 12-5

The entry field control, if ES_MARGIN is specified, outsets its margin. This means that in the
resource file, the numbers specified as the x-, and y-position of an entry field control are taken to be
the position where the first character of text is drawn, not where the lower-ieft corner of the
surrounding box is drawn. Similarly, the height and width parameters apply to the editable area of
the control; consequently, they do not include the margin.

PN

When a dialog is created with WinCreateDlg or WinLoadDlg, a WM_ADJUSTWINDOWPOS message is
sent to each child window after the dialog window is created, with a pointer to a SWP structure
containing f/ equal to SWP_SIZE | SWP_MOVE and the x, y, ¢y, and cx fields initialized to the current
size and position of the window. The message enables the control to adjust its size or position,
usually to compensate for its border, or margin, or both.

Default Processing

The default window procedure takes no action on this message, other than to set flResult to 0.

WM_BEGINDRAG

This message occurs when the operator initiates a drag operation.

Parameters

parami

usPointer (USHORT)
Input device flag:

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event

param2

pispointerpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the {
window. This value is ignored if usPointer is not set to TRUE.

Returns

reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks '

This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV_BEGINDRAG.

Default Processing

The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

e~

12-6 PM Programming Reference

WM_BEGINSELECT

This message occurs when the operator initiates a swipe selection.

Parameters
param1i

usPolinter (USHORT)
Input device flag:

TRYE Message resulted from pointer event
FALSE Message resulted from keyboard event

param2

ptspointerpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
\ reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV_BEGINSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON1CLICK

This message occurs when the operator presses and then releases button 1 of the pointing device
within a specified period of time, and without moving the mouse.

) Parameters
param1

pispointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

fstlags (USHORT)
Keyboard control codes.

5 In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

Chapter 12. Default Window Procedure Message Processing 12-7

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM_BUTTON2CLICK

This message occurs when the operator presses and then releases button 2 of the pointing device
within a specified period of time, and without moving the mouse.

Parameters
param1

pispointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

12-8 PM Programming Reference

e

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The defauit window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM_BUTTONS3CLICK

This message occurs when the operator presses and then releases button 3 of the pointing device
within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test resuit. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresul/t to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-9

WM_BUTTON1DBLCLK

This message occurs when the operator presses button 1 of the pointing device twice within a
specified time, as detailed below.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

tshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

A double-click is recognized if all of the following are true:
* Two clicks are of the same button.

* No intervening pointing device button is pressed.

* The two clicks occur within the doubie-click time interval as defined by the SV_DBLCLKTIME
system value.

* The two clicks occur within a small spatial distance. This is defined by the rectangle, the length
of whose sides parallel to the x- and y-axes are respectively, the SV_CXDBLCLICK and
SV_CYDBLCLICK system values. The first click is assumed to be at the center of this rectangle.

The keyboard control codes specified by ‘flags’ reflects the keyboard state at the time the mouse
message was initiated. This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

12-10 PM Programming Reference

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM_BUTTON2DBLCLK

This message occurs when the operator presses button 2 of the pointing device twice within a
specified time, as detailed in “WM_BUTTON1DBLCLK" on page 12-10.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

/ fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

S

Returns
reply
fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

\ Remarks

! This message is posted to the application queue associated with the window that is to receive the
pointer-button information. The keyboard control codes specified by ‘flags’ reflects the keyboard
state at the time the mouse message was initiated. This may or may not reflect the current keyboard
state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouidn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1DBLCLK.

N~

Chapter 12. Default Window Procedure Message Processing 12-11

WM_BUTTON3DBLCLK

This message occurs when the operator presses button 3 of the pointing device twice within a
specified time, as detailed in “WM_BUTTON1DBLCLK” on page 12-10.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For detaiis of
the possible values, see “WM_HITTEST” on page 12-37.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer button information. The keyboard control codes specified by ‘flags’ reflects the keyboard
state at the time the mouse message was initiated. This may or may not reflect the current keyboard
state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1DBLCLK.

12-12 PM Programming Reference

N

WM_BUTTON1DOWN

This message occurs when the operator presses pointer button one.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by ‘flags’ reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY fiag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Detault Processing
The default window procedure activates the window using WinSetActiveWindow, and then sets fresult
to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-13

WM_BUTTON1MOTIONEND

This message occurs when the operator completes a drag operation which was initiated by pressing
button one on the pointing device.

Parameters
param2

fshittestres (USHORT)
Hit-test result.

hittestres provides the hit-test resuit. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTONT1MOTIONSTART

This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button one on the pointing device.

Parameters '
param2

fshittestres (USHORT)
Hit-test result.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply
fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-14 PM Programming Reference

\K‘

N

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON2DOWN

This message occurs when the operator presses button 2 on the pointing device.

Parameters
parami

ptspointerpos (POINTS)
Pointer position.
The pointer position is in window coordinates relative to the bottom-left corner of the
window. :

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by ‘flags’ reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to “WM_BUTTON1DOWN?” on

page 12-13.

Chapter 12. Default Window Procedure Message Processing 12-15

WM_BUTTON2MOTIONEND

This message occurs when the operator completes a drag operation which was initiated by pressing
button two on the pointing device. it

Parameters
param2

fshittestres (USHORT)
Hit-test resuit.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply
fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON2MOTIONSTART

This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button two on the pointing device.

Parameters
param2

fshittestres (USHORT)
Hit-test result.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply
fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-16 PM Programming Reference

S

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON3DOWN

This message occurs when the operator presses button 3 on the pointing device.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by ‘flags’ reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to “WM_BUTTON1DOWN” on
page 12-13.

Chapter 12. Default Window Procedure Message Processing 12-17

WM_BUTTON3SMOTIONEND

This message occurs when the operator completes a drag operation which was initiated by pressing
button three on the pointing device.

Parameters
param2

fshittestres (USHORT)
Hit-test result.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON3MOTIONSTR

This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button three on the pointing device.

Parameters
param2

tshittestres (USHORT)
Hit-test result.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-18 PM Programming Reference

s

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set resuit to FALSE.

WM_BUTTON1UP

This message occurs when the operator releases button 1 of the pointing device.

Parameters
param1i

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by ‘flags’ reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state. ‘

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresult to FALSE.

Chapter 12. Default Windew.Procedure-Message-Processing 12-19

WM_BUTTON2UP

This message occurs when the operator releases button 2 of the pointing device.

Parameters
parami

pispointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by ‘flags’ reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresuit to FALSE.

12-20 PM Programming Reference

P

R

WM_BUTTON3UP

This message occurs when the operator releases button 3 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

tshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. it contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see “WM_HITTEST” on page 12-37.

tsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed
KC_IGNOREKEY Indicates the keyboard state is to be ignored.

Returns
reply
fresuit (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by ‘flags’ reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn’t
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1UP.

Chapter 12. Default Window Procedure Message Processing 12-21

WM_CALCFRAMERECT

This message occurs when an application uses the WinCalcFrameRect function.

Parameters
param1

pRect (PRECTL)
Rectangle structure.

This points to a RECTL structure.
param2

usFrame (USHORT)
Frame indicator:

TRUE Frame rectangle provided
FALSE Client area rectangle provided.

Returns
reply

fSuccess (BOOL)
Rectangle-calculated indicator:

TRUE Successful completion
FALSE Error occurred or the calculated rectangle is empty.

Remarks
This message is sent to the frame control to perform the appropriate calculation. if the low word of
MP2 is TRUE, the RECTL structure in MP1 contains a frame window and this message calculates the
RECTL of the client. If the low word of MP2 is FALSE, MP1 contains a client window and this
message calculates the RECTL of the frame.

Default Proceasing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM_CALCVALIDRECTS

This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine which areas
of a window can be preserved if a window is sized, and which should be redisplayed.

Parameters
parami

pOldNew (PRECTL)
Window-rectangle structures.

This points to two RECTL structures. The first structure contains the rectangle of the
window before the move, the second contains the rectangle of the window after the move.
The coordinates of the rectangles are relative to the parent window.

param2

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is resized
(see the WinSetWindowPos function).

12-22 PM Programming Reference

—

S

3

Returns

reply
usAlign (USHORT)

Alignment control.

This instructs WinSetWindowPos how to align valid window bits. This value is made up from

CVR_+* flags, as follows:

CVR_ALIGNLEFT Align with the left edge of the window.

CVR_ALIGNBOTTOM Align with the bottom edge of the window.

CVR_ALIGNTOP Align with the top edge of the window.

CVR_ALIGNRIGHT Align with the right edge of the window.

CVR_REDRAW The whole window is invalid. If CVR_REDRAW, is set, the whole
window is assumed invalid, otherwise, the remaining flags can be
ORed together to get different kinds of alignment. For example:
(CVR_ALIGNLEFT | CVR_ALIGNTOP)
aligns the valid window area with the top-left of the window.

0 It is assumed the application has changed the rectangles pointed to
by pOidNew and pNew itself.

Remarks

This message is not sent if this window has the CS_SIZEREDRAW style, indicating size-sensitive
window content that must be totally redrawn if sized.

This enables the application to determine if the position of the window has changed as well as its
size; this can aid alignment processing.

These rectangles can be modified by the window procedure to cause parts of the window to be
redrawn and not preserved.

The window manager tries to preserve the screen image by copying the image described by the old
rectangle into the image described by the new rectangle. In this way, an application can control the
alignment of the preserved image as well, by changing the origin of the first rectangle.

If no change is made to either rectangle, the entire window area is preserved. If either rectangle is
empty, the entire window area is completely redrawn by the operation.

Note: This functionality can be used to optimize window updating when the window is resized. For
example, if the application returns that the window is to be aligned with the top-left corner,
and the top border is sized, the screen data of the window moves with the top border.

In all instances, the rectangles are intersected with the area of the screen that is actually
visible and the valid area of the window. That is, only the window area that contains window
information is copied.

For example, consider an application that has two scroll bars, that are children of the client
window. When the window is resized, the scroll bars must be completely redrawn. By
returning rectangles that exclude the scroll bars, the area of the scroll bars is completely
redrawn, thereby preserving only the part of the screen that is worth preserving.

Default Processing

The default window procedure processing is to align the valid area with the top-left of the window by
returning:

(CVR_ALIGNTOP | CVR_ALIGNLEFT)

In addition, any child windows intersecting the source rectangle pointed to by pO/dNew of this
message, are also offset with the aligned window area.

Chapter 12. Default Window Procedure Message Processing 12-23

WM_CHAR

This message is sent when an operator presses a key.

Parameters

param1

tsflags (USHORT)
Keyboard control codes:

KC_CHAR
KC_SCANCODE

KC_VIRTUALKEY

KC_KEYUP
KC_PREVDOWN

KC_DEADKEY
KC_COMPOSITE

KC_INVALIDCOMP

KC_LONEKEY

KC_SHIFT
KC_ALT
KC_CTRL

ucrepeat (UCHAR)

Repeat count.

ucscancode (UCHAR)

param2

Hardware scan code.

Indicates that usch value is valid.
Indicates that ucscancode is valid.

Generally, this is set in all WM_CHAR messages generated from
actual operator input. However, if the message has been generated
by an application that has issued the WinSetHook function to filter
keystrokes, or posted to the application queue, this may not be set.
Indicates that usvk is valid.

Normally usvk should be given precedence when processing the
message.

The event is a key-up transition; otherwise it is a down transition.
The key has been previously down; otherwise it has been previously
up.

The character code is a dead key. The application is responsible for
displaying the glyph for the dead key without advancing the cursor.
The character code is formed by combining the current key with the
previous dead key.

The character code is not a valid combination with the preceding
dead key. The application is responsible for advancing the cursor
past