

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page vii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are Inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: "© (your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

PM Programming Reference

/

About this Book

The Presentation Manager Programming Reference is a detailed technical reference, in three
volumes, for application programmers creating programs using the Presentation Manager interface.

Chapter 1 contains important information. You should read it before using this book.

This reference does not give guidance on how to use the functions, nor does it contain information
about how the functions are related to each other. It is intended to be used in conjunction with the
Programming Guide Volumes II and Ill.

Prerequisite Knowledge
The OS/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which OS/2 programs can be written. The information in the
Technical Library assumes that you are new to programming with OS/2 and the Presentation
Manager. You should understand the OS/2 services available to users.

Related Publications
The Application Design Guide and the Programming Guide Volumes I, II, and Ill introduce the
programming concepts that you should understand before you begin developing applications to run
on the OS/2 operating system. Getting Started describes the online programming books, tools,
programming aids, and sample programs that make up the IBM Developer's Toolkit for OS/2 2.0.

Organization of this Book
This book is in three volumes. The contents of each volume are as follows:

Volume I (Functions)
Chapter 1, "Introduction" on page 1-1

You should read this chapter before using this book.

Chapter 2, "Device Functions" on page 2-1

Chapter 3, "Direct Manipulation Functions" on page 3-1

Chapter 4, "Dynamic Data Formatting Functions" on page 4-1

Chapter 5, "Graphics Functions" on page 5-1

Chapter 6, "Profile Functions" on page 6-1

Chapter 7, "Spooler Functions" on page 7-1

Volume II (FuncHons·and Workplace)
Chapter 8, "Window Functions" on page 8-1

Chapter 9, "Workplace Classes, Instance Methods, and Class Methods" on page 9-1

About this Book iii

Volume Ill (Related Information and Data Types)
Chapter 10, "Functions Supplied by Applications" on page 10-1

Chapter 11, "Introduction to Message Processing" on page 11-1

Chapter 12, "Default Window Procedure Message Processing" on page 12-1

Chapter 13, "Button Control Window Processing" on page 13-1

Chapter 14, "Entry Field Control Window Processing" on page 14-1

Chapter 15, "Frame Control Window Processing" on page 15-1

Chapter 16, "List Box Control Window Processing" on page 16-1

Chapter 17, "Menu Control Window Processing" on page 17-1

Chapter 18, "Multl-Llne Entry Field Control Window Processing" on page 18-1

Chapter 19, "Prompted Entry Fleld Control Window Processing" on page 19-1

Chapter 20, "Scroll Bar Control Window Processing" on page 20-1

Chapter 21, "Spin Button Control Window Processing" on page 21-1

Chapter 22, "Static Control Window Processing" on page 22-1

Chapter 23, "Title Bar Control Window Processing" on page 23-1

Chapter 24, "Container Control Window Processing" on page 24-1

Chapter 25, "Notebook Control Window Processing" on page 25-1

Chapter 26, "Slider Control Window Processing" on page 26-1

Chapter 27, "Value Set Control Window Processing" on page 27-1

Chapter 28, "Clipboard Messages" on page 28-1

Chapter 29, "Direct Manipulation (Drag) Messages" on page 29-1

Chapter 30, "Dynamic Data Exchange Messages" on page 30-1

Chapter 31, "Help Manager Messages" on page 31-1

Chapter 32, "Resource Files" on page 32-1

Chapter 33, "Graphics Orders" on page 33-1

iv PM Programming Reference

Chapter 34, "Code Pages" on page 34-1

Appendix A, "Data Types" on page A-1

Appendix B, "Error Codes" on page B-1

Appendix C, "Error Explanations" on page C-1

Appendix D, "Standard Bit-Map Formats" on page D-1

Appendix E, "Fonts Supplied with OS/2" on page E-1

Appendix F, "The Font-Fiie Format" on page F-1

Appendix G, "Format of Interchange Flies" on page G-1

Appendix H, "lnltlallzatlon Fiie Information" on page H-1

Appendix I, "Virtual Key Definitions" on page 1-1

About this Book v

vi PM Programming Reference

!:\

)

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only IBM's product, program, or service may

be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's

intellectual property rights or other legally protectible rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The following terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM
Corporation in the United States and/or other countries:

IBM
Common User Access
CUA
Operating System/2
OS/2
Presentation Manager
SAA
System Application Architecture

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of other
companies as follows:

Adobe
Helvetica
LaserJet
Intel
Microsoft
Postscript
Times New Roman
Windows

Adobe Systems Incorporated
Linotype AG
Hewlett-Packard Company
Intel Corporation
Microsoft Corporation
Adobe Systems Incorporated
Monotype Corporation
Microsoft Corporation

Notices vii

viii PM Programming Reference

\
)

Related Information and Data Types

Chapter 10. Functions Supplied by Applications . 10-1
DialogProc - Dialog Procedure . 10-2
ThunkProc - Pointer-Conversion Procedure . 10-3
WndProc - Window Procedure . 10-4
CheckMsgFilterHook - Check Message Filter Hook . 10-5
CodePageChangeHook - Code Page Change Hook . 10-7
DestroyWindowHook - Destroy Window Hook . 10-8
FindWordHook - Find Word Hook . 10-9
HelpHook - Help Hook . 10-10
lnputHook - Input Hook . 10-13
JournalPlaybackHook - Journal Playback Hook . 10-14
JournalRecordHook - Journal Record Hook . 10-15
LoaderHook - Loader Hook . 10-16
MsgCtlHook - Message Control Hook . 10-18
MsgFilterHook - Message Filter Hook . 10-20
RegisterUserMsg - Register User Message Hook . 10-21
SendMsgHook - Send Message Hook . 10-23

Chapter 11. Introduction to Message Processing . 11-1
Message Types . 11-1
Notation Conventions . 11-3

Chapter 12. Default Window Procedure Message Processing . 12-1
Reserved Messages . 12-1
General Window Styles . 12-1
General Window Messages . 12-3
Default Dialog Processing 12-70
Default File Dialog Processing . 12-73
Default Font Dialog Processing . 12-75
Language Support Window Processing . 12-80
Language Support Dialog Processing . 12-83

Chapter 13. Button Control Window Processing . 13-1
Button Control Styles . 13-1
Button Control Data . 13-2
Default Colors . 13-2
Button Control Notification Messages . 13-3
Button Control Window Messages . 13-5

Chapter 14. Entry Field Control Window Processing . 14-1
Entry Field Control Styles . 14-1
Entry Field Control Data . 14-2
Default Colors . 14-2
Entry Field Control Notification Messages . 14-3
Entry Field Control Window Messages . 14-4

Chapter 15. Frame Control Window Processing . 15-1
Frame Creation Flags . 15-1
Frame Control Styles . 15-3
Frame Control Data . 15-3
Default Colors . 15-3
Frame Control Notification Messages . 15-4
Frame Control Window Messages . 15-6

Chapter 16. List Box Control Window Processing .
List Box Control Styles .
List Box Control Data .
Default Colors .
List Box Control Notification Messages

16-1
16-1
16-1
16-1
16-2

Related Information and Data Types

List Box Control Window Messages . 16-5

Chapter 17. Menu Control Window Processing
Menu Control Styles . ,.
Menu Item Styles .
Menu Item Attributes
Default Colors .
Menu Control Notification Messages .
Menu Control Window Messages .

Chapter 18. Multi-Line Entry Fleld Control Window Processing .
Multi-Line Entry Field Control Styles
Multi-Line Entry Field Control Data
Multi-Line Entry Field Control Notification Messages
Multi-Line Entry Field Window Messages

Chapter 19. Prompted Entry Field Control Window Processing
Combo Box Control Styles .. .
Combo Box Control Data
Default Colors
Combo Box Control Notification Messages .
Combo Box Control Window Messages

17-1
17-1
17-2
17-2
17-3
17-4
17-8

18-1
18-2
18-2
18-3
18-7

19-1
19-1
19-1
19-2
19-2
19-4

Chapter 20. Scroll Bar Control Window Processing . 20-1
Scroll Bar Control Styles . 20-1
Scroll Bar Control Data . 20-1
Default Colors . 20-2
Scroll Bar System Values ... 20-2
Scroll Bar Control Notification Messages . 20-3
Scroll Bar Control Window Messages . 20-4

Chapter 21. Spin Button Control Window Processing .
Purpose
Spin Button Control Styles .. .
Spin Button Control Notification Message
Spin Button Control Window Messages

Chapter 22. Static Control Window Processing .
Static Control Styles .
Static Control Data .
Default Colors
Static Control Notification Messages .
Static Control Window Messages

Chapter 23. Tiiie Bar Control Window Processing .
Title Bar Control Styles
Title Bar Control Data .
Default Colors
Title Bar Control Notification Messages .
Title Bar Control Window Messages

21-1
21-1
21-1
21-2
21-3

22-1
22-1
22-2
22-2
22-2
22-3

23-1
23-1
23-1
23-1
23-2
23-2

Chapter 24. Container Control Window Processing . 24-1
Purpose . 24-1
Container Control Window Words . 24-1
Container Control Styles and Selection Types . 24-2
Container Control Data . 24-3
Container Control Notification Messages . 24-4
Container Control Notification Codes . 24-8
Container Control Window Messages . 24-22

Chapter 25. Notebook Control Window Processing . 25-1
Purpose . 25-1
Notebook Control Styles . 25-1

PM Programming Reference

\
)

Notebook Control Data . 25-2
Notebook Control Notification Messages . 25-3
Notebook Control Window Messages . 25-4

Chapter 26. Sllder Control Window Processing . 26-1
Purpose . 26-1
Slider Control Styles . 26-1
SI ider Control Data . 26-3
Slider Control Notification Messages . 26-4
Slider Control Window Messages . 26-7

Chapter 27~ Value Set Control Window Processing . 27-1
Purpose . 27-1
Value Set Control Styles . 27-1
Value Set Control Data . 27-4
Value Set Control Notification Messages . 27-5
Value Set Control Window Messages 27-8

Chapter 28. Clipboard Messages 28-1

Chapter 29. Direct Manlpulallon (Drag) Messages . 29-1

Chapter 30. Dynamic Data Exchange Messages . 30-1

Chapter 31. Help Manager Messages 31-1

Chapter 32. Resource Flies . 32-1
How to Read the Syntax Definitions . 32-1
Def.initions Used in all Resources . 32-2
Resource Script File Specification . 32-2
Templates, Control Data, and Presentation Parameters . 32-19
Resource (.RES) File Specification . 32-27

Chapter 33. Graphics Orders . 33-1
Data Types .. 33-1
Arc at a Given Position I Arc at Current Position . 33-3
Begin Area .33-3
Begin Element . 33-4
Begin Image at Given Position I Begin Image at Current Position 33-5
Begin Path . 33-5
Bezier Curve at Given Position I Bezier Curve at Current Poition 33-6
Bitblt . 33-7
Box at Given Position I Box at Current Position . 33-8
Cal I Segment . 33-9
Character String at Given Position I Character String at Current Position 33-9
Character String Extended at Given Position I Character String Extended at Current Position 33-10
Character String Move at Given Position I Character String Move at Current Position 33-11
Close Figure . 33-12
Comment . 33-12
End Area . 33-13
End Element . 33-13
End lma.ge . 33-13
End ofSymbol Definition . 33-14
End Path .. 33-14
End Pro log . 33-14
·Escape .. , 33-15
Extended Escape . 33-15
Fill Path 33-16
Fillet at Given Position I Fillet at Current Position . 33-16
Full Arc at Given Position l Full Arc at Current Position . 33-17
Image Data . 33-17
Label . 33-18
Line at Given Position I Line at Current Position . 33-18

Related Information and Data Types

Marker at Given Position I Marker at Current Position .
Modify Path .
No-Operation .
Outline Path
Partial Arc at Given Position I Partial Arc at Current Position .
Polygons
Pop
Relative Line at Given Position I Relative Line at Current Position
Segment Characteristics .
Set Arc Parameters I Push and Set Arc Parameters .
Set Background Color I Push and Set Background Color
Set Background Indexed Color I Push and Set Background Indexed Color
Set Background Mix I Push and Set Background Mix
Set Character Angle I Push and Set Character Angle .
Set Character Break Extra I Push and Set Character Break Extra
Set Character Cell/ Push and Set Character Cell .
Set Character Direction I Push and Set Character Direction
Set Character Extra I Push and Set Character Extra .
Set Character Precision I Push and Set Character Precision .
Set Character Set I Push and Set Character Set .
Set Character Shear I Push and Set Character Shear .
Set Clip Path
Set Color I Push and Set Color .
Set Current Position I Push and Set Current Position .
Set Extended Color I Push and Set Extended Color .
Set Fractional Line Width I Push and Set Fractional Line Width
Set Indexed Color I Push and Set Indexed Color .
Set Individual Attribute I Push and Set Individual Attribute .
Set Line End I Push and Set Line End
Set Line Join I Push and Set Line Join ..
Set Line Type I Push and Set Line Type
Set Line Width I Push and Set Line Width
Set Marker Cell I Push and Set Marker Cell .
Set Marker Precision I Push and Set Marker Precision .
Set Marker Set I Push and Set Marker Set .
Set Marker Symbol I Push and Set Marker Symbol .
Set Mix I Push and Set Mix .. .
Set Model Transform I Push and Set Model Transform
Set Pattern Reference Point I Push and Set Pattern Reference Point
Set Pattern Set I Push and Set Pattern Set .
Set Pattern Symbol I Push and Set Pattern Symbol .
Set Pick Identifier I Push and Set Pick Identifier .
Set Segment Boundary .
Set Stroke Line Width I Push and Set Stroke Line Width
Set Text Alignment I Push and Set Text Alignment
Set Viewing Transform .
Set Viewing Window I Push and Set Viewing Window .
Sharp Fillet at Given Position I Sharp Fillet at Current Position

Chapter 34. Code Pages .
Windowed PM Applications
OS/2 Code Page Options for PM Applications
OS/2 Font Support for Multiple Code Pages .
ASCII Code Pages .
EBCDIC Code Pages .
DBCS Support .

PM Programming Reference

33-18
33-19
33-19
33-19
33-20
33-20
33-21
33-22
33-22
33-23
33-23
33-24
33-25
33-26
33-26
33-27
33-28
33-28
33-29
33-30
33-30
33-31
33-31
33-32
33-32
33-33
33-34
33-35
33-36
33-36
33-37
33-38
33-39
33-40
33-40
33-41
33-41
33-42
33-43
33-44
33-44
33-45
33-45
33-46
33-47
33-48
33-48
33-50

34-1
34-1
34-3
34-4

34-11
34-16
34-23

/

Chapter 10. Functions Supplied by Applications

This chapter describes dialog procedures, window procedures, and hooks. It shows the input
parameters and returns that the operating system expects an application to use in application
procedures and that can be called by the operating system in response to certain events.

Procedures and hooks are application code that is called by the system in response to certain
events.

The names and parameter lists of functions are contained in header files that are incorporated into
the application when it is compiled. Their addresses are contained in .LIB files that are incorporated
at link time.

The names of procedures and hooks are defined by the application, and their parameter lists are
defined by the system. Function prototypes for these procedures and hooks are in PMWIN.H. The
prototypes have sample names that can be changed by the programmer before they are inserted into
the application source code.

The application passes the address of these procedures and hooks in the following ways:

Dialog procedures

Window procedures

Hooks

Thunks

During the WinloadDlg, WinDlgBox, WinFileDlg, or WinFontDlg function

During the WinRegisterCtass or WinSubclassWindow functions

During the WinSetHook function

During the WinSetClassThunkProc or WinSetWindowThunkProc
functions.

The following table shows the procedures and hooks in alphabetic order.

CName CName

Procedures

DialogProc WndProc

ThunkProc

Hooks

CheckMsgFi lterHook JournalRecordHook

CodePageChangeHook LoaderHook

DestroyWindowHook MsgCtlHook

FindWordHook MsgFi lterHook

HelpHook RegisterUserMsg

lnputHook SendMsgHook

JournalPlaybackHook

Chapter 10. Functions Supplied by Applications 10-1

DialogProc -
Dialog Procedure

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESULT DlalogProc (HWND hwnd, USHORT usmsg, MPARAM mpParam1,
MPARAM mpParam2)

This is a window procedure that automatically subclasses each instance of a dialog box.

Parameters
hwnd (HWND) - input

Handle of the window to which the message applies.

usmsg (USHORT) - input
Message identity.

mpParam1 (MPARAM) - input
Messag.e parameter 1.

mpParam2 (MPARAM) - input
Message parameter 2.

Returns
Message-return data.

Remarks
This procedure is the same as any other window procedure, except that it can receive predefined

window messages specific to dialog box windows.

Note: It does not receive the WM_CREATE message, but the same information is carried by the

WM_INITDLG message, that is generated during the creation of a dialog-box window.

hwnd is always the window handle of the dialog-box window.

The dialog procedure typically processes only some of the messages passed to it. Any messages

that it does not process must be passed to WinDefFileDlgProc if the dialog box is the standard file

selection dialog, WinDefFontDlgProc if the dialog box is the standard font selection dialog box, or for

all other dialog boxes, WinDefDlgProc (not WinDefWindowProc), because these perform the standard

dialog-box processing for those messages.

Related Messages
• WM_CREATE
• WM_INITDLG

10-2 PM Programming Reference

\
)

ThunkProc -
Pointer-Conversion Procedure

MRESUL T ThunkProc (HWND hwnd, USHORT usmsg, MPARAM mpParam1,
MPARAM mpParam2, PFNWP pWndProc)

This procedure provides pointer conversion for application-defined messages.

Parameters
hwnd (HWND) - input

Window handle.

usmsg (USHORT) - input
Message identity.

This is an application-defined message. The value is greater than or equal to WM_USER.

mpParam1 (MPARAM) - input
Message parameter 1.

mpParam2 (MPARAM) - input
Message parameter 2.

pWndProc (PFNWP) - input
Window-procedure identifier.

Returns
Message-return data.

Remarks
Pointer conversion is normally performed automatically by the operating system. An application
needs to provide its own pointer-conversion procedures only for application-defined messages which
may be passed from 16-bit code to 32-bit code.

A pointer-conversion procedure is associated with a window by the WinSetWindowThunkProc and
WinSetClassThunkProc functions.

The logic of the pointer-conversion procedure is as follows:

1. Convert each message parameter, if necessary. This may include converting any data
structures to which the parameter points.

2. Call the window procedure referenced by the pWndProc parameter, supplying as arguments
hwnd, usmsg, mpParam1 and mpParam2.

3. Collect the return value and, if necessary, convert it.

Note that structures to which the return value might point cannot be converted.

4. Convert any structures referenced by message parameters which might have been modified by
the window procedure. Note that the pointer-conversion procedure should ensure that the
original memory is still available before converting the structures.

A pointer-conversion procedure should process only those messages that it recognizes. On
receiving unrecognized messages, it should set usmsg to 0.

Chapter 10. Functions Supplied by Applications 10-3

WndProc -
Window Procedure

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESUL T WndProc (HWND hwnd, USHORT usmsg, MPARAM mpParam1,
MPARAM mpParam2)

This defines the window procedure provided by an application.

Parameters
hwnd (HWND) - input

Window handle.

usmsg (USHORT) - input
Message identity.

mpParam1 (MPARAM) - input
Message parameter 1.

mpParam2 (MPARAM) - input
Message parameter 2.

Returns
Message-return data.

Remarks
This procedure is associated with a window by the pWndProc of the WinRegisterClass function.

The window procedure typically processes only some of the messages passed to it. Those
messages it does not process must be passed on to the WinDefWindowProc function, which performs
the standard window processing for those messages.

10-4 PM Programming Reference

~" \
)

r'

'\
I

/

CheckMsgFilterHook -
Check Message Filter Hook

#define INCL WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL CheckMsgFllterHook (HAB hab, PQMSG pQmsg, USHORT usFlrst, USHORT uslast,
USHORT fsOptions)

This hook is called whenever WinGetMsg, WinWaitMsg, or WinPeekMsg are used to filter message
identities.

Parameters
hab (HAB) - input

Anchor-block handle.

pQmsg (PQMSG) - input
The QMSG data structure of the message currently being reviewed.

usFlrst (USHORT) - input
First message identity specified on a call to the WinGetMsg, WinPeekMsg or WinWaitMsg
function.

uslast (USHORT) - input
Last message identity specified on a call to the WinGetMsg, WinPeekMsg or WinWaitMsg
function.

fsOptions (USHORT) - input
Message removal options:

PM_REMOVE Message is being removed from queue

PM_NOREMOVE Message is not being removed from queue.

Returns
Processing indicator:

TRUE The message is accepted by the filtering. Any further Check Message Filter Hooks in
the chain are ignored, any filtering specified by the u/First and u/Last parameters of
the WinGetMsg, WinPeekMsg or WinWaitMsg functions are ignored, and processing of
the message continues.

A hook that always returns TRUE effectively switches off message filtering.

FALSE The message is passed on to the next Check Message Filter Hook in the chain. If the
end of the chain has been reached, the filtering specified by the u/First and uf Last
parameters of the WinGetMsg, WinPeekMsg or WinWaitMsg functions is applied.

Remarks
This hook enables an application to apply a very specific message filtering, for example, based on
the values of message parameters.

Chapter 10. Functions Supplied by Applications 10-5

CheckMsgFilterHook -
Check Message Filter Hook

This hook is called after window handle filtering and before message filtering. Window handle
filtering is controlled by the hwndFilter parameter of the WinGetMsg or WinPeekMsg functions.
Message filtering is controlled by the u/First and u/Last parameters of the WinGetMsg, WinPeekMsg
or WinWaitMsg functions.

This hook is called if the message passes window handle filtering and if non-null message filtering is
specified. This means that, on entry to this hook:

• The hwndFilter parameter of the WinGetMsg or WinPeekMsg function is either NULLHANDLE or
it specifies the window (or a parent of the window) referenced in the pQmsg structure.

• At least one of the usFirst and usLast parameters are nonzero.

• The msg field of the pQmsg structure might or might not lie inside the range specified by the
usFirst and usLast parameters.

10-6 PM Programming Reference

)
/

CodePageChangeHook -
Code Page Change Hook

#define INCL_WINHOOKS I* Or use INCL_WIN or INCL_PM */

VOID CodePageChangeHook (HMQ hmq, USHORT usOldCodePage,
USHORT usNewCodePage)

This hook notifies that a message queue code page has been changed.

Parameters
hmq (HMO) - input

Message-queue handle.

The handle of the message queue that is changing its code page.

usOldCodePage (USHORT) - input
Previous code page.

usNewCodePage (USHORT) - input
New code page.

Returns
The return value is VOID.

Remarks
This hook is sent to all hooks chained under HK_CODEPAGECHANGE, regardless of the return value.

The new code page is set before this hook is called.

Chapter 10. Functions Supplied by Applications 10-7

DestroyWindowHook -
Destroy Window Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

VOID DestroyWlndowHook (HAB hab, HWND Hwnd, ULONG flReserved)

This hook is called whenever a window is destroyed.

Parameters
hab (HAB) - input

Anchor-block handle.

Hwnd (HWND) - input
The handle of the window being destroyed.

flReserved (ULONG) - input
Reserved.

Returns
The return value is VOID.

Remarks
This hook is sent after the WM_DESTROY message has been sent and just before the window
becomes invalid.

Related Messages
• WM_DESTROY

10-8 PM Programming Reference

\
J

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

FindWordHook -
Find Word Hook

BOOL FlndWordHook (USHORT usCodepage, PSZ pszText, ULONG cb, ULONG lch,
PULONG pichStart, PULONG plchEnd, PULONG plchNext)

This hook allows an application to control where the WinDrawText function breaks a character string
that is too long for the drawing rectangle.

Parameters
usCodepage (USHORT) - input

Codepage to use.

This parameter contains the codepage identifier of the string to be formatted.

pszText (PSZ) - input
Text to break.

This parameter contains a pointer to the actual string.

cb (ULONG) - input
Maximum text size.

This parameter contains a value specifying the number of bytes in the string.

lch (ULONG) - input
Break near here.

This parameter contains the index of the character in the string that intersects the right edge of
the drawing rectangle.

plchStart (PULONG) - output
Where break began.

This parameter contains the index of the starting character of the intersecting word.

plchEnd (PULONG) - output
Where break ended.

This parameter contains the index of the ending character of the intersecting word.

pichNext (PULONG) - output
Where next word begins.

This parameter contains the index of the starting character of the next word in the string.

Returns
Success indicator:

TRUE If the find-word hook function returns TRUE, WinDrawText will only draw the string up
to, but not including, the specified word.

FALSE If the find-word hook function returns FALSE, WinDrawText formats the string in the
default manner.

Remarks
The system calls this hook from within the WinDrawText function, if the DT_WORDBREAK flag is set.
It lets the application have control of where the function WinDrawText should break for a string that is
too long.

Chapter 10. Functions Supplied by Applications 10-9

HelpHook
Help Hook

#define INCL WINHOOKS /*Or use INCL_ WIN or INCL_PM */

BOOL HelpHook (HAB hab, SHORT sMode, SHORT sToplc, SHORT sSubToplc,
PRECTL prclPosltlon)

This hook processes help requests.

Parameters
hab (HAB) - input

Anchor-block handle.

sMode (SHORT) - input
Help mode.

This has one of the following values, indicating the mode from which help has been requested:

HFM_MENU Menu mode

HFM_MB Message-box mode

HFM_WINDOW Standard (standard window)

HFM_APPLICATION Application mode.

sToplc (SHORT) - input
Topic identifier.

• In menu mode this is a pull-down window identity
• In message-box mode this is the message-box identity
• In standard mode this is a window identity.

sSubToplc (SHORT) - i.nput
Subtopic identifier.

• In menu mode this is a command identity
• In message-box mode this is a control identity
• In standard mode this is the identity of the window with the focus (-1 if none).

prclPosltlon (PRECTL) - input
Rectangle.

This indicates the screen area (in screen coordinates) from where the help was requested. It is
provided to enable the help library to avoid covering that area.

• In menu mode it is the bounding rectangle of the selected item, or o the top level menu if
value of the sSubTopic parameter is -1.

• In message-box mode it is the bounding rectangle of the button.
• In standard mode it is the bounding rectangle of the window with the focus, or of the window

sent the message if the value of the sSubTopic parameter is -1.

Note: The data type WRECT can also be used, if supported by the language.

Returns
Indicator as to whether next hook in the chain is called.

The message is always .passed to the appUcation.

TRUE The next hook in the chain is notcalled.

FALSE The next hook in the chain is called.

10-10 PM Programming Reference

\
\
I ;v Remarks

HelpHook -
Help Hook

This hook can be called directly by an application or in the default-processing associated with
windows, menus, and message boxes.

Help-processing is done in two stages. The first stage is the creation of the WM_HELP message.
This is done:

• From a WM_ CHAR message by ACCELERATOR table translation, when the HELP accelerator
option is specified.

• From an action-bar selection, when the MIS_HELP style is specified on the action-bar button.

• From a dialog-box pushbutton, when the BS_HELP style is specified on the pushbutton.

• From a message box, when the MB_HELP style is specified on the message box.

The WM_HELP message is sent to the active window, but will be seen by a modal loop if one is
active.

The second stage of processing of help is the processing of the WM_HELP message.

The frame window procedure sees the WM_HELP message because the frame is usually the active
window. It processes the WM_HELP message as follows:

• If the window with the focus is the FID_CLIENT frame control, it passes WM_HELP to the
FID_CLIENT window.

• If the parent of the window with the focus is the FID_CLIENT frame control, it calls the help hook,
specifying:

sMode = HFM_WINDOW
sTopic = frame-window id
sSubTopic =focus-window id.

• If the parent of the focus window is not the FID_CLIENT frame control (for example, it may be the
frame itself, or a second-level dialog control), it calls the hook, specifying:

sMode = HFM_WINDOW
sTopic = focus-window parent id
sSubTopic = focus-window id.

The message box window procedure sees the WM_HELP message, because it subclasses the frame
window. It processes the WM_HELP message by calling the help hook, specifying:

sMode = HFM_MESSAGE
sTopic = message id
sSubTopic = control id.

Chapter 10. Functions Supplied by Applications 10-11

HelpHook
Help Hook

The menu window procedure sees the WM_HELP message because it runs a modal loop. It
processes the WM_HELP message by calling the help hook, specifying:

sMode = HFM_MENU
sTopic = menu id of pulldown
sSubTopic = menu id of item.

The WinDefWindowProc function sees the WM_HELP message for a FID_CLIENT window if the client
does not handle it itself. It calls the help hook, specifying:

sMode = HFM_WINDOW
sTopic = active-window id
sSubTopic =focus-window id.

An application sees the WM_HELP message in its dialog procedure. The application can ignore the
WM_HELP message, in which case the frame-window procedure action occurs (as described above)
or it can simulate a call to the help hook itself, using:

sMode = HFM_APPLICATION
sTopic = any value
sSubTopic = any value.

The input focus is never given to any of the standard frame controls, so help for these cannot be
obtained.

Related Messages
• WM_CHAR
• WM_HELP

10-12 PM Programming Reference

)

)

#define INCL_WINHOOKS I* Or use INCL_WIN or INCL_PM */

BOOL lnputHook (HAB hab, PQMSG pQmsg, USHORT fsOptlons)

This hook filters messages from the input queue.

Parameters
hab (HAB) - input

Anchor-block handle.

pQmsg (PQMSG) - input
A QMSG data structure.

fsOptlons (USHORT} - input
Message removal options:

PM_REMOVE Message is being removed from queue

PM_NOREMOVE Message is not being removed from queue.

Returns
Processed indicator:

lnputHook -
Input Hook

TRUE The message is not passed on to the next hook in the chain or to the application

FALSE The message is passed on to the next hook in the chain or to the application.

Remarks
This hook is called when messages are removed from an application queue, before being returned
by WinGetMsg or WinPeekMsg. It is called from within these functions just before resuming the
application with the message that is returned. There are no restrictions on calls that may be made at
this time.

Chapter 10. Functions Supplied by Applications 10-13

JournalPlaybackHook -
Journal Playback Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

LONG JournalPlaybackHook (HAB hab, BOOL fSklp, PQMSG pqmsg)

This hook plays back recorded messages.

Parameters
hab (HAB) - input

Anchor-block handle.

fSklp (BOOL) - input
Indicator as to whether the next message should be played back:

TRUE The journal playback hook skips to the next message. The pqmsg parameter is NULL
in this case. The next hook in the chain is not called.

FALSE The journal playback hook returns the next available message. The same message is
returned each time, until it is skipped with a call where this parameter is TRUE.

pqmsg (PQMSG) - input
Data structure where the message to be played back is returned.

When this hook is called, the time field of the QMSG structure is initialized to the current time.
This can be used to determine whether the next message is ready or not. This value must be
used for any delta calculations performed by the hook procedure, rather than the result of
Wi nGetCurrentTime

Returns
Waiting time.

The time to wait (in milliseconds) before processing the current message.

Remarks
This hook is called whenever a message is required to be played back.

10-14 PM Programming Reference

~··~

)

JournalRecordHook -
Journal Record Hook

#define INCL_WINHOOKS I* Or use INCL~WIN or INCL_PM */

BOOL JournalRecordHook (HAB hab, PQMSG pqmsg)

This hook records user-input messages.

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsg (PQMSG) - input
Data structure that contains the message to be recorded.

The hwnd field of the QMSG structure is also set when the hook is called.

Returns
The return value from this hook is ignored.

Remarks
This hook is called after raw input is translated to WM_CHAR or WM_BUTTON1DBLCLK messages.

The next hook in the chain is always called, and the message is always passed to the application.

JournalPlaybackHook hook does not receive any input played back by this hook. This prevents
feedback situations where input is played back a number of times.

Related Messages
• WM_CHAR
• WM_BUTTON1 DBLCLK

Chapter 10. Functions Supplied by Applications 10-15

LoaderHook
Loader Hook

#define INCL_WINHOOKS I* Or use INCL_WIN or INCL_PM */

BOOL LoaderHook (HAB hab, SHORT sContext, PSZ pszllbname, PHLIB phllbLlbhandle,
PSZ pszprocname, PFN pwndproc, PBOOL pfSuccess)

This hook allows the library and procedure loading and deleting calls to be intercepted.

Parameters
hab (HAB) - input

Anchor-block handle.

&Context (SHORT) - input
Origin of call to hook.

LHK_DELETELIB WlnDeletelibrary

LHK_DELETEPROC WinDeleteProcedure

LHK_LOADLIB Winloadlibrary

LHK_LOADPROC WinloadProcedure

pszllbname (PSZ) - input
Library name.

This is the same as the library name in the pszLibname parameter of the Winloadlibrary
function.

phllbLlbhandle (HUB) - input/output
Library handle.

This is the same as the library handle in the hlibLibhandle parameter of the WinloadProcedure
function or the hlibLibhandle parameter of the WinDeletelibrary function.

If the sContext parameter is set to LHK_LOADLIB, then this hook must set the value of this
parameter to the handle of the loaded library or to NULLHANDLE if the load fails.

pszprocname (PSZ) - input
Procedure name.

This is the same as the procedure name in the pszProcname parameter of the
WinloadProcedure function.

pwndproc (PFN) - input
Window procedure identifier.

This is the same as the library name in the pwndproc parameter of the WinDeleteProcedure
function.

If the sContext parameter is set to LHK_LOADPROC, then this hook must set the value of this
parameter to the handle of the loaded procedure or to NULL if the load fails.

pfSuccess (PBOOL) - input/output
Success indicator:

TRUE Library or procedure loaded or deleted successfully.

FALSE Library or procedure not loaded or deleted successfully.

10-16 PM Programming Reference

\
)

Returns
Processing indicator:

TRUE Do not call next hook in chain

FALSE Call next hook in chain.

Remarks

LoaderHook -
Loader Hook

If the hook attempts a load or deletion which is unsuccessful, then the hook must establish the
relevant error information.

Chapter 10. Functions Supplied by Applications 10-17

MsgCtlHook -
Message Control Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL MsgCtlHook (HAB hab, SHORT sContext, HWND hwnd, PSZ pszClassName,
USHORT usMsgClass, SHORT sControl, PBOOL pfSuccess)

This hook allows the call which determine the flow of messages to be intercepted.

Parameters
hab (HAB) - input

Anchor-block handle.

sContext (SHORT) - input
Origin of call to hook.

MCHK_ CLASSMSGINTEREST WinSetClassMsglnterest

MCHK_MSGINTEREST WinSetMsglnterest

MCHK_MSGMODE WinSetMsgMode

MCHK_SYNCHRONISATION WinSetSynchroMode

hwnd (HWND) - input
Window handle.

This is the same as the window handle in the hwnd parameter of the WinSetMsglnterest function.

pszClassName (PSZ) - input
Window class name.

This is the same as the window class name in the pszClassName parameter of the
WinSetClassMsglnterest function.

usMsgClass (USHORT) - input
Message class.

This is the same as the message class in the u/MsgClass parameter of the WinSetMsglnterest
and the WinSetClassMsglnterest functions.

sControl (SHORT) - input
Control setting.

The setting varies with the value of the sContext parameter.

For MCHK_CLASSMSGINTEREST, it can be SMl_INTEREST, or SMl_NOINTEREST, or
SMl_AUTODISPATCH.

For MCHK_MSGINTEREST, it can be SMl_INTEREST, or SMl_NOINTEREST, or SMl_RESET, or
SMl_AUTODISPATCH.

For MCHK_MSGMODE, it can be SMD_DELAYED or SMD_IMMEDIATE.

For MCHK_SYNCHRONISATION, it can be SSM_SYNCHRONOUS, or SSM_ASYNCHRONOUS, or
SSM_MIXED.

pfSuccess (PBOOL) - input/output
Success indicator:

TRUE Mode or interest successfully set.

FALSE Mode or interest not successfully set.

10-18 PM Programming Reference

)
Returns

Processing indicator:

TRUE Do not call next hook in chain

FALSE Call next hook in chain.

Remarks

MsgCtlHook -
Message Control Hook

If the hook is unable to alter the message control state, then the hook must establish the relevant
error information.

Chapter 10. Functions Supplied by Applications 10-19

MsgFilterHook -
Message Filter Hook

#define INCL_WINHOOKS I* Or use INCL_WIN or INCL_PM */

BOOL MsgFllterHook (HAB hab, PQMSG pQmsg, USHORT usContext)

This hook filters messages from inside a mode loop.

Parameters
hab (HAB) - input

Anchor-block handle.

pQmsg (PQMSG) - input
A queue message data structure.

usContext (USHORT) - input
Context in which the hook has been called:

MSGF _DIALOGBOX Dialog-box mode loop.

MSGF _MESSAGEBOX Message-box mode loop.

MSGF_TRACK Window-movement and size tracking. When this hook is used the
TRACKINFO structure specified the ptiTrackinfo parameter of the
WinTrackRect function is updated to give the current state before the
hook is called. Only the re/Track and the fs parameters are updated.

MSGF _DRAG Direct manipulation mode loop.

MSGF _DDEPOSTMSG DOE post message mode loop.

Returns
Processed indicator:

TRUE The message is not passed on to the next hook in the chain or to the application

FALSE The message is passed on to the next hook in the chain or to the application.

Remarks
This hook is called inside any of the system-mode loops, for instance, during size-tracking or
move-tracking, or while a dialog box or menu is displayed.

The WM_QUIT message is passed to this hook, if it occurs during a mode loop.

Related Messages
• WM_QUIT

10-20 PM Programming Reference

.....
'\
I

/

~)
)

RegisterUserMsg
Register User Message Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL ReglsterUserMsg (HAB hab, SHORT sContext, USHORT usMsgld, SHORT sType1,
SHORT sDlr1, SHORT sType2, SHORT sDlr2, SHORT sTyper,
SHORT sCount, PSHORT asTypes, PBOOL pfSuccess)

This hook allows user messages and user data types to be registered.

Parameters
hab (HAB) - input

Anchor-block handle.

sContext (SHORT) - input
Origin of call to hook.

RUMHK_DATATYPE Register User Data type

RUMHK_MSG Register User Message

usMsgld (USHORT) - input
Message identifier.

If the origin of the call is 'Register User Data Type', this parameter is not set.

sType1 (SHORT) - input
Data type of message-parameter 1.

If the origin of the call is 'Register User Data Type', this parameter contains the data type code
to be registered.

sDlr1 (SHORT) - input
Direction of message-parameter 1.

If the origin of the call is 'Register User Data Type', this parameter is not set.

sType2 (SHORT) - input
Data type of message-parameter 2.

If the origin of the call is 'Register User Data type', this parameter is not set.

sDlr2 (SHORT) - input
Direction of message-parameter 2.

If the origin of the call is 'Register User Data Type', this parameter is not set.

sTyper (SHORT) - input
Data type of message reply.

If the origin of the call is 'Register User Data Type', this parameter is not set.

sCount (SHORT) - input
Number of elements.

If the origin of the call is 'Register User Message', this parameter is· not set.

asTypes (PSHORT) - input
Data types of structure components.

If the origin of the call is 'Register User Message', this parameter is not set.

pfSuccess (PBOOL) - input/output
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Chapter 10. Functions Supplied by Applications 10-21

RegisterUserMsg -
Register User Message Hook

Returns
Processing indicator:

TRUE Do not call next hook in chain

FALSE Call next hook in chain.

10-22 PM Programming Reference

J

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

SendMsgHook -
Send Message Hook

VOID SendMsgHook (HAB hab, PSMHSTRUCT psmhssmh, BOOL flnlerTask)

This hook filters messages sent by the WinSendMsg function.

Parameters
hab (HAB) - input

Anchor-block handle.

psmhssmh (SMHSTRUCT) - input
Send message hook structure.

This parameter is a structure that contains the parameters to the WinSendMsg function.

flnlerTask (BOOL) - input
lnte.rtask indicator:

TRUE The message is sent between tasks (intertask)

FALSE The message is sent within a task (intratask).

Returns
The return value is VOID.

Remarks
This hook may be called whenever a window procedure is called via the WinSendMsg function.

It is called in the context of the sender, whereby if the sender has a queue hook installed it is called,
but if the receiver has a queue hook installed it is not called.

The next hook in the chain is always called.

Chapter 10. Functions Supplied by Applications 10-23

10-24 PM Programming Reference

)
Chapter 11. Introduction to Message Processing

Messages are processed by window and dialog procedures.

Every window has a window procedure. Windows can also be combined into standard windows or
dialog boxes. These are special cases of groups of windows that also have their own procedures. A
window or dialog procedure must be capable of processing any message. This can be achieved by
delegating some message types to the default window, or dialog, procedures by use of the
WinDefWindowProc and WinDefDlgProc functions respectively. c

Control windows are a special type of child windows. They take the form of objects such as buttons,
scroll bars, list boxes, and text entry fields. These child windows process mouse and keyboard input
and notify its owner of significant input events. Procedures for these child window controls are
inside the Presentation Manager and are often called system-provided window procedures.

All messages have the following form:

QMSG Message structure.

typedef struct _QMSG {
HWND hwnd;
ULONG msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;
} QMSG;

hwnd (HWND)
Window handle.

msg (ULONG)
Message identity.

mp1 (MPARAM)
Parameter 1.

mp2 (MPARAM}
Parameter 2.

time (ULONG}
Message time.

pll (POINTL)
Pointer position when message was generated.

Message Types
There are two types of window procedure message processing:

• Default window and dialog procedure message processing

• Control window message processing.

These types are described below along with the notation conventions used in the message
descriptions. The messages are described in the following chapters.

Default Window and Dialog Procedure Message Processing
These window procedures provide default processing for application window procedures:

• Default window and dialog procedure
• Language support window and dialog procedures, which are used if the application specifies a

null window procedure
• Default AVIO window procedure.

Chapter 11. Introduction to Message Processing 11-1

These messages are described in Chapter 12, "Default Window Procedure Message Processing" on
page 12-1. The system-provided window procedures take no action on messages that are not
defined in this chapter, and return NULL.

Control Window Message Processing
Controls are predefined classes of child windows that any application can use for input and output.
These control classes are predefined:

WC_BUTTON

WC_COMBOBOX

WC_CONTAINER

WC_ENTRYFIELD

WC_FRAME

WC_LIST.BOX

WC_MENU

WC_MLE

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

Consists of buttons and boxes that the operator can select by clicking the
pointing device or using the keyboard. These messages are described in
Chapter 13, "Button Control Window Processing" on page 13-1.

Consists of an entry field control and a list box control merged into a single
control. The list, which is usually limited in size, is displayed below the entry
field and offset one dialog box unit to its right. These messages are
described in Chapter 19, "Prompted Entry Field Control Window Processing"
on page 19-1.

Consists of a visual component whose specific purpose is to hold objects
such as executable programs, word processing rues, graphics images, and
database records. Messages are described in Chapter 24, "Container
Control Window Processing" on page 24-1.

Consists of a single line of text that the operator can edit. These messages
are described in Chapter 14, "Entry Field Control Window Processing" on
page 14-1.

Consists of a composite window. These messages are described in
Chapter 15, "Frame Control Window Processing" on page 15-1.

Presents a list of text items from which the operator can make selections.
These messages are described in Chapter 16, "List Box Control Window
Processing" on page 16-1.

Presents a list of items, which may be text displayed horizontally as action
bars or vertically as pull-down menus. Menus are usually used to provide a
command interface to applications. These messages are described in
Chapter 17, "Menu Control Window Processing" on page 17-1.

Consists of a rectangular window that displays multiple lines of text that the
operator can edit. When it has the focus, the cursor marks the current
Insertion or replacement point. These messages are described in
Chapter 18, "Multi-Line Entry Field Control Window Processing" on
page 18-1.

Consists of a visual component whose specific purpose is to organize
information on individual pages so that a user can find and display that
information quickly and easily. Messages are descrjbed in Chapter 25,
"Notebook Control Window Processing" on page 25-1.

Consists of window scroll bars that allow the operator to make a request to
scroll the contents of an associated window. These messages are described
in Chapter 20, "Scroll Bar Control Window Processing" on page 20-1.

Consists of a visual component whose specific purpose is to allow a user to
set, display, or modify a value by moving the sHder arm along the slider
shaft. Messages are described in Chapter 26, "Slider Control Window
Processing" on page 26-1.

Presents a scrotlable ring of choices from which the operator can select.
These messages are described in Chapter 21, "Spin Button Control Window
Processing" on page 21-1.

Consists of simple display items that do not respond to keyboard or pointing
device events. These messages are described in Chapter 22, "Static Control
Window Processing" on page 22-1.

11-2 PM Programming Reference

\,
)

WC_ TITLEBAR

WC_ VALUESET

Displays the window title or caption and allows the operator to move its
owner. These messages are described in Chapter 23, "Title Bar Control
Window Processing" on page 23-1.

Consists of a visual component whose specific purpose is to allow a user to
select one choice from a group of mutually exclusive choices. A value set
can use graphical images (bit maps or icons), as well as colors, text, and
numbers, to represent the items that a user can select. Messages are
described in Chapter 27, "Value Set Control Window Processing" on
page 27-1.

Owner-Notification Messages: Controls are useful because they notify their owners when significant
events take place. A control notifies its owner by sending a WM_CONTROL message or by posting a
WM_ COMMAND or WM_HELP message.

• WM_CONTROL

• WM_COMMAND

Param2 contains information that indicates the source of the WM_ COMMAND message:

CMDSRC_PUSHBUTTON
CMDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_FONTDLG
CMDSRC_OTHER

Posted by a pushbutton control
Posted by a menu control
Posted by WinTranslateAccel
Posted by a font dialog.
Other source.

• WM_HELP

Param2 contains information that indicates the source of the WM_HELP message:

CMDSRC_PUSHBUTTON
CMDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_OTHER

Posted by a pushbutton control
Posted by a menu control
Posted by WinTranslateAccel
Other source.

Notation Conventions
Each message description contains:

Name

Cause

Parameters

Remarks

Default

The message name; a 2-byte identity unique to a message. Messages generated by
the system have an identity below the constant WM_USER; see "Reserved
Messages" on page 12-1.

Applications generating their own messages must use a value higher than
WM_USER.

For all messages, the first two or three characters of the name indicate the type of
window that is related to the message; for example:

LM List box control
SBM Scroll bar control.

The principal reason that caused the generation of the message.

Input and output parameters pertinent to the message.

There are always two parameters (param1 and param2) and one return value. Any
or all of the parameters can be NULL

An explanation of the relationship between the parameters in the context of the
message and an indication of the expected processing of the message.

A definition of how the default window procedures (provided by the system) process
the message.

Note: A message is not equivalent to a call of the same name.

Chapter 11. Introduction to Message Processing 11-3

11-4 PM Programming Reference

\
I

,/

Chapter 12. Default Window Procedure Message
Processing

This system-provided window procedure processes the actions that control the operation of
windows.

Purpose
General window messages are used for standard processing. These messages can be requested
from the system or sent to the system for information, or for actions such as create window, validate
window, track mouse movement, and select and deselect actions.

Reserved Messages
These message ranges are reserved:

WM_USER All messages below this value are reserved for system use. Private messages should
have an identifier with a value of WM_ USER or higher.

General Window Styles
The window is the mechanism by which the application communicates with the operator. Each
window can have a window style that controls the appearance and behavior of the window. There
are also class styles that apply to all the windows of a particular class (class being FRAME, BUTTON,
and so on).

Window Class Styles
These window class styles are available:

CS_SIZEREDRAW

CS_SYNCPAINT

CS_MOVENOTIFY

CS_ CLIPCHILDREN

CS_ CLIPSIBLINGS

CS_PARENTCLIP

CS_SAVEBITS

Determines whether a window will be redrawn when sized. This
style is to be used for a window whose contents are sensitive to the
size of the window. For example, the data in some windows can be
scaled up or down to fit the size of the Client Area. In other
windows, the data remains the same size whatever the size of the
window; it is merely clipped if the window is made smaller. The
CS_SIZEREDRAW style is to be used in the first instance but not in
the second. For more information, see WM_CALCVALIDRECTS.

Window is synchronously repainted. This style causes
WS_SYNCPAINT to be set for all windows of this class.

This class style should be used by a child window if it wants to be
notified with a WM_MOVE message when its parent is moved. For
more detail, see the WM_MOVE message description.

Causes a window of style WS_CLIPCHILDREN to be created,
regardless of whether this style bit is specified on the create window
function.

Causes a window of style WS_CLIPSIBLINGS to be created,
regardless of whether this style bit is specified on the create window
function.

Causes a window of style WS_PARENTCLIP to be created,
regardless of whether this style bit is specified on the create window
function.

Causes a window of style WS_SAVEBITS to be created, regardless of
whether this style bit is specified on the create window function.

Chapter 12. Default Window Procedure Message Processing 12-1

CS_PUBLIC

CS_HITIEST

CS_FRAME

Window Styles

Causes a public window class to be registered. It is an error if this
parameter is specified on any process other than the shell process.

If set, causes a WM_HITTEST message to be sent to the window,
before sending any pointing device message.

If not set, no WM_HITTEST message is sent, and it is assumed that
the window returns HT _NORMAL if the window is not disabled, and
HT _ERROR if the window is disabled.

Top-level frame windows do not have CS_HITTEST set.

If set, all windows of this class are expected to behave as frame
windows.

These window styles are available:

WS_SYNCPAINT Window is synchronously repainted.

This style is set for windows that have Class Style CS_SYNCPAINT.
Applications can then turn this style on and off to vary the window
processing.

System-Provided Window Styles:

WS_ CLIPCHILDREN

WS_ CLIPSIBLINGS

WS_DISABLED

WS_MAXIMIZED

WS_MINIMIZED

WS_PARENTCLIP

WS_SAVEBITS

WS_VISIBLE

Styles for Windows in Dialogs

WS_GROUP

WS_TABSTOP

12-2 PM Programming Reference

This specifies that the area occupied by the children of a window is
to be excluded when drawing in that window. Normally, it is
included.

This specifies that the area occupied by the siblings of a window is
to be excluded when drawing in that window. Normally, it is
included.

This specifies that the window is disabled. The default is enabled.

This specifies that the frame window is to be created maximized.

When a window is moved or sized in the normal way at least one
border should remain on the screen. When a window is maximized
and the maximum size is as large as the screen all borders should
be positioned just outside the screen.

This specifies that the frame window is to be created minimized.

This controls how a window is clipped when a drawing action takes
place into the window.

Generally, a WS_PARENTCLIP window is not to draw outside its
window rectangle.

This specifies that the screen image of the area under a window of
this style be saved when the window is made visible.

This specifies that the window is visible. The default is invisible.

Note: A window can still be visible, in this sense, even if it cannot
be seen because it is covered by other windows.

This identifies the dialog items that make up a group.

This style is to be specified on the first window of any group.
Subsequent windows of the group must not have this style. The
windows of the group must be adjacent siblings. This can be done
by listing the windows consecutively in templates (see "Dialog
Template" on page 32-19) or by inserting each new window in the
group behind the previous one (WinCreateWindow).

This identifies a dialog item as one to which the operator can TAB.

\
/

,,
\

;

l
l

I

General Window Messages
This section describes the window procedure actions upon receiving the following messages.

PL ALTERED
This message is broadcast to all frame windows when the PrfReset function is issued.

Parameters
param1

hlnlUser (HIN/)
Handle of the new user profile.

param2

hiniSystem (HIN/)
Handle of the new system profile.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, must be 0.

Remarks
Applications should refresh their defaults from the user or system profite.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM ACTIVATE
This message occurs when an application causes the activation or deactivation of a window.

Parameters
param1

usactive (USHORT)
Active indicator:

TRUE The window is being activated
FALSE The window is being deactivated.

param2

hwndhwnd (HWND)
Window handle.

In the case of activation, hwndhwnd identifies the window being activated. In the case of
deactivation, hwndhwnd identifies the window being deactivated.

Returns
flreply (ULONG)

Reserved.

0 Reserved value.

Chapter 12. Default Window Procedure Message Processing 12-3

Remarks
A deactivation message {that is, a WM_ACTIVATE message with usactive set to FALSE) is sent first to
the window procedure of the main window being deactivated, before an activation message {that is, a
WM_ACTIVATE message with usactive set to TRUE) is sent to the window procedure of the main
window being activated.

Any WM_SETFOCUS messages with usfocus set to FALSE, are sent before the deactivation message.
Any WM_SETFOCUS messages with usfocus set to TRUE, are sent after the activation message.

If WinSetFocus is called during the processing of a WM_ACTIVATE message, a WM_SETFOCUS
message with usfocus set to FALSE is not sent, as no window has the focus.

If a window is activated before any of its children have the focus, this message is sent to the frame
window or to its FID_CLIENT, if it exists.

Note: Except in the instance of a WM_ACTIVATE message, with usactive set to TRUE, an application
processing a WM_ACTIVATE, or a WM_SETFOCUS message should not change the focus
window or the active window. If it does, the focus and active windows must be restored
before the window procedure returns from processing the message. For this reason, any
dialog boxes or windows brought up during the processing of a WM_ACTIVATE, or a
WM_SETFOCUS message should be system modal.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM APPTERMINATENOTIFY
This message is posted when an application {started by another application) terminates.

Parameters
param1

happhapp (HAPP)
Application handle.

param2

flretcode (ULONG)
Return code from the terminating application.

Returns
flreply (ULONG)

Reserved.

O Reserved value; must be 0.

Remarks
The WM_APPTERMINATENOTIFY message provides the capability for the starting application to be
notified when the started application terminates.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-4 PM Programming Reference

)

WM ADJUSTWINDOWPOS
This message is sent by the WinSetWindowPos call to enable the window to adjust its new position or
size whenever it is about to be moved.

Parameters
param1

plpswp (PSWP)

param2

SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the proposed move
or size data. The control can adjust this new position by changing the contents of the SWP
structure. It can change the x or y fields to adjust its new position; or the ex or ey fields to
adjust its new size, or the hwndlnsertBehind field to adjust its new z-order.

flzero (ULONG)
Zero.

Returns
reply

flResult (ULONG)

Remarks

Window-adjustment status indicators.

These indicators are passed on to the WM_WINDOWPOSCHANGED message that is sent
after the window state change has occurred. Bits O through 15 of this parameter are
reserved for system use and bits 16 through 31 are available for application use.

0
AWP _MINIMIZED
AWP _MAXIMIZED
AWP _RESTORED
AWP _ACTIVATE
AWP _DEACTIVATE

No changes have been made
The frame window has been minimized.
The frame window has been maximized.
The frame window has been restored.
The frame window has been activated.
The frame window has been deactivated.

Frame controls can respond to this message to reposition themselves or resize themselves in the
window frame.

Menu controls respond to this message as follows:

MS_ACTIONBAR not specified: The SWP ex and SWP ey fields are set so that the menu window
exactly contains all of the items in the menu. The SWP x and SWP y fields are not changed.

MS_ACTIONBAR specified and MS_TITLEBUTTON not specified: The items in the menu are
arranged such that all of the items are visible within the width specified by the SWP ex field. This
formatting may cause the menu items to be arranged in multiple lines. The SWP ex field is set to
include all of the lines of the menu. The SWP x and SWP y fields are not changed.

MS_ACTIONBAR specified and MS_TITLEBUTTON specified: The SWP ex value is set to the
accumulated width of the items in the menu. The height specified in the SWP ey field is not changed.
In both instances, the SWP ex and SWP ey fields are only altered if SWP _SIZE is specified in the fl
field. Instead, the width of MS_ TITLEBUTTON menus is determined by the accumulated width of the
items in the menu.

A list box does two things:

• Changes the height so as to accommodate an exact number of items.

• Automatically outsets its border. This means, for example, that the x, y, width, and height fields
in the resource file specify the working area of the listbox. The border is drawn outside this
area.

Chapter 12. Default Window Procedure Message Processing 12-5

The entry field control, if ES_MARGIN is specified, outsets its margin. This means that in the
resource file, the numbers specified as the x-, and y-position of an entry field control are taken to be
the position where the first character of text is drawn, not where the lower-left corner of the
surrounding box is drawn. Similarly, the height and width parameters apply to the editable area of
the control; consequently, they do not include the margin.

When a dialog is created with WinCreateDlg or WinloadDlg, a WM_ADJUSTWINDOWPOS message is
sent to each child window after the dialog window is created, with a pointer to a SWP structure
containing fl equal to SWP _SIZE I SWP _MOVE and the x, y, cy, and ex fields initialized to the current
size and position of the window. The message enables the control to adjust its size or position,
usually to compensate for its border, or margin, or both.

Default Processing
The default window procedure takes no action on this message, other than to set f/Result to 0.

WM BEGINDRAG
This message occurs when the operator initiates a drag operation.

Parameters
param1

usPolnter (USHORT)
Input device flag:

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

Returns
reply

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

lresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV _BEGINDRAG.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

12-6 PM Programming Reference

WM BEGINSELECT
This message occurs when the operator initiates a swipe selection.

Parameters
param1

usPolnter (USHORT)
Input device flag:

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
reply

lresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed.
Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV _BEGINSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON1CLICK
This message occurs when the operator presses and then releases button 1 of the pointing device
within a specified period of time, and without moving the mouse.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

lshlttestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

lsllags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_ CHAR message, the following
keyboard control codes are valid.

Chapter 12. Default Window Procedure Message Processing 12-7

Returns
reply

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

TRUE Message processed
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM BUTTON2CLICK
This message occurs when the operator presses and then releases button 2 of the pointing device
within a specified period of time, and without moving the mouse.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed
Message ignored.

12-8 PM Programming Reference

\
)

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM BUTTON3CLICK
This message occurs when the operator presses and then releases button 3 of the pointing device
within a specified period of time, and without moving the mouse.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshittestres (USHORT)
Hit-test result.

fshlttestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-9

WM BUTTON1 DBLCLK
This message occurs when the operator presses button 1 of the pointing device twice within a
specified time, as detailed below.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

A double-click is recognized if all of the following are true:

• Two clicks are of the same button.

• No intervening pointing device button is pressed.

• The two clicks occur within the double-click time interval as defined by the SV _DBLCLKTIME
system value.

• The two clicks occur within a small spatial distance. This is defined by the rectangle, the length
of whose sides parallel to the x- and y-axes are respectively, the SV_CXDBLCLICK and
SV_CYDBLCLICK system values. The first click is assumed to be at the center of this rectangle.

The keyboard control codes specified by 'flags' reflects the keyboard state at the time the mouse
message was initiated. This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

12-10 PM Programming Reference

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM BUTTON2DBLCLK
This message occurs when the operator presses button 2 of the pointing device twice within a
specified time, as detailed in "WM_BUTTON1DBLCLK" on page 12-10.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshlnestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_ CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information. The keyboard control codes specified by 'flags' reflects the keyboard
state at the time the mouse message was initiated. This may or may not reflect the current keyboard
state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM;._BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1 DBLCLK.

Chapter 12. Default Window Procedure Message Processing 12-11

WM BUTTON3DBLCLK
This message occurs when the operator presses button 3 of the pointing device twice within a
specified time, as detailed in "WM_BUTTON1DBLCLK" on page 12-10.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom left corner of the
window.

fshlttestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer button information. The keyboard control codes specified by 'flags' reflects the keyboard
state at the time the mouse message was initiated. This may or may not reflect the current keyboard
state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1 DBLCLK.

12-12 PM Programming Reference

)
WM BUTTON1 DOWN

This message occurs when the operator presses pointer button one.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshlttestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresull (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by 'flags' reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure activates the window using WinSetActiveWindow, and then sets fresult
to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-13

WM BUTTON1MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by pressing
button one on the pointing device.

Parameters
param2

fshlHestres (USHORT)
Hit-test result.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM..,;,HITTEST.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM_BUTTON1 MOTIONSTART
This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button one on the pointing device.

Parameters
param2

fshlHestres (USHORT)
Hit-test resuJt.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-14 PM Programming Ref.erence

\
)

\
)

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON2DOWN
This message occurs when the operator presses button 2 on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

tshlHestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

tsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

tresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by 'flags' reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to "WM_BUTTON1 DOWN" on
page 12-13.

Chapter 12. Default Window Procedure Message Processing 12-15

WM BUTTON2MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by pressing
button two on the pointing device.

Parameters
param2

fshlttestres (USHORT)
Hit-test result.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON2MOTIONSTART
This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button two on the pointing device.

Parameters
param2

fshlttestres (USHORT)
Hit-test result.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-16 PM Programming Reference

!>;,

\
;/

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON3DOWN
This message occurs when the operator presses button 3 on the pointing device.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshittestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit test
process, which determined the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointing device button information.

It is the responsibility of the application to ensure that the appropriate frame window is activated and
that the focus is to the appropriate window, by using the WinSetFocus function. The keyboard control
codes specified by 'flags' reflects the keyboard state at the time the mouse message was initiated.
This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to "WM_BUTTON1 DOWN" on
page 12-13.

Chapter 12. Default Window Procedure Message Processing 12-17

WM BUTTON3MOTIONEND
This message occurs when the operator completes a drag operation which was initiated by pressing
button three on the pointing device.

Parameters
param2

fshlttestres (USHORT)
Hit-test result.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON3MOTIONSTR
This message occurs when the operator initiates a drag operation by moving the mouse while
pressing button three on the pointing device.

Parameters
param2

fshlttestres (USHORT)
Hit-test result.

Returns
reply

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

12-18 PM Programming Reference

""')

1
I

)

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM BUTTON1 UP
This message occurs when the operator releases button 1 of the pointing device.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

lshltteslres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsllags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresull (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by 'flags' reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM...:BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHtFT, was active that it wouldn't
be a factor in deciding whether theWM_BEGINDRAG message should be sent.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresult to FALSE.

Chapter 12 .. De.fault Windew.Pr:ocedare~sa:ge-Processing ,12-19

WM BUTTON2UP
This message occurs when the operator releases button 2 of the pointing device.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshlttestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by 'flags' reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresult to FALSE.

12-20 PM Programming Reference

(

WM BUTTON3UP
This message occurs when the operator releases button 3 of the pointing device.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fshlttestres (USHORT)
Hit-test result.

fshittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see "WM_HITTEST" on page 12-37.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointing device button information. The keyboard control codes specified by 'flags' reflects the
keyboard state at the time the mouse message was initiated. This may or may not reflect the current
keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure processes this message identically to WM_BUTTON1UP.

Chapter 12. Default Window Procedure Message Processing 12-21

WM_CALCFRAMERECT
This message occurs when an application uses the WinCalcFrameRect function.

Parameters
param1

pRect (PRECTL)
Rectangle structure.

This points to a RECTL structure.

param2

usFrame (USHORT)
Frame indicator:

Returns
reply

TRUE Frame rectangle provided
FALSE Client area rectangle provided.

fSuccess (BOOL)
Rectangle-calculated indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred or the calculated rectangle is empty.

This message is sent to the frame control to perform the appropriate calculation. If the low word of
MP2 is TRUE, the RECTL structure in MP1 contains a frame window and this message calculates the
RECTL of the client. If the low word of MP2 is FALSE, MP1 contains a client window and this
message calculates the RECTL of the frame.

Default Proceasing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM CALCVALIDRECTS
This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine which areas
of a window can be preserved if a window is sized, and which should be redisplayed.

Parameters
param1

pOldNew (PRECTL)
Window-rectangle structures.

param2

This points to two RECTLstructures. The first structure contains the rectangle of the
window before the move, the second contains the rectangle of the window after the move.
The coordinates of the rectangles are relative to the parent window.

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is resized
(see the WinSetWindowPos function).

12-22 PM Programming Reference

Returns
reply

usAllgn (USHORT)
Alignment control.

This instructs WinSetWindowPos how to align valid window bits. This value is made up from
CVR_* flags, as follows:

Remarks

CVR_ALIGNLEFT
CVR_ALIGNBOTTOM
CVR_ALIGNTOP
CVR_ALIGNRIGHT
CVR_REDRAW

0

Align with the left edge of the window.
Align with the bottom edge of the window.
Align with the top edge of the window.
Align with the right edge of the window.
The whole window is invalid. If CVR_REDRAW, is set, the whole
window is assumed invalid, otherwise, the remaining flags can be
ORed together to get different kinds of alignment. For example:

(CVR_ALIGNLEFT I CVR_ALIGNTOP)

aligns the valid window area with the top-left of the window.
It is assumed the application has changed the rectangles pointed to
by pOldNew and pNew itself.

This message is not sent if this window has the CS_SIZEREDRAW style, indicating size-sensitive
window content that must be totally redrawn if sized.

This enables the application to determine if the position of the window has changed as well as its
size; this can aid alignment processing.

These rectangles can be modified by the window procedure to cause parts of the window to be
redrawn and not preserved.

The window manager tries to preserve the screen image by copying the image described by the old
rectangle into the image described by the new rectangle. In this way, an application can control the
alignment of the preserved image as well, by changing the origin of the first rectangle.

If no change is made to either rectangle, the entire window area is preserved. If either rectangle is
empty, the entire window area is completely redrawn by the operation.

Note: This functionality can be used to optimize window updating when the window is resized. For
example, if the application returns that the window is to be aligned with the top-left corner,
and the top border is sized, the screen data of the window moves with the top border.

In all instances, the rectangles are intersected with the area of the screen that is actually
visible and the valid area of the window. That is, only the window area that contains window
information is copied.

For example, consider an application that has two scroll bars, that are children of the client
window. When the window is resized, the scroll bars must be completely redrawn. By
returning rectangles that exclude the scroll bars, the area of the scroll bars is completely
redrawn, thereby preserving only the part of the screen that is worth preserving.

Default Processing
The default window procedure processing is to align the valid area with the top-left of the window by
returning:

(CVR_ALIGNTOP I CVR_ALIGNLEFT)

In addition, any child windows intersecting the source rectangle pointed to by pOldNew of this
message, are also offset with the aligned window area.

Chapter 12. Default Window Procedure Message Processing 12-23

WM CHAR
This message is sent when an operator presses a key.

Parameters
param1

fsflags (USHORT)
Keyboard control codes:

KC_CHAR
KC_SCANCODE

KC_ VIRTUALKEY

KC_KEYUP
KC_PREVDOWN

KC_DEADKEY

KC_COMPOSITE

KC _INVALIDCOMP

KC_LONEKEY

KC_SHIFT
KC_ALT
KC_CTRL

ucrepeat (UCHAR)
Repeat count.

ucscancode (UCHAR)
Hardware scan code.

Indicates that usch value is valid.
Indicates that ucscancode is valid.

Generally, this is set in all WM_CHAR messages generated from
actual operator input. However, if the message has been generated
by an application that has issued the WinSetHook function to filter
keystrokes, or posted to the application queue, this may not be set.
Indicates that usvk is valid.

Normally usvk should be given precedence when processing the
message.
The event is a key-up transition; otherwise it is a down transition.
The key has been previously down; otherwise it has been previously
up.
The character code is a dead key. The application is responsible for
displaying the glyph for the dead key without advancing the cursor.
The character code is formed by combining the current key with the
previous dead key.
The character code is not a valid combination with the preceding
dead key. The application is responsible for advancing the cursor
past the dead-key glyph and then, if the current character is not a
space, sounding the alarm and displaying the new character code.
Indicates if the key is pressed and released without any other keys
being pressed or released between the time the key goes down and
up.
The SHIFT state is active when key press or release occurred.
The ALT state is active when key press or release occurred.
The CTRL state was active when key press or release occurred.

A keyboard-generated value that identifies the keyboard event. This is the raw scan code,
not the translated scan code.

param2

usch (USHORT)
Character code.

The character value translation of the keyboard event resulting from the current code page
that would apply if the CTRL or ALT keys were not depressed.

usvk (USHORT)
Virtual key codes.

A virtual key value translation of the keyboard event resulting from the virtual key code
table. The low-order byte contains the vk value, and the high-order byte is always set to
zero by the standard translate table.

o This value applies if fsflags does not contain KC_VIRTUALKEY.

12-24 PM Programming Reference

)

Returns
reply

lresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed
Message ignored.

Remarks
This message is posted to the queue associated with the window that has the focus.

The set of keys that causes a WM_ CHAR message is device-dependent.

When this message is processed, precedence should normally be given to a valid virtual key if there
is one contained in the message.

There are several instances when a window procedure may receive this message with the
KC_KEYUP bit set, although it did not receive this message for the down transition of the key.

For example,

• The down transition of the key is translated by the function WinTranslateAccel, into a
WM_COMMAND, WM_SYSCOMMAND, WM_HELP, or a WM_NULL message.

• The key down causes the input focus to change (tab to another window, dismiss a dialog, exit a
program, and so on).

• Some other event happens that changes the focus between the time that the key is pressed down
and the time that it is released.

Applications should normally only process WM_CHAR messages that do not have the KC_KEYUP bit
set.

Except for the special instance where the LONEKEY flag is set on an accelerator key definition, all
translations are done on the down stroke of the character.

When the current character is a double-byte character then param2 contains both bytes of the
double-byte character. These bytes are in the order CHAR1FROMMP, CHAR2FROMMP. When the
current character is a single-byte character, CHAR2FROMMP contains 0.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresult to FALSE.

WM CHORD
This message occurs when the operator presses both button one and button two on the pointing
device.

Parameters
param2

lshlttestres (USHORT)
Hit-test result.

hittestres provides the hit-test result. It contains the value returned from the hit-test
process, which determines the window to be associated with this message. For details of
the possible values, see WM_HITTEST.

Chapter 12. Default Window Procedure Message Processing 12-25

Returns
reply

lresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that is to receive the
pointer-button information.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM CLOSE
This message is sent to a frame window to indicate that the window is being closed by the user.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
llreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
This message is sent by the frame to itself as a result of receiving a WM_SYSCOMMAND message
with SC_CLOSE code set. If this message is passed to WinDefDlgProc, this function calls
WinDismissDlg and passes the DID_CANCEL result code to it.

Default Processing
The default window procedure posts a WM_ QUIT message to the appropriate queue and sets flreply
to 0.

12-26 PM Programming Reference

\~
'\

/

WM COMMAND
This message occurs when a control has a significant event to notify to its owner, or when a key
stroke has been translated by an accelerator table.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON

CMDSRC_MENU

CMDSRC_ACCELERATOR

CMDSRC_FONTDLG
CMDSRC_FILEDLG
CMDSRC_OTHER

uspolnter (USHORT)
Pointer-device indicator:

Posted by a pushbutton control. uscmd is the window identity
of the pushbutton.
Posted by a menu control. uscmd is the identity of the menu
item.
Posted as the result of an accelerator. uscmd is the
accelerator command value.
Font dialog. uscmd is the identity of the font dialog.
File dialog. uscmd is the identity of the file dialog.
Other source. uscmd gives further control-specific information
defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointer-device operation.
The message is posted as a result of a keyboard operation.

Returns
flreply (ULONG)

Reserved.

0 Reserved value.

Remarks
This message is posted to the queue of the owner of the control.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

Chapter 12. Default Window Procedure Message Processing 12-27

WM CONTEXTMENU
This message occurs when the operator requests a pop-up menu.

Parameters
param1

usPolnter (USHORT)
Input device flag:

param2

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

ptspolnterpos (POINTS)
Pointer position

Returns
reply

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV_CONTEXTMENU, or a keyboard event, specified by
the system value SV_CONTEXTMENUB.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM CONTROL
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

idid (USHORT)
Control-window identity.

This is either the Id parameter of the WinCreateWindow function or the identity of an item in
a dialog template.

usnotltycode (USHORT)
Notify code.

param2

The meaning of the notify code depends on the type of the control. For details, refer to the
section describing that control.

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of the control. For
details, refer to the section describing that control.

12-28 PM Programming Reference

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
This message is sent to the owner of the control, thereby offering it the opportunity to perform some
activity before returning to the control.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM CONTROLPOINTER
This message is sent to a owner window of a control when the pointing device pointer moves over
the control window, allowing the owner to set the pointing device pointer.

Parameters
param1

usldCtl (USHORT)
Control identifier.

param2

hplrhptrNew (HPOINTER)
Handle of the pointing device pointer that the control is to use.

Returns
reply

hptrhptrRet (HPOINTER)
Returned pointing device-pointer handle that is then used by the control.

Remarks
The recommended approach for an application, that does not have specific reasons for controlling
the pointer appearance, is to pass the message to the default window procedure.

Default Processing
The default window procedure returns hptrhptrNew.

WM CREATE
This message occurs when an application requests the creation of a window.

Parameters
param1

clldata (PVOID)
Control data.

This points to a PVOID data structure initialized with the data provided in the pCt/Data
parameter of the WinCreateWindow function.

This pointer is also contained in the pCREATE parameter.

param2

pCREATE(PCREATESTRUCT)
Create structure.

This points to a CREATESTRUCT data structure.

Chapter 12. Default Window Procedure Message Processing 12-29

Returns
reply

fresull (BOOL)
Error indicator:

TRUE Discontinue window creation
FALSE Continue window creation.

Remarks
This message is sent to the window procedure of the window being created, thus offering it an
opportunity to initialize that window.

The window procedure receives this after the window is created but before the window becomes
visible.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE,
which is equivalent to continuing the creation of the window.

WM DESTROY
This message occurs when an application requests the destruction of a window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

G Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
This message is sent to the window procedure of the window being destroyed after it has been
hidden on the device, thereby offering it an opportunity to perform some termination action for that
window.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-30 PM Programming Reference

(

\
)

WM DRAWITEM
This notification is sent to the owner of a control each time an item is to be drawn.

Parameters
param1

ldldentlty (USHORT)
Window identifier.

The window identity of the control sending this notification message.

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For details
of each control type, refer to the appropriate section.

Returns
reply

fDrawn (BOOL)
Item-drawn indicator:

TRUE
FALSE

The owner has drawn the item, and so the control does not draw it.

Remarks

If the item contains text and the owner does not draw the item, the owner returns
this value and the control draws the item.

A control can only display some types of information, and emphasize items in a control-specific
manner. Therefore, if special items are to be displayed or emphasized in a special manner, this
must be done by the owner window of the control.

The control window procedure generates this message and sends it to the owner of the control,
informing the owner that an item is to be drawn, offering the owner the opportunity to draw that item
and to indicate that either the item has been drawn or that the control is to draw it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fDrawn to the default value of FALSE.

WM ENABLE
This message sets the enable state of a window.

Parameters
param1

usnewenabledstate (USHORT)
New enabled state indicator:

TRUE Set the window to enabled state
FALSE Set the window to disabled state.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Chapter 12. Default Window Procedure Message Processing 12-31

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
This message is sent to the window procedure of the window whose enable state is changing,
thereby offering it an opportunity to perform some action appropriate to new state of the window.

Default Processing
The default window procedure takes no action on this message, other than to set f/rep/y to 0.

WM ENDDRAG
This message occurs when the operator completes a drag operation.

Parameters
param1

usPolnter (USHORT)
Input device flag:

param2

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

ptspolnterpos (POINTS)
Pointer position

Returns
reply

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV _ENDDRAG.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

12-32 PM Programming Reference

\
)

WM ENDSELECT
This message occurs when the operator either makes a selection or completes a swipe selection.

Parameters
param1

usPointer (USHORT)
Input device flag:

TRUE Message resulted from pointer event
FALSE Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the

window. This value is ignored if fPointer is not set to TRUE.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed.
Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the focus, or

with the window that is to receive the pointer-button information. This message will result from a

mouse event, specified by the system value SV_ENDSELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes

no action on this message, other than to set result to FALSE.

WM ERASEWINDOW
This message is sent to a window when it is invalidated.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

fresult (BOOL)
Erased indicator:

TRUE Window erased.
FALSE Message not processed.

Chapter 12. Default Window Procedure Message Processing 12-33

Remarks
If the application processes the message, it can erase the invalid portion of the window.

If the application does not process the message, it is resent at WinBeginPaint time.

Children of asynchronous paint non clip children windows are not erased synchronously, regardless
of the WS_SYNCPAINT style. This is because the painting order must be enforced: the parent window
must redraw before the child, or else the redraw latency on the part of the parent will draw over any
previously-painted children.

Note: The WM_ERASEWINDOW message is sent across processes.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM ERROR
This message occurs when an error is detected in a WinGetMsg or a WinPeekMsg function.

Parameters
param1

userrorcode (USHORT)
Error code.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
The application can detect the error situation after the WinGetMsg or the WinPeekMsg function and
before the WinDispatchMsg function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM FOCUSCHANGE
This message occurs when the window possessing the focus is changed.

Parameters
param1

hwndFocus (HWND)
Focus window handle.

param2

usSetFocus (USHORT)
Focus flag:

TRUE The window is receiving the focus and hwndFocus identifies the window losing
the focus.

FALSE The window is losing the focus and hwndFocus identifies the window receiving
the focus.

12-34 PM Programming Reference

fsFocusChange (USHORT)
Focus changing indicators.

The indicators are passed from the WinFocusChange function with the exception of the
FC_SETACTIVEFOCUS value, which is removed before this message is sent.

Returns
flReply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
This message is sent to both the windows gaining and losing the focus.

Default Processing
The default window procedure sends this message to the owner or parent, if it exists and is not the
desktop. Otherwise, it sets f/Reply to 0.

WM FORMATFRAME
This message is sent to a frame window to calculate the sizes and positions of all of the frame
controls and the client window.

Parameters
param1

pswp (PSWP)
Structure array.

This points to an array that is to hold the SWP structures.

param2

pprectl (PRECTL)

Returns
reply

Pointer to client window rectangle.

This is typically the window rectangle of pswp, but where the window has a wide border, as
specified by FCF _DLGBORDER for example, the rectangle is inset by the size of the border.

ccount (USHORT)
Count of the number of SWP arrays returned.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set ccount to the default value of 0.

Chapter 12. Default Window Procedure Messa.,ge Processing 12-35

WM HELP
This message occurs when a control has a significant event to notify to its owner or when a key
stroke has been translated by an accelerator table into a WM_HELP.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a pushbutton control. uscmd is the window identity
of the pushbutton.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of the menu
item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the

CMDSRC_OTHER

uspolnter (USHORT)
Pointer-device indicator:

accelerator command value.
Other source. uscmd gives further control-specific information
defined for each control type.

TRUE
FALSE

If the message is posted as a result of a pointer-device operation
If the message is posted as a result of a keyboard operation.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is identical to a WM_ COMMAND message, but implies that the application should
respond to this message by displaying help information.

This message is posted to the queue of the owner of the control.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is not the
desktop. Otherwise, it sets f/reply to 0.

12-36 PM Programming Reference

~
)

WM HITTEST
This message is sent to determine which window is associated with an input from the pointing
device.

Parameters
param1

ptspolnterpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulresult (ULONG)
Hit-test indicator.

Remarks

The application may return one of these values:

HT_NORMAL The message should be processed as normal. A WM_MOUSEMOVE,
WM_BUTTON2DOWN, or WM_BUTTON1 DOWN message is posted to
the window.

HT_TRANSPARENT The part of the window underneath the pointer is transparent;
hit-testing should continue on windows underneath this window, as if
the window did not exist.

HT _DISCARD The message should be discarded; no message is posted to the
application.

HT_ERROR As HT_DISCARD, except that if the message is a button-down
message, an alarm sounds and the window concerned is brought to
the foreground.

This message occurs when an application requests a message by issuing a WinPeekMsg or a
WinGetMsg function.

If the message that is to be retrieved represents a pointer related event, this message is sent to a
window to determine whether the message is in fact destined for that window.

This message is only sent if the window class has the CS_HITTEST style set.

Note: The handling of this message determines whether a disabled window can process pointing
device events.

Default Processing
The default window procedure takes no action on this message, other than to set ulresult to
HT _ERROR if the window is disabled, or to HT _NORMAL otherwise.

Chapter 12. Default Window Procedure Message Processing 12-37

WM HSCROLL
This message occurs when a horizontal scroll bar control has a significant event to notify to its
owner.

Parameters
param1

usldentlller (USHORT)
Scroll bar control window identifier.

param2

ssllder (SHORT)
Slider position:

O Either the operator is not moving the slider with the pointer device, or for the
instance where uscmd is SB_SLIDERPOSITION the pointer is outside the tracking
rectangle when the button is released.

Other Slider position.

uscmd (USHORT)

Returns

Command:

SB_LINELEFT

SB_LINERIGHT

SB_PAGELEFT

SB_PAGERIGHT

SB_SLIDERPOSITION
SB_SLIDERTRACK

SB _ENDSCROLL

flreply (ULONG)
Reserved.

0 Reserved value, zero.

Default Processing

Sent if the operator clicks on the left arrow of the scroll bar, or
depresses the VK_LEFT key.
Sent if the operator clicks on the right arrow of the scroll bar, or
depresses the VK_RIGHT key.
Sent if the operator clicks on the area to the left of the slider, or
depresses the VK_PAGELEFT key.
Sent if the operator clicks on the area to the right of the slider, or
depresses the VK_PAGERIGHT key.
Sent to indicate the final position of the slider.
If the operator moves the scroll bar slider with the pointer device,
this is sent every time the slider position changes.
Sent when the operator has finished scrolling, but only if the
operator has not been doing any absolute slider positioning.

The default window procedure takes no action on this message, other than to set flreply to 0.

WM INITDLG
This message occurs when a dialog box is being created.

Parameters
param1

hwndhwnd (HWND)
Focus wrndow handle.

The handle of the control window that is to receive the input focus.

param2

pcreate (PCREATEPARAMS)
Application-defined data area.

This points to the data area and is passed by the WinloadDlg, WinCreateDlg, and
WinDlgBox functions in their pCreateParams parameter.

12-38 PM Programming Reference

Returns
reply

fresult (BOOL)
Focus set indicator:

TRUE Focus window is changed. The dialog procedure can change the window to
receive the focus, by issuing a WinSetFocus whose hwndNewFocus specifies the
handle of another control within the dialog box.

FALSE Focus window is not changed.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM INITMENU
This message occurs when a menu control is about to become active.

Parameters
param1

smenuid (SHORT)
Menu-control identifier.

param2

hwndhwnd (HWND)
Menu-window handle.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM JOURNALNOTIFY
This message is used to maintain correct operation during journal playback.

Parameters
param1

ulCommand (ULONG)
Command to journal.

JRN_QUEUESTATUS
JRN_PHYSKEYSTATE

param2
Data.

The WinQueryQueueStatus command must be journaled.
The WinGetPhysKeyState command must be journaled.

Data values depend on which command is to be journaled.

If u/Command is set to JRN_QUEUESTATUS:

fsQueueStatus (USHORT)
Queue status.

See the Summary parameter of the WinQueryQueueStatus function.

Chapter 12. Default Window Procedure Message Processing 12-39

If u/Command has the value JRN_PHYSKEYSTATE:

usScanCode (USHORT)
Scan code.

See the /Scancode parameter of the WinGetPhysKeyState function.

usKeyState (USHORT)
Key State.

See the IKeyState parameter of the WinGetPhysKeyState function.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
If the WinQueryQueueStatus or the WinGetPhysKeyState functions have new information since the
last time they were called and there is a journal record hook installed, the journal record hook is
called with this message to record this new information.

During playback, this message is interpreted by the system and the appropriate state restored.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set flreply to 0.

WM MATCHMNEMONIC
This message is sent by the dialog box to a control window to determine whether a typed character
matches a mnemonic in its window text.

Parameters
param1

usmatch (USHORT)
Match character.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

fresult (BOOL)
Match indicator:

TRUE Mnemonic found
FALSE Mnemonic not found, or an error occurred.

Default Processing
The default dialog procedure takes no action on this message, other than to set fresult to FALSE.

12-40 PM Programming Reference

\.\
)

WM MEASUREITEM
This notification is sent to the owner of a specific control to establish the height and width for an item
in that control.

Parameters
param1

sldentlty (SHORT)
Control identifier.

param2

ulControlSpec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For details
of each control type, refer to the appropriate control section.

Returns
reply

sHelght (SHORT)
Height of item.

sWldth (SHORT)
Width of item.

Remarks
When the owner receives this message, it must calculate and return the height and width (for a
horizontally-scrollable list box control) of an item to the control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set reply to the default value of 0.

WM MENUEND
This message occurs when a menu control is about to terminate.

Parameters
param1

usmenuld (USHORT)
Menu-control identifier.

param2

hwndhwnd (HWND)
Menu-control window handle.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

Chapter 12. Default Window Procedure Message Processing 12-41

WM MENUSELECT
This message occurs when a menu item has been selected.

Parameters
param1

usltem (USHORT)
Identifier of selected item.

usPostCommand (USHORT)
Post-command flag:

param2

TRUE Indicates that either a WM_ COMMAND, WM_SYSCOMMAND, or WM_HELP
message is being posted by the menu control on return from the owner, subject to
fresult.

FALSE Indicates that no message is being posted by the menu control on return from the
owner, subject to fresult.

hwndhwnd (HWND)

Returns
reply

Menu-control window handle.

fresult (BOOL)
Post indicator:

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP
message is to be posted by the menu control window procedure. The menu is
dismissed if the selected item does not have a style of MIA_NODISMISS.

FALSE Indicates that no message is to be posted by the menu control window procedure
and that the menu is not dismissed.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to TRUE.

WM MINMAXFRAME
This message is sent to a frame window that is being minimized, maximized, or restored.

Parameters
param1

pswp (PSWP)
Set window position structure.

This points to a SWP structure. The structure has the appropriate SWP _ * indicators set to
describe the operation that is occurring to the window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

fOverrideDefault (BOOL)
Processed indicator:

TRUE The message has been processed; the default system actions for the operation
specified by the pswp parameter to the window are not to be performed.

FALSE The message has been ignored; the default system actions for the operation
specified by the pswp parameter to the window are to be performed.

12-42 PM Programming Reference

\
J

;!

Default Processing
The default window procedure takes no action on this message, other than to set fOverrideDefault to
FALSE.

WM MOUSEMOVE
This message occurs when the pointing device pointer moves.

Parameters
param1

This parameter contains the position of the pointing device in window coordinates relative to the
bottom-left corner of the window.

sxMouse (SHORT)
Pointing device x-coordinate.

syMouse (SHORT)
Pointing device y-coordinate.

param2

uswHllTest (USHORT)
Message result:

Zero
Other

A pointing device capture is currently in progress
The result of the WM_HITTEST message.

fsflags (USHORT)

Returns
reply

Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the following
keyboard control codes are valid.

KC_NONE Indicates that no key is pressed

KC_IGNOREKEY Indicates the keyboard state is to be ignored.

fProcessed (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

The window procedure did process the message.
The window procedure did not process the message.

The keyboard control codes specified by 'flags' reflects the keyboard state at the time the mouse
message was initiated. This may or may not reflect the current keyboard state.

The KC_IGNOREKEY is used for mouse messages where the keyboard state is to be ignored. For
example, WM_BEGINDRAG might result from a WM_BUTTON2MOTIONSTART start message with the
KC_IGNOREKEY flag. This means that if a key state, such as KC_SHIFT, was active that it wouldn't
be a factor in deciding whether the WM_BEGINDRAG message should be sent.

Default Processing
The default window procedure sets the pointer shape using the WinSetPointer function and sets
fProcessed to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-43

WM MOVE
This message occurs when a window with style CS_MOVENOTIFY changes its absolute position.

-Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
The message is sent from WinSetWindowPos, WinSetMultWindowPos, and WinScrollWindow.

The message is sent to any window when it is moved relative to its parent window. In addition, a
WM_MOVE message is also sent to any children of that window that have style CS_MOVENOTIFY.

The new position of the window is obtained by calling WinQueryWindowRect, and can make those
rectangle coordinates relative to any window by calling WinMapWindowPoints.

Note: There are several instances where windows have cause to know if they have been moved,
and these include the occasions when the window does not change position relative to its
parent, but does change position relative to the screen (its absolute position).

An example is menus. When a top-level menu control (child of the frame window) moves its
absolute position as a result of the frame window being moved, the top-level menu control
causes the movement of any pull-down menus along with its movement. The same applies to
application/dialog box positional grouping. In some instances, a dialog box might cause to be
moved as the main window is moved, to make room for other applications.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM NEXTMENU
This message occurs when either the beginning or the end of the menu is reached by use of the
cursor control keys.

Parameters
param1

hwndMenu (HWND)
Menu-control window handle.

param2

usPrev (USHORT)
Previous-menu indicator:

TRUE
FALSE

Beginning of the menu has been reached
End of the menu has been reached.

12-44 PM Programming Reference

\
)

)

~
)

Returns
reply

hwndNewMenu (HWND)
New menu window handle:

NULLHANDLE No new menu
Other New menu window handle.

Default Processing
The default window procedure takes no action on this message, other than to set hwndNewMenu to
NULLHANDLE.

WM NULL
This message is posted to activate message queues or modal loops.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, zero.

param2 (ULONG)
Reserved.

O Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
On receiving this message, the application should simply let the default processing take place.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM OPEN
This message occurs when the operator makes an OPEN request.

Parameters
param1

usPolnter (USHORT)
Input device flag:

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

Chapter 12. Default Window Procedure Message Processing 12-45

Returns
reply

fresult (BOOL)
Processed indicator:

Remarks

TRUE
FALSE

Message processed.
Message ignored.

This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV_OPEN.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set result to FALSE.

WM PACTIVATE
This message is posted when the Language Support Window or Dialog Procedure processes a
WM_ACTIVATE message.

Parameters
param1

usactlve (USHORT)
Active indicator:

TRUE The window was activated
FALSE The window was deactivated.

param2

hwndhwnd (HWND)
Window handle.

Returns

In the case of activation, hwndhwnd identifies the window which was activated. In the case
of deactivation, hwndhwnd identifies the window which was deactivated.

flreply (ULONG)
Reserved.

0 Reserved value, zero.

Remarks
The activation change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on thJs message, other than to set flreply to 0.

12-46 PM Programming Reference

\
/

WM PAINT
This message occurs when a window needs repainting.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and then sets
flreply to 0.

WM PCONTROL
This message is posted when the Language Support Window or Dialog Procedure processes a
WM_CONTROL message.

Parameters
param1

ldld (USHORT)
Control-window identity.

This is either the Id parameter of the WinCreateWindow function or the identity of an item in
a dialog template.

usnotlfycode (USHORT)
Notify code.

The meaning of the notify code depends on the type of the control. For details, refer to the
section describing that control.

param2 (ULONG)
Zero.

0 The control-specific information in ulcontrolspec of the WM_ CONTROL message is not
available because the information might not be valid when the application receives this
message.

Returns
flreply (ULONG)

Reserved.

O Reserved value, zero.

Remarks
The notification from the control has already been processed when the application receives this
message.

Chapter 12. Default Window Procedure Message Processing 12-47

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM PPAINT
This message is posted when the Language Support Window or Dialog Procedure processes a
WM_PAINT message.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
llreply (ULONG)

Reserved.

O Reserved value, zero.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and then sets
flreply to 0.

WM PRESPARAMCHANGED
This message is sent when a presentation parameter is set or removed dynamically from a window
instance using the WinSetPresParam or WinRemovePresParam functions. It is also sent to all
windows owned by the window whose presentation parameter was changed.

Parameters
param1

ldAttrType (ULONG)
Presentation parameter attribute identity.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
llreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message notifies a control when an inherited presentation parameter changes.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-48 PM Programming Reference

WM PSETFOCUS
This message is posted when the Language Support Window or Dialog Procedure processes a

WM_SETFOCUS message.

Parameters
param1

hwndhwnd (HWND)
Focus-window handle:

NULLHANDLE No window lost or received the focus.
Other Window handle.

param2

usfocus (USHORT)
Focus flag:

TRUE The window received the focus. hwndhwnd is the window handle of the window
which lost the focus, or NULLHANDLE if no window previously had the focus.

FALSE The window lost the focus. hwndhwnd is the window handle of the window which
received the focus, or NULLHANDLE if no window received the focus.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The focus change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set f/reply to 0.

WM PSIZE
This message is posted when the Language Support Window or Dialog Procedure processes a
WM_SIZE message.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Chapter 12. Default Window Procedure Message Processing 12-49

Remarks
The size change has already occurred when the application receives this message.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM PSYSCOLORCHANGE
This message is posted when the Language Support Window or Dialog Procedure processes a
WM_SYSCOLORCHANGE message.

Parameters
param1

flOptlons (ULONG)
Options.

Copied from the f/Options parameter of the WinSetSysColors function.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
All windows in the system are invalidated so that they will be redrawn with the new system color.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_ QUERYACCEL TABLE
This message returns the handle to the accelerator table of a window.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

haccelhaccel (HACCEL)
Accelerator table handle:

NULLHANDLE No accelerator table is associated with the window.
Other The handle of the accelerator table associated with the window.

12-50 PM Programming Reference

\
)

)

Default Processing
The default window procedure takes no action on this message, other than to set haccelhaccel to
NULLHANDLE.

WM QUERYCONVERTPOS
This message is sent by an application to determine whether it is appropriate to begin conversion of
DBCS characters.

Parameters
param1

pCursorPos (PRECTL)
Cursor position.

If usCode = QCP_CONVERT, pCursorPos should be updated to contain the position of the
cursor in the window receiving this message. The position is specified as a rectangle in
screen ~oordinates.

If usCode = QCP _NOCONVERT, pCursorPos should not be updated.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

usCode (USHORT)
Conversion code.

QCP _CONVERT Conversion may be performed for the window with the input focus,
pCursorPos has been updated to contain the position of the cursor.

QCP _NOCONVERT Conversion should not be performed, the window with the input focus
cannot receive DBCS characters, pCursorPos has not been updated.

Remarks
This message enables a DBCS application to determine whether the window with the input focus can
handle DBCS characters. The pCursorPos parameter can be used as a guide for positioning any
conversion window that the application requires.

Default Processing
The default window procedure returns QCP _CONVERT, and updates pCursorPos to the following
values:

• xleft = -1
• ybottom = -1
• xright = 0
• ytop = O

Chapter 12. Default Window Procedure Message Processing 12-51

WM_ QUERYHELPINFO
This message returns the help instance associated with a frame window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

lhelplnfo (LONG)
Help information:

0 No help information associated with the window.
Other The help information associated with the window.

Default Processing
The default window procedure takes no action on this message, other than to set haccelhaccel to
NULLHANDLE.

WM_ QUERYTRACKINFO
The frame control generates this message on receiving a WM_TRACKFRAME (in Frame Controls)
message.

Parameters
param1

ustflags (USHORT)
Tracking flags.

Contains a combination of one or more TF _ * flags as defined in the TRACKINFO structure.

param2

ptracklnfo (PTRACKINFO)

Returns
reply

Track information structure.

This points to a TRACKINFO structure. The receiver of this message must modify this
structure.

fresult (BOOL)
Continue indicator:

TRUE Continue sizing or moving
FALSE Terminate sizing or moving.

Remarks
This message is sent to the window procedure of the owner of a frame control or title bar control
respectively.

The TRACKINFO data structure specified by the ptrackinfo parameter is not initialized before the
message is sent. It must be correctly completed before returning.

12-52 PM Programming Reference

\
)

)

~
I

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_ QUERYWINDOWPARAMS
This message occurs when an application queries the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see WNDPARAMS on page A-125.

The valid values of u/Status are WPM_CCHTEXT, WPM_ TEXT, WPM_CBCTLDATA, and
WPM_CTLDATA.

The flags in u/Status are cleared as each item is processed. If the call is successful,
u/Status is 0. If any item has not been processed, the flag for that item is still set.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Remarks
If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure identified by the pwndparams to 0, and sets fresult to FALSE.

WM_ QUIT
This message is posted to terminate the application.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Chapter 12. Default Window Procedure Message Processing 12-53

Remarks
It causes WinGetMsg to return fResult set to FALSE, rather than to TRUE, as for all other messages.

Note: Applications that call WinPeekMsg rather than WinGetMsg should test explicitly for WM_QUIT.

This message should not be dispatched to the default window procedure. The intent of this
message is to cause theWinGetMsg loop to terminate.

Typically this message is posted by the application when the application exit command is
selected from the action bar.

This message is also sent to all applications when the system is closing down. To reply to
this, the application should either cancel the request by issuing an WinCancelShutdown
function or close itself down by issuing a WinDestroyMsgQueue function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM REALIZEPALETTE
This message is sent to an application whenever changes have been made to the display hardware
physical color table as a result of another application calling WinRealizePalette.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The application should call WinRealizePalette if it has a palette, or pass it on to the default window
procedure if it does not.

If the return value from WinRealizePalette is greater than 0, the application should invalidate its
window to cause a repaint using the newly-realized palette.

Default Processing
The default window procedure calls WinRealizePalette with a NULL hps parameter. This causes the
default palette to be realized. If the return value from WinRealizePalette is greater than 0, the default
window procedure invalidates the window, causing it to be repainted with the newly-realized palette.

12-54 PM Programming Reference

')
!

WM SAVEAPPLICATION
This message is sent by the system to notify an application to save its current state.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
When an application receives this message, it is expected to save its current state by any convenient
method, for example, in a profile or in an auxiliary file.

It is the responsibility of the application to use the saved information, as appropriate, when it is
resumed.

Even if the application processes this message, it should also pass it to the default window
procedure, by using the WinDefWindowProc call.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM SEM1
This message is sent or posted by an application.

Parameters
flAccumBits (ULONG)

Semaphore value.

The semaphore values from all the WM_SEM1 messages posted to a queue, are accumulated by
a logical-OR operation.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM1 message on the queue by
combining the two f/AccumBits values using a logical-OR operation.

The WM_SEM1 messages are queued higher than any other type of message.

Chapter 12. Default Window Procedure Message Processing 12-55

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM_SEM2
This message is sent or posted by an application.

Parameters
flAccumBlts (ULONG)

Semaphore value.

The semaphore values from all the WM_SEM2 messages posted to a queue, are accumulated by
a logical-OR operation.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM2 message on the queue by
combining the two f/AccumBits values using a logical-OR operation.

The WM_SEM2 messages are queued above WM_SEM3 and WM_SEM4 messages, and above any
WM_PAINT or WM_ TIMER messages generated by the system, but lower than any other message.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM SEM3
This message is sent or posted by an application.

Parameters
flAccumBits (ULONG)

Semaphore value.

The semaphore values from all the WM_SEM3 messages posted to a queue, are accumulated by
a logical-OR operation.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM3 message on the queue by
combining the two flAccumBits values using a logical-OR operation.

The WM_SEM3 messages are queued above WM_SEM4 messages, and any WM_PAINT messages
generated by the system, but lower than any other message.

12-56 PM Programming Reference

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

WM SEM4
This message is sent or posted by an application.

Parameters
flAccumBlls (ULONG)

Semaphore value.

The semaphore values from all the WM_SEM4 messages posted to a queue, are accumulated by
a logical-OR operation.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
If the message is posted, it is merged with any existing WM_SEM4 message on the queue by
combining the two f/AccumBits values using a logical-OR operation.

The WM_SEM4 messages are queued lower than any other type of message.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM SETACCELTABLE
This message establishes the window accelerator table to be used for translation, when the window
is active.

Parameters
param1

haccelhaccelNew (HACCEL)
New accelerator table.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Chapter 12. Default Window Procedure Message Processing 12-57

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM SETFOCUS
This message occurs when a window is to receive or lose the input focus.

Parameters
param1

hwndhwnd (HWND)
Focus-window handle:

NULLHANDLE No window is losing or receiving the focus.
Other Window handle.

param2

usfocus (USHORT)
Focus flag:

Returns

TRUE The window is receiving the focus. hwndhwnd is the window handle of the
window losing the focus, or NULLHANDLE if no window previously had the focus.

FALSE The window is losing the focus. hwndhwnd is the window handle of the window
receiving the focus, or NULLHANDLE if no window is receiving the focus.

flreply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
This message is sent to the window receiving or losing the focus, thereby giving it the opportunity to
perform some appropriate processing.

Note: Except in the instance of WM_ACTIVATE, with usactive set to TRUE, an application processing
WM_SETFOCUS or WM_ACTIVATE messages should not change the focus window or active
window. If it does, the focus and active window must be restored before the application
returns from processing the message. For this reason, any dialog boxes or windows brought
up during the processing of WM_SETFOCUS or WM_ACTIVATE messages should be system
modal.

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

WM SETHELPINFO
This message sets the help instance associated with this frame window when the window is active.

Parameters
param1

lhelpinfo (LONG)
New help information.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

12-58 PM Programming Reference

\,
/

~
)

\
)

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM SETSELECTION
This message occurs when a window is selected or deselected.

Parameters
param1

usselectlon (USHORT)
Selection flag:

TRUE
FALSE

The window is selected.
The window is deselected.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

O Reserved value, o.

Remarks
The window procedure is expected to highlight or unhighlight the selected item of the window, as
appropriate.

This message is sent to a window when it loses the focus to another window that it does not own. It
allows an application to remove the selection when the focus is removed to another application, but
to keep it if, for example, the same application displays a dialog box.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

Chapter 12. Default Window Procedure Message Processing 12-59

WM_SETWINDOWPARAMS
This message occurs when an application sets or changes the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see WNDPARAMS on page A-125.

The valid values of u/Status are WPM_ TEXT and WPM_CTLDATA.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful operation
Error occurred.

If this message is sent to a window of another process, the information in, or identified by,
pwndparams must be in memory shared by both processes.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM SHOW
This message occurs when the WS_ VISIBLE state of a window is being changed.

Parameters
param1

usshow (USHORT)
Show indicator:

TRUE Show the window
FALSE Hide the window.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
The message is sent after the visibility state has changed.

In this context, the terms "shown" or "hidden" refer to the state of the WS_VISIBLE style bit. This
message is not sent when a window is obscured by other windows above it.

12-60 PM Programming Reference

\
I

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_ SINGLESELECT
This message occurs when the operator selects a single object.

Parameters
param1

usPolnter (USHORT)
Input device flag:

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if usPointer is not set to TRUE.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed.
Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the focus, or
with the window that is to receive the pointer-button information. This message will result from a
mouse event, specified by the system value SV_SINGLESELECT.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message, other than to set fresult to FALSE.

WM SIZE
This message occurs when a window changes its size.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

Chapter 12. Default Window Procedure Message Processing 12-61

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is not sent by WinCreateWindow when a window is created, and so any size-related
processing must be done during the WM_CREATE message processing in this instance.

This message is sent after the window has been actually sized, but before any repainting has been
done. Any resizing or repositioning of child windows that might be necessary a a result of the size
change is usually done during the processing of this message.

Note: It is generally unwise to output to the window during the processing of this message, because
the area drawn might be redrawn, after the WM_SIZE processing is complete, by the
WinSetWindowPos function.

The processing of this message for a window which is displaying an advanced VIO
presentation space must be carried out by the default advanced VIO window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM SUBSTITUTESTRING
This message is sent from the WinSubstituteStrings call.

Parameters
param1

llndex (USHORT)
Substitution index.

A value corresponding to the decimal character in the substitution phrase.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

pairing (PSTRL)
String to be substituted:

This points to a PSZ.

0 No substitution string
Other Substitution string.

Remarks
The WinSubstituteStrings call has encountered a substitution phrase in a string. The substitution
phrase takes the form'% <digit>', where <digit> is a single decimal character; that is, 0 through
9.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

12-62 PM Programming Reference

\
J

'\
I

J

WM SYSCOLORCHANGE
This message is sent to all main windows when a change is made to the system colors by the
WinSetSysColors function.

Parameters
param1

flOptions (ULONG)
Options.

Copied from the f/Options parameter of the WinSetSysColors function and therefore
specifies which palette has been changed.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
All windows are invalidated, so that they are redrawn with the new colors. When this message is
received, applications that depend on the system colors can query the new color values with the
WinQuerySysColor call.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM SVSCOMMAND
This message occurs when a control has a significant event to notify to its owner or when a key
stroke has been translated by an accelerator table into a WM_SYSCOMMAND message.

Parameters
param1

uscmd (USHORT)
Command value.

param2

The command value can be one of the SC_* values. It is the responsibility of the application
to be able to relate uscmd to an application function.

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a pushbutton control. uscmd is the window
identifier of the pushbutton.

CMDSRC_MENU Posted by a menu control. uscmd is the identifier of the menu
item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the

CMDSRC_OTHER

uspointer (USHORT)
Pointing-device indicator:

accelerator command value.
Other source. uscmd gives further control-specific information
defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointing-device operation.
The message is posted as a result of a keyboard operation.

Chapter 12. Default Window Procedure Message Processing 12-63

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is posted to the queue of the owner of the control, thereby offering it the opportunity to
perform some activity as a result.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM SYSVALUECHANGED
This message is posted to all main windows when one of the settable system values is changed.

Parameters
param1

usChangedFlrst (USHORT)
First system value.

The first of a contiguous set of system values that has been changed.

param2

usChangedLast (USHORT)
Last system value.

The last of a contiguous set of system values that has been changed.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
If usChangedFirst equals usChangedLast, only one system value has changed.

If an application changes the settable system values, it is the responsibility of the application to post
this message to all main windows.

This message is processed by WC_FRAME windows by doing any frame-specific processing (such as
sending WM_SETBORDERSIZE messages to the size border if SV_CX/CYSIZEBORDER system values
have changed) and then sending the message to the client window if one exists.

This message is only posted when settable system values change.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-64 PM Programming Reference

)

WM TEXTEDIT
This message occurs when the operator requests a direct name edit operation.

Parameters
param1

usPolnter (USHORT)
Input device flag:

TRUE
FALSE

Message resulted from pointer event
Message resulted from keyboard event

param2

ptspolnterpos (POINTS)
Pointer position

The pointer position is in window coordinates relative to the bottom-left corner of the

window. This value is ignored if fPointer is not set to TRUE.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE Message processed.
FALSE Message ignored.

Remarks
This message is posted to the application queue associated with the window that has the focus, or

with the window that is to receive the pointer-button information. This message will result from

either a mouse event, specified by the system value SV _TEXTEDIT, or a keyboard event, specified by

the system value SV _ TEXTEDITKB

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes

no action on this message, other than to set result to FALSE.

WM TIMER
This message is posted when a timer times out.

Parameters
param1

idTimer (USHORT)
Timer identity.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Chapter 12. Default Window Procedure Message Processing 12-65

Remarks
This message is always queued and is processed specially by the WinGetMsg and WinPeekMsg
calls, as follows:

1. Timers are processed only by the WinGetMsg and WinPeekMsg calls.

2. A timer posts only one WM_ TIMER message at a time.

3. WM_ TIMER messages are queued lower than all other messages except WM_SEM3, WM_PAINT,
and WM_SEM4 messages.

Default Processing
The default window procedure takes no action on this message, other than to set f/reply to O.

WM TRACKFRAME
This message is sent to a window whenever it is to be moved or sized.

Parameters
param1

fsTrackflags (USHORT)
Tracking flags.

Contains a combination of one or more TF _ * flags; for details, see the TRACKINFO data
structure description.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

Remarks

TRUE
FALSE

The operation is successful.
The operation is unsuccessful, or the operation is terminated.

Respond to this message by causing a tracking rectangle to be drawn to move or size the window.
For information, see WinTrackRect..

Default Processing
None.

12-66 PM Programming Reference

~

)

~
/

WM TRANSLATEACCEL
This message is sent to the focus window whenever a WM_CHAR message occurs.

Parameters
param1

pqmsg (PQMSG)
QMSG structure.

This points to a QMSG structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fTranslated (BOOL)
Translated indicator:

TRUE The character exists in the accelerator table and has been translated in the
QMSG structure.

FALSE The character does not exist in the accelerator table or the window does not have
an accelerator table.

Remarks
Normally, this message is not processed by the focus window, but is d passed to its parent, which
passes it to its parent, until a frame window is reached.

Default Processing
The default window procedure takes no action on this message, other than to set fTranslated to
FALSE.

WM TRANSLATEMNEMONIC
This message occurs during frame control processing of a WM_TRANSLATEACCEL message.

Parameters
param1

pqmsg (PQMSG)
QMSG structure.

This points to a QMSG structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE The character has been translated into an accelerator.
FALSE The character has not been translated into an accelerator.

Chapter 12. Default Window Procedure Message Processing 12~67

Remarks
This message is sent by the frame control to itself during the processing of a
WM_ TRANSLATEACCEL message, if the frame control does not translate a character into an
accelerator by use of the frame window or queue accelerator tables.

When the frame control receives this message, it sends it to the application menu window, that is the
window with identity FID_MENU.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM UPDATEFRAME
This message is sent by an application after frame controls have been added or removed from the
window frame.

Parameters
param1

flCreateFlags (ULONG)
Frame-creation flags.

Contains the FCF _ * flags that indicate which frame controls have been added or removed.

param2 (ULONG)
Reserved.

O Reserved value, o.

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE
FALSE

Message processed
Message ignored.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM VSCROLL
This message occurs when a vertical scroll-bar control has a significant event to notify to its owner.

Parameters
param1

usldentlfler (USHORT)
Scroll bar-control window identifier.

param2

ssllder (SHORT)
Slider position:

O Either the operator is not moving the slider with the pointer device, or for the
instance when uscmd is SB_SLIDERPOSITION the pointer is outside the tracking
rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command:

SB_LINEUP

12-68 PM Programming Reference

Sent if the operator clicks on the up arrow of the scroll bar, or
presses the VK_UP key.

Returns

SB_LINEDOWN

SB_PAGEUP

SB_PAGEDOWN

SB_SLIDERPOSITION
SB_SLIDERTRACK

SB_ENDSCROLL

flreply (ULONG)
Reserved.

0 Reserved value, 0.

Default Processing

Sent if the operator clicks on the down arrow of the scroll bar, or
presses the VK_DOWN key.
Sent if the operator clicks on the area above the slider, or presses
the VK_PAGEUP key.
Sent if the operator clicks on the area below the slider, or presses
the VK_PAGEDOWN key.
Sent to indicate the final position of the slider.
If the operator moves the scroll bar slider with the pointer device,
this is sent every time the slider position changes.
Sent when the operator has finished scrolling, but only if the
operator has not been doing any absolute slider positioning.

The default window procedure takes no action on this message, other than to set flreply to 0.

WM WINDOWPOSCHANGED
This message is sent to the window procedure of the window whose position is changed, that is has
any of the values of the fl parameter of the SWP structure set, with the exception of the
SWP _NOADJUST and SWP _NOREDRAW values.

This message is also sent if the return value from the WM_ADJUSTWINDOWPOS is not 0.

Parameters
param1

pswp (PSWP)

param2

SWP structures.

This points to two SWP structures. The first SWP structure describes the entire new window
state, whereas the second structure describes the entire old window state. The fl parameter
of the first structure contains only those indicators corresponding to the state changes that
occurred.

flAwp (ULONG)
Adjust window position status indicators.

The return value from the WM_ADJUSTWINDOWPOS message:

0 The SWP _NOADJUST option has been specified.
Other Adjust window position status indicators.

The AWF _*flags specify the state change of the frame window.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure sets f/reply to 0 and sends the following messages, based on the
values of the fl parameter of the first SWP data structure:

SWP_SIZE
SWP_HIDE
SWP_SHOW

A WM_SIZE with the new window size from the first SWP structure
A WM_SHOW to hide the new window
A WM_SHOW to show the new window.

Chapter 12. Default Window Procedure Message Processing 12-69

Default Dialog Processing
This section describes how messages are processed by the default dialog procedure. The default
dialog procedure can be called using WinDefDlgProc. A user dialog procedure should make this call
for all messages that itdoes not want to process.

For WM_* messages other than those specified in this section the Default Dialog Procedure takes the
same action and sets result to the same value as in Chapter 15, "Frame Control Window
Processing." In the instance of messages that would be sent to FID_CLIENT, they are passed to the
default window procedure.

For any other messages the default window procedure takes no action, other than to set reply to
NULL.

WM_CHAR (Default Dialogs)
For the cause of this message, see "WM_ CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_ CHAR" on page 12-24.

Default Processing
If KC_CHAR is the mnemonic for a button that already has the focus, a BM_ CLICK is sent to that
button and fresult is set to TRUE. If the button does not have the focus, it receives the focus and
fresult is set to TRUE.

If usvk contains the value VK_TAB, the focus is set to the next tab item in the dialog. fresult is set to
TRUE.

If usvk contains the value VK_BACKTAB, the focus is set to the previous tab item in the dialog.
fresult is set to TRUE.

If usvk contains the value VK_LEFT or VK_UP, the focus is set to the previous item in the group.
fresult is set to TRUE.

If usvk contains the value VK_RIGHT or VK_BOTTOM, the focus is set to the next item in the group.
fresult is set to TRUE.

If usvk contains the value VK_ENTER or VK_NEWLINE, if a pushbutton has the focus a BM_ CLICK is
sent to that button. fresult is set to TRUE. If another control in the dialog has the focus the dialog is
searched for a pushbutton with style BS_DEFAULT. If a pushbutton of this style is found, a BM_ CLICK
is sent to that button and fresult is set to TRUE.

If usvk contains the value VK_ESC, WM_ COMMAND is posted, with ussource is set to
CMDSRC_PUSHBUTTON and uscmd is set to DID_CANCEL. fresult is set to TRUE.

In other instances, if an owner exists the message is sent to the owner, otherwise fresult is set to
FALSE.

12-70 PM Programming Reference

)

)

WM_ CLOSE (Default Dialogs)
For the cause of this message, see "WM_ CLOSE" on page 12-26.

Parameters
For a description of the parameters, see "WM_CLOSE" on page 12-26.

Default Processing
The default dialog procedure responds to this message by dismissing the dialog by issuing the
WinDismissDlg function with its u/Result parameter set to DID_ CANCEL.

WM_COMMAND (Default Dialogs)
For the cause of this message, see "WM_COMMAND" on page 12-27.

Parameters
For a description of the parameters, see "WM_ COMMAND" on page 12-27.

Default Processing
The default dialog procedure responds to this message by dismissing the dialog and passing uscmd
(the control item identifier) as u/Result of the WinProcessDlg or the WinDlgBox function that initiated
the dialog. It sets flreply to 0.

WM_INITDLG (Default Dialogs)
For the cause of this message, see "WM_INITDLG" on page 12-38.

Parameters
For a description of the parameters, see "WM_INITDLG" on page 12-38.

Remarks
This message is sent to the dialog procedure, before the dialog box is shown, thereby offering the
dialog procedure the opportunity to perform the initialization of the dialog box.

If any string substitutions are made by the WinSubstituteStrings call when the dialog is created, the
WM_SUBSTITUTESTRING message may have been sent before the WM_INITDLG message is sent.

Default Processing
The default dialog procedure passes this message to the default window procedure, which sets
fresult to FALSE.

WM_MATCHMNEMONIC (Default Dialogs)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 12-40.

Parameters
For a description of the parameters, see "WM_MATCHMNEMONIC" on page 12-40.

Remarks
This message is only processed by Button and Static Controls; all other controls return FALSE.

Default Processing
The default window procedure takes no action on this message, other than to set result to FALSE.

Chapter 12. Default Window Procedure Message Processing 12-71

WM_ QUERYDLGCODE
This message is sent by the dialog manager to identify the type of control, to determine what kinds of
messages the control understands, and also to determine whether an input message may be
processed by the dialog manager or passed down to the control.

Parameters
param1

ppQmsg (PQMSG)
Message queue structure.

This points to a QMSG structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulDlalogCode (ULONG)
Dialog code information flags.

These identify the type of control:

Remarks

DLGC_ENTRYFIELD

DLGC_BUTTON

DLGC_CHECKBOX
DLGC _RADIOBUTTON

DLGC_STATIC

DLGC_DEFAULT
DLGC _PUSHBUTTON
DLGC _SCROLLBAR
DLGC_MENU
DLGC_MLE

Identifies an entry field control. Assumed to understand the
EM_SETSEL message.
Identifies a button item. Assumed to understand the BM_CLICK
message.
Identifies a check-box item. Used with the DLGC_BUTTON code.
Identifies a radio button control. Used with the DLGC_BUTTON
code.
Identifies a static control. Static controls are not included in arrow
key enumeration.
Identifies a default pushbutton control.
Identifies a nondefault pushbutton.
Identifies a scroll bar control.
Identifies a menu control.
Identifies a multiline entry field control.

When processing user input, the dialog manager makes some assumptions about the operation of
specific controls. The dialog manager sends the WM_ QUERYDLGCODE message to obtain a code
that governs what assumptions can be made.

If the window receiving this message is not a control as defined above, this message returns 0.

Default Processing
The default dialog procedure takes no action on this message, other than to set u/DialogCode to
NULL

12-72 PM Programming Reference

~
)

Default File Dialog Processing
This section describes how messages are processed by the default dialog procedure of the file
dialog. This standard dialog can be used to provide a common, consistent file selection function.

The file dialog's default procedure can be called using the WinDefFileDlgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it does not
process when using the file dialog.

The default dialog procedure of the file dialog sends the messages listed in this section to itself to
perform the requested action. This design allows a user-provided dialog procedure to customize the
file dialog to its own needs.

FDM ERROR
This message is sent whenever the file dialog is going to display an error message window. This
allows an application to display its own message, if desired, instead of messages provided by the
system.

Parameters
param1

This is the ID of the message that is displayed by the file dialog if the default file dialog
procedure processes the message.

usErrorld (USHORT)
Error message ID.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
usUserReply (USHORT)

User's reply.

Specifies the user's reply to the error message presented. Return values are as follows:

0
MBID_OK

MBID_CANCEL

MBID_RETRY

Remarks

The file dialog presents the error message for this ID.
The file dialog processes the reply as if the OK push button was pressed in its
message window.
The file dialog processes the reply as if the Cancel push button was pressed
in its message window.
The file dialog processes the reply as if the Retry push button was pressed in
its message window.

The application uses this message to provide application-specific error messages in response to file
dialog errors that are detected during file dialog processing. The application can choose whether to
allow the dialog to present its message or whether to provide its own message and return the
response from that message window to the dialog for processing.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return NULL.

Chapter 12. Default Window Procedure Message Processing 12-73

FDM FILTER
This message is sent before a file that meets the current filter criteria is added to the File list box.

Parameters
param1

pszFllename (PSZ)
Pointer.

Pointer to the file name.

param2

pszEAType (PSZ)
Pointer.

Returns
reply

Pointer to the .TYPE EA extended attribute.

bFllterActlon (BOOL)
Success indicator.

TRUE Add the file.
FALSE Do not add the file.

Remarks
The application checks this message to obtain the name and the .TYPE EA extended attribute of the
file to be added. The application then determines whether or not the file will be added.

When FALSE is returned, the file is not added to the dialog's list box.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return FALSE.

FDM VALIDATE
This message is sent when the user selects a file and presses Enter or clicks on the OK button, or
double-clicks on a file name in the file list box.

Parameters
param1

pszFlleName (PSZ)
Pointer.

Pointer to the fully-qualified file name.

param2

usSeltype (USHORT)
Selection type.

Returns
reply

bValldlty (BOOL)
Validity indicator.

TRUE File name is valid.
FALSE File name is not valid.

12-74 PM Programming Reference

)

Remarks
This message is only sent just before the dialog returns to the caller with the user-selected file
name. Before this message is sent, pszFileName is updated with the user-selected file name. The
application can determine if this file name is acceptable. For instance, if the file dialog is being used
to pick a "SaveAs" file name, the application can check to see if the file is read-only. If it is, a
warning dialog should be brought up to notify the user.

When FALSE is returned from a FDM_VALIDATE message, the dialog will not be dismissed and the
user can continue to use the File Dialog to select an alternate file.

In multiple file selection dialogs this message is sent for each selected entry within the file list box.
When the name of the file being validated comes from a selected entry in the list box, param2 will
contain FDS_LBSELECTION. When the name of the file comes from the file name entry field, param2
wilf contain FDS_EFSELECTION. Single file selection dialogs will always return FDS_EFSELECTION
in param2 since the returned file name always comes from the single line entry field.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return FALSE.

Default Font Dialog Processing
This section describes how messages are processed by the default dialog procedure of the font
dialog. This standard dialog can be used to provide a common, consistent font selection function.

The font dialog's default procedure can be called using the WinDefFontDlgProc function. A
user-provided subclassing dialog procedure should make this call for all messages that it does not
process when using the font dialog.

The default dialog procedure of the font dialog sends the messages listed in this section to itself to
perform the requested action. This design allows a user-provided dialog procedure to customize the
font dialog to its own needs.

WM_DRAWITEM (in Font Dialog)
If the FNTS_OWNERDRAWPREVIEW style is set for a font dialog, this notification message is sent to
that dialog's owner whenever the preview window area (sample text) is to be drawn.

Parameters
param1

Id (USHORT)
Window identifier.

The window ID of the sample area (DID_SAMPLE).

param2

pOwnerltem (POWNERITEM)
Pointer.

Pointer to an OWNERITEM data structure. The following list defines the OWNERITEM data
structure fields as they apply to the font dialog. See OWNERITEM on page A-76 for the
default field values.

hwnd (HWND)
Window handle of the sample area.

hps (HPS)
Presentation-space handle.

fsState (USHORT)
Reserved.

Chapter 12. Default Window Procedure Message Processing 12-75

Returns
reply

fsAttrlbule (USHORT)
Reserved.

fsSlaleOld (USHORT)
Reserved.

fsAttrlbuleOld (USHORT)
Reserved.

rclllem (RECTL)
Item rectangle to be drawn in window coordinates.

ldllem (SHORT)
Reserved.

hllem (PCNRDRAWITEMINFO)
Reserved.

drawn (BOOL)
Item-drawn indicator.

Remarks

TRUE The owner draws the item.
FALSE If the owner does not draw the item, the owner returns this value and the font

dialog draws the item.

The font dialog provides this message to give the application the opportunity to provide a custom
drawn preview area.

The font dialog default dialog procedure generates this message and sends it to its owner, informing
the owner that the preview area is to be drawn. The owner is then given the opportunity to draw that
area and to indicate that the area has been drawn or that the font dialog is to draw it.

Default Processing
For a description of the default processing, see "WM_DRAWITEM" on page 12-31.

FNTM_FACENAMECHANGED
This message notifies the subclassing application whenever the font family name is changed by the
user.

Parameters
param1

pszfamllyname (PSZ)
Pointer.

Pointer to the currently-selected face name.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

12-76 PM Programming Reference

\
)

y'

Remarks
pszFami/yname is the currently selected family name. The application can modify this string if it
desires. The buffer set aside is the maximum size a face name string can be (FACESIZE).

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return 0.

FNTM FIL TERLIST
This message is sent whenever the Font Dialog is preparing to add a font family name, font style
type, or point size entry to the combination box fields that contain these parameters.

Parameters
param1

pszFontname (PSZ)
Pointer.

Pointer to the text string that is being added to the combination box.

param2

usFleldld (USHORT)
Field identifier.

The identifier of the field to which the text string is being added. The identifier can be one of
the following:

FNTl_FAMIL YNAME
FNTl_STYLENAME
FNTl_POINTSIZE

The text string is an addition to the family name combination box.
The text string is an addition to the style combination box.
The text string is an addition to the size combination box.

usFontType (USHORT)
Font information.

Returns
reply

The family name, style, or point size that is being added to the combination box. Use one of
the following to identify the font information that is being added:

FNTl_BITMAPFONT

FNTl_VECTORFONT
FNTl_SYNTHESIZED

FNTl_FIXEDWIDTHFONT
FNTl_PROPORTIONALFONT
FNTl_DEFAULTLIST

A bit-map font is being added or a point size of a bit-map
font is being added.
A vector font is being added.
A synthesized font is being added. This value is valid for the
style field only.
A fixed width (monospace) font is being added.
A proportionally spaced font is being added.
A point size from the default list (or the application-supplied
list) is being added.

fFllterActlon (BOOL)
Filter indicator.

Remarks

TRUE
FALSE

Add the text string to the combination box.
Do not add the text string to the combination box.

The application checks this message to obtain the name and the .TYPE EA extended attribute of the
file being added. The application then determines whether or not the file will be added.

When FALSE is returned, the file is not added to the dialog's list box.

Chapter 12. Default Window Procedure Message Processing 12-77

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return FALSE.

FNTM POINTSIZECHANGED
This message notifies subclassing applications when the point size of the font is changed by the
user.

Parameters
param1

pszPolntSlze (PSZ)
Pointer.

Pointer to the text in the point-size entry field.

param2

fxPolntSlze (FIXED)
Point size.

The fxPointSize field in FONTDLG stated in fixed-point notation.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
When the application wants to limit the point sizes the user can select, it should process this
message by changing the pszPointSize value and putting up a message box explaining the limitation
to the user.

Default Processing
The WinOefDlgProc function does not expect to receive this message and takes no action on it other
than to return 0.

FNTM_ STYLECHANGED
This message notifies subclassing applications when the user changes any of the attributes in the
STYLECHANGE structure.

Parameters
param1

stycstyc (STYLECHANGE)
Style changes.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
reply (ULONG)

:Reserved.

0 Reserved value, 0.

12-78 PM Programming Reference

\
)

Remarks
The "Old" fields show the style attributes before the user made the change. The other parameters
show what the state will be after the application passes this message to WinDefFontDlgProc. When
the "Old" field and the "New" field are the same, no change is made for that attribute.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return 0.

FNTM UPDATEPREVIEW
This message notifies subclassing applications before the preview window is updated. This occurs
when the font selection is modified.

Parameters
param1

hwndPrevlew (HWND)
Window handle.

Window handle the preview image is drawn into. This is a static text field.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
This message notifies an application that the dialog is about to update the preview area.

Default Processing
The WinDefDlgProc function does not expect to receive this message and takes no action on it other
than to return 0.

Chapter 12. Default Window Procedure Message Processing 12-79

Language Support Window Processing
This system-provided window procedure processes messages for a window that has been created
with a window class specifying a "NULL" window procedure.

The following describes the WM_* messages and the language support window procedure action.

For any other messages the Language Support Window Procedure performs the same actions as the
Default Window Procedure.

WM_ACTIVATE (Language Support Window)
For the cause of this message, see "WM_ACTIVATE" on page 12-3.

Parameters
For a description of the parameters, see "WM_ACTIVATE" on page 12-3.

Remarks
The Language Support Window Procedure responds to this message by posting a WM_PACTIVATE
message to the application queue and setting flreply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_ CONTROL (Language Support Window)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
For a description of the parameters, see "WM_CONTROL" on page 12-28.

Remarks
The Language Support Window Procedure responds to this message by posting a WM_PCONTROL
message to the application queue and setting flreply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

WM_PAINT (Langauge Support Window)
For the cause of this message, see "WM_PAINT" on page 12-47.

Parameters
For a description of the parameters, see "WM_PAINT" on page 12-47.

Remarks
The Language Support Window Procedure responds to this message by posting a WM_PPAINT
message to the application queue and setting flreply to 0.

The WinBeginPaint and WinEndPaint functions are issued by the Language Support Window
Procedure, during the processing of the WM_PPAINT message.

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and then sets
flreply to O.

12-80 PM Programming Reference

~
/

J
/

WM_PPAINT (Language Support Window)
For the cause of this message, see "WM_PPAINT" on page 12-48.

Parameters
For a description of the parameters, see "WM_PPAINT" on page 12-48.

Remarks
The Language Support Window Procedure issues the WinBeginPaint and WinEndPaint functions, and

then sets f/reply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_SETFOCUS (Language Support Window)
For the cause of this message, see "WM_SETFOCUS" on page 12-58.

Parameters
For a description of the parameters, see "WM_SETFOCUS" on page 12-58.

Remarks
The Language Support Window Procedure responds to this message by posting a WM_PSETFOCUS

message to the application queue and setting flreply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_SIZE (Language Support Window)
For the cause of this message, see "WM_SIZE" on page 12-61.

Parameters
For a description of the parameters, see "WM_SIZE" on page 12-61.

Remarks
The Language Support Window Procedure responds to this message by posting a WM_PSIZE

message to the application queue and setting flreply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

Chapter 12. Default Window Procedure Message Processing 12-81

WM_SYSCOLORCHANGE (Language Support Window)
For the cause of this message, see "WM_SYSCOLORCHANGE" on page 12-63.

Parameters
For a description of the parameters, see "WM_SYSCOLORCHANGE" on page 12-63.

Remarks
The Language Support Window Procedure responds to this message by posting a
WM_PSYSCOLORCHANGE message to the application queue and setting ff reply to O.

Def a ult Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-82 PM Programming Reference

)
/

Language Support Dialog Processing
This system-provided window procedure processes messages for a dialog that has been created or
loaded specifying a 'NULL' dialog procedure.

For any other messages the Language Support Dialog Procedure issues and returns the result of the
WinDefDlgProc function.

WM_ACTIVATE (Language Support Dialog)
For the cause of this message, see "WM_ACTIVATE" on page 12-3.

Parameters
For a description of the parameters, see "WM_ACTIVATE" on page 12-3.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDlgProc
function, then posting a WM_PACTIVATE message to the application queue and setting flreply to the
result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set fl reply to 0.

WM_ CONTROL (Language Support Dialog)
For the cause of this message. see "WM_ CONTROL" on page 12-28.

Parameters
For a description of the parameters, see "WM_ CONTROL" on page 12-28.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDlgProc
function, then posting a WM....:PCONTROL message to the application queue and setting flreply to the
result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_PAINT (Language Support Dialog)
For the cause of this message, see "WM_PAINT" on page 12-47.

Parameters
For a description of the parameters, see "WM_PAINT" on page 12-47.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDigProc
function, then posting a WM_PPAINT message to the application queue and setting flreply to the
result of the WinDefDlgProc function.

The WinBeginPaint and WinEndPaint functions are issued by the Language Support Dialog
Procedure, during the processing of the WM_PPAINT message.

Chapter 12. Default Window Procedure Message·Processing 12-83

Default Processing
The default window procedure issues the WinBeginPaint and WinEndPaint functions, and then sets
flreply to O.

WM_PPAINT (Language Support Dialog)
For the cause of this message, see "WM_PPAINT" on page 12-48.

Parameters
For a description of the parameters, see "WM_PPAINT" on page 12-48.

Remarks
The Language Support Dialog Procedure issuing the WinDefDlgProc function, then issues the
WinBeginPaint and WinEndPaint functions, and then setting flreply to the result of the WinDefDlgProc
function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_SETFOCUS (Language Support Dialog)
For the cause of this message, see "WM_SETFOCUS" on page 12-58.

Parameters
For a description of the parameters, see "WM_SETFOCUS" on page 12-58.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDlgProc
function, then posting a WM_PSETFOCUS message to the application queue and setting flreply to the
result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to O.

WM_SIZE (Language Support Dialog)
For the cause of this message, see "WM_SIZE" on page 12-61.

Parameters
For a description of the parameters, see "WM_SIZE" on page 12-61.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDlgProc
function, then posting a WM_PSIZE message to the application queue and setting flreply to the result
of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

12-84 PM Programming Reference

)

)
I

WM_SYSCOLORCHANGE (Language Support Dialog)
For the cause of this message, see "WM_SYSCOLORCHANGE" on page 12-63.

Parameters
For a description of the parameters, see "WM_SYSCOLORCHANGE" on page 12-63.

Remarks
The Language Support Dialog Procedure responds to this message by issuing the WinDefDlgProc
function, then posting a WM_PSYSCOLORCHANGE message to the application queue and setting
flreply to the result of the WinDefDlgProc function.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

Chapter 12. Default Window Procedure Message Processing 12-85

12-86 PM Programming Reference

\
)

Chapter 13. Button Control Window Processing

This system-provided window procedure processes the actions on a button control (WC_BUTTON).

Purpose
A button control is a small rectangular child window representing a button that the operator can
"switch" on or off. Button controls can be used alone or in groups, and can either be labeled or
appear without text. Button controls typically change appearance when the operator clicks a pointing
device on them or pressing the space bar when the button has the keyboard focus.

Buttons can be disabled to prevent them from responding when the operator clicks on them.
Disabled buttons are displayed using a different emphasis technique (for example, color or
half-toning).

Button Control Styles
These button control styles are available:

BS_PUSHBUTTON

BS_CHECKBOX

BS_AUTOCHECKBOX

BS_RADIOBUTTON

BS_AUTORADIOBUTTON

BS_3STATE

BS_AUT03STATE

BS_USERBUTTON

A pushbutton is a box that contains a string. When a button is pushed,
by clicking the pointing device on it or pressing the spacebar when it is
active, the parent window is notified.

A check box is a small square with a character string to the right. If it is
checked, a small black box appears inside the small square. When the
box or string is clicked, by clicking on it with the pointing device or
pressing the keyboard spacebar when it is active, the check box
changes state and the parent window is notified.

An automatic check box automatically toggles its state whenever the
user clicks on it.

A radio button is similar to a check box, but is typically used in groups
in which only one button at a time is checked. When a radio button is
clicked or a cursor key is pressed to move within the group, it notifies
its owner window. It is then up to the owner window to check the
clicked radio button and uncheck all the rest, if necessary.

When clicked, an automatic radio button automatically checks itself and
unchecks all other radio buttons in the same group.

A three-state check box is identical to a check box control except that
its check box can be half-toned as well as the box being checked or
unchecked.

An automatic three-state check box automatically toggles its state when
the user clicks on it.

This is an application-definable button. The owner window of this style
control receives the additional button style BN_PAINT.

This style can be ORed with any of the basic button styles:

BS_NOPOINTERFOCUS

BS_ICON

BS_AUTOSIZE

Buttons with this style do not set the focus to themselves when clicked
with the pointing device. This enables the cursor to stay on a control
for which information is required, rather than moving to the button.
This style has no effect on keyboard interaction. The tab key can still be
used as usual to move the focus to the button.

Places an icon instead of text on the push button control.

Buttons with this style will be sized to make sure the contents fit.

Chapter 13. Button Control Window Processing 13-1

This style can be ORed with the BS_AUTORADIOBUTTON style:

BS_NOCURSORSELECT The radio button does not select itself when given the focus as the
result of an arrow key or tab key.

These styles can be ORed with the BS_PUSHBUTTON style:

BS_HELP

BS_SYSCOMMAND

BS_NOBORDER

The button posts a WM_HELP message rather than a WM_ COMMAND
message.

The button posts a WM_SYSCOMMAND message rather than a
WM_COMMAND message.

The pushbutton is displayed without a border drawn around it. There is
no other change in the pushbutton's operation.

If both BS_HELP and BS_SYSCOMMAND are set, BS_HELP takes precedence.

This style can be ORed with the BS_PUSHBUTTON and BS_USERBUTTON styles:

BS_DEFAULT

Button Control Data

A BS_DEFAUL T pushbutton is one with a thick border box. It has the
same properties as a pushbutton. In addition, the user may press a
BS_DEFAUL T pushbutton by pressing the RETURN or ENTER key. The
intention is the same for user-buttons, but the appearance of a
BS_DEFAUL T userbutton is application defined.

See BTNCDATA on page A-9.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_BUTTONLIGHT
SYSCLR_WINDOW
SYSCLR_MENUTEXT
SYSCLR_BUTTONDEFAULT
SYSCLR_BUTTONMIDDLE
SYSCLR_WINDOW
SYSCLR_WINDOWFRAME.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _HILITEFOREGROUNDCOLOR
PP _FOREGROUNDCOLOR
PP _DISABLEDFOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR
PP_BACKGROUNDCOLOR
PP _BORDERCOLOR.

13-2 PM Programming Reference

\~
)

Button Control Notification Messages
These messages are initiated by the button control window to notify its owner of significant events.

WM_COMMAND (in Button Controls)
For the cause of this message, see "WM_COMMANO" on page 12-27.

Parameters
For a description of the parameters, see "WM_COMMAND" on page 12-27.

Button control sets uscmd to the button identity and ussource to CMOSRC_PUSHBUTTON.

Remarks
The button control generates this message when a pushbutton of style BS_PUSHBUTTON is pressed
or when it receives a BM_ CLICK message. The button control posts the message to the queue of the
control owner.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

WM_CONTROL (in Button Controls)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

idld (USHORT)
Button control identity.

usnotlfycode (USHORT)
Notification code.

The notification code BN_PAINT is only generated when the button control has a style of
BS_USERBUTTON.

The button control uses these notification codes:

param2

BN_CLICKED
BN_DBLCLICKED
BN_PAINT

The button has been pressed.
The button has been double-clicked.
The button requires painting, using one of the following draw states:
BDS_DISABLED The disabled state of the button requires painting.
BDS_HILITED The highlighted state of the button requires painting.
BDS_DEFAULT The default state of the button requires painting.

flcontrolspec (ULONG)
Control-specific information.

When usnotifycode is BN_PAINT this parameter is a pointer to a USERBUTTON structure,
otherwise this parameter is the window handle of the button control.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Chapter 13. Button Control Window Processing 13-3

Remarks
The button control generates this message and sends it to its owner, informing the owner of this
event, when:

• Its style is not BS_PUSHBUTTON and the button is pressed.
• It receives a BM_CLICK message.
• Its style is BS_USERBUTTON and the button is clicked or double clicked.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_HELP (in Button Controls)
For the cause of this message, see "WM_HELP" on page 12-36.

Parameters
For a description of the parameters, see "WM_HELP" on page 12-36.

Button control sets uscmd to the button identity.

Remarks
This message is identical to a WM_ COMMAND message, but implies that the application should
respond to this message by displaying help information.

The button control generates this message and posts it to the queue of its owner, if it has the style of
BS_HELP and a pushbutton is pressed, or when it receives a BM_ CLICK message.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is not the
desktop. Otherwise, it sets f/reply to 0.

WM_SYSCOMMAND
For the cause of this message, see "WM_SYSCOMMAND" on page 12-63.

Parameters
For a description of the parameters, see "WM_SYSCOMMAND" on page 12-63.

Button control sets uscmd to the button identity.

Remarks
If the button control is specified with a style of BS_SYSCOMMAND but not with BS_HELP, the button
control generates this message and posts it to the queue of its owner when a pushbutton is pressed,
or when it receives a BM_CLICK message.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

13-4 PM Programming Reference

)
Button Control Window Messages

This section describes the Button Control Window Procedure actions on receiving the following
messages.

BM CLICK
An application sends this message to cause the effect of the operator clicking a pushbutton.

Parameters
param1

usUp (USHORT)
Up and down indicator:

TRUE Perform the default upclick action
FALSE Perform the default downclick action.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The button control responds to this message by taking the action that occurs if the button is clicked
by the operator. This causes the following messages to be generated:

• A WM_HELP (in Button Controls) message, if the button has a style of BS_HELP.

• A WM_SYSCOMMAND message, if the button has a style of BS_PUSHBUTTON and a style of
BS_SYSCOMMAND and not a style of BS_HELP.

• A WM_ COMMAND (in Button Controls) message, if the button has a style of BS_PUSHBUTTON
but not a style of BS_SYSCOMMAND and not a style of BS_HELP.

• A WM_ CONTROL (in Button Controls) message, whose usnotifycode is set to BN_CLICKED, if the
button has a style of BS_USERBUTTON, BS_PUSHBUTTON, BS_CHECKBOX, or BS_3STATE, and
not a style of BS_SYSCOMMAND or BS_HELP.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set flreply to the default value of 0.

Chapter 13. Button Control Window Processi(lg 13-5

BM_QUERYCHECK
This message returns the checked state of a button control.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, O.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
reply

usresult (USHORT)
Check indicator:

0 The button control is in unchecked state.
1 The button control is in checked state.
2 The button control is in indeterminate state.

Remarks
The button control responds to this message, if it has a style of BS_CHECKBOX,
BS_AUTOCHECKBOX, BS_RADIOBUTION, BS_AUTORADIOBUTION, BS_3STATE, or
BS_AUT03STATE, by setting usresult as appropriate.

If the button has any other style, the button control takes no action other than to set usresult to 0.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set usresult to the default value of 0.

BM_ QUERYCHECKINDEX
This message returns the zero-based index of a checked radio button.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sresult (SHORT)
Radio-button index:

-1 No radio button of the group is checked, or this button control does not have the style
BS_RADIOBUTION or BS_AUTORADIOBUTION.

Other Zero-based index of the checked radio button of the group.

13-6 PM Programming Reference

''\

)

)

)

Remarks
The button control responds to this message by setting sresult as appropriate.

This message may be sent to any radio button or autoradio button in a group of buttons. For details
of the WS_GROUP style, see "Window Styles" on page 12-2.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sresult to the default value of 0.

BM_ QUERYHILITE
This message returns the highlighting state of a button control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fresull (BOOL)
Highlight indicator:

TRUE The button control is displayed in highlighted state.
FALSE The button control is displayed in unhighlighted state.

Remarks
The button control responds to this message, if it has a style of BS_PUSHBUTTON, by setting fresult
as appropriate.

If the button has any other style, the button control takes no action other than to set fresu/t to FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, except to set fresult to the default value of FALSE.

BM SETCHECK
This message sets the checked state of a button control.

Parameters
param1

uscheck (USHORT)
Check state:

0 Display the button control in the unchecked state
1 Display the button control in the checked state
2 Display a 3-state button control in the indeterminate state.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 13. Button Control Window Processing 13-7

Returns
reply

usoldstate (USHORT)
Old check state of the button control:

o Unchecked
1 Checked
2 Indeterminate.

Remarks
The button control responds to this message by displaying it in the appropriate state and returning
the old state.

If the button control has the style of BS_CHECKBOX, BS_AUTOCHECKBOX, BS_RADIOBUTTON, or
BS_AUTORADIOBUTTON, it is displayed in the checked state if uscheck is set to 1, or in the
unchecked state if It is set to O and usoldstate is set as appropriate.

If the button control has the style of BS_RADIOBUTTON or BS_AUTORADIOBUTTON, the
WS_TABSTOP style is modified. If the resulting state of the button is checked, the WS_TABSTOP
style is set, otherwise it is reset.

If the button control has the style of BS_3STATE or BS_AUT03STATE, it is displayed in the unchecked
state if uscheck is set to 0, in the checked state if it is set to 1, and in the indeterminate state if it is
set to 2 and usoldstate is set as appropriate.

If the button control has the style of BS_USERBUTTON, a WM_ CONTROL (in Button Controls)
message is sent to its owner with usnotifycode set to BN_PAINT and usoldstate is set as appropriate.

If the button control has any other style, the button control takes no action other than to set
usoldstate to 0.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, except to set usoldstate to the default value of 0.

BM SETDEFAUL T
This message sets the default state of a button control.

Parameters
param1

usdefault (USHORT)
Default state:

TRUE
FALSE

param2 (ULONG)
Reserved.

Display the button control in the default state
Display the button control in the nondefault state.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful operation
Error occurred.

13-8 PM Programming Reference

Remarks
The button control responds to this message, if it has a style of BS_USERBUTTON or
BS_PUSHBUTTON, by displaying the button control in the default or nondefault state as appropriate,
and setting fSuccess to TRUE.

If the button control has any other style, the button control takes no action other than to set fSuccess
to FALSE.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

BM SETHILITE
This message sets the highlight state of a button control.

Parameters
param1

ushlllle (USHORT)
Highlight indicator:

TRUE
FALSE

Display the button control in the highlighted state
Display the button control in the unhighlighted state.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

foldslale (BOOL)
Old highlight state:

TRUE
FALSE

The button control was in highlighted state
The button control was in unhighlighted state.

Remarks
The button control responds to this message, if it has a style of BS_PUSHBUTTON, BS_CHECKBOX,
BS_AUTOCHECKBOX, BS_RADIOBUTTON, BS_AUTORADIOBUTTON, BS_3STATE, or
BS_AUT03STATE, by displaying the button control in the appropriate highlight state and setting
foldstate as appropriate.

If the style of the Button Control is BS_USERBUTTON, a WM_ CONTROL (in Button Controls) message
is sent to its owner with usnotifycode set to BN_PAINT and with flcontrolspec pointing to a
USERBUTTON structure and sets foldstate as appropriate.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fo/dstate to the default value of FALSE.

Chapter 13. Button Control Window Processing 13-9

WM_ENABLE (in Button Controls)
For the cause of this message, see "WM_ENABLE" on page 12-31.

Parameters
For a description of the parameters, see "WM_ENABLE" on page 12-31.

Remarks
The button control window procedure responds to this message by setting the enable state and by
setting flreply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_MATCHMNEMONIC (in Button Controls)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 12-40.

Parameters
For a description of the parameters, see "WM_MATCHMNEMONIC" on page 12-40.

Remarks
The button control window procedure responds to this message by setting fresult as appropriate. If
MP1 matches the button mnemonic, return fresult to TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_QUERYCONVERTPOS (in Button Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The button control window procedure returns QCP_NOCONVERT.,

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

13-10 PM Programming Reference

~
)

WM_QUERYWINDOWPARAMS (in Button Controls)
Occurs when an application queries the button control window procedure window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The button control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to zero and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in Button Controls)
Occurs when an application sets or changes the button control window procedure window
parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The button control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure takes no action on this message, other than to set result to FALSE.

Chapter 13. Button Control Window Processing 13-11

13-12 PM Programming Reference

)

Chapter 14. Entry Field Control Window Processing

This system-provided window procedure processes the actions on an entry field control
(WC_ENTRYFIELD).

Purpose
An entry field control is a rectangular window that displays a single line of text that the operator can
edit. When it has the focus, the cursor marks the current Insertion or replacement point.

When working with entry fields, the WM_CONTROL message is of major concern. An entry-field
control communicates with its owner by sending WM_ CONTROL messages. It contains a notification
code in MP1 and a handle to the current entry field in MP2. The return value for WM_ CONTROL is 0.
Notification codes are denoted by an EN prefix.

Entry Field Control Styles
These entry field control styles are available:

ES_LEFT

ES_RIGHT

ES_CENTER

ES_AUTOSIZE

ES_AUTOSCROLL

ES_MARGIN

ES_READONLY

ES_UNREADABLE

ES_COMMAND

ES_AUTOTAB

The text in the control is left-justified. This is the default style if neither
ES_RIGHT nor ES_CENTER is specified.

The text in the control is right-justified.

The text in the control is centered.

The text will be sized to make sure the contents fit.

If the user tries to move off the end of a line, the control automatically scrolls
one-third the width of the window in the appropriate direction.

This style can be used to cause a border to be drawn around the control, with
a margin around the editable text. The margin is half a character-width wide
and half a character-height high.

When an entry field control with this style is positioned, it adjusts the position
so that the text is placed at the position specified. This position differs from
the original position by the width of the border and the margin.

This style causes a single line entry field to be created in read only state.

When an entry field is in read only state, characters do not get inserted into
the text. However the insertion interface is still functional.

The entry field read only state can be altered by use of the
EM_SETREADONL Y message.

This style causes the text to be disp1ayed as an asterisk for each character.
It can be used for passwords.

This style identifies the entry field as a command entry field. This
information is used by the Help Manager to provide command help if the end
user requests help for this field.

Not more than one entry field on each dialog should be given this style.

This style indicates that when the field is filled by adding a character to the
end of the entry field text, the effect of a tab key will be generated. Inserting
or replacing a character in the middle of the text, however, does not result in
an autotab.

This style is recommended for use with fixed-length, non-scrollable fields that
are filled completely. The maximum length of the entry field text is held in
the control data, see "Entry Field Control Data" on page 14-2

Chapter 14. Entry Field Control Window Processing 14-1

These entry field controls are intended for countries that use a double-byte character encoding
scheme:

ES_SBCS

ES_DBCS

ES_ANY

ES_MIXED

The text is purely single-byte.

If the number of characters entered exceeds EM_SETTEXTLIMIT, or a DBCS
character is entered, the alarm sounds and the last character entered is
ignored.

The text is purely double byte.

If the number of bytes in the entry field exceeds EM_SETTEXTLIMIT, or an
SBCS character is entered, the alarm sounds and the last character entered
is ignored.

The text is a mixture of SBCS and DBCS characters.

If the number of bytes in the input field exceeds EM_SETTEXTLIMIT, the alarm
sounds and the last character entered is ignored.

ES_ANY is the default.

Note: If the queue code page is an ASCII code page and the data in the entry
field is to be converted to an EBCDIC code page, there is a possibility that
shift-in and shift-out characters introduced by the conversion process can
cause the converted data to overrun the target field. Coding ES_MIXED
protects the target field from overrun in this situation.

The text is a mixture of SBCS and DBCS characters which may subsequently
be converted from an ASCII DBCS code page to an EBCDIC DBCS code page
with a consequent possible increase in the length of the data.

If

DBCSchars*2 + SBCSchars + N > EM_SETTEXTLIMIT

where N starts at 0 and is incremented whenever the string goes from SBCS
to DBCS or DBCS to SBCS, the alarm sounds and the last character entered
is ignored.

Note: For every conversion from SBCS to DBCS there must be a
corresponding return to SBCS (N must be an even number).

Entry Field Control Data
See ENTRYFDATA on page A-34.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_ENTRYFIELD
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_OUTPUTTEXT
SYSCLR_WINDOWTEXT
SYSCLR_HIGHLITEFOREGROUND
SYSCLR_HIGHLITEBACKGROUND

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _FOREGROUNDCOLOR
PP _DISABLEDFOREGROUNDCOLOR
PP _HIGHLIGHTFOREGROUNDCOLOR
PP _FONTNAMESIZE

14-2 PM Programming Reference

)

\
I

J

)

Entry Field Control Notification Messages
This message is initiated by the entry field control window to notify its owner of significant events.

WM_CONTROL (in Entry Fields)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

ldld (USHORT)
Control window identity.

usnotllycode (USHORT)
Notify code:

param2

EN_ CHANGE

EN_KILLFOCUS
EN_MEMERROR

EN_OVERFLOW

EN_SCROLL

EN_SETFOCUS

The content of the entry field control has changed, and the change has
been displayed on the screen.
The entry field control is losing the focus.
The entry field control cannot allocate the storage necessary to
accommodate window text of the length implied by the
EM_SETTEXTLIMIT message.
The entry field control cannot insert more text than the current text limit.
The text limit may be changed with the EM_SETTEXTLIMIT message.

If the recipient of this message returns TRUE, then the entry field control
retries the operation, otherwise it terminates the operation.
The entry field control is about to scroll horizontally. This can happen in
these circumstances:

• The application has issued a WinScrollWindow call
• The content of the entry field control has changed
• The caret has moved
• The entry field control must scroll to show the caret position.

The entry field control is receiving the focus.

hwndcontrolspec (HWND)
Entry field control window handle.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

Chapter 14. Entry Field Control Window Processing 14-3

Entry Field Control Window Messages
This section describes the entry field control window procedure actions on receiving these
messages:

EM CLEAR
This message deletes the text that forms the current selection.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The entry field control window procedure responds to this message by deleting the text that forms
the current selection and setting maxsel equal to mlnsel.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM COPY
This message pastes the current selection to the clipboard.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

ISuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

14-4 PM Programming Reference

\
)

Remarks
The entry field control window procedure responds to this message by pasting the text that forms the
current selection to the clipboard in CF_ TEXT format.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM CUT
This message pastes the text that forms the current selection to the clipboard, and then deletes it
from the entry field control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

The entry field control window procedure responds to this message by pasting the text that forms the
current selection to the clipboard in CF_ TEXT format, and then deleting it from the entry field control
and setting maxsel equal to mlnsel.

This message is the combination of a EM_COPY message followed by a EM_CLEAR message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM PASTE
This message replaces the text that forms the current selection with text from the clipboard.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 14. Entry Field Control Window Processing 14-5

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

For example, if the text to be inserted does not fit in the entry field control without
overflowing the text limit set by the EM_SETTEXTLIMIT message, in which
instance no text is inserted.

The entry field control window procedure responds to this message by replacing the text that forms
the current selection with text from the clipboard, if the data is in CF_ TEXT format.

Only characters from the clipboard up to the first carriage return are used in the replacement.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM_QUERYCHANGED
This message enquires if the text of the entry field control has been changed since the last enquiry.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fchanged (BOOL)
Changed indicator:

Remarks

TRUE The text in the entry field control has been changed since the last time it received
this message or a WM_QUERYWINDOWPARAMS message.

FALSE All other situations.

The entry field control window procedure responds to this message by setting fchanged to indicate
whether the text of the entry field has been changed since the last time either this message or a
WM_QUERYWINDOWPARAMS (in Entry Fields) message has been received.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fchanged to the default value of FALSE.

14-6 PM Programming Reference

~
I

EM_ QUERYFIRSTCHAR
This message returns the zero-based offset of the first character visible at the left edge of an
entry-field control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sOffset (SHORT)

Zero-based offset of the first character visible at the left edge of an entry-field control.

Remarks
The entry field control window procedure responds to this message by returning the zero-based
offset into the text that corresponds to the first character displayed in the entry field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sOffset to the default value of 0.

EM_QUERYREADONLY
This message returns the read only state of an entry field control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fReadOnly (BOOL)
Read only state indicator:

TRUE Read only state is enabled.
FALSE Read only state is disabled.

Remarks
The entry field control window procedure responds to this message by returning the read only state
of the entry field control.

Chapter 14. Entry Field Control Window Processing 14-7

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fReadOnly to the default value of FALSE.

EM_QUERYSEL
This message gets the zero-based offsets of the bounds of the text that forms the current selection.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sMlnSel (SHORT)
Offset of the first character in the selection.

sMaxSel (SHORT)
Offset of the first character after the selection.

Remarks
The entry field control window procedure responds to this message by returning the zero-based
offsets of the bounds of the text that forms the current selection.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set reply to the default value of 0, which is equivalent to setting both sMinSel and
sMaxSel to 0.

EM SETFIRSTCHAR
This message specifies the offset of the character to be displayed in the first position of the entry
field control.

Parameters
param1

sOffset (SHORT)
Zero-based offset of the first character to be displayed.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred. For example, because sOffset is not valid.

14-8 PM Programming Reference

\

\
j

')

Remarks
The entry field control window procedure responds to this message by setting the text displayed in
the edit control so that the first character displayed on the left of the window has the zero-based
index specified by sOffset.

An EN_SCROLL notification message occurs, if the entry field control scrolls. This message returns
FALSE if the edit control does not have the ES_AUTOSCROLL style or it is center of right justified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM SETINSERTMODE
This message sets the insert mode of an entry field.

Parameters
param1

uslnsert (USHORT)
Insert mode indicator:

TRUE
FALSE

param2 (ULONG)
Reserved.

Enable insert mode.
Enable overtype mode.

0 Reserved value, 0.

Returns
reply

fOldlnsertMode (BOOL)
Previous insert mode indicator:

TRUE
FALSE

Insert mode was previously enabled.
Overtype mode was .. previously enabled.

Remarks
The entry field control window procedure responds to this message by setting the insert mode of the
entry field, updating the SV _INSERTMODE system constant and redrawing the entry field.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fO/dlnsartMode to the default value of FALSE.

Chapter 14. Entry Field Control Window Processing 14-9

EM SETREADONL Y
This message sets the read only state of an entry field control.

Parameters
param1

usReadOnly (USHORT)
Read only state indicator:

TRUE Enable read only state
FALSE Disable read only state.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fOldReadOnly (BOOL)

Remarks

Previous read only state indicator:

TRUE
FALSE

Read only state was previously enabled.
Read only state was previously disabled.

The entry field control window procedure responds to this message by setting the read only state of
the entry field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fOldReadOnly to the default value of FALSE.

EM SETSEL
This message sets the zero-based offsets of the bounds of the text that forms the current selection.

Parameters
param1

usminsel (USHORT)
Offset of the first character in the selection.

usmaxsel (USHORT)
Offset of the first character after the selection.

If usminsel equals usmaxse/, the current selection becomes an insertion point.

If usminsel equals 0 and usmaxsel is equal to or greater than the text limit set by the
EM_SETTEXTLIMIT message, the entire text is selected. Selected text is displayed in
reverse color.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

14-10 PM Programming Reference

' !
)

~
)

Remarks
The entry field control window procedure responds to this message by setting the zero-based offsets
of the bounds of the text that forms the current selection.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

EM SETTEXTLIMIT
This message sets the maximum number of bytes that an entry field control can contain.

Parameters
param1

sTextllmlt (SHORT)
Maximum number of characters in the entry field control.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred. For example, because not enough storage can be allocated.

Remarks
The entry field control window procedure responds to this message by setting the maximum number
of characters that can be contained.

This message is intended only to limit the length of lines that result from the user interacting with the
entry field control. It also limits the length of text that can result from sending a EM_PASTE or
WM_SETWINDOWPARAMS message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

Chapter 14. Entry Field Control Window Processing 14-11

WM_CHAR (in Entry Fields)
For the cause of this message, see "WM_ CHAR" on pag.e 12-24.

Parameters
For a description of the parameters, see "WM_CHAR" on page 12-24.

Remarks
The entry field control window procedure responds to this message by sending it to its owner if it has
not processed the keystroke. This is the most common means by which the input focus is switched
around the various controls in a dialog box.

Unlike other controls, the usvk field of the message "WM_ CHAR" on page 12-24. takes precedence
over other fields only when the Shift key is pressed.

If this message contains a valid usch field of the message "WM_ CHAR" on page 12-24. that
character is entered into the text in insert or overtype mode.

The keystrokes processed by an entry field control are:

Left arrow
Right arrow
Shift+ Left arrow
Shift+ Right arrow
Home
End
Backspace
Delete

Shift+Del
Shlft+lns
Ctrl+Del
Ctrl+lns

Move the cursor one character to the left.
Move the cursor one character to the right.
Extend the selection by one character to the left.
Extend the selection .by one character to the right.
Move the cursor to the beginning of the text.
Move the cursor to the end of the text.
Delete the character to the left of the cursor.
When the selection is an insertion point, delete the character to the right of
the cursor, otherwise delete the current selection, but do not put it in the
clipboard.
Cut the current selection to the clipboard.
Replace the current selection with the text contents from the clipboard.
Delete to the -end of the field.
Copy the current selection to the clipboard.

If the control contains more text than can be shown, the actions defined above that move the cursor
cause the text to be scrolled. The amount of scrolling varies from key to key, and the position of the
text within the control varies for the same cursor position.

Default Processing
The default window procedure sends the message to the owner window if it exists, otherwise it takes
no action on this message other than to set fresult to FALSE.

14-12 PM Programming Reference

)
WM_QUERYCONVERTPOS (in Entry Fields)

For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The entry field control window procedure updates pCursorPos to the position of the cursor and
returns QCP _CONVERT.

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_QUERYWINDOWPARAMS (in Entry Fields)
This message occurs when an application queries the entry field control window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The entry field control window procedure responds to this message by returning the window
parameters indicated by the u/Status parameter of the WNDPARAMS data structure identified by the
pwndparams parameter.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to 0 and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in Entry Fields)
This message occurs when an application sets or changes the entry field control window
parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The entry field control window procedure responds to this message by setting the window
parameters indicated by the u/Status parameter of the WNDPARAMS data structure, identified by the
pwndparams parameter.

Default Processing
The default window procedure takes no action on this message, other than to set result to FALSE.

Chapter 14. Entry Field Control Window Processing 14-13

14-14 PM Programming Reference

·~

/

Chapter 15. Frame Control Window Processing

This system-provided window procedure processes the actions on a frame window (WC_FRAME).
The frame control window procedure sends all messages not processed to FID_CLIENT and sets
reply to 0.

Purpose
The window that contains all of the parts listed below is called the frame window. Each of the parts
that make up a window, such as the title bar and menu, are separate child windows of the frame
window. All of these child windows, except the client window (FID_CLIENT), are called frame
controls.

FID_CLIENT is not a frame control, it is an instance of a window class implemented by the
application.

The frame window and all of the frame controls are implemented with system-provided preregistered
window classes.

The frame window holds together all of the frame controls and FID_CLIENT that make up an
application window. The frame window is responsible for arranging the frame controls and the
FID_CLIENT as the frame window is sized and moved. It is also responsible for routing specific
messages to its frame controls and the FID_CLIENT.

Each of the frame controls and FID_CLIENT are known to the frame window by a system-provided
window-identifier value as listed below:

FID_CLIENT
FID _HORZSCROLL
FID_MENU
FID_MINMAX
FID_SYSMENU
FID _ TITLEBAR
FID _ VERTSCROLL

Client window
Horizontal scroll bar
Application menu
Minimize/Maximize box
System menu
Title bar
Vertical scroll bar.

For correct operation, only one window per frame must be defined with each of the above FID_*
values.

Frame Creation Flags
These frame creation flags are available:

FCF _ TITLEBAR

FCF _SYSMENU

FCF_MENU

FCF_MINMAX

FCF _MINBUTTON

FCF _MAXBUTTON

FCF _ VERTSCROLL

FCF _HORZSCROLL

FCF _SIZEBORDER

FCF_BORDER

FCF _DLGBORDER

Title bar.

System menu.

Application menu.

Minimize and Maximize buttons.

Minimize button.

Maximize button.

Vertical scroll bar.

Horizontal scroll bar.

Sizing border.

Window is drawn with a thin border.

Window is drawn with a standard dialog border.

Chapter 15. Frame Control Window Processing 15-1

FCF _ ACCEL TABLE

FCF_ICON

FCF _SHELLPOSITION

FCF _SYSMODAL

FCF _NOBYTEALIGN

FCF _ TASKLIST

FCF _NOMOVEWITHOWNER

FCF _STANDARD

FCF _ SCREENALIGN

FCF _ MOUSEALIGN

FCF _ AUTOICON

FCF _HIDEBUTTON

FCF _HIDEMAX

15-2 PM Programming Reference

Causes an accelerator table to be loaded, for this frame window,
from the resource file identified In the WinCreateStdWindow
function.

Window is created with an icon associated with it that is used to
represent the window when it is minimized.

If present, the Resource parameter of the WinCreateStdWindowf
function must be the identity of an iconfThis icon is loaded and
associated with the window. When the window is minimized, the
icon is shown if the screen is capable of showing it. When the
window is destroyed, the icon is also destroyed.

The window is created with a size and position determined by the
shell, rather than explicitly by the application.

The frame window is System Modal.

When this flag is not set, the frame window is adjusted so that
window operations, such as moving, can be performed in an
optimized manner. For example, some displays can move a
window more quickly if the movement is by a multiple of eight
pels.

If this flag is set, such optimizations are not performed and size
and position values are honored.

When this flag is set, the program title is added to the front of the
frame window text, the resulting string is used as the window title
and is also entered on the task list.

In this context, the program title is the text string used by the
Desktop Manager to identify the program, or the text string
specified as a parameter in the START command. If neither string
has been defined, the filename and extension of the .EXE file are
used as the program title.

Note that a WinSetWindowText will not change the entry in the
switch list, a WinChangeSwitchEntry must be done to affect this.

The window should not be moved when its owner is moved.

Same as (FCF_TITLEBAR I FCF_SYSMENU I FCF_MINBUTTON I
FCF _MAXBUTTON I FCF _SIZEBORDER I FCF _ICON I FCF _MENU I
FCF_ACCELTABLE I FCF_SHELLPOSITION I FCF_TASKLIST).

This value is assumed if any Frame Window is created with no
Control Data.

See FS_SCREENALIGN.

See FS_MOUSEALIGN.

Performance optimization. When repainting iconized frames, the
system will redraw the icon and will not send a WM_PAINT
message to the application.

Hide button.

Hide and maximize buttons.

Frame Control Styles
These frame control styles are available. Frame styles may only be used when the frame is created
from a dialog template.

FS_SCREENALIGN

FS_MOUSEALIGN

FS_SIZEBORDER

FS_BORDER

FS_DLGBORDER

FS_SYSMODAL

FS_NOBYTEALIGN

FS_ TASKLIST

FS_NOMOVEWITHOWNER

FS_AUTOICON

Frame Control Data
See FRAMECDATA on page A-60.

Default Colors

The coordinates specifying the location of the dialog box are
relative to the top left corner of the screen, rather than being
relative to the owner window's origin.

The coordinates specifying the location of the dialog box are
relative to the position of the pointing device pointer at the time
the window was created. The operating system tries to keep the
dialog box on the screen, if possible.

See FCF _SIZEBORDER.

See FCF _BORDER.

See FCF _DLGBORDER.

See FCF _SYSMODAL.

See FCF _NOBYTEALIGN.

See FCF_TASKLIST.

See FCF _NOMOVEWITHOWNER.

See FCF _AUTOICON.

The following system colors are used when the system draws button controls:

SYSCLR_DIALOGBACKGROUND
SYSCLR_ACTIVETITLE
SYSCLR_INACTIVETffLE
SYSCLR_APPWORKSPACE
SYSCLR_ACTIVEBORDER
SYSCLR_WINDOW
SYSCLR_SHADOW
SYSCLR_WINDOWFRAME
SYSCLR_FIRST.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP_BACKGROUNDCOLOR
PP_SHADOW
PP _FOREGROUNDCOLOR
PP _BORDERCOLOR
PP _DISABLEDBACKGROUNDCOLOR.

Chapter 15. Frame Control Window Processing 15-3

Frame Control Notification Messages
These messages are initiated by the frame control window to notify the FID_CLIENT window.

WM_MINMAXFRAME (in Frame Controls)
For the cause of this message, see "WM_MINMAXFRAME" on page 12-42.

Parameters
For a description of the parameters, see "WM_MINMAXFRAME" on page 12-42.

Remarks
The window words QWS_XRESTORE, QWS_YRESTORE, QWS_CXRESTORE, and QWS_CYRESTORE
for hwnd are initialized before this message is sent. The window state has not been changed when
this message is sent, and so the WinQueryWindowPos function can be used.

This message is sent by default to the FID_CLIENT window.

The system default actions, if FALSE is returned to this message, are based on the operation
specified by the pswp parameter.

These actions affect the status of the frame window, and the title button windows and system menu
windows contained within it, as follows:

• Window is maximized from a minimized state.

Title button windows:

The RESTORE button window is replaced by a MIN button window and the MAX button
window is replaced by a RESTORE button window.

System menu window:

The MINIMIZE menu entry is enabled and the MAXIMIZE menu entry is disabled.

Other changes:

The frame window has the WS_MAXIMIZED style bit set and the WS_MINIMIZED style bit
reset. Also the MS_VERTICALFLIP style bit of the system menu window is reset.

• Window is restored from a minimized state.

Title button windows:

The RESTORE button window is replaced by a MIN button window (the MAX button window
is unaltered).

System menu window:

The MINIMIZE menu entry is enabled, the RESTORE menu entry is disabled and the SIZE
menu entry is enabled.

Other changes:

The frame window has the WS_MINIMIZED style bit and the MS_ VERTICALFLIP style bit of
the system menu window reset.

• Window is minimized from a maximized state.

Title button windows:

The RESTORE button window is replaced by a MAX button window and the MIN button
window is replaced by a RESTORE button window.

System menu window:

The MAXIMIZE menu entry is enabled and the MINIMIZE menu entry is disabled.

Other changes:

The frame window has the WS_MINIMIZED style bit set and the WS_MAXIMIZED style bit
reset. Also the MS_ VERTICALFLIP style bit of the system menu window is set.

15-4 PM Programming Reference

• Window is restored from a maximized state.

Title button windows:

The RESTORE button window is replaced by a MAX button window (the MIN button window
is unaltered).

System menu window:

The MAXIMIZE menu entry is enabled, the RESTORE menu entry is disabled and the SIZE
menu entry is enabled.

Other changes:

The frame window has the WS_MAXIMIZED style bit reset.

• Window is minimized from a restored state.

Title-button windows:

The MIN button window is replaced by a RESTORE button window (the MAX button window
is unaltered).

System menu window:

The RESTORE menu entry is enabled, the MINIMIZE menu entry is disabled and the SIZE
menu entry is disabled.

Other changes:

The frame window has the WS_MINIMIZED style bit set, and the MS_VERTICALFLIP style bit
of the system menu window is set.

• Window is maximized from a restored state.

Title-button windows:

The MAX button window is replaced with a RESTORE button window (the MIN button window
is unaltered).

System menu window:

The RESTORE menu entry is enabled, the MAXIMIZE menu entry is disabled.

Other changes:

The frame window has the WS_MAXIMIZED style bit set.

Default Processing
The default window procedure takes no action on this message, other than to set fOverrideDefault to
FALSE.

Chapter 15. Frame Control Window Processing 15-5

Frame Control Window Messages
This section describes the frame control window procedure actions on receiving the following
messages.

WM_ACTIVATE (in Frame Controls)
For the cause of this message, see "WM_ACTIVATE" on page 12-3.

Parameters
For a description of the parameters, see "WM_ACTIVATE" on page 12-3.

Remarks
The frame control window procedure responds to this message by first sending a TBM_SETHILITE
message to the FID_ TITLEBAR control, if it exists, to highlight or unhighlight the title bar. If the style
is FCF _DLGBORDER, the border is redrawn in either highlighted or unhighlighted state, as
necessary.

It then sends the WM_ACTIVATE message to the FID_CLIENT window.

Then it sets ff reply to 0.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM ADJUSTFRAMEPOS
This message is sent to a frame window whose position or size is to be adjusted.

Parameters
param1

pswp (PSWP)

param2

New frame window state.

This points to a SWP structure.

The structure has been filled in by the WinSetWindowPos or WinSetMultWindowPos
functions with the proposed move or size data for the frame window.

hsvwphsvwp (HSVWP)
Identifier of the frame window repositioning process.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
When a WinSetWindowPos or WinSetMultWindowPos function involves adjusting the position or size
of a frame window, a WM_ADJUSTFRAMEPOS message is sent to the frame window.

The frame control processes the message by informing all the windows in its owner hierarchy, that is
all the windows owned by the frame and all the windows owned by them and so on, by sending each
a WM_OWNERPOSCHANGE message. Each window receiving the a WM_OWNERPOSCHANGE
message is expected to modify the SWP structure provided as the first parameter in the message to
the appropriate values relative to the new position and/or size of its owner, whose new position and
size is specified in a SWP structure provided as the second parameter in the message.

15-6 PM Programming Reference

\
)

In this way the frame control can determine the state changes to be made to all the windows in its
owner hierarchy, in accordance with the values specified in the SWP structure referenced by the
pswp parameter. The rules for changing the state of these owned windows are:

SWP_SIZE and SWP_MOVE
The owned window is moved relative to the top left corner of its owner.

SWP_SHOW
The visibility state of an owned window is changed to agree with that of their owner.

SWP _MINIMIZE
An owned window is made invisible when the owner is minimized.

SWP _MAXIMIZE and SWP _RESTORE
An owned window that was previously made invisible when the owner was minimized is made
visible.

The frame window coordinates the repositioning of the frame window and all its owned windows, by
using the WinSaveWindowPos function to associate those windows whose states are to change with
the identifier of the frame window repositioning process, that is the hsvwphsvwp parameter.
Eventually, the state changes to be made to the owned windows are contained in the array of SWP
structures identified by the aswpaswp parameter.

If the frame window is subclassed, this message must then be passed to the superclass window
procedure for processing. The superclass window procedure is the window procedure of the window
before it was subclassed. This message is passed along the chain of window procedures and is
eventually processed by the system frame window procedure.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_BUTTON1DBLCLK (in Frame Controls)
For the cause of this message, see "WM_BUTTON1DBLCLK" on page 12-10.

Parameters
For a description of the parameters, see "WM_BUTTON1DBLCLK" on page 12-10.

Default Processing
If the frame is minimized, the frame control window procedure causes the frame window to return to
its previous state. Otherwise, the message is handled like a WM_BUTTON1 DOWN message.

WM_BUTTON2DBLCLK (in Frame Controls)
For the cause of this message, see "WM_BUTTON2DBLCLK" on page 12-11.

Parameters
For a description of the parameters, see "WM_BUTTON2DBLCLK" on page 12-11.

Default Processing
The frame control window procedure processes this message identically to WM_BUTTON1 DBLCLK
(in Frame Controls).

Chapter 15. Frame Control Window Processing 15-7

WM_BUTTON1DOWN (in Frame Controls)
For the cause of this message, see "WM_BUTTON1DOWN" on page 12-13.

Parameters
For a description of the parameters, see "WM_BUTTON1DOWN" on page 12-13.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer button information.

Default Processing
The frame control window procedure responds to this message by issuing the WinSetActiveWindow
function and sets fresult to TRUE. If this is over a part of the window that does not have a frame
control, it issues a WinSetActiveWindow function. If the click is over the size border, this window
begins tracking by sending a WM_ TRACKFRAME message to itself. If the click is not over the size
border, this message is passed on.

WM_BUTTON2DOWN (in Frame Controls)
For the cause of this message, see "WM_BUTTON2DOWN" on page 12-15.

Parameters
For a description of the parameters, see "WM_BUTTON2DOWN" on page 12-15.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer button information.

Default Processing
The frame control window procedure processes this message identically to "WM_BUTTON1 DOWN (in
Frame Controls)."

WM_BUTTON1UP (in Frame Controls)
For the cause of this message, see "WM_BUTTON1UP" on page 12-19.

Parameters
For a description of the parameters, see "WM_BUTTON1UP" on page 12-19.

Remarks
This message is posted to the application queue associated with the window that is to receive the
pointer button information.

Default Processing
The frame control window procedure responds to this message by issuing the WinSetActiveWindow
function and sets fresult to TRUE. If the window is not minimized, this message is not processed. If
the frame is minimized, this message causes the system menu to pop up.

15-8 PM Programming Reference

WM_BUTTON2UP (in Frame Controls)
For the cause of this message, see "WM_BUTTON2UP" on page 12-20.

Parameters
For a description of the parameters, see "WM_BUTTON2UP" on page 12-20.

Remarks
This message is posted to the application queue associated with the window that is to receive the

pointer button information.

Default Processing
The frame control window procedure processes this message identically to "WM_BUTTON1 UP (in
Frame Controls)" on page 15-8.

WM_CALCFRAMERECT (in Frame Controls)
For the cause of this message, see "WM_CALCFRAMERECT" on page 12-22.

Parameters
For a description of the parameters, see "WM_CALCFRAMERECT" on page 12-22.

Remarks
Frame control calculates the appropriate rectangle, taking into account byte alignment, or nonbyte
alignment if FCF _NOBYTEALIGN is specified.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

WM_CHAR (in Frame Controls)
This message is sent by controls to their owner window if they do not process the key stroke

themselves. It is the most common means by which the input focus is switched around the various
controls in a dialog box.

Parameters
For a description of the parameters, see "WM_CHAR" on page 12-24.

Default Processing
The frame control window procedure responds to this message as follows:

• If the message contains a valid VK_ value, that value is processed before any valid character in
the message.

• If the character matches a mnemonic in the text of a button or static control child window, the
focus is set to that window.

• If the character is Tab or Backtab, the focus is set to the next or previous tabstop window.

• If the character is Up or Left Arrow, the focus is set to the previous item in the group.

• If the character is Down or Right Arrow, the focus is set to the next item in the group.

• If the Enter key is pressed, a WM_ COMMAND message is posted to itself, containing the identity

of the button with the focus, or, if none, the identity of the default pushbutton.

• If the Escape key is pressed, a WM_ COMMAND message is posted to itself with the command
value DID_CANCEL.

Chapter 15. Frame Control Window Processing 15-9

WM_CLOSE (in Frame Controls)
For the cause of this message, see "WM_ CLOSE" on page 12-26.

Parameters
For a description of the parameters, see "WM_ CLOSE" on page 12-26.

Remarks
Frame control sends this message to the client window (FID_CLIENT) if it exists, otherwise it calls the
WinDefWindowProc function.

Default Processing
The default window procedure posts a WM_ QUIT message to the appropriate queue and sets flreply
to 0.

WM COMMAND
For the cause of this message, see "WM_COMMAND" on page 12-27.

Parameters
For a description of the parameters, see "WM_COMMAND" on page 12-27.

Default Processing
The Frame Control window procedure responds to this message by sending it the client window if it
exists, otherwise the message is thrown away.

WM_DRAWITEM (in Frame Controls)
For the cause of this message, see "WM_DRAWITEM" on page 12-31.

Parameters
For a description of the parameters, see "WM_DRAWITEM" on page 12-31.

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the identity is
FID_MENU, the message is passed to the window with identity FID_CLIENT.

Default Processing
The default window procedure takes no action on this message, other than to set f/rep/y to 0.

WM ERASEBACKGROUND
This message causes a client window to be filled with the background, should this be appropriate.

Parameters
param1

hpshpsFrame (HPS)
Presentation-space handle for the frame window.

param2

pprcPalnt (PRECTL)
Rectangle structure of rectangle to be painted.

This points to a RECTL structure.

15-10 PM Programming Reference

Returns
reply

fresult (BOOL)
Processed indicator:

TRUE If a FID_CLIENT window exists, the area of the frame covered by the FID_CLIENT
window is erased in the system-window background color.

If no FID_CLIENT window exists, the entire frame window is erased in the
system-window background color.

FALSE The client window did process the message.

Remarks
The frame window procedure processes this message in the following manner:

1. The frame window sends this message to the client in response to the frame WM_PAINT
message, with the presentation-space handle of the frame window (obtained from
WinBeginPaint).

2. If the client window returns TRUE, the frame window procedure erases the rectangle of the
frame window covered by the client window, by filling it with the system color SCLR_WINDOW.

3. If the client window returns FALSE, no action is taken. This is the default behavior, as
WinDefWindowProc returns FALSE if passed this message.

4. Also, the client window can use the presentation-space handle passed in this message to
selectively erase parts of the screen. If the client window processes the message in thi.s way,
FALSE should be returned to avoid the erasure being done automatically by the frame window
procedure.

It should be noted again that the presentation space is not a client window presentation space; it
is a presentation space for the frame window returned by WinBeginPaint, that is, a cached
presentation space in frame (not client) window coordinates, clipped to the area of the frame that
needs to be updated (possibly including areas outside the client window).

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM FLASHWINDOW
An application has issued a WinFlashWindow function.

Parameters
param1

usFlash (USHORT)
Flash indicator:

TRUE Start the window border flashing
FALSE Stop the window border flashing.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Chapter 15. Frame Control Window Processing 15-11

Default Processing
The frame control window procedure responds to this message from an application by starting or
stopping the flashing of the window border, and by setting fresult as appropriate.

WM_FOCUSCHANGE (in Frame Controls)
For the cause of this message, see "WM_FOCUSCHANGE" on page 12-34.

Parameters
For a description of the parameters, see "WM_FOCUSCHANGE" on page 12-34.

Remarks
The frame control responds to this message by sending the other messages depending on the value
of the fsFocusChange parameter. These messages, if sent, are sent in the following order:

1. WM_SETFOCUS to the window losing the focus.
2. WM_SETSELECTION to the windows losing their selection.
3. WM_ACTIVATE to the windows being deactivated.
4. WM_ACTIVATE to the windows being activated.
5. WM_SETSELECTION to the windows being selected.
6. WM_SETFOCUS to the window receiving the focus.

Default Processing
The default window procedure sends this message to either the owner, if one exists, or to the parent
of the window, if it is not the desktop window, otherwise it sets f/Rep/y to 0.

WM_FORMATFRAME (in Frame Controls)
For the cause of this message, see "WM_FORMATFRAME" on page 12-35.

Parameters
For a description of the parameters, see "WM_FORMATFRAME" on page 12-35.

Remarks
Applications that subclass frame controls may find that the frame is already subclassed; the number
of frame controls is variable.

The WM_FORMATFRAME and WM_QUERYFRAMECTLCOUNT messages must always be subclassed
by calling the previous window procedure and modifying its result.

Default Processing
The SWP structure for the FID_CLIENT frame control, if present, is the last element of the pswp
parameter, unless additional frame controls are added by subclassing; the SWP structures for these
follow that for FID_CLIENT if present. The frame control window procedure first sends the message
to the FID_CLIENT window. If FID_CLIENT returns ccount to indicate that the message has been
processed, no additional processing is performed.

If not processed by the client, the frame control window procedure calculates the size and position of
all the standard frame controls.

15-12 PM Programming Reference

WM_INITMENU (in Frame Controls)
For the cause of this message, see "WM_INITMENU" on page 12-39.

Parameters
For a description of the parameters, see "WM_INITMENU" on page 12-39.

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the identity is
FID_MENU, the message is passed to the window with identity FID_CLIENT. If the identity is
FID_SYSMENU the system menu state is initialized according to the current state of the window.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_MEASUREITEM (in Frame Controls)
For the cause of this message, see "WM_MEASUREITEM" on page 12-41.

Parameters
For a description of the parameters, see "WM_MEASUREITEM" on page 12-41.

Remarks
The identity of the top-level action bar menu that generated this message is found. If the identity is
FID_MENU, the message is passed to the window with identity FID_CLIENT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sHeight to the default value of 0.

WM_MENUSELECT (in Frame Controls)
For the cause of this message, see "WM_MENUSELECT (in Frame Controls)."

Parameters
For a description of the parameters, see "WM_MENUSELECT (in Frame Controls)."

Remarks
The identity of the top-level action-bar menu that generated this message is found. If the identity is
FID_MENU, the message is passed to the window with identity FID_CLIENT.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to TRUE.

Chapter 15. Frame Control Window Processing 15-13

WM_NEXTMENU (in Frame Controls)
For the cause of this message, see "WM_NEXTMENU" on page 12-44.

Parameters
For a description of the parameters, see "WM_NEXTMENU" on page 12-44.

Remarks
The frame control window procedure processes the message by returning the handle of the system
menu window if hwndMenu is the handle of the main action bar window, o.r by returning the handle of
the main action bar window if hwndMenu is the handle of the system menu window.

Default· Processing
The default window procedure takes no action on this message, other than to set hwndNewMenu to
NULLHANDLE.

WM OWNERPOSCHANGE
This message is sent by a frame window processing the WM_ADJUSTFRAMEPOS message.

Paramete·rs
param1

ppswp (PSWP)

param2

Owned window state.

This points to a SWP structure.

The receiver of this message is expected to alter this SWP parameter to the appropriate
values relative to the new position and/or size of its owner, whose new position and size is
specified in a SWP structure in the ppswpO.wner parameter.

ppswpOwner (PSWP)
Owner window state.

This points to a SWP structure.

This represents the new position and size of1he owner window.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure takes no action on this message,·other than to set flreply to 0.

15-14 PM Programming Reference

/

WM_PAINT (in Frame Controls)
For the cause of this message, see "WM_PAINT" on page 12-47.

Parameters
For a description of the parameters, see "WM_PAINT" on page 12-47.

Default Processing
The frame is redrawn as governed by the FCF _BORDER or FCF _DLGBORDER style. A
WM_ERASEBACKGROUND message is sent to FID_CLIENT window, and if it returns FALSE, then the
FID_CLIENT window is erased to the system-provided window background color and sets flreply to O.

WM_ QUERYBORDERSIZE
This message is sent to the frame window to determine the width and height of the border of the
window.

Parameters
param1

pSize (PWPOINT)
Width and height of size border control.

This points to a WPOINT structure, that is used to hold the width in the x parameter and the
height in they parameter.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The frame window responds to this message by returning the width and height of its border in the
pSize parameter, as follows:

• SV_CX/CYSIZEBORDER if FCF_SIZEBORDER is specified

• SV _CX/CYDLGFRAME if FCF _DLGBORDER is specified

• SV_CX/CYBORDER if FS_BORDER is specified.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fresult to the default value of FALSE.

Chapter 15. Frame Control Window Processing 15-15

WM_QUERYCONVERTPOS (in Frame Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The frame control window procedure returns QCP _NOCONVERT.,

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_ QUERYFOCUSCHAIN
This message is used to request the handle of a window in the focus chain.

Parameters
param1

fsCmd (USHORT)
Command to be performed.

param2

This field contains a flag to indicate what action is to be performed:

QFC_NEXTINCHAIN

QFC_ACTIVE

QFC_FRAME

Return the next window in the focus chain.

The hwndParent parameter is not used.
Return the handle of the frame window that would be activated or
deactivated, if this window gains or loses the focus.

The window handle returned is a child of the window specified by
the hwndParent parameter.
Return the handle of the first frame window associated with this
window.

The hwndParent parameter is not used.
QFC_SELECTACTIVE Return the handle of the window from the group of owned windows

to which this window belongs which either currently has the focus
or, if no window has the focus, previously had the focus.

QFC_PARTOFCHAIN

Return NULL, if no window in the owner group has had the focus.

The hwndParent parameter is not used.
Return TRUE if the handle of the window identified by the
hwndParent parameter is in the focus chain, otherwise return
FALSE.

Because this message is passed along the focus chain, this is
equivalent to returning TRUE, if the handle of the window receiving
this message is hwndParent or to returning FALSE, if it is not.

hwndParent (HWND)
Parent window.

15-16 PM Programming Reference

\
/

Returns
Reply

hwndResult (HWND)
Handle of the window requested.

0 No window handle exists for this case of the fsCmd parameter

This value is also to be interpreted as FALSE for the case when the fsCmd is set to

QFC_PARTOFCHAIN.
Other Handle of the window requested.

This value is also to be interpreted as TRUE for the cases when the fsCmd is set to

QFC _PARTOFCHAIN.

Remarks
The frame control window procedure responds to this message by returning the appropriate window

handle, as described under the fsCmd field.

Default Processing
The default window procedure takes the same action as the frame control window procedure.

WM_ QUERYFRAMECTLCOUNT
This message is sent to the frame window in response to the receipt of a WM_SIZE or a

WM_UPDATEFRAME (in Frame Controls) message.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sControlCount (SHORT)
Count of frame controls.

Remarks
By sending this message to itself, any procedures that subclass the frame window become aware

that the number of frame controls is being calculated and include any special frame controls of the

subclass in the count.

This count is used to allocate the appropriate number of SWP structures that are passed in the

WM_FORMATFRAME (in Frame Controls) message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it, other than to set sContro/Count to the default value of 0 which is equivalent to 0.

Chapter 15. Frame Control Window Processing 15-17

WM_ QUERYFRAMEINFO
This message enables an application to query information aboutframe windows.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

flflags (ULONG)
Frame information flags.

One or more of the following are returned:

Remarks

Fl_ FRAME
Fl_ OWNERHIDE
Fl_NOMOVEWITHOWNER
Fl_ ACTIVATEOK

Identifies a frame window.
The frame window is hidden when its owner is hidden.
The frame window does not move with its owner.
The frame window may be activated. This means, for example,
that the frame window is not disabled.

This message can be used to query whether or not a particular window is a frame window.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_QUERYICON
This message is sent to a frame window to query its associated icon.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, O.

Returns
reply

hptrlcon (HPO/NTER)
Handle to the icon.

Default Processing
The icon for the frame is returned.

15-18 PM Programming Reference

WM_QUERYWINDOWPARAMS (in Frame Controls)
This message occurs when an application queries the frame control window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Default Processing
The frame control window procedure queries the appropriate window parameters in accordance with

pwndparams and sets fresult to TRUE if the operation is successful, otherwise to FALSE.

The window text of a frame control is obtained by sending this message to its FID_TITLEBAR.

WM SETBORDERSIZE
This message is sent to the frame window to change the width and height of the border.

Parameters
param1

uscx (USHORT)
Width of border.

param2

uscy (USHORT)
Height of border.

Returns
reply

fresult (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The frame control sets the width and height to uscx and uscy respectively.

Default Processing
The default window procedure takes no action on this message, other than to set fresultto FALSE.

Chapter 15. Frame Control Window Processing 15-19

WM SETICON
This message is sent to a frame window to set its associated icon.

Parameters
param1

hptrlcon (HPOINTER)
New icon handle.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
_reply

fresult (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Default Processing
The icon for the frame is set.

WM_SETWINDOWPARAMS (in Frame Controls)
This message occurs when an application sets or changes the frame control window parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Default Processing
The frame control window procedure sets the appropriate window parameters in accordance with
pwndparams and sets fresult to TRUE if the operation is successful, otherwise to FALSE.

The window text of a frame control is set by sending this message to its FID_TITLEBAR.

WM_SIZE (in Frame Controls)
For the cause of this message, see "WM_SIZE" on page 12-61.

Parameters
For a description of the parameters, see "WM_SIZE" on page 12-61.

Default Processing
The frame control window procedure responds to this message by sending a WM_FORMATFRAME
(in Frame Controls) message to itself and by setting flreply to 0.

15-20 PM Programming Reference

)
WM SYSCOMMAND

This message occurs when a control window has a significant event to notify to its owner, or when a
key stroke has been translated by an accelerator table into a WM_SYSCOMMAND.

Parameters
param1

uscmd (USHORT)
Command value.

param2

The frame control takes the action described on these uscmd values:

SC_SIZE

SC_MOVE

SC_MINIMIZE

SC_MAXIMIZE

SC_RESTORE

SC_NEXT
SC_APPMENU

SC_SYSMENU

SC_CLOSE

SC_NEXTFRAME

SC_NEXTWINDOW
SC_ TASKMANAGER
SC_HELPEXTENDED

SC_HELPKEYS

SC_HELPINDEX

SC_HIDE

Sends a WM_TRACKFRAME (in Frame Controls) to the frame
window.
Sends a WM_TRACKFRAME (in Frame Controls) to the frame
window.
If a control with the identifier FID_MINMAX is present, minimizes the
frame window, or restores it to a remembered size and position.
If a control with the identifier FID_MINMAX is present, maximizes
the frame window, or restores it to a remembered size and position.

When a window is moved or sized in the normal way at least one
border should remain on the screen. When a window is maximized
and the maximum size is as large as the screen, all borders should
be positioned just outside the screen.
If a control with the identifier FID_MINMAX is present, restores a
maximized frame window to its previous size and position.
Cycles the active window status to the next main window.
Sends a MM_STARTMENUMODE message to the control with the
identifier FID_MENU.
Sends a MM_STARTMENUMODE message to the control with the
identifier FID_SYSMENU.
If Close is not enabled in the system menu, this message is ignored.
Otherwise the frame posts a WM_CLOSE message to the client if it
exists or to itself, if not.
The next frame window that is a child of the desktop window is
activated.
The next window with the same owner window is activated.
The Task List is activated.
The frame manager sends HM_EXT _HELP to the associated Help
Manager Object Window. If there is no such associated window, the
original message is sent to the client.
The frame manager sends HM_KEYS_HELP to the associated Help
Manager Object Window. If there is no such associated window, the
original message is sent to the client.
The frame manager sends HM_HELP _INDEX to the associated Help
Manager Object Window. If there is no such associated window, the
original message is sent to the client.
Sets the visibility state of the frame window to off causing it to
appear hidden or invisible.

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a pushbutton control. uscmd is the window
identifier of the pushbutton.

CMDSRC_MENU Posted by a menu control. uscmd is the identifier of the menu
item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC_OTHER Other source. uscmd gives further control-specific information
defined for each control type.

Chapter 15. Frame Control Window Processing 15-21

fpolnter (BOOL)
Pointing-device indicator:

Returns

TRUE
FALSE

ulreply (ULONG)
Reserved.

The message is posted as a result of a pointing-device operation.
The message is posted as a result of a keyboard operation.

0 Reserved value, 0.

Remarks
This message is posted to the window procedure of the owner of the frame control. ulreply is set to
0.

Default Processing
The default window procedure takes no action on this message, other than to set ulrep/y to 0.

WM_TRACKFRAME (in Frame Controls)
This message is sent to a frame window whenever it is to be moved or sized.

Parameters
param1

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF _ * flags; for details, see the TRACKINFO data
structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred, or the operation is terminated.

The frame control window procedure responds to this message by causing a tracking rectangle to be
drawn to move or size the window. For information, see the WinTrackRect function.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to TRUE.

15-22 PM Programming Reference

WM_TRANSLATEACCEL (in Frame Controls)
For the cause of this message, see "WM_TRANSLATEACCEL" on page 12-67.

Parameters
For a description of the parameters, see "WM_TRANSLATEACCEL" on page 12-67.

Remarks
The frame control window procedure processes the message by checking whether the character is in
the accelerator table, by using the WinTranslateAccel function.

Default Processing
The default window procedure takes no action on this message, other than to set fTranslated to
FALSE.

WM_TRANSLATEMNEMONIC (in Frame Controls)
For the cause of this message, see "WM_TRANSLATEMNEMONIC" on page 12-67.

Parameters
For a description of the parameters, see "WM_TRANSLATEMNEMONIC" on page 12-67.

Remarks
The frame control window procedure processes the message by sending it to the application menu
window, that is, the window with the identity FID_MENU.

Default Processing
For the default window procedure processing of this message, see "WM_TRANSLATEMNEMONIC"
on page 12-67.

WM_UPDATEFRAME (in Frame Controls)
For the cause of this message, see "WM_UPDATEFRAME" on page 12-68.

Parameters
For a description of the parameters, see "WM_UPDATEFRAME" on page 12-68.

Remarks
This message must be sent to the frame window whenever an application adds or removes one of
the frame controls identified by the FCF _ * flags. It must also be sent if the application adds or
removes a submenu of the menu bar of the frame window.

The frame control window procedure first sends the message on to the FID_CLIENT window. The
FID_CLIENT window might either reformat the frame window and set fresult to TRUE, in which case
the frame control window procedure takes no further action, or it might set fresult to FALSE, in which
case the frame control window procedure performs the reformatting.

If f/CreateFlags contains FCF _SIZEBORDER, reformatting the frame window includes invalidating the
area occupied by the size border.

The frame control window procedure sets fresult to TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to TRUE.

Chapter 15. Frame Control Window Processing 15-23

15-24 PM Programming Reference

'
I

)

Chapter 16. List Box Control Window Processing

This system-provided window procedure processes the actions on a list box control (WC_LISTBOX).

Purpose
A list box control is a window containing a list of items. Each item in a list box contains a text string
(0 or more characters) and a handle. The text string is displayed in the list box window. The handle

can be used by the application to refer to other data associated with each item.

List Box Control Styles
These list box control styles are available:

LS_HORZSCROLL

LS_MULTIPLESEL

The list box control enables the operator to scroll the list box ho,rizontally.

The list box control enables the operator to select more than one item at any
one time. Lists that do not have this style allow only a single selection at any
one time. If this style is specified, LS_EXTENDEDSEL should also be
specified.

LS_EXTENDEDSEL

LS_OWNERDRAW

If this style is specified, the extended selection user interface is enabled.

The list box control has one or more items that can be drawn by the owner.
Typically, these items are represented by bit maps rather than by text strings.

LS_NOADJUSTPOS If this style is included, the list box control is drawn at the size specified.
This can cause parts of an item to be shown.

List Box Control Data
None.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_FIELDBACKRGOUND
SYSCLR_BUTTONDARK
SYSCLR_WINDOW
SYSCLR_WINDOWTEXT
SYSCLR_ENTRYFIELD
SYSCLR_HILITEFOREGROUND
SYSCLR_HILITEBACKGROUND
SYSCLR_WINDOWFRAME

Some of these defaults can be replaced by using the following presentation parameters in the

application resource script file or source code:

PP _DISABLEDFOREGROUNDCOLOR
PP _FOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR
PP _BORDERCOLOR

Chapter 16. List Box Control Window Processing 16-1

List Box Control Notification Messages
These messages are initiated by the list box control window to notify its owner of significant events.

WM_CONTROL (in List Boxes)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

ldld (USHORT)
Control-window identity.

usnotlfycode (USHORT)
Notify code.

The list box control window procedure uses these notification codes:

param2

LN_ENTER

LN_KILLFOCUS
LN_SCROLL

LN_SETFOCUS
LN_SELECT

Either the Enter or Return key has been pressed while the list box
control has the focus, or the list box control has been double-clicked.
The I ist box control loses the focus.
The list box control is about to scroll horizontally. This can happen when
the application has issued a WinScrollWindow function.
The I ist box control receives the focus.
An item is being selected (or deselected).

Note: To discover the index of the selected item, the application must
use the LM_QUERYSELECTION message.

hwndcontrolspec (HWND)
List box control window handle.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The list box control window procedure generates this message and sends it to its owner, informing
the owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set f/reply to 0.

16-2 PM Programming Reference

)

WM_DRAWITEM (in List Boxes)
This notification is sent to the owner of a list box control each time an item is to be drawn.

Parameters
param1

ldLlslBox (USHORT)
Window identifier.

The window identity of the list box control sending this notification message.

param2

pOwnerllem (POWNERITEM)
Owner-item structure.

This points to an owner-item structure; see OWNERITEM on page A-76.

Returns
reply

fDrawn (BOOL)
Item-drawn indicator:

Remarks

TRUE
FALSE

The owner draws the item, so the list box control does not draw it.
If the item contains text and the owner does not draw the item, the owner returns
this value, and the list box control draws the item.

The list box control window procedure only draws items that are represented by text strings and
emphasizes selected items by inverting them.

If an application uses list box controls containing items that are not represented by text strings, or
requires that the emphasized state of an item is to be drawn in a special manner, the list box control
must specify the style LS_OWNERDRAW and those items must be drawn by the owner.

The list box control window procedure generates this message and sends it to the owner of the list
box control, informing the owner that an item is to be drawn, offering the owner the opportunity to
draw that item, and indicating that either the item has been drawn, or that the list box control is to
draw it.

The item text must not be changed during the processing of this message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fDrawn to the default value of FALSE.

Chapter 16. list Box Control Window Processing 16-3

WM_MEASUREITEM (in List Boxes)
This notification is sent to the owner of a list box control to establish the height and width for an item
in that control.

Parameters
param1

sLlstBox (SHORT)
List-box identifier.

param2

sltemlndex (SHORT)
Item index.

Returns
reply

The zero-based index of the item which has changed.

sHelght (SHORT)
Height of item.

sWidth (SHORT)
Width of item.

Remarks

This value is required only if the list box control is scrollable horizontally, that is, it has a
style of LS_HORZSCROLL.

This message is sent to the owner of a list box that has a style of LS_OWNERDRAW, to offer the
owner an opportunity to establish the height and width (for a horizontally scrollable list box control)
of an item that accommodates any special requirements for the drawing of items in that list box. It is
sent when items in the list box are inserted or deleted, and also when presentation parameters for
the list box change.

All items in a list box must have the same height, which must be greater than or equal to the height
of the current font.

In particular, this notification is sent to the owner of a list box that has a style of LS_OWNERDRAW, to
offer the owner an opportunity to establish the height and width (for a horizontally scrollable list box
control) of an item that accommodates any special requirements for the drawing of items in that list
box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sHeight to the default value of 0.

16-4 PM Programming Reference

~
)

)

List Box Control Window Messages
This section describes the list box control window procedure actions on receiving the following
messages.

LM DELETEALL
This message is sent to a list box control to delete all the items in the list box.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The list box control window procedure responds to this message by deleting all the items in the list
box and by setting fSuccess to TRUE.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes no
action on it, other than to set fSuccess to the default value of FALSE.

LM DELETEITEM
This message deletes an item from the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

The zero-based index of the item to be deleted.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sltemsleft (SHORT)
Number remaining.

The number of items in the list after the item is deleted.

Chapter 16. List Box Control Window Processing 16-5

Remarks
The list box control window procedure responds to this message by deleting the indexed item of the
list box and by setting sltemsLeftto the co.unt of the items in the list after the item is deleted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemsLeft to the default value of 0.

LM INSERTITEM
This message inserts an item into a list box control.

Parameters
param1

sllemlndex (SHORT)
Item index:

param2

LIT...:END
LIT_ SORT ASCENDING
LIT _SORTDESCENDING
Other

pltemText (PSTRL)
Item text.

Returns
reply

This points to the item text.

slndexlnserted (SHORT)
Index of inserted item:

Add the item to the end of the I ist.
Insert the item into the list sorted in ascending order.
Insert the item into the list sorted in descending order.
Insert the item into the list at the offset specified by this
zero-based index.

LIT_MEMERROR The list box control cannot allocate space to insert the list item in the
list.

LIT_ERROR An error, other than LIT_MEMERROR, occurred.
Other The zero•based index of the offset of the item within the list.

Remarks
The list box control window procedure responds to this message by inserting the item text identified
by the pltemText parameter into the position in the list specified by the sltemlndex parameter.

The sorting sequence used is that defined by the WinCompareStrings function.

The list box control sets slndexlnserted to the zero-based index of the offset of the item within the
list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set slndexlnserted to the .default value -0f 0.

16-6 PM Programming Reference

\~

)

\
)

~
J

LM_ QUERYITEMCOUNT
This message returns a count of the number of items in the list box control.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sltemCount (SHORT)
Item count.

Remarks
The list box control window procedure responds to this message by setting sltemCount to the
number of items in the list.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemCount to the default value of 0.

LM_ QUERYITEMHANDLE
This message returns the handle of the indexed item of the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulresult (ULONG)
Item handle.

Remarks
The meaning of the item handle is defined by the application. It may, for example, be a pointer to an
application defined data structure.

Item handles are initialized to NULLHANDLE when an item is created. The list box control window
procedure responds to this message by setting u/result to the handle of the item whose index is
specified by sltemlndex.

Chapter 16. List Box Control Window Processing 16-7

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set ulresult to the default value of NULLHANDLE.

The item handle is initialized to NULLHANDLE.

LM_ QUERYITEMTEXT
This message returns the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

smaxcount (SHORT)
Maximum count:

param2

0 No text is copied.
Other Copy the item text as a null-terminated string, but limit the number of characters

copied, including the null termination character, to this value.

pltemText (PSTRL)

Returns
reply

Buffer into which the item text is to be copied.

This points to a PSZ.

sTextLenglh (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

Remarks
The list box control window procedure responds to this message by copying up to smaxcount
characters, as a null-terminated string, from the text of the item specified by s/temlndex into the
buffer identified by pltemText.

The length of the item text can be determined by using the LM_QUERYITEMTEXTLENGTH message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set reply to the default value of 0.

16-8 PM Programming Reference

''1
)

./

LM_ QUERYITEMTEXTLENGTH
This message returns the length of the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sTextlength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

LIT_ERROR Error occurred. For example, the item specified by its index does not exist.
Other Length of item text.

Remarks
The list box control window procedure responds to this message by setting sTextLength to the length
in characters of the text of the item specified by sltemlndex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than set sTextLength to the default value of 0.

LM_ QUERYSELECTION
This message is used to enumerate the selected item, or items, in a list box.

Parameters
param1

sltemStart (SHORT)
Index of the start item.

If the list box allows multiple selected items, that is, it has a style of LS_MUL TIPLESEL, then
this parameter indicates the index of the item from which the search for the next selected
item is to begin. Therefore, to get all the selected items of the list, this message is sent
repeatedly, each time setting this parameter to the index of the item returned by the
previous usage of this message.

If the list box only allows a single selection, this parameter is ignored.

LIT_FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 16. List Box Control Window Processing 16-9

Returns
reply

sltemSelected (SHORT)

Remarks

Index of the selected item:

LIT_NONE No selected item.

For a single selection list box, this implies that there is no selected item in the
list box. For a multiple selection list box, this implies that there is no selected
item in the list box whose index is higher than the index specified by the
sltemStart parameter.

Other Index of selected item. For a single selection list box, this is the index of the
only selected item in the list box. For a multiple selection list box, this is the
index of the next selected item in the list box whose index is higher than the
index specified by the sltemStart parameter.

The list box control window procedure responds to this message by returning in sltemSelected the
zero-based index of the selected item or next selected item after sltemStart, if any.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than set sltemSelected to the default value of 0.

LM_ QUERYTOPINDEX
This message obtains the index of the item currently at the top of the list box.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sltemTop (SHORT)
Index of the item currently at the top of the list box:

LIT_NONE No items in the list box
Other Index of the item currently at the top of the list box.

Remarks
The list box control window procedure responds to this message by returning in sltemTop the
zero-based index of the item currently at the top of the list box.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemTop to the default value of 0.

16-10 PM Programming Reference

\
)

)

LM SEARCHSTRING
This message returns the index of the list box item whose text matches the string.

Parameters
param1

uscmd (USHORT)
Command.

Defines the criteria by which the string specified by the pSearchString parameter is to be
compared with the text of the items, to determine the index of the first matching item.

These values can be combined using the logical-OR operator:

LSS_CASESENSITIVE Matching occurs if the item contains the characters specified by
the pSearchString parameter exactly.

This value is mandatory.
LSS_PREFIX Matching occurs if the leading characters of the item contain the

characters specified by the pSearchString parameter.

If this value is specified, LSS_SUBSTRING must not be specified.
LSS_SUBSTRING Matching occurs if the item contains a substring of the characters

specified by the pSearchString parameter.

If this value is specified, LSS_PREFIX must not be specified.

sltemStart (SHORT)
Index of the start item:

LIT_FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2

pSearchString (PSTRL)
Search string.

Returns
reply

This points to a PSZ.

sltemMatched (SHORT)
Index item whose text matches the string:

Remarks

LIT_ERROR
LIT_NONE
Other

Error occurred
No item found
Index item whose text matches the string.

The list box control window procedure responds to this message by setting sltemMatched to the
index of the next item whose text matches the string specified by pSearchString.

All the items of the list are searched until a match is found, that is, the search wraps from the end to
the start of the I ist.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemMatched to the default value of 0.

Chapter 16. List Box Control Window Processing 16-11

LM SELECTITEM
This message is used to set the selection state of an item in a list box.

Parameters
param1

sllemlndex (SHORT)
Index of the item to be selected or deselected:

LIT_NONE All items are to be deselected
Other Index of the item to be selected or deselected.

param2

usselect (USHORT)
Select flag:

Returns
reply

(Ignored if sltemlndex is set to LIT _NONE).

TRUE The item is selected. If the control is a single selection list box (that is, it does not
have the style of LS_MUL TIPLESEL), any previously selected item is deselected.

FALSE The item is deselected.

fsuccess (BOOL)
Success indicator:

Remarks

TRUE Successful completion
FALSE Error occurred. For example, when the item does not exist in the list box, or

when an item that is not selected is deselected.

The list box control window procedure responds to this message by setting the selection state, as
indicated by usselect, of the item whose index is specified in sltemlndex.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fsuccess to the default value of FALSE.

LM SETITEMHANDLE
This message sets the handle of the specified list box item.

Parameters
param1

sllemlndex (SHORT)
Item index.

param2

ulllemHandle (ULONG)
Item handle.

Returns
reply

fsuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

16-12 PM Programming Reference

\
)

Remarks
The meaning of the item handle is defined by the application. It may, for example, be a pointer to an
application defined data structure.

Item handles are initialized to NULLHANDLE when an item is created.

The list box control window procedure responds to this message by setting the handle of the item
whose index is specified by sltemlndex to the value specified by ulltemHandle.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fsuccess to the default value of FALSE.

LM SETITEMHEIGHT
This message sets the height of the items in a list box.

Parameters
param1

flNewHelght (ULONG)
Height of items in list box.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fsuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful operation
Error occurred.

The list box control window procedure responds to this message by setting the height of the items in
a list box to that specified by f/NewHeight.

This message does not send a WM_MEASUREITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fsuccess to the default value of FALSE.

Chapter 16. List Box Control Window Processing 16-13

LM SETITEMTEXT
This message sets the text into the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

pltemText (PSTRL)
Item text.

Returns
reply

This points to a PSZ.

fsucces& (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The list box control window procedure responds to this message by copying the text identified by the
pltemText parameter into the item in the list specified by the sltemlndex parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fsuccess to the default value of FALSE.

LM SETTOPINDEX
This message is used to scroll a particular item to the top of the list box.

Parameters
param1

sltemlndex (SHORT)
Index of the item to be made top.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fsuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The list box control window procedure responds to this message by scrolling the item whose index is
identified~ by sltemlndex to the top of the list box.

16-14 PM Programming Reference

)

)

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fsuccess to the default value of FALSE.

WM_ CHAR (in List Boxes)
For the cause of this message, see "WM_CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_CHAR" on page 12-24.

Remarks
The list box control window procedure responds to this message by sending it to its owner if it has
not processed the key stroke. This is the most common means by which the input focus is switched
around the various controls in a dialog box.

The key strokes processed by a list box control are:

Down Arrow

Up Arrow

Page Down

Page Up

Moves the selection down one item, scrolling the list box by one item, if necessary,
to make the next item visible. When the selection reaches the bottom, the Down
Arrow has no effect.

Moves the selection up one item, scrolling the list box by one item, if necessary, to
make the previous item visible. When the selection reaches the top, the Up Arrow
has no effect.

Moves the selection down one page, scrolling the list box by the number of items
visible in the list box.

For example, if the list box displays seven items and item 1 is selected and
positioned at the top of the list box, pressing the Page Down key causes item 8 to
be selected and displayed at the top of the list box. Pressing Page Down when the
last item is selected has no effect.

Moves the selection up one page, scrolling the list box by the number of items
visible in the list box.

For example, if the list box displays seven items and item 8 is selected and
positioned at the top of the list box, pressing the Page Up key causes item 1 to be
selected and displayed at the top of the list box. Pressing the Page Up key when
the first item is selected has no effect.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_QUERYCONVERTPOS (in List Boxes)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The list box control window procedure returns QCP _NOCONVERT.

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

Chapter 16. list Box Control Window Processing 16-15

WM_QUERYWINDOWPARAMS (in List Boxes)
Occurs when an application queries the list box control window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The list box control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to O and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in List Boxes)
This message occurs when an application sets or changes the list box control window parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The list box control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure takes no action on this message, other than to set result to FALSE.

16-16 PM Programming Reference

Chapter 17. Menu Control Window Processing

This system-provided window procedure processes the actions on a menu control (WC_MENU).

Purpose
A menu control is a child or pull-down window that contains a list of selection items. These items
can be represented by text strings, separators, bit maps or menu buttons. Menu templates can be
loaded as resources and the menu can be created automatically when the parent window is created.
The application can build the menu dynamically by sending MM_INSERTITEM messages. An
application can change a menu by sending messages to it.

Menus enable the operator to select one of the items in the list, using the pointing device or the
keyboard. When a selection is made, the menu parent is notified by posting a WM_ COMMAND,
WM_SYSCOMMAND, or WM_HELP message and a unique identifier representing the operator's
selection.

Menus automatically resize themselves when items are added and removed. Menus are
automatically destroyed when their owner is destroyed.

Typically, an application has an action bar menu and several submenus. The action bar is normally
visible, and is a child window in the parent window frame. The submenus are normally hidden and
become visible when selections are made on the action bar.

Menu Control Styles
These menu control styles are available:

MS_ACTIONBAR

MS_CONDITIONALCASCADE

MS_ TITLEBUTTON

MS_ VERTICALFLIP

The items in the list are displayed side-by-side. This style is used
to implement a top level menu. Menus that do not have this style
are displayed in one or more columns and are submenus
associated with an action bar.

All menu controls have styles CS_SYNCPAINT and
CS_PARENTCLIP.

This style is used to specify that the items in this list are a
conditional cascade menu. Conditional cascade menus act like
normal cascade menus with the exception that the cascade does
not automatically open when the user selects it. To open the
conditional cascade menu, the mini-pushbutton on the menu item
must be selected. If the menu is selected without opening the
cascade, the default item in the cascade is selected. The default
action on the cascade is identified by a check mark.

Used to identify menus that can be used as buttons in the title bar.
Can only be used with MS_ACTIONBAR.

This style causes the menu to be drawn using the CUA colors
specified for the title bar rather than the action bar.

Normally, pull-down menus (the default, without the
MS_VERTICALFLIP style) are displayed below their associated
action bar item. If there is not room on the screen to display the
entire pull-down in this manner, and if there is room to display
the pull-down above the action bar, it is displayed above the
action bar. Pull-down menus with the MS_VERTICALFLIP style
are flipped vertically. That is, they are displayed above the menu
if possible, otherwise below it. The vertical flip style must be set
explicitly by the application when the window is minimized, and
must be reset when it is restored.

If an application action bar contains this style, the style is applied
to all pull-down menus belonging to the action bar (the style does

Chapter 17. Menu Control Window Processing 17-1

Menu Item Styles

not directly affect the display of the action bar). This provides a
convenient means for the application to flip the appearance of all
pull-down menus.

These menu item styles are available:

MIS_SUBMENU The item is a submenu. When the user selects this type of item, a
submenu is displayed from which the user must make further selection.
Items that are not submenu items are command items.

MIS_SEPARATOR The display object is a horizontal dividing line. This type of item can
only be used in pull-down menus. This type of item cannot be enabled,
checked, disabled, highlighted, or selected by the user. The functional
object is NULL when this style is specified.

MIS_BITMAP The display object is a bit map.

MIS_ TEXT The display object is a text string.

MIS_BUTTONSEPARATOR The item is a menu button. Any menu can have zero, one, or two items
of this type. These are the last items in a menu and are automatically
displayed after a separator bar. The user cannot move the cursor to
these items, but can select them with the pointing device or with the
appropriate key.

MIS_BREAK The item begins a new row or column.

MIS_BREAKSEPARATOR Same as MIS_BREAK, except that it draws a separator between rows or
columns of a pull-down menu. This style can only be used within a
submenu.

MIS_SYSCOMMAND If this item is selected, the menu notifies the owner by posting a
WM_SYSCOMMAND message rather than a WM_COMMAND message.

MIS_OWNERDRAW Items with this style are drawn by the owner. WM_DRAWITEM and
WM_MEASUREITEM notification messages are sent to the owner to
draw the item or determine its size.

MIS_HELP If the item is selected, the menu notifies the owner by posting a
WM_HELP message rather than a WM_ COMMAND message.

MIS_STATIC This type of item exists for information purposes only. It cannot be
selected with the pointing device or keyboard.

Menu Item Attributes
These menu item attributes are available:

Applications can get and set the state of these attributes by sending MM_QUERYITEMATTR and
MM_SETITEMATTR messages.

MIA_HILITED

MIA_CHECKED

MIA_DISABLED

MIA_FRAMED

MIA_NODISMISS

The state of this attribute is TRUE, if and only if, the item is selected.

If this attribute is TRUE a check mark appears next to the item.

This attribute is TRUE if the item is disabled and cannot be selected.
The item is drawn in a disabled state.

If this attribute is TRUE a frame is drawn around the item.

If this item is selected, the pull-down menu containing this item should
not be hidden before notifying the application window of the selection.
A menu with this attribute is not hidden until such time as the
application or user explicitly does so, for example by selecting either
another menu on the action bar or by pressing the escape key.

17-2 PM Programming Reference

)
Default Colors

The following system colors are used when the system draws button controls:

SYSCLR_WINDOWFRAME
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_SHADOW
SYSCLR_ TITLEBOTTOM
SYSCLR:...DIALOGBACKGROUND

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _FOREGROUNDCOLOR
PP _HILITEFOREGROUNDCOLOR
PP _BORDERCOLOR
PP _DISABLEDFOREGROUNDCOLOR

Chapter 17: Menu Control Window Processing 17-3

Menu Control Notification Messages
These messages are initiated by the menu control window procedure to notify its owner of significant
events.

WM_COMMAND (in Menu Controls)
For the cause of this message, see "WM_COMMAND" on page 12-27.

Parameters
For a description of the parameters, see "WM_COMMAND" on page 12-27.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
The menu control window procedure generates this message if the WM_MENUSELECT (in Menu
Controls) message returns a fresult of TRUE. when an item is selected that does not have the style
of MIS_SYSCOMMAND or MIS_HELP. The menu control window procedure posts the message to the
queue of the window owner.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_DRAWITEM (in Menu Controls)
This notification is sent to the owner of a menu control each time an item is to be drawn.

Parameters
param1

ldMenu (USHORT)
Window identifier.

The window identity of the menu control sending this notification message.

param2

pOwnerltem (POWNER/TEM)
Owner-item structure.

Returns
reply

This points to an owner-item structure; see OWNERITEM on page A-76.

fDrawn (BOOL)
Item-drawn indicator:

Remarks

TRUE
FALSE

The owner draws the item, and so the menu control does not draw it.
If the item contains text and the owner does not draw the item, the owner returns
this value and the menu control draws the item.

The menu control window procedure only draws items that are represented by text strings and
emphasizes selected items by inverting them.

If an application uses menu controls containing items that are not represented by text strings, or
requires that the emphasized state of an item is to be drawn in a special manner, then the menu
control must specify the style MIS_OWNERDRAW and those items must be drawn by the owner.

The menu control window procedure generates this message and sends it to its owner, informing the
owner that an item is to be drawn, offering the owner the opportunity to draw that item, and to
indicate that either the item has been drawn, or that the menu control is to draw it.

17-4 PM Programming Reference

\
)

~
;'

i

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fDrawn to the default value of FALSE.

WM_HELP (in Menu Controls)
For the cause of this message, see "WM_HELP" on page 12-36.

Parameters
For a description of the parameters, see "WM_HELP" on page 12-36.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
This message is identical to a WM_COMMAND message, but implies that the application should
respond to this message by displaying help information.

The menu control window procedure generates this message and posts it to the queue of its owner
when an item is selected that has the style of MIS_HELP, but only if WM_MENUSELECT (in Menu
Controls) returns a fresult of TRUE.

Default Processing
The default window procedure sends this message to the parent window, if it exists and is not the
desktop. Otherwise, it sets flrep/y to 0.

WM_INITMENU (in Menu Controls)
For the cause of this message, see "WM_INITMENU" on page 12-39.

Parameters
For a description of the parameters, see "WM_INITMENU" on page 12-39.

Remarks
This message offers the owner the opportunity to perform some initialization on the menu items
before they are presented.

The menu control window procedure generates this message and sends it to its owner, informing the
owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set f/rep/y to 0.

WM_MEASUREITEM (in Menu Controls)
This notification is sent to the owner of a menu control to establish the height for an item in that
control.

Parameters
param1

sMenu (SHORT)
Menu identifier.

param2

pOwnerltem (POWNERITEM)
Owner-item structure.

This points to an OWNERITEM structure.

Chapter 17. Menu Control Window Processing 17-5

Returns
reply

sHelght (SHORT)
Height of item.

Remarks
This message is only sent at the time the menu control is created. When the owner receives this
message, it must calculate and return the height of an item to the control.

All items in a menu must have the same height, and that must be greater than or equal to the height
of the current font.

In particular, this notification is sent to the owner of a menu that has a style of MIS_OWNERDRAW, to
offer the owner an opportunity to establish the height of an item that accommodates any special
requirements for the drawing of items in that menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sHeight to the default value of 0.

WM_MENUEND (in Menu Controls)
For the cause of this message, see "WM_MENUEND" on page 12-41.

Parameters
For a description of the parameters, see "WM_MENUEND" on page 12-41.

Remarks
The menu control window procedure generates this message and sends it to its owner, informing the
owner of this event.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_MENUSELECT (in Menu Controls)
For the cause of this message, see "WM_MENUSELECT" on page 12-42.

Param.eters
For a description of the parameters, see "WM_MENUSELECT" on page 12-42.

Remarks
The menu control window procedure generates this message and sends it to its owner, informing the
owner of this event.

When the message is returned from its owner, menu control acts on fresult as appropriate.

It must not be posted to the menu control.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to TRUE.

17-6 PM Programming Reference

WM_NEXTMENU (in Menu Controls)
For the cause of this message, see "WM_NEXTMENU" on page 12-44.

Parameters
For a description of the parameters, see "WM_NEXTMENU" on page 12-44.

Remarks
The menu control generates this message and sends it to its owner, informing the owner of this
event.

Default Processing
The default window procedure takes no action on this message, other than to set hwndNewMenu to
NULLHANDLE.

WM SYSCOMMAND
For the cause of this message, see "WM_SYSCOMMAND" on page 12-63.

Parameters
For a description of the parameters, see "WM_SYSCOMMAND" on page 12-63.

The menu control window procedure sets uscmd to the menu-item identity.

Remarks
The menu control window procedure generates this message and posts it to the queue of its owner,
when an item is selected that has the style of MIS_SYSCOMMAND, but only if the WM_MENUSELECT
(in Menu Controls) message returns a fresult of TRUE.

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

Chapter 17. Menu Control Window Processing 17-7

Menu Control Window Messages
This section describes the menu control window procedura.actions on receiving the following
messages.

MM DELETEITEM
This message deletes a menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

uslncludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
delete it.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sltemsLeft (SHORT)
Number remaining.

The number of items in the menu after the item is deleted.

Remarks
The menu control window procedure responds to this message by deleting the identified item from
the menu or its submenus.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemsLeft to the default value of 0, which is equivalent to 0.

17-8 PM Programming Reference

)
MM ENDMENUMODE

This message is sent to a menu control to terminate menu selection.

Parameters
param1

usdlsmlss (USHORT)
Dismiss menu indicator:

TRUE Dismiss the submenu or subdialog window
FALSE Do not dismiss the submenu or subdialog window.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The menu control window procedure responds to this message by terminating menu selection.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and, therefore, takes no
action on it, other than to set ff reply to the default value of 0.

MM INSERTITEM
This message inserts a menu item into a menu.

Parameters
param1

pmenultem (PMENUITEM)
Menu-item data structure.

This points to a MENUITEM structure.

param2

pltemText (PSTRL)
Item text.

Returns
reply

slndexlnserted (SHORT)
Index of inserted item:

MIT_MEMERROR The menu control cannot allocate space to insert the menu item in the
menu.

MIT_ERROR An error other than MIT_MEMERROR occurred.
Other The zero-based index of the offset of the item within the menu.

Chapter 17. Menu Control Window Processing 17-9

Remarks
The menu control window procedure responds to this message by inserting the identified item into
the menu at the position indicated by the specified MENUITEM data structure (contained within the
menu-item structure). If the position is MIT_END, the item is added to the end of the menu. If the
style of the item includes MIS_ TEXT, the text of the item is specified by pltemText

The menu control window procedure sets s/ndexlnserted to the zero-based index of the position of
the item within the menu.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set slndexlnserted to the default value of 0.

MM ISITEMVALID
This message returns the selectable status of a specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

uslncludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fresult (BOOL)

Remarks

Selectable indication.

A menu item can be selected and entered under these conditions:

• The item is enabled and, if it is a submenu item, the item in the action bar associated
with the submenu is enabled. If the action bar item is not enabled, the user cannot
display the submenu.

• The item is enabled, and the submenu is displayed and being tracked with the pointing
device or keyboard. It is unlikely, but possible, that the associated action bar is
disabled in this instance.

TRUE
FALSE

The user can select and enter the specified item.
The user cannot select and enter the specified item.

The menu control window procedure responds to this message by setting the return value depending
on the selectable status of the specified item.

17-10 PM Programming Reference

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fresult to the default value of FALSE.

MM ITEMIDFROMPOSITION
This message returns the identity of a menu item of a specified index.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sldentlty (SHORT)
Item identity:

:MIT_ER'ROR Error occurred; for example, because sltemlndex is not valid.
Other Item identity.

Remarks
The menu control window procedure responds to this message by setting reply to the identity of the
item whose position is identified by the index specified in sltemlndex.

Note: It must be sent, not posted, to the menu control.

DefauH Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set reply to the default value of 0.

MM ITEMPOSITIONFROMID
This message returns the index of a menu item of a particular identity.

Parameters
param1

usltem (USHORT)
Item identifier.

uslncludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 17. Menu Control Window Processing 17-11

Returns
reply

slndex (SHORT)
Item index:

MIT _NONE Item does not exist
Other Item index.

Remarks
The menu control window procedure responds to this message by setting slndex to the zero-based
index of the item identified by usitem.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set slndex to the default value of MIT_NONE.

MM QUERYITEM
This message returns the definition of the specified menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

uslncludesubmenus (USHORT)
Include submenus flag:

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
copy its definition.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

pmenultem (PMENUITEM)
Menu-item data structure.

Returns
reply

This points to a MENUITEM structure.

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

The menu control window procedure responds to this message by copying the item definition
specified by usitem, from the menu, to the structure specified by pmenuitem.

Note: This message does not retrieve the text for items with a style of MIS_ TEXT. The item text is
obtained by use of the MM_QUERYITEMTEXT message.

17-12 PM Programming Reference

'\
)

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

MM_QUERYITEMATTR
This message returns the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

uslncludeSubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
return its state.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2

usattributemask (USHORT)
Attribute mask.

Returns
reply

usState (USHORT)
State.

Remarks
The menu control responds to this message by returning the state of the specified attributes of the
identified menu item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set usState to the default value of 0.

MM_ QUERYITEMCOUNT
This message returns the number of items in the menu.

Parameters
param1 (ULONG)

0 Reserved value, 0.

param2 (ULONG)

0 Reserved value, 0.

Returns
reply

sresult (SHORT)
Item count.

Chapter 17. Menu Control Window Processing 17-13

Remarks
The menu control window procedure responds to this message by returning the count of the number
of items in the menu.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set usState to the default value of 0.

MM~ QUERYITEMRECT
This message returns the bounding rectangle of a menu item.

Parameters
param1

usltem (USHORT)
Item identity.

llncludeSubmenus (BOOL)
Include submenus indicator:

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
return its state.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

prect (PRECTL)

Returns
reply

Bounding rectangle of the menu item in device coordinates relative to the menu window.

ISuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Specified item was found.
Specified item was not found.

The menu control responds to this message by returning the bounding rectangle of identified menu
item.

Default Processing
The default window procedure does not expectto receive this message and therefore takes no action
on it, other than to set usState to the default value of 0.

17-14 PM Programming Reference

)

MM_ QUERYITEMTEXT
This message returns the text of the specified menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

smaxcount (SHORT)
Maximum count:

Copy the item text as a null-terminated string, but limit the number of characters copied,
including the null termination character, to this value, which must be greater than 0.

param2

pltemText (PSTRL)
Buffer into which the item text is to be copied.

Returns
reply

This points to a PSZ.

sTextLength (SHORT)
Length of item text.

The length of the text string, excluding the null termination character.

0 Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Remarks
The menu control window procedure responds to this message by copying up to smaxcount
characters as a null-terminated string from the text of the item specified by usitem, if it has the style
MIS_ TEXT, into the buffer specified by pltemText.

The length of the item text can be determined by using the MM_QUERYITEMTEXTLENGTH message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sTextLength to the default value of 0.

MM_ QUERYITEMTEXTLENGTH
This message returns the text length of the specified menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 17. Menu Control Window Processing 17-15

Returns
reply

sLength (SHORT)
Length of item text.

Remarks

The length of the text string, excluding the null termination character.

0 Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

The menu control window procedure responds to this message by returning the length in characters
of the text of the identified item, if it has a style of MIS_ TEXT.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sLength to the default value of 0.

MM_ QUERYSELITEMID
This message returns the identity of the selected menu item.

Parameters
param1

fsReserved (USHORT)
Reserved.

0

uslncludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for a selected item with the specified
identifier.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for a selected item with the specified
identifier.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

sresult (SHORT)
Selected item identifier:

Remarks

MID_ERROR
MIT_NONE
Other

Error occurred
No item selected
Selected item identifier.

The menu control window procedure responds to this message by returning the identity of the
selected item in the menu. Submenus and subdialogs are not searched unless usincludesubmenus
is set to TRUE.

17-16 PM Programming Reference

\
I

)

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sresult to the default value of 0.

MM REMOVEITEM
This message removes a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
delete it.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

sltemsLeft (SHORT)
Count of remaining items.

Remarks
The menu control window procedure responds to this message by removing the identified item from
the menu and setting sltemsLeft to the count of items in the menu after the item is deleted.

The difference between this message and MM_DELETEITEM is that MM_DELETEITEM destroys any
submenu window, and deletes any bit map associated with the item, whereas MM_REMOVEITEM
does not.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sltemsLeft to the default value of 0.

Chapter 17. Menu Control Window Processing 17-17

MM SELECTITEM
This message selects or deselects a menu item.

Parameters
param1

sitem (SHORT)
Item identifier:

MIT_NONE Deselect all the items in the menu
Other Item identifier.

uslncludesubmenus (USHORT)
Include submenus indicator:

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
select or deselect it.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

fsreserved (USHORT)
Reserved.

0 Reserved value, 0.

usdlsmlssed (USHORT)
Dismissed flag:

Returns
reply

TRUE
FALSE

Dismiss the menu
Do not dismiss the menu.

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

A selection has been made, or sitem is MIT _NONE.
A selection has not been made, or a deselection has been made, or sitem is not
MIT_NONE.

The menu control window procedure responds to this message by setting the selection state of the
(sub)menu which contains the specified item to indicate that the item is selected or deselected. If
usinc/udesubmenus is set to TRUE, the selection state of the (sub)menu owning the submenu which
contains the specified item is also set. This process continues up the menu hierarchy until the top
level menu is reached.

If an item is selected, and usdismissed is set to TRUE, a WM_ COMMAND, WM_SYSCOMMAND, or
WM_HELP message, as appropriate, is posted to the owner, and the menu is dismissed.

Note: This message must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

17-18 PM Programming Reference

\
/

MM SETITEM
This message sets the definition of a menu item.

Parameters
param1

lsreserved (USHORT)
Reserved.

0 Reserved value, 0.

uslncludesubmenus (USHORT)
Include submenus indicator:

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
set its definition.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

Returns
reply

This points to a MENUITEM structure.

ISuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

The menu control window procedure responds to this message by using the specified structure to
update the definition of the identified menu item.

The iPosition field of the structure specified by pmenuitem is ignored, as the position of the item
cannot be changed by use of this message.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

Chapter 17. Menu Control Window Processing 17-19

MM SETITEMATTR
This message sets the attributes of a menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

uslncludesubmenus (USHORT)
Include submenus indicator:

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified identifier and
set its attributes.

FALSE If the menu does not have an item with the specified identifier, do not search the
submenus and subdialogs of the menu for an item with the specified identifier.

usattrlbutemask (USHORT)
Attribute mask.

usattributedata (USHORT)

Returns
reply

Attribute data. Se+- +l-:.s -lo c.f+r:~ ... k l"\csk._ rJ,-r rR.vVF1Jt.S€

fSuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The menu control window procedure responds to this message by setting the state of the specified
attributes for the identified item.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

MM SETITEMHANDLE
This message sets the handle of a menu item.

Parameters
param1

usitem (USHORT)
Item index.

param2

ulitemhandle (ULONG)
Item handle.

17-20 PM Programming Reference

Returns
reply

fSuccess (BOOLJ
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The menu control window procedure responds to this message by setting the handle of the indexed
menu item.

This is used to set a handle for menu items that have a style of MIS_BITMAP or MIS_OWNERDRAW.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

MM SETITEMTEXT
This message sets the text of a menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

param2

pltemText (PSTRL)
Item text.

Returns
reply

This points to a PSZ.

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

The menu control responds to this message by setting the text of the identified item, if it has a style
of MIS_TEXT, using the specified null-terminated string.

Note: It must be sent, not posted, to the menu control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

Chapter 17. Menu Control Window Processing 17-21

MM STARTMENUMODE
This message is used to begin menu selection.

Parameters
param1

usshowsubmenu (USHORT)
Show submenu flag:

TRUE Show the submenu {pull-down menu) of the selected action bar item when the
menu enters selection mode. If the action bar is not visible, the submenu is
shown, otherwise it is not shown. If the item selected does not have a submenu,
this parameter is jgnored.

FALSE Do not show the submenu (pull-down menu) of the selected action bar item when
the menu enters selection mode.

usresumemenu (USHORT)
Resume menu mode flag:

TRUE Resume the user interaction with the menu from where it left off. The menu is
assumed to have been used previously and left without dismissing one of the
submenus, and therefore is resumed in that submenu.

FALSE Begin user interaction with the menu from the action bar, subject to the value of
the usshowsubmenu parameter.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
-FALSE

Successful completion
Error occurred.

It is posted to the menu when the operator presses the menu key.

Note: It must be posted, not sent, to the menu control.

Default Processing
The default window procedure does· not expect to receive this message and therefore takes no action
on it, other than to setfSuccess to the default value of FALSE.

17-22 PM Programming Reference

WM_QUERYCONVERTPOS (in Menu Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The menu control window procedure returns QCP _NOCONVERT.,

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_QUERYWINDOWPARAMS (in Menu Controls)
Occurs when an application queries the menu control window procedure parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The menu control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to O and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in Menu Controls)
This message occurs when an application sets or changes the menu control window procedure
parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The menu control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

Chapter 17. Menu Control Window Processing 17-23

17-24 PM Programming Reference

Chapter 18. Multi-Line Entry Field Control Window
Processing

This system-provided window procedure processes the actions on a multi-line entry field control
(WC_MLE).

Purpose
A multi-line entry field control is a rectangular window that displays multiple lines of text that the
operator can edit. When it has the focus, the cursor marks the current Insertion or replacement
point.

How to Use
The text is displayed within a rectangular window. Scroll bars appear if requested.

On all four sides of the text within the window there exists a thin margin area. This margin remains
drawn in the window's background color, and characters are never drawn into this margin. Mouse
events that occur in the margin are processed differently from mouse events that occur in the text
area. The margin should be large enough to be easily clicked on, but not so large as to take up a
large quantity of screen space. It is suggested, but not required, that the left and right margins be
half the average character width of the system font, and that the top and bottom margins be half the
maximum baseline extent of the system font.

Text is defined as a stream of characters, with hard line-break characters in the text. Between any
two bytes in the text stream, and at either end of the document, there is an insertion point. Note that
in a DBCS environment, it is possible to have an insertion point in the middle of a DBCS character. If

such an insertion point is specified in a function, the function will either round the insertion point in a

sensible way, or the function will fail with an error code indicating the problem.

The text always contains a selection region, defined by an anchor point and a cursor point. The
anchor and cursor points are insertion points. If the MLE window has the focus, the text between
these two points is drawn highlighted and the cursor point is indicated by a flashing text cursor. The
selection region can be affected by some import/export operations.

The cursor point and the anchor point define the range of the selection. These two points are often
the same, in which case no text is selected and only a text cursor (but no highlighting) is displayed.
A user can use SHIFT +cursor movement combinations to extend the selection, which leaves the
anchor point alone, and moves the cursor point to a new position in the document.

The MLE has three modes:

READ-ONLY

WORD-WRAP

The keyboard user interface disallows any operations that would change the
content of the text, although applications using the MLE can still change the text
contents. The application can query this mode, in order that it can disallow
application-specific operations.

When this mode is in effect, soft line-breaks are inserted into the text at word
boundaries so that the user need not scroll the display horizontally to see all the
text. When this mode is off, text is allowed to trail off the right-hand edge of the
window.

INSERT/OVERTYPE This mode determines whether keystrokes are inserted into the text, or whether
they overtype existing text. Unlike the other two modes, this mode is maintained
by the system. The MLE must merely be aware of the system mode.

Notes:

1. The MLE is intended for text under 4KB in size. Performance will be fast for text up to 32KB in
size. Text greater than this will be supported but performance may not be acceptable.

2. In this chapter 'CR' denotes carriage-return, and 'LF' denotes line-feed.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-1

Multi-Line Entry Field Control Styles
These multi-line entry field control styles are available:

MLS_BORDER

MLS_READONLY

MLS_WORDWRAP

MLS_HSCROLL

MLS_ VSCROLL

MLS_IGNORETAB

MLS_DISABLEUNDO

A thin border is drawn around the multi-line entry field window.

The multi-line entry field is initially in read-only mode.

The multi-line entry field initially word-wraps text.

The multi-line entry field displays and handles a horizontal scroll bar.

The multi-line entry field displays and handles a vertical scroll bar.

The multi-line entry field ignores tab key strokes. It passes the
appropriate WM_CHAR to its owner window.

The multi-line entry field will not allow undo actions.

Multi-Line Entry Field Control Data
See MLECTLDATA on page A-69.

18-2 PM Programming Reference

\
)

Multi-Line Entry Field Control Notification Messages
This message is initiated by the multi-line entry field window procedure to notify its owner of
significant events.

WM_CONTRO.L (in Multiline Entry Fields)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

usld (USHORT)
Control window identity.

usnollfycode (USHORT)
Notify code:

MLN_TEXTOVERFLOW A key stroke causes the amount of text to exceed the limit on
the number of bytes of data (refer to MLM_SETTEXTLIMIT).
The parameter contains the number of bytes of data which
would not fit within the current text limit. For character key
strokes this can be 1 or 2 (DBCS). For Shift+lns (paste) it can
be any amount up to the paste limit.

The default fAction of FALSE causes the default error
handling, which is to ignore the key stroke, and beep.

An f Action of TRUE implies that corrective action has been
taken (such as deleting existing text or raising the limit) and
the WM_CHAR (in Mu1tiline Entry Fields) should be
reprocessed as if just entered.

MLN_PIXHORZOVERFLOW A key stroke causes the size of the display bit map to exceed
the horizontal limit of the format rectangle (refer to
MLM_SETFORMATRECT). The parameter contains the
number of pals that would not fit within the current text limit.

MLN_PIXVERTOVERFLOW

MLN_OVERFLOW

The default fAction of FALSE causes the default error
handling, which is to ignore the key stroke, and beep.

An fAction of TRUE implies that corrective action has been
taken (such as changing to a smaller font or raising the limit)
and the WM_CHAR (in Multiline Entry Fields) should be
reprocessed as if just entered.

A key stroke causes the size of the display bit map to exceed
the vertical limit of the format rectangle (refer to
MLM_SETFOR'MATRECT). The parameter contains the
number of pels that would not fit within the current text limit.

The default fAction of FALSE causes the default error
handling, which is to ignore the key stroke, and beep.

An fAction of TRUE implies that corrective action has been
taken (such as changing to a smaller font or raising the limit)
and the WM...;.CHAR (in Multiline Entry Fields) should be
reprocessed as if just entered.

An action other than entry of a key stroke causes a condition
involving the text limit or format rectangle limit, such that
either the limit becomes inadequate to contain the text or the
text exceeds the limit.

This can be caused by:
MLM_SETWRAP
MLM_SETT ABSTOP
MLM_SETFONT

Chapter 18. Multi-Line Entry Field Control Window Processing 18-3

MLN_HSCROLL

MLN_ VSCROLL

MLN_CHANGE

MLN_UNDOOVERFLOW

MLN_CLPBDFAIL

MLN_MEMERROR

MLN_SETFOCUS

MLN_KILLFOCUS

MLN_MARGIN

MLN_SEARCHPAUSE

18-4 PM Programming Reference

MLM_IMPORT
MLM_PASTE
MLM_CUT
MLM_UNDO
MLM_DELETE
WM_SIZE.

Indicates that the MLE has completed a scrolling calculation
and is about to update the display accordingly. All queries
return values as if the scrolling were complete. However, no
scrolling action is visible on the user interface.

Indicates that the MLE has completed a scrolling calculation
and is about to update the display accordingly. All queries
return values as if the scrolling were complete. However, no
scrolling action is visible on the user interface.

Signals that the text has changed. This notification is sent
whenever any text change occurs.

Signals that the text change operation, which could normally
be undone, cannot be undone because the amount of text
involved exceeds the undo capability. This includes text
entry, deletion, cutting, and pasting.

Signals that a clipboard operation failed.

Signals that the required storage cannot be obtained. The
action that results in the increased storage requirement fails.

Sent whenever the MLE window receives the input focus.

Sent whenever the MLE window loses the input focus.

Whenever the user moves the mouse into the left, right top, or
bottom margins, this message is sent to the owner of the
window.

If the owner returns an fAction of TRUE, the mouse move is
assumed to have been processed by the owner and no further
action need be taken.

If the owner returns an fAction of FALSE, the MLE performs a
default action appropriate to each different mouse action.

The exceptions to this are all mouse messages that occur
after a button-down inside the margin, until and including the
matching button-up. Conceptually the drag (button-down until
button-up) is a single macro event. Therefore, if FALSE is
returned for a button-down event, no further margin
notifications are given until after the drag has ended
(button-up).

Note: If the application receives a notification of button-down
in the margin and processes it, it must capture the mouse
until the button-up event.

This notification is sent periodically by the MLE, while an
MLM_SEARCH message is being processed, to give an
application the opportunity to stop excessively long searches,
and to provide search progress information. The owner
window can respond either with TRUE or FALSE. FALSE
causes the MLE to continue searching; TRUE causes the MLE
to stop the search immediately. For further information, see
MLM_SEARCH

/

~
)

param2

This parameter depends on the MLN_ * notification code.

For a usnotifycode of MLN_ TEXTOVERFLOW:

ulOver (ULONG)
Number of bytes that do not fit.

plxOver (Pl X)
Linear distance of overflow in pels.

pErrlnfo (POVERFLOW)
Overflow error information structure.

The u/Errlnd field of the MLEOVERFLOW structure can take one or more of the following
values:

MLFEFR_RESIZE The window is resized, and the format rectangle is tied to the
window size and limited either horizontally, vertically, or both. The
implicit change of the format rectangle to the new size does not
contain the text. The format rectangle is made static at the
previous size, and the MLESFR_MATCHWINDOW style is turned off
until set again by the application. This is done in response to a
WM_SIZE message, and therefore the multi-line entry field does not
forward the return value from this notification message.

MLFEFR_TABSTOP A tab stop location change is requested, and the text is limited
either horizontally, vertically, or both. Changing the tab stops
causes the text to exceed the limit. The tab stop change is
rejected.

MLFEFR_FONT A font change is requested, and the text is limited either
horizontally, vertically, or both. Changing the font causes the text
to exceed the limit. The font change is rejected.

MLFEFR_WORDWRAP The word-wrap state is requested to be changed, and the text is
limited either horizontally, vertically, or both. Wrapping the text
differently exceeds the limit, and the request is rejected. This
happens in situations where the horizontal limit is not set, there
are lines exceeding it, and word-wrap is being changed from off to
on, such that it creates soft line breaks resulting in increased
vertical size. This happens if word-wrap is being changed from on
to off, and there is at least one line created by a soft line-break,
such that when that line-break is removed, the full line (up to the
hard line break) exceeds the horizontal limit.

MLFEFR_TEXT Text is changed by MLM_IMPORT, MLM_PASTE, MLM_CUT,
MLM_UNDO, or MLM_DELETE, and the text is limited either
horizontally, vertically, or both within the format rectangle. The
change causes the text to exceed the format rectangle in a
dimension that is limited. For example, Delete and EOL joins text
from two lines into one line long enough to exceed the horizontal
limit.

MLFETL_TEXTBYTES Text is changed by MLM_IMPORT MLM_PASTE, or MLM_UNDO,
and the text is limited to a maximum number of bytes. The change
causes the text to exceed that maximum.

ulErrlnd (ULONG)
Clipboard fail flag.

MLFCPBD_ TOOMUCHTEXT
MLFCPBD_CLPBDERROR

Text amount exceeds clipboard capacity
A clipboard error occurred.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-5

pmrg (PMARGSTRUCT)
Margin structure.

The left and right margins are defined as going all the way to the top and bottom such that
the top and bottom margins are contained between them. Therefore, the corners are
included in the sides.

usMouMsg contains the mouse message that signals the event.

iptNear contains the insertion point of the nearest point in the text. For situations where the
nearest location is beyond the end of a line, the insertion point for the end of the line is
returned. (The EOL character is considered to be beyond the end of the line.)

lptSearchedTo (/PT)
Current insertion point of search.

flReserved (ULONG)
Reserved.

0

Returns
reply

For a usnotifycode of MLN_TEXTOVERFLOW, MLN_PIXHORZOVERFLOW,
MLN_PIXVERTOVERFLOW, MLN;_MARGIN, MLN_SEARCHPAUSE:

fAction (BOOL)
Action taken by application:

TRUE The multiline entry field control assumes that appropriate action has been taken
by the application. Appropriate action depends on the MLN_ * notification code,
and is documented under the usnotifycode field.

FALSE The multiline entry field control assumes that the application has ignored this
WM_CONTROL (in Multiline Entry Fields) message, and takes action appropriate
to the MLN_ * notification code, as documented under the usnotifycode field.

. flReserved (ULONG)
Reserved.

0 Reserved value, zero.

Remarks
The multiline entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set fl reply to 0.

18-6 PM Programming Reference

)

)

Multi-Line Entry Field Window Messages
This section describes the multi-line entry field control window procedure actions on receiving the
following messages.

MLM CLEAR
This message clears the current selection.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulClear (ULONG)
Number of bytes deleted, counted in CF_ TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by clearing the current
selection and returning the number of bytes cleared.

Default Processing
The default window procedure takes no action on this message, other than to set u/C/ear to 0.

MLM COPY
This message copies the current selection to the clipboard.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

ulCopy (ULONG)
Number of bytes transferred, counted in CF _TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by copying the
selected text to the clipboard. The text is translated to standard clipboard format, which is the same
as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the amount to
the maximum segment size (64KB).

This may cause an overflow, see MLN_OVERFLOW.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-7

Default Processing
The default window procedure takes no action on this message, other than to set u/Copy to 0.

MLM CUT
This message copies the text that forms the current selection to the clipboard and then deletes it
from the MLE control.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulCopy (ULONG)
Number of bytes transferred, counted in CF_ TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by copying the
selected text to the clipboard and then deleting it. The text is translated to standard clipboard
format, which is the same as exporting with MLE_CFTEXT format.

The text is placed on the clipboard as a single contiguous data segment. This restricts the amount to
the maximum segment size (64KB).

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Copy to 0.

MLM CHARFROMLINE
This message returns the first insertion point on a given line.

Parameters
param1

ILineNum (LONG)
Line number of interest.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

iptfirst (/PT)
First insertion point on line.

18-8 PM Programming Reference

\,
)

Remarks
For any line number, the insertion point just before the first character on that line is returned. If the
line number is -1, the line containing the cursor is used.

The term line means a line on the display after the application of word-wrap. It does not mean a line
as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptFirst to 0.

MLM DELETE
This message deletes text.

Parameters
param1

iptBegin (/PT)
Starting point of deletion.

param2

ulDel (ULONG)
Number of bytes to delete.

Returns
reply

ulSuccess (ULONG)
Number of bytes successfully deleted.

Remarks
This message takes an insertion point and a length, and deletes that number of characters from the
text. If the insertion point is -1, the selection is used and the effect is identical to the MLM_CLEAR
message.

This may cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set u/Success to 0.

MLM DISABLEREFRESH
This message disables screen refresh.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-9

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion.
An error occurred.

This message disables screen refreshes. This allows an application to make changes throughout a
document while avoiding unnecessary overhead caused by attempts to keep the screen display
current. When an MLM_ENABLEREFRESH message is sent, the screen display is brought up to date
with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and ignoring
them, except for mouse moves, which do not beep; the mouse pointer changes to the system
standard wait symbol (a clock face).

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM ENABLEREFRESH
This message enables screen refresh.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion.
An error occurred.

This message enables screen refreshes. This allows an application to make changes throughout a
document while avoiding unnecessary overhead caused by attempts to keep the screen display
current. When an MLM_ENABLEREFRESH message is sent, the screen display is brought up to date
with the contents of the text.

While refresh is disabled, mouse and keyboard messages are processed by beeping and ignoring
them, except for mouse moves, which do not beep; the mouse pointer changes to the system
standard wait symbol (a clock face).

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

18-10 PM Programming Reference

\
)

MLM EXPORT
This message exports text to a buffer.

Parameters
param1

pBegln (Pf PT)
Starting point.

Updated to follow the last character exported.

param2

pCopy (PULONG)

Returns
reply

Number of bytes being exported.

Decremented by the number of bytes actually exported.

ulSuccess (ULONG)
Number of bytes successfully exported.

Remarks
This message takes an insertion point and length as parameters, and copies text, starting from that
insertion point, into the buffer set by MLM_SETIMPORTEXPORT. Text is in the format set by
MLM_FORMAT. If the insertion point is -1, the selection is used for both pBegin and pCopy.

On return, pBegin is updated to follow the last byte exported, and the number of bytes to be exported
is decremented by the number actually exported. This is done to prepare those parameter values for
the next export. The return value indicates the number of bytes actually put into the buffer. This
number is less than, or equal to, the buffer size (see MLM_SETIMPORTEXPORT).

Note: All exports are done in full characters. Therefore, if either the length of the buffer or the
number of bytes to be exported result in the last byte transferred being only half of a DBCS
character, the MLE will not transfer that byte.

It returns the number of bytes placed in the export buffer.

Default Processing
The default window procedure takes no action on this message, other than to set u/Success to 0.

MLM FORMAT
This message sets the format to be used for buffer importing and exporting.

Parameters
param1

usformat (USHORT)
Format to be used for import and export:

MLFIE_CFTEXT Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A NULL
character signals the end of the data.

MLFIE_NOTRANS Uses LF for line delineation, and guarantees that any text imported into
the MLE in this format can be recovered in exactly the same form on
export.

MLFIE_WINFMT (Windows MLE format.) On import, recognizes CR LF as denoting
hard line-breaks, and ignores the sequence CR CR LF. On export,
uses CR LF to denote a hard line-break and CR CR LF to denote a soft
line-break caused by word-wrapping.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-11

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

usFormat (USHORT)
Previous format value.

Remarks
The default format is MLFIE_CFTEXT.

The keyword MLFIE_RTF is reserved.

Default Processing
The default window procedure takes no action on this message, other than to set usFormat to 0.

MLM IMPORT
This message imports text from a buffer.

Parameters
param1

pBegin (Pf PT)
Insertion point. Updated to insertion point following last insert.

param2

ulCopy (ULONG)

Returns
reply

Number of bytes in buffer.

ulSuccess (ULONG)
Number of bytes successfully inserted.

Remarks
This message takes an insertion point and length as parameters. It assumes a buffer has been set
using MLM_SETIMPORTEXPORT, and inserts the contents of the buffer at the insertion point in the
text. The contents are interpreted as being in the format set by MLM_FORMAT. If the insertion point
is -1, the cursor point is used.

The insertion point pBegin is updated by the MLE to the point after the last character imported. This
provides the application with the location for the next import.

The return value indicates how many bytes were actually transferred.

All imports are done in full characters, therefore, if the number of bytes to be imported results in the
last byte transferred being only half of a DBCS character, or part of a line-break sequence (CR LF or
CR CR LF), the MLE does not transfer that byte. If the return value indicates that less than the full
amount was transferred, a check must be made to determine if it is the beginning of a multi-byte
sequence, and if so, the parts must be mated and imported as a whole.

This can cause an overflow, see MLN_OVERFLOW.

Note: The buffer is not zero-terminated; NULL characters can be inserted into the text.

18-12 PM Programming Reference

\
\

)

'\
,;

I

Default Processing
The default window procedure takes no action on this message, other than to set u/Success to 0.

MLM INSERT
This message deletes the current selection and replaces it with a text string.

Parameters
param1

pText (PSTRL)
Null-terminated text string.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

ulCount (ULONG)
Number of bytes actually inserted.

Remarks
This message inserts the text string at the current selection, deleting that selection in the same
manner as typing at the keyboard would. The text string must be in CF_ TEXT format (or one of the
formats acceptable to MLM_IMPORT) and null-terminated. The line-break (CR LF, LF, and so on) is
counted as one byte, regardless of the number of bytes occupied in the buffer, and the null
terminator is not counted.

This interacts with the format rectangle and text limits, and a return of less than the full count can be

the result. If so, a notification message is sent.

Default Processing
The default window procedure takes no action on this message, other than to set u/Count to o.

MLM LINEFROMCHAR
This message returns the line number corresponding to a given insertion point.

Parameters
param1

lptFlrst (/PT)
Insertion point of interest

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ILineNum (LONG)
Line number of insertion point.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-13

Remarks
For any insertion point, the corresponding line number is returned. If the insertion point is -1, the
number of the line containing the first insertion point of the selection is returned.

The term line means a line on the display after the application of word-wrap. It does not mean a line
as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set /LineNum to 0.

MLM PASTE
This message replaces the text that forms the current selection, with text from the clipboard.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulCopy (ULONG)
Number of bytes transferred, counted in CF_ TEXT format.

Remarks
The multi-line entry field control window procedure responds to this message by replacing the
selected text with text from the clipboard. The text is translated from standard clipboard format,
which is the same as importing with MLE_CFTEXT format.

The text is assumed to be in the clipboard as a single contiguous data segment. This restricts the
amount to the maximum segment size {64Kb).

This can cause an overflow, see MLN_OVERFLOW.

Default :Processing
The default window procedure takes no action on this message, other than to set u/Copy to 0.

MLM_QUERYBACKCOLOR
This message queries the background color.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

18-14 PM Programming Reference

\

)

~
J

Returns
reply

IColor (LONG)
Text color.

Remarks
This message returns the color in which the background is to be drawn.

The color values are the same as those used by GpiSetColor.

Default Processing
The default window procedure takes no action on this message, other than to set /Color to 0.

MLM_QUERYCHANGED
This message queries the changed flag.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fChanged (BOOL)
Current changed status.

Remarks

TRUE
FALSE

Text has changed since the last time that the change flag was cleared.
Text has not changed since the last time that the change ftag was cleared.

The multi-line entry field control window procedure responds to this message by returning the

changed flag for the text without altering it. See also MLN_CHANGE.

Default Processing
The default window procedure takes no action on this message, other than to set fChanged to 0.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-15

MLM_ QUERYFIRSTCHAR
This message queries the first visible character.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

lptFVC (/PT)
First visible character.

Remarks
Returns the insertion point immediately preceding the character visible in the upper left-hand corner
of the screen. If a partial character is displayed, that character counts as the first visible character.

Note: In situations where no character is visible, because the text is scrolled to the right beyond the
end of the top line, this returns the insertion point of the last character on the line (EOL not
considered). In situations where there are no characters on the line, the insertion point at the
beginning is returned.

Default Processing
The default window procedure takes no action on this message, other than to set iptFVC to 0.

MLM_ QUERYFONT
This message queries which font is in use.

Parameters
param1

pFattrs (PFATTRS)
Font attribute structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSystem (BOOL)

Remarks

System font indicator:

TRUE
FALSE

The system font is in use.
The system font is not in use.

This message puts the attributes of the current drawing font into the font attribute structure.

18-16 PM Programming Reference

. /

Default Processing
The default window procedure takes no action on this message, other than to set fSystem to FALSE .

MLM _ QUERYFORMATLINELENGTH
This message returns the number of bytes to end of line after formatting has been applied.

Parameters
param1

lptStart (/PT)
Insertion point to count from.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

iptline (/PT)
Count of bytes to end of line.

Remarks
For any insertion point, the number of bytes between that insertion point and the end of the line is
returned, after the current formatting is applied. If the insertion point is -1, the cursor position is
used. This message differs from MLM_QUERYLINELENGTH in that the byte count returned reflects
the effects of the current formatting set by MLM_FORMAT.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to 0.

MLM_QUERYFORMATTEXTLENGTH
This message returns the length of a specified range of characters after the current formatting has
been applied.

Parameters
param1

iptStart (/PT)
Insertion point to start from.

param2

ulScan (ULONG)

Returns
reply

Number of characters to convert to bytes.

OxFFFFFFFF Convert until end of line
other Convert specified number of characters.

ulText (ULONG)
Count of bytes in text after formatting.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-17

Remarks
This message returns the length in bytes of a range of characters after the current formatting is
applied. This differs from MLM_QUERYTEXTLENGTH in that:

• A range of insertion points can be queried.
• The byte count returned reflects the effects of the current formatting set by MLM_FORMAT.

Default Processing
The default window procedure takes no action on this message, other than to set u/Text to o.

MLM_QUERYFORMATRECT
This message queries the format dimensions and mode.

Parameters
param1

pFormatRect (PPO/NTL)
Format dimensions.

The size of the current limiting dimensions.

param2

flFlags (ULONG)

Returns

Flags governing interpretation of dimensions

An array of MLFFMTRECT _ * flags defined under the f/Flags field of the
MLM_SETFORMATRECT message.

flreply (ULONG)
Reserved

Default Processing
The default window procedure takes no action on this message, other than to set freply to 0.

MLM_ QUERYIMPORTEXPORT
This message queries the current transfer buffer.

Parameters
param1

pBuff (PBUFFER)
Transfer buffer.

param2

pBuff (PULONG)

Returns
reply

Size of transfer buffer in bytes.

ulCount (ULONG)
Success indicator:

18-18 PM Programming Reference

'\
I

,!

)

Remarks
This message returns the values from the most recent MLM_SETIMPORTEXPORT, or 0 for either
value if it has not been set.

Default Processing
The default window procedure takes no action on this message, other than to set u/Count to 0.

MLM_QUERYLINECOUNT
This message queries the number of lines of text.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulllnes (ULONG)
The number of lines of text.

Remarks
The term line means a line on the display after the application of word-wrap. It does not mean a line
as defined by the CR LF line-break sequence.

The multi-line edit control always maintains one CR LF line-break in the buffer, therefore the number
of lines returned may be one greater than the number actually visible.

Default Processing
The default window procedure takes no action on this message, other than to set ulLine to 0.

MLM_ QUERYLINELENGTH
This message returns the number of bytes between a given insertion point and the end of line.

Parameters
param1

lptStart (/PT)
Insertion point to count from.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

lptLine (/PT)
Count of bytes to end of line.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-19

Remarks
For any insertion point, the number of bytes between that insertion point and the end of the line is
returned. If the insertion point is -1, the cursor position is used. If the line contains a hard
line-break, it is counted as one byte.

The term line means a line on the display after the application of word-wrap. It does not mean a line
as defined by the CR LF line-break sequence.

Default Processing
The default window procedure takes no action on this message, other than to set iptLine to 0.

MLM_QUERYREADONLY
This message queries the read-only mode.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fReadOnly (BOOL)
Current read-only status.

TRUE
FALSE

Read-only mode is set.
Read-only mode is cleared.

Default Processing
The default window procedure takes no action on this message, other than to set fReadOnly to
FALSE.

MLM_QUERYSEL
This message returns the location of the selection.

Parameters
param1

usQueryMode (USHORT)
Query Mode.

MLFQS_MINMAXSEL

MLFQS_MINSEL
MLFQS_MAXSEL
MLFQS_ANCHORSEL
MLFQS_CURSORSEL

param2 (ULONG)
Reserved.

0 Reserved value, 0.

18-20 PM Programming Reference

Return both minimum and maximum points of selection in a format
compatible with the EM_QUERYSEL message.
Return minimum insertion point of selection.
Return maximum insertion point of selection.
Return anchor point of selection.
Return cursor point of selection.

Returns
reply

For usQueryMode = MLFQS_MINMAXSEL:

sMlnSel (SHORT)
Minimum insertion point of selection.

This value is rounded down to 65 535, if necessary.

sMaxSel (SHORT)
Maximum insertion point of selection.

This value is rounded down to 65 535 if necessary.

For usQueryMode = MLFQS_MINSEL, MLFQS_MAXSEL, MLFQS_ANCHORSEL, or
MLFQS_CURSORSEL:

lptlpt (/PT)
Requested insertion point.

Remarks
This message returns the location of the selection in several different forms. The insertion points lie
between characters, and start at a zero origin before the first character in the MLE. Subtracting the
minimum from the maximum gives the number of characters in the selection. This is not necessarily
the number of bytes of ASCII. The line-break character is a CR LF (2 bytes) and all DBCS characters
are 2 bytes. To determine the number of bytes, use MLM_QUERYFORMATTEXTLENGTH, being sure
that the format choice set by MLM_FORMAT is set to what is used when the data is exported from the
MLE (for example, MLE_CFTEXT for MLM_QUERYSEL TEXT).

Note the following:

• If anchor point> cursor point, minimum point= cursor point and maximum point= anchor point.
• If anchor point< cursor point, minimum point= anchor point and maximum point= cursor point.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

MLM_QUERYSELTEXT
This message copies the currently selected text into a buffer.

Parameters
param1

pBuff (PSTRL)
Buffer for text string.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

ulCount (ULONG)
Number of bytes to put into text string.

Remarks
This message copies the currently selected text into the buffer pointed to by pBuff. The text string is
null-terminated. The byte count includes the text in CF_TEXT format (CR LF) and the null terminator.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-21

Default Processing
The default window procedure takes no action on this message, other than to set u/Count to O.

MLM_QUERYTABSTOP
This message queries the pel interval at which tab stops are placed.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

plxTabset (Pl X)
Tab width in pels.

< O An error occurred.
Other The pel interval at which tab stops are placed.

Remarks
This message fails and returns a negative value, if the reserved values are not 0.

Default Processing
The default window procedure takes no action on this message, other than to set pixTabset to 0.

MLM_QUERYTEXTCOLOR
This message queries the text color.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

IColor (LONG)
Text color.

Remarks
This message returns the color in which text is to be drawn.

The color values are the same as those used by GpiSetColor.

18-22 PM Programming Reference

\
i

Default Processing
The default window procedure takes no action on this message, other than to set /Color to 0.

MLM_QUERYTEXTLENGTH
This message returns the number of characters in the text.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, o.

Returns
reply

lptTexl (/PT)
Count of text in bytes.

Remarks
This message returns the number of characters in the text. Hard line-breaks are counted as 1 and
soft line-breaks as 0.

This message differs from the WinQueryWindowTextlength call in that it returns a LONG.

Default Processing
The default window procedure takes no action on this message, other than to set iptText to 0.

MLM_ QUERYTEXTLIMIT
This message queries the maximum number of bytes that a multi-line entry field control can contain.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ISlze (LONG)
Maximum number of bytes allowed in the MLE.

Remarks
The multi-line entry field control window procedure responds to this message by returning the
current limit set, either by default, or by MLM_SETIEXTLIMIT. If the limit is unbounded, a
non-positive value is returned.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-23

Default Processing
The default window procedure takes no action on this message, other than to set /Size to 0.

MLM_QUERYUNDO
This message queries the undo or redo operations that are possible.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

usOperation (USHORT)
Operation that can be undone or redone.

0
WM_CHAR

MLM_SETFONT
MLM_SETTEXTCOLOR

MLM_CUT
MLM_PASTE
MLM_CLEAR

fUndoRedo (BOOL)
Undo or redo indicator.

An undo or redo operation is not possible.
A WM_CHAR message, or messages for a simple string of
keystrokes, can be undone or redone.
A MLM_SETFONT message can be undone or redone.
A MLM_SETTEXTCOLOR message can be undone or redone for
both background and foreground color.
A MLM_CUT message can be undone or redone.
A MLM_PASTE message can be undone or redone.
A MLM_CLEAR message can be undone or redone.

TRUE An undo is possible.
FALSE A redo is possible.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

MLM_ QUERYWRAP
This message queries the wrap flag.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fWrap (BOOL)
Wrap flag.

TRUE Word-wrap enabled
FALSE Word-wrap disabled.

18-24 PM Programming Reference

/

Default Processing
The default window procedure takes no action on this message, other than to set fWrap to FALSE.

MLM RESETUNDO
This message resets the undo state to indicate that no undo operations are possible.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

usOperallon (USHORT)
Operation that can be undone or redone.

0
WM_CHAR

MLM_SETFONT
MLM_SETTEXTCOLOR

MLM_CUT
MLM_PASTE
MLM_CLEAR

An undo or redo operation is not possible.
A WM_ CHAR message, or messages for a simple string of
keystrokes, can be undone or redone.
A MLM_SETFONT message can be undone or redone.
A MLM_SETTEXTCOLOR message can be undone or redone for
both background and foreground color.
A MLM_CUT message can be undone or redone.
A MLM_PASTE message can be undone or redone.
A MLM_ CLEAR message can be undone or redone.

IUndoRedo (BOOL)

Remarks

Undo or redo indicator.

TRUE
FALSE

An undo is possible.
A redo is possible.

This message resets the undo state of the MLE to indicate that the last operation cannot be undone
(null return from MLM_QUERYUNDO). This can be used by the application when it performs an
operation that it can undo, that supersedes the last MLE operation. The application can then reset its
own undo state upon receipt of an MLN_CHANGE, indicating that later changes have occurred
through the MLE.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-25

MLM SEARCH
This message searches for a specified text string.

Parameters
param1

ulStyle (ULONG)
Style flags.

MLFSEAR~H_ CASESENSITIVE

MLFSEARCH_SELECTMATCH

MLFSEARCH_CHANGEALL

param2

pse (PMLE_SEARCHDATA)

Returns
reply

Search specification structure.

fSuccess (BOOL)
Success indicator:

If set, only exact matches are considered a successful
match. If not set, any case-combination of the correct
characters in the correct sequence is considered a
successful match.
If set, the MLE selects the text and scrolls it into view
when found, just as if the application had sent an
MLM_SETSEL message. This is not done if
MLFSEARCH_CHANGEALL is also indicated.
Using the MLE_SEARCHDATA structure specified in pse,
all occurrences of pchFind are found, searching from
iptStart to iptStop, and replacing them with pchReplace. If
this style is selected, the cchFound field has no meaning,
and the iptStart value points to the place where the
search stopped, or is the same as iptStop because the
search has not been stopped at any of the found strings.
The current cursor location is not moved. However, any
existing selection is deselected.

TRUE The search was successfui.
FALSE The search was unsuccessful.

Remarks
This message searches the MLE text for a specified string, starting at a specified insertion point and
continuing until the second specified insertion point has been reached, or the requested string has
been matched.

When an MLM_SEARCH message is sent, the text is scanned starting with the character that follows
the insertion point indicated in the iptStart field of the MLE_SEARCHDATA structure. The search
proceeds until the point indicated in the iptStop field, until a match is found, or until TRUE is returned
from MLN_SEARCHPAUSE notification (see WM_CONTROL (in Multiline Entry Fields)). If a negative
value is specified for the iptStart, the current cursor point is used. If a negative value is specified for
iptStop, the end of the text is used. If iptStop, is less than or equal to iptStart, after performing the
two indicated substitutions, the search wraps from the end of the text to the beginning of the text.

If the MLFSEARCH_CASESENSITIVE option is specified, the bytes of the search string must exactly
match those in the text. If MLFSEARCH_CASESENSITIVE is not specified, the WinUpperChar of the
search string must match the WinUpperChar of the text.

When a match is found, the iptStart field of the search specification structure is set to indicate the
insertion point immediately preceding the first character of the match, and the cchFind field is set to
indicate the number of characters in the match. The cursor selection is not altered unless
MLFSEARCH_SELECTMATCH is specified. If it is, an MLM_SETSEL is done with the anchor point at
iptStart and the cursor at iptStart + cchFind.

18-26 PM Programming Reference

While searching, the MLE occasionally sends an MLN_SEARCHPAUSE notification message. If the
owner responds to this message with the value TRUE, the MLE stops the search. When a search is
stopped from MLN_SEARCHPAUSE, iptStart is set to the point where the search terminated. If the
response is FALSE, the search continues (see also the definition of MLN_SEARCHPAUSE). The
interval at which MLN_SEARCHPAUSE notifications are sent is implementation-dependent, but must
not exceed reasonable user-response thresholds, nor should it be so often as to introduce undue
messaging overhead. Sending this notification every half second is a reasonable compromise.

When no match is found the iptStart value is unchanged.

If the application needs to continue the search, the proper way is to change the iptStart value to be
the point following the string found, adjusting for any text changes done after the search that may
have moved the relative location of the point.

Applications using this message are advised to change the system pointer to the wait icon (clock
face) if it is expected that the search will take some time.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM SETBACKCOLOR
This message sets the background color.

Parameters
param1

IColor (LONG)
Color.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

IOldColor (LONG)
Color previously used.

Remarks
This message sets the color in which the MLE background is to be drawn, and updates the display as
necessary.

The color values are the same as those used by GpiSetCalor.

Default Processing
The default window procedure takes no action on this message, other than to set 10/dColor to O.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-27

MLM SETCHANGED
This message sets or clears the changed flag.

Parameters
param1

usChangedNew (USHORT)
Value to set changed flag to.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

IChanged (BOOL)
Changed status before message was processed.

Remarks

TRUE
FALSE

Text has changed since the last time that the change flag was cleared.
Text has not changed since the last time that the change flag was cleared.

This message can generate a MLN_CHANGE notification.

Default Processing
The default window procedure takes no action on this message, other than to set fChanged to FALSE.

MLM SETFIRSTCHAR
This message sets the first visible character.

Parameters
param1

lptFVC (/PT)
Insertion point to place in top left-hand corner.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ISuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
An error occurred.

This message scrolls the text to place the character following the insertion point into the upper
left-hand corner of the window. If the insertion point specified is beyond the end of a line, or the end
of the file, it is resolved in the same way as it is for a mouse click.

18-28 PM Programming Reference

/

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM SETFONT
This message sets a font.

Parameters
param1

pFattrs (PFATTRS)
Font attribute structure.

NULL The system font is set.
other The specified font is set.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

tSuccess (BOOL)
Success indicator:

TRUE
FALSE

The font was successfully set.
An error occurred.

Remarks
For any PFATTRS, this message sets the display to use the appropriate font. If NULL, the system font
is used. The screen is updated appropriately.

This can cause an overflow, see MLN_OVERFLOW.

When setting an outline font it is necessary to ensure that the FATTRS structure contains the correct
maximum baseline extent and average character width for the desired point size and that the font
use is marked as FATTR_FONTUSE_TRANSFORMABLE.

Baseline extent and character width are calculated by multiplying the desired point size by the
current display device font resolution (CAPS_ VERTICAL_FONT _RES and
CAPS_HORIZONTAL_FONT_RES; see DevQueryCaps) and dividing by 72, the number of points in an
inch.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-29

MLM SETFORMATRECT
This message sets the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
New format dimensions.

param2

NULL A null value sets both dimensions to the current window size.
other The structure is a pair of LONGs designating the diagonally-opposite corner of the

rectangle, assuming 0,0 for the first. Therefore, they are the width and height in
pels of the format rectangle. These dimensions are used as the word-wrap and
text-size limiting boundaries. Negative values for either dimension cause the MLE
to substitute the current window size (the MLE window rectangle minus margins).

If the rectangle specified has either, or both, of the limits set, and the size is
inadequate to contain the text, fSuccess is set to FALSE and the rectangle
dimensions are replaced with the overflow amounts.

llFlags (ULONG)

Returns
reply

Flags governing interpretation of dimensions

MLFFMTRECT_MATCHWINDOW The dimensions of the format rectangle are always to be
kept the same as the window size minus the margins.
This causes the MLE implicitly to do a
MLM_SETFORMATRECT each time the window is
resized, and effectively causes any other dimensions to
be ignored. Resizing of the window can cause this
setting to be automatically negated (see
MLN_ OVERFLOW).

MLFFMTRECT_LIMITHORZ The width of any line in the MLE cannot exceed the
given horizontal dimension. If word-wrap is on, this
limit has no effect. Word-wrap can result in trailing
blanks beyond the right limit. These do not cause an
overflow notification.

MLFFMTRECT_LIMITVERT The vertical height of the total tex~. as displayed, is
limited to that which fits totally within the vertical
dimension of the format rectangle.

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
An error occurred.

The multi-Une entry field control window procedure responds to this message by setting formatting
dimensions and mode.

Any addition of text that causes the text to exceed the rectangle limits causes a notification before
proceeding (see MLN_PIXHORZOVERFLOW and MLN_PIXVERTOVERFLOW).

Any activity that would cause the rectangle to be unable to contain the existing text (resize, undo,
increasing font size, or word-wrap on or off) is rejected and results in a notification message for
information (see MLN_OVERFLOW).

18-30 PM Programming Reference

/

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM SETIMPORTEXPORT
This message sets the current transfer buffer.

Parameters
param1

pBuff (PBUFFER)
Transfer buffer.

param2

ulLength (ULONG)
Size of transfer buffer in bytes.

Returns
reply

tSuccess (BOOL)
Success indicator:

TRUE
FALSE

Successful completion
An error occurred.

Remarks
Given a far pointer to a buffer, and the size of the buffer, this message sets it as the current transfer
buffer for the MLE. This buffer is used by the MLM_IMPORT and MLM_EXPORT messages. The
system segment limit must be observed when specifying the buffer size.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM SETSEL
This message sets a selection.

Parameters
param1

lplAnchor (/PT)
Insertion point for new anchor point.

param2

lptCursor (/PT)
Insertion point for new cursor point.

Returns
reply

tSuccess (BOOL)
Success indicator:

Remarks
This message sets the anchor and cursor points. The screen display is updated appropriately,
ensuring that the cursor point is visible (which may involve scrolling). Note that the text cursor and
inversion are not displayed if the MLE window does not have the input focus. A negative value for a
point leaves that point alone.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-31

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM SETREADONL Y
This message sets or clears read-only mode.

Parameters
param1

usReadOnly (USHORT)
New read-only value.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
reply

fOld (BOOL)
Previous read-only value.

Remarks
When read-only mode is set, characters typed at the keyboard do not get inserted into the MLE text.
The API insertion interface, however, is still functional, as are selection-manipulation activities and
copy-to-clipboard operations. This is useful as a means of preventing text modification (such as in a
help system), and for providing a minimal blocking printing semaphore.

Default Processing
The default window procedure takes no action on this message, other than to set fO/d to FALSE.

MLM SETTEXTCOLOR
This message sets the text color.

Parameters
param1

IColor (LONG)
Color.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

IOldColor (LONG)
Color previously used.

Remarks
This message sets the color in which the MLE text is to be drawn, and updates the display as
necessary.

The color values are the same as those used by GpiSetColor.

18-32 PM Programming Reference

\

Default Processing
The default window procedure takes no action on this message, other than to set IOldColor to 0.

MLM SETTABSTOP
This message sets the pel interval at which tab stops are placed.

Parameters
param1

plxTab (Pl X)
Pel interval for tab stops.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

plxTabset (Pl X)
Success indicator:

< 0 An error occurred.
Other The value to which the width was set.

Remarks
This message fails if the reserved value is not 0.

This message can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set pixTabset to 0.

MLM SETTEXTLIMIT
This message sets the maximum number of bytes that a multi-line entry field control can contain.

Parameters
param1

ISlze (LONG)
Maximum number of characters in MLFIE_NOTRANS MLE NO_ TRANS format.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

ulFil (ULONG)
Success indicator:

0 Successful completion. Current text fits within the new limit.

Other The number of bytes by which the current text exceeds the proposed limit. The

limit is not changed.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-33

Remarks
The multi-line entry field control window procedure responds to this message by limiting the text size
to /Size bytes. Text size is calculated using the MLFIE_NOTRANS format. Note that this is bytes and
not characters; DBCS programmers should calculate accordingly.

This message returns O if the text limit exceeds or is equal to the existing text. Otherwise it returns
the number of bytes by which the text would have overflowed, and does not change the limit.

The default, which is unbounded, can be specified by entering a non-positive limit.

Default Processing
The default window procedure takes no action on this message, other than to set u/Fit to 0.

MLM SETWRAP
This message sets the wrap flag.

Parameters
param1

usWrap (USHORT)
New value for wrap flag.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
An error occurred.

The multi-line entry field control window procedure responds to this message by setting the word
wrap mode and updating the screen as appropriate.

When word-wrap is turned on, the text is wrapped to fit the formatting rectangle width. When
word-wrap is turned off, the text is allowed to trail off to the right until it reaches an end-of-line
marker.

Word-wrapping is defined as follows. Words are sequences of non-white-space characters
(white-space characters are space, line break, and tab). When word-wrapping is enabled, the whole
word must appear on one line within the formatting rectangle, unless the word by itself is too long to
fit. In this case the word is split following the last character that fits, and the remainder starts a new
line.

This definition then applies recursively to the remainder of the word. The word continues to be
visible. For editing purposes (for example, for word-selection) the word is viewed as a single word
drawn over multiple lines.

18-34 PM Programming Reference

'\

/

Blank characters are always accumulated onto the current line, even if they exceed the horizontal
formatting dimension, that is, blanks are allowed to trail off the right-hand edge. Line-break
characters are also allowed to exceed the horizontal dimension, and any subsequent text must begin
on a new line. The line-break following a line-break character is sometimes referred to as a hard
line-break. Other line breaks, due to word-wrapping, and not to explicit formatting characters, are
referred to as soft line-breaks.

Tab characters must always be visible. If a tab character occurs after the last tab stop within the
horizontal formatting dimension, a soft line-break occurs after the tab.

This message can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window procedure takes no action on this message, other than to set fSuccess to FALSE.

MLM UNDO
This message performs any available undo operation.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

usUndone (USHORT)
Success indicator:

TRUE
FALSE

An undo operation was performed.
No undo operation was performed.

Remarks
The last operation is undone (note that an undo can be undone.)

This can cause an overflow, see MLN_OVERFLOW.

Default Processing
The default window proc~dure takes no action on this message, other than to set usUndone to
FALSE.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-35

WM_BUTTON1DBLCLK (in Multiline Entry Fields)
For the cause of this message, see "WM_BUTTON1DBLCLK" on page 12-10.

Parameters
For a description of the parameters, see "WM_BUTTON1DBLCLK" on page 12-10.

Remarks
This message indicates that mouse button 1 has clicked twice within the system double-click time.

Double-Ciiek
If the click point is in the middle of a non-white-space character, the token (word) surrounding the
clicked-on character, and any trailing spaces, are selected. If the click point is in a space character,
the previous word (along with the trailing spaces including the clicked-on space) is selected. If there
is no preceding word (either because the spaces are at the beginning of the text or immediately
follow a line-break character) the run of spaces is selected. If the click point is on a tab or line-break
character, that character is selected.

Shift-Double-Ciiek
Double-clicking while the Shift key is pressed leaves the anchor point alone, and moves the cursor
point to the beginning or end of the clicked-on token. If the click point is before the anchor point in
the text, the cursor point is moved to the beginning of the surrounding word, otherwise, the cursor
point is moved to the end of the surrounding word. When shift-double-clicking, the selection is
extended to include the token that was double-clicked on.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the owner
window of the MLE. This message has, as its parameters, the original mouse message. The owner
can process the notification or not. If the owner does not process the message, the event is treated
as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_BUTTON1DOWN (in Multiline Entry Fields)
For the cause of this message, see "WM_BUTTON1DOWN" on page 12-13.

Parameters
For a description of the parameters, see "WM_BUTTON1DOWN" on page 12-13.

Remarks
This message delimits mouse button click events. Between a button-down and a button-up event, the
mouse is considered to be dragging. A mouse click is considered to happen on button-down, and
dragging is terminated by a button-up.

Click
Clicking in the text sets the cursor and anchor points to the nearest insertion point. If the MLE is in
overtype mode, the anchor is extended one character further in the text, subject to the end-of-text
and new-line boundary conditions, defined under WM_ CHAR (in Multiline Entry Fields).

Shift-Click
Clicking while the shift key is held down sets the cursor point to the nearest insertion point, while
leaving the anchor point alone.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notjffcation to the owner
window of the MLE. This message has, as its parameters, the original mouse message. The owner
can process the notification or not. If the owner does not process the message, the event is treated
as if it occurred on the closest point in the text.

18-36 PM Programming Reference

'"\,
)

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_BUTTON1UP (in Multiline Entry Fields)
For the cause of this message, see "WM_BUTTON1UP" on page 12-19.

Parameters
For a description of the parameters, see "WM_BUTTON1UP" on page 12-19.

Remarks
This message delimits mouse button click events. Between a button-down and a button-up event the
mouse is considered to be dragging. A mouse click is considered to happen on button-down, and
dragging is terminated by a button-up.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the owner
window of the MLE. This message has, as its parameters, the original mouse message. The owner
can process the notification or not. If the owner does not process the message, the event is treated
as if it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

WM_CHAR (in Multiline Entry Fields)
For the cause of this message, see "WM_CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_CHAR" on page 12-24.

Remarks
The behavior of the MLE, when typing, depends on whether it is in insert or overtype mode, and
whether the selection is empty or not. The selection is defined to be empty when the cursor point is
equal to the anchor point.

When a character is typed, it replaces the current selection. If the selection is empty, the character
is viewed as replacing nothing, so the character is effectively inserted into the text. If one or more
characters are selected, those characters are deleted from the text and replaced by the typed
character.

If the MLE is in insert mode, the cursor and anchor points are moved to immediately follow the newly
typed character.

If the MLE is in overtype mode, the cursor is moved to immediately follow the newly typed character.
If there is no character after the cursor (the new character is at the end of the text) or if the character
after the cursor is a line-break character, the anchor is set to be equal to the cursor point. In any
other case, the anchor is extended one character past the cursor point, defining the next character
as the current selection.

If the typing causes the cursor to go off the screen in any direction, the display is automatically
scrolled. If word-wrap is on, text continues on a new line, otherwise, the screen is scrolled
horizontally.

Scrolling of the text in the window is independent of cursor movement. The cursor and selection
remain unaltered at the same location within the text during all scrolling but the converse is not true.
Any movement of the cursor causes auto-scrolling, if necessary, to ensure that the text location of
the cursor is visible within the window.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-37

Tabs: Tabs are represented as a single character in the text model, and are displayed as enough
white-space to reach the next tab stop. Tab stops are set at pel intervals, starting with zero and
occurring every n pels, where n is a value set by the MLM_SETTABSTOP message, and defaulting to
eight times the average character width of the system font. When a tab is drawn, it uses the number
of pels defined by the following formula:

pelWidth = pelTab - (pelDraw mod pelTab))

where pelTab is the tab interval, in pels, and pelDraw is the pel at which drawing is to begin.

Return: Return (ASCII newline) causes a hard line-break, and the following text begins on a new
line. A line-break character is inserted in the text, which is drawn as a few pels of white-space (for
selection purposes).

Keystroke commands: For all the following keys, unless otherwise noted, the display is scrolled, if
necessary, to keep the cursor point visible. Where noted, the cursor setting behaves differently in
insert mode than in overtype mode. This is subject to the boundary conditions noted above.

Del Causes the contents of the selection region to be deleted. If the selection region
contains no text, it causes the character to the right of the cursor to be deleted.

Shlft+Del Causes the contents of the selection region to be cut to the clipboard.

Insert Toggles between insert and overtype mode. The MLE ignores the Insert key
when it occurs without a modifier.

Shlft+lns Causes the contents of the clipboard to replace the selection region.

Ctrl+lns Causes the selection region to be copied to the clipboard. The selection region
is not otherwise affected.

Backspace Functions similar to Del. If the selection is not empty, Backspace deletes the
selection. If the selection is empty, Backspace deletes the character to the left
of the cursor point. If the MLE is in overtype mode, the anchor point is set, and
the cursor point is moved to be one character previous in the text. If no such
character exists (because the anchor is set to the beginning of the text) the
cursor is set to the anchor point. If the MLE is in insert mode, the cursor and
anchor points are set, as defined at the start of this chapter.

Down Arrow Sets the cursor point to the closest insertion point on the following line, then
sets the anchor point to the cursor point (insertion mode) or one character
following (overtype mode).

Shift+Down Arrow Causes the cursor point to be moved to the closest insertion point on the
following line. The anchor point does not move.

Up Arrow Sets the cursor point to the closest insertion point on the preceding line, then
sets the anchor point to the cursor point (insert mode) or one character
following (overtype mode).

Shift+Up Sets the cursor point to the closest insertion point on the preceding line. The
anchor point is not moved.

Right Arrow Sets the cursor point to the insertion point one character following the cursor
point. The anchor point is set to the cursor point (insert mode) or one character
following (overtype mode).

Shift+Right Causes the cursor point to be set to the insertion· point immediately following
the previous cursor point. The anchor point is not moved.

Left and Shift+Left Work analogously.

Ctrl+Right

Ctrl+Shift+Right

Moves the cursor point to the insertion point immediately preceding the next
word in the text including trailing spaces, and sets the anchor point to be equal
to (insert mode) or one character following (overtype mode) the cursor point.
The EOL (hard line-break) and tab characters are treated as words.

Moves only the cursor point in the same way as Ctrl+Right, but leaves the
anchor point unmoved.

18-38 PM Programming Reference

'\,
)

Ctrl+Left

Ctrl+Shlft+Left

Moves the cursor point to the preceding insertion point at the beginning of a
word, and sets the anchor point to be equal to (insert mode) or one character
following (overtype mode) the cursor point. The EOL (hard line-break) and tab
characters are treated as words.

Moves only the cursor point in the same way as Ctrl+Left but leaves the anchor
point unmoved.

Pagedown and Pageup
Cause the display to be scrolled one screen at a time in either direction. This
behavior is the same as would be encountered during a page-down or page-up
caused by the scroll-bar.

Ctrl+Pagedown and Ctrl+Pageup

Home

Shlft+Home

End

Shlft+End

Ctrl+Home

Cause the display to be scrolled one screen at a time to the right or left
respectively. This behavior is the same as would be encountered during a
page-right or page-left caused by the scroll-bar.

Sets the cursor point to the insertion point at the beginning of the line containing
the cursor point, and sets the anchor point equal to (insert mode) or one
character following (overtype mode).

Moves the cursor point to the insertion point at the beginning of the line. The
anchor point is not moved.

Sets the anchor point to the insertion point at the end of the line containing the
cursor point. If the last character on the line is a line-break character, the
anchor is positioned just before it. The cursor is set equal to (insert mode) or
one character previous to (overtype mode) the anchor.

Moves the cursor point to the insertion point at the end of the line, as above.
The anchor point is not moved.

Moves the cursor point to the insertion point at the beginning of the document.
The anchor point is set equal to (insert mode) or one character following it
(overtype mode).

Ctrl+End Moves the anchor point to the insertion point at the end of the document. The
cursor point is set to be equal to the anchor point (insert mode) or one character
preceding it (overtype mode).

Ctrl+Shlft+Home Moves the cursor point in the same way as Ctrl+Home, but leaves the anchor
point unmoved.

Ctrl+Shlft+End Moves the cursor point in the same way as Ctrl+End, but leaves the anchor
point unmoved.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

Chapter 18. Multi-Line Entry Field Control Window Processing 18-39

WM_ENABLE (in Multiline Entry Fields)
For the cause of this message, see "WM_ENABLE" on page 12-31.

Parameters
For a description of the parameters, see "WM_ENABLE" on page 12-31.

Remarks
The multi-line entry field control window procedure responds to this message by setting the enable
state and by setting flrep/y to 0.

Disabling the window is similar, but not identical, to MLM_DISABLEREFRESH. Enabling the window
is similar, but not identical, to MLM_ENABLEREFRESH. (Note that this also applies to window
styles.) The difference is that a disabled window receives no mouse or keyboard input whereas with
MLM_DISABLEREFRESH it receives the input but discards it.

Default Processing
The default window procedure takes no action on this message, other than to set flreply to 0.

WM_MOUSEMOVE (in Multiline Entry Fields)
For the cause of this message, see "WM_MOUSEMOVE" on page 12-43.

Parameters
For ,a description of the parameters, see "WM_MOUSEMOVE" on page 12-43.

Remarks
The mouse pointer moves and is of interest to the MLE. If refresh is disabled, the pointer is set to the
wait icon (a clock face). If refresh is enabled, the pointer is set to an I-beam. This message can
occur during dragging or when simply tracking the mouse.

Dragging
Dragging sets the selection anchor to be the point where dragging begins, and moves the cursor
point along with it as the mouse is moved. Moving the pointer into the margins while dragging
produces a scroll in the appropriate direction and continues selecting.

Margin Mouse Event
All mouse events in a margin cause the MLE to send a MLN_MARGIN notification to the owner
window MLE. This message has, as its parameters, the original mouse message. The owner can
process the notification or not. If the owner does not process the message, the event is treated as if
it occurred on the closest point in the text.

Default Processing
The default window procedure takes no action on this message, other than to set f Processed to 0.

18-40 PM Programming Reference

WM_QUERYWINDOWPARAMS (in Multiline Entry Fields)
This message occurs when an application queries the entry field control window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The multi-line entry field control window procedure responds to this message by returning the
window parameters indicated by the u/Status parameter of the WNDPARAMS data structure,
identified by the pwndparams parameter.

In response to the WPM_CCHTEXT flag, the text length is reported in the CF_TEXT format. If it
exceeds 64KB-1, then this value is reported. In response to the WPM_ TEXT flag, text up to the
amount returned for the WPM_CCHTEXT value is placed at the indicated location in CF _TEXT format.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to O and sets fresult to FALSE.

Chapter 18. Multi-Line Entry Field Control Wii:idow Processing 18-41

WM_SETWINDOWPARAMS (in Multiline Entry Fields)
This message occurs when an application sets or changes the entry field control window
parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The multi-line entry field control window procedure responds to this message by setting the window
parameters indicated by the u/Status parameter of the WNDPARAMS data structure, identified by the
pwndparams parameter.

If the MLE text is to be set by this message, it is assumed to be in CF _TEXT format (see
MLM_FORMAT) and all existing text is deleted before the new text is inserted. Note that a Control
Data structure can be associated with the window parameters, in which case any field in that
structure can cause a change to the MLE.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

18-42 PM Programming Reference

~
I

,/

/

\
)

Chapter 19. Prompted Entry Field Control Window
Processing

This system-provided window procedure processes the actions on a prompted entry field (combo
box) control (WC_COMBOBOX).

Purpose
A combo box consists of an entry field control and a list box control merged into a single control.
The list, which is usually limited in size, is displayed below the entry field, and offset one dialog-box
unit to its right.

When the combo box control has the focus, the text in the entry field is given selected emphasis and,
if the list box control has a matching entry, it is scrolled to show that match at the top of the list.

A combo box, while sometimes only showing the entryfield, also owns the area occupied by the
invisible list box. Another window can and will be clipped to it if they have clipping flags set.

Combo Box Control Styles
These combo box control styles are available:

CBS_SIMPLE

CBS_DROPDOWN

CBS_DROPDOWNLIST

Both the entry field control and the list box control are visible. When
the selection changes in the list box control, the text of the selected
item in the list box control is placed in the entry field. Also, the text in
the entry field is completed by extending the text of the entry field with
the clos.est match from the list box.

Inherits all the properties of a combo box control with a style of
CBS_SIMPLE and, in addition, the list box control is hidden until the
user requests that it should be displayed.

In which the entry field control is replaced by a static control, that
displays the current selection from the list box control. The user must
explicitly cause the display of the list box control in order to make
alternative selections in the list box.

Combo Box Control Data
None.

Chapter 19. Prompted Entry Field Control Window Processing 19-1

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_WINDOWFRAME
SYSCLR_ENTRYFIELD
SYSCLR_WINDOW
SYSCLR_BUTTONMIDDLE
SYSCLR_BUTTONDARK
SYSCLR_BUTTONLIGHT
SYSCLR_OUTPUTTEXT
SYSCLR_WINDOWTEXT
SYSCLR_HIGHLITEFOREGROUND
SYSCLR_HIGHLITEBACKGROUND
SYSCLR_FIELDBACKRGOUND
SYSCLR_WINDOWFRAME.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _FOREGROUNDCOLOR
PP _DISABLEDFOREGROUNDCOLOR
PP _HIGHLIGHTFOREGROUNDCOLOR
PP _FONTNAMESIZE
PP _BORDERCOLOR.

Combo Box Control Notification Messages
The combo box control uses most of the same window messages as the entry field control and the
list box control to notify its owner of significant events.

19-2 PM Programming Reference

\

\
)

WM_CONTROL (in Combination Boxes)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

usld (USHORT)
Control window identity.

usnotlfycoc:le (USHORT)
Notify code:

param2

CBN_EFCHANGE

CBN_MEMERROR

CBN_EFSCROLL

CBN_LBSELECT
CBN_LBSCROLL
CBN_SHOWLIST
CBN_ENTER

The content of the entry field control has changed, and the change has
been displayed on the screen.
The entry field control cannot al locate the storage necessary to
accommodate window text of the length implied by the
EM_SETIEXTLIMIT message.
The entry field control is about to scroll horizontally. This can happen
in these circumstances:

• The application has issued a WinScrollWindow call.
• The content of the entry field control has changed.
• The caret has moved.

The entry field control must scroll to show the caret position.
An item in the list box control has been selected.
The list box is about to scroll.
The list box is about to be displayed.
The user has depressed the ENTER key or double clicked (single
clicked in the case of a drop-down list) on an item in the list box
control.

hwndcontrolspec (HWND)
Combination (combo) box-control window handle.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
The entry field control window procedure generates this message and sends it to its owner,
informing the owner of the event.

Default Processing
The default window procedure takes_ no action on this message, other than to set f/reply to 0.

Chapter 19. Prompted Entry Field Control Window Processing 19-3

Combo Box Control Window Messages
The combo box control uses most of the same messages as the entry field control and the list box
control. In particular, the following messages are supported to achieve the functions of a combo box.
These messages are explained in detail in the entry field control window messages and the list box
control window messages sections.

WM_SETWINDOWPARAMS (In Entry Fields) To set the text of the entry field.

WM_QUERYWINDOWPARAMS (In Entry Fields) To obtain the text of the entry field.

LM_QUERYITEMCOUNT To obtain the count of items in the list box control.

LM_INSERTITEM

LM_SETTOPINDEX

LM_ QUERYTOPINDEX

LM_DELETEITEM

LM_SELECTITEM

LM_ QUERYSELECTION

LM_SETITEMTEXT

LM_ QUERYITEMTEXT

LM_ QUERYITEMTEXTLENGTH

LM_SEARCHSTRlNG

LM_DELETEALL

WM_ENABLE

EM_ QUERYFIRSTCHAR

EM_SETFIRSTCHAR

EM_QUERYCHANGED

EM_QUERYSEL

EM_SETSEL

EM_SETTEXTLIMIT

EM_CUT

EM_.:.PASTE

EM_COPY

EM_CLEAR

19-4 PM Programming Reference

To insert an item into the list box control.

To scroll the list box control so that the specified item is at the
top.

To obtain the index of the item at the top of the list box control.

To delete an item from the list box control. If necessary, this
also changes the content of the entry field to the item at the top
of the I ist box control.

To select a specified item in the list box control. Also, this
changes the content of the entry field to the item at the top of
the list box control and, if the list box control is not visible,
causes the list box control to 'dropdown' below the entry field
control.

To obtain the current selection in the list box control.

To change the text of an item in the list box control. If
necessary, this also changes the content of the entry field
control.

To obtain the text of an item in the list box control.

To obtain the length of the text of an item in the list box control.

To obtain the index of an item in the list box control containing a
specified string.

To delete all the items in the list box control.

To enable the combo box control to respond to input.

To obtain the character displayed at the left edge of the entry
field control.

To scroll the entry field control so that the specified character is
displayed at the left edge of the entry field control.

To obtain the changes to the entry field control.

To obtain the current selection of the entry field control.

To set the current selection of the entry field control.

To set the maximum number of characters to be contained in
the entry field control.

To place the contents of the selection of the entry field control
into the clipboard and then delete those contents from the entry
field control.

To place the contents of the clipboard into the entry field
control.

To place the contents of the selection of the entry field control
into the clipboard.

To clear the current selection of the entry field control.

\
/

This section describes the combo box control window procedure actions on receiving these

messages:

CBM HILITE
This message sets the highlighting state of the entry field control.

Parameters
param1

usHlllte (USHORT)
Highlighting indicator:

TRUE Highlight the entry field control.
FALSE Do not highlight the entry field control.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fChanged (BOOL)
Changed indicator:

TRUE The highlighting state of the entry field has been changed.
FALSE The highlighting state of the entry field has not been changed.

Remarks
The combo box control window procedure responds to this message by setting the highlighting state

of the entry field control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it, other than to set fChanged to the default value of FALSE.

CBM ISLISTSHOWING
This message determines if the list box control is showing.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fShowing (BOOL)
Showing indicator:

TRUE The list box control is showing.
FALSE The list box control is not showing.

Chapter 19. Prompted Entry Field Control Window Processing 19-5

Remarks
The combo box control window procedure responds to this message by indicating if the list box
control is showing.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fShowing to the default value of FALSE.

CBM SHOWLIST
This message sets the showing state of the list box control.

Parameters
param1

usShowlng (USHORT)
Showing indicator:

TRUE
FALSE

param2 (ULONG)
Reserved.

Show the I ist box control.
Do not show the list box control.

0 Reserved value, 0.

Returns
reply

fChanged (BOOL)
Changed indicator:

Remarks

TRUE
FALSE

The list box showing state has been changed.
The list box showing state has not been changed.

The combo box control window procedure responds to this message by setting the showing state of
the I ist box control.

This message has no effect on a combo box control whose style is CBS_SIMPLE.

Hiding the list box control has no effect on the selection in the list box control. The selection in the
list box control must be changed by the use of a LM_SELECTITEM message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fChanged to the default value of FALSE.

19-6 PM Programming Reference

\
)

Chapter 20. Scroll Bar Control Window Processing

This system-provided window procedure processes the actions on a scroll bar control

(WC_SCROLLBAR).

Purpose
Scroll bars are controls used to indicate that additional information can be displayed in a window,

logically to the left or right for horizontal scroll bars, logically above or below for vertical scroll bars.

The user interface for scroll bars allows for scrolling one unit or one page at a time, or alternatively

picking up the scroll bar slider and moving it to a position in the scroll bar that indicates a logical

position in the data.

Scroll Bar Control Styles
These scroll bar control styles are available:

SBS_HORZ
SBS_VERT
SBS_ THUMBSIZE

SBS_AUTOTRACK
SBS_AUTOSIZE

Create a horizontal scroll bar.
Create a vertical scroll bar.
Indicates the presence of the cVisible and cTotal parameters in the SBCDATA

data structure.
The slider scrolls as more information is being displayed on the screen.

The scroll bar slider changes size to reflect the amount of data contained in

the window.

Scroll Bar Control Data
See SBCDA TA on page A-114.

Chapter 20. Scroll Bar Control Window Processing 20-1

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_SCROLLBAR
SYSCLR_WINDOWFRAME
SYSCLR_FIELDBACKGROUND
SYSCLR_WINDOW
SYSCLR_BUTTONMIDDLE.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _FOREGROUNDCOLOR
PP _BORDERCOLOR
PP _HILITEFOREGROUNDCOLOR.

Scroll Bar System Values
Applications can use the following system values to create and add control scroll bars:

SV _ CXVSCROLL
SV _CYHSCROLL
SV _CYVSCROLLARROW
SV _CXHSCROLLARROW
SV _FIRSTSCROLLRATE

SV _SCROLLRATE

SYSCLR_SCROLLBAR
TID_SCROLL

Width of the vertical scroll-bar.
Height of the horizontal scroll-bar.
Height of the vertical scroll-bar arrow bit maps.
Height of the vertical scroll-bar arrow bit maps.
The delay (in milliseconds) before autoscrolling starts, when using a
scroll bar.
The delay (in milliseconds) between scroll operations, when using a
scroll bar.
Color for drawing scroll-bar backgrounds.
Timer ID for a reserved scrolling time. This is used for sending
notification messages when a scroll-arrow or scroll-bar background is
selected.

20-2 PM Programming Reference

"'\
;

/

"'1
I

Scroll Bar Control Notification Messages
These messages are initiated by the scroll bar control window procedure to notify its owner of

significant events.

WM_HSCROLL (in Horizontal Scroll Bars)
For the cause of this message, see "WM_HSCROLL" on page 12-38.

Parameters
For a description of the parameters, see "WM_HSCROLL" on page 12-38.

Remarks
The scroll bar control window procedure generates this message and posts it to its owner, informing

the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set reply to 0.

WM_VSCROLL (in Vertical Scroll Bars)
For the cause of this message, see "WM_VSCROLL" on page 12-68.

Parameters
For a description of the parameters, see "WM_VSCROLL" on page 12-68.

Remarks
The scroll bar control window procedure generates this message and posts the message to the

owner of the procedure, informing the owner of the event.

Default Processing
The default window procedure takes no action on this message, other than to set flrep/y to 0.

Chapter 20. Scroll Bar Control Window Processing 20-3

Scroll Bar Control Window Messages
This section describes the scroll bar control window procedure actions on receiving the following
messages.

SBM QUERYPOS
ThiS message returns the current slider position in a scroll bar window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

ssllder (SHORT)
Slider position.

Remarks
The scroll bar control window procedure responds to this message by returning the current slider
position.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set sslider to the default value of 0.

SBM QUERYRANGE
ThiS message returns the scroll bar range minimum and maximum values.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, o.

Returns
reply

sflrst (SHORT)
First bound.

slast (SHORT)
Last bound.

20-4 PM Programming Reference

\
I

Remarks
The scroll bar control window procedure responds to this message by returning the first and last

bounds of the scroll bar range.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it, other than to set reply to the default value of sfirst and s/ast 0.

SBM SETPOS
This message sets the position of the slider in a scroll bar window.

Parameters
param1

ssllder (SHORT)
Position of slider.

If this value is outside the scroll-bar range, the slider is moved to the nearest valid position

within the range.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE Successful completion

Remarks
The scroll bar control window procedure responds to this message by setting the position of the

slider.

The scroll bar control is redrawn to reflect the change.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it.

Chapter 20. Scroll Bar Control Window Processing 20-5

SBM SETSCROLLBAR
This message sets the scroll-bar range and slider position.

Parameters
param1

ssllder (SHORT)
Position of slider.

param2

If this value is outside the scroll-bar range, the slider is moved to the nearest valid position
within the range.

sflrst (SHORT)
First bound.

This value must not be less than 0. If a value less than 0 is supplied, 0 is used as the value.

slast (SHORT)
Last bound.

Returns
reply

The vaJue must not be less than O or sfirst. If a value less than this is supplied, the higher of
O or sfirst is used as the value.

fSuccess (BOOL)
Success indicator:

TRUE Successful completion

Remarks
The scroll bar control window procedure responds to this message by setting the values of the
information range and the position of the slider.

The scroll bar is redrawn to reflect the change.

For example, if a scroll-bar is to allow scrolling through 100 lines of text, of which 50 are visible at
any one time, and the top display line is currently number 25, sfirst should be set to 1, slast to 51
(since there are only 51 positions at which the slider may be placed), and sslider to 25. The
SBM_SETIHUMBSIZE message should be used in this example to set the slider size to 50 visible
parts out of 100.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it.

20-6 PM Programming Reference

\
)

SBM SETTHUMBSIZE
This message sets the scroll bar slider size.

Parameters
param1

svlslble (SHORT)
Size of the visible part of the document.

stotal (SHORT)
Size of the entire document.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE Successful completion

Remarks
The scroll bar control window procedure responds to this message by setting the size of the slider
proportional to the visible part of the document. If the visible part exceeds or is equal to the entire
document the scroll bar is disabled, otherwise the scroll bar is enabled.

The scroll bar is redrawn-to reflect the change.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
onit.

Chapter 20. Scroll Bar Control Window Processing 20-7

WM_QUERVCONVERTPOS (in Scroll Bars)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The scroll bar control window procedure returns QCP _NOCONVERT.,

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_QUERVWINDOWPARAMS (in Scroll Bars)
This message occurs when an application queries the scroll bar control window parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The scroll bar control window procedure responds to this message by returning the window
parameters indicated by the u/Status parameter of the WNDPARAMS data structure identified by the
pwndparams parameter.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to 0 and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in Scr~ll Bars)
This message occurs when an application sets or c~anges the scroll bar control window parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The scroll bar control window procedure responds to this message by setting the window
parameters indicated by the u/Status parameter of the WNDPARAMS data structure identified by the
pwndparams parameter.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

20-8 PM Programming Reference

Chapter 21. Spin Button Control Window Processing

This system-provided window procedure processes the actions on a spin button control
(WC_SPINBUTTON).

Purpose
A spin button control (WC_SPINBUTTON window class) is a visual component whose specific purpose
is to give users quick access to a finite set of data. The spin button allows users to select from a
scrollable ring of choices. Since users can see only one item at a time, the spin button control
should be used only with data that is intuitively related, such as a list of months of the year, or an
alphabetic list of cities or states.

A spin button consists of at least one spin field that is a single-line entry field (SLE), and up and down
arrows that are stacked on top of one another. These arrows are positioned at the right of the SLE.

You can create multifield spin buttons for those applications in which users must select more than
one value. For example, in setting a date the spin button control can provide individual fields for
setting the month, day, and year. The first spin field in the spin button could contain a list of months,
the second spin field could contain a list of numbers and the third spin field could contain a list of
years.

Spin Button Control Styles
Create a spin button using the style bits listed below. These styles can be joined together by using
logical ORs (I).

• Specify one of the following to determine whether a spin field will be a master or a servant. If
neither is specified, SPBS_SERVANT is the default.

SPBS_MASTER

SPBS_SERVANT

The spin button component consists of at least one single line
entry field (SLE), or spin field, and two arrows, the Up Arrow and
the Down Arrow. When a spin button contains more than one spin
field, the master component contains the spin arrows. If the
component contains only one spin field, it should be a master.

You can create a multifield spin button by spinning servants from
the master.

• Specify one of the following to determine the type of characters allowed in the spin field:

SPBS_ALLCHARACTERS

SPBS_NUMERICONL Y

SPBS_READONLY

Any character can be typed in the spin field. This is the default.

Only the digits 0-9 and the minus sign(-) can be typed in the spin
field.

Nothing can be typed in the spin field.

• Specify one of the following to determine how the text is to be presented in the spin field:

SPBS_JUSTLEFT

SPBS_JUSTRIGHT

SPBS_JUSTCENTER

Left-justify the text. This is the default.

Right-justify the text.

Center the text.

• Specify the following when you do not want a border around the spin button:

SPBS_NOBORDER Suppresses drawing a border.

• Specify the following to increase the spin speed:

SPBS_FASTSPIN Enables the spin button to increase the spin speed with time. The
speed doubles every two seconds.

Note: The spin button skips information when this option is specified. Do not use
SPBS_FASTSPIN if the application requires that this field be checked each time a spin up

Chapter 21. Spin Button Control Window Processing 21-1

or spin down occurs. Do not specify this option on a master component that has servants
spun from it.

• Specify the following to pad numeric fields with Os. This is useful when the spin field contains
values that represent time or money.

SPBS_PADWITHZEROS The output number is padded at the front between the first
non-zero digit and the field width, or 11 characters, whichever is
the lesser. The negative sign, if there is one, is retained. The
maximum number of characters required to display a LONG
number is 11.

Spin Button Control Notification Message
This message is initiated by the spin button control window to notify its owner of significant events.

WM_CONTROL (in Spin Button Controls)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

Id (USHORT)
Identity of the spin button component window.

nollfycode (USHORT)

param2

Notification code.

SPBN_UPARROW

SPBN_DOWNARROW

SPBN_SETFOCUS
SPBN_KILLFOCUS
SPBN_ENDSPIN

SPBN_CHANGE

Tells the application that the Up Arrow was clicked on, or the Up
Arrow key was pressed.
Tells the application that the Down Arrow was clicked on, or the
Down Arrow key was pressed.
Tells the application which spin field was selected.
Tells the application when the spin field loses focus.
Tells the application that the user released the select button or one
of the arrow keys while spinning a button.
Tells the application that the contents of the spin field changed.

hwnd (HWND)
Window handle.

The interpretation of this handle is dependent upon the following notification codes:

• SPBN_UPARROW, SPBN_DOWNARROW, and SPBN_ENDSPIN.

The param2 parameter is the handle to the currently selected spin field in a particular
master-servant setup. If either the Up or Down Arrow is clicked on and none of a spin
button's servants are currently selected, the master will return a handle to itself.

• SPBN_SETFOCUS

The param2 parameter is the handle of the currently selected spin field.

This message tells the application which spin field is selected.

• SPBN_KILLFOCUS

The param2 parameter is NULLHANDLE if the spin field loses focus or no spin field is
currently selected.

This message tells the application when a spin field loses focus.

Note: Both SPBN_KILLFOCUS and SPBN_SETFOCUS are set independently. You must
check this message only when the application does not specify a master-servant
relationship.

21-2 PM Programming Reference

\
/

• SPBN_CHANGE

The param2 parameter is the handle of the spin button in which the spin field text
changed.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is sent when, as specified by notifycode, the spin button component must tell its owner
of a significant event.

Default Processing
The default window procedure does not expect to receive this message and takes no action other

than to return 0.

Spin Button Control Window Messages
Thi~ section describes the spin button control window procedure actions on receiving the following

messages.

SPBM OVERRIDESETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUpLlmlt (LONG)
Upper limit.

param2

ILowLimit (LONG)
Lower limit.

Returns
reply

fResult (BOOL)
Return.

TRUE
FALSE

Successful completion.
Error occurred.

Remarks
The application sends this message to the component to set or reset numeric limits.

This message is functionally identical to SPBM_SETLIMITS, except that the current value of the spin
button does not change if it is out of range.

When the upper limit is less than the lower limit, FALSE is returned.

Chapter 21. Spin Button Control WindowProcessing 21-3

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

SPBM_ QUERYLIMITS
This message enables an application to query the limits of a numeric spin field.

Parameters
param1

IUpLlmlt (LONG)
Upper limit.

param2

ILowLlmlt (LONG)
Lower limit.

Returns
reply

fResult (BOOL)
Return.

Remarks

TRUE
FALSE

Successful completion.
Error occurred.

The application sends this message to the component to determine the limits of a numeric spin field.

When the spin button has no data, or when it is spinning an array, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

SPBM_QUERYVALUE
This message causes the component to show the value in the spin field.

Parameters
param1

pStorage (PVOID)

param2

Place for returned value.

A place for the returned value. This value is either the address of a string or the address of
a long variable.

If the usBufSize is 0, param1 is assumed to be an address of a long variable.

If param1 is Other, it is assumed to be an address of a string.

NULL Causes the spin button to process the reset or update as specified, but it will not
try to return a value to the application.

Other The address where the value is returned.

Consists of two USHORT parameters.

usBufSlze (USHORT)
Buffer size.

If usBufSize is too small to return all of the text, the spin button returns as much of the text
as it can.

21-4 PM Programming Reference

\
/

0 The spin button assumes that param1 is the address of a long variable. If the data
in the spin button is spinning between an upper and lower limit, the current value
is passed back in the variable.

If the data in the spin button is in an array, the index of the current array value (or
last valid value) is passed back in the variable.

Other The spin button assumes that param1 is the address of a string. The information
passed back in the string is dependent upon the flags in the usValue parameter.

usValue (USHORT)
Update/reset value.

Returns
reply

Controls how the spin field is updated.

SPBQ_UPDATEIFVALID Update the contents of the spin field if the value is valid. This is
the default.

Specifying this flag on a query will not update the contents of the
spin field if it is exactly the same as an item in the spin button
list.

If an item in the list is Monday, specifying SPBQ_UPDATEIFVALID
updates the spin field contents when MONDAY, monday, or
mONDAY are typed, but not when Monday is typed. This
prevents recursion if the application checks for the validity each
time a SPBN_CHANGE message is sent from the component.

SPBQ_ALWAYSUPDATE Update the contents of the spin field if the value is valid. Reset
the contents of the spin field to the last valid value if the field
contains data that is not valid.

SPBQ_DONOTUPDATE

If the spin button is spinning numbers between an upper and a
lower limit, and the content of the spin field is a valid number
that is out of range, the spin button does not reset itself to the
last valid value. It sets the current position at the upper limit
when the out-of-range number specified is above the upper limit.
It sets the current position at the lower limit when the
out-of-range number is below the lower limit.

When the current value is changed, the return of the query
message is still FALSE.
Do not update the contents of the spin field, even if the value is
valid.

IResult (BOOL)
Return.

Remarks

TRUE
FALSE

Successful completion.
Error occurred.

The application sends this message to the component to determine what value is in the spin field.
The application sets up a field for the component to deposit the value, and sets a flag to determine
what the function does when the value matches or does not match the given spin-list values.

TRUE is returned when a matched value is found, or the data is in the range.

FALSE is returned when no match is found, th~ value is out of range, or no spin data exists.

Chapter 21. Spin Button Control Window Processing 21-5

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

SPBM SETARRAY
This message causes the component to set or reset the array of data.

Parameters
param1

pszStrl (PSZ)
Pointer.

Pointer to the new array of values.

param2

usltems (USHORT)
Number of items.

Number of items in the array.

Returns
reply

fResult (BOOL)
Return.

Remarks

TRUE
FALSE

Successful completion.
Error occurred.

The application sends this message to the component to set or reset the array of data.

The component tries to leave the current value unchanged. However, if the current value is out of
range for the new array, it is moved to the closest extreme. Thus, if the current value is less than 0,
it is moved to 0. If the current value is greater than the previous value, it is set to the previous value.

If the data exceeds 64KB, or if param1 or param2 equal 0, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

SPBM SETCURRENTVALUE
This message causes the component to set or reset the current numeric value or array index.

Parameters
param1

IValue (LONG)
Array value or index.

Current value or index of array.

param2

ulReserved (ULONG)
Reserved.

·O Reserved value, 0.

21-6 PM Programming Reference

'\
/

Returns
reply

fResult (BOOL)
Return.

TRUE
FALSE

Successful completion.
Error occurred.

Remarks
The application sends this message to the component to set or reset the current numeric value or
array index.

FALSE is returned when the value is out of range or there is no spin data.

Default Processing
The default window procedure does not expect to receive this message and takes no action other

than to return FALSE.

SPBM SETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUplimlt (LONG)
Upper limit.

param2

ILowlimlt (LONG)
Lower limit.

Returns
reply

fResult (BOOL)
Return.

TRUE
FALSE

Successful completion.
Error occurred.

Remarks
The application sends this message to the component to set or reset numeric limits. The component

sets the current value to the content in the spin field when it is a valid number. When the current
value is out of the range of the limits, it is moved to the nearest limit, upper or lower.

If the upper limit is less than the lower limit, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action other

than to return FALSE.

Chapter 21. Spin Button Control Window Processing 21-7

SPBM SETMASTER
This message causes the component to identify its master.

Parameters
param1

hwndHwnd· (HWND)
Component handle.

Handle of master component.

param2

ulReserved (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fResult (BOOL)
Return.

Remarks

TRUE
FALSE

Successful completion.
Error occurred.

The application sends this message to the component to tell a component who its master is.

When the application wants to take control of the spin button, it must set the param1 of each spin
button to NULLHANDLE. This must be done, for example, when a spin button with a non-contiguous
list of spin values is created (2, 4, 6, 8, 10 ...). When the param1 of a spin button is NULLHANDLE, the
spin button does not perform the following default functions:

• Spin up or down on its own when the Up or Down Arrow key is pressed.
• Spin up or down when the Up or Down Arrow of the master is pressed.
• A master does not take the focus when its arrows are pressed and none of its servants have

focus.
• The spin button does not send itself an SPBM_QUERYVALUE message with the

SPBQ_ALWAYSUPDATE flag to update the current value when an SPBM_SPINUP or
SPBM_SPINDOWN message is received.

• The spin button does not fast spin.

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

21-8 PM Programming Reference

\
)

SPBM SETTEXTLIMIT
This message sets the maximum number of characters allowed in a spin field.

Parameters
param1

usLlmlt (USHORT)
Character limit.

Number of characters to allow.

param2

ulReserved (ULONG)
Reserved.

Returns
reply

0 Reserved value, 0.

fResult (BOOL)
Return.

TRUE
FALSE

Successful completion.
Error occurred.

Remarks
The application sends this message to set the maximum number of characters allowed in the spin

field. The size limit of the spin field is 255 characters. This is the default.

When the size exceeds 255 characters, FALSE is returned,

Default Processing
The default window procedure does not expect to receive this message and takes no action other

than to return FALSE.

SPBM SPINDOWN
This message causes the component to show the previous value (spin backward).

Parameters
param1

ulltem (ULONG)
Number of values.

Number of values to spin down.

param2

ulReserved (ULONG)
Reserved.

Returns
reply

0 Reserved value, 0.

fResult (BOOL)
Return.

TRUE
FALSE

Successful completion.
Error occurred.

Chapter 21. Spin Button Control Window Processing 21-9

Remarks
The application sends this message to the component when it wants the previous value shown (spin
backward).

When there is no data to spin, FALSE is returned.

Default Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

SPBM SPINUP
This message causes the component to show the next value (spin forward).

Parameters
param1

ulltem (ULONG)
Number of values.

Number of values to spin up.

param2

ulReserved (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fResult (BOOL)
Return.

Remarks

TRUE
FALSE

Successful completion.
Error occurred.

The application sends this message to the component when it wants the next value shown (spin
forward).

When there is no data to spin, FALSE is returned.

Def a ult Processing
The default window procedure does not expect to receive this message and takes no action other
than to return FALSE.

21-10 PM Programming Reference

Chapter 22. Static Control Window Processing

This system-provided window procedure processes the actions on a static control (WC_STATIC).

Purpose
Static controls are simple text fields, bit maps, icons, and boxes that can be used to label or box
other controls. Static controls do not accept user input, nor do they send notification messages to
their owner.

Static Control Styles
These static control styles are available:

SS_TEXT

SS_ GROUPBOX

SS_ICON

SS_SYSICON

Creates a box with formatted text. The 1ext is formatted before it is
displayed according to the setting of these text drawing-style flags:

Flag
DT_LEFT
DT_CENTER
DT_RJGHT

ORed with one of:

Flag
DT_TOP
DT_VCENTER
DT_BOTTOM

Meaning
Left-justified text
Centered text
Right-justified text

Meaning
Text is aligned to top of window
Text is aligned vertically in center of window
Text is aligned to bottom of window

The following text drawing style can also be ORed, but only if DT_TOP
and DT _LEFT are also specified:

DT~WORDBREAK Text is multi-line with word-wrapping at
ends of lines.

Note: For "static" text that can be selected, a Button Control with a
style of BS_NOBORDER can be used.

A group box static control is a box that has an identifying text string in
its upper left corner. Group boxes are used to collect a group of radio
buttons or other controls into a single unit.

Draws an icon. The text of the static control is a string that is used to
derive the resource ID from which the icon is loaded. The format of the
string is:

• The first byte is X 1 FF 1 • the second byte is the low byte of the
resource ID, and the third byte is the high byte of the resource ID.

• The first character is "#"; subsequent characters make up the
decimal text representation of the resource ID. This format can be
used for specifying a system icon in a resource file. The decimal
string is the value of the appropriate SPTR_ * constant

If the string is empty or does not follow the format above, no resource
is loaded.

The resource is assumed to reside in the resource file of the current
process.

This.control is resized to the size of the icon.

This style is the same as SS_ICON except that the icon ID is specified
as one of the system pointer ID values (SPTR_* values) rather than a
resource ID. This style provides a convenient way to include system
icons in application dialog boxes.

Chapter 22. Static Control Window Processing 22-1

SS_BITMAP

SS_FGNDRECT

SS_BKGNDRECT

SS_FGNDFRAME

SS_BKGNDFRAME

SS_HALFTONERECT

SS_HALFTONEFRAME

SS_AUTOSIZE

Static Control Data
None.

Default Colors

Draws a bit map. The text of the static control names the bit-map
resource, as for SS_ICON.

Creates a rectangle filled with the color of the foreground.

Creates a rectangle filled with the color of the background.

Creates a box with frame color equal to the foreground color.

Creates a box with frame color equal to the background color.

Creates a rectangle filled with halftone shading.

Creates a box with halftone shading frame.

The static control will be sized to make sure the contents fit.

The following system colors are used when the system draws button controls:

SYSCLR_WINDOWFRAME
SYSCLR_WINDOWSTATICTEXT
SYSCLR_WINDOW
SYSCLR_BACKGROUND.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _BORDERCOLOR
PP _FOREGROUNDCOLOR.

Static Control Notification Messages
No notification messages are initiated by the static control window procedure.

22-2 PM Programming Reference

Static Control Window Messages
This section describes the static control window procedure actions on receiving the following
messages.

SM_ QUERYHANDLE
This message returns the icon or bit-map handle of a static control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

hbmHandle (HBITMAP)
Icon or bit-map handle of the static control:

NULLHANDLE No icon or bit-map handle of the static control exists, or an error occurred.
Other Icon or bit-map handle of the static control.

Remarks
The static control window procedure responds to this message by setting hbmHandle to the handle of
the icon or bit-map of the static control.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set hbmHandle to the default value of 0.

Chapter 22. Static Control Window Processing 22-3

SM SETHANDLE
This message sets the icon or bit-map handle of a static control.

Parameters
param1

hbmHandle (HBITMAP)
Icon or bit-map handle of a static control.

This is an icon handle when sent to a control with a style of SS_ICON or SS_SYSICON, and a
bit-map handle when sent to a control with a style of SS_BITMAP.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

hbmHandle (HBITMAP)
Icon or bit-map handle of the static control:

NULLHANDLE No icon or bit-map handle of the static control exists, or an error occurred.
Other Icon or bit-map handle of the static control.

Remarks
The static control window procedure responds to this message by setting the icon or bit-map handle
of a static control to the value specified by hbmHandle, and causes the static control to be redrawn,
using the new item handle.

It should only be sent to a control with a style of SS_BITMAP, SS_ICON, or SS_SYSICON.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set hbmHandle to the default value of 0.

WM_MATCHMNEMONIC (in Static Controls)
For the cause of this message, see "WM_MATCHMNEMONIC" on page 12-40.

Parameters
For a description of the parameters, see "WM_MATCHMNEMONIC" on page 12-40.

Remarks
The static control window procedure responds to this message by setting fresult as appropriate.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

22-4 PM Programming Reference

~
)

WM_QUERYCONVERTPOS (in Static Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The static control window procedure returns QCP _NOCONVERT.,

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_QUERYWINDOWPARAMS (in Static Controls)
This message occurs when an application queries the static control window procedure window
parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Remarks
The static control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure sets the u/Text, u/PresParams, and u/Ct/Data parameters of the
WNDPARAMS data structure, identified by pwndparams, to zero and sets fresult to FALSE.

WM_SETWINDOWPARAMS (in Static Controls)
This message occurs when an application sets or changes the static control window procedure
window parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Remarks
The static control window procedure responds to this message by passing it to the default window
procedure.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

Chapter 22. Static Control Window Processing 22-5

22-6 PM Programming Reference

\
!

Chapter 23. Title Bar Control Window Processing

This system-provided window procedure processes the actions on a title bar control (WC_TITLEBAR).

Purpose
The title bar control is the frame control that is used to display the application window title. It is also

used to display the active or inactive status of the frame window.

The title bar control also implements the user interface for moving the frame window.

The standard identifier for a title bar control in a frame window is FID_TITLEBAR.

Title Bar Control Styles
There is only one title bar style, the default.

Title Bar Control Data
None.

Default Colors
The following system colors are used when the system draws button controls:

SYSCLR_ACTIVETITLETEXTBGND
SYSCLR_ACTIVETITLE
SYSCLR_ACTIVETITLETEXT,
SYSCLR_ACTIVETITLETEXTBGND
SYSCLR_INACTIVETITLE
SYSCLR_INACTIVETITLETEXT
SYSCLR_INACTIVETITLETEXTBGND
SYSCLR_ TITLEBOTTOM
SYSCLR_(IN)ACTIVETITLETEXTBGND
SYSCLR_(IN)ACTIVETITLE.

Some of these defaults can be replaced by using the following presentation parameters in the
application resource script file or source code:

PP _FONTNAMESIZE
PP _ACTIVECOLOR
PP _INACTIVECOLOR
PP _ACTIVETEXT*COLOR
PP _INACTIVETEXT*COLOR
PP _ACTIVETEXTFGNDCOLOR
PP _INACTIVETEXTFGNDCOLOR
PP _BORDERCOLOR.

Chapter 23. Title Bar Control Window Processing 23-1

Title Bar Control Notification Messages
These messages are initiated by the title bar control to notify its owner of significant events.

WM_SYSCOMMAND (in Title Bar Controls)
For the cause of this message, see "WM_SYSCOMMAND" on page 12-63.

Parameters
For a description of the parameters, see "WM_SYSCOMMAND" on page 12-63.

The title bar control window procedure sets uscmd to the title bar control identity and ussource to
CMDSRC_ OTHER.

Remarks
The title bar control window procedure generates this message when a mouse input message is
received. The window procedure posts the message to the queue of the window owner.

The purpose of this message is to notify the owner window to maximize or restore depending on its
current state.

Default Processing
The default window procedure takes no action on this message, other than to set ff reply to 0.

WM_ TRACKFRAME (in Title Bar Controls
For the cause of this message, see "WM_TRACKFRAME" on page 12-66.

Parameters
For a description of the parameters, see "WM_ TRACKFRAME" on page 12-66.

Remarks
The title bar control window procedure generates this message and sends it to its owner, informing
the owner that a mouse button down message has been received.

Default Processing
The default window procedure takes no action on this message, other than to set fresult to FALSE.

Title Bar Control· Window Messages
This section describes the title bar control window procedure actions on receiving the following
messages.

23-2 PM Programming Reference

\
y'

TBM_ QUERYHILITE
This message returns the highlighting state of a title-bar control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fHlghlighled (BOOL)
Highlighting state:

TRUE
FALSE

Title-bar control is highlighted
Title-bar control is not highlighted.

Remarks
The title bar control window procedure responds to this message by returning the highlighting state

of the title-bar window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fHighlighted to the default value of FALSE.

TBM SETHILITE
This message is used to highlight or unhighlight a title-bar control.

Parameters
param1

usHlghllghled (USHORT)
Highlighting indicator:

TRUE Highlight the title-bar control
FALSE Remove highlight from the title-bar control.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

fSuccess (BOOL)
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Remarks
The title bar control window procedure responds to this message by setting the highlighting state
according to usHighlighted. If the title bar highlighting state is changed by this message, the title bar

will repaint.

Chapter 23. Title Bar Control Window Processing 23-3

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it, other than to set fSuccess to the default value of FALSE.

WM_QUERYCONVERTPOS (in Title Bar Controls)
For the cause of this message, see "WM_QUERYCONVERTPOS" on page 12-51.

Parameters
For a description of the parameters, see "WM_QUERYCONVERTPOS" on page 12-51.

Remarks
The title bar control window procedure returns QCP _NOCONVERT.

Default Processing
For the default window procedure processing of this message see "WM_QUERYCONVERTPOS" on
page 12-51.

WM_QUERYWINDOWPARAMS (in Title Bars)
This message occurs when an application queries the title bar control window procedure window
parameters.

Parameters
For a description of the parameters, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Default Processing
The title bar control window procedure queries the appropriate window parameters in accordance
with pwndparams and sets fresult to TRUE if the operation is successful, otherwise to FALSE.

WM_SETWINDOWPARAMS (in Title Bar Controls)
This message occurs when an application sets or changes the title bar control window procedure
window parameters.

Parameters
For a description of the parameters, see "WM_SETWINDOWPARAMS" on page 12-60.

Default Processing
The title bar control window procedure sets the appropriate window parameters in accordance with
pwndparams and sets fresult to TRUE if the operation is successful, otherwise to FALSE.

23-4 PM Programming Reference

Chapter 24. Container Control Window Processing

This system-provided window procedure processes the actions on a container control
(WC_CONTAINER).

Purpose
A container control is a visual component whose specific purpose is to hold objects. These objects,
or container items, can be anything that either your application or a user might store in a container.
Examples are executable programs, word processing files, graphics images, and database records.

Container item data is stored in RECORDCORE or MINIRECORDCORE data structures. Both the
application and the container have access to the data stored in these records. See RECORDCORE
on page A-110 and MINIRECORDCORE on page A-69 for descriptions of these data structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIREGORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be
used instead of PRECORDCORE in all applicable data structures and messages.

The maximum number of records is limited by the amount of memory in the user's computer. The
container control does not limit the number of records that a container can have.

The following list shows which types of data can be displayed for each container view. Refer to the
description of the container control in the OS/2 Programming Guide for more information about the
types of views.

View Types
Icon view
Name view
Text view
Tree view
Details view

Data
Icons or bit maps with text strings beneath
Icons or bit maps with text strings to the right
Text strings
Icons or bit maps, and text strings
Icons or bit maps, text strings, numbers, times, and dates.

Direct editing of container item text is supported in all views, including blank text fields.

The container control is designed according to the Common User Access (CUA) guidelines. For
example, the CUA direct manipulation protocol is fully supported, enabling a user to visually drag an
object in a container window and drop it on another object or container window. In addition, the
container control supports CUA-defined selection types and techniques for selecting container items,
as well as selection mechanisms, such as pointing devices and the keyboard, and multiple forms of
emphasis. For a complete description of CUA containers, refer to the SAA CUA Guide to User
Interface Design and to the SAA CUA Advanced Interface Design Reference.

The container control automatically provides or enables either horizontal or vertical scroll bars, or
both, whenever all or part of one or more container items are not visible in a container window's
client area.

Container Control Window Words
The container control reserves 4 bytes in its window words for application use. This memory can be
accessed using the WinSetWindowULong and WinQueryWindowULong functions at offset QWL_USER.

Chapter 24. Container Control Window Processing 24-1

Container Control Styles and Seledion Types
Containers are WC_CONTAINER class windows that have the following CCS_container styles and
selection types. Container control styles and selection types are specified when the container
control is created.

Container Control Styles
The following list defines container style bits that your application .can use. These style bits must be
set by your application.

CCS_.:AUTOPOSITION
Automatic positioning, which causes container items displayed in the icon view to be arranged
when any of the following occur:

• The window size changes

• Container items are inserted, removed, sorted, invalidated, or filtered

• The font or font size changes

• The window title text changes.

In all of these cases, container items are arranged the same as when the CM_ARRANGE
message is sent. The CCS_AUTOPOSITION style bit is valid only when it is used with the icon
view (CV _ICON).

CCS_MINIRECORDCORE
A record style bit that causes the container to interpret all container records as being smaller
than they would otherwise be. If a CM...:ALLOCRECORD message is received, all records are
interpreted and allocated according to the information in the MINIRECORDCORE data structure
instead of the RECORDCORE data structure, which is used if this style bit is not specified.

CCS_READONLY
A read-only style bit for an entire container, which prevents a user from editing any of the text in
a container window. If you do not set this style bit, a user can edit any of the text in a container
window unless you set the following read-only attributes in the appropriate data structures:

CA...: TITLEREADONL Y
Sets the container title to read-only. This is an attribute of the CNRJNFO data structure's
f/WindowAttr field.

CRA_RECORDREADONLY
Sets text fields in records to read-only. This is an attribute of the RECORDCORE and
MINIRECORDCORE data structures' f/RecordAttr field.

Note: If the CCS_MINIRECORDCORE sty~e bit is specified when a container is created, the
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

CFA_FIREADONL Y
Sets column data to read-only. This is an attribute of the FIELDINFO data structure's f/Data
field.

CFA_FITITLEREADONL Y
Sets column headings to read-only. This is an attribute of the FIELDINFO data structure's
f/Title field.

24-2 PM Programming Reference

CCS_ VERIFYPOINTERS
A pointer verification style bit, which verifies that the application pointers are members of the

container's linked list before they are used. If it is not set, the container does not verify the

pointers.

Notes

1. The CCS_VERIFYPOINTERS style bit does not verify the validity of a pointer. It only verifies

whether a pointer is a member of a container's linked list.

2. After your code has been developed and tested, you may want to remove the

CCS_ VERIFYPOINTERS style bit in order to improve the container's performance.

Otherwise, the container will attempt to verify all pointers, which will slow its response to

actions that users perform.

Container Control Selection Types
If a selection type is not specified, single selection is the default. For the tree view, single selection

is the only type supported. Refer to the description of the selection types in the SAA CUA Advanced

Interface Design Reference for more information.

CCS_SINGLESEL
Single selection, which allows a user to select only one container item at a time. Each time a

user selects a container item, the selection of any other container item is cancelled.

CCS_EXTENDSEL
Extended selection, which allows a user to select one or more container items. A user can select

one item, a range of items, or multiple ranges of items.

CCS_MULTIPLESEL
Multiple selection, which allows a user to select zero or more container items.

Container Control Data
See the following for information on the container control data structures:

• COATE on page A-10
• CNRDRAGINFO on page A-12
• CNRDRAGINIT on page A-12
• CNRDRAWITEMINFO on page A-13
• CNREDITDATA on page A-13
• CNRINFO on page A-15
• CTIME on page A-22
• FIELDINFO on page A-39
• FIELDINFOINSERT on page A-41
• MINIRECORDCORE on page A-69
• NOTIFYDELTA on page A-73
• NOTIFYRECORDEMPHASIS on page A-73
• NOTIFYRECORDENTER on page A-74
• NOTIFYSCROLL on page A-74
• OWNERBACKGROUND on page A-75
• QUERYRECFROMRECT on page A-108
• QUERYRECORDRECT on page A-109
• RECORDCORE on page A-110
• RECORDINSERT on page A-111
• SEARCHSTRING on page A-115
• TREEITEMDESC on page A-122.

Chapter 24. Container Control Window Processing 24-3

Container Control Notification Messages
These messages are initiated by the container control window to notify its owner of significant
events.

WM_CONTROL (in Container Controls)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

Id (USHORT)
Container control ID.

notlfycode (USHORT)
Notify code.

The container control uses the following notification codes. For the complete description of
the specified notifycode, see "Container Control Notification Codes" on page 24-8.

CN_BEGINEDIT
CN_ COLLAPSETREE
CN_CONTEXTMENU
CN_DRAGAFTER

CN_DRAGLEAVE
CN_DRAGOVER

CN_DROP
CN_DROPHELP
CN_EMPHASIS
CN_ENDEDIT
CN_ENTER

CN_EXPANDTREE
CN_HELP
CN_INITDRAG

CN_KILLFOCUS
CN_QUERYDELTA
CN_REALLOCPSZ

CN_SCROLL
CN_SETFOCUS

24-4 PM Programming Reference

Container text is about to be edited.
A parent item was collapsed in the tree view.
The container received a WM_CONTEXTMENU message.
The container received a DM_DRAGOVER message. The
CN_DRAGAFTER notification code is sent only if either the
CA_ORDEREDTARGETEMPH or CA_MIXEDTARGETEMPH attribute
of the CNRINFO data structure is set and the current view is the
name, text, or details view.
The container received a DM_DRAGLEAVE message.
The container received a DM_DRAGOVER message. The
CN_DRAGOVER notification code is sent only if the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO data
structure is not set or tne current view is the icon view or tree view.
The container received a DM_DROP message.
The container received a DM_DROPHELP message.
A container record's attributes changed.
Direct editing of container text has ended.
The Enter key is pressed while the container window has the focus,
or the select button is double-clicked while the pointer is over the
container window.
A parent item is expanded in the tree view.
The container received a WM_HELP message.
The drag button was pressed and the pointer was moved while the
pointer was over the container control.
The container is losing the focus.
Queries for more data when a user scrolls to a preset delta value.
Container text is edited. This message is sent before the
CN_ENDEDIT notification code is sent.
The container window scrolled.
The container is receiving the focus.

\

/

param2

notifylnfo (ULONG)
Notify code information.

For the definition of this parameter, see the description of the specified notifycode in

"Container Control Notification Codes" on page 24-8.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The container control window procedure generates this message and sends it to its owner, informing

the owner of this event.

Default Processing
For a description of the default processing, see "WM_ CONTROL" on page 12-28.

WM_CONTROLPOINTER (in Container Controls)
For the cause of this message, see "WM_CONTROLPOINTER" on page 12-29.

Parameters
For a description of the parameters, see "WM_CONTROLPOINTER" on page 12-29.

Remarks
For the appropriate remarks, see "WM_CONTROLPOINTER" on page 12-29.

Default Processing
For the default processing, see "WM_CONTROLPOINTER" on page 12-29.

Chapter 24. Container Control Window Processing 24-5

WM_DRAWITEM (in Container Controls)
For the cause of this message, see "WM_DRAWITEM" on page 12-31.

Parameters
param1

id (USHORT)
Container control ID.

param2

pOwnerltem (POWNERITEM)
Pointer.

Pointer to an OWNERITEM data structure. The following list defines the OWNERITEM data
structure fields as they apply to the container control. See OWNERITEM on page A-76 for
the default field values.

hwnd (HWND)
Handle of the window in which ownerdraw will occur. The following is a list of the
window handles that can be specified for ownerdraw:

• The container window handle of the icon, name, text, and tree views
• The container title window handle
• The left or right window handles of the details view
• The left or right column heading windows of the details view.

hps (HPS)
Handle of the presentation space of the container window. For the details view that
uses a split bar, the presentation space handle is either for the left or right window,
depending upon the position of the column. If the details view does not have a split
bar, the presentation space handle is for the left window.

fsState (USHORT)
Specifies emphasis flags. This state is not used by the container control because the
appiicaiion is responsioie ior arawmg me empnasis states during ownerdraw.

fsAttrlbute (USHORT)
Attributes of the record as given in the f/RecordAttr field in the RECORDCORE data
structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages. See RECORDCORE on page A-110 and MINIRECORDCORE
on page A-69 for descriptions of these data structures.

fsStateOld (USHORT)
Previous emphasis. This state is not used by the container control because the
application is responsible for drawing the emphasis states during ownerdraw.

fsAttrlbuteOld (USHORT)
Previous attribute. This state is not used by the container control because the
application is responsible for drawing the emphasis states during ownerdraw.

rclltem (RECTL)
This is the bounding rectangle into which the container item is drawn.

If the container item is an icon/text or bit-map/text pair, two WM_DRAWITEM messages
are sent to the application. The first WM_DRAWITEM message contains the rectangle
bounding the icon or bit map and the second contains the rectangle bounding the text.

If the container item contains only text, or only an icon or bit map, only one
WM_DRAWITEM message is sent. However, if the current view is the tree icon or tree
text view and if the item is a parent item, the application will receive an additional
WM_DRAWITEM (in Container Controls) message. The additional message is for the
icon or bit map that indicates whether the parent item is expanded or collapsed.

24-6 PM Programming Reference

\
J

Returns
reply

If the current view is the details view and the CFA_OWNER attribute is set, the

rectangle's size is equal to the width of the column and the height of the tallest field in

the container item. CFA_OWNER is an attribute of the FIELDINFO data structure's

flData field.

ldltem (SHORT)
Identifies the item being drawn. It can be one of the following:

• CMA_TEXT
• CMA_ICON
• CMA_ TREEICON.

This fietd is not used for the details view and is set to 0.

hltem (PCNRDRAWITEMINFO)
Pointer to a CNRDRAWITEMINFO structure.

See CNRDRAWITEMINFO on page A-13 for descriptions of this structure's fields.

drawn (BOOL)
Item-drawn indicator.

Remarks

TRUE
FALSE

The owner draws the item, and so the container control does not draw it.

If the owner does not draw the item, the owner returns this value and the

container control draws the item.

CA_OWNERDRAW is an attribute of the CNRINFO data structure's f/WindowAttr field.

The container control window procedure generates this message and sends it to the owner of the

container control to offer the owner the opportunity to draw that item.

Default Processing
For a description of the default processing, see "WM_DRAWITEM" on page 12-31.

Chapter 24. Container Control Window Processing 24-7

Container Control Notification Codes
The following WM_CONTROL (in Container Controls) notification codes are sent by the container
control to its owner.

CN BEGINEDIT
The container control sends the WM_ CONTROL (in Container Controls) message with the
CN_BEGINEDIT notification code to its owner whenever container text is about to be edited.

Parameters
param1

Id (USHORT)
Container control ID.

CN_BEGINEDIT (USHORT)
Notification code.

param2

pCnrEdltData (PCNREDITDAT A)
Pointer.

Returns

Pointer to the CNREDITDATA structure. See CNREDITDATA on page A-13 for definitions of
this structure's fields as they apply to the CN_BEGINEDIT notification code.

reply (ULONG)
Reserved.

O Reserved value, O.

Remarks
The CN_BEGINEDIT notification code is sent when direct editing of container text begins.

Warning: Once your application receives the CN_BEGINEDIT notification code, it must not send any
messages to the container until it receives the CN_ENDEDIT notification code, which indicates that
direct editing of container text has ended. If any messages are sent to the container before your
application receives the CN_ENDEDIT notification code, the results of direct editing are
unpredictable.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

24-8 PM Programming Reference

/

CN COLLAPSETREE
The container control sends the WM_CONTROL (in Container Controls) message with the
CN_COLLAPSETREE notification code to its owner whenever the container collapses a parent item in
the tree view.

Parameters
param1

Id (USHORT)
Container control ID.

CN_COLLAPSETREE (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer.

Pointer to the record that was collapsed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN CONTEXTMENU
The container control sends the WM_ CONTROL (in Container Controls) message with the
CN_CONTEXTMENU notification code to its owner when the container receives a
WM_CONTEXTMENU message.

Parameters
param1

Id (USHORT)
Container control ID.

CN_CONTEXTMENU (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure that currently has the input focus. If the user is using
a pointing device, this RECORDCORE structure is the structure that the pointing device
pointer is over. If the pointing device pointer is over white space, this field is NULL.

If the user is using the keyboard, this RECORDCORE structure is the structure that has the
selection cursor.

Chapter 24. Container Control Window Processing 24-9

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN DRAGAFTER
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN_DRAGAFTER notification code to its owner whenever the container receives a DM_DRAGOVER
message. The CN_DRAGAFTER notification code is sent only if the CA_ORDEREDTARGETEMPHASIS
or CA_MIXEDTARGETEMPHASIS attribute of the CNRINFO data structure is set and the current view
is the name, text, or details view.

Parameters
param1

Id (USHORT)
Container control ID.

CN_DRAGAFTER (USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer.

Pointer to a CNRDRAGINFO structure. See CNRDRAGINFO on page A-12 for definitions of
this structure's fields as they apply to the CN_DRAGAFTER notification code.

Returns
reply

Reserved.

usDrop (USHORT)
Drop indicator.

DOR_DROP

DOR_NODROP

DOR_NODROPOP

The record can be dropped. The drop will not occur unless
DOR_DROP is returned. When this response is returned, the
container control applies ordered target emphasis to the target
record.
The record is acceptable and the current operation is supported by
the target, but the record cannot be dropped in the current location.
For example, the container control returns DOR_NODROP if the
record being dragged is positioned over another record on which it
cannot be dropped.

If the container returns DOR_NODROP, the DM_DRAGOVER message
will continue to be sent to it when the user does any of the following:

• Moves the pointer
• Presses a keyboard key
• Moves the pointer out of and back into the container window.

The record is acceptable, but the target does not support the current
operation. This response impHes that the drop may be valid if the
drag operation changes. For example, if the default operation is copy
and the target does not support this operation, the drop may become
valid if the user presses a keyboard augmentation key to change to a
different operation, such as move.

If the container returns DOR_NODROPOP, no further DM_DRAGOVER
messages are sent until the user does any of the following:

• Presses a keyboard key

24-10 PM Programming Reference

\
I

~1
)

• Moves the pointer out of and back into the container window.
DOR_NEVERDROP The record cannot be dropped. Ordered target emphasis is not

drawn. If the container returns DOR_NEVERDROP, no further
DM_DRAGOVER messages are sent until the user drags the record
outside of and back into the container window.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

DO_COPY
DO_DEFAULT
DO_LINK
DO_MOVE
DO_UNKNOWN

Operation is a copy.
Operation is the default drag operation. No modifier keys are pressed.
Operation is a link.
Operation is a move.
Operation is application-defined.

Remarks
The container control draws ordered target emphasis of container records. The target emphasis

provided by the container control is a black line that is drawn below the target record. Therefore, it
is not necessary for the application to draw any emphasis for the container when it receives this
notification code.

If the container returns anything except DOR_DROP, the target emphasis is automatically changed to

a symbol that indicates no drop is allowed. This gives the user a visual cue that a drop cannot occur.

The symbol reverts to the black line when the container returns a DOR_DROP reply.

The CN_DRAGAFTER notification code is sent only for the details, name, and text views when the

CA_ORDEREDTARGETEMPHASIS or CA_MIXEDTARGETEMPHASIS attribute of the CNRINFO data

structure is set. If this attribute is not set, the CN_DRAGOVER notification code is sent.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return o.

CN DRAGLEAVE
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN_DRAGLEAVE notification code to its owner when the container receives a DM_DRAGLEAVE
message.

Parameters
param1

Id (USHORT)
Container control ID.

CN_DRAGLEAVE(USHORD
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer.

Pointer to a CNRDRAGINFO structure. See CNRDRAGINFO on pe.ge A-12 for definitions of
this structure's fields as they apply to the CN_DRAGLEAVE notification code.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Chapter 24. Container Control Window Processing 24-11

Remarks
This notification code is sent to the owner of the container control in response to a DM_DRAGLEAVE
message. It informs the owner that one of the following has occurred:

• A container record was being dragged over the container and has left the container's
boundaries.

• The drag ended when help was requested or a user pressed the Esc key while the container
record was over the container.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN DRAGOVER
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DRAGOVER notification code to its owner when the container receives a DM_DRAGOVER
message. The CN_DRAGOVER notification code is sent only if the CA_ORDEREDTARGETEMPH
attribute of the CNRINFO data structure is not set or the current view is the icon view or tree view.

Parameters
param1

Id (USHORT)
Container control ID.

CN_DRAGOVER(USHORn
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer.

Pointer to a CNRDRAGINFO structure. See CNRDRAGINFO on page A-12 for definitions of
this structure's fields as they apply to the CN_DRAGOVER notification code.

Returns
reply

Reserved.

usDrop (USHORT)
Drop indicator.

DOR_DROP

DOR_NODROP

DOR_NODROPOP

The record can be dropped. When this response is returned, the
container control applies target emphasis.
The record is acceptable and the current operation is supported by
the target, but the record cannot be dropped in the current location.
For example, the container control returns DOR_NODROP if the
record being dragged is positioned over another record on which it
cannot be dropped.

If the container returns DOR_NODROP, the DM_DRAGOVER message
will continue to be sent to it when the user does any of the following:

• Moves the pointer
• Presses a keyboard key
• Moves the pointer out of and back into the container window.

The record is acceptable, but the target does not support the current
operation. This response implies that the drop may be valid if the
drag operation changes. For example, if the default operation is copy
and the target does not support this operation, the drop may become
valid if the user presses a keyboard augmentation key to change to a
different operation, such as move.

If the container returns DOR_NODROPOP, no further DM_DRAGOVER
messages are sent until the user does any of the following:

24-12 PM Programming Reference

\

• Presses a keyboard key
• Moves the pointer out of and back into the container window.

DOR_NEVERDROP The record cannot be dropped. Target emphasis is not drawn. If the

container returns DOR_NEVERDROP, no further DM_DRAGOVER

messages are sent until the user drags the record outside of and back

into the container window.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

Remarks

DO_COPY
DO_DEFAULT
DO_LINK
DO_MOVE
DO_UNKNOWN

Operation is a copy.
Operation is the default drag operation. No modifier keys are pressed.

Operation is a link.
Operation is a move.
Operation is application-defined.

This notification code shows where direct manipulation is occurring by applying target emphasis to

indicate whether an item that is being dragged over the container can be dropped. It is not

necessary for the application to draw any target emphasis for the container when it receives this

notification code.

If the pointer is over a container record and the item that is being dragged can be dropped on that

record, the container draws a black rectangle around the target record. If the pointer is over white

space and the item that is being dragged can be dropped on the white space, the container draws a

black border around the edge of the client area.

If the container returns anything except DOR_DROP, the target emphasis is automatically changed to

a symbol that indicates no drop is allowed. This gives the user a visual cue that a drop cannot occur.

The symbol reverts to the black rectangle or black border when the container returns a DOR_DROP

reply.

The CN_DRAGOVER notification code is sent only for the icon and tree views, or when the

CA_ORDEREDTARGETEMPH attribute of the CNRINFO data structure is not set. If this attribute is set

and the current view is the name, text, or details view, the CN_DRAGAFTER notification code is sent.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes

no action on it other than to return 0.

CN DROP
The container control sends a WM_CONTROL (in Container Controls) message with the CN_DROP

notification code to its owner when the container receives a DM_DROP message.

Parameters
param1

id (USHORT)
Container control ID.

CN_DROP (USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAG/NFO)
Pointer.

Pointer to a CNRDRAGINFO structure. See CNRDRAGINFO on page A-12 for definitions of

this structure's fields as they apply to the CN_DROP notification code.

Chapter 24. Container Control Window Processing 24-13

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This notification code is sent to the container's owner when dragged container records are dropped
over the container window.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN DROPHELP
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_DROPHELP notification code to its owner when the container receives a DM_DROPHELP
message.

Parameters
param1

Id (USHORT)
Container control ID.

CN_DROPHELP (USHORT)
Notification code.

param2

pCnrDraglnfo (PCNRDRAGINFO)
Pointer.

Returns

Pointer to a CNRDRAGINFO structure. See CNRDRAGINFO on page A-12 for definitions of
this structure's fields as they apply to the CN_DROPHELP notification code.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
This notification code is sent to the container's owner when help for direct manipulation is requested
over the container window.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

24-14 PM Programming Reference

'~
/

CN EMPHASIS
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_EMPHASIS notification code to its owner whenever a container record's attributes change.

Parameters
param1

Id (USHORT)
Container control ID.

CN_EMPHASIS (USHORT)
Notification code.

param2

pNotlfyRecordEmphasls (PNOTIFYRECORDEMPHASIS)
Pointer.

Pointer to the NOTIFYRECORDEMPHASIS structure. See NOTIFYRECORDEMPHASIS on
page A-73 for definitions of this structure's fields as they apply to the CN_EMPHASIS
notification code.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN ENDEDIT
The container control sends a WM_ CONTROL (in Container Controls) message with the CN_ENDEDIT

notification code to its owner whenever direct editing of container text has ended.

Parameters
param1

Id (USHORT)
Container control ID.

CN_ENDEDIT (USHORT)
Notification code.

param2

pCnrEditData (PCNREDITDATA)
Pointer.

Pointer to the CNREDITDATA structure. See CNREDITDATA on page A-13 for definitions of
this structure's fields as they apply to the CN_ENDEDIT notification code.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Chapter 24. Container Control Window Processing 24-15

Remarks
Direct editing of container text is completed. Any changes made to the text are saved when a user
presses the select button outside the window that contains the multiple-line entry (MLE) field used to
edit text in a container. However, a user can end the direct editing of text without saving any
changes to the text by doing any of the following:

• Pressing the Esc key
• Dragging the container item that is being edited
• Pressing the Alt key and the select button before direct editing of container text has ended
• Scrolling the container window.

The CN_ENDEDIT notification code is sent to the application in each of these cases.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN ENTER
The container control sends a WM_CONTROL (in Container Controls) message with the CN_ENTER
notification code to its owner when either of the following occurs:

• The Enter key is pressed while the container window has the focus
• The select button is double-clicked while the pointer is over the container window.

Parameters
param1

Id (USHORT)
Container control ID.

CN_ENTER (USHORT)
Notification code.

param2

pNotifyRecordEnter (PNOTJFYRECORDENTER)
Pointer.

Returns

Pointer to the NOTIFYRECORDENTER structure. See NOTIFYRECORDENTER on page A-74
for definitions of this structure's fields as they apply to the CN_ENTER notification code.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return O.

24-16 PM Programming Reference

\

CN EXPANDTREE
The container control sends the WM_CONTROL (in Container Controls) message with the

CN_EXPANDTREE notification code to its owner whenever the container expands a parent item in the

tree view.

Parameters
param1

Id (USHORT)
Container control ID.

CN_EXPANDTREE (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer.

Pointer to the record that was expanded.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE

should be used instead of PRECORDCORE in all applicable data structures and messages.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes

no action on it other than to return 0.

CN HELP
The container control sends a WM_ CONTROL (in Container Controls) message with the CN_HELP

notification code to its owner whenever the container receives a WM_HELP message.

Parameters
param1

Id (USHORT)
Container control ID.

CN_HELP (USHORT)
Notification code.

param2

pRecord (PRECORDCORE)
Pointer.

Pointer to the record that has the selection cursor.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECOROCORE and PMINIRECORDCORE

should be used instead of PRECORDCORE in all applicable data structures and messages.

Chapter 24. Container Control Window Processing 24-17

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This notification code is sent to the container's owner when help is requested for a container item.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return o.

CN INITDRAG
The container control sends a WM_CONTROL (in Container Controls) message with the
CN_INITDRAG notification code to its owner when the drag button is pressed and the pointer is
moved while the pointer is over the container control.

Parameters
param1

Id (USHORT)
Container control ID.

CN_INITDRAG (USHORT)
Notification code.

param2

pCnrDraglnlt (PCNRDRAGINIT)
Pointer.

Returns

Pointer to the CNRDRAGINIT structure. See CNRDRAGINIT on page A-12 for descriptions of
this structure's fields as they apply to the CN_INITDRAG notification code.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
This notification code is sent to the container's owner when the drag button is pressed and the
pointer is moved while the pointer is over the container control.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

24-18 PM Programming Reference

/

CN KILLFOCUS
The container control sends a WM_CONTROL (in Container Controls) message with the

CN_KILLFOCUS notification code to its owner whenever the container is losing the focus.

Parameters
param1

Id (USHORT)
Container control ID.

CN_KILLFOCUS (USHORT)
Notification code.

param2

hwndCnr (HWND)
Container control handle.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes

no action on it other than to return 0.

CN QUERYDELTA
The container control sends a WM_CONTROL (in Container Controls) message with the

CN_QUERYDELTA notification code to its owner to query for more data when a user scrolls to a

preset delta value.

Parameters
param1

id (USHORT)
Container control ID.

CN_QUERYDELTA(USHORn
Notification code.

param2

pNotifyDelta (PNOTIFYDEL TA)
Pointer.

Pointer to the NOTIFYDELTA structure. See NOTIFYDELTA on page A-73 for definitions of

this structure's fields as they apply to the CN_QUERYDELTA notification code.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The delta value is specified by the cDelta field of the CNRINFO data structure and is set with the

CMA_DELTA attribute of the CM_SETCNRINFO message. If the value of the cDelta field is greater

than 0 and a user scrolls to the threshold record, the container control sends a CN_QUERYDELTA

notification code to the application. The application can then insert more records into the container.

It may be necessary for the application to remove some records before inserting records.

Chapter 24. Container Control Window Processing 24-19

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return 0.

CN REALLOCPSZ
The container control sends a WM_ CONTROL (in Container Controls) message with the
CN_REALLOCPSZ notification code to its owner whenever container text is edited. It is sent before
the CN_ENDEDIT notification code is sent.

Parameters
param1

Id (USHORT)
Container control ID.

CN_REALLOCPSZ (USHORT)
Notification code.

param2

pCnrEdltData (PCNREDITDATA)
Pointer.

Pointer to the CNREDITDATA structure. See CNREDITDATA on page A-13 for definitions of
this structure's fields as they apply to the CN_REALLOCPSZ notification code.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

The application has sufficient memory for the new text string.
The application has insufficient memory for the new text string or does not want the
string to be copied.

The CN_REALLOCPSZ notification code is sent after direct editing of container text is complete. It
notifies the application that the container is about to copy the changed text to the application's text
string. This allows the application to ensure that the correct amount of memory is allocated to
accommodate the change.

If TRUE is returned by the application, the container control copies the new text to the application's
text string. However, if the application returns FALSE, changed text is disregarded.

Warning: Once your application receives the CN_REALLOCPSZ notification code, it must not send
any messages to the container until it receives the CN_ENDEDIT notification code, which indicates
that direct editing of container text has ended. If any messages are sent to the container before your
application receives the CN_ENDEDIT notification code, the results of direct editing are
unpredictable.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes
no action on it other than to return FALSE.

24-20 PM Programming Reference

\
/

CN SCROLL
The container control sends a WM_CONTROL (in Container Controls) message with the CN_SCROLL

notification code to its owner whenever the container window scrolls.

Parameters
param1

Id (USHORT)
Container control ID.

CN_SCROLL (USHORT)
Notification code.

param2

pNotllyScroll (PNOT/FYSCROLL)
Pointer.

Pointer to the NOTIFYSCROLL structure. See NOTIFYSCROLL on page A-74 for definitions

of this structure's fields as they apply to the CN_SCROLL notification code.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes

no action on it other than to return 0.

CN SETFOCUS
The container control sends a WM_CONTROL (in Container Controls) message with the

CN_SETFOCUS notification code to its owner whenever the container receives the focus.

Parameters
param1

Id (USHORT)
Container control ID.

CN_SETFOCUS (USHORT)
Notification code.

param2

hwndCnr (HWND)
Container control handle.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
The default window procedure does not expect to receive this notification code and therefore takes

no action on it other than to return 0.

Chapter 24. Container Control Window Processing 24-21

Container Control Window Messages
This section describes the container control window procedure actions on receiving the following
messages.

CM ALLOCDETAILFIELDINFO
This message allocates memory for one or more FIELDINFO structures.

Parameters
param1

nfleldlnfo (USHORT)
Number of FIELDINFO structures.

Number of FIELDINFO structures to be allocated. The value of this parameter must be
greater than 0.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
pfieldlnfo (PFIELDINFO)

Pointer or error.

Returns a pointer to one or more FIELDINFO structures if allocation is successful.

Returns an error if allocation fails.

0 Reserved value, 0. The WinGetLastError function may return the following errors:
• PMERR_INSUFFICIENT _MEMORY
• PMERR_INVALID_PARAMETERS.

Other If the nFieldlnfo parameter has a value of 1, a pointer to a FIELDINFO data structure is
returned.

Remarks

A pointer to the first FIELDINFO structure in a linked list of FIELDINFO structures is
returned if the nFieldlnfo parameter has a value greater than 1. The pointer to the next
FIELDINFO structure is set in each pNextFieldlnfo field of the FIELDINFO data structure.
The last pointer is set to NULL.

The container control requires that the application use the CM_ALLOCDETAILFIELDINFO message to
allocate memory for any FIELDINFO structures that are used.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULL.

24-22 PM Programming Reference

\
)

)
I

CM ALLOCRECORD
This message allocates memory for one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PM1NIRECORDCORE should be

used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

cbRecordData (ULONG)

param2

Bytes of additional memory.

The number of bytes of additional memory that you want to reserve for your application's

private use. This parameter must have a value between O and 64,000. If the value is 0, no

additional memory is a11ocated, but a RECORDCORE data structure is allocated.

nRecords (USHORT)
Number of records.

Returns

The number of container records to be allocated. This parameter must have a value greater

than 0.

pRecord (PRECORDCORE)
Returns a pointer or an error.

Returns a pointer to one or more RECORDCORE structures if allocation is successful.

Returns an error if allocation fails.

NULL Allocation failed. The WinGetLastError function may return the following errors:
• PMERR_INSUFFICIENT_MEMORY
• PMERR_JNVALID_PARAMETERS.

Other If the nRecords parameter has a value of 1, a pointer to a RECORDCORE structure is

returned.

Remarks

If the nRecords parameter has a value greater than 1, a pointer to the first
RECORDCORE structure in the linked list of records is returned. The pointer to the

next container record is set in the pNextRecord field in each RECORDCORE data
structure. The last pointer is set to NULL.

The container control requires that the application use the CM_ALLOCRECORD message to allocate

memory for container records.

When a record is allocated, the cb field of the record will be initialized with the size of the record

structure type currently in use, either RECORDCORE or MINIRECORDCORE. If the
CCS_MINIRECORDCORE style bit is not specified, the record is allocated according to the size of the

RECORDCORE data structure. However, if the CCS_MINIRECORDCORE style bit is specified, the

record is allocated according to the size of the MINIRECORDCORE data structure. This size should

not be modified by the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return NULL.

Chapter 24. Container Control Window Processing 24-23

CM ARRANGE
This message arranges the container records in the icon view of the container control.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, o.
param2 (ULONG)

Reserved.

O Reserved value, O.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Icon/text or bit-map/text pairs were successfully arranged.
An error occurred.

The container items fill the topmost row until the width of the client area is reached. The container
items then wrap to form another row immediately below the filled row. This process is repeated until
all of the container items are positioned in rows. Default spacing is implemented according to the
guidelines for the CUA user interface. A vertical scroll bar is enabled, if necessary.

Before the relocation of the container items, the origin of the client area rectangle is reset to coincide
with the origin of the container's workspace. Arranging the container items does not affect the
record attributes.

If the CCS_AUTOPOSITION style bit is set, you do not need to send the CM_ARRANGE message,
since this style bit causes the container control to arrange the container items for the application.

If the current view is not the icon view, no visible change occurs until the current view is switched to
the icon view. For example, if the name view is the current view and the CM_ARRANGE message is
sent, the display does not change.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM CLOSEEDIT
This message closes the window that contains the multiple-line entry (MLE) field used to edit
container text directly.

Parameters
param1 (ULONG)

Reserved.

0 ; Reserved value, O.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

24-24 PM Programming Reference

\
I

J

)

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

The direct editing of container item text was successfully ended.
The direct editing of container item text was not successfully ended. The
WinGetLastError function may return the following error:

PMERR_INSUFFICIENT _MEMORY.

Remarks
The application sends this message to the container control to end the direct editing of container

text. The application can assign this message to a key or key combination, a menu choice, or both
so that the user can end the direct editing of container text from the keyboard.

When the container control receives this message, it sends the CN_REALLOCPSZ and CN_ENDEDIT
notification codes to the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM COLLAPSETREE
This message causes one parent item in the tree view to be collapsed.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure that is to be collapsed. If this is NULL, all expanded
parent items are collapsed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE The item was successfully collapsed.
FALSE An error occurred. The WinGetLastError function may return the following error:

PMERR_INVALID_PARAMETERS.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

Chapter 24. Container Control Window Processing 24-25

CM ERASERECORD
This message erases the source record from the current view when a move occurs as a result of
direct manipulation.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the container record that is to be erased from the current view.

Note: If the CCS_MINlRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
ISuccess (BOOL)

Success indicator.

TRUE
FALSE

The record was successfully erased.
The record was not erased. The WinGetLastError function may return the following
errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY.

Remarks
The container record is not removed and memory is not freed; only the visual appearance is
changed. The visibility flag associated with the container record is not changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM EXPANDTREE
This message causes one parent item in the tree view to be expanded.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure that is to be expanded. If this is NULL, all collapsed
parent items are expanded.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

24-26 PM Programming Reference

,,
I

Returns
fSuccess (BOOL)

Success indicator.

TRUE The item was successfully expanded.
FALSE An error occurred. The WinGetLastError function may return the following error:

PMERR_INVALID_PARAMETERS.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM FILTER
This message filters the contents of a container so that a subset of the container items is viewable.

Parameters
param1

pfnFllter (PFN)
Pointer.

Pointer to an application-supplied filter function.

param2

pStorage (PVOID)
Application use.

Available for application use.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

A subset was successfully created.
An error occurred. The WinGetLastError function may return the following errors:

• PMERR_NO_FILTERED_ITEMS
• PMERR_INSUFFICIENT_MEMORY.

Remarks
Filtering is enabled by setting the CRA_FIL TERED attribute of container records that are to be
excluded from the viewable subset.

The pfnFilter parameter points to an application-provided function that determines whether a record

is to be included in the viewable subset. The pfnFilter parameter must be declared as:

BOOL PFN pfnFilter (PRECORDCORE p, PVOID pStorage);

where p points to a RECORDCORE structure that describes the container record to be tested. The

pfnFilter parameter returns TRUE if the record is to be included in the viewable subset, or FALSE if it

is to be excluded. The container sets the CRA_FIL TERED attribute for the record based on the return

from the pfnFilter parameter.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be

used instead of PRECORDCORE in all applicable data structures and messages.

If the CRA_FIL TERED attribute is set for the record, the record is not visible. If the
CCS_AUTOPOSITION style bit is set and the container is showing the icon view, the container
records are arranged when a record is filtered out.

The CM_FIL TER message supports only one level of filtering.

Chapter 24. Container Control Window Processing 24-27

It is the application's responsibility to provide a National Language Support-enabled (NLS-enabled)
function for the pfnFilter parameter.

If the pfnFilter parameter value is NULL, a container is returned to an unfiltered state. If functions
such as inserting a record into a container, arranging the records, or sorting the records are
performed on a container whose records have been filtered, the effect of these functions remains if
the container records are later unfiltered.

All messages act on the entire container. For example, a record that is filtered and is removed from
the container will be removed from the container entirely; it is not present in the container when the
container records are unfiltered.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM FREEDETAILFIELDINFO
This message frees the memory associated with one or more FIELDINFO structures.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer.

Po:fiter to an array of pointers to FIELDINFO structures that are to be freed.

param2

cNumFleldlnfo (USHORT)
Number of structures.

Number of FIELDINFO structures to be freed.

Returns
fSuccess (BOOL)

Success indicator.

TRUE Memory associated with a specified FIELDINFO structure or structures in the
container was freed.

FALSE Associated memory was not freed. The WinGetLastError function may return the
following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR
• PMERR_Fl_ CURRENTLY _INSERTED.

Remarks
It is the application's responsibility to free all application-allocated memory associated with the
structures, such as user data.

If a specified FIELDINFO structure is currently inserted into the container, the structure is not freed
and the PMERR_Fl_CURRENTL Y _INSERTED error is set. FIELDINFO structures must be removed
with the CM_REMOVEDETAILFIELDINFO message before the CM_FREEDETAILFIELDINFO message
is used.

If the number of pointers to FIELDINFO structures in the array exceeds the count of structures to be
freed, only the number of structures in the cNumFieldlnfo parameter is freed. If either the
pFieldlnfoArray or the cNumFieldlnfo parameter is invalid, the PMERR_INVALID_PARAMETERS error
is set and no FIELDINFO structures are freed.

If the PMERR_MEMORY_DEALLOCATION_ERR error occurs, any further processing is unreliable.

24-28 PM Programming Reference

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM FREERECORD
This message frees the memory associated with one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be
used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer.

Pointer to an array of pointers to RECORDCORE structures that are to be freed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be freed.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Memory associated with a record or records in the container was freed.
Associated memory was not freed. The WinGetLastError function may return the
following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR
• PMERR_RECORD_CURRENTL Y _INSERTED.

It is the application's responsibility to free all application-allocated memory associated with the
container records, such as text strings.

If a specified record is currently inserted into the container, the record is not freed and the
PMERR_RECORD_CURRENTL Y _INSERTED error is set. Container records must be removed with the
CM_REMOVERECORD message before the CM_FREERECORD message is used.

If the number of pointers to container records in the array exceeds the count of records to be freed,
only the number of records in the cNumRecord parameter is freed. If either the pRecordArray or the
cNumRecord parameter is invalid, the PMERR_INVALID_PARAMETERS error is set and no container
records are freed.

If the PMERR_MEMORY_DEALLOCATION_ERR error occurs, any further processing is unreliable.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

Chapter 24. Container Control Window Processing 24-29

CM HORZSCROLLSPLITWINDOW
This message scrolls a split window in the split details view.

Parameters
param1

usWlndow (USHORT)
Window indicator.

param2

CMA_LEFT
CMA_RIGHT

The left split window is scrolled.
The right split window is scrolled.

IScrolllnc (LONG)
Amount to scroll.

Amount (in pixels) by which to scroll the window.

Returns
ISuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
An error occurred. The WinGetlastError function may return the following error:

PMERR_INVALID_PARAMETERS.

The /Scrolllnc parameter indicates a change in position. If the /Scrolllnc parameter value is greater
than 0, the window specified in the usWindow parameter is scrolled to the right by the number of
pixels specified in the /Scrolllnc parameter. If the value of the /Scrolllnc parameter is less than 0, the
window specified in the usWindow parameter is scrolled to the left by the number of pixels specified
in the /Scrolllnc parameter. This message is used to scroll either the left or right split window by an
absolute amount.

The columns that are to appear in each split window are determined at the time the split window is
created. Thereafter, columns in the left split window cannot be seen in the right split window, and
vice versa.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM INSERTDETAILFIELDINFO
This message inserts one or more FIELDINFO structures into a container control.

Parameters
param1

pFleldlnfo (PFIELDINFO)
Pointer.

Pointer to the FIELDINFO structure or structures to insert.

param2

pFleldlnfolnserl (PFIELDINFOINSERT)
Pointer.

Pointer to the FIELDINFOINSERT data structure. See FIELDINFOINSERT on page A-41 for
the descriptions of this structure's fields as they apply to the CM_INSERTDETAILFIELDINFO
message.

24-30 PM Programming Reference

\

\
)

Returns
cFlelds (USHORT)

Number of structures.

Number of FIELDINFO structures in the container.

O The FIELDINFO structure or structures were not inserted. The WinGetlastError
function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY
• PMERR_Fl_CURRENTLY _INSERTED.

Other The number of FIELDINFO structures in the container.

Remarks
The pFieldlnfolnsert parameter is used to insert FIELDINFO structures into the container. The

pFieldlnfoOrder field of the FIELDINFOINSERT data structure is used to place FIELDINFO structures
into the container in order, relative to the other structures. Specifying the CMA_FIRST attribute

places the FIELDINFO structure at the front of the list of structures. If the CMA_END attribute is

specified, the FIELDINFO structure is placed at the end of the list of structures. Otherwise, if the
value of the pFieldlnfoOrder field is a pointer to a FIELDINFO structure, the structure being inserted

is placed after this structure.

If the value of the cFieldlnfolnsert field of the FIELDINFOINSERT data structure is greater than 1, a
linked list of FIELDINFO structures is inserted in the order specified by the pFieldlnfoOrder field.

Here, the pFieldlnfo parameter points to the first of a linked list of FIELDINFO structures. This list of
structures is linked together as they were when the FIELDINFO structures were allocated.

If one FIELDINFO structure is to be inserted, the cFieldlnfolnsert field has a value of 1 and the
pFieldlnfo parameter points to the FIELDINFO structure to be inserted.

After the FIELDINFO structures have been inserted, if the flnvalidateFieldlnfo field of the
FIELDINFOINSERT data structure is FALSE, the CM_INVALIDATEDETAILFIELDINFO message must be

sent to update the display with the inserted structures.

If the CCS_ VERIFYPOINTERS style bit is set and the pFieldlnfo parameter contains a pointer to a

FIELDINFO structure that is currently inserted, the PMERR_Fl_CURRENTL Y _INSERTED error is set

and no FIELDINFO structures are inserted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

CM INSERTRECORD
This message inserts one or more RECORDCORE structures into a container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be
used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure or structures to insert.

param2

pRecordlnsert (PRECORDINSERT)
Pointer.

Pointer to the RECORDINSERT data structure. See RECORDINSERT on page A-111 for
definitions of this structure's fields as they apply to the CM_INSERTRECORD message.

Chapter 24. Container Control Window Processing 24-31

Returns
cRecords (ULONG)

Number of structures.

Number of RECORDCORE structures in the root level of the container.

O The RECORDCORE structure was not inserted. The WinGetLastError function may
return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY
• PMERR_RECORD_CURRENTL Y _INSERTED.

Other The number of RECORDCORE structures in the container.

Remarks
The pRecordlnsert parameter is used to insert RECORDCORE structures into the container. The
pRecordOrder and pRecordParent fields of the RECORDINSERT data structure are used to place
each record into the container in order, relative to the other records. If the CMA_FIRST or CMA_END
attributes are specified, records are inserted before the first child or after the last child of the record
specified in the pRecordParent field. If the value of the pRecordParent field is NULL, the record or
records are inserted before the first record or after the last record, respectively, at the root level.
Otherwise, if the value of the pRecordOrder field is a pointer to a record, the record or records to be
inserted are placed after this record.

A z-ordering of the records is maintained by the container control. The zOrder field of the
RECORDINSERT data structure is used to specify the record's z-order in the container, relative to the
other records. The CMA_TOP attribute is used to place the record at the end of the z-order list, while
the CMA_BOTIOM attribute places the record at the beginning of the z-order list. Z-ordering is used
for the icon view only.

If the value of the cRecordslnsert field of the RECORDINSERT data structure is greater than 1, a
linked list of RECORDCORE structures is inserted in the order specified by the pRecordOrder,
pRecordParent, and zOrder fields. Here, the pRecord parameter points to the first RECORDCORE
structure of a linked list of structures.

If one RECORDCORE structure is to be inserted, the cRecordslnsert field has a value of 1 and the
pRecord parameter points to the RECORDCORE structure to be inserted.

When containers display the icon view, the coordinates specified by the RECORDCORE structure's
pt/Icon field are used to position inserted container records in the container's workspace. If the
coordinates are not specified and the CCS_AUTOPOSITION style bit is not set, all of the inserted
container records are positioned at (O,O) and a CM_ARRANGE message must be sent to position
them elsewhere. If the CCS_AUTOPOSITION style bit is set, the container records are positioned
without the CM_ARRANGE message being sent.

After the container records have been inserted:

• If the f/nvalidateRecord field of the RECORDINSERT data structure is FALSE, the
CM_INVALIDATERECORD message must be sent to update the display with the inserted records.
If the current view is the icon view and either the CCS_AUTOPOSITION style bit is set or the
f/nvalidateRecord field is TRUE, the view is updated without the CM_INVALIDATERECORD
message being sent.

• The pNextRecord, flRecordAttr, and pt/Icon fields of the external RECORDCORE structure are not
updated as changes occur within the container. However, if records are shared among multiple
containers, the f/RecordAttr and pt/Icon fields are modified internally. Refer to the OS/2 2.00
Programming Guide for more information about the modification of these fields.

If the CCS_VERIFYPOINTERS style bit is set and the pRecord parameter contains a pointer to a
RECORDCORE structure that is currently inserted, the PMERR_RECORD_CURRENTLY_INSERTED
error is set and no RECORDCORE structures are inserted.

If the RECORDCORE structures are sorted on insertion, the pRecordOrder and zOrder fields are
ignored.

24-32 PM Programming Reference

/

~I
/

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

CM INVALIDATEDETAILFIELDINFO
This message notifies the container control that any or all FIELDINFO structures are not valid and

that the view must be refreshed.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
ISuccess (BOOL)

Success indicator.

TRUE FIELDINFO structures were successfully refreshed.

Remarks
If any or all FIELDINFO structures are changed, removed, or inserted, the

CM_INVALIDATEDETAILFIELDINFO message must be sent. Since each FIELDINFO structure

potentially affects every record in the container, the entire view is refreshed, even if only one

FIELDINFO structure has changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

CM INVALIDATERECORD
This message notifies the container control that a RECORDCORE structure or structures are not valid

and must be refreshed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be

used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer.

Pointer to an array of pointers to RECORDCORE structures that are to be refreshed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be refreshed. If the cNumRecord parameter has a value of

o, all of the records in the container are refreshed and the pRecordArray parameter is

ignored.

flnvalldateRecord (USHORT)

Flags.

Flags used to optimize container record invalidation. The CMA_REPOSITION,

CMA_NOREPOSITION, and CMA_ TEXTCHANGED attributes are mutually exclusive.

Chapter 24. Container Control Window Processing 24-33

Returns

However, any of them can be combined with the CMA_ERASE attribute by using a logical OR
operator (I).

CMA_ERASE Flag used when the icon view is displayed to minimize painting of
a container record's background when it has changed. If
specified, the background is erased when the display is refreshed.
The default is to not erase the background when the display is
refreshed.

CMA_REPOSITION Flag used to reposition all container records. This flag must be
used if container records are inserted or removed, or if many
changes have occurred. If a container record is inserted, the
pRecordArray parameter points to the inserted record. If a
container record is removed, the pRecordArray parameter points
to the record that precedes the removed one. If several container
records have changed, an array of container record pointers must
be used. The container determines the first record to be
invalidated. This is the default.

CMA_NOREPOSITION Flag used to indicate that container records do not need to be
repositioned. The container draws the record or racords pointed
to in the pRecordArray parameter. The container does not do any
validation; therefore it is the application's responsibility to make
sure repositioning is not needed or changing the longest text line
is not necessary.

CMA_ TEXTCHANGED Flag used if text has changed and you do not know whether
repositioning is needed. The container determines whether the
longest line or the height of the record has changed. If so, the
container repositions and redraws the necessary visible container
records.

It may be necessary to reposition the container records if the
number of lines of text has changed.

Warning: The application must send a CM_INVALIDATERECORD
message if text changes. Otherwise, any further processing is
unreliable.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

Remarks

Records were successfully refreshed.
An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY.

If the number of pointers to container records in the array exceeds the count of records to be
refreshed, only the number of records specified in the cNumRecord parameter is refreshed. If the
CCS_ VERIFYPOINTERS style bit is set and the pRecordArray parameter contains pointers to a
RECORDCORE structure or structures that do not exist, the PMERR_INVALID_PARAMETERS error is
set and nothing is refreshed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

24-34 PM Programming Reference

CM OPENEDIT
This message opens the window that contains the multiple-line entry (MLE) field used to edit

container text directly.

Parameters
param1

pCnrEdllDala (PCNREDITDATA)
Pointer.

Pointer to the CNREDITDATA structure. See CNREDITDATA on page A-13 for definitions of

this structure's fields as they apply to the CM_OPENEDIT message.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Direct editing of container text was successfully started.
Direct editing of container text was not successfully started. The WinGetlastError

function may return the following error:

PMERR_INVALID _PARAMETERS.

Remarks
The application sends this message to the container control to start the direct editing of container

text. The application can assign this message to a key or key combination, a menu choice, or both

so that the user can start editing container text directly from the keyboard.

When the container control receives this message, it sends the CN_BEGINEDIT notification code to

the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

CM PAINTBACKGROUND
This message informs an application whenever a container's background is painted if the

CA_OWNERPAINTBACKGROUND attribute of the CNRINFO data structure is specified.

Parameters
param1

pOwnerBackground (POWNERBACKGROUND)

Pointer.

Pointer to the OWNERBACKGROUND structure. See OWNERBACKGROUND on page A-75

for definitions of this structure's fields as they apply to the CM_PAINTBACKGROUND

message.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 24. Container Control Window Processing 24-35

Returns
tProcess (BOOL)

Process indicator.

TRUE
FALSE

Remarks

The application processed the CM_PAINTBACKGROUND message.
The application did not process the CM_PAINTBACKGROUND message.

The CM_PAINTBACKGROUND message is provided so that an application can subclass the container
control and paint its own background. If the application does not subclass the container control or
subclasses the container control and returns FALSE, the container uses the system window color,
which is specified by SYSCLR_WINDOW. This color can be changed by using the
PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX presentation parameter of the
WM_PRESPARAMCHANGED (in Container Controls) message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM_ QUERYCNRINFO
This message returns the container's CNRINFO structure.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer.

Pointer to a buffer into which the CNRINFO structure is copied.

param2

cbBufter (USHORT)
Number of bytes.

Maximum number of bytes to copy.

Returns
cbBytes (USHORT)

Success indicator.

0 Container data was not successfully returned. The WinGetLastError function may
return the following error:

PMERR_INVALID_PARAMETERS.

Other Actual number of bytes copied.

Remarks
The number of bytes specified in the cbBuffer parameter is returned in the buffer addressed by the
pCnr/nfo parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

24-36 PM Programming Reference

/

\
/

I
)'

\
)

CM_ QUERYDETAILFIELDINFO
This message returns a pointer to the requested FIELDINFO structure.

Parameters
param1

pFleldlnfo (PFIELDINFO)
Pointer.

Pointer to the FIELDINFO structure used to search for the next or previous column. If the

CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

param2

cmd (USHORT)
Command.

Command that indicates which FIELDINFO structure to retrieve.

Returns

CMA_FIRST
CMA_LAST
CMA_NEXT
CMA_PREV

pFleldlnfo (PFIELDINFO)
Pointer.

First column in the container.
Last column in the container.
Next column in the container.
Previous column in the container.

Pointer to the FIELDINFO structure for which data was requested.

NULL No FIELDINFO structures to retrieve.

Negative one The data from the FIELDINFO structure was not returned. The WinGetlastError

function may return the following error:

PMERR_INVALID_PARAMETERS.

Other Pointer to the FIELDINFO structure for which data was requested.

Remarks
If the cmd parameter has the value of the CMA_FIRST or CMA_LAST attribute, the pFieldlnfo

parameter is ignored and the first or last column data, respectively, is returned. If the CMA_NEXT or

the CMA_PREV attribute is set in the cmd parameter, the column data next to or before the column

pointed to by the pFieldlnfo parameter is returned.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return NULL.

Chapter 24. Container Control Window Processing 24-37

CM_ QUERYDRAGIMAGE
This message returns a handle to the icon or bit map for the record in the current view.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure that is to be queried for the image.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
hlmage (LHANDLE)

Image handle.

Handle of the image currently displayed for a record.

NULLHANDLE If no image is defined, NULLHANDLE is returned.
Other Handle of an icon or bit map.

Remarks

• If the CA_DRAWICON attribute and the CV_MINI style bit are specified, the
RECORDCORE structure's hptrMinilcon field is returned.

• If the CA_DRAWICON attribute is specified without the CV_MINI style bit,
the RECORDCORE structure's hptrlcon field is returned.

• If the CA_DRAWBITMAP attribute and the CV _MINI style bit are specified,
the RECORDCORE structure's hbmMiniBitmap field is returned.

• If the CA_DRAWBITMAP attribute is specified without the CV _MINI style
bit, the RECORDCORE structure's hbmBitmap field is returned.

If the CCS_MINIRECORDCORE style bit is specified, this function will always return the
MINIRECORDCORE structure's hptrlcon field.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULLHANDLE.

24-38 PM Programming Reference

CM_ QUERYRECORD
This message returns a pointer to the requested RECORDCORE structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be
used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure used to search for the next or previous container
record. If the CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

param2

cmd (USHORT)
Command.

Command that indicates which container record to retrieve:

CMA_FIRST
CMA_FIRSTCHILD
CMA_LAST
CMA_LASTCHILD
CMA_NEXT
CMA_PARENT
CMA_PREV

fsSearch (USHORT)
Enumeration order.

First record in the container.
First child record of pRecord specified in param1.
Last record in the container.
Last child record of pRecord s'pecified in param1.
Next record of pRecord specified in param1.
Parent of pRecord specified in param1.
Previous record of pRecord specified in param1.

Specifies the enumeration order. This value is one of the following:

Returns

CMA_ITEMORDER
CMA_ZORDER

pRecord (PRECORDCORE)
Pointer.

Container records are enumerated in item order, lowest to highest.
Container records are enumerated by z-order, from first record in the
z-order to the last record. The last z-order record is the last record to
be drawn. This flag is valid for the icon view only.

Pointer to the RECORDCORE structure for which data was requested.

NULL No RECORDCORE structures to retrieve.
Negative one The container record data was not returned. The WinGetLastError function may

return the following error:

PMERR_INVALID_PARAMETERS.

Other Pointer to the container record for which data was requested.

Remarks
If the cmd parameter has the value of CMA_FIRST or CMA_LAST, the pRecord parameter in param1
is ignored and the first or last record, respectively, in the container is returned.

Depending on the value of the fsSearch parameter, the container records are enumerated in item
order or in z-order.

See RECORDCORE on page A-110 or MINIRECORDCORE on page A-69 for a complete list and
descriptions of all container record attributes.

Chapter 24. Container Control Window Processing 24-39

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULL.

CM_ QUERYRECORDEMPHASIS
This message queries for a container record with the specified emphasis attributes.

Parameters
param1

pSearchAfler (PRECORDCORE)
Pointer.

param2

Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CMA_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

tEmphaslsMask (USHORT)
Emphasis attribute.

Returns

Specifies the emphasis attribute of the container record. The following states can be
combined using a logical OR operator (I):

CRA_CURSORED
CRA_INUSE
CRA_SELECTED

pRecord (PRECORDCORE)
Pointer.

Pointer to the record with the specified emphasis.

NULL This implies that none of the records that follow the pointer specified in the
pSearchAfter parameter meet those specifications.

Negative one The container record data was not returned. The WinGetLastError function may
return the following error:

Other

Default Processing

PMERR_INVALID _PARAMETERS.

Pointer to a container record with the specified emphasis.

This is the first record that follows the record pointed to by the pSearchAfter
parameter and satisfies the criteria specified in the fEmphasisMask parameter.
To find the next record that satisfies this criteria, send this message again, but
this time use the value returned in the pRecord parameter for the value of the
pSearchAfter parameter.

The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULL.

24-40 PM Programming Reference

CM_QUERYRECORDFROMRECT
This message queries for a container record that is bounded by the specified rectangle.

Parameters
param1

pSearchAfter (PRECORDCORE)
Pointer.

param2

Pointer to the specified container record. To get all the container records within the
specified rectangle, this message is sent repeatedly, each time this parameter is set to the
pointer that is returned by the previous usage of this message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CMA_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

pQueryRecFromRect (PQUERYRECFROMRECT)
Pointer.

Returns

Pointer to the QUERYRECFROMRECT data structure. See QUERYRECFROMRECT on
page A-108 for definitions ofthis structure's fields as they apply to the
CM_QUERYRECORDFROMRECT message.

pRecord (PRECORDCORE)
Pointer.

Pointer to the container records within the bounding rectangle.

NULL No container records are within the bounding rectangle.
Negative one The container record data was not returned. The WinGetLastError function may

return the following error:

PMERR_INVALID_PARAMETERS.

Other Pointer to the container record within the bounding rectangle.

Remarks
This message returns the pointer to the first container record found in the rectangle after the starting
position specified in the pSearchAfter parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULL.

Chapter 24. Container Control Window Processing 24-41

CM_ QUERYRECORDINFO
This message updates the specified records with the current information for the container.

Parameters
param1

pRecordArray (PVOID)
Pointer.

param2

Pointer to an array of pointers to RECORDCORE structures to which the current information
is to be copied.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

cNumRecord (USHORT)
Number of records.

Returns

The number of container records to be updated. If the cNumRecord parameter has a value
of 0, all of the records in the container are updated and the pRecordArray parameter is
ignored.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

Remarks

Record information was successfully updated.
An error occurred. The WinGetlastError function may return the following error:

PMERR_INVALID_PARAMETERS.

This message is needed only if the application is sharing records among multiple containers in the
same process.

The f/RecordAttr and pt/Icon fields are updated internally when they change, but not in the external
RECORDCORE structure. Therefore, the application's external record does not always have current
information in these fields. This message is only needed if the application is sharing records among
multiple containers in the same process.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

24-42 PM Programming Reference

~
I

\
)

CM_QUERYRECORDRECT
This message returns the rectangle of the specified container record, relative to the container
window origin.

Parameters
param1

prclltem (PRECTL)
Pointer.

Pointer to the RECTL structure, into which the rectangular coordinates are placed.

param2

pQueryRecordRect (PQUERYRECORDRECT)
Pointer.

Returns

Pointer to the QUERYRECORDRECT structure. See QUERYRECORDRECT on page A-109
for definitions of this structure's fields as they apply to the CM_QUERYRECORDRECT
message.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

A rectangle with valid coordinates is returned.

Remarks

The rectangle is not successfully returned. The WinGetLastError function may return
the following error:

PMERR_INVALID_PARAMETERS.

The coordinates of the returned rectangle are in window coordinates.

If the input record is not found in the container, the output rectangle is empty.

For a container using the details view (CV_DETAIL), all of the data for a row is returned in the
rectangle.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM_ QUERYVIEWPORTRECT
This message returns a rectangle that contains the coordinates of the container's client area. These
are virtual coordinates that are relative to the origin of the coordinate space requested.

Parameters
param1

prclVlewport (PRECTL)
Pointer.

Pointer to the RECTL structure that the virtual coordinates of the client area rectangle are to
be written into.

param2

uslndlcator (USHORT)
Coordinate space indicator.

One of the following must be used:

CMA_WINDOW
CMA_WORKSPACE

Returns the client area rectangle in container window coordinates.
Return the client area rectangle in coordinates relative to the origin
of the container's workspace.

Chapter 24. Container Control Window Processing 24-43

fRlghtSplitWindow (BOOL)
Flag.

Returns

Flag that specifies the right or left window in the split details view. This flag is ignored if the
view is not the split details view.

TRUE
FALSE

Right split window is returned.
Left split window is returned.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

The client area rectangle was returned successfully.
An error occurred. The WinGetLastError function may return the following error:

PMERR_INVALID_PARAMETERS.

Remarks
The virtual coordinates of the client area rectangle are written into the structure addressed by the
prc/Viewport parameter.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM REMOVEDETAILFIELDINFO
This message removes one, multiple, or all FIELDINFO structures from the container control.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer.

Pointer to an array of pointers to FIELDINFO structures that are to be removed.

param2

cNumFieldlnfo (USHORT)
Number of structures.

Number of FIELDINFO structures to be removed. If the cNumFieldlnfo parameter has a
value of 0, all of the FIELDINFO structures in the container are removed and the
pFieldlnfoArray parameter is ignored.

fRemoveFieldlnfo (USHORT)
Flags.

Flags that show whether memory must be freed and FIELDINFO structures invalidated.

CMA_FREE If specified, FIELDINFO structures are removed and memory
associated with the FIELDINFO structures is freed. If not specified,
FIELDINFO structures are removed and no memory is freed; this is the
default.

CMA_INVALIDATE If specified, after FIELDINFO structures are removed, the container is
invalidated, and any necessary repositioning of the FIELDINFO
structures is performed. If not specified, invalidation is not
performed.

24-44 PM Programming Reference

Returns
cFlelds (SHORT)

Number of structures.

Number of FIELDINFO structures remaining in the container.

Negative one An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_INVALID_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other The number of FIELDINFO structures that remain in the container.

Remarks
The FIELDINFO structures are removed from the list of columns inserted into the container control.

If the CMA_FREE attribute is not specified, the container control removes the specified FIELDINFO
structures without freeing the memory. The application is responsible for freeing the memory

associated with the FIELDINFO structures by using the CM_FREEDETAILFIELDINFO message.

If the cNumFieldlnfo parameter has a value of 0 and the CMA_FREE attribute is specified, all of the

FIELDINFO structures in the container control are removed and the memory associated with the
FIELDINFO structures is freed. It is the application's responsibility to free all of the
application-allocated memory associated with the FIELDINFO structures.

If the number of pointers to FIELDINFO structures in the array exceeds the count of FIELDINFO

structures to be removed, only the number of structures specified in the cNumFieldlnfo parameter
are removed. If the CCS_ VERIFYPOINTERS style bit is set and the pFieldlnfoArray parameter

contains pointers to a FIELDINFO structure or structures that do not exist, the
PMERR_INVALID_PARAMETERS error is set.

If you do not want to show a column, you can hide it by setting the CFA_INVISIBLE attribute of the

FIELDINFO data structure and notifying the container control with the
CM_INVALIDATEDET AILFIELDINFO message.

If the CMA_INVALIDATE attribute is specified, the container is repainted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

CM REMOVERECORD
This message removes one, multiple, or all RECORDCORE structures from the container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then

MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be

used instead of PRECORDCORE in all applicable data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer.

Pointer to an array of pointers to RECORDCORE structures that are to be removed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be removed. If the cNumRecord parameter has a value of 0,

all of the records in the container are removed and the pRecordArray parameter is ignored.

Chapter 24. Container Control Window Processing 24-45

fRemoveRecord (USHORT)
Flags.

Returns

Flags that show whether memory must be freed and container records invalidated.

CMA_FREE If specified, RECORDCORE structures are removed and memory
associated with the RECORDCORE structures is freed. If not
specified, RECORDCORE structures are removed and no memory is
freed; this is the default.

CMA_INVALIDATE If specified, after RECORDCORE structures are removed the container
is invalidated and any necessary repositioning of the container
records is performed. If not specified, invalidation is not performed.

This option is not valid in the icon view unless the
CCS_AUTOPOSITION style bit is set. In the icon view, the container
record is refreshed if the CCS_AUTOPOSITION style bit is not set,
regardless of whether the CMA_INVALIDATE attribute is set.

cRecords (LONG)
Number of structures.

Number of root level RECORDCORE structures that remain in the container.

Negative one An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_INVALID_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other Number of root level RECORDCORE structures that remain in the container.

Remarks
When parent item records are removed, all associated child item records are removed, as well.

If the CMA_FREE attribute is not specified, the container control removes the specified
RECORDCORE structures without freeing the memory. The application is responsible for freeing the
memory associated with the RECORDCORE structure by using the CM_FREERECORD message.

If the cNumRecord parameter has a value of O and the CMA_FREE attribute is specified, all of the
RECORDCORE structures in the container control are removed and the memory associated with the
RECORDCORE structures is freed. It is the application's responsibility to free all of the
application-allocated memory associated with the RECORDCORE structures.

If the number of pointers to RECORDCORE structures in the array exceeds the count of
RECORDCORE structures to be removed, only the number of records specified in the cNumRecord
parameter is removed. If the CCS_ VERIFYPOINTERS style bit is set and the pRecordArray parameter
contains pointers to a RECORDCORE structure or structures that do not exist, the
PMERR_INVALID_PARAMETERS error is set.

If the CMA_INVALIDATE attribute is specified, the container is repainted if the removed record or
records are visible.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

24-46 PM Programming Reference

\
I

I

)

\

)

CM SCROLLWINDOW
This message scrolls an entire container window.

Parameters
param1

flScrollDlrectlon (USHORT)
Scroll direction.

Direction in which to scroll the container window.

param2

CMA_ VERTICAL
CMA_HORIZONTAL

IScrolllnc (LONG)
Scroll increment.

Scro I I vertically.
Scroll horizontally.

Amount (in pixels) by which to scroll the window.

Returns
fSuccess (BOOL)

Success indicator.

Successful completion. TRUE
FALSE An error occurred. The WinGetlastError function may return the following error:

PMERR_INVALID_PARAMETERS.

Remarks
If the /Scrolllnc parameter value is greater than 0 and the CMA_HORIZONTAL attribute is specified,
the container window is scrolled to the right. The container window is scrolled down if the /Scrolllnc
parameter value is greater than 0 and the CMA_VERTICAL attribute. is specified. Similarly, the
container window is scrolled left and up, respectively, if the /Scrolllnc parameter value is less than O
and the same two attributes are specified.

If you want the container window to be scrolled by an amount that is indicated with a key, such as the
PgUp, PgDn, Home, and End keys, the application can send a key event to the scroll bar.

If the container window is displaying the split details view, the CM_HORZSCROLLSPLITWINDOW
message is used for horizontal scrolling.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

Chapter 24. Container Control Window Processing 24-47

I

CM_ SEARCHSTRING
This message returns the pointer to a container record whose text matches the string.

Parameters
param1

pSearchStrlng (PSEARCHSTRING)
Pointer.

param2

Pointer to the SEARCHSTRING structure. See SEARCHSTRING on page A-115 for
definitions of this structure's fields as they apply to the CM_SEARCHSTRING message.

pSearchAfter (PRECORDCORE)
Pointer.

Returns

Pointer to the starting container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data structures and messages.

CMA_FIRST Start the search at the first container record.
Other Start the search after the container record specified by this pointer. To get

all of the records in the container whose text matches the string, this
message is sent repeatedly. Each time this message is sent, the
pSearchAfter parameter contains a pointer to the last record that was found.

pRecord (PRECORDCORE)
Pointer.

Pointer to the found container record.

NULL No container record's text matches the search string.
Negative one An error occurred. The WinGetLastError function may return the following

error:

PMERR_INVALID_PARAMETERS.

Other Pointer to the container record whose text matches the search string.

Remarks
The CM_SEARCHSTRING message is NLS-enabled.

In the details view, the string is searched for in each column of each record.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULL.

24-48 PM Programming Reference

CM SETCNRINFO
This message sets or changes the data for the container control.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer.

Pointer to the CNRINFO structure from which to set the data for the container.

param2

ulCnrlnfoFI (ULONG)
Flags.

Flags that show which fields are to be set.

CMA_PSORTRECORD

CMA_PFIELDINFOLAST

CMA_PFIELDINFOOBJECT

CMA_CNRTITLE
CMA_FLWINDOWATTR
CMA_PTLORIGIN

CMA_DELTA

Pointer to the comparison function for sorting container
records. If NULL, which is the default condition, no
sorting is performed. Sorting only occurs during record
insertion and when changing the value of this field. The
third parameter of the comparison function, pStorage,
must be NULL. See "CM_SORTRECORD" on page 24-51
for a further description of the comparison function.
Pointer to the last column in the left window of the split
details view. The default is NULL, causing all columns to
be positioned in the left window.
Pointer to a column that represents an object in the
details view. This FIELDINFO structure must contain
icons or bit maps. In-use emphasis is applied to this
column of icons or bit maps only. The default is the
leftmost column in the unsplit details view, or the leftmost
column in the left window of the split details view.
Text for the container title. The default is NULL.
Container window attributes.
Lower-left origin of the container window in virtual
workspace coordinates, used in the icon view. The
default origin is (0,0).
An application-defined threshold, or number of records,
from either end of the list of available records. Used
when a container needs to handle large amounts of data.
The default is 0. Refer to the description of the container
control in the 0812 Programming Guide for more
information about specifying deltas.

CMA_SLBITMAPORICON The size (in pels) of icons or bit maps. The default is the
system size.

CMA_SLTREEBITMAPORICON The size (in pels) of the expanded and collapsed icons or
bit maps in the tree icon and tree text views.

CMA_TREEBITMAP Expanded and collapsed bit maps in the tree icon and tree
text views.

CMA_ TREEICON Expanded and collapsed icons in the tree icon and tree
text views.

CMA_LINESPACING The amount of vertical space (in pels) between the
records. If this value is less than 0, a default value is
used.

CMA_CXTREEINDENT Horizontal distance (in pels) between levels in the tree
view. If this value is less than 0, a default value is used.

CMA_CXTREELINE Width of the lines (in pels) that show the relationship
between items in the tree view. If this value is less than 0,
a default value Is used. Also, if the CA_ TREELINE
container attribute of the CNRINFO data structure's
f/WindowAttr field is not specified, these lines are not
drawn.

Chapter 24. Container Control Window Processing 24-49

CMA_XVERTSPLITBAR

Returns

The initial position of the split bar relative to the
container, used in the details view. If this value is less
than 0, the split bar is not used. The default value is
negative one (-1).

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

Container data was successfully set.
Container data was not set. The WinGetlastError function may return the following
errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT_MEMORY.

Remarks
The data for a container is set from the buffer addressed by the pCnrlnfo parameter. The flags in the
u/CnrlnfoF/ parameter show which part or parts of the pCnrlnfo parameter are set. The flag values
can be combined by using a logical OR operator (I).

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

CM SETRECORDEMPHASIS
This message sets the emphasis attributes of the specified container record.

Parameters
param1

pRecord (PRECORDCORE)
Pointer.

param2

Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE
should be used instead of PRECORDCORE in all applicable data s1ructures and messages.

usChangeEmphasis (USHORT)
Flag.

Change-emphasis-attribute flag.

TRUE The container record's emphasis attribute is to be set ON if the change specified
is not the same as the current state.

FALSE The container record's emphasis attribute is to be set OFF if the change specified
is not the same as the current state.

fEmphasisAltribute (USHORT)
Emphasis attribute.

Emphasis ·attribute of the container record. The following states can be combined by using
a logical OR ·operator (I):

CRA....:CURSORED
CRA..JNUSE
CRA_SELECTED

24-50 PM Programming Reference

\
)

)

Returns
ISuccess (BOOL)

Success indicator.

TRUE Successful completion.
FALSE An error occurred. The WinGetLastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY.

Remarks
For single-selection containers, the selection of the previous container record is cancelled before

another record is selected. The selection cursor is set with the CRA_CURSORED attribute for

single-selection containers. Only one selection cursor is allowed.

The selection cursor must always be available to the user. Therefore, if you attempt to disable the

selection cursor by specifying FALSE for the usChangeEmphasis parameter and CRA_CURSORED for

the fEmphasisAttribute parameter, the PMERR_INVALID_PARAMETERS error is set. In order to

change the selection cursor attribute, TRUE should be specified for the usChangeEmphasis

parameter and CAA_ CURSORED for the fEmphasisAttribute parameter. The pRecord parameter

should point to the record to which the selection cursor should be applied. The container control

removes the selection cursor from the record with the cursor and applies it to the new record.

A CN_EMPHASIS notification code is sent to the container owner if the record emphasis attribute is

changed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

CM SORTRECORD
This message sorts the container records in the container control.

Parameters
param1

plnCompare (PFN)
Pointer.

Pointer to a comparison function.

param2

pStorage (PVOID)
Application use.

Available for application use.

Returns
ISuccess (BOOL)

Success indicator.

TRUE The records in the container were sorted.
FALSE The records in the container were not sorted. The WinGetLastError function may

return the following errors:
• PMERR_COMPARISON_FAILED
• PMERR_INSUFFICIENT _MEMORY.

Chapter 24. Container Control Window Processing 24-51

Remarks
The pfnCompare parameter must be declared as:

SHORT PFN pfnCompare(PRECORDCORE pl, PRECORDCORE p2, PVOID oStorage);
Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created, then
MINIRECORDCORE should be used instead of RECORDCORE and PMINIRECORDCORE should be
used instead of PRECORDCORE in all applicable data structures and messages.

The pfnCompare parameter points to an application-provided function that compares two
RECORDCORE structures and returns a SHORT value that specifies their relationship. The
pfnCompare parameter is called one or more times during the sorting process and is passed
pointers to two RECORDCORE structures on each call. The routine must compare the RECORDCORE
structures, and then return one of the following values:

Value Meaning

Less than O p1 is less than p2.

p1 is equal to p2. 0

Greater than 0 p1 is greater than p2.

The container records are sorted in increasing order, as defined by the pfnCompare parameter. The
records can be sorted in reverse order by reversing the sense of "greater than" and "less than" in
the pfnCompare parameter.

If the container has only one record, the PMERR_COMPARISON_FAILED error is set.

The application must provide an NLS-enabled function for the pfnCompare parameter. The container
control does not provide NLS enablement for sorting.

An alternative to using the CM_SORTRECORD message is to provide an application-defined
comparison function to sort the container records, which can be specified in the CNRINFO structure's
pSortRecord field. If this function is provided, the container records are sorted as they are inserted
into the container control. If this field is NULL, the records are not sorted on insertion.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

WM_PRESPARAMCHANGED (in Container Controls)
For the cause of this message, see "WM_PRESPARAMCHANGED" on page 12-48.

Parameters
param1

attrtype (ULONG)
Attribute type.

Presentation parameter attribute identity.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Sets the background color of the container window. This color is initially set to
SYSCLR_WINDOW.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Sets the color of the title separators, column separators, and split bar. This color is
initially set to SYSCLR_WINDOWFRAME.

PP _FONTNAMESIZE
Sets the font and font size of the text in the container. This font and font size defaults
to the system font and font size.

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Sets the color of unselected text. This color is initially set to SYSCLR_WINDOWTEXT.

24-52 PM Programming Reference

/

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX

Sets the color of selection emphasis, the color of the cursor of an unselected item in

the details view, and the color of the cursor in all other views. This color is initially

set to SYSCLR_HILITEBACKGROUND.

PP _HILITEFOREGROUNDCOLOR or PP _HILITEFOREGROUNDCOLORINDEX

Sets the color of the text of a selected item in all views and the color of the cursor of a

selected item in the details view. This color is initially set to

SYSCLR_HILITEFOREGROUND.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The application uses the WinSetPresParam function to change presentation parameters. This results

in a WM_PRESPARAMCHANGED (in Container Controls) message being sent to the container.

Default Processing
For a description of the default processing, see "WM_PRESPARAMCHANGED" on page 12-48.

Chapter 24. Container Control Window Processing 24-53

24-54 PM Programming Reference

~ ·-\

)

h
I v

Chapter 25. Notebook Control Window Processing

This system-provided window procedure processes the actions on a notebook control
{WC_NOTEBOOK).

Purpose
A notebook control (WC_NOTEBOOK window class) is a visual component whose specific purpose is

to organize information on individual pages so that a user can find and display that information
quickly and easily. It simulates a real-world notebook while improving it by overcoming its natural
limitations. A user can select and display pages by using either a pointing device, such as a mouse,

or the keyboard.

The notebook is designed to be customizable to meet varying application requirements, while
providing an easy-to-use user interface component that can be used to develop products that
conform to the Common User Access· (CUA*) user interface guidelines. The application can specify
different colors, sizes, and orientations for its notebooks, but the underlying function of the control
remains the same. For a complete description of CUA notebooks, refer to the SAA CUA Guide to
User Interface Design and the SAA CUA Advanced Interface Design Reference.

Notebook Control Styles
Notebook control window styles can be set with a notebook is created. The following styles can be
set when creating a notebook control window. If no styles are specified, defaults, which are
identified in the following descriptions, are used.

• Specify one of the following to determine whether the notebook has a solid or spiral binding:

BKS_SOLIDBIND
Paints a solid binding on the notebook. This is the default.

BKS_SPIRALBIND
Paints a spiral binding on the notebook.

• Specify one of the following to determjne where the back pages are positioned:

Bl<S_BACKPAGESBR
Paints back pages on the notebook's bottom and right sides. This is the default.

BKS_BACKPAGESBL
Paints back pages on the notebook's bottom and left sides.

BKS_BACKPAGESTR
Paints back pages on the notebook's top and right sides.

BKS_BACKPAGESTL
Paints back pages on the notebook's top and left sides.

• Specify one of the following to determine the side of the notebook on which the major tabs are
positioned. Valid combinations with back pages styles are noted in each definition.

BKS_MAJORTABRIGHT
Places major tabs on the notebook's right edge. Only valid in combination with
BKS_BACKPAGESBR or BKS_BACKPAGESTR. This is the default when either of these back
pages styles is used.

BKS_MAJORTABLEFT
Places major tabs on the notebook's left edge. Only valid in .combination with
BKS...;BACKPAGESBL or BKS_BACKPAGESTL. This is the default when BKS_BACKPAGESTL
is used.

• Trademark of IBM Corporation

Chapter 25. Notebook Control Window Processing 25-1

BKS_MAJORTABTOP
Places major tabs on the notebook's top edge. Only valid in combination with
BKS_BACKPAGESTR or BKS_BACKPAGESTL.

BKS_MAJORTABBOTTOM
Places major tabs on the notebook's bottom edge. Only valid in combination with
BKS_BACKPAGESBR or BKS_BACKPAGESBL. This is the default when
BKS_BACKPAGESBL is used.

• Specify one of the following to set the shape of the notebook tabs:

BKS_SQUARETABS
Draws tabs with square edges. This is the default.

BKS_ROUNDEDTABS
Draws tabs with rounded edges.

BKS_POLYGONTABS
Draws tabs with polygon edges.

• Specify one of the following to position the status line text:

BKS_STATUSTEXTLEFT
Left-justifies status line text. This is the default.

BKS_STATUSTEXTRIGHT
Right-justifies status line text.

BKS_STATUSTEXTCENTER
Centers status line text.

• Specify one of the following to position the tab text:

BKS_TABTEXTCENTER
Centers tab text. This is the default.

BKS_ TABTEXTLEFT
Left-justifies tab text.

BKS_TABTEXTRIGHT
Right-justifies tab text.

Notebook Control Data
See the following for descriptions of the notebook control data structures:

• BOOKTEXT on page A-9
• DELETENOTIFY on page A-24
• PAGESELECTNOTIFY on page A-78.

25-2 PM Programming Reference

/

Notebook Control Notification Messages
These messages are initiated by the notebook control window to notify its owner of significant
events.

WM_ CONTROL (in Notebook Controls)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

Id (USHORT)
Control-window identity.

notifycode (USHORT)
Notify code.

The notebook control uses these notification codes:

param2

BKN_HELP
BKN_NEWPAGESIZE

BKN_PAGESELECTED
BKN_PAGEDELETED

Indicates the notebook control has received a WM_HELP message.
Indicates the dimensions of the application page window have
changed.
Indicates a new page has been brought to the top of the notebook.
Indicates a page has been deleted from the notebook.

notifyinfo (ULONG)

Returns

Notify code information.

The value of this parameter depends on the value of the notifycode
parameter. When the value of the notifycode parameter is BKN_HELP, this parameter is the
ID of the notebook page (ulPageld) whose tab contains the selection cursor.

When the value of the notifycode parameter is BKN_PAGESELECTED, this parameter is a
pointer to the PAGESELECTNOTIFY structure.

When the value of the notifycode parameter is BKN_PAGEDELETED, this parameter is a
pointer to the DELETENOTIFY structure.

Otherwise, this parameter is the notebook control window handle.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
The notebook control window procedure generates this message and sends it to its owner, informing
the owner of this event.

Default Processing
For a description of the default processing, see "WM_ CONTROL" on page 12-28.

Chapter 25. Notebook Control Window Processing 25-3

Notebook Control Window Messages
This section describes the notebook contror window procedure actions on receiving the following
messages.

BKM CALCPAGERECT
This message calculates an application page rectangle from a notebook rectangle or calculates a
notebook rectangle from an application page rectangle, depending on the setting of the bPage
parameter.

Parameters
param1

pRectl (PRECTL)
Pointer.

param2

Points to the RECTL structure that contains the coordinates of the rectangle. If the bPage
parameter is TRUE, this structure contains the coordinates of a notebook window on input,
and on return it contains the coordinates of an application page window.

If the bPage parameter is FALSE, this structure contains the coordinates of an application
page window on input, and on return it contains the coordinates of a notebook window.

bPage (BOOL)
Window specifier.

Returns

Specifies whether the window coordinates to calculate are for a notebook window or an
application page window.

TRUE
FALSE

An application page window is calculated.
A notebook window is calculated.

ISuccess (BOOL)
Success indicator.

TRUE
FALSE

Remarks

Coordinates were successfully calculated.
Unable to calculate coordinates. This is returned if an invalid RECTL structure is
specified in the pRectl parameter.

The application can use this message to determine the size of either the notebook window or the
application page window. It can also be used when the application handles the position and size of
the application page window.

To calculate the application page rectangle, specify the coordinates of the notebook window in the
pRectl parameter and TRUE in the bPage parameter. The notebook control then uses the
coordinates specified in the pRectl parameter to calculate and return the coordinates of the
application page window.

To calculate the notebook rectangle, specify the coordinates of the application page window in the
pRectl parameter and FALSE inthe bPage parameter. The notebook control then uses the
coordinates specified in the pRectl parameter to calculate and return the coordinates of the notebook
window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

25-4 PM Programming Reference

'\
)

BKM DELETEPAGE
This message deletes the specified page or pages from the notebook data list.

Parameters
param1

ulPageld (ULONG)
Page identifier.

Page identifier for deletion. This is ignored if the BKA_ALL attribute of the usDeleteFlag
parameter is specified.

param2

usDeleteflag (USHORT)
Page range attribute.

Attribute that specifies the range of pages to be deleted.

Returns

BKA_SINGLE
BKA_TAB

BKA_ALL

fSuccess (BOOL)
Success indicator.

Delete a single page.
If the page ID specified is that of a page with a major tab attribute, delete
that page and all subsequent pages up to the next page that has a major
tab attribute.

If the page ID specified is that of a page with a minor tab attribute, delete
that page and all subsequent pages up to the next page that has either a
major or minor tab attribute.

This attribute should only be specified for pages that have major or minor
tab attributes. If a page with neither of these attributes is specified, FALSE
is returned and no pages are deleted.
Delete all pages in the notebook.

TRUE
FALSE

Pages were successfully deleted.

Remarks

Unable to delete the page or pages. This is returned if an invalid page ID is specified
for the u/Pageld parameter or if the BKA_TAB attribute is specified for a page that has
neither a major nor a minor tab attribute.

The notebook frees all storage that it has allocated for the deleted page or pages. The application is
responsible for deleting the application page window and bit map, if created.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

Chapter 25. Notebook Control Window Processing 25-5

BKM INSERTPAGE
This message inserts the specified page into the notebook data list.

Parameters
param1

ulPageld (ULONG)

param2

Page ID for placement.

Page identifier used for the placement of the inserted page. This identifier is ignored if the
BKA_FIRST or BKA_LAST attribute of the usPageOrder parameter is specified.

usPageStyle (USHORT)
Style attributes.

Attributes that specify the style to be used for an inserted page. You can specify one
attribute from each of the following groups by using logical OR operators (I) to combine
attributes.

• Specify the following for automatic page position and size:

BKA_AUTOPAGESIZE
Notebook handles the positioning and sizing of the application page window
specified in the BKM_SETPAGEWINDOWHWND message.

• Specify the following to display status area text:

BKA_STATUSTEXTON
Page is to be displayed with status area text. If this attribute is not specified, the
application cannot associate a text string with the status area of the page being
inserted.

• Specify one of the following if the page is to have a major or minor tab attribute:

BKA_MAJOR
Inserted page will have a major tab attribute.

BKA_MINOR
Inserted page will have a minor tab attribute.

usPageOrder (USHORT)
Order attributes.

Returns

Placement of page relative to the previously inserted pages. You can specify one of the
following attributes:

BKA_FIRST Insert page at the front of the notebook. The page ID specified in the
u/Pageld parameter for param1 is ignored if this is specified.

BKA_LAST Insert page at the end of the notebook. The page ID specified in the u/Pageld
parameter for param1 is ignored if this is specified.

BKA_NEXT Insert page after the page whose ID is specified in the u/Pageld parameter
for param1. If the page ID specified in the u/Pageld parameter is invalid,
NULL is returned and no page is inserted.

BKA_PREV Insert page before the page whose ID is specified in the u/Pageld parameter
for param1. If the page ID specified in the u/Pageld parameter is invalid,
NULL is returned and no page is inserted.

ulPageld (ULONG)
Page ID for insertion.

Identifier for the inserted page.

NULL The page was not inserted into the notebook. An invalid page ID was specified for the
u/Pageld parameter for param1 or not enough space was available to allocate the page
data.

Other Identifier for the inserted page.

25-6 PM Programming Reference

/

Remarks
The notebook control allocates and manages the storage needed for the new page. If neither the

BKA_MAJOR or BKA_MINOR attribute is specified, the page is inserted with no tab attributes.

If the application does not specify the BKA_AUTOPAGESIZE attribute, it must handle the positioning

and sizing of the application page window when it receives the BKN_NEWPAGESIZE notification

code.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

BKM INVALIDATETABS
This message repaints all of the tabs in the notebook.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Tabs painted successfully.
Tabs were not painted.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

BKM_QUERYPAGECOUNT
This message queries the number of pages.

Parameters
param1

ulPageld (ULONG)
Page ID or 0.

param2

Page identifier from which to start the query, or 0. If this parameter is set to 0, the query

begins with the first page.

usQueryEnd (USHORT)
Query end attribute.

Attribute that ends the page count query.

BKA_MAJOR Query the number of pages between the page ID specified in the u/Pageld

parameter and the next page that has the BKA_MAJOR attribute. The page

that has the BKA_MAJOR attribute is not included in the page count.

BKA_MINOR Query the number of pages between the page ID specified in the u/Pageld

parameter and the next page that has the BKA_MINOR attribute. The page

that has the BKA_MINOR attribute is not included in the page count.

Chapter 25. Notebook Control Window Processing 25-7

BKA_END

Returns
pageCount (SHORT)

Number of pages.

Query the number of pages between the page ID specified in the u/Pageld
parameter and the last page. When this attribute is specified, the page
count includes the last page plus the notebook's back cover.

Number of pages in the notebook.

BOOKERR_INVALID_PARAMETERS An invalid page ID was specified for the u/Pageld
parameter.

Other Number of pages for the specified range. If the notebook
is empty or no pages are found in the range, this value is
0.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

BKM QUERYPAGEDATA
This message queries the 4 bytes of application reserved storage associated with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier of the page from which to retrieve the 4 bytes of data.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
ulPageData (ULONG)

Page data.

Application-defined page data.

BOOKERR_INVALID_PARAMETERS An invalid page ID was specified for the u/Pageld
parameter.

0 No page data was set for the page specified in the
u/Pageld parameter.

Other Application-defined page data.

Remarks
This data is set by using the BKM_SETPAGEDATA message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

25-8 PM Programming Reference

BKM_ QUERYPAGEID
This message queries the page identifier for the specified page.

Parameters
param1

ulPageld (ULONG)
Location page ID.

param2

Page identifier used for locating the requested page. This identifier is ignored if the
BKA_FIRST, BKA_LAST, or BKA_TOP attribute is specified.

usQueryOrder (USHORT)
Page ID qaery order.

Order in which to query the page identifier.

BKA_FIRST Get the page identifier for the first page. The page ID specified in the
u/Pageld parameter for param1 is ignored if this is specified.

BKA_LAST Get the page identifier for the last page. The page ID specified in the
u/Pageld parameter for param1 is ignored if this is specified.

BKA.:..NEXT Get the page identifier for the page after the page whose ID is specified in
the u/Pageld parameter for param1. If the page ID specified in the u/Pageld
parameter is invalid, BOOKERR_INVALID_PARAMETERS is returned.

BKA_PREV Get the page identifier for the page before the page whose ID is specified in
the u/Pageld parameter for param1. If the page ID specified in the u/Pageld
parameter is invalid, BOOKERR_INVALID_PARAMETERS is returned.

BKA_ TOP Get the page identifier for the page currently visible in the notebook. The
page ID specified in the u/Pageld parameter for param1 is ignored if this is
specified.

usPageStyle (USHORT)
Page style.

Page style for which to query the page identifier. If neither of these attributes is specified,
the usPageStyle parameter is ignored.

Returns

BKA_MAJOR
BKA_MINOR

ulPageld (ULONG)
Retrieved page ID.

Query page with major tab attribute.
Query page with minor tab attribute. If a major tab page is found before the
minor tab page, the search is ended and 0 is returned.

Retrieved page identifier.

BOOKERR_INVALID_PARAMETERS Returned if the page ID specified for the u/Pageld
parameter for param1 is invalid when specifying either
the BKA_PREV or BKA_NEXT attribute in the
usQueryOrder parameter.

O Requested page not found. This could be an indication
that the end or front of the list has been reached, or that
the notebook is empty.

Other Retrieved page identifier.

Remarks
If the BKA_FIRST, BKA_LAST, or BKA_TOP attribute is specified, the page ID in the u/Pageld
parameter is ignored.

Chapter 25. Notebook Control Window Processing 25-9

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return O.

BKM_QUERYPAGESTYLE
This message queries the style that was set when the specified page was inserted.

Parameters
param1

ulPageld (ULONG)
Page ID.

Page identifier of the page from which to query the style setting.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
usPageStyle (USHORT)

Page style data.

BOOKERR_INVALID_PARAMETERS An invalid page ID was specified for the u/Pageld
parameter.

Other Page style data.

Remarks
This style data is set when the page is inserted, which is done by using the BKM_INSERTPAGE
message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

BKM_ QUERYPAGEWINDOWHWND
This message queries the application page window handle associated with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

Page identifier of the page whose window handle is requested.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
hwndPage (HWND)

Window handle.

Handle of the application page window associated with the specified page identifier.

BOOKERR_INVALID_PARAMETERS An invalid page ID was specified for the u/Pageld
parameter.

NULLHANDLE No application page window handle is associated for the
page specified in the u/Page/d parameter.

Other Handle of the application page window associated with
the specified page identifier.

· 25-10 PM Programming Reference

\,

)

Remarks
The application page window handle is set by using the BKM_SETPAGEWINDOWHWND message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return NULLHANDLE.

BKM _ QUERYSTATUSLINETEXT
This message queries the status line text, text size, or both for the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

Page identifier of the page whose status line text is requested.

param2

pBookText (PBOOKTEXT)
Pointer.

Pointer to a BOOKTEXT data structure. See BOOKTEXT on page A-9 for definitions of this

structure's fields as they apply to the BKM_QUERYSTATUSLINETEXT message.

Returns
statusTextLen (USHORT)

String length.

Length of the status line text string.

BOOKERR_INVALID_PARAMETERS An invalid page ID was specified for the u/Page/d
parameter or the structure specified for the pBookText

parameter is invalid.

0 No text data has been set (BKM_SETSTATUSLINETEXT)

for the page specified in the u/Pageld parameter.

Other Length of the returned status line text string.

Remarks
The size of the status line text string can be queried by specifying 0 for the textLen field of the

BOOKTEXT data structure. In this way, the application can determine the size of the buffer needed to

store the status line text string. The null character at the end of the text string is not included in the

returned length.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

other than to return 0.

Chapter 25. Notebook Control Window Processing 25-11

BKM QUERYTABBITMAP
This message queries the bit-map handle associated with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

Page identifier of the page whose bit-map handle is requested. This should be a page for
which a BKA_MAJOR or BKA_MINOR attribute has been specified.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
hbm (HBITMAP)

Bit-map handle.

Handle of the bit map associated with the specified page identifier.

BOOKERR_INVALID_PARAMETERS An invalid page 10 was specified for the u/Pageld
parameter.

NULLHANDLE No bit-map handle is associated with the page specified
in the u/Page/d :parameter .

. Other Handle of the bit map associated with the specified page
identifier.

Remarks
The tab bit-map handle is set by using the BKM_SETIABBITMAP message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return NULLHANDLE.

BKM_ QUERYTABTEXT
This message queries the text, text size, or both for the specified page.

Parameters
param1

u.IPageld (ULONG)
Page ID.

param2

Page Identifier of the page whose tab text is requested. This should be a page for which a
BKA_MAJOR or BKA_MlNOR attribute has been specified.

pBookText (PBOOKTE XT)
Pointer.

Returns

Pointer to a BOOKTEXT data structure. See BOOKTEXT on page A~9 for definitions of this
structure's fields as they apply to the·BKM_QUERYTABTEXT message.

tabTextLen (USHOR.T)
String length.

Length of the tab text string.

BOOKERR_INVALID_PARAMETERS An invalid page to was specified for the u/Pageld
parameter or the structure specified for the pBookText
parameter is invalid.

25-12 PM Programming Reference

\
)

0

Other

Remarks

No text data has been set (BKM_SETTABTEXT) for the

page specified in the u/Pageld parameter.
Length of the returned tab text string.

The size of the tab text string can be queried by specifying o for the textLen field in the BOOKTEXT

data structure. In this way, the application can determine the size of the buffer needed to store the

tab text string. The null character at the end of the text string is not included in the returned length.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

BKM SETDIMENSIONS
This message sets the height and width for the major tabs, minor tabs, or page buttons.

Parameters
param1

usWidth (USHORT)
Width value to set.

usHeight (USHORT)
Height value to set.

param2

usType (USHORT)
Notebook region.

Notebook region for which the dimensions are to be set. Valid values are:

• BKA_MAJOR
• BKA_MINOR
• BKA_PAGEBUTTON.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Dimensions were successfully set.

Remarks

Unable to set dimensions. Returned if an invalid value is specified for the usType

parameter or if the dimensions are invalid.

If either the BKA_MAJORTAB or BKA_MINORTAB attribute is specified for the usType parameter, the

minimum width and height for display is 7 pels to allow space for the tab border and the selection

cursor. If the tabs or page buttons are not to be displayed, the height and width can be set to 0.

If the new dimensions cause the notebook size to change, the notebook sends a BKN_NEWPAGESIZE

notification code to the application.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

Chapter 25. Notebook Control Window Processing 25-13

BKM SETNOTEBOOKCOLORS
This message sets the colors for the major tab text and background, the minor tab text and
background, and the notebook page background.

Parameters
param1

ulColor (ULONG)
Color value to set.

param2

usBookAttr (USHORT)
Notebook region.

Returns

Notebook region whose color is to be set. Valid values are:

BKA_BACKGROUNDPAGECOLOR or BKA_BACKGROUNDPAGECOLORINDEX
Page background. This color is initially set to SYSCLR_PAGEBACKGROUND.

BKA_BACKGROUNDMAJORCOLOR or BKA_BACKGROUNDMAJORCOLORINDEX
Major tab background. This color is initially set to SYSCLR_PAGEBACKGROUND.

BKA_BACKGROUNDMINORCOLOR or BKA_BACKGROUNDMINORCOLORINDEX
Minor tab background. This color is initially set to SYSCLR_PAGEBACKGROUND.

BKA_FOREGROUNDMAJORCOLOR or BKA_FOREGROUNDMAJORCOLORINDEX
Major tab text. This color is initially set to SYSCLR_WINDOWTEXT.

BKA_FOREGROUNDMINORCOLOR or BKA_FOREGROUNDMINORCOLORINDEX
Minor tab text. This color is initially set to SYSCLR_WINDOWTEXT.

fSuccess (BOOL)
Success indicator.

TRUE Colors were successfully set.
FALSE Unable to set colors. Returned if an invalid notebook attribute is specified for the

usBookAttr parameter.

Remarks
The notebook background, border, selection cursor, and status line text colors are mapped to system
presentation attributes. See "WM_PRESPARAMCHANGED (in Notebook Controls)" on page 25-21 for
information about setting the color of these regions.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

BKM SETPAGEDATA
This message sets the 4 bytes of application reserved storage associated with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier of the page from which to set the 4 bytes of data.

param2

ulPageDala (ULONG)
Page data.

Application-defined page data.

25-14 PM Programming Reference

/

~
/'

Returns
fSuccess (BOOL)

Success indicator.

TRUE Page data was successfully set.
FALSE Unable to set page data. This value is returned if the page ID specified in the u/Page/d

parameter is invalid.

Remarks
This data can be queried by using the BKM_QUERYPAGEDATA message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

BKM SETPAGEWINDOWHWND
This message associates an application page window handle with the specified notebook page.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page ID of the notebook page with which the application page window is to be

associated.

param2

hwndPage (HWND)
Window handle.

The handle of the application page window that is to be associated with the notebook page

identified in the u/Page/d parameter.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Application page window handle was successfully set.

Unable to set application-page window handle. This value is returned if the page ID

specified for the u/Page/d parameter is invalid.

The notebook shows the application page window specified in the hwndPage parameter whenever

the notebook page specified in the u/Pageld parameter is brought to the top of the notebook. If the

BKA_AUTOPAGESIZE attribute is specified when that page is inserted into the notebook, the

notebook also handles the sizing and positioning of the application page window.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return FALSE.

Chapter 25. Notebook Control Window Processing 25-15

BKM SETSTATUSLINETEXT
This message associates a text string with the specified page's status line.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier with which to associate the text string.

param2

pszString (PSZ)
Pointer.

Pointer to a text string that ends in a null character.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Status line text was successfully set.
Unable to set status line text. This value is returned if the page ID specified in the
u/Pageld parameter is invalid or if the page was inserted without specifying the
BKA_STATUSTEXTON attribute.

If the text is longer that the status area length, only the text that fits in the status area is displayed.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

BKM SETTABBITMAP
This message associates a bit-map handle with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

param2

The page identifier with which to associate the bit-map handle. This should be a page for
which a BKA_MAJOR or BKA_MINOR attribute has been specified.

hbm (HBITMAP)
Bit-map handle.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Tab bit map was successfully set.
Unable to set tab bit map. If the page ID specified in the u/Pageld parameter is invalid
or if it identifies a page that does not have a BKA_MAJOR or BKA_MINOR attribute,
FALSE is returned and no bit map is associated with the page.

25-16 PM Programming Reference

Remarks
When displayed, the bit map is stretched to fit the size of the tab. If a tab has rounded or polygonal

edges, the bit map is sized to fit the rectangular area of the tab, as shown in Figure 25-1.

'
!..::: ...

Bit Map Stretched to Fit

Rectangular Area

[() . /.j ll . . . ~
Square

Tab
Rounded

Tab
Polygonal

Tab

Figure 25-1. Tabs Showing Rectangular Area Used to Size a Bit Map

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

BKM SETTABTEXT
This message associates a text string with the specified page.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier with which to associate the text string. This should be a page for which
a BKA_MAJOR or BKA_MINOR attribute has been specified.

param2

pszString (PSZ)
Pointer.

Pointer to a text string that ends with a null character.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Tab text was successfully set.
Unable to set tab text. If the page ID specified in the u/Pageld parameter is invalid or
if it identifies a page that does .not have a BKA_MAJOR or BKA_MINOR attribute,
FALSE is returned and no text string is associated with the page.

The text is centered from the tab edges.

The application can define a mnemonic key when sending this message by placing a tilde("')

character before the character that is to be the mnemonic key. The notebook brings this page to the

top whenever the user presses the mnemonic key.

The mnemonic key processing is not case-sensitive, so the user can type the mnemonic character in
either upper or lower case.

The application can remove or change the mnemonic key by sending additional BKM_SETTABTEXT

messages for the specified page.

Chapter 25. Notebook Control WJndowPoo_cessing 25-17

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

BKM TURNTOPAGE
This message brings the specified page to the top of the notebook.

Parameters
param1

ulPageld (ULONG)
Page ID.

The page identifier that is to become the top page.

param2 (ULONG)
Reserved.

O Reserved value, O.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

The page was successfully moved to the top of the notebook.
Unable to move the page to the top of the notebook. This value is returned if the page
ID specified in the u/Pageld parameter is invalid.

Remarks
The application receives a BKN_PAGESELECTED notification code when the new page is brought to
the top of the notebook.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

WM_CHAR (in Notebook Controls)
For the cause of this message, see "WM_ CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_ CHAR" on page 12-24.

Remarks
If the application page window has the focus, the notebook will handle the following keyboard
interaction:

Keyboard Input

Alt+ Up Arrow

Description

Sets the focus to the notebook window.

If the notebook control has the focus, it handles the following keyboard interactions:

Keyboard Input Description

Alt+ Down Arrow Sets the focus to the application page window.

Down Arrow or Right Arrow
Moves the selection cursor to the next major or minor tab. If either of these
keys is pressed while the selection cursor is on a major tab, the cursor moves
to the next major tab. If either of these keys is pressed while the selection
cursor is on a minor tab, the cursor moves to the next minor tab. If the next tab
is not visible, the tabs are scrolled to bring the next tab into view. If the end of
the tabs is reached, scrolling ends.

25-18 PM Programming Reference

:/

Up Arrow or Left Arrow
Moves the selection cursor to the previous major or minor tab. If either of these
keys is pressed while the selection cursor is on a major tab, the cursor moves
to the previous major tab. If either of these keys is pressed while the selection
cursor is on a minor tab, the cursor moves to the previous minor tab. If the
previous tab is not visible, the tabs are scrolled to bring the previous tab into
view. If the beginning of the tabs is reached, scrolling ends.

Tab Moves the selection cursor to the next tab position or control.

Ctrl+ Tab Moves the selection cursor to the next control.

Shift+ Tab Moves the selection cursor to the previous tab position or control.

Enter or Spacebar The cursored tab page becomes the top page of the notebook.

Mnemonics Mnemonic key definition is provided by using the BKM_SETTABTEXT message.
Coding a mnemonic character(-) before a text character in the
BKM_SETTABTEXT message causes that character to be underlined in the tab's
text string and activates it as a mnemonic selection character. The notebook
control brings the page whose tab contains the mnemonic character to the top
whenever the user presses the mnemonic key. The mnemonic key pressing is
not case-sensitive, so the user can type the mnemonic character in either upper
or lower case.

PgDn or Alt+ PgDn Brings the next page to the top of the notebook and sets the selection cursor on
the associated tab, if there is a new one.

PgUp or Alt+ PgUp Brings the previous page to the top of the notebook and sets the selection
cursor on the associated tab, if there is a new one.

Home

End

Default Processing

Brings the first page of the notebook to the top and sets the selection cursor on
the associated tab, if there is a new one.

Brings the last page of the notebook to the top and sets the selection cursor on
the associated tab, if there is a new one.

For a description of the default processing, see "WM_ CHAR" on page 12-24.

WM_CONTROLPOINTER (in Notebook Controls)
For the cause of this message, see "WM_CONTROLPOINTER" on page 12-29.

Parameters
For a description of the parameters, see "WM_CONTROLPOINTER" on page 12-29.

Remarks
For the appropriate remarks, see "WM_CONTROLPOINTER" on page 12-29.

Default Processing
For the default processing, see "WM_CONTROLPOINTER" on page 12-29.

Chapter 25. Notebook Control Window Processing 25-19

WM_DRAWITEM (in Notebook Controls)
This notification message is sent to the owner of a notebook control each time a tab's content is to be
drawn by the owner of the notebook. The tab's content is drawn by the owner unless the owner sets
the tab text or bit map by sending a BKM_SETIABTEXT or BKM_SETIABBITMAP message,
respectively, to the notebook control.

Parameters
param1

Id (USHORT)
Window identifier.

The window identifier of the notebook control sending this notification message.

param2

ownerltem (POWNER/TEM)
Pointer.

Returns
reply

Pointer to an OWNERITEM data structure. The following list defines the OWNERITEM data
structure fields that apply to the notebook control. See OWNERITEM on page A-76 for the
default field values.

hwnd (HWND)
Notebook window handle.

hps (HPS)
Presentation-space handle.

state (USHORT)
Notebook window style flags. See "Notebook Control Styles" on page 25-1 for
descriptions of these style flags.

attribute (USHORT)
Page attribute flags for the tab page. See "BKM_INSERTPAGE" on page 25-6 for
descriptions of these attribute flags.

stateold (USHORT)
Reserved.

attrlbuteold (USHORT)
Reserved.

itemrectangle (RECTL)
Tab rectangle to be drawn in window coordinates.

identity (SHORT)
Reserved.

item (ULONG)
Current page ID (ulPageld) for which the content of a tab is to be drawn.

drawn (BOOL)
Content-drawn indicator.

Remarks

TRUE
FALSE

The owner draws the tab's content.
If the owner does not draw the tab's content, the owner returns this value and the
notebook control draws the tab's content.

If an appJication uses notebook controls that contain tab pages, the default condition is for the
application to draw the contents of the tab each time a tab page is displayed. This situation applies
particularly if the content of the tab is not one of the supported formats.

The notebook control window procedure generates this message and sends it to its owner, informing
the owner that the content of a tab is to be drawn. The owner is given the opportunity to draw the

25-20 PM Programming Reference

l
/

content of the tab and to indicate that the content of the tab has been drawn or that the notebook
control is to draw it. To indicate that the notebook control is to draw the content of the tab, the owner
sends either a BKM_SETTABTEXT or a BKM_SETTABBITMAP message to the notebook control.

Default Processing
For a description of the default processing, see "WM_DRAWITEM" on page 12-31.

WM_PRESPARAMCHANGED (in Notebook Controls)
For the cause of this message, see "WM_PRESPARAMCHANGED" on page 12-48.

Parameters
param1

attrtype (ULONG)
Attribute type.

Presentation parameter attribute identity.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Sets the background color of the notebook window. This color is initially set to
SYSCLR_FIELDBACKGROUND.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Sets the color of the notebook outline. This color is initially set to
SYSCLR_WINDOWFRAME.

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Sets the color of text on the status line. This color is initially set to
SYSCLR_WINDOWTEXT.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Sets the color of the selection cursor. This color is initially set to
SYSCLR_HILITEBACKGROUND.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
The application uses this message to notify the notebook that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see "WM_PRESPARAMCHANGED" on page 12-48.

Chapter 25. Notebook Control Window Processing 25-21

WM_SIZE (in Notebook Controls)
For the cause of this message, see "WM_SIZE" on page 12-61.

Parameters
For a description of the parameters, see "WM_SIZE" on page 12-61.

Remarks
When the size of the notebook window changes, all of the regions are recalculated. The notebook
sends a BKN_NEWPAGESIZE notification code to the application. The notebook sets the position and
size of application page windows that are associated with pages for whom the BKA_AUTOPAGESIZE
attribute is set.

Default Processing
For a description of the default processing, see "WM_SIZE" on page 12-61.

25-22 PM Programming Reference

Chapter 26. Slider Control Window Processing

This system-provided window procedure processes the actions on a slider control (WC_SLIDER).

Purpose
A slider control (WC_SLIDER wJndow class) is a visual component whose specific purpose is to allow
a user to set, display, or modify a value by moving a slider arm along a slider shaft. Sliders are
typically used to allow a user to easily set values that have familiar increments, such as feet, inches,
degrees, decibels, and so forth.

However, they can also be used for other purposes when immediate feedback is necessary, such as
to blend colors or to show the percentage of a task that has completed. For example, an application

might allow a user to mix and match color shades by moving a slider arm, or a read-only slider could
be provided that shows how much of a task has completed by filling in the slider shaft as the task
progresses. These are just a few examples to show you the many ways in which sliders can be
used.

The appearance of and user interaction for a slider is similar to the appearance of and user
interaction for a scroll bar. However, these two controls are not interchangeable because each has a

distinct purpose. The scroll bar is used to scroll into view information that is outside a window's
client area, while the slider is used to set, display, or modify that information, whether it is in the
client area or not in the client area.

The slider is designed to be customizable to meet varying application requirements, while providing

an easy-to-use user interface component that can be used to develop products that conform to the
Common User Access (CUA) user interface guidelines. The application can specify different scales,
sizes, and orientations for its sliders, but the underlying function of the control remains the same.
For a complete description of CUA sliders, refer to the SAA CUA Guide to User Interface Design and
the SAA CUA Advanced Interface Design Reference.

Slider Control Styles
Slider control window styles are set when a slider window is created. The following styles can be set

when creating a slider control window. If no styles are specified, defaults, which are identified in the
following descriptions, are used.

• Specify either of the following to determine the slider's orientation:

SLS_HORIZONTAL
The slider is positioned horizontally. The slider arm can move left and right on the slider
shaft. A scale can be placed on top of the slider shaft, below the slider shaft, or in both
places. This is the default orientation of the slider.

SLS_ VERTICAL
The slider is positioned vertically. The slider arm can move up and down the slider shaft.
A scale can be placed on the left side of the slider shaft, on the right side of the slider
shaft, or in both places.

• Specify one of the following to position the slider within the slider window:

SLS_CENTER
The slider is centered in the slider window. This is the default positioning of the slider.

SLS_BOTTOM
The slider is positioned at the bottom of the slider window. This is valid for horizontal
sliders only.

SLS_TOP
The slider is positioned at the top of the slider window. This is valid for horizontal sliders
only.

Chapter 26. Slider Control Window Processing 26-1

SLS_LEFT
The slider is positioned at the left edge of the slider window. This is valid for vertical
sliders only.

SLS_RIGHT
The slider is positioned at the right edge of the slider window. This is valid for vertical
sliders only.

• Specify one of the following to determine the location of the scale on the slider shaft:

SLS_PRIMARYSCALE1
The slider uses the increment and spacing specified for scale 1 as the incremental value
for positioning the slider arm. Scale 1 is displayed above the slider shaft of a horizontal
slider and to the right of the slider shaft of a vertical slider. This is the default for a slider.

SLS_PRIMARYSCALE2
The slider uses the increment and spacing specified for scale 2 as the incremental value
for positioning the slider arm. Scale 2 is displayed below the slider shaft of a horizontal
slider and to the left of the slider shaft of a vertical slider.

• Specify one of the following to determine the slider arm's home position:

SLS_HOMELEFT
The slider uses the left edge of the slider as the base value for incrementing. This is the
default for horizontal sliders and is valid for horizontal sliders only.

SLS_HOMERIGHT
The slider uses the right edge of the slider as the base value for incrementing. This is
valid for horizontal sliders only.

SLS_HOMEBOTTOM
The slider uses the bottom of the slider as the base value for incrementing. This is the
default for vertical sliders and is valid for vertical sliders only.

SLS_HOMETOP
The slider uses the top of the slider as the base value for incrementing. This is valid for
vertical sliders only.

• Specify one of the following to determine the location of the slider buttons. If you do not specify
one of these styles, or if conflicting styles are specified, slider buttons are not included in the
slider control.

SLS_BUTTONSLEFT
The slider includes incremental slider buttons with the control and places them to the left
of the slider shaft. These slider buttons move the slider arm by one position, either left or
right, in the direction that is selected. This is valid for horizontal sliders only.

SLS_BUTTONSRIGHT
The slider includes incremental slider buttons with the control and places them to the right
of the slider shaft. These slider buttons move the slider arm by one position, either left or
right, in the direction that is selected. This is valid for horizontal sliders only.

SLS_BUTTONSBOTTOM
The slider includes incremental slider buttons with the control and places them at the
bottom of the slider shaft. These slider buttons move the slider arm by one position, either
up or down, in the direction that is selected. This is valid for vertical sliders only.

SLS_BUTTONSTOP
The slider includes incremental slider buttons with the control and places them at the top
of the slider shaft. These slider buttons move the slider arm by one position, either up or
down, in the direction that is selected. This is valid for vertical sliders only.

• Other styles that you can specify:

SLS_SNAPTOINCREMENT
The slider arm, when moved to a position between two specified values on the slider
scale, such as between two tick marks, is positioned on the nearest value and is redrawn
at that position. If this style is not specified, the slider arm remains at the position to
which it is moved.

26-2 PM Programming Reference

\

)

SLS_READONLY
The slider is created as a read-only slider. This means that the user cannot interact with
the slider. It is used merely as a mechanism to present a quantity to the user, such as the
percentage of completion of an ongoing task. Visual differences for a read-only slider
include a narrow slider arm, no slider buttons and no detents.

SLS_RIBBONSTRIP
As the slider arm moves, the slider fills the slider shaft between the home position and the
slider arm with a color value that is different from the slider shaft color, similar to the
mercury in a thermometer.

SLS_OWNERDRAW
The application is notified whenever the slider shaft, the ribbon strip, the slider arm, and
the slider background are to be drawn.

Slider Control Data
See SLDCDATA on page A-116.

Chapter 26. Slider Control Window Processing 26-3

Slider Control Notification Messages
These messages are initiated by the slider control window to notify its owner of significant events.

WM_CONTROL (in Slider Controls)
For the cause of this message, see "WM_ CONTROL" on page 12-28.

Parameters
param1

Id (USHORT)
SI ider control identity.

notlfycode (USHORT)
Notification code.

The slider control uses these notification codes:

param2

SLN_CHANGE
SLN_KILLFOCUS
SLN_SETFOCUS
SLN_SLIDERTRACK

The slider arm position has changed.
The slider control is losing the focus.
The slider control is receiving the focus.
The slider arm is being dragged, but has not been released.

notlfylnfo (ULONG)
Control-specific information.

Returns

When the value of the notifycode parameter is SLN_CHANGE or SLN_SLIDERTRACK, this
value is the new arm position, expressed as the number of pixels from the home position.

Otherwise, this value is the window handle (HWND) of the slider control.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
The slider control window procedure generates this message and sends it to its owner, informing the
owner of this event.

Default Processing
For a description of the default processing, see "WM_CONTROL" on page 12-28.

WM_CONTROLPOINTER (in Slider Controls)
For the cause of this message, see "WM_CONTROLPOINTER" on page 12-29.

Parameters
For a description of the parameters, see "WM_CONTROLPOINTER" on page 12-29.

Remarks
For the appropriate remarks, see "WM_CONTROLPOINTER" on page 12-29.

Default Processing
For the default processing, see "WM_CONTROLPOINTER" on page 12-29.

26-4 PM Programming Reference

\
I

)

WM_DRAWITEM (in Slider Controls)
If the SLS_OWNERDRAW style bit is set for a slider control, this notification message is sent to that
slider control's owner whenever the slider shaft, ribbon strip, slider arm, and slider background are
to be drawn.

Parameters
param1

Id (USHORT)
Window identifier.

The window identifier of the slider control sending this notification message.

param2

ownerltem (POWNERITEM)
Pointer.

Returns
reply

Pointer to an OWNERITEM data structure. The following list defines the OWNERITEM data
structure fields that apply to the slider control. See OWNERITEM on page A-76 for the
default field values.

hwnd (HWND)
Slider window handle.

hps (HPS)
Presentation-space handle.

state (USHORT)
Slider window style flags. See "Slider Control Styles" on page 26-1 for descriptions of
these style flags.

attribute (USHORT)
Reserved.

stateold (USHORT)
Reserved.

attrlbuteold (USHORT)
Reserved.

ltemrectangle (RECTL)
Item rectangle to be drawn in window coordinates.

Identity (SHORT)
Identity of item to be drawn:

SDA_SLIDERSHAFT
Specifies that the slider shaft is to be drawn.

SDA_RIBBONSTRIP
Specifies that the slider shaft area that contains a ribbon strip is to be drawn.

SDA_SLIDERARM
Specifies that the slider arm is to be drawn.

SDA_BACKGROUND
Specifies that the slider background is to be drawn.

Item (ULONG)
Reserved.

drawn (BOOL)
Item-drawn indicator.

TRUE
FALSE

The owner draws the item.
If the owner does not draw the item, the owner returns this value and the slider
control draws the item.

Chapter 26. Slider Control Window Processing 26-5

Remarks
The slider control provides this message to give the application the opportunity to provide a custom
slider shaft, custom ribbon strip, custom slider arm, and custom background. The application can
specify one or all of these items and is given the opportunity to do so.

The slider control window procedure generates this message and sends it to its owner, informing the
owner that an item is to be drawn. The owner is then given the opportunity to draw that item, and to
indicate that an item has been drawn or that the slider control is to draw it.

Default Processing
For a description of the default processing, see "WM_DRAWITEM" on page 12-31.

26-6 PM Programming Reference

'\
I

~
)

Slider Control Window Messages
This section describes the slider control window procedure actions on receiving the following

messages.

SLM ADDDETENT
This message places a detent along the slider shaft at the position specified on the primary scale. A

detent is an indicator that represents a predefined value for a quantity. It does not have to

correspond to an increment of the slider.

Parameters
param1

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
ulDetentld (ULONG)

Detent ID.

Unique identifier for the detent being added to the slider. If 0 is returned, an error occurred.

The WinGetLastError function may return the following errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to add detents along the slider to denote values that do not fall

along an increment setting. An example of this would be a slider that represents temperature and

has increments that are on multiples of 5. A detent could be located at 32, instead of 30 or 35, for

special purposes.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

SLM_QUERYDETENTPOS
This message queries for the current position of a detent.

Parameters
param1

ulDetentld (ULONG)
Detent ID.

Unique detent identifier, which indicates the position to be returned.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 26. Slider Control Window Processing 26-7

Returns
reply

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

>=O
SLDERR_INVALID _PARAMETERS

fDetentLocatlon (USHORT)
Scale.

Number of pixels the detent is positioned from home.
An error occurred. The WinGetlastError function may
return the following error:

PMERR_INVALID _PARAMETERS.

The scale along which the detent is located. One of the following:

SMA_SCALE1
SMA_SCALE2

Detent position is along scale 1.
Detent position is along scale 2.

Remarks
An application could use this message to place text above the detent or position an item relative to it.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

SLM QUERYSCALETEXT
ThiS message queries for the text associated with a tick mark for the primary scale and copies that
text into a buffer.

Parameters
param1

usTlckNum (USHORT)
Tick location.

Tick location to query for the text.

usBufLen (USHORT)
Buffer length.

Length of the buffer to copy the text into. The buffer size should include space for the null
termination character.

param2

pszTlckText (PSZ)
Pointer.

Pointer to the buffer into which to place the text string for the tick mark.

Returns
sTextLen (SHORT)

Count of bytes.

Count of bytes copied to buffer.

> = 0 Length of the text string, excluding the null termination
character.

SLDERR_INVALID_PARAMETERS An error occurred. The WinGetlastError function may
return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

26-8 PM Programming Reference

Remarks
This message could be used to return text that represents the current position of the slider arm or to

query the text for use in ownerdraw mode.

By specifying 0 as the value of the usBufLen parameter and then looking at the value returned in the

sTextLen parameter, an application can determine the size of the buffer to allocate for copying the

text. An application can then allocate a buffer of this size, adding one byte for the null termination

character, and then specify this buffer and size on the query call.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

SLM_ QUERYSLIDERINFO
This message queries the current position or dimensions of a key component of the slider. The

information returned and its format depends on the type of information requested.

Parameters
param1

uslnfoType (USHORT)
Information attribute.

Attribute that identifies the requested information. It can be one of the following:

SMA_SHAFTDIMENSIONS
SMA_SHAFTPOSITION

SMA_SLIDERARMDIMENSIONS
SMA_SLIDERARMPOSITION

Queries for the length and breadth of the slider shaft.

Queries for the x-, y-position of the lower-left corner of
the slider shaft.
Queries for the length and breadth of the slider arm.

Queries for the position of the slider arm. The position
can be returned either as an increment position or a
range value.

usArmPosType (USHORT)
Format attribute.

Attribute that identifies the format in which the information should be returned if the slider

arm position is requested. This value is ignored for all other queries and is one of the

following:

SMA_RANGEVALUE The value returned represents the number of pixels between

the home position and the current arm position in the low order

byte. The high order byte represents the pixel count of the

entire range of the slider control.

SMA_INCREMENTVALUE The value returned represents an increment position using the

primary scale.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
ullnfo (ULONG)

Return information.

One of the following items, depending on which SMA_* message attribute or attributes were set

with the SLM_SETSLIDERINFO message.

• If the SMA_SHAFTDIMENSIONS attribute is set, the following is returned:

usShaftLength (USHORT)
Length of the slider shaft, in pixels. It is the width of the slider shaft for horizontal

sliders, and the height of the slider shaft for vertical sliders.

Chapter 26. Slider Control Window Processing 26-9

usShaftBreadth (USHORT)
Breadth of the slider shaft, in pixels. It is the height of the slider shaft for horizontal
sliders, and the width of the slider shaft for vertical sliders.

• If the SMA_SHAFTPOSITION attribute is set, the following is returned:

xShaftCoord (USHORT)
X-coordinate of the slider shaft position within the slider window. This value is
expressed in window coordinates and represents the lower-left corner of the slider
shaft.

yShaftCoord (USHORT)
Y-coordinate of the slider shaft position within the slider window. This value is
expressed in window coordinates and represents the lower-left corner of the slider
shaft.

• If the SMA_SLIDERARMDIMENSIONS attribute is set, the following is returned:

usArmLength (USHORT)
Length of the slider arm, in pixels. It is the width of the slider arm for horizontal sliders
and the height of the slider arm for vertical sliders.

usArmBreadth (USHORT)
Breadth of the slider arm, in pixels. It is the height of the slider arm for horizontal
sliders and the width of the slider arm for vertical sliders.

• If the SMA_SLIDERARMPOSITION and SMA_RANGEVALUE attributes are set, the following
is returned:

usArmPos (USHORT)
Number of pixels from the home position to the slider arm.

usSllderRange (USHORT)
Number of pixels over which the user could select a value on the slider.

• If the SMA_SLIDERARMPOSITION and SMA_INCREMENTVALUE attributes are set, the
following is returned:

uslncrementPos (USHORT)
Increment that corresponds to the current position of the slider arm.

• If the SLDERR_INVALID_PARAMETERS error is returned, an error occurred. The
WinGetlastError function may return the following error:

PMERR_INVALID _PARAMETERS.

Remarks
The application uses this message to query for information about individual parts of a slider control,
or the value selected by a user.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

26-10 PM Programming Reference

\

\

SLM_ QUERYTICKPOS
This message queries for the current position of a tick mark for the primary scale. This represents
where the tick mark would be located. The tick mark does not have to have a size (that is, to be
visible) to use this message.

Parameters
param1

usTlckNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the position.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
xTlckPos (USHORT)

X-coordinate.

X-coordinate of the point that represents the position of the tick mark. It is the starting position
of the tick mark and represents the end of the tick mark closest to the slider shaft.

yTlckPos (USHORT)
Y-coordinate.

Y-coordinate of the point that represents the position of the tick mark. It is the starting position
of the tick mark and represents the end of the tick mark closest to the slider shaft.

If NULL is returned in either parameter, an error occurred. The WinGetLastError function may
return the following error:

PMERR_PARAMETER_OUT _OF _RANGE.

Remarks
This message could be used to get the position of a tick mark along the slider for use in ownerdraw
mode if, for example, you want to place something other than text, such as bit maps or icons, above
the tick marks.

Default Processing
The default window procedure does not expect to receive this message and theref.ore takes no action
on it other than to return 0.

SLM_ QUERYTICKSIZE
This message queries for the size of a tick mark for the primary scale. All tick marks default to a
size ofO (invisible) if not set by the application with the SLM_SETTICKSIZE message.

Parameters
param1

usTlckNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the size.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 26. Slider Control Window Processing 26-11

Returns
usTlckSlze (USHORT)

Tick mark length.

Specifies the length of the tick mark at the position queried, in pixels. If this value is 0, the tick
mark is invisible.

If the SLDERR_INVALID_PARAMETERS error is returned, an error occurred. The
WinGetlastError function may return the following error:

PMERR_PARAMETER_OUT _OF _RANGE.

Remarks
The application uses this message to query a scale along the slider to indicate what tick marks, tick
mark sizes, or both are currently set for the slider.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

SLM REMOVEDETENT
This message removes a previously specified detent. A detent is an indicator that represents a
predefined value for a quantity and does not have to correspond to an increment of the slider.

Parameters
param1

ulDetentld (ULONG)
Detent ID.

Unique detent identifier for the detent that is to be removed from the slider.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Detent was successfully removed.
An error occurred. The WinGetlastError function may return the following error:

PMERR_INVALID_PARAMETERS.

The application uses this message to remove detents added previously to the slider to denote values
that do not fall along an increment setting.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

26-12 PM Programming Reference

SLM SETSCALETEXT
This message sets text above a tick mark for the primary scale. A tick mark does not have to be
visible to have text set above it. The text is centered on the tick mark.

Parameters
param1

usTlckNum (USHORT)
Tick mark location.

Specifies the tick mark location that is to have the text placed with it.

param2

pszTlckText (PSZ)
Pointer.

Pointer to the text that is to be drawn at the position specified. If this value is NULL, no text
is drawn.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Text was successfully added to the scale.
An error occurred. The WinGetLastError function may return the following errors:

• PM ERR_ HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF_RANGE.

Remarks
The application uses this message to draw text along the increments of the slider to clarify the
magnitude of the range. This text could show the exact value for that tick mark, or could be a
general remark, such as low, high, and so forth.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

SLM SETSLIDERINFO
This message sets the current position or dimensions of a key component of the slider. The
component to be changed is indicated by one parameter and the new value is placed in the other.

Parameters
param1

uslnfoType (USHORT)
Component attribute.

Identifies the slider component that is to be modified. Specify one of the following:

SMA_SHAFTDIMENSIONS

SMA_SHAFTPOSITION

SMA_SLIDERARMDIMENSIONS
SMA_SLIDERARMPOSITION

usArmPosType (USHORT)
Format attribute.

Sets the width (for vertical sliders) or height (for
horizontal sliders) of the slider shaft.
Sets the x-, y-position of the lower-left corner of the
slider shaft in the slider window.
Sets the width and height of the slider arm.
Sets the position of the slider arm. This value can be
specified either as an increment position or a range
value.

Identifies the format in which the information should be interpreted by the slider if setting
the slider arm position is requested. This value is a reserved field for other set requests.
The format is one of the following:

Chapter 26. Slider Control Window Processing 26-13

parm2

SMA_RANGEVALUE Number of pixels between the home position and the current
arm position.

SMA.JNCREMENTVALUE Increment position using the primary scale.

ullnfo (ULONG)
New value.

Returns

New value to change the slider component to. The format of the information depends on the
component being changed and is indicated by the SMA_* message attribute or attributes
that are set.

• If the SMA_SHAFTDIMENSIONS attribute is set, the ullnfo parameter is as follows:

usShaftBreadth (USHORT)
Width (for vertical sliders) or height (for horizontal sliders) the slider shaft should be
set to, in pixels. This is the breadth the shaft should be.

• If the SMA_SHAFTPOSITION attribute is set, the ullnfo parameter is as follows:

xShaftCoord (USHORT)
X-coordinate to set the position of the shaft to within the slider window. This value
is expressed in window coordinates and represents the lower-left corner of the
shaft.

yShaftCoord (USHORT)
Y-coordinate to set the position of the shaft to within the slider window. This value
is expressed in window coordinates and represents the lower-left corner of the
shaft.

• If the SMA_SLIDERARMDIMENSIONS attribute is set, the ullnfo parameter is as follows:

usArmLength (USHORT)
Length of the slider arm, in pixels. This is the width of the arm for horizontal sliders
and the height of the arm for vertical sliders.

usArmBreadth (USHORT)
Breadth of the slider arm, in pixels. This is the height of the arm for horizontal
sliders and the width of the arm for vertical sliders.

• If the SMA_SLIDERARMPOSITION and SMA_RANGEVALUE attributes are set, the ullnfo
parameter is as follows:

usArmPos (USHORT)
Number of pixels to be set from home to the slider arm.

• If the SMA_SLIDERARMPOSITION and SMA_INCREMENTVALUE attributes are set, the
ullnfo parameter is as follows:

uslncrementPos (USHORT)
Increment value which corresponds to the position the slider arm should be set to.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

Remarks

Slider component was successfully set.
An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

The application uses this message to customize the slider for a specific use. In setting the shaft
dimensions, only the breadth of the slider can be set. The length of the shaft is always determined
by the number of increments and the spacing between increments, both of which are set for the
primary scale when the slider is created.

Positioning of the shaft within the slider window could be used by applications that cannot use the
default posiUoning provided by the slider control.

26-14 PM Programming Reference

\
I

/

)

Setting of the slider arm dimensions could be used by applications that need a larger slider arm,
such as touch screen applications.

Setting the slider arm position can be used to:

• Set the initial value of the slider before it becomes visible

• Change the value when it is tied to another control, such as an entry field

• Show the value of a quantity when the slider is being used to monitor an event, such as a
read-only slider being used as a progress indicator.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

SLM SETTICKSIZE
This message sets the size of a tick mark for the primary scale. All tick marks are initially set to a
size of O (invisible). Each tick mark along a scale can be set to the size desired.

Parameters
param1

usTlckNum (USHORT)
Tick mark location.

Tick mark location whose size is to be changed. If the SMA_SETALLTICKS attribute is
specified for this parameter, all tick marks on the primary scale are set to the size specified.

usTlckSlze (USHORT)
Tick mark length.

Length of the tick mark, in pixels. If set to 0, the tick mark will not be drawn.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Tick mark position was successfully set.
An error occurred. The WinGetLastError function may return the following errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF_RANGE.

The application uses this message to draw a scale along the slider to indicate value positions in
relation to the slider arm. The application can set varying lengths for different increments of the
slider to help the user understand the magnitude of the value being set.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

Chapter 26. Slider Control Window Processing 26-15

WM_CHAR (in Slider Controls)
For the cause of this message, see "WM_ CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_ CHAR" on page 12-24.

Remarks
The slider control window procedure responds to this message by sending it to its owner if it has not
processed the key stroke. This is the most common means by which the input focus is switched
around the various controls in a dialog box.

The keystrokes processed by a slider control are:

Down Arrow

Up Arrow

Left Arrow

Right Arrow

Moves the slider arm down one increment. When the slider arm reaches the
bottom of the slider shaft or when a horizontal slider is being used, the Down
Arrow key has no effect.

Moves the slider arm up one increment. When the slider arm reaches the top of
the slider shaft or when a horizontal slider is being used, the Up Arrow key has
no effect.

Moves the slider arm left one increment. When the slider arm reaches the
leftmost edge or when a vertical slider is being used, the Left Arrow key has no
effect.

Moves the slider arm right one increment. When the slider arm reaches the
rightmost edge or when a vertical slider is being used, the Right Arrow key has
no effect.

Shift+ Down Arrow Moves the slider arm to the next detent below the current position. If there are
no more detents or if a horizontal slider is being used, the Shift+ Down Arrow
key combination has no effect.

Shift+ Up Arrow Moves the slider arm to the next detent above the current position. If there are
no more detents or if a horizontal slider is being used, the Shift+ Up Arrow key
combination has no effect.

Shift+ Left Arrow Moves the slider arm to the next detent left of the current position. If there are
no more detents or if a vertical slider is being used, the Shift+ Left Arrow key
combination has no effect.

Shift+ Right Arrow Moves the slider arm to the next detent right of the current position. If there are
no more detents or if a vertical slider is being used, the Shift+ Right Arrow key
combination has no effect.

Home, Ctrl +Home Moves the slider arm to the home position of the slider. Pressing the Home key
or the Ctrl +Home key combination when the slider arm is at the home position
has no effect. The default home position for a slider is the leftmost edge for
horizontal sliders and the bottom edge for vertical sliders.

End, Ctrl + End

Default Processing

Moves the slider arm to the end position of the slider. Pressing the End key or
the Ctrl +End key combination when the slider arm is at the end position has no
effect. The default end position for a slider is the rightmost edge for horizontal
sliders and the top edge for vertical sliders.

For a description of the default processing, see "WM_ CHAR" on page 12-24.

26-16 PM Programming Reference

/I

~

WM_PRESPARAMCHANGED (in Slider Controls)
For the cause of this message, see "WM_PRESPARAMCHANGED" on page 12-48.

Parameters
param1

attrtype (ULONG)
Attribute type.

Presentation parameter attribute identity. The following presentation parameters are
initialized by the slider control. The initial value of each is shown in the following list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Slider background color; used for entire control as the background. This color is
initialized to SYSCLR_WINDOW.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved value.

O Reserved value; must be 0.

Remarks
The application uses this message to notify the slider that a given inherited presentation parameter
has changed.

Default Processing
For a description of the default processing, see "WM_PRESPARAMCHANGED" on page 12-48.

Chapter 26. Slider Control Window Processing 26-17

WM_QUERYWINDOWPARAMS (in Slider Controls)
For the cause of this message, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer.

Pointer to a WNDPARAMS window parameter structure. This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. Valid values for the
slider control are:

WPM_CBCTLDATA
Window control data length.

WPM_CTLDATA
Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is 0. If any item has not been processed, the flag for that item
is still set.

length (USHORT)
Length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
Length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
Length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

result (BOOL)

Remarks

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

The slider control window procedure responds to this message by returning the information in the
buffer provided. If this message is sent to a slider window of another process, the information in, or
identified by, the value of the wndparams parameter must be in memory shared by both processes.

26-18 PM Programming Reference

/

Default Processing
For a description of the default processing, see "WM_QUERYWINDOWPARAMS" on page 12-53.

WM_SETWINDOWPARAMS (in Slider Controls)
For the cause of this message, see "WM~SETWINDOWPARAMS" on page 12-60.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer.

Pointer to a WNDPARAMS window parameter structure. This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. The valid value for the
slider control is:

WPM_CTLDATA
Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is 0. If any item has not been processed, the flag for that item
is still set.

length (USHORT)
Length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
Length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
Length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

result (BOOL)
Success indicator.

TRUE Successful operation.
FALSE Error occurred.

Chapter 26. Slider Control Window Processing 26-19

Remarks
If this message is sent to a slider window of another process, the information in, or identified by, the
value of the wndparams parameter must be in memory shared by both processes.

Default Processing
For a description of the default processing, see "WM_SETWINDOWPARAMS" on page 12-60.

26-20 PM Programming Reference

)

Chapter 27. Value Set Control Window Processing

This system-provided window procedure processes the actions on a value set control
(WC_VALUESET).

Purpose
Like radio buttons, a value set control (WC_VALUESET window class) is a visual component whose
specific purpose is to allow a user to select one choice from a group of mutually exclusive choices.
However, unlike radio buttons, a value set can use graphical images (bit maps or icons), as well as
colors, text, and numbers, to represent the items that a user can select.

Even though text is supported, a value set's primary purpose is to display choices as graphical
images. By using graphical images in a value set, you can preserve space on the display screen.
You can also allow the user to see exactly what is being selected instead of having to rely on
descriptions of the choices. This allows a user to make a selection faster than if the user had to read
a description of each choice. For example, if you want to allow a user to choose from a variety of
patterns, you can present those patterns as value set choices instead of having to provide a list of
radio buttons with description of each pattern.

If long strings of data are to be displayed as choices, radio buttons should be used. However, for
small sets of numeric or textual data information, either a value set or radio buttons can be used.

The value set is designed to be customizable to meet varying application requirements, while
providing an easy-to-use user interface component that can be used to develop products that
conform to the Common User Access (CUA) user interface guidelines. The application can specify
different types of items, sizes, and orientations for its value sets, but the underlying function of the
control remains the same. For a complete description of CUA value sets, refer to the SAA CUA
Guide to User Interface Design and the SAA CUA Advanced Interface Design Reference.

Value Set Control Styles
Value set control window styles are set when a value set window is created.

• Set one of the following styles when creating a value set control window. You can override
these styles by specifying VIA_BITMAP, VIA_ICON, VIA_ TEXT, VIA_RGB, or VIA_COLORINDEX
attributes for individual value set items.

VS_BITMAP The attribute for each value set item is set to the VIA_BITMAP value set
item attribute, which means the value set treats each item as a bit map
unless otherwise specified. This is the default. Figure 27-1 provides an
example of a value set with bit maps.

P~ttem

:·11·1·.,1··1· .. 1··1 ... 1,,1·~ = : : : : : : : : :
L J 1~~~~~~~1 •• ···-­····-

Figure 27-1. Value Set with Bit Maps

Chapter 27. Value Set Control Window Processing 27-1

VS_ICON

Tool

The attribute for each value set item is set to the VIA_ICON value set
item attribute, which means the value set treats each item as an icon
unless otherwise specified. Figure 27-2 on page 27-2 provides an
example of a value set with icons.

Figure 27-2. Value Set with Icons

VS_TEXT

Units

The attribute for each value set item is set to the VIA_ TEXT value set
item attribute, which means the value set treats each item as a text
string unless otherwise specified. Figure 27-3 provides an example of
a value set with text strings.

IC::I~:~6~:~.:::::JI Mi!limeters
feet ~entimeters

Yards Meters

Figure 27-3. Value Set with Text Strings

VS_RGB

VS_ COLORINDEX

The attribute for each value set item is set to the VIA_RGB value set
item attribute, which means the value set treats each item as a RGB
color value unless otherwise specified. This style is most often used
when you need to create new colors. Figure 27-4 on page 27-3
provides an example of a value set with colors.

The attribute for each value set item is set to the VIA_COLORINDEX
value set item attribute, which means the value set treats each item as
an index into the logical color table unless otherwise specified. This
style is most often used when the colors currently available are
adequate. Figure 27-4 on page 27-3 provides an exampl.e of a value
set with colors.

27-2 PM Programming Reference

'\.
/

Color

Ill•••• 111111111111111111111·••••

Figure 27-4. Value Set with Colors

• Specify one or more of the following optional window styles, if desired, by using an OR operator

(I) to combine them with the style specified from the preceding list:

VS_BORDER

Color

The value set draws a thin border around itself to delineate the control.

Figure 27-5 provides an example of a value set with a border.

-····
11111111111111111111 • •••

Figure 27-5. Value Set with Border

VS _ITEM BORDER

Tool

The value set draws a thin border around each item to delineate it from

other items.

Note: The VS_ITEMBORDER style is useful for items that are hard to

see, such as faint colors or patterns. Figure 27-6 provides an example

of a value set with item borders.

[OJ: [I]' . [5][:}··. I ~;:::~; ! ! ...

Figure 27-6. Value Set with Item Borders

VS _RIGHTTOLEFT The value set interprets column orientation as right-to-left, instead of

the default left-to-right arrangement. This means columns are

numbered from right-to-left with the rightmost column being 1 and

counting up as you move left. Home is the rightmost column and end is

the leftmost column.

There is no visible difference between a value set ordered left-to-right

and a value set ordered right-to-left. Therefore, if your application uses

Chapter 27. Value Set Control Window Processing 27-3

VS_SCALEBITMAPS

VS_OWNERDRAW

multiple value sets, the ordering of the items should be consistent in
each value set to avoid confusing the user.

Note: The VS_RIGHTTOLEFT style is used on creation of the control.
Changing this style after creation causes unexpected results.

The value set automatically scales bit maps to the size of the cell. If
this style is not used, each bit map is centered in its cell. Also, if the
cell is smaller than the bit map, the bit map is clipped to the size of the
cell.

The application is notified whenever the background of the value set
window is to be painted.

Value Set Control Data
For information on value set control data, see the following:

• VSCDAT A on page A-123

• VSDRAGINFO on page A-123

• VSDRAGINIT on page A-124

• VSTEXT on page A-124.

27-4 PM Programming Reference

\

/

Value Set Control Notification Messages
These messages are initiated by the value set control window to notify its owner of significant

events.

WM_ CONTROL (in Value Set Controls)
For the cause of this message, see "WM_CONTROL" on page 12-28.

Parameters
param1

id (USHORT)
Value set control identity.

notlfycode (USHORT)

param2

Notify code.

The value set control uses these notification codes:

VN_DRAGLEAVE
VN_DRAGOVER
VN_DROP

VN_DROPHELP
VN_ENTER

VN_HELP
VN_INITDRAG

VN_KILLFOCUS
VN_SELECT

VN_SETFOCUS

The value set receives a DM_DRAGLEAVE message.
The value set receives a DM_DRAGOVER message.
The value set receives a DM_DROP message. The VN_DROP
notification code is sent only when an item is dropped on an item that

has the VIA_DROPONABLE attribute.
The value set receives a DM_DROPHELP message.
The user presses the Enter key while the value set window has the
focus or double-clicks the select button while the pointer is over an item

in the value set.
The value set receives a WM_HELP message.
The drag button was pressed and the pointer was moved while the
pointer was over the value set control. The VN_INITDRAG notification
code is sent only for items that have the VIA_DRAGGABLE attribute.

The value set is losing the focus.
An item in the value set has been selected and is given selected-state

emphasis.
The value set receives the focus.

notlfyinfo (ULONG)
Control-specific information.

Returns

When the value of the notifycode parameter is VN_DRAGOVER, VN_DRAGLEAVE, VN_DROP,

or VN_DROPHELP, this parameter is a pointer to a VSDRAGINFO structure.

When the value of the notifycode parameter is VN_INITDRAG, this parameter is a pointer to

a VSDRAGINIT structure.

When the value of the notifycode parameter is VN_ENTER, VN_HELP, or VN_SELECT, this

parameter contains the row and column of the selection cursor. The low-order word

contains the row index, and the high-order word contains the column index.

Otherwise, this parameter is the window handle (HWND) of the value set control.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Chapter 27. Value Set Control Window Processing 27-5

Remarks
The value set control window procedure generates this message and sends it to its owner, informing
the owner of this event.

Default Processing
For a description of the default processing, see "WM_ CONTROL" on page 12-28.

WM_CONTROLPOINTER (in Value Set Controls)
For the cause of this message, see "WM_CONTROLPOINTER" on page 12-29.

Parameters
For a description of the parameters, see "WM_CONTROLPOINTER" on page 12-29.

Remarks
For the appropriate remarks, see "WM_CONTROLPOINTER" on page 12-29.

Default Processing
For the default processing, see "WM_CONTROLPOINTER" on page 12-29.

WM_DRAWITEM (in Value Set Controls)
This notification message is sent to the owner of a value set control each time an item that has the
VIA_OWNERDRAW attribute is to be drawn, or when the background of a value set window that has
the VS_OWNERDRAW style bit is to be drawn.

Parameters
param1

id (USHORT)
Window identifier.

The window identifier of the value set control sending this notification message.

param2

ownerltem (POWNERITEM)
Pointer.

Pointer to an OWNERITEM data structure. The following list defines the OWNERITEM data
structure fields that apply to the value set control. See OWNERITEM on page A-76 for the
default field values.

hwnd (HWND)
Value set window handle.

hps (HPS)
Presentation-space handle.

state (USHORT)
Value set window style flags. See "Value Set Control Styles" on page 27-1 for
descriptions of these style flags.

attribute (USHORT)
Item attribute flags for the indexed item. See "VM_SETITEMATTR" on page 27-14 for
descriptions of these attribute flags.

stateold (USHORT)
Reserved.

aHributeold (USHORT)
Reserved.

itemrectangle (RECTL)
Item rectangle to be drawn in window coordinates.

27-6 PM Programming Reference

\
)

Returns
reply

identity (SHORT)
Identity of component to be drawn.

VDA...;.BACKGROUND
Specifies that a part of the value set background is to be drawn.

VDA_SURROUNDING
Specifies that a part of the area surrounding the value set is to be drawn.

VDA_ITEMBACKGROUND
Specifies that the background of an item is to be drawn.

VDA_ITEM
Specifies that an entire item is to be drawn.

Item (ULONG)
If the value of the Identity parameter is VOA_ITEMBACKGROUND or VDA_ITEM, this is
the current row and column index of the item to be drawn. The low-order word contains
the row index, and the high-order word contains the column index. Otherwise, this is
reserved.

drawn (BOOL)
Item-drawn indicator.

Remarks

TRUE
FALSE

The owner draws the component.
If the owner does not draw the component, the owner returns this value and the
value set control draws the component.

The value set control draws only items that are represented in one of the formats described: text,
color, bit maps, or icons.

If an application uses value set controls that contain items that are not represented by the supported

formats or requires that the emphasized attribute of an item is to be drawn in a special manner, the
application must specify those items as VIA_OWNERORAW and those items must be drawn by the
owner.

Through this message, the application can provide a custom value set background (the area between
the items) and customize the area surrounding the value set (the area on the top and right sides of
the value set that is left over when the value set calculates its size). The application can specify how

either or both of these areas are drawn and is given the opportunity to do so.

The value set control window procedure generates this message and sends it to its owner, informing

the owner that something is to be drawn. The owner is given the opportunity to draw and to indicate
whether the value set control should continue with the normal drawing of that component.

Default Processing
For a description of the default processing, see "WM_DRAWITEM" on page 12-31.

Chapter 27. Value Set Control Window Processing 27-7

Value Set Control Window Messages
This section describes the value set control window procedure actions on receiving the following
messages.

VM QUERYITEM
This message queries the contents of the item indicated by the values of the usRow and usColumn
parameters. The information returned is interpreted based on the attribute of the item.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item to be queried. Rows have a value from 1 to the value of the
usRowCount field. This value, which is the total number of rows in the value set, is
specified in the VSCDATA data structure when the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the item to be queried. Columns have a value from 1 to the value of the
usColumnCount field. This value, which is the total number of columns in the value set, is
specified in the VSCDATA data structure when the value set control is created.

pvsText (PVSTEXT)
Pointer.

Returns

Pointer to a VSTEXT data structure or NULL. If the attribute of the item to query is
VIA_ TEXT, the value of the param2 parameter is the same as the value of the pvsText
parameter. For all other attributes, the param2 parameter is reserved and should be set to
a NULL value.

See VSTEXT on page A-124 for definitions of this structure's fields as they apply to the
VM_QUERYITEM message.

ulltemld (ULONG)
Item information.

This value depends on the VIA_* attribute specified for the value set item.

• If the VIA_ TEXT attribute is set, the following is returned:

usTextLen (USHORT)
Number of bytes copied to the buffer. This is the length of the text string, excluding the
null termination character.

• If the VIA_ BITMAP attribute is set, the following is returned:

hbmllem (HBITMAP)
Handle of the bit map associated with the item indexed by the param1 parameter. If the
item is empty, a NULL value is returned.

• If the VIA_ICON attribute is set, the following is returned:

hplltem (HPO/NTER)
Handle of the icon associated with the item indexed by the param1 parameter. If the
item is empty, a NULL value is returned.

• If the VIA_RGB attribute is set, the following is returned:

rgbllem (ULONG)
Color value associated with the item indexed by the param1 parameter. If the item is
empty, a NULL value is returned. Each color value is a 4-byte integer with a value of:

(R * 65536) + (G * 256) + B

27-8 PM Programming Reference

where:

R Red intensity value.
G Green intensity value.
B Blue intensity value.

• If the VIA_COLORINDEX attribute is set, the following is returned:

ulColorlndex (ULONG)
Index of the color associated with the item indexed by the param1 parameter.

The following is returned for any of the items to indicate an error condition:

VSERR_INVALID _PARAMETERS
An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

Remarks
The application uses this message to query the contents of an individual value set item. When
querying a text item, the application must provide a buffer for returning the text information. By
specifying O as the value of the usBufLen field and then getting the value returned in the usTextLen
parameter, an application can determine how large this buffer must be. The value returned is the
length of the text string, excluding the null termination character.

Default Processing
The default window procedure does not expect to receive this message and therefore takes .no action
on it other than to return 0.

VM_QUERYITEMATTR
This message queries the attribute or attributes of the item indicated by the values of the usRow and
usColumn parameters.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item for which the attribute or attributes are queried. Rows have a value
from 1 to the value of the usRowCount field. This value, which is the total number of rows in
the value set, is specified in the VSCDATA data structure when the value set control is
created.

usColumn (USHORT)
Column index.

Column index of the item for which the attribute or attributes are queried. Columns have a
value from 1 to the value of the usColumnCount field. This value, which is the total number
of columns in the value set, is specified in the VSCDATA data structure when the value set
control is created.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
usltemAttr (USHORT)

Item information.

This value depends on the VIA_* attribute or attributes specified for the value set item.

• One of the following attributes can be set:

VIA_BITMAP
If this attribute is set, the item is a bit map. This is the default.

Chapter 27. Value Set Control Window Processing 27-9

VIA_COLORINDEX
If this attribute is set, the item is an index into the logical color table.

VIA_ICON
If this attribute is set, the item is an icon.

VIA_RGB
If this attribute is set, the item is a color entry.

VIA_TEXT
If this attribute is set, the item is a text string.

• In addition, one or more of the following attributes can be set:

VIA_DISABLED
If this attribute is set, the item cannot be selected and is displayed with unavailable-state
emphasis, if possible. Unavailable text items are always displayed with
unavailable-state emphasis, according to CUA guidelines; for items displayed as color,
bit maps, and icons, it is the application's responsibility to determine the best way to
show that these items are unavailable, if possible.

The selection cursor can be moved to an unavailable item by using either the keyboard
navigation keys or a pointing device. This allows a user to press the F1 key to find out
why that item cannot be selected.

VIA_DRAGGABLE
If this attribute is set, the item can be the source of a direct manipulation action.

VIA_DROPONABLE
If this attribute is set, the item can be the target of a direct manipulation action.

VIA_OWNERDRAW
If this attribute is set, a paint notification message is sent whenever this item needs
painting.

• The following is returned if an error occurs:

Remarks

VMERR_INVALID_PARAMETERS
The WinGetLastError function may return the following errors:

PMERR_INVALID_PARAMETERS
PMERR_PARAMETER_OUT _OF _RANGE.

The application uses this message to query the specific attribute or attributes of a value set item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

27-10 PM Programming Reference

\
/

)

VM_ QUERYMETRICS
This message queries for the current size of each value set item or for the spacing between items.
The value returned is either the width and height of one item, or the spacing between items.

Parameters
param1

fMetrlc (USHORT)
Control metric.

Control metric to be queried with this message. This can be either of the following:

VMA_ITEMSIZE

VMA_ITEMSPACING

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
ulMetric (ULONG)

Metric value queried for.

If this message attribute is set, the width and height of each item (in
pixels) are returned in the usltemWldth and usltemHeight
parameters, respectively.
If this message attribute is set, the horizontal and vertical spacing
between items (in pixels) is returned in the usHorzltemSpacing
parameter and in the usVertltemSpacing parameter, respectively.

VSERR_INVALID _PARAMETERS An error occurred. The WinGetlastError function may return
the following error:

>=O
PMERR_INVALID_PARAMETERS.

This value depends on the VMA_* attribute set in the param1
parameter.

• If the VMA_ITEMSIZE attribute is set, the following is
returned:

usltemWidth (USHORT)
Width of one value set item, in pixels.

usltemHeight (USHORT)
Height of one value set item, in pixels.

• If the VMA_ITEMSPACING attribute is set, the following
is returned:

usHorzltemSpacing (USHORT)
Amount of horizontal space allocated between each
value set item, in pixels. This number does not
include the space needed for selected-state and
target emphasis, and for the selection cursor,
because the emphasis and cursor space is
automatically allocated by the value set control. The
default space amount is 0.

usVertltemSpacing (USHORT)
Amount of vertical space allocated between each
value set item, in pixels. This number does not
include the space needed for selected-state and
target emphasis, and for the selection cursor,
because the emphasis and cursor space is
automatically allocated by the value set control. The
default space amount is 0.

Chapter 27. Value Set Control Window Processing 27-11

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return 0.

VM_ QUERYSELECTEDITEM
This message queries for the currently selected value set item indicated by the values of the usRow
and usColumn parameters.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
usRow (USHORT)

Row index.

Row index of the currently selected value set item. Rows have a value from 1 to the value of the
usRowCount field. This value, which is the total number of rows in the value set, is specified in
the VSCDATA data structure when the value set control is created.

usColumn (USHORT)
Column index.

Column index of the currently selected value set item. Columns have a value from 1 to the value
of the usCo/umnCount field. This value, which is the total number of columns in the value set, is
specified in the VSCDATA data structure when the value set control is created.

Remarks
The application uses this message to query the index of the currently selected value set item. If O is
returned, no item is selected.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action

on it other than to return 0.

VM SELECTITEM
This message selects the value set item indicated by the values of the usRow and usColumn
parameters. When a new item is selected, the previously selected item is deselected.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item to select. Rows have a value from 1 to the value of the
usRowCount field. This value, which is the total number of rows in the value set, is
specified in the VSCDATA data structure when the value set control is created.

usColumn (USHORT)
Column index.

Column index of the value set item to select. Columns have a value from 1 to the value of
the usColumnCount field. This value, which is the total number of columns in the value set,
is specified in the VSCDATA data structure when the value set control is created.

27-12 PM Programming Reference

/

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
fSuccess (BOOL)

Success indicator.

TRUE Item was successfully selected.
FALSE An error occurred. The WinGetLastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

Remarks
The application uses this message to select the specified value set item.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

VM SETITEM
This message specifies the type of information that will be contained by a value set item. This item

is indicated by the values of the usRow and usColumn parameters. Each value set item can contain
a different type of information. The value set interprets the information set for the item based on the
attribute of the item. Value set items that are not set (blank items) are drawn using the background
color of the value set.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which information is being specified. Rows have a value
from 1 to the value of the usRowCount field. This value, which is the total number of rows in
the value set, is specified in the VSCDATA data structure when the value set control is
created.

usColumn (USHORT)
Column index.

param2

Column index of the value set item for which information is being specified. Columns have
a value from 1 to the value of the usColumnCount field. This value, which is the total
number of columns in the value set, is specified in the VSCDATA data structure when the
value set control is created.

ulllemld (ULONG)
Item information.

This value depends on the VIA_* attribute set for the item.

• If the VIA_ TEXT attribute is specified, the ulltemld parameter is as follows:

pszltem (PSZ)
Pointer to a null terminated string containing the text to be placed in the item. If
NULL is passed in, the item is blank.

• If the VIA_BITMAP attribute is specified, the ulltemld parameter is as follows:

hbmltem (HBITMAP)
Handle to a bit map that is to be drawn in the item indicated by the param1
parameter. If NULLHANDLE is passed in, the item will be blank.

• If the VIA_ICON attribute is specified, the ulltemld parameter is as follows:

Chapter 27. Value Set Control Window Processing 27-13

I

Returns

hptltem (HPO/NTER)
Handle to the icon that is to be drawn in the item indicated by the param1
parameter. If NULLHANDLE is passed in, the item is blank.

• If the VIA_RGB attribute is specified, the ulltemld parameter is as follows:

rgbltem (ULONG)
Color value to be drawn in the item indicated by the param1 parameter. If an
invalid value is passed in (a value greater than OxOOFFFFFF), the item is blank.
Each color value is a 4-byte integer with a value of:

(R * 65536) + (G * 256) + B

where:

R Red intensity value.
G Green intensity value.
B Blue intensity value.

• If the VIA_COLORINDEX attribute is specified, the ulltemld parameter is as follows:

ulColorlndex (ULONG)
Index of the color in the logical color table to be drawn in the item indicated by the
param1 parameter.

fSuccess (BOOL)
Success indicator.

TRUE Item was successfully set.
FALSE An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

Remarks
The application uses this message to set the contents of an individual value set item. To set the
values for the entire value set, an application would loop through the rows and columns, setting the
value of each item during the initial value set window processing before the window becomes
visible.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

VM SETITEMATTR
This message sets the attribute or attributes of the item indicated by the values of the usRow and
usCo/umn parameters.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which attributes are being specified. Rows have a value
from 1 to the value of the usRowCount field. This value, which is the total number of rows in
the value set, is specified in the VSCDATA data structure when the value set control is
created. If 0 is passed, the specified attribute or attributes are either set or reset for all of
the rows in the value set.

usColumn (USHORT)
Column index.

Column index of the value set item for which attributes are being specified. Columns have a
value from 1 to the value of the usColumnCount field. This value, which is the total number
of columns in the value set, is specified in the VSCDATA data structure when the value set

27-14 PM Programming Reference

param2

control is created. If O is passed, the specified attribute or attributes are either set or reset

for all of the columns in the value set.

usltemAttr (USHORT)
Item attributes.

Attribute or attributes of the item to be set or reset based on the value of the fSet parameter.

These attributes can be as follows:

• One of the following attributes can be set:

VIA_BITMAP
If this attribute is set, the item is a bit map. This is the default.

VIA_ COLORINDEX
If this attribute is set, the item is an index into the logical color table.

VIA_ICON
If this attribute is set, the item is an icon.

VIA_RGB
If this attribute is set, the item is a color entry.

VIA_TEXT
If this attribute is set, the item is a text string.

• In addition, one or more of the following attributes can be set:

VIA_DISABLED
If this attribute is set, the item cannot be selected and is displayed with

unavailable-state emphasis, if possible. Unavailable text items are always

displayed with unavailable-state emphasis, according to CUA guidelines; for items

displayed as color, bit maps, and icons, it is the application's responsibility to

determine the best way to show that these items are unavailable, if possible.

The selection cursor can be moved to an unavailable item by using either the

keyboard navigation keys or a pointing device. This allows a user to press the F1

key to find out why that item cannot be selected.

VIA_DRAGGABLE
If this attribute is set, the item can be the source of a direct manipulation action.

VIA _DROPONABLE
If this attribute is set, the item can be the target of a direct manipulation action.

VIA_ OWNERDRAW
If this attribute is set, a paint notification message is sent whenever this item needs

painting.

ISet (USHORT)

Returns

Set or reset flag.

TRUE
FALSE

Set the attribute of the indicated item.
Turn off the attribute of the indicated item.

ISuccess (BOOL)
Success indicator.

TRUE
FALSE

Attribute or attributes were set successfully.
An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT _OF _RANGE.

Chapter 27. Value Set Control Window Processing 27-15

Remarks
The application uses this message to either set or reset a specific attribute or attributes of a value
set item. This provides customization of a control at the item level, so that applications can provide
their own types of items with a value set, as well as perform direct manipulation and other actions.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

VM SETMETRICS
This message sets the size of each item in the value set control, the spacing between items, or both.

Parameters
param1

fMetrlc (USHORT)

param2

Units of measurement.

Unit or units of measurement that are to be set for the value set control. This can be either
of the following:

VMA_ITEMSIZE If this message attribute is set, the width and height of each item is
set using the values of the usltemWldth and usltemHelght
parameters, respectively.

VMA_ITEMSPACING If this message attribute is set, the horizontal and vertical spacing
between each item is set using the values of the usHorzltemSpaclng
and usVertltemSpaclng parameters, respectively.

ulltemld (ULONG)
Item information.

Returns

This value depends on the VMA_* attribute set for the message.

• If the VMA_ITEMSIZE attribute is specified, the ulltemld parameter is as follows:

usltemWldth (USHORT)
Width to be set for each value set item, in pixels. The number of pixels specified
cannot be less than 2.

usltemHelght (USHORT)
Height to be set for each value set item, in pixels. The number of pixels specified
cannot be less than 2.

• If the VMA_ITEMSPACING attribute is specified, ulltemld parameter is as follows:

usHorzltemSpaclng (USHORT)
Amount of horizontal space to be set between each value set item, in pixels. This
number does not include the space needed for selected-state and target emphasis,
and for the selection cursor, because the emphasis and cursor space is
automatically set by the value set control. The default spacing is O.

usVertltemSpaclng (USHORT)
Amount of vertical space to be set between each value set item, in pixels. This
number does not include the space needed for selected-state and target emphasis,
and for the selection cursor, because the emphasis and cursor space is
automatically set by the value set control. The default spacing is O.

fSuccess (BOOL)
Success indicator.

TRUE
FALSE

Item size or spacing was successfully set.
An error occurred. The WinGetlastError function may return the following errors:

• PMERR_INVALID_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

27-16 PM Programming Reference

\

Remarks
Upon receiving this message, the value set redraws the control with the new width, height, and
spacing specifications for each item. Any items that do not fit within the current window size are
clipped.

When the value set control receives a WM_SIZE (in Value Set Controls) message, which is sent when
the value set window is resized, the value set control defaults the size of each item by dynamically
dividing the window size by the number of rows and columns. It allows enough room for the border,
selection cursor, and selection emphasis, and defaults the spacing between items to 0. To override
these default settings, the application must resend the VM_SETMETRICS message.

Default Processing
The default window procedure does not expect to receive this message and therefore takes no action
on it other than to return FALSE.

WM_ CHAR (in Value Set Controls)
For the cause of this message, see "WM_ CHAR" on page 12-24.

Parameters
For a description of the parameters, see "WM_ CHAR" on page 12-24.

Remarks
The value set control window procedure responds to this message by sending it to its owner if it has
not processed the key stroke. This is the most common means by which the focus is switched from
one control to another in a value set window.

The keystrokes processed by a value set control are:

Key Name

Dowra Arrow

Up Arrow

Left Arrow

Right Arrow

Home

End

PgDn

Pg Up

Ctrl+Home

Ctrl+End

Action Performed

Moves the selection cursor down one item. When the selection cursor reaches the
bottom, the Down Arrow has no effect.

Moves the selection cursor up one item. When the selection cursor reaches the
top, the Up Arrow has no effect.

Moves the selection cursor left one item. When the selection cursor reaches the
leftmost column, the Left Arrow has no effect.

Moves the selection cursor right one item. When the selection cursor reaches the
rightmost column, the Right Arrow has no effect.

Moves the selection cursor to the leftmost column of the value set control (NLS
dependent). Pressing the Home key when the leftmost column is selected has no
effect. The row index does not change.

Moves the selection cursor to the rightmost column of the value set control (NLS
dependent). Pressing the End key when the rightmost column is selected has no
effect. The row index does not change.

Moves the selection cursor to the bottom row of the value set control. Pressing
the Page Down key when the bottom row is selected has no effect. The column
index does not change.

Moves the selection cursor to the top row of the value set control. Pressing the
Page Up key when the top row is selected has no effect. The column index does
not change.

· Moves the selection cursor to the item in the top row and leftmost column of the
value set control (NLS dependent). Pressing the Ctrl +Home keys when the top
row and leftmost column is selected has no effect.

Moves the selection cursor to the bottom row and rightmost column of the value
set control (NLS dependent). Pressing the Ctrl +End keys when the bottom row
and rightmost column is selected has no effect.

Chapter 27. Value Set Control Window Processing 27-17

Enter

(Mnemonic)

Sends a VN_ENTER notification code to the owner of the value set with the row and
column indices of the selected item.

If the VS_ TEXT style bit is set for the value set, any mnemonics specified can be
used to select an item.

Default Processing
For a description of the default processing, see "WM_ CHAR" on page 12-24.

WM_PRESPARAMCHANGED (in Value Set Controls)
For the cause of this message, see "WM_PRESPARAMCHANGED" on page 12-48.

Parameters
param1

attrtype (ULONG)
Attribute type.

Presentation parameter attribute identity. The following presentation parameters are
initialized by the value set control. The initial value of each is shown in the following list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Value set background color; used for entire control as the background. This color is
initialized to SYSCLR_WINDOW.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Selection color; this is the color used for selected-state and target emphasis. This
color is initialized to SYSCLR_HILITEBACKGROUND.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Value set and item border color. This color is initialized to SYSCLR_WINDOWFRAME.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

0 Reserved value; must be 0.

Remarks
The application uses this message to notify the value set that a given inherited presentation
parameter has changed.

Default Processing
For a description of the default processing, see "WM_PRESPARAMCHANGED" on page 12-48.

27-18 PM Programming Reference

~ ..
\

/

\

\
)

WM_QUERYWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Parameters
param1

wndparams (PWNDPARAMS)

Pointer.

Pointer to a WNDPARAMS window parameter structure. See WNDPARAMS on page A-125

for descriptions of the default fields. For a value set, the valid values for the u/Status field

are WPM_CBCTLDATA and WPM_CTLDATA.

The flags in the u/Status field are cleared as each item is processed. If the call is

successful, the u/Status field is NULL. If any item has not been processed, the flag for that

item is still set.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply

result (BOOL)

Remarks

Success indicator.

TRUE
FALSE

Successful operation.
Error occurred.

The value set control window procedure responds to this message by returning the information in the

buffer provided. If this message is sent to a value set window of another process, the information in,

or identified by, the wndparams parameter must be in memory shared by both processes.

Default Processing
For a description of the default processing, see "WM_QUERYWINDOWPARAMS" on page 12-53.

Chapter 27. Value Set Control Window Processing 27-19

WM_SETWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see "WM_SETWINDOWPARAMS" on page 12-60.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer.

Pointer to a WNDPARAMS structure. See WNDPARAMS on page A-125 for descriptions of
the fields. For a value set, the valid value of the u/Status field is WPM_CTLDATA.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply

result (BOOL)
Success indicator.

Remarks

TRUE
FALSE

Successful operation.
Error occurred.

If this message is sent to a value set window of another process, the information in, or identified by,
the wndparams parameter must be in memory shared by both processes.

Default Processing
For a description of the default processing, see "WM_SETWINDOWPARAMS" on page 12-60.

WM_SIZE (in Value Set Controls)
For the cause of this message, see "WM_SIZE" on page 12-61.

Parameters
For a description of the parameters, see "WM_SIZE" on page 12-61.

Remarks
When the value set window is sized, the value set control defaults the size of each item by
dynamically dividing the window size by the number of rows and columns. It allows enough room for
the border, selection cursor, and selection emphasis, and defaults the spacing between items to 0.
To override these default settings, the application must resend the VM_SETMETRICS message.

Default Processing
For a description of the default processing, see "WM_SIZE" on page 12-61.

27-20 PM Programming Reference

~I
J

Chapter 28. Clipboard Messages

Purpose
The clipboard is used by the end-user to transfer data between Presentation Manager· (PM)

applications using the following operations.

Cut Remove from a window, leaving a gap in the source, and save for later use.

Copy Copy from a window, leaving the source intact, and save for later use.

Paste Paste the cut or copied data into the window of an application (the target).

WM DESTROYCLIPBOARD
This message is sent to the clipboard owner when the clipboard is emptied through a call to

WinEmptyClipbrd.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value.

Remarks
If there is any data that has been set with the CFl_OWNERFREE flag, the clipboard owner must

release the data at this time.

Default Processing
None.

• Trademark of IBM Corporation

Chapter 28. Clipboard Messages 28-1

WM DRAWCLIPBOARD
This message is sent to the clipboard viewer window whenever the contents of the clipboard change;
that is, as a result of the WinCloseClipbrd function following a call to WinSetClipbrdData.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, 0.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
None.

WM HSCROLLCLIPBOARD
This message is sent to the clipboard-owner window when the clipboard contains a data handle for
the CFl_OWNERDISPLAY format, and there is an event in the clipboard viewer's horizontal scroll bar.

Parameters
param1

hwndhwndViewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroll (SHORT)
Scroll position.

The position is either:

0 scodeScrol/ is other than SB_SLIDERPOSITION
Other The position of the slider when scodeScroll is SB_SLIDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code

This is one of the SB_* scroll-bar codes as defined in "WM_HSCROLL (in Horizontal Scroll
Bars)" on page 20-3.

SB_LINELEFT Sent if the operator clicks the left arrow of the scroll bar, or
presses the VK_LEFT key.

SB_LINERIGHT Sent if the operator clicks the right arrow of the scroll bar, or
presses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks the area to the left of the slider, or
presses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks the area to the right of the slider, or
presses the VK_PAGERIGHT key.

SB_SLIDERPOSITION Sent to indicate the final position of the slider. sposScroll contains
the final position of the slider.

SB_SLIDERTRACK Sent every time the slider position changes if the operator moves
the scroll bar slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if the
operator has not been doing any absolute slider positioning.

28-2 PM Programming Reference

/

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
The clipboard owner is responsible for displaying the clipboard contents. The clipboard owner
should use WinlnvalidateRect or repaint as desired. The scroll-bar position is also reset.

Default Processing
None.

WM PAINTCLIPBOARD
This message is sent when the clipboard contains a data handle with the CFl_OWNERDISPLAY
information flag set.

Parameters
param1

hwndhwndViewer (HWND)
Handle.

This is a handle to the clipboard application window.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
As the clipboard owner is responsible for displaying the clipboard contents, this message notifies the
clipboard application that its client area needs repainting. The WM_PAINTCLIPBOARD message is
sent to the owner of the clipboard to request repainting of all or part of the client area of the
clipboard application.

Note: To determine whether the entire client area needs repainting or just a portion of it, the
clipboard owner must compare the dimensions of the drawing area to the dimensions given in
the most recent WM_SIZECLIPBOARD message.

Default Processing
None.

Chapter 28. Clipboard Messages 28-3

WM RENDERALLFMTS
This message is sent to the application that owns the clipboard while the application is being
destroyed.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value.

Remarks
The application renders the clipboard data in all formats it is capable of generating and passes a
handle to each format to WinSetClipbrdData. This ensures that the data In the clipboard can be
rendered even though the application has been destroyed.

Default Processing
None.

WM RENDERFMT
This message is a request to the clipboard owner to render the data of the format specified in usfmt.

Parameters
param1

usfmt (USHORT)
Data format.

This is the format of the data to be rendered.

CF_BITMAP
CF _DSPBITMAP
CF _DSPMETAFILE
CF_DSPTEXT
CF _METAFILE
CF_TEXT

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, 0.

A bit map.
A bit-map representation of a private data format.
A metafile representation of a private data format.
A textual representation of a private data format.
A metafile.
An array of text characters.

28-4 PM Programming Reference

Remarks
The data is rendered into a global handle, which is then set into the clipboard with
WinSetClipbrdData.

Default Processing
None.

WM SIZECLIPBOARD
This message is sent when the clipboard contains a data handle for the CFl_OWNERDISPLAY format,
and the clipboard application window has changed size.

Parameters
param1

hwndVlewer (HWND)
Handle of viewer window.

param2

ppalnt (PRECTL)
Rectangle to be re-painted.

Returns
flreply (ULONG)

Reserved.

O Reserved value, 0.

Default Processing
The default window procedure takes no action on this message except to set f/reply to 0.

WM VSCROLLCLIPBOARD
This message is sent to the clipboard owner window when the clipboard contains a data handle for
the CFl_OWNERDISPLAY format, and there is an event in the clipboard viewer's vertical scroll bar.

Parameters
param1

hwndhwndVlewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroll (SHORT)
Scroll position.

The position is either:

0 scodeScroll is other than SB_SLIDERPOSITION
Other The position of the slider when scodeScroll is SB_SLIDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code.

This is one of the SB_* scroll-bar codes as defined in "WM_HSCROLL (in Horizontal Scroll
Bars)" on page 20-3.

SB_LINELEFT

SB_LINERIGHT

SB_PAGELEFT

Sent if the operator clicks the left arrow of the scroll bar, or
depresses the VK_LEFT key.
Sent if the operator clicks the right arrow of the scroll bar, or
depresses the VK_RIGHT key.
Sent if the operator clicks the area to the left of the slider, or
depresses the VK_PAGELEFT key.

Chapter 28. Clipboard Messages 28-5

Returns

SB_PAGERIGHT Sent if the operator clicks the area to the right of the slider, or
depresses the VK_PAGERIGHT key.

SB_SLIDERPOSITION Sent to indicate the final position of the slider. sposScroll contains
the final position of the slider.

SB_SLIDERTRACK Sent every time the slider position changes if the operator moves
the scroll b~u slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if the
operator has not been doing any absolute slider positioning.

flreply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
The clipboard owner is responsible for displaying the clipboard contents. The clipboard owner
should use WinlnvalidateRect or repaint as desired. The scroll bar position is also reset.

Default Processing
None.

28-6 PM Programming Reference

\
•,

/

)

Chapter 29. Direct Manipulation (Drag) Messages

Purpose
This section describes the processing that occurs during a direct manipulation operation when the
application sends or receives a direct manipulation (DM_ *) message.

DM DISCARDOBJECT
This message is sent to a source that supports the "DRM_DISCARD" rendering method.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure representing the items to be discarded.

param2 (MPARAM)
Reserved.

NULL Reserved value.

Returns
reply

ulAction (ULONG)
Flag.

Flag giving responsibility for the operation.

Remarks

DRR_SOURCE
DRR_TARGET

DRR_ABORT

The source window procedure accepts responsibility for the operation.
The target window procedur~ is to accept responsibility for the operation.
The OS/2 shell supports the discarding of dragitems that can be rendered
by the DRM_OS2FILE method.
Abort the entire DM_DROP action.

This message is sent to the source window for the drag action. The source should make a copy of
the parameters and return. The source should also create a separate thread to execute the discard
action if it responds with DRR_SOURCE.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action on it,
other than to set u/Action to the default value of NULL

Chapter 29. Direct Manipulation (Drag) Messages 29-1

DM DRAGERROR
This message is sent to the caller of DrgDragFiles or DrgAcceptDroppedFiles when an error occurs
during a move or copy operation for a file.

Parameters
param1

usError (USHORT)
Error code.

Returned from DosCopy, DosMove, or DosDelete.

usOperation (USHORT)
Flag.

Flag indicating the operation that failed.

DFF_MOVE
DFF_COPY
DFF_DELETE

param2 (HSTR)
HSTR.

DosMove failed.
DosCopy failed.
DosDelete failed.

HSTR of file contributing to the error.

Returns
reply (HSTR)

Action indicator.

DME_IGNORECONTINUE
DME_IGNOREABORT
DME_RETRY

Do not retry the operation, but continue with the rest of the files.
Do not retry the operation, and do not try any other files.
Retry the operation.

DME_REPLACE
Other

Remarks

Replace the file at the destination. Used if FALSE is not specified.
HSTR of new file name to use for retry.

The receiver of this message should return the action that the sender should take.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return FALSE.

DM DRAGFILECOMPLETE
This message is sent when a direct manipulation operation on a file or files is complete.

Parameters
param1 (HSTR)

File handle.

param2 (USHORT)
Flags.

DF_MOVE
DF_SOURCE

OF _SUCCESSFUL

The operation was a move. If this flag is not set, the operation was a copy.
The receiving window was the source of the drag. If this flag is not set, the
receiver was the target of the drop.
The drag operation was successful for the file. If this flag is not set, the
operation failed.

29-2 PM Programming Reference

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
param1 is HSTR for the source file if this message is sent by DrgDragFiles, and is HSTR for the target
file if this message is sent by DrgAcceptDroppedFiles.

This message is sent by DrgDragFiles to its caller when the move or copy operation is completed,
regardless of success or failure. It is also sent by DrgAcceptDroppedFiles when a file has been

successfully dropped on the caller.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other

than to return 0.

OM DRAGLEAVE
This message is sent to a window that is being dragged over when one of these conditions occur:

• The object is dragged outside the boundaries of the window.
• The drag operation is terminated while the object is over the window.

Parameters
param1

pDraglnto (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure for the drag operation.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
This message allows for target emphasis and de-emphasis during the direct manipulation process.

This message is not sent when a drop occurs. Use DM_DROP as a signal to remove the target

emphasis.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action on it
other than to return 0.

Chapter 29. Direct Manipulation (Drag) Messages 29-3

DM_DRAGOVER
This message allows the window under the mouse pointer to determine if the object or objects
currently being dragged can be dropped.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure representing the object being dragged.

param2
Pointer location.

Pointing device pointer location.

sxDrop (SHORT)
X-coordinate.

X-coordinate of the pointing device pointer in desktop coordinates.

syDrop (SHORT)

Returns
reply

Y-coordinate.

Y-coordinate of the pointing device pointer in desktop coordinates.

usDrop (USHORT)
Drop indicator.

DOR_DROP Object can be dropped. When this reply is given, usDefaultOp must
be set to indicate which operation will be performed if the user should
drop at this location. This is used to provide visual feedback to the
user.

DOR_NODROP Object cannot be dropped at this time. The target can accept the
object in the specified type and format using the specified operation,
but the current state of the target will not allow it to be dropped on.
The target may change state in the future so that the same object may
be acceptable.

DOR_NODROPOP Object cannot be dropped at this time. The target can accept the
object in the specified type and format, but the current operation is
not acceptable. A change in the drag operation may change the
acceptability of the object.

DOR_NEVERDROP Object cannot be dropped. The target cannot accept the object now
and will not change state so that the object will be acceptable in the
future. If this response is returned, no more DM_DRAGOVER
messages will be sent to the target until the pointer is moved out of
and back into the target window.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

DO_COPY
DO_LINK
DO_MOVE
Other

Operation is a copy.
Operation is a link.
Operation is a move.
Operation is defined by the application. This value should be greater than or
equal to(~) DO_UNKNOWN.

29-4 PM Programming Reference

/

Remarks
This message is sent to the window that is directly under the hot spot of the mouse pointer during the
drag operation when any of the following conditions are met:

• The user moves the mouse.
• A key is pressed.
• A WM_BUTTON1UP, WM_BUTTON2UP, WM_BUTTON3UP, or WM_ENDDRAG message is

received, indicating that the direct manipulation operation corresponds to the vkTerminate
parameter specified by the source on the call to DrgDrag. In this case the message is sent only
if the mouse has moved since the last DM_DRAGOVER message was sent.

The receiver can gain access to pDraginfo with DrgAccessDraginfo. The acceptability of the dragged
objects can be determined by querying the hstrType and hstrRMF string handles in each of the
DRAGITEM structures carried in pDraginfo.

The receiver should provide target emphasis for itself if it returns DOR_DROP for this message. The
receiver can use DrgSetDragPointer to change the bit map while it is being dragged over. A
DM_DRAGLEAVE or DM_DROP message will be sent to the target in the future. Target emphasis
should be removed at that time.

If usOperation in DRAGINFO is DO_DEFAULT or DO_UNKNOWN and the target returns DOR_DROP for
usDrop, usDefaultOp should be set to reflect what the target defines as the default operation. This
information is used to provide the appropriate modification to the drag pointer and the target's
default operation will be passed in the usOperation field of the DRAGINFO structure specified in the
DM_DROP message.

The usDrop parameter is treated as DOR_NEVERDROP if all of the following occur:

• The value of the usOperation field in the DRAG INFO structure is DO _DEFAULT or
DO_UNKNOWN.

• The value of the usDrop parameter is DOR_DROP.

• The usDefaultOp parameter does not contain one of the defined values.

Otherwise, if the value of the usOperation field is not DO_DEFAULT or DO_UNKNOWN, the
usDefaultOp parameter is ignored.

Default Processing
The WinDefWindowProc function returns DOR_NEVERDROP to the sender of this message.

DM DRAGOVERNOTIFY
This message is sent to the source of a drag operation immediately after a DM_DRAGOVER message
is sent to a target window.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure that represents the object being dragged.

param2
Target's reply.

Target's reply to the DM_DRAGOVER message.

usDrop (USHORT)
Drop indicator.

usDefaultOp (USHORT)
Default operation.

Target-defined default operation.

Chapter 29. Direct Manipulation (Drag) Messages 29-5

Returns
reply (ULONG)

Reserved.

Remarks
The source window can use this message to modify its behavior or appearance based on a target's
response to the DM_DRAGOVER message.

See "DM_DRAGOVER" on page 29-4 for a description of the target's possible responses.

Default Processing
The WinDefWindowProc function does not expect to receive this message and therefore takes no
action on it other than to return NULL.

DM DROP
This message is sent to the target when the dragged object is dropped.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is sent to the window directly under the hot spot of the mouse pointer at the
completion of a direct manipulation operation only if DOR_DROP was returned for the
DM_DRAGOVER message sent to the window during the drag.

The receiver can obtain access to pDraginfo with DrgAccessDraginfo.

The receiver should immediately remove any target emphasis and post a private message to itself to
initiate the data transfer conversations needed to complete the operation.

The receiver should use the cxOffset, and cyOffset, fields in the DRAGITEM structure to position the
dropped object within its window relative to the drop point, so that no movement of the dragged
image is perceived by the user when the drop occurs.

When the application receiving the DM_DROP message has finished all data transfer operations, it
should free the DRAGINFO structure using DrgFreeDraginfo.

Default Processing
The WinDefWindowProc function calls DrgDeleteDraginfoStrHandles and DrgFreeDraginfo for
pDraginfo and returns 0.

29-6 PM Programming Reference

\
l

DM DROPHELP
This message requests help for the current drag operation.

Parameters
param1

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure used in the drag operation.

param2 (ULONG)
Reserved.

O Reserved value, 0.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
This message is posted to the target of a drop when F1 is pressed during a direct manipulation
operation.

The usOperatlon member of pDraginfo can be used to provide help information in the context of the
drag operation during which it was requested.

Default Processing
The WinDefWindowProc function calls DrgDeleteDraginfoStrHandles and DrgFreeDraginfo for
pDraglnfo and returns O.

DM EMPHASIZETARGET
This message is sent to the caller of DrgAcceptDroppedFiles to inform it to either apply or remove
target emphasis from itself.

Parameters
param1

sx (SHORT)
X-coordinate.

X-coordinate of the pointing device pointer in window coordinates.

sy (SHORT)
Y-coordinate.

Y-coordinate of the pointing device pointer in window coordinates.

param2 (USHORT)
Flags.

TRUE Apply emphasis.
FALSE Remove emphasis.

Returns
reply (ULONG)

Reserved.

O Reserved value, 0.

Chapter 29. Direct Manipulation (Drag) Messages 29-7

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return 0.

OM ENDCONVERSATION
The target uses this message to notify a source that a drag operation is complete.

Parameters
param1

ulltemlD (ULONG)
Item ID.

The ulltem/D from the DRAGITEM that was contained within the DRAGINFO structure when
the object was dropped.

param2 (ULONG)
Flags.

The flags are set as follows:

DMFL_TARGETSUCCESSFUL The target successfully completed its portion of the rendering
operation.

DMFL_TARGETFAIL The target failed to complete its portion of the rendering
operation.

Returns
reply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
This message is used to inform a source that the target has completed its part of a rendering
operation. It is sent by the target to the source.

The target must send this message under any of the following circumstances:

• The target receives a DM_RENDERCOMPLETE message and will not retry the operation.
• The target completes the rendering operation without involvement from the source.
• The target wants to terminate a rendering operation in progress.
• The target chooses not to render an object that was dropped on it.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return 0.

29-8 PM Programming Reference

\

DM FILERENDERED
This message is sent to the window handling the drag conversation for the caller of DrgDragFiles.

Parameters
param1 (PRENDERFILE)

Pointer.

Pointer to a RENDERFILE structure.

param2 (USHORT)
Flags.

TRUE
FALSE

Returns
reply (ULONG)

Reserved.

Operation succeeded.
Operation failed.

0 Reserved value, 0.

Remarks
This message is sent when the rendering (moving or copying) of a file is complete. The handle of

this window is the hwndDragFites field of the RENDERFILE structure sent on DM_RENDERFILE.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other

than to return 0.

DM PRINTOBJECT
This message is sent to a source that supports the "DRM_PRINT" rendering method when objects

are dropped on a printer object.

Parameters
param1

pDragltem (PDRAGINFO)
Pointer.

Pointer to the DRAGINFO structure representing the objects to be printed.

param2

pPrlntDest (PPRINTDEST)
Pointer.

Returns
reply

Pointer to the PRINTDEST structure representing printer object to print to. The structure

contains all the parameters required to call the functions DevPostDeviceModes and

DevOpenDC.

ulAction (ULONG)
Flag.

Flag giving responsibility for the print operation.

DRR_SOURCE The source window procedure/object procedure will take responsibility for

the print operation.
DRR_TARGET The target printer object will take responsibility for the print operation

(this will only work on objects which are of the pre-registered rendering

method; "DRM_OS2FILE."

Chapter 29. Direct Manipulation (Drag) Messages 29-9

DRR_ABORT

Remarks

Abort the entire DM_DROP action (do not send any more
DM_PRINTOBJECT messages to any selected source object involved in
this DM_DROP.

This message is sent to the source window procedure. The source window procedure is responsible
for interpreting the structure given by param2. It should make a copy of all the parameters and then
return.

The receiver of this message should create a thread in which to dispatch this message in order to
facilitate a prompt reply. The thread can then call DevPostDeviceModes and DevOpenDC as
appropriate.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action on it,
other than to set u/Action to the default value of NULL.

DM RENDER
This message is used to request a source to provide a rendering of an object in a specified rendering
mechanism and format.

Parameters
param1

Dxfer (DRAGTRANSFER)
DRAGTRANSFER structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
success (BOOL)

Success indicator.

TRUE
FALSE

Remarks

Successful completion.
Error occurred.

The target sends this message to a source window to request a rendering of an object. If the source
returns FALSE, it may set flags in the DRAGTRANSFER structure that tell the target how to perform
the rendering operation on its own, or how to retry the operation. If no flags are set, the source will
not allow a rendering of the object.

If TRUE is returned, the message was processed by the recipient and the requested rendering will
take place. The source will post a DM_RENDERCOMPLETE message to the target when the
rendering is complete.

If FALSE is returned, either the message was not processed by the recipient, or the recipient could
not perform the requested rendering. See usRep/y in DRAGTRANSFER for more information.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return 0.

29-10 PM Programming Reference

\

)

DM RENDERCOMPLETE
This message is posted by a source to a target window. It informs the target that the source has

completed a requested rendering operation.

Parameters
param1

pDxfer (PDRAGTRANSFER)
Pointer.

Pointer to the DRAGTRANSFER structure.

param2

usFS (USHORT)
Flag field.

Returns

Flag field indicating successful completion.

DMFL_RENDERFAIL The source is unable to perform the rendering operation. The

target may be allowed to retry. If the target is allowed to retry

and chooses not to, it must send a DM_ENDCONVERSATION

message to the source.

DMFL_RENDEROK The source has completed the rendering operation. When the

target completes its part of the rendering operation, it must post a

DM_RENDERCOMPLETE message to the source.

DMFL_RENDERRETRY The source has completed the rendering operation and will allow

the target to retry its part of the operation if it fai Is. This flag can

be set in conjunction with either the DMFL_RENDERFAIL or

DMFL_RENDEROK flags.

reply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
If the rendering operation failed for an intermittent reason, the source can allow the target to retry

the operation. The source should return to the state it was in when the drop occurred for that object.

The target resumes the rendering operation from the beginning.

If the rendering operation encounters a permanent failure, the source should fail the operation and

proceed as if the rendering was completed.

If the rendering operation completes successfully, the source should return to the state it was in

when the drop occurred for that object. This allows the target to retry the operation if its portion of

the rendering failed. The target must post a DM_ENDCONVERSATION message when either of the

following occurs:

• It determines that the rendering operation successfully completed

• It chooses not to retry a rendering operation that failed.

Default Processing
The WinDefWindowProc function should send a DM_ENDCONVERSATION message to the window

indicated in the hwndltem field of the DRAGITEM structure. The message should indicate that the

target failed in its part of the rendering operation. Sending the DM_ENDCONVERSATION message

allows the source to release the resources it dedicated to the rendering operation.

Chapter 29. Direct Manipulation {Drag) Messages 29-11

DM RENDERFILE
This message is sent to the caller of DrgDragFiles to tell it to render a file.

Parameters
param1 (PRENDERF/LE)

Pointer.

Pointer to a RENDERFILE structure.

param2 (ULONG)
Reserved.

0 Reserved value, O.

Returns
reply (BOOL)

Render handling.

TRUE
FALSE

Remarks

The receiver handled the rendering.
DrgDragFiles should render this file.

This message is sent when TRUE is specified in DrgDragFiles. The receiver should perform the
operation indicated by the TRUE field in the RENDERFILE structure, moving or copying hstrSource to
hstrTarget.

When the operation is complete, a DM_FILERENDERED message should be sent to hwndDragFiles
window.

The RENDERFILE structure is allocated temporarily for the receiver of this message. The receiver
should make a copy if it needs to use the data in this structure after returning.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return 0.

29-12 PM Programming Reference

DM RENDERPREPARE
This message tells a source to prepare for the rendering of an object.

Parameters
param1

pDxfer (PDRAGTRANSFER)
Pointer.

Pointer to a DRAGTRANSFER structure.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
success (BOOL)

Success indicator.

TRUE The message was processed by the recipient and it is ready to perform the rendering
operation. The target of the drop sends a DM_RENDER message to request the
rendering with a specific rendering mechanism and format.

FALSE The message either was not processed by the recipient, or it is unprepared to perform
the rendering. The hwndltem field in DRAGITEM may not be properly initialized, and
therefore the target should not send a DM_ENDCONVERSATION message.

Remarks
This message must be sent when DC_PREPARE is on in the DRAGITEM structure.

This message is used to allow the source to create an invisible window to handle the conversation
required for the data transfer.

Default Processing
The WinDefWindowProc function does not expect to receive this message and takes no action other
than to return 0.

Chapter 29. Direct Manipulation (Drag) Messages 29-13

29-14 PM Programming Reference

)

)

)

Chapter 30. Dynamic Data Exchange Messages

Purpose
This section describes the message part of the ODE protocol, which is a set of guidelines that allows

two applications to share data freely between one another; not necessarily driven directly by user

input.

Note: DOE operates between two specific applications, each of which must be aware of the other,

and active.

WinDdelnitiate, WinDdePostMsg, and WinDdeRespond are the functions associated with these

messages.

WM ODE ACK - -This message notifies an application of the receipt and processing of a WM_DDE_EXECUTE,

WM_DDE_DATA, WM_DDE_ADVISE, WM_DDE_UNADVISE or WM_DDE_POKE message, and in some

cases, of a WM_DDE_REQUEST message.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

Returns

The acknowledging application modifies the usStatus field to return information about the

status of the message received:

DDE_FACK 1 = request accepted, 0 =request not accepted
DDE_FBUSY 1 =busy, O=not busy
DDE_NOTPROCESSED Reserved for application-specific return codes
DDE_FAPPSTATUS The message was not understood and was ignored

An application is expected to set DDE_FBUSY if it is unable to respond to the request at the

time it is received. The DDE_FBUSY flag is defined only when DDE_FACK is 0.

offszltemName identifies the item for which the acknowledgment is being sent.

flReply (ULONG)
Reserved.

0 Reserved Value.

Default Processing
None.

Chapter 30. Dynamic Data Exchange Messages 30-1

WM ODE ADVISE
This message (posted by a client application) requests the receiving application to supply an update
for a data item whenever it changes.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

Flags in the usStatus field are set as follows:

DDE_FACKREQ

DDE_FNODATA

If this bit is 1, the receiving (server) application is requested to
send its WM_DDE_DATA messages with the
acknowledgment-requested (DDE_FACKREQ) bit set. This offers a
flow control technique, whereby the client application can avoid
overload from incoming WM_DDE_DATA messages.
If this bit is 1, the server is requested to send its WM_DDE_DATA
messages with a zero length data portion. These messages are
alarms that tell the client the source data has changed. Upon
receiving one of these alarms, the client can choose to call for the
latest version of the data by issuing a WM_DDE_REQUEST
message, or the client can choose to ignore the alarm. This is
typically used when there is a significant resource cost associated
with actually rendering and/or assimilating the data.

offszltemName identifies which data item is being requested.

Returns

usFormat is the preferred type of data of the client. It must be a registered DOE data format
number.

flReply (ULONG)
Reserved.

0 Reserved Value.

Remarks
The receiving application is expected to reply with a positive WM_DDE_ACK message if it can
provide the requested data, or with a negative one if it can not.

Default Processing
None.

30-2 PM Programming Reference

/

ii._

)

WM DDE DATA - -This message notifies a client application of the availability of data. It is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

Flags in the usStatus field are set as follows:

DDE_FACKREQ

DDE_FRESPONSE

If this bit is 1, the receiving (client) application is expected to send
a WM_DDE_ACK message after the memory object has been
processed. If it is 0, the client application should not send a
WM_DDE_ACK message.
If this bit is 1, this data is offered in response to a
WM_DDE_REQUEST message. If it is 0, this data is offered in
response to a WM_DDE_ADVISE message.

offszltemName identifies which data item is available.

offabData is the data. The format of the data is a registered DOE data format, identified by
the usFormat field.

Returns
flReply (ULONG)

Reserved.

0 Reserved value, 0.

Default Processing
None.

WM DDE EXECUTE - -This message posts a string to a server application to be processed as a series of commands. The
server application is expected to post a WM_DDE_ACK message in response.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the server.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

offabData contains the commands to be executed.

Chapter 30. Dynamic Data Exchange Messages 30-3

Returns
flReply (ULONG)

Reserved.

0 Reserved Value.

Default Processing
None.

30-4 PM Programming Reference

WM DDE INITIATE
This message is sent by an application to one or more other applications, to request initiation of a
conversation.

This message is always sent.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pData (PDDEINIT)
Pointer to initiation data.

This points to a DDEINIT structure. pszAppName is the name of the desired server
application; if this is a zero-length string, any application can respond. pszTopic is the
name of the desired topic; if this is a zero-length string, each responding application
responds once for each topic that it can support.

Returns
reply

fresult (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

Upon receiving this message, all applications with names matching the application name (where
specified), that support the topic identified by the topic name, are expected to acknowledge.

A modal window, for example a message box, must not be invoked during the processing of this
message.

Default Processing
None.

WM DDE INITIATEACK - -This message is sent by a server application in response to a WM_DDE_INITIATE message, for each
topic that the server application wishes to support.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pData (PDDEINIT)
Pointer to initiation data.

This points to a DDEINIT structure. pszAppName is the name of the responding server
application; it must not be a zero-length string. pszTopic is the name of the topic that the
server is willing to support; it must not be a zero-length string.

The DDEINIT structure must be in a shareable segment; it is the responsibility of the
receiving window procedure to free this segment.

Chapter 30. Dynamic Data Exchange Messages 30-5

Returns
reply

fresult (BOOL)
Success indicator:

Remarks

TRUE
FALSE

Successful completion
Error occurred.

A modal window, such as a message box, must not be posted during the processing of this message.

Default Processing
None.

WM DDE POKE - -
This message requests an application to accept an unsolicited data item. It is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

Returns

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

offszltemName identifies the data item to the receiving application.

offabData is the data. The format of the data is a registered DOE data format, identified by
the usFormat field.

flReply (ULONG)
Reserved.

0 Reserved value, 0.

Remarks
The receiving application is expected to reply with a positive WM_DDE_ACK message if it accepts the
unsolicited data, or with a negative WM_DDE_ACK if it does not.

Default Processing
None.

30-6 PM Programming Reference

WM_DDE_REQUEST
This message is posted from client to server, to request that the server provide a data item to the
client.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the server.

param2

pDdeStruct (PDDESTRUCT)
DDE structure.

This points to a dynamic data exchange structure. See DDESTRUCT on page A-23.

offszltemName identifies which data item is being requested.

usFormat identifies in which registered DOE data format the data item is to be rendered.

Returns
flReply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
The receiving application is expected to respond with a WM_DDE_DATA message, containing the
requested data, if possible. Otherwise, it is expected to respond with a negative WM_DDE_ACK
message.

Default Processing
None.

Chapter 30. Dynamic Data Exchange Messages 30-7

WM ODE TERMINATE - -This message is posted by either application participating in a ODE conversation, to terminate that
conversation.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of the sender.

param2

flReserved (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flReply (ULONG)

Reserved.

0 Reserved value, 0.

Remarks
Upon receiving this message, an application is expected to post a WM_DDE_TERMINATE message in
response.

Default Processing
None.

30-8 PM Programming Reference

WM DOE UNADVISE - -This message is posted by a client application to a server application to indicate that the specified
item should no longer be updated.

This message is always posted.

Parameters
param1

hwndhwnd (HWND)
Window handle of a sender.

param2

pDdeStruct (PDDESTRUCT)
DOE structure.

This points to a dynamic data exchange structure (see DDESTRUCT on page A-23).
offszltemName identifies which data update request is to be retracted. If this is a
zero-length string, data update requests for all items are retracted.

Returns
flReply (ULONG)

Reserved.

O Reserved value, 0.

Remarks
The receiving application is expected to reply with a positive WM_DDE_ACK message if it can honor
the request, or a negative one if it cannot.

Default Processing
None.

Chapter 30. Dynamic Data Exchange Messages 30-9

30-10 PM Programming Reference

\
I

Chapter 3"1. Help Manager Messages

Purpose
This section describes the processing of messages sent by the Help Manager or applications in
response to requests for help by the user.

HM ACTIONBAR COMMAND
This message is sent to the current active application window by the help manager to notify the
application when the user selects a tailored action bar item.

Parameters
param1

idCommand (USHORT)
Identity of the action bar item that was selected.

param2 (ULONG)
Reserved.

O Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Default Processing
None.

HM CONTROL
This message is sent by the help manager to the child of the coverpage window to add a control in
the control area of a window.

Parameters
param1

usreserved (USHORT)
Reserved.

controlres (USHORT)

The res number of the control that was selected. For author-defined push buttons, this is the
res identification number that was specified with the push button tag (:pbutton.). For default
push buttons, this is the res identification number defined in the PMHELP.H file.

param2 (ULONG)
Reserved.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Chapter 31. Help Manager Messages 31-1

Remarks
If an application wants to filter any of the controls, it can subclass the child of the coverpage window
and intercept this message. If the application does not intercept this message, the help manager
adds the control to the control area.

Default Processing
None.

HM CREATE HELP TABLE - - -This message is sent by the application to give the help manager a new help table.

Parameters
param1

pHELPTABLE (PHELPTABLE)
Help table.

This points to a help table structure; see HELPTABLE on page A-63.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

O The procedure was successfully completed
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM DISMISS WINDOW - -This message tells the help manager to remove the active help window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

0 The help window was successfully removed
Other There was no associated help window.

See also the values of the u/ErrorCode parameter of the HM_ERROR message.

31-2 PM Programming Reference

Remarks
If the user requests help from a primary or secondary window, and then interacts with the primary or

secondary window without leaving help, the currently displayed help window might not be
appropriate for the application window. This message gives the application the ability to remove that

help window.

Default Processing
None.

HM DISPLAY HELP - -
This message tells the help manager to display a specific help window.

Parameters
param1

This parameter depends on the value of the usTypeF/ag parameter.

For a value of the usTypeF/ag parameter of HM_RESOURCEID.

idHelpPanelld (USHORT)
Identity of the help window.

This points to a USHORT data type.

For a value of the usTypeF/ag parameter of HM_PANELNAME.

pHelpPanelName (PSTRL)
Name of the help window.

This points to a PSZ data type.

param2

usTypeFlag (USHORT)
Flag indicating how to interpret the first parameter.

Returns
reply

HM_RESOURCEID
HM_PANELNAME

ulreturnValue (ULONG)
Return code.

Indicates the param1 points to the identity of the help window.
Indicates the param1 points to the name of the help window.

O The window was successfully displayed
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

Chapter 31. Help Manager Messages 31-3

HM ERROR
This message notifies the application of an error caused by a user interaction.

Parameters
param1

ulErrorCode (ULONG)
Error code.

A constant describing the type of error that occurred. The application can also receive
some of these error constants in the flreply parameter of messages it has sent to the help
manager.

The error constants are:

HMERR_LOAD _DLL
HMERR_NO_FRAME_WND_IN_CHAIN

HMERR_INVALID_ASSOC_APP _WND

HMERR_INVALID_ASSOC_HELP _INST

HMERR_INVALID _DESTROY _HELP _INST

HM ERR_ NO _HELP _INST _IN_ CHAIN

HMERR_INVALID_HELP _INSTANCE_HDL

HMERR_INVALID _QUERY _APP_ WND

HM ERR_ HELP _INST_ CALLED _INVALID

HMERR_HELPTABLE_UNDEFINE

HM ERR_ HELP _INSTANCE_UNDEFINE
HMERR_HELPITEM_NOT _FOUND

HMERR_INVALID_HELPSUBITEM_SIZE
HMERR_HELPSUBITEM_NOT _FOUND

HMERR_INDEX_NOT _FOUND
HMERR_CONTENT_NOT_FOUND
HMERR_OPEN_LIB_FILE
HMERR_READ_LIB_FILE
HMERR_ CLOSE_LIB_FILE
HMERR_INVALID _LIB _FILE
HMERR_NO_MEMORY

HMERR_ALLOCATE_SEGMENT

HMERR_FREE_MEMORY
HMERR_PANEL_NOT _FOUND
HMERR_DATABASE_NOT_OPEN

31-4 PM Programming Reference

The resource DLL was unable to be loaded.
There is no frame window in the window chain
from which to find or set the associated help
instance.
The application window handle specified on the
WinAssociateHelplnstance function is not a valid
window handle.
The help instance handle specified on the
WinAssociateHelplnstance function is not a valid
window handle.
The window handle specified as the help
instance to destroy is not of the help instance
class.
The parent or owner chain of the application
window specified does not have an associated
help instance.
The handle specified to be a help instance does
not have the class name of a help manager
instance.
The application window specified on a
WinQueryHelplnstance function is not a valid
window handle.
The handle of the instance specified on a call to
the help manager does not have the class name
of a help manager instance.
The application did not provide a help table for
context-sensitive help.
The help instance handle specified is invalid.
Context-sensitive help was requested but the ID
of the main help item specified was not found in
the help table.
The help subtable item size is less than 2.
Context-sensitive help was requested but the ID
of the help item specified was not found in the
help subtable.
The index is not in the library file.
The library file does not have any content.
The library file cannot be opened.
The library file cannot be read.
The library file cannot be closed.
Improper library file provided.
Unable to allocate the requested amount of
memory.
Unable to allocate a segment of memory for
memory allocation requests from the help
manager.
Unable to free allocated memory.
Unable to find the requested help window.
Unable to read the unopened database.

'\
/

~)
/

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
There is no other way to communicate the error to the application since the user initiated
communication, not the application. Other errors which occur when the application sends a message
to the help manager are returned as the ff reply parameter of the message.

The help manager does not display any error messages to the user. Instead, the help manager
sends or returns all error notifications to the application so that it can display its own messages.
This procedure ensures a consistent message interface for all user messages.

Default Processing
None.

HM EXT HELP - -When the help manager receives this message, it displays the extended help window for the active
application panel.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

0 The extended help window was successfully displayed
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

Chapter 31. Help Manager Messages 31-5

HM EXT HELP UNDEFINED - - -This message is sent to the application by the help manager to notify it that an extended help window
has not been defined.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
When the extended help window is requested, the help manager searches the help table for its
identity. If the extended help window identity associated with the current active window is zero, the
help manager sends this message to the application to notify it that an extended help window has not
been defined. The application then can:

• Ignore the request for help and not display a help window.

• Display its own window.

• Use the HM_DISPLAY_HELP message to tell the help manager to display a particular window.

Default Processing
None.

HM GENERAL HELP - -When the help manager receives this message, it displays the general help window for the active
application window.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

0 The general help window was successfully displayed.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

31-6 PM Programming Reference

Default Processing
None.

HM_GENERAL_HELP _UNDEFINED
This message is sent to the application by the help manager to notify it that a general help window

has not been defined.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, 0.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
When the general help window is requested, the help manager searches the help table for its

identity. If the general help window identity associated with the current active window is zero, the

help manager sends this message to the application to notify it that a general help window has not

been defined. The application can then:

• Ignore the request for help and not display a help window.

• Display its own window.

• Use the HM_DISPLAY_HELP message to tell the help manager to display a particular window.

Default Processing
None.

HM HELP CONTENTS - -
When the help manager receives this message, it displays the help contents window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulrelurnValue (ULONG)
Return code.

O The help contents window was successfully displayed.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Chapter 31. Help Manager Messages 31-7

Default· Processing
None.

HM HELP INDEX - -When the help manager receives this message, it displays the help index window.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

0 The help index window was successfully displayed.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM HELPSUBITEM NOT FOUND
The help manager sends this message to the application when the user requests help on a field and
it cannot find a related entry in the help subtable.

Parameters
param1

usContext (USHORT)

param2

Type of window on which help was requested.

HLPM_WINDOW
HLPM_FRAME
HLPM_MENU

An application window
A frame window
A menu window.

sToplc (SHORT)
Topic identifier.

For a value of the usContext parameter of HLPM_WINDOW or HLPM_FRAME:

window Identity of the window containing the field on which help was requ.ested.
menu Identity of the submenu containing the fi.eld on which help was requested.

sSubTopic (SHORT)
Subtopic identifier.

For a value of the usContext parameter of HLPM_WINDOW or HLPM_FRAME:

control Control identity of the cursored field and on which help was requested.
-1 No menu item was selected
Other Menu item identity of the currently selected submenu item on which help was

requested.

31-8 PM Programming Reference

I

/

\
I

/

Returns
reply

Informs the help manager what should be done next.

fAcllon (BOOL)
Action indicator:

For a value of the usContext parameter of HLPM_WINDOW or HLPM_FRAME:

FALSE Display the extended help window.
TRUE Do nothing.
For a value of the usContext parameter of HLPM_MENU:
FALSE Display the extended help window.

Remarks
If FALSE is returned from this message, the help manager displays the extended help window.

The application has the following options:

• Ignore the notification and not display help for that field or window.
• Display its own window.
• Use the HM_DISPLAY_HELP message to tell the help manager to display a particular window.

Default Processing
None.

HM INFORM
This message is used by the help manager to notify the application when the user selects a hypertext
field that was specified with the rettype =inform attribute of the :link. tag.

Parameters
param1

ldnum (USHORT)
Window identity.

The identity that is associated with the hypertext field.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Default Processing
None.

Chapter 31. Help Manager Messages 31-9

HM INVALIDATE DDF DATA - - -The application sends this message to IPF to indicate that the previous DDF data is no longer valid.

Parameters
param1 (ULONG)

rescount The count of DDFs to be invalidated.

param2 (PUSHORT)

resarray The pointer to an array of unsigned 16-bit (USHORT) integers that are the res
numbers of DDFs to be invalidated.

Returns
reply

Note: If both param1 and param2 are NULL, then all the DDFs in that page will be
invalidated.

ulreturnvalue (ULONG)
Return code

0 The procedure was successfully completed.
Other See the values of the errorcode parameter of the HM_ERROR message.

Remarks
When IPF receives this message, it discards the current DDF data and sends a new
HM_QUERY_DDF_DATA message to the object communication window.

This message should be sent to the child of the coverpage window handle.

Default Processing
None.

HM KEYS HELP
This message is sent by the application and informs the help manager to display the keys help
window.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

O The keys help window was successfully displayed
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

31-10 PM Programming Reference

/

'\
J

Remarks
When the help manager receives this message, it sends a HM_QUERY_KEYS_HELP message to the
active application window. The active application window is the window that was specified when the
last HM_SET_ACTIVE_WINDOW message was sent. If no HM_SET_ACTIVE_WINDOW message was
issued, then the active application window is the window specified in the WinAssociateHelplnstance
call.

The application must return one of the following:

• The identity of a keys help window in the usHelpPanel parameter of the HM_QUERY _KEYS_HELP
message.

• Zero, if no action is to be taken by the help manager for keys help.

Default Processing
None.

HM LOAD HELP TABLE - - -The application sends this message to give the help manager the module handle that contains the
help table, the help subtable, and the identity of the help table.

Parameters
param1

ldHelpTable (USHORT)
Identity of the help table.

fsldentltyflag (USHORT)
Help table identity indicator.

X'FFFF' Reserved value.

param2

MODULE (HMODULE)
Resource identity.

Handle of the module that contains the help table and help subtable.

Returns
reply

ulreturnValue (ULONG)
Return code.

O The procedure was successfully completed
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

Chapter 31. Help Manager Messages 31-11

HM NOTIFY
This message is used by the application to sub-class and change the behavior or appearance of the
help window.

Parameters
param1

controlres (USHORT)

The res number of the control that was selected. For author-defined push buttons, this is the
res number that was specified with the push button tag (:pbutton.). For default push buttons,
this is the res number defined in the PMHELP.H file.

usreserved (USHORT)

Reserved for events other than CONTROL_SELECTED and HELP _REQUESTED.

0 Reserved value, zero.

usevent (USHORT)
The type of event which has occurred.

CONTROL_SELECTED
HELP _REQUESTED
OPEN_ COVERPAGE
OPEN_PAGE
SWAP_PAGE
OPEN_INDEX
OPEN_TOC
OPEN_HISTORY
OPEN_LIBRARY
OPEN_SEARCH_HIT _LIST

param2 (ULONG)
Window handle of relevant window.

Returns
reply

fresult (BOOL)
Return code

A control was selected.
Help was requested.
The coverpage is displayed.
The child window of the coverpage is opened.
The child window of the coverpage is swapped.
The index window is displayed.
The table of contents window is displayed.
The history window is displayed.
The new library is opened.
The search list displayed.

TRUE IPF will not format the controls and re-size the window.
FALSE IPF will process as normal.

Remarks
This message is sent to the application to notify it of events that the application would be interested
in controlling.

Default Processing
None.

31-12 PM Programming Reference

)

HM_ QUERY
This message is sent to IPF by the application to request !PF-specific information, such as the current
Instance handle, the active communication object window, the active window, or the group number of
the current window.

Parameters
param1

usreserved (USHORT)
Reserved

0 Reserved value, zero.

usmessageld (USHORT)
Specifies the type of window to query. The value can be any of the following constants:

HMQW_INDEX
HMQW_TOC
HMQW_SEARCH
HMQW _ VIEWEDPAGES
HMQW _LIBRARY
HMQW _OBJCOM_WINDOW
HMQW_INSTANCE
HMQW_COVERPAGE

HMQW_ VIEWPORT

HMQW _GROUP_ VIEWPORT

HMQW _RES_ VIEWPORT

HMQW _ACTIVEVIEWPORT
USERDATA

The handle of the index window.
The handle of the Table of Contents window.
The handle of the Search Hitlist window.
The handle of the Viewed Pages window.
The handle of the Library List window.
The handle of the active communication window.
The handle of the help instance.
The handle of the help manager multiple document
interface (MDI) parent window. It is where the
secondary windows are contained within the parent
window.
The handle of the viewport window specified in the
low-order word of param1 and in param2.
The group number of the window whose handle is
specified in param2.
The res number of the window whose handle is
specified in param2.
The handle of the currently active window.
The previously stored user-data.

usselectionid (USHORT)
Specifies whether a res ID, ID number, or group number is being requested. The value can
be any of the following constants:

HMQVP _NUMBER

HMQVP_NAME

HMQVP _GROUP

A pointer to a USHORT that holds the res ID of the
window.
A pointer to a null-terminated string that holds the ID of
the window.
The group number of the window.

param2 (PVOID)
Param2 depends on the value of param1 messageid:

If param1 messageid is HMQW_VIEWPORT, then param2 is a pointer to the res number, ID, or
group ID.

If param1 messageid is HMQW_GROUP _VIEWPORT, then param2 is the handle of the viewport
for which the group number is assigned.

If param1 messageid is HMQW_RES_VIEWPORT, then param2 is the handle of the viewport for
which the res number is requested.

Returns
reply

ulreturnvalue (ULONG)
Return value.

0 The procedure was not successfully completed.
Other The handle (HWND), group number (USHORn, or res number (USHORD of the

window, or the user data (USHORD, depending on the value of param1 selectionid.

Chapter 31. Help Manager Messages 31-13

Default Processing
None.

HM_QUERY_DDF_DATA
This message is sent to the communication object window by IPF when it encounters the dynamic
data formatting (:ddf.) tag.

Parameters
param1 (HWND)

pagecllenlhwnd The client handle of the page that contains the object communication
window.

param2 (ULONG)

resld The res ID associated with the DDF tag.

Returns
reply

hddfddfhandle (HDDF)
Return code

0 An error has occurred in the application's DDF processing.
Other The DDF handle to be displayed.

Remarks

Nole: Once this handle has been returned, the HDDF handle can no longer be
used by the application.

Upon receiving this message, the communication object calls Ddflnitialize to indicate the start of
dynamic data formatting (DDF). Any combination of other DDF calls are then made to describe this
data. When this is complete, the communication object finishes processing this message, indicating
that the DDF data is complete. After that time, the DDF handle received from Ddflnitialize is
considered invalid.

Default Processing
None.

HM_QUERY_KEYS_HELP
When the user requests the keys help function, the help manager sends this message to the
application.

Parameters
param1 (ULONG)

Reserved.

O Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

usHelpPanel (USHORT)
The identity of the application-defined keys help window to be displayed.

0 Do nothing
Other Identity of the keys help window to be displayed.

31-14 PM Programming Reference

\

Remarks
The application responds by returning the identity of the requested keys help window. The help
manager then displays that help window. Returning 0 in the usHelpPanel parameter indicates that
the help manager should do nothing for the keys help function.

Default Processing
None.

HM REPLACE HELP FOR HELP
This message teliS the help-manager to display the application-defined Help for Help window instead
of the help manager Help for Help window.

Parameters
param1

ldHelpForHelpPanel (USHORT)
Identity of the application-defined Help for Help window.

0 Use the help manager Help for Help window.
Other Identity of the application-defined Help for Help window.

param2 (ULONG)
Reserved.

O Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
An application may prefer to provide information that is more specific to itself, rather than the more
general help information provided in the help manager Help for Help window.

Default Processing
None.

HM REPLACE USING HELP
This message teliS the help manager to display the application-defined Using help window instead of
the help manager Using help window.

Parameters
param1

ldUslngHelpPanel (USHORT)

The identity of the application-defined Using Help window.

0 Use the help manager Using Help window.
Other The identity of the application-defined Using Help window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Chapter 31. Help Manager Messages 31-15

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
An application may prefer to provide information that is more specific to itself, rather than the more
general help information that is provided in the help manager Using help window. The guidelines
that define the current CUA interface recommend the Using help choice be provided in a pull-down
menu from the Help choice.

Default Processing
None.

HM SET ACTIVE WINDOW - - -This message allows the application to change the window with which the help manager
communicates and the window to which the help window is to be positioned.

Parameters
param1

hwndActlveWlndow (HWND)

param2

The handle of the window to be made active.

Its window procedure receives all messages from the help manager until the application
changes the active window with another HM_SET_ACTIVE_WINDOW message.

hwndRelatlveWindow (HWND)

Returns
reply

The handle of the window next to which the help window is to be positioned.

The handle of the application window next to which the help manager will position a new
help window.

HWND_PARENT This help manager defined constant tells the help manager to trace the
parent chain of the window that had the focus when the user requested
help.

Other Handle of the window next to which the help window is to be positioned.

ulreturnValue (ULONG)
Return code.

0 The procedure has been successfully completed.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Remarks
Normally the help manager communicates with the application window with which the help manager
instance has been associated. The help window is positioned next to this same application window.

If the hwndActiveWindow parameter is 0, the hwndRelativeWindow parameter is set to 0. That is, if
the active window is NULL HANDLE, the relative window is not used.

Default Processing
None.

31-16 PM Programming Reference

HM SET COVERPAGE SIZE - - -
This message is sent to IPF by the application to set the size of the coverpage, the window within
which all other IPF windows are displayed.

Parameters
param1 (PRECTL)

coverpagerectl A PRECTL containing the size of the coverpage.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnvalue (ULONG)
Return code

0 The procedure was successfully completed.
Other See the values of the errorcode parameter of the HM_ERROR message.

Remarks
The default size for the coverpage of a book is the full width of the screen, while the default size for a

help file is one-half the width of the screen.

This message takes effect immediately, changing the size of the coverpage. If the coverpage is not
currently open, the requested size is saved for the next open.

Default Processing
None.

HM SET HELP LIBRARY NAME - - - -
This message identifies a list of help window library names to the help manager instance.

Parameters
param1

pHelpLibraryName (PSTRL)
Library name.

This points to a PSZ data type.

The string contains a list of help window library names that will be searched by the help
manager for the requested help window. The names must be separated by a blank.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

O The newly specified library successfully replaced the current help window library
name.

Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Chapter 31. Help Manager Messages 31-17

Remarks
Any subsequent communication to the help manager with this message replaces the current list of
names with the newly specified list.

When help is requested, the help manager will search each library in the list for the requested help
window.

Default Processing
None.

HM SET HELP WINDOW TITLE - - - -This message allows the application to change the window text of a help window title.

Parameters
param1

pHelpWlndowTllle (PSTRL)
Help window title.

This points to a PSZ data type.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

O The window title was successfully set.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM SET OBJCOM WINDOW
This message is sent to lPF by the application to identify the communication object window to which
the HM_INFORM and HM_QUERY_DDF_DATA messages will be sent. This message is not necessary
if the communication object does not expect to receive either of these messages.

Parameters
param1 (HWND)

obJcomhwnd The handle of the communication object window to be set.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

hwndprevloushwnd (HWND)
The handle of the previous communication object window.

31-18 PM Programming Reference

j

Remarks
HM_INFORM and HM_QUERY_DDF_DATA messages which are not processed must be passed to the
previous communication object window which was returned when HM_SET_OBJECT_WINDOW was
sent.

Default Processing
None.

HM SET SHOW PANEL ID - - - -This message tells the help manager to display, hide, or toggle the window identity for each help
window displayed.

Parameters
param1

fsShowPanelld (USHORT)
The show window identity indicator:

CMIC_HIDE_PANEL_ID

CMIC_SHOW_PANEL_ID
CMIC_ TOGGLE_PANEL_ID

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Returns
reply

ulreturnValue (ULONG)
Return code.

Sets the show option off and the window identity is not
displayed.
Sets the show option on and the window identity is displayed.
Toggles the display of the window identity.

O The show window identity indicator was successfully changed.
Other See the values of the u/ErrorCode parameter of the HM_ERROR message.

Default Processing
None.

HM SET USERDATA
The application sends this message to IPF to store data in the IPF data area.

Parameters
param1 (ULONG)

Reserved.

0 Reserved value, zero.

param2 (VOID)
4-byte user data area.

Returns
reply

ulreturn-value (ULONG)
Return code.

TRUE
FALSE

The user data was successfully stored.
The call failed.

Chapter 31. Help Manager Messages 31-19

Default Processing
None.

HM TUTORIAL
The help manager sends this message to the application window when the user selects the Tutorial
choice from a help window.

Parameters
param1

pTutorlalName (PSTRL)
Default tutorial name.

This points to a PSZ data type.

The string contains the name of the default tutorial program specified in the help manager
initialization structure. A tutorial name specified in the help window definition overrides this
default tutorial program.

param2 (ULONG)
Reserved.

O Reserved value, zero.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
The application then calls its own tutorial program.

Default Processing
None.

31-20 PM Programming Reference

/

HM UPDATE OBJCOM WINDOW CHAIN - - - -This message is sent to the currently active communication object by the communication object who
wants to withdraw from the communication chain.

Parameters
param1 (HWND)

The handle of the object to be withdrawn from the communication chain.

param2 (HWND)

Window containing the handle of the object to be replaced.

Returns
flreply (ULONG)

Reserved.

0 Reserved value, zero.

Remarks
The object that receives this message should check to see if the object handle returned from
HM_SET_OBJCOM_WINDOW is equal to the handle in param1. If the handle is equal, then the handle
in param1 should be replaced by the handle in param2. If the handle is not equal and the handle
previously received is not NULL HANDLE, then send HM_UPDATE_OBJCOM_WINDOW_CHAIN to that
object.

Default Processing
None.

Chapter 31. Help Manager Messages 31-21

31-22 PM Programming Reference

/

Chapter 32. Resource Files

This chapter describes the syntax for the resource language using railroad syntax, and describes the
formats used.

Resource files are used to build dialog templates, menu templates, accelerator tables, extended
attribute association tables, keyboard scancode mapping tables, keyboard names and fonts. The
files must be compiled before they can be used by application programs.

How to Read the Syntax Definitions
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The.,.....__ symbol indicates the beginning of a statement.

The---+ symbol indicates that the statement syntax is continued on the next line.

The..,._ symbol indicates that a statement is continued from the previous line.

The _____..symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the..,._ symbol and end
with the ---+ symbol.

• Required items appear on the horizontal line (the main path) .

.,...__STATEMENT---requi red_i tem-m-----1111J-i111

• Optional items appear below the main path .

.,...__STATEMENT--T""-------.-.----111J~i111

L_optional_item--1

• If a choice can be made from two or more items, they appear vertically, in a stack.

If one of the items must be chosen, one item of the stack appears on the main path .

.,...__STATEMENT-----i==required_choicel.-J
required_choice2

....

If choosing one of the items is optional, the entire stack appears below the main path .

.,...__STATEMENT---.----------.----111J~i111

Coptional_choice1j'
optional_choice2

• An arrow returning to the left above the main path indicates an item that can be repeated.

-sTATEMENT-1.epeatab 1 e _; te,mm__.J ___,.._,.

A repeat arrow above a stack indicates that a choice can be made from the stacked items, or a
single choice can be repeated.

• Keywords appear in uppercase (for example, PARMl). They must be spelled exactly as shown.
Variables appear in all lowercase letters (for example, parmx). They represent user-supplied
names or values.

Chapter 32. Resource Files 32-1

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, they must
be entered as part of the syntax.

Definitions Used in all Resources

Specification of Values
These rules apply to values specified in resources:

• Coordinates must be integers. There must be no space between the sign of the value and the
value itself. For example, "-1" is allowed but"- 1" is not.

• Resource identifiers must be positive integers or names that resolve to positive integers.

• Real values, containing a decimal point, cannot be used.

Resource Load and Memory Options
The following options define when each resource is loaded and how memory is allocated for each
resource.

LO ADOPTION Resource loading options

PRELOAD
LOADONCALL

Resource is loaded immediately.
Resource is loaded when called.

MEMOPTION Resource memory options

FIXED
MOVEABLE

DISCARDABLE
SEGALIGN

Resource remains at a fixed memory location.
Resource can be moved if necessary to compact
memory.
Resource can be discarded if no longer needed.
Resources are aligned on 64Kbyte boundaries.

Resource Script File Specification
The resource script file defines the names and attributes of the resources to be added to the
executable file of the application. The file consists of one or more resource statements that define
the resource type and original file, if any. The following is a list of the types of resource statement:

• Single-line statements
• User-defined resources
• Directives
• Multiple-line statements.

The following sections describe these statements in detail.

Single-Line Statements
The general form for all single-line statements is:

Single-line statement ---------------------------..

111+-resourcetype-namei d,----.[...-------J'"""T""" __ .,
loadoption

... ---.--------'fi 1 ename~
~emoptionj

resourcetype (USHORT)
One of the following keywords, specifying the type of resource to be loaded:

Keyword

FONT

Resource type

A font resource is a file containing a font.

32-2 PM Programming Reference

j

POINTER A pointer resource is a bit map defining the shape of the pointing device pointer
on the display screen.

ICON An icon resource is a bit map defining the shape of the icon to be used for a given
application.

BITMAP A bit-map resource is a custom bit map that an application intends to use in its
screen display or as an item in a menu.

DLGINCLUDE This statement tells the dialog editor which file to use as an include file for the
dialogs in the resource file. The nameid is not applicable.

nameid (USHORT)
is either a unique name or an integer number identifying the resource. For a FONT resource,
the nameld must be a number; it cannot be a name.

loadoptlon (LOADOPTION)
The default is LOADONCALL.

memoptlon (MEMOPTION)
The default is MOVEABLE and DISCARDABLE for POINTER, ICON, and FONT resources. The
default for BITMAP resources is MOVEABLE. The FIXED option overrides both MOVEABLE and
DISCARDABLE. The SEGALIGN option can be specified independently of other options, if it is
not present the default (for all resources) is that the resource is not aligned on a 64KB boundary.

filename (STR)
is an ASCII string specifying the OS/2 Version 2.0 name of the file containing the resource. A full
path name must be given if the file is not in the current working directory.

Example

POINTER pointer point.cur
POINTER pointer DISCARDABLE point.cur
POINTER 10 custom.cur

ICON desk desk.ice
ICON desk DISCARDABLE desk.ice
ICON 11 custom.ice

BITMAP disk disk.bmp
BITMAP disk DISCARDABLE disk.bmp
BITMAP 12 custom.bmp

FONT 5 CMROMAN.FNT

User-Defined Resources
An application can also define its own resource. The resource can be any data that the application
intends to use. A user-defined resource statement has the form:

User-defined resource --------------------------....,

1111+-resource-type-type I D-nameI•------------•

.... ---.--------.--..... -------..-fi 1 enam~
L__loadoption__J ~emoption__J

type ID
Either a unique name or an integer number identifying the resource type. If a number is given, it
must be greater than 255. The type numbers 1 through 255 are reserved for existing and future
predefined resource types.

namelD
Either a unique name or an integer number identifying the resource.

loadoptlon (LOADOPTION)
The default is LOADONCALL.

Chapter 32. Resource Files 32-3

memoptlon (MEMOPTION)
The default is MOVEABLE.

filename
An ASCII string specifying the OS/2* name of the file containing the cursor bit map. A full path
name must be given if the file is not in the current working directory.

Example

RESOURCE MYRES
RESOURCE 300

array DATA.RES
14 CUSTOM.RES

RCDATA statement
The RCDATA statement is provided to allow an application to define a simple data resource.

11+-RCDATA-i d--1 oadopt i on---memopt ion--+

~i!?J
~BEGIN1----data----'--END1---... ~ 111

id
Either a unique name or an integer number identifying the resource.

loadoptlon (LOADOPTION)
The default is LOADONCALL.

memoptlon (MEMOPTION)
The default is MOVEABLE.

data
A number or string.

Example

RCDATA 4
BEGIN
"Sample string. 11

11 TEST DATA. 11

11A message. 11

END

Directives
The resource directives are special statements that define actions to perform on the file before it is
compiled. The directives can assign values to names, include the contents of files, and control
compilation of the file.

#include filename

rcinclude filename

These directives copy the contents of the file specified by filename into the resource before it is
compiled. If rcinclude is used, the entire file is copied. If #include is used, only #define
statements are copied.

Note: If an rclnclude is to be commented out, the open comment (/*) must appear on the same
line as the directive.

• Trademark of IBM Corporation

32-4 PM Programming Reference

Fiiename is an ASCII string. A full path name must be given if the file is not in the current
directory or in the directory specified by the INCLUDE environment variable. The file extensions
.I and .TMP must not be used as these are reserved for system use.

The filename parameter is handled as a C string, and two back-slashes must be given wherever
one is expected in the path name (for example, root\\sub.) Or, a single forward slash(/) can be
used instead of double back-slashes (for example, root/sub.)

Example

#include "wincalls.h"

MENU PenSelect
BEGIN

MENUITEM "black pen", BLACK_PEN
END

Files included in resource script files constants that use #define statements may not include any
casting of those constants that are used in the resource script. The resource compiler does not
parse this casting syntax. For example, the following statement may not be included:

#define IDBUTTONl (USHORT) 3

If casting is required for C source compilation, you may use two statements such as:

#define IDBUTTONl 3
#define CSRC_IDBUTTONl

#define name value

((USHORT)IDBUTTONl)

This directive assigns the given value to name. All subsequent occurrences of name are
replaced by the value.

name is any combination of letters, digits, or punctuation.

value is any integer, character string, or line of text.

Example

#define
#define

#undef name

nonzero 1
USERCLASS "MyControlClass"

This directive removes the current definition of name. All subsequent occurrences of name are
processed without replacement.

name is any combination of letters, digits, or punctuation.

Example

#undef
#undef

#lldef name

nonzero
USERCLASS

This directive performs a conditional compilation of the resource file by checking the specified
name. If the name has been defined using a #define directive, #ifdef directs the resource
compiler to continue with the statement immediately after it. If the name has not been defined,
#ifdef directs the compiler to skip all statements up to the next #endif directive.

name is the name to be checked by the directive.

Example

#ifdef Debug
FONT 4 errfont.fnt
#endif

Chapter 32. Resource Files 32-5

#lfndef name

This directive performs a conditional compilation of the resource file by checking the specified
name. If the name has not been defined or if its definition has been removed using the #undef
directive, #ifndef directs the resource-compiler to continue processing statements up to the next
#endif, #else, or #elif directive, then skip to the statement after the #endif. If the name is
defined, #ifndef directs the compiler to skip to the next #endif, #else, or #elif directive.

name is the name to be checked by the directive.

Example

#ifndef Optimize
FONT 4 errfont.fnt
#endif

#If constant expression

This directive performs a conditional compilation of the resource file by checking the specified
constant-expression. If the constant-expression is nonzero, #if directs the resource compiler to
continue processing statements up to the next #endif, #else, or #elif directive, then skip to the
statement after the #endif. If the constant-expression is zero, #if directs the compiler to skip to
the next #endif, #else, or #elif directive.

constant expression is a defined name, an integer constant, or an expression consisting of
names, integers, and arithmetic and relational operators.

Example

#if Version<3
FONT 4 errfont.fnt
#endif

#ellf constant expression

This directive marks an optional clause of a conditional compilation block defined by an #ifdef,
#ifndef, or #if directive. The directive carries out conditional compilation of the resource file by
checking the specified constant-expression. If the constant-expression is nonzero, #elif directs
the resource compiler to continue processing statements up to the next #endif, #else, or #elif
directive, then skip to the statement after the #endif. If the constant-expression is zero, #elif
directs the compiler to skip to the next #endif, #else, or #elif directive. Any number of #elif
directives can be used in a conditional block.

constant expression Is a defined name, an integer constant, or an expression consisting of
names, integers, and arithmetic and relational operators.

Example

#if Version<3
FONT 4 italic.fnt
#elif Version<?
FONT 4 bold.fnt
#endif

#else

This directive marks an optional clause of a conditional compilation block defined by an #ifdef,
#ifndef, or #if directive. The #else directive must be the last directive before #endif.

32-6 PM Programming Reference

I
v'

Example

#ifdef Debug
FONT 4 italic.fnt
#else
FONT 4 bold.fnt
#endif

#end If

This directive marks the end of a conditional compilation block defined by an #ifdef, #ifndef, or
#if directive. One #endif is required for each #ifdef, #ifndef, and #if directive.

Multiple-Line Statements

Code Page Flagging
The CODEPAGE statement may be placed within the source, to set the code page used for these
resources:

STRINGTABLE
ACCELTABLE
MENU
DIALOGTEMPLATE and WINDOWTEMPLATE.

The CODEPAGE statement cannot be encoded within any other statement. All items following a
CODEPAGE statement are assumed to be in that code page. The code page is encoded in the
resource, and the data in the resource is assumed to be in the specified code page. However, no
checking is performed.

These code pages can be specified:

437
850
860
863
865.

If the code page is not specified, code page 850 is assumed.

STRINGTABLE Statement
The STRINGTABLE statement defines one or more string resources for an application. String
resources are null-terminated ASCII strings that can be loaded, when needed, from the executable
file, using the WinLoadString function.

Note: The ASCII strings can include no more than 256 characters, including the NULL termination
character.

The STRINGTABLE statement has the form:

Chapter 32. Resource Files 32-7

..-sTRINGTABLE •
L1 oadopti o~ lmemopti o~

~EGIN---string-definitions~EN~

Strtng-deftntttons

l
MU~-; nteger--11-stri ng-11----....__, ... ~

loadoptlon (LDOPT)
An optional keyword specifying when the resource is to be loaded. It must be one of:

PRELOAD
LOADONCALL

Resource is loaded immediately.
Resource is loaded when called.

The default is LOADONCALL.

memoptlon (MEMOPT)
Consists of the following keyword or keywords, specifying whether the resource is fixed or
movable and whether it is discardable:

FIXED
MOVEABLE
DISCARD ABLE

Resource remains at a fixed memory location.
Resource can be moved if necessary to compact memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

string (STR)
A string, enclosed in double quotation marks. To insert a double-quote character (11

) in the text,
use two double-quote characters (1111

).

Note: A string may be defined on more than one line if each line begins and ends with a
double-quote. If newline characters are desired after each line, there should be a
double-quote at the beginning of the first line and at the end of the last line only.

The string may contain any ASCII characters. Because(\) is interpreted as an escape character,
use (\ \) to generate a (\).

The following escape sequences may be used:

Escape Sequence Name

\I Horizontal tab

\a Bell (alert)

\nnn ASCII character (octal)

\xdd ASCII character (hexadecimal).

The sequences \ddd and \xdd allow any character in the ASCII character set to be inserted in the
character string. Thus, the horizontal tab could be entered as \X09, \011 or \t.

Example

32-8 PM Programming Reference

)

#define IDS_STRINGl 1
#define IDS_STRING2 2
#define IDS_STRING3 3

STRINGTABLE
BEGIN

IDS_STRINGl, "The first two strings in this table are identical."
IDS_STRING2, "The first two strings "

"in this table are identical."
IDS_STRING3, "This string will contain a newline character

before it continues on this line. 11

END

ACCELTABLE Statement
The ACCELTABLE statement defines a table of accelerator keys for an application.

An accelerator is a keystroke defined by the application to give the user a quick way to perform a
task. The WinGetMsg function automatically translates accelerator messages from the application
queue into WM_COMMAND, WM_HELP, or WM_SYSCOMMAND messages.

The ACCELTABLE statement has the form:

ACCELTABLE statement ---------------------------.

11+---ACCELTABLE c=id~
l1Demoption]

.,.___BEGIN---------------+

Id (USHORT)
The resource identifier.

memoptlon
Optional. It consists of the following keyword or keywords, specifying whether the resource is
fixed or movable, and whether it can be discarded:

FIXED

MOVEABLE

DISCARDABLE

keyval (USHORT)

Resource remains at a fixed memory location.

Resource can be moved if necessary to compact memory.

Resource can be discarded if no longer needed.

The accelerator character code. This can be either a constant or a quoted character. If it is a
quoted character, the CHAR acceloption is assumed. If the quoted character is preceded with a
caret character ('''), a control character is specified as if the CONTROL acceloptlon had been
used.

cmd (USHORT)
The value of the WM_ COMMAND, WM_HELP, or WM_SYSCOMMAND message generated from
the accelerator for the indicated key.

acceloptlon (BIT_16)
Defines the kind of accelerator.

These options are available:

ALT

Chapter 32. Resource Files 32-9

CHAR
CONTROL
HELP
LONE KEY
SCANCODE
SHIFT
SYSCOMMAND
VIRTUALKEY.

The VIRTUALKEY, SCANCODE, LONEKEY, and CHAR acceloptions specify the type of message
that matches the accelerator. Only one of these options can be specified for each accelerator.
For information on the corresponding KC_* values, see "WM_CHAR" on page 12-24.

The acceloptlons SHIFT, CONTROL, and ALT, cause a match of the accelerator only if the
corresponding key is down.

If there are two accelerators that use the same key with different SHIFT, CONTROL, or ALT
options, the more restrictive accelerator should be specified first in the table. For example,
Shift-Enter should be placed before Enter.

The SYSCOMMAND acceloptlon causes the keystroke to be passed to the application as a
WM_SYSCOMMAND message. The HELP acceloptlon causes the keystroke to be passed to the
application as a WM_HELP message. If neither is specified, a WM_COMMAND message is used.

Example

ACCELTABLE MainAcc
BEGIN

END

VK_Fl, 101, HELP
VK_F3,102,SYSCOMMAND

This generates a WM_HELP with value 101 from VIRTUALKEY accelerator F1 and a
WM_SYSCOMMAND with value 102 from VIRTUALKEY accelerator F3.

ASSOCTABLE Statement
The ASSOCTABLE statement defines the extended attributes {EA) for an application.

The ASSOCTABLE statement has the form:

......__ASSOCTABLE-assoctab 1 ei d1

......--eEGIN1

~
......-assocname,extensions

Lflagsj '
I ~

The source for the ASSOCTABLE description is contained in the resource file for a particular project:

ASSOCTABLE assoctableid
BEGIN
"association name", 11 extension 11

, flags, icon filename
"association name", 11 extensi on 11

, flags, icon filename

END

32-10 PM Programming Reference

(

association name Program recognizes data files of this EA TYPE. This is the same name found in
the TYPE field of data files.

assoctableld

extension

flags

ASSOCTABLE 3000
BEGIN

A name or number used to identify the assoctable resource.

3 letter file extension that is used to identify files of this type if they have no EA
TYPE entry. (This may be empty.)

EAF _DEFAUL TOWNER
The default application for the file.
EAF _UNCHANGEABLE
This flag is set if the entry in the ASSOCTABLE is not to be edited.
EAF _REUSEICON
This flag is specified if a previously defined icon in the ASSOCTABLE is to be
reused. Entries with this flag set have no icon data defined. The icon used for
this entry is the icon used for the previous entry (see below). Note that EAF _ *
flags may be ORed together when specified in the ASSOCTABLE.

"Product XYZ Spreadsheet", 11 xys 11
, EAF_DEFAULTOWNER,

xyzspr.ico
"Product XYZ Chart", 11 xyc 11

, EAF_DEFAULTOWNER I
EAF_REUSEICON

END

icon filename Filename of the icon used to represent this file type. (This may be empty.)

DEFAULTICON Keyword
This keyword installs the filename.ico icon definition under the ICON EA of the program file.

Example

DEFAULTICON <filename.ico>

MENU Statement
The MENU statement defines the contents of a menu resource. A menu resource is a collection of
information that defines the appearance and function of an application menu. A menu can be used to
create an action bar.

The MENU statement has the form:

Chapter 32. Resource Files 32-11

MENU statement ---------------------------.......

11+-MENU-menui d [I •
l oadopt i oo--J ~emopt i onj

Lcodepage~

~PRESPARAMS-statement~
----BEGIN - - •

~ENUITEM-statement

SUBMENU-statement

MENUITEM statement
See page 32-13

SUBMENU statement
See page 32-14

PRESPARAMS statement
See page 32-22

menuld (USHORT)

EN~

A name or number used to identify the menu resource.

loadoptlon (LOADOPTION)
The default is LOADONCALL.

memoptlon (MEMOPTION)
The default is MOVEABLE.

codepage (USHORT)
The code page of the text.

MENUITEM
A special resource statement used to define the items in the menu. These are discussed in more
detail in "Menu Item Definition Statements" on page 32-13.

32-12 PM Programming Reference

Example: This is an example of a complete MENU statement:

MENU sample
BEGIN

MENUITEM 11 -Alpha 11
, 100, MIS_TEXT

SUBMENU 11 -Beta 11
, 101, MIS_TEXT

BEGIN
MENUITEM 11 -Green 11

, 200, MIS_TEXT
MENUITEM u-B1ue 11

, 201, MIS_TEXT,MIA_CHECKED
ENO

END

Menu Item Definition Statements
MENUITEM statements are used in the item-definition section of a MENU statement to define the
names and attributes of the actual menu items. Any number of statements can be given; each
defines a unique item. The order of the statements defines the order of the menu items.

Note: The MENUITEM statements can only be used within an item-definition section of a MENU
statement.

.---- MENUITEM statement ----------------------------.

~ENUITE~M---------------+

1
11 string"-,1::]", __.. ...

cmd Lstyl es] 'Tattri butes1

..__-------SEPARATOR----___.

string (STR)
A string, enclosed in double quotation marks, specifying the text of the menu item.

To insert a double-quote character (11
) in the text, use two double-quote characters (1111

).

If the styles parameter does not contain MIS_ TEXT, the string is ignored but must still be
specified. An empty string (1111

) should be specified in this instance.

To indicate the mnemonic for each item, insert the tilde character(-) in the string preceding the
mnemonic character.

For MENUITEM statements within a SUBMENU (that is, pull-down menus) text may be split into a
second column with an alignment substring. To right-align items insert "\a" in the text where
alignment should begin. To left-align a second column of text insert "\t" in the text where
alignment should begin. For each SUBMENU the longest item in the second column determines
the width of that column. Only one alignment substring should be used in a menu item.

cmd (USHORT)
The value of the WM_ COMMAND, WM_HELP, or WM_SYSCOMMAND message generated by the
item when it is selected. It identifies the selection made and should be unique within one menu
definition.

styles (BIT_16)
One or more menu options defined by the MIS_* constants, ORed together with the I operator.
For definitions of the MIS_* constants, see "Menu Item Styles" on page 17-2.

attributes (BIT_16)
One or more menu options defined by the MIA_* constants, ORed together with the I operator.
For definitions of the MIA_* constants, see page 17-2.

The style MIS_SUBMENU must not be used with this statement. See the SUBMENU statement on
page 32-14.

Examples

MENUITEM 11 Alpha 11
, l, MIS_TEXT,MIA_ENABLEDIMIA_CHECKED, 1A1

MENUITEM 11 Beta 11
, 2, MIS_TEXT,, 1 B1

Chapter 32. Resource Files 32-13

Pull-Down Menus or Submenus
In addition to simple items, a menu definition can contain the definition of a submenu. A submenu
can itself invoke a lower level submenu.

SUBMENU statement ---------------------------..

11+-SUBMENU------------_..

1J>--
11 string 11-,C:J"· , L J 111111

cmd Lstyl es] attribute~

PRESPARAMS-statement 1J>---BEGIN
1

____....._ _______ ___....._ ___

.. ~ENUITEt+-statement

SUBMENU-statement

string (STR)
A string, enclosed in double quotation marks, specifying the text of the menu item.

To insert a double-quote character (11
) in the text, use two double-quote characters (1111

).

If the styles parameter does not contain MIS_ TEXT, the string is ignored but must still be
specified. An empty string("") should be specified in this instance.

cmd (USHORT)
The value of the WM_COMMAND, WM_HELP, or WM_SYSCOMMAND message generated by the
item when it is selected. It identifies the selection made and should be unique within one menu
definition.

styles (BIT_16)
One or more menu options defined by the MIS_ constants, ORed together with the I operator.

In the SUBMENU statement, the style MIS_SUBMENU is always ORed with the styles given. If no
value is supplied, the default value of MIS_ TEXT and MIS_SUBMENU is used.

attributes (BIT_16)
One or more menu options defined by the MIA_ constants, ORed together with the I operator.

Example

MENU chem
BEGIN

SUBMENU 11 -Elements 11
, 2, MIS_TEXT

BEGIN

END

MENUITEM 11 -oxygen 11
, 200, MIS_TEXT

MENUITEM 11 -carbon 11
' 201, MIS_ TEXT ,MIA_CHECKED

MENUITEM 11 -Hydrogen 11
, 202, MIS_TEXT

SUBMENU 11 -compounds 11
, 3, MIS_TEXT

BEGIN

END

END

MENUITEM 11 -Glucose 11
, 301, MIS_TEXT

MENUITEM 11 -sucrose 11
, 302, MIS_TEXT,MIA_CHECKED

MENUITEM 11 -Lactose 11
, 303, MIS_TEXTIMIS_BREAK

MENUITEM 11 -Fructose 11
, 304, MIS_TEXT

32-14 PM Programming Reference

SEPARATOR Menu Item
There is a special form of the MENUITEM statement that is used to create a horizontal dividing bar
between two active menu items in a pull-down menu. The SEPARATOR menu item is itself inactive
and has no text associated with it nor a cmd value.

Example

MENUITEM 11 -Roman 11
, 206, MIS_TEXT

MENUITEM SEPARATOR
MENUITEM 11 20 -Point", 301, MIS_TEXT

Menu Template
Menu templates are data structures used to define menus. Menu templates can be loaded as
resources or created dynamically, or embedded in dialog templates, which in turn can be loaded as
resources or created dynamically. Templates loaded as resources cannot contain references to bit
maps or owner-drawn items. A menu template consists of a sequence of variable-length records.
Each record in a menu template defines a menu item. If a menu item contains a reference to a
submenu, the menu template that defines that submenu is placed after the definition of that particular
menu item.

Template Format: A menu template has this format:

Length (USHORT)
The length of the menu template.

Version (USHORT)
The template version. Versions O and 1 are valid.

Code page (USHORT)
The identifier of the code page used for the text items within the menu {but not any submenus,
which each have their own code pages).

Item offset (USHORT)
The offset of the items from the start of the template, in bytes.

Count (USHORT)
The count of menu items.

Presentation parameters offset (USHORT)
Offset of presentation parameters from the start of the template, in bytes. This field is only
present for version 1 of the template.

Menu Items
A variable-sized array of menu items as follows:

Style (USHORT)
Menu item styles {MIS_*; see page 17-2) combined with the logical-OR operator.

Attributes (USHORT)
Menu item attributes {MIA_*; see page 17-2) combined with the logical-OR operator.

Item (IDENTITY)
An application-provided identifier for the menu item.

Variable data
Following the identifier is a variable data structure whose format depends upon the value of
Style:

MIS_TEXT

Text (STRL)
Null-terminated text string.

MIS_SUBMENU
A menu template structure.

MIS~BITMAP

Chapter 32. Resource Files 32-15

Text (STR)
Null-terminated text string.

For MIS_BITMAP menu items, the item text string can be used to derive the resource
identifier from which a bit map is loaded. There are three instances:

• The first byte is null; that is, no resource is defined and it is assumed that the
application subsequently provides a bit-map handle for the item.

• The first byte is X' FF', the second byte is the low byte of the resource identifier,
and the third byte is the high byte of the resource identifier.

• The first character is"#," and subsequent characters make up the decimal text
representation of the resource identifier.

The resource is assumed to reside in the resource file of the current process.

If the string is empty or does not follow the format above, no resource is loaded.

DLGTEMPLATE and WINDOWTEMPLATE Statements
This section describes how to define dialog and window templates.

It also describes the control data and presentation parameter structures that the application needs to
create windows and define dialog templates.

Data types are shown after each parameter or option. These are the data types that the parameter
or option is converted to when it is compiled.

DLGTEMPLATE and WINDOWTEMPLATE statements are used by an application to create predefined
window and dialog resource templates.

The DLGTEMPLATE and WINDOWTEMPLATE statements are treated identically by the resource
compiler and have this format:

..

DLG and WINDOW TEMPLATE ---------------------......,

~LGTEMPLATE =mJ resourceid
INDOWTEMPLATE

L 1 oadopt i on] L1Tiemopt i orlJ lcodepageJ ..

llll---BEGIN-eIALOG statement~EN~
ONTROL statemen.:=J
INDOW statement

The parts of the DLGTEMPLATE and WINDOWTEMPLATE statements are described below.

Purpose
This statement marks the beginning of a window template. It defines the name of the window,
and its memory and load options.

resourceld (USHORT)
Either a unique name or an integer number identifying the resource.

loadoptlon (LOADOPTION)
The default is LOADONCALL.

memoptlon (MEMOPTION)
The default is MOVEABLE.

code page (USHORT)
The code page of the text in the template.

Alternatively, ({(can be used in place of BEGIN and (}) in place of END.

The DLGTEMPLATE and WINDOWTEMPLATE keywords are synonymous.

32-16 PM Programming Reference

\

The DIALOG statement defines a dialog-box window that can be created by an application.

The DIALOG statement has the format:

DIALOG statement -----------------------------.

ll+----OIALOG---text-,-id-,-x-,-y-,-cx-,-cy----+

l,style J
L,control

• lTLDATA-statemenJ kRESPARAMS-staternentjf

11-BEGIN---alALOG-statement,-_.__EN[)---+4
CONTROL-statement

INDOW-statement

CTLDATA statement
See page 32-22

PRESPARAMS statement
See page 32-22

The WINDOW and CONTROL statements have the format:

WINDOW and CONTROL statements -----------------------.

11+-r-WINDOW-.-text,-id,-x,-y,-cx,-cy,-class--+
LcoNTROLJ

L,style
L,controlj

• lTLDATA-statemenJ kRESPARAMS-staternentJr

11-BEGIN---aIALOG-statement---'--EN[)---+4
CONTROL-statement

INDOW-statement

CTLDATA statement
See page 32-22

PRESPARAMS statement
See page 32-22

Note: The WINDOW and CONTROL keywords are synonymous.

The DIALOG, CONTROL, and WINDOW statements between the BEGIN and END statements are
defined as child windows. Presentation parameters always apply to the whole control. They can not
be changed for the individual items within the control.

The parameters of these statements are described below.

Chapter 32. Resource Files 32-17

Purpose.
These statements mark the beginning of a window. They define the starting location on the
display screen, its width, its height, and other details such as style.

Note: Not all values may be specified for each statement type. For details, see the call syntax
diagrams.

text (STR)
A string, enclosed in double quotes, that is displayed in the title-bar control, if it exists. To insert
a double-quote character(") in the text, use two double-quote characters("").

id (USHORT)
Item identifier.

x,y (SHORT)
Integer numbers specifying the x- and y-coordinates on the display screen of the lower left corner
of the dialog. X and y are in dialog coordinates. The exact meaning of the coordinates depends
on the style defined by the style argument. For normal dialogs, the coordinates are relative to
the origin of the parent window. For FCF _SCREENALIGN style boxes, the coordinates are
relative to the origin of the display screen. With FCF _MOUSEALIGN, the coordinates are relative
to the position of the pointer at the time the dialog is created.

cx,cy (SHORT)
Integer numbers specifying the width and height of the window.

class (STR)
The class of the window or control to be created.

Note: For a DIALOG statement the class is fixed as WC_FRAME and cannot be specified.

style (BIT32)
Any additional window style, frame style, or other class-specific style.

The default style is WS_SYNCPAINT I WS_CLIPSIBLINGS I WS_SAVEBITS I FS_DLGBORDER. If
the FS_DLGBORDER or WS_SAVEBITS styles are not required, they should be preceded by the
keyword 'NOT'. For example:

• NOT FS_DLGBORDER I FS_BORDER I NOT WS_SAVEBITS

replaces the FS_DLGBORDER default style by the FS_BORDER style and removes the
WS_SAVEBITS style. Note that the logic of the NOT keyword is different from the corresponding
operator in the C language.

It is not possible to remove the default WS_SYNCPAINT and WS_CLIPSIBLINGS styles.

control (BIT32)
Frame Creation Flags (FCF_*; see page 15-1) for the window

This data is placed in the control data field in the correct format for a window of class
WC_FRAME.

Note: FCF _SHELLPOSITION has no effect if specified in a template.

Keyboard Resources
RT_FKALONG (=17), is defined in BSEDOS.H, and the resource compiler (RC.EXE) recognizes
FKALONG. This type identifies a 256-byte table, that can be used for either primary or secondary
scan-code mapping.

The resource ID contains three bytes, the least significant byte identifying the type of scan-code
mapping table as follows:

0
1

Primary scan-code mapping
Secondary scan-code mapping.

The other two bytes are O for the primary mapping table, and the keyboard ID (as defined in
PMWINP.H) for secondary mapping tables. This is to enable simple support to be provided for future
keyboards with conflicting·scan codes.

The primary scan-code mapping table in the interrupt handler is stored as a resource of this type.
The secondary scan-code mapping table in the interrupt handler is also stored as a resource of this
type.

32-18 PM Programming Reference

Depending on which keyboard is attached, the resources are loaded when the system is initialized,
and transferred to RING-0 byte arrays, where they can be accessed by the interrupt handler as
necessary. A default primary scan-code mapping table is transferred if the resource cannot be
loaded.

Templates, Control Data, and Presentation Parameters

Dialog Template
A dialog template is a data structure used to define a dialog box. Dialog templates can be loaded
from resources or created dynamically in memory. Dialog templates define windows of any window
class that contain child windows of any class. For standard dialog windows, the dialog window itself
is created with the WC_FRAME class, and its children are any of the preregistered control classes.

The dialog template specifies all the information required to create a dialog box and its children.

Dialog Coordinates
Coordinates in a dialog template are specified in dialog coordinates. These are based on the default
character cell size; a unit in the horizontal direction is 1/4 the default character-cell width, and a unit
in the vertical direction is 1/8 the default character-cell height. The origin is the bottom left-hand
corner of the dialog box.

Dialog Template Format and Contents
A dialog template has these sections:

Header

Items

Data area

Defines the type of template format and contains information about the location of the
other sections of the template. It also contains a summary of the status of the
individual controls contained within the dialog box.

Defines each of the controls that comprise the dialog box.

Contains the data values associated with each control. Each control defined in the
item section contains pointers to the data area section. The data area also contains
presentation parameter definitions. The data area is not necessarily a contiguous
portion of the template. User data can be placed anywhere in the template if it does
not interfere with other defined information.

The sections of a dialog template are illustrated in Figure 32-1 on page 32-20.

Notes:

1. Throughout the dialog template all lengths are in bytes. String lengths do not include any null
terminator that may be present. When strings are passed to the Presentation Interface, the
length specifications are used and any null terminators are ignored. When strings are returned
by the Presentation Interface, length specifications and null terminators are both supplied;
therefore, space must be allowed for a null terminator.

2. All offsets are in bytes from the start of the dialog template structure.

Chapter 32. Resource Files 32-19

Header

Template Length

Template Type

Code Page

Items Offset

Focus Item

Reserved
'---

Items

Dialog Box Control Window

Control Window Descriptor

Control Window Descriptor

Child Control Window Descriptor

Child Control Window Descriptor

Control Window Descriptor l I M I M
I--

Data Area
I--

l Text k J ...

r
l..._

Class f-.-

l Control data
I ..._
!'--

Figure 32-1. Dialog Template

Header
The dialog template header consists of:

Template length (USHORT)
The overall length of the dialog template.

Template type (USHORT)
The dialog template format type. The format defined is type 0.

Code page (USHORT)
The code page of the text in the dialog template.

Items offset (USHORT)
The offset of the array of dialog items.

Reserved (BIT16)
Must be 0.

32-20 PM Programming Reference

. /

Focus Item (USHORT)
The index in the array of dialog items of the control to receive the focus. If this value is 0, or if
the identified control cannot receive the focus, for example because it is a static control, the
focus is passed to the first item within the template that can receive the focus .

Reserved (BIT16)
Must be 0.

Items
The dialog template items are specified as elements of an array that also defines the hierarchy of the
control windows of the dialog box. Each element of the array is a control window descriptor and
defines some control or a child of some control, so that every control within the dialog box is
described by this array. The first descriptor is the specification of the dialog box itself.

The dialog template items consist of:

Reserved (BIT16) (16_bit BOOL)
Must be 0.

Children (USHORT)
The number of dialog item child windows that are owned by this dialog item.

This is the number of elements following in the array that are created as child windows of this
window. Each window can have any number of child windows, which allows for a
tree-structured arrangement.

For example, in Figure 32-1 on page 32-20, assuming that there are no more dialog items than
are shown, the first item, the dialog box control window descriptor, has three children. The
second item has no children, the third item has two children, and the remaining three items have
no children.

Class name length (USHORT)
The length of the window class name string.

Class name offset (USHORT)
The offset of the window class name string.

Text length (USHORT)
The length of the text string.

For controls that allow input of text, this is the current text length, not the maximum text length,
and so this value changes when text is put into the control.

Text offset (USHORT}
The offset of the text string.

Style (BIT32) (32_bit BOOL)
The window style of the control.

The standard style bits are 16 bits. The use of the remaining 16 bits depends on the class of the
control.

x (SHORT)
y (SHORT)

The position of the origin of the dialog item. This is specified in dialog coordinates, with x and y
relative to the origin of the parent window.

ex (SHORT)
cy (SHORT)

The size of the dialog item in dialog coordinates; it must be greater than 0.

Identifier (USHORT)
An application-defined identifier for the dialog item.

Reserved (USHORT)
Must be zero.

Control data offset (USHORT)
The offset of the control-specific data for this dialog item. A value of 0 indicates that there is no
control data for this dialog item.

Chapter 32. Resource Files 32-21

Data Area
The dialog template data area contains the following different types of objects: text, class name,
presentation parameters, and control data. These objects can be placed anywhere within the data
area. They do not have to be in contiguous storage, and so an application can place data for its own
use between these objects.

The dialog template data area contains:

Text {STR)
The textual data associated with a dialog item.

Class name (STR)
The name of the window class.

Presentation parameters (PRESPARAMS)
Presentation parameters are defined in "Presentation Parameters."

Control data (CTLDATA)
For more information, see "Control Data."

Control Data
The optional CTLDATA statement is used to define control data for the control. Hexadecimal or
decimal word constants follow the CTLDATA statement, separated with commas.

CTLDATA statement ---------------------------.

!
111+--CTLDATA~ecimal-value

~exadecimal-value---'

stri ng1-------'

_

In addition to hexadecimal or decimal data, the CTLDATA statement can be followed by the MENU
keyword, followed by a menu template in a BEGIN/END block. This creates a menu template as the
control data of the window.

Presentation Parameters
The optional PRESPARAMS statement is used to define presentation parameters. The syntax of the
PRESPARAMS statement is as follows.

PRESPARAMS statement --------------------------.

11+--PRESPARAMS--type-,--!--va 1 ~l

A presentation parameter consists of:

type (ULONG)
The presentation parameter attribute type. See the PARAM data type for a description of valid
types.

A string can be used to specify the type for a user type. If this is done, the string type is
converted into a string atom when the dialog template is read into memory. Thereafter this
presentation parameter is referred to by this string atom. The application can use the atom
manager API to match the string and the string atom.

32-22 PM Programming Reference

\
I

,I

value (LONG or STRL)
One or more values depending upon the attribute type.

If the value is enclosed in quotes it is a zero-terminated string. Otherwise, it is converted to a
LONG. There may be more than one value, depending upon the type. See PARAM data type for
a description of the values required for system-defined presentation parameters.

Examples: The following are examples of PRESPARAMS statements:

PRESPARAMS PP_BORDERCOLOR, exeeff00ffl
PRESPARAMS PP_FONTNAMESIZE, 11 12.Helv 11

PRESPARAMS 11my color", 0x00ff00ffl
PRESPARAMS "my param11

, 0, 1, 2, 3, 11 Hi there"

Parent/Child/Owner Relationship
The format of the DLGTEMPLATE and WINDOWTEMPLATE resources is very general to allow
tree-structured relationships within the resource format. The general layout of the templates is:

WINDOWTEMPLATE id
BEGIN

END

WINDOW winTop
BEGIN

WINDOW windl
WINDOW wind2
WINDOW wind3
BEGIN

WINDOW wind4
END
WINDOW winds

END

the top-level window

In this example, the top-level window is identified by winTop. It has four child windows: wind1,
wlnd2, wlnd3, and winds. wlnd3 has one child window, wind4. When each of these windows is
created, the parent and the owner are set to be the same.

The only time when the parent and owner windows are not the same is when frame controls are
automatically created by a frame window.

Note that the WINDOW statements in the example above could also have been CONTROL or DIALOG
statements.

Predefined Window Classes
The CONTROL statement can be used to define a window control of any class. Window classes may
be user defined of one of a predefined set provided by the operating system. The following classes
are provided in OS/2 Version 2.0.

WC_FRAME Application frame control.
WC_STATIC Text and group boxes.
WC_BUTTON Push button, check box or radio button.
WC_COMBOBOX Combination of an entry field and list box.
WC_ENTRYFIELD Single line entry field.
WC_MLE Multiple line entry field.
WC_LISTBOX List box.
WC_MENU Application action bar, menus and popup menus.
WC_SCROLLBAR Horizontal or vertical scroll bar.
WC_TITLEBAR Application title bar.
WC_SPINBUTTON Spin button entry field.
WC_CONTAINER.Container list.
WC_SLIDER Horizontal or vertical slider bar.
WC_VALUESET Value set control.
WC_NOTEBOOK Notebook control.

Chapter 32. Resource Files 32-23

These controls make up the standard user interface components for applications. The following
example shows a simple listbox control.

CONTROL 1111
, 1, 10, 20, 60, 40, WC_LISTBOX, WS_VISIBLE

Predefined Control Statements
In addition to the general form of the CONTROL statement, there are special control statements for
commonly used controls. These statements define the attributes of the child control windows that
appear in the window.

Control statements have this general form:

Control statements ----------------------------

..,._controltype-text-,-id-,-x-,-y-,-cx-,-cy----.

L ,-styl eo-----'

11--BEGIN--aIALOG statement-......--1END--M
CONTROL statement

INDOW statement

The LISTBOX control statement is an exception to this general form because it does not have a text
field.

controltype
is one of the keywords described below, defining the type of the control.

text (STR)
is a string specifying the text to be displayed. The string must be enclosed in double quotation
marks. The manner in which the text is displayed depends on the particular control, as detailed
below.

To indicate the mnemonic for each item, insert the tilde character ("") in the string preceding the
mnemonic character.

The double quotation marks are required for the COMBOBOX title even if no title is used.

id (USHORT)
is a unique integer number identifying the control.

x,y (SHORT)
are integer numbers specifying the x- and y-coordinates of the lower left corner of the control, in
dialog coordinates. The coordinates are relative to the origin of the dialog.

cx,cy (SHORT)
are integer numbers specifying the width and height of the control.

The x, y, ex, and cy fields can use addition and subtraction operators(+ and-). For example,
15 + 6 can be used for the x-field.

Styles can be combined using the (I) operator.

The control type keywords are shown below, with their classes and default styles:

FRAME

Class
Default style

LTEXT

Class
Default style

32-24 PM Programming Reference

WC_FRAME
WS_VISIBLE

WC_STATIC
SS_ TEXT, DT_LEFT, WS_GROUP, WS_VISIBLE

\

RTEXT

Class
Default style

CT EXT

Class
Default style

CHECKBOX

Class
Default style

PUSHBUTTON

Class
Default style

LISTBOX

Format

Class
Default style

COMBOBOX

Format

WC_STATIC
SS_TEXT, DT_RIGHT, WS_GROUP, WS_VISIBLE

WC_STATIC
SS_TEXT, DT_CENTER, WS_GROUP, WS_VISIBLE

WC_BUTTON
BS_CHECKBOX, WS_TABSTOP, WS_VISIBLE

WC_BUTTON
BS_PUSHBUTTON, WS_TABSTOP, WS_VISIBLE

The LISTBOX control statement does not contain a text field, so its
form is:

LISTBOX statement ----------------.

11+--LISTBOX-id-,-x-,-y-,-cx-+

...-,-cy L e=:J ~ 4
,-styl

The fields have the same meaning as in the other control
statements.
WC_LISTBOX
LBS_NOTIFY, LBS_SORT, WS_ VSCROLL, WS_BORDER, WS_ VISIBLE

The form of the COMBOBOX control statement is shown below.

The fields have the same meaning as in the other control
statements.

11+--COMBOBOX-11 title 11-,-id-,-x-,-y-,-cx-+

..,._ ,-cy~L-,-=..-=._-s-ty_1_e=:J____, ~M14

Class
Default style

GROUPBOX

Class
Default style

DEFPUSHBUTTON

Class
Default style

RADIO BUTTON

Class
Default style

AUTORADIOBUTTON

Class
Default style

WC_COMBOBOX
CBS_SIMPLE, WS_TABSTOP, WS_VISIBLE

WC_STATIC
SS_GROUPBOX, WS_TABSTOP, WS_VISIBLE

WC_BUTTON
BS_DEFAUL T, BS_PUSHBUTTON, WS_ TABSTOP, WS_ VISIBLE

WC_BUTTON
BS_RADIOBUTTON, WS_TABSTOP, WS_VISIBLE

WC_BUTTON
BS_AUTORADIOBUTTON, WS_TABSTOP, WS_VISIBLE

Chapter 32. Resource Files 32-25

ENTRYFIELD

Class
Default style

ICON

Class
Default style

WC_ENTRYFIELD
WS_ TABSTOP, ES_LEFT, WS_ VISIBLE

WC_STATIC
SS_ICON, WS_ VISIBLE

Examples: The following is a complete example of a DIALOG statement:

DLGTEMPLATE ernness
BEGIN

DIALOG "Disk Error", 100, 10, 10, 300, 110
BEGIN

END
END

CTEXT "Select One:". l, 10, 80, 280, 12
RADIOBUTTON "Retry", 2, 75, 50, 60, 12
RADIOBUTTON "Abort", 3, 75, 30, 60, 12
RADIOBUTTON "Ignore", 4, 75, 10, 60, 12

This is an example of a WINDOWTEMPLATE statement that is used to define a specific kind of
window frame. Calling Load Dialog with this resource automatically creates the frame window, the
frame controls, and the client window (of class MyClientClass).

WINDOWTEMPLATE windl
BEGIN

FRAME "My Window". l, 10, 10, 320, 130, WS VISIBLE,
FCF_STANDARD I FCF_VERTSCROLL -

BEGIN
WINDOW"", FID_CLIENT, 0, 0, 0, 0, "MyClientClass",

style
END

END

This example creates a resource template for a parallel dialog identified by the constant parallel1. It
includes a frame with a title bar, a system menu, and a dialog-style border. The parallel dialog has
three auto radio buttons in it.

DLGTEMPLATE parallel!
BEGIN

DIALOG "Parallel Dialog", 1, 50, 50, 180, 110
CTLDATA FCF_TITLEBAR I FCF5YSMENU I FCF_DLGBORDER
BEGIN

END
END

AUTORAOIOBUTTON "Retry", 2, 75, 80, 60, 12
AUTORADIOBUTTON "Abort". 3, 75, 50, 60, 12
AUTORADIOBUTTON "Ignore", 4, 75, 30, 60, 12

32-26 PM Programming Reference

\
)

Resource (.RES) File Specification
The format for the .RES file is:

(/TYPE NAME FLAGS SIZE BYTES/)+

Where:

TYPE is either a null-terminated string or an ordinal, in which instance the first byte is X 1 FF 1

followed by an INT that is the ordinal.

NAME

FLAGS

SIZE

BYTES

/* Predefined resource types */
#define RT_POINTER 1
#define RT_BITMAP 2
#define RT_MENU 4
#define RT_DIALOG 5
#define RT_STRING 6
#define RT_FONTOIR 7
#define RT_FONT 8
#define RT_ACCELTABLE 9
#define RT_DLGINCLUDE 11
#define RT_FKALONG 17

is the same format as TYPE. There are no predefined names.

is an unsigned value containing the memory manager flags:

#define NSTYPE x•aaa1• /* Segment type mask */
#define NSCODE x•aaaa• /* Code segment */
#define NSDATA X1aaa1 1 /*Data segment */
#define NSITER x•aaaa• /* Iterated segment flag */
#define NSMOVE X1 0010 1 /* Moveable segment flag */
#define NSPURE x•aa2a• /* Pure segment flag */
#define NSPRELOAD x•aa4a• /* Preload segment flag */
#define NSEXRD x•aaaa• /*Execute-only (code segment), */

#define NSRELOC
#define NSCONFORM
#define NSDPL
#define NSDISCARD
#define NS32BIT
#define NSHUGE

x•aiea•
x•awa•
x•acaa•
x•ieaa•
x•wea•

/* or read-only (data segment) */
/* Segment has relocations */
/* Segment has debug info */
/* 286 DPL bits */
/* Discard bit for segment */
/* 32-BIT code segment */

X1 4eea• /* Huge memory segment */

is a LONG value defining how many bytes follow in the resource.

is the stream of bytes that makes up the resource.

Any number of resources can appear one after another in the .RES file.

Chapter 32. Resource Files 32-27

32-28 PM Programming Reference

\

)

Chapter 33. Graphics Orders

This chapter describes the format of the graphics orders.

Graphics orders are used in the following circumstances:

• Using GpiGetData or GpiPutData functions for bulk transfer of part or all of graphics segment
data (unless this is simply being copied without being changed).

• Editing segments with GpiQueryElement and GpiElement.

• Generating metafiles (other than through the Presentation Manager API), or examining their
contents. The data part of Graphics Data structured fields within the metafile (see "Metafile Data
Format" on page G-2) consists of graphics orders.

When primitive or attribute functions (plus certain other functions) are specified at the programming
interface, and the drawing mode (see GpiSetDrawingMode) is set to drawandretaln, graphics orders
are constructed and placed in the current graphics segment. One API call often causes a single
order to be generated. Sometimes, however, several orders are necessary: an example of this is
where a GpiPolyline call is issued, which specifies more strokes than there is room for, in a single
order.

In either case, the order or orders generated by a single API call comprise a single element, unless
the application specifically starts an element using the GpiBeginElement function. In this case the
element consists of all of the orders generated between this and the following GpiEndElement
function. A GpiQueryElement function returns the orders that comprise an element; the application
may edit these, and return them to the segment with GpiElement. The Begin Element - End
Element orders that surround a multi-order element in the segment are never passed between the
application and the system on GpiQueryElement and GpiElement functions.

No double word or word alignment can be assumed for orders either within segments or during
editing.

Data Types
All data types are in Intel** format, unless noted otherwise.

GBIT1

GBIT16

GBIT2

GBIT32

GBIT4

GBIT5

GBIT6

GB/Tl

GB/TB

GCHAR

GDELPOINT

1-bit field.

16-bit field.

2-bit field.

32-bit field.

4-bit field.

5-bit field.

6-bit field.

7-bit field.

8-bit field.

Signed 1-byte integer value.

Offset point structure.

dx (GCHAR)
x coordinate offset.

•• Trademark of Intel Corporation

Chapter 33. Graphics Orders 33-1

GFIXED

GFIXEDS

GHB/TMAP

G/NDATT

G/NDEX3

GLENGTH1

GLENGTH2

GLONG

GPO/NT

GPO/NTB

GPOLYS

GREAL

GROF

GROFUFS

GROUFS

GROL

GROSOL

GROUL

GSHORT

GSHORT370

GSTR

GUCHAR

dy (GCHAR)
y coordinate offset.

Signed integer fraction (16:16). (This can be treated as a GLONG where
the value has been multiplied by 65536.)

Signed integer fraction (8:8), which can be treated as a GSHORT data type,
where the value has been multiplied by 256.

integer (GCHAR)
Integral component.

fraction (GUCHAR)
Fractional component.

Bit-map handle, which is the same as GULONG.

Individual attribute value. For the attribute types color and background
color, this is the same as GINDEX3. For the attribute types mix and
background color, this is the same as GUCHAR.

Unsigned 3-byte integer value.

1-byte length.

2-byte length, in S/370 format; that is, the high-order byte precedes the
low-order byte in storage.

Signed 4-byte integer value.

Point structure.

x (GROSOL)
x coordinate.

y (GROSOL)
y coordinate.

Point in bit-map structure.

x (GLONG)
x coordinate.

y (GLONG)
y coordinate.

Array of Polygons. Each element of the array is a 16 bit count of the
number of vertices, followed by the vertex coordinates.

Real (single precision floating point).

This data type is in Intel format.

Number representation which is the same as the GFIXED data type.

Number representation which is either GFIXED, GUFIXEDS or GREAL data
type, depending on the presentation-space format.

Number representation which is either the GUFIXEDS or GREAL data type,
depending on the presentation-space format.

Number representation, which is the same as the GLONG data type.

Number representation which is either the GSHORT or the GLONG data
type, depending on the presentation-space format; see PS_FORMAT in the
f/Options parameter of the GpiCreatePS function.

Number representation, which is the same as the GULONG data type.

Signed 2-byte integer value.

Signed 2-byte integer value, in S/370 format (that is, the high-order byte
precedes the low-order byte in storage).

String with an explicit length count.

Unsigned 1-byte integer value.

33-2 PM Programming Reference

)

Unsigned 4-byte integer value. GU LONG

GULONG370 Unsigned 4-byte integer value, in S/370 format (that is, the high-order byte
first, the low-order byte last in storage).

GUFIXEDS Unsigned integer fraction (8:8) which can be treated as a GUSHORT data
type, where the value has been multiplied by 256.

Undefined string of 8-bit bytes.

Undefined 8-bit byte.

GUNDF

GUNDF1

GUSHORT370 Unsigned 2-byte integer value, in S/370 format; that is, the high-order byte
precedes the low-order byte in storage.

GUSHORT Unsigned 2-byte integer value.

Arc at a Given Position I Arc at Current Position
This order constructs an arc starting at a given position.

Arc at a Given Position (GARC)
X'C&'(len, pe, p1, p2)

Arc at Current Position (GCARC)
X'86'(1en, p1, p2)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of start point.

This parameter is only present in a Arc at a Given Position Order.

p1(GPOINT)
Coordinate data of intermediate point.

pz (GPO/NT)
Coordinate data of end point.

Begin Area
This order indicates the start of a set of primitives that define an .area boundary.

Begin Area (GBAR)
X'68'{flags)

Parameters
flags

Internal flags.

res1 (GBIT1)
Reserved for migration:

1 Only valid value.

Chapter 33. Graphics Orders 33-3

boundary (GBIT1)
Boundary-line draw indicator:

O Do not draw boundary lines
1 Draw boundary lines.

Inside (GBIT1)
Mode shading:

O Alternate mode
1 Winding mode.

res2 (GBIT5)
Reserved.

00000 Only valid value.

Begin Element
This order indicates the beginning of a set of primitives that define an element.

Begin Element (GBEL)
X' D2 '(Ian, type, descr)

Parameters
len (GLENGTH1)

Length of following data.

type (GLONG)
Element type code.

Values are:

x I OOOOFD01 '
x I OOOOFD02'
x I OOOOFD03'
x I OOOOFD04'
x I OOOOFDOS'
X'00000007'
X'00000081'
X'00000085'
x I OOOOOOA4'
x I OOOOOOAS'
X'00000082'
X'00000087'
X'00000091'
XI 00000081 I

x I OOOOOOF1 I
X' 81 xxxxxx' - X' FFxxxxxx'
Other

descr (GUNDF)
Element description data.

This is optional.

33-4 PM Programming Reference

Line bundle
Character bundle
Marker bundle
Area bundle
Image bundle
Call segment
Polyline
Polyfillet
Polyfillet sharp
Polyspline
Polymarker
Full arc
Image
Character string at current position
Character string at given position
Indicates, user defined elements
Reserved values.

\

)

~
)

Begin Image at Given Position I Begin Image at Current
Position

These orders identify the start of an image definition at a given position or at the current position.

Begin Image at Given Position (GBIMG)
X' D1 '(len, pe, format, res, width, height)

Begin Image at Current Position (GCBIMG)
X' 91 '(len, format, res, width, height)

Parameters
len (GLENGTH1)

Length of following data.

X'O&' Only valid value.

pe (GPO/NT)
Point at which the image is to be placed.

This parameter is only present in a Begin Image at Given Position order.

format (GB/TB)
Format of the image data.

X'OO' One bit in the data represents one image point on the usable area.

res (GB/TB)
Reserved.

X'OO' Only valid value.

width (GUSHORT370)
Width of the image data.

This is the width in pels

X'OO' -X'07' Valid range of values.

height (GUSHORT370)
Height of the image data.

This is the height in pels

Begin Path
This order sets the drawing process into path state.

Begin Path (GBPTH)
X' DO' (len, res, pthld)

Parameters
len (GLENGTH1)

Length of following data.

X'O&' Only valid value.

Chapter 33. Graphics Orders 33-5

res (GBIT16)
Reserved.

X'OOOO' Only valid value.

pthld (GLONG)
Path identifier.

x I 00000001 ' - x I FFFFFFFF I

Bezier Curve at Given Position I Bezier Curve at Current
Poition

This order generates a curve that starts at a given position.

Bezler Curve at Given Position (GBEZ)
X'E5'(1en, pe, p1, p2, p3, p4, ps, p&, pn-2, pn-1, pn)

Bezler Curve at Current Poltlon (GCBEZ)
X'A5'(1en, p1, p2, p3, p4, ps, p&, pn-2, pn-1, pn)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of first curve start.

This parameter is only present in a Bezier Curve at Given Position.

p1 (GPO/NT)
Coordinate data of first curve, first control point.

p2 (GPO/NT)
Coordinate data of first curve, second control point.

p3 (GPO/NT)
Coordinate data of first curve end.

P4 (GPO/NT)
Coordinate data of second curve, first control point

ps (GPO/NT)
Coordinate data of second curve, second control point

p& (GPO/NT)
Coordinate data of second curve end.

pn-2 (GPO/NT)
Coordinate data of final curve,. first control point

pn-1 (GPO/NT)
Coordinate data of final curve, second control point

pn (GPO/NT)
Coordinate data of final curve end.

33-6 PM Programming Reference

/

'\
)

Bitblt
This order copies a rectangle of a bit map into DOCS.

Bitblt (GBBL T)
X'D6'(1en, flags, mix, bmld, trans, p1, p2, source1x, source1y, source2x, source2y)

Parameters
len (GLENGTH1)

Length of following data.

flags (GBIT16)
Reserved.

X'OOOO' Only valid value.

mix (GBIT16)
Mix mode.

Values are:

X'OOCC'
X'OOCO'
X'OOCA'
X'OOOC'
X'OOE2'
X'OOB8'
other

Source.
Source and pattern.
Source where pattern1
Source where patternO
Pattern where source1
Pattern where sourceO
Reserved values.

bmid (GHBITMAP)
Bit-map identifier.

trans (GBIT32)
Transfer mode.

Values are:

X'OOOOOOOO'
X'01000000'
X'02000000'
other

p1 (GPO/NT)

OR
AND
Ignore
Reserved values.

Target rectangle bottom-left corner.

p2 (GPO/NT)
Target rectangle top-right corner.

source1x (GLONG)
Source rectangle bottom-left corner, x coordinate.

source1y (GLONG)
Source rectangle bottom-left corner, y coordinate.

source2x (GLONG)
Source rectangle top-right corner, x coordinate.

source2y (GLONG)
Source rectangle top-right corner, y coordinate.

Chapter 33. Graphics Orders 33-7

Box at Given Position I Box at Current Position
This order defines a box with square or round corners. drawn with its first corner at a given position.

Box at Given Position (GBOX)
X'CO'(len, control, res, pe, p1, haxls, vaxls)

Box at Current Position (GCBOX)
X'80'(1en, control, res, p1, haxls, vaxls)

Parameters
len (GLENGTH1)

Length of following data.

control
Internal flags.

res1 (GBIT1)
Reserved.

O Only valid value.

fill (GBIT1)
Values:

0 No fill
1 Fill.

boundary (GBIT1)
Values:

0 No boundary
1 Boundary.

res2 (GBIT5)
Reserved.

00000 Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pe (GPO/NT)
Coordinate data of box origin.

This parameter is only present in a Box at Given Position order.

p1 (GPO/NT)
Coordinate data of box corner.

haxls (GROSOL)
Length of horizontal axis of ellipse.

vaxls (GROSOL)
Length of vertical axis of ellipse.

33-8 PM Programming Reference

ii'\
)

Call Segment
This order calls one segment from another.

Call Segment (GCALLS)
X'07'(1en, res, segname)

Parameters
len (GLENGTH1)

Length of following data.

X'O&' Only valid value.

res (GBIT16)
Reserved value.

X'OOOO' Only valid value.

segname (GLONG)
Name of segment that is to be called.

The name cannot be 0.

Character String at Given Position I Character String at
Current Position

These orders draw a character string at a given position or at the current position.

Character String at Given Position (GCHST)
X'C3'(1en, pe, cp)

Character String at Current Position (GCCHST)
X' 83' (len, cp)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Point at which the character string is to be placed.

This parameter is only present in a Character String at Given Position order.

cp (GSTR)
Code points of each character in the string.

Chapter 33. Graphics Orders 33-9

Character String Extended at Given Position I Character
String Extended at Current Position

This order defines a character string to be drawn at a given position.

Character String Extended at Given Position (GCHSTE)
X'FEFO'(len1, pa, flags, res, p1, p2, len2, cp, pad, vect)

Character String Extended at Current Position (GCCHSTE)
X' FEBO' (len1, flags, res, p1, p2, len2, cp, pad, vect)

Parameters
len1 (GLENGTH2)

Length of following data.

pe (GPO/NT)
Point at which the character string is to be placed.

This parameter is only present in a Character String Extended at Given Position order.

flags
Extra functions:

reel (GBIT1)
Values:

0 Do not draw background rectangle
1 Draw background rectangle.

cllp (GBIT1)
Values:

O Do not clip to rectangle
1 Clip to rectangle.

res1 (GBIT1)
Reserved.

0 Only valid value.

lvcp (GBIT1)
Values:

0 Move current position
1 Leave current position.

res2 (GBIT4)
Reserved.

0000 Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

p1 (GPO/NT)
Coordinate data of rectangle corner.

33-10 PM Programming Reference

p2 (GPO/NT)
Coordinate data of rectangle corner.

len2 (GLENGTH2)
Length of code-point data.

cp (GSTR}
Code-point data.

pad (GB/TB)
Pad byte.

Only needs to be included if cp is an odd number of bytes.

vect (GROSOL*n)
Vector of character increments.

n is the number of code points present in the cp parameter.

Character String Move at Given Position I Character String
Move at Current Position

This order draws a character string starting from a given position and moves the current position to
the end of the string.

Character String Move at Given Position {GCHSTM)
X' F1 '{len, pe, cp)

Character String Move at Current Position (GCCHSTM)
X' 81 '{len, cp)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Point at which the character string is to be placed.

This parameter is only present in a Character String Move at Given Position order.

cp (GSTR}
Code points of each character in the string.

Chapter 33. Graphics Orders 33-11

Close Figure
This order delimits the end of a closed figure.

U•oee Figure (GCLFIG)
X'7D'(res)

Parameters
res (GB/TB)

Reserved.

X'OO' Only valid value.

Comment
This order enables data to be stored within a segment.

Comment (GCOMT)
X '01 '(len, data)

Parameters
len (GLENGTH1)

Length of following data.

data (GBITB*len)
Comment data.

Remarks
This order is treated as a no-operation.

33-12 PM Programming Reference

\

End Area
This order indicates the end of a set of primitives that define an area boundary.

End Area (GEAR)
X' 60' (len, data)

Parameters
len (GLENGTH1)

Length of following data. It is normally O.

data (GBITB*fen)
Reserved.

x•oo ... ' Only valid value.

End Element
This order identifies the end of a set of primitives that define an element.

End Element (GEEL)
X'49'(res)

Parameters
res (GB/TB)

Reserved.

X'OO' Only valid value.

End Image
This order identifies the end of an image definition.

End Image (GEIMG)
X' 93 '(len, data)

Parameters
len (GLENGTH1)

Length of following data. It is normally 0.

data (GBITB*/en)
Reserved.

X'OO ••• ' Only valid value.

Chapter 33. Graphics Orders 33-13

End of Symbol Definition
This order indicates the end of a set of orders defining a graphics symbol.

End of Symbol Definition (GESD)
X'FF'

Remarks
This order is only valid in the context of symbol definitions.

End Path
This order ends the definition of a path.

End Path (GEPTH)
X'7F'(res)

Parameters
res (GB/TB)

Reserved.

X 100 1 Only valid value.

End Prolog
This order indicates the end of the prolog of a segment.

End Prolog (GEPROL)
X'3E'(res)

Parameters
res (GB/TB)

Reserved.

X'OO' Only valid value.

33-14 PM Programming Reference

Escape
This order provides facilities for registered and unregistered escape functions.

Escape (GESCP)
X' D5 '(len, type, rid, parms)

Parameters
len (GLENGTH1)

Length of following data.

type (GB/TB)
Type identifier:

80 Registered value
Other All other values are unregistered.

rid (GB/TB)
Registered identifier:

01 Set pel.
02 BITBLT function.
03 Flood fill function.
04 Draw bits function.

parms (GSTR)
Parameters of escape.

Extended Escape
This order provides facilities for registered and unregistered escape functions.

Extended Escape (GEESCP)
X' FEDS' (len, type, rid, parms)

Parameters
len (GLENGTH2)

Length of following data.

type (GB/TB)
Type identifier:

X' 80' Registered value
Other All other values are unregistered.

rid (GUCHAR)
Registered identifier.

No registered extended escapes are used by OS/2 Version 2.0

parms (GSTR)
Parameters of escape.

Chapter 33. Graphics Orders 33-15

Fill Path
This order fills the interior of the specified path.

Fiii Path (GFPTH)
X' D7 '(len, flags, res, pthld)

Parameters
len (GLENGTH1)

Length of following data.

X'06' Only valid value.

flags
Extra functions:

res1 (GBIT1)
Reserved.

0 Only valid value.

Inside (GBIT1)
Values:

0 Alternate mode
1 Winding mode.

mod (GBIT1)
Values:

0 Do not modify before filling
1 Modify path before filling.

res2 (GBIT5)
Reserved.

00000 Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pthld (GLONG)
Path identifier.

X'00000001' -X'FFFFFFFF' Valid path identifiers.

Fillet at Given Position I Fillet at Current Position
These orders draw a curved line tangential to a specified set of straight lines, at the given position or
at the current position.

Fiiiet at Given Position (GFL T)
X'CS'(len, pa, p1, p2, pn)

Fillet at Current Position (GCFL T)
X'85'(1en, p1, p2, pn)

33-16 PM Programming Reference

\
/

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of line start.

This parameter is only present in a Fillet at Given Position order.

p1 (GPO/NT)
Coordinate data of first line end.

p2 (GPO/NT)
Coordinate data of second line end.

pn (GPO/NT)
Coordinate data of final line end.

Full Arc at Given Position I Full Arc at Current Position
This order constructs a full circle or an ellipse, with the center at a given position.

Full Arc at Given Position (GFARC)
X'C7'(1en, pe, m)

Full Arc at Current Position (GCFARC)
X'87'(1en, m)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of the center of the circle/ellipse.

This parameter is only present in a Full Arc at Given Position order.

m (GROFUFS)
Multiplier.

Image Data
This order provides bit data for an image.

Image Data (GIMD)
X '92 '(len, data)

Parameters
len (GLENGTH1)

Length of following data.

data (GBITB*len)
Image data.

Chapter 33. Graphics Orders 33-17

Label
This order is used to label an element within a segment.

Label {GLBL)
X' D3 '{len, ldata)

Parameters
len (GLENGTH1)

Length of following data.

X'04' Only valid value.

ldata (GLONG)
Label value.

Line at Given Position I Line at Current Position
This order defines one or more connected straight lines, drawn from the given position.

Line at Given Position {GLINE)
X'C1 '{len, pe, p1, pn)

Line at Current Position {GCLINE)
X'81 '{len, p1, pn)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of line start.

This parameter is only present in a Line at Given Position order.

p1 (GPO/NT)
Coordinate data of first line end.

pn (GPO/NT)
Coordinate data of final line end.

Marker at Given Position I Marker at Current Position
This order draws the current marker symbol at one or more positions starting from a given position.

Marker at Given Position {GMRK)
X'C2'{1en, pe, p1, pn)

Marker at Current Position {GCMRK)
X'82'{1en, p1, pn)

33-18 PM Programming Reference

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of first marker.

p1 (GPO/NT)
Coordinate data of second marker.

pn (GPO/NT)
Coordinate data of final marker.

Modify Path
This order modifies the path according to the value of the mode.

Modify Path (GMPTH)
X' 08 '(len, mode, res, plhid)

Parameters
len (GLENGTH1)

Length of following data.

X'O&' Only valid value.

mode (GB/TB)
Mode of path modification:

X'06' Stroke the path
Other All other values are reserved.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pthld (GLONG)
Path identifier.

X'00000001' -X'FFFFFFFF' Valid path identifiers.

No-Operation
This order is a no-operation.

No.;Operatlon (GNOP1)
X'OO'

Outline Path
This order draws the outline of the specified path.

Outline Path (GOPTH)
X'D4'(1en, flags, res, pthid)

Chapter 33. Graphics Orders 33-19

Parameters
len (GLENGTH1)

Length of following data.

flags (GB/TB)
Function flags:

X'OO' Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pthld (GLONG)
Path identifier.

1 Only valid value.

Partial Arc at Given Position I Partial Arc at Current Position
This order draws a line from a given position to the start of an arc, and then draws the arc.

Partial Arc at Given Position (GPARC)
X'E3'(1en, pe, p1, m, start, sweep)

Partial Arc at Current Position (GCPARC)
X'A3'(1en, p1, m, start, sweep)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of start of line.

This parameter is only present in a Partial Arc at Given Position order.

p1 (GPO/NT)
Coordinate data of center of arc.

m (GROFUFS)
Multiplier.

start (GROF)
Start angle.

sweep (GROF)
Sweep angle.

Polygons
This order defines a set of polygons, which are optionally filled.

Polygons (GPOL VS)
X' F3 '(len, flags., count, polys)

33-20 PM Programr.ning Reference

' \
/

Parameters
len (GLENGTH2)

Length of following data.

flags.
Internal flags.

Inside (GBIT1)
Mode shading:

0 Alternate mode.
1 Winding mode.

model (GBIT1)
Drawing model:

0 The fill is inclusive of bottom right.
1 The fill is exclusive of bottom right.

res2 (GBIT6)
Reserved.

000000 Only valid value.

count (GUSHORT)
Number of polygons

polys (GPOL YS)
Array of polygons

Remarks
This order draws a set of polygons. For the first polygon the current position is the first point. For all
subsequent polygons all points which define the polygon are given explicitly. The polygons are
automatically closed if necessary.

The current position is set to the last point specified.

Pop
This order enables data to be popped from the Segment Call Stack.

Pop (GPOP)
X'3F'(res)

Parameters
res (GB/TB)

Reserved.

X'OO' Only valid value.

Remarks
The data is placed into an attribute or Drawing Process Control.

Chapter 33. Graphics Orders 33-21

Relative Line at Given Position I Relative Line at Current
Position

These orders define one or more connected straight lines, at the given position or at the current
position.

Relative Line at Given Position (GRLINE)
X'E1 '(len, pe, olle, oll1, olln)

Relative Line at Current Position (GCRLINE)
X 'A 1 '(len, olle, olf 1, olln)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of line start.

This parameter is only present in a Relative Line at Given Position order.

olle (GDELPOINT)
Offset data for first point.

This offset is to the first line end, relative to its start point.

ofh (GDELPOINT)
Offset data for second point.

This offset is to the second line end, relative to the first line end.

olln (GDELPOINT)
Offset data for final point.

This offset is to the nth line end, relative to then-1th line end.

Remarks
The end point of each line is given as an offset from the start of the line, rather than as absolute
coordinates.

Segment Characteristics
This order provides the facility to set architected or user-defined characteristics for a segment.

Segment Characteristics (GSGCH)
X' 04' (len, cblt8, parms)

Parameters
ten (GLENGTH1)

Length of following data.

cbit8 (GUCHAR)
Identification code for characteristics:

X'OO' -X'7F' Reserved for architected characteristics.
X'80' -X'FF' Reserved for user-defined characteristics.

33-22 PM Programming Reference

parms (GSTR)
Parameters of characteristics.

Remarks
The order is only valid in a root-segment prolog.

Set Arc Parameters I Push and Set Arc Parameters
These orders set, or push and set, the values of the current arc parameters.

Set Arc Parameters (GSAP)
X'22'(1en, p, q, r, s)

Push and Set Arc Parameters (GPSAP)
X'62'(1en, p, q, r, s)

Parameters
len (GLENGTH1)

Length of following data.

p (GROSOL)
P-parameter of arc transform.

q (GROSOL)
a-parameter of arc transform.

r (GROSOL)
A-parameter of arc transform.

s (GROSOL)
$-parameter of arc transform.

Remarks
The values of the current arc parameters are pushed on to the Segment Call stack by the Push and
Set order only. Both orders then set the current arc parameters to the values specified in the order.

The value of these parameters determines the shape of subsequent orders drawn using Arc at a
Given Position I Arc at Current Position or Full Arc at Given Position I Full Arc at Current Position or
Partial Arc at Given Position I Partial Arc at Current Position.

Set Background Color I Push and Set Background Color
These orders set, or push and set, the value of the current background color attribute.

Set Background Color (GSBCOL)
X '25 '(len, color)

Push and Set Background Color (GPSBCOL)
X '65 • (len, color)

Chapter 33. Graphics Orders 33-23

Parameters
len (GLENGTH1)

Length of following data.

X'02' Only valid value.

color (GBIT16)
Color-tabie index:

Except for the special values, the values X 10000 1 through X 1 nnnn 1 are allowed color indexes;
that is, as many values as are allowed by the size of the LCT.

Speclal Values

X'OOOO'
X'0007'
X'0008'
X'FFOO'
X'FFOx'
X'FF08'

Drawing default
White
Black
Drawing default
Color indexes X 1 OOOx 1

, where x is in the range 1 through 7.
Color index 0 (reset color).

Set Background Indexed Color I Push and Set Background
Indexed Color

These orders set, or push and set, the value of the current background color attribute.

Set Background Indexed Color (GSBICOL)
X' A7 '(len, flags, Index)

Push and Set Background Indexed Color (GPSBICOL)
X' E7 '(len, flags, Index)

Parameters
len (GLENGTH1)

Length of following data.

X'04' Only valid value.

flags
Values:

default (GBIT1)
Options:

0 Use specified index
1 Use drawing default color.

spec (GBIT1)
Options:

0 Use index directly
1 Special value.

res (GBIT6)
Reserved.

000000 Only valid value.

index (GINDEX3)
Value for color index.

The value is a direct index into the current color table or a special value.

33-24 PM Programming Reference

The special values are:

1 Black
2 White
4 All ones
5 All zeros.

Remarks
The value of the current background color attribute is pushed on to the stack by the Push and Set
order only. Both orders then set the current background color attribute to the value specified in the
order.

Set Background Mix I Push and Set Background Mix
These orders set, or push and set, the value of the current background mix attribute.

Set Background Mix (GSBMX)
X'OD'(mode)

Push and Set Background Mix (GPSBMX)
X'4D'(mode)

Parameters
mode (GB/TB)

Mix-mode value:

X'OO' Drawing default
X'01' OR
X'02' Overpaint
X'03' Reserved
X'04' Exclusive-OR
X'OS' Leave Alone
X'06' AND
X'07' Subtract
X'08' Source AND (inverse destination)
X'09' All zeros
X'OA' Inverse (source OR destination)
X'OB' Inverse (source XOR destination)
X'OC' Inverse destination
X'OD' Source OR (inverse destination)
X'OE' Inverse source
X'OF' (Inverse source) OR destination
X'10' Inverse (source AND destination)
X'11' All ones.

Remarks
The value of the current background mix attribute is pushed on to the Segment Call stack by the Push
and Set order only. Both orders then set the current background mix attribute to the value specified
in the order.

Chapter 33. Graphics Orders 33-25

Set Character Angle I Push and Set Character Angle
These orders set, or push and set, the value of the current character angle attribute.

Set Character Angle {GSCA)
X' 34 • {len, ax, ay)

Push and Set Character Angle (GPSCA)
X'74'{1en, ax, ay)

Parameters
len (GLENGTH1)

Length of following data.

ax (GROSOL)
X coordinate of point.

This point defines the angle of the character string.

ay (GROSOL)
Y coordinate of point.

This point defines the angle of the character string.

Remarks
The value of the current character angle attribute is pushed on to the Segment Call Stack by the Push

and Set order only. Both orders then set the value of the current character angle to the value
specified in the order.

Set Character Break Extra I Push and Set Character Break
Extra

These orders set, or push and set, the value of the current character break extra attribute.

Set Character Break Extra (GSCBE)
X • 05 • (len, flags, res2, inc)

Push and Set Character Break Extra {GPSCBE)
X 145 • (len, flags, res2, Inc)

Parameters
len (GLENGTH1)

Length of following data.

flags
Values as follows:

default (GBIT1)
Values as follows:

B'O' Set to specified value.
B'1' Set to drawing default.

33-26 PM Programming Reference

/

res1 (GBIT7)
Reserved.

8'0000000' Only valid value.

res2 (GUNDF1)
Reserved.

X'OO' Only valid value.

Inc (GROF)
Increment.

Remarks
The value of the current character break extra attribute is pushed on to the Segment Call Stack by
the Push and Set order only. Both orders then set the value of the current character break extra
attribute to the value specified in the order.

Set Character Cell I Push and Set Character Cell
These orders set, or push and set, the value of the current character cell-size attribute.

Set Character Cell (GSCC)
X'33 '(len, cellx, celly, cellxf, cellyf, flags, res)

Push and Set Character Cell (GPSCC)
X'03'(1en, cellx, celly, cellxf, cellyf, flags, res)

Parameters
len (GLENGTH1)

Length of following data.

cellx (GROSOL)
X part of character cell-size attribute.

celly (GROSOL)
Y part of character cell-size attribute.

cellxf (GUSHORT)
Fractional X part of character cell-size attribute.

This parameter is optional.

cellyf (GUSHORT)
Fractional Y part of character cell-size attribute.

This parameter must be present if cellxf parameter is present.

flags
Internal flags.

This parameter is optional.

notdeflt (GBIT1)
Values:

0 A cell size of zero sets drawing default
1 A cell size of zero sets to zero.

res (GB/Tl)
Reserved.

0000000 Only valid value.

Chapter 33. Graphics Orders 33-27

res (GB/TB)
Reserved value.

This parameter must be present if flags parameter is present.

X'OO' Only valid value.

Remarks
The value of the current character cell-size attribute is pushed on to the Segment Call Stack by the
Push and Set order only. Both orders then set the value of the current character cell-size attribute to
the value in the order.

Set Character Direction I Push and Set Character Direction
These orders set, or push and set, the value of the current character direction attribute.

Set Character Direction (GSCD)
X' 3A' (direction)

Push and Set Character Direction (GPSCD)
X '7 A' (direction)

Parameters
direction (GB/TB)

Value for character direction:

All other values are reserved.

X'OO' Drawing default
X'01' Left to right
X'02' Top to bottom
X '03' Right to left
X' 04' Bottom to top.

Remarks
The value of the current character direction attribute is pushed on to the Segment Call Stack by the
Push and Set order only. Both orders then set the value of the current character direction attribute to
the value in the order.

Set Character Extra I Push and Set Character Extra
These orders set, or push and set, the value of the current character extra attribute.

Set Character Extra (GSCE)
X'17'(1en, flags, res2, Inc)

Push and Set Character Extra (GPSCE)
X' 57 '(len, flags, res2, Inc)

33-28 PM Programming Reference

Parameters
len (GLENGTH1)

Length of following data.

flags
Values as follows:

default (GBIT1)
Values as follows:

B'O' Set to specified value.
B '1' Set to drawing default.

res1 (GB/Tl)
Reserved.

8'0000000' Only valid value.

res2 (GUNDF1)
Reserved.

X'OO' Only valid value.

Inc (GROF)
Increment.

Remarks
The value of the current character extra attribute is pushed on to the Segment Call Stack by the Push
and Set order only. Both orders set the value of the current character extra attribute to the value
specified in the order.

Set Character Precision I Push and Set Character Precision
These orders set, or push and set, the value of the current character precision attribute.

Set Character Precision (GSCR)
X'39'(prec)

Push and Set Character Precision (GPSCR)
X'79'(prec)

Parameters
prec (GB/TB)

Value for character-precision attribute:

All other values are reserved.

X'OO' Drawing default
X'01' String precision
X'02' Character precision
X' 03' Stroke precision

Remarks
The value of the current character precision attribute is pushed on to the Segment Call Stack by the
Push and Set order only. Both orders then set the value of the current character precision attribute
to the value in the order.

Chapter 33. Graphics Orders 33-29

Set Character Set I Push and Set Character Set
These orders set, or push and set, the value of the current character-set attribute.

Set Character Set (GSCS)
X 1 38 I (lcld)

Push and Set Character Set (GPSCS)
X 178 I (ICld)

Parameters
lcld (GUCHAR)

Local identifier (LCID) for the character set:

X'OO' Drawing default
X '01 ' - X 'FE' Leid for the symbol set
X'FF' Special character set.

Remarks
The value of the current character-set attribute is pushed on to the Segment Call Stack by the Push
and Set order only. Both orders then set the value of the current character-set attribute to the value
in the order.

Set Character Shear I Push and Set Character Shear
These orders set, or push and set, the value of the current character shear attribute.

Set 'Character Shear (GSCH)
X '35 '(len, hx, hy)

Push and Set Character Shear (GPSCH)
X' 75 '(len, hx, hy)

Parameters
len (GLENGTH1)

Length of following data.

hx (GROSOL)
Dividend of shear ratio.

hy (GROSOL)
Divisor of shear ratio.

Remarks
When hx and hy are both 0, the drawing default is set. The value of the current character shear
attribute is pushed on to the Segment Call Stack by the Push and Set order only. Both orders then

set the value of the current character shear attribute to the value in the order.

33-30 PM Programming Reference

Set Clip Path
This order sets the current clip path.

Set Clip Path (GSCPTH)
X' 84 '(len, flags, res, pthld)

Parameters
len (GLENGTH1)

Length of following data.

flags
Extra functions:

res (GBIT1)
Reserved.

0 Only valid value.

flll (GBIT1)
Values:

0 Alternate mode
1 Winding mode.

inter (GBIT1)
Values:

o Set to specified path
1 Set to intersection of specified and current clip path.

res2 (GBIT5)
Reserved.

B'OOOOO' Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pthid (GLONG)
Path identifier.

X'OOOOOOOO' No clipping.
X'00000001' -X'FFFFFFFF' Path identifier.

Set Color I Push and Set Color
These orders set, or push and set, the value of the current color attribute.

Set Color (GSCOL)
X'OA'(col)

Push and Set Color (GPSCOL)
X'4A '(col)

Chapter 33. Graphics Orders 33-31

Parameters
col (GB/TB)

Value for color attribute:

X'OO' -X'OB' These one-byte values are converted to two-byte values by preceding the
value with X' FF'. The resultant is then treated as a two-byte value as defined
by the Set Extended Color I Push and Set Extended Color order.

Other Reserved values.

Remarks
The value of the current color attribute is pushed on to the Segment Call Stack by the Push and Set
order only. Both orders then set the value of the current color attribute to the value in the order.

Set Current Position I Push and Set Current Position
These orders set, or push and set, the value of the current position.

Set Current Position (GSCP)
X'21 '(len, p)

Push and Set Current Position (GPSCP)
X'61 '(len, p)

Parameters
len (GLENGTH1)

Length of following data.

p (GPO/NT)
Coordinate data.

Remarks
The value of the current position is pushed on to the Segment Call Stack by the Push and Set order
only. Both orders then set the value of the current position to the value in the order.

Set Extended Color I Push and Set Extended Color
These orders set, or push and set, the value of the current color attribute.

Set Extended Color (GSECOL)
X '26 '(len, color)

Push and Set Extended Color (GPSECOL)
X' 66' (len, color)

33-32 PM Programming Reference

Parameters
len (GLENGTH1)

Length of following data.

X'02' Only valid value.

color (GBIT16)
Color-table index.

Except for the special values, the values X 10000 1 through X 1 nnnn 1 are allowed color indexes;
that is, as many values as are allowed by the size of the LCT.

Special Values

Drawing default
White
Black
Drawing default

X'OOOO'
X'0007'
X'0008'
X'FFOO'
X'FFOx'
X'FF08'

Color indexes X 1000x 1
, where xis in the range 1through7.

Color index 0 {reset color).

Remarks
The value of the current extended color attribute is pushed on to the Segment Call Stack by the Push
and Set order only. Both orders then set the value of the current extended color attribute to the
value in the order.

Set Fractional Line Width I Push and Set Fractional Line
Width

These orders set, or push and set, the value of the current line-width attribute.

Set Fractional Line Width (GSFLW)
X' 11 '(len, line width)

Push and Set Fractional Line Width (GPSFLW)
X' 51 '(len, line width)

Parameters
len (GLENGTH1)

Length of following data.

X'02' Only valid value.

line width (GROUFS)
Value for the line-width attribute.

The nonzero value is an integral and fractional multiplier of the normal line width:

X'OOOO' Drawing default
X'0001' -X'FFFF' Multiplier of normal line width.

Chapter 33. Graphics Orders 33-33

Remarks
The value of the current line-width attribute is pushed on to the Segment Call Stack by the Push and
Set order only. Both orders then set the value of the current line-width attribute to the value in the
order.

Set Indexed Color I Push and Set Indexed Color
These orders set, or push and set, the value of the current color attribute.

Set Indexed Color (GSICOL)
X' A&' (len, flags, index)

Push and Set Indexed Color (GPSICOL)
X' E& '(len, flags, Index)

Parameters
len (GLENGTH1)

Length of following data.

X'04' Only valid value.

flags
Values:

default (GBIT1)
Options:

0 Use specified index
1 Use drawing default color.

spec (GBIT1)
Options:

O Use index directly
1 Special value.

res (GBIT6)
Reserved.

000000 Only valid value.

index (GINDEX3)
Value for color index.

The value is a direct index into the current color table or a special value.

The table can be the standard table, or one loaded by the user.

The special values are:

1 Black
2 White
4 All ones
5 All zeros.

Remarks
The value of the current color attribute is pushed on to the Segment Call Stack by the Push and Set
order only. Both orders then set the value of the current color attribute to the value in the order.

33-34 PM Programming Reference

/

Set Individual Attribute I Push and Set Individual Attribute
These orders set, or push and set, the value of the color, background color, mix, or background mix
attribute for the line character, marker, pattern, or image primitive type.

Set lndlvldual Attribute (GSIA)
X' 14 '(len, atype, ptype, flag1, val)

Push and Set Individual Attribute (GPSIA)
X • 54 • (len, atype, ptype, flag1, val)

Parameters
len (GLENGTH1)

Length of following data.

atype (GB/TB)
Attribute type:

X'1' Color
X'2' Background color
X'3' Mix
X'4' Background Mix
Other All other values are reserved.

ptype (GB/TB)
Primitive type:

X'1' Line
X' 2' Character
X'3' Marker
X '4 • Pattern
X'S' Image
Other All other values are reserved.

flag1
Values:

default (GBIT1)
Options:

0 Use specified value
1 Use drawing default color.

spec (GBIT1)
Options:

0 Use value directly
1 Special Value.

res (GBIT6)
Reserved.

000000 Only valid value.

Chapter 33. Graphics Orders 33-35

val (GINDA TT)
Color index value.

For colors, the value is a direct index into the current color table or a special value.

The table can be the standard table, or one loaded by the user.

The special values are:

1 Black
2 White
4 All ones
S All zeros.

Remarks
The value of the current attribute is pushed on to the Segment Call Stack by the Push and Set order
only. Both orders then set the value of the individual attribute to the value in the order.

Set Line End I Push and Set Line End
These orders set, or push and set, the value of the current line-end attribute.

Set Line End (GSLE)
X' 1 A' (llneend)

Push and Set Line End (GPSLE)
X' SA' (llneend)

Parameters
llneend (GB/TB)

Value for the line-end attribute:

X'OO' Drawing default
X'01' Flat
X'02' Square
X'03' Round
Other Reserved values.

Remarks
The value of the current line-end attribute is pushed on to the Segment Call Stack by the Push and
Set order only. Both orders then set the value of the current line-end attribute to the value in the
order.

Set Line Join I Push and Set Line Join
These orders set the value of the current line-join attribute.

Set Line Join (GSW)
X' 1 B • (linejoin)

Push and Set Line Join (GPSLJ)
X •SB • (llnejoln)

33-36 PM Programming Reference

J

Parameters
llnejoln (GB/TB)

Value for line-join attribute:

X'OO'
X'01'
X'02'
X'03'
Other

Remarks

Drawing default
Bevel
Round
Miter
Reserved values.

The value of the current line-join attribute is pushed on to the Segment Call stack by the Push and
Set order only. Both orders then set the value of the current line-join attribute to the value in the
order.

Set Line Type I Push and Set Line Type
These orders set, or push and set, the value of the current line-type attribute.

Set Line Type (GSLT)
X' 18' (llnetype)

Push and Set Line Type (GPSLT)
X '58' (llnetype)

Parameters
llnetype (GB/TB)

Value for line-type attribute.

The value is an index into a notational line-type table:

X'OO' Drawing default
X'01' Dotted line
X'02' Short dashed line
X'03' Dash-dot line
X'04' Double dotted line
X'05' Long dashed line
X'06' Dash-double-dot line
X'07' Solid line
X'08' Invisible line
Other Reserved values.

Remarks
The value of the current line-type attribute is pushed on to the Segment Call Stack by the Push and
Set order only. Both orders then set the value of the current line-type attribute to the value in the
order.

Chapter 33. Graphics Orders 33-37

Set Line Width I Push and Set Line Width
These orders set, or push and set, the value of the current line-width attribute to the value specified
in the order.

Set Line Width (GSLW)
X'19'(11newldth)

Push and Set Line Width (GPSLW)
X' 59' (llnewldth)

Parameters
linewidth (GB/TB)

Value for line-width attribute:

X'OO' Drawing default
X'01' -X'FF' Integral multiplier of normal line width.

Remarks
The value of the current line-width attribute is pushed on to the Segment Call stack by the Push and
Set order only. Both orders then set the value of the current line-width attribute to the value in the

order.

33-38 PM Programming Reference

Set Marker Cell I Push and Set Marker Cell
These orders set, or push and set, the value of the current marker cell-size attribute.

Set Marker Cell (GSMC)
X 1 37 1 (len, cellx, celly, flags, res)

Push and Set Marker Cell (GPSMC)
X 1 77 1(len, cellx, celly, flags, res)

Parameters
len (GLENGTH1)

Length of following data.

cellx (GROSOL)
X part of marker cell-size attribute.

celly (GROSOL)
Y part of marker cell-size attribute.

flags
This is an optional extension.

Values:

notdefll (GBIT1)
Options:

0 A cell size of zero sets drawing default
1 A cell size of zero sets to zero.

res (GBIT7)
Reserved.

0000000 Only valid value.

res (GB/TB)
Reserved.

x•oo• Only valid value.

Remarks
The value of the current marker cell-size attribute is pushed on to the Segment Call stack by the
Push and Set order only. Both orders then set the value of the current marker cell-size attribute to
the value in the order.

Chapter 33. Graphics Orders 33-39

Set Marker Precision I Push and Set Marker Precision
These orders set, or push and set, the value of the current marker-precision attribute.

Set Marker Precision (GSMP)
X'3B '(prec)

Push and Set Marker Precision (GPSMP)
X'7B'(prec)

Parameters
prec (GB/TB)

Value for marker-precision attribute:

X'OO' Drawing default
X'01' String precision
X'02' Character precision
X'03' Stroke precision
Other Reserved values.

Remarks
The value of the current marker-precision attribute is pushed on to the Segment Call stack by the
Push and Set order only. Both orders then set the value of the current-marker precision attribute to
the value in the order.

Set Marker Set I Push and Set Marker Set
These orders set, or push and set, the value of the current marker symbol-set attribute.

Set Marker Set (GSMS)
X' 3C '(lcid)

Push and Set Marker Set (GPSMS)
X' 7C '(lcld)

Parameters
lcld (GUCHAR)

Local identifier (LCID) for the marker set:

X'OO' Drawing default
X'01' -X'FE' LCID for the coded font
X •FF• Special marker set.

Remarks
The value of the current marker symbol-set attribute is pushed on to the Segment Call stack by the
Push and Set order only. Both orders then set the value of the current marker symbol-set attribute to
the value in the order.

33-40 PM Programming Reference

Set Marker Symbol I Push and Set Marker Symbol
These orders set, or push and set, the value of the current marker symbol attribute.

Set Marker Symbol (GSMT)
X'29'(n)

Push and Set Marker Symbol (GPSMT)
X'69'(n)

Parameters
n (GB/TB)

Value of marker symbol code point.

Speclal marker set

When this is selected (lcld = X' FF'), the values are:

X'OO' Drawing default
X'01' Cross
X'02' Plus
X'03' Diamond
X'04' Square
X'OS' 6-point star
X'06' 8-poi nt star
X'07' Filled diamond
X'08' Filled square
X'09' Dot
X'OA' Small circle
X'40' Blank
Other Reserved values.

Marker set

Values are as follows for any other set:
X'OO' Drawing default
X'01' -X'FF' These are the code points into the current marker set.

Remarks
The value of the current marker symbol attribute is pushed on to the Segment Call Stack by the Push
and Set order only. Both orders then set the value of the current marker symbol attribute to the
value in the order.

Set Mix I Push and Set Mix
These orders set, or push and set, the value of the current mix attribute.

Set Mix (GSMX)
X'OC'(mode)

Push and Set Mix (GPSMX)
X '4C' (mode)

Chapter 33. Graphics Orders 33-41

Parameters
mode (GB/TB)

Mix-mode value:

X'OO' Drawing default
X'01' OR
X'02' Overpaint
X'03' Reserved
X'04' Exclusive-OR
X'OS' Leave alone
X'O&' AND
X'07' Subtract
X'08' Source AND (inverse destination)
X'09' All zeros
X'OA' Inverse (source OR destination)
X'OB' Inverse (source XOR destination)
X'OC' Inverse destination
X'OD' Source OR (inverse destination)
X'OE' Inverse source
X'OF' (Inverse source) OR destination
X'10' Inverse (source AND destination)
X'11' All ones.
Other Reserved values.

Remarks
The value of the current mix attribute is pushed on to the Segment Call stack by the Push and Set
order only. Both orders then set the value of the current mix attribute to the value in the order.

Set Model Transform I Push and Set Model Transform
These orders set, or push and set, values in the current model transform.

Set Model Transform (GSTM)
X' 24 '(len, res, flags, mask, mx)

Push and Set Model Transform (GPSTM}
X' 64' (len, res, flags, mask, mx)

Parameters
len (GLENGTH1)

Length of following data.

res (GB/TB)
Reserved.

X'OO' Only valid value.

flags
Values:

res (GBIT6)
Reserved.

8'000000'

cm (GBIT2)

Only valid value.

Matrix control bits:

B'OO'
B'01'

Unity matrix
Concatenate after

33-42 PM Programming Reference

B '10' Concatenate before
B '11 ' Overwrite.

mask (GBIT16)
Load mask.

mx (GROSOL*number of bits set on in mask)
Matrix values.

Remarks
The value of the current model transform is pushed on to the Segment Call stack by the Push and Set
order only. Both orders then set values in the current model transform as specified in the order.

Set Pattern Reference Point I Push and Set Pattern
Reference Point

These orders set, or push and set, the value of the current pattern reference-point attribute.

Set Pattern Reference Point (GSPRP)
x I AO r (len, flags, res,. pref)

Push and Set Pattern Reference Point (GPSPRP)
X' EO' (len, flags, res, pref)

Parameters
len (GLENGTH1)

Length of following data.

flags
Values:

default (GBIT1)
Options:

O Set to specified value
1 Set to the drawing default.

res (GB/Tl)
Reserved

0000000 Only valid value.

res (GB/TB)
Reserved.

X'OO' Only valid value.

pref (GPO/NT)
Coordinate data of the pattern-reference point.

Remarks
The value of the current pattern reference-point attribute is pushed on to the Segment Call stack by
the Push and Set order only. Both orders then set the value of the current reference-point attribute to
the value in the order.

Chapter 33. Graphics Orders 33-43

Set Pattern Set I Push and Set Pattern Set
These orders set, or push and set, the value of the current pattern symbol-set attribute.

Set Pattern Set (GSPS)
XI 08 I (lcld)

Push and Set Pattern Set (GPSPS)
X 148 I (lcld)

Parameters
lcld (GUCHAR)

Local identifier (LCID) for the pattern set:

X'OO' Drawing default
X' 01 ' - X' FE• LCID for the symbol set
X' FF' Special pattern set.

Remarks
The value of the current pattern symbol-set attribute is pushed on to the Segment Call stack by the
Push and Set order only. Both orders then set the value of the current pattern symbol-set attribute to
the value in the order.

Set Pattern Symbol I Push and Set Pattern Symbol
These orders set, or push and set, the value of the current pattern-symbol attribute.

Set Pattern Symbol (GSPT}
XI 28 I (pall}

Push and Set Pattern Symbol (GPSPT}
XI 09 I (pall)

Parameters
pall (GB/TB)

Value for pattern-symbol attribute.

Special pattern set

When this is selected (lcid = X' FF'), the values are:

X' 00' Drawing default
X'01' -X'08' Density one through density eight (decreasing)
X'09' Vertical lines
X'OA' Horizontal lines
X' OB' Diagonal Ii nes 1 (bottom-left to top-right)
X'OC' Diagonal lines 2 (bottom-left to top-right)
X'OD' Diagonal lines 1 (top-left to bottom-right)
X'OE' Diagonal lines 2 (top-left to bottom-right)
X'OF' No shading
X'10' Solid shading
X'40' Blank.

33-44 PM Programming Reference

\

Other

Pattern set

Reserved values.

Values are as follows for any other set:
X'OO' Drawing default
X'01' -X'FF' These are the code points into the current pattern set.

Remarks
The value of the current pattern-symbol attribute is pushed on to the Segment Call stack by the Push
and Set order only. Both orders then set the value of the current pattern-symbol attribute to the
value in the order.

Set Pick Identifier I Push and Set Pick Identifier
These orders set, or push and set, the value of the current pick identifier.

Set Pick Identifier (GSPIK)
X '43' (len, pkld)

Push and Set Pick Identifier (GPSPIK)
X' 23 '(len, pkld)

Parameters
len (GLENGTH1)

Length of following data.

pkld (GLONG)
Pick identifier.

Remarks
The value of the current pick identifier is pushed on to the Segment Call stack by the Push and Set
order only. Both orders then set the value of the current pick identifier to the value in the order.

Set Segment Boundary
This order defines the maximum extent of the boundaries of the associated root segment. It is valid
only in a root segment prolog.

Set Segment Boundary (GSSB)
X'32'(1en, res, mask, bb)

Parameters
len (GLENGTH1)

Length of following data.

res (GB/TB)
Reserved.

X'OO' Only valid value.

mask
Values:

Chapter 33. Graphics Orders 33-45

res1 (GBIT2)
Reserved.

00 Only valid value.

xi (GBIT1)
X left limit.

0 Not included in list of bb values
1 Is included in list of bb values.

xr (GBIT1)
X right limit.

0 Not included in list of bb values
1 Is included in list of bb values.

yb (GBIT1)
Y bottom Ii m it.

O Not included in list of bb values
1 Is included in list of bb values.

yt (GBIT1)
Y top limit.

0 Not included in list of bb values
1 Is included in list of bb values.

res2 (GBIT2)
Reserved.

00 Only valid value.

bb (GROSOL*number of bits set on in mask)
Boundary values.

Remarks
The order is only valid in a root-segment prolog.

Set Stroke Line Width I Push and Set Stroke Line Width
These orders set the current stroke line-width attribute.

Set Stroke Line Width (GSSLW)
X' 15' (len, flags, res, strwidth)

Push and Set Stroke Line Width (GPSSLW)
X '55' (len, flags, res, strwldth)

Parameters
len (GLENGTH1)

Length of following data.

flags

deflt (GBIT1)
Values:

0 Set to value
1 Set to drawing default.

33-46 PM Programming Reference

res (GBIT7)
Reserved.

8'0000000'

res (GB/TB)
Reserved.

Only valid value.

X'OO' Only valid value.

strwidth (GROSOL)
Value for stroke width.

Set Text Alignment I Push and Set Text Alignment
These orders set, or push and set, the value of the current text alignment attribute.

Set Text Alignment (GSTA)
X '36' (horiz, vert)

Push and Set Text Alignment (GPSTA)
X '76' (horlz, vert)

Parameters
horiz (GUCHAR)

Horizontal alignment as follows:

X'01'

X'02'
X'03'
X'04'
X'05'

Normal alignment. The alignment assumed depends on the current character direction:
Left to right Left alignment.
Top to bottom Center alignment.
Right to left Right alignment.
Bottom to top Center alignment.
Left alignment. The string is aligned on the left edge of its leftmost character.
Center alignment. The string is aligned on the arithmetic mean of left and right.
Right alignment. The string is aligned on the right edge of its rightmost character.
Standard alignment. The alignment assumed depends on the current character
direction:
Left to right
Top to bottom
Right to left
Bottom to top

Left alignment.
Left alignment.
Right alignment.
Left alignment.

vert (GUCHAR)
Vertical alignment as follows:

X'01'

X'02'
X'03'
X'04'
X'OS'
X'06'

Normal alignment. The alignment assumed depends on the current character direction:
Left to right Base alignment.
Top to bottom Top alignment.
Right to left Base alignment.
Bottom to top Bottom alignment.
Top Alignment. The string is aligned on the top edge of its topmost character.
Halfr alignment. The string is aligned on the arithmetic mean of top and bottom.
Base alignment. The string is aligned on the base of its bottom character.
Bottom Alignment. The string is aligned on the bottom edge of its bottom character.
Standard alignment. The alignment assumed depends on the current character
direction:
Left to right
Top to bottom
Right to left
Bottom to top

Bottom alignment.
Top alignment.
Bottom alignment.
Bottom alignment.

Chapter 33. Graphics Orders 33-47

Remarks
The value of the current text alignment attribute is pushed on to the Segment Call stack by the Push
and Set order only. Both orders set the value of the current text alignment attribute to the value
specified in the order.

Set Viewing Transform
This order sets the current viewing transform.

Set Viewing Transform (GSTV)
X '31 '(len, res, flags, mask, mx)

Parameters
len (GLENGTH1)

Length of following data.

res (GB/TB)
Reserved.

X'O' Only valid value.

flags
Values:

res1 (GBIT5)
Reserved.

00000 Only valid value.

control (GBIT1)
Values:

0 Concatenate before drawing default
1 Concatenate before the current viewing transform.

res2 (GBIT2)
Reserved.

00 Only valid value.

mask (GBIT16)
Load mask.

mx (GROSOL*number of bits set on in mask)
Matrix values.

Set Viewing Window I Push and Set Viewing Window
These orders set, or push and set, the current viewing window.

Set Viewing Window (GSVW)
X '27' (len, flag, mask, ww)

Push and Set Viewing Window (GPSVW)
X' 67' (len, flag, mask, ww)

33-48 PM Programming Reference

Parameters
len (GLENGTH1)

flag

Length of following data.

Values:

replace (GBIT1)
Values:

0 Intersect with current window
1 Replace current with new window.

res (GB/Tl)
Reserved.

0000000 Only valid value.

mask
Values:

res1 (GBJT2)
Reserved.

00 Only valid value.

xi (GBJT1)
X left limit.

0 Not included in list of ww values
1 Is included in list of ww values

xr (GBIT1)
X right limit.

0 Not included in list of ww values
1 Is included in list of ww values

yb (GBIT1)
Y bottom limit.

0 Not included in list of ww values
1 Is included in list of ww values

yt (GBIT1)
Y top limit.

0 Not included in list of ww values
1 Is included in list of ww values

res2 (GBIT2)
Reserved value.

00 Only valid value.

ww (GROSOL*number of bits set on in mask)
Window values.

Remarks
The value of the current viewing window is pushed on to the Segment Call stack by the Push and Set
order only. Both orders then set the current viewing window using the values in the order.

Chapter 33. Graphics Orders 33-49

Sharp Fillet at Given Position I Sharp Fillet at Current
Position

This order generates a curve that starts at a given position, and uses points P1 and P2, together with
the sharpness specification Si.

Sharp Fillet at Given Position (GSFL T)
X' E4 '(len, pe, p1, p2, p3, p4, pn-1, pn, 51, s2, sn/2)

Sharp Fiiiet at Current Position (GCSFL T)
X' A4 '(len, p1, p2, p3, p4, pn-1, pn, s1, s2, sn/2)

Parameters
len (GLENGTH1)

Length of following data.

pe (GPO/NT)
Coordinate data of first curve start.

This parameter is only present in a Sharp Fillet at Given Position order.

p1 (GPO/NT)
Coordinate data of first curve control point.

p2 (GPO/NT)
Coordinate data of first curve end.

Pl (GPO/NT)
Coordinate data of second curve control point.

p4 (GPO/NT)
Coordinate data of second curve end.

pn-1 (GPO/NT)
Coordinate data of last curve control point.

pn (GPO/NT)
Coordinate data of last curve end.

Sl (GROF)
Sharpness specification of first curve.

s2 (GROF)
Sharpness specification of second curve.

sn/2 (GROF)
Sharpness specification of last curve.

Remarks
Further points are used in groups of two to form a polycurve.

33-50 PM Programming Reference

Chapter 34. Code Pages

The initialization file contains country information relating to date, time, and numeric formats. It
does not contain code-page information; this is obtained from the CONFIG.SYS file.

Applications start with the default code page. The default code page is set when the operating
system is installed. It can be changed subsequently either by reinstalling the operating system or by
editing the COUNTRY statement in the CONFIG.SYS file.

A GPI presentation space inherits the code page of the process that created it. The code page
changes only when the process issues a GpiSetCp function.

Windowed PM Applications
Windowed PM applications allow the code-page calls to use any of the supported ASCII code pages.
These are:

Char. Code
Set Page

Canadian-French 993 863
Desktop Publishing 1146 1004
Iceland 991 861
Latin 1 Multilingual 980 850
Latin 2 Multilingual 982 852
Nordic 995 865
Portuguese 990 860
Turkey 987 857
U.S. (IBM PC) 919 437

Code page 1004 is compatible with Microsoft** Windows··.

The following EBCDIC code pages, based on character set 697, are also available for output:

Char. Code
Set Page

Austrian/German 697 273
Belgian 697 500
Czechoslovakia 959 870
Danish/Norwegian 697 277
Finnish/Swedish 697 278
French 697 297
Hungary 959 870
Iceland 697 871
International 697 500
Italian 697 280
Poland 959 870
Portuguese 697 037
Spanish 697 284
Turkey 1152 1026
UK-English 697 285
U.S.-English 697 037
Yugoslavia 959 870

Note: Code pages 274 (Belgian) and 282 (Portuguese) can be used to provide access to old data.

** Trademark of Microsoft Corporation

Chapter 34. Code Pages 34-1

The operating system provides the following additional code-page setting and query calls for the
supported ASCII and EBCDIC code pages. These calls work independently of the CONFIG.SYS file.

GplSetCp
GplQueryCp
GplCreatelogFont
WlnSetCp
WlnQueryCp

Sets the code page for GPI.
Queries the code page for GPI.
Creates fonts in a code page.
Sets the code page for a message queue.
Queries the code page for a message queue.

WinQueryCpList creates a list of code pages supported by the operating system.

Text entered in a dialog box is supplied to the application in the code page of the queue ('queue code
page'). If possible, the code page of a resource (for example, a menu or dialog box) should match
the code page of the queue. In general, code page 850 is the best choice for both an application and
its resources.

Applications should be able to process data from a variety of sources. Because code page 850
contains most of the characters in other supported code pages, this is usually the best choice for the
queue code page.

34-2 PM Programming Reference

I

/

OS/2 Code Page Options for PM Applications

Appl i ca ti on-----------.

osSetProcessCp (see note 1)-----.
Set code page for this process
(keyboard/display not changed).

inQueryCpList (see note 2)-----.
Query list of supported code pages.

inSetCp. WinQueryCp (see note 1)

CONFIG.SYS
contains the
default code
page set by
CODEPAGE=

Set or query code page for -•----.1 ~Keyboard
translating incoming messages ~+ I
(keystrokes). Message

piSetCp. GpiQueryCp (see note 2)
Set or query default GPI code page.

piCreateLogFont (see note 2)-----.
Create font in a code page. 1

1Display

inCpTranslateChar (see note 2)
inCpTranslateString (see note 2)

Convert character or string from
one code page to another.

... •---•i.1Di sk

queue

t'-----------•LAN or host

Note 1: Either of the two ASCII code pages specified in CONFIG.SYS.
Code page 1ee4 is also supported.

Note 2: Any supported ASCII or EBCDIC code page as reported by
WinQueryCpList.
Code page 1ee4 is also supported.

Figure 34-1. OS/2 Code Page Options for PM Applications

Chapter 34. Code Pages 34-3

OS/2 Font Support for Multiple Code Pages
The operating system supports multiple code pages for text input and output. A single font resource

is used to support all the code pages. This section describes the font resource format.

Font Code-Page Functions
Many of the characters required by each code page are common; for example, the first 128

characters of all the ASCII code pages are identical. This set of characters is called the Universal

Glyph List (UGL). A code page is simply a set of pointers into the UGL.

As the characters in every font are in the same order, only one set of code-page translation tables is

necessary.

Note: The fonts of Microsoft Windows support only code page 1004.

Font Layout

34-4

The following table lists the full character set in the order in which the characters occur in the

multi-code-page font. Characters are listed in order of their universal glyph list (UGL) number; the

graphic character global identifier (GCGID) and a description of each character are also given.

UGL GCGID Description
1 ssoooooo Smiling face
2 SS010000 Smiling face, reverse image
3 SS020000 Heart suit symbol
4 SS030000 Diamond suit symbol
5 SS040000 Club suit symbol
6 SS050000 Spade suit symbol
7 SM570000 Bullet
8 SM570001 Bullet, reverse image
9 SM750000 Open circle

10 SM750002 Open circle, reverse image
11 SM280000 Male symbol
12 SM290000 Female symbol
13 SM930000 Musical note
14 SM910000 Two musical notes
15 SM690000 Sun symbol
16 SM590000 Forward arrow indicator
17 SM630000 Back arrow indicator
18 SM760000 Up-down arrow
19 SP330000 Double exclamation point
20 SM250000 Paragraph symbol (USA)
21 SM240000 Section symbol (USA), paragraph (Europe)
22 SM700000 Solid horizontal rectangle
23 SM770000 Up-down arrow, perpendicular
24 SM320000 Up arrow
25 SM330000 Down arrow
26 SM310000 Right arrow
27 SM300000 Left arrow
28 SA420000 Right angle symbol
29 SM780000 Left-right arrow
30 SM600000 Solid triangle
31 SV040000 Solid triangle, inverted
32 SP010000 Space
33 SP020000 Exclamation point
34 SP040000 Quotation marks
35 SM010000 Number sign
36 SC030000 Dollar sign
37 SM020000 Percent sign
38 SM030000 Ampersand
39 SP050000 Apostrophe
40 SP060000 Left parenthesis
41 SP070000 Right parenthesis

PM Programming·Heference

UGL GCGID Description
42 SM040000 Asterisk

., 43 SA010000 Plus sign
' 44 SP080000 Comma

/ 45 SP100000 · Hyphen/minus sign
46 SP110000 Period/full stop
47 SP120000 Slash
48 N0100000 Zero
49 N0010000 One
50 N0020000 Two
51 N0030000 Three
52 N0040000 Four
53 N0050000 Five
54 N0060000 Six
55 N0070000 Seven
56 N0080000 Eight
57 N0090000 Nine
58 SP130000 Colon
59 SP140000 Semicolon
60 SA030000 Less than sign/greater than (arabic)

'· \ 61 SA040000 Equal Sign
) 62 SA050000 Greater than sign/less than (arabic)

63 SP150000 Question mark
64 SM050000 At sign
65 LA020000 A capital
66 LB020000 B capital
67 LC020000 C capital
68 L0020000 o capital
69 LE020000 E capital
70 LF020000 F capital
71 LG020000 G capital

) 72 LH020000 H capital
73 LI020000 I capital
74 LJ020000 J capital
75 LK020000 K capital
76 LL020000 L capital
77 LM020000 M capital
78 LN020000 N capital
79 L0020000 O capital
80 LP020000 P capital
81 LQ020000 Q capital
82 LR020000 R capital
83 LS020000 S capital
84 LT020000 T capital
85 LU020000 U capital
86 LV020000 V capital
87 LW020000 W capital
88 LX020000 X capital
89 LY020000 Y capital
90 LZ020000 z capital
91 SM060000 Left bracket
92 SM070000 Backslash
93 SM080000 Right bracket
94 S0150000 Circumflex Accent
95 SP090000 Underline, continuous underscore
96 S0130000 Grave accent
97 LA010000 a small
98 LB010000 bsmall
99 LC010000 csmall

~ 100 L0010000 dsmall
/ 101 LE010000 esmall

102 LF010000 fsmall
103 LG010000 gsmall

Chapter 34. Code Pages 34-5

UGL GCGID Description
104 LH010000 h small
105 L1010000 ismall

~ 106 LJ010000 j small \
107 LK010000 ksmall
108 LL010000 I small
109 LM010000 msmall
110 LN010000 nsmall
111 L0010000 osmall
112 LP010000 psmall
113 LQ010000 qsmall
114 LR010000 rsmall
115 LS010000 ssmall
116 LT010000 tsmall
117 LU010000 usmall
118 LV010000 vsmall
119 LW010000 wsmall
120 LX010000 xsmall
121 LY010000 ysmall
122 LZ010000 zsmall
123 SM110000 Left brace
124 SM130000 Vertical line, logical OR
125 SM140000 Right brace
126 50190000 Tilde
127 SM790000 House
128 LC420000 C cedilla capital
129 LU170000 U diaeresis small
130 LE110000 E acute small
131 LA150000 A circumflex small
132 LA170000 A diaeresis small
133 LA130000 A grave small
134 LA270000 A overci rcle small
135 LC410000 C cedilla small
136 LE150000 E circumflex small
137 LE170000 E diaeresis small
138 LE130000 E grave small
139 Ll170000 I diaeresis small
140 Ll150000 I circumflex small
141 Ll130000 I grave small
142 LA180000 A diaeresis capital
143 LA280000 A overcircle capital
144 LE120000 E acute capital
145 LA510000 AE diphthong small
146 LA520000 AE diphthong capital
147 L0150000 0 circumflex small
148 L0170000 0 diaeresis small
149 L0130000 0 grave small
150 LU150000 U circumflex small
151 LU130000 U grave small
152 LY170000 Y diaeresis small
153 L0180000 0 diaeresis capital
154 LU180000 U diaeresis capital
155 L0610000 0 slash small
156 SC020000 Pound sterling sign
157 L0620000 0 slash capital
158 SA070000 Multiply sign
159 SC070000 Florin sign
160 LA110000 A acute small
161 Ll110000 I acute small
162 L0110000 0 acute small
163 LU110000 U acute small
164 LN190000 N tilde small
165 LN200000 N tilde capital

34-6 PM Programming Reference

UGL GCGID Description
166 SM210000 Ordinal indicator, feminine
167 SM200000 Ordinal indicator, masculine
168 SP160000 Question mark, inverted

I 169 SM530000 Registered trademark symbol
170 SM660000 Logical NOT, end of line symbol
171 NF010000 One-half
172 NF040000 One-quarter
173 SP030000 Exclamation point, inverted
174 SP170000 Left angled quotes
175 SP180000 Right angled quotes
176 SF140000 Fill character, light
177 SF150000 Fill character, medium
178 SF160000 Fill character, heavy
179 SF110000 Center box bar vertical
180 SF090000 Right middle box side
181 LA120000 A acute capital
182 LA160000 A circumflex capital
183 LA140000 A grave capital
184 SM520000 Copyright symbol
185 SF230000 Right box side double
186 SF240000 Center box bar vertical double
187 SF250000 Upper right box corner double
188 SF260000 Lower right box corner double
189 SC040000 Cent sign
190 SC050000 Yen sign
191 SF030000 Upper right box corner
192 SF020000 Lower left box corner
193 SF070000 Middle box bottom
194 SF060000 Middle box top
195 SF080000 Left middle box side
196 SF100000 Center box bar horizontal
197 SF050000 Box intersection
198 LA190000 A tilde small
199 LA200000 A tilde capital
200 SF380000 Lower left box corner double
201 SF390000 Upper left box corner double
202 SF400000 Middle box bottom double
203 SF410000 Middle box top double
204 SF420000 Left box side double
205 SF430000 Center box bar horizontal double
206 SF440000 Box intersection double
207 SC010000 International currency symbol
208 LD630000 eth Icelandic small
209 LD620000 D stroke capital, Eth Icelandic capital
210 LE160000 E circumflex capital
211 LE180000 E diaeresis capital
212 LE140000 E grave capital
213 Ll610000 I dotless small
214 Ll120000 I acute capital
215 Ll160000 I circumflex capital
216 Ll180000 I diaeresis capital
217 SF040000 Lower right box corner
218 SF010000 Upper left box corner
219 SF610000 Solid fill character
220 SF570000 Solid fill character, bottom half
221 SM650000 Vertical line, broken
222 Ll140000 I grave capital
223 SF600000 Solid fill character, top half
224 L0120000 0 acute capital
225 LS610000 Sharps small
226 L0160000 0 circumflex capital
227 L0140000 O grave capital

Chapter 34. Code Pages 34-7

UGL GCGID Description
228 L0190000 0 tilde small
229 L0200000 0 tilde capital
230 SM170000 Micro symbol
231 LT630000 Thorn Icelandic small
232 LT640000 Thorn Icelandic capital
233 LU120000 U acute capital
234 LU160000 U circumflex capital
235 LU140000 U grave capital
236 LY110000 y acute small
237 LY120000 Y acute capital
238 SM150000 Overline
239 SD110000 Acute accent
240 SP320000 Syllable hyphen
241 SA020000 Plus or minus sign
242 SM100000 Double underscore
243 NF050000 Three-quarters
244 SM250000 Paragraph symbol (USA)
245 SM240000 Section symbol (USA), paragraph (Europe)
246 SA060000 Divide sign
247 SD410000 Cedilla (or sedila) accent
248 SM190000 Degree symbol
249 SD170000 Diaeresis, umlaut accent
250 SD630000 Middle dot
251 ND011000 One superscript
252 ND031000 Three superscript
253 ND021000 Two superscript
254 SM470000 Solid square, histogram, square bullet
255 SP300000 Required space
256 SC060000 Peseta sign
257 SM680000 Start of line symbol
258 SF190000 Right box side double to single
259 SF200000 Right box side single to double
260 SF210000 Upper right box corner single to double
261 SF220000 Upper right box corner double to single
262 SF270000 Lower right box corner single to double
263 SF280000 Lower right box corner double to single
264 SF360000 Left box side single to double
265 SF370000 Left box side double to single
266 SF450000 Middle box bottom single to double
267 SF460000 Middle box bottom double to single
268 SF470000 Middle box top double to single
269 SF480000 Middle box top single to double
270 SF490000 Lower left box corner double to single
271 SF500000 Lower left box corner single to double
272 SF510000 Upper left box corner single to double
273 SF520000 Upper left box corner double to single
274 SF530000 Box intersection single to double
275 SF540000 Box intersection double to single
276 SF580000 Solid fill character, left half
277 SF590000 Solid fill character, right half
278 GA010000 Alpha small
279 GG020000 Gamma capital
280 GP010000 Pi small
281 GS020000 Sigma capital
282 GS010000 Sigma small
283 GT010000 Tau small
284 GF020000 Phi capital
285 GT620000 Theta capital
286 G0320000 Omega capital
287 GD010000 Delta small
288 SA450000 Infinity symbol
289 GF010000 Phi small

34-8 PM Programming Reference

UGL GCGID Description
290 GE010000 Epsilon small

-,. 291 SA380000 Intersection, logical product

J
292 SA480000 lndentity symbol, almost equal

/
,I

293 SA530000 Greater than or equal sign
294 SA520000 Less than or equal sign
295 SS260000 Upper integral symbol section
296 SS270000 Lower integral symbol section
297 SA700000 Nearly equals symbol
298 SA790000 Product dot
299 SA800000 Radical symbol
300 LN011000 N small superscript
301 SD310000 Macron accent
302 SD230000 Breve accent
303 SD290000 Overdot accent (over small Alpha)
304 SD270000 Overcircle accent
305 SD250000 Double acute accent
306 SD430000 Ogonek accent
307 SD210000 Caron accent
308 SP190000 Left single quote
309 SP200000 Right single quote
310 SP210000 Left double quotes
311 SP220000 Right double quotes
312 SS680000 End ash
313 SM900000 Emdash
314 SD150000 Circumflex accent
315 SD190000 Ti Ide accent
316 SP260000 Single quote on baseline (German lower)
317 SP230000 Left lower double quotes
318 SV520000 Ellipsis
319 SM340000 Dagger footnote indicator

I\
320 SM350000 Double dagger footnote indicator)
321 SD150100 Circumflex accent (over small alpha)
322 SM560000 Permille symbol
323 LS220000 S caron capital
324 SP270000 French single open quote
325 L0520000 OE ligature capital
326 SD190100 Tilde accent (over small alpha)
327 SM540000 Trademark symbol
328 LS210000 s caron small
329 SP280000 French single close quote
330 L0510000 oe ligature small
331 LY180000 Y diaeresis capital
333 LG230000 g Breve Small
334 LG240000 G Breve Capital
335 Ll130000 i Grave Small
336 Ll300000 I Overdot Capital
337 LS410000 s Cedilla Small
338 LS420000 S Cedilla Capital
339 LA230000 a Breve Small
340 LA240000 A Breve Capital
341 LA430000 a Ogonek Small
342 LA440000 A Ogonek Capital
343 LC110000 c Acute Smal I
344 LC120000 C Acute Capital
345 LC210000 c Caron Small
346 LC220000 C Caron Capital
347 LD210000 d Caron Small
348 LD220000 D Caron Capital

) 349 LD610000 d Stroke Sm al I
350 LE210000 e Caron Small
351 LE220000 E Caron Capital
352 LE430000 e Ogenek Small

Chapter 34. Code Pages 34-9

UGL GCGID Description
353 LE440000 E Ogonek Capital
354 LL110000 I Acute Small (
355 LL120000 L Acute Capital ~
356 LL210000 I Caron Small
357 LL220000 L Caron Capital
358 LL610000 I Stroke Sm al I
359 LL620000 L Stroke Capital
360 LN110000 n Acute Small
361 LN120000 N Acute Capital
362 LN210000 n Caron Small
363 LN220000 N Caron Capital
364 L0250000 o Double Acute Small
365 L0260000 0 Double Acute Capital
366 LR110000 r Acute Small
367 LR120000 R Acute Capital
368 LR210000 r Caron Sm al I
369 LR220000 R Caron Capital
370 LS110000 s Acute Sm al I
371 LS120000 S Acute Capital

LS210000 + s Caron Smal I
LS220000 + S Caron Capital
LS410000 *s Cedilla Small
LS420000 *S Cedilla Capital

372 LT210000 t Caron Sm al I
373 LT220000 T Caron Capital
374 LT410000 t Cedilla Small
375 LT420000 T Cedilla Capital
376 LU250000 u Double Acute Small
377 LU260000 U Double Acute Capital
378 LU270000 u Overcircle Small
379 LU280000 u Overcircle Capital
380 LZ110000 z Acute Sm al I
381 LZ120000 z Acute Capital
382 LZ210000 z Caron Small
383 LZ220000 Z Caron Capital
384 LZ290000 z Overdot Small
385 LZ300000 Z Overdot Capital

34-10 PM Programming Reference

ASCII Code Pages

/ 1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2~ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 0 @ p ' c; E a L _lL a p ... -

1 -1 @ ! 1 A Q a i ··•·• _L p q ii re ····· -r ± :::~

2 -2 • i II 2 B R b r e lE 6 m I II r ~

3 -3 • " # 3 c s c s a 0 u I ~ lL 1t ~ ..
4 -4 • ~ $ 4 D T d t a 0 fi ~ - I::: ~ r
5 -5 • § % 5 E u e u a 0 N ~ + F O" J

6 -6 • - & 6 F v f v a ft ! 11 F= rr µ

7 -7 • i ,
7 G w g w ~ u Q 11 I~ --H- 't ~

8 -8 a t (8 H x h x e y ;, =i l!::: =F <I> 0

9 -9 0 +) 9 I y i y e 0 r 91 r;= _J e •
10 -A --. * : J z j z e 0 --, II _JL a . r
11 -B cf +- + ; K [k { i ¢ Y2 =ii Ir II 0 _;)_
12 -C ~ L < L \ 1 I i £ Y4 :::!J IP -00 n

'
13 -D) - = M] m } i ¥ i JJ - I ~ 2

14 -E j.l • > N "' n - A Pt « :::::! _JL I E • Ir
15 -F ~ .. I ? 0 0 Cl A f » I

_L -n -

Figure 34-2. US-English: ASCII Code Page 437

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2+} 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 0 @ p ' c; E a L 6 6 p ... -
1 -1 @ ! 1 A Q ii i l~m _L D p ± a q re

2 -2 • i II 2 B R b r e lE 6 m I E 6 =

3 -3 • " # 3 c s c s a 0 u I ~ E 0 3/4 ..
4 -4 • ~ $ 4 D T d t a 0 fi ~ - E 0 ~

5 -5 • § % 5 E u e u a 0 N A + 1 () §

6 -6 • - & 6 F v f v a ft !l. A a i µ

7 -7 • ~ ,
7 G w g w ~ u Q A A. I p ..

8 -8 a t (8 H x h x e y ;, © l!::: i I> 0

9 -9 0 +) 9 I y i e 0 ® 91 _J (J ..
y r;=

10 -A --. * J z j e 0 --, II _JL 0 . : z r
11 -B cf +- + ; K [k { i 0 Y2 =jl Ir II 0 1

12 -C ~ L \ 1 i £ :::!J IP
~ 3

L
'

< I % -y

13 -D) ++ - = M] m } i 0 i ¢ - I y 2
I

14 -E j.l • > N "' - A x ¥
_JL i - • n « Ir

15 -F ~ .. I ? 0 0 Cl A f » I 0 -,
-

Figure 34-3. Latin 1 Multilingual: ASCII Code Page 850

Chapter 34. Code Pages 34-11

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2_.1 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 0 @ p ' c; E a L d 6 -p ...
1 -1 © ~ ! 1 A Q ii L i ~t _J_ D ~ " a q

2 -2 • i " 2 B R b r e I 6 m I D 0 c..

3 -3 • " I f- E
..

v .. # 3 c s c s a 0 u N

4 -4 • ~ $ 4 D T d a 0 ;\ ~ - d n -t

5 -5 • § % 5 E u e u u L ~ A + :N ii §

6 -6 • - - - i s & 6 F v f v c I z A A

7 -7 • i I 7 G w s z :E - i s g w ~ a ..
8 -8 a t (8 H x h l s J? & t!::: e R 0 x

9 -9 0 ~) 9 I y i e 0 ~I _J (J
..

y ~ rr=
10 -A IJ -+ * J z j 6 -0 --, II ..JL . : z - I r

d' - II 11 -B +- + ; K [k { 0 T z =;i 1r u u

~
- :::!J IF=

-12 -C L
'

< L \ I I i t c -y R

13 -D) - = M 1 m } z L ~ z - T y r

14 -E j;J ... > N "' - A x z ..JL u t • n « Ir

15 -F -¢- ... I ? 0 - 0 ~ c c » I 0 - I

Figure 34-4. Latin 2 Multilingual: ASCII Code Page 852

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2,.1 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 0 @ p ' c; E a L Q 6 -p ...
1 -1 © ~ ! 1 A Q a q ii re i lllll _J_ !!. ~ ±

2 -2 • i " 2 B R b r e JE 6 m I E 0
3 -3 • " # 3 c s c s a 0 u I f- E <) % ..
4 -4 • ~ $ 4 D T d t a 0 ii ~ - :E 0 ~

5 -5 • § % 5 E u e u a 0 :N A + 0 §

6 -6 • - & 6 F v f v a ft a A a i µ

7 -7 • i I 7 G w g w ~ u g A A. i ..
8 -8 a t (8 H x h x e i l. © t!::: I x 0

9 -9 0 ~) 9 I y i y e 0 ® ~I _J (J ..
rr=

10 -A IJ -+ * : J z j z e -0 --, II ..JL u .
I

11 -B d' +- + K [k { i % =;i II u 1

'
(lJ 1r

12 -C ~ < L \ I I i £ Y4 :::!J IF= -i 3
L

'
13 -D) - = M 1 m } 1 0 j ¢ - I y 2

I

14 -E j;J ... N "' - A ~ ¥ ..JL i - • > n « 1r

15 -F -¢- ... I ? 0 0 - ~ A ~ » I 0 - I

Figure 34-5. Turkey: ASCII Code Page 857

34-12 PM Programming Reference

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2,.7 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

I 0 -0 0 @ p ' c; E a L .JL a p ... -
1 -1 (;;) ! 1 A Q ii A i ::::: _L ~ ± a q ::::: -r
2 -2 • : II 2 B R b r e E 6 m T II r ~

3 -3 • " # 3 c s c s a 0 u I ~ lL 1t ~

4 -4 • ~ $ 4 D T d t a 0 ii ~ - b :E r
5 -5 • § % 5 E u e u a 0 N ~ + F O' J

6 -6 • - & 6 F v f A (J D. 11 F= rr µ v

7 -7 • : I 7 G w g w ~ u Q 11 I~ -H- 't ~

8 -8 a t (8 H x h x e i i, ~ ~ + cl> 0

9 -9 0 +) 9 I y i y E 5 0 ~I rr=
_J e •

10 -A -_.
* : J z j e u --, II

_JL n . z I

11 -B cf +- + ; K [k { i ¢ ~ ~ Ir II 0 :J_
12 -C ~ L < L \ 1 I 0 £ y4 :::!J IP -00 n

'
13 -D) - = M] m } i u j

Jj - I ¢ 2

14 -E ~ ... > N "' - A Pts d _JL I E • n « Ir
15 -F ~ .. I ? 0 6 A 6 » I

J -n - 0

Figure 34-6. Portuguese: ASCII Code Page 860

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2,.7 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 0 @ p ' c; E a L .JL a p ... -
1 -1 (;;) ! 1 A Q a q ii re i ;~;;~ _L

-r ~ ±
2 -2 • : II 2 B R b r e .,.£ 6 m T II r ~

3 -3 • " # 3 c s c s a 0 u I ~ lL 1t ~ ..
4 -4 • ~ $ 4 D T d t a 0 A. ~ - b :t r
5 -5 • § % 5 E u e u a p I ~ + F (J' J

6 -6 • - & 6 F v f v a. ft 6 11 F= rr µ

7 -7 • ; I 7 G w g w ~
y (J 11 I~ -H- 't ~

8 -8 a t (8 H x h x e I y i, ~ ~ + cl> 0

9 -9 0 +) 9 I y i y e 6 I ~I rr=
_J e •

10 -A -_. * : J z j z e u --,
II

_JL n .
I

11 -B cf +- + ; K [k { D 0 Y2 ~ Ir II 0 .:)_
12 -C ~ L < L \ 1 I 0 £ y.. :::!J IP -00 n

'
13 -D) - = M] m } I> 0 i Jj - I ¢ 2

14 -E ~ ... > N "' n - .A Pts « d _JL I E • Ir
15 -F ~ .. I ? 0 0 6 A f » I

J -n -

Figure 34-7. Iceland: ASCII Code Page 861

Chapter 34. Code Pages 34-13

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2.7 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 ~ 0 @ p \ c; E I L .JL a p I ... -
1 -1 c;;) ~ ! 1 A Q ii :E I iim

....L ~ ± a q -r
2 -2 • : II 2 B R b r e E 6 m I II r ;;:::::

3 -3 • " # 3 c s c s a 0 u I f- lL 1t ~

4 -4 • ~ $ 4 D T d t A. E ..
~ - '= ~ r

5 -5 • § % 5 E u e u a I ~ + F (J' J ..
6 -6 • - & 6 F v f ~ ft 3 ~I F= µ v fl

7 -7 • : I 7 G w g w ~ u - 11 I~ -tt- 't ~

8 -8 a t (8 H x h x e)'l i =i Lh =F <I> 0

9 -9 0 +) 9 I y i y e 6 I ~I rr=
_J @ •

10 -A --+ * J z j z e u --,
II

_JL ,n .
11 -B c! +- + K [k { i ¢ Y2 =;i Ir II () ~ '
12 -C ~ L- < L \ l I i £ y.. :::!J If= -00 n

'
13 -D) ++ - = M] m } = (J % JJ - I ~ 2

14 -E ~ .. > N
A - A 0 ::::! _JL I E • n « Ir

15 -F ~ • I ? 0 - 0 a § f » I
__!_ -n

Figure 34-8. Canadian-French: ASCII Code Page 863

1 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
2.7 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 -0 ~ 0 @ p \ c; E a L .JL a p ... -

1 -1 c;;) ~ ! 1 A Q ii re i :::::L ~ ± a q :::~ -r
2 -2 • : II 2 B R b r e £ 6 m I II r ;;:::::

3 -3 • " # 3 c s c s a 0 u I f- lL 1t ~ ..
4 -4 • ~ $ 4 D T d t a 0 ii ~ - '= ~ r
5 -5 • § % 5 E u e u a 0 ~ ~ + F (J' J

6 -6 • - & 6 F v f v a ft !!. ~I F= fl µ

7 -7 • : I 7 G w g w ~ u Q 11 I~ -tt- 't ~

8 -8 a t (8 H x h x e y ;, =i Lh =F <I> 0

9 -9 0 +) 9 I y i y e 0 I ~I rr=
_J @ •

10 -A --+ * J z j z e u --,
II

_JL ,n .
11 -B c! +- + ; K [k { i 0 Y2 =;i 1r II () d_
12 -C ~ L- < L \ l I i £ y.. :::!J If= -00 n

'
13 -D) ++ - = M] m } i 0 j JJ - I ~ 2

14 -E ~ .. > N A
n - A Pt ::::! _JL I E • « Ir

15 -F ~ • I ? 0 0 a A f)'l I
__!_ -n -

Figure 34-9. Norwegian: ASCII Code Page 865

34-14 PM Programming Reference

.... 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-• ~'
-0 (SP) 0 @ p ' (RSP) 0 A D a cs p

-1 ! 1 A Q a q ' j l> A N a ii

-2 " 2 B R b ' ¢ 2 A <) a 0 r
'

-3 # 3 c s c s " £ 3 A 6 a 6

-4 - $ 4 D T d " :0 I A. 6 a 0 t
"

-5
~

µ A 0 % 5 E u e u ... • ¥ a 0

-6
. t I 'If 0 & 6 F v f v - I }E re 0

-7 I
7 G w ± § . <; x g w - ~

-8 0 A, ..
:E (8 H x h x ... 0 e 0

-9) 9 I y i y % TM © 1 E u e u
-A H * J z j z s ...

s ! Q E (J e u
-B L + ; K [k { < > « » :E u e ft

-C
v

\ I CE --, }{ i -0 i
'

< L I re ii

-D ~ i
~ y - = M 1 m } {sHY) y i

-E
A,

® % I I> b > N n i

-F I ? 0 y - i B i y - 0 _L

Figure 34-10. Desktop Publishing: ASCII Code Page 1004

Chapter 34. Code Pages 34-15

EBCDIC Code Pages

.... 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 µ ¢ { } \ 0 - 0

-1 e I E a j - [A J 1

-2 a e A E b k s ¥ B K s 2

-3 a e A. E c 1 t . c L T 3

-4 a e A :E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a 1 A. j f 0 w ,-r F 0 w 6

-7 a i A I g p x % G p x 7

-8 ~ i c; i h q y ~ H Q y 8

-9 ii B N \ i r z % I R z 9

-A $! ' !!. " - 1 2 3 : « i

-B £ # » Q
j, 1 0 ft 6 -0 '

-C * % @ 6 D
,..,,

0 ii 6 0 < re

-D () I y y .. 0 u 0 (J
- ..

-E + ; > = l> lE I>
,

6 u 6 (J

-F I --, ? " + :a ® v 0 y 0 EO

Figure 34-11. US-English: EBCDIC Code Page 037

34-16 PM Programming Reference

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-+
/ -0 & 0

0 µ ¢ a ii 6 0 - 0

-1 e I E a j B £ A J 1

-2 a e A E b k s ¥ B K s 2

-3 { e [E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-5 a i A i e n v @ E N v 5

-6 a i A I f 0 w 1T F 0 w 6

-7 a i A i g p x % G p x 7

-8 ~ i c; i h q y ~ H Q y 8

-9 ii
,.., :N ' i % I R z 9 r z

-A .A u 0 !! -, 1 2 3 « i -

-B $ #
Q

' » i, I 0 ft 6 (J

-C < * % § 6 re D - ' } \ 1
-D () I y y ..

0 u 0 u - ...

-E + > = l> £ I> I 6 u 6 (J
'

-F ! A ? " ± 0 ® v 0 y l> EO

Figure 34-12. Austrian/German: EBCDIC Code Page 273

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-+
-0 & 0

0 - 0 µ ¢ e e ~ 0

-1 { I E a j
..

£ A J -;- 1

-2 a e A E b k s ¥ B K s 2

-3 a e .A E c 1 t . c L T 3

-4 @ } A E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a i A i f 0 w 1T F 0 w 6

-7 a i A i g p x % G p x 7

-8 \ i c; i h q y ~ H Q y 8

-9 ii B :N ' i r z % I R z 9

-A [[u ~
j -, - 1 2 3 : «

-B $ # » Q
i, I 0 ft 6 (J

'
-C < * % a 6 re D - 0 ii 6 u
-D () I y I ,..,

0
, 0 u - ... y

-E + ; > = l> £ I> I 6 u 6 (J

-F ! A ? II ± 0 ® v 0 y l> EO

Figure 34-13. Belgian: EBCDIC Code Page 274 (supported for migration purposes)

Chapter 34. Code Pages 34-17

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & ' @

0 µ ¢ a \ 0 - re

-1 e I E a j ii £ A J 1

-2 a. e A E b k s ¥ B K s 2

-3 a e A E c 1 t . c L T 3

-4 a e A :E d m u © D M u 4

-S a i A i e n v § E N v 5

-6 a i A I f 0 w ![F 0 w 6

-7 } i $ I g p x % G p x 7

-8 ~ i <; i h q y ~ H Q y 8

-9 ii B N \ i r z % I R z 9

-A # :a "'
~ --, 1 2 3

: « i -

-B A .iE
Q

l, I 0 ft () u ' »

-C < * % 0 6 { D - 0
,...,

0 -0

-D () I y I ..
0 u 0 u - "' y

-E + ; > = l> [J;> I 6 u 6 (J

-F ! "" ? II ± 1 ® v 0 y 0 EO

Figure 34-14. Danish/Norwegian: EBCDIC Code Page 277

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 µ ¢ a a. E 0 - "'
-1 \ I \ j ii £ A J 1 a

-2 a e A E b k s ¥ B K s 2

-3 { e # E c I t . c L T 3

-4 a e A :E d m u © D M u 4

-S a i A i e n v [E N v 5

-6 a i A I f 0 w ![F 0 w 6

-7 } i $ I g p x % G p x 7

-8 ~ i <; i h q y ~ H Q y 8

-9 ii B N e i r z % I R z 9

-A § :a 0 !
i

--, - 1 2 3
: «

-B A A. » 2
l, I 0 ft () u '

-C < * % 0 6 D - '
,...,

@ -0 re

-D () I y I .. 0 u 0 u - .. y

-E + ; > = l> .iE I> \ 6 u 6 (J

-F ! "" ? II + 1 ® v 0 y 0 EO

Figure 34-15. Finnish/Swedish: EBCDIC Code Page 278

34-18 PM Programming Reference

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-..
/ -0 & - 0 0 [µ ¢ a e ~ 0

-1] I E a j i # A J 1

-2 a e A E b k s ¥ B K s 2

-3 a e .A E c 1 t . c L T 3

-4 { } A :E d m u © D M u 4

-S a i A i e n v @ E N v 5

-6 a i A i f 0 w ~ F 0 w 6

-7 a i A I g p x }{ G p x 7

-8 \
,..., c; i h ~ H Q y 8 q y

-9 fi B N u i r z % I R z 9

-A 0 e 0 l! I 1 2 3 : « i -

-B $ £
Q

j, I 0 ft 0 0 ' »

-C < * % § 5 re £) - 0 ii 0 0

-D () I y I ..
' ' 0 u - .. y

-E + > h JE I>
,

6 u 6 (J ; =

-F ! "" ? " ± n ® v 0 y <) EO

Figure 34-16. Italian: EBCDIC Code Page 280

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-..
-0 & - 0

0 µ ¢ a I c; 0 0

-1 e I E a j ~ £ A J 1

-2 a e A E b k s ¥ B K s 2

-3 a e .A E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-S a i A i e n v § E N v 5

-6 { i # i f 0 w ~ F 0 w 6

-7 a i A I g p x }{ G p x 7

-8
,...,

i \ i h ~ H Q y 8 q y

-9 fi B N ' i r z % I R z 9

-A [] 0 !
i I - 1 2 3 : «

-B $ A » Q
j, I 0 ft 0 0 '

-C < * % <) 5 re £) - 0 ii 0 0

-D () I y y ..
0 ' 0 u - ..

-E + ; > = h JE I> } 6 u 6 (J

-F ! "" ? II ± n ® v . y @ EO

Figure 34-17. Portuguese: EBCDIC Code Page 282 (supported for migration purposes)

Chapter 34. Code Pages 34-19

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 µ ¢ { } \ 0 - flJ

-1 e I E j
..

£ A J 1 a

-2 a e 'A E b k s ¥ B K s 2

-3 a e A. E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a i A. i f 0 w ~ F 0 w 6

-7 a i A i g p x ~ G p x 7

-8 ~ i c; i h q y ~ H Q y 8

-9 ' B # ' i % I R z 9 r z

-A [] ii ~ "' 1 2 3
: « i -

-B $ N Q
l, ! 0 u 6 0 ' »

-C < * % @ 6 re D - 0 ii 0 -0

-D () I y I ,..,
0 u 0 u - .. y

-E + ; > = l> lE I> I 6 u 6 (J

-F I ---, ? " ± :a: ® v 0 y 0 EO

Figure 34-18. Spanish: EBCDIC Code Page 284

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 - flJ µ ¢ { } \ 0

-1 e I E a j - [A J 1

-2 a e 'A E b k s ¥ B K s 2

-3 a e A. E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a i A. i f 0 w ~ F 0 w 6

-7 a i A i g p x ~ G p x 7

-8 ~ i c; i h q y ~ H Q y 8

-9 ii B N ' i r z % I R z 9

-A $! ' !
i "' - 1 2 3 : «

-B £ # »
Q

l,] 0 u 6 (J
'

-C < * % @ 6 re D
,..,

0 ii 0 -0

-D () I y I .. 0 u 0 u - .. y

-E + ; > = l> lE I> I 6 u 6 (J

-F I ---, ? II ± :a: ® v 0 y 0 EO

Figure 34-19. UK-English: EBCDIC Code Page 285

34-20 PM Programming Reference

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & - 0 0 [

I

¢ e e ~ 0

-1 { I :E j
..

A J 1 a

-2 a e A E b k s ¥ B K s 2

-3 a e A E c I t c L T 3

-4 @ } A E d m u © D M u 4

-S a i A i e n v] E N v 5

-6 a i A j f 0 w ,-r F 0 w 6

-7 a i A I g p x ~ G p x 7

-8 \ i <; i h q y % H Q y 8

-9 ii B N µ i r z % I R z 9

-A
0 § u !!. ---, 1 2 3 « i -

-B $ £
Q

l I 0 ii 6 u ' »

-C < * % a 6 re £) - 0 ii 0 0

-D () I y I ,..,
0 ' 0 (J

- .. y

-E + ; > = h lE p I 6 u 6 (J

-F ! A ? II ± n ® v 0 y 0 EO

Figure 34-20. French: EBCDIC Code Page 297

-+ 0- 1- 2- 3- 4- S- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 µ ¢ { } \ 0 - 0

-1 e I :E a j
,.,, £ A J I

-2 a e A E b k s ¥ B K s 2

-3 a e A E c I t . c L T 3

-4 a e A E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a i A j f 0 w ,-r F 0 w 6

-7 a i A I g p x ~ G p x 7

-8 ~ i <; i h q y % H Q y 8

-9 ii B N I i r z % I R z 9

-A [] . !
i ---, - 1 2 3 : «

-B $ # »
Q

l I 0 ii 6 u '
-C < * % @ 6 re £) - 0 ii 0 -0

-D () I y I ..
0 u 0 (J

- .. y

-E + ; > = h lE I> I 6 u 6 (J

-F ! A ? II ± n ® v 0 y 0 EO

Figure 34-21. International: EBCDIC Code Page 500

Chapter 34. Code Pages 34-21

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-+
-0 v >J 0 .

& - a { } \ 0

-1 e I E j
,..,

A A J 1 a

-2 a e A E b k s z B K s 2

-3 a e A. E c 1 t T c L T 3

-4 0 II u .
l u d m u z D M u 4

-5 a i A i e n v § E N v 5

-6
v

i v
a i A f 0 w z F 0 w 6

-7 v v c v z c 1 L g p x G p x 7

-8
I

, v

~ 1 <; L h q y z H Q y 8

-9 I c ' i
I

c B r z z I R z 9

-A s v d v

[] I s t L - E D

-B v n v I II 6
II

$
' # n N N 0 u u

-C < * % @ d s E> s 0 ii 0 0

' y ..
I

v
:R

v

-D () - y .. r t T
v v

I 6 (J -E + '
> = r .. R 6 u

"' " ti 0 e II

-F ! ? ~ ~ x 0

Figure 34-22. Czechoslovakia/Hungary/Poland/Yugoslovia: EBCDIC Code Page 870

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-+
-0 & flJ 0

0 - µ ¢ b re I 0

-1 e I E a j 0 £ A J 1

-2 a e A E b k s ¥ B K s 2

-3 a e A. E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-5 a i A i e n v § E N v 5

-6 a i A. i f 0 w ~ F 0 w 6

-7 a i A i g p x }{ G p x 7

-8 ~ i <; i h q y ~ H Q y 8

-9 fi. B N 6 i r z % I R z 9

-A I> lE I ~
j ---, - 1 2 3

I «

-B $ # » Q
l I 0 ft 6 fJ '

-C < * % E> ' } @ - ,..,
ii "']

-D () I y I ..
0 u 6 -0 - .. y

-E + > = {] [\ 6 u 6 (J
'

-F ! 0 ? " ± ti ® x 0 y 0

Figure 34-23. Iceland: EBCDIC Code Page 871

34-22 PM Programming Reference

/

-+ 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-•
-0 & 0

0 µ ¢ g ii 0 - 0 ~

-1 e I E a j 0 £ A J 1

-2 a e A E b k s ¥ B K s 2

-3 a e A E c 1 t . c L T 3

-4 a e A E d m u © D M u 4

-5 a. i A i e n v § E N v 5

-6 a i A j f 0 w ~ F 0 w 6

-7 a. i A i g p x ~ G p x 7

-8 { i [i h q y ~ H Q y 8

-9 ii .B N 1 i r z % I R z 9

-A <; a !! I 1 2 3
~ : « i -

-B i 0 Q

l I 0 ft (j 0 ' » - ,

-C < * % ~ }] - ,...,
\ # II re

-D () I \

$
..

0 u <) (J - ..
-E + > = I .tE @ I 6 u 6 (J ; I

-F !
A

? 0 ± n ® x 0 y 0

Figure 34-24. Turkey: EBCDIC Code Page 1026

DBCS Support
The Presentation Interface supports double-byte character sets (DBCS) by means of three kinds of
character-encoding schemes:

SBCS only Single-byte code pages; for example, U.S.-English.

Both ASCII and EBCDIC SBCS code pages have similar representations.

DBCS only Double-byte code pages; for example, Kanji.

MIXED

Both ASCII and EBCDIC DBCS code pages have similar representations.

Code pages that incorporate a combination of single-byte and double-byte characters.

The internal representations of EBCDIC MIXED and ASCII MIXED code pages differ:

• ASCII MIXED: the encoding scheme allows single-byte characters to be
distinguished from double-byte characters algorithmically. With this scheme the
number of characters entered or displayed is the same as the number of characters
in a field.

• EBCDIC MIXED: the encoding scheme requires that control characters within the
string switch from single to double byte encoding (and from double to single byte
encoding). These control characters are the shift-out (SO) and shift-in (SI)
characters.

With this encoding scheme there may be many more characters in the input or data
field than characters displayed or printed.

All MIXED strings are displayed without a space between sequences of single-byte and double-byte
characters (unless spaces are explicitly included in these positions within the string).

For graphics, selection of a local identifier (lcid) identifies the code page in force, and therefore
whether subsequent character strings are to be interpreted as SBCS, DBCS, ASCII MIXED, or
EBCDIC MIXED.

Chapter 34. Code Pages 34-23

34-24 PM Programming Reference

\
/

Appendix A. Data Types

This chapter describes data types in C language.

ACCEL

ACCELTABLE

Accelerator structure.

typedef struct _ACCEL {
USHORT fs;
USHORT key;
USHORT cmd;
} ACCEL;

Is (USHORT)
Options.

key (USHORT)
Key.

cmd (USHORT)
Command code.

The value to be placed in the uscmd parameter of a WM_HELP, a
WM_COMMAND, or a WM_SYSCOMMAND.

Accelerator-table structure.

typedef struct _ACCELTABLE {
USHORT cAccel;
USHORT codepage;
ACCEL aaccel[l];
} ACCELTABLE;

cAccel (USHORT)
Number of accelerator entries.

codepage (USHORT)
Code page for accelerator entries.

aaccel[1] (ACCEL)
Accelerator entries.

The default accelerator table has the following 16 entries:

Options Key Corrmand

HELP VIRTUALKEY VK_Fl e
SYSCOMMAND ALT VIRTUALKEY VK_F4 SC_ CLOSE
SYSCOMMAND ALT VIRTUALKEY VK_ENTER SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VK_NEWLINE SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VK_FS SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VK_F6 SC_NEXTFRAME
SYSCOMMAND ALT VIRTUALKEY VK_F7 SC_MOVE
SYSCOMMAND ALT VIRTUALKEY VK_F8 SC_ SIZE
SYSCOMMAND ALT VIRTUALKEY VK_F9 SC_ MINIMIZE
SYSCOMMAND ALT VIRTUALKEY VK_Fle SC_MAXIMIZE
SYS COMMAND VIRTUALKEY VK_Fle SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALT SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALTGRAF SC_APPMENU
SYSCOMMAND ALT VIRTUALKEY VK~SPACE SC_SYSMENU
SYSCOMMAND SHIFT VIRTUALKEY VK_ESC SC_SYSMENU
SYSCOMMAND CONTROL VIRTUALKEY VK_ESC SC_TASKMANAGER

Appendix A. Data Types A-1

ARCPARAMS

AREABUNDLE

ATOM

BANDRECT

Arc-parameters structure.

typedef struct _ARCPARAMS {
LONG l P;
LONG l Q;
LONG 1 R;
LONG 1 S;
} ARCPARAMS;

IP (LONG)
P coefficient.

IQ (LONG)
Q coefficient.

IR (LONG)
R coefficient.

IS (LONG)
S coefficient.

Area-attributes bundle structure.

typedef struct _AREABUNDLE {
LONG lColor;
LONG lBackColor;
USHORT usMixMode;
USHORT usBackMixMode;
USHORT usSet;
USHORT usSymbol;
POINTL ptlRefPoint;
} AREABUNDLE;

IColor (LONG)
Area foreground color.

IBackColor (LONG)
Area background color.

usMlxMode (USHORT)
Area foreground-mix mode.

usBackMlxMode (USHORT)
Area background-mix mode.

usSet (USHORT)
Pattern set.

usSymbol (USHORT)
Pattern symbol.

ptlRef Point (POI NTL)
Pattern reference point.

Atom identity.

typedef USHORT ATOM;

Rectangle structure, used for the coordinates of an output band (see
DevEscape).

An empty rectangle is one for which lxLeft is greater than lxRight, or
lyBottom is greater than lyTop.

typedef struct _BANDRECT {
LONG 1 xLef t;
LONG lyBottom;
LONG 1 xRi ght;
LONG lyTop;
} BANDRECT;

lxleft (LONG)
x-coordinate of left edge of rectangle.

A-2 PM Programming Reference

\
/

BITMAPINFO

BITMAPINF02

lyBottom (LONG)
y-coordinate of bottom edge of rectangle.

lxRlght (LONG)
x-coordinate of right edge of rectangle.

lyTop (LONG)
y-coordinate of top edge of rectangle.

Bit-map information structure.

Each bit plane logically contains (ex* CY* cBitCount) bits, although the
actual length can be greater because of padding.

See also BITMAPINF02, which is preferred.

typedef struct _BITMAPINFO {
ULONG cbFix;
USHORT ex;
USHORT cy;
USHORT cPlanes;
USHORT cBitCount;
RGB argbColor[l];
} BITMAPINFO;

cbflx (ULONG)
Length of fixed portion of structure.

ex (USHORT)
Bit-map width in pels.

cy (USHORT)
Bit-map height in pels.

cPlanes (USHORT)
Number of bit planes.

cBltCount (USHORT)
Number of bits per pel within a plane.

argbColor[1] (RGB)
Array of RGB values.

This is a packed array of 24-bit RGB values. If there are N bits per pel
(N = cP/anes* cBitCount), the array contains 2**N RGB values.
However, if N = 24 the bit map does not need the color array because
the standard-format bit map, with 24 bits per pel, is assumed to contain
RGB values.

Bit-map information structure.

Each bit plane logically contains (ex * cy * cBitCount) bits, although the
actual length can be greater because of padding.

Note: Many functions can accept either this structure or the BITMAPINFO
structure. Where possible, BITMAPINF02 should be used.

The cbFix field is used to find the color table, if any, that goes with the
information in this structure. A color table is an array of color (RGB2)
values. If there are N bits per pel (N = cP/anes* cBitCount), the array
contains 2**N color values. However, if N = 24, the color table is not
required (because the standard-format bit map, with 24 bits per pel, is
assumed to contain RGB values), unless either cclrUsed or cclrlmportant
is non-zero.

Appendix A. Data Types A-3

typedef struct _BITMAPINF02 {
ULONG cbfix;
ULONG ex;
ULONG cy;
USHORT cPlanes;
USHORT cBitCount;
ULONG ulCompression;
ULONG cblmage;
ULONG cxResolution;
ULONG cyResolution;
ULONG cclrUsed;
ULONG cclrlmportant;
USHORT usUnits;
USHORT usReserved;
USHORT usRecording;
USHORT usRendering;
ULONG cSizel;
ULONG cSize2;
ULONG ulColorEncoding;
ULONG ulldentifier;
RGB2 argb2Color[l];
} BITMAPINF02;

cbflx (ULONG)
Length of fixed portion of structure.

The structure can be truncated after cBitCount or any subsequent field.

The length does not include the length of the color table. Where the color
table is present, it is at an offset of cbFix from the start of the
BITMAPINF02 structure.

ex (ULONG)
Bit-map width in pels.

cy (ULONG)
Bit-map height in pels.

cPlanes (USHORT)
Number of bit planes.

cBHCount (USHORT)
Number of bits per pel within a plane.

ulCompresslon (ULONG)
Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed.
BCA_HUFFMAN1 D The bit map is compressed by a modified Huffman

encoding. This is valid for a bi-level (one bit per
pel) bit map.

BCA_RLE4 The bit map is a 4-bit per pel run-length encoded bit
map. See BITMAPINFOHEADER2 for a description
of the format of the compressed data.

BCA_RLE8 The bit map is a 8-bit per pet run-length encoded bit
map. See BITMAPINFOHEADER2 for a description
of the format of the compressed data.

BCA_RLE24 The bit map is a 24-bit per pel run-length encoded
bit map. See BITMAPINFOHEADER2 for a
description of the format of the compressed data.

cblmage (ULONG)
Length of bit-map storage data, in bytes.

If the bit map is uncompressed, zero (default) can be specified for this.

cxResolutlon (ULONG)
Horizontal component of the resolution of target device.

The resolution of the device the bit map is intended for, in the units
.specified by usUnits. This information enables an application to select

A-4 PM Programming Reference

\

from a resource group the bit map that best matches the characteristics
of the current output device.

cyResolutlon (ULONG)
Vertical component of the resolution of target device.

See the description of cxResolution.

cclrUsed (ULONG)
Number of color indexes used.

The number of color indexes from the color table that are used by the bit
map. If it is zero (the default), all the indexes are used. If it is non-zero,
only the first cclrUsed entries in the table are accessed by the system,
and further entries can be omitted.

For the standard formats with a cBitCount of 1, 4, or 8 (and cP/anes equal
to 1), any indexes beyond cclrUsed are not valid. For example, a bit map
with 64 colors can use the 8-bitcount format without having to supply the
other 192 entries in the color table. For the 24-bitcount standard format,
cclrUsed is the number of colors used by the bit map.

cclrlmportant (ULONG)
Minimum number of color indexes for satisfactory appearance of the bit
map.

More colors may be used in the bit map, but it is not necessary to assign
them to the device palette. These additional colors may be mapped to
the nearest colors available.

Zero (the default) means that all entries are important.

For a 24-bitcount standard format bit map, the cclrlmportant colors are
also listed in the color table following the BITMAPINF02 structure.

usUnits (USHORT)
Units of measure.

Units of measure of the horizontal and vertical components of resolution,
cxResolution and cyResolution.

BRU_METRIC Pels per meter. This is the default value.

usReserved (USHORT)
Reserved.

This is a reserved field. If present, it must be zero.

usRecordlng (USHORT)
Recording algorithm.

The format in which the bit map data is recorded.

BRA_BOTIOMUP Scan lines are recorded bottom-to-top. This is the
default value.

usRenderlng (USHORT)
Halftoning algorithm.

The algorithm used to record bit map data that has been digitally
halftoned.

BRH_NOTHALFTONED Bit-map data is not halftoned. This is the
default value.

BRH_ERRORDIFFUSION Error Diffusion or Damped Error Diffusion
algorithm.

BRH_PANDA Processing Algorithm for Non-coded
Document Acquisition.

BRH_SUPERCIRCLE Super Circle algorithm.

cSize1 (ULONG)
Size value 1.

If BRH_ERRORDIFFUSION is specified in usRendering, cSize1 is the error

Appendix A. Data Types A-5

BITMAPINFOHEADER

damping as a percentage in the range O through 100. A value of 100%
indicates no damping, and a value of 0% indicates that any errors are
not diffused.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the x
dimension of the pattern used, in pels.

cSlze2 (ULONG)
Size value 2.

If BRH_ERRORDIFFUSION is specified in usRendering, this parameter is
ignored.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize2 is the y
dimension of the pattern used, in pets.

ulColorEncodlng (ULONG)
Color encoding.

BCE_RGB Each element in the color array is an RGB2 datatype. This
is the default value.

ulldentlfler (ULONG)
Reserved for application use.

argb2Color[1] (RGB2)
Array of RGB values.

This is a packed array of 24-bit RGB values. If there are N bits per pel
(N = the array contains 2**N RGB values. However, if N = 24 the bit
map does not need the color array because the standard-format bit map,
with 24 bits per pel, is assumed to contain RGB values.

Bit-map information header structure.

Each bit plane logically contains (ex* CY* cBitCount) bits, although the
actual length can be greater because of padding.

See also BITMAPINFOHEADER2, which is preferred.

typedef struct _BITMAPINFOHEADER {
ULONG cbFix;
USHORT ex;
USHORT cy;
USHORT cPlanes;
USHORT cBitCount;
} BITMAPINFOHEADER;

cbFix (ULONG)
Length of structure.

ex (USHORT)
Bit-map width in pels.

cy (USHORT)
Bit-map height in pels.

cPlanes (USHORT)
Number of bit planes.

cBltCount (USHORT)
Number of bits per pel within a plane.

BITMAPINFOHEADER2 Bit-map information header structure.

Each bit plane logically contains (ex* cy * cBitCount) bits, although the
actual length can be greater because of padding.

Note: Many functions can accept either this structure or the
BITMAPINFOHEADER structure. Where possible, use
BITMAPINFOHEADER2.

A-6 PM Programming Reference

typedef struct _BITMAPINFOHEADER2 {
ULONG cbFix;
ULONG ex;
ULONG cy;
USHORT cPlanes;
USHORT cBitCount;
ULONG ulCompression;
ULONG cblmage;
ULONG cxResolution;
ULONG cyResolution;
ULONG cclrUsed;
ULONG cclrlmportant;
USHORT usUnits;
USHORT usReserved;
USHORT usRecording;
USHORT usRendering;
ULONG cSizel;
ULONG cSize2;
ULONG ulColorEncoding;
ULONG ulldentifier;
} BITMAPINFOHEADER2;

cbFix (ULONG)
Length of structure.

The structure can be truncated after cBitCount or any subsequent field.

ex (ULONG)
Bit-map width in pels.

cy (ULONG)
Bit-map height in pels.

cPlanes (USHORT)
Number of bit planes.

cBltCount (USHORT)
Number of bits per pel within a plane.

ulCompression (ULONG)
Compression scheme used to store the bit map:

BCA_UNCOMP
BCA_HUFFMAN1D

BCA_RLE4

BCA_RLE8

BCA_RLE24

cblmage (ULONG)

Bit map is uncompressed.
The bit map is compressed by a modified Huffman
encoding. This is valid for a bi-level (one bit per
pel) bit map.
The bit map is a 4-bit per pel run-length encoded bit
map. See below for a description of the format of
the compressed data.
The bit map is a 8-bit per pel run-length encoded bit
map. See below for a description of the format of
the compressed data.
The bit map is a 24-bit per pel run-length encoded
bit map. See below for a description of the format of
the compressed data.

Length of bit-map storage data, in bytes.

If the bit map is uncompressed, zero (the default) can be specified for
this.

cxResolution (ULONG)
Horizontal component of the resolution of target device.

The resolution of the device the bit map is intended for, in the units

specified by usUnits. This information enables applications to select

from a resource group the bit map that best matches the characteristics

of the current output device.

Appendix A. Data Types A-7

cyResolutlon (ULONG)
Vertical component of the resolution of target device.

See the description of cxResolution.

cclrUsed (ULONG)
Number of color indexes used.

The number of color indexes from the color table that are used by the bit
map. If this is zero (the default), all the indexes are used. If it is
non-zero, only the first cclrUsed entries in the table are accessed by the
system, and further entries can be omitted.

For the standard formats with a cBitCount of 1, 4, or 8 (and cP/anes equal
to 1), any indexes beyond cclrUsed are invalid. For example, a bit map
with 64 colors can use the 8-bitcount format without having to supply the
other 192 entries in the color table. For the 24-bitcount standard format,
cclrUsed is the number of colors used by the bit map.

cclrlmportanl (ULONG)
Minimum number of color indexes for satisfactory appearance of the bit
map.

More colors may be used in the bit map, but it is not necessary to assign
them to the device palette. These additional colors may be mapped to
the nearest colors available.

Zero (the default) means that all entries are important.

For a 24-bitcount standard format bit map, the cclrlmportant colors are
also listed in the color table relating to this bit map.

usUnlls (USHORT)
Units of measure.

Units of measure of the horizontal and vertical resolution, cxResolution
and cyResolution.

BRU_METRIC Pals per meter. This is the default value.

usReserved (USHORT)
Reserved.

This is a reserved field. If present, it must be zero.

usRecordlng (USHORT)
Recording algorithm.

The format in which the bit-map data is recorded.

BRA_BOTTOMUP Scan lines are recorded bottom-to-top. This is the
default value.

usRenderlng (USHORT)
Halftoning algorithm.

The algorithm used to record bit-map data that has been digitally
halftoned.

BRH_NOTHALFTONED Bit-map data is not halftoned. This is the
default value.

BRH_ERRORDIFFUSION Error Diffusion or Damped Error Diffusion
algorithm.

BRH_PANDA Processing Algorithm for Non-coded
Document Acquisition.

BRH_SUPERCIRCLE Super Circle algorithm.

cSize1 (ULONG)
Size value 1.

If BRH_ERRORDIFFUSION is specified in usRendering, cSize1 is the error
damping as a percentage in the range 0 through 100. A value of 100%

A-8 PM Programming Reference

BOOKTEXT

BOOL

BTNCDATA

indicates no damping, and a value of 0% indicates that any errors are
not diffused.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the x
dimension of the pattern used, in pels.

cSlze2 (ULONG)
Size value 2.

If BRH_ERRORDIFFUSION is specified in usRendering, this parameter is
ignored.

If BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize2 is the y
dimension of the pattern used, in pels.

ulColorEncodlng (ULONG)
Color encoding.

BCE_RGB Each element in the color array is an RGB2 datatype. This
is the default value.

ulldenllfier (ULONG)
Reserved for application use.

Notebook data structure that contains text strings for notebook status lines
and tabs. This data structure is used with the
BKM_QUERYSTATUSLINETEXT and the BKM_QUERYTABTEXT messages
only. See "BKM_QUERYSTATUSLINETEXT" on page 25-11 and
"BKM_QUERYTABTEXT" on page 25-12 for information about those
messages.

typedef struct _BOOKTEXT {
PSZ pszString;
USHORT textlen;
} BOOKTEXT;

pszString (PSZ)
String buffer.

Buffer in which the text string is to be placed. For the
BKM_QUERYSTATUSLINETEXT message, this is the buffer in which the
status line text is placed.

For the BKM_QUERYTABTEXT message, this is the buffer in which the
tab text is placed.

textlen (USHORT)
String length.

Length of the text string. For the BKM_QUERYSTATUSLINETEXT
message, this is the length of the status line text string.

For the BKM_QUERYTABTEXT message, this is the length of the tab text
string.

Boolean.

Valid values are FALSE, which is 0, and TRUE, which is 1.

typedef unsigned long BOOL;

Button-control-data structure.

typedef struct _BTNCDATA {
USHORT cb;
USHORT fsCheckState;
USHORT fsHiliteState;
LHANDLE hlmage;
} BTNCDATA;

cb(USHORT)
Length of the control data in bytes.

8 The length of the control data for a button control.

Appendix A. Data Types A-9

BYTE

CATCHBUF

COATE

CELL

CHAR

fsCheckState (USHORT)
Check state of button.

This is the same value as returned by the BM_QUERYCHECK message
and passed to the BM_SETCHECK message.

fsHlllteState (USHORT)
Highlighting state of button.

This is the same value as returned by the BM_QUERYHILITE message
and passed to the BM_SETHILITE message.

hlmage (LHANDLE)
Resource handle for icon or bit map.

Byte.

typedef unsigned char BYTE;

Saved execution environment buffer.

typedef struct _CATCHBUF {
ULONG reserved[7];
} CATCHBUF;

reserved[7] (ULONG)
Save area.

Structure that contains date information for a data element in the details
view of a container control.

typedef struct _COATE {
UCHAR day;
UCHAR month;
USHORT year;
} COATE;

day (UCHAR)
Day.

month (UCHAR)
Month.

year (USHORT)
Year.

Class specific cell data follows immediately afterwards.

typedef struct _CELL {
ULONG cbData;
} CELL;

cbData (ULONG)
Size of the data that follows.

Class specific cell data follows immediately afterwards. For example the

font palette would store the ASCII name of the font, and the color palette
would store the RGB color of the cell.

Single-byte character.

#define CHAR char

A-10 PM Programming Reference

CHARBUNDLE Character-attributes bundle structure.

typedef struct _CHARBUNDLE {
~ LONG lColor;

LONG lBackColor;
USHORT usMixMode;
US HORT usBackMixMode;
USHORT usSet;
USHORT usPrecision;
SIZEF sizfxCell;
PO INTL ptlAngle;
PO INTL ptlShear;
US HORT usDirection;
US HORT usTextAlign;
FIXED fxExtra;
FIXED fxBreakExtra;
} CHARBUNDLE;

IColor (LONG)
Character foreground color.

IBackColor (LONG)
Character background color.

usMlxMode (USHORT)
Character foreground-mix mode.

usBackMlxMode (USHORT)
Character background-mix mode.

usSet (USHORT)
Character set.

usPreclslon (USHORT)
Character precision.

slzfxCell (SIZEF)
Character cell size.

ptlAngle (POINTL)
Character angle.

ptlShear (POINTL)
Character shear.

usDlrectlon (USHORT)
Character direction.

usTextAllgn (USHORT)
Text alignment.

fxExtra (FIXED)
Character extra.

fxBreakExtra (FIXED)
Character break extra.

CLASS/NFO Class-information structure.

typedef struct _CLASSINFO {
ULONG fl Cl assStyl e;
PFNWP pfnWindowProc;
ULONG cbWindowData;

} CLASSINFO;

flClassStyle (ULONG)
Class-style flags.

pfnWindowProc (PFNWP)
Window procedure.

cbWindowData (ULONG)
Number of additional window words.

Appendix A. Data Types A-11

CLASSDETAILS

CNRDRAGINFO

CNRDRAGINIT

Class details data structure.

typedef struct _CLASSDETAILS {
PSZ pszAttribute;
PVOID pSortRecord;
} CLASSDETAILS;

pszAttrlbute (PSZ)

Translatable string for a class attribute.

pSortRecord (PVOID)

Function pointer for sort function for attribute.

Structure that contains information about a direct manipulation event that
is occurring over the container. The information specified for this
structure depends on the container notification code with which it is used.
The differences are specified in the following field descriptions. The
applicable notification codes are:

• "CN_DRAGAFTER" on page 24-10
• "CN_DRAGLEAVE" on page 24-11
• "CN_DRAGOVER" on page 24-12
• "CN_DROP" on page 24-13
• "CN_DROPHELP" on page 24-14

typedef struct _CNRDRAGINFO {
PDRAGINFO pDraginfo;
PRECORDCORE pRecord;
} CNRDRAGINFO;

pDraglnlo (PDRAGINFO)
Pointer.

Pointer to a DRAGINFO structure.

pRecord (PRECORDCORE)
Pointer.

Pointer to a RECORDCORE structure. The structure that is pointed to
depends on the notification code being used.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages. For the
CN_DRAGAFTER notification code, this field contains a pointer to the
RECORDCORE structure after which ordered target emphasis is drawn.
If ordered target emphasis is applied above the first record in item order,
the CMA_FIRST attribute is returned.

For the CN_DRAGLEAVE notification code, this field is NULL.

For the CN_DRAGOVER, CN_DROP, and CN_DROPHELP notification
codes, this field contains a pointer to a container record over which
direct manipulation occurred. This field has a value of NULL if the direct
manipulation event occurs over white space.

Structure that contains information about a direct manipulation event that
is initiated in a container. This structure is used with the CN_INITDRAG
notification code only. See "CN_INITDRAG" on page 24-18 for information
about that notification code.

typedef struct _CNRDRAGINIT {
HWND hwndCnr;
PRECORDCORE pRecord;
LONG x;
LONG y;
LONG ex;
LONG cy;
} CNRDRAGINIT;

A-12 PM Programming Reference

)

CNRDRAWITEMINFO

CNREDITDAT A

hwndCnr (HWND)
Container control handle.

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE where direct manipulation started.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

The pRecord field can have one of the following values:

NULL Direct manipulation started over white space.
Other Container record over which direct manipulation started.

x (LONG)
X-coordinate.

X-coordinate of the pointer of the pointing device in desktop coordinates.

y (LONG)
Y-coordinate.

Y-coordinate of the pointer of the pointing device in desktop coordinates.

ex (LONG)
X-offset.

X-offset from the hot spot of the pointer of the pointing device (in pels) to
the record origin.

cy (LONG)
Y-offset.

Y-offset from the hot spot of the pointer of the pointing device (in pels) to
the record origin.

Structure that contains information about the container item being drawn.
This structure is used with the WM_DRAWITEM (in Container Controls)
message only. See "WM_DRAWITEM (in Container Controls)" on
page 24-6 for information about that message.

typedef struct _CNRDRAWITEMINFO {
PRECORDCORE pRecord;
PFIELDINFO pFieldinfo;
} CNRDRAWITEMINFO;

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE structure for the record that is being drawn.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

pFleldlnfo (PFIELDINFO)
Pointer.

Pointer to the FIELDINFO structure for the container column that is being
drawn in the details view. For all other views, this field is NULL.

Structure that contains information about the direct editing of container
text. The information specified for this structure depends on the container
notification code or message with which it is used. The differences are
specified in the following field descriptions. The applicable notification
codes and message are:

• "CN_BEGINEDIT" on page 24-8
• "CN_ENDEDIT" on page 24-15

Appendix A. Data Types A-13

• "CN_REALLOCPSZ" on page 24-20
• "CM_OPENEDIT" on page 24-35

typedef struct _CNREDITDATA {
ULONG cb;
HWND hwndCnr;
PRECORDCORE pRecord;
PFIELDINFO pFieldlnfo;
PPSZ ppszText;
ULONG cbText;
ULONG id;
} CNREDITDATA;

cb (ULONG)
Structure size.

The size (in bytes) of the CNREDITDATA data structure.

hwndCnr (HWND)
Container window handle.

pRecord (PRECORDCORE)
Pointer or NULL.

Pointer to a RECORDCORE data structure. This field is NULL if container
titles are to be edited.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ notification
codes, this field is a pointer to the edited RECORDCORE data structure.

For the CM_OPENEDIT message, this field is a pointer to the
RECORDCORE data structure to be edited.

pfleldlnfo (PFIELDINFO)
Pointer or NULL.

Pointer to a FIELDINFO data structure if the current view is the details
view and the user is not editing the container title. Otherwise, this field
is NULL.

If the current view is the details view:

• For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ
notification codes, this field contains a pointer to the FIELDINFO
structure being edited.

• For the CM_OPENEDIT message, this field is a pointer to the
FIELDINFO data structure to be edited.

ppszText (PPSZ)
Pointer or NULL.

Pointer to a PSZ text string. For the CN_BEGINEDIT and
CN_REALLOCPSZ notification codes, this field is a pointer to the current
PSZ text string.

For the CN_ENDEDIT notification code, this field is a pointer to the new
PSZ text string.

For the CM_OPENEDIT message, this field is NULL.

cbText (ULONG)
Number of bytes.

Number of bytes in the text string. For the CN_BEGINEDIT notification
code, this field is 0.

For the CN_ENDEDIT and CN_REALLOCPSZ notification codes, this field
is the number of bytes in the new text string.

A-14 PM Programming Reference

/

CNRINFO

For the CM_OPENEDIT message, this field is 0.

Id (ULONG)
Window ID.

ID of the window to be edited. The ID can be one of the following:

appllcatlon-dellned container Identifier
CID _CNRTITLEWND
CID_LEFTDVWND

CID _RIGHTDVWND
CID _LEFTCOL TITLEWND

CID _RIGHTCOLTITLEWND

Container window.
Title window.
Left details view window;
default if unsplit window.
Right details view window.
Left details view column
headings window; default if
unsplit window.
Right details view column
headings window.

Structure that contains information about the container.

typedef struct _CNRINFO {
ULONG
PVOID
PFIELDINFO
PFIELDINFO
PSZ
ULONG
PO INTL
ULONG
ULONG
SIZEL
SIZEL
HBITMAP
HBITMAP
HPOINTER
HPOINTER
LONG
LONG
LONG
ULONG
LONG
} CNRINFO;

cb;
pSortRecord;
pFieldlnfolast;
pFieldlnfoObject;
pszCnrTi t 1 e;
flWindowAttr;
ptlOrigin;
cDelta;
cRecords;
slBitmapOricon;
slTreeBitmapOrlcon;
hbmExpanded;
hbmCollapsed;
hptrExpanded;
hptrCollapsed;
cyLineSpacing;
cxTreelndent;
cxTreeLine;
cFields;
xVertSplitbar;

cb (ULONG)
Structure size.

The size (in bytes) of the CNRINFO data structure.

pSortRecord (PVOID)
Pointer or NULL.

Pointer to the comparison function for sorting container records. If NULL,
which is the default condition, no sorting is performed. Sorting only
occurs during record insertion and when changing the value of this field.
The third parameter of the comparison function, pStorage, must be NULL.
See "CM_SORTRECORD" on page 24-51 for a further description of the
comparison function.

pFleldlnloLast (PFIELDINFO)
Pointer or NULL.

Pointer to last column in the left window of the split details view. The
default is· NULL, causing all columns to be positioned in the left window.

pFleldlnloObJect (PFIELDINFO)
Pointer.

Pointer to a column that represents an object in the details view. The
data for this FIELDINFO structure must contain icons or bit maps. In-use
emphasis is applied to this column of icons or bit maps only. The default

Appendix A. Data Types A-15

is the leftmost column in the unsplit details view, or the leftmost column
in the left window of the split details view.

pszCnrTltle (PSZ)
Title text or NULL.

Text for the container title. The default is NULL.

flWlndowAttr (ULONG)
Window attributes.

Consists of the following container window attributes:

• Specify one of the following container views, which determine the
presentation format of items in a container:

A-16 PM Programming Reference

CV_ICON
In the icon view, the container items are represented as icon/text
or bit-map/text pairs, with text beneath the icons or bit maps.
This is the default view. This view can be combined with the
CV _MINI style bit by using an OR operator {I). See CV _MINI on
page A-17 for more information.

CV_NAME
In the name view, the container items are represented as
icon/text or bit-map/text pairs, with text to the right of the icons
or bit maps. This view can be combined with the CV_MINI and
CV _FLOW style bits by using OR operators {I). See CV _MINI on
page A-17 and CV_FLOW on page A-17 for more information.

CV_TEXT
In the text view, the container items are displayed as a list of text
strings. This view can be combined with the CV _FLOW style bit
by using an OR operator (I). See CV_FLOW on page A-17 for
more information.

CV_TREE
In the tree view, the container items are represented in a
hierarchical manner. The tree view has three forms, which are
defined in the following list. If you specify CV_TREE by itself, the
tree icon view is used.

Tree icon view

The tree icon view is specified by using a logical OR
operator to combine the tree view with the icon view
(CV_TREE I CV_ICON). Container items in this view are
represented as icon/text pairs or bit-map/text pairs, with text
to the right of the icons or bit maps. Also, a collapsed or
expanded icon or bit map is displayed to the left of parent
items. If this icon or bit map is a collapsed icon or bit map,
selecting it will cause the parent item to be expanded so that
its child items are displayed below it. If this icon or bit map
is an expanded icon or bit map, selecting it will cause the
parent's child items to be removed from the display. The
default collapsed and expanded bit maps provided by the
container use a plus sign(+) and a minus sign(-),
respectively, to indicate that items can be added to or
subtracted from the display.

Tree name view

The tree name view is specified by using a logical OR
operator to combine the tree view with the name view
(CV_TREE I CV_NAME). Container items in this view are
displayed as either icon/text pairs or bit-map/text pairs, with
text to the right of the icons or bit maps. However, the
indicator that represents whether an item can be collapsed
or expanded, such as a plus or minus sign, is included in the
icon or bit map that represents that item, not in a separate

\

icon or bit map as in the tree icon and tree text views. The
container control does not provide default collapsed and
expanded bit maps for the tree name view.

Tree text view

The tree text view is specified by using a logical OR operator
to combine the tree view with the text view
(CV_TREE I CV_TEXT). Container items in this view are
displayed as a list of text strings. As in the tree icon view, a
collapsed or expanded icon or bit map is displayed to the left
of parent items.

CV_DETAIL
In the details view, the container items are presented in columns.
Each column can contain icons or bit maps, text, numbers, dates,
or times.

• Specify one or both of the following view styles by using an OR
operator (I) to combine them with the specified view. These view
styles are optional.

CV_MINI
Produces a mini-icon whose size is based on the Presentation
Manager (PM) SV_CYMENU system value to produce a
device-dependent mini-icon.

The CV _MINI view style bit is ignored when:

The text view (CV_TEXT), tree view (CV_TREE), or details
view (CV_DETAIL) are displayed

The CCS_MINIRECORDCORE style bit is specified.

If this style bit is not specified and the icon view (CV _ICON) or
name view (CV _NAME) is used, the default,. regular-sized icon is
used. The size of regular-sized icons is based on the value in
the s/BitmapOrlcon field of the CNRINFO data structure. If this
field is equal to 0, the PM SV_CXICON and SV_CYICON system
values for width and height, respectively, are used. Icon sizes
are consistent with PM-defined icon sizes for all devices.

CV_FLOW
Dynamically arranges container items in columns in the name
and text views. These are called flowed name and flowed text
views. If this style bit is set for the name view (CV _NAME) or text
view (CV_ TEXT), the container items -are placed in a single
column until the bottom of the client area is reached. The next
container item is placed in the adjacent column to the right of the
filled column. This process is repeated until all of the container
items are positioned in the container. The width of each column
is determined by the longest text string in that column. The size
of the window determines the depth of the client area.

If this style bit is not specified, the default condition for the name
and text views is to vertically fill the container in a single column
without flowing the container items. If this style bit is set for the
icon view (CV_ICON) or details view (CV_DETAIL), it is ignored.

• Specify either of the following to indicate whether the container will
display icons or bit maps:

CA_DRAWICON
Icons are used for the icon, name, tree, or details views. This is
the default. This container attribute should be used with the
hptrlcon and hptrMinilcon fields of the RECORDCORE data
structure.

Appendix A. Data Types A-17

CA_DRAWBITMAP
Bit maps are used for the icon, name, tree, or details views. This
container attribute can be used with the hbmBitmap and
hbmMiniBitmap fields of the RECORDCORE data structure.

Notes:

1. If both the CA_DRAWICON and CA_DRAWBITMAP attributes
are specified, the CA_DRAWICON attribute Is used.

2. If the CCS_MINIRECORDCORE style bit is specified when a
container is created, the hptrlcon field of the
MINIRECORDCORE data structure is used.

• Specify one of the following attributes to provide target emphasis for
the name, text, and details views. If neither ordered nor mixed
target emphasis is specified, the emphasis is drawn around the
record.

CA_ORDEREDTARGETEMPH
Shows where a container record can be dropped during direct
manipulation by drawing a line beneath the record. Ordered
target emphasis does not apply to the icon and tree views.

CA_MIXEDTARGETEMPH
Shows where a container record can be dropped during direct
manipulation either by drawing a line between two items or by
drawing lines around the container record. Mixed target
emphasis does not apply to the icon and tree views.

• Specify the following attribute to draw lines that show the
relationship between items in the tree view.

CA_TREELINE
Shows the relationship between all items in the tree view.

• Specify the following to draw container records, paint the
background of the container, or both:

CA_OWNERDRAW
Ownerdraw for the container, which allows the application to
draw container records.

CA_OWNERPAINTBACKGROUND
Allows the application to subclass the container and paint the
background. If specified, and the container is subclassed, the
application receives the CM_PAINTBACKGROUND message in
the subclass procedure. Otherwise, the container paints the
background using the color specified by SYSCLR_WINDOW,
which can be changed by using the PP _BACKGROUNDCOLOR or
PP _BACKGROUNDCOLORINDEX presentation parameter in the
WM_PRESPARAMCHANGED (in Container Controls) message.

• Specify the following if the container is to have a title:

CA_ CONTAINERTITLE
Allows you to include a container title. The default is no
container title.

• Specify one or both of the following container title attributes. These
are valid only if the CA_CONTAINERTITLE attribute is specified.

CA_ TITLEREADONL Y
Prevents the container title from being edited directly. The
default is to allow the container title to be edited.

CA_ TITLESEPARATOR
Puts a separator line between the container title and the records
beneath it. The default is no separator line.

• Specify one of the following to position the container title. These are
valid only if the CA_CONTAINERTITLE attribute is specified.

A-18 PM Programming Reference

'+..\
I

/

CA_ TITLECENTER
Centers the container title. This is the default.

CA_ TITLELEFT
Left-justifies the container title.

CA_ TITLERIGHT
Right-justifies the container title.

• Specify the following to display column headings in the details view:

CA_DETAILSVIEWTITLES
Allows you to include column headings in the details view. The
default is no column headings.

ptlOrlgln (POINTL)
Workspace origin.

Lower-left origin of the workspace in virtual coordinates, used in the icon
view. The default origin is (0,0).

cDelta (ULONG)
Threshold

An application-defined threshold, or number of records, from either end
of the list of available records. Used when a container needs to handle
large amounts of data. The default is o. Refer to the OS/2 Programming
Guide for more information about specifying deltas.

cRecords (ULONG)
Number of records.

The number of records in the container. Initially this field is 0.

slBltmapOrlcon (SIZEL)
Icon/bit-map size.

The size (in pels) of icons or bit maps. The default is the system size.

slTreeBllmapOrlcon (SIZEL)
Icon/bit-map size.

The size {in pals) of the expanded and collapsed icons or bit maps used
in the tree icon and tree text views.

hbmExpanded (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent an expanded parent
item in the tree icon and tree text views. If neither an icon handle (see
hptrExpanded) nor a bit-map handle is specified, a default bit map with a
minus sign(-) is provided.

hbmCollapsed (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item
in the tree icon and tree text views. If neither an icon handle (see
hptrCollapsed) nor a bit-map handle is specified, a default bit map with a
plus sign(+) is provided.

hplrExpanded (HPOINTER)
Icon handle.

The handle of the icon to be used to represent an expanded parent item
in the tree icon and tree text views. If neither an icon handle nor a
bit-map handle {see hbmExpanded) is specified, a default bit map with a
minus sign (-) is provided.

hptrCollapsed (HPOINTER)
Icon handle.

The handle of the icon to be used to represent a collapsed parent item in
the tree icon and tree text views. If neither an icon handle nor a bit-map

Appendix A. Data Types A-19

COLOR

CONVCONTEXT

handle {see hbmCollapsed) is specified, a default bit map with a plus
sign(+) is provided.

cyLlneSpaclng (LONG)
Vertical space.

The amount of vertical space (in pels) between the records. If you
specify a value that is less than 0, a default value is used.

cxTreelndenl (LONG)
Horizontal space.

The amount of horizontal space (in pels) between levels in the tree view.
If you specify a value that is less than 0, a default value is used.

cxTreeLlne (LONG)
Line width.

The width of the lines (in pets) that show the relationship between tree
items. If you specify a value that is less than 0, a default value is used.
Also, if the CA_TREELINE container attribute of the f/WindowAttr field is
not specified, these lines are not drawn.

cFlelds (ULONG)
Number of columns.

The number of FIELDINFO structures in the container. Initially this field
isO.

xVertSplllbar (LONG)
Split bar position.

The initial position of the split bar relative to the container, used in the
details view. If this value is less than 0, the split bar is not used. The
default value is negative one (-1).

Color value.

typedef long COLOR;

Dynamic-data-exchange conversation context structure.

typedef struct _CONVCONTEXT {
ULONG cb;
ULONG ulContext;
ULONG u 1 Country;
ULONG ulCodepage;
ULONG uslangID;
ULONG usSublangID;
} CONVCONTEXT;

cb (ULONG)
Length of structure.

This must be set to the length of the CONVCONTEXT structure.

ulContext (ULONG)
Options.

DDECTXT_CASESENSITIVE All strings in this conversation are case
sensitive.

ulCountry (ULONG)
Country code.

ulCodepage (ULONG)
Code-page identity.

usLanglD (ULONG)
Language.

Zero is valid and means no language information.

A-20 PM Programming Reference

J CPTEXT

CREATESTRUCT

usSubLanglD (ULONG)
Sub-language.

Zero is valid and means no sub-language information.

String structure containing the code-page and language of the string.

typedef struct _CPTEXT {
USHORT idCountry;
USHORT usCodepage;
USHORT us Lang ID;
USHORT usSubLanglD;
BYTE abText[l];
} CPTEXT;

idCountry (USHORT)
Country code.

usCodepage (USHORT)
Code-page identity.

usLanglD (USHORT)
Language.

Zero is valid and means no language information.

usSubLanglD (USHORT)
Sub-language.

Zero is valid and means no sub-language information.

abText[1] (BYTE)
Zero-terminated text string.

Create-window data structure.

typedef struct _CREATESTRUCT {
PVOID pPresParams;
PVOID pCtlData;
ULONG id;
HWND hwndlnsertBehind;
HWND hwndOwner;
LONG cy;
LONG ex;
LONG y;
LONG x;
ULONG flStyle;
PSZ pszText;
PSZ pszClass;
HWND hwndParent;
} CREATESTRUCT;

pPresParams (PVOID)
Presentation parameters.

pCtlData (PVOID)
Control data.

Id (ULONG)
Window identifier.

hwndlnsertBehlnd (HWND)
Window behind which the window is to be placed.

hwndOwner (HWND)
Window owner.

cy (LONG)
Window height.

ex (LONG)
Window width.

Appendix A. Data Types A-21

CT/ME

CURSORINFO

y (LONG)
y-coordinate of origin.

x (LONG)
x coordinate of origin.

flStyle (ULONG)
Window style.

pszText (PSZ)
Window text.

pszClass (PSZ)
Registered window class name.

hwndParent (HWND)
Parent window handle.

Structure that contains time information for a data element in the details
view of a container control.

typedef struct _CTIME {
UCHAR hours;
UCHAR minutes;
UCHAR seconds;
UCHAR ucReserved;
} CTIME;

hours (UCHAR)
Hour.

minutes (UCHAR)
Minute.

seconds (UCHAR)
Second.

ucReserved (UCHAR)
Reserved.

Cursor-information structure.

typedef struct _CURSORINFO {
HWND hwnd;
LONG x;
LONG y;
LONG ex;
LONG cy;
ULONG fs;
RECTL rclClip;
} CURSORINFO;

hwnd (HWND)
Window handle.

x (LONG)
x coordinate.

y (LONG)
y coordinate.

ex (LONG)
Cursor width.

cy (LONG)
Cursor height.

fs (ULONG)
Options.

rclCllp (RECTL)
Cursor box.

A-22 PM Programming Reference

DDEINIT

/

DDESTRUCT

Dynamic-data-exchange initiation structure.

typedef struct _DDEINIT {
ULONG cb;
PSZ pszAppName;
PSZ pszTopic;
ULONG offConvContext;
} DDEINIT;

cb (ULONG)
Length of structure.

This must be set to the length of the DDEINIT structure.

pszAppName (PSZ)
Application name.

Pointer to name of the server application.

Application names must not contain slashes or backslashes. These
characters are reserved for future use in network implementations.

pszTopic (PSZ)
Topic.

Pointer to name of the topic.

offConvContext (ULONG)
Conversation context.

Offset to a CONVCONTEXT structure.

Dynamic-data-exchange control structure.

typedef struct _DDESTRUCT {
ULONG ulData;
USHORT usStatus;
USHORT usFonnat;
USHORT offszltemName;
USHORT off abData;
} DDESTRUCT;

ulData (ULONG)
Total length.

This is the length of this structure plus the item name and data, which
occur after the offabData parameter.

usStatus (USHORT)
Status.

Status of the data exchange.

DDE_FACK
DDE_FBUSY
DDE_FNODATA
DDE_FACKREQ
DDE_FRESPONSE
DDE_NOTPROCESSED
DDE_FAPPSTATUS

usFormat (USHORT)
Data format.

Positive acknowledgement
Application is busy
No data transfer for advise
Acknowledgements are requested
Response to WM_DDE_REQUEST
DOE message not understood
A 1-byte field of bits that are reserved for
application-specific returns.

One of the DOE data formats.

DDEFMT _TEXT Text format.
Other ODE format registered with the atom manager, using

the system atom table. The predefined DOE formats
are guaranteed not to conflict with the values returned
by the atom manager.

Appendix A. Data Types A-23

DELETENOTIFY

DESKTOP

offszltemName (USHORT)
Offset to item.

This is the offset to the item name referred to in this message, from the
start of this structure.

offabData (USHORT)
Offset to beginning of data.

This is the offset to the data, from the start of this structure.

For compatibility reasons, this data should not contain embedded
pointers. Offsets should be used instead.

Structure that contains information about the application page that is being
deleted from a notebook.

typedef struct _DELETENOTIFY {
HWND hwndBook;
HWND hwndPage;
ULONG ulAppPageData;
HBITMAP hbmTab;
} DELETENOTI FY;

hwndBook (HWND)
Notebook window handle.

hwndPage (HWND)
Application page window handle.

ulAppPageData (ULONG)
Application-specified page data.

hbmTab (HBITMAP)
Application-specified tab bit map.

Desktop background state structure.

typedef struct _DESKTOP {
ULONG cbSize;
HBITMAP hbm;
LONG x;
LONG y;
ULONG fl;
CHAR szFile[MAX_FILENAME];
LONG lTileCount;
} DESKTOP;

cbSlze (ULONG)
Length of structure.

hbm (HBITMAP)
Bit-map handle of desktop background.

x (LONG)
x desktop coordinate of the origin of the bit map.

y (LONG)
y desktop coordinate of the origin of the bit map.

II (ULONG)
Desktop background state indicators or setting options:

SOT_ CENTER The desktop background bit map is, or is to be,
centered on the screen. If this option is specified, then
the values of the x they parameters are inapplicable.

SDT_DESTROY Any existing desktop background bit map is to be
destroyed. The setting of this option is not returned on
the WinQueryDesktopBkgnd function.

A-24 PM Programming Reference

DEVOPENSTRUC

SDT .. NOBKGND

SDT_PATTERN
SDT_RETAIN

SDT_SCALE

SDT_TILE
SDT _LOADFILE

There is no desktop background bit map, that is the
desktop background i a solid color. For the
WinQueryDesktopBkgnd function the existing
background is to be left unmodified unless
SDT _DESTROY is also specified.
The bit map represents a fill pattern.
The szFi/e[MAX_FILENAME] is, or is to be,
remembered for use when the system is started.
The bit map is, or is to be, scaled to fill the desktop. If
this option is specified, then the values of the x and y
parameters are inapplicable.
The bit map is, or is to be, tiled to fill the desktop.
For the WinSetDesktopBkgnd function the bit map is to
be loaded from the filename specified. If the
SDT _NOBKGND flag is also set then the bit map is
loaded but the background is not set. Tiling and
scaling may be performed at load time or later when
setting the bit map.

szFlle[MAX_FILENAME] (CHAR)
Zero-terminated name of the file containing the bit map.

ITlleCount (LONG)
Number of images of the bit map to be tiled.

The tile count is the number of images to be drawn in the vertical and
horizontal direction when tiling the desktop background.

Open-device data structure.

typedef struct _DEVOPENSTRUC {
PSZ pszlogAddress;
PSZ pszDriverName;
PDRIVDATA pdriv;
PSZ pszDataType;
PSZ pszComnent;
PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PSZ pszSpoolerParams;
PSZ pszNetworkParams;
} DEVOPENSTRUC;

pszLogAddress (PSZ)
Logical address.

This is required for an OD_DIRECT device being opened with
DevOpenDC; it is the logical device address, such as "LPT1" on OS/2.
Some drivers may accept a file name for this parameter, or even a
named pipe. A driver can restrict the logical address to certain names
because special hardware is involved; for example a printer driver that
uses shared memory to access the memory of a laser printer.

Where output is to be queued (for an OD_QUEUED device), this is the
name o.f the queue for the output device, and must always be supplied if
it is not available from pszToken. The queue name can be a UNC name.

pszDrlverName (PSZ)
Driver name.

A string containing the name of the Presentation Manager· (PM) device
driver (for example, "IBM4019"). This information must always be
supplied if it is not available from pszToken.

• Trademark of IBM Corporation

Appendix A. Data Types A-25

pdrlv (PDRIVDAT A)
Driver data.

Data that is to be passed directly to the PM device driver. Whether any
of this is required depends upon the device driver.

pszDataType (PSZ)
Data type.

For a OD_QUEUED or OD_DIRECT device, this parameter defines the type
of data that is to be (or was) queued as follows:

PM_Q_STD Standard format
PM_Q_RAW Raw format.

Note that a device driver can define other data types.

With DevOpenDC, for both of the above device types the default is
supplied by the device driver if pszDataType is not specified. For any
other device type, pszDataType is ignored.

pszComment (PSZ)
Comment.

This is a natural language description of the file for queued output, For
example, this can be displayed by the spooler to the user, and is
optional.

pszQueueProcName (PSZ)
Queue-processor name.

This is the name of the queue processor for queued output, and is usually
the default.

pszQueueProcParams (PSZ)
Queue-processor parameters.

This is a parameter string for the queue processor, for queued output,
and is optional.

pszSpoolerParams (PSZ)
Spooler parameters.

This is a parameter string for the spooler for queued output, and is
optional. It has the following options, which must be separated by one or
more blanks:

FORM= f Specifies a form name 'f'. This must be a valid form name for
the printer. If more than one form is needed for the job, all of the
required form names are supplied, separated by commas, as
FORM= aaaa,bbbb,cccc; the first one is the one that is to be used
first. See HCINFO.

A form name can be enclosed in double quotes to permit form
names to contain the characters ',' ';'or'='. For example,

FORM= 11A11
,

11A4 with heading 11
,

11 C,D 11

calls for three forms: 'A', 'A4 with heading' and 'C,D'. If a double
quote is part of a form name, it should be supplied twice.

If this option is not specified, the data is printed on the forms in
use, when this print job is ready to be printed.

PRTY = n Specifies a priority in the range 1 through 99, with 99 being the
highest. If it is not specified, a default priority of 50 is used.

pszNetworkParams (PSZ)
Network parameters.

This is a parameter string for the network program for queued output,
and is optional. The format of the parameter string is keyword=value,
and the following keyword is defined (additional ones can be defined by
the network program):

A-26 PM Programming Reference

DLGTEMPLATE

DLGTITEM

USER - u Specifies the user identifier 'u'. If it is not specified, a null user
identifier is used.

Dialog-template structure.

typedef struct _DLGTEMPLATE {
USHORT cbTemplate;
USHORT type;
USHORT codepage;
USHORT offadlgti;
USHORT fsTemplateStatus;
USHORT iltemFocus;
USHORT coffPresParams;
DLGTITEM adlgti[l];
} DLGTEMPLATE;

cbTemplate (USHORT)
Length of template.

type (USHORT)
Template format type.

codepage (USHORT)
Code page.

offadlgtl (USHORT)
Offset to dialog items.

fsTemplateStatus (USHORT)
Template status.

lltemFocus (USHORT)
Index of item to receive focus initially.

coff PresParams (USHORT)
Count of presentation-parameter offsets.

adlgtl[1] (DLGTITEM)
Start of dialog items.

Dialog-item structure.

typedef struct _DLGTITEM {
USHORT fsltemStatus;
USHORT cChildren;
USHORT cchClassName;
USHORT offClassName;
USHORT cchText;
USHORT offText;
ULONG fl Style;
SHORT x;
SHORT y;
SHORT ex;
SHORT cy;
USHORT id;
USHORT offPresParams;
USHORT offCtlData;
} DLGTITEM;

fsltemStatus (USHORT)
Status.

_ cChildren (USHORT)
Count of children to this dialog item.

cchClassName (USHORT)
Length of class name.

If zero, offC/assName contains the hexadecimal equivalent of a
preregistered class name.

Appendix A. Data Types A-27

DRAG/MAGE

oflClassName (USHORT)
Offset to class name.

If cchC/assName is nonzero, this is the offset to a null-terminated ASCII
string that contains the classname. If cchClassName is zero, this is of
the form Oxhhhh, where hhhh is the hexadecimal equivalent of the
preregistered class name.

cchText (USHORT)
Length of text.

oflText (USHORT)
Offset to text.

flStyle (ULONG)
Dialog item window style.

The high-order 16 bits are the standard WS_* style bits. The low-order 16
bits are available for class-specific use.

x (SHORT)
x-coordinate of origin of dialog-item window.

y (SHORT)
y-coordinate of origin of dialog-item window.

ex (SHORT)
Dialog-item window width.

cy (SHORT)
Dialog-item window height.

Id (USHORT)
Identity.

oflPresParams (USHORT)
Reserved.

oflCllData (USHORT)
Offset to control data.

Dragged-object-image structure.

typedef struct _DRAGIMAGE {
USHORT cb;
USHORT cptl;
LHANDLE hlmage;
SIZEL sizlStretch;
ULONG fl;
SHORT cxOffset;
SHORT cyOffset;
} DRAGIMAGE;

cb (USHORT)
Structure size.

Size, in bytes, of the DRAGIMAGE structure.

cptl (USHORT)
Number of points.

The number of points in the point array if fl is specified as
DRG_POL YGON.

hlmage (LHANDLE)
Image handle.

Handle representing the image to display. The type is determined by fl.

sizlStretch (SIZEL)
Dimensions for stretching.

Specifies the dimensions for stretching when fl is specified as
DRG_STRETCH.

A-28 PM Programming Reference

DRAGINFO

fl (ULONG)
Flags.

DRG_ICON
DRG_BITMAP
DRG_POL YGON

DRG_STRETCH

DRG_ TRANSPARENT

DRG_CLOSED

cxOttset (SHORT)
X-offset.

hlmage is an HPOINTER.
hlmage is an HBITMAP.
hlmage is a pointer to an array of points that will
be connected with GpiPolyline to form a
polygon. The first point of the array should be
(0,0), and the other points should be placed
relative to this position.
If DRG_ICON or DRG_BITMAP is specified, the
image is expanded or compressed to the
dimensions specified by siz/Stretch.
If DRG_ICON is specified, an outline of the icon is
generated and displayed instead of the original
icon.
If DRG_POL YGON is specified, a closed polygon
is formed by moving the current position to the
last point in the array before calling GpiPolyline.

X-offset from the pointer hot spot to the origin of the image.

cyOffset (SHORT)
Y-offset.

Y-offset from the pointer hot spot to the origin of the image.

Drag-information structure.

typedef struct _DRAGINFO {
ULONG ulDraginfo;
USHORT usDragitem;
SHORT usOperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;
} DRAGINFO;

ulDraglnfo (ULONG)
Structure size.

Size, in bytes, of the structure. The size includes the array of DRAGITEM
structures.

usDragltem (USHORT)
DRAGITEM structures sizes.

Size, in bytes, of each DRAGITEM structure.

usOperation (SHORT)
Modified drag operations.

An application can define its own modified drag operations for use when
simulating a drop. These operations must have a value greater than
DO_UNKNOWN.

DO_DEFAULT

DO_COPY
DO_LINK

DO_MOVE
DO_UNKNOWN

Execute the default drag operation. No modifier keys
are pressed.
Execute a copy operation. The Ctrl key is pressed.
Execute a link operation. The Ctrl +Shift keys are
pressed.
Execute a move operation. The Shift key is pressed.
An undefined combination of modifier keys is pressed.

Appendix A. Data Types A-29

DRAGITEM

hwndSource (HWND)
Window handle.

Window handle of the source of the drag operation.

xDrop (SHORT)
X-coordinate.

X-coordinate of drop point expressed in desktop coordinates.

yDrop (SHORT)
Y-coordinate.

Y-coordinate of drop point expressed in desktop coordinates.

cdltem (USHORT)
Count of DRAGITEM structures.

usReserved (USHORT)
Reserved.

Drag-object structure.

typedef struct _DRAGITEM {
HWND hwndltem;
ULONG ulltemID;
HSTR hstrType;
HSTR hstrRMF;
HSTR hstrContainerName;
HSTR hstrSourceName;
HSTR hstrTargetName;
SHORT cxOffset;
SHORT cyOffset;
USHORT usControl;
USHORT usSupportedOps;
} DRAGITEM;

hwndltem (HWND)
Window handle.

Window handle of the source of the drag operation.

ulltemlD (ULONG)
Item information.

Information used by the source to identify the object being dragged.

hstrType (HSTR)
String handle.

String handle of the object type. The string handle must be created using
the DrgAddStrHandle function. The string is of the form: TYPE[.TYPE ... J.
The first type in the list must be the true type of the object.

The following types are used by the OS/2 version 2.0 shell:

DRT_ASM
DRT_BASIC
DRT_BINDATA
DRT_BITMAP
DRT_C
DRT_COBOL
DRT_DLL
DRT_DOSCMD
DRT_EXE
DRT_FONT
ORT _FORTRAN
DRT_ICON
DRT_LIB
DRT_METAFILE
DRT_OS2CMD
DRT_PASCAL

Assembler code
BASIC code
Binary data
Bit map
Ccode
COBOL code
Dynamic link library
DOS command file
Executable file
Font
FORTRAN code
Icon
Library
Metafile
OS/2 command file
Pascal code

A-30 PM Programming Reference

DRT_RESOURCE Resource file
DRT _TEXT Text
DRT _UNKNOWN Unknown type.

hstrRMF (HSTR)
String handle.

String handle of the rendering mechanism and format. The string handle
must be created using the DrgAddStrHandle function. The string is of the
form: MECHFMT[,MECHFMT ...] • where MECHFMT can be in either of the
following formats:

1. <mechanism(1),format(1)>
2. (mechanism(1)[, mechanism(n) ...]) x (format(1)[,format(n) ...])

The first mechanism/format pair must be the native rendering
mechanism and format of the object.

Valid mechanisms are:

"DRM_DDE"
"DRM_OBJECT"
"DRM_ OS2FILE"
"DRM_PRINT"

Valid formats are:
"DRF _BITMAP"
"DRF_DIB"
"DRF_DIF"
"DRF _DSPBITMAP"
"DRF _METAFILE"
"DRF _ OEMTEXT"
"DRF _ OWNERDISPLAY"
"DRF _PTRPICT"
"DRF_RTF"
"DRF_SYLK"
"DRF_TEXT"
"DRF_TIFF"
"DRF _UNKNOWN"

hstrContalnerName (HSTR)
String handle.

Dynamic data exchange
Item being dragged is a workplace object.
OS/2 file
Object can be printed using direct
manipulation.

OS/2 bit map
DIB
DIF
Stream of bit-map bits
Metafile
OEM text
Bit stream
Printer picture
Rich text
SYLK
Null-terminated string
TIFF
Unknown format.

String handle of the name of the container holding the source object. The
string handle must be created using the DrgAddStrHandle function.

hstrSourceName (HSTR)
String handle.

String handle of the name of the source object. The string handle must
be created using the DrgAddStrHandle function.

hstrTargetName (HSTR)
String handle.

String handle of the suggested name of the object at the target. It is the
responsibility of the source of the drag operation to create this string
handle before calling DrgDrag.

cxOffset (SHORT)
X-offset.

X-offset from the pointer hot spot to the origin of the image that
represents this object. This value is copied from cxOffset in the
DRAGIMAGE structure by DrgDrag.

cyOffset (SHORT)
Y-offset.

Y-offset from the pointer hot spot to the origin of the image that

Appendix A. Data Types A-31

DRAG TRANSFER

represents this object. This value is copied from cyOffset in the
DRAGIMAGE structure by DrgDrag.

usControl (USHORT)
Source-object control flags.

DC_OPEN
DC_REF
DC_GROUP
DC_ CONTAINER
DC_PREPARE

DC_REMOVEABLEMEDIA

usSupportedOps (USHORT)
Supported operations.

Object is open
Reference to another object
Group of objects
Container of other objects
Source requires a DM_RENDERPREPARE
message before it establishes a data
transfer conversation
Object is on removable media, or object
cannot be recovered after a move operation.

Direct manipulation operations supported by the source object:

DO _COPYABLE
DO _LINKABLE
DO_MOVEABLE

Source supports DO_ COPY
Source supports DO_LINK
Source supports DO_MOVE.

Drag-conversation structure.

typedef struct _DRAGTRANSFER {
ULONG cb;
HWND hwndClient;
PDRAGITEM pditem;
HSTR hstrSelectedRMF;
HSTR hstrRenderToName;
ULONG ulTargetlnfo;
USHORT usOperation;
USHORT usReply;
} DRAGTRANSFER;

cb (ULONG)
Structure size.

Size, in bytes, of the structure.

hwndCllent (HWND)
Window handle.

Handle of the client window. This can be the target window or a window
that represents an object in a container that was dropped on.

pdltem (PDRAGITEM)
Pointer.

Pointer to the DRAGITEM structure that is to be rendered. This structure
must exist within the DRAGINFO structure that was passed in the
DM_DROP message.

hstrSelectedRMF (HSTR)
String handle.

The string handle for the selected rendering mechanism and format for
the transfer operation. This handle must be created using
DrgAddStrHandle. The target is responsible for deleting this handle
when the conversation is complete. The string is in the format:
<MECHANISM, FORMAT>.

hstrRenderToName (HSTR)
String handle.

A string handle representing the name where the source will place, and
the target will find, the data that is rendered. The target is responsible
for deleting this string handle when the conversation terminates. The

A-32 PM Programming Reference

DRIVDATA

contents of this field vary according to the rendering mechanism. See
hstrRMF in DRAGITEM.

OS/2 Fiie The string handle represents the fully qualified name of the
file where the rendering will be placed.

DDE This field is not used.
Print This field is not used.

ulTargetlnfo (ULONG)
Reserved.

Reserved for use by the target. The target can use this field for
information about the object and rendering operation.

usOperatlon (USHORT)
The operation.

Values are:

Execute a copy operation.
Execute a link operation.
Execute a move operation.

DO_COPY
DO_LINK
DO_MOVE
OTHER Execute an application-defined operation.

usReply (USHORT)
Reply flags.

Replay flags for the message. These flags can be set as follows:

DMFL_NATIVERENDER The source does not support rendering for this
object. A source should not set this flag unless
it provides sufficient information at the time of
the drop for the target to perform the rendering
operation. The target must send
DM_ENDCONVERSATION to the source after
carrying out the rendering operation, or when
it elects not to do a native rendering.

DMFL_RENDERRETRY The source supports rendering for the object,
but does not support the selected rendering
mechanism and format. The target can try
another mechanism and format by sending
another DM_RENDER message. If the target
does not retry, it must send a
DM_RENDERCOMPLETE message to the
source. This flag is set in conjunction with the
DMFL_NATIVERENDER flag.

Driver-data structure.

typedef struct _DRIVDATA {
LONG cb;
LONG lVersion;
CHAR szDeviceName[32];
CHAR abGeneralData[l];
} DRIVDATA;

cb (LONG)
Length.

The length of the structure.

IVersion (LONG)
Version.

The version number of the data. Version numbers are defined by
particular PM device drivers.

szDevlceName[32] (CHAR)
Device name.

A string in a 32-byte field, identifying the particular device (model

Appendix A. Data Types A-33

DRIVPROPS

ENTRYFDATA

number, and so on). Again, valid values are defined by PM device
drivers.

abGeneralDala[1] (CHAR)
General data.

Data as defined by the Presentation Manager device driver.

The data type of this field is defined by the Presentation Manager device
driver. It does not contain pointers, as these are not necessarily valid
when passed to the device driver.

Printer driver property structure.

typedef struct _DRIVPROPS {
PSZ pszKeyName;
ULONG cbBuf;
PVOID pBuf;
} DRIVPROPS;

pszKeyName (PSZ)
key name

This is the key name for an individual property. For example "FORMS."

cbBuf (ULONG)
The length of the key data.

pBuf (PVOID)
The key data.

This is the data associated with the key name. For example "LETTER,
LEGAL, LEDGER."

Entry-field control data structure.

typedef struct _ENTRYFDATA {
USHORT cb;
USHORT cchEditLimit;
USHORT ichMinSel;
USHORT ichMaxSel;
} ENTRYFDATA;

cb (USHORT)
Length of control data in bytes.

8 The length of the control data for an entry field control.

cchEdllLlmll (USHORT)
Edit limit.

This is the maximum number of characters that can be entered into the
entry field control.

If the operator tries to enter more text into an entry field control than is
specified by the text limit set by the EM_SETTEXTLIMIT message, the
entry field control indicates the error by sounding the alarm and does not
accept the characters.

lchMlnSel (USHORT)
Minimum selection.

lchMaxSel (USHORT)
Maximum selection.

The ichMinSel and ichMaxSel parameters identify the current selection
within the entry field control. Characters within the text with byte offsets
less than the ichMaxSel parameter and greater than or equal to the
ichMinSel parameter are the current selection. The cursor is positioned
immediately before the character identified by the ichMaxSel parameter.

If the ichMinSel parameter is equal to the ichMaxSel parameter, the
current selection becomes the insertion point.

A-34 PM Programming Reference

J ERRINFO

ERRORID

ESCSETMODE

FACENAMEDESC

)

If the ichMinSel parameter is equal to 0 and the ichMaxSel is greater
than or equal to text limit set by the EM_SETTEXTLIMIT message, the
entire text is selected.

Error-information structure.

typedef struct _ERRINFO {
ULONG cbFixedErrlnfo;
ERRORID idError;
ULONG cDetaillevel;
ULONG offaoffszMsg;
ULONG ulBinaryData;
} ERRINFO;

cbFlxedErrlnto (ULONG)
Length of fixed data to this structure.

ldError (ERRORID)
Error identity.

This is identical to the value returned by the WinGetLa~tError function.

cDelallLevel (ULONG)
Number of levels of detail.

This is the number of entries in the array of words pointed to by the
following field. One level of detail is provided.

ottaottszMsg (ULONG)
Offset to the array of message offsets.

ulBlnaryDala (ULONG)
Offset to the binary data.

This can contain additional information relating to the error.

Error identity.

typedef ULONG ERRORID;

Structure for setting printer mode. See DevEscape (DEVESC_SETMODE).

typedef struct _ESCSETMODE {
ULONG mode;
USHORT codepage;
} ESCSETMODE;

mode (ULONG)
Mode

Mode to be set.

O Set mode to specified code page. Any font can be used.

codepage (USHORT)
Code page.

If zero Is specified for the code page, the printer is set to the hardware
default.

Face-name description structure. See GpiQueryFaceString.

typedef struct _FACENAMEDESC {
USHORT usSize;
USHORT usWeightClass;
USHORT usWidthClass;
USHORT usReserved;
ULONG fl Options;
} FACENAMEDESC;

usSlze (USHORT)
Length of structure.

Appendix A. Data Types A-35

FATTRS

usWelghtClass (USHORT)
Weight class.

Indicates the visual weight (thickness of strokes) of the characters in the
font:

FWEIGHT_DONT_CARE
FWEIGHT _ULTRA_LIGHT
FWEIGHT _EXTRA_LIGHT
FWEIGHT _LIGHT
FWEIGHT _SEMl_LIGHT
FWEIGHT _NORMAL
FWEIGHT _SEMl_BOLD
FWEIGHT_BOLD
FWEIGHT _EXTRA_BOLD
FWEIGHT _UL TRA_BOLD

Any font weight satisfies the request.
Ultra-light.
Extra-light.
Light.
Semi-light.
Medium (normal) weight.
Semi-bold.
Bold.
Extra-bold.
Ultra-bold.

usWldthClass (USHORT)
Width class.

Indicates the relative aspect ratio of the characters of the font in relation
to the normal aspect ratio for this type of font:

FWIDTH_DONT _CARE
FWIDTH_ ULTRA_ CONDENSED
FWIDTH_EXTRA_ CONDENSED
FWIDTH_CONDENSED
FWIDTH_SEMI_ CONDENSED
FWIDTH_NORMAL
FWIDTH_SEMl_EXPANDED
FWIDTH_EXPANDED
FWIDTH_EXTRA_EXPANDED
FWIDTH_ ULTRA_EXPANDED

usReserved (USHORT)
Reserved.

flOptlons (ULONG)
Other characteristics of the font.

Any font width satisfies the request.
Ultra-condensed (50% of normal).
Extra-condensed (62.5% of normal).
Condensed (75% of normal).
Semi-condensed (87.5% of normal).
Medium (normal).
Semi-expanded (112.5% of normal).
Expanded (125% of normal).
Extra-expanded (150% of normal).
Ultra-expanded (200% of normal).

FTYPE_ITALIC Italic font required. If not specified,
non-italic font required.

FTYPE_ITALIC_DONT_CARE Italic and non-italic fonts can satisfy the
request. If this option is specified,
FTYPE_ITALIC is ignored.

FTYPE_OBLIQUE Oblique font required. If not specified,
non-oblique font required.

FTYPE_OBLIQUE_DONT_CARE Oblique and non-oblique fonts can
satisfy the request. If this option is
specified, FTYPE_OBLIQUE is ignored.

FTYPE_ROUNDED Rounded font required. If not specified,
non-rounded font required.

FTYPE_ROUNDED_DONT_CARE Rounded and non-rounded fonts can
satisfy the request. If this option is
specified, FTYPE_ROUNDED is ignored.

Font-attributes structure.

A-36 PM Programming Reference

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG lMatch;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;
} FATTRS;

usRecordLength (USHORT)
Length of record.

fsSelection (USHORT)
Selection indicators.

Flags causing the following features to be simulated by the system.

Note: If an italic flag is applied to a font that is itself defined as italic, the
font is slanted further by italic simulation.

Underscore or strikeout lines are drawn using the appropriate
attributes (for example, color) from the character bundle (see the
CHARBUNDLE datatype), not the line bundle (see LINEBUNDLE).
The width of the line, and the vertical position of the line in font
space, are determined by the font. Horizontally, the line starts
from a point in font space directly above or below the start point of
each character, and extends to a point directly above or below the
escapement point for that character. For this purpose, the start
and escapement points are those applicable to left-to-right or
right-to-left character directions (see GpiSetCharDirection), even
if the string is currently being drawn in a top-to-bottom or
bottom-to-top direction. For left-to-right or right-to-left directions
(only), any white space generated by the character extra and
character break extra attributes (see GpiSetCharExtra and
GpiSetCharBreakExtra), as well as increments provided by the
vector of increments on GpiCharStringPos and
GpiCharStringPosAt, is also underlined/overstruck, so that in
these cases the line is continuous for the string.

FA TTR_SEL_ITALIC
FA TTR_SEL_UNDERSCORE
FATTR_SEL_BOLD

FATTR_SEL_STRIKEOUT
FATTR_SEL_OUTLINE

IMatch (LONG)
Matched-font identity.

Generate italic font.
Generate underscored font.
Generate bold font. (Note that the resulting
characters are wider than those in the
original font.)
Generate font with 8\ eretrt:telt characters.
Use an outline font with hollow characters.

If this flag is not set, outline font characters
are filled. Setting this flag normally gives
better performance, and for sufficiently
small characters there may be little visual
difference.

szFacename[FACESIZE] (CHAR)
Typeface name.

The typeface name of the font, for example, Tms Rmn.

idRegistry (USHORT)
Registry identifier.

Font registry identifier (zero if unknown).

Appendix A. Data Types A-37

FDATE

usCodePage (USHORT)
Code page.

If zero, the current Gpi code page (see GpiSetCp) is used. A subsequent
GpiSetCp function changes the code page used for this logical font.

IMaxBasellneExt (LONG)
Maximum baseline extension.

For raster fonts, this should be the height of the required font, in world
coordinates.

For outline fonts, this should be zero.

IAveCharWldth (LONG)
Average character width.

For raster fonts, this should be the width of the required font, in world
coordinates.

For outline fonts, this should be zero.

fsType (USHORT)
Type indicators.

FATTR_ TYPE_KERNING
FATTR_ TYPE_MBCS

FATTR_TYPE_DBCS
FATTR_ TYPE_ANTIALIASED

fsFontUse (USHORT)
Font-use indicators.

Enable kerning (Postscript only).
Font for mixed single/double-byte code
pages.
Font for double-byte code pages.
Antialiased font required. Only valid if
supported by the device driver.

These flags indicate how the font is to be used. They affect presentation
speed and font quality.

FATTR_FONTUSE_NOMIX

FATTR_FONTUSE_ OUTLINE

Text is not mixed with graphics
and can be written without
regard to any interaction with
graphics objects.
Select an outline (vector) font.
The font characters can be used
as part of a path definition.

If this flag is not set, an outline
font might or might not be
selected. If an outline font is
selected, however, character
widths are rounded to an
integral number of pels.

FATTR_FONTUSE_ TRANSFORMABLE Characters can be transformed
(for example, scaled, rotated, or
sheared).

Date data structure for file-system functions.

typedef struct _FDATE {
USHORT usday;
USHORT usmonth;
USHORT usyear;
} FDATE;

usday (USHORT)

Binary day for directory entry.

usmonth (USHORT)

Binary month for directory entry.

A-38 PM Programming Reference

FFDESCS

FFDESCS2

FIELDINFO

)

usyear (USHORT)

Binary year for directory entry.

Font-file descriptor.

typedef CHAR FFDESCS[2][FACESIZE];

Font-file descriptor.

typedef struct _FFDESCS2 {
ULONG cbLength;
ULONG cbFacenameOffset;
BYTE abFamilyName[l];
} FFDESCS2;

cbLength (ULONG)
Structure length.

cbLength is the overall length of the FFDESCS2 structure. It is always

rounded up to a multiple of four.

cbFacenameOffset (ULONG)
Offset of Facename in the structure.

The facename is a null terminated string. It starts at cbFacenameOffset

bytes offset into FFDESCS2.

abFamilyName[1] (BYTE)
Family name.

abFamilyName[1] is a null terminated string.

Structure that contains information about column data in the details view of

the container control. The details view displays each FIELDINFO structure

as a column of data that contains specific information about each container

record. For example, one FIELDINFO structure, or column, might contain

icons or bit maps that represent each container record. Another

FIELDINFO structure might contain the date or time that each container

record was created.

typedef struct _FIELDINFO {
ULONG cb;
ULONG fl Data;
ULONG fl Title;
PVOID pTitleData;
ULONG offStruct;
PVOID pUserData;
PFIELDINFO pNextFieldlnfo;
ULONG cxWidth;
} FIELDINFO;

cb (ULONG)
Structure size.

The size (in bytes) of the FIELDINFO structure.

flData (ULONG)
Data attributes.

Attributes of the data in a field.

• Specify one of the following for each column to choose the type of
data that is displayed in each column:

CFA_BITMAPORICON
The column contains bit-map or icon data.

CFA_STRING
Character or text data is displayed in this column.

CFA_ULONG
Unsigned number data is displayed in this column. National
Language Support (NLS) is enabled for number format.

Appendix A. Data Types A-39

CFA_DATE
The data in the column is displayed in date format. National
Language Support (NLS) is enabled for date format. Use the data
structure described in COATE on page A-10.

CFA_TIME
The data in the column is displayed in time format. National
Language Support (NLS) is enabled for time format. Use the data
structure described in CTIME on page A-22.

• Specify any or all of the following column attributes:

CFA_HORZSEPARATOR
A horizontal separator is provided beneath column headings.

CF A_ SEPARATOR
A vertical separator is drawn after this column.

CFA_OWNER
Ownerdraw is enabled for this container column.

CFA_INVISIBLE
Invisible container column. The default is visible.

CFA_FIREADONL Y
Prevents text in a FIELDINFO data structure (text in a column)
from being edited directly. This attribute applies only to columns
for which the CFA_STRING attribute has been specified.

• Specify one of the following for each column to vertically position
data in that column:

CFA_TOP
Top-justifies field data.

CFA_BOTTOM
Bottom-justifies field data.

CFA_ VCENTER
Vertically centers field data. This is the default.

• Specify one of the following for each column to horizontally position
data in that column. These attributes can be combined with the
attributes used for vertical positioning of column data by using an
OR operator (I).

CFA_CENTER
Horizontally centers field data.

CFA_LEFT
Left-justifies field data. This is the default.

CFA_RIGHT
Right-justifies field data.

flTltle (ULONG)
Attributes of column headings.

• Specify the following if icon or bit-map data is to be displayed in the
column heading:

CFA_BITMAPORICON
The column heading contains icon or bit-map data.

• Specify the following to prevent direct editing of a column heading:

CFA_FITITLEREADONL Y
Prevents a column heading from being edited directly.

• Specify one of the following for each column heading to vertically
position data in that column heading:

A-40 PM Programming Reference

_/

\
I

F/ELDINFOINSERT

CFA_TOP
Top-justifies column headings.

CFA_BOTTOM
Bottom-justifies column headings.

CFA_ VCENTER
Vertically centers column headings. This is the default.

• Specify one of the following for each column heading to horizontally

position data in that column heading. These attributes can be

combined with the attributes used for vertical positioning of column
heading data by using an OR operator (I).

CFA_CENTER
Horizontally centers column headings.

CFA_LEFT
Left-justifies column headings. This is the default.

CFA_RIGHT
Right-justifies column headings.

pTltleData (PVOID)
Column heading data.

Column heading data, which can be a text string, or an icon or bit map.

The default is a text string. If the f/Title field is set to the
CFA_BITMAPORICON attribute, this must be an icon or bit map.

offStruct (ULONG)
Structure offset.

Offset from the beginning of a RECORDCORE structure to the data that is

displayed in this column.

Note: If the CCS_MINIRECORDCORE style bit is specified when a

container is created, then MINIRECORDCORE should be used instead of

RECORDCORE and PMINIRECORDCORE should be used instead of

PRECORDCORE in all applicable data structures and messages.

pUserData (PVOI D)
Pointer.

Pointer to user data.

pNextFleldlnfo (PFIELDINFO)
Pointer.

Pointer to the next linked FIELDINFO data structure.

cxWidth (ULONG)
Column width.

Used to specify the width of a column. The default is an automatically
sized column that is always the width of its widest element. If this field is

set and the data is too wide, the data is truncated.

Structure that contains information about the FIELDINFO structure or

structures that are being inserted into a container. This structure is used

in the CM_INSERTDETAILFIELDINFO container message only. See
"CM_INSERTDETAILFIELDINFO" on page 24-30 for information about that

message.

typedef struct _FIELDINFOINSERT {
ULONG cb;
PFIELDINFO pFieldlnfoOrder;
ULONG cFieldlnfolnsert;
ULONG flnvalidateFieldlnfo;
} FIELDINFOINSERT;

Appendix A. Data Types A-41

FILEDLG

cb (ULONG)
Structure size.

The size (in bytes) of the FIELDINFOINSERT structure.

pfleldlnfoOrder (PFIELDINFO)
Column order.

Orders the FIELDINFO structure or structures relative to other FIELDINFO
structures in the container. The values can be:

CMA_FIRST Places a FIELDINFO structure, or list of FIELDINFO
structures, at the front of the list of columns.

CMA_END Places a FIELDINFO structure, or list of FIELDINFO
structures, at the end of the list of columns.

Other Pointer to a FIELDINFO structure that this structure, or list
of structures, is to be inserted after.

cfleldlnfolnserl (ULONG)
Number of columns.

The number of FIELDINFO structures to be inserted. The cFieldlnfolnsert
field value must be greater than 0.

flnvalldatefleldlnfo (ULONG)
Update flag.

Flag that Indicates an automatic display update after the FIELDINFO
structures are Inserted.

TRUE The display is automatically updated after FIELDINFO
structures are inserted.

FALSE The application must send the
CM_INVALIDATEDETAILFIELDINFO message after the
FIELDINFO structures are inserted.

File-dialog structure.

typedef struct _FILEDLG {
ULONG cbSize;
ULONG fl;
ULONG ulUser;
LONG lReturn;
LONG lSRC;
PSZ pszTitle;
PSZ pszOKButton;
PFNWP pfnDlgProc;
PSZ pszIType;
PAPSZ papszITypeList;
PSZ pszIDrive;
PAPSZ papszIDriveList;
HMODULE hMod;
CHAR szFullFile[CCHMAXPATH];
PAPSZ papszFQFilename;
ULONG ulFQFCount;
USHORT usDlgld;
SHORT x;
SHORT y;
SHORT sEAType;
} FILEDLG;

cbSlze (ULONG)
Structure size.

Size of the structure. This field allows future expansion of the structure
and must be initialized with the size of the FILEDLG structure.

fl (ULONG)
FDS_* flags.

Several flags can be specified to alter the behavior of the dialog.

A-42 PM Programming Reference

)

)

Note: The dialog must be either an "Open" or a "Save As" dialog. If
neither the FDS_OPEN_DIALOG nor the FDS_SAVEAS_DIALOG flag
is set, or if both are set, the dialog will return an error.

FDS_APPL YBUTTON

FDS_CENTER

FDS_CUSTOM

FDS_ENABLEFILELB

FDS_FILTERUNION

FDS_HELPBUTTON

FDS_INCLUDE_EAS

FDS_MODELESS

An Apply push button is added to the dialog.
This is useful in a modeless dialog.
The dialog is positioned in the center of its
parent window, overriding any specified x, y
position.
A custom dialog template is used to create
the dialog. The hMod and usD/gld fields
must be initialized.
When this flag is set, the Files list box on a
Save As dialog is enabled. When this flag is
not set, the Files list box is not enabled for a
Save As dialog. This is the default.
When this flag is set, the dialog uses the
union of the string filter and the
extended-attribute type filter when filtering
files for the Files list box. When this flag is
not set, the list box, by default, uses the
intersection of the two.
A Help push button of style
(BS_HELPIBS_NOPOINTERFOCUS) with an ID
of DID_HELP _PB is added to the dialog.
When this push button is pressed, a
WM_HELP message is sent to hwndOwner.
If this flag is set, the dialog will always query
extended attribute information for files as it
fills the Files list box. The default is to not
query the information unless an extended
attribute type filter has been selected.
When this flag is set, the dialog is modeless;
WinFileDlg returns immediately after
creating the dialog window and returns the
window handle to the application. The
application should treat the dialog as if it
were created with WinloadDlg. As in the
modal (default) dialog case, the return value
is found in the /Return field of the FILEDLG
structure passed to WinFileDlg.

FDS_MULTIPLESEL When this flag is set, the Files list box for the
dialog is a multiple selection list box. When
this flag is not set, the default is a
single-selection list box.

FDS_OPEN_DIALOG The dialog is an "Open" dialog when this
flag is set.

FDS_PRELOAD_VOLINFO If this flag is set, the dialog will preload the
volume information for the drives and will
preset the current default directory for each
drive. The default behavior is for the volume
label to be blank and the initial directory will
be the root directory for each drive.

FDS_SAVEAS_DIALOG The dialog is a "Save As" dialog when this
flag is set.

ulUser (UL ONG)
Used by the application.

This field can be used by an application that is subclassing the file dialog
to store its own state information.

IReturn (LONG)
Result code.

Result code from dialog dismissal. This field contains the ID of the push

Appendix A. Data Types A-43

button pressed to dismiss the dialog, DID_OK or DID_CANCEL, unless the
application supplies additional push buttons in its template. If an error
occurs on dialog invocation, this field is set to zero.

ISRC (LONG)
System return code.

This field contains an FDS_ERR return code. When a dialog fails, this
field is used to tell the application the reason for the failure.

pszTitle (PSZ)
Dialog title string.

When this field is NULL, the dialog title defaults to the name of the dialog
currently running.

pszOKButton (PSZ)
OK push button text.

This string is used to set the text of the OK push button. The default text
is OK.

pfnDlgProc (PFNWP)
Custom dialog procedure.

NULL unless the caller is subclassing the file dialog. When non-NULL, it
points to the dialog procedure of the application.

pszlType (PSZ)
Extended-attribute type filter.

This field contains a pointer to the initial extended-attribute type filter
that is applied to the initial dialog screen. This filter is not required to be
in papsz/TypeList.

papszlTypeLlst (PAPSZ)
Pointer.

Pointer to a table of pointers to extended-attribute types. Each pointer in
the table points to a null-terminated string, and each string is an
extended-attribute type. These types are sorted in ascending order in
the Type drop-down box. The end of the table is marked by a null
pointer. To specify an empty table, the application sets this field to
NULL, or it specifies a table containing only a null pointer.

pszlDrive (PSZ)
The initial drive.

This field contains a pointer to a string that specifies the initial drive
applied to the initial dialog screen. This drive is not required to be in
papsz/DriveList.

papszlDriveList (PAPSZ)
Pointer.

Pointer to a table of pointers to drives. Each pointer in the table points to
a null-terminated string, and each string is a valid drive or network
identifier. These drives and network IDs will be sorted in ascending
order in the Drive drop-down box. The end of the table is marked by a
null pointer. To specify an empty table, the application sets this field to
NULL, or it specifies a table containing only a null pointer.

hMod (HMODULE)
Module for custom dialog resources.

If FDS_CUSTOM is set, this is the HMODULE from which the custom file
dialog template is loaded. NULLHANDLE causes the dialog resource to
be pulled from the module of the current EXE.

szFullFile[CCHMAXPATH] (CHAR)
Character array.

An array of characters where CCHMAXPATH is a system-defined

A-44 PM Programming Reference

/

constant. On initialization, this field contains the initial fully-qualified
path and file name. On completion, this field contains the selected
fully-qualified path and file name. The simple file name can be replaced
with a string filter, such as *.DAT. When the dialog is invoked, all drive
and path information is stripped from the entry and moved to the
corresponding fields in the dialog.

When a file name is specified, the Files list box is scrolled to the
matching file name. When there is no exact match, the closest match is
used.

When a string filter is specified, the dialog is initially refreshed using the
results of this filter intersected with the results of psz/Type. After the
dialog is initially shown, the string filter remains in the file name field
until a file is selected, or the user overtypes the value.

When a file is selected, szFullFlle is returned to the calling application
and is set to the selected fully-qualified file name.

When more than one file is selected in a multiple file selection dialog,
only the topmost selected file name is returned in this field.

papszFQFllename (PAPSZ)
Pointer.

Pointer to a table of pointers to fully-qualified file names. Returned to
multiple file selection dialogs when the user selects one or more files
from the list box. If the user types the file name in the file name entry
field, the file name will be in szFullFlle and this pointer will be NULL.
When one or more selections are made, the count of items in this array
will be returned in u/FQFCount.

This table of pointers is storage allocated by the file dialog. When the
application completes opening or saving all of the files specified, the
application must call WinFreeFileDlglist to free the storage allocated by
the file dialog.

ulFQFCounl (ULONG)
Number of file names.

Number of file names selected in the dialog. In a single file selection
dialog, this value is 1. In a multiple file selection dialog, this value will
be the number of files selected by the user.

usDlgld (USHORT)
Custom dialog ID.

The ID of the dialog window. When FDS_CUSTOM is set, this field
contains the ID of the resource containing the custom dialog template.

x (SHORT)
X-axis dialog position.

This, along with y and hwndParent, is used to position the dialog. It is
updated in the structure if the user moves the dialog to a new position. If
the FILEDLG structure is reused, the dialog appears in the position at
which it was left each time it is invoked. The FDS_CENTER flag overrides
this position and automatically centers the dialog in its parent.

y (SHORT)
Y-axis dialog position.

This, along with x and hwndParent, is used to position the dialog. It is
updated in the structure if the user moves the dialog to a new position. If
the FILEDLG structure is reused, the dialog appears in the position at
which it was left each time it is invoked. The FDS_CENTER flag overrides
this position and automatically centers the dialog in its parent.

sEAType (SHORT)
Selected extended-attribute type.

Returns a selected extended-attribute type to assign to the file name

Appendix A. Data Types A-45

FILEFINDBUF4

FIXED

FOLDERDATA

returned in szFullFlle. This field is a zero-based offset into the
papsz/TypeList and is returned only when the Save As dialog is used. A
-1 value is returned when the Open dialog is used.

32-bit level 2 information (used with EAs).

typedef struct _FILEFINDBUF4 {
ULONG uloNextEntryOffset;
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdatelastAccess;
FTIME ftimelastAccess;
FDATE fdatelastWrite;
FTIME ftimelastWrite;
ULONG ulcbFile;
ULONG ulcbFileAlloc;
ULONG ulattrFile;
ULONG ulcblist;
UCHAR uccchName;
CHAR chachName[CCHMAXPATHCOMP];
} FILEFINDBUF4;

uloNextEntryOffset (ULONG)

fdateCreatlon (FDATE)

ftlmeCreatlon (FTIME)

fdateLastAccess (FDATE)

ftlmeLastAccess (FTIME)

fdateLastWrlte (FDATE)

ftlmeLastWrlte (FTIME)

ulcbFlle (ULONG)

ulcbFlleAlloc (ULONG)

ulattrFlle (ULONG)

ulcbLlst (ULONG)

uccchName (UCHAR)

chachName[CCHMAXPATHCOMP] (CHAR)

Signed-integer fraction (16:16). This can be treated as a LONG where the
value has been multiplied by 65 536.

typedef LONG FIXED;

FOLDERDATA data structure.

typedef struct _FOLDERDATA {
WPFolder *Folder;
USE ITEM pUseltem;
VIEWITEM pViewitem;
ULONG ulView;
HWND hwndCnr;
HWND hwndCtxtMenu;
PSZ pszEditName;
PVOID precEditName;
PRECORDCORE pRecordContextMenu;
} FOLDERDATA;

Folder (WPFolder *)

Pointer to folder object.

pUseltem (USEITEM)

Folder object's !NUSE list item.

A-46 PM Programming Reference

FONTDLG

pVlewltem (VIEWITEM)

Folder object's view information.

ulVlew (ULONG)

Folder type.

hwndCnr (HWND)

Container control window handle.

hwndCtxtMenu (HWND)

Pop-up menu handle.

pszEdltName (PSZ)

A pointer to direct name edit string. Used only during direct name edit.

precEdltName (PVOID)

A pointer to direct name edit record. Used only during direct name edit.

pRecordContextMenu (PRECORDCORE)

A pointer to object record of last pop-up menu.

Font-dialog structure.

typedef struct _FONTDLG {
ULONG cbSize;
HPS hpsScreen;
HPS hpsPrinter;
PSZ pszTitle;
PSZ pszPreview;
PSZ pszPtSizeList;
PFNWP pfnDlgProc;
PSZ pszFamilyname;
FIXED fxPointSize;
ULONG fl;
ULONG fl Flags;
ULONG fl Type;
ULONG flTypeMask;
ULONG fl Style;
ULONG flStyleMask;
LONG clrFore;
LONG clrBack;
ULONG ulUser;
LONG l Return;
LONG lSRC;
LONG lEmHeight;
LONG lXHeight;
LONG lExternalLeading;
HMODULE hMod;
SHORT sNominalPointSize;
USHORT usWeight;
USHORT usWidth;
SHORT x;
SHORT y;
USHORT usDlgid;
USHORT usFamilyBufLen;
FATTRS fAttrs;
} FONTDLG;

cbSlze (ULONG)
Structure size.

Size of structure. This field allows for future expansion of the structure,
and must be initialized with the size of the FONTDLG structure.

Appendix A. Data Types A-47

hpsScreen (HPS)
Screen presentation space.

If not NULLHANDLE, the screen presentation space from which screen
fonts are queried.

hpsPrlnter (HPS)
Printer presentation space.

If not NULLHANDLE, the printer presentation space from which printer
font are queried.

pszTltle (PSZ)
Dialog title string.

Application-provided dialog title. If NULL, it defaults to "Font."

pszPrevlew (PSZ)
Font-preview window string.

String to show in font-preview window. If NULL, it defaults to
"abcdABCD."

Note: Take care when choosing the string to put in this field. Using
many different characters causes excess memory to be used by
the font cache.

pszPtSlzellst (PSZ)
Application-provided point size list.

String which contains a list of point sizes to be used as the default list for
outline fonts in the point-size drop-down area. Point sizes are separated
by spaces. If NULL, the point size drop down defaults to 8, 10, 12, 14, 18,
and 24.

pfnDlgProc (PFNWP)
Custom dialog procedure.

NULL unless the caller is subclassing the font dialog. When non-NULL, it
points to the dialog procedure of the application.

pszfamllyname (PSZ)
Family name buffer.

Buffer provided by the application for passing the family name of the font.
The font family name used by the application to select a font. When the
first character in this string is NULL, no family name was initially
selected, and the dialog defaults to the system font.

A buffer must be passed to the font dialog to allow the dialog to return
the selected font family name. The size of this buffer is placed in the
usFamilyBufLen field.

fxPolntSlze (FIXED)
Point size of the font.

If FNTS_OWNERDRAWPREVIEW is set, 0 means the user wants to leave
the font size unchanged and the application must update the preview
area.

fl (ULONG)
FNTS_ * flags.

FNTS_APPLYBUTTON

FNTS_BITMAPONLY

A-48 PM Programming Reference

An Apply push button is added to the
dialog. This is useful in a modeless
dialog.
The dialog presents bit-map fonts only.
An application that changes fonts by
using the presentation parameters
{PP_* values) could use this flag.

FNTS_CENTER The dialog is positioned in the center of
its parent window, overriding any

.,.,,_ specified x,y position .

j FNTS_ CUSTOM A custom dialog template is used to
create the dialog. The hMod and
usDlgld fields must be initialized.

FNTS_FIXEDWIDTHONLY The dialog presents fixed-width
(monospace) fonts only.

FNTS_HELPBUTTON A Help push button of style
(BS_HELPIBS_NOPOINTERFOCUS) with
an ID of DID_HELP _BUTTON is added to
the dialog. If the push button is
pressed, a WM_HELP message is sent
to the hwndOwner parameter of the
WinFontDlg function call.

FNTS_INITFROMFATTRS The dialog initializes itself from the font
attribute structure (FA TTRS) that is
passed.

FNTS_MODELESS The dialog is modeless; WinFontDlg
returns immediately after creating the
dialog window and returns the window
handle to the application. The
application should treat the dialog as if
it were created with WinloadDlg. As in
the modal (default) dialog case, the
return value is found in the /Return
field of the FONTDLG structure passed
to WinFontDlg.

FNTS_NOSYNTHESIZEDFONTS The dialog does not synthesize any
fonts.

FNTS_ OWNERDRAWPREVIEW This flag makes the check boxes in the
) font dialog three-state check boxes,
j enabling the user to leave certain style

attributes unchanged. Additionally, a
WM_DRAWITEM message will be sent
to the owner, providing the owner an
opportunity to draw the preview
window itself.

FNTS_PROPORTIONALONLY The dialog presents proportionally
spaced fonts only.

FNTS_RESETBUTTON A Reset push button is added to the

\ dialog. When this push button is
) pressed, the values for the dialog are

restored to their initial values.
FNTS_ VECTORONLY The dialog presents vector fonts only.

flflags (ULONG)
FNTF _ * flags.

FNTF _NOVIEWPRINTERFONTS This flag is initialized only when both
hpsScreen and hpsPrinter are not
NULLHANDLE. On input, this
parameter determines whether the
printer fonts are to be included in the
font list box. The user controls this
with a check box.

FNTF _NOVIEWSCREENFONTS This flag is initialized only when both
hpsScreen and hpsPrinter are not
NULLHANDLE. On input, this
parameter determines whether the

) screen fonts should be included in the
font list box. The user controls this
with a check box.

Appendix A. Data Types A-49

FNTF _PRINTERFONTSELECTED This determines if a printer-specific
font is selected by the user. The
application should make an
approximation of this printer font when
outputting to the screen. This is an
output-only flag and is ignored on
input.

FNTF _SCREENFONTSELECTED This determines if a screen-specific
font is selected by the user. The
application should make an
approximation of this screen font
when outputting to the screen. This is
an output-only flag and is ignored on
input.

flType (ULONG)
The selected type bits.

These flags specify what additional attributes the user specified for the
font. This field is used as the f/Options field in the FACENAMEDESC
structure for GpiQueryFaceString.

flTypeMask (ULONG)
Mask of type bits to use.

This field is used only if FNTS_OWNERDRAWPREVIEW Is specified. It
tells which flags of the f/TypeMask field the user wants to change, and is
relevant only if the text for which the font is selected has different faces
and styles.

flStyle (ULONG)
Selected style bits.

Flags for any additional selections the user specified for the font. This
field is used as the fsSelection field in the FATTRS structure passed to
GpiCreateLogFont.

flStyleMask (ULONG)
Mask of style bits to use.

This field is used only if FNTS_OWNERDRAWPREVIEW is specified. It
tells which flags of the f/Style field the user wants to change and is
relevant only if the text for which the font is selected has different faces
and styles.

clrFore (LONG)
Font foreground color.

Foreground color of the font. This color is a value used for the color
mode that hpsScreen is in. If FNTS_OWNERDRAWPREVIEW is specified,
this value can be CLR_NOINDEX, leaving the foreground color "as is."

clrBack (LONG)
Font background color.

Background color of the font. This color is a value used for the color
mode that hpsScreen is in. If FNTS_OWNERDRAWPREVIEW is specified,
this value can be CLR_NOINDEX leaving the background color "as is."

ulUser (ULONG)
Application-defined.

A ULONG that an application uses to store its state information when it is
subclassing the font dialog.

IReturn (LONG)
Return value.

Return value from WinFontDlg. This value is the ID of the push button
pressed to dismiss the dialog, DID_OK or DID_CANCEL, unless the
application supplied additional push buttons in its template.

A-50 PM Programming Reference

\,

ISRC (LONG)
System return code.

This field contains an FNTS_ERR return code. When a dialog fails, this
field is used to tell the application the reason for the failure.

IEmHelghl (LONG)
Em height.

The Em height of the current font. This is the same as in the
FONTMETRICS structure. It is an output-only parameter and its value
has no effect on the behavior of the font dialog, but is updated when the
user dismisses the dialog.

IXHelght (LONG)
X height.

The x height of the current font. This is the same as in the
FONTMETRICS structure. It is an output-only parameter and its value
has no effect on the behavior of the font dialog, but is updated when the
user dismisses the dialog.

IExternalLeadlng (LONG)
External leading.

The external leading of the font. This is the same as in the
FONTMETRICS structure. It is an output-only parameter and its value
has no effect on the behavior of the font dialog, but is updated when the
user dismisses the dialog.

hMod (HMODULE)
Module for custom dialog resources.

If FNTS_CUSTOM is set, this is the HMODULE from which the custom font
dialog template is loaded. NULLHANDLE causes the dialog resource to
be pulled from the module of the current EXE.

sNomlnalPolntSlze (SHORT)
Font point size.

The nominal point size of the font. This is the same as in the
FONTMETRICS structure. It is an output-only parameter and its value
has no effect on the behavior of the font dialog, but is updated when the
user dismisses the dialog.

usWelght (USHORT)
Font weight.

The weight of the font. This is the weight-class/boldness the user selects
for the font. This field is used as the usWeightClass field in the
FACENAMEDESC structure for GpiQueryFaceString. When
FNTS_OWNERDRAWPREVIEW is set, O causes the application to leave
the font weight "as is" and the application must update the preview area.

usWldth (USHORT)
Font width.

The width of the font. This is the width-class the user selects for the font.
This field is used as the usWidthC/ass field in the FACENAMEDESC
structure for GpiQueryFaceString. When FNTS_ OWNERDRAWPREVIEW
is set, O causes the application to leave the font width "as is" and the
application must update the preview area.

x (SHORT)
The x-axis dialog position.

This, along with y and hwndParent, is used to position the dialog. It is
updated in the structure if the user moves the dialog to a new position.
This way, the dialog appears in the position at which it was left each time
it is invoked. The FNTS_CENTER flag overrides this position and
automatically centers the dialog in its parent.

Appendix A. Data Types A-51

FONTMETRICS

y (SHORT)
The y-axis dialog position.

This, along with x and hwndParent, is used to position the dialog. It is
updated in the structure if the user moves the dialog to a new position.
This way, the dialog appears in the position at which it was left each time
it is invoked. The FNTS_CENTER flag overrides this position and
automatically centers the dialog in its parent.

usDlgld (USHORT)
Dialog ID.

This sets the ID of the dialog window. If FNTS_CUSTOM is set, this is the
ID of the resource that contains the custom dialog template.

usFamllyButLen (USHORT)
Buffer size.

Size of the buffer passed in the pszFamilyname field.

tAttrs (FA TTRS)
Font-attribute structure.

Font-attribute structure of selected font. The FATTRS for the selected
font. This is output-only for all fields except usCodePage, which is
input/output, and the initial code page value passed is used for font
selection. The value returned is the one for the matching font.

Font-metrics structure.

This structure is returned to applications on the GpiQueryFonts and
GpiQueryFontMetrics calls and conveys information from the font creator
to the application.

typedef struct _FONTMETRICS {
CHAR szFamilyname[FACESIZE];
CHAR szFacename[FACESIZE];
USHORT usRegistry;
USHORT usCodePage;
LONG lEmHeight;
LONG lXHeight;
LONG lMaxAscender;
LONG lMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG llnternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG lMaxCharlnc;
LONG lEmlnc;
LONG lMaxBaselineExt;
SHORT sCharSlope;
SHORT slnlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sFirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT usType;
USHORT usDefn;
USHORT usSelection;
USHORT usCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;

A-52 PM Programming Reference

'\

•• Trademark of Monotype

LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSize;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sFamilyClass;
LONG lMatch;
ATOM FamilyNameAtom;
ATOM FaceNameAtom;
PANOSE panPanose;
} FONTMETRICS;

szfamilyname[FACESIZE] (CHAR)
Family name.

The family name of the font that describes the basic appearance of the
font, for example, Times New Roman··. This string is null terminated, and
is thus limited to 31 characters in length. Longer names may be
retrieved by using the FamilyNameAtom field to retrieve the full name
from the System Atom table.

szfacename[FACESIZE] (CHAR)
Face name.

The typeface name that defines the particular font, for example, Times
New Roman Bold Italic. This string is null terminated, and is thus limited
to 31 characters in length. Longer names may be retrieved by using the
FaceNameAtom field to retrieve the full name from the System Atom
table.

usReglstry (USHORT)
Registry identifier.

The IBM registered number (or zero).

usCodePage (USHORT)
Code page.

Defines the registered code page supported by the font. For example,
the original IBM PC code page is 437. A value of O implies that the font
may be used with any of the OS/2* supported code pages.

Where a font contains special symbols for which there is no registered
code page, then code page 65400 is used.

IEmHeight (LONG)
Em height.

The height of the Em square in world coordinate units. This corresponds
to the point size for the font.

IXHeight (LONG)
x height.

The nominal height above the baseline for lowercase characters
(ignoring ascenders) in world coordinate units.

• Trademark of IBM Corporation

Appendix A. Data Types A-53

A-54

IMaxAscender (LONG)
Maximum ascender.

The maximum height above the baseline reached by any part of any
symbol in the font in world coordinate units. This field may exceed
/EmHeight.

IMaxDescender (LONG)
Maximum descender.

The maximum depth below the baseline reached by any part of any
symbol in the font in world coordinate units. This field may exceed
/Em Height.

ILowerCaseAscent (LONG)
Lowercase ascent.

The maximum height above the baseline reached by any part of any
lowercase (Latin unaccented "a" through "z") symbol in the font in world
coordinate units.

ILowerCaseDescent (LONG)
Lowercase descent.

The maximum depth below the baseline reached by any part of any
lowercase (Latin unaccented "a" through "z") symbol in the font in world
coordinate units.

llnternalLeadlng (LONG)
Internal leading.

The amount of space which, when subtracted from /MaxAscender, gives
a font-design dependent, but glyph-set independent, measure of the
distance above the baseline that characters extend. This calculation thus
approximates the visual top to a row of characters without actually
looking at the characters in the row.

The recommended use of this field by applications is to position the first
line of a block of text by subtracting it from /MaxAscender and
positioning the baseline that distance below whatever is above the text.

Note: This does not guarantee that characters will not overwrite things
above them, but does give a font designer's view of where to
place the text. Collision should be tested for, and additional space
allocated if necessary.

IExternalLeadlng (LONG)
External leading.

The amount of guaranteed white space advised by the font designer to
appear between adjacent rows of text. This value may be zero.

Note: The fonts built in to Presentation Manager have zero in this field.

IAveCharWidth (LONG)
Average character width.

This is determined by multiplying the width of each lowercase character
by a constant, adding the products, and then dividing by 1000. The
letters involved in this, plus their constants, are as follows:

Letter Constant
a 64
b 14
c 27
d 35
e 100
f 20
g 14
h 42

63
3

PM Programming Reference

'\
)

\
)

)

k 6
35

m 20
n 56
0 56
p 17
q 4
r 49
s 56
t 71
u 31
v 10
w 18
x 3
y 18
z 2
space 166

Note: For fixed pitch fonts this value will be the same as the {A width +
B width + C width) escapement of each character.

IMaxCharlnc (LONG)
Maximum character increment.

The maximum character increment for the font in world coordinate units.

I Em Inc (LONG)
Em increment.

The width of the Em square in world coordinate units. This corresponds
to the point size of the font. When the horizontal device resolution equals
the vertical device resolution this is equal to the em height.

IMaxBasellneExt (LONG)
Maximum baseline extent.

The maximum vertical space occupied by the font, in world coordinate
units. This is the sum of /MaxAscender and IMaxDescender if both are
positive. It is also the sum of llnterna/Leading and /EmHeight.

One possible line spacing can be computed by adding /MaxBaselineExt
to /Externa/Leading. Such a line spacing, however, would be dependent
on the glyph set included in the font. If a new version of the font should
be made available, with new glyphs, then it is possible that this value will
change because one of the new glyphs has gone above the previous
/MaxAscender or below the previous /MaxDescender. More
sophisticated applications will base line spacing on the point size
(IEmHeight) of the font, which is an invariant of the font, multiplied by
some factor {say 120%) plus any external leading.

This field may exceed /EmHeight.

sCharSlope (SHORT)
Character slope.

Defines the nominal slope for the characters of a font. The slope is
defined in degrees increasing clockwise from the vertical. An Italic font
is an example of a font with a nonzero slope.

Note: The units for this metric are degrees and minutes, encoded as
shown in the following example:

Appendix A. Data Types A-55

180 degrees 59 minutes would be represented as

< byte 1 > I < byte 2 >

I I <Minutes> < Degrees >

1011 1 1 0 1 110 1 0 1 1 0 1 0 01

I 59 min 180 degrees

slnllneDlr (SHORT)
lnline direction.

The direction in which the characters in the font are designed for
viewing, in degrees increasing clockwise from the horizontal
(left-to-right). Characters are added to a line of text in the inline
direction.

Note: The units for this metric are degrees and minutes, encoded as
shown in sCharSlope on page A-55.

sCharRot (SHORT)
Character rotation.

The rotation of the character glyphs with respect to the baseline, the
angle increasing counter clockwise. This is the angle assigned by the
font designer. ,

Note: The units for this metric are degrees and minutes, encoded as
shown in sCharSlope on page A-55.

usWelghtClass (USHORT)
Weight class.

Indicates the visual weight (thickness of strokes) of the characters in the
font:

Value
1000
2000
3000
4000
5000
6000
7000
8000
9000

Description
Ultra-light
Extra-light
Light
Semi-light
Medium (normal)
Semi-bold
Bold
Extra-bold
Ultra-bold

usWidthClass (USHORT)
Width class.

Indicates the relative aspect ratio of the characters of the font in relation
to the normal aspect ratio for this type of font:

Value Description o/o of normal width
1000 Ultra-condensed 50
2000 Extra-condensed 62.5
3000 Condensed 75
4000 Semi-condensed 87.5
5000 Medium (normal) 100
6000 Semi-expanded 112.5
7000 Expanded 125
8000 Extra-expanded 150
9000 Ultra-expanded 200

A-56 PM Programming Reference

sXDevlceRes (SHORT)
x-device resolution.

For bit-map fonts this is the resolution in the X direction of the intended
target device, measured in pels per inch.

For outline fonts this is the number of notional units in the X direction of
the Em square, measured in notional units per Em. (Notional units are
the units in which the outline is defined.

sYDevlceRes (SHORT)
y-device resolution.

For bit-map fonts this is the resolution in the Y direction of the intended
target device, measured in pels per inch.

For outline fonts this is the number of notional units in the Y direction of
the Em square, measured in notional units per Em. (Notional units are
the units in which the outline is defined.

sFlrstChar (SHORT)
First character.

The code point of the first character in the font.

sLastChar (SHORT)
Last character.

The code point of the last character in the font, expressed as an offset
from sFirstChar.

All code points between the first and last character specified must be
supported by the font.

sDefaultChar (SHORT)
Default character.

The code point that is used if a code point outside the range supported by
the font is used, expressed as an offset from sFirstChar.

sBreakChar (SHORT)
Break character.

The code point that represents the "space" or "break" character for this
font, expressed as an offset from sFirstChar. For example, if the first
character is the space in code page 850, sFirstChar = 32, and
sBreakChar = 0.

sNomlnalPolntSize (SHORT)
Nominal point size.

For a bit-map font this field contains the height of the font.

For an outline font, this field contains the height the font designer had in
mind for this font. For example some fonts are designed for text use in
which case a value of 120 (12 point) would probably be placed in this
field, whereas other fonts are designed for "display" use ("display" is
typographer's terminology for larger sizes). This is not the only size the
font can be used at.

Measured in decipoints (a decipoint is 1/720th of an inch).

sMlnlmumPolntSlze (SHORT)
Minimum point size.

For a bit-map font, this field is meaningless.

For an outline font, this field contains the minimum height the font
designer had in mind for this font. Note that this is not a restriction on
the size the font can be used at.

Measured in decipoints (a decipoint is 1/720th of an inch).

Appendix A. Data Types A-57

sMaxlmumPolntSlze (SHORT)
Maximum point size.

For a bit-map font, this field is meaningless.

For an outline font, this field contains the maximum height the font
designer had in mind for this font. Note that this is not a restriction on
the size the font can be used at.

Measured in decipoints (a decipoint is 1/720th of an inch).

usType (USHORT)
Type indicators.

Contains this information:

FM_ TYPE_FIXED

FM_ TYPE_LICENSED
FM_TYPE_KERNING
FM_TYPE_64K

FM_ TYPE_DBCS
FM_ TYPE_MBCS

FM_TYPE_FACETRUNC

FM_ TYPE_FAMTRUNC

FM_TYPE_ATOMS

usDefn (USHORT)
Definition indicators.

Characters in the font have the same fixed
width.
Licensed (protected) font.
Font contains kerning information.
Font is larger than 64KB (KB equals 1024
bytes) in size. If the following two bits are
false, the font is for single-byte code pages.
One of the bits may be set.
Font is for double-byte code pages.
Font is for mixed single/double-byte code
pages.
Font szFacename[FACESIZE] has been
truncated.
Font szFamilyname[FACESIZE] has been
truncated.
The System Atom table atom values in
FamilyNameAtom and in FaceNameAtom are
valid.

Contains the following font definition data:

FM_DEFN_OUTLINE Font is a vector (outline) font, otherwise it is a
bit-map font.

FM_DEFN_GENERIC Font is in a format that can be used by the GPI,
otherwise it is a device font.

usSelectlon (USHORT)
Selection indicators.

Contains information about the font patterns in the physical font.

Note: The flags do not reflect simulations applied to the physical font.

FM_SELJTALIC True indicates that this font is designed as an
italic font.

FM_SEL_UNDERSCORE TRUE indicates that this font is designed with
underscores included in each character.

FM_SEL_NEGATIVE TRUE indicates that this font is designed with
the background and foreground reversed.

FM_SEL_OUTLINE TRUE indicates that this font is designed with
outline (hollow) characters.

FM_SEL_STRIKEOUT TRUE indicates that this font is designed with
an overstrike through each character.

FM_SEL_BOLD TRUE indicates that this font is designed with
bold characters.

usCapabllltles (USHORT)
Capabilities.

This attribute applies only to device fonts.

FM_CAP _NOMIX Characters may not be mixed with graphics.

A-58 PM Programming Reference

\

QUALITY The most significant byte may contain the following
numeric value:
O Undefined
1 DP quality
2 DP draft
3 Near Letter Quality
4 Letter Quality

ISubscrlptXSlze (LONG)
Subscript x-size.

The recommended horizontal size for subscripts for this font in world
coordinate units.

ISubscrlplYSlze (LONG)
Subscript y-size.

The recommended vertical size for subscripts for this font in world
coordinate units.

ISubscrlptXOffset (LONG)
Subscript x-offset.

The recommended baseline x-offset for subscripts for this font in world
coordinate units.

ISubscrlplYOffset (LONG)
Subscript y-offset.

The recommended baseline y-offset for subscripts for this font in world
coordinate units.

Note: Positive numbers mean below the baseline.

ISuperscrlptXSlze (LONG)
Superscript x-size.

The recommended horizontal size for superscripts for this font in world
coordinate units.

ISuperscrlptYSlze (LONG)
Superscript y-size.

The recommended vertical point size for superscripts for this font in
world coordinate units.

ISuperscrlptXOffsel (LONG)
Superscript x-offset.

The recommended baseline x-offset for superscripts for this font in world
coordinate units.

ISuperscriptYOffset (LONG)
Superscript y-offset.

The recommended baseline y-offset for superscripts for this font in world
coordinate units.

IUnderscoreSlze (LONG)
Underscore size.

The width (thickness) of the underscore stroke in world coordinate units
This describes the actual underscore in the font if
FM_SEL_UNDERSCORE is also set. Otherwise it describes what the
engine will simulate if underscore is requested in GpiCreateLogFont.

IUnderscorePosllion (LONG)
Underscore position.

The position of the underscore stroke from the baseline in world
coordinate units. This describes the actual underscore in the font if
FM_SEL_UNDERSCORE is also set. Otherwise it describes what the
engine will simulate if underscore is requested in GpiCreateLogFont.

Appendix A. Data Types A-59

FRAMECDATA

Note: Positive values mean below the baseline.

IStrlkeoutSlze (LONG)
Strikeout size.

The width of the strikeout stroke in world coordinate units. This
describes the actual underscore in the font if FM_SEL_STRIKEOUT is also
set. Otherwise it describes what the engine will simulate if overstrike is
requested in GpiCreateLogFont.

IStrlkeoutPosltlon (LONG)
Strikeout position.

The position of the strikeout stroke relative to the baseline in world
coordinate units. This describes the actual underscore in the font if
FM_SEL_STRIKEOUT is also set. Otherwise it describes what the engine
will simulate if overstrike is requested in GpiCreateLogFont.

sKernlngPalrs (SHORT)
Kerning pairs.

The number of kerning pairs in the kerning pair table.

sFamllyClass (SHORT)
Font family design classification.

This value contains a font class and its subclass.

IMatch (LONG)
Matched font identity.

This uniquely identifies the font for a given device/device driver
combination. A positive match number signifies that the font is a generic
(engine) font while a negative number indicates a device font (a native or
downloadable font). This value should not be used to identify a font
across system boundaries.

FamllyNameAtom (ATOM)
Font family name atom.

This value contains the atom identifier for the font family name in the
System Atom Table.

FaceNameAtom (ATOM)
Font facename atom.

This value contains the atom identifier for the font face name in the
System Atom Table.

panPanose (PANOSE)
Panose font descriptor.

This is the Panose descriptor identifying the visual characteristics of the
font.

Frame-control data structure.

typedef struct _FRAMECDATA {
USHORT cb;
ULONG flCreateFlags;
HMODULE hmodResources;
USHORT idResources;
} FRAMECDATA;

cb (USHORT)
Length.

flCreateFlags (ULONG)
Frame-creation flags.

hmodResources (HMODULE)
Identifier of required resource.

This is supplied in an environment-dependent manner.

A-60 PM Programming Reference

FT/ME

GRADIENTL

HAB

HACCEL

HAPP

HATOMTBL

HBITMAP

HCINFO

ldResources (USHORT)
Resource identifier.

Time data structure for file-system functions.

typedef struct _FTIME {
USHORT ustwosecs;
USHORT usminutes;
USHORT ushours;
} FTIME;

ustwosecs (USHORT)

A binary number of two-second increments.

usmlnutes (USHORT)

A binary number of minutes.

ushours (USHORT)

A binary number of hours.

Direction-vector structure.

typedef struct _GRADIENTL {
LONG x;
LONG y;
} GRADIENTL;

x (LONG)
x-component of direction.

y (LONG)
y-component of direction.

Anchor-block handle.

typedef LHANOLE HAB;

Accelerator-table handle.

typedef LHANDLE HACCEL;

Handle of an application.

typedef LHANDLE HAPP;

Atom-table handle.

typedef LHANDLE HATOMTBL;

Bit-map handle.

typedef LHANDLE HBITMAP;

Hardcopy-capabilities structure.

typedef struct _HCINFO {
CHAR szFonnname[32];
LONG ex;
LONG cy;
LONG xLeftClip;
LONG yBottomClip;
LONG xRightClip;
LONG yTopClip;
LONG xPels;
LONG yPels;
LONG fl Attributes;
} HCINFO;

szFormname[32] (CHAR)
Form name.

ex (LONG)
Width (left-to-right) in millimeters.

Appendix A. Data Types A-61

HDC

HDDF

HELP/NIT

cy (LONG)
Height (top-to-bottom) in millimeters.

xLeftCllp (LONG)
Left clip limit in millimeters.

yBottomCllp (LONG)
Bottom clip limit in millimeters.

xRlghtCllp (LONG)
Right clip limit in millimeters.

yTopCllp (LONG)
Top clip limit in millimeters.

xPels (LONG)
Number of pels between left and right clip limits.

yPels (LONG)
Number of pels between bottom and top clip limits.

flAttrlbutes (LONG)
Attributes of the form identifier.

HCAPS_ CURRENT
HCAPS_SELECTABLE

Device-context handle.

typedef LHANOLE HOC;

Currently installed form.
Form is available from an alternate form source,
without operator intervention.

The value returned is the sum of the applicable
values. The bits in the field that are affected by
each piece of information are separate.

Dynamic data formatting handle.

typedef LHANOLE HOOF;

Help manager initialization structure.

typedef struct _HELPINIT {
ULONG cb;
ULONG ulReturnCode;
PSZ pszTutorialName;
PHELPTABLE phtHelpTable;
HMODULE hmodHelpTableModule;
HMODULE hmodAccelActionBarModule;
ULONG idAccelTable;
ULONG idActionBar;
PSZ pszHelpWindowTitle;
ULONG fShowPanelld;
PSZ pszHelplibraryName;
} HELPINIT;

cb (ULONG)
Count of bytes of the initialization structure.

ulReturnCode (ULONG)
Value returned by the help manager from initialization.

O Initialization was successful.

pszTutorlalName (PSZ)
Indicates to the help manager that the application has a tutorial program.

NULL The application either does not have a tutorial program, or the
tutorial name is specified in each help panel definition.

Other Default tutorial name.

phtHelpTable (PHELPT ABLE)
Help table.

The help table or the identity of the help table. If this is the identity of the

A-62 PM Programming Reference

HELPTABLE

help table in a resource file, the low-order word contains the identity of
the table and the high-order word must be X 1 FFFF 1

•

The help table associates each application window with its help subtable
and the identity of its extended help panel.

hmodHelpTableModule (HMODULE)
Resource file identity.

If the phtHelpTable contains the identity of the help table, this field
identifies the module handle returned by the DosLoadModule call by
which the application loaded the resource file.

NULL The resource file containing the help table was appended to the
application's .EXE file.

Other Resource file identity.

hmodAccelActlonBarModule (HMODULE)
Handle of the containing DLL.

The handle of the DLL which contains the accelerator table and action
bar template to be used by the help manager.

NULL Use the default action bar and accelerator table defined by the
help manager.

Other Handle of the DLL.

ldAccelTable (ULONG)
Identity of the accelerator table.

The accelerator table resides in the DLL provided in the
hmodAcce/ActionBarModule field.

NULL Use the default accelerator table.
Other Identity of the accelerator table.

ldAcllonBar (ULONG)
Identity of the action bar template used by the e help manager.

The action bar template resides in the DLL provided in the
hmodAcce/ActionBarModule field.

NULL Use the default action bar.
Other Identity of the action bar.

pszHelpWindowTllle (PSZ)
Window title for the main help window of this help instance.

fShowPanelld (ULONG)
Show panel identity indicator.

The constants corresponding to the panel identity flags are in the
PMHELP.H include file.

CMIC_SHOW _PANEL_ID
CMIC_HIDE_PANEL_ID

pszHelpLlbraryName (PSZ)
Help panel library names.

Show the panel identity on a help panel.
Do not show the panel identity on a help
panel.

The names of the help panel libraries that the help manager searches on
each help request. The names must be separated by a blank.

The help manager looks for the libraries in the path set by the HELP
environment variable. If the library is not found, the help manager will
look for the libraries in the current directory.

Help table.

This is a collection of help table entries, each of which has the structure
defined below, the last entry of the collection being a NULL structure.

Appendix A. Data Types A-63

HENUM

HEV

HF/LE

HF/ND

HIN/

HUB

HMF

HMODULE

HMQ

HMTX

HMUX

HOBJECT

HPAL

HPOINTER

HPROC

HPROGARRAY

typedef struct _HELPTABLE {
USHORT idAppWindow;
PSHORT phstHelpSubTable;
USHORT idExtPanel;
} HELPTABLE;

ldAppWlndow (USHORT)
Application window identity.

phstHelpSubTable (PSHORT)
Help subtable for this application window.

ldExtPanel (USHORT)
Identity of the extended help panel for the application window.

Window-enumeration handle.

typedef LHANDLE HENUM;

32-bit value used as an event handle.

typedef ULONG *HEV;

Resource handle.

typedef LHANDLE HFILE;

Handle associated to a wpclsFindObjectFirst request.

typedef LHANDLE HFIND;

Initialization-file handle.

typedef LHANDLE HINI;

Library handle.

typedef LHANDLE HLIB;

Metafile handle.

typedef LHANDLE HMF;

Module handle.

typedef LHANDLE HMODULE;

Message-queue handle.

typedef LHANDLE HMQ;

32-bit value used as a mutex-semaphore handle.

typedef ULONG *HMTX;

32-bit value used as a muxwait semaphore handle.

typedef ULONG *HMUX;

Workplace object handle.

typedef LHANDLE HOBJECT;

Palette handle.

typedef LHANDLE HPAL;

Pointer handle.

typedef LHANDLE HPOINTER;

Processor handle.

typedef LHANDLE HPROC;

Array of program handles.

typedef struct _HPROGARRAY {
HPROGRAM ahprog[l];
} HPROGARRAY;

ahprog[1] (HPROGRAM)
Program handle array.

A-64 PM Programming Reference

HPROGRAM

HPS

HRGN

HSEM

HSPL

HSTR

HSVWP

HS WITCH

HWND

ICON INFO

Program handle.

typedef LHANDLE HPROGRAM;

Presentation-space handle.

typedef LHANDLE HPS;

Region handle.

typedef LHANDLE HRGN;

Semaphore handle;

typedef VOID *HSEM;

Spooler handle.

typedef LHANDLE HSPL;

String handle.

typedef LHANDLE HSTR;

Frame window-repositioning process handle.

typedef LHANDLE HSVWP;

Switch-list entry handle.

typedef LHANDLE HSWITCH;

Window handle.

typedef LHANDLE HWND;

ICONINFO data structure.

typedef struct _ICONINFO {
ULONG ulcb;
ULONG fFonnat;
PSZ pszFileName;
HMODULE hmod;
ULONG ulresid;
ULONG cbiconData;
PVOID piconData;
} ICONINFO;

ulcb (ULONG)

Length of ICONINFO structure.

fFormat (ULONG)

Indicates from where the icon resides.

ICON_FILE
ICON_RESOURCE
ICON_DATA
ICON_CLEAR

pszFlleName (PSZ)

Icon file supplied.
Icon resource supplied.
Icon data supplied.
Go back to default icon.

Name of file containing icon data. This value is ignored if fFormat is not
equal to to ICON_FILE.

hmod (HMODULE)

Module containing the icon resource. This value is ignored if fFormat is
not equal to to ICON_RESOURCE.

ulresid (ULONG)

Identity of icon resource. This value is ignored if fFormat is not equal to
to ICON_RESOURCE.

cblconData (ULONG)

Length of icon data in bytes. This value is ignored if fFormat is not equal
to to ICON_DATA.

Appendix A. Data Types A-65

/conPos

IMAGEBUNDLE

/PT

KERNINGPAIRS

LHANDLE

LINEBUNDLE

plconData (PVOID)

Pointer to buffer containing icon data. This value is ignored if fFormat is
not equal to to ICON_DAT A.

Icon position structure.

typedef ICONPOS *IconPos;

Image-attributes bundle structure.

typedef struct _IMAGEBUNDLE {
LONG lColor;
LONG lBackColor;
USHORT usMixMode;
USHORT usBackMixMode;
} IMAGEBUNDLE;

IColor (LONG)
Image foreground color.

IBackColor (LONG)
Image background color.

usMlxMode (USHORT)
Image foreground-mix mode.

usBackMlxMode (USHORT)
Image background-mix mode.

Insertion point for multi-line entry field.

typedef LONG IPT;

Kerning-pair records structure.

typedef struct _KERNINGPAIRS {
SHORT sFirstChar;
SHORT sSecondChar;
LONG lKerningAmount;
} KERNINGPAIRS;

sFlrslChar (SHORT)
First character of pair.

sSecondChar (SHORT)
Second character of pair.

IKernlngAmounl (LONG)
Amount of kerning for this pair.

The handle of a resource.

typedef ULONG *LHANDLE;

Line-attributes bundle structure.

typedef struct _LINEBUNDLE {
LONG lColor;
LONG lReserved;
ULONG ulMixMode;
USHORT usReserved;
FIXED fxWidth;
LONG lGeomWidth;
ULONG ulType;
ULONG ulEnd;
ULONG ulJoin;
} LINEBUNDLE;

IColor (LONG)
Line foreground color.

!Reserved (LONG)
Reserved.

A-66 PM Programming Reference

LONG

M_WPFi/eSystem *

M_WPFolder *

M_WPObject *

M_WPPalette *

MARKERBUNDLE

ulMlxMode (ULONG)
Line foreground-mix mode.

usReserved (USHORT)
Reserved.

fxWldth (FIXED)
Line width.

IGeomWldth (LONG)
Geometric line width.

ulType (ULONG)
Line type.

ulEnd (ULONG)
Line end.

ulJoln (ULONG)
Line join.

Signed integer in the range -2 147 483 648 through 2 147 483 647.

Note: Where this data type represents a graphic coordinate in world or
model space, its value is restricted to -134 217 728 through
134 217 727.

A graphic coordinate in device or screen coordinates is restricted
to -32 768 through 32 767.

The value of a graphic coordinate may be further restricted by any
transforms currently in force, including the positioning of the origin
of the window on the screen. In particular, coordinates in world or
model space must not generate coordinate values after
transformation (that is, in device or screen space) outside the range
-32 768 through 32 767.

#define LONG long

Pointer to a WPFileSystem class object.

typedef M_WPFileSystem *M_WPFileSystem *;

Pointer to a WPFolder class object.

typedef M_WPFolder *M_WPFolder *;

Pointer to a WPObject class object.

typedef M_WPObject *M_WPObject *;

Pointer to a WPPalette class object.

typedef M_WPPalette *M_WPPalette *;

Marker-attributes bundle structure.

typedef struct _MARKERBUNDLE {
LONG lColor;
LONG lBackColor;
USHORT usMixMode;
USHORT usBackMixMode;
USHORT usSet;
USHORT usSymbol;
SIZEF sizfxCell;
} MARKERBUNDLE;

IColor (LONG)
Marker foreground color.

IBackColor (LONG)
Marker background color.

usMlxMode (USHORT)
Marker foreground-mix mode.

Appendix A. Data Types A-67

MATRIXLF

MEMORYITEM

MENUITEM

usBackMlxMode (USHORT)
Marker background-mix mode.

usSet (USHORT)
Marker set.

usSymbol (USHORT)
Marker symbol.

slzfxCell (SIZEF)
Marker cell.

Matrix-elements structure.

typedef struct _MATRIXLF {
FIXED f xMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;
} MATRIXLF;

fxM11 (FIXED)
First element of first row.

fxM12 (FIXED)
Second element of first row.

IM13 (LONG)
Third element of first row.

fxM21 (FIXED)
First element of second row.

fxM22 (FIXED)
Second element of second row.

IM23 (LONG)
Third element of second row.

IM31 (LONG)
First element of third row.

IM32 (LONG)
Second element of third row.

IM33 (LONG)
Third element of third row.

USAGE_MEMORY structure.

typedef MEMORYITEM FAR *MEMORYITEM;

Menu item.

typedef struct _MENUITEM {
LONG iPosition;
ULONG afStyle;
ULONG afAttribute;
ULONG id;
HWND hwndSubMenu;
ULONG hitem;
} MENUITEM;

IPosltlon (LONG)
Position.

afStyle (ULONG)
Style.

A-68 PM Programming Reference

'\

I

MINIRECORDCORE

MLECTLDATA

afAttrlbute (ULONG)
Attribute.

Id (ULONG)
Identity.

hwndSubMenu (HWND)
Submenu.

hltem (ULONG)
Item.

Structure that contains information for smaller records than those defined
by the RECORDCORE data structure. This data structure is used if the
CCS_MINIRECORDCORE style bit is specified when a container is created.

typedef struct _MINIRECORDCORE {
ULONG cb;
ULONG flRecordAttr;
POINTL ptllcon;
PMINIRECORDCORE pNextRecord;
PSZ pszlcon;
HPOINTER hptrlcon;
} MINIRECORDCORE;

cb (ULONG)
Structure size.

The size (in bytes) of the MINIRECORDCORE structure.

flRecordAttr (ULONG)
Attributes of container records.

Contains any or all of the following:

CAA_ COLLAPSED
CRA_CURSORED

CRA_DROPONABLE

CRA_EXPANDED
CRA_FIL TERED

CRA_INUSE

CRA_RECORDREADONLY

CRA_SELECTED

CRA_TARGET

ptllcon (POINTL)
Record position.

Specifies that a record is collapsed.
Specifies that a record will be drawn with a
selection cursor.
Specifies that a record can be a target for
direct manipulation.
Specifies that a record is expanded.
Specifies that a record is filtered, and
therefore hidden from view.
Specifies that a record will be drawn with
in-use emphasis.
Prevents a record from being edited
directly.
Specifies that a record will be drawn with
selected-state emphasis.
Specifies that a record will be drawn with
target emphasis.

Position of a container record in the icon view.

pNextRecord (PMINIRECORDCORE)
Pointer.

Pointer to the next linked record.

pszlcon (PSZ)
Record text.

Text for the container record.

hptrlcon (HPOINTER)
Record icon.

Icon that is displayed for the container record.

Multiline entry-field (MLE) control data structure.

Appendix A. Data Types A-69

MLEMARGSTRUCT

typedef struct _MLECTLDATA {
USHORT cbCtlData;
USHORT aflEFonnat;
ULONG cchText;
IPT iptAnchor;
IPT iptCursor;
LONG cxFonnat;
LONG cyFonnat;
ULONG afFonnatFlags;
} MLECTLDATA;

cbCtlData (USHORT)
Length of control data in bytes.

aflEFormat (USHORT)
Import/export format.

This sets the initial import/export format. Setting this value via control
data is considered identical to setting it through the MLM_FORMAT
message. The same constants apply here. The default is MLE_CFTEXT.

cchText (ULONG)
Text limit.

The maximum amount of text allowed in the MLE. This value is
interpreted identically to the parameter of MLM_SETTEXTLIMIT. A
negative value indicates that the length is considered unbounded.

iptAnchor (IPT)
Selection anchor point.

lptCursor (IPT)
Selection cursor point.

The iptAnchor and iptCursor parameters identify the beginning and
ending points, respectively, of the selection. These values may range
from O through the length of the text. The default is 0,0 and can be
indicated by entering 0,0.

cxFormat (LONG)
Formatting-rectangle width in pels.

cyFormat (LONG)
Formatting-rectangle height in pels.

The cxFormat and cyFormat parameters identify the dimensions in pels
of the formatting rectangle, as can be set by the MLM_SETFORMATRECT
message. These values are considered identical to the two fields in the
format rectangle structure referenced in that message, and the
interpretation of the values in these fields is governed by the
afFormatFlags field.

The default is the window size in both dimensions, and can be indicated
by 0 values.

afFormatFlags (ULONG)
Format flags.

These flags govern the interpretation of the cxFormat and cyFormat
fields, just as in the MLM_SETFORMATRECT message. The flag values
defined there are also valid in this field. The default is unlimited in both
directions, and is of varying size to match the window size.

Multiline entry-field margin information.

typedef struct _MLEMARGSTRUCT {
USHORT afMargins;
USHORT usMouMsg;
IPT i ptNear;
} MLEMARGSTRUCT;

A-70 PM Programming Reference

/

MLEOVERFLOW

MLE_SEARCHDATA

\
I

afMarglns (USHORT)

This gives the margin in which the event occurred.

The left and right margins are defined as including the corners at the top
and bottom, and the top and bottom margins are contained between
them. Therefore, the corners are included in the sides.

MLFMARGIN_LEFT
MLFMARGIN_RIGHT
MLFMARGIN_TOP
MLFMARGIN_BOTTOM

usMouMsg (USHORT)

The message identity of the original mouse event.

lptNear (IPT)

The insertion point nearest to the margin event.

Overflow error structure for multiline entry field.

typedef struct _MLEOVERFLOW {
ULONG ulErrind;
LONG lBytesOver;
PIX pixHorzOver;
PIX pixVertOver;
} MLEOVERFLOW;

ulErrlnd (ULONG)
One or more EFR_ * flags.

IBytesOver (LONG)
Number of bytes over the limit.

plxHorzOver (PIX)
Number of pels over the horizontal limit.

pixVertOver (PIX)
Number of pels over the vertical limit.

Search structure for multiline entry field.

typedef struct _MLE_SEARCHDATA {
USHORT cb;
PCHAR pchFind;
PCHAR pchReplace;
SHORT cchFind;
SHORT cchReplace;
IPT iptStart;
IPT iptStop;
SHORT cchFound;
} MLE_SEARCHDATA;

cb (USHORT)
Size of MLE_SEARCHDATA structure.

pchFind (PCHAR)
String to search for.

pchReplace (PCHAR)
String to replace with.

cchFind (SHORT)
Length of pchFind string.

cchReplace (SHORT)
Length of pchReplace string.

iptStart (IPT)
Point at which to start search, or point where string was found.

non-negative Point at which to start search.
negative Start search from current cursor location.

Appendix A. Data Types A-71

MPARAM

MQINFO

MRESULT

MT/

lptStop (IPT)
Point at which to stop search.

non-negative
negative

Point at which to stop search.
Stop search at end of text.

cchFound (SHORT)
Length of string found at iptStart.

4-byte message-dependent parameter structure.

Certain elements of information, placed into the parameters of a message,
have data types that do not use all 4 bytes of this data type. The rules
governing these cases are:

BOOL
SHORT

USHORT
NULL

The value is contained in the low word and the high word is 0.
The value is contained in the low word and its sign is
extended into the high word.
The value is contained in the low word and the high word is 0.
The entire 4 bytes are 0.

typedef VOID FAR *MPARAM;

Message-queue information structure.

typedef struct _MQINFO {
ULONG ulb;
PIO pid;
TIO tid;
ULONG ulmsgs;
PVOID pReserved;
} MQINFO;

ulb (ULONG)
Length of structure.

pld (PIO)
Process identity.

lid (TIO)
Thread identity.

ulmsgs (ULONG)
Message count.

pReserved (PVOIO)
Reserved.

4-byte message-dependent reply parameter structure.

Certain elements of information, placed into the parameters of a message,
have data types that do not use all 4 bytes of this data type. The rules
governing these cases are:

BOOL
SHORT

USHORT
NULL

The value is contained in the low word and the high word is 0.
The value is contained in the low word and its sign is
extended into the high word.
The value is contained in the low word and the high word is 0.
The entire 4 bytes are 0.

typedef VOID FAR *MRESULT;

Menu template item.

typedef struct _MTI {
USHORT afStyle;
USHORT afAttrs;
USHORT iditem;
CHAR c[2];

} MTI;

afStyle (USHORT)
Style.

A-72 PM Programming Reference

)

NOTIFYDELTA

afAttrs (USHORT)
Attributes.

ldltem (USHORT)
Item identity.

c[2] (CHAR)
Item data.

The format and length of this depend upon the value of afStyle.

Structure that contains information about the placement of delta
information for a container. This structure is used in the
CN_QUERYDELTA container notification code only. See
"CN_QUERYDELTA" on page 24-19 for information about that notification
code.

typedef struct _NOTIFYDELTA {
HWND hwndCnr;
ULONG fDelta;
} NOTIFYDELTA;

hwndCnr (HWND)
Container control handle.

fDelta (ULONG)
Placement of delta information.

The values can be:

CMA_DELTATOP The record that represents the delta value scrolls
into view at the top of the client area.

CMA_DELTABOT The record that represents the delta value scrolls
into view at the bottom of the client area.

CMA_DELTAHOME The container scrolls to the beginning of the list of
all container records that are available to be
inserted into the container, such as the first record
in a database.

CMA_DELTAEND The container scrolls to the end of the list of all
container records that are available to be inserted
into the container, such as the last record in a
database.

NOTIFYRECORDEMPHASIS Structure that contains information about emphasis that is being applied
to a container record. This structure is used in the CN_EMPHASIS
container notification code only. See "CN_EMPHASIS" on page 24-15 for
information about that notification code.

typedef struct _NOTIFYRECORDEMPHASIS {
HWND hwndCnr;
PRECORDCORE pRecord;
ULONG fEmphasisMask;

} NOTIFYRECORDEMPHASIS;

hwndCnr (HWND)
Container control handle.

pRecord (PRECORDCORE)
Pointer.

Pointer to a RECORDCORE data structure whose emphasis attribute has
been changed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

fEmphaslsMask (ULONG)
Changed emphasis attributes.

Specifies the emphasis attribute or attributes that changed in the

Appendix A. Data Types A-73

container record. The following states can be combined with a logical
OR operator (I):

• CRA_CURSORED
• CRA_INUSE
• CRA_SELECTED.

NOTIFYRECORDENTER Structure that contains information about the input device that is being
used with the container control. This structure is used in the CN_ENTER
container notification code only. See "CN_ENTER" on page 24-16 for
information about that notification code.

NOTIFYSCROLL

typedef struct _NOTIFYRECORDENTER {
HWND hwndCnr;
PRECORDCORE pRecord;
ULONG fKey;
} NOTIFYRECORDENTER;

hwndCnr (HWND)
Container control handle.

pRecord (PRECORDCORE)
Pointer.

Pointer to the RECORDCORE data structure over which an action
occurred.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

• If a user presses the Enter key, a pointer to the record with the
selection cursor is returned.

• If a user double-clicks the select button when the pointer of the
pointing device is over a record, a pointer to the record is returned.

• If a user double-clicks the select button when the pointer of the
pointing device is over white space, NULL is returned.

fKey (ULONG)
Flag.

Flag that determines whether the Enter key was pressed or the select
button was double-clicked.

TRUE
FALSE

The Enter key was pressed.
The select button was double-clicked.

Structure that contains information about scrolling a container control
window. This structure is used in the CN_SCROLL container notification
code only. See "CN_SCROLL" on page 24-21 for information about that
notification code.

typedef struct _NOTIFYSCROLL {
HWND hwndCnr;
LONG lScrolllnc;
ULONG fScroll;
} NOTI FYSCROLL;

hwndCnr (HWND)
Container control handle.

IScrolllnc (LONG)
Scroll amount.

Amount (in pixels) by which the window scrolled.

fScroll (ULONG)
Scroll flags.

Flags that show the direction in which the window scrolled and the
window that was scrolled.

A-74 PM Programming Reference

)

OBJ CLASS

OBJDATA

CMA_HORIZONTAL A window was scrolled horizontally. If the split
details view window is scrolled, a logical OR
operator (I) is used to combine the
CMA_HORIZONTAL attribute with either the
CMA_LEFT attribute or the CMA_RIGHT attribute to
indicate which window was scrolled. If the unsplit
details view window is scrolled, the
CMA_HORIZONTAL attribute is combined with the

CMA_ VERTICAL
CMA_LEFT attribute.
The container window scrolled vertically. If the
split details view window is scrolled, a logical OR
operator (I) is used to combine the
CMA_ VERTICAL attribute with the CMA_LEFT
attribute and the CMA_RIGHT attribute. If the
unsplit details view window is scrolled, the
CMA_ VERTICAL attribute is combined with the
CMA_LEFT attribute.

Object class structure.

typedef struct _OBJCLASS {
STRUCT _OBJCLASS;
PSZ pszClassName;
PSZ pszModName;
} OBJCLASS;

_ OBJCLASS (STRUCT)

Next object class structure.

pszClassName (PSZ)

Class name.

pszModName (PSZ)

Module name.

Object data structure. Class specific information is contained in this
structure.

typedef struct _OBJDATA {
WPSRCLASSBLOCK* CurrentClass;
WPSRCLASSBLOCK* First;
UCHAR ucNextData;
USHORT us length;
} OBJDATA;

CurrentClass (WPSRCLASSBLOCK*)

Pointer to current save or restore class block.

First (WPSRCLASSBLOCK*)

Pointer to first save or restore class block.

ucNextData (UCHAR)

Pointer to next block of data.

usLength (USHORT)

Length.

OWNERBACKGROUND Structure that contains information about painting the container window's
background by the container owner. This structure is used in the
CM_PAINTBACKGROUND container message only. See
"CM_PAINTBACKGROUND" on page 24-35 for information about that
message.

Appendix A. Data Types A-75

OWNERITEM

PACCEL

PACCELTABLE

PAGEINFO

typedef struct _OWNERBACKGROUND {
HWND hwnd;
HPS hps;
RECTL rel Background;
LONG idWindow;
} OWNERBACKGROUND;

hwnd (HWND)
Window handle.

Handle of the window to be painted.

hps (HPS)
Presentation-space handle.

rclBackground (RECTL)
Background rectangle.

Background rectangle in window coordinates.

ldWlndow (LONG)
Window ID.

Identity of the window to be painted.

Owner item.

typedef struct _OWNERITEM {
HWND hwnd;
HPS hps;
ULONG ulState;
ULONG ulAttribute;
ULONG ulStateOld;
USHORT fsAttributeOld;
RECTL rel Item;
LONG iditem;
ULONG hitem;
} OWNERITEM;

hwnd (HWND)
Window handle.

hps (HPS)
Presentation-space handle.

ulSlale (ULONG)
State.

ulAllrlbute (ULONG)
Attribute.

ulStateOld (ULONG)
Old state.

fsAttributeOld (USHORT)
Old attribute.

rclltem (RECTL)
Item rectangle.

ldltem (LONG)
Item identity.

hltem (ULONG)
Item.

Pointer to ACCEL.

typedef ACCEL *PACCEL;

Pointer to ACCEL TABLE.

typedef ACCELTABLE *PACCELTABLE;

Settings page information structure.

A-76 PM Programming Reference

typedef struct _PAGEINFO {
ULONG ulcb;
HWND hwndPage;
PFNWP ppfnwp;
ULONG ulresid;
PVOID pCreateParams;
USHORT usdlgid;
USHORT usPageStyleFlags;
USHORT usPageinsertFlags;
USHORT usReserved;
PSZ pszName;
USHORT idDefaultHelpPanel;
USHORT usReserved2;
PSZ pszHelplibraryName;
PUSHORT pHelpSubtable;
HMODULE hmodHelpSubtable;
ULONG ulPageinsertid;
} PAGEINFO;

ulcb (ULONG)

Length of PAGEINFO structure.

hwndPage (HWND)

Handle of page.

ppfnwp (PFNWP)

Window procedure.

ulresid (ULONG)

Resource identity.

pCreateParams (PVOID)

Pointer to creation parameters.

usdlgid (USHORT)

Dialog identity.

usPageStyleFlags (USHORT)

Notebook control page style flags.

usPagelnsertFlags (USHORT)

Notebook control page insertion flags.

usReserved (USHORT)

Reserved value must be zero.

pszName (PSZ)

Pointer to a string containing page name.

idDefaultHelpPanel (USHORT)

Identity of default help panel.

usReserved2 (USHORT)

Reserved value must be zero.

pszHelpllbraryName (PSZ)

Pointer to name of help file.

pHelpSubtable (PUSHORT)

Pointer to help subtable.

hmodHelpSubtable (HMODULE)

Module handle for help subtable.

Appendix A. Data Types A-77

PAGESELECTNOTIFY

PALINFO

PANOSE

ulPagelnsertld (ULONG)

Notebook control page identity.

Structure that contains information about the application page being
selected.

typedef struct _PAGESELECTNOTIFY {
HWND hwndBook;
ULONG ulPageldCur;
ULONG ulPageldNew;
} PAGESELECTNOTIFY;

hwndBook (HWND)
Notebook window handle.

ulPageldCur (ULONG)
Current top page identifier.

ulPageldNew (ULONG)
New top page identifier.

Class specific palette information data.

typedef struct _PALINFO {
ULONG ulxCellCount;
ULONG ulyCellCount;
ULONG ulxCursor;
ULONG ulyCursor;
ULONG ulxCellWidth;
ULONG ulyCellHeight;
ULONG ulxGap;
ULONG ulyGap;
} PALINFO;

ulxCellCount (ULONG)
Number of columns of palinfos.

ulyCellCounl (ULONG)
Number of rows of palinfos.

ulxCursor (ULONG)
Cursor location (readonly).

ulyCursor (ULONG)
Cursor location (readonly).

ulxCellWldlh (ULONG)
Width of each palinfo.

ulyCellHeighl (ULONG)
Height of each palinfo.

ulxGap (ULONG)
X separation of palinfos.

ulyGap (ULONG)
Y separation of palinfos.

The Panose field in the font metrics will allow for quantitative descriptions
of the visual properties of font faces. The PANOSE definition contains ten
digits, each of which currently describes up to sixteen variations.

A-78 PM Programming Reference

·~'\

)

typedef struct _PANOSE {
BYTE bbFamilyType;
BYTE bbSerifStyle;
BYTE bbWeight;
BYTE bbProportion;
BYTE bbContrast;
BYTE bbStrokeVariation;
BYTE bbArmStyle;
BYTE bbletterform;
BYTE bbMidline;
BYTE bbXHeight;
BYTE ababReserved[FACESIZE];
} PANOSE;

bbFamllyType (BYTE)
Family kind.

0 Any

1 No Fit

2 Text and Display

3 Script

4 Decorative

5 Pictorial

bbSerlfStyle (BYTE)
Serif style.

0 Any

1 No Fit

2 Cove

3 Obtuse Cove

4 Square Cove

5 Obtuse Square Cove

6 Square

7 Thin

8 Bone

9 Exaggerated

10 Triangle

11 Normal Sans

12 Obtuse Sans

13 Perp Sans

14 Flared

15 Rounded

bbWelght (BYTE)
Weight.

0 Any

1 No Fit

2 Very Light

3 Light

4 Thin

5 Book

Appendix A. Data Types A-79

6 Medium

7 Demi

8 Bold

9 Heavy

10 Black

11 Nord

bbProporllon (BYTE)
Proportion.

0 Any

1 No Fit

2 Old Style

3 Modern

4 Even Width

5 Expanded

6 Condensed

7 Very Expanded

8 Very Condensed

9 Monospaced

bbContrast (BYTE)
Contrast.

0 Any

1 No Fit

2 None

3 Very Low

4 Low

5 Medium Low

6 Medium

7 Medium High

8 High

9 Very High

bbStrokeVarialion (BYTE)
Stroke Variation.

0 Any

1 No Fit

2 Gradual/Diagonal

3 Gradual/Transitional

4 Gradual/Vertical

5 Gradual/Horizontal

6 Rapid/Vertical

7 Rapid/Horizontal

8 Instant/Vertical

bbArmStyle (BYTE)
Arm Style.

A-80 PM Programming Reference

0 Any

1 No Fit
';

2 Straight Arms/Horizontal

3 Straight Arms/Wedge

4 Straight Arms/Vertical

5 Straight Arms/Single Serif

6 Straight Arms/Double Serif

7 Non-Straight Arms/Horizontal

8 Non-Straight Arms/Wedge

9 Non-Straight Arms/Vertical

10 Non-Straight Arms/Single Serif

11 Non-Straight Arms/Double Serif

bbLetterform (BYTE)
Letterform.

0 Any

1 No Fit

2 Normal/Contact

3 ONormal/Weighted

4 ONormal/Boxed

5 ONormal/Flattened

6 ONormal/Rounded

7 ONormal/Off Center

8 ONormal/Square

9 Oblique/Contact

10 Oblique/Weighted

11 Oblique/Boxed

12 Oblique/Flattened

13 Oblique/Rounded

14 Oblique/Off Center

15 Oblique/Square

bbMldllne (BYTE)
Midline.

0 Any

1 No Fit

2 Standard/Trimmed

3 Standard/Pointed

4 Standard/Serifed

5 High/Trimmed

6 High/Pointed

7 High/Serifed

) 8 Constant/Trimmed
I

9 Constant/Pointed

Appendix A. Data Types A-81

PAPSZ

PARAM

1 O Constant/Serifed

11 Low/Trimmed

12 Low/Pointed

13 Low/Serifed

bbXHelght (BYTE)
X-Height.

0 Any

1 No Fit

2 Constant/Sm a I I

3 Constant/Standard

4 Constant/Large

5 Ducking/Small

6 Ducking/Standard

7 Ducking/Large

ababReserved[FACESIZE] (BYTE)
Reserved.

Pointer to an array of pointers to null-terminated strings.

typedef char *PAPSZ;

Presentation parameter attribute definition.

typedef struct _PARAM {
ULONG id;
ULONG cb;
BYTE abab[l];
} PARAM;

Id (ULONG)
Attribute type identity.

These identities are in the range of X'OOOOOOOO' to X'FFFFFFFF'. The
window manager uses values of this parameter in the range X'OOOOOOOO'
to PP _USER, therefore an application should not define private
presentation parameter attribute identities in this range. An application
should use the WinAddAtom call to guarantee obtaining a unique identity.

PP _FOREGROUNDCOLOR

PP _BACKGROUNDCOLOR

PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEBACKGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLOR

Foreground color (in RGB)
attribute.
Background color (in RGB)
attribute.
Foreground color index
attribute.
Background color index
attribute.
Highlighted foreground
color (in RGB) attribute, for
example for selected menu
items.
Highlighted background
color (in RGB) attribute.
Highlighted foreground
color index attribute.
Highlighted background
color index attribute.
Disabled foreground color
(in RGB) attribute.
Disabled background color
(in RGB) attribute.

A-82 PM Programming Reference

PP _DISABLEDFOREGROUNDCOLORINDEX Disabled foreground color
index attribute.

\
PP _DISABLEDBACKGROUNDCOLORINDEX Disabled background color

index attribute.
)

PP _BORDERCOLOR Border color (in RGB)
attribute.

PP _BORDERCOLORINDEX Border color index
attribute.

PP _FONTNAMESIZE Font name and size
attribute.

PP _ACTIVECOLOR Active color value of data
type RGB.

PP _ACTIVECOLORINDEX Active color index value of
data type LONG.

PP _INACTIVECOLOR Inactive color value of data
type RGB.

PP _INACTIVECOLORINDEX Inactive color index value
of data type LONG.

PP _ACTIVETEXTFGNDCOLOR Active text foreground
color value of data type
RGB.

PP _ACTIVETEXTFGNDCOLORINDEX Active text foreground
color index value of data
type LONG.

PP _ACTIVETEXTBGNDCOLOR Active text background
color value of data type
RGB.

PP _ACTIVETEXTBGNDCOLORINDEX Active text background
color index value of data
type LONG.

PP _INACTIVETEXTFGNDCOLOR Inactive text foreground
color value of data type
RGB.

PP _INACTIVETEXTFGNDCOLORINDEX Inactive text foreground
color index value of data
type LONG.

PP _INACTIVETEXTBGNDCOLOR Inactive text background
color value of data type
RGB.

PP _INACTIVETEXTBGNDCOLORINDEX Inactive text background
color index value of data
type LONG.

PP_SHADOW Changes the color used for
drop shadows on certain
controls.

PP_USER This is a user-defined
presentation parameter.

cb (ULONG)
Byte count of the abab[1] parameter.

abab[1] (BYTE)
Attribute value.

The format of a value depends on the attribute type identity as follows:

PP _FOREGROUNDCOLOR Foreground color value of data
type RGB.

PP_BACKGROUNDCOLOR Background color value of data
type RGB.

PP _FOREGROUNDCOLORINDEX Foreground color index value

) of data type LONG.
PP _BACKGROUNDCOLORINDEX Background color index value

of data type LONG.

Appendix A. Data Types A-83

PARCPARAMS

PAREABUNDLE

PBANDRECT

PBITMAPINFO

PP _HILITEFOREGROUNDCOLOR Highlighted foreground color
value of data type RGB.

PP _HILITEBACKGROUNDCOLOR Highlighted background color
value of data type RGB.

PP _HILITEFOREGROUNDCOLORINDEX Highlighted foreground color
index value of data type LONG.

PP _HILITEBACKGROUNDCOLORINDEX Highlighted background color
index value of data type LONG.

PP _DISABLEDFOREGROUNDCOLOR Disabled foreground color
value of data type RGB.

PP _DISABLEDBACKGROUNDCOLOR Disabled background color
value of data type RGB.

PP _DISABLEDFOREGROUNDCOLORINDEX Disabled foreground color
index value of data type LONG.

PP _DISABLEDBACKGROUNDCOLORINDEX Disabled background color
index value of data type LONG.

PP _BORDERCOLOR Border color value of data type
RGB.

PP _BORDERCOLORINDEX

PP _FONTNAMESIZE

Pointer to ARCPARAMS.

typedef ARCPARAMS *PARCPARAMS;

Pointer to AREABUNDLE.

typedef AREABUNDLE *PAREABUNDLE;

Pointer to BANDRECT.

typedef BANDRECT *PBANDRECT;

Pointer to BITMAPINFO.

typedef BITMAPINFO *PBITMAPINFO;

Border color index value of
data type LONG.
Font name and size value of
data type PSZ. The string is in
two parts, separated by a
period. The first part is the font
point size and the second part
is the font facename, for
example, "12.Helv".

PBITMAPINFOHEADER Pointer to BITMAPINFOHEADER.

typedef BITMAPINFOHEADER *PBITMAPINFOHEADER;
PBITMAPINFOHEADER2 Pointer to BITMAPINFOHEADER2.

PBITMAPINF02

PBOOKTEXT

PBOOL

PBUFFER

PBUNDLE

PBYTE

typedef BITMAPINFOHEADER2 *PBITMAPINFOHEADER2;
Pointer to BITMAPINF02.

typedef BITMAPINF02 *PBITMAPINF02;

Pointer to a BOOKTEXT data structure.

typedef BOOKTEXT *PBOOKTEXT;

Pointer to BOOL.

typedef BOOL *PBOOL;

Pointer to PBYTE.

typedef BUFFER *PBUFFER;

Points to a bundle data area.

typedef PVOID PBUNDLE;

Pointer to a data area.

typedef BYTE *PBYTE;

A-84 PM Programming Reference

PCATCHBUF

PCDATE

PCELL

PCH

PCHAR

PCHARBUNDLE

PCLASSDETAILS

PCLASSFIELDINFO

PCLASSINFO

PCNRDRAGINFO

PCNRDRAGINIT

Pointer to CATCHBUF.

typedef CATCHBUF *PCATCHBUF;

Pointer to COATE.

typedef COATE *PCDATE;

Pointer to CELL.

typedef CELL *PCELL;

Pointer to a character string.

typedef char *PCH;

Pointer to CHAR.

typedef CHAR *PCHAR;

Pointer to CHARBUNDLE.

typedef CHARBUNDLE *PCHARBUNDLE;

Pointer to an CLASSDETAILS data structure.

typedef CLASSDETAILS *PCLASSDETAILS;

Pointer to an ClassFieldlnfo data structure.

typedef CLASSFIELDINFO *PCLASSFIELDINFO;

Pointer to CLASSINFO.

typedef CLASSINFO *PCLASSINFO;

Pointer to a CNRDRAGINFO data structure.

typedef CNRDRAGINFO *PCNRDRAGINFO;

Pointer to a CNRDRAGINIT data structure.

typedef CNRDRAGINIT *PCNRDRAGINIT;

PCNRDRAWITEMINFO Pointer to a CNRDRAWITEMINFO data structure.

PCNREDITDATA

PCNRINFO

PCOLOR

PCONVCONTEXT

PCPTEXT

PCREATEPARAMS

PCREATESTRUCT

PCT/ME

PCURSORINFO

PODE/NIT

typedef CNRDRAWITEMINFO *PCNRDRAWITEMINFO;

Pointer to a CNREDITDATA data structure.

typedef CNREDITDATA *PCNREDITDATA;

Pointer to a CNRINFO data structure.

typedef CNRINFO *PCNRINFO;

Pointer to COLOR.

typedef COLOR *PCOLOR;

Pointer to a CONVCONTEXT data structure.

typedef CONVCONTEXT *PCONVCONTEXT;

Pointer to CPTEXT.

typedef CPTEXT *PCPTEXT;

Pointer to PVOID.

typedef CREATEPARAMS FAR *PCREATEPARAMS;

Pointer to a CREATESTRUCT data structure.

typedef CREATESTRUCT *PCREATESTRUCT;

Pointer to CTIME.

typedef CTIME *PCTIME;

Pointer to CURSORINFO.

typedef CURSORINFO *PCURSORINFO;

Pointer to a DDEINIT data structure.

typedef DDEINIT *PDDEINIT;

Appendix A. Data Types A-85

PDDESTRUCT

PDELETENOTIFY

PDESKTOP

PDEVOPENDATA

PDEVOPENSTRUC

PDLGTEMPLATE

PDLGTITEM

PDRAGIMAGE

PDRAGINFO

PDRAGITEM

PDRAGTRANSFER

PDRIVDATA

PDR/VPROPS

PENTRYFDATA

PERRINFO

PERRORID

PESCMODE

PFACENAMEDESC

PFATTRS

Pointer to DDESTRUCT.

typedef DDESTRUCT *PDDESTRUCT;

Pointer to a DELETENOTIFY data structure.

typedef DELETENOTIFY *PDELETENOTIFY;

Pointer to a DESKTOP image data structure.

typedef DESKTOP *PDESKTOP;

Open device-data array.

This data type points to data whose format is described by the
DEVOPENSTRUC data type.

typedef PSZ *PDEVOPENDATA;

Pointer to DEVOPENSTRUC.

typedef DEVOPENSTRUC *PDEVOPENSTRUC;

Pointer to DLGTEMPLATE.

typedef DLGTEMPLATE *PDLGTEMPLATE;

Pointer to DLGTITEM.

typedef DLGTITEM *PDLGTITEM;

Pointer to a DRAGIMAGE data structure.

typedef DRAGIMAGE *PDRAGIMAGE;

Pointer to a DRAGINFO data structure.

typedef DRAGINFO *PDRAGINFO;

Pointer to a DRAGITEM data structure.

typedef DRAGITEM *PDRAGITEM;

Pointer to a DRAGTRANSFER data structure.

typedef DRAGTRANSFER *PDRAGTRANSFER;

Driver-data structure.

This data type points to data whose format is described by the DRIVDAT A
data type.

typedef DRIVDATA *PDRIVDATA;

Driver property structure.

This data type points to data whose format is described by the DRIVPROPS
data type.

typedef DRIVPROPS *PDRIVPROPS;

Pointer to ENTRYFDATA.

typedef ENTRYFDATA *PENTRYFDATA;

Pointer to ERRINFO.

typedef ERRINFO *PERRINFO;

Pointer to ERRORID.

typedef ERRORID *PERRORID;

Pointer to ESCSETMODE.

typedef ESCMODE *PESCMODE;

Pointer to FACENAMEDESC.

typedef FACENAMEDESC *PFACENAMEDESC;

Pointer to FA TTRS.

typedef FATTRS *PFATTRS;

A-86 . PM Programming Reference

PFFDESCS

\ PF/ELDINFO

PFIELDINFOINSERT

PFILEDLG

PFILEFINDBUF4

PF/XED

PFN

PFNWP

PFONTDLG

PFONTMETRICS

PG RADIE NTL

PHAB

PH BITMAP

PHCINFO

PHDC

PHELP/NIT

PHELPSUBTABLE

PHELPTABLE

PHFIND

PHMF

PH MODULE

PH PAL

Pointer to a font file descriptor.

typedef FFDESCS *PFFDESCS;

Pointer to a FIELDINFO data structure.

typedef FIELDINFO *PFIELDINFO;

Pointer to a FIELDINFOINSERT data structure.

typedef FIELDINFOINSERT *PFIELDINFOINSERT;

Pointer to a FILEDLG data structure.

typedef FILEDLG *PFILEDLG;

Pointer to FILEFINDBUF4.

typedef FILEFINDBUF4 *PFILEFINDBUF4;

Pointer to FIXED.

typedef FIXED *PFIXED;

Pointer to procedure.

typedef int *PFN();

Pointer to a window procedure.

typedef MRESULT (EXPENTRY *PFNWP)(HWND. USHORT. MPARAM. MPARAM);

Pointer to a FONTDLG data structure.

typedef FONTDLG *PFONTDLG;

Pointer to FONTMETRICS.

typedef FONTMETRICS *PFONTMETRICS;

Pointer to GRADIENTL.

typedef GRADIENTL *PGRADIENTL;

Pointer to HAB.

typedef HAB *PHAB;

Pointer to HBITMAP.

typedef HBITMAP *PHBITMAP;

Pointer to HCINFO.

typedef HCINFO *PHCINFO;

Pointer to HOC.

typedef HOC *PHDC;

Pointer to HELPINIT.

typedef HELPINIT *PHELPINIT;

Pointer to SHORT.

typedef HELPSUBTABLE *PHELPSUBTABLE;

Pointer to a HELPTABLE data structure.

typedef HELPTABLE *PHELPTABLE;

Pointer to HFIND.

typedef HFIND *PHFIND;

Pointer to HMF.

typedef HMF *PHMF;

Pointer to HMODULE.

typedef HMODULE *PHMODULE;

Pointer to HPAL.

typedef HPAL *PHPAL;

Appendix A. Data Types A-87

PHPROGARRAY

PH PROGRAM

PHPS

PHRGN

PHSEM

PHSWITCH

PHWND

PIBSTRUCT

Pointer to HPROGARRAY.

typedef HPROGARRAY *PHPROGARRAY;

Pointer to HPROGRAM.

typedef HPROGRAM *PHPROGRAM;

Pointer to HPS.

typedef HPS *PHPS;

Pointer to HRGN.

typedef HRGN *PHRGN;

Pointer to HSEM.

typedef HSEM *PHSEM;

Pointer to HSWITCH.

typedef HSWITCH *PHSWITCH;

Pointer to HWND.

typedef HWND *PHWND;

Program-information-block structure.

typedef struct _PIBSTRUCT {
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];
CHAR szlconFileName[MAXPATHL+l];
CHAR szExecutable[MAXPATHL+l];
CHAR szStartupDir[MAXPATHL+l];
XYWINSIZE xywinlnitial;
USHORT res 1;
LHANDLE res2;
USHORT cchEnvironmentVars;
PCH pchEnvironmentVars;
USHORT cchProgramParameter;
PCH pchProgramParameter;
} PIBSTRUCT;

progt (PROGTYPE)
Program type and visibility.

szTltle[MAXNAMEL + 1] (CHAR)
Program title (null-terminated).

szlconFlleName[MAXPATHL + 1] (CHAR)
Program icon filename (null-terminated).

szExecutable[MAXPATHL + 1] (CHAR)
Executable file name (null-terminated).

szStartupDir[MAXPATHL + 1] (CHAR)
Start-up directory (null-terminated).

xywinlnltial (XYWINSIZE)
Initial window position and size.

res1 (USHORT)
Reserved; must be 0.

res2 (LHANDLE)
Reserved; must be NULLHANDLE.

cchEnvironmentVars (USHORT)
Environment string length.

pchEnvironmentVars (PCH)
Environment string.

cchProgramParameter (USHORT)
Parameter string length.

A-88 PM Programming Reference

PICON INFO
I

PICONPOS

PID

PIMAGEBUNDLE

PIPT

PIX

PKERNINGPAIRS

PLINE BUNDLE

PL ONG

PMARGSTRUCT

PMARKERBUNDLE

PMATRIXLF

PMENU/TEM

PMINIRECORDCORE

POBJECTS

PPALINFO

PPID

PMLE_SEARCHDATA

PMPARAM

PMQINFO

PMRESULT

pchProgramParameter (PCH)
Parameter string.

Pointer to ICONINFO structure.

typedef ICONINFO *PICONINFO;

Pointer to lconPos data structure.

typedef ICONPOS *PICONPOS;

Process identity.

typedef LHANOLE PIO;

Pointer to IMAGEBUNDLE.

typedef IMAGEBUNOLE *PIMAGEBUNOLE;

Pointer to IPT.

typedef IPT *PIPT;

Pel count for multi-line entry field.

typedef LONG PIX;

Pointer to KERNINGPAIRS.

typedef KERNINGPAIRS *PKERNINGPAIRS;

Pointer to LINEBUNDLE.

typedef LINEBUNOLE *PLINEBUNOLE;

Pointer to LONG.

typedef LONG *PLONG;

Pointer to a MLEMARGSTRUCT data structure.

typedef MLEMARGSTRUCT *PMARGSTRUCT;

Pointer to MARKERBUNDLE.

typedef MARKERBUNOLE *PMARKERBUNOLE;

Pointer to MATRIXLF.

typedef MATRIXLF *PMATRIXLF;

Pointer to a MENUITEM data structure.

typedef MENUITEM *PMENUITEM;

Pointer to a MINIRECORDCORE data structure.

typedef MINIRECORDCORE *PMINIRECOROCORE;

Pointer to WPObject *.

typedef OBJECTS *POBJECTS;

Pointer to PALINFO.

typedef PALINFO *PPALINFO;

Pointer to PIO.

typedef PIO *PPID;

Pointer to a MLE_SEARCHDATA data structure.

typedef MLE_SEARCHOATA *PMLE_SEARCHDATA;

Pointer to a 4-byte message-dependent parameter structure.

typedef MPARAM *PMPARAM;

Pointer to MQINFO.

typedef MQINFO *PMQINFO;

Pointer to a 4-byte message-dependent reply parameter structure.

typedef MRESULT *PMRESULT;

Appendix A. Data Types A-89

PNOTIFYDEL TA Pointer to a NOTIFYDEL TA data structure.

typedef NOTIFYDELTA *PNOTIFYDELTA;

PNOTIFYRECORDEMPHASIS Pointer to a NOTIFYRECORDEMPHASIS data structure.

typedef NOTIFYRECORDEMPHASIS *PNOTIFYRECORDEMPHASIS;

PNOTIFYRECORDENTER Pointer to a NOTIFYRECORDENTER data structure.

typedef NOTIFYRECORDENTER *PNOTIFYRECORDENTER;

PNOTIFYSCROLL

PO BJ CLASS

POBJDATA

PO/NTERINFO

PO/NTL

POINTS

Pointer to a NOTIFYSCROLL data structure.

typedef NOTIFYSCROLL *PNOTIFYSCROLL;

Pointer to an OBJCLASS data structure.

typedef OBJECTCLASS *POBJCLASS;

Pointer to OBJDATA structure.

typedef OBJDATA *POBJDATA;

Pointer-information structure.

typedef struct _POINTERINFO {
ULONG ulPointer;
LONG xHotspot;
LONG yHotspot;
HBITMAP hbmPointer;
HBITMAP hbmColor;
} POINTERINFO;

ulPolnter (ULONG)
Bit-map size indicator.

TRUE Pointer-sized bit map
FALSE Icon-sized bit map.

xHotspot (LONG)
x-coordinate of action point.

yHotspot (LONG)
y-coordinate of action point.

hbmPolnter (HBITMAP)
Bit-map handle of pointer.

hbmColor (HBITMAP)
Bit-map handle of color bit map.

Point structure (long integer).

typedef struct _POINTL {
LONG x;
LONG y;
} POINTL;

x (LONG)
x-coordinate.

y (LONG)
y-coordinate.

Point structure (short integer).

typedef struct _POINTS {
SHORT x;
SHORT y;
} POINTS;

x (SHORT)
x-coordinate.

y (SHORT)
y-coordinate.

A-90 PM Programming Reference

J

POLYGON Polygon structure.

typedef struct _POLYGON {
PPOINTL pPointl;
LONG lnumPoints;
} POLYGON;

pPolntl (PPOINTL)
Array of points.

lnumPolnts (LONG)
number of points in array.

POVERFLOW Pointer to a MLEOVERFLOW data structure.

typedef MLEOVERFLOW *POVERFLOW;

POWNERBACKGROUND Pointer to an OWNERBACKGROUND data structure.

POWNERITEM

PPAGEINFO

typedef OWNERBACKGROUND *POWNERBACKGROUND;

Pointer to a OWNERITEM data structure.

typedef OWNERITEM *POWNERITEM;

Pointer to PAGEINFO structure.

typedef PAGEINFO *PPAGEINFO;

PPAGESELECTNOTIFY Pointer to a PAGESELECTNOTIFY data structure.

PPIBSTRUCT

PPO/NTL

PPOINTS

PPOLYGON

PPRDINF03

PPRDRIVINFO

PPRESPARAMS

PPRINTDEST

PPRINTERINFO

PPRJINF02

PPRJINF03

PPROGCATEGORY

PPROGDET AILS

typedef PAGESELECTNOTIFY *PPAGESELECTNOTIFY;

Pointer to PIBSTRUCT.

typedef PIBSTRUCT *PPIBSTRUCT;

Pointer to a POINTL data structure.

typedef POINTL *PPOINTL;

Pointer to POINTS.

typedef POINTS *PPOINTS;

Pointer to POLYGON.

typedef POLYGON *PPOLYGON;

Pointer to PRDINF03.

typedef PRDINF03 *PPRDINF03;

Pointer to PRDRIVINFO.

typedef PRDRIVINFO *PPRDRIVINFO;

Pointer to PRESPARAMS.

typedef PRESPARAMS *PPRESPARAMS;

Pointer to PRINTDEST structure.

typedef PRINTDEST *PPRINTDEST;

Pointer to PRINTERINFO.

typedef PRINTERINFO *PPRINTERINFO;

Pointer to PRJINF02.

typedef PRJINF02 *PPRJINF02;

Pointer to PRJINF03.

typedef PRJINF03 *PPRJINF03;

Pointer to PROGCATEGORY.

typedef PROGCATEGORY *PPROGCATEGORY;

Pointer to PROGDETAILS.

typedef PROGDETAILS *PPROGDETAILS;

Appendix A. Data Types A-91

PPROGRAMENTRY

PPROGTITLE

PPROGTYPE

PPRPORTINFO

PPRPORTINF01

PPRQINF03

PPRQINF06

PPRQPROCINFO

PPSZ

PPVOID

PQMOPENDATA

PQMSG

Pointer to PROGRAMENTRY.

typedef PROGRAMENTRY *PPROGRAMENTRY;

Pointer to PROGTITLE.

typedef PROGTITLE *PPROGTITLE;

Pointer to PROGTYPE.

typedef PROGTYPE *PPROGTYPE;

Pointer to PRPORTINFO.

typedef PRPORTINFO *PPRPORTINFO;

Pointer to PRPORTINF01.

typedef PRPORTINFOl *PPRPORTINFOl;

Pointer to PRQINF03.

typedef PRQINF03 *PPRQINF03;

Pointer to PRQINF06.

typedef PRQINF06 *PPRQINF06;

Pointer to PRQPROCINFO.

typedef PRQPROCINFO *PPRQPROCINFO;

Pointer to a PSZ pointer.

typedef char *PPSZ;

Pointer to PVOID.

typedef PVOID *PPVOID;

Open queue-manager data array.

This data type points to data whose format is described by the
DEVOPENSTRUC data type.

typedef PSZ *PQMOPENDATA;

Pointer to a QMSG data structure.

typedef QMSG *PQMSG;

PQUERYRECFROMRECT Pointer to a QUERYRECFROMRECT data structure.

typedef QUERYRECFROMRECT *PQUERYRECFROMRECT;

PQUERYRECORDRECT Pointer to a QUERYRECORDRECT data structure.

typedef QUERYRECORDRECT *PQUERYRECORDRECT;

PRDINF03 Print device information structure (level 3).

typedef struct _PRDINF03 {
PSZ pszPrinterName;
PSZ pszUserNam~;

PSZ pszLogAddr;
USHORT uJobld;
USHORT fsStatus;
PSZ pszStatus;
PSZ pszComment;
PSZ pszDrivers;
USHORT time;
USHORT usTimeOut;
} PRDINF03;

pszPrinterName (PSZ)
Print device name.

pszUserName (PSZ)
User who submitted job.

This parameter is valid only while the job is printing. It is NULL for a job
submitted locally.

A-92 PM Programming Reference

\

)

i
!

PRDRIVINFO

PRECORDCORE

PRECORDINSERT

pszLogAddr (PSZ)
Logical address (for example LPT1).

If NULL or an empty string, the printer is not connected to a logical
address.

uJobld (USHORT)
Identity of current job.

If 0, no job is printing.

fsStatus (USHORT)
Print destination status.

Use the mask PRD_STATUS_MASK to determine the print job status:

Processing PRD_ACTIVE
PRD_PAUSED Not processing, or paused.

Use the mask PRJ_DEVSTATUS for further information about print job
status:
PRJ _COMPLETE
PRJ_INTERV
PRJ_ERROR

Job complete
Intervention required
Error occurred (in this case, pszStatus may contain
a comment about the error)

PRJ_DESTOFFLINE Print device offline
PRJ_DESTPAUSED Print device paused
PRJ_NOTIFY Raise alert
PRJ_DESTNOPAPER Print device out of paper.

pszStatus (PSZ)
Print device comment while printing.

A comment posted by the print processor of the print device. This
parameter is valid only during printing.

pszComment (PSZ)
Print device description.

pszDrlvers (PSZ)
Drivers supported by print device.

List items are separated by commas. Each printer driver name may
have a device name separated by a dot (for example,
PLOTTER.HP7475A). The default printer is listed first.

time (USHORT)
Time job has been printing (minutes).

This parameter applies only during printing.

usTlmeOut (USHORT)
Device timeout (seconds).

The time that elapses before the device driver notifies the spooler that
the print device has not responded.

Printer driver information structure (level 0).

typedef struct _PRDRIVINFO {
CHAR szDriverName[DRIV NAME SIZE+DRIV DEVICENAME SIZE+2];
} PRDRIVINFO; - - - -

szDriverName[DRIV_NAME_SIZE+DRIV_DEVICENAME_SIZE+2] (CHAR)
Name of printer driver.

This is the name of the printer driver and device is the format of
DRIVER.DEVICE. For example "IBM4019.IBM Laserprinter E."

Pointer to a RECORDCORE data structure.

typedef RECORDCORE *PRECORDCORE;

Pointer to a RECORDINSERT data structure.

Appendix A. Data Types A-93

PRECTL

PRENDERF/LE

PRESPARAMS

PRFPROF/LE

PRGB2

PRGNRECT

PRINTDEST

typedef RECORDINSERT *PRECORDINSERT;

Pointer to a RECTL data structure.

typedef RECTL *PRECTL;

Pointer to RENDERFILE.

typedef RENDERFILE *PRENDERFILE;

Presentation parameter data.

typedef struct _PRESPARAMS {
ULONG cb;
PARAM aparam[l];
} PRESPARAMS;

cb (ULONG)
Byte count of the aparam[1] parameter.

aparam[1] (PARAM)
Array of attribute parameters.

Profile structure.

typedef struct _PRFPROFILE {
ULONG cchUserName;
PSZ pszUserName;
ULONG cchSysName;
PSZ pszSysName;
} PRFPROFILE;

cchUserName (ULONG)
Length of user profile name.

pszUserName (PSZ)
User profile name.

cehSysName (ULONG)
Length of system profile name.

pszSysName (PSZ)
System profile name.

Pointer to RGB2.

typedef RGB2 *PRGB2;

Pointer to RGNRECT.

typedef RGNRECT *PRGNRECT;

PRINTDEST data structure.

Contains all the parameters required to issue a DevPostDeviceModes and
DevOpenDC function calls.

typedef struct _PRINTDEST {
ULONG cb;
LONG lType;
PSZ pszToken;
LONG lCount;
PDEVOPENDATA pdopData;
ULONG fl;
PSZ pszPrinter;
} PRINTDEST;

cb (ULONG)
Length of data structure, in bytes.

The value is always 28.

IType (LONG)
Type of device context.

OD_QUEUED
OD_DIRECT

The device context is queued.
The device context is direct.

A-94 PM Programming Reference

/

PRINTERINFO

pszToken (PSZ)
Device-information token.

This is always "*."

ICount (LONG)
Number of items.

This is the number of items present in the pdopData field.

pdopData (PDEVOPENDATA)
Open device context data area.

See DEVOPENSTRUC for information on the format of pdopData.

fl (ULONG)
Flags.

PD_JOB_PROPERTY This flag indicates that DevPostDeviceModes
should be called with DPDM_POST JOBPROP
before calling DevOpenDC.

pszPrlnter (PSZ)
Name of Printer.

A name that specifies the device, for example "PRINTER1." The name is
used for calling DevPostDeviceModes.

Print destination information structure.

This structure is used at information level 0.

typedef struct _PRINTERINFO {
ULONG fl Type;
PSZ pszComputerName;
PSZ pszPrintDestinationName;
PSZ pszDescription;
PSZ pszlocalName;
} PRINTERINFO;

flType (ULONG)
Type of printer.

This is a flag used to describe the type of print destination:

SPL_PR_QUEUE Print destination is a queue
SPL_PR_DIRECT_DEVICE Print destination is a direct print device
SPL_PR_QUEUED_DEVICE Print destination is a queued print device

pszComputerName (PSZ)
Computer name.

A NULL string specifies the local workstation.

pszPrintDestlnatlonName (PSZ)
Name of Print Destination.

It is either a queue name or a print device name depending upon the
value off/Type. The maximum length of the name in the network case is
256 (including one byte for the null terminator).

pszDescrlptlon (PSZ)
Description of print destination.

The maximum length is 48 characters (including one byte for the null
terminator).

pszLocalName (PSZ)
Local name of remote print destination.

This is a local port name (for instance "LPT4") that is connected to the
remote print destination. A NULL string specifies that no connection
exists.

Appendix A. Data Types A-95

PRJINF02 Print-job information structure.

This structure provides a subset of the information supplied by PRJINF03.
It minimizes the storage required for job-information retrieval, and is
sufficient for most uses.

typedef struct _PRJINF02 {
USHORT uJobld;
USHORT uPriority;
PSZ pszUserName;
USHORT uPosition;
USHORT fsStatus;
ULONG ulSubmitted;
ULONG ulSize;
PSZ pszComnent;
PSZ pszDocument;
} PRJINF02;

uJobld (USHORT)
Job identification number.

uPrlorlty (USHORT)
Job priority.

The job-priority range is 1 through 99, with 99 the highest job priority.
(For queue priorities, 1 is the highest priority.)

The job priority determines the order of jobs in the queue. If multiple
queues print to the same printer, the job at the front of each queue is
examined. The job with the highest priority is printed first; if there is
more than one job with the highest priority, the oldest job with this
priority is printed first.

PRJ_MAX_PRIORITY
PRJ_MIN_PRIORITY
PRJ _NO _PRIORITY

pszUserName (PSZ)

Highest priority
Lowest priority
No priority.

User who submitted the job.

This parameter applies only to jobs created by a user and enqueued on a
remote server. A NULL string signifies a local job.

uPosltlon (USHORT)
Job position in queue.

If 1, the job is scheduled to be the next job printed from this queue.

fsStatus (USHORT)
Job status.

To find the job status, use the PRJ_QSTATUS mask:

PRJ_QS_QUEUED
PRJ_QS_PAUSED
PRJ_ QS_SPOOLING
PRJ_ QS_PRINTING

Queued
Paused by a SplHoldJob function
Job being created
Printing (bits 2 through 11 are valid).

For further information, use the PRJ_DEVSTATUS mask:
PRJ_COMPLETE
PRJ_INTERV
PRJ_ERROR
PRJ_DESTOFFLINE
PRJ_DESTPAUSED
PRJ_NOTIFY
PRJ_DESTNOPAPER
PRJ_DESTFORMCHG
PRJ_DESTCRTCHG
PRJ_DESTPENCHG

Job complete
Intervention required
Error occurred.
Print destination offline
Print destination paused
Alert should be raised
Print destination out of paper
Printer waiting for form change
Printer waiting for cartridge change
Printer waiting for pen change.

This bit indicates that the job is deleted:
PRJ_DELETED Job deleted.

A-96 PM Programming Reference

PRJINF03

ulSubmltted (ULONG)
Time job submitted.

Time format is the same as that stored in the global information segment.

ulSlze (ULONG)
Print-job size (bytes).

pszComment (PSZ)
Comment string.

Information about the print job. The maximum length of the string is 48
characters(including one byte for the null terminator).

pszDocument (PSZ)
Document name.

The document name of the print job (set by the application that submitted
the print job). The maximum length of the string is 260 characters.

Print-job information structure.

This structure is used when complete job details are required. A subset of
this information is supplied by PRJINF02.

typedef struct _PRJINF03 {
USHORT uJobid;
USHORT uPriority;
PSZ pszUserName;
USHORT uPosition;
USHORT fsStatus;
ULONG ulSubmitted;
ULONG ulSize;
PSZ pszConment;
PSZ pszDocument;
PSZ pszNotifyName;
PSZ pszDataType;
PSZ pszPanns;
PSZ pszStatus;
PSZ pszQueue;
PSZ pszQProcName;
PSZ pszQProcPanns;
PSZ pszDri verName;
PDRIVDATA pDriverData;
PSZ pszPrinterName;
} PRJINF03;

uJobld (USHORT)
Job identification number.

uPrlorlty (USHORT)
Job priority.

The job-priority range is 1 through 99, with 99 the highest job priority.
(For queue priorities, 1 is the highest priority.)

The job priority determines the order of jobs in the queue. If multiple
queues print to the same printer, the job on the front of each queue is
examined. The job with the highest priority is printed first; if there is
more than one job with the highest priority, the oldest job with this
priority is printed first.

PRJ_MAX_PRIORITY
PRJ_MIN_PRIORITY
PRJ_NO _PRIORITY

pszUserName (PSZ)

Highest priority
Lowest priority
No priority.

User who submitted the job.

This parameter applies only to jobs created by a user on a remote
workstation and queued on a server. A NULL string signifies a local job.

Appendix A. Data Types A-97

uPosltlon (USHORT)
Job position in queue.

If 1, the job is scheduled to be the next job printed from this queue.

fsStatus (USHORT)
Job status.

To find the job status, use the PRJ_QSTATUS mask:

PRJ_ QS_ QUEUED
PRJ_QS_PAUSED
PRJ_QS_SPOOLING
PRJ_ QS_PRINTING

Queued
Paused by a SplHoldJob function
Job being created
Printing (bits 2 through 11 are valid).

For further information, use the PRJ_DEVSTATUS mask:
PRJ_COMPLETE Job complete
PRJ_INTERV Intervention required
PRJ_ERROR Error occurred. (In this case, pszStatus may

PRJ_DESTOFFLINE
PRJ_DESTPAUSED
PRJ_NOTIFY
PRJ_DESTNOPAPER
PRJ_DESTFORMCHG
PRJ_DESTCRTCHG
PRJ_DESTPENCHG

contain a comment about the error)
Print destination offline
Print destination paused
Alert should be raised
Print destination out of paper
Printer waiting for form change
Printer waiting for cartridge change
Printer waiting for pen change.

This bit indicates that the job is deleted:
PRJ_DELETED Job deleted.

ulSubmltted (ULONG)
Time job submitted.

Time format is the same as that stored in the global information segment.

ulSlze (ULONG)
Print-job size (bytes).

pszComment (PSZ)
Comment string.

Information about the print job.

The maximum length of the string is 48 characters (including one byte for
the null terminator).

pszDocument (PSZ)
Document name.

The document name of the print job (set by the application that submitted
the print job). The maximum length of the string is 260 characters.

pszNotlfyName (PSZ)
Messaging alias for print alert.

This parameter is a computer name and applies only to jobs on a remote
server queue. A NULL string is returned for jobs on a local queue.

pszDataType (PSZ)
Data type of submitted file.

This is specified by the pszDataType parameter in the DEVOPENSTRUC
structure passed to the DevOpenDC call when the job is created. The
name is truncated to fit the field if necessary, and contains a trailing
NULL.

pszParms (PSZ)
Parameters.

The form of this string is:

pannl=vall pann2=va12 •..

A-98 PM Programming Reference

/

PROGCATEGORY

PROGDETAILS

pszStatus (PSZ)
Status comment.

A text string, posted by the queue processor, that provides additional
job-status information. The default string type is NULL

pszQueue (PSZ)
Queue name.

The name of the queue the job is on.

pszQProcName (PSZ)
Queue processor.

The name of the queue processor.

pszQProcParms (PSZ)
Queue processor parameters.

Spaces are used to separate parameters.

pszDrlverName (PSZ)
Driver name.

The name of the device driver (for example, "LASERJET"). The device
name is part of pDriverData.

pDrlverData (PDRIVDATA)
Job Properties (driver data).

The contents are specific to the device driver.

pszPrlnterName (PSZ)
Printer name.

If the job is printing, the printer name, otherwise NULL

Program category.

typedef CHAR PROGCATEGORY;

Program-details structure.

typedef struct _PROGDETAILS {
ULONG Length;
PROGTYPE progt;
USHORT pad1[3];
PSZ pszTitle;
PSZ pszExecutable;
PSZ pszParameters;
PSZ pszStartupDir;
PSZ pszlcon;
PSZ pszEnvironment;
SWP swplnitial;
USHORT pad2[5];
} PROGDETAILS;

Length (ULONG)
Length of structure.

progt (PROGTYPE)
Program type.

pad1 [3] (USHORT)
Reserved.

pszTltle (PSZ)
Title.

pszExecutable (PSZ)
Executable file name.

pszParameters (PSZ)
Parameter string.

Appendix A. Data Types A-99

PROGRAM ENTRY

PROGTITLE

PROGTYPE

pszStartupDlr (PSZ)
Start-up directory.

pszlcon (PSZ)
lcon..,file name.

pszEnvlronment (PSZ)
Environment string.

A list of null-terminated strings, ending with an extra null.

swplnltlal (SWP)
Initial window position and size.

pad2[5] (USHORT)
Reserved.

Program-entry structure.

typedef struct _PROGRAMENTRY {
HPROGRAM hprog;
PROGTYPE progt;
CHAR szTitle(MAXNAMEL+l];
} PROGRAMENTRY;

hprog (HPROGRAM)
Program handle.

progt (PROGTYPE)
Program type.

szTltle[MAXNAMEL + 1] (CHAR)
Program title (null-terminated).

Program-title structure.

typedef struct _PROGTITLE {
HPROGRAM hprog;
PROGTYPE progt;
USHORT padl[3];
PSZ pszTitle;
} PROGTITLE;

hprog (HPROGRAM)
Program handle.

progt (PROGTYPE)
Program type.

pad1 [3] (USHORT)
Reserved.

pszTltle (PSZ)
Program title.

Program-type structure.

typedef struct _PROGTYPE {
PROGCATEGORY progc;
UCHAR fbVisible;
} PROGTYPE;

progc (PROGCATEGORY)
Program category:

PROG_DEFAULT Default application
PROG_PM Presentation Manager application
PROG_WINDOWABLEVIO Text-windowed application
PROG_FULLSCREEN Full-screen application
PROG_WINDOWEDVDM PC DOS executable process (windowed)
PROG_ VDM PC DOS executable process (full screen)
PROG_REAL PC DOS executable process (full screen).

Same as PROG_VDM.

A-100 PM Programming Reference

PRPORTINFO

PRPORTINF01

PRQINF03

PROG_WINDOW_REAL Windows program which requires Windows
Real mode to execute

PROG_WINDOW_PROT Windows program which will execute in
Windows protect mode

fbVlsible (UCHAR)
Visibility attribute.

When testing this field, allow for the possibility that other bits may be
defined in the future. SHE_INVISIBLE and SHE_PROTECTED can be used
to mask the visibility and protected flags, respectively.

SHE_ VISIBLE
SHE _INVISIBLE
SHE_ UNPROTECTED
SHE_PROTECTED

Visible
Invisible
Unprotected
Protected.

Port information structure (level 0).

typedef struct _PRPORTINFO {
CHAR szPortName[PDLEN+l];
} PRPORTINFO;

szPortName[PDLEN+1] (CHAR)
Name of the port.

This is the name of the port. For example "LPT1."

Port information structure (level 1).

typedef struct _PRPORTINFOl {
PSZ pszPortName;
PSZ pszPortDriverName;
PSZ pszPortDriverPathName;
} PRPORTINFOl;

pszPortName (PSZ)
Name of the port.

This is the name of the port. For example "LPT1."

pszPortDrlverName (PSZ)
Name of the port driver.

This is the name of the port driver. For example "PARALLEL."

pszPortDrlverPathName (PSZ)
Full path name of the port driver.

This is the full path name of the port driver. For example
"C:\052\DLL \PARALLEL.PDR."

Print-queue information structure.

This structure is used at information levels 3 and 4.

typedef struct _PRQINF03 {
PSZ pszName;
USHORT uPriority;
USHORT uStartTime;
USHORT uUntilTime;
USHORT fsType;
PSZ pszSepFile;
PSZ pszPrProc;
PSZ pszPanns;
PSZ pszComnent;
USHORT fsStatus;
USHORT cJobs;
PSZ pszPrinters;
PSZ pszDriverName;
PDRIVDATA pDriverData;
} PRQINF03;

Appendix A. Data Types A-101

pszName (PSZ)
Queue name.

The maximum length of the name in the network case is 256 (including
one byte for zero termination).

uPrlorlty (USHORT)
Queue priority.

The range is 1 through 9, with 1 being the highest queue priority.

The default job priority (DefJobPrio) is determined from:
DefJobPrio=100-(10* uPriority).

If a job is added with PRJ_NO_PRIORITY specified, DefJobPrio is used. If
a default priority higher than the default job priority is specified, the
default job priority is used. If a default priority lower than the default is
specified, the specified job priority is used.

PRQ_DEF _PRIORITY Default priority
PRQ_MAX_PRIORITY Highest priority
PRQ_MIN_PRIORITY Minimum priority
PRQ_NO_PRIORITY No priority.

uStartTlme (USHORT)
Minutes after midnight when queue becomes active.

For example, the value 75 represents 1 :15 a.m.

If uStartTime and uUntilTime are both 0, the print queue is always
available.

uUntllTlme (USHORT)
Minutes after midnight when queue ceases to be active.

For example, the value 1200 represents 8 p.m.

If uUntilTime and uStartTime are both 0, the print queue is always
available.

fsType (USHORT)
Queue type.

PRQ3_TYPE_RAW Data is always enqueued in the device
specific format.

PRQ3_TYPE_QP _BYPASS Allows the spooler to bypass the queue
processor and send data directly to the
Printer Driver. Setting this bit allows the
spooler to print jobs of type PM_Q_RAW
while they are still being spooled.

pszSepflle (PSZ)
Separator-page file.

The path and file name of a separator-page flle on the target computer.

This file contains formatting information for the page or pages to be used
between print jobs. A relative path name is taken as relative to the
current spool directory. A NULL string indicates no separator page.

See IBM Operating System/2 Local Area Network Server Version 1.2:
Network Administrator's Guide for information about the format of
separator files.

pszPrProc (PSZ)
Default queue-processor.

pszParms (PSZ)
Queue parameters.

This can be any text string or a NULL string.

A-102 PM Programming Reference

PRQINF06

pszComment (PSZ)
Queue description.

A NULL string results in no comment. The maximum length is 48

characters (including one byte for the null terminator).

fsStatus (USHORT)
Queue status.

PRQ3_PAUSED
PRQ3_PENDING

Queue is paused (held).
Queue is pending deletion.

cJobs (USHORT)
Number of jobs in queue.

pszPrlnters (PSZ)
Print devices connected to queue.

This cannot be NULL.

pszDrlverName (PSZ)
Default device driver.

pDrlverData (PDRIVDATA)
Default queue job properties.

Note: An application can use pszDriverName, pDriverData, pszPrProc,

and pszParms to construct a valid DevOpenDC call based only on

the queue name.

Print-queue information structure.

This structure is used at information level 6.

typedef struct _PRQINF06 {
PSZ pszName;
USHORT uPriority;
USHORT uStartTime;
USHORT uUntilTime;
USHORT fsType;
PSZ pszSepFile;
PSZ pszPrProc;
PSZ pszParms;
PSZ pszComnent;
USHORT fsStatus;
USHORT cJobs;
PSZ pszPrinters;
PSZ pszDriverName;
PDRIVDATA pDriverData;
PSZ pszRemoteComputerName;
PSZ pszRemoteQueueName;
} PRQINF06;

pszName (PSZ)
Queue name.

The maximum length of the name in the network case is 256 (including

one byte for zero termination).

uPriority (USHORT)
Queue priority.

The range is 1 through 9, with 1 being the highest queue priority.

The default job priority (DefJobPrio) is determined from:

DefJobPrio=100-(10* uPriority).

If a job is added with PRJ_NO_PRIORITY specified, DefJobPrio is used. If

a default priority higher than the default job priority is specified, the

default job priority is used. If a default priority lower than the default is

specified, the specified job priority is used.

PRQ_DEF _PRIORITY Default priority

PRQ_MAX_PRIORITY Highest priority

Appendix A. Data Types A-103

PRQ_MIN_PRIORITY
PRQ_NO_PRIORITY

uStartTlme (USHORT)

Minimum priority
No priority.

Minutes after midnight when queue becomes active.

For example, the value 75 represents 1:15 a.m.

If uStartTime and uUntilTime are both 0, the print queue is always
available.

uUntllTlme (USHORT)
Minutes after midnight when queue ceases to be active.

For example, the value 1200 represents 8 p.m.

If uUnti/Time and uStartTime are both 0, the print queue is always
available.

fsType (USHORT)
Queue type.

PRQ3_TYPE_RAW Data is always enqueued in the device
specific format.

PRQ3_TYPE_QP_BYPASS Allows the spooler to bypass the queue
processor and send data directly to the
Printer Driver. Setting this bit allows the
spooler to print jobs of type PM_Q_RAW
while they are still being spooled.

pszSepFlle (PSZ)
Separator-page file.

The path and file name of a separator-page file on the target computer.

This file contains formatting information for the page or pages to be used
between print jobs. A relative path name is taken as relative to the
current spool directory. A NULL string indicates no separator page.

See IBM Operating System/2 Local Area Network Server Version 1.2:
Network Administrator's Guide for information about the format of
separator files.

pszPrProc (PSZ)
Default queue-processor.

pszParms (PSZ)
Queue parameters.

This can be any text string or a NULL string.

pszComment (PSZ)
Queue description.

A NULL string results in no comment. The maximum length is 48
characters (including one byte for the null terminator).

fsSlatus (USHORT)
Queue status.

PRQ3_PAUSED
PRQ3_PENDING

cJobs (USHORT)

Queue is paused (held).
Queue is pending deletion.

Number of jobs in queue.

pszPrinters (PSZ)
Print devices connected to queue.

This cannot be NULL.

pszDriverName (PSZ)
Default device driver.

A-104 PM Programming Reference

PRQPROCINFO

PSBCDATA

PSEARCHSTRING

PSFACTORS

PSHORT

PSIZEF

PSIZEL

PSLDCDATA

PSTRL

PSTRB

PSTR16

PSTR32

PSTR64

PSTYLECHANGE

pDrlverData (PDRIVDATA)
Default queue job properties.

Note: An application can use pszDriverName, pDriverData, pszPrProc,
and pszParms to construct a valid DevOpenDC call based only on
the queue name.

pszRemoteComputerName (PSZ)
Remote computer name.

The computer name part of a remote queue for which this queue is a
local alias.

pszRemoteQueueName (PSZ)
Remote queue name.

The queue name part of a remote queue for which this queue is a local
alias.

Queue processor information structure (level O).

typedef struct _PRQPROCINFO {
CHAR szQProcName[DRIV NAME SIZE+l];
} PRQPROCINFO; - -

szQProcName[DRIV _NAME_SIZE+1] (CHAR)
Name of queue processor.

This is the name of the queue processor (driver). For example
"PMPRINT."

Pointer to SBCDATA.

typedef SBCDATA *PSBCDATA;

Pointer to a SEARCHSTRING data structure.

typedef SEARCHSTRING *PSEARCHSTRING;

Pointer to SFACTORS.

typedef SFACTORS *PSFACTORS;

Pointer to SHORT.

typedef SHORT *PSHORT;

Pointer to SIZEF.

typedef SIZEF *PSIZEf;

Pointer to SIZEL.

typedef SIZEL *PSIZEL;

Pointer to a SLDCDATA data structure.

typedef SLDCDATA *PSLDCDATA;

Pointer to PSZ.

typedef STRL *PSTRL;

Pointer to STR8.

typedef STRL *PSTR8;

Pointer to STR16.

typedef STR16 *PSTR16;

Pointer to STR32.

typedef STR32 *PSTR32;

Pointer to STR64.

typedef STR64 *PSTR64;

Pointer to a STYLECHANGE data structure.

typedef STYLECHANGE *PSTYLECHANGE;

Appendix A. Data Types A-105

PSWBLOCK

PSWCNTRL

PSWENTRY

PSWP

PSZ

PTID

PTRACKINFO

PTREEITEMDESC

PU CHAR

PU LONG

PUSERBUTTON

PUSEITEM

PUSHORT

PVIOFONTCELLSIZE

PVIOSIZECOUNT

PVOID

PVSCDATA

PVSDRAGINFO

PVSDRAGINIT

PVSTEXT

PWNDPARAMS

PW POINT

Pointer to a switch-list block structure.

typedef SWBLOCK *PSWBLOCK;

Pointer to a switch-list control block structure.

typedef SWCNTRL *PSWCNTRL;

Pointer to SWENTRY.

typedef SWENTRY *PSWENTRY;

Pointer to a SWP data structure.

typedef SWP *PSWP;

Pointer to a null-terminated string.

typedef char *PSZ;

Pointer to TIO.

typedef TIO *PTID;

Pointer to a TRACKINFO data structure.

typedef TRACKINFO *PTRACKINFO;

Pointer to a TREEITEMDESC data structure.

typedef TREEITEMDESC *PTREEITEMDESC;

Pointer to UCHAR.

typedef UCHAR *PUCHAR;

Pointer to ULONG.

typedef ULONG *PULONG;

Pointer to USERBUTTON.

typedef USERBUTTON *PUSERBUTTON;

Pointer to USEITEM data structure.

typedef USEITEM *PUSEITEM;

Pointer to USHORT.

typedef USHORT *PUSHORT;

Pointer to VIOFONTCELLSIZE.

typedef VIOFONTCELLSIZE *PVIOFONTCELLSIZE;

Pointer to VIOSIZECOUNT.

typedef VIOSIZECOUNT *PVIOSIZECOUNT;

Pointer to a data type of undefined format.

typedef VOID *PVOID;

Pointer to VSCDATA.

typedef VSCDATA *PVSCDATA;

Pointer to VSDRAGINFO.

typedef VSDRAGINFO *PVSDRAGINFO;

Pointer to VSDRAGINIT.

typedef VSDRAGINIT *PVSDRAGINIT;

Pointer to a VSTEXT data structure.

typedef VSTEXT *PVSTEXT;

Pointer to a WNDPARAMS data structure.

typedef WNDPARAMS *PWNDPARAMS;

Pointer to a WPOINT data structure.

typedef WPOINT *PWPOINT;

A-106 PM Programming Reference

\
/

QMOPENSTRUC Open queue manager data structure.

typedef struct _QMOPENSTRUC {
PSZ pszQueueName;
PSZ pszDriverName;
PDRIVDATA pdrivDriverData;
PSZ pszDataType;
PSZ pszConment;
PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PSZ pszSpoolerParams;
PSZ pszNetworkParams;
} QMOPENSTRUC;

pszQueueName (PSZ)
Queue name.

The name of the queue for the output device. The queue can be a UNC
name.

pszDrlverName (PSZ)
Driver name.

A string containing the name of the Presentation Manager Device Driver
(for example, "IBM4019").

pdrlvDrlverData (PDRIVDAT A)
Driver data.

Data which is to be passed directly to the Presentation Manager Device
Driver. Whether or not any of this is required depends upon the Device
Driver.

pszDataType (PSZ)
Data type.

This defines the type of data which is to be queued, as follows:

• "PM_Q_STD" - standard format
• "PM_Q_RAW" - raw format

Note that a Presentation Manager device driver may define other
datatypes and may not support all of these queued data types.

pszComment (PSZ)
Comment.

A natural language description of the file. This may, for example, be
displayed by the spooler to the end user. It is optional.

pszQueueProcName (PSZ)
Queue processor name.

The name of the queue processor. This is normally the default.

pszQueueProcParams (PSZ)
Queue processor parameters.

A parameter string for the queue processor. It is optional.

pszSpoolerParams (PSZ)
Spooler parameters.

A parameter string for the spooler, which is optional. This has the
following options, which must be separated by one or more blanks:

• FORM=f

Specifies a forms code 'f'. This must be a valid forms code for the
printer.

If not specified, then the data is printed on the forms in use, when
this print job is ready to be printed.

• PRTY=n

Appendix A. Data Types A-107

QMSG

Specifies a priority in the range 0-99, with 99 being the highest. If
not specified, then a priority of 50 is used.

pszNetworkParams (PSZ)
Network parameters.

The format of the parameter string is keyword= value, and the following
keywords are defined (additional ones can be defined by the network
program):

• USER=u

specifies the userid 'u'. If not specified, a null userid is used.

Message structure.

typedef struct _QMSG {
HWND hwnd;
ULONG msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;
} QMSG;

hwnd (HWND)
Window handle.

msg (ULONG)
Message identity.

mp1 (MPARAM)
Parameter 1.

mp2 (MPARAM)
Parameter 2.

time (ULONG)
Message time.

ptl (POINTL)
Pointer position when message was generated.

QUERYRECFROMRECT Structure that contains information about a container record that is
bounded by a specified rectangle. This structure is used in the
CM_QUERYRECORDFROMRECT container message only. See
"CM_QUERYRECORDFROMRECT" on page 24-41 for information about
that message.

typedef struct _QUERYRECFROMRECT {
ULONG cb;
RECTL rect;
ULONG fsSearch;
} QUERYRECFROMRECT;

cb (ULONG)
Structure size.

The size (in bytes) of the QUERYRECFROMRECT data structure.

rect (RECTL)
Rectangle.

The rectangle to query, in virtual coordinates relative to the container
window origin. If the details view (CV_DETAIL) is displayed, the
x-coordinates of the rectangle are ignored.

fsSearch (ULONG)
Search control flags.

One flag from each of the following groups can be specified:

• Search sensitivity:

A-108 PM Programming Reference

\

QUERYRECORDRECT

CMA_COMPLETE
Returns the container records that are completely within the
bounding rectangle.

CMA_PARTIAL
Returns the container records that are completely or partially
within the bounding rectangle.

• Enumeration order:

CMA_ITEMORDER
Container records are enumerated in item order, lowest to
highest.

CMA_ZORDER
Container records are enumerated by z-order, from top to
bottom. This flag is valid for the icon view only.

Structure that contains information about the rectangle that bounds a
specified container record. This structure is used in the
CM_QUERYRECORDRECT container message only. See
"CM_QUERYRECORDRECT" on page 24-43 for information about that
message.

typedef struct _QUERYRECORDRECT {
ULONG cb;
PRECORDCORE pRecord;
ULONG fsExtent;
ULONG fRightSplitWindow;
} QUERYRECORDRECT;

cb (ULONG)
Structure size.

The size (in bytes) of the QUERYRECORDRECT structure.

pRecord (PRECORDCORE)
Pointer.

Pointer to the specified RECORDCORE data structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a
container is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

fsExtent (ULONG)
Rectangle flags.

Flags that specify the extent of the desired rectangle.

These flags can be combined by using a logical OR operator (I) to return
the rectangle that bounds the icon, the expanded and collapsed icon or
bit map, and the text.

CMA_ICON
CMA_TEXT
CMA _ TREEICON

Returns the icon rectangle.
Returns the text rectangle.
Returns the rectangle of the expanded and collapsed
icons or bit maps. This flag is valid for the tree icon
and tree text views only.

fRlghtSplitWlndow (ULONG)
Window flag.

Flag that specifies the right or left window in the split details view.

This flag is ignored if the view is not the split details view.

TRUE
FALSE

Right split window is returned.
Left split window is returned.

Appendix A. Data Types A-109

RECORDCORE Structure that contains information for records in a container control. This
data structure is used if the CCS_MINIRECORDCORE style bit is not
specified when a container is created.

typedef struct _RECORDCORE {
ULONG cb;
ULONG flRecordAttr;
POINTL ptllcon;
PRECORDCORE pNextRecord;
PSZ pszlcon;
HPOINTER hptrlcon;
HPOINTER hptrMinilcon;
HBITMAP hbmBitmap;
HBITMAP hbmMiniBitmap;
PTREEITEMDESC pTreeltemDesc;
PSZ pszText;
PSZ pszName;
PSZ pszTree;
} RECORDCORE;

cb (ULONG)
Structure size.

The size (in bytes) of the RECORDCORE structure.

flRecordAttr (ULONG)
Record attributes.

Attributes of container records. Contains any or all of the following:

CRA_ COLLAPSED
CRA_CURSORED

CRA_DROPONABLE

CRA_EXPANDED
CRA_FILTERED

CRA_INUSE

CRA_RECORDREADONLY

CRA_SELECTED

CRA_TARGET

ptllcon (POINTL)
Record position.

Specifies that a record is collapsed.
Specifies that a record will be drawn with a
selection cursor.
Specifies that a record can be a target for
direct manipulation.
Specifies that a record is expanded.
Specifies that a record is filtered, and
therefore hidden from view.
Specifies that a record will be drawn with
in-use emphasis.
Prevents a record from being edited
directly.
Specifies that a record will be drawn with
selected-state emphasis.
Specifies that a record will be drawn with
target emphasis.

Position of a container record in the icon view.

pNextRecord (PRECORDCORE)
Pointer.

Pointer to the next linked record.

pszlcon (PSZ)
Text.

Text for the icon view (CV _ICON).

hptrlcon (HPOINTER)
Icon.

Icon that is displayed when the CV _MINI style bit is not specified. This
field is used when the CA_DRAWICON container attribute of the CNRINFO
data structure is set.

A-110 PM Programming Reference

RECORDITEM

RECORDINSERT

hptrMlnllcon (HPOINTER)
Mini-icon.

Icon that is displayed when the CV _MINI style bit is specified. This field

is used when the CA_DRAWICON container attribute of the CNRINFO data

structure is set.

hbmBltmap (HBITMAP)
Bit map.

Bit map that is displayed when the CV _MINI style bit is not specified.

This field is used when the CA_DRAWBITMAP container attribute of the

CNRINFO data structure is set.

hbmMlnlBltmap (HBITMAP)
Mini-bit map.

Bit map that is displayed when the CV_MINI style bit is specified. This
field is used when the CA_DRAWBITMAP container attribute of the

CNRINFO data structure is set.

pTreeltemDesc (PTREEITEMDESC)
Pointer.

Pointer to a TREEITEMDESC structure, which contains the icons and bit

maps used to represent the state of an expanded or collapsed parent

item in the tree name view.

pszText (PSZ)
Text view text.

Text for the text view (CV_TEXT).

pszName (PSZ)
Name view text.

Text for the name view (CV_NAME).

pszTree (PSZ)
Tree view text.

Text for the tree view (CV_TREE).

USAGE_RECORD structure.

typedef RECORDITEM FAR *RECORDITEM;

Structure that contains information about the RECORDCORE structure or

structures that are being inserted into a container. The RECORDINSERT

structure is used in the CM_INSERTRECORD container message only. See

"CM_INSERTRECORD" on page 24-31 for information about that message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a

container is created, then MINIRECORDCORE should be used instead of

RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

typedef struct _RECORDINSERT {
ULONG cb;
PRECORDCORE pRecordOrder;
PRECORDCORE pRecordParent;
ULONG zOrder;
ULONG cRecordslnsert;
ULONG flnvalidateRecord;
} RECORDINSERT;

cb (ULONG)
Structure size.

The size (in bytes) of the RECORDINSERT structure.

Appendix A. Data Types A-111

REC TL

RENDERFILE

pRecordOrder (PRECORDCORE)
Record order.

Orders the RECORDCORE structure or structures relative to other
RECORDCORE structures in the container. The values can be:

CMA_FIRST Places a RECORDCORE structure, or list of RECORDCORE
structures, at the beginning of the list of structures.

CMA_END Places a RECORDCORE structure, or list of RECORDCORE
structures, at the end of the I ist of structures.

Other Pointer to a RECORDCORE structure that this structure, or
list of structures, is to be inserted after.

pRecordParent (PRECORDCORE)
Pointer.

Pointer to a RECORDCORE structure that is the parent of the record or
records to be inserted. This field is used only with the CMA_FIRST or
CMA_END attributes of the pRecordOrder field.

zOrder (ULONG)
Record z-order.

Positions the RECORDCORE structure in z-order, relative to other
records in the container. The values can be:

CMA_ TOP Places a RECORDCORE structure at the top of the
z-order. This is the default value.

CMA_BOTTOM Places a RECORDCORE structure at the bottom of the
z-order.

cRecordslnsert (ULONG)
Number of root level structures.

The number of root level RECORDCORE structures to be inserted. The
cRecordslnsert field value must be greater than 0.

flnvalldateRecord (ULONG)
Update flag.

Flag that indicates an automatic display update after RECORDCORE
structures are inserted.

TRUE The display is automatically updated after a RECORDCORE
structure is inserted.

FALSE The application must send the CM_INVALIDATERECORD
message after a RECORDCORE structure is inserted.

Rectangle structure.

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;
} RECTL;

xleft (LONG)
x-coordinate of left-hand edge of rectangle.

yBottom (LONG)
y-coordinate of bottom edge of rectangle.

xRight (LONG)
x-coordinate of right-hand edge of rectangle.

yTop (LONG)
y-coordinate of top edge of rectangle.

File-rendering structure.

A-112 PM Programming Reference

/

RGB

RGB2

typedef struct _RENDERFILE {
HWND hwndDragFiles;
HSTR hstrSource;
HSTR hstrTarget;
BOOL fMove;
USHORT usReserved;
} RENDERFILE;

hwndDragFlles (HWND)
Conversation handle.

Created by DrgDragFiles.

hstrSource (HSTR)
Handle to source file name.

hstrTarget (HSTR)
Handle to target file name.

fMove (BOOL)
Operation.

TRUE Move the file.
FALSE Copy the file.

usReserved (USHORT)
Reserved.

RGB color value.

typedef struct _RGB {
BYTE bBlue;
BYTE bGreen;
BYTE bRed;
} RGB;

bBlue (BYTE)
Blue component of the color definition.

bGreen (BYTE)
Green component of the color definition.

bRed (BYTE)
Red component of the color definition.

RGB color value.

typedef struct _RGB2 {
BYTE bBlue;
BYTE bGreen;
BYTE bRed;
BYTE fcOptions;
} RGB2;

bBlue (BYTE)
Blue component of the color definition.

bGreen (BYTE)
Green component of the color definition.

bRed (BYTE)
Red component of the color definition.

fcOptlons (BYTE)
Entry options.

These can be ORed together if required:

PC_RESERVED The color entry is reserved for animating color with the
palette manager.

PC_EXPLICIT The low-order word of the color table entry designates
a physical palette slot. This allows an application to
show the actual contents of the device palette as
realized for other logical palettes. This does not

Appendix A. Data Types A-113

RGNRECT

SBCDATA

prevent the color in the slot from being changed for
any reason.

Region-rectangle structure.

typedef struct _RGNRECT {
ULONG ireStart;
ULONG ere;
ULONG ereReturned;
ULONG ulDireetion;
} RGNRECT;

lrcStart (ULONG)
Rectangle number from which to start enumerating.

Numbering starts from 1.

ere (ULONG)
Number of rectangles that can be returned.

This must be 1 or greater.

crcReturned (ULONG)
Number of rectangles returned.

A value of less than ere indicates that there are no more rectangles to
enumerate.

ulDlrecllon (ULONG)
Direction in which the returned rectangles are to be ordered.

This ordering uses the leading edge of a rectangle.

RECTDIR_LFRT _ TOPBOT
RECTDIR_RTLF _ TOPBOT
RECTDIR_LFRT _BOTTOP
RECTDIR_RTLF _BOTTOP

Left-to-right, top-to-bottom
Right-to-left, top-to-bottom
Left-to-right, bottom-to-top
Right-to-left, bottom-to-top.

Scroll-bar control data structure.

typedef struct _SBCDATA {
USHORT eb;
USHORT sHilite;
SHORT posFirst;
SHORT poslast;
SHORT posThumb;
SHORT eVisible;
SHORT cTotal;
} SBCDATA;

cb (USHORT)
Length of control data in bytes.

10 The length of the control data for a scroll-bar control.

sHlllte (USHORT)
Highlighting code.

This indicates which part of the scroll bar is to be highlighted, if any.

ZERO
SB_LINEUP
SB_ LINELEFT
SB_LINEDOWN
SB_LINERIGHT
SB_PAGEUP
SB_PAGELEFT
SB_PAGEDOWN
SB_PAGERIGHT
SB_SLIDERTRACK

posFirst (SHORT)

No highlighting
Line up arrow
Line left arrow
Line down arrow
Line right arrow
Page up arrow
Page left arrow
Page down arrow
Page right arrow
Slider.

First bound of the scroll-bar range.

A-114 PM Programming Reference

SEARCHSTRING

SF ACTORS

posLasl (SHORT)
Last bound of the scroll-bar range.

posThumb (SHORT)
Slider position.

cVlslble (SHORT)
Number of data items visible.

cTolal (SHORT)
Number of data items available.

Structure that contains information about the container text string that is
the object of the search. This structure is used in the CM_SEARCHSTRING
container message only. See "CM_SEARCHSTRING" on page 24-48 for
information about that message.

typedef struct _SEARCHSTRING {
ULONG cb;
PSZ pszSearch;
ULONG ulView;
ULONG fsPrefix;
ULONG fsCaseSensitive;
} SEARCHSTRING;

cb (ULONG)
Structure size.

The size (in bytes) of the SEARCHSTRING structure.

pszSearch (PSZ)
Pointer.

Pointer to the search string.

ulVlew (ULONG)
View to search.

Search one of the container views for the string. Valid values are:

• CV_ICON
• CV_NAME
• CV_TEXT
• CV_TREE
• CV_DETAIL.

fsPreflx (ULONG)
Search flag.

Search flag that defines the criteria by which the string specified by the
pszSearch field is to be compared with the text of the container records
to determine the pointer to the first matching record.

TRUE Matching occurs if the leading characters of the container
record are the characters specified by the pszSearch field.

FALSE Matching occurs if the container record contains a substring of
the characters specified by the pszSearch field.

fsCaseSenslllve (ULONG)
Case sensitivity.

Determines case sensitivity of the search.

TRUE The search is case sensitive.
FALSE The search is not case sensitive.

Scaling factors, see DevEscape.

typedef struct _Sf ACTORS {
LONG l x;
LONG ly;
} SFACTORS;

Appendix A. Data Types A-115

SHANDLE

SHORT

SIZEF

SIZEL

SLDCDATA

Ix (LONG)
x-scaling factor, as an exponent of 2.

ly (LONG)
y-scaling factor, as an exponent of 2.

The handle of a resource.

typedef USHORT SHANDLE;

Signed integer in the range -32 768 through 32 767.

#define SHORT short

Size structure.

typedef struet _SIZEF {
FIXED ex;
FIXED ey;
} SIZEF;

ex (FIXED)
Width.

cy (FIXED)
Height.

Size structure.

typedef struet _SIZEL {
LONG ex;
LONG ey;
} SIZEL;

ex (LONG)
Width.

cy (LONG)
Height.

Slider control data structure.

typedef struct _SLDCDATA {
ULONG ebSize;
USHORT usScalellnerements;
USHORT usSealelSpacing;
USHORT usScale2Increments;
USHORT usScale2Spacing;
} SLDCDATA;

cbSlze (ULONG)
Data length.

Length of the control data in bytes.

usScale1 Increments (USHORT)
Scale increments.

The number of increments to set for the slider control. This number
represents the range of values that can be selected within the slider
when the SLS_PRIMARYSCALE1 style bit is specified.

usScale1Spaclng (USHORT)
Scale spacing.

The spacing between increments, expressed in pixels. It represents the
unit that is the smallest division of the scale when the
SLS_PRIMARYSCALE1 style bit is specified. If 0 is specified, the slider
automatically calculates the spacing based on the window size and the
number of increments specified.

usScale21ncrements (USHORT)
Alternate scale increments.

An alternate number of increments to set for the slider control. This

A-116 PM Programming Reference

SMHSTRUCT

SPLERR

STRUCT

STRB

STR16

STR32

STR64

STY LECH ANGE

number represents the range of values that can be selected within the
slider when the SLS_PRIMARYSCALE2 style bit is specified.

usScale2Spaclng (USHORT)
Alternate scale spacing.

An alternate spacing between increments, expressed in pixels. It
represents the unit that is the smallest division of the scale when the
SLS_PRIMARYSCALE2 style bit is specified. If 0 is specified, the slider
automatically calculates the spacing based on the window size and the
number of increments specified.

Send-message-hook structure.

typedef struct _SMHSTRUCT {
MPARAM mp2;
MPARAM mpl;
ULONG msg;
HWND hwnd;
ULONG model;
} SMHSTRUCT;

mp2 (MPARAM)
Parameter 2.

mp1 (MPARAM)
Parameter 1.

msg (ULONG)
Message identity.

hwnd (HWND)
Window handle.

model (ULONG)
Message identity.

Error value in the range 0 to 65 535.

typedef ULONG SPLER~;

Dummy data structure to be able to nest structures.

typedef struct _STRUCT {

String of 8 characters.

typedef CHAR STR8[8];

String of characters, with an implicit length, in a 16-byte field.

typedef CHAR STR16[16];

String of characters, with an implicit length, in a 32-byte field.

typedef CHAR STR32[32];

String of characters, with an implicit length, in a 64-byte field.

typedef CHAR STR64[64];

Style-change structure. This structure is returned by the
FNTM_STYLECHANGED message.

All "old" fields describe the style attributes before the user made a
change. The other, or "new", parameters describe the style that will be in
effect after this is passed to WinDefFontDlgProc. When the "old" and
"new" values are the same, the user made no change.

For further details of the parameters, see FONTDLG.

Appendix A. Data Types A-117

SW BLOCK

SWCNTRL

typedef struct _STYLECHANGE {
USHORT usWeight;
USHORT usWeightOld;
USHORT usWidth;
USHORT usWidthOld;
ULONG fl Type;
ULONG flTypeOld;
ULONG flTypeMask;
ULONG flTypeMaskOld;
ULONG fl Style;
ULONG flStyleOld;
ULONG flStyleMask;
ULONG flStyleMaskOld;
} STYLECHANGE;

usWelght (USHORT)
New weight of font.

usWelghtOld (USHORT)
Old weight of font.

usWldth (USHORT)
New width of font.

usWldthOld (USHORT)
Old width of font.

flType (ULONG)
New type of font.

flTypeOld (ULONG)
Old type of font.

flTypeMask (ULONG)
New type mask.

flTypeMaskOld (ULONG)
Old type mask.

flStyle (ULONG)
New selected style bits.

flStyleOld (ULONG)
Old selected style bits.

flStyleMask (ULONG)
New mask of style bits to use.

flStyleMaskOld (ULONG)
Old mask of style bits to use.

Switch-list block structure.

typedef struct _SWBLOCK {
ULONG cswentry;
SWENTRY aswentry[l];
} SWBLOCK;

cswentry (ULONG)
Count of switch list entries.

aswentry[1] (SWENTRY)
Switch list entries.

Switch-list control block structure.

A-118 PM Programming Reference

\
J

)

\
I

/

SW ENTRY

SWP

typedef struct _SWCNTRL {
HWND hwnd;
HWND hwndlcon;
HPROGRAM hprog;
PIO idProcess;
ULONG idSession;
UCHAR uchVisibility;
UCHAR fbJump;
CHAR szSwtitle[MAXNAMEL+l];
BYTE bProgType;
} SWCNTRL;

hwnd (HWND)
Window handle.

hwndlcon (HWND)
Window-handle icon.

hprog (HPROGRAM)
Program handle.

ldProcess (PIO)
Process identity.

ldSesslon (ULONG)
Session identity.

uchVlslblllty (UCHAR)
Visibility:

SWL_ VISIBLE
SWL_INVISIBLE
SWL_GRAYED

Visible in startup list
Invisible in startup list
Item cannot be switched to (note that it is not actually
grayed in the list).

fbJump (UCHAR)
Jump indicator:

SWL_JUMPABLE
SWL_NOT JUMPABLE

Participates in jump sequence
Does not participate in jump sequence.

szSwtltle[MAXNAMEL+1] (CHAR)
Switch-list control block title (null-terminated).

bProgType (BYTE)
Program type.

Switch-I ist entry structure.

typedef struct _SWENTRY {
HSWITCH hswitch;
SWCNTRL swctl;
} SWENTRY;

hswltch (HSWITCH)
Switch-list entry handle.

swell (SWCNTRL)
Switch-list control block structure.

Set-window-position structure.

typedef struct _SWP {
ULONG fl;
LONG cy;
LONG ex;
LONG y;
LONG x;
HWND hwndlnsertBehind;
HWND hwnd;
ULONG ulReservedl;
ULONG u1Reserved2;
} SWP;

Appendix A. Data Types A-119

TID

TRACKINFO

fl (ULONG)
Options.

In alphabetic order:

SWP _ACTIVATE
SWP _DEACTIVATE
SWP_HIDE
SWP _MAXIMIZE
SWP _MINIMIZE
SWP_MOVE
SWP _NOADJUST
SWP _NOERASEWINDOW
SWP _NOREDRAW
SWP _RESTORE
SWP_SHOW
SWP_SIZE
SWP_ZORDER

cy (LONG)
Window height.

ex (LONG)
Window width.

y (LONG)
y-coordinate of origin.

x (LONG)
x-coordinate of origin.

hwndlnsertBehlnd (HWND)
Window behind which this window is placed.

hwnd (HWND)
Window handle.

u1Reserved1 (ULONG)
Reserved. This must be 0.

u1Reserved2 (ULONG)
Reserved. This must be 0.

Thread identity.

typedef ULONG TIO;

Tracking-information structure.

typedef struct _TRACKINFO {
LONG cxBorder;
LONG cyBorder;
LONG cxGrid;
LONG cyGrid;
LONG cxKeyboard;
LONG cyKeyboard;
RECTL rel Track;
RECTL rel Boundary;
POINTL ptlMinTrackSize;
POI NTL ptlMaxTrackSize;
ULONG fs;
} TRACKINFO;

cxBorder (LONG)
Border width.

The width of the left and right tracking sides.

cyBorder (LONG)
Border height.

The height of the top and bottom tracking sides.

A-120 PM Programming Reference

,/

cxGrld (LONG)
Grid width.

The horizontal bounds of the tracking movements.

cyGrld (LONG)
Grid height.

The vertical bounds of the tracking movements.

cxKeyboard (LONG)
Character cell width movement for arrow key.

cyKeyboard (LONG)
Character cell height movement for arrow key.

rclTrack (RECTL)
Starting tracking rectangle.

This is modified as the rectangle is tracked and holds the new tracking
position, when tracking is complete.

rclBoundary (RECTL)
Boundary rectangle.

This is an absolute bounding rectangle that the tracking rectangle cannot
extend; see also TF_ALLINBOUNDARY.

ptlMlnTrackSlze (POINTL)
Minimum tracking size.

ptlMaxTrackSlze (POINTL)
Maximum tracking size.

Is (ULONG)
Tracking options.

In alphabetic order:

TF _ALLINBOUNDARY

TF_BOTIOM
TF_GRID

TF_LEFT
TF_MOVE
TF_RIGHT
TF _SETPOINTERPOS

The default tracking is such that some part of the
tracking rectangle is within the bounding
rectangle defined by re/Boundary. This
minimum size is defined by cxBorder and
cyBorder.

If TF _ALLINBOUNDARY is specified, the tracking
is performed so that no part of the tracking
rectangle ever falls outside of the bounding
rectangle.
Track the bottom side of the rectangle.
Tracking is restricted to the grid defined by
cxGrid and cyGrid.
Track the left side of the rectangle.
Track all sides of the rectangle.
Track the right side of the rectangle.
The pointer is repositioned according to other
flags as follows:
none Pointer is centered in the

tracking rectangle.
TF _MOVE Pointer is centered in the

tracking rectangle.
TF_LEFT Pointer is vertically centered at

the left of the tracking rectangle.
TF _TOP Pointer is horizontally centered

at the top of the tracking
rectangle.

TF _RIGHT Pointer is vertically centered at
the right of the tracking
rectangle.

Appendix A. Data Types A-121

TREEITEMDESC

UCHAR

ULONG

USEITEM

USERBUTTON

TF _STANDARD

TF_TOP

TF _BOTTOM Pointer is horizontally centered
at the bottom of the tracking
rectangle.

ex, cy, cxGrld, and cyGrld are all multiples of
cxBorder and cyBorder.
Track the top side of the rectangle.

Structure that contains icons and bit maps used to represent the state of
an expanded or collapsed parent item in the tree name view of a container
control.

typedef struct _TREEITEMDESC {
HBITMAP hbmExpanded;
HBITMAP hbmCollapsed;
HPOINTER hptrExpanded;
HPOINTER hptrCollapsed;
} TREEITEMDESC;

hbmExpanded (HBITMAP)
Expanded bit-map handle.

The handle of the bit map to be used to represent an expanded parent
item In the tree name view.

hbmCollapsed (HBITMAP)
Collapsed bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item
in the tree name view.

hptrExpanded (HPOINTER)
Expanded icon handle.

The handle of the icon to be used to represent an expanded parent item
in the tree name view.

hptrCollapsed (HPOINTER)
Collapsed icon handle.

The handle of the icon to be used to represent a collapsed parent item in
the tree name view.

Unsigned integer in the range 0 through 255.

typedef unsigned char UCHAR;

Unsigned integer in the range 0 through 4 294 967 295.

typedef unsigned long ULONG;

The use item structure is always followed by a type-specific structure.

!:a!! Structure
USAGE_MEMORY MEMORYITEM
USAGE_RECORD RECORDITEM
USAGE_ OPENVIEW VIEWITEM

typedef USEITEM *USEITEM;

User-button data structure.

typedef struct _USERBUTTON {
HWND hwnd;
HPS hps;
ULONG ulState;
ULONG ulStateOld;
} USERBUTTON;

hwnd (HWND)
Window handle.

hps (HPS)
Presentation-space handle.

A-122 PM Programming Reference

\
)

US HORT

VIEWITEM

VIOFONTCELLSIZE

VIOS/ZECOUNT

VOID

VSCDATA

VSDRAGINFO

ulState (ULONG)
New state of user button.

ulStateOld (ULONG)
Old state of user button.

Unsigned integer in the range 0 through 65 535.

typedef unsigned short USHORT;

OPENVIEW_RECORD structure.

typedef VIEWITEM *VIEWITEM;

VIO cell size, see DevEscape.

typedef struct _VIOFONTCELLSIZE {
LONG ex;
LONG cy;
} VIOFONTCELLSIZE;

ex (LONG)
Cell width.

cy (LONG)
Cell height.

Count of VIO cell sizes, see DevEscape.

typedef struct _VIOSIZECOUNT {
LONG maxcount;
LONG count;
} VIOSIZECOUNT;

maxcount (LONG)
Maximum number of VIO cell sizes supported.

count (LONG)
Number of VIO cell sizes returned.

A data area of undefined format.

#define VOID void

Structure that contains information about the value set control.

typedef struct _VSCDATA {
ULONG cbSize;
USHORT usRowCount;
USHORT usColumnCount;
} VSCDATA;

cbSlze (ULONG)
Data length.

Length of the control data in bytes.

usRowCount (USHORT)
Number of rows.

The number of rows in the value set control. The minimum number of
rows is 1 and the maximum number of rows is 65,535.

usColumnCount (USHORT)
Number of columns.

The number of columns in the value set control. The minimum number of
columns is 1 and the maximum number of columns is 65,535.

Structure that contains information about direct manipulation actions that
occur over the value set control.

typedef struct _VSDRAGINFO {
PDRAGINFO pDraglnfo;
USHORT us Row;
USHORT usColumn;
} VSDRAGINFO;

Appendix A. Data Types A-123

VSDRAGINIT

VSTEXT

pDraglnfo (PDRAGINFO)
Pointer.

Pointer to a DRAGINFO structure.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action
occurred.

Structure that contains information that is used to initialize a direct
manipulation action over the value set control.

typedef struct _VSDRAGINIT {
HWND hwndVS;
LONG x;
LONG y;
LONG ex;
LONG cy;
USHORT us Row;
USHORT usColumn;
} VSDRAGINIT;

hwndVS (HWND)
Value set window handle.

Window handle of the value set control.

x (LONG)
X-coordi nate.

X-coordinate of the pointing device pointer in desktop coordinates.

y (LONG)
Y-coordinate.

Y-coordinate of the pointing device pointer in desktop coordinates.

ex (LONG)
X-offset.

X-offset from the hot spot of the pointing device pointer, in pels, to the
item origin. The item origin is the lower left corner of the item.

cy (LONG)
Y-offset.

Y-offset from the hot spot of the pointing device pointer, in pels, to the
item origin. The item origin is the lower left corner of the item.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action
occurred.

Value set text structure. This structure is used with the VM_QUERYITEM
message only. See "VM_QUERYITEM" on page 27-Sfor information about
that message.

typedef struct _VSTEXT {
PSZ pszitemText;
USHORT usBufLen;
} VSTEXT;

A-124 PM Programming Reference

~.
\

)

\

)

WNDPARAMS

WPC/ock *

WPCountry *

WPDataFile *

WPDesktop *

WPDisk *

WPFileSystem *

WPFolder *

pszltemText (PSZ)
Pointer.

Pointer to a buffer to copy the string into.

usBufLen (USHORT)
Buffer size.

Size of the buffer pointed to by the pszltemText field.

Window parameters.

typedef struct _WNDPARAMS {
ULONG ulStatus;
ULONG ulText;
PSZ pszText;
ULONG ulPresParams;
PVOID pPresParams;
ULONG ulCtlData;
PVOID pCtlData;
} WNDPARAMS;

ulStatus (ULONG)
Window parameter selection.

Identifies the window parameters that are to be set or queried:

WPM_CBCTLDATA
WPM_CCHTEXT
WPM_CTLDATA
WPM_PRESPARAMS
WPM_TEXT

Window control data length
Window text length
Window control data
Presentation parameters
Window text.

ulText (ULONG)
Length of window text.

pszText (PSZ)
Window text.

ulPresParams (ULONG)
Length of presentation parameters.

pPresParams (PVOI D)
Presentation parameters.

ulCtlData (ULONG)
Length of window class specific data.

pCtlData (PVOID)
Window class specific data.

Pointer to an object of class WPClock.

typedef WPClock *WPClock *;

Pointer to an object of class WPCountry.

typedef WPCountry *WPCountry *;

Pointer to an object of class WPDataFile.

typedef WPDataFile *WPDataFile *;

Pointer to an object of class WPDesktop.

typedef WPDesktop *WPDesktop *;

Pointer to an object of class WPDisk.

typedef WPDisk *WPDisk *;

Pointer to an object of class WPFileSystem.

typedef WPFileSystem *WPFileSystem *;

Pointer to an object of class WPFolder.

typedef WPFolder *WPFolder *;

Appendix A. Data Types A-125

WPJob *

WPKeyboard *

WPMouse *

WPObject *

WPOINT

WPPalette *

WPPrinter *

WPProgram *

WPProgramGroup *

WPProgramFile *

WPRootFolder *

WPShadow *

WPSound *

WPSpooler *

WPSRCLASSBLOCK*

Pointer to an object of class WPJob.

typedef WPJob *WPJob *;

Pointer to an object of class WPKeyboard.

typedef WPKeyboard *WPKeyboard *;

Pointer to an object of class WPMouse.

typedef WPMouse *WPMouse *;

Pointer to an object of class WPObject.

typedef WPObject *WPObject *;

Window-point structure {integer).

typedef struct _WPOINT {
SHORT x;
SHORT dunmyl;
SHORT y;
SHORT dunmy2;

} WPOINT;

x (SHORT)
x-coordinate.

dummy1 (SHORT)
Reserved.

y (SHORT)
y-coordinate.

dummy2 (SHORT)
Reserved.

Pointer to an object of class WPPalette.

typedef WPPalette *WPPalette *;

Pointer to an object of class WPPrinter.

typedef WPPrinter *WPPrinter *;

Pointer to an object of class WPProgram.

typedef WPProgram *WPProgram *;

Pointer to an object of class WPProgramGroup.

typedef WPProgramGroup *WPProgramGroup *;

Pointer to an object of class WPProgramFile.

typedef WPProgramFile *WPProgramFile *;

Pointer to an object of class WPRootFolder.

typedef WPRootFolder *WPRootFolder *;

Pointer to an object of class WPShadow.

typedef WPShadow *WPShadow *;

Pointer to an object of class WPSound.

typedef WPSound *WPSound *;

Pointer to an object of class WPSpooler.

typedef WPSpooler *WPSpooler *;

Save or restore class block structure.

typedef struct _WPSRCLASSBLOCK* {
SHORT sClassNamelength;
USHORT usIVarlength;

} WPSRCLASSBLOCK*;

A-126 PM Programming Reference

(
~

\
)

WPSystem *

WRECT

XYWINSIZE

sClassNameLength (SHORT)

Length of class name, including the null terminator. This must be a short
and must be at the beginning of the structure. The class name
immediately follows the control block. The first instance variable control
block immediately follows this.

uslVarlength (USHORT)

Length of instance variable information, including the two-byte null
terminator.

Pointer to an object of class WPSystem.

typedef WPSystem *WPSystem *;

Window-rectangle structure (integer).

typedef struct _WRECT {
SHORT xlef t;
SHORT du11111yl;
SHORT yBottom;
SHORT du11111y2;
SHORT xRight;
SHORT du11111y3;
SHORT yTop;
SHORT du11111y4;
} WRECT;

xLefl (SHORT)
x-coordinate of left-hand edge of rectangle.

dummy1 (SHORT)
Reserved.

yBottom (SHORT)
y-coordinate of bottom edge of rectangle.

dummy2 (SHORT)
Reserved.

xRight (SHORT)
x-coordinate of right-hand edge of rectangle.

dummy3 (SHORT)
Reserved.

yTop (SHORT)
y-coordinate of top edge of rectangle.

dummy4 (SHORT)
Reserved.

Window position and size structure.

typedef struct _XYWINSIZE {
SHORT x;
SHORT y;
SHORT ex;
SHORT cy;
USHORT fsWindow;
} XYWINSIZE;

x (SHORT)
x-coordinate of window origin.

y (SHORT)
y-coordinate of window origin.

ex (SHORT)
Window width.

cy (SHORT)
Window height.

Appendix A. Data Types A-127

fsWlndow (USHORT)
Window options.

The values may be ORed together. For example, an invisible iconic
window can be created. Note that if both XYF _MINIMIZED and
XYF _MAXIMIZED are specified, the window is created in a maximized
state.

XYF _INVISIBLE
XYF _MAXIMIZED
XYF _MINIMIZED
XYF _NOAUTOCLOSE

XYF_NORMAL

A-128 PM Programming Reference

Create the window initially invisible.
Show the window initially maximized.
Show the window initially iconic.
Do not close the window automatically when the
VIO application terminates. This parameter is
ignored unless the program is a VIO-windowed
application.
Create the window visible, with a size and
position as specified. This is the default.

'i
;

Appendix B. Error Codes

This appendix lists PM errors returned by WinGetlastError in order of their error numbers. For
explanations of these errors, see Appendix C, "Error Explanations" on page C-1.

Error Number
OxOOOO
Ox1001
Ox1001
Ox1002
Ox1002
Ox1003
Ox1003
Ox1004
Ox1004
Ox1005
Ox1005
Ox1006
Ox1006
Ox1007
Ox1007
Ox1008
Ox1008
Ox1009
Ox1009
Ox100A
Ox100A
Ox100B
Ox100B
Ox100C
Ox100C
Ox100D
Ox100D
Ox100E
Ox100F
Ox1010
Ox1011
Ox1012
Ox1013
Ox1014
Ox1015
Ox1016
Ox1017
Ox1018
Ox1019
Ox101A
Ox101B
Ox101C
Ox101D
Ox101E
Ox101F
Ox1020
Ox1021
Ox1034
Ox1036
Ox1037
Ox1038
Ox1039
Ox103A
Ox103B
Ox103C

Error Constant
PMERR_OK
HMERR_NO _FRAME_ WND _IN_ CHAIN
PMERR_INVALID_HWND
HMERR_INVALID _ASSOC _APP_ WND
PMERR_INVALID_HMQ
HMERR_INVALID _ASSOC _HELP _INST
PMERR_PARAMETER_OUT_OF_RANGE
HMERR_INVALID _DESTROY _HELP _INST
PMERR_WINDOW_LOCK_UNDERFLOW
HMERR_NO_HELP _INST _IN_ CHAIN
PMERR_WINDOW_LOCK_OVERFLOW
HMERR_INVALID_HELP _INSTANCE_HDL
PMERR_BAD_WINDOW_LOCK_COUNT
HMERR_INVALID_QUERY _APP _WND
PMERR_WINDOW_NOT _LOCKED
HMERR_HELP _INST_CALLED_INVALID
PMERR_INVALID _SELECTOR
HMERR_HELPTABLE_ UNDEFINE
PMERR_ CALL_FROM_ WRONG_ THREAD
HMERR_HELP _INSTANCE_UNDEFINE
PMERR_RESOURCE_NOT _FOUND
HMERR_HELPITEM_NOT _FOUND
PMERR_INVALID_STRING_PARM
HMERR_INVALID _HELPSUBITEM_SIZE
PMERR_INVALID _HHEAP
HMERR_HELPSUBITEM_NOT_FOUND
PMERR_INVALID_HEAP _POINTER
PMERR_INVALID_HEAP _SIZE_PARM
PMERR_INVALID_HEAP _SIZE
PMERR_INVALID_HEAP _SIZE_WORD
PMERR_HEAP _OUT_ OF _MEMORY
PMERR_HEAP _MAX_SIZE_REACHED
PMERR_INVALID _HATOMTBL
PMERR_INVALID _ATOM
PMERR_INVALID _ATOM_NAME
PMERR_INVALID _INTEGER_ATOM
PMERR_ATOM_NAME_NOT _FOUND
PMERR_ QUEUE_ TOO _LARGE
PMERR_INVALID _FLAG
PMERR_INVALID _HACCEL
PMERR_INVALID _HPTR
PMERR_INVALID _HENUM
PMERR_INVALID_SRC_CODEPAGE
PMERR_INVALID_DST_CODEPAGE
PMERR_ UNKNOWN_ COMPONENT _ID
PMERR_UNKNOWN_ERROR_CODE
PMERR_SEVERITY _LEVELS
PMERR_INVALID _RESOURCE_FORMAT
PMERR_NO _MSG_ QUEUE
PMERR_ WIN_DEBUGMSG
PMERR_ QUEUE_FULL
PMERR_LIBRARY _LOAD _FAILED
PMERR_PROCEDURE_LOAD_FAILED
PMERR_LIBRARY _DELETE_FAILED
PMERR_PROCEDURE_DELETE_FAILED

Appendix B. Error Codes B-1

Ox103D PMERR_ARRAY _TOO _LARGE
Ox103E PMERR_ARRAY_TOO_SMALL
Ox103F PMERR_DATA TYPE_ENTRY _BAD _INDEX
Ox1040 PMERR_DATATYPE_ENTRY _ CTL_BAD
Ox1041 PMERR_DATA TYPE_ENTRY _ CTL_MISS
Ox1042 PMERR_DATATYPE_ENTRY_INVALID
Ox1043 PMERR_DATA TYPE_ENTRY _NOT _NUM
Ox1044 PMERR_DATATYPE_ENTRY_NOT_OFF
Ox1045 PMERR_DATATYPE_INVALID
Ox1046 PMERR_DATATYPE_NOT_UNIQUE
Ox1047 PMERR_DATATYPE_TOO_LONG
Ox1048 PMERR_DATATYPE_TOO_SMALL
Ox1049 PMERR_DIRECTION_INVALID
Ox104A PMERR_INVALID _HAB
Ox104D PMERR_INVALID _HSTRUCT
Ox104E PM ERR_ LENGTH_ TOO _SMALL
Ox104F PMERR_MSGID_TOO_SMALL
Ox1050 PMERR_NO_HANDLE_ALLOC
Ox1051 PMERR_NOT _IN_A_PM_SESSION
Ox1052 PMERR_MSG_ QUEUE_ALREADY _EXISTS
Ox1101 PMERR_INVALID _PIB
Ox1102 PMERR_INSUFF _SPACE_ TO _ADD
Ox1103 PMERR_INVALID _GROUP _HANDLE
Ox1104 PMERR_DUPLICATE_ TITLE
Ox1105 PMERR_INVALID_ TITLE
Ox1107 PMERR_HANDLE_NOT _IN_ GROUP
Ox1106 PMERR_INVALID_TARGET_HANDLE
Ox1108 PMERR_INVALID_PATH_STATEMENT
Ox1109 PMERR_NO_PROGRAM_FOUND
Ox110A PMERR_INVALID_BUFFER_SIZE
Ox110B PMERR_BUFFER_ TOO _SMALL
Ox110C PMERR_PL_INITIALISATION_FAIL
Ox110D PMERR_CANT_DESTROY_SYS_GROUP
Ox110E PMERR_INVALID _TYPE_ CHANGE
Ox110F PMERR_INVALID _PROGRAM_HANDLE
Ox1110 PM ERR_ NOT_ CURRENT _PL_ VERSION
Ox1111 PMERR_INVALID_CIRCULAR_REF
Ox1112 PMERR_MEMORY _ALLOCATION_ERR
Ox1113 PMERR_MEMORY _DEALLOCATION_ERR
Ox1114 PMERR_ TASK_HEADER_ TOO _BIG
Ox1115 PMERR_INVALID _INl_FILE_HANDLE
Ox1116 PMERR_MEMORY _SHARE
Ox1117 PMERR_OPEN_QUEUE
Ox1118 PMERR_ CREATE_ QUEUE
Ox1119 PM ERR_ WRITE_ QUEUE
Ox111A PMERR_READ_QUEUE
Ox111B PMERR_ CALL_NOT _EXECUTED
Ox111C PMERR_ UNKNOWN_APIPKT
Ox111D PMERR_INITHREAD_EXISTS
Ox111E PM ERR_ CREATE_ THREAD
Ox111F PMERR_NO _HK_PROFILE_INSTALLED
Ox1120 PMERR_INVALID _DIRECTORY
Ox1121 PMERR_ WILDCARD _IN_FILENAME
Ox1122 PMERR_FILENAME_BUFFER_FULL
Ox1123 PMERR_FILENAME_ TOO _LONG
Ox1124 PMERR_INl_FILE_IS_SYS_OR_USER
Ox1125 PMERR_BROADCAST _PLMSG
Ox1126 PMERR_ 190_1NIT_DONE
Ox1127 PMERR_HMOD _FOR_PMSHAPI
Ox1128 PMERR_ SET _HK_PROFILE
Ox1129 PMERR_APl_NOT _ALLOWED
Ox112A PMERR_INl_STILL_OPEN
Ox112B PMERR_PROGDET AILS_NOT _IN_INI

B-2 PM Programming Reference

Ox112C PMERR_PIBSTRUCT _NOT _IN_INI
Ox112D PMERR_INVALID_DISKPROGDETAILS

Ox112E PMERR_PROGDETAILS_READ_FAILURE
\ Ox112F PMERR_PROGDETAILS_WRITE_FAILURE

/ Ox1130 PMERR_PROGDETAILS_ QSIZE_FAILURE
Ox1131 PMERR_INVALID_PROGDETAILS
Ox1132 PMERR_SHEPROFILEHOOK_NOT _FOUND

Ox1133 PMERR_ 190PLCONVERTED
Ox1134 PMERR_FAILED _TO_ CONVERT _INl_PL

Ox1135 PMERR_PMSHAPl_NOT _INITIALISED
Ox1136 PMERR_INVALID_SHELL_APl_HOOK_ID

Ox1200 PMERR_DOS_ERROR

Ox1201 PMERR_NO_SPACE
Ox1202 PMERR_INVALID_SWITCH_HANDLE
Ox1203 PMERR_NO_HANDLE
Ox1204 PMERR_INVALID_PROCESS_ID
Ox1205 PMERR_NOT _SHELL

Ox1206 PMERR_INVALID_WINDOW
Ox1207 PMERR_INVALID_POST_MSG
Ox1208 PMERR_INVALID _PARAMETERS
Ox1209 PMERR_INVALID_PROGRAM_TYPE
Ox120A PMERR_NOT _EXTENDED _FOCUS
Ox120B PMERR_INVALID _SESSION_ID
Ox120C PMERR_SMG_INVALID _ICON_FILE
Ox120D PMERR_SMG_ICON_NOT_CREATED
Ox120E PMERR_SHL_DEBUG
Ox1301 PMERR_OPENING_INl_FILE
Ox1302 PMERR_INl_FILE_ CORRUPT
Ox1303 PMERR_INVALID_PARM
Ox1304 PMERR_NOT _IN_IDX
Ox1305 PMERR_NO _ENTRIES_IN_ GROUP
Ox1306 PMERR_INl_WRITE_FAIL
Ox1307 PMERR_IDX_FULL

Ox1308 PMERR_INl_PROTECTED
Ox1309 PMERR_MEMORY _ALLOC
Ox130A PMERR_INl_INIT _ALREADY _DONE
Ox130B PMERR_INVALID _INTEGER
Ox130C PMERR_INVALID_ASCllZ
Ox130D PMERR_CAN_NOT_CALL_SPOOLER
Ox130D PMERR_ VALIDATION_REJECTED

Ox1401 PMERR_WARNING_ WINDOW _NOT _KILLED
Ox1402 PMERR_ERROR_INVALID_WINDOW

Ox1403 PMERR_ALREADY _INITIALIZED
Ox1405 PMERR_MSG_PROG_NO_MOU
Ox1406 PMERR_MSG_PROG_NON_RECOV
Ox1407 PMERR_WINCONV_INVALID_PATH
Ox1408 PMERR_Pl_NOT_INITIALISED
Ox1409 PMERR_PL_NOT _INITIALISED
Ox140A PMERR_NO_TASK_MANAGER
Ox140B PMERR_SAVE_NOT _IN_PROGRESS
Ox140C PMERR_NO_STACK_SPACE
Ox140d PMERR_INVALID_COLR_FIELD
Ox140e PMERR_INVALID_COLR_VALUE

Ox140f PMERR_COLR_WRITE
Ox1501 PMERR_ TARGET _FILE_EXISTS

Ox1502 PMERR_SOURCE_SAME_AS_ TARGET

Ox1503 PMERR_SOURCE_FILE_NOT _FOUND
Ox1504 PMERR_INVALID_NEW_PATH
Ox1505 PMERR_T ARGET _FILE_NOT _FOUND

) Ox1506 PMERR_INVALID_DRIVE_NUMBER
Ox1507 PMERR_NAME_ TOO _LONG
Ox1508 PMERR_NOT _ENOUGH_ROOM_ ON_DISK
Ox1509 PMERR_NOT _ENOUGH_MEM

Appendix B. Error Codes 8-3

Ox150B PMERR_LOG_DRV _DOES_NOT _EXIST
Ox150C PMERR_INVALID _DRIVE
Ox150D PMERR_ACCESS_DENIED
Ox150E PMERR_NO_FIRST _SLASH
Ox150F PMERR_READ_ONL Y _FILE
Ox151F PM ERR_ GROUP _PROTECTED
Ox152F PMERR_INVALID_PROGRAM_CATEGORY
Ox1530 PMERR_INVALID _APPL
Ox1531 PM ERR_ CANNOT _START
Ox1532 PM ERR_ STARTED _IN_BACKGROUND
Ox1533 PMERR_INVALID _HAPP
Ox1534 PMERR_CANNOT_STOP
Ox1601 PMERR_INTERNAL_ERROR_ 1
Ox1602 PMERR_INTERNAL_ERROR_2
Ox1603 PMERR_INTERNAL_ERROR_3
Ox1604 PMERR_INTERNAL_ERROR_ 4
Ox1605 PMERR_INTERNAL_ERROR_5
Ox1606 PMERR_INTERNAL_ERROR_6
Ox1607 PMERR_INTERNAL_ERROR_7
Ox1608 PMERR_INTERNAL_ERROR_8
Ox1609 PMERR_INTERNAL_ERROR_9
Ox160A PMERR_INTERNAL_ERROR_ 10
Ox160B PMERR_INTERNAL_ERROR_ 11
Ox160C PMERR_INTERNAL_ERROR_ 12
Ox160D PMERR_INTERNAL_ERROR_ 13
Ox160E PMERR_INTERNAL_ERROR_ 14
Ox160F PMERR_INTERNAL_ERROR_ 15
Ox1610 PMERR_INTERNAL_ERROR_ 16
Ox1611 PMERR_INTERNAL_ERROR_ 17
Ox1612 PMERR_INTERNAL_ERROR_ 18
Ox1613 PMERR_INTERNAL_ERROR_ 19
Ox1614 PMERR_INTERNAL_ERROR_20
Ox1615 PMERR_INTERNAL_ERROR_21
Ox1616 PMERR_INTERNAL_ERROR_22
Ox1617 PMERR_INTERNAL_ERROR_23
Ox1618 PMERR_INTERNAL_ERROR_24
Ox1619 PMERR_INTERNAL_ERROR_25
Ox161A PMERR_INTERNAL_ERROR_26
Ox161B PMERR_INTERNAL_ERROR_27
Ox161C PMERR_INTERNAL_ERROR_28
Ox161D PMERR_INTERNAL_ERROR_29
Ox1630 PMERR_INVALID _FREE_MESSAGE_ID
Ox1641 PMERR_FUNCTION_NOT _SUPPORTED
Ox1642 PMERR_INVALID_ARRAY _COUNT
Ox1643 PMERR_INVALID_LENGTH
Ox1644 PMERR_INVALID_BUNDLE_TYPE
Ox1645 PMERR_INVALID _PARAMETER
Ox1646 PMERR_INVALID_NUMBER_OF _PARMS
Ox1647 PMERR_ GREATER_ THAN_64K
Ox1648 PMERR_INVALID _PARAMETER_ TYPE
Ox1649 PMERR_NEGATIVE_STRCOND_DIM
Ox164A PMERR_INVALID_NUMBER_OF _TYPES
Ox164B PMERR_INCORRECT _HSTRUCT
Ox164C PMEHR_INVALID_ARRAY _SIZE
Ox164D PMERR_INVALID_CONTROL_DATATYPE
Ox164E PMERR_INCOMPLETE_CONTROL_SEQU
Ox164F PMERR_INVALID_DATATYPE
Ox1650 PMERR_INCORRECT _DATATYPE
Ox1651 PM ERR_ NOT _SELF _DESCRIBING_DTYP
Ox1652 PMERR_INVALID_CTRL_SEQ_INDEX
Ox1653 PMERR_INVALID _ TYPE_FOR_LENGTH
Ox1654 PMERR_INVALID_TYPE_FOR_OFFSET
Ox1655 PMERR_INVALID _ TYPE_FOR_MPARAM

8-4 PM Programming Reference

Ox1656 PMERR_INVALID _MESSAGE_ID

Ox1657 PMERR_C_LENGTH_TOO_SMALL

Ox1658 PMERR_APPL_STRUCTURE_ TOO _SMALL
~ Ox1659 PMERR_INVALID_ERRORINFO_HANDLE \

/ Ox165A PMERR_INVALID _ CHARACTER_INDEX

Ox2001 HMERR_INDEX_NOT _FOUND

Ox2001 PMERR_ALREADY _IN_AREA

Ox2002 HMERR_ CONTENT _NOT _FOUND

Ox2002 PMERR_ALREADY _IN_ELEMENT

Ox2003 HMERR_ OPEN_LIB _FILE

Ox2003 PMERR_ALREADY _IN_PATH

Ox2004 HMERR_READ_LIB_FILE

Ox2004 PMERR_ALREADY _IN_SEG

Ox2005 HMERR_CLOSE_LIB_FILE

Ox2005 PMERR_AREA_INCOMPLETE

Ox2006 HMERR_INVALID_LIB_FILE

Ox2006 PMERR_BASE_ERROR

Ox2007 HMERR_NO_MEMORY

Ox2007 PMERR_BITBL T _LENGTH_EXCEEDED

Ox2008 HMERR_ALLOCATE_SEGMENT

Ox2008 PMERR_BITMAP _IN_USE

Ox2009 HMERR_FREE_MEMORY

Ox2009 PMERR_BITMAP _IS_SELECTED

Ox200A PMERR_BITMAP _NOT _FOUND

Ox200B PMERR_BITMAP _NOT_ SELECTED

Ox200C PMERR_BOUNDS_OVERFLOW

Ox200D PMERR_CALLED_SEG_IS_CHAINED

Ox200E PMERR_CALLED_SEG_IS_CURRENT

Ox200F PMERR_CALLED_SEG_NOT_FOUND

Ox2010 HMERR_PANEL_NOT _FOUND

Ox2010 PMERR_ CANNOT _DELETE_ALL_DATA

Ox2011 HMERR_DATABASE_NOT _OPEN

Ox2011 PMERR_CANNOT _REPLACE_ELEMENT _O
Ox2012 PMERR_COL_TABLE_NOT_REALIZABLE

Ox2013 HMERR_LOAD _DLL

Ox2013 PMERR_COL_TABLE_NOT_REALIZED

Ox2014 PMERR_ COORDINATE_ OVERFLOW

Ox2015 PMERR_CORR_FORMAT_MISMATCH

Ox2016 PMERR_DATA_TOO_LONG

Ox2017 PMERR_DC_IS_ASSOCIATED

Ox2018 PMERR_DESC _STRING_ TRUNCATED

Ox2019 PMERR_DEVICE_DRIVER_ERROR_ 1

Ox201A PMERR_DEVICE_DRIVER_ERROR_2

Ox201B PMERR_DEVICE_DRIVER_ERROR_3

Ox201C PMERR_DEVICE_DRIVER_ERROR_ 4

Ox201D PMERR_DEVICE_DRIVER_ERROR_5

Ox201E PMERR_DEVICE_DRIVER_ERROR_6

Ox201F PMERR_DEVICE_DRIVER_ERROR_7

Ox2020 PMERR_DEVICE_DRIVER_ERROR_8

Ox2021 PMERR_DEVICE_DRIVER_ERROR_9

Ox2022 PMERR_DEVICE_DRIVER_ERROR_10

Ox2023 PMERR_DEV _FUNC _NOT _INSTALLED

Ox2024 PMERR_DOSOPEN_FAILURE

Ox2025 PMERR_DOSREAD _FAILURE

Ox2026 PMERR_DRIVER_NOT _FOUND

Ox2027 PMERR_DUP _SEG

Ox2028 PMERR_DYNAMIC_SEG_SEQ_ERROR

Ox2029 PMERR_DYNAM IC _SEG_ZERO _INV

Ox202A PMERR_ELEMENT _INCOMPLETE

Ox202B PMERR_ESC_CODE_NOT_SUPPORTED

Ox202C PMERR_EXCEEDS_MAX_SEG_LENGTH

Ox202D PMERR_FONT_AND_MODE_MISMATCH

Ox202E PMERR_FONT _FILE_NOT _LOADED

Appendix B. Error Codes 8-5

Ox202F PMERR_FONT _NOT _LOADED
Ox2030 PMERR_FONT_TOO_BIG
Ox2031 PMERR_HARDWARE_INIT_FAILURE
Ox2032 PMERR_HBITMAP _BUSY
Ox2033 PMERR_HDC_BUSY
Ox2034 PMERR_HRGN_BUSY
Ox2035 PMERR_HUGE_FONTS_NOT_SUPPORTED
Ox2036 PMERR_ID _HAS_NO _BITMAP
Ox2037 PMERR_IMAGE_INCOMPLETE
Ox2038 PMERR_INCOMPAT _ COLOR_FORMAT
Ox2039 PMERR_INCOMPAT_COLOR_OPTIONS
Ox203A PMERR_INCOMPATIBLE_BITMAP
Ox203B PMERR_INCOMPATIBLE_METAFILE
Ox203C PMERR_INCORRECT _DC_ TYPE
Ox203D PMERR_INSUFFICIENT _DISK_SPACE
Ox203E PMERR_INSUFFICIENT _MEMORY
Ox203F PMERR_INV _ANGLE_PARM
Ox2040 PMERR_INV _ARC _CONTROL
Ox2041 PMERR_INV _AREA_ CONTROL
Ox2042 PMERR_INV _ARC _POINTS
Ox2043 PMERR_INV _A TTR_MODE
Ox2044 PMERR_INV _BACKGROUND_ COL_A TTR
Ox2045 PMERR_INV _BACKGROUND _MIX_A TTR
Ox2046 PMERR_INV _BITBLT _MIX
Ox2047 PMERR_INV _BITBLT _STYLE
Ox2048 PMERR_INV _BITMAP _DIMENSION
Ox2049 PMERR_INV _BOX_ CONTROL
Ox204A PMERR_INV_BOX_ROUNDING_PARM
Ox204B PMERR_INV _CHAR_ANGLE_A TTR
Ox204C PMERR_INV _ CHAR_DIRECTION_A TTR
Ox204D PMERR_INV _ CHAR_MODE_A TTR
Ox204E PMERR_INV _CHAR_POS_OPTIONS
Ox204F PMERR_INV_CHAR_SET_ATTR
Ox2050 PMERR_INV _ CHAR_SHEAR_A TIA
Ox2051 PMERR_INV_CLIP_PATH_OPTIONS
Ox2052 PMERR_INV_CODEPAGE
Ox2053 PMERR_INV _ COLOR_A TTR
Ox2054 PMERR_INV _ COLOR_DATA
Ox2055 PMERR_INV _ COLOR_FORMAT
Ox2056 PMERR_INV _ COLOR_INDEX
Ox2057 PMERR_INV _COLOR_ OPTIONS
Ox2058 PMERR_INV_COLOR_START_INDEX
Ox2059 PMERR_INV _ COORD _OFFSET
Ox205A PMERR_INV_COORD_SPACE
Ox205B PMERR_INV _COORDINATE
Ox205C PMERR_INV _ CORRELATE_DEPTH
Ox205D PMERR_INV _CORRELATE_ TYPE
Ox205E PMERR_INV _ CURSOR_BITMAP
Ox205F PMERR_INV _DC_DATA
Ox2060 PMERR_INV _DC_ TYPE
Ox2061 PMERR_INV _DEVICE_NAME
Ox2062 PMERR_INV _DEV _MODES_ OPTIONS
Ox2063 PMERR_INV_DRAW_CONTROL
Ox2064 PMERR_INV_DRAW_VALUE
Ox2065 PMERR_INV _DRAWING_MODE
Ox2066 PMERR_INV _DRIVER_DATA
Ox2067 PMERR_INV _DRIVER_NAME
Ox2068 PMERR_INV_DRAW_BORDER_OPTION
Ox2069 PMERR_INV _EDIT _MODE
Ox206A PMERR_INV _ELEMENT_ OFFSET
Ox206B PMERR_INV _ELEMENT _POINTER
Ox206C PMERR_INV _END_PATH_ OPTIONS
Ox206D PMERR_INV _ESC_CODE

8-6 PM Programming Reference

Ox20&E PMERR_INV _ESCAPE_DATA
Ox206F PMERR_INV _EXTENDED _LCID
Ox2070 PMERR_INV_FILL_PATH_OPTIONS
Ox2071 PMERR_INV _FIRST_ CHAR

)
Ox2072 PMERR_INV _FONT _A TTRS
Ox2073 PMERR_INV _FONT _FILE_DATA
Ox2074 PMERR_INV _FOR_ THIS_DC_ TYPE
Ox2075 PMERR_INV _FORMAT_ CONTROL
Ox2076 PMERR_INV _FORMS_ CODE
Ox2077 PMERR_INV _FONTDEF
Ox2078 PMERR_INV_GEOM_LINE_WIDTH_ATTR
Ox2079 PMERR_INV_GETDATA_CONTROL
Ox207A PMERR_INV _ GRAPHICS_FIELD
Ox207B PMERR_INV _H81TMAP
Ox207C PMERR_INV _HDC
Ox207D PMERR_INV _HJOURNAL
Ox207E PMERR_INV _HMF
Ox207F PMERR_INV _HPS
Ox2080 PMERR_INV _HRGN
Ox2081 PMERR_INV _ID
Ox2082 PMERR_INV _IMAGE_DATA_LENGTH
Ox2083 PMERR_INV _IMAGE_DIMENSION
Ox2084 PMERR_INV _IMAGE_FORMAT
Ox2085 PMERR_INV _IN_AREA
Ox208& PMERR_INV _IN_CALLED_SEG
Ox2087 PMERR_INV _IN_ CURRENT _EDIT _MODE
Ox2088 PMERR_INV _IN_DRAW_MODE
Ox2089 PMERR_INV _IN_ ELEMENT
Ox208A PMERR_INV _IN_IMAGE
Ox208B PMERR_INV _IN_PATH
Ox208C PMERR_INV _IN_RETAIN_MODE
Ox208D PMERR_INV _IN_SEG
Ox208E PMERR_INV _IN_ VECTOR_SYM80L
Ox208F PMERR_INV _INFO_ TA8LE
Ox2090 PMERR_INV _JOURNAL_ OPTION
Ox2091 PMERR_INV _KERNING_FLAGS
Ox2092 PMERR_INV _LENGTH_ OR_ COUNT
Ox2093 PMERR_INV _LINE_END _A TTR
Ox2094 PMERR_INV _LINE_JOIN_A TTR
Ox2095 PMERR_INV _LINE_ TYPE_A TTR
Ox2096 PMERR_INV _LINE_ WIDTH_A TTR
Ox2097 PMERR_INV _LOGICAL_ADDRESS
Ox2098 PMERR_INV _MARKER_80X_A TTR
Ox2099 PMERR_INV _MARKER_SET _A TTR
Ox209A PMERR_INV _MARKER_SYM80L_A TTR
Ox209B PMERR_INV _MATRIX_ELEMENT
Ox209C PMERR_INV _MAX_HITS
Ox209D PMERR_INV _METAFILE
Ox209E PMERR_INV _METAFILE_LENGTH
Ox209F PMERR_INV _METAFILE_ OFFSET
Ox20AO PMERR_INV _MICROPS_DRAW_CONTROL
Ox20A1 PMERR_INV _MICROPS_FUNCTION
Ox20A2 PMERR_INV _MICROPS_ORDER
Ox20A3 PMERR_INV _M IX_A TTR
Ox20A4 PMERR_INV _MODE_FOR _ OPEN_DYN
Ox20A5 PMERR_INV _MODE_FOR_REOPEN_SEG
Ox20A& PMERR_INV _MODIFY _PATH_MODE
Ox20A7 PMERR_INV _MULTIPLIER
Ox20A8 PMERR_INV _NESTED _FIGURES
Ox20A9 PMERR_INV_OR_INCOMPAT_OPTIONS
Ox20AA PMERR_INV _ORDER_LENGTH
Ox20AB PMERR_INV _ORDERING_PARM
Ox20AC PMERR_INV _OUTSIDE_DRAW_MODE

Appendix 8. Error Codes 8-7

Ox20AD PMERR_INV _PAGE_ VIEWPORT
Ox20AE PMERR_INV _PATH_ID
Ox20AF PMERR_INV _PATH_MODE
Ox20BO PMERR_INV _PA TTERN_A TTR
Ox20B1 PMERR_INV _PA TTERN_REF _PT _A TTR
Ox20B2 PMERR_INV_PATTERN_SET_ATTR
Ox20B3 PMERR_INV_PATTERN_SET_FONT
Ox20B4 PMERR_INV _PICK_APERTURE_ OPTION
Ox20B5 PMERR_INV _PICK_APERTURE_POSN
Ox20B6 PMERR_INV_PICK_APERTURE_SIZE
Ox20B7 PMERR_INV _PICK_NUMBER
Ox20B8 PMERR_INV _PLAY _METAFILE_OPTION
Ox20B9 PMERR_INV _PRIMITIVE_ TYPE
Ox20BA PMERR_INV_PS_SIZE
Ox20BB PMERR_INV _PUTDATA_FORMAT
Ox20BC PMERR_INV _QUERY _ELEMENT _NO
Ox20BD PMERR_INV _RECT
Ox20BE PMERR_INV _REGION_ CONTROL
Ox20BF PMERR_INV _REGION_MIX_MODE
Ox20CO PMERR_INV _REPLACE_ MODE_FUNC
Ox20C1 PMERR_INV _RESERVED_FIELD
Ox20C2 PMERR_INV _RESET _OPTIONS
Ox20C3 PMERR_INV _RGBCOLOR
Ox20C4 PMERR_INV _SCAN_START
Ox20C5 PMERR_INV _SEG_A TTR
Ox20C6 PMERR_INV _SEG_A TTR_ VALUE
Ox20C7 PMERR_INV _SEG_ CH_LENGTH
Ox20C8 PMERR_INV _SEG_NAME
Ox20C9 PMERR_INV_SEG_OFFSET
Ox20CA PMERR_INV _SETID
Ox20CB PMERR_INV _SETID_ TYPE
Ox20CC PMERR_INV _SET_ VIEWPORT _OPTION
Ox20CD PMERR_INV _SHARPNESS_PARM
Ox20CE PMERR_INV _SOURCE_ OFFSET
Ox20CF PMERR_INV _STOP _DRAW_VALUE
Ox20DO PMERR_INV _TRANSFORM_ TYPE
Ox20D1 PMERR_INV _ USAGE_PARM
Ox20D2 PMERR_INV _ VIEWING_LIM ITS
Ox20D3 PMERR_JFILE_BUSY
Ox20D4 PMERR_JNL_FUNC_DATA_TOO_LONG
Ox20D5 PMERR_KERNING_NOT _SUPPORTED
Ox20D6 PMERR_LABEL_NOT _FOUND
Ox20D7 PMERR_MATRIX_ OVERFLOW
Ox20D8 PMERR_METAFILE_INTERNAL_ERROR
Ox20D9 PMERR_METAFILE_IN_USE
Ox20DA PMERR_METAFILE_LIMIT _EXCEEDED
Ox20DB PMERR_NAME_STACK_FULL
Ox20DC PMERR_NOT_CREATED_BY_DEVOPENDC
Ox20DD PMERR_NOT_IN_AREA
Ox20DE PMERR_NOT_IN_DRAW_MODE
Ox20DF PM ERR_ NOT _IN_ ELEMENT
Ox20EO PMERR_NOT _IN_IMAGE
Ox20E1 PMERR_NOT _IN_PATH
Ox20E2 PMERR_NOT _IN_RETAIN_MODE
Ox20E3 PMERR_NOT_IN_SEG
Ox20E4 PMERR_NO_BITMAP _SELECTED
Ox20E5 PMERR_NO_CURRENT _ELEMENT
Ox20E6 PMERR_NO_CURRENT_SEG
Ox20E7 PMERR_NO_METAFILE_RECORD_HANDLE
Ox20E8 PMERR_ ORDER_ TOO _BIG
Ox20E9 PM ERR_ OTHER_ SET _ID _REFS
Ox20EA PMERR_OVERRAN_SEG
Ox20EB PMERR_ OWN_SET _ID _REFS

B-8 PM Programming Reference

Ox20EC PMERR_PATH_INCOMPLETE
Ox20ED PMERR_PATH_LIMIT _EXCEEDED
Ox20EE PMERR_PATH_UNKNOWN

~ Ox20EF PMERR_PEL_IS_CLIPPED I
) Ox20FO PMERR_PEL_NOT _AVAILA8LE

Ox20F1 PMERR_PRIMITIVE_STACK_EMPTY
Ox20F2 PMERR_PROLOG_ERROR
Ox20F3 PMERR_PROLOG_SEG_ATTR_NOT_SET

Ox20F4 PMERR_PS_8USY
Ox20F5 PMERR_PS_IS_ASSOCIATED
Ox20F6 PMERR_RAM_JNL_FILE_ TOO _SMALL

Ox20F7 PMERR_REALIZE_NOT _SUPPORTED

Ox20F8 PMERR_REGION_IS_CLIP _REGION
Ox20F9 PMERR_RESOURCE_DEPLETION
Ox20FA PMERR_SEG_AND_REFSEG_ARE_SAME

Ox20FB PMERR_SEG_CALL_RECURSIVE
Ox20FC PMERR_SEG_CALL_STACK_EMPTY
Ox20FD PMERR_SEG_CALL_STACK_FULL
Ox20FE PMERR_SEG_IS_ CURRENT
Ox20FF PMERR_SEG_NOT _CHAINED
Ox2100 PMERR_SEG_NOT_FOUND
Ox2101 PMERR_SEG_STORE_LIMIT _EXCEEDED

Ox2102 PMERR_SETID_IN_USE
Ox2103 PMERR_SETID _NOT _FOUND
Ox2104 PMERR_STARTDOC_NOT _ISSUED
Ox2105 PMERR_STOP _DRAW_OCCURRED
Ox2106 PMERR_ TOO _MANY _METAFILES_IN_ USE

Ox2107 PMERR_TRUNCATED_ORDER
Ox2108 PMERR_ UNCHAINED_ SEG_ZERO _INV

Ox2109 PMERR_UNSUPPORTED_ATTR
Ox210A PMERR_UNSUPPORTED_ATTR_VALUE

Ox210B PMERR_ENDDOC_NOT _ISSUED
Ox210C PMERR_PS_NOT _ASSOCIATED
Ox210D PMERR_INV_FLOOD_FILL_OPTIONS
Ox210E PMERR_INV _FACENAME
Ox210F PMERR_PALETTE_SELECTED
Ox2110 PMERR_NO_PALETTE_SELECTED
Ox2111 PMERR_INV _HPAL
Ox2112 PMERR_PALETTE_8USY
Ox2113 PMERR_START _POINT_ CLIPPED
Ox2114 PMERR_NO _FILL
Ox2115 PMERR_INV _FACENAMEDESC
Ox2116 PMERR_INV _81TMAP _DATA
Ox2117 PMERR_INV_CHAR_ALIGN_ATTR
Ox2118 PMERR_INV _HFONT
Ox2119 PMERR_HFONT _IS_SELECTED
Ox2120 PMERR_RASTER_FONT
Ox3001 HMERR_DDF _MEMORY
Ox3002 HMERR_DDF _ALIGN_ TYPE

Ox3003 HMERR_DDF _8ACKCOLOR
Ox3004 HMERR_DDF _FORECOLOR

Ox3005 HMERR_DDF _FONTSTYLE
Ox3006 HMERR_DDF _REFTYPE
Ox3007 HMERR_DDF _LiST _UNCLOSED
Ox3008 HMERR_DDF _LIST_UNINITIALIZED

Ox3009 HMERR_DDF _LIST _8REAKTYPE
Ox300A HMERR_DDF _LIST _SPACING
Ox300B HMERR_DDF _HINSTANCE
Ox300C HMERR_DDF _EXCEED _MAX_LENGTH

Ox300D HMERR_DDF _EXCEED _MAX_INC
Ox300E HMERR_DDF _INVALID_DDF
Ox300F HMERR_DDF _FORMAT_ TYPE
Ox3010 HMERR_DDF _INVALID_PARM

Appendix 8. Error Codes 8-9

Ox3011 HMERR_DDF _INVALID _FONT
Ox3012 HMERR_DDF _SEVERE
Ox4001 PMERR_SPL_DRIVER_ERROR
Ox4002 PMERR_SPL_DEVICE_ERROR
Ox4003 PMERR_SPL_DEVICE_NOT _INSTALLED
Ox4004 PMERR_SPL_QUEUE_ERROR
Ox4005 PMERR_SPL_INV _HSPL
Ox4006 PMERR_SPL_NO_DISK_SPACE
Ox4007 PMERR_SPL_NO _MEMORY
Ox4008 PMERR_SPL_PRINT _ABORT
Ox4009 PMERR_SPL_SPOOLER_NOT _INSTALLED
Ox400A PMERR_SPL_INV _FORMS_CODE
Ox400B PMERR_SPL_INV _PRIORITY
Ox400C PMERR_SPL_NO_FREE_JOB_ID
Ox400D PMERR_SPL_NO_DATA
Ox400E PMERR_SPL_INV _TOKEN
Ox400F PMERR_SPL_INV _DATA TYPE
Ox4010 PMERR_SPL_PROCESSOR_ERROR
Ox4011 PMERR_SPL_INV _JOB_ID
Ox4012 PMERR_SPL_JOB_NOT _PRINTING
Ox4013 PMERR_SPL_JOB_PRINTING
Ox4014 PMERR_SPL_QUEUE_ALREADY _EXISTS
Ox4015 PMERR_SPL_INV_QUEUE_NAME
Ox4016 PMERR_SPL_QUEUE_NOT_EMPTY
Ox4017 PMERR_SPL_DEVICE_ALREADY _EXISTS
Ox4018 PMERR_SPL_DEVICE_LIMIT _REACHED
Ox4019 PMERR_SPL_STATUS_STRING_TRUNC
Ox401A PMERR_SPL_INV _LENGTH_ OR_ COUNT
Ox401B PMERR_SPL_FILE_NOT _FOUND
Ox401C PMERR_SPL_ CANNOT_ OPEN_FILE
Ox401D PMERR_SPL_DRIVER_NOT _INSTALLED
Ox401E PMERR_SPL_INV _PROCESSOR_DA TTYPE
Ox401F PMERR_SPL_INV _DRIVER_DATATYPE
Ox4020 PMERR_SPL_PROCESSOR_NOT_INST
Ox4021 PMERR_SPL_NO_SUCH_LOG_ADDRESS
Ox4022 PMERR_SPL_PRINTER_NOT _FOUND
Ox4023 PMERR_SPL_DD_NOT _FOUND
Ox4024 PMERR_SPL_QUEUE_NOT _FOUND
Ox4025 PMERR_SPL_MANY _QUEUES_ASSOC
Ox4026 PMERR_SPL_NO _ QUEUES_ASSOCIATED
Ox4027 PMERR_SPL_INl_FILE_ERROR
Ox4028 PMERR_SPL_NO_DEFAUL T _QUEUE
Ox4029 PMERR_SPL_NO_CURRENT_FORMS_CODE
Ox402A PMERR_SPL_NOT _AUTHORISED
Ox402B PMERR_SPL_ TEMP _NETWORK_ERROR
Ox402C PMERR_SPL_HARD_NETWORK_ERROR
Ox402D PMERR_DEL_NOT _ALLOWED
Ox402E PMERR_CANNOT _DEL_QP _REF
Ox402F PMERR_CANNOT_DEL_QNAME_REF
Ox4030 PMERR_CANNOT_DEL_PRINTER_DD_REF
Ox4031 PMERR_ CANNOT _DEL_PRN_NAME_REF
Ox4032 PMERR_ CANNOT _DEL_PRN_ADDR_REF
Ox4033 PMERR_SPOOLER_QP _NOT_DEFINED
Ox4034 PMERR_PRN_NAME_NOT _DEFINED
Ox4035 PMERR_PRN_ADDR_NOT _DEFINED
Ox4036 PMERR_PRINTER_DD _NOT _DEFINED
Ox4037 PMERR_PRINTER_ QUEUE_NOT _DEFINED
Ox4038 PMERR_PRN_ADDR_IN_ USE
Ox4039 PMERR_SPL_ TOO _MANY_ OPEN_FILES
Ox403A PMERR_SPL_CP _NOT_REQD
Ox4040 PMERR_ UNABLE_ TO_ CLOSE_DEVICE
Ox4FA1 PMERR_SPL_ERROR_ 1
Ox4FA2 PMERR_SPL_ERROR_2

B-10 PM Programming Reference

Ox4FA3 PMERR_SPL_ERROR_3

Ox4FA4 PMERR_SPL_ERROR_ 4

Ox4FA5 PMERR_SPL_ERROR_5

Ox4FA6 PMERR_SPL_ERROR_6

Ox4FA7 PMERR_SPL_ERROR_7

Ox4FA8 PMERR_SPL_ERROR_8

Ox4FA9 PMERR_SPL_ERROR_9

Ox4FAA PMERR_SPL_ERROR_ 10

Ox4FAB PMERR_SPL_ERROR_ 11

Ox4FAC PMERR_SPL_ERROR_ 12

Ox4FAD PMERR_SPL_ERROR_ 13

Ox4FAE PMERR_SPL_ERROR_ 14

Ox4FAF PMERR_SPL_ERROR_ 15

Ox4FBO PMERR_SPL_ERROR_ 16

Ox4FB1 PMERR_SPL_ERROR_ 17

Ox4FB2 PMERR_SPL_ERROR_ 18

Ox4FB3 PMERR_SPL_ERROR_ 19

Ox4FB4 PMERR_SPL_ERROR_20

Ox4FB5 PMERR_SPL_ERROR_21

Ox4FB6 PMERR_SPL_ERROR_22

Ox4FB7 PMERR_SPL_ERROR_23

Ox4FB8 PMERR_SPL_ERROR_24

Ox4FB9 PMERR_SPL_ERROR_25

Ox4FBA PMERR_SPL_ERROR_26

Ox4FBB PMERR_SPL_ERROR_27

Ox4FBC PMERR_SPL_ERROR_28

Ox4FBD PMERR_SPL_ERROR_29

Ox4FBE PMERR_SPL_ERROR_30

Ox4FBF PMERR_SPL_ERROR_31

Ox4FCO PMERR_SPL_ERROR_32

Ox4FC1 PMERR_SPL_ERROR_33

Ox4FC2 PMERR_SPL_ERROR_34

Ox4FC3 PMERR_SPL_ERROR_35

Ox4FC4 PMERR_SPL_ERROR_36

Ox4FC5 PMERR_SPL_ERROR_37

Ox4FC6 PMERR_SPL_ERROR_38

Ox4FC7 PMERR_SPL_ERROR_39

Ox4FC8 PMERR_SPL_ERROR_ 40

Ox4FC9 PMERR_SPLMSGBOX_INFO _CAPTION

Ox4FCA PMERR_SPLMSGBOX_ WARNING_ CAPTION

Ox4FCB PMERR_SPLMSGBOX_ERROR_CAPTION

Ox4FCC PMERR_SPLMSGBOX_SEVERE_ CAPTION

Ox4FCD PMERR_SPLMSGBOX_JOB_DETAILS

Ox4FCE PMERR_SPLMSGBOX_ERROR_ACTION

Ox4FCF PMERR_SPLMSGBOX_SEVERE_ACTION

Ox4FDO PMERR_SPLMSGBOX_BIT _O_ TEXT

Ox4FD1 PMERR_SPLMSGBOX_BIT _ 1_ TEXT

Ox4FD2 PMERR_SPLMSGBOX_BIT _2_ TEXT

Ox4FD3 PMERR_SPLMSGBOX_BIT _3_ TEXT

Ox4FD4 PMERR_SPLMSGBOX_BIT _ 4_ TEXT

Ox4FD5 PMERR_SPLMSGBOX_BIT _5_ TEXT

Ox4FD6 PMERR_SPLMSGBOX_BIT _ 15_ TEXT

Ox4FD7 PMERR_SPL_NOPATHBUFFER

Ox4FD8 PMERR_SPL_ALREADY _INITIALISED

Ox4FD9 PMERR_SPL_ERROR

Ox5001 PMERR_INV _TYPE

Ox5002 PMERR_INV_CONV

Ox5003 PMERR_INV _SEGLEN

Ox5004 PMERR_DUP _SEGNAME

~\ Ox SOOS PMERR_INV_XFORM
)

Appendix B. Error Codes B-11

Ox5006
Ox5007
Ox5008
Ox5009
Ox5010

PMERR_INV _ VIEWLIM
PMERR_INV_3DCOORD
PMERR_SMB_OVFLOW
PMERR_ SEG_ OVFLOW
PMERR_PIC_DUP _FILENAME

B-12 PM Programming Reference

Appendix C. Error Explanations

This appendix gives an explanation for each PM error. The errors are listed in alphabetic order. The
number associated with each error is given in Appendix 8, "Error Codes" on page 8-1.

Error Constant

HMERR_ALLOCATE_SEGMENT

HMERR_CLOSE_LIB_FILE

HMERR_CONTENT _NOT _FOUND

HMERR_DATABASE_NOT_OPEN

HMERR_DDF _ALIGN_ TYPE

HMERR_DDF _BACKCOLOR

HMERR_DDF_EXCEED_MAX_INC

HMERR_DDF _EXCEED _MAX_LENGTH

HMERR_DDF _FONTSTYLE

HMERR_DDF _FORECOLOR

HMERR_DDF _FORMAT_ TYPE

HMERR_DDF _HINSTANCE

HMERR_DDF _INVALID _DDF

HMERR_DDF _INVALID _FONT

HMERR_DDF _INVALID _PARM

HMERR_DDF _LIST _BREAKTYPE

HMERR_DDF _LIST_SPACING

HMERR_DDF _LIST_UNCLOSED

HMERR_DDF _LIST_ UNINITIALIZED

HMERR_DDF _MEMORY

HMERR_DDF _REFTYPE

HMERR_DDF _SEVERE

HMERR_FREE_MEMORY

HMERR_HELP _INST_ CALLED _INVALID

HMERR_HELP _INSTANCE_ UNDEFINE

HMERR_HELPITEM_NOT _FOUND

HMERR_HELPSUBITEM_NOT_FOUND

HMERR_HELPTABLE_ UNDEFINE

HMERR_INDEX_NOT_FOUND

Explanation

Unable to allocate a segment of memory for
memory allocation requests from the help
manager.

The library file cannot be closed.

The library file does not have any content.

Unable to read the unopened database.

The alignment type is not valid.

The background color is not valid.

The value specified to increment DDF memory is
too large.

The amount of data is too large for the DDF buffer.

The font style is not valid.

The foreground color is not valid.

The format type specified is invalid.

The DDF instance is invalid.

The DDF handle is invalid.

The font value specified is invalid.

One of the DDF parameters specified is invalid.

The value of 8reakType is not valid.

The value for Spacing is not valid.

An attempt was made to nest a list.

No definition list has been initialized by
DdfBeginlist.

Not enough memory is available.

The reference type is not valid.

Internal error detected by the Help Manager.

Unable to free allocated memory.

The handle of the instance specified on a call to the
help manager does not have the class name of a
help manager instance.

The help instance handle specified is invalid.

Context-sensitive help was requested but the ID of
the main help item specified was not found in the
help table.

Context-sensitive help was requested but the ID of
the help item specified was not found in the help
subtable.

The application did not provide a help table for
context-sensitive help.

The index is not in the library file.

Appendix C. Error Explanations C-1

HMERR_INVALID_ASSOC_APP _WND

HMERR_INVALID_ASSOC_HELP _INST

HMERR_INVALID _DESTROY _HELP _INST

HMERR_INVALID_HELP _INSTANCE_HDL

HMERR_INVALID _HELPSUBITEM_SIZE

HMERR_INVALID _LIB _FILE

HMERR_INVALID _QUERY _APP_ WND

HMERR_LOAD _DLL

HMERR_NO_FRAME_WND_IN_CHAIN

HMERR_NO _HELP _INST _IN_ CHAIN

HMERR_NO_MEMORY

HMERR_OPEN_LIB_FILE

HMERR_PANEL_NOT _FOUND

HMERR_READ_LIB_FILE

PMERR_ACCESS_DENIED

PMERR_ALREADY _IN_AREA

PMERR_ALREADY _IN_ELEMENT

PMERR_ALREADY_IN_PATH

PMERR_ALREADY _IN_SEG

PMERR_APPL_STRUCTURE_TOO_SMALL

PMERR_ARRAY_TOO_SMALL

PMERR_AREA_INCOMPLETE

PMERR_ARRAY_TOO_LARGE

PMERR_ATOM_NAME_NOT _FOUND

C-2 PM Programming Reference

The application window handle specified on the
WinAssociateHelplnstance function is not a valid
window handle.

The help instance handle specified on the
WinAssociateHelplnstance function is not a valid
window handle.

The window handle specified as the help instance
to destroy is not of the help instance class.

The handle specified to be a help instance does not
have the class name of a help manager instance.

The help subtable item size is less than 2.

Improper library file provided.

The application window specified on a
WinQueryHelplnstance function is not a valid
window handle.

Unable to load resource data link library.

There is no frame window in the window chain from
which to find or set the associated help instance.

The parent or owner chain of the application
window specified does not have an associated help
instance.

Unable to allocate the requested amount of
memory.

The library file cannot be opened.

Unable to find the requested help panel.

The library file cannot be read.

The memory block was not allocated properly.

An attempt was made to begin a new area while an
existing area bracket was already open.

An attempt was made to begin a new element while
an existing element bracket was already open.

An attempt was made to begin a new path while an
existing path bracket was already open.

An attempt was made to open a new segment while
an existing segment bracket was already open.

The application buffer length is less than the total
length required for the (application) component
types.

The array specified was too small.

Either:

• A segment has been opened, closed, or drawn.
• GpiAssociate was issued while an area bracket

was open.
• A drawn segment has opened an area bracket

and ended without closing it.

More than 4 bytes was attempted to be inserted or
extracted.

The specified atom name is not in the atom table.

J

PMERR_BASE_ERROR

PMERR_BITMAP _IN_USE

PMERR_BITMAP _IS_SELECTED

PMERR_BITMAP _NOT _FOUND

PMERR_BITMAP _NOT_SELECTED

PMERR_BOUNDS_ OVERFLOW

PMERR_BUFFER_ TOO _SMALL

PMERR_C_LENGTH_TOO_SMALL

PMERR_ CALLED _SEG_IS_ CHAINED

PMERR_ CAN_NOT _ CALL_SPOOLER

PMERR_ CANNOT _DEL_PRINTER_DD _REF

PMERR_ CANNOT _DEL_PRN_ADDR_REF

PMERR_ CANNOT _DEL_PRN_NAME_REF

PMERR_CANNOT_DEL_QNAME_REF

PMERR_CANNOT_DEL_QP _REF

PMERR_CANNOT_STOP

PMERR_ CALLED _SEG_IS_ CURRENT

PMERR_CALLED_SEG_NOT_FOUND

PMERR_COL_TABLE_NOT_REALIZABLE

PMERR_ COL_ TABLE_NOT _REALIZED

PMERR_COORDINATE_OVERFLOW

An OS/2 base error has occurred. The base error
code can be accessed using the OffBinaryData field
of the ERRINFO structure returned by
WinGetErrorlnfo.

An attempt was made either to set a bit map into a
device context using GpiSetBitmap while it was
already selected into an existing device context, or
to tag a bit map with a local pattern set identifier
(setid) using GpiSetBitmapld while it was already
tagged with an existing setid.

An attempt was made to delete a bit map while it
was selected into a device context.

A attempt was made to perform a bit-map operation
on a bit map that did not exist.

A attempt was made to perform an operation on
presentation space associated with a memory
device context that had no selected bit map.

An internal overflow error occurred during
boundary data accumulation. This can occur if
coordinates or matrix transformation elements (or
both) are invalid or too large.

The supplied buffer was not large enough for the
data to be returned.

The maximum length of the C structure is less than
the total length required for the (C) component
types.

An attempt was made to call a segment that has a
chained attribute set.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the
spooler is not installed.

Presentation Manager device driver deletion not
possible due to a reference.

Printer port deletion not possible due to a
reference.

Printer deletion not possible due to a reference.

Spooler queue deletion not possible due to a
reference.

Spooler queue processor deletion not possible due
to a reference.

The session cannot be stopped.

An attempt was made to call a segment that is
currently open.

An attempt was made to call a segment that did not
exist.

An attempt was made to realize a color table that is
not realizable.

An attempt was made to realize a color table on a
device driver that does not support this function.

An internal coordinate overflow error occurred.
This can occur if coordinates or matrix
transformation elements (or both) are invalid or too
large.

Appendix C. Error Explanations C-3

PMERR_DATA_TOO_LONG

PMERR_DATATYPE_ENTRY_BAD_INDEX

PMERR_DATA TYPE_ENTRY _ CTL_BAD

PMERR_DATATYPE_ENTRY _ CTL_MISS

PMERR_DATATYPE_ENTRY_NOT_NUM

PMERR_DATATYPE_ENTRY _NOT_ OFF

PMERR_DATATYPE_IN\IALID

PMERR_DATATYPE_NOT_UNIQUE

PMERR_DATATYPE_TOO_LONG

PMERR_DATATYPE_TOO_SMALL

PMERR_DC_IS_ASSOCIATED

PMERR_DEL_NOT _ALLOWED

PMERR_DESC_STRING_TRUNCATED

PMERR_DEV_FUNC_NOT_INSTALLED

PMERR_DEVICE_DRIVER_ERROR_ 1

PMERR_DEVICE_DRIVER_ERROR_2

PMERR_DEVICE_DRIVER_ERROR_3

PMERR_DEVICE_DRIVER_ERROR_ 4

PMERR_DEVICE_DRIVER_ERROR_5

PMERR_DEVICE_DRIVER_ERROR_&

PMERR_DEVICE_DRIVER_ERROR_7

PMERR_DEVICE_DRIVER_ERROR_8

PMERR_DEVICE_DRIVER_ERROR_9

PMERR_DEVICE_DRIVER_ERROR_ 10

PMERR_DOS_ERROR

PMERR_DOSOPEN_FAILURE

C-4 PM Programming Reference

An attempt was made to transfer more than the
maximum permitted amount of data (64512 bytes)
using GpiPutData, GpiGetData, or GpiElement.

An invalid datatype entry index was specified.

An invalid datatype entry control was specified.

The datatype entry control was missing.

The datatype entry specified was not numerical.

The datatype entry specified was not an offset.

An invalid datatype was specified.

An attempt to register a datatype failed because it
is not unique.

The datatype specified was too long.

The datatype specified was too small.

An attempt was made to associate a presentation
space with a device context that was al ready
associated or to destroy a device context that was
associated.

Deletion not possible.

An attempt was made to supply a description string
with GpiBeginElement that was greater then the
permitted maximum length (251 characters). The
string was truncated.

The function requested is not supported by the
presentation driver.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

' Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

Miscellaneous error available for use by user
written device drivers.

A DOS call returned an error.

A DosOpen call made during GpiloadMetaFile or
GpiSaveMetaFile gave a good return code but the
file was not opened successfully.

PMERR_DOSREAD _FAILURE

PMERR_DRIVER_NOT _FOUND

PMERR_DUP _SEG

PMERR_DUP _SEGNAME

PMERR_DUPLICATE_ TITLE

PMERR_DYNAMIC_SEG_SEQ_ERROR

PMERR_DYNAMIC_SEG_ZERO_INV

PMERR_ENDDOC _NOT _ISSUED

PMERR_ESC _ CODE_NOT _SUPPORTED

PMERR_EXCEEDS_MAX_SEG_LENGTH

PMERR_FONT _AND _MODE_MISMATCH

PMERR_FONT _FILE_NOT _LOADED

PM ERR_ FONT _NOT _LOADED

PMERR_FUNCTION_NOT_SUPPORTED

PMERR_ GREATER_ THAN_64K

PMERR_HBITMAP _BUSY

PMERR_HDC_BUSY

PMERR_HEAP _MAX_SIZE_REACHED

PMERR_HEAP _OUT_OF _MEMORY

A DosRead call made during GpiLoadMetaFile gave
a good return code. However, it failed to read any
more bytes although the file length indicated that
there were more to be read.

The device driver specified with
DevPostDeviceModes was not found.

During GpiPlayMetaFile, while the actual drawing
mode was draw-and-retain or retain, a metafile
segment to be stored in the presentation space was
found to have the same segment identifier as an
existing segment.

A called segment has a name that has already been
used by another called segment in the input PIF.

The program title specified in the PIBSTRUCT
already exists within the same group.

During removal of dynamic segments while
processing GpiDrawChain, GpiDrawFrom, or
GpiDrawSegment, the internal state indicated that
dynamic segment data was still visible after all
chained dynamic segments had been processed.
This can occur if segments drawn dynamically
(including called segments) are modified or
removed from the chain while visible.

An attempt was been made to open a dynamic
segment with a segment identifier of zero.

A request to close the spooled output without first
issuing a an ENDDOC was attempted.

The code specified with DevEscape is not
supported by the target device driver.

During metafile creation or generation of retained
graphics the system has exceeded maximum
segment size.

An attempt was made to draw characters with a
character mode and character set that are
incompatible. For example, the character specifies
an image/raster font when the mode calls for a
vector/outline font.

An attempt was made to unload a font file that was
not loaded.

An attempt was made to create a font that was not
loaded.

The function is not supported.

A data item or array dimension is greater than 65
535.

An internal bit map busy error was detected. The
bit map was locked by one thread during an attempt
to access it from another thread.

An internal device context busy error was detected.
The device context was locked by one thread
during an attempt to access it from another thread.

The heap has reached its maximum size (64KB),
and cannot be increased.

An attempt to increase the size of the heap failed.

Appendix C. Error Explanations C-5

PMERR_HFONT _IS_SELECTED

PMERR_HRGN_BUSY

PMERR_HUGE_FONTS_NOT _SUPPORTED

PMERR_ID_HAS_NO_BITMAP

PMERR_IMAGE_INCOMPLETE

PMERR_INCOMPATIBLE_BITMAP

PMERR_INCOMPATIBLE_METAFILE

PMERR_INCOMPLETE_CONTROL_SEQ

PMERR_INCORRECT _DATATYPE

PMERR_INCORRECT _DC_ TYPE

PMERR_INCORRECT _HSTRUCT

PMERR_INl_FILE_IS _SYS_ OR_ USER

PMERR_INSUFF _SPACE_ TO _ADD

PMERR_INSUFFICIENT _DISK_SPACE

PMERR_INSUFFICIENT _MEMORY

PMERR_INTERNAL_ERROR_n

PMERR_INV _ANGLE_PARM

PMERR_INV _ARC_ CONTROL

C-6 PM Programming Reference

An attempt has been made to either change the
owner of a font, or delete when it is currently
selected.

An internal region busy error was detected. The
region was locked by one thread during an attempt
to access it from another thread.

An attempt was made using GpiSetCharSet,
GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs
to select a font that is larger than the maximum size
(64Kb) supported by the target device driver.

No bit map was tagged with the setid specified on a
GpiQueryBitmapHandle function.

A drawn segment has opened an image bracket
and ended without closing it.

An attempt was made to select a bit map or perform
a BitBlt operation on a device context that was
incompatible with the format of the bit map.

An attempt was made to associate a presentation
space and a metafile device context with
incompatible page units, size or coordinate format;
or to play a metafile using the RES_RESET option
(to reset the presentation space) to a presentation
space that is itself associated with a metafile
device context.

A control data type sequence is incomplete.

A data type is specified which is incorrect for this
function.

An attempt was made to perform a bit-map
operation on a presentation space associated with
a device context of a type that is unable to support
bit-map operations.

A structure handle is non-NULL, and is invalid for
one of the following reasons:

• It is not the handle of a data structure.
• It is the handle of an ERRINFO structure which

should not be used on this call.
• A handle block returned by the bindings to the

application has been used for an in-line
structure handle.

User or system initialization file cannot be closed.

The initialization file could not be extended to add
the required program or group.

The operation terminated through insufficient disk
space.

The operation terminated through insufficient
memory.

An internal error has occurred. n is a number that
identifies the particular error.

An invalid angle parameter was specified with
GpiPartialArc.

An invalid control parameter was specified with
GpiFullArc.

\
!

PMERR_INV _AREA_ CONTROL

PMERR_INV _A TTR_MODE

PMERR_INV_BACKGROUND_COL_ATTR

PMERR_INV _BACKGROUND _MIX_ATTR

PMERR_INV _BITBLT _MIX

PMERR_INV _BITBLT _STYLE

PMERR_INV _BITMAP _DATA

PMERR_INV _BITMAP _DIMENSION

PMERR_INV _BOX_ CONTROL

PMERR_INV _BOX_ROUNDING_PARM

PMERR_INV _ CHAR_ALIGN_A TTR

PMERR_INV _ CHAR_ANGLE_ATTR

PMERR_INV _ CHAR_DIRECTION_ATTR

PMERR_INV _ CHAR_MODE_ATTR

PMERR_INV _ CHAR_POS_ OPTIONS

PMERR_INV _ CHAR_SET _A TTR

PMERR_INV_CHAR_SHEAR_ATTR

PMERR_INV _CLIP _PATH_ OPTIONS

PMERR_INV _CODEPAGE

An invalid options parameter was specified with
GpiBeginArea.

An invalid mode parameter was specified with
GpiSetAttrMode.

An invalid background color attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid background mix attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid /Rop parameter was specified with a
GpiBitBlt or GpiWCBitBlt function.

An invalid options parameter was specified with a
GpiBitBlt or GpiWCBitBlt function.

In processing a bit map, the end of the data was
unexpectedly encountered.

An invalid dimension was specified with a load
bit-map function.

An invalid control parameter was specified with
GpiBox.

An invalid corner rounding control parameter was
specified with GpiBox.

The text alignment attribute specified in
GpiSetTextAlignment is not valid.

The default character angle attribute value was
explicitly specified with GpiSetAttrs instead of using
the defaults mask.

An invalid character direction attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid character mode attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

An invalid character setid attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid character shear attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid options parameter was specified with
GpiSetClipPath.

An invalid code-page parameter was specified with
GpiSetCp.

Appendix C. Error Explanations C-7

PMERR_INV_COLOR_ATTR

PMERR_INV _ COLOR_DATA

PMERR_INV _ COLOR_FORMAT

PMERR_INV _ COLOR_INDEX

PMERR_INV _COLOR_ OPTIONS

PMERR_INV_COLOR_START_INDEX

PMERR_INV _ CONV

PMERR_INV _ COORD _OFFSET

PMERR_INV _ COORD _SPACE

PMERR_INV _COORDINATE

PMERR_INV_CORRELATE_DEPTH

PMERR_INV_CORRELATE_TYPE

PMERR_INV _CURSOR_BITMAP

PMERR_INV_DC_DATA

PMERR_INV _DC_ TYPE

PMERR_INV_DEV_MODES_OPTIONS

PMERR_INV _DEVICE_NAME

PMERR_INV_DRAW_BORDER_OPTION

PMERR_INV _DRAW _CONTROL

PMERR_INV _DRAW_ VALUE

PMERR_INV _DRAWING_MODE

PMERR_INV _DRIVER_DATA

PMERR_INV _DRIVER_NAME

PMERR_INV _EDIT _MODE

PMERR_INV _ELEMENT_ OFFSET

C-8 PM Programming Reference

An invalid color attribute value was specified or the
default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

Invalid color table definition data was specified with
GpiCreatelogColorTable.

An invalid format parameter was specified with
GpiCreateLogColorTable.

An invalid color index parameter was specified with
GpiQueryRGBColor.

An invalid options parameter was specified with a
logical color table or color query function.

An invalid starting index parameter was specified
with a logical color table or color query function.

Invalid conversion-type parameter.

An invalid coordinate offset value was specified.

An invalid source or target coordinate space
parameter was specified with GpiConvert.

An invalid coordinate value was specified.

An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An invalid pointer was referenced with
WinSetPointer.

An invalid data parameter was specified with
DevOpenDC.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid
for a OD_METAFILE_NOQUERY device context.

An invalid options parameter was specified with
DevPostDeviceModes.

An invalid devicename parameter was specified
with DevPostDeviceModes.

An invalid option parameter was specified with
WinDrawBorder.

An invalid control parameter was specified with
GpiSetDrawControl or GpiQueryDrawControl.

An invalid value parameter was specified with
GpiSetDrawControl.

An invalid mode parameter was specified with
GpiSetDrawControl not draw-and-retain or draw.

Invalid driver data was specified.

A driver name was specified which has not been
installed.

An invalid mode parameter was specified with
GpiSetEditMode.

An invalid off (offset) parameter was specified with
GpiQueryElement.

/

k:

'

PMERR_INV _ELEMENT _POINTER

PMERR_INV_END_PATH_OPTIONS

PMERR_INV _ESCAPE_ CODE

PMERR_INV _ESCAPE_DATA

PM ERR _INV _FACENAME

PMERR_INV _FACENAMEDESC

PMERR_INV _FILL_PATH_ OPTIONS

PMERR_INV _FIRST _CHAR

PMERR_INV _FLOOD _FILL_ OPTIONS

PMERR_INV _FONT _A TTRS

PMERR_INV_FONT_FILE_DATA

PMERR_INV _FOR_ THIS_DC_ TYPE

PMERR_INV _FORMS_ CODE

PMERR_INV_GEOM_LINE_WIDTH_ATTR

PMERR_INV _ GETDATA_ CONTROL

PMERR_INV _ GRAPHICS_FIELD

PMERR_INV _HBITMAP

PMERR_INV _HDC

PMERR_INV_HFONT

PMERR_INV _HMF

PMERR_INV_HPAL

PMERR_INV_HPS

PMERR_INV _HRGN

PMERR_INV_ID

PMERR_INV_IMAGE_DATA_LENGTH

An attempt was made to issue GpiPutData with the
element pointer not pointing at the last element.

An attempt to create or delete a path out of context
of the path bracket was made.

An invalid code parameter was specified with
DevEscape.

An invalid data parameter was specified with
DevEscape.

An invalid font family name was passed to
GpiQueryFaceString.

The font facename description is invalid.

An invalid options parameter was specified with
GpiFillPath.

An invalid firstchar parameter was specified with
GpiQueryWidthTable.

Invalid flood fill parameters were specified.

An invalid attrs parameter was specified with
GpiCreatelogFont.

The font file specified with GpiloadFonts,
GpiloadPublicFonts,
GpiQueryFontFi leDescri ptions, or
GpiQueryFullFontFileDescriptions contains invalid
data.

An attempt has been made to issue
GpiRemoveDynamics or GpiDrawDynamics to a
presentation space associated with a metafile
device context.

An invalid forms code parameter was specified with
DevQueryHardcopyCaps.

An invalid geometric line width attribute value was
specified.

An invalid format parameter was specified with
GpiGetData.

An invalid field parameter was specified with
GpiSetGraphicsField.

An invalid bit-map handle was specified.

An invalid device-context handle or (micro
presentation space) presentation-space handle was
specified.

An invalid font handle was specified.

An invalid metafile handle was specified.

An invalid color palette handle was specified.

An invalid presentation-space handle was
specified.

An invalid region handle was specified.

An invalid IPSid parameter was specified with
GpiRestorePS.

An invalid /Length parameter was specified with
Gpilmage. There is a mismatch between the image
size and the data length.

Appendix C. Error Explanations C-9

PMERR_INV _IMAGE_DIMENSION

PMERR_INV _IMAGE_FORMAT

PMERR_INV _IN_AREA

PMERR_INV _IN_ CURRENT _EDIT _MODE

PMERR_INV _IN_ELEMENT

PMERR_INV _IN_IMAGE

PMERR_INV _IN_PATH

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _IN_SEG

PMERR_INV _IN_ VECTOR_SYMBOL

PMERR_INV _INFO_ TABLE

PMERR_INV _LENGTH_ OR_COUNT

PMERR_INV _LINE_END _ATIR

PMERR_INV _LINE_JOIN_ATIR

PMERR_INV_LINE_TYPE_ATIR

PMERR_INV _LINE_ WIDTH_ATIR

PMERR_INV _LOGICAL_ADDRESS

PMERR_INV_MARKER_BOX_ATTR

PMERR_INV_MARKER_SET_ATTR

PMERR_INV _MARKER_SYMBOL_ATIR

PMERR_INV _MATRIX_ELEMENT

PMERR_INV _MAX_HITS

C-10 PM Programming Reference

An invalid psizllmageSize parameter was specified
with Gpilmage.

An invalid /Format parameter was specified with
Gpilmage.

An attempt was made to issue a function invalid
inside an area bracket. This can be detected while
the actual drawing mode is draw or
draw-and-retain or during segment drawing or
correlation functions.

An attempt was made to issue a function invalid
inside the current editing mode.

An attempt was made to issue a function invalid
inside an element bracket.

An attempt was made to issue a function invalid
inside an element bracket.

An attempt was made to issue a function invalid
inside a path bracket.

An attempt was made to issue a function {for
example, query) that is invalid when the actual
drawing mode is not draw or draw-and-retain.

An attempt was made to issue a function invalid
inside a segment bracket.

An invalid order was detected inside a vector
symbol definition while drawing a vector {outline)
font.

An invalid bit-map info table was specified with a
bit-map operation.

An invalid length or count parameter was specified.

An invalid line end attribute value was specified.

An invalid line join attribute value was specified.

An invalid line type attribute value was specified or
the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An invalid line width attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An invalid device logical address was specified.

An invalid marker box attribute value was
specified.

An invalid marker set attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An invalid marker symbol attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid transformation matrix element was
specified.

An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

\
)

~)

PMERR_INV _METAFILE

PMERR_INV_METAFILE_LENGTH

PMERR_INV _METAFILE_ OFFSET

PMERR_INV_MICROPS_DRAW_CONTROL

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _MICROPS_ ORDER

PMERR_INV _MIX_ATTR

PMERR_INV _MODE_FOR_ OPEN_DYN

PMERR_INV_MODE_FOR_REOPEN_SEG

PMERR_INV _MODIFY _PATH_MODE

PMERR_INV _MULTIPLIER

PMERR_INV _NESTED _FIGURES

PMERR_INV _ OR_INCOMPAT _OPTIONS

PMERR_INV _ ORDER_LENGTH

PMERR_INV _ ORDERING_PARM

PMERR_INV _ OUTSIDE_DRAW _MODE

PMERR_INV _PAGE_ VIEWPORT

PMERR_INV_PATH_CONVERT_OPTIONS

PMERR_INV _PATH_ID

PMERR_INV _PATTERN_A TTR

PMERR_INV_PATTERN_REF_PT_ATTR

An invalid metafile was specified with
Gpi PlayMetaFi le.

An invalid length parameter was specified with
GpiSetMetaFileBits or GpiQueryMetaFileBits.

An invalid length parameter was specified with
GpiSetMetaFileBits or GpiQueryMetaFileBits.

A draw control parameter was specified with
GpiSetDrawControl that is invalid in a micro
presentation space.

An attempt was made to issue a function that is
invalid in a micro presentation space.

An attempt was made to play a metafile containing
orders that are invalid in a micro presentation
space.

An invalid mix attribute value was specified or the
default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An attempt was made to open a segment with the
ATTR_DYNAMIC segment set, while the drawing
mode was set to DM_DRAW or
DM_DRAWANDRETAIN.

An attempt was made to reopen an existing
segment while the drawing mode was set to
DM_DRAW or DM_DRAWANDRETAIN.

An invalid mode parameter was specified with
GpiModifyPath.

An invalid multiplier parameter was specified with
GpiPartialArc or GpiFullArc.

Nested figures have been detected within a path
definition.

An invalid or incompatible (with micro presentation
space) options parameter was specified with
GpiCreatePS or GpiSetPS.

An invalid order length was detected during
GpiPutData or segment drawing.

An invalid order parameter was specified with
GpiSetSegmentPriority.

An attempt was made to issue a GpiSavePS or
GpiRestorePS function, or an output only function
(for example, GpiPaintRegion) from
GpiPlayMetaFile without the drawing mode set to
DM_DRAW.

An invalid viewport parameter was specified with
GpiSetPageViewport.

An invalid options parameter was specified with
GpiOutlinePath.

An invalid path identifier parameter was specified.

An invalid pattern symbol attribute value was
specified or the default value was explicitly
specified with GpiSetAttrs instead of using the
defaults mask.

An invalid refpoint attribute value was specified.

Appendix C. Error Explanations C-11

PMERR_INV _PATTERN_SET _ATTR

PMERR_INV_PATTERN_SET_FONT

PMERR_INV _PICK_APERTURE_ OPTION

PMERR_INV _PICK_APERTURE_POSN

PMERR_INV_PICK_APERTURE_SIZE

PMERR_INV _PLAY _METAFILE_ OPTION

PMERR_INV _PRIMITIVE_ TYPE

PMERR_INV_PS_SIZE

PMERR_INV _PUTDATA_FORMAT

PMERR_INV _QUERY _ELEMENT _NO

PMERR_INV _RECT

PMERR_INV _REGION_ CONTROL

PMERR_INV _REGION_MIX_MODE

PMERR_INV _REPLACE_MODE_FUNC

PMERR_INV _RESERVED _FIELD

PMERR_INV _RESET_ OPTIONS

PMERR_INV _RGBCOLOR

PMERR_INV _SCAN_START

PMERR_INV _SEG_ATTR

PMERR_INV_SEG_ATTR_VALUE

PMERR_INV _SEG_NAME

PMERR_INV _SEG_ OFFSET

PMERR_INV _SEGLEN

PMERR_INV _SETID

PMERR_INV _SHARPNESS_PARM

C-12 PM Programming Reference

An invalid pattern set attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An attempt was made to use an unsuitable font as a
pattern set.

An invalid options parameter was specified with
GpiSetPickApertureSize.

An invalid pick aperture position was specified.

An invalid size parameter was specified with
GpiSetPickApertureSize.

An invalid option parameter was specified with
GpiPlayMetaFile.

An invalid primitive type parameter was specified
with GpiSetAttrs or GpiQueryAttrs.

An invalid size parameter was specified with
GpiCreatePS or GpiSetPS.

An invalid format parameter was specified with
GpiPutData.

An invalid start parameter was specified with
DevQueryCaps.

An invalid rectangle parameter was specified.

An invalid control parameter was specified with
GpiQueryRegionRects.

An invalid mode parameter was specified with
GpiCombineRegion.

An attempt was made to issue GpiPutData with the
editing mode set to SEGEM_REPLACE.

An invalid reserved field was specified.

An invalid options parameter was specified with
GpiResetPS.

An invalid rgb color parameter was specified with
GpiQueryNearestColor or GpiQueryColor.

An invalid scanstart parameter was specified with a
bit-map function.

An invalid attribute parameter was specified with
GpiSetSegmentAttrs, GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

An invalid attribute value parameter was specified
with GpiSetSegmentAttrs or
G pi Seti nitialSegmentA ttrs.

An invalid segment identifier was specified.

An invalid offset parameter was specified with
GpiPutData.

An order length exceeds the remaining segment
length in the input PIF.

An invalid setid parameter was specified.

An invalid sharpness parameter was specified with
GpiPolyFi lletSharp.

PMERR_INV_STOP_DRAW_VALUE

PMERR_INV _TRANSFORM_ TYPE

PMERR_INV _TYPE

PMERR_INV _ USAGE_PARM

PMERR_INV _ VIEWING_LIMITS

PMERR_INV _ VIEWLIM

PMERR_INV _XFORM

PMERR_INV_3DCOORD

PMERR_INVALID _ARRAY_ COUNT

PMERR_INVALID _APPL

PMERR_INVALID _ARRAY _SIZE

PMERR_INVALID _ASCllZ

PMERR_INVALID_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_INVALID _BUNDLE_ TYPE

PMERR_INVALID _ CHARACTER_INDEX

PMERR_INVALID_CONTROL_DATATYPE

PMERR_INVALID _ CONTROL_SEQ_INDEX

PMERR_INVALID_DATATYPE

PMERR_INVALID _DST_ CODEPAGE

PMERR_INVALID _FLAG

PMERR_INVALID _ERRORINFO _HANDLE

PMERR_INVALID _FREE_MESSAGE_ID

PMERR_INVALID _GROUP _HANDLE

PMERR_INVALID _HACCEL

PMERR_INVALID _HANDLE

PMERR_INVALID _HAPP

An invalid value parameter was specified with
GpiSetStopDraw.

An invalid options parameter was specified with a
transform matrix function.

Invalid file-type parameter.

An invalid options parameter was specified with
GpiCreateBitmap.

An invalid limits parameter was specified with
GpiSetViewingLimits.

A set viewing limits order has an inconsistent mask
and order length in the input PIF.

A set (default) viewing transform order has an
inconsistent mask and order length in the input PIF.

An order specifying 3-dimensional coordinates has
been found in the input PIF.

An array has an invalid count, that is, less than or
equal to zero.

Attempted to start an application whose type is not
recognized by OS/2.

A control data type array size is invalid.

The profile string is not a valid zero-terminated
string.

The specified atom does not exist in the atom table.

An invalid atom name string was passed.

An invalid bundle type was passed.

On WinNextChar or WinPrevChar, a character index
is invalid, that is, it is less than 1 or is greater than
the string length+ 1.

An invalid control data type was specified.

There is an invalid index in a control data type
sequence (for array, length, offset or MPARAM) that
is, the index is to a non-existent or non-numeric
entry.

An invalid data type was specified.

The destination code page parameter is invalid.

An invalid bit was set for a parameter. Use
constants defined by PM for options, and do not set
any reserved bits.

On WinFreeErrorlnfo, the ERRINFO is not the
handle of an ERRINFO structure, that is, it was not
created by WinGetErrorlnfo.

An invalid message identifier was specified. The
call has completed by assuming the message
parameter and reply data types to be ULONG.

An invalid program-group handle was specified.

An invalid accelerator-table handle was specified.

An invalid handle was specified.

The application handle passed to WinTerminateApp
does not correspond to a valid session.

Appendix C. Error Explanations C-13

PMERR_INVALID _HATOMTBL

PMERR_INVALID_HEAP _POINTER

PMERR_INVALID_HEAP _SIZE_PARM

PMERR_INVALID _HEAP _SIZE_ WORD

PMERR_INVALID _HENUM

PMERR_INVALID _HHEAP

PMERR_INVALID _HMQ

PMERR_INVALID _HPTR

PMERR_INVALID _HSTRUCT

PMERR_INVALID _HWND

PMERR_INVALID _INl_FILE_HANDLE

PMERR_INVALID _INTEGER_ ATOM

PMERR_INVALID _MESSAGE_ID

PMERR_INVALID _NUMBER_ OF _PARMS

PMERR_INVALID_NUMBER_OF_TYPES

PMERR_INVALID _PARAMETERS

PMERR_INVALID _PARAMETER_ TYPE

PMERR_INVALID_PARM

PMERR_INVALID _PROGRAM_HANDLE

PMERR_INVALID _SESSION_ID

PMERR_INVALID _SRC_ CODEPAGE

PMERR_INVALID _STRING_PARM

PMERR_INVALID _SWITCH_HANDLE

PMERR_INVALID _TARGET _HANDLE

PMERR_INVALID _TITLE

PMERR_INVALID _ TYPE_FOR_LENGTH

PMERR_INVALID _ TYPE_FOR_MPARAM

PMERR_INVALID _ TYPE_FOR_ OFFSET

PMERR_INVALID _WINDOW

PMERR_KERNING_NOT _SUPPORTED

PMERR_LABEL_NOT _FOUND

C-14 PM Programming Reference

An invalid atom-table handle was specified.

An invalid pointer was found within the heap.

Invalid data was found within the heap.

Invalid data was found within the heap.

An invalid enumeration handle was specified.

An invalid heap handle was specified.

An invalid message-queue handle was specified.

An invalid pointer handle was specified.

An invalid (null) structure handle was specified.

An invalid window handle was specified.

An invalid initialization-file handle was specified.

The specified atom is not a valid integer atom.

A message identifier is invalid.

The number of parameters is invalid.

The function call has an invalid number (zero) of
types.

An application parameter value is invalid for its
converted PM type. For example: a 4-byte value
outside the range -32, 768 to +32, 767 cannot be
converted to a SHORT, and a negative number
cannot be converted to a ULONG or USHORT.

A parameter type is invalid for a bundle mask.

A parameter to the function contained invalid data.

An invalid program handle was specified.

The specified session identifier is invalid. Either
zero (for the application's own session) or a valid
identifier must be specified.

The source code page parameter is invalid.

The specified string parameter is invalid.

An invalid Window List entry handle was specified.

An invalid target program-group handle was
specified.

The specified program or group title is too long or
contains invalid characters.

The data type for a control length is invalid.

The message parameter type for a control
MPARAM is invalid, that is, not mparam1, mparam2
or mreply.

The data type for a control offset is invalid.

The window specified with a Window List call is not
a valid frame window.

Kerning was requested on GpiCreatelogFont call to
a presentation space associated with a device
context that does not support kerning.

The specified element label did not exist.

'.>
1

I

/

PMERR_MATRIX_OVERFLOW

PMERR_MEMORY _ALLOC

PMERR_MEMORY _ALLOCATION_ERR

PMERR_MEMORY _DEALLOCATION_ERR

PMERR_METAFILE_INTERNAL_ERROR

PMERR_METAFILE_IN_USE

PMERR_METAFILE_LIMIT _EXCEEDED

PMERR_MSGID _TOO _SMALL

PMERR_NEGATIVE_STRCOND _DIM

PMERR_NO_BITMAP _SELECTED

PMERR_NO _CURRENT _ELEMENT

PMERR_NO_CURRENT_SEG

PM ERR_ NO _FILL

PMERR_NO _METAFILE_RECORD _HANDLE

PMERR_NO_PALETTE_SELECTED

PMERR_NO_SPACE

PMERR_NOT _CREATED _BY _DEVOPENDC

PMERR_NOT_CURRENT_PL_VERSION

PMERR_NOT _DRAGGING

PMERR_NOT_IN_A_PM_SESSION

PMERR_NOT _IN_AREA

An internal overflow error occurred during matrix
multiplication. This can occur if coordinates or
matrix transformation elements (or both) are invalid
or too large.

An error occurred during memory management.

An error occurred during memory management.

An error occurred during memory management.

An internal inconsistency has been detected during
metafile unlock processing.

An attempt has been made to access a metafile that
is in use by another thread.

The maximum permitted metafile size limit was
exceeded during metafile recording.

The message identifier specified is too small.

A negative array dimension was passed for a data
type length.

An attempt has been made to operate on a memory
device context that has no bit map selected.

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while
there is no currently open element.

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while
there is no currently open segment.

No flood fill occurred because either the starting
point color was the same as the input color when a
boundary fill was requested, or the starting point
color was not the same as the input color when a
surface fill was requested.

The metafile record handle was not found during
metafile recording, or DevEscape
(DEVESC_STARTDOC) was not issued when
drawing to a OD_QUEUED device context with a
pszDataType field of PM_Q_STD.

An attempt to realize a palette failed because no
palette was previously selected into the
Presentation Space.

The limit on the number of Window List entries has
been reached with WinAddSwitchEntry.

An attempt has been made to destroy a device
context using DevCloseDC that was not created
using DevOpenDC.

An unexpected data format was found in the
initialization file.

A drag operation is not in progress at this time.

An attempt was made to access function that is only
available from PM programs from a non-PM
session.

An attempt was made to end an area using
GpiEndArea or during segment drawing while not in
an area bracket.

Appendix C. Error Explanations C-15

PMERR_NOT_IN_DRAW_MODE

PMERR_NOT _IN_ELEMENT

PMERR_NOT _IN_IDX

PM ERR_ NOT _IN_IMAGE

PMERR_NOT_IN_PATH

PMERR_NOT_IN_RETAIN_MODE

PMERR_NOT_IN_SEG

PMERR_NOT _SELF _DESCRIBING_DTYP

PMERR_ OPENING_INl_FILE

PM ERR_ ORDER_ TOO _BIG

PMERR_OWN_SET_ID_REFS

PMERR_PALETIE_BUSY

PMERR_PALETIE_SELECTED

PMERR_PARAMETER_ OUT_ OF _RANGE

PMERR_PATH_INCOMPLETE

PMERR_PATH_LIMIT_EXCEEDED

PMERR_PATH_ UNKNOWN

PMERR_PEL_IS_ CLIPPED

PMERR_PEL_NOT _AVAILABLE

PMERR_PROLOG_ERROR

C-16 PM Programming Reference

An attempt was made to issue GpiSavePS or
GpiRestorePS while the drawing mode was not set
to DM_DRAW.

An attempt was made to end an element using
GpiEndElement or during segment drawing while
not in an element bracket.

The application name, key-name or program handle
was not found.

An attempt was made to end an image during
segment drawing while not in an image bracket.

An attempt was made to end a path using
GpiEndPath or during segment drawing while not in
a path bracket.

An attempt was made to issue a segment editing
element function that is invalid when the actual
drawing mode is not set to retain.

An attempt was made to end a segment using
GpiCloseSegment while not in a segment bracket.

A data type is not self-describing.

Unable to open initialization file (due to lack of disk
space for example).

An internal size limit was exceeded while
converting orders from short to long format during
GpiPutData processing. An order was too long to
convert.

An attempt to unload a font failed because the setid
is still being referenced.

An attempt has been made to reset the owner of a
palette when it was busy.

Color palette operations cannot be performed on a
presentation space while a palette is selected.

The value of a parameter was not within the defined
valid range for that parameter.

An attempt was made to open or close a segment
either directly or during segment drawing, or to
issue GpiAssociate while there is an open path
bracket.

An internal size limit was exceeded during path or
area processing.

An attempt was made to perform a path function on
a path that did not exist.

An attempt was made to query a pel that had been
clipped using GpiQueryPel.

An attempt was made to query a pel that did not
exist in GpiQueryPel (for example, a memory
device context with no selected bit map).

A prolog error was detected during drawing.
Segment prologs are used internally within retained
segments and also appear in metafiles. This error
can also arise from an End Prolog order that is
outside a prolog.

/

PMERR_PRINTER_DD _NOT _DEFINED

PMERR_PRINTER_ QUEUE_NOT _DEFINED

PMERR_PRN_ADDR_IN_USE

PMERR_PRN_ADDR_NOT_DEFINED

PMERR_PRN_NAME_NOT_DEFINED

PMERR_PS_BUSY

PMERR_PS_IS_ASSOCIATED

PMERR_PS_NOT _ASSOCIATED

PMERR_ QUEUE_ALREADY _EXISTS

PMERR_RASTER_FONT

PMERR_REALIZE_NOT _SUPPORTED

PMERR_REGION_IS_CLIP _REGION

PMERR_RESOURCE_DEPLETION

PMERR_RESOURCE_NOT _FOUND

PMERR_SEG_AND_REFSEG_ARE_SAME

PMERR_SEG_CALL_STACK_EMPTY

PMERR_SEG_CALL_STACK_FULL

PMERR_SEG_IS_CURRENT

PMERR_SEG_NOT _CHAINED

PMERR_SEG_NOT _FOUND

PMERR_SEG_OVFLOW

PMERR_SEG_STORE_LIMIT_EXCEEDED

PMERR_SET_ID_REFS

PMERR_SETID _IN_ USE

The Presentation Manager device driver has not
been defined.

The spooler queue for the printer has not been
defined.

A printer is already defined on the port.

The printer port has not been defined.

The printer has not been defined.

An attempt was made to access the presentation
space from more than one thread simultaneously.

An attempt was made to destroy a presentation or
associate a presentation space that is still
associated with a device context.

An attempt was made to access a presentation
space that is not associated with a device context.

An attempt to create a message queue for a thread
failed because one already exists for the calling
thread.

A request was made for the outline of a bit-map
font. Outlines can only be returned for vector font
characters.

An attempt was made to create a realizable logical
color table on a device driver that does not support
this function.

An attempt was made to perform a region operation
on a region that is selected as a clip region.

An internal resource depletion error has occurred.

The specified resource identity could not be found.

The segid and refsegid specified with
GpiSetSegmentPriority were the same.

A call stack empty condition was detected when
attempting a pop function during GpiPop or
segment drawing.

A call stack full condition was detected when
attempting to call a segment using
GpiCallSegmentMatrix, attempting to preserve an
attribute, or during segment drawing.

An attempt was made to issue GpiGetData to a
segment that was currently open.

An attempt was made to issue GpiDrawFrom,
GpiCorrelateFrom or GpiQuerySegmentPriority for
a segment that was not chained.

The specified segment identifier did not exist.

The input PIF has more than 1000 called segments.
This has overflowed an internal buffer.

The maximum permitted retained segment store
size limit was exceeded.

An attempt to unload a font failed because the setid
is still being referenced.

An attempt was made to specify a setid that was
already in use as the currently selected character,
marker or pattern set.

Appendix C. Error Explanations C-17

PMERR_SETID _NOT _FOUND

PMERR_SMB_OVFLOW

PMERR_SOURCE_SAME_AS_TARGET

PMERR_SPL_ CANNOT_ OPEN_FILE

PMERR_SPL_DD _NOT _FOUND

PMERR_SPL_DEVICE_ALREADY_EXISTS

PMERR_SPL_DEVICE_LIMIT _REACHED

PMERR_SPL_DEVICE_NOT _INSTALLED

PMERR_SPL_DRIVER_ERROR

PMERR_SPL_DRIVER_NOT _INSTALLED

PMERR_SPL_FILE_NOT_FOUND

PMERR_SPL_HARD_NETWORK_ERROR

PMERR_SPL_INl_FILE_ERROR

PMERR_SPL_INV_DATATYPE

PMERR_SPL_INV_DRIVER_DATATYPE

PMERR_SPL_INV_FORMS_CODE

PMERR_SPL_INV _HSPL

PMERR_SPL_INV _JOB _ID

PMERR_SPL_INV _LENGTH_ OR_ COUNT

PMERR_SPL_INV _PRIORITY

PMERR_SPL_INV _PROCESSOR_DA TIYPE

PMERR_SPL_INV _ QUEUE_NAME

PMERR_SPL_INV _TOKEN

PMERR_SPL_JOB_NOT_PRINTING

PMERR_SPL_JOB_PRINTING

PMERR_SPL_MANY_QUEUES_ASSOC

PMERR_SPL_NO_CURRENT_FORMS_CODE

PMERR_SPL_NO_DATA

PMERR_SPL_NO_DEFAULT_QUEUE

PMERR_SPL_NO_DISK_SPACE

PMERR_SPL_NO _FREE_JOB_ID

PMERR_SPL_NO_MEMORY

PMERR_SPL_NO_QUEUES_ASSOCIATED

PMERR_SPL_NO_SUCH_LOG_ADDRESS

C-18 PM Programming Reference

An attempt was made to delete a setid that did not
exist.

The input PIF has more than 100 symbol sets
defined. This has overflowed an internal buffer.

The direct manipulation source and target process
are the same.

Unable to open the file.

The Presentation Manager device driver definition
could not be found.

The device already exists.

The limit on the number of devices has been
reached.

The device has not been installed.

No Presentation Manager device driver supplied or
found.

The Presentation Manager device driver has not
been installed.

Unable to find the file.

Hard network error.

Error accessing the initialization file.

The spool file data type is invalid.

The data type is invalid for the Presentation
Manager device driver.

The forms code for the job is invalid.

The spooler handle is invalid.

The job id is invalid.

The length or count is invalid.

The priority for the job is invalid.

The data type is invalid for the spooler queue
processor.

The spooler queue name is invalid.

The token is invalid.

The print job is not printing.

The print job is already printing.

More than one queue has been associated with the
printer.

There is no current forms code defined to the
Presentation Manager device driver.

No data supplied or found.

There is no default spooler queue for the printer.

There is not enough free disk space.

There is no free job id available.

There is not enough free memory.

A queue has not been associated with the printer.

The logical address does not exist (that is, it is not
defined in the initialization file).

PMERR_SPL_NOT _AUTHORISED

PMERR_SPL_PRINT _ABORT

PMERR_SPL_PRINTER_NOT_FOUND

PMERR_SPL_PROCESSOR_ERROR

PMERR_SPL_PROCESSOR_NOT_INST

PMERR_SPL_QUEUE_ALREADY _EXISTS

PMERR_SPL_ QUEUE_ERROR

PMERR_SPL_ QUEUE_NOT _EMPTY

PMERR_SPL_ QUEUE_NOT _FOUND

PMERR_SPL_SPOOLER_NOT _INSTALLED

PMERR_SPL_STATUS_STRING_TRUNC

PMERR_SPL_TEMP _NETWORK_ERROR

PMERR_SPL_ TOO _MANY_ OPEN_FILES

PMERR_SPOOLER_QP _NOT_DEFINED

PMERR_START _POINT_ CLIPPED

PMERR_STARTDOC_NOT_ISSUED

PMERR_STARTED_IN_BACKGROUND

PMERR_STOP _DRAW_OCCURRED

PMERR_TOO_MANY_METAFILES_IN_USE

PMERR_ TRUNCATED_ ORDER

PMERR_ UNABLE_ TO_ CLOSE_DEVICE

PMERR_UNCHAINED_SEG_ZERO_INV

PMERR_ UNKNOWN_BUNDLE_ TYPE

PMERR_UNSUPPORTED_ATTR

PMERR_UNSUPPORTED_ATTR_VALUE

PMERR_WINDOW _LOCK_OVERFLOW

PM ERR_ WINDOW _LOCK_ UNDERFLOW

PMERR_ WINDOW_NOT _LOCKED

Not authorized to perform the operation.

The job has already been aborted.

The printer definition could not be found.

No spooler queue processor supplied or found.

The spooler queue processor has not been
installed.

The spooler queue already exists.

No spooler queue supplied or found.

The spooler queue contains print jobs.

The spooler queue definition could not be found.

The spooler is not installed.

The print job status string has been truncated.

Temporary network error.

Too many open files.

The spooler queue processor has not been defined.

The starting point specified for flood fill is outside
the current clipping path or region.

A request to write spooled output without first
issuing a STARTDOC was attempted.

The application started a new session in the
background.

Segment drawing or GpiPlayMetaFile was stopped
prematurely in response to a GpiSetStopDraw
request.

The maximum number of metafiles allowed for a
given process was exceeded.

An incomplete order was detected during segment
processing.

Unable to close the print device (for example,
powered off or offl i ne).

An attempt was made to open segment with
segment identifier zero and the ATTR_CHAINED
segment attribute not specified.

Unknown bundle-type primitive.

An unsupported attribute was specified in the
attrmask with GpiSetAttrs or GpiQueryAttrs.

An attribute value was specified with GpiSetAttrs
that is not supported.

An overflow occurred for the use count of a
window.

An attempt was made to decrement the use count of
a window below zero.

The window specified in WinSendMsg was not
locked.

Appendix C. Error Explanations C-19

C-20 PM Programming Reference

;

Appendix D. Standard Bit-Map Formats

There are four standard bit-map formats. All device drivers have to be able to translate between any
of these formats and their own internal formats. The standard formats are:

Bltcount
1
4
8
24

Planes
1
1

These formats are chosen because they are identical or similar to all formats commonly used by
raster devices. Only single-plane formats are standard, but it is very easy to convert these to any
multiple-plane format used internally by a device.

Bit-Map Data
The pel data is stored in the bit map in the order that the coordinates appear on a display screen.
That is, the pet in the lower-left corner is the first in the bit map. Pels are scanned to the right, and
upward, from that position. The bits of the first pel are stored, beginning with the most significant
bits of the first byte. The data for pels in each scan line is packed together tightly, but all scan lines
are padded at the end, so that each one begins on a ULONG boundary.

Bit-Map Information Tables
Each standard-format bit map must be accompanied by a bit-map information table. Because the
standard-format bit maps are intended to be traded between devices, the color indexes in the bit map
are meaningless without more information; for a description of this structure, see BITMAPINF02.

Some calls use a structure that is similar to BITMAPINF02 but does not have the color table array;
for a description of this structure, see BITMAPINFOHEADER2. Wherever BITMAPINF02 is shown,
BITMAPINFO is also allowed. Similarly, wherever BITMAPINFOHEADER2 is shown,
BITMAPINFOHEADER is also allowed.

Bit-Map Example
To make the ordering of all the bytes clear, consider this simple example of a 5-by-3 array of colored
pets:

Red Green Blue Red Green
Blue Red Green Blue Red
Green Blue Red Green Blue

ULONG ExampleBitmap[] {
0x23,0xl2,0x30,0x00
0x31,0x23,0x10,0x00
ex12,ex31,ex2e,exee

};

#define BLACK exeeeeeeeeL
#define RED 0x00FF0000L
#define GREEN exeeeeFF00L
#define BLUE 0x000000FFL

struct BitmaplnfoTable Examplelnfo = {
5,

};

3,
1,
4,
BLACK,RED,GREEN,BLUE,
BLACK, BLACK, BLACK, BLACK,
BLACK, BLACK, BLACK, BLACK,
BLACK,BLACK,BLACK,BLACK

/* bottom line */
/*middle line */
/* top line */

/* width */
/* height */
/* planes */
/* bitcount */
/* color table */

Appendix D. Standard Bit-Map Formats D-1

Bit-Map File Format
The operating system uses the same file format for bit maps, icons, and pointers in resource files. In
the following description, "bit map" refers to bit maps, icons, and pointers unless otherwise
specified.

Two formats are supported. In the first, a single-size version of the bit map is defined. This is used
whatever the target device.

The second format allows multiple versions of the bit map to be defined, including one or more
device-independent versions, and a number of device-dependent versions, each intended for use
with a particular device.

In the case of icons and pointers, when more than one version of the bit map exists, the preferred
version is one that matches the device size of icon or pointer. Otherwise the device-independent
version is used to scale a bit map to the required size.

The operating system provides pointers that match the requirements of the display device in use,
typically pointers are 32x32 pals, one bit per plane.

Icons provided with the operating system are designed to match the requirements of the most
common display devices. The following versions of each icon are included in each file:

32x32 4 bpp (16 color)
40x40 4 bpp (16 color)
32x32 1 bpp (black and white)
20x20 1 bpp (black and white)
16x16 1 bpp (black and white)

The 32x32 versions are designed for VGA displays and for device-independent use.

The 40x40 version is for 8514/A and XGA displays.

The 20x20 and 16x16 are half-size icons designed for use as mini-icons.

For general bit maps, which may be of arbitrary size, the preferred version is one matching the
requested bit map size; otherwise one matching the display size is selected. If neither is available,
the device-independent version is used from which to scale a bit map.

For both formats, the definition consists of two sections. The first section contains general
information about the type, dimensions, and other attributes of the resource. The second section
contains data describing the pels that make up the bit map(s), and is in the format specified in
"Bit-Map Data" on page D-1.

In the multiple-version format, the first section contains an array of BITMAPARRAYFILEHEADER
structures. or BITMAPARRAYFILEHEADER2 structures. The format of these is as follows:

typedef struct _BITMAPARRAYFILEHEADER { /* bafh */
USHORT us Type;
ULONG cbSize;
ULONG offNext;
USHORT cxDisplay;
USHORT cyDisplay;
BITMAPFILEHEADER bfh;

} BITMAPARRAYFILEHEADER;
typedef BITMAPARRAYFILEHEADER *PBITMAPARRAYFILEHEADER;

typedef struct _BITMAPARRAYFILEHEADER2 { /* bafh */
USHORT us Type;
ULONG cbSize;
ULONG offNext;
USHORT cxDisplay;
USHORT cyDisplay;
BITMAPFILEHEADER2 bfh2;

} BITMAPARRAYFILEHEADER2;
typedef BITMAPARRAYFILEHEADER2 *PBITMAPARRAYFILEHEADER2;

D-2 PM Programming Reference

)

The fields in BITMAPARRAYFILEHEADER and BITMAPARRAYFILEHEADER2 have these meanings:

us Type

cbSlze

off Next

cxDlsplay, cyDlsplay

Type of structure. This is:

BFT_BITMAPARRAY (X'4142' - 'BA' for BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2)

Size of the BITMAPARRAYFILEHEADER or BITMAPARRAYFILEHEADER2
structure in bytes.

Offset of the next BITMAPARRA YFILEHEADER or
BITMAPARRAYFILEHEADER2 structure from the start of the file

Pel dimensions of the device for which this version is intended (for
example, 640 x 480 for VGA).

The device-independent version must be the first BITMAPARRAYFILEHEADER or
BITMAPARRAYFILEHEADER2 defined.

In the single-size format, the BITMAPARRAYFILEHEADER or BITMAPARRAYFILEHEADER2 structure
is not present. The definition consists of one or two BITMAPFILEHEADER or BITMAPFILEHEADER2
structures.

The format of the BITMAPFILEHEADER and BITMAPFILEHEADER2 structure is :

typedef struct _BITMAPFILEHEADER { /* bfh */
USHORT us Type;
ULONG cbSize;
SHORT xHotspot;
SHORT yHotspot;
ULONG offBits;
BITMAPINFOHEADER bmp;

} BITMAPFILEHEADER;
typedef BITMAPFILEHEADER *PBITMAPFILEHEADER;

typedef struct _BITMAPFILEHEADER2 { /* bfh2 */
USHORT us Type;
ULONG cbSize;
SHORT xHotspot;
SHORT yHotspot;
ULONG offBits;
BITMAPINFOHEADER2 bmp2;

} BITMAPFILEHEADER2;
typedef BITMAPFILEHEADER2 *PBITMAPFILEHEADER2;

BITMAPINFOHEADER2 is a standard data type (see above, and also BITMAPINFOHEADER2).

The fields in BITMAPFILEHEADER and BITMAPFILEHEADER2 have these meanings:

us Type

cbSlze

xHotspot, yHotspot

off Bits

Type of resource the file contains. The valid values are:

BFT_BMAP (X 14042 1
- 'BM' for bit maps)

BFT_ICON (X'4349' - 'IC' for icons)
BFT_POINTER (X'5450' - 'PT' for pointers).
BFT_COLORICON (X'4943' - 'Cl' for color icons).
BFT_COLORPOINTER (X 15043 1

- 'CP' for color pointers).

Size of the BITMAPFILEHEADER or BITMAPFILEHEADER2 structure in
bytes.

Coordinates of the hotspot for icons and pointers. This field is ignored for
bit maps.

Offset in bytes to the beginning of the bit-map pel data in the file, from the
start of the definition.

Appendix D. Standard Bit-Map Formats D-3

For icons and pointers, the cy field in bmp is actually twice the pel height of the imag~ that appears
on the screen. This is because these types actually contain two full bit-map pel definitions. The first
bit-map definition is the XOR mask, which contains invert information (0 = no invert, 1 = invert) for
the pointer or icon. The second is the AND mask, which determines whether the pointer or the
screen is shown (0 = black/white, 1 = screen/inverse screen).

For color icons or pointers, there are two bit-maps involved: one that is black and white and consists
of an AND and an XOR mask, and one that is color that defines the color content.

The cy field in the BITMAPINFOHEADER2 structure for the color bit-map must be the real height, that
is, half the value specified for the black and white bit-map. The ex fields must be the same.

The following table shows how these two bit-maps are used for a color icon or pointer:

XOR AND COLOR
1 1 x Invert screen
e e x Use color x
e 1 x Transparency
1 e x Use color x

For color icons or pointers, two BITMAPFILEHEADER or BITMAPFILEHEADER2 structures are
therefore required:

BITMAPFILEHEADER2 with usType BFT_COLORICON or BFT_COLORPOINTER
BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2 with same usType

**

BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

bits for one bit-map
**
**
bits for other bit-map
**

The usType for the first BITMAPFILEHEADER2 is either BFT_COLORICON or BFT_COLORPOINTER.
This means that a second BITMAPFILEHEADER2 is present as part of the definition of a color icon or
pointer. The first BITMAPFILEHEADER2 structure contains the information for the black and white
AND and XOR masks, while the second BITMAPFILEHEADER2 structure contains the information for
the color part of the pointer or icon.

BITMAPFILEHEADER and BITMAPINFOHEADER can occur in place of BITMAPFILEHEADER2 and
BITMAPINFOHEADER2 in this example.

For the multiple version format, the file is as follows:

BITMAPARRAYFILEHEADER2 for device-independent version
BITMAPFILEHEADER2 (part of BITMAPARRAYFILEHEADER2)

BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2
BITMAPINFOHEADER2
Color table

only if this is a color icon or pointer

BITMAPARRAYFILEHEADER2 for first device-dependent version
BITMAPFILEHEADER2 (part of BITMAPARRAYFILEHEADER2)

BITMAPINFOHEADER2 (part of BITMAPFILEHEADER2)
Color table

BITMAPFILEHEADER2
BITMAPINFOHEADER2
Color table

D-4 PM Programming Reference

only if this is a color icon or pointer

\
/

Further BITMAPARRAYFILEHEADER2 groups occur here as required
for additional device-dependent versions

**
bits for one bit-map
**
**
bits for next bit-map
**

And so on for as many bit-maps as necessary.

As before, BITMAPARRAYFILEHEADER, BITMAPFILEHEADER and BITMAPINFOHEADER can occur
in place of BITMAPARRAYFILEHEADER2, BITMAPFILEHEADER2 and BITMAPINFOHEADER2.

Appendix D. Standard Bit-Map Formats D-5

D-6 PM Programming Reference

\
)

)

Appendix E. Fonts Supplied with OS/2

OS/2 Outline Fonts
The following Adobe** Type 1 fonts are supplied with OS/2*:

Famlly Name Face Name

Times New Roman·· Times New Roman
Times New Roman Bold
Times New Roman Bold Italic
Times New Roman Italic

Helvetica·· Helvetica
Helvetica Bold
Helvetica Bold Italic
Helvetica Italic

Courier Courier
Courier Bold
Courier Bold Italic
Courier Italic

Symbol Symbol

The Courier, Tms Rmn, and Swiss family fonts that were supplied with OS/2 release 1.1 and 1.2 are

no longer supplied. Using one of the old names results in one of the new fonts listed above being

used, as follows:

Old Family/Face Name Font Used

Roman/Tms Rmn Times New Roman

Swiss/Helv Helvetica

These fonts are provided in an efficient binary format for use by the OS/2 Adobe Type Manager.

They are also provided in standard Type 1 format (PFB and AFM) for use with the OS/2 Postscript**

printer device driver.

Presentation Manager Bit Map F~nts
The following table lists all system bit map fonts available using the Graphics Programming

Interface. Additional device bit map fonts may be available on specific devices. The table also gives

the following information about each font:

Points

AveWld

This is the point size of the font, on a device whose resolution matches that of the font,

(see "Device" below).

This is the average width in pets of alphabetic characters weighted according to US

English letter frequencies.

•• Adobe and Postscript are Trademarks of Adobe Systems Incorporated

• Trademark of IBM Corporation

•• Times New Roman is a Trademark of Monotype

•• Helvetica is a Trademark of Linotype

Appendix E. Fonts Supplied with OS/2 E-1

Max Wid This is the maximum width in pels of all characters in the font. This field is not
necessarily the maximum width of any character in the code page. It could be used to
ensure that the horizontal space allocated on a display or printer is big enough to handle
any character.

Height This is the height in pels of the font. This is the minimum number of rows of pels needed
to output any character of the font on a given baseline. This field may be larger than
necessary for a given code page. It could be used to ensure that the vertical space
allocated on a display or printer is big enough to handle any character.

Device This is the X and Y resolution in pels per inch at which the font is intended to be used.

Family

Courier

System

Only those fonts which match the device resolution of the installed display driver are
available on the system. If the installed display is changed, the install process will
reinstall the proper font sets for the new adapter. The IBM devices whose device drivers
report these resolutions are:

96 x 48 CGA
96 x 72 EGA
96 x 96 VGA and XGA (in 640 x 480 mode)
120 x 120 8514/A and XGA (in 1024 x 768 mode)

Note: These values are approximate representations of the actual resolution, which in
the case of displays depends on which monitor is attached. Consequently the
point size of characters on the screen is also approximate.

Face Name Points AvWld Max Height Device
Wld

Courier 8 8 8 7 96x48

8 8 10 96x72

8 8 13 96x96

9 9 16 120x120

10 9 9 8 96x48

9 9 12 96x72

9 9 16 96x96

12 12 20 120x120

12 12 12 10 96x48

12 12 15 96x72

12 12 20 96x96

15 15 25 120x120

System Proportional 8 6 20 8 96x48
Proportional

10 6 20 12 96x96

10 6 20 16 96x96

10 8 23 20 120x120

11 10 23 23 120x120

System System Monospaced 8 8 8 8 96x48
Monos paced

10 8 8 12 96x72

10 8 8 16 96x96

10 9 9 20 120x120

Helv Helv 8 5 13 6 96x48

E-2 PM Programming Reference

\
/

Famlly

Tms Rmn

Face Name

Tms Rmn

Points

10

12

14

18

24

8

10

12

14

AvWld Max Height Device
Wld

5 13 10 96x72

5 13 13 96x96

6 14 16 120x120

6 15 8 96x48

6 14 12 96x72

6 14 16 96x96

7 20 20 120x120

7 17 10 96x48

7 17 15 96x72

7 17 20 96x96

9 21 25 120x120

8 21 12 96x48

8 21 18 96x72

8 21 24 96x96

11 26 29 120x120

11 26 15 96x48

10 26 22 96x72

11 26 29 96x96

13 34 36 120x120

14 35 19 96x48

14 35 28 96x72

14 35 37 96x96

18 45 46 120x120

4 12 6 96x48

4 13 10 96x72

4 12 13 96x96

5 14 16 120x120

6 15 8 96x48

5 14 12 96x72

5 14 16 96x96

7 19 20 120x120

7 18 10 96x48

6 18 15 96x72

6 16 19 96x96

8 23 23 120x120

7 21 11 96x48

7 21 16 96x72

7 20 21 96x96

10 26 27 120x120

Appendix E. Fonts Supplied with OS/2 E-3

Famlly Face Name Points AvWld Max Height Device
Wld

18 10 26 14 96x48

10 26 20 96x72

10 26 27 96x96

12 34 33 120x120

24 14 35 18 96x48

13 35 26 96x72

13 35 35 96x96

16 46 43 120x120

During system installation, the operating system determines the type of display adapter available on
your computer and installs only the fonts which match the device resolution.

If you change your display device after the operating system is installed, you may also have to install
the correct bit map fonts.

E-4 PM Programming Reference

Appendix F. The Font-File Format

The OS/2 font-file format consists of two sections. The first section contains the general attributes of
the font, and describes features such as its typeface, style, and nominal size. The second section
contains the actual definitions of the characters belonging to the font.

The font resource is a set of self-defining records of the form:

typedef struct _RECORD {
ULONG ulldentity;
ULONG ulSize;

/* structure identity code */
/* structure size in bytes */
/* data */

} RECORD;

A font starts with a special font-signature structure and ends with an ending structure. The font
signature has the form:

typedef struct _FONTSIGNATURE {
ULONG ulldentity;
ULONG ulSize;
CHAR achSignature [12]
} FONTSIGNATURE;

where:

ulldentity = X'FFFFFFFE'
ulSize = 2e
achSignature = "OS/2 FONT" for an OS/2 1.x format font, or

= "OS/2 FONT 2" for an OS/2 2.e format font.

A 2.0 format font includes additional font description information in the PANOSE structure. This
structure will be added to the end of the .FNT file (prior to the ENDFONT record).

The font end structure has the form:

typedef struct _ENDFONT{
ULONG ulldentity;
ULONG ulSize;
}ENDFONT

where:

ulldentity = X'FFFFFFFF'
ulSize = 8

All records should be in the order of their identity fields.

There are three or four records in a font resource between the font signature and the font end:

• The font metrics
• The font character definitions
• The pair kerning table.
• The PANOSE description (for "OS/2 FONT 2" fonts).

Following compilation, the records in the resource are in the order defined above.

Metric Information Contained in Fonts
This section gives an explanation of how to set the fields of the FOCAMETRICS structure when
developing:

• A bit map or outline font for general use by PM graphics applications

Appendix F. The Font-File Format F-1

• A description of a bit map or outline device font that is built in to a device or can be downloaded
to a device.

The following structure contains the physical font metrics used when creating fonts. It is defined in
the file \INCLUDE\PMFONT.H.

typedef struct _FOCAMETRICS {
ULONG ulldentity;
ULONG ulSize;
CHAR szFamilyname[32];
CHAR szFacename[32];
SHORT usRegistryld;
SHORT usCodePage;
SHORT yEmHeight;
SHORT yXHeight;
SHORT yMaxAscender;
SHORT yMaxDescender;
SHORT yLowerCaseAscent;
SHORT ylowerCaseDescent;
SHORT ylnternalleading;
SHORT yExternalleading;
SHORT xAveCharWidth;
SHORT xMaxCharlnc;
SHORT xEmlnc;
SHORT yMaxBaselineExt;
SHORT sCharSlope;
SHORT slnlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT xDeviceRes;
SHORT yDeviceRes;
SHORT usFirstChar;
SHORT uslastChar;
SHORT usDefaultChar;
SHORT usBreakChar;
SHORT usNominalPointSize;
SHORT usMinimumPointSize;
SHORT usMaximumPointSize;
SHORT fsTypeFlags;
SHORT fsDefn;
SHORT fsSelectionFlags;
SHORT fsCapabilities;
SHORT ySubscriptXSize;
SHORT ySubscriptYSize;
SHORT ySubscriptXOffset;
SHORT ySubscriptYOffset;
SHORT ySuperscriptXSize;
SHORT ySuperscriptYSize;
SHORT ySuperscriptXOffset;
SHORT ySuperscriptYOffset;
SHORT yUnderscoreSize;
SHORT yUnderscorePosition;
SHORT yStrikeoutSize;
SHORT yStrikeoutPosition;
SHORT usKerningPairs;
SHORT sFamilyClass;
PSZ pszDeviceNameOffset;

} FOCAMETRICS;

Note: FOCAMETRICS is a parallel structure with FONTMETRICS as returned to applications in the
GpiQueryFonts and GpiQueryFontMetrics function calls.

The FONTMETRICS fields are derived from FOCAMETRICS by the Presentation Manager graphics
engine. Most values are passed though unchanged. The exceptions are:

• The Identity field. This must be 1. This field is not a part of the FONTMETRICS structure.

F-2 PM Programming Reference

• The Size field. This must be set to the size of the FOCAMETRICS structure. This field is not a
part of the FONTMETRICS structure.

• The Codepage field. Ignore the description in FONTMETRICS, and use the following:

Place 850 in this field if the font is intended to support any PM supported code page. The list
of Presentation Manager supported code pages is given in Chapter 34, "Code Pages" on
page 34-1.

Place 65400 in this field if the font has special glyphs, for example if it is a Symbol font.

Place other valid code pages in this field if the font is specific to this code page.

Do not place other values in this field.

• FONTMETRICS fields which contain values in world coordinates. The corresponding field in
FOCAMETRICS should contain pel values for bit-map fonts, and notional units for outline fonts.

See FONTMETRICS on page A-52 for a detailed explanation of the fields.

Font Character Definitions
Two formats of font character definition are supported. These are:

Image format
The character glyphs are represented as pel images.

Outline format
The character glyphs are represented by vector data that traces the outline of the character.

Note: Intelligent Font Technology fonts (such as ATM Type-1 fonts) may be stored in a
technology specific format, and thus will not conform to this definition for outline fonts.

The definition consists of a header portion and a portion carrying the characters themselves.

The header portion contains information about the format of the character definitions and data about
each character including width data and the offset into the definition section at which the character
definition begins. (See "a-space, b-space, c-space" on page F-12.)

1. Proportional characters (a+ b + c = character increment) for each character:

a,b,c;;:::: O

2. Characters where a, b, and care definitions for all characters:

b;;:::: 0
a, c any integer

Raster fonts contain a "null character." The character definition record for this occurs after the one
for the last character. Thus the format has uslastChar+2 characters, although the null character is
not counted in the range returned. The null character is composed of zeros and is always eight pels
wide.

Appendix F. The Font-File Format F-3

Font Definition Header
This structure defines the format or the character definition records that follow it:

typedef struct_FONTDEFINITIONHEADER {
ULONG ulldentity;
ULONG ulSize;
SHORT fsFontdef;
SHORT fsChardef;
SHORT usCellSize;
SHORT xCellWidth;
SHORT yCellHeight;
SHORT xCelllncrement;
SHORT xCellA;
SHORT xCellB;
SHORT xCellC;
SHORT pCellBaseOffset;
} FONTDEFINITIONHEADER;

typedef FONTDEFINITIONHEADER FAR *PFONTDEFINITIONHEADER;

ulldentlty

ulSlze

fsFontdef

F-4 PM Programming Reference

4 bytes.

Must be equal to 2.

4 bytes.

Size of this structure in bytes.

2 bytes of flags.

Indicates which fields are present in the font definition data in the
header.

Type1

Bit O 1 = width defined in header
Bit 1 1 = height defined in header
Bit 2 1 = char increment same as width, so that it is

defined for the whole font
Bit 3 0 = a-space not defined
Bit 4 O = b-space not defined
Bit 5 0 = c-space not defined
Bit 6 1 = base offset same for all characters.

Type2

Bit 0 0 = width for each character unique
Bit 1 1 = height defined in header
Bit 2 0 = char increment same as width, so that it is

unique for each character
Bit 3 0 = a-space not defined
Bit 4 O = b-space not defined
Bit 5 0 = c-space not defined
Bit 6 1 = base offset same for all characters.

Type3

Bit 0 O = width for each character unique
Bit 1 1 = height defined in header
Bit 2 0 = char increment same as width, so that it is

unique
Bit 3 O = a-space not defined
Bit 4 O = b-space not defined
Bit 5 0 = c-space not defined
Bit 6 1 = base offset same for all characters.

FsChardef

\
/

usCellSize

xCellWidth

yCellHeight

2 bytes of flags.

Indicates which fields are present on a per character basis.

Type1

Bit O 1 = width defined for each character (performance
op)

Bit 1 0 = height is in header
Bit 2 0 = char increment is in header
Bit 3 O = a-space not defined
Bit 4 0 = b-space not defined
Bit 5 0 = c-space not defined
Bit 6 O = base offset defined in header
Bit 7 1 = offset to glyph defined.

Type2

Bit O 1 = width defined for each character
Bit 1 0 = height is in header
Bit 2 O = char increment same as width
Bit 3 O = a-space not defined
Bit 4 0 = b-space not defined
Bit 5 o = c-space not defined
Bit 6 O = base offset defined in header
Bit 7 1 = offset to glyph defined.

Type3

Bit 0 1 = width not defined, use a, b, c
Bit 1 O = height is in header
Bit 2 0 =char increment same as width
Bit 3 1 = a-space defined
Bit 4 1 = b-space defined
Bit 5 1 = c-space defined
Bit 6 0 = base offset defined in header
Bit 7 1 = offset to glyph defined.

2-byte integer.

Indicates the length in bytes of each character definition record
(the per character data).

Type 1 6 bytes
Type 2 6 bytes
Type 3 10 bytes.

2-byte integer

The width of the characters, in pels for image fonts, and relative
units for outline fonts.

Type 1
Type2
Type3

Width of the characters
Zero
Zero.

2-byte integer.

The height of the characters, in pels for image fonts, and relative
units for outline fonts.

Type 1
Type2
Type3

Height of the characters
Height of the characters
Height of the characters.

Appendix F. The Font-File Format F-5

xCelllncrement

xCellA

xCellB

xCellC

pCellBaseOflset

Character Definition Record

F-6 PM Programming Reference

2-byte integer.

The distance along the character baseline required to step from
one character to the next (when forming a character string).

Type 1
Type2
Type3

Width of the characters
Zero
Zero.

2-byte signed integer.

The width of the space before a character in the inline direction
(the a-space).

Type 1 Zero
Type 2 Zero
Type 3 a-space for all characters.

2-byte integer.

The width of a character (inline direction). The b-space.

Type 1
Type2
Type3

Zero
Zero
b-space for all characters.

2-byte signed integer.

The width of the space after a character in the inline direction (the
c-space).

Type 1
Type2
Type3

Zero
Zero
c-space for all characters.

2-byte signed integer.

The position of the top of a character definition relative to the
baseline in the direction perpendicular to the baseline.

Type 1
Type2
Type3

Baseline offset for al I characters
Baseline offset for all characters
Baseline offset for all characters.

xCellSize bytes per record.

The following fields may or may not be present, according to the
font character definition fields flags. If a field is present, it is
present for each character and the value applies to that character
only.

There are uslastChar + 2 such records for raster fonts. The final
one is for the null character.

• Character Definition Offset: 4-byte integer.

The offset into the Font File at which the character definition
begins.

Data for a single character raster or vector should not span
two segments; that is, if a character is too big to fit into a
segment it should be put in the next segment.

This field should be set to zero if the character being defined
is a blank character.

• Character Cell Width: 2-byte integer.

The width of the character definition in pels.

• Character Cell Height: 2-byte integer.

The height of the character definition in pels.

''\
)

• Character Increment: 2-byte integer.

The length along the character baseline required to step from
this character to the next (when forming a character string).

• Character a-space: 2-byte signed integer.

The width of the space before the character in the inline
direction.

• Character b-space: 2-byte integer.

The width of the character shape (inline direction).

• Character c-space: 2-byte signed integer.

The width of the space after the character in the inline
direction.

• Character Baseline Offset: 2-byte signed integer.

The position of the top of a character definition relative to the
baseline in the direction perpendicular to the baseline.

Note: Type 1 fonts have offset/width pairs (like type 2); however, the usCellSize and xCelllncrement
are nonzero. In the fsType field of the font metrics, the proportional-space flag, bit 0, is set.

Image Data Format
The bits for each character are stored separately, and start on a byte boundary. Sequential bytes
represent vertical pieces of the character image. For example, a 15-bit-wide His stored as follows:

byte byte

1 00000000.eee0000-. 13
2 01100000 0000110- 14
3 e11eeeee 00ee11e- 1s
4 01100000 0000110- 16
s 01100000 0000110- 11
6 01111111 1111110- 18
7 01111111 1111110- 19
a 01100e0e 0000110- 20
g 011e00e0 0000110- 21

10 01100000 0000110- 22
11 01100000 eeee11e- 23
12 e0eeeeee.eeeeeee-. 24

Notes:

Bytes 1 through 12 are composed of
whole bytes of data stored row by row.

Bytes 13 through 24 are composed of
bytes stored row by row, where each byte
contains 7 bits of information and the
last bit is unused.

Thus the character is laid down in
byte-wide columns.

1. There is always an additional (null) character defined in an Image Font (defined at character
position LastChar+2) which is 8 bits wide, the height of the font character, and set to all zeros.

2. The maximum size of each individual Image Font must not exceed 64KB.

Appendix F. The Font-File Format F-7

The Kerning Pair Table
The kerning pair table record is not present If the _KerningPairs record in the metrics is zero. If it is
present, the code points are words, not bytes. This table should be sorted by kpChar1 and kpChar2
order to allow binary searches.

typedef struct _KERNPAIRTABLE {
ULOi-tG u1 Identity;
ULONG ulSize;
CHAR cFirstpair;

}KERNPAIRTABLE;

typedef struct _KERNPAIRS {
SHORT sFirstChar;
SHORT sSecondChar;
SHORT sKerningAmount;

}KERNINGPAIRS;

where:

ulldentity
ulSize
sFirstChar
sSecondChar
sKerningAmount

= 3
= 10
= First character of the kerning pair
= Second character of the kerning pair
= Kerning value. Positive values increase the

inter-character spacing while negative values
bring the characters closer together.

Outline Data Format
Fonts defined by outlines (vectors) may contain any of these graphics orders:

• Line at given position (GLINE)
• Line at current position (GCLINE)
• Relative line at given position (GRUNE)
• Relative line at current position (GCRLINE)
• Fillet at given position (GFL T)
• Fillet at current position (GCFLT)
• Sharp fillet at given position (GSFL T)
• Sharp fillet at current position (GCSFLT)
• Bezier curve at given position (GBEZ)
• Bezier curve at current position (GCBEZ)
• No operation (GNOP1)
• Comment (GCOMT)
• End of symbol definition (GESD).

The maximum length of the data in these orders is 255 bytes. The drawing order code and the length
fields are not included in the length count.

The size of each outline font definition must not be longer than 64KB.

F-8 PM Programming Reference

:;,.,

\
)

)

The Additional Metrics
The additional metrics structure extends the metrics describing the font to include the PANOSE
fields. The fields allow for quantitative descriptions of the visual properties of font faces. The format
of the ADDITIONALMETRICS structure is:

typedef struct {
ULONG ulldentity;
ULONG ulSize;
PANOSE panose;

} ADDITIONALMETRICS;

where:

= 4
= 20

ulldentity
ulSize
panose = The ten digit PANOSE number with two bytes

of padding.

The PANOSE definition consists of ten digits, each of which describes one of up to sixteen variations.
The current digits are:

1. Family Kind (6 variations)

0 = Any
1 =No Fit
2 = Text and Display
3 =Script
4 = Decorative
5 = Pictorial

2. Serif Style (16 variations)

0 = Any
1 =No Fit
2 = Cove
3 = Obtuse Cove
4 = Square Cove
5 = Obtuse Square Cove
6 =Square
7 =Thin
8 = Bone
9 = Exaggerated
10 =Triangle
11 = Normal Sans
12 = Obtuse Sans
13 = Perp Sans
14 =Flared
15 = Rounded

3. Weight (12 variations)

0 = Any
1 =No Fit
2 = Very Light
3 = Light
4 =Thin
5 = Book
6 =Medium
7 =Demi
8 =Bold
9 =Heavy
10 =Black
11 =Nord

Appendix F. The Font-File Format F-9

4. Proportion (10 variations)

0 = Any
1 =No Fit
2 =Old Style
3 = Modern
4 =Even Width
5 = Expanded
6 = Condensed
7 = Very Expanded
8 = Very Condensed
9 = Monospaced

5. Contrast (10 variations)

0 = Any
1 =No Fit
2 = None
3 =Very Low
4 =Low
5 =Medium Low
6 =Medium
7 = Medium High
8 =High
9 =Very High

6. Stroke Variation (9 variations)

0 = Any
1 =No Fit
2 = Gradual/Diagonal
3 = Gradual/Transitional
4 = Gradual/Vertical
5 = Gradual/Horizontal
6 = Rapid/Vertical
7 = Rapid/Horizontal
8 = Instant/Vertical

7. Arm Style (12 variations)

0 = Any
1 =No Fit
2 = Straight Arms/Horizontal
3 = Straight Arms/Wedge
4 = Straight Arms/Vertical
5 = Straight Arms/Single Serif
6 = Straight Arms/Double Serif
7 = Non-Straight Arms/Horizontal
8 = Non-Straight Arms/Wedge
9 = Non-Straight Arms/Vertical
10 = Non-Straight Arms/Single Serif
11 = Non-Straight Arms/Double Serif

8. Letterform (16 variations)

0 = Any
1 =No Fit
2 = Normal/Contact
3 = Normal/Weighted
4 = Normal/Boxed
5 = Normal/Flattened
6 = Normal/Rounded
7 = Normal/Off Center
8 = Normal/Square
9 = Oblique/Contact
10 = Oblique/Weighted
11 = Oblique/Boxed
12 = Obi ique/Flattened

F-10 PM Programming Reference

I
I

13 = Oblique/Rounded
14 = Oblique/Off Center
15 = Oblique/Square

9. Midline (14 variations)

0 = Any
1 =No Fit
2 = Standard/Trimmed
3 = Standard/Pointed
4 = Standard/Serifed
5 = High/Trimmed
6 = High/Pointed
7 = High/Serifed
8 = Constant/Trimmed
9 = Constant/Pointed
10 = Constant/Serifed
11 = Low/Trimmed
12 = Low/Pointed
13 = Low/Serifed

10. X-height (8 variations)

0 = Any
1 =No Fit
2 = Constant/Small
3 = Constant/Standard
4 = Constant/Large
5 = Ducking/Small
6 = Ducking/Standard
7 = Ducking/Large

When using the PANOSE number to match fonts, the ordering of the PANOSE digit is the key to

finding the closest match. The most significant digit is the first digit, and the least significant digit is

number ten. To find matches, the digits need to be compared, in the order given. A font mapper may

want to change the precedence of the digits, to give higher weightings to other font features.

Font Directory
This section describes the directory section of a font resource. A font resource contains a directory

consisting of a set of structures each containing the metrics of a font and a pointer to the font itself.

This font directory is generated by the resource compiler.

The format of the font directory is:

typedef struct {
USHORT usHeaderSize;
USHORT usnFonts;
USHORT usiMETRICS;
FONTENTRY fntEntry[l];

} FONTDIRECTORY;

typedef struct {
USHORT us Index;
FONTFILEMETRICS metrics;

} FONTENTRY;

Where:

usHeaderSlze

usnFonts

usiMetrics

The size of the header, in bytes.

The number of fonts in the resource.

The size of the FOCAMETRICS structures that follow the header.
Note that the set of metrics for all the fonts in the resource follow
the header.

Appendix F. The Font-File Format F-11

us Index

metrics

The index of a particular font; an identifier assigned to the font
when the resource was created (defined in the .RC file).

The font metrics structure for the font. This is identical to a
FOCAMETRICS structure with the addition of the PANOSE fields to
the end.

Definitions of Terms Used When Describing Fonts
a-space, b-space, c-space
The a-space is the distance from the left of the character frame to the left edge of the character. The
b-space is the width of the character. The c-space is the distance from the right edge of the
character to the right of the character frame. Negative values of a and c allow adjacent character
frames to overlap. See also character increment, and space default values.

average char width
The average horizontal distance from the left edge of one character to the left edge of the next.
Contrast with max char increment.

baseline
The line on which the bottom of a character rests, and below which a descender extends.

break char code point
The code point of the space or break character. Contrast with default char code point, first char code
point, and last char code point.

character Increment
A set of three values (a-space, b-space, and c-space) that define the proportions of a character. The
sum of the three values (a+b+c) specifies only one value for the entire character increment. See
also font width and space default values.

character rotation
The angle by which each character is rotated around its own center, increasing clockwise from
vertical. Contrast with character slope and inline direction.

character slope
The angle by which a character is slanted, increasing clockwise from vertical. Contrast with
character rotation and inline direction.

default char code point
The code point of the character to be used if a code point outside the range of a font is passed to an
application using that font. Contrast with break char code point, first char code point, and last char
code point.

em height
The maximum distance above the baseline reached by an uppercase symbol. Contrast with x height.

external leading
The vertical distance from the bottom of one character to the top of the character below it. Contrast
with internal leading and max baseline extent.

first char code point
The code point of the first character. All numbers between the first char code point and the last char
code point must represent a character in the font. Contrast with break char code point, default char
code point, and last char code point.

fixed spacing
The same amount of space separates each character. Contrast with proportional spacing.

font weight
The line-thickness of a character relative to its size. Contrast with font width.

font width
The relative width of a character to its height; condensed fonts are very narrow while expanded fonts
are very wide. See also character increment. Contrast with font weight.

lnline direction
The angle of a line of type, increasing clockwise from horizontal. Contrast with character rotation
and character slope.

F-12 PM Programming Reference

\
)

Internal leading
The vertical distance from the top or bottom of a character to any accent marks that may appear with

it. Contrast with external leading.

last char code point
The code point of the last character. All numbers between the first char code point and the last char
code point must represent a character in the font. Contrast with break char code point, default char
code point, and first char code point.

lowercase ascent
The maximum distance above the baseline reached by any part of any lowercase character.
Contrast with maximum ascender and x height.

lowercase descent
The maximum distance below the baseline reached by any part of any lowercase character.
Contrast with maximum descender.

max baseline extent
The maximum space occupied by the font (typically, the sum of the maximum ascender and
maximum descender). Contrast with external leading and max char increment.

max char Increment
The maximum horizontal distance from the left edge of one character to the left edge of the next
character to the right. Contrast with average char width and max baseline extent.

maximum ascender
The maximum distance that any part of any character may extend above the x height of a font.
Contrast with lowercase ascent and maximum descender.

maximum descender
The maximum distance that any part of any character may extend below the x height of a font.
Contrast with lowercase descent and maximum ascender.

maximum vert point size
The maximum vertical dimensions to which a font can be resized. Contrast with minimum vert point
size and nominal vert point size.

minimum vert point size
The minimum vertical dimensions to which a font can be resized. Contrast with maximum vert point

size and nominal vert point size.

nominal vert point size
The normal display size of a font. Contrast with maximum vert point size and minimum vert point
size.

pel
The smallest element of a display surface that can be independently assigned color and density.

point
Printer's unit of measurement. There are 72 points to an inch (approximately 3.5 points to a
millimeter).

proportional spacing
The space that each character occupies is in proportion to its width. See also font width. Contrast
with fixed spacing.

Registry ID
A code number that Presentation Manager uses to register a font file as a resource.

space default values
Values that specify the space to be left between characters. Once defined, they are used for the
entire font, and do not have to be specified for each character. However, they can be changed for
characters that require more or less spacing than the defaults provide, by giving values for the a
Space and the c Space. See also character increment.

strikeout position
The distance of the strikeout character above the baseline (in pets). See also strikeout size and
underscore position.

strikeout size
The size of the strikeout character (in points). See also strikeout position and underscore size.

Appendix F. The Font-File Format F-13

subscript position
The distance of a subscript character of a font below the baseline (in pe/s). See also subscript size
and superscript position.

subscript size
The size of a subscript character (in points). See also subscript position and superscript size.

superscript position
The distance of a superscript character above the baseline (in pe/s). See also subscript position and
superscript size.

superscript size
The size of a superscript character (in points). See also subscript size and superscript position.

target dev resolution X
The number of pets per inch in the horizontal axis of a display device on which a font is to be
displayed. Contrast with target dev resolution Y.

target dev resolutlon Y
The number of pels per inch in the vertical axis of a display device on which a font is to be displayed.
Contrast with target dev resolution X.

underscore position
The distance in pels of the first underscore stroke from the baseline of a font. Successive strokes
below this create a heavier underscore. See also strikeout position and underscore size.

underscore size
The size of the underscore character measured in single strikeout strokes. See also strikeout size
and underscore position.

x height
The maximum distance above the baseline reached by a lowercase character. Contrast with em
height and lowercase ascent.

F-14 PM Programming Reference

Appendix G. Format of Interchange Files

A metafile is a file in which graphics are stored. The file is application-created, and it contains the
graphics orders generated from those GPI calls that are valid in a metafile. Metafiled graphics can
be reused by the application that created them. They can also be made available to other
applications at the same, or at a different, workstation.

This chapter describes the restrictions which apply when generating the metafile and gives detail of
the overall structure. For the graphics orders descriptions, see Chapter 33, "Graphics Orders" on
page 33-1.

Metafile Restrictions
The following restrictions apply to the generation of all metafiles, and also to the generation of a
PM_Q_STD print file to a OD_QUEUED device:

• If GpiWCBitBlt or GpiBitBlt is used to copy a bit map to a device context in an application, the
application should not delete that bit map handle with GpiDeleteBitmap before the device
context is closed (metafile is closed).

• GpiSetPS must not be used.

• GpiSetPageViewport is ignored.

The following section lists some general rules that must be followed when creating a metafile that is
to be acceptable to SAA-conforming implementations, or replayed into a presentation space that is in
draw-and-retain or retain mode (see GpiSetDrawingMode).

• These items must be established or defaulted before any drawing occurs to the graphics
presentation space, and not changed subsequently:

The graphics field (GpiSetGraphicsField). For an SAA-conforming metafile, the graphics
field must be defaulted or set to no clipping.
The code page for the default character set (GpiSetCp).
The color table or palette (GpiCreatelogColorTable or GpiCreatePalette). The size of the
color table must not exceed 31KB (KB equals 1024 bytes).
The default viewing transform (GpiSetDefaultViewMatrix).
The setting of the draw controls (GpiSetDrawControl). DCTL_DISPLAY must be defaulted or
set ON.
The default values of attributes (see GpiSetDefAttrs), viewing limits (see
GpiSetDeNiewinglimits), primitive tag (see GpiSetDefTag) and arc parameters (see
GpiSetDef ArcParams).

• These calls should not be used:

GpiBitBlt
GpiDeleteSetld {note that this means that local identifiers cannot be used again within the
picture)
GpiErase
GpiExcludeClipRectangle
GpilntersectCI ipRectangle
GpiOffsetClipRegion
GpiPaintRegion
GpiResetPS
GpiSetClipRegion
GpiSetPel
GpiSetPS
DevEscape {for an escape which is metafiled).

• GpiCreatelogFont must not redefine a local identifier that has previously been used within the
picture.

• The metafile context must not be reassociated.

Appendix G. Format of Interchange Files G-1

• If a bit map is used as the source of a GpiWCBitBlt operation, or as an area-fill pattern, it must
not be modified or deleted (GpiDeleteBitmap) before the metafile is closed.

• Only these foreground mixes must be used (see GpiSetMix):

FM_DEFAULT
FM_OR
FM_OVERPAINT
FM_LEAVEALONE.

• Only these background mixes must be used (see GplSetBackMlx):

BM_DEFAULT
BM_OVERPAINT
BM_LEAVEALONE.

• If palettes are used (see GpiCreatePalette), the palette that is metafiled is the one in force when
the metafile device context is dissociated from the (final) presentation space. If the palette is
changed during the course of the picture (using GpiSetPaletteEntries), it must therefore only be
with incremental additions.

Note: There is no restriction concerning the use of primitives outside segments. These are
metafiled in segment(s) with zero identifier.

Metafile Data Format
This section describes the format of the data in a metafile, as it would be stored in an OS/2 Version
2.0 disk file.

Metafile data is stored as a sequence of structured flelds. Each structured field starts with an
eight-byte header consisting of a two-byte length field and a three-byte Identifier field. These are
followed by a one-byte flags field and a two-byte segment sequence number field.

The length field contains a count of the total number of bytes in the structured field, including the
length field. The identifier field uniquely identifies the type of the structured field.

The flags and segment sequence number fields are always zero.

Following the header are positional parameters that are optional and dependent on the particular
structured field.

Following the positional parameters are non-positional parameters called triplets. These are
self-defining parameters and consist of a one-byte length field, followed by a one-byte Identifier field,
followed by the data of the parameter.

The length field contains a count of the total number of bytes in the triplet, including the length and
identifier fields. The identifier field identifies uniquely the type of the triplet.

A metafile is structured into a number of different functional components; for example, document and
graphics object. Each component comprises a number of structured fields, and is delimited by
"begin-component" and "end-component" structured fields. Structured fields marked as required,
inside an optional structured field bracket, are required if the containing bracket is present.

The graphics orders that describe a picture occur in the graphics data structured field. See page
G-16.

G-2 PM Programming Reference

'~
J

Structured Field Formats
The format of the various structured fields is given below:

Bealn Document

Structured Field Introducer (BDT): required
0-1 Length X'n+lE'
2-4 BOT X'D3A8A8'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-7 Document name C'0000 0001'
8 Architecture version X'00'
9 Document security X'00'

Triplets (all required)
0 Length X'05'
1 Triplet Id X'18'
2 Interchange set type X'03' (resource document)
3-4 Base set definition X'0C00' (level 12, version 0)

0 Length X'06'
1 Triplet Id X'01'
2-5 GCID

0 Length X'n+l'
1 Triplet Id X'65'
2-n Comnent, used for metafile description of

up to 252 bytes.

Bealn Resource Group <BRG): required

Structured Field Introducer
e-1 Length x•0010•
2-4 BRG X'D3A8C6'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-7 Resource group name C'0000 0002'

Begin Color Attribute <BCA> Table: required

Structured Field Introducer
0-1 Length X'0010'
2-4 BCA X'D3A877'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-7 Color table name C'0000 0004'

Appendix G. Format of Interchange Files G-3

Color Attribute Table (CAD: required

Structured Field Introducer
0-1 Length X1 n+8 1

2-4 CAT X1 D38077'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters

Base Part {required)
0 Flags

0 Reserved 8'0'
1 Reset

8101 Do not reset to default
81 11 Do reset to default

2-7 Reserved 8'000000'
1 Reserved X'00 1

2 LCTID X'00'

Element list(s) (triple generating) are
mutually-exclusive. One or other is required.

Element List {repeating)
0 Length of this parameter
1 Type X'01': element list
2 Flags X'00': reserved
3 Format

X'01' RGB
4-6 Starting Index

(Top Byte Truncated)
7 Size of RGB component! X108 1

8 Size of RGB component2 X'08 1

9 Size of RGB component3 X'08'
10 Number of bytes in each

following color triple X'04'
11-m Color triples

Triple Generating
0 Length of this parameter X'0A'
1 Type X'02 1

: bit generator
2 Flags

0 ABFlag
810' Normal

1-7 Reserved 810000000'
3 Format

X'01' RGB
4-6 Starting index (top byte truncated)
7 Size of RGB component! X108'
8 Size of RGB component2 X108'
9 Size of RGB component3 X'08'

End Color Attribute <ECAl Table: required

Structured Field Introducer
0-1 Length X'0010'
2-4 ECA X'D3A977'
5 Flags X'00'
6-7 Segment sequence number X10000'

Parameters
0-7 Color table name C10000 0004 1

G-4 PM Programming Reference

Bealn Image Oblect (BIM): optional. repeating

Structured Field Introducer
0-1 Length x•0010•
2-4 BIM X1 D3A8FB 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters
0-7 Image name C'xxxx xxxx•

Begin Resource Group <BRGl: optional

Structured Field Introducer
0-1 Length x•0010•
2-4 BRG X1 D3A8C6 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters
0-7 Resource group name C'xxxx xxxx•

Color Attribute Table fBCAl: optional

Structured Field Introducer
0-1 Length x•0010•
2-4 BCA X1 D3A877 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters
0-7 Color table name C'xxxx xxxx•

Color Attribute Table <CAD: required

Structured Field Introducer
0-1 Length
2-4 CAT X1 03B077 1

5 Flags x•00•
6-7 Segment sequence number X10000 1

Parameters

Base Part
0 Flags x•00•
1 Reserved X100 1

2 LUTIO

Element List (repeating)
0 Length of this parameter
1 Type X101 1

: element list
2 Flags X100 1

: reserved
3 Fonnat X'01': RGB
4-6 Starting index

(top byte truncated)
7 Size of RGB component! X1 88 1

8 Size of RGB component2 X188 1

9 Size of RGB component3 X188 1

10 Number of bytes in each
following color triple X103 1

11-n Color triples

Appendix G. Format of Interchange Files G-5

End Color Attribute Table <ECAl: required If BCA present

Structured Field Introducer
0-1 Length x•0010•
2-4 ECA X'D3A977'
s Flags x•00•
6-7 Segment sequence number x•aaea•

Parameters
0-7 Color Table name C'xxxx xxxx•

End Resource Group (ERG): required If BRG present

Structured Field Introducer
0-1 Length x•0e10•
2-4 ERG X'D3A9C6'
s Flags x•00•
6-7 Segment sequence number x•0000•

Parameters
0-7 Resource Group name C'xxxx xxxx•

Bealn Oblect Environment Group (BOG>: optional

Structured Field Introducer
0-1 Length x•0010•
2-4 BOG X'D3A8C7'
s Flags x•ee•
6-7 Segment sequence number x•0e00•

Parameters
0-7 Object environment group

name C'xxxx xxxx'

Map Color Attribute (MCA) Table: required

Structured Field Introducer
e-1 Length x•0e1A 1

2-4 MCA X1 D3AB77 1

s Flags x•e0•
6-7 Segment sequence number x•e0e0•

Parameters
0-1 Length

Triplet (required}
0 Length x•0c•
1 Triplet type:

fully qualified name X1 02 1

2 Type: ref to
Begin Resource Object X184 1

3 ID x•ee•
4-11 Color table name C1 xxxx xxxx'

lcid (required}
0 Length x•04•
1 Triplet type:

resource local ID X1 24 1

2 Type color table resource X1 07 1

3 Local identifier (LUT-ID) X18l 1

G-6 PM Programming Reference

~I
)

End Oblect Environment Group (EOG>: required II BOG present

Structured Field Introducer
0-1 Length x•0010•
2-4 EOG X1 03A9C7 1

5 Flags x•00•
6-7 Segment sequence number x•0000•

Parameters
0-7 Object Environment Group

name C1 xxxx xxxx•

Image Data Descriptor CIDDl: required

Structured Field Introducer
0-1 Length x•0011•
2-4 IDD X103A6FB 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters
0 Unit of measure:

x•00• tens of inches
X101' tens of centimeters

1-2 X resolution image points I UOM
3-4 Y resolution image points / UOM
5-6 X extent of image PS
7-8 Y extent of image PS

Image Picture Data CIPDl: required

Structured Field Introducer
0-1 Length
2-4 IPD X1 03EEFB 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters (all required and In this order, except that only one of Image LUT-ID and IDE
structure Is present)

Begin Segment
0 Type X170': begin segment
1 Length of following X1 00 1

Begin Image Content
0 Type X191 1

: Begin Image Content
1 Length of following X'01 1

2 Format X1 FF 1

Image Size
0 Type X194 1

: image size
1 Length of following X109'
2 Units of measure X102 1

: logical
3-4 Horizontal resolution
5-6 Vertical resolution
7-8 Height in pels
9-10 Width in pels

Image Encoding
0 Type X1 95 1

: image encoding
1 Length of following X102 1

2 Compression algorithm X1 03 1
: none

3 Recording algorithm X103 1
:

bottom-to-top

Image IDE-Size
0 Type X1 96 1

: image IDE-Size
1 Length of following X101 1

2 Number of bits per element

Appendix G. Format of Interchange Files G-7

Image LUT-10
(For bit maps with other than
24 bits per pel)

0 Type X1 97 1 Image LUT-ID
1 Length of following X1 01 1

2 LUT-ID

IDE Structure
(For bit maps with 24 bits per pel)

0 Type X1 9B 1
: IDE structure

1 Length of following X1 08 1

2 Flags:
0 ABFlag

8101 Nonnal (Additive)
1-7 Reserved 8 1 0000000•

3 Format
X1 01 1 RGB

4-6 Reserved x•000000•
7 Size of element 1
8 Size of element 2
9 Size of element 3

Image Picture Data <IPD>: required. repeating

Structured Field Introducer
0-1 Length
2-4 IPD X1 D3EEFB 1

5 Flags x•00•
6-7 Segment sequence number X1 0000 1

Parameters

Image Data
0-1 Type X'FE92': image data
2-3 Length of following
4-n Image data (scan lines of bit maps)

End Image Content
(required, only present in last
Image Picture Data)

0 Type X'93': End Image Content
1 Length of following x•00•

End Segment
(required, only present in last
Image Picture Data)

0 Type X1 71 1
: end segment

1 Length of following X'00'

End Image Oblect <EIMl: required If BIM present

Structured Field Introducer
0-1 Length x•0010•
2-4 EIM X'D3A9FB'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-7 Image name C'xxxx xxxx•

G-8 PM Programming Reference

\

Bealn Graphics Oblect fBGR>: required

Structured Field Introducer
0-1 Length X'0010'
2-4 BGR X'D3A8BB'
s Flags x•00•
6-7 Segment sequence number x•0000•

Parameters
0-7 Graphics object name C'0000 0007'

Bealn Oblect Environment Group fBOG>: optional

Structured Field Introducer
0-1 Length X'0010'
2-4 BOG X'D3A8C7'
s Flags x•0e•
6-7 Segment sequence number X'0000'

Parameters
0-7 Object Environment Group

name C'0000 0007'

Map Color Attribute Table fMCA>: required

Structured Field Introducer
0-1 Length X'0016'
2-4 MCA X'D3AB77'
s Flags x•0e•
6-7 Segment sequence number X'0000'

Parueters
0-1 Length

Triplet {required)
0 Length x•ec•
1 Triplet type:

fully qualified name X'02'
2 Type: ref to

Begin Resource Object X'84'
3 10 x•0e•
4-11 Color table name c•0000 0004'

Appendix G. Format of Interchange Files G-9

Map Coded Font <MCA: required. for default font

Structured Field Introducer
0-1 Length X'20'
2-4 MCF X'D3AB8A'
5 Flags X'00'
6-7 Segment sequence number X'0000'

Parameters
0-1 Length

Triplets (required)

Font name
0 Length x•0c•
1 Triplet type:

fully qualified name X'02'
2 Type: ref to coded font X'84'
3 ID X'00'
4-11 Coded font name: C'nnxx xxxx'

where n is X'FF'

lcid
0 Length X'04'
1 Triplet type:

Resource Local ID X'24'
2 Type: Coded Font Resource X'05'
3 Local identifier (LCID) X'00'

Font Binary GCID
0 Length X'06'
1 Triplet type: Font Binary GCID X'20'
2-5 GCID

Map Coded Font <MCA: optional. repeating. for loaded fonts

Structured Field Introducer
0-1 Length X'58'
2-4 MCF X'D3AB8A'
5 Flags X'00'
6-7 Segment sequence number X'0000'

Parameters
0-1 Length

Triplets (required)

Font name
0 Length X'0C'
1 Triplet type:

fully qualified name X'02'
2 Type: ref to coded font X'84'
3 ID x•00•
4-11 Coded font name

lcid
0 Length X'04'
1 Triplet type:

Resource Local ID X'24'
2 Type: coded font resource X'05'
3 Local identifier (LCID)

Font Attributes
0 Length X'14'
1 Triplet type:

Font Descriptor X'lF'
2 Weight Class
3 Width Class

G-10 PM Programming Reference

\,
I

/

4-5 Font Height
6-7 Char Width
8 Descript Flags
9 Usage Codes
10 Family
11 Activity Class
12 Font Quality
13-14 CAP Height
15-16 X Height
17-18 Line Density
19 Use Flags

Font Binary GCID
0 Length X'06'
1 Triplet type:

Font Binary GCID X'20'
2-5 GCID

Font Typeface
0 Length X'24'
1 Triplet type:

fully qualified name X'02'
2 Type: ref to font typeface X'08'
3 ID x•00•
4-35 Font typeface C1 xxx •• xxx 1

Map Data Resource <MDRl: optional. repeatlna

Structured Field Introducer
0-1 Length X'lD'
2-4 MOR X'D3ABC3'
5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-1 Length

Triplets (required)

Bit-map Name
0 Length X18C 1

1 Triplet type:

2
3
4-11

fully qualified name X'02'
Type: ref to Image Object X'84'
ID x•00•
Image name C'xxxx xxxx'

Extended Resource lcid
0 Length X'07'
1 Triplet type:

Extended Resource Local ID X'22'
2 Type: Image Resource X'10'
3-6 Bit-map handle

End Oblect Environment Group (EOG): reaulred If BOG present

Structured Field Introducer
0-1 Length x•0010•
2-4 EOG X1 03A9C7 1

5 Flags x•00•
6-7 Segment sequence number X'0000'

Parameters
0-7 Object Environment Group name C'0000 0007'

Appendix G. Format of Interchange Files G-11

Graphics Data Descriptor <GDDl: required

Structured Field Introducer
0-1 Length X'nnnn'
2-4 GOD X'D3A6BB'
s Flags x•00•
6-7 Segment sequence number x•0eee•

Par111eters (all required and in this order)

0 X1 F7 1 Specify GYM Subset
1 Length of following data X'07'
2 X'B0' drawing order subset
3-4 X'0000'
5 X123 1 Level 3.2
6 X1 01 1 Version 1
7 Length of following field X'01'
8 Coordinate types in data

X'04' lntel16
x•es• Intel32

0 X1 F6 1 Set Picture Descriptor
1 Length of following data
2 Flags

0 8101 Picture in 20
1 Picture Dimensions

8101 Not absolute (PU ARBITRARY PS)
8111 Absolute (example: PU_TWIPS PS)

2 Picture Elements
8101 Not pels
8111 Pels (PU_PELS PS)

(Bit 1 must also be set)
3-7 81 00000 1

3 X'00' Reserved
4 Picture frame size coordinate type

X'04' Intel16
X'05' Inte132

5 UnitsOfMeasure
X'00' Ten inches
X'01' Decimeter

6-11 or 6-17 (2 or 4 bytes) Resolution.
GPS Units I UOM on x axis
GPS Units I UOM on y axis
GPS Units I UOM on z axis

12-23 or 18-41 (2 or 4 bytes) Window Size.
GPS X left, X right
GPS Y bottom, Y top
GPS Z near, Z far

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Parameter Fonnat X1 08 1

3-4 Mask X'E000'
5 Names X18F 1

6 Coordinates
X'00' Picture in 20

7 Transfonns
X'04' Intel16
X1 05 1 Intel32

8 Geometrics
X'04' Intel16
X'05' Intel32

0 X'21' Set Current Defaults
1 Length of following data
2 Set default viewing transfonn X'07'
3-4 Mask x•cc0c•

G-12 PM Programming Reference

\

5 Names X18F 1

6-n Mll, Ml2, M21, M22, M41, M42 Matrix
elements

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set default line attributes X1 01 1

3-4 Mask - OR of as many of the following
bits as are required:
x•aeee• Line type
x•4eee• Line width
X1 2000 1 Line end
X1 1000 1 Line join
X10800 1 Stroke width
x•eeea• Line color
X10002 1 Line mix

5 Flags
X1 0F 1 Set indicated default

attributes to initial values.
(Data field is not present
in this instance).

X1 8F 1 Set indicated default attributes
to specified values.

6-n Data - data values as required, in the
following order if present.

No space is reserved for attributes for
which the corresponding mask flag was not set.
(1 byte) - Line type
(1 byte) - Line width
(1 byte) - Line end
(1 byte) - Line join
(G bytes) - Stroke width
(4 bytes) - Line color
(1 byte) - Line mix

(G=2 or 4 depending on the Geometrics
parameter of Set Default Parameter Fonnat)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Character Attributes X1 02 1

3-4 Mask - OR of as many of the following
bits as are required:
X18000 1 Character angle
X1 4000 1 Character box
X1 2000 1 Character direction
X1 1000 1 Character precision
x•eaee• Character set
X1 0400 1 Character shear
X10040 1 Character break extra
X10020 1 Character extra
x•eeea• Character color
X10004 1 Character background color
X10002 1 Character mix
X10001 1 Character background mix

5 Flags
X1 0F 1 Set indicated default attributes to initial values.

(Data field is not present in this case).
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(2*G bytes) - Character angle
(2*G + 4 bytes) - Character box
(1 byte) - Character direction
(1 byte) - Character precision
(1 byte) - Character set
(2*G bytes) - Character shear

Appendix G. Format of Interchange Files G-13

(4 bytes) - Character break extra
(4 bytes) - Character extra
(4 bytes) - Character color
(4 bytes) - Character background color
(1 byte) - Character mix
(1 byte) - Character background mix

(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Marker Attributes X103 1

3-4 Mask - OR of as many of the following bits as are required:
X14000 1 Marker box
X1 1000 1 Marker precision
x•eaee• Marker set
X10100 1 Marker symbol
X10008 1 Marker color
X'0004' Marker background color
X'0002' Marker mix
X'0001' Marker background mix

5 Flags
X'0F' Set indicated default attributes to initial values.

(Data field is not present in this instance)
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in this order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(2*G bytes) - Marker box
(1 byte) - Marker precision
(1 byte) - Marker set
(1 byte) - Marker symbol
(4 bytes) - Marker color
(4 bytes) - Marker background color
(1 byte) - Marker mix
(1 byte) - Marker background mix

(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Pattern Attributes X1 04 1

3-4 Mask - OR of as many of the following bits as are required:
X1 0800 1 Pattern set
X1 0100 1 Pattern symbol
X1 0080 1 Pattern reference point
x•eeea• Pattern color
X1 0004 1 Pattern background color
X1 0002 1 Pattern mix
X10001 1 Pattern background mix

5 Flags
X1 0F 1 Set indicated default attributes to initial values.

(Data field is not present in this instance)
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in this order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(1 byte) - Pattern set
(1 byte) - Pattern symbol
(2*G bytes) - Pattern reference point
(4 bytes) - Pattern color
(4 bytes) - Pattern background color
(1 byte) - Pattern mix
(1 byte) - Pattern background mix

(G=2 or 4 depending on the Geometrics parameter of Set Default
Parameter Format)

G-14 PM Programming Reference

\
)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Image Attributes X1 06 1

3-4 Mask - OR of as many of these bits as are required:
X10008 1 Image color
X1 0004 1 Image background color
X10002 1 Image mix
X1000l 1 Image background mix

5 Flags
X1 0F 1 Set indicated default attributes to initial values.

{Data field is not present in this instance)
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in this order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
{4 bytes) - Image color
{4 bytes) - Image background color
{1 byte) - Image mix
{1 byte) - Image background mix

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Viewing Window X1 05 1

3-4 Mask - OR of as many of the following bits as are required:
x•aeoo• x left limit
X1 4000 1 x right limit
x•2eoo• y bottom limit
X1 l000 1 y top limit

5 Flags
X1 0F 1 Set indicated default attributes to initial values.

{Data field is not present in this case).
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
(2*G bytes) - x left limit
{2*G bytes) - x right limit
(2*G bytes) - y bottom limit
{2*G bytes) - y top limit

{G=2 or 4 depending on the Geometrics parameter of Set
Default Parameter Format)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Arc Parameters X1 0B 1

3-4 Mask - OR of as many of the following bits as are required:
x•aoeo• p value
X1 4000 1 Q value
X1 2000 1 R value
X1 1000 1 s value

5 Flags
X1 0F 1 Set indicated default attributes to initial values.

{Data field is not present in this case).
X18F 1 Set indicated default attributes to specified values.

6-n Data - data values as required, in the following order if present.
No space is reserved for attributes for which the corresponding Mask
flag was not set.
{G bytes) - P value
{G bytes) - Q value
{G bytes) - R value
{G bytes) - S value

{G=2 or 4 depending on the Geometrics parameter of Set
Default Parameter Format)

0 X1 21 1 Set Current Defaults
1 Length of following data
2 Set Default Pick Identifier X1 0C 1

3-4 Mask - OR of as many of the following bits as are required:

Appendix G. Format of Interchange Files G-15

X18000 1 Pick identifier
5 Flags

X10F 1 Set indicated default attributes to initial values.
(Data field is not present in this case).

X18F 1 Set indicated default attributes to specified values.
6-n Data - data values as required, in the following order if present.

No space is reserved for attributes for which the corresponding Mask
flag was not set.
(4 bytes) - Pick identifier

0 X1 E7 1 Set Bit-map Identifier
1 Length of following data X107 1

2-3 Usage Flags x•a0ee•
4-7 Bit-map handle
8 Leid

Graphics Data <GAD>: optlonal. repeating

Structured Field Introducer
0-1 Length X1 n+9 1

2-4 GAD X1 D3EEBB 1

5 Flags x•0e•
6-7 Segment sequence number x•eeee•

Parameters (maximum length in one structured
field is 32759)

Graphics Segment (optional, repeating)
Segment data (including the Begin Segment
parameter) can be split at any point between
successive Graphics Data structured fields.
0 X1 70 1 Begin Segment
1 Length of following data X1 GE 1

2-5 Segment identifier
6 Segment attributes (1)

0 B1 l 1 Invisible
1 B1 l 1 Propagate invisibility
2 B1 l 1 Detectable
3 81 11 Propagate detectability
6 81 11 Dynamic
7 B1 l 1 Fast chaining

7 Segment attributes (2)
0 B1 l 1 Non-chained
3 B1 l 1 Prolog

8-9 Segment data length (low-order 2 bytes)
10-13 Reserved
14-15 Segment data length (high-order 2 bytes)
16-n Graphics orders (see page 33-1)

End Graphics Oblect CEGRl

Structured Field Introducer
e-1 Length x•0e1e•
2-4 EGR X1 D3A9BB 1

5 Flags X100 1

6-7 Segment sequence number X10000 1

Parameters
0-7 Graphics object name c•eee0 0007 1

G-16 PM Programming Reference

\

!
/

End Resource Group <ERG>: required

Structured Fteld Introducer
0-1 Length X'0010'
2-4 ERG X'D3A9C6'
5 Flags X'00'
6-7 Segment sequence number x•eeee•

Parneters
0-7 Resource Group name C'0000 0002'

End Document <EDD: required

Structured Field Introducer
0-1 Length X'0010'
2-4 EDT X'D3A9A8'
5 Flags X'00'
6-7 Segment sequence number X'0000'

Parneters
0-7 Document name C'0000 0001'

Appendix G. Format of Interchange Files G-17

G-18 PM Programming Reference

Appendix H. Initialization File Information

Initialization files include information about printers, queues, and system preferences set by the user
from the control panel. Applications can query this information by using the PrfQueryProfileData,
PrfQueryProfilelnt, PrfQueryProfileSize, and PrfQueryProfileString functions.

All data in initialization files is accessed by a two-level hierarchy of application name, and key name
within an application. Presentation Manager system data is keyed off "applications" that have
names starting with PM_.

The application name/key name combinations that applications may need to use are listed below,
together with the definition of the corresponding data.

Note: Information that is prefixed with PM_SPOOLERxxxx can not always be modified directly: The
spooler validates all attempts to write information to the INI file that it depends on.

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

"PM_ Control Panel"
"Beep"
integer
1or0.

"PM_ ControlPanel"
"LogoDisplayTime"
integer
-1~time~32767 milliseconds.

Indefinite display -1
No display O
Timed display >O

"PM_ National"
"iCountry"
integer
country code:

Arabic 785
Australian 61
Belgian 32
Canadian-French 2
Danish 45
Finnish 358
French 33
German 49
Hebrew 972
Italian 39
Japanese 81
Korean 82
Latin-American 3
Netherlands 31
Norwegian 47
Portuguese 351
Slmpl. Chinese 86
Spanish 34
Swedish 46
Swiss 41
Trad. Chinese 88
UK-English 44
US-English 1
Other country 0.

"PM_ National"
"iDate"
integer
O=MDY; 1=DMY;2=YMD.

Appendix H. Initialization File Information H-1

Appllcatlon name
Key name
Type
Content/valutp

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Application name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

"PM_National"
"iCurrency"
integer
Values have the following meanings:

0 Prefix, no separator
1 Suffix, no separator
2 Prefix, 1 character separator
3 Suffix, 1 character separator.

"PM_National"
"iDigits"
integer
n = number of decimal digits.

"PM_National"
"iTime"
integer
0 = 12-hour clock; 1 = 24-hour clock.

"PM_National"
"ilzero"
integer
0 = no leading zero; 1 = leading zero.

"PM_National"
"s1159"
string
"am" for example. 3 chars max.

"PM_National"
"s2359"
string
"pm" for example. 3 chars max.

"PM_National"
"sCurrency"
string
"$" for example. 3 chars max.

"PM_National"
"sThousand"
string
"," for example. 1 char max.

"PM_National"
"sDecimal"
string
"." for example. 1 char max.

"PM_National"
"sDate"
string
"/" for example. 1 char max.

"PM_National"
"sTime"
string
":"for example. 1 char max.

"PM_ National"
"slist"
string
"," for example. 1 char max.

PM_Fonts

string
fully-qualified drive:\path\filename.ext.

H-2 PM Programming Reference

'\
J

Appllcatlon name
Key name
Type
Content/value

Appllcatlon name
Key name
Type
Content/value

"PM_SPOOLER"
"QUEUE"
string
<Queue name>;

where:
• <Queue name> is the name of the default queue (might be NULL).

This must be a key name for the PM_SPOOLER_QUEUE application.

"PM_ SPOOLER"
"PRINTER"
string
<Printer name>;

where:
• <Printer name> is the name of the default printer (might be NULL).

Note: Use the SplQueryDevice and SplQueryQueue functions to retrieve the spooler configuration
data.

Appendix H. Initialization File Information H-3

H-4 PM Programming Reference

Appendix I. Virtual Key Definitions

The PC VKEY set is shown in the following table:

Symbol Personal Computer AT Enhanced Keyboard
Keyboard

VK_BUTTON1 These values are only used to These values are only used to

VK_BUTTON2 access the up/down and access the up/down and

VK_BUTTON3 toggled states of the pointing toggled states of the pointing

device buttons; they never device buttons; they never

actually appear in a actually appear in a
WM_CHAR message. WM_CHAR message.

VK_BREAK Ctrl + Scroll Lock Ctrl +Pause

VK_BACKSPACE Backspace Backspace

VK_TAB Tab Tab

VK_BACKTAB Shift+ Tab Shift+ Tab

VK_NEWLINE Enter Enter

VK_SHIFT * Left and Right Shift Left and Right Shift

VK_CTRL * Ctr I Left and Right Ctrl

VK_ALT * Alt Left and Right Alt

VK_ALTGRAF * None Alt Graf (if available)

VK_PAUSE Ctrl + Num Lock Pause

VK_CAPSLOCK Caps Lock Caps Lock

VK_ESC Esc Esc

VK_SPACE * Space Space

VK_PAGEUP * Numpad 9 Pg Up and Numpad 9

VK_PAGEDOWN * Numpad 3 Pg On and Numpad 3

VK_END * Numpad 1 End and Numpad 1

VK_HOME * Numpad 7 Home and Numpad 7

VK_LEFT * Numpad 4 Left and Numpad 4

VK_UP * Numpad 8 Up and Numpad 8

VK_RIGHT * Numpad 6 Right and Numpad 6

VK_DOWN * Numpad 2 Down and Numpad 2

VK_PRINTSCRN Shift+ Print Screen Print Screen

VK_INSERT * Numpad O Ins and Numpad 0

VK_DELETE * Numpad. Del and Numpad .

VK_SCRLLOCK Scroll Lock Scroll Lock

VK_NUMLOCK Num Lock Num Lock

VK_ENTER Shift + Enter Shift + Enter and Numpad
Enter

VK_SYSRQ SysRq Alt+ Print Screen

VK_F1 * F1 F1

VK_F2 * F2 F2

Appendix I. Virtual Key Definitions 1-1

VK_F3 * F3 F3

VK_F4 * F4 F4

VK_F5 * F5 F5

VK_F6 * F6 F6

VK_F7 * F7 F7

VK_F8 * F8 F8

VK_F9 * F9 F9

VK_F10 * F10 F10

VK_F11 * None F11

VK_F12 * None F12

VK_F13 None None

VK_F14 None None

VK_F15 None None

VK_F16 None None

VK_F17 None None

VK_F18 None None

VK_F19 None None

VK_F20 None None

VK_F21 None None

VK_F22 None None

VK_F23 None None

VK_F24 None None

VK_MENU * F10 F10

Notes:

1. VKEYs marked with an asterisk(*) are generated irrespective of other shift states (Shift, Ctrl, Alt,
and Alt Graf).

2. VK_CAPSLOCK is not generated for any of the Ctrl shift states, for PC-DOS compatibility.

3. Wherever possible, the VK_ name is derived from the legend on the key top of the 101-key
Enhanced PC keyboard.

1-2 PM Programming Reference

Glossary

A
accelerator. A single key stroke that invokes an
application-defined function.

accelerator table. Used to define which key strokes are
treated as accelerators and the commands they are
translated into.

access permission. All access rights that a user has
regarding an object.

action. One of a set of defined tasks that a computer
performs. Users request the application to perform an
action in several ways, such as typing a command,
pressing a function key, or selecting the action name
from an action bar or menu.

action bar. The area at the top of a window that contains
the choices currently available in the application
program.

action point. The current position on the screen at
which the pointer is pointing. (Contrast with hot spot and
input focus.)

active program. A program currently running on the
computer. See also interactive program, noninteractive
program, and foreground program.

active window. The window with which the user is
currently interacting.

address space. (1) The range of addresses available to
a program. (2) The area of virtual storage available for a
particular job.

alphanumeric video output. Output to the logical video
buffer when the video adapter is in text mode and the
logical video buffer is addressed by an application as a
rectangular array of character cells.

anchor block. An area of Presentation Manager-internal
resources allocated to a process or thread that calls
Win Initialize.

anchor point. A point in a window used by a program
designer or by a window manager to position a
subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface. The
formally-defined programming language that is between
an IBM application program and the user of the program.
See also GP/.

area. In computer graphics, a filled shape such as a
solid rectangle.

ASCII. American National Standard Code for
Information Interchange. A coded character set

consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communications systems,
and associated equipment.

ASCllZ. A string of ASCII characters that is terminated
with a byte containing the value 0.

aspect ratio. In computer graphics, the width-to-height
ratio of an area, symbol, or shape.

asynchronous. (1) Without regular time relationship. (2)
Unexpected or unpredictable with respect to the
execution of a program's instructions. See also
synchronous.

atom. A constant that represents a string. Once a string
has been defined as an atom, the atom can be used in
place of the string to save space. Strings are associated
with their respective atoms in an atom table. See also
integer atom.

atom table. Used to relate atoms with the strings that
they represent. Also in the table is the mechanism by
which the presence of a string can be checked.

attributes. Characteristics or properties that can be
controlled, usually to obtain a required appearance; for
example, the color of a line. See also graphics attributes
and segment attributes.

AVIO. Advanced Video Input/Output.

B
background color. The color in which the background of
a graphic primitive is drawn.

background mix. An attribute that determines how the
background of a graphic primitive is combined with the
existing color of the graphics presentation space.
Contrast with mix.

background program. In multiprogramming, a program
that executes with a low priority. Contrast with
foreground program.

Bezier curves. A mathematical technique of specifying
smooth continuous lines and surfaces, which require a
starting point and a~finishing point with several
intermediate points that influence or control the path of
the linking curve. Named after Dr. P. Bezi~•.

bit map. A representation in memory of the data
displayed on an APA device, usually the screen.

block. (1) A string of data elements recorded or
transmitted as a unit. The elements may be characters,
words, or logical records. (2) To combine two or more
data elements in one block.

border. A visual indication (for example, a separator
line or a background color) of the boundaries of a
window.

Glossary X-1

breakpoint. (1) An instruction in a program for halting
execution. Breakpoints are usually established at
positions in a program where halts, caused by external
intervention, are convenient for restarting. (2) A place in
a program, specified by a command or a condition,
where the system halts execution and gives control to
the workstation user or to a specified program.

bucket. One or more fields in which the result of an
operation is kept.

buffer. (1) A portion of storage used to hold input or
output data temporarily. (2) To allocate and schedule the
use of buffers.

button. A mechanism on a pointing device, such as a
mouse, used to request or initiate an action. Contrast
with pushbutton and radio button.

c
cache. A high-speed buffer storage that contains
frequently accessed instructions and data; it is used to
reduce access time.

cached micro presentation space. A presentation space
from a Presentation Manager-owned store of micro
presentation spaces. It can be used for drawing to a
window only, and must be returned to the store when the
task is complete.

call. (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point. (2) To
transfer control to a procedure, program, routine, or
subroutine.

calling order. A sequence of instructions together with
any associated data necessary to perform a call. Also
known as calling sequence.

cancel. An action that removes the current window or
menu without processing it, and returns the previous
window.

CASE statement. In C, provides the body of a window
procedure. There is one CASE statement for each
message type written to take specific actions.

cell. See character cell.

CGA. Color graphics adapter.

chained list. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonym for linked list.

character. A letter, digit, or other symbol.

character box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single character from a character
set. See also character mode. Contrast with character
cell.

character cell. The physical, rectangular space in which
any single character is displayed on a screen or printer
device. Position is addressed by row and column
coordinates. Contrast with character box.

X-2 PM Programming Reference

character code. The means of addressing a character in
a character set, sometimes called code point.

character mode. The character mode, in conjunction
with the font type, determines the extent to which
graphics characters are affected by the character box,
shear, and angle attributes.

check box. A control window, shaped like a square
button on the screen, that can be in a checked or
unchecked state. It is used to select one or more items
from a list. Contrast with radio button.

check mark. The symbol that is used to indicate a
selected item on a pull-down.

chlld process. A process that is loaded and started by
another process. Contrast with parent process.

chlld window. A window that is positioned relative to
another window (either a main window or another child
window). Contrast with parent window.

choice. An option that can be selected. The choice can
be presented as text, as a symbol (number or letter), or
as an icon (a pictorial symbol).

class. See window class.

class style. The set of properties that apply to every
window in a window class.

client area. The area in the center of a window that
contains the main information of the window.

clipboard. An area of main storage that can hold data
being passed from one PM application to another.
Various data formats can be stored.

clipping. In computer graphics, removing those parts of
a display image that lie outside a given boundary.

clip limits. The area of the paper that can be reached by
a printer or plotter.

clipping path. A clipping boundary in world-coordinate
space.

CLOCK$. Character-device name reserved for the
system clock.

code page. An assignment of graphic characters and
control-function meanings to all code points.

code point. Synonym for character code.

code segment. An executable section of programming
code within a load module.

color dithering. See dithering.

command. The name and parameters associated with
an action that a program can perform.

command area. An area composed of a command field
prompt and a command entry field.

command entry field. An entry field in which users type
commands.

"'\
/

command llne. On a display screen, a display line
usually at the bottom of the screen, in which only
commands can be entered.

command prompt. A field prompt showing the location
of the command entry field in a panel.

Common Programming Interface (CPI). A consistent set
of specifications for languages, commands, and calls to
enable applications to be developed across all SAA
environments. See also Systems Application
Architecture.

Common User Access (CUA). A set of rules that define
the way information is presented on the screen, and the
techniques for the user to interact with the information.

compile. To translate a program written in a
higher-level programming language into a machine
language program.

COM1, COM2, COM3. Character-device names reserved
for serial ports 1 through 3.

CON. Character-device name reserved for the console
keyboard and screen.

contiguous. Touching or joining at a common edge or
boundary, for example, an unbroken consecutive series
of storage locations.

control. The means by which an operator gives input to
an application. A choice corresponds to a control.

Control Panel. In PM, a program used to set up user
preferences that act globally across the system.

Control Program. The basic function of OS/2, including
DOS emulation and the support for keyboard, mouse,
and video input/output.

control window. A class of window used to handle a
specific kind of user interaction. Radio buttons and
check boxes are examples.

correlation. The action of determining which element or
object within a picture is at a given position on the
display. This follows a pick operation.

CPI. Common Programming Interface.

critical extended attribute. An extended attribute that is
necessary for the correct operation of the system or a
particular application.

CUA. Common User Access.

current position. The point from which the next primitive
will be drawn.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor indicates
where input from the device will be placed. Types of
cursors include text cursors, graphics cursors, and
selection cursors. Contrast with pointer and input focus.

D
data structure. (ISO) The syntactic structure of symbolic
expressions and their storage-allocation characteristics.

DBCS. See double-byte character set.

deadlock. (1) Unresolved contention for the use of a
resource. (2) An error condition in which processing
cannot continue because each of two elements of the
process is waiting for an action by, or a response from,
the other. (3) An impasse that occurs when multiple
processes are waiting for the availability of a resource
that will not become available because it is being held by
another process that is in a similar wait state.

debug. To detect, diagnose, and eliminate errors in
programs.

decipoint. In printing, one tenth of a point. There are 72
points in an inch.

default procedure. Function provided by the
Presentation Interface that may be used to process
standard messages from dialogs or windows.

default value. A value used when no value is explicitly
specified by the user. For example, in the graphics
programming interface, the default line-type is 'solid'.

descendant. A process or session that is loaded and
started by a parent process or parent session.

Desktop Manager. In PM, a window that displays a list
of groups of programs, each of which can be started or
stopped.

desktop window. The window, corresponding to the
physical device, against which all other types of windows
are established.

device context. A logical description of a data
destination such as memory, metafile, display, printer, or
plotter. See also direct device context, information
device context, memory device context, metafile device
context, queued device context, and screen device
context.

device driver. A file that contains the code needed to
attach and use a device such as a display, printer, or
plotter.

device space. Coordinate space in which graphics are
assembled after all GPI transformations have been
applied. Device space is defined in device-specific units.

dialog. The interchange of information between a
computer and its user through a sequence of requests by
the user and the presentation of responses by the
computer.

dialog box. A type of window that contains one or more
controls for the formatted display and entry of data. Also
known as a pop-up window. A modal dialog box is used
to implement a pop-up window.

Dialog Box Editor. A WYSIWYG editor that creates
dialog boxes for communicating with the application
user.

Glossary X-3

dialog Item .. A component (for example, a menu or a
button) of a dialog box. Dialog items are also used when
creating dialog templates.

dialog tag language. A markup language used by the
DTL compiler to create dialog objects.

dialog template. The definition of a dialog box, which
contains details of its position, appearance, and window
ID, and the window ID of each of its child windows.

direct device context. A logical description of a data
destination that is a device other than the screen (for
example, a printer or plotter), and where the output is
not to go through the spooler. Its purpose is to satisfy
queries. See also device context.

direct manlpulatlon. The action of using the mouse to
move objects around the screen. For example, moving
files and directories around in the File Manager.

direct memory access (DMA). The transfer of data
between main storage and input/output devices without
intervention by the processor.

directory. A type of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pel.

dithering. The process used in color displays whereby
every other pel is set to one color, and the intermediate
pels are set to another. Together they produce the effect
of a third color at normal viewing distances. This
process can only be used on solid areas of color; it does
not work on narrow lines, for example.

DMA. Direct memory access.

double-byte character set (DBCS). A set of characters in
which each character is represented by two bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more characters than can be represented
by 256 code points, require double-byte character sets.
Since each character requires two bytes, the entering,
displaying, and printing of DBCS characters requires
hardware and software that can support DBCS.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit.

dragging. In computer graphics, moving an object on
the display screen as if it were attached to the pointer.

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the pointing
device.

DTL. See dialog tag language.

dual-boot function. A feature of OS/2 that allows the
user to start DOS from within OS/2, or OS/2 from within
DOS.

duplex. Pertaining to communication in which data can
be sent and received at the same time. Synonymous
with full duplex.

X-4 PM Programming Reference

dynamic linking. The process of resolving external
references in a program module at load time or run time
rather than during linking.

dynamic-link library. A collection of executable
programming code and data that is bound to an
application at load time or run time, rather than during
linking. The programming code and data in a dynamic
link library can be shared by several applications
simultaneously.

dynamic-link module. A module that is linked at load
time or run time.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved from
one screen position to another without affecting the rest
of the displayed picture.

dynamic storage. (1) A device that stores data in a
manner that permits the data to move or vary with time
such that the specified data is not always available for
recovery. (2) A storage in which the cells require
repetitive application of control signals in order to retain
stored data. Such repetitive application of the control
signals is called a refresh operation. A dynamic storage
may use static addressing or sensing circuits. (3) See
also static storage.

E
EBCDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters (9 bits including parity check), used for
information interchange among data processing
systems, data communications systems, and associated
equipment.

EGA. Extended graphics adapter.

8.3 Ille-name format. A file-naming convention in which
file names are limited to eight characters before and
three characters after a single dot. Usually pronounced
"eight-dot-three." See also non-8.3 file-name format.

element. An entry in a graphics segment that comprises
one or more graphics orders and that is addressed by
the element pointer.

entry Held. An area on the screen, usually highlighted in
some manner, in which users type information.

entry-Held control. The means by which the application
receives data entered by the user in an entry field.
When it has the input focus, it displays a flashing pointer
at the position where the next typed character will go.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts, and explanatory text.

exception. An abnormal condition such as an 110 error
encountered in processing a data set or a file.

exclusive system semaphore. A system semaphore that
can be modified only by threads within the same
process.

\
\

J

exit. The action that terminates the current function and
returns the user to a higher level function. Repeated exit
requests return the user to the point from which all
functions provided to the system are accessible.
Contrast with cancel.

extended attribute. An additional piece of information
about a file object, such as its data format or category. It
consists of a name and a value. A file object may have
more than one extended attribute associated with it.

extended-choice selection. A mode that allows the user
to select more than one item from a window. Not all
windows allow extended choice selection. Contrast with
multiple-choice selection.

extended help. A facility that provides users with
information about an entire application panel rather than
a particular item on the panel.

extent. Continuous space on a disk or diskette that is
occupied by or reserved for a particular data set, data
space, or file.

F
family-mode application. An application program that
can run in the OS/2 environment and in the DOS
environment. However, it cannot take advantage of
many of the OS/2-mode facilities, such as multitasking,
interprocess communication, and dynamic linking.

FAT. File allocation table.

FEA. Full extended attribute.

field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used; the information is
dependent upon the context within the work session.

file. A named set of records stored or processed as a
unit.

file allocation table (FAT). In IBM personal computers, a
table used by the operating system to allocate space on
a disk for a file, and to locate and chain together parts of
the file that may be scattered on different sectors so that
the file can be used in a random or sequential manner.

file attribute. Any of the attributes that describe the
characteristics of a file.

File Manager. In PM, a program that displays
directories and files, and allows various actions on them.

file specification. The full identifier for a file, which
includes its drive designation, path, file name, and
extension.

file system driver (FSD). A program that manages file
110 and controls the format of information on the storage
media.

fillet. A curve that is tangential to the end points of two
adjoining lines. See also polyfillet.

flag. (1) An indicator or parameter that shows the
setting of a switch. (2) A character that signals the
occurrence of some condition, such as the end of a word.

focus. See input focus.

font. A particular size and style of typeface that contains
definitions of character sots, marker sets, and pattern
sets.

foreground program. The program with which the user
is currently interacting. Also known as interactive
program. Contrast with background program.

frame. The part of a window that can contain several
different visual elements specified by the application, but
drawn and controlled by PM. The frame encloses the
client area.

frame styles. Different standard window layouts
provided by PM.

FSD. File system driver.

full duplex. Synonym for duplex.

full-screen application. An application program that
occupies the whole screen.

function. (1) In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a call. (2) A set of related control
statements that cause one or more programs to be
performed.

function key. A key that causes a specified sequence of
operations to be performed when it is pressed, for
example, F1 and Alt-K.

function key area. The area at the bottom of a window
that contains function key assignments such as
F1=Help.

G
GOT. Global Descriptor Table.

general protection fault. An exception condition that
occurs when a process attempts to use storage or a
module that has some level of protection assigned to it,
such as 1/0 privilege level. See also /OPL code segment.

Global Descriptor Table (GOT). Defines code and data
segments available to all tasks in an application.

global dynamic-link module. A dynamic-link module that
can be shared by all processes in the system that refer
to the module name.

global file-name character. A special character used to
refer to a set of file objects with a common base name.
The asterisk (*) and question mark (?) are used as global
file-name characters. For example, *.EXE can be used to
refer to a set of files with the extension EXE.

glyph. A graphic symbol whose appearance conveys
information.

GPI. Graphics programming interface. The
formally-defined programming language that is between
an IBM graphics program and the user of the program.
See also AP/.

Glossary X-5

graphics. A picture defined in terms of graphic
primitives and graphics attributes.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type, and
shading-pattern definition. See also segment attributes.

graphics Held. The clipping boundary that defines the
visible part of the presentation-page contents.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any model
transforms have been applied. Also known as model
space.

graphic primitive. A single item of drawn graphics, such
as a line, arc, or graphics text string. See also graphics
segment.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a pull-down is
unavailable.

group. A collection of logically-connected controls. For
example, the buttons controlling paper size for a printer.
See also program group.

H
handle. An identifier that represents an object, such as
a device or window, to the Presentation Interface.

hard error. An error condition on a network that
requires either that the system be reconfigured, or that
the source of the error be removed before the system
can resume reliable operation.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message that
contains control information for the message, such as
one or more destination fields, name of the originating
station, input sequence number, character string
indicating the type of message, and priority level for the
message.

help. A function that provides information about a
specific field, an application panel, or information about
the help facility.

help index. A facility that allows the user to select topics
for which help is available.

help panel. A panel with information to assist users that
is displayed in response to a help request from the user.

help window. A Common User Access-defined
secondary window that displays information when the
user requests help.

heap. An area of free storage available for dynamic
allocation by an application. Its size varies according to
the storage requirements of the application.

hit testing. The means of identifying which window is
associated with which input device event.

hook. A mechanism by which procedures are called
when certain events occur in the system. For example,

X-6 PM Programming Reference

the filtering of mouse and keyboard input before it is
received by an application program.

hook chain. A sequence of hook procedures that are
"chained" together so that each event is passed, in turn,
to each procedure in the chain.

hot spot. The part of the pointer that must touch an
object before it can be selected. This is usually the tip of
the pointer. Contrast with action point.

I
Icon. A pictorial representation of an item the user can
select. Icons can represent items (such as a document
file) that the user wants to work on, and actions that the
user wants to perform. In PM, icons are used for data
objects, system actions, and minimized programs.

Icon area. In PM, the area at the bottom of the screen
that is normally used to display the icons for minimized
programs.

Icon Editor. The Presentation Manager-provided tool for
creating icons.

Image font. A set of symbols, each of which is described
in a rectangular array of pels. Some of the pels in the
array are set to produce the image of the symbol.
Contrast with outline font.

Information device context. A logical description of a
data destination other than the screen (for example, a
printer or plotter), but where no output will occur. Its
purpose is to satisfy queries. See also device context.

Information panel. A defined panel type characterized
by a body containing only protected information.

Input focus. The area of the screen that will receive
input from an input device (typically the keyboard).

Input router. An internal OS/2 process that removes
messages from the system queue.

Integer atom. A special kind of atom that represents a
predefined system constant and carries no storage
overhead. For example, names of window classes
provided by PM are expressed as integer atoms.

interactive graphics. Graphics that can be moved or
manipulated by a user at a terminal.

Interactive program. A program that is running (active)
and is ready to receive (or is receiving) input from the
user. Compare with active program and contrast with
noninteractive program.

Also known as a foreground program.

interchange file. Data that can be sent from one
Presentation Interface application to another.

interval timer. (1) A timer that provides program
interruptions on a program-controlled basis. (2) An
electronic counter that counts intervals of time under
program control.

IOCtl. A device-specific command that requests a
function of a device driver through the DosDevlOCtl
function.

1/0 operation. An input operation to, or output operation
from a device attached to a computer.

IOPL. Input/output privilege level.

IOPL code segment. An IOPL executable section of
programming code that enables an application to directly
manipulate hardware interrupts and ports without
replacing the device driver. See also privilege level.

J
Journal. A special-purpose file that is used to record
changes made in the system.

K
Kanjl. A graphic character set used in Japanese
ideographic alphabets.

KBDS. Character-device name reserved for the
keyboard.

kernel. The part of an operating system that performs
basic functions, such as allocating hardware resources.

kerning. The design of graphics characters so that their
character boxes overlap. Used to space text
proportionally.

keys help. A facility that gives users a listing of all the
key assignments for the current application.

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the segment.

language support procedure. Function provided by the
Presentation Interface for applications that do not, or
cannot (as in the case of COBOL and FORTRAN
programs), provide their own dialog or window
procedures.

LDT. Local Descriptor Table.

LIFO stack. A data stack from which data is retrieved in
last-in, first-out order.

linked llst. Synonym for chained list.

list box. A control window containing a vertical list of
selectable descriptions.

list panel. A defined panel type that displays a list of
items from which users can select one or more choices
and then specify one or more actions to work on those
choices.

load-on-call. A function of a linkage editor that allows
selected segments of the module to be disk resident
while other segments are executing. Disk resident
segments are loaded for execution and given control
when any entry point that they contain is called.

load time. The point in time at which a program module
is loaded into main storage for execution.

local area network (LAN). A data network located on the
user's premises in which serial transmission is used for
direct data communication among data stations.

Local Descriptor Table (LDT). Defines code and data
segments specific to a single task.

lock. A serialization mechanism by means of which a
resource is restricted for use by the holder of the lock.

LPT1, LPT2, LPT3. Character-device names reserved for
parallel printers 1 through 3.

M
main window. The window that is positioned relative to
the desktop window.

map. (1) A set of values having a defined
correspondence with the quantities or values of another
set. (2) To establish a set of values having a defined
correspondence with the quantities or values of another
set.

marker box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single marker from a marker set.

marker symbol. A symbol centered on a point. Graphs
and charts can use marker symbols to indicate the
plotted points.

maximize. A window-sizing action that makes the
window the largest size possible.

media window. The part of the physical device (display,
printer, or plotter) on which a picture is presented.

memory device context. A logical description of a data
destination that is a memory bit map. See also device
context.

memory management. A feature of the operating
system for allocating, sharing, and freeing main storage.

menu. A type of panel that consists of one or more
selection fields. Also called a menu panel.

message. (1) In PM, a packet of data used for
communication between the Presentation Interface and
windowed applications. (2) In a user interface,
information not requested by users but presented to
users by the computer in response to a user action or
internal process.

message filter. The means of selecting which messages
from a specific window will be handled by the
application.

message queue. A sequenced collection of messages to
be read by the application.

metafile. The generic name for the definition of the
contents of a picture. Metafiles are used to allow
pictures to be used by other applications.

metafile device context. A logical description of a data
destination that is a metafile, which is used for graphics
interchange. See also device context.

Glossary X-7

metalanguage. A language used to specify another
language. For example, data types can be described
using a metalanguage so as to make the descriptions
independent of any one computer language.

mickey. A unit of measurement for physical mouse
motion whose value depends on the mouse device driver
currently loaded.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function calls is
available.

minimize. A window-sizing action that makes the
window the smallest size possible. In PM, minimized
windows are represented by icons.

mix. An attribute that determines how the foreground of
a graphic primitive is combined with the existing color of
graphics output. Also known as foreground mix.
Contrast with background mix.

mixed character string. A string containing a mixture of
one-byte and Kanji or Hangeul (two-byte) characters.

mnemonic. A method of selecting an item on a
pull-down by means of typing the highlighted letter in the
menu item.

modal dialog bft. The type of control that allows the
operator to perform input operations on only the current
dialog box or one of its child windows. Also known as a
serial dialog box. Contrast with parallel dialog box.

modeless dialog box. The type of control that allows the
operator to perform input operations on any of the
application's windows. Also known as a parallel dialog
box. Contrast with modal dialog box.

model space. See graphics model space.

module definition flle. A file that describes the code
segments within a load module. For example, it
indicates whether a code segment is loadable before
module execution begins (preload), or loadable only
when referred to at run time (load-on-call).

mouse. A hand-held device that is moved around to
position the pointer on the screen.

MOUSES. Character-device name reserved for a mouse.

multiple-choice selection. A mode that allows users to
select any number of choices, including none at all. See
also check box. Contrast with extended-choice
selection.

multitasking. The concurrent processing of applications
or parts of applications. A running application and its
data are protected from other concurrently running
applications.

N
named pipe. A named buffer that provides
client-to-server, server-to-client, or full duplex
communication between unrelated processes. Contrast
with unnamed pipe.

noncritical extended attribute. An extended attribute
that is not necessary for the function of an application.

X-8 PM Programming Reference

nondestructive read. A read process that does not
erase the data in the source location.

non-8.3 file-name format. A file-naming convention in
which path names can consist of up to 255 characters.
See also 8.3 file-name format.

nonlnteractlve program. A program that is running
(active) but is not ready to receive input from the user.
Compare with active program, and contrast with
interactive program.

nonretalned graphics. Graphic primitives that are not
remembered by the Presentation Interface once they
have been drawn. Contrast with retained graphics.

NUL. Character-device name reserved for a nonexistent
(dummy) device.

null-terminated string. A string of (n + 1) characters
where the (n + 1)th character is the 'null' character
(X'OO'), and is used to represent an n-character string
with implicit length. Also known as 'zero-terminated'
string and 'ASCllZ' string.

0
object window. A window that does not have a parent,
but which may have child windows. An object window
cannot be presented on a device.

open. To start working with a file, directory, or other
object.

outline font. A set of symbols, each of which is created
as a series of lines and curves. Synonymous with vector
font. Contrast with image font.

output area. The area of the output device within which
the picture is to be displayed, printed, or plotted.

owner window. A window into which specific events that
occur in another (owned) window are reported.

owning process. The process that owns the resources
that may be shared with other processes.

p

page. A 4KB segment of contiguous physical memory.

page viewport. A boundary in device coordinates that
defines the area of the output device in which graphics
are to be displayed. The presentation-page contents are
transformed automatically to the page viewport in device
space.

paint. The action of drawing or redrawing the cont~l')ts
ofa window.

panel. A particular arrangement of information grouped
together for presentation to the user in a window.

panel area. An area within a panel that contains related
information. The three major Common User
Access-defined panel areas are the action bar, the
function key area, and the panel body.

\
)

panel body. The portion of a panel not occupied by the
action bar, function key area, title or scroll bars. The
panel body may contain protected information, selection
fields, and entry fields. The layout and content of the
panel body determine the panel type.

panel body area. The part of a window not occupied by
the action bar or function key area. The panel body area
may contain information, selection fields, and entry
fields. Also known as client area.

panel body area separator. A line or color boundary
that provides users with a visual distinction between two
adjacent areas of a panel.

panel definition. A description of the contents and
characteristics of a panel. A panel definition is the
application developer's mechanism for predefining the
format to be presented to users in a window.

panel ID. A panel element located in the upper left-hand
corner of a panel body that identifies that particular
panel within the application.

panel title. A panel element that identifies the
information in the panel.

paper size. The size of paper, defined in either standard
U.S. or European names (for example, A, B, A4), and
measured in inches or millimeters respectively.

parallel dialog box. See mode/ess dialog box.

parent process. A process that loads and starts other
processes. Contrast with child process.

parent window. The window relative to which one or
more child windows are positioned. Contrast with child
window.

partition. (1) A fixed-size division of storage. (2) On an
IBM personal computer fixed disk, one of four possible
storage areas of variable size; one may be accessed by
DOS, and each of the others may be assigned to another
operating system.

path. The part of a file specification that lists a series of
directory names. Each directory name is separated by
the backslash character. In the file specification
C:\MYFILES\MISC\GLOSSARY.SCR, the path consists of
MYFILES\MISC\.

pel. The smallest area of a display screen capable of
being addressed and switched between visible and
invisible states. Synonym for display point, pixel, and
picture element.

pick. To select part of a displayed object using the
pointer.

picture chain. See segment chain.

picture element. Synonym for pel.

PIO. Process identification.

pipe. A named or unnamed buffer used to pass data
between processes. A process reads from or writes to a
pipe as if the pipe were a standard-input or

standard-output file. See also named pipe and unnamed
pipe.

pixel. Synonym for pel.

plotter. An output device that uses pens to draw its
output on paper or on transparency foils.

PM. Presentation Manager.

pointer. (1) The symbol displayed on the screen that is
moved by a pointing device, such as a mouse. The
pointer is used to point at items that users can select.
Contrast with cursor. (2) A data element that indicates
the location of another data element.

POINTERS. Character-device name reserved for a
pointer device (mouse screen support).

pointing device. A device (such as a mouse) used to
move a pointer on the screen.

paintings. Pairs of x-y coordinates produced by an
operator defining positions on a screen with a pointing
device, such as a mouse.

polyflllet. A curve based on a sequence of lines. It is
tangential to the end points of the first and last lines, and
tangential also to the midpoints of all other lines. See
also fillet.

polyline. A sequence of adjoining lines.

pop. To~retrieve an item from a last-in-first-out stack of
items. Contrast with push.

pop-up window. A window that appears on top of
another window in a dialog. Each pop-up window must
be completed before returning to the underlying window.

Presentation Manager (PM). The visual component of
OS/2 that presents, in windows, a graphics-based
interface to applications and files installed and running
in OS/2.

presentation page. The coordinate space in which a
picture is assembled for display.

presentation space (PS). Contains the
device-independent definition of a picture.

primary window. The window in which the main dialog
between the user and the application takes place. In a
multiprogramming environment, each application starts
in its own primary window. The primary window remains
for the duration of the application, although the panel
displayed will change as the user's dialog moves
forward. See also secondary window.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print Job. The result of sending a document or picture to
be printed.

Print Manager. In PM, the part of the spooler that
manages the spooling process. It also allows users to
view print queues and to manipulate print jobs.

Glossary X-9

prlvllege level. A protection level imposed by the
hardware architecture of the IBM personal computer.
There are four privilege levels (number O through 3).
Only certain types of programs are allowed to execute at
each privilege level. See also IOPL code segment.

procedure call. In programming languages, a language
construct for invoking execution of a procedure.

process. An instance of an executing application and
the resources it is using.

progra"ll details. Information about a program that is
specified in the Program Manager window and is used
when the program is started.

program group. In PM, several programs that can be
acted upon as a single entity.

program name. The full file specification of a program.
Contrast with program title.

program tltle. The name of a program as it is listed in
the Program Manager window. Contrast with program
name.

prompt. A displayed symbol or message that requests
input from the user or gives operational information.
The user must respond to the prompt in order to
proceed.

protocol. A set of semantic and syntactic rules that
determines the behavior o functional units in achieving
communication.

pseudocode. An artificial language used to describe
computer program algorithms without using the syntax of
any particular programming language.

pull-down. An action bar extension that displays a list of
choices available for a selected action bar choice. After
users select an action bar choice, the pull-down appears
with the list of choices. Additional pop-up windows may
appear from pull-down choices to further extend the
actions available to users.

push. To add an item to a last-in-first-out stack of items.
Contrast with pop.

pushbutton. A control window, shaped like a
round-cornered rectangle and containing text, that
invokes an immediate action, such as 'enter' or 'cancel'.

Q

queue. A linked list of elements waiting to be
processed. For example, a queue may be a list of print
jobs waiting to be printed.

queued device context. A logical description of a data
destination (for example, a printer or plotter) where the
output is to go through the spooler. See also device
context.

X-10 PM Programming Reference

R
radio button. A control window, shaped like a round
button on the screen, that can be in a checked or
unchecked state. It is used to select a single item from
list. Contrast with check box.

RAS. Reliability, availability, and serviceability.

raster. (1) In computer graphics, a predetermined
pattern of lines that provides uniform coverage of a
display space. (2) The coordinate grid that divides the
display area of a display device.

read-only file. A file that may be read from but not
written to.

realize. To cause the system to ensure, wherever
possible, that the physical color table of a device is set to
the closest possible match in the logical color table.

recursive routine. A routine that can call itself or be
called by another routine called by the recursive routine.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. A word or phrase that is emphasized
in a device-dependent manner to inform the user that
additional information for the word or phrase is
available.

reference phrase help. Provides help information for a
selectable word or phrase.

refresh. To update a window, with changed information,
to its current status.

region. A clipping boundary in device space.

register. A storage device having a specified storage
capacity such as a bit, byte, or computer word, and
usually intended for a special purpose.

remote file system. A file-system driver that gains
access to a remote system without a block device driver.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators, and
mnemonics; the definitions are held in a resource file.

resource file. A file containing information used in the
definition of a window. Definitions can be of fonts,
templates, accelerators, and mnemonics.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Interface after they
have been drawn. Contrast with nonretained graphics.

return code. (1) A code used to influence the execution
of succeeding instructions. (2) A value returned to a
program to indicate the results of an operation
requested by that program.

reverse video. A form of alphanumeric highlighting for a
character, field, or cursor, in which its color is

';
':

)

exchanged with that of its background. For example,
changing a red character on a black background to a
black character on a red background.

RGB. Red-green-blue. For example, "RGB display".

roman. Relating to a type style with upright characters.

root segment. In a hierarchical database, the highest
segment in the tree structure.

run time. (1) Any instant at which a program is being
executed. (2) The time during which an instruction in an
instruction register is decoded and performed.

s
SAA. Systems Application Architecture.

scheduler. A computer program designed to perform
functions such as scheduling, initiation, and termination
of jobs.

screen. The physical surface of a work station or
terminal upon which information is presented to users.

screen device context. A logical description of a data
destination that is a particular window on the screen.
See also device context.

SCREEN$. Character-device name reserved for the
display screen.

scroll bar. A control window, horizontally or vertically
aligned, that allows the user to scroll additional data into
an associated panel area.

scrollable entry field. An entry field larger than the
visible field.

scrollable selection field. A selection field that contains
more choices than are visible.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears at
one edge, as existing data disappears at the opposite
edge.

secondary window. A type of window associated with
the primary window in a dialog. A secondary window
begins a secondary and parallel dialog that runs at the
same time as the primary dialog.

sector. An addressable subdivision of a track used to
record one block of program code or data on a disk or
diskette.

segment. See graphics segment.

segment attributes. Attributes that apply to the segment
as an entity, as opposed to the individual primitives
within the segment. For example, the visibility or
detectability of a segment.

segment chain. All segments in a graphics presentation
space that are defined with the 'chained' attribute.
Synonym for picture chain.

segment priority. The order in which segments are
drawn.

segment store. An area in a normal graphics
presentation space where retained graphics segments
are stored.

select. To mark or choose an item. Note that select
means to mark or type in a choice on the screen; enter
means to send all selected choices to the computer for
processing.

select button. The button on a pointing device, such as
a mouse, that is pressed to select a menu choice. Also
known as button 1.

selection cursor. A type of cursor used to indicate the
choice or entry field users want to interact with. It is
represented by highlighting the item that it is currently
positioned on.

selection field. A field containing a list of choices from
which the user can select one or more.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources.

separator. See panel body area separator.

serial dialog box. See modal dialog box.

serialization. The consecutive ordering of items.

serialize. To ensure that one or more events occur in a
specified sequence.

serlally reusable resource (SRR). A logical resource or
object that can be accessed by only one task at a time.

session. A routing mechanism for user interaction via
the console; a complete environment that determines
how an application runs and how users interact with the
application. OS/2 can manage more than one session at
a time, and more than one process can run in a session.
Each session has its own set of environment variables
that determine where OS/2 looks for dynamic-link
libraries and other important files.

shadow box. The area on the screen that follows mouse
movements and shows what shape the window will take
if the mouse button is released.

shared data. Data that is used by two or more
programs.

shared memory. Memory that is used by two or more
programs.

shear. The tilt of graphics text when each character
leans to the left or right while retaining a horizontal
baseline.

shell. (1) A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and touch-sensitive
screens, and communicate them to the operating system.
(2) Software that allows a kernel program to run under
different operating-system environments.

Shutdown. The procedure required before the computer
is switched off to ensure that data is not lost.

Glossary X-11

sibling processes. Child processes that have the same
parent process.

slbllng windows. Child windows that have the same
parent window.

slider box. An area on the scroll bar that indicates the
size and position of the visible information in a panel
area in relation to the information available. Also known
as thumb mark.

source file. A file that contains source statements for
items such as high-level language programs and data
description specifications.

source statement. A statement written in a
programming language.

specific dynamic-link module. A dynamic-link module
created for the exclusive use of an application.

spline. A sequence of one or more Bezier curves.

spooler. A program that intercepts the data going to
printer devices and writes it to disk. The data is printed
or plotted when it is complete, and the required device is
available. The spooler prevents output from different
sources from being intermixed.

stack. A list constructed and maintained so that the next
data element to be retrieved is the most recently stored.
This method is characterized as last-in-first-out (LIFO).

standard window. A collection of window elements that
form a panel. The standard window can include one or
more of the following window elements: sizing borders,
system menu icon, title bar, maximize/minimize/restore
icons, action bar and pull-downs, scroll bars, and client
area.

static control. The means by which the application
presents descriptive information (for example, headings
and descriptors) to the user. The user cannot change
this information.

static storage. (1) A read/write storage unit in which
data is retained in the absence of control signals. Static
storage may use dynamic addressing or sensing circuits.
(2) Storage other than dynamic storage.

style. See window style.

suballocation. The allocation of a part of one extent for
occupancy by elements of a component other than the
one occupying the remainder of the extent.

subdirectory. In an IBM personal computer, a file
referred to in a root directory that contains the names of
other files stored on the diskette or fixed disk.

swapping. (1) A process that interchanges the contents
of an area of real storage with the contents of an area in
auxiliary storage. (2) In a system with virtual storage, a
paging technique that writes the active pages of a job to
auxiliary storage and reads pages of another job from
auxiliary storage into real storage. (3) The process of
temporarily removing an active job from main storage,
saving it on disk, and processing another job in the area
of main storage formerly occupied by the first job.

switch. (1) An action that moves the input focus from
one area to another. This can be within the same

X-12 PM Programming Reference

window or from one window to another. (2) In a
computer program, a conditional instruction and an
indicator to be interrogated by that instruction. (3) A
device or programming technique for making a selection,
for example, a toggle, a conditional jump.

switch list. See Task List.

symbolic Identifier. A text string that equates to an
integer value in an include file, that is used to identify a
programming object.

synchronous. Pertaining to events or operations that
are predictable or occur at the same time. See also
asynchronous.

System Menu. In PM, the pull-down in the top left corner
of a window that allows it to be moved and sized with the
keyboard.

system queue. This is the master queue for all pointer
device or keyboard events.

Systems Application Architecture (SAA). A formal set of
rules that enables applications to be run without
modification in different computer environments.

T
tag. One or more characters attached to a set of data
that defines the formatting or other characteristics of the
set, including its definition.

Task List. In PM, the list of programs that are active.
The list can be used to switch to a program and to stop
programs.

template. An ASCII-text definition of an action bar and
pull-down menu, held in a resource file, or as a data
structure in program memory.

text. Characters or symbols.

text cursor. A symbol displayed in an entry field that
indicates where typed input will appear.

text window. Also known as the VIO window.

text-windowed application. The environment in which
the operating system performs advanced&hyphn.video
input and output operations.

thread. A unit of execution within a process. It uses the
resources of the process.

thumb mark. The portion of the scroll bar that describes
the range and properties of the data that is currently
visible in a window. Also known as a slider box.

tilde. A mark used to denote the character that is to be
used as a mnemonic when selecting text items within a
menu.

time slice. (1) An interval of time on the processing unit
allocated for use in performing a task. After the interval
has expired, processing-unit time is allocated to another
task, so a task cannot monopolize processing-unit time
beyond a fixed limit. (2) In systems with time sharing, a
segment of time allocated to a terminal job.

~­

)

title bar. The area at the top of a window that contains
the window title. The title bar is highlighted when that
window has the input focus. Contrast with panel title.

transaction. An exchange between a workstation and
another device that accomplishes a particular action or
result.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating, or translating. (2)
The object that performs or defines such a modification;
also referred to as a transformation.

Tree. In PM, the window in the File Manager that shows
the organization of drives and directories.

truncate. (1) To end a computational process in
accordance with some rule. (2) To remove the beginning
or ending elements of a string. (3) To drop data that
cannot be printed or displayed in the line width specified
or available. (4) To shorten a field or statement to a
specified length.

u
unnamed pipe. A circular buffer, created in memory,
used by related processes to communicate with one
another. Contrast with named pipe.

update region. A system-provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window, that are
visually invalid or incorrect, and therefore in need of
repainting.

user Interface. Hardware, software, or both that allows
a user to interact with and perform operations on a
system, program, or device.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user to
manage applications and files installed and running
under OS/2.

utlllty program. (1) A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.
(2) A program designed to perform an everyday task
such as copying data from one storage device to
another.

v
vector font. A set of symbols, each of which is created -
as a series of lines and curves. Synonymous with
outline font. Contrast with image font.

VGA. Video graphics array.

viewing pipeline. The series of transformations applied
to a graphic object to map the object to the device on
which it is to be presented.

viewing window. Clipping boundary that defines the
visible part of model space.

VIO. Video Input/Output.

virtual memory (VM). Addressable space that is
apparent to the user as the processor storage space, but
not having a fixed physical location.

virtual storage. Synonymous with virtual memory.

vlslble region. A window's presentation space, clipped
to the boundary of the window and the boundaries of any
overlying window.

volume. (1) A file-system driver that uses a block device
driver for input and output operations to a local or
remote device. (2) A portion of data, together with its
data carrier, that can be handled conveniently as a unit.

w
wild-card character. The global file-name characters
astei'isk (*) and question mark (?).

window. A rectangular area of the screen with visible
boundaries within which information is displayed. A
window can be smaller than or the same size as the
screen. Windows can appear to overlap on the screen.

window class. The grouping of windows whose
processing needs conform to the services provided by
one window procedure.

window coordinates. The means by which a window
position or size is defined; measured in device units, or
pels.

window procedure. Code that is activated in response
to a message. The procedure controls the appearance
and behavior of its associated windows.

window rectangle. The means by which the size and
position of a window is described in relation to the
desktop window.

window style. The set of properties that influence how
events related to a particular window will be processed.

workstation. A display screen together with attachments
such as a keyboard, a local copy device, or a tablet.

world coordinates. Application-convenient coordinates
used for drawing graphics.

world-coordinate space. Coordinate space in which
graphics are defined before transformations are applied.

WYSIWYG. What You See Is What You Get. A capability
that enables text to be displayed on a screen in the same
way it will be formatted on a printer.

z
z-order. The order in which sibling windows are
presented. The topmost sibling window obscures any
portion of the siblings that it overlaps; the same effect
occurs down through the order of lower sibling windows.

zooming. In graphics applications, the process of
increasing or decreasing the size of picture.

Glossary X-13

X-14 PM Programming Reference

\
)

Index

A
ABB_* values 5-405, 5-463
ACCEL A-1
accelerator table

copy 8-37
create 8-44
destroy 8-98
load 8-234
query 8-291
set 8-439
translate 8-550

ACCEL TABLE A-1
ACCEL TABLE statement 32-9
Access a DRAGINFO Structure 3-26
Access Drag Information 3-4
Add Atom 8-7
Add Switch Entry 8-9
Add Text to DDF Buffer 4-39
additional metrics F-9
addressing elements in arrays 1-5
alarm sound 8-11
Allocate DRAGINFO Structure 3-7
Allocate DRAGTRANSFER Structures 3-9
AM_* values 5-228, 5-401
Animate Palette 5-8
application-supplied functions 10-1
Applications

Windowed PM 34-1
Arabic text 5-435
arc

create 5-199
full 5-148, 5-189
partial 5-188
query parameters 5-226
set current parameters 5-398
set default parameters 5-460

Arc at a Given Position 33-3
Arc at Current Position 33-3
ARCPARAMS A-2
AREABUNDLE A-2
areas

begin construction 5-13
construction of interior 5-15
end construction 5-128

arrays
addressing elements in 1-5
convert 5-53, 5-55

ASCII 8-321, 8-459, 34-23
ASCII MIXED code pages 34-23
Associate 5-11
Associate Help Instance 8-13
ASSOCTABLE statement 32-10
ATOM A-2
attribute primitive type 5-404
attribute primitive types 5-462
attribute values

character 5-404, 5-462
image 5-405, 5-463
line 5-404, 5-462
marker 5-405, 5-463
pattern (area) 5-405, 5-463

attributes
character-set 5-443
color 5-453
cosmetic line width 5-498
foreground color mix 5-511
geometric line width 5-500
line type 5-495
line width 5-498
marker box 5-504
marker set 5-506
marker symbol 5-503
pattern 5-522
pattern set 5-526
query mode 5-228
restore saved 5-217
segment 5-539
set 5-404
set default 5-462
set line-end 5-491
set line-join 5-493
specify mode 5-401

ATTR_* values 5-304, 5-351, 5-488, 5-538

B
background

query color 5-231, 5-232
query color-mixing mode 5-232
query mix 5-232

BANDRECT A-2
BA_* values 5-13
BBO_* values 5-24, 5-113, 5-568
BOS_* values 13-3
Begin Area 5-13, 33-3
Begin Definition List 4-2
Begin Dragging Files 3-16
Begin Element 5-17, 33-4
Begin Image at Current Position 33-5
Begin Image at Given Position 33-5
Begin Paint 8-18
Begin Path 5-19, 33-5
Begin Window Enumeration 8-16
Bezier Curve at Current Poition 33-6
Bezier Curve at Given Position 33-6
Bezier splines, create 5-215
Bit Bit 5-23
bit maps

color 5-25, 5-114, 5-569
copy rectangle of image data 5-23, 5-567
create 5-71
data D-1
delete 5-90
draw 8-118
example D-1
file format D-2
get system 8-194
information tables D-1
load 5-161
monochrome 5-25, 5-114, 5-569
query bits 5-233
query device formats 5-280
query dimension 5-236

Index X-15

bit maps (continued)
query handle 5-239
query info-header 5-237
query number of local identifiers 5-329
query parameters 5-240
query set identifiers 5-359
set as currently selected 5-418
set bits 5-420
set identifier 5-425
standard formats D-1
transfer data from application storage 5-420

bit-map tag
delete 5-106

Bitblt 33-7
BITMAPINFO A-3
BITMAPINFOHEADER A-6
BITMAPINFOHEADER2 A-6
BITMAPINF02 A-3
bits

draw 5-112
BKM_CALCPAGERECT 25-4
BKM_DELETEPAGE 25-5
BKM_INSERTPAGE 25-6
BKM_INVALIDATETABS 25-7
BKM_QUERYPAGECOUNT 25-7
BKM_QUERYPAGEDATA 25-8
BKM_QUERYPAGEID 25-9
BKM_QUERYPAGESTYLE 25-10
BKM_QUERYPAGEWINDOWHWND 25-10
BKM_ QUERYSTATUSLINETEXT 25-11
BKM_ QUERYT ABBITMAP 25-12
BKM_QUERYTABTEXT 25-12
BKM_SETDIMENSIONS 25-13
BKM _ SETNOTEBOOKCOLORS 25-14
BKM_SETPAGEDATA 25-14
BKM_SETPAGEWINDOWHWND 25-15
BKM_SETSTATUSLINETEXT 25-16
BKM_SETTABBITMAP 25-16
BKM_SETTABTEXT 25-17
BKM_TURNTOPAGE 25-18
BKS_* values 25-1
BMSG_* values 8-20
BM_CLICK 13-5
BM_QUERYCHECK 13-6
BM_QUERYCHECKINDEX 13-6
BM_QUERYHILITE 13-7
BM_SETCHECK 13-7
BM_SETDEFAUL T 13-8
BM_SETHILITE 13-9
BM_* values 5-232, 5-415
BN_ * values 13-3
BOOKTEXT A-9
BOOKTEXT data structure A-9
BOOL A-9
Box 5-28

draw 5-28
Box at Current Position 33-8
Box at Given Position 33-8
Broadcast Message 8-20
BS_* values 13-1
BTNCDAT A A-9
button control data 13-2
button control styles 13-1
button control window processing 13-1
button filtering constants 8-183
BYTE A-10

X-16 PM Programming Reference

c
C language 1-1
Calculate Frame Rectangle 8-22
Call Message Filter 8-24
Call Segment 33-9
Call Segment Matrix 5-31
Cancel Shutdown 8-26
CAPS_* values 2-15
CATCHBUF A-10
CA_* values A-17

column headings A-19
drawing and painting A-18
icons or bit maps A-17
ordered target emphasis A-18
title attributes A-18
title position A-18
titles A-18

CBB_ *values 5-404, 5-462
CBM_HILITE 19-5
CBM_ISLISTSHOWING 19-5
CBM_SHOWLIST 19-6
CBM_ *values 5-71
CBN_ * values 19-3
CBS_* values 19-1
CCS_* values

selection types 24-3
styles 24-2

COATE A-10
CELL A-10
CFA_* values A-39

column attributes A-40
data types A-39
horizontal column heading position A-41
horizontal data position A-40
icon or bit map data A-40
prevention of direct editing of a column

heading A-40
vertical column heading position A-40
vertical data position A-40

CFI_ *flags 8-310
CFI_ * values 8-449
CF_* values 8-449, 28-4
chain

draw 5-117
chained attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Change Focus Window 8-160
Change Switch Entry 8-28
CHAR A-10
character

convert to uppercase 8-558
query angle 5-244
query box 5-246
query break extra 5-248
query direction 5-249
query extra 5-250
query mode 5-251
query set 5-252
query shear 5-253
query string positions 5-255
query string positions at 5-257
set angle 5-427
set box 5-430
set break extra 5-433
set direction 5-435
set extra 5-438

'\
/

)

character (continued)
set mode 5-440
set set 5-443
set shear 5-445

character attribute values 5-404, 5-462
character definitions

font F-3
character direction

Arabic text 5-435
Chinese text 5-435
Roman text 5-435

character set 1-6
Character String 5-34

draw at current position 5-34
draw at current position, with controls 5-39
draw at specified position 5-36
draw string at specified position, with controls 5-42

Character String At 5-36
Character String at Current Position 33-9
Character String at Given Position 33-9
Character String Extended at Current Position 33-10
Character String Extended at Given Position 33-10
Character String Move at Current Position 33-11
Character String Move at Given Position 33-11
Character String Position 5-39
Character String Position At 5-42
CHARBUNDLE A-11
CHDrRN_ * values 5-249, 5-435
check box 13-1
Check Menu Item 8-32
Check Message Filter Hook 10-5
CheckMsgFilterHook 10-5
Chinese text 5-435
CHS_* values 5-39, 5-42, 5-255, 5-257
class 9-1
CLASSDETAILS A-12
CLASSINFO A-11
clipboard 28-1

messages 28-1
query format information 8-310
query viewer window 8-313
set data 8-449

clipboard messages 28-1
clipping 5-528, G-1

segment chains 5-122
set path 5-448
set region 5-451

clipping boundary 5-486
clipping region 8-150
Close Clipboard 8-34
Close Device Context 2-2
Close Figure 5-45, 33-12
Close Profile 6-2
Close Segment 5-47
closed figure 5-20
CLR_ *values 5-76, 5-231, 5-262, 5-338, 5-412, 5-453
CMDSRC_* values 11-3, 12-27, 12-36, 12-63, 15-21
CM _ALLOCDET AILFIELDINFO 24-22
CM_ALLOCRECORD 24-23
CM_ARRANGE 24-24
CM_CLOSEEDIT 24-24
CM_COLLAPSETREE 24-25
CM_ERASERECORD 24-26
CM_EXPANDTREE 24-26
CM_FIL TER 24-27
CM_FREEDETAILFIELDINFO 24-28
CM_FREERECORD 24-29

CM_HORZSCROLLSPLITWINDOW 24-30
CM _INSERTDET AILFIELDINFO 24-30
CM_INSERTRECORD 24-31
CM_INVALIDATEDETAILFIELDINFO 24-33
CM_INVALIDATERECORD 24-33
CM_OPENEDIT 24-35
CM_PAINTBACKGROUND 24-35
CM_QUERYCNRINFO 24-36
CM_QUERYDETAILFIELDINFO 24-37
CM_QUERYDRAGIMAGE 24-38
CM_QUERYRECORD 24-39
CM_QUERYRECORDEMPHASIS 24-40
CM_ QUERYRECORDFROMRECT 24-41
CM_ QUERYRECORDINFO 24-42
CM_ QUERYRECORDRECT 24-43
CM_ QUERYVIEWPORTRECT 24-43
CM_REMOVEDETAILFIELDINFO 24-44
CM_REMOVERECORD 24-45
CM_SCROLLWINDOW 24-47
CM_SEARCHSTRING 24-48
CM_SETCNRINFO 24-49
CM_ SETRECORDEMPHASIS 24-50
CM_SORTRECORD 24-51
CM_* values 5-251, 5-427, 5-440
CNRDRAGINFO A-12
CNRDRAGINIT A-12
CNRDRAWITEMINFO A-13
CNREDITDATA A-14
CNREDITDATA data structure A-13
CNRINFO A-15
CN_BEGINEDIT 24-8
CN_COLLAPSETREE 24-9
CN_CONTEXTMENU 24-9
CN_DRAGAFTER 24-10
CN_DRAGLEAVE 24-11
CN_DRAGOVER 24-12
CN_DROP 24-13
CN_DROPHELP 24-14
CN_EMPHASIS 24-15
CN_ENDEDIT 24-15
CN_ENTER 24-16
CN_EXPANDTREE 24-17
CN_HELP 24-17
CN_INITDRAG 24-18
CN_KILLFOCUS 24-19
CN_QUERYDELTA 24-19
CN_REALLOCPSZ 24-20
CN_SCROLL 24-21
CN_SETFOCUS 24-21
CN_* values

described 24-8
code page

query 8-314
set 8-456

Code Page Change Hook 10-7
Code pages 34-1

ASCII 34-11
EBCDIC 34-16
Font support 34-4
OS/2 options for PM 34-3
OS/2 support for multiple 34-4

CodePageChangeHook 10-7
COLOR A-20
color palette 8-362
color table G-1

create 5-74
color table default values 5-76

Index X-17

colors
on monochrome devices 5-76
query 5-262
query data 5-264
query foreground mix mode 5-324
query index 5-266
query nearest 5-327
query real 5-343
query RGB 5-349
query system 8-362
set 5-453
set background 5-412
set system values 8-494

Combine Region 5-49
combo box control data 19-1
combo box control window processing 19-1
Comment 5-51, 33-12
Compare Strings 8-35
constant names 1-1
constants

button filtering 8-183
container control window processing

data structures 24-3
icon size, how determined A-17
mini-icon size, how determined A-17
notification codes 24-8
notification messages 24-4
purpose 24-1
styles and selection types 24-2
window messages 24-22
window words 24-1

container views A-16
contents and format of dialog template 32-19
control classes 11-2
control codes

Shift In (SI) 34-23
Shift Out (SO) 34-23

control data 32-22
Control Formatting 4-35
control statements

predefined 32-24
control window processing 11-2
CONVCONTEXT A-20
conventions
Convert 5-53
Convert with Matrix 5-55
coordinates

dialog 32-19
coordinates for dialogs 32-19
Copy Accelerator Table 8-37
Copy Metafile 5-57
Copy Rectangle 8-39
Correlate Chain 5-59
Correlate From 5-63
Correlate Segment 5-67
cosmetic line width

query 5-311
Counts Number of Items in Listbox 8-330
CPTEXT A-21
Create a Paragraph in DDF Buffer 4-24
Create Accelerator Table 8-44
Create Atom Table 8-46
Create Bit Map 5-71
Create Cursor 8-48
Create Dialog 8-50
Create Frame Controls 8-52
Create Help Instance 8-54

X-18 PM Programming Reference

Create Help Table 8-56
Create Logical Color Table 5-74
Create Logical Font 5-78
Create Menu 8-58
Create Message Queue 8-60
Create Palette 5-81
Create Pointer 8-64
Create Pointer Indirect 8-66
Create Presentation Space 5-84
Create Region 5-88
Create Standard Window 8-68
Create String Handle 3-5
Create Switch Entry 8-72
Create Window 8-74
Create Workplace Object 8-62
CREATESTRUCT A-21
CREA_* values 5-195
CRGN_ * values 5-49
CS_* values

window class styles 12-1
CTAB_* values 5-195
CTIME A-22
current position

move 5-173
query 5-269
set to specified point 5-458

cursor
create 8-48
destroy 8-101
hide 8-518
query information 8-316
show 8-518

CURSORINFO A-22
CURSOR_* values 8-48
CVR_* values 12-23
CVTC_* values 5-53
CV_* values

D

CNRINFO structure A-16
SEARCHSTRING structure A-115
view styles A-17

data
bit map D-1
get 5-150
put 5-223

data area in a dialog template 32-22
data format

image F-7
outline F-8

data types A-1
graphics orders 33-1
implicit pointer 1-5
storage mapping 1-6

DBCS 8-285
DBCS support 34-23

character-encoding schemes 34-23
DBM_* values 8-118
DB_* values 8-121
DCTL_* values 5-282, 5-474
DC_* values A-32
DDEF _*values 5-195
DDEINIT A-23
DDESTRUCT A-23
ODE_* values 30-1, 30-2, 30-3, A-23
DdfBeginlist 4-2

\~
\

/

DdfBitmap 4-5
DdfEndlist 4-8
DdfHyperText 4-10
Ddflnform 4-13
Ddflnitialize 4-15
Ddflistltem 4-18
DdfMetafile 4-21
Ddf Para 4-24
DdfSetColor 4-26
DdfSetFont 4-29
DdfSetFontStyle 4-32
DdfSetFormat 4-35
DdfSetTextAlign 4-37
DdfText 4-39
default colors 13-2, 14-2, 15-3, 16-1, 17-3, 19-2, 20-2,

22-2, 23-1
Default Dialog Procedure 8-85
default dialog processing 12-70
default graphics character box

query 5-275
default message processing 12-1
default view matrix

query 5-273
Default Window Procedure 8-89
default window processing 11-1
DEFAULTICON keyword 32-11
Define Hypertext Link 4-10
Define Inform Link 4-13
Define Text Alignment 4-37
Delete Atom 8-91
Delete Bit Map 5-90
Delete DRAGINFO String Handles 3-10
Delete Element 5-92
Delete Element Range 5-94
Delete Elements Between Labels 5-96
Delete Library 8-95
Delete Listbox Item 8-93
Delete Metafile 5-98
Delete Palette 5-100
Delete Procedure 8-96
Delete Segment 5-102
Delete Segments 5-104
Delete Set Identifier 5-106
Delete String Handle 3-11
DELETENOTIFY A-24
Deregister Workplace Object Class 8-97
DESKTOP A-24
Destroy Accelerator Table 8-98
Destroy Atom Table 8-99
Destroy Cursor 8-101
Destroy Help Instance 8-102
Destroy Message Queue 8-104
Destroy Pointer 8-107
Destroy Presentation Space 5-108
Destroy Region 5-110
Destroy Window 8-109
Destroy Window Hook 10-8
Destroy Workplace Object 8-106
DestroyWindowHook 10-8
detectability attribute for segments

modify (GpiSetSegmentAttrs) 5-539
DevCloseDC 2-2
DevEscape 2-4
DEVESC _ * values 2-4, 2-5
device characteristics

query 2-15
device context

device context (continued)
clear output display 5-136
close 2-2
create 2-9
open 2-9
open for a window 8-273
screen 8-128

DevOpenDC 2-9
DEVOPENSTRUC A-25
DevPostDeviceModes 2-12
DevQueryCaps 2-15
DevQueryDeviceNames 2-21
DevQueryHardcopyCaps 2-24
DEV_* values 2-2, 2-10
DFORM_ *values 5-150, 5-223
dialog

create 8-50
default procedure 8-85
dismiss 8-111
enumerate item 8-145
load 8-236
process modal 8-287
query item short 8-321
send message to item 8-435
set item short 8-459

dialog item
query text 8-323
query text length 8-325
set text 8-461

dialog points
map 8-259

Dialog Procedure 10-2
dialog processing 12-70

default 12-70
language support 12-83

dialog template
data-area information 32-22
format and contents 32-19
header information 32-20
item information 32-21

dialog window
destroy modal 8-111
hide modeless 8-111

DialogProc 10-2
dialogs

define procedure 10-2
Direct Manipulation for Files 3-2
direct manipulation messages 29-1
directives 32-4
Dismiss Dialog 8-111
Dispatch Message 8-113
dithered colors 5-327
dithering 5-327, 8-494
DLGC_* values 12-72
DLGTEMPLATE A-27
DLGTEMPLATE statement 32-16
DLGTITEM A-27
DM_DISCARDOBJECT 29-1
DM_DRAGERROR 29-2
DM_DRAGFILECOMPLETE 29-2
DM_DRAGLEAVE 29-3
DM_DRAGOVER 29-4
DM_DRAGOVERNOTIFY 29-5
DM_DROP 29-6
DM_DROPHELP 29-7
DM_EMPHASIZETARGET 29-7
DM_ENDCONVERSATION 29-8

Index X-19

DM_FILERENDERED 29-9
DM_PRINTOBJECT 29-9
DM_RENDER 29-10
DM_RENDERCOMPLETE 29-11
DM_RENDERFILE 29-12
DM_RENDERPREPARE 29-13
OM_* values 5-284, 5-477
double-byte character set 1-6
double-byte character sets 34-23
Down cursor key 8-547
DO_* Values

DRAGINFO data structure A-29
DRAGITEM data structure A-32

DPC errors 5-2
DPDM_* values 2-13
DP_* values 8-124
Drag 3-12
drag information

access 3-4
drag messages 29-1
DRAGIMAGE A-28
DRAGINFO A-29
DRAGITEM A-30
DRAGTRANSFER A-32
Draw Bit Map 8-118
Draw Bits 5-112
Draw Border 8-121
Draw Chain 5-117
Draw Dynamics 5-119
Draw From 5-121
draw mode 5-47
Draw Pointer 8-124
Draw Polygons 5-207
Draw Segment 5-123
Draw Text 8-126
Draw Tracking Rectangle 8-546
draw-and-retain mode 5-47
drawing mode

draw 5-126, 5-474, 5-478, 5-558
draw-and-retain 5-126, 5-287, 5-474, 5-478, 5-558
query 5-284
retain 5-126, 5-252, 5-287, 5-478, 5-558
set 5-477

drawing orders 33-1
drawing process check errors 5-2
ORF_* values A-31
DrgAcceptDroppedFiles 3-2
DrgAccessDraginfo 3-4
DrgAddStrHandle 3-5
DrgAllocDraginfo 3-7
DrgAllocDragtransfer 3-9
DrgDeleteDraginfoStrHandles 3-10
DrgDeleteStrHandle 3-11
DrgDrag 3-12
DrgDragFiles 3-16
DrgFreeDraginfo 3-19
DrgFreeDragtransfer 3-21
DrgGetPS 3-22
DrgPostTransferMsg 3-24
DrgPushDraginfo 3-26
DrgQueryDragitem 3-28
DrgQueryDragitemCount 3-30
DrgQueryDragitemPtr 3-31
DrgQueryNativeRMF 3-32
DrgQueryNativeRMFLen 3-34
DrgQueryStrName 3-36
DrgQueryStrNamelen 3-38

X-20 PM Programming Reference

DrgQueryTrueType 3-40
DrgQueryTrueTypelen 3-42
DrgReleasePS 3-44
DrgSendTransferMsg 3-45
DrgSetDraglmage 3-48
DrgSetDragitem 3-50
DrgSetDragPointer 3-53
DrgVerifyNativeRMF 3-55
DrgVerifyRMF 3-57
DrgVerifyTrueType 3-59
DrgVerifyType 3-61
DrgVerifyTypeSet 3-63
DRG_ * values A-29
DRIVDATA A-33
DRIVPROPS A-34
ORM_* values A-31
ORO_* values 5-28, 5-148
ORT_* values A-30
DTYP _ * values 8-408
OT_* values 8-127, 22-1
Dynamic Data Exchange Initiate (NLS) 8-78
dynamic data exchange messages 30-1
Dynamic Data Exchange Post Message (NLS) 8-80
Dynamic Data Exchange Respond (NLS) 8-83

E
EBCDIC MIXED code pages 34-23
edit mode

query 5-285
set 5-480

EDI_* values 8-145
EGA 2-19
Element 5-125

end 5-130
query 5-286

elements
delete 5-92
delete between labels 5-96
delete between range 5-94
offset pointer 5-177
query pointer 5-288
querytype 5-290
set pointer at label 5-484

Empty Clipboard 8-130
EM_CLEAR 14-4
EM_COPY 14-4
EM_CUT 14-5
EM_PASTE 14-5
EM_QUERYCHANGED 14-6
EM_QUERYFIRSTCHAR 14-7
EM_QUERYREADONLY 14-7
EM_QUERYSEL 14-8
EM_SETFIRSTCHAR 14-8
EM_SETINSERTMODE 14-9
EM_SETREADONL Y 14-10
EM_SETSEL 14-10
EM_SETTEXTLIMIT 14-11
Enable Control of Button Id 8-131
Enable Menu Item 8-132
Enable Physical Input 8-134
Enable Window Update 8-137
encapsulation 9-1
End Area 5-128, 33-13
End Definition List 4-8
End Element 5-130, 33-13
End Image 33-13

End of Symbol Definition 33-14
End Paint 8-141
End Path 5-132, 33-14
End Prolog 33-14
End Window Enumeration 8-139
ENDFONT structure F-1
Enter key 8-547
entry field control data 14-2
entry field control window processing 14-1
ENTRYFDAT A A-34
Enumerate Clipboard Formats 8-143
Enumerate Dialog Item 8-145
Enumerate Object Classes 8-147
EN_* values 14-3, 18-3
EQRGN_* values 5-134
Equal Rectangle 8-148
Equal Region 5-134
Erase 5-136
ERRINFO A-35
Error Segment Data 5-138
error severities 1-2
error state

get last one 8-178
error-information block 8-165
ERRORID A-35
errors

codes B-1
drawing process check 5-2
explanations C-1
get information 8-175
severities of 1-2

Esc key 8-547
Escape 2-4, 33-15
l!SCSETMODE A-35
ES_* dbcsvals 14-2
ES_* values 14-1
Exclude Clip Rectangle 5-140
Exclude Update Region 8-150
Extended Escape 33-15

F
FACENAMEDESC A-35
FATTRS A-36
FATTR_FONTUSE_* values A-38
FATTR_SEL_* values A-37
FATTR_TYPE_* values A-38
FCF _ * frame styles 8-424
FCF _*values 15-1
FC_ *values 8-160
FDATE A-38
FDM_ERROR 12-73
FDM_FILTER 12-74
FDM_VALIDATE 12-74
FDS_* values A-42
FFDESCS A-39
FFDESCS2 A-39
FF_* indicators 8-400
FF_* values 5-144
FID_* values 15-1, 23-1
FIELDINFO A-39
FIELDINFOINSERT A-41
FIELDINFOINSERT data structure A-41
file dialog 12-73
file format
file formats

bit maps D-2

file formats (continued)
icon file D-2
pointer D-2

FILEDLG A-42
FILEFINDBUF4 A-46
Fill Path 5-142, 33-16
Fill Rectangle 8-154
Fillet at Current Position 33-16
Fillet at Given Position 33-16
Find Atom 8-156
Find Word Hook 10-9
FindWordHook 10-9
FIXED A-46
Fl_* values 15-18
Flash Window 8-158
flashing

start 8-158
stop 8-158

flipping bits 8-211
Flood Fill 5-144
FM_* values 5-324, 5-510
FNTF _ * values A-49
FNTM_FACENAMECHANGED 12-76
FNTM_FILTERLIST 12-77
FNTM_POINTSIZECHANGED 12-78
FNTM_STYLECHANGED 12-78
FNTM_UPDATEPREVIEW 12-79
FNTS_* values A-48
FOCAMETRICS structure F-2
focus

change window 8-160
query 8-327
set window 8-464

FOLDERDAT A A-46
font character definitions F-3
font definition header F-4
font dialog 12-75
font directory F-11
font metrics F-1
font-file format F-1
FONTDEFINITIONHEADER structure F-4
FONTDLG A-47
FONTMETRICS A-52
fonts

create logical definition 5-78
definition of terms F-12
Japanese 34-23
load 5-163
load public 5-167
outline 5-427, 5-430, 5-433, 5-438, 5-445
query 5-299
query action 5-294
query face string 5-292
query logical 5-315
query metrics 5-297
query number of local identifiers 5-329
query set identifiers 5-359
query width table 5-372
raster 5-427, 5-430, 5-433, 5-438, 5-445, 5-522
unload 5-563
unload public 5-565

fonts supplied with OS/2 E-1
FONTSIGNATURE structure F-1
FONT_* values 5-78
format

font-file F-1
format and contents of dialog template 32-19

Index X-21

FPATH_* values 5-142, 5-191
frame control data 15-3
frame control window processing 15-1
Frame Region 5-146
FRAMECDATA A-60
Free DRAGINFO Structure 3-19
Free DRAGTRANSFER Storage 3-21
Free Error Information 8-165
Free File Icon 8-168
Free Standard File Dialog File List 8-166
FS_* values 15-3
FTIME A-61
Full Arc 5-148

create 5-148
Full Arc at Current Position 33-17
Full Arc at Given Position 33-17
function descriptions

conventions used 1-1
functions

supplied by applications 10-1

G
GARC 33-3
GBAR 33-3
GBBLT 33-7
GBEL 33-4
GBEZ 33-6
GBIMG 33-5
GBIT1 33-1
GBIT16 33-1
GBIT2 33-1
GBIT32 33-1
GBIT4 33-1
GBIT5 33-1
GBIT6 33-1
GBIT7 33-1
GBIT8 33-1
GBOX 33-8
GBPTH 33-5
GCALLS 33-9
GCARC 33-3
GCBEZ 33-6
GCBIMG 33-5
GCBOX 33-8
GCCHST 33-9
GCCHSTE 33-10
GCCHSTM 33-11
GCFARC 33-17
GCFLT 33-16
GCHAR 33-1
GCHST 33-9
GCHSTE 33-10
GCHSTM 33-11
GCLFIG 33-12
GC~INE 33-18
GCMRK 33-18
GCOMT 33-12
GCPARC 33-20
GCRLINE 33-22
GCSFL T 33-50
GDELPOINT 33-1
GEAR 33-13
GEEL 33-13
GEESCP 33-15
GEIMG 33-13
general window styles 12-1

X-22 PM Programming Reference

geometric line width 5-312
GEPROL 33-14
GEPTH 33-14
GESCP 33-15
GESD 33-14
Get Clipped Presentation Space 8-169
Get Current Time 8-171
Get Data 5-150
Get Dialog Message 8-172
Get Drag Presentation Space 3-22
Get Dragged Object Count 3-30
Get DRAGITEM Structure 3-28
Get Error Information 8-175
Get Format of a Dragged Object 3-32
Get Key State 8-176
Get Last Error 8-178
Get Maximum Position 8-179
Get Message 8-183
Get Minimum Position 8-181
Get Multiple Windows From Identities 8-266
Get Next Window 8-186
Get Physical Key State 8-188
Get Pointer to DRAGITEM Structure 3-31
Get Presentation Space 8-190
Get Screen Presentation Space 8-192
Get String Contents 3-36
Get String Length 3-38
Get String Length for Native RMF of Dragged

Object 3-34
Get String Length for True Type of Dragged Object 3-42
Get System Bit Map 8-194
Get True Type of Dragged Object 3-40
GFARC 33-17
GFIXED 33-2
GFIXEDS 33-2
GFLT 33-16
GFPTH 33-16
GHBITMAP 33-2
GIMD 33-17
GINDATT 33-2
GINDEX3 33-2
GLBL 33-18
GLENGTH1 33-2
GLENGTH2 33-2
GLINE 33-18
GLONG 33-2
GMPTH 33-19
GMRK 33-18
GNOP1 33-19
GOPTH 33-19
GPARC 33-20
GpiAnimatePalette 5-8
GpiAssociate 5-11
GpiBeginArea 5-13
GpiBeginElement 5-17
GpiBeginPath 5-19
GpiBitBlt 5-23
GpiBox 5-28
GpiCallSegmentMatrix 5-31
GpiCharString 5-34
GpiCharStringAt 5-36
GpiCharStringPos 5-39
GpiCharStringPosAt 5-42
GpiCloseFigure 5-45
GpiCloseSegment 5-47
GpiCombineRegion 5-49
GpiComment 5-51

GpiConvert 5-53
GpiConvertWithMatrix 5-55
GpiCopyMetaFile 5-57
GpiCorrelateChain 5-59
GpiCorrelateFrom 5-63
GpiCorrelateSegment 5-67
GpiCreateBitmap 5-71
GpiCreatelogColorTable 5-74
GpiCreatelogFont 5-78
GpiCre.atePalette 5-81
GpiCreatePS 5-84
GpiCreateRegion 5-88
GpiDeleteBitmap 5-90
GpiDeleteElement 5-92
GpiDeleteElementRange 5-94
GpiDeleteElementsBetweenlabels 5-96
GpiDeleteMetaFile 5-98
GpiDeletePalette 5-100
GpiDeleteSegment 5-102
GpiDeleteSegments 5-104
GpiDeleteSetld 5-106
GpiDestroyPS 5-108
GpiDestroyRegion 5-110
GpiDrawBits 5-112
GpiDrawChain 5-117
GpiDrawDynamics 5-119
GpiDrawFrom 5-121
GpiDrawSegment 5-123
GpiElement 5-125
GpiEndArea 5-128
GpiEndElement 5-130
GpiEndPath 5-132
GpiEqualRegion 5-134
GpiErase 5-136
GpiErrorSegmentData 5-138
GpiExcludeClipRectangle 5-140
GPIE_* values 5-138
GpiFillPath 5-142
GpiFloodFill 5-144
GpiFrameRegion 5-146
GpiFullArc 5-148
GPIF _ * values 5-533
GpiGetData 5-150
Gpilmage 5-153
GpilntersectClipRectangle 5-155
Gpilabel 5-157
Gpiline 5-159
GpiloadBitmap 5-161
GpiloadFonts 5-163
GpiloadMetaFile 5-165
GpiloadPublicFonts 5-167
GpiMarker 5-168
GpiModifyPath 5-170
GpiMove 5-173
GpiOffsetClipRegion 5-175
GpiOffsetElementPointer 5-177
GpiOffsetRegion 5-179
GpiOpenSegment 5-181
GpiOutlinePath 5-184
GpiPaintRegion 5-186
GpiPartialArc 5-188
GpiPathToRegion 5-191
GpiPlayMetaFile 5-193
GpiPointArc 5-199
GpiPolyFillet 5-201
GpiPolyFilletSharp 5-204
GpiPolygons 5-207

GpiPolyline 5-209
GpiPolylineDisjoint 5-211
GpiPolyMarker 5-213
GpiPolySpline 5-215
GpiPop 5-217
GpiPtlnRegion 5-219
GpiPtVisible 5-221
GpiPutData 5-223
GpiQueryArcParams 5-226
GpiQueryAttrMode 5-228
GpiQueryAttrs 5-229
GpiQueryBackColor 5-231
GpiQueryBackMix 5-232
GpiQueryBitmapBits 5-233
GpiQueryBitmapDimension 5-236
GpiQueryBitmapHand le 5-239
GpiQueryBitmaplnfoHeader 5-237
GpiQueryBitmapParameters 5-240
GpiQueryBoundaryData 5-242
GpiQueryCharAngle 5-244
GpiQueryCharBox 5-246
GpiQueryCharBreakExtra 5-248
GpiQueryCharDirection 5-249
GpiQueryCharExtra 5-250
GpiQueryCharMode 5-251
GpiQueryCharSet 5-252
GpiQueryCharShear 5-253
GpiQueryCharStringPos 5-255
GpiQueryCharStringPosAt 5-257
GpiQueryClipBox 5-259
GpiQueryClipRegion 5-261
GpiQueryColor 5-262
GpiQueryColorData 5-264
GpiQueryColorlndex 5-266
GpiQueryCp 5-268
GpiQueryCurrentPosition 5-269
GpiQueryDef Arc Pa rams 5-270
GpiQueryDef Attrs 5-271
GpiQueryDefaultViewMatrix 5-273
GpiQueryDefCharBox 5-275
GpiQueryDefTag 5-277
GpiQueryDeNiewinglimits 5-278
GpiQueryDevice 5-279
GpiQueryDeviceBitmapFormats 5-280
GpiQueryDrawControl 5-282
GpiQueryDrawingMode 5-284
GpiQueryEditMode 5-285
GpiQueryElement 5-286
GpiQueryElementPointer 5-288
GpiQueryElementType 5-290
GpiQueryFaceString 5-292
GpiQueryFontAction 5-294
GpiQueryFontFileDescriptions 5-295
GpiQueryFontMetrics 5-297
GpiQueryFonts 5-299
GpiQueryFullFontFileDescriptions 5-301
GpiQueryGraphicsField 5-303
GpiQuerylnitialSegmentAttrs 5-304
GpiQueryKerningPairs 5-306
GpiQuerylineEnd 5-308
GpiQuerylineJoin 5-309
GpiQuerylineType 5-310
GpiQuerylineWidth 5-311
GpiQuerylineWidthGeom 5-312
GpiQuerylogColorTable 5-313
GpiQuerylogicalFont 5-315
GpiQueryMarker 5-317

Index X-23

GpiQueryMarkerBox 5-318
GpiQueryMarkerSet 5-320
GpiQueryMetaFileBits 5-321
GpiQueryMetaFilelength 5-323
GpiQueryMix 5-324
GpiQueryModelTransformMatrix 5-325
GpiQueryNearestColor 5-327
GpiQueryNumberSetlds 5-329
GpiQueryPageViewport 5-330
GpiQueryPalette 5-332
GpiQueryPalettelnfo 5-333
GpiQueryPattern 5-335
GpiQueryPatternRefPoint 5-336
GpiQueryPatternSet 5-337
GpiQueryPel 5-338
GpiQueryPickAperturePosition 5-340
GpiQueryPickApertureSize 5-341
GpiQueryPS 5-342
GpiQueryRealColors 5-343
GpiQueryRegionBox 5-345
GpiQueryRegionRects 5-347
GpiQueryRGBColor 5-349
GpiQuerySegmentAttrs 5-351
GpiQuerySegmentNames 5-353
GpiQuerySegmentPriority 5-355
GpiQuerySegmentTransformMatrix 5-357
GpiQuerySetlds 5-359
GpiQueryStopDraw 5-362
GpiQueryTag 5-363
GpiQueryTextAlignment 5-364
GpiQueryTextBox 5-365
GpiQueryViewinglimits 5-368
GpiQueryViewingTransformMatrix 5-370
GpiQueryWidthTable 5-372
GpiRectlnRegion 5-374
GpiRectVisible 5-376
GpiRemoveDynamics 5-378
GpiResetBoundaryData 5-381
GpiResetPS 5-382
GpiRestorePS 5-384
GpiRotate 5-386
GpiSaveMetaFile 5-389
GpiSavePS 5-391
GpiScale 5-393
GpiSelectPalette 5-396
GpiSetArcParams 5-398
GpiSetAttrMode 5-401
GpiSetAttrs 5-404
GpiSetBackColor 5-412
GpiSetBackMix 5-415
GpiSetBitmap 5-418
GpiSetBitmapBits 5-420
GpiSetBitmapDimension 5-423
GpiSetBitmapld 5-425
GpiSetCharAngle 5-427
GpiSetCharBox 5-430
GpiSetCharBreakExtra 5-433
GpiSetCharDirection 5-435
GpiSetCharExtra 5-438
GpiSetCharMode 5-440
GpiSetCharSet 5-443
GpiSetCharShear 5-445
GpiSetClipPath 5-448
GpiSetClipRegion 5-451
GpiSetColor 5-453
GpiSetCp 5-456
GpiSetCurrentPosition 5-458

X-24 PM Programming Reference

GpiSetDefArcParams 5-460
GpiSetDefAttrs 5-462
GpiSetDefaultViewMatrix 5-467
GpiSetDefTag 5-470
GpiSetDefViewinglimits 5-472
GpiSetDrawControl 5-474
GpiSetDrawingMode 5-477
GpiSetEditMode 5-480
GpiSetElementPointer 5-482
GpiSetElementPointerAtlabel 5-484
GpiSetGraphicsField 5-486
GpiSetlnitialSegmentAttrs 5-488
GpiSetlineEnd 5-491
GpiSetlineJoin 5-493
GpiSetlineType 5-495
GpiSetlineWidth 5-498
GpiSetlineWidthGeom 5-500
GpiSetMarker 5-502
GpiSetMarkerBox 5-504
GpiSetMarkerSet 5-506
GpiSetMetaFileBits 5-508
GpiSetMix 5-510
GpiSetModelTransformMatrix 5-513
GpiSetPageViewport 5-516
GpiSetPaletteEntries 5-518
GpiSetPattern 5-521
GpiSetPatternRef Point 5-524
GpiSetPatternSet 5-526
GpiSetPel 5-528
GpiSetPickAperturePosition 5-530
GpiSetPickApertureSize 5-531
GpiSetPS 5-533
GpiSetRegion 5-536
GpiSetSegmentAttrs 5-538
GpiSetSegmentPriority 5-541
GpiSetSegmentTransformMatrix 5-543
GpiSetStopDraw 5-546
GpiSetTag 5-548
GpiSetTextAlignment 5-550
GpiSetViewinglimits 5-553
GpiSetViewingTransformMatrix 5-555
GpiStrokePath 5-558
GpiTranslate 5-560
GpiUnloadFonts 5-563
GpiUnloadPublicFonts 5-565
GpiWCBitBlt 5-567
GPI_* values 5-196
GPOINT 33-2
GPOINTB 33-2
GPOLYS 33-2, 33-20
GPOP 33-21
GPSAP 33-23
GPSBCOL 33-23
GPSBICOL 33-24
GPSBMX 33-25
GPSCA 33-26
GPSCBE 33-26
GPSCC 33-27
GPSCD 33-28
GPSCE 33-28
GPSCH 33-30
GPSCOL 33-31
GPSCP 33-32
GPSCR 33-29
GPSCS 33-30
GPSECOL 33-32
GPSFLW 33-33

GPSIA 33-35
GPSICOL 33-34
GPSLE 33-36
GPSLJ 33-36
GPSLT 33-37
GPSLW 33-38
GPSMC 33-39
GPSMP 33-40
GPSMS 33-40
GPSMT 33-41
GPSMX 33-41
GPSPIK 33-45
GPSPRP 33-43
GPSPS 33-44
GPSPT 33-44
GPSSLW 33-46
GPSTA 33-47
GPSTM 33-42
GPSVW 33-48
GRADIENTL A-61
graphics

orders 33-1
query field 5-303
set field 5-486

graphics orders
data types 33-1

GREAL 33-2
GRES_* values 5-382
GRLINE 33-22
GROF 33-2
GROFUFS 33-2
GROL 33-2
GROSOL 33-2
GROUFS 33-2
GROUL 33-2
GSAP 33-23
GSBCOL 33-23
GSBICOL 33-24
GSBMX 33-25
GSCA 33-26
GSCBE 33-26
GSCC 33-27
GSCD 33-28
GSCE 33-28
GSCH 33-30
GSCOL 33-31
GSCP 33-32
GSCPTH 33-31
GSCR 33-29
GSCS 33-30
GSECOL 33-32
GSFLT 33-50
GSFLW 33-33
GSGCH 33-22
GSHORT 33-2
GSHORT370 33-2
GSIA 33-35
GSICOL 33-34
GSLE 33-36
GSLJ 33-36
GSLT 33-37
GSLW 33-38
GSMC 33-39
GSMP 33-40
GSMS 33-40
GSMT 33-41
GSMX 33-41

GSPIK 33-45
GSPRP 33-43
GSPS 33-44
GSPT 33-44
GSSB 33-45
GSSLW 33-46
GSTA 33-47
GSTM 33-42
GSTR 33-2
GSTV 33-48
GSVW 33-48
GUCHAR 33-2
GUFIXEDS 33-3
GULONG 33-3
GULONG370 33-3
GUNDF 33-3
GUNDF1 33-3
GUSHORT 33-3
GUSHORT370 33-3

H
HAB A-61
HACCEL A-61
HAPP A-61
HATOMTBL A-61
HBITMAP A-61
HCAPS..;.* values A-62
HCINFO A-61
HOC A-62
HOOF A-62
header 32-20
header files 1-3
Help Hook 10-10
help manager messages 31-1
helper macros 1-3
HelpHook 10-10
HELPINIT A-62
HELPT ABLE A-63
HENUM A-64
HEV A-64
HFILE A-64
HFIND A-64
HFM_* values 10-10
HIGHER_* values 5-355, 5-541
highlight attribute for segments

modify (GpiSetSegmentAttrs) 5-539
HINI A-64
HK_* values 8-466
HLIB A-64
HMERR_ *error constants 31-4
HMF A-64
HMODULE A-64
HMQ A-64
HMO_* values 8-418
HMTX A-64
HMUX A-64
HM_ACTIONBAR_COMMAND 31-1
HM_CONTROL 31-1
HM_CREATE_HELP_TABLE 31-2
HM_DISMISS_WINDOW 31-2
HM_OISPLAY _HELP 31-3
HM_ERROR 31-4
HM_EXT_HELP 31-5
HM_EXT _HELP_ UNDEFINED 31-6
HM_GENERAL_HELP 31-6
HM_GENERAL_HELP _UNDEFINED 31-7

Index X-25

HM_HELPSUBITEM_NOT _FOUND 31-8
HM_HELP _CONTENTS 31-7
HM_HELP _INDEX 31-8
HM_INFORM 31-9
HM_INVALIDATE_DDF _DATA 31-10
HM_KEYS_HELP 31-10
HM_LOAD_HELP _TABLE 31-11
HM_NOTIFY 31-12
HM_QUERY 31-13
HM_QUERY _DDF _DATA 31-14
HM_QUERY _KEYS_HELP 31-14
HM_REPLACE_HELP _FOR_HELP 31-15
HM_REPLACE_USING_HELP 31-15
HM_SET_ACTIVE_WINDOW 31-16
HM_SET_COVERPAGE_SIZE 31-17
HM_SET _HELP _LIBRARY _NAME 31-17
HM_SET_HELP _WINDOW_TITLE 31-18
HM_SET_OBJCOM_WINDOW 31-18
HM_SET_SHOW_PANEL_ID 31-19
HM_SET_USERDATA 31-19
HM_TUTORIAL 31-20
HM_UPDATE_OBJCOM_WINDOW_CHAIN 31-21
HOBJECT A-64
hook

change code page 10-7
find word 10-9
help requests 10-10
input 10-8, 10-13
message filter 10-20
release 8-418
send message 10-23
set 8-466

hooks 10-1
HPAL A-64
HPOINTER A-64
HPROC A-64
HPROGARRAY A-64
HPROGRAM A-65
HPS A-65
HRGN A-65
HRGN_ * values 5-451
HSEM A-65
HSPL A-65
HSTR A-65
HSVWP A-65
HSWITCH A-65
HT_* values 12-37
HWND A-65
HWND_* values 8-11, 8-50, 8-52, 8-58, 8-115, 8-236,

8-244, 8-260, 8-362, 8-506

I
IBB_ *values 5-405, 5-463
icon

destroy 8-107
icon file format D-2
icon size, how determined A-17
ICONINFO A-65
lconPos A-66
Image 5-153

draw 5-153
image attribute values 5-405, 5-463
Image Data 33-17
IMAGEBUNDLE A-66
Implicit Pointer 1-1
implicit pointer data types 1-5

X-26 PM Programming Reference

In Send Message 8-201
Inflate Rectangle 8-197
information tables

bit map D-1
inheritance 9-1
initialization file H-1
Initialize 8-199
Initialize DDF Area 4-15
initialize Presentation Interface 8-199
Input Hook 10-13
lnputHook 10-13
Insert List Item 4-18
Insert Listbox Item 8-203
interchange file format G-1
Intersect Clip Rectangle 5-155
Intersect Rectangle 8-205
Invalidate Rectangle 8-207
Invalidate Region 8-209
Invert Rectangle 8-211
IPT A-66
Is Child 8-213
Is Control Enabled 8-214
Is Menu Item Checked 8-216
Is Menu Item Enabled 8-218
Is Menu Item Valid 8-220
Is Physical Input Enabled 8-222
Is Rectangle Empty 8-223
Is Thread Active 8-224
Is Window 8-226
items in a dialog template 32-21

J
Japanese fonts 34-23
Journal Playback Hook 10-14
Journal Record Hook 10-15
JournalPlaybackHook 10-14
JournalRecordHook 10-15
JRN_ * values 12-39

K
kanji 34-23
KC_* values 12-24
kerning A-60

device support 2-18
enable A-38
number of pairs A-60
query pairs 5-306

kerning pair table F-8
KERNINGPAIRS A-66
KERNINGPAIRS data structure A-66
Keyboard control codes 12-24
keyboard resources 32-18
keyboard statements

keyboard 32-18
KS_* values 8-176, 8-188

L
Label 5-157, 33-18

generate element for 5-157
language support dialog processing 12-83
language support window processing 12-80
LBB_ * values 5-404, 5-462
LCIDT _ * values 5-359

""\
/

/

LCID_ *values 5-252, 5-320, 5-337, 5-443, 5-506, 5-526
LCOLF _*values 5-74, 5-264, 8-494
LCOLOPT _ * 5-349
LCOLOPT _*values 5-313, 5-333, 5-343
LCOL_ * options 8-494
LCOL_ *values 5-74, 5-264
LC_* values 5-194
Left cursor key 8-547
LHANDLE A-66
Line 5-159

draw 5-159
query cosmetic width 5-311
query end 5-308
query geometric width 5-312
query join 5-309
query type 5-310
query width 5-311
set cosmetic width 5-498
set end 5-491
set geometric width 5-500
set join 5-493
set type 5-495
set width 5-498

Line at Current Position 33-18
Line at Given Position 33-18
line attribute values 5-404, 5-462
LINEBUNDLE A-66
LINEEND_* values 5-308, 5-491
LINEJOIN_ * values 5-309, 5-493
LINETYPE_ * values 5-310, 5-495
LINEWIDTHGEOM_ *values 5-312
LINEWIDTH_ * values 5-311, 5-498
list box control data 16-1
list box control styles 16-1
list box control window processing 16-1
LIT_* values 16-6
LM_DELETEALL 16-5
LM_DELETEITEM 16-5
LM_INSERTITEM 16-6
LM_QUERYITEMCOUNT 16-7
LM_QUERYITEMHANDLE 16-7
LM_QUERYITEMTEXT 16-8
LM_ QUERYITEMTEXTLENGTH 16-9
LM_QUERYSELECTION 16-9
LM_QUERYTOPINDEX 16-10
LM_SEARCHSTRING 16-11
LM_SELECTITEM 16-12
LM_SETITEMHANDLE 16-12
LM_SETITEMHEIGHT 16-13
LM_SETITEMTEXT 16-14
LM_SETTOPINDEX 16-14
LN_* values 16-2
Load Accelerator Table 8-234
Load and Process Modal Dialog 8-115
Load Bit Map 5-161
Load Dialog 8-236
Load File Icon 8-239
Load Fonts 5-163
Load Help Table 8-241
Load Library 8-243
Load Menu 8-244
Load Message 8-246
Load Metafile 5-165
Load Pointer 8-248
Load Procedure 8-250
Load Public Fonts 5-167
Load String 8-251

load type options 5-193
Loader Hook 10-16
LoaderHook 10-16
LOADOPTION 32-2
local identifier options 5-193
Lock Visible Regions 8-253
Lock Window Update 8-255
logical color table

create 5-74
logical font

delete 5-106
LONG A-67
LOWER_* values 5-355, 5-541
LSS_* values 16-11
LS_* values 16-1
LT_* values 5-193

M
Make Points 8-257
Make Rectangle 8-258
Map Dialog Points 8-259
Map Window Points 8-260
Marker 5-168

draw a series of 5-213
draw with center at specified position 5-168
query 5-317
query box 5-318
query set 5-320
query symbol 5-317
set 5-502
set box 5-504
set set 5-506

Marker at Current Position 33-18
Marker at Given Position 33-18
marker attribute values 5-405, 5-463
MARKERBUNDLE A-67
MARKSYM_ *values 5-317, 5-502
MATRIXLF A-68
MBB_ *values 5-463
MBID_ *values 8-264
MB_* values 8-262, 8-263
MEMOPTION 32-2
memory

release 8-165
MEMORYITEM A-68
menu control styles 17-1
menu control window processing 17-1
menu item attributes 17-2
menu item styles 17-2
MENU statement 32-11
MENUITEM A-68
menus

create 8-58
create window 8-58
load 8-244
pull-down 32-14
templates 32-15

message
broadcast 8-20
dispatch 8-113

Message Box 8-262
Message Control Hook 10-18
Message Filter Hook 10-20
message processing

introduction 11-1
notation conventions 11-3

Index X-27

message processing (continued)
types 11-1

message queues 1-2
message types 11-1
messages

create queue 8-60
destroy queue 8-104
get one 8-183
peek 8-275
post 8-281
postqueue 8-283
queues 1-2
send 8-437
wait for 8-567

metaclass 9-1
Metafile data format G-2
metafile restrictions G-1
metafiles

create new 5-57
delete 5-98
general rules G-1
load 5-165
play 5-193
query bits 5-321
query length 5-323
SAA-conforming 5-460, 5-465, 5-470, 5-472
save 5-389

MIA_* values 17-2
micro-presentation space 5-391, 5-474
mini-icon size, how determined A-17
MINIRECORDCORE A-69
MIS_* values 17-2, 32-15
MIT_* values 17-9, 17-12, 17-18
mix

query 5-324
set 5-510
set background 5-415
set foreground 5-510

MIXED strings 34-23
MLECTLDATA A-69
MLEMARGSTRUCT A-70
MLEOVERFLOW A-71
MLE_SEARCHDATA A-71
MLM_CHARFROMLINE 18-8
MLM_CLEAR 18-7
MLM_COPY 18-7
MLM_CUT 18-8
MLM_DELETE 18-9
MLM_DISABLEREFRESH 18-9
MLM_ENABLEREFRESH 18-10
MLM_EXPORT 18-11
MLM_FORMAT 18-11
MLM_IMPORT 18-12
MLM_INSERT 18-13
MLM_LINEFROMCHAR 18-13
MLM_PASTE 18-14
MLM_QUERYBACKCOLOR 18-14
MLM_QUERYCHANGED 18-15
MLM_QUERYFIRSTCHAR 18-16
MLM_QUERYFONT 18-16
MLM_QUERYFORMATLINELENGTH 18-17
MLM_QUERYFORMATRECT 18-18
MLM_QUERYFORMATTEXTLENGTH 18-17
MLM_QUERYIMPORTEXPORT 18-18
MLM_QUERYLINECOUNT 18-19
MLM_QUERYLINELENGTH 18-19
MLM_QUERYREADONL Y 18-20

X-28 PM Programming Reference

MLM_QUERYSEL 18-20
MLM_QUERYSELTEXT 18-21
MLM_QUERYTABSTOP 18-22
MLM_QUERYTEXTCOLOR 18-22
MLM_QUERYTEXTLENGTH 18-23
MLM_QUERYTEXTLIMIT 18-23
MLM_QUERYUNDO 18-24
MLM_QUERYWRAP 18-24
MLM_RESETUNDO 18-25
MLM_SEARCH 18-26
MLM_SETBACKCOLOR 18-27
MLM_SETCHANGED 18-28
MLM_SETFIRSTCHAR 18-28
MLM_SETFONT 18-29
MLM_SETFORMATRECT 18-30
MLM_SETIMPORTEXPORT 18-31
MLM_SETREADONLY 18-32
MLM_SETSEL 18-31
MLM_SETTABSTOP 18-33
MLM_SETTEXTCOLOR 18-32
MLM_SETTEXTLIMIT 18-33
MLM_SETWRAP 18-34
MLM_UNDO 18-35
MLS_ *values 18-2
MM_DELETEITEM 17-8
MM_ENDMENUMODE 17-9
MM_INSERTITEM 17-9
MM_ISITEMVALID 17-10
MM_ITEMIDFROMPOSITION 17-11
MM_ITEMPOSITIONFROMID 17-11
MM_QUERYITEM 17-12
MM_QUERYITEMATTR 17-13
MM_QUERYITEMCOUNT 17-13
MM_QUERYITEMRECT 17-14
MM_QUERYITEMTEXT 17-15
MM_QUERYITEMTEXTLENGTH 17-15
MM_QUERYSELITEMID 17-16
MM_REMOVEITEM 17-17
MM_SELECTITEM 17-18
MM_SETITEM 17-19
MM_SETITEMATTR 17-20
MM_SETITEMHANDLE 17-20
MM_SETITEMTEXT 17-21
MM_STARTMENUMODE 17-22
modal dialog

load and process 8-115
Modify Path 5-170, 33-19
monochrome devices 5-327
Move 5-173
Move to Next Character 8-268
Move to Previous Character 8-285
MPARAM A-72
MPATH_* values 5-170
MQINFO A-72
MRESUL T A-72
MsgCtlHook 10-18
MsgFilterHook 10-20
MSGF _*values 10-20
MS_* values 12-5, 17-1
MTI A-72
multi-line entry field control data 18-2
multi-line entry field control window processing 18-1
multiple-line statements 32-7

ACCEL TABLE 32-9
ASSOCTABLE 32-10
DLGTEMPLATE 32-16
MENU 32-11

I
111

multiple-line statements (continued)
STRINGTABLE 32-7
WINDOWTEMPLATE 32-16

M_WPFileSystem * A-67
M WPFolder * A-67
M=WPObj~' * A-67
M_WPPalette * A-67

N
No-Operation 33-19
nonstore attribute for segments

modify (GpiSetSegmentAttrs) 5-539
notation conventions

messages 11-3
notebook control window processing

notification messages 25-3
purpose 25-1
styles 25-1
window messages 25-4

NOTIFYDELTA A-73
NOTIFYDELTA data structure A-73
NOTIFYRECORDEMPHASIS A-73
NOTIFYRECORDEMPHASIS data structure A-73
NOTIFYRECORDENTER A-74
NOTIFYRECORDENTER data structure A-74
NOTIFYSCROLL A-74
NOTIFYSCROLL data structure A-74
NULL 1-1
NULLHANDLE 1-1

0
OBJCLASS A-75
OBJDATA A-75
Object classes 9-2
Offset Clip Region 5-175
Offset Element Pointer 5-177
Offset Rectangle 8-270
Offset Region 5-179
Open Clipboard 8-272
Open Device Context 2-9
open figure 5-20
Open Profile 6-3
Open Segment 5-181
Open Window Device Context 8-273
outline fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Outline Path 5-184, 33-19
owner-notification messages 11-3
OWNERBACKGROUND A-75
OWNERBACKGROUND data structure A-75
OWNERITEM A-76
OWNERITEM data structure 12-75

p

owneritem parameter 12-75, 24-6
WM_DRAWITEM for container control 24-6
WM_DRAWITEM for font dialog 12-75

PACCEL A-76
PACCELTABLE A-76
page viewport

query 5-330
set 5-516

PAGEINFO A-76
PAGESELECTNOTIFY A-78

paint
begin 8-18
end 8-141

Paint Region 5-186
palette

animate 5-8
create 5-81
delete 5-100
query 5-332
query information 5-333
realize 8-403
select 5-396
set entries 5-518

PALINFO A-78
PANOSE A-78, F-9
PAPSZ A-82
PARAM A-82
PARCPARAMS A-84
PAREABUNDLE A-84
parent/child/owner relationship 32-23
Partial Arc 5-188
Partial Arc at Current Position 33-20
Partial Arc at Given Position 33-20
path

begin 5-19
convert to region 5-191
draw interior 5-142
draw outline 5-184
end 5-132
fill 5-142
modify 5-170

Path to Region 5-191
PATSYM_ *values 5-335, 5-521
pattern

query 5-335
pattern attribute (area) values 5-405, 5-463
patterns

query reference point 5-336
query set 5-337
set 5-521
set reference point 5-524
set set 5-526

PBANDRECT A-84
PBITMAPINFO A-84
PBITMAPINFOHEADER A-84
PBITMAPINFOHEADER2 A-84
PBITMAPINF02 A-84
PBOOKTEXT A-84
PBOOL A-84
PBUFFER A-84
PBUNDLE A-84
PBYTE A-84
PCVKEY 1-1
PCATCHBUF A-85
PCDATE A-85
PCELL A-85
PCH A-85
PCHAR A-85
PCHARBUNDLE A-85
PCLASSDET AILS A-85
PCLASSFIELDINFO A-85
PCLASSINFO A-85
PCNRDRAGINFO A-85
PCNRDRAGINIT A-85
PCNRDRAWITEMINFO A-85
PCNREDITDAT A A-85
PCNRINFO A-85

Index X-29

PCOLOR A-85
PCONVCONTEXT A-85
PCPTEXT A-85
PCREATEPARAMS A-85
PCREATESTRUCT A-85
PCTIME A-85
PCURSORINFO A-85
PDDEINIT A-85
PDDESTRUCT A-86
PDELETENOTIFY A-86
PDESKTOP A-86
PDEVOPENDATA A-86
PDEVOPENSTRUC A-86
PDLGTEMPLATE A-86
PDLGTITEM A-86
PDRAGIMAGE A-86
PDRAGINFO A-86
PDRAGITEM A-86
PDRAGTRANSFER A-86
PDRIVDAT A A-86
PDRIVPROPS A-86
Peek Message 8-275
pel

query 5-338
set 5-528

PENTRYFDAT A A-86
PERRINFO A-86
PERRORID A-86
PESCMODE A-86
PFACENAMEDESC A-86
PFA TTRS A-86
PFFDESCS A-87
PFIELDINFO A-87
PFIELDINFOINSERT A-87
PFILEDLG A-87
PFILEFINDBUF4 A-87
PFIXED A-87
PFN A-87
PFNWP A-87
PFOCAMETRICS type F-2
PFONTDLG A-87
PFONTMETRICS A-87
PGRADIENTL A-87
PHAB A-87
PHBITMAP A-87
PHCINFO A-87
PHDC A-87
PHELPINIT A-87
PHELPSUBT ABLE A-87
PHELPT ABLE A-87
PHFIND A-87
PHMF A-87
PHMODULE A-87
PHPAL A-87
PHPROGARRAY A-88
PHPROGRAM A-88
PHPS A-88
PHRGN A-88
PHSEM A-88
PHSWITCH A-88
PHWND A-88
PIBSTRUCT A-88
pick aperture

query size 5-341
set size 5-531

PICKAP _ * values 5-531
PICKSEL_ * values 5-59, 5-63, 5-67

X-30 PM Programming Reference

PICONINFO A-89
PICONPOS A-89
PIO A-89
pie

segment 5-189
PIMAGEBUNDLE A-89
PIPT A-89
PIX A-89
PKERNINGPAIRS A-89
Place Bitmap Reference 4-5
Place Metafile Reference 4-21
Play Metafile 5-193
PLINEBUNDLE A-89
PLONG A-89
PL_ALTERED 12-3
PMARGSTRUCT A-89
PMARKERBUNDLE A-89
PMATRIXLF A-89
PMENUITEM A-89
PMF _*values 5-193
PMINIRECORDCORE A-89
PMLE_SEARCHDATA A-89
PMPARAM A-89
PMQINFO A-89
PMRESULT A-89
PM_Q_* values A-26
PM_* flags 8-275
PM_* names H-1
PM_* values 10-5, 10-13
PNOTIFYDEL TA A-90
PNOTIFYRECORDEMPHASIS A-90
PNOTIFYRECORDENTER A-90
PNOTIFYSCROLL A-90
POBJCLASS A-90
POBJDATA A-90
POBJECTS A-89
Point Arc 5-199
Point In Rectangle 8-289
Point In Region 5-219
Point Visible 5-221
pointer

create 8-64
create indirect 8-66
destroy 8-107
draw 8-124
hide 8-520
implicit 1-1
load 8-248
query handle 8-342
query information 8-343
query position 8-345
set 8-484
set element 5-482
set position 8-486
show 8-520

pointer file format D-2
Pointer-Conversion Procedure 10-3
POINTERINFO A-90
pointing device

capture messages 8-442
POINTL A-90
points A-90

check whether visible 5-221
check whether within region 5-219

Polyfillet 5-201
draw 5-201
sharp 5-204

'\
;.

Polyfillet Sharp 5-204
POLYGON A-91
polygons 33-20

draw a set of 5-207
Polyline 5-209

disjoint 5-211
draw 5-209

Polyline Disjoint 5-211
Polymarker 5-213
Polyspline 5-215
Pop 5-217, 33-21
Pop-up Menu 8-277
Post Device Modes 2-12
Post Drag Message 3-24
Post Message 8-281
Post Queue Message 8-283
POVERFLOW A-91
POWNERBACKGROUND A-91
POWNERITEM A-91
PPAGEINFO A-91
PPAGESELECTNOTIFY A-91
PPALINFO A-89
PPIBSTRUCT A-91
PPID A-89
PPOINTL A-91
PPOINTS A-91
PPOL YGON A-91
PPRDINF03 A-91
PPRDRIVINFO A-91
PPRESPARAMS A-91
PPRINTDEST A-91
PPRINTERINFO A-91
PPRJINF02 A-91
PPRJINF03 A-91
PPROGCATEGORY A-91
PPROGDETAILS A-91
PPROGRAMENTRY A-92
PPROGTITLE A-92
PPROGTYPE A-92
PPRPORTINFO A-92
PPRPORTINF01 A-92
PPRQINF03 A-92
PPRQINF06 A-92
PPRQPROCINFO A-92
PPSZ A-92
PPVOID A-92
PQMOPENDATA A-92
PQMSG A-92
PQUERYRECFROMRECT A-92
PQUERYRECORDRECT A-92
PRDINF03 A-92
PRDRIVINFO A-93
PRECORDCORE A-93
PRECORDINSERT A-93
PRECTL A-94
predefined control statements 32-24
predefined window classes 32-23
PRENDERFILE A-94
Presentation Interface

initialize 8-199
Presentation Manager

query environment 8-381
query revision level 8-381
query version 8-381

presentation parameters 32-22
presentation space

cache 8-18

presentation space (continued)
cached 15-11
create 5-84
destroy 5-108
get a cache 8-190
micro 5-86, 8-119, 8-123, 8-128, 8-190
normal 8-119, 8-123, 8-128
options 5-84, 5-533
query 5-342
release cache 8-420
reset 5-382
restore 5-384
save 5-391

presentation space options 5-84, 5-533
PRESPARAMS A-94
PrfCloseProfile 6-2
PrfOpenProfile 6-3
PRFPROFILE A-94
PrfQueryProfile 6-5
PrfQueryProfileData 6-7
PrfQueryProfilelnt 6-10
PrfQueryProfileSize 6-12
PrfQueryProfileString 6-14
PrfReset 6-17
PrfWriteProfileData 6-19
PrfWriteProfileString 6-21
PRGB2 A-94
PRGNRECT A-94
PRGN_ *values 5-219
primitives

set attributes for 5-404
PRIM_* values 5-229, 5-271, 5-404, 5-462
PRINTDEST A-94
PRINTERINFO A-95
PRJINF02 A-96
PRJINF03 A-97
procedures 10-1

dialog 10-2
window 10-4

Process Modal Dialog 8-287
profile

query string 6-14
PROGCATEGORY A-99
PROGDET AILS A-99
PROGRAMENTRY A-100
PROGTITLE A-100
PROGTYPE A-100
PROG_* values A-100
prompted entry field control window processing 19-1
PRPORTINFO A-101
PRPORTINF01 A-101
PRQINF03 A-101
PRQINF06 A-103
PRQPROCINFO A-105
PSBCDATA A-105
PSEARCHSTRING A-105
PSFACTORS A-105
PSF _ * values 8-169
PSHORT A-105
PSIZEF A-105
PSIZEL A-105
PSLDCDATA A-105
PSTRL A-105
PSTR16 A-105
PSTR32 A-105
PSTR64 A-105
PSTR8 A-105

Index X-31

PSTYLECHANGE A-105
PSWBLOCK A-106
PSWCNTRL A-106
PSWENTRY A-106
PSWP A-106
PSZ A-106
PS_* values 5-84, 5-342, 5-533
PTID A-106
PTRACKINFO A-106
PTREEITEMDESC A-106
PUCHAR A-106
pull-down menus 32-14
PULONG A-106
PUSEITEM A-106
PUSERBUTTON A-106
Push and Set Arc Parameters 33-23
Push and Set Background Color 33-23
Push and Set Background Indexed Color 33-24
Push and Set Background Mix 33-25
Push and Set Character Angle 33-26
Push and Set Character Break Extra 33-26
Push and Set Character Cell 33-27
Push and Set Character Direction 33-28
Push and Set Character Extra 33-28
Push and Set Character Precision 33-29
Push and Set Character Set 33-30
Push and Set Character Shear 33-30
Push and Set Color 33-31
Push and Set Current Position 33-32
Push and Set Extended Color 33-32
Push and Set Fractional Line Width 33-33
Push and Set Indexed Color 33-34
Push and Set Individual Attribute 33-35
Push and Set Line End 33-36
Push and Set Line Join 33-36
Push and Set Line Type 33-37
Push and Set Line Width 33-38
Push and Set Marker Cell 33-39
Push and Set Marker Precision 33-40
Push and Set Marker Set 33-40
Push and Set Marker Symbol 33-41
Push and Set Mix 33-41
Push and Set Model Transform 33-42
Push and Set Pattern Reference Point 33-43
Push and Set Pattern Set 33-44
Push and Set Pattern Symbol 33-44
Push and Set Pick Identifier 33-45
Push and Set Stroke Line Width 33-46
Push and Set Text Alignment 33-47
Push and Set Viewing Window 33-48
PUSHORT A-106
Put Data 5-223
PU_* values 5-84, 5-533
PVIOFONTCELLSIZE A-106
PVIOSIZECOUNT A-106
PVIS_ *values 5-221
PVOID A-106
PVSCDATA A-106
PVSDRAGINFO A-106
PVSDRAGINIT A-106
PVSTEXT A-106
PWNDPARAMS A-106
PWPOINT A-106

X-32 PM Programming Reference

Q
QCD_LCT_* values 5-264
QFC_* values 15-16
QF _ * values 5-299
QLCT _*values 5-313
QMOPENSTRUC A-107
QMSG 11-1, A-108
QS_* values 8-352
Query Accelerator Table 8-291
Query Active Window 8-293
Query Anchor Block 8-294
Query Arc Parameters 5-226
Query Atom Length 8-295
Query Atom Name 8-297
Query Atom Usage 8-299
Query Attribute Mode 5-228
Query Attributes 5-229
Query Background Color 5-231
Query Background Mix 5-232
Query Bit-Map Bits 5-233
Query Bit-Map Dimension 5-236
Query Bit-Map Handle 5-239
Query Bit-Map Info Header 5-237
Query Bit-Map Parameters 5-240
Query Boundary Data 5-242
Query Capture 8-302
Query Character Angle 5-244
Query Character Box 5-246
Query Character Break Extra 5-248
Query Character Direction 5-249
Query Character Extra 5-250
Query Character Mode 5-251
Query Character Set 5-252
Query Character Shear 5-253
Query Character String Positions 5-255
Query Character String Positions At 5-257
Query Checkstate of Button 8-300
Query Class Information 8-303
Query Class Name 8-305
Query Class Pointer-Conversion Procedure 8-307
Query Clip Box 5-259
Query Clip Region 5-261
Query Clipboard Data 8-308
Query Clipboard Format Information 8-310
Query Clipboard Owner 8-312
Query Clipboard Viewer 8-313
Query Code Page 5-268, 8-314
Query Code Page List 8-315
Query Color 5-262
Query Color Data 5-264
Query Color Index 5-266
Query Current Position 5-269
Query Cursor Information 8-316
Query Default Arc Parameters 5-270
Query Default Attributes 5-271
Query Default Graphics Character Box 5-275
Query Default Tag 5-277
Query Default View Matrix 5-273
Query Default Viewing Limits 5-278
Query Desktop Background 8-317
Query Desktop Window 8-319
Query Device 5-279
Query Device Bit-Map Formats 5-280
Query Device Capabilities 2-15
Query Device Names 2-21
Query Dialog Item Short 8-321

"\
/

Query Dialog Item Text 8-323
Query Dialog Item Text Length 8-325
Query Draw Control 5-282
Query Drawing Mode 5-284
Query Edit Mode 5-285
Query Element 5-286
Query Element Pointer 5-288
Query Element Type 5-290
Query Face String 5-292
Query Focus 8-327
Query Font Action 5-294
Query Font File Descriptions 5-295
Query Font Metrics 5-297
Query Font Width Table 5-372
Query Fonts 5-299
Query Full Font File Descriptions 5-301
Query Graphics Field 5-303
Query Hardcopy Caps 2-24
Query Help Instance 8-328
Query Initial Segment Attributes 5-304
Query Kerning Pairs 5-306
Query Line End 5-308
Query Line Join 5-309
Query Line Type 5-310
Query Line Width 5-311
Query Line Width Geom 5-312
Query Listbox Item Text 8-331
Query Listbox Item Text Length 8-333
Query Logical Color Table 5-313
Query Logical Font 5-315
Query Marker 5-317
Query Marker Box 5-318
Query Marker Set 5-320
Query Message Position 8-336
Query Message Time 8-338
Query Metafile Bits 5-321
Query Metafile Length 5-323
Query Mix 5-324
Query Model Transform Matrix 5-325
Query Nearest Color 5-327
Query Number Set Identifiers 5-329
Query Object Window 8-340
Query Page Viewport 5-330
Query Palette 5-332
Query Palette Info 5-333
Query Pattern 5-335
Query Pattern Reference Point 5-336
Query Pattern Set 5-337
Query Pel 5-338
Query Pick Aperture Position 5-340
Query Pick Aperture Size 5-341
Query Pointer 8-342
Query Pointer Information 8-343
Query Pointer Position 8-345
Query Presentation Parameter 8-347
Query Presentation Space 5-342
Query Profile 6-5
Query Profile Data 6-7
Query Profile Integer 6-10
Query Profile Size 6-12
Query Profile String 6-14
Query Queue Information 8-350
Query Queue Status 8-352
Query Real Colors 5-343
Query Region Box 5-345
Query Region Rectangles 5-347
Query RGB Color 5-349

Query Segment Attributes 5-351
Query Segment Names 5-353
Query Segment Priority 5-355
Query Segment Transform Matrix 5-357
Query Session Title 8-355
Query Set Identifiers 5-359
Query Stop Draw 5-362
Query Switch Entry 8-357
Query Switch Handle 8-358
Query Switch List 8-360
Query System Atom Table 8-372
Query System Color 8-362
Query System Modal Window 8-364
Query System Pointer 8-365
Query System Value 8-368
Query Tag 5-363
Query Task Title 8-375
Query Task Window Size and Position 8-373
Query Text Alignment 5-364
Query Text Box 5-365
Query the Selected Item in Listbox 8-335
Query Update Rectangle 8-377
Query Update Region 8-379
Query Version 8-381
Query Viewing Limits 5-368
Query Viewing Transform Matrix 5-370
Query Window 8-382
Query Window Device Context 8-384
Query Window Enabled State 8-228
Query Window Handle From Device Context 8-572
Query Window Handle From Identifier 8-574
Query Window Long 8-398
Query Window Model 8-385
Query Window Pointer 8-390
Query Window Pointer-Conversion Procedure 8-397
Query Window Position 8-386
Query Window Process 8-388
Query Window Rectangle 8-392
Query Window Short 8-400
Query Window Showing 8-230
Query Window Text 8-394
Query Window Text Length 8-396
Query Window Visibility 8-232
Query Workplace Object Handle 8-402
QUERYRECFROMRECT A-108
QUERYRECFROMRECT data structure A-108
QUERYRECORDRECT A-109
QUERYRECORDRECT data structure A-109
queue

query information 8-350
query status 8-352

av_* values 8-381
QWL_USER in containers 24-1
OWL_* values 8-398
aws_ * values 8-400
QW_*Values 8-382

R
radio button 13-1
raster fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Realize Palette 8-403
RECORDCORE A-110
RECORDINSERT A-111
RECORDINSERT data structure A-111
RECORDITEM A-111
rectangle

Index X-33

rectangle (continued)
calculate frame 8-22
check whether visible 5-376
check whether within region 5-374
compare for equality 8-148
convert to graphic 8-258
copy 8-39
draw border 8-121
draw interior 8-121
exclude from clipping region 5-140
fill 8-154
inflate 8-197
intersect 8-205
intersect clip 5-155
invalidate 8-207
invert 8-211
query if point within 8-289
query update 8-377
set coordinates 8-489
set empty 8-491
subtract 8-538
validate 8-560

Rectangle In Region 5-374
Rectangle Visible 5-376
RECTDIR_* values A-114
RECTL A-112
region

query box 5-345
query rectangles 5-347

regions
check if identical 5-134
check whether point within 5-219
check whether rectangle within 5-374
combine 5-49
create 5-88
destroy 5-11 O
frame 5-146
invalidate 8-209
move 5-179
offset 5-179
paint 5-186
set 5-536
validate 8-562

Register User Data Type 8-408
Register User Message 8-415
Register User Message Hook 10-21
Register Window Class 8-405
Register Workplace Object Class 8-407
RegisterUserMsg 10-21
Relative Line at Current Position 33-22
Relative Line at Given Position 33-22
Release Hook 8-418
Release Presentation Space 3-44, 8-420
Remove Dynamics 5-378
Remove Presentation Parameter 8-422
Remove Switch Entry 8-424
RENDERFILE A-112
Replace Workplace Object Class 8-426
Request Mutex Semaphore 8-427
reserved messages 12-1
Reset Boundary Data 5-381
reset options 5-194
Reset Presentation Manager 6-17
Reset Presentation Space 5-382
resource

load string from 8-251
resource definitions 32-2

X-34 PM Programming Reference

resource file specification 32-27
resource files

definitions 32-2
introduction 32-1
source file specification 32-27
syntax definitions 32-1

resource script file
specification 32-2

resource script file specification
keyboard resources 32-18
user-defined resources 32-3

resource statements
ACCEL TABLE 32-9
ASSOCTABLE 32-10
dialog template 32-16
directives 32-4
DLGTEMPLATE 32-16
MENU item definition 32-13
MENU statement 32-11
multiple-line 32-7
single line 32-2
STRINGTABLE 32-7
user-defined 32-3
window template 32-16
WINDOWTEMPLATE 32-16

Restore Presentation Space 5-384
Restore Window Position 8-429
RES_* values 5-194
RGB 5-77, A-113
RGB (red-green-blue) 5-264, 5-343, 5-453, 8-362

query color 5-349
RGB2 A-113
RGNRECT A-114
RGN_* values 5-140, 5-155, 5-345, 5-451, 8-379
Right cursor key 8-547
Roman text 5-435
ROP _*values 5-24, 5-112, 5-567
Rotate Transform 5-386
RRGN_* values 5-374
RT_* values 32-27
RUM_* values 8-415
RVIS_ * values 5-376

s
SAA-conforming metafiles 5-475
Save Metafile 5-389
Save Presentation Space 5-391
Save Window Position 8-430
SBCDATA A-114
SBCS 34-23
SBMP _*values 8-194
SBM_ QUERYPOS 20-4
SBM_QUERYRANGE 20-4
SBM_SETPOS 20-5
SBM_SETSCROLLBAR 20-6
SBM_SETTHUMBSIZE 20-7
SBS_ *values 20-1
SB_* values 12-38, 12-68, 28-2, 28-5
Scale Matrix 5-393
SCP_* values 5-448
scroll bar control data 20-1
scroll bar control window processing 20-1
scroll bar styles 20-1
Scroll Window 8-432
SC_* values 15-21
SOW_* values 5-362, 5-546

SEARCHSTRING A-115
SEARCHSTRING data structure A-115
SEGEM_* values 5-285, 5-480
segment attributes

chained 5-539
detectability 5-539
highlight 5-539
nonstore 5-539
store 5-539
transformability 5-539
visibility 5-539

Segment Characteristics 33-22
segments

add comment 5-51
call matrix 5-31
close current 5-47
correlate 5-67
correlate chain 5-59
correlate section of chain 5-63
delete all 5-104
delete retained 5-102
draw 5-123
draw chain 5-117
draw section of chain 5-121
get graphic data from 5-150
open 5-181
query attributes 5-351
query initial attributes 5-304
query names 5-353
query priority 5-355
query transform matrix 5-357
return last error during drawing 5-138
set attributes 5-538
set initial attributes 5-488
set priority 5-541
set transform matrix 5-543

Select Palette 5-396
Send Drag Message 3-45
Send Message 8-437
Send Message Hook 10-23
Send Message to Dialog Item 8-435
SendMsgHook 10-23
SEPARATOR menu item 32-15
session title

query 8-355
Set Accelerator Table 8-439
Set Active Window 8-441
Set Arc Parameters 5-398, 33-23
Set Attribute Mode 5-401
Set Attributes 5-404
Set Background Color 5-412, 33-23
Set Background Indexed Color 33-24
Set Background Mix 5-415, 33-25
Set Bit Map 5-418
Set Bit-Map Bits 5-420
Set Bit-Map Dimension 5-423
Set Bit-Map Identifier 5-425
Set Capture 8-442
Set Character Angle 5-427, 33-26
Set Character Box 5-430
Set Character Break Extra 5-433, 33-26
Set Character Cell 33-27
Set Character Direction 5-435, 33-28
Set Character Extra 5-438, 33-28
Set Character Mode 5-440
Set Character Precision 33-29
Set Character Set 5-443, 33-30

Set Character Shear 5-445, 33-30
Set Checkstate of Button 8-30
Set Class Message Interest 8-444
Set Class Pointer-Conversion Procedure 8-447
Set Clip Path 5-448, 33-31
Set Clip Region 5-451
Set Clipboard Data 8-449
Set Clipboard Owner 8-452
Set Clipboard Viewer 8-454
Set Code Page 5-456, 8-456
Set Color 5-453, 33-31
Set Color of Text 4-26
Set Current Po~ition 5-458, 33-32
Set Default Arc Parameters 5-460
Set Default Attributes 5-462
Set Default Tag 5-470
Set Default View Matrix 5-467
Set Default Viewing Limits 5-472
Set Desktop Background 8-457
Set Dialog Item Short 8-459
Set Dialog Item Text 8-461
Set Drag Image 3-48
Set Draw Control 5-474
Set Drawing Mode 5-477
Set Edit Mode 5-480
Set Element Pointer 5-482
Set Element Pointer At Label 5-484
Set Extended Color 33-32
Set File Icon 8-463
Set Focus 8-464
Set Fractional Line Width 33-33
Set Graphics Field 5-486
Set Hook 8-466
set identifier

delete 5-106
Set Indexed Color 33-34
Set Individual Attribute 33-35
Set Initial Segment Attributes 5-488
Set Keyboard State Table 8-468
Set Line End 5-491, 33-36
Set Line Join 5-493, 33-36
Set Line Type 5-495, 33-37
Set Line Width 5-498, 33-38
Set Line Width Geom 5-500
Set Listbox Item Text 8-470
Set Marker 5-502
Set Marker Box 5-504
Set Marker Cell 33-39
Set Marker Precision 33-40
Set Marker Set 5-506, 33-40
Set Marker Symbol 33-41
Set Menu Item Text 8-472
Set Message Interest 8-473
Set Message Mode 8-476
Set Metafile Bits 5-508
Set Mix 5-510, 33-41
Set Model Transform 33-42
Set Model Transform Matrix 5-513
Set Multiple Window Positions 8-478
Set Object Data 8-480
Set Owner 8-481
Set Page Viewport 5-516
Set Palette Entries 5-518
Set Parent 8-482
Set Pattern 5-521
Set Pattern Reference Point 5-524, 33-43
Set Pattern Set 5-526, 33-44

Index X-35

Set Pattern Symbol 33-44
Set Pel 5-528
Set Pick Identifier 33-45
Set Pick-Aperture Position 5-530
Set Pick-Aperture Size 5-531
Set Pointer 8-484
Set Pointer Position 8-486
Set Pointing Device Pointer 3-53
Set Presentation Parameter 8-487
Set Presentation Space 5-533
Set Rectangle 8-489
Set Rectangle Empty 8-491
Set Region 5-536
Set Segment Attributes 5-538
Set Segment Boundary 33-45
Set Segment Priority 5-541
Set Segment Transform Matrix 5-543
Set Stop Draw 5-546
Set Stroke Line Width 33-46
Set Synchronization Mode 8-492
Set System Colors 8-494
Set System Modal Window 8-500
Set System Value 8-502
Set Tag 5-548
Set Text Alignment 5-550, 33-47
Set Values in DRAG ITEM 3-50
Set Viewing Limits 5-553
Set Viewing Transform 33-48
Set Viewing Transform Matrix 5-555
Set Viewing Window 33-48
Set Window Enabled State 8-135
Set Window Pointer-Conversion Procedure 8-514
Set Window Position 8-506
Set Window Text 8-512
Set Window Word Bits 8-504
Set Window Word Long 8-515
Set Window Word Short 8-517
Set Window Words Pointer 8-510
SFACTORS A-115
SHANDLE A-116
Sharp Fillet at Current Position 33-50
Sharp Fillet at Given Position 33-50
SHE_* values A-101
SHORT A-116
Show Cursor 8-518
Show Pointer 8-520
Show Tracking Rectangle 8-522
Show Window 8-523
Shutdown System 8-525
single-byte character set 1-6
single-byte character sets 34-23
SIZEF A-116
SIZEL A-116
SLDCDATA A-116
SLDCDATA data structure A-116
slider control window processing

data structures 26-3
notification messages 26-4
purpose 26-1
styles 26-1
window messages 26-7

SLM_ADDDETENT 26-7
SLM_QUERYDETENTPOS 26-7
SLM_ QUERYSCALETEXT 26-8
SLM_QUERYSLIDERINFO 26-9
SLM_QUERYTICKPOS 26-11
SLM_QUERYTICKSIZE 26-11

X-36 PM Programming Reference

SLM_REMOVEDETENT 26-12
SLM_SETSCALETEXT 26-13
SLM_SETSLIDERINFO 26-13
SLM_SETTICKSIZE 26-15
SLS_* values 26-1
SMHSTRUCT A-117
SMIM_ *values 8-444, 8-473
SMI_ * values 8-444, 8-473
SM_QUERYHANDLE 22-3
SM_SETHANDLE 22-4
Sound Alarm 8-11
source resource file 32-27
SPBM_OVERRIDESETLIMITS 21-3
SPBM_QUERYLIMITS 21-4
SPBM_QUERYVALUE 21-4
SPBM_SETARRAY 21-6
SPBM_SETCURRENTVALUE 21-6
SPBM_SETLIMITS 21-7
SPBM_SETMASTER 21-8
SPBM_SETTEXTLIMIT 21-9
SPBM_SPINDOWN 21-9
SPBM_SPINUP 21-10
Specify Text Font 4-29
Specify Text Font Style 4-32
spin button control window processing 21-1

notification message 21-2
purpose 21-1
styles 21-1

SplControlDevice 7-2
SplCopyJob 7-5
SplCreateDevice 7-7
SplCreateQueue 7-10
SplDeleteDevice 7-14
SplDeleteJob 7-16
SplDeleteQueue 7-18
SplEnumDevice 7-20
SplEnumDriver 7-23
SplEnumJob 7-26
SplEnumPort 7-29
SplEnumPrinter 7-32
SplEnumQueue 7-35
SplEnumQueueProcessor 7-39
SPLERR A-117
SplHoldJob 7-42
SplHoldQueue 7-44
SplPurgeQueue 7-46
SplQmAbort 7-48
SplQmAbortDoc 7-49
SplQmClose 7-50
SplQmEndDoc 7-51
SplQmOpen 7-53
SplQmStartDoc 7-55
SplQmWrite 7-57
SplQueryDevice 7-59
SplQueryJob 7-62
SplQueryQueue 7-66
SplReleaseJob 7-70
SplReleaseQueue 7-72
SplSetDevice 7-74
SplSetJob 7-77
SplSetQueue 7-81
SPL_* values 7-51, 7-53
Spool File Close 7-50
spooler

control device 7-2
copy job 7-5
create device 7-7

\
I

/

~
;I

spooler (continued)
create queue 7-10
delete device 7-14
delete job 7-16
delete queue 7-18
enumerate device 7-20
enumerate driver 7-23, 7-29
enumerate job 7-26
enumerate printer 7-32
enumerate queue 7-35
enumerate queue processor 7-39
hold job 7-42
hold queue 7-44
purge queue 7-46
query device 7-59
query job 7-62
query queue 7-66
queue manager abort 7-48
queue manager abort document 7-49
queue manager close 7-50
queue manager end document 7-51
queue manager open 7-53
queue manager start document 7-55
queue manager write 7-57
release job 7-70
release queue 7-72
set device 7-74
set job information 7-77
set queue 7-81

Spooler Control Device 7-2
Spooler Copy Job 7-5
Spooler Create Device 7-7
Spooler Create Queue 7-10
Spooler Delete Device 7-14
Spooler Delete Job 7-16
Spooler Delete Queue 7-18
Spooler Enumerate Device 7-20
Spooler Enumerate Driver 7-23
Spooler Enumerate Job 7-26
Spooler Enumerate Port 7-29
Spooler Enumerate Print Destinations 7-32
Spooler Enumerate Queue 7-35
Spooler Enumerate Queue Processor 7-39
Spooler File Abort 7-48
Spooler File Abort Document 7-49
Spooler File End Document 7-51
Spooler File Open 7-53
Spooler File Start Document 7-55
Spooler File Write 7-57
Spooler Hold Job 7-42
Spooler Hold Queue 7-44
Spooler Purge Queue 7-46
Spooler Query Device 7-59
Spooler Query Job 7-62
Spooler Query Queue 7-66
Spooler Release Job 7-70
Spooler Release Queue 7-72
Spooler Set Device 7-74
Spooler Set Job 7-77
Spooler Set Queue 7-81
SPTR_* values 8-365
SS_* values 22-1
standard bit-map formats D-1
Standard File Dialog 8-152
Standard File Dialog Default Procedure 8-87
Standard Font Dialog 8-163
Standard Font Dialog Default Procedure 8-88

Start Timer 8-529
static control data 22-2
static control styles 22-1
static control window processing 22-1
Stop Timer 8-531
storage mapping of data types 1-6
store attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Store Window Position 8-533
string

convert to uppercase 8-556
string handle

create 3-5
delete 3-10, 3-11

strings
load from resource 8-251
substitute 8-536

STRINGTABLE statement 32-7
Stroke Path 5-558
STRUCT A-117
structures A-1
STR16 A-117
STR32 A-117
STR64 A-117
STR8 A-117
STYLECHANGE A-117
Subclass Window 8-534
submenus 32-14
Substitute Strings 8-536
Subtract Rectangle 8-538
suppression options 5-194
SUP_*values 5-194
sv_* values

effect on container icon size A-17
effect on container mini-icon size A-17

SWBLOCK A-118
SWCNTRL A-118
SWENTRY A-119
Switch To Program 8-540
SWL_* values A-119
SWP A-119
SWP _*values 8-386, 8-506, 12-69, A-120
SW_* options 8-432
SYSCLR_* indexes 8-494
SYSINF _ * values 8-381
system color

query 8-362
set 8-494

system pointer
query 8-365

system value
query 8-368
set 8-502

T
tag

query 5-363
query default 5-277
set 5-548

TA_* values 5-550, 5-551
TBM_QUERYHILITE 23-3
TBM_SETHILITE 23-3
templates

dialog 32-19
format 32-15
menus 32-15

Index X-37

Terminate 8-542
Terminate Application 8-544
text

draw 8-126
query alignment 5-364
query box 5-365
set alignment 5-550

TF_*Values A-121
ThunkProc 10-3
TIO A-120
timer

start 8-529
title bar

control data 23-1
control window processing 23-1
style 23-1

TRACKINFO A-120
tracking rectangle

hide 8-522
show 8-522

transform matrix
query model 5-325
rotate 5-386
scale 5-393
set model 5-513
translate 5-560

transformability attribute for segments
modify (GpiSetSegmentAttrs) 5-539

transforms
set viewing 5-555

TRANSFORM_* values 5-31, 5-386, 5-393, 5-467, 5-513,
5-543, 5-555,5-560

Translate Accelerator 8-550
Translate Character with Code Page 8-40
Translate Matrix 5-560
Translate String with Code Page 8-42
TREEITEMDESC A-122
triplets G-2
TXTBOX_ * values 5-366

u
UCHAR A-122
ULONG A-122
Union Rectangle 8-552
Unload Fonts 5-563
Unload Public Fonts 5-565
Up cursor key 8-547
update region

exclude 8-150
query 8-379

Update Window 8-554
Uppercase Character 8-558
Uppercase String 8-556
USEITEM A-122
user-defined resources 32-3
USERBUTTON A-122
USHORT A-123

v
Validate Rectangle 8-560
Validate Region 8-562
value set control window processing

data structures 27-4
notification messages 27-5
purpose 27-1

X-38 PM Programming Reference

value set control window processing (continued)
styles 27-1
window messages 27-8

Verify Given Rendering Mechanism and Format 3-57
Verify Native Rendering Mechanism and Format 3-55
Verify True Type of Dragged Object 3-59
Verify Type of Dragged Object 3-61
Verify Types 3-63
VGA 2-19
VIA_* values

querying item attributes 27-9
setting item attributes 27-15

view matrix
query default 5-273

viewing limits
query 5-368
query default 5-278
set 5-553

viewing transform
set default 5-467

viewing transforms
query 5-370

VIEWITEM A-123
viewports

query page 5-330
VIOFONTCELLSIZE A-123
VIOSIZECOUNT A-123
virtual key definitions 1-1
visibility attribute for segments

modify (GpiSetSegmentAttrs) 5-539
VK_* values 8-176, A-1
VM_QUERYITEM 27-8
VM_QUERYITEMATTR 27-9
VM_QUERYMETRICS 27-11
VM_QUERYSELECTEDITEM 27-12
VM_SELECTITEM 27-12
VM_SETITEM 27-13
VM_SETITEMATTR 27-14
VM_SETMETRICS 27-16
VOID A-123
VSCDATA A-123
VSCDATA data structure A-123
VSDRAGINFO A-123
VSDRAGINFO data structure A-123
VSDRAGINIT A-124
VSTEXT A-124
VS_* values 27-1

w
Wait Event Semaphore 8-565
Wait Message 8-567
Wait MuxWait Semaphore or Message 8-569
WA_* values 8-11
WCS_* values 8-35
we_* classes 8-398
we_* values 11-2, 23-1
WinAddAtom 8-7
WinAddSwitchEntry 8-9
WinAlarm 8-11
WinAssociateHelplnstance 8-13
WinBeginEnumWindows 8-16
WinBeginPaint 8-18
WinBroadcastMsg 8-20
WinCalcFrameRect 8-22
WinCallMsgFilter 8-24
WinCancelShutdown 8-26

t
\

\
/

WinChangeSwitchEntry 8-28
WinCheckButton 8-30
WinCheckMenultem 8-32
WinCloseClipbrd 8-34
WinCompareStrings 8-35
WinCopyAccelTable 8-37
WinCopyRect 8-39
WinCpTranslateChar 8-40
WinCpTranslateString 8-42
WinCreateAccelTable 8-44
WinCreateAtomTable 8-46
WinCreateCursor 8-48
WinCreateDlg 8-50
WinCreateFrameControls 8-52
WinCreateHelplnstance 8-54
WinCreateHelpTable 8-56
WinCreateMenu 8-58
WinCreateMsgQueue 8-60
WinCreateObject 8-62
WinCreatePointer 8-64
WinCreatePointerlndirect 8-66
WinCreateStdWindow 8-68
WinCreateSwitchEntry 8-72
WinCreateWindow 8-74
WinDdelnitiate 8-78
WinDdePostMsg 8-80
WinDdeRespond 8-83
WinDefDlgProc 8-85
WinDefFileDlgProc 8-87
WinDefFontDlgProc 8-88
WinDefWindowProc 8-89
WinDeleteAtom 8-91
WinDeletelboxltem 8-93
WinDeletelibrary 8-95
WinDeleteProcedure 8-96
WinDeregisterObjectClass 8-97
WinDestroyAccelTable 8-98
WinDestroyAtomTable 8-99
WinDestroyCursor 8-101
WinDestroyHelplnstance 8-102
WinDestroyMsgQueue 8-104
WinDestroyObject 8-106
WinDestroyPointer 8-107
WinDestroyWindow 8-109
WinDismissDlg 8-111
WinDispatchMsg 8-113
WinDlgBox 8-115
window

create 8-74
destroy 8-109
query 8-382
query active 8-293
query class name 8-305
query desktop 8-319
query device context for 8-384
query handle from device context 8-572
query pointer 8-390
query position 8-386
query size 8-386
query text 8-394
query text length 8-396
query unsigned long integer value of 8-398
query unsigned short integer value of 8-400
register class of 8-405
scroll 8-432
set message interest 8-473
set multiple positions 8-478

window (continued)
set owner 8-481
set position 8-506
set to system modal 8-500
update 8-554

window class
set message interest 8-444

window class styles 12-1
Window From Point 8-576
window list

remove entry 8-424
Window List title

query 8-375
Window Procedure 10-4
window processing

button control 13-1
combo box control 19-1
container control 24-1
control 11-2
default 11-1, 12-1
entry field control 14-1
frame control 15-1
language support 12-80
list box control 16-1
menu control 17-1
multi-line entry field control 18-1
notebook control 25-1
prompted entry field control 19-1
scroll bar control 20-1
slider control 26-1
spin button control 21-1
static control 22-1
value set control 27-1

Window Start Application 8-526
windows

create standard 8-68
create standard frame controls 8-52
define procedure 10-4
enable update 8-137
find descendant 8-576
get maximum position 8-179
get minimum position 8-181
get multiples from identities 8-266
invoke default procedure 8-89
is handle valid 8-226
map points 8-260
open device context 8-273
process message box 8-262
query class information 8-303
query descendancy 8-213
query enabled state 8-228
query handle from identifier 8-574
query is child 8-213
query object 8-340
query rectangle 8-392
query system modal 8-364
query visibility 8-232
set active 8-441
set enabled state 8-135
set parent 8-482
set text 8-512
set visibility state 8-137, 8-523
show 8-523
start flashing 8-158
stop flashing 8-158

WINDOWTEMPLATE statement 32-16
WinDrawBitmap 8-118

Index X-39

WinDrawBorder 8-121
WinDrawPointer 8-124
WinDrawText 8-126
WinEmptyClipbrd 8-130
WinEnableControl 8-131
WinEnableMenultem 8-132
WinEnablePhyslnput 8-134
WinEnableWindow 8-135
WinEnableWindowUpdate 8-137
WinEndEnumWindows 8-139
WinEndPaint 8-141
WinEnumClipbrdFmts 8-143
WinEnumDlgltem 8-145
WinEnumObjectClasses 8-147
WinEqualRect 8-148
WinExcludeUpdateRegion 8-150
WinFileDlg 8-152
WinFillRect 8-154
WinFindAtom 8-156
WinFlashWindow 8-158
WinFocusChange 8-160
WinFontDlg 8-163
WinFreeErrorlnfo 8-165
WinFreeFileDlglist 8-166
WinFreeFilelcon 8-168
WinGetClipPS 8-169
WinGetCurrentTime 8-171
WinGetDlgMsg 8-172
WinGetErrorlnfo 8-175
WinGetKeyState 8-176
WinGetlastError 8-178
WinGetMaxPosition 8-179
WinGetMinPosition 8-181
WinGetMsg 8-183
WinGetNextWindow 8-186
WinGetPhysKeyState 8-188
WinGetPS 8-190
WinGetScreenPS 8-192
WinGetSysBitmap 8-194
WinlnflateRect 8-197
Winlnitialize 8-199
WinlnSendMsg 8-201
Winlnsertlboxltem 8-203
WinlntersectRect 8-205
WinlnvalidateRect 8-207
WinlnvalidateRegion 8-209
WinlnvertRect 8-211
WinlsChild 8-213
WinlsControlEnabled 8-214
WinlsMenultemChecked 8-216
WinlsMenultemEnabled 8-218
WinlsMenultemValid 8-220
WinlsPhyslnputEnabled 8-222
WinlsRectEmpty 8-223
WinlsThreadActive 8-224
WinlsWindow 8-226
WinlsWindowEnabled 8-228
WinlsWindowShowing 8-230
WinlsWindowVisible 8-232
WinloadAccelTable 8-234
WinloadDlg 8-236
WinloadFilelcon 8-239
WinloadHelpTable 8-241
Winloadlibrary 8-243
WinloadMenu 8-244
WinloadMessage 8-246
WinloadPointer 8-248

X-40 PM Programming Reference

WinloadProcedure 8-250
WinloadString 8-251
WinlockVisRegions 8-253
WinlockWindowUpdate 8-255
WinMakePoints 8-257
WinMakeRect 8-258
WinMapDlgPoints 8-259
WinMapWindowPoints 8-260
WinMessageBox 8-262
WinMultWindowFromlDs 8-266
WinNextChar 8-268
WinOffsetRect 8-270
WinOpenClipbrd 8-272
WinOpenWindowDC 8-273
WinPeekMsg 8-275
WinPopupMenu 8-277
WinPostMsg 8-281
WinPostQueueMsg 8-283
WinPrevChar 8-285
WinProcessDlg 8-287
WinPtlnRect 8-289
WinQueryAccelTable 8-291
WinQueryActiveWindow 8-293
WinQueryAnchorBlock 8-294
WinQueryAtomlength 8-295
WinQueryAtomName 8-297
WinQueryAtomUsage 8-299
WinQueryButtonCheckstate 8-300
WinQueryCapture 8-302
WinQueryClasslnfo 8-303
WinQueryClassName 8-305
WinQueryClassThunkProc 8-307
WinQueryClipbrdData 8-308
WinQueryClipbrdFmtlnfo 8-310
WinQueryClipbrdOwner 8-312
WinQueryClipbrdViewer 8-313
WinQueryCp 8-314
WinQueryCplist 8-315
WinQueryCursorlnfo 8-316
WinQueryDesktopBkgnd 8-317
WinQueryDesktopWindow 8-319
WinQueryDlgltemShort 8-321
WinQueryDlgltemText 8-323
WinQueryDlgltemTextlength 8-325
WinQueryFocus 8-327
WinQueryHelplnstance 8-328
WinQuerylboxCount 8-330
WinQuerylboxltemText 8-331
WinQuerylboxltemTextlength 8-333
WinQuerylboxSelectedltem 8-335
WinQueryMsgPos 8-336
WinQueryMsgTime 8-338
WinQueryObject 8-402
WinQueryObjectWindow 8-340
WinQueryPointer 8-342
WinQueryPointerlnfo 8-343
WinQueryPointerPos 8-345
WinQueryPresParam 8-347
WinQueryQueuelnfo 8-350
WinQueryQueueStatus 8-352
WinQuerySessionTitle 8-355
WinQuerySwitchEntry 8-357
WinQuerySwitchHandle 8-358
WinQuerySwitchlist 8-360
WinQuerySysColor 8-362
WinQuerySysModalWindow 8-364
WinQuerySysPointer 8-365

\
,)

WinQuerySystemAtomTable 8-372
WinQuerySysValue 8-368
WinQueryTaskSizePos 8-373
WinQueryTaskTitle 8-375
WinQueryUpdateRect 8-377
WinQueryUpdateRegion 8-379
WinQueryVersion 8-381
WinQueryWindow 8-382
WinQueryWindowDC 8-384
WinQueryWindowModel 8-385
WinQueryWindowPos 8-386
WinQueryWindowProcess 8-388
WinQueryWindowPtr 8-390
WinQueryWindowRect 8-392
WinQueryWindowText 8-394
WinQueryWindowTextLength 8-396
WinQueryWindowThunkProc 8-397
WinQueryWindowULong 8-398
WinQueryWindowUShort 8-400
WinRealizePalette 8-403
WinRegisterClass 8-405
WinRegisterObjectClass 8-407
WinRegisterUserDatatype 8-408
WinRegisterUserMsg 8-415
WinReleaseHook 8-418
WinReleasePS 8-420
WinRemovePresParam 8-422
Win RemoveSwitchEntry 8-424
WinReplaceObjectClass 8-426
WinRequestMutexSem 8-427
WinRestoreWindowPos 8-429
WinSaveWindowPos 8-430
WinScrollWindow 8-432
WinSendDlgltemMsg 8-435
WinSendMsg 8-437
WinSetAccelTable 8-439
WinSetActiveWindow 8-441
WinSetCapture 8-442
WinSetClassMsglnterest 8-444
WinSetClassThunkProc 8-447
WinSetClipbrdData 8-449
WinSetClipbrdOwner 8-452
WinSetClipbrdViewer 8-454
WinSetCp 8-456
WinSetDesktopBkgnd 8-457
WinSetDlgltemShort 8-459
WinSetDlgltemText 8-461
WinSetFilelcon 8-463
WinSetFocus 8-464
WinSetHook 8-466
WinSetKeyboardStateTable 8-468
WinSetLboxltemText 8-470
WinSetMenultemText 8-472
WinSetMsglnterest 8-473
WinSetMsgMode 8-476
WinSetMultWindowPos 8-478
WinSetObjectData 8-480
WinSetOwner 8-481
WinSetParent 8-482
WinSetPointer 8-484
WinSetPointerPos 8-486
WinSetPresParam 8-487
WinSetRect 8-489
WinSetRectEmpty 8-491
WinSetSynchroMode 8-492
WinSetSysColors 8-494
WinSetSysModalWindow 8-500

WinSetSysValue 8-502
WinSetWindowBits 8-504
WinSetWindowPos 8-506
WinSetWindowPtr 8-510
WinSetWindowText 8-512
WinSetWindowThunkProc 8-514
WinSetWindowULong 8-515
WinSetWindowUShort 8-517
WinShowCursor 8-518
WinShowPointer 8-520
WinShowTrackRect 8-522
WinShowWindow 8-523
WinShutdownSystem 8-525
WinStartApp 8-526
WinStartTimer 8-529
WinStopTimer 8-531
WinStoreWindowPos 8-533
WinSubclassWindow 8-534
WinSubstituteStrings 8-536
WinSubtractRect 8-538
WinSwitchToProgram 8-540
WinTerminate 8-542
WinTerminateApp 8-544
WinTrackRect 8-546
WinTranslateAccel 8-550
WinUnionRect 8-552
WinUpdateWindow 8-554
WinUpper 8-556
WinUpperChar 8-558
WinValidateRect 8-560
WinValidateRegion 8-562
WinWaitEventSem 8-565
WinWaitMsg 8-567
WinWaitMuxWaitSem 8-569
WinWindowFromDC 8-572
WinWindowFromlD 8-574
WinWindowFromPoint 8-576
WM_ACTIVATE 8-109, 8-508, 12-3
WM_ACTIVATE (in Frame Controls) 15-6
WM_ACTIVATE (Language Support Dialog) 12-83
WM_ACTIVATE (Language Support Window) 12-80
WM_ADJUSTFRAMEPOS 15-6
WM_ADJUSTWINDOWPOS 8-508, 12-5
WM_APPTERMINATENOTIFY 12-4
WM_BEGINDRAG 12-6
WM_BEGINSELECT 12-7
WM_BUTTON1CLICK 12-7
WM_BUTTON1DBLCLK 12-10
WM_BUTTON1DBLCLK (in Frame Controls) 15-7
WM_BUTTON1DBLCLK (in Multiline Entry Fields) 18-36
WM_BUTTON1DOWN 12-13
WM_BUTTON1DOWN (in Frame Controls) 15-8
WM_BUTTON1DOWN (in Multiline Entry Fields) 18-36
WM_BUTTON1MOTIONEND 12-14
WM_BUTTON1MOTIONSTART 12-14
WM_BUTTON1UP 12-19
WM_BUTTON1UP (in Frame Controls) 15-8
WM_BUTTON1UP (in Multiline Entry Fields) 18-37
WM_BUTTON2CLICK 12-8
WM_BUTTON2DBLCLK 12-11
WM_BUTTON2DBLCLK (in Frame Controls) 15-7
WM_BUTTON2DOWN 12-15
WM_BUTTON2DOWN (in Frame Controls) 15-8
WM_BUTTON2MOTIONEND 12-16
WM_BUTTON2MOTIONSTART 12-16
WM_BUTTON2UP 12-20
WM_BUTTON2UP (in Frame Controls) 15-9

Index X-41

WM_BUTTON3CLICK 12-9
WM_BUTTON3DBLCLK 12-12
WM_BUTTON3DOWN 12-17
WM_BUTTON3MOTIONEND 12-18
WM_BUTTON3MOTIONSTR 12-18
WM_BUTTON3UP 12-21
WM_ CALCFRAMERECT 12-22
WM_CALCFRAMERECT (in Frame Controls) 15-9
WM_CALCVALIDRECTS 12-22
WM_ CHAR 12-24
WM_CHAR (Default Dialogs) 12-70
WM_CHAR (in Entry Fields) 14-12
WM_CHAR (in Frame Controls) 15-9
WM_CHAR (in List Boxes) 16-15
WM_ CHAR (in Multiline Entry Fields) 18-37
WM_CHAR (in Notebook Controls) 25-18
WM_CHAR (in Slider Controls) 26-16
WM_CHAR (in Value Set Controls) 27-17
WM_CHORD 12-25
WM_CLOSE 12-26
WM_CLOSE (Default Dialogs) 12-71
WM_CLOSE (in Frame Controls) 15-10
WM_COMMAND 11-3, 12-27, 15-10
WM_COMMAND (Default Dialogs) 12-71
WM_COMMAND (in Button Controls) 13-3
WM_COMMAND (in Menu Controls) 17-4
WM_CONTEXTMENU 12-28
WM_CONTROL 11-3, 12-28
WM_CONTROL (in Button Controls) 13-3
WM_CONTROL (in Combination Boxes) 19-3
WM_ CONTROL (in Container Controls) 24-4
WM_CONTROL (in Entry Fields) 14-3
WM_CONTROL (in List Boxes) 16-2
WM_ CONTROL (in Multiline Entry Fields) 18-3
WM_ CONTROL (in Notebook Controls) 25-3
WM_CONTROL (in Slider Controls) 26-4
WM_CONTROL (in Spin Button Controls) 21-2
WM_ CONTROL (in Value Set Controls) 27-5
WM_CONTROL (Language Support Dialog) 12-83
WM_CONTROL (Language Support Window) 12-80
WM_CONTROLPOINTER 12-29
WM_CONTROLPOINTER (in Container Controls) 24-5
WM_CONTROLPOINTER (in Notebook Controls) 25-19
WM_CONTROLPOINTER (in Slider Controls) 26-4
WM_CONTROLPOINTER (in Value Set Controls) 27-6
WM_CREATE 12-29
WM_DDE_ACK 30-1
WM_DDE_ADVISE 30-2
WM_DDE_DATA 30-3
WM_DDE_EXECUTE 30-3
WM_DDE_INITIATE 30-5
WM_DDE_INITIATEACK 30-5
WM_DDE_POKE 30-6
WM_DDE_REQUEST 30-7
WM_DDE_TERMINATE 30-8
WM_DDE_UNADVISE 30-9
WM_DESTROY 8-109, 12-30
WM_DESTROYCLIPBOARD 28-1
WM_DRAWCLIPBOARD 28-2
WM_DRAWITEM 12-31
WM_DRAWITEM (in Container Controls) 24-6
WM_DRAWITEM (in Font Dialog) 12-75
WM_DRAWITEM (in Frame Controls) 15-10
WM_DRAWITEM (in List Boxes) 16-3
WM_DRAWITEM (in Menu Controls) 17-4
WM_DRAWITEM (in Notebook Controls) 25-20

X-42 PM Programming Reference

WM_DRAWITEM (in Slider Controls) 26-5
WM_DRAWITEM (in Value Set Controls) 27-6
WM_ENABLE 12-31
WM_ENABLE (in Button Controls) 13-10
WM_ENABLE (in Multiline Entry Fields) 18-40
WM_ENDDRAG 12-32
WM_ENDSELECT 12-33
WM_ERASEBACKGROUND 15-10
WM_ERASEWINDOW 12-33
WM_ERROR 12-34
WM_FLASHWINDOW 15-11
WM_FOCUSCHANGE 12-34
WM_FOCUSCHANGE (in Frame Controls) 15-12
WM_FORMATFRAME 12-35
WM_FORMATFRAME (in Frame Controls) 15-12
WM_HELP 11-3, 12-36
WM_HELP (in Button Controls) 13-4
WM_HELP (in Menu Controls) 17-5
WM_HITTEST 12-37
WM_HSCROLL 12-38
WM_HSCROLL (in Horizontal Scroll Bars) 20-3
WM_HSCROLLCLIPBOARD 28-2
WM_INITDLG 12-38
WM_INITDLG (Default Dialogs) 12-71
WM_INITMENU 12-39
WM_INITMENU (in Frame Controls) 15-13
WM_INITMENU (in Menu Controls) 17-5
WM_JOURNALNOTIFY 12-39
WM_MATCHMNEMONIC 12-40
WM_MATCHMNEMONIC (Default Dialogs) 12-71
WM_MATCHMNEMONIC (in Button Controls) 13-10
WM_MATCHMNEMONIC (in Static Controls) 22-4
WM_MEASUREITEM 12-41
WM_MEASUREITEM (in Frame Controls) 15-13
WM_MEASUREITEM (in List Boxes) 16-4
WM_MEASUREITEM (in Menu Controls) 17-5
WM_MENUEND 12-41
WM_MENUEND (in Menu Controls) 17-6
WM_MENUSELECT 12-42
WM_MENUSELECT (in Frame Controls) 15-13
WM_MENUSELECT (in Menu Controls) 17-6
WM_MINMAXFRAME 12-42
WM_MINMAXFRAME (in Frame Controls) 15-4
WM_MOUSEMOVE 12-43
WM_MOUSEMOVE (in Multiline Entry Fields) 18-40
WM_MOVE 8-508, 12-44
WM_NEXTMENU 12-44
WM_NEXTMENU (in Frame Controls) 15-14
WM_NEXTMENU (in Menu Controls) 17-7
WM_NULL 12-45
WM_OPEN 12-45
WM_OWNERPOSCHANGE 15-14
WM_PACTIVATE 12-46
WM_PAINT 12-47
WM_PAINT (in Frame Controls) 15-15
WM_PAINT (Langauge Support Window) 12-80
WM_PAINT (Language Support Dialog) 12-83
WM_PAINTCLIPBOARD 28-3
WM _PCONTROL 12-47
WM_PPAINT 12-48
WM_PPAINT (Language Support Dialog) 12-84
WM_PPAINT (Language Support Window) 12-81
WM_PRESPARAMCHANGED 12-48
WM_PRESPARAMCHANGED (in Container

Controls) 24-52
WM_PRESPARAMCHANGED (in Notebook

Controls) 25-21

I
\j

\
\

/

)

)
/.

WM_PRESPARAMCHANGED (in Slider Controls) 26-17
slider control 26-17
value set control 27-18

WM_PRESPARAMCHANGED (in Value Set
Controls) 27-18

WM_PSETFOCUS 12-49
WM_PSIZE 12-49
WM_PSYSCOLORCHANGE 12-50
WM_ QUERY ACCEL TABLE 12-50
WM_ QUERYBORDERSIZE 15-15
WM_QUERYCONVERTPOS 12-51
WM_QUERYCONVERTPOS (in Button Controls) 13-10
WM_QUERYCONVERTPOS (in Entry Fields) 14-13
WM_QUERYCONVERTPOS (in Frame Controls) 15-16
WM_QUERYCONVERTPOS (in List Boxes) 16-15
WM_QUERYCONVERTPOS (in Menu Controls) 17-23
WM_QUERYCONVERTPOS (in Scroll Bars) 20-8
WM_QUERYCONVERTPOS (in Static Controls) 22-5
WM_QUERYCONVERTPOS (in Title Bar Controls) 23-4
WM_QUERYDLGCODE 12-72
WM_ QUERYFOCUSCHAIN 15-16
WM_QUERYFRAMECTLCOUNT 15-17
WM_QUERYFRAMEINFO 15-18
WM_QUERYHELPINFO 12-52
WM_QUERYICON 15-18
WM_QUERYTRACKINFO 12-52
WM_QUERYWINDOWPARAMS 12-53
WM_QUERYWINDOWPARAMS (in Button

Controls) 13-11
WM_QUERYWINDOWPARAMS (in Entry Fields) 14-13
WM_QUERYWINDOWPARAMS (in Frame

Controls) 15-19
WM_QUERYWINDOWPARAMS (in List Boxes) 16-16
WM_QUERYWINDOWPARAMS (in Menu Controls) 17-23
WM_QUERYWINDOWPARAMS (in Multiline Entry

Fields) 18-41
WM_QUERYWINDOWPARAMS (in Scroll Bars) 20-8
WM_QUERYWINDOWPARAMS (in Slider Controls) 26-18

slider control 26-18
value set control 27-19

WM_QUERYWINDOWPARAMS (in Static Controls) 22-5
WM_QUERYWINDOWPARAMS (in Title Bars) 23-4
WM_QUERYWINDOWPARAMS (in Value Set

Controls) 27-19
WM_QUIT 12-53
WM_REALIZEPALETTE 12-54
WM_RENDERALLFMTS 8-109, 28-4
WM_RENDERFMT 28-4
WM_SAVEAPPLICATION 12-55
WM_SEM1 12-55
WM_SEM2 12-56
WM_SEM3 12-56
WM_SEM4 12-57
WM_SETACCELTABLE 12-57
WM_SETBORDERSIZE 15-19
WM_SETFOCUS 12-58
WM_SETFOCUS (Language Support Dialog) 12-84
WM_SETFOCUS (Language Support Window) 12-81
WM_SETHELPINFO 12-58
WM_SETICON 15-20
WM_SETSELECTION 12-59
WM_ SETWINDOWPARAMS 12-60
WM_SETWINDOWPARAMS (in Button Controls) 13-11
WM_SETWINDOWPARAMS (in Entry Fields) 14-13
WM_SETWINDOWPARAMS (in Frame Controls) 15-20
WM_SETWINDOWPARAMS (in List Boxes) 16-16
WM_SETWINDOWPARAMS (in Menu Controls) 17-23

WM_SETWINDOWPARAMS (in Multiline Entry
Fields) 18-42

WM_SETWINDOWPARAMS (in Scroll Bars) 20-8
WM_SETWINDOWPARAMS (in Slider Controls) 26-19

slider control 26-19
value set control 27-20

WM_SETWINDOWPARAMS (in Static Controls) 22-5
WM_SETWINDOWPARAMS (in Title Bar Controls) 23-4
WM_SETWINDOWPARAMS (in Value Set Controls) 27-20
WM_SHOW 12-60
WM_SINGLESELECT 12-61
WM_SIZE 8-508, 12-61
WM_SIZE (in Frame Controls) 15-20
WM_SIZE (in Notebook Controls) 25-22
WM_SIZE (in Value Set Controls) 27-20
WM_SIZE (Language Support Dialog) 12-84
WM_SIZE (Language Support Window) 12-81
WM_SIZECLIPBOARD 28-5
WM_SUBSTITUTESTRING 12-62
WM_SYSCOLORCHANGE 12-63
WM_SYSCOLORCHANGE (Language Support

Dialog) 12-85
WM_SYSCOLORCHANGE (Language Support

Window) 12-82
WM_SYSCOMMAND 12-63, 13-4, 15-21, 17-7
WM_SYSCOMMAND (in Title Bar Controls) 23-2
WM_SYSVALUECHANGED 12-64
WM_TEXTEDIT 12-65
WM_TIMER 12-65
WM_TRACKFRAME 12-66
WM_TRACKFRAME (in Frame Controls) 15-22
WM_TRACKFRAME (in Title Bar Controls 23-2
WM_TRANSLATEACCEL 12-67
WM_TRANSLATEACCEL (in Frame Controls) 15-23
WM_TRANSLATEMNEMONIC 12-67
WM_TRANSLATEMNEMONIC (in Frame Controls) 15-23
WM_UPDATEFRAME 12-68
WM_UPDATEFRAME (in Frame Controls) 15-23
WM_VSCROLL 12-68
WM_VSCROLL (in Vertical Scroll Bars) 20-3
WM_VSCROLLCLIPBOARD 28-5
WM_WINDOWPOSCHANGED 12-69
WM_* messages 8-352
WNDPARAMS A-125
WndProc 10-4
World Coordinates Bit Bit 5-567
wpAddClockAlarmPage 9-53
wpAddClockDateTimePage 9-54
wpAddClockView1 Page 9-55
wpAddClockView2Page 9-56
wpAddCountryDatePage 9-57
wpAddCountryNumbersPage 9-58
wpAddCountryPage 9-59
wpAddCountryTimePage 9-60
wpAddDesktoplockup1 Page 9-61
wpAddDesktopLockup2Page 9-62
wpAddDesktopLockup3Page 9-63
wpAddDiskDetailsPage 9-64
wpAddFileMenuPage 9-65
wpAddFileTypePage 9-66
wpAddFile1Page 9-67
wpAddFile2Page 9-68
wpAddFile3Page 9-69
wpAddFolderBackgroundPage 9-70
wpAddFolderlncludePage 9-71
wpAddFolderSortPage 9-72
wpAddFolderView1Page 9-73

Index X-43

wpAddFolderView2Page 9-74
wpAddFolderView3Page 9-75
wpAddKeyboardMappingsPage 9-76
wpAddKeyboardSpecialNeedsPage 9-77
wpAddKeyboardTimingPage 9-78
wpAddMouseMappingsPage 9-79
wpAddMouseTimingPage 9-80
wpAddMouseTypePage 9-81
wpAddObjectGeneralPage 9-82
wpAddProgramAssociationPage 9-83, 9-84
wpAddProgramPage 9-85, 9-86
wpAddProgramSessionPage 9-87, 9-88
wpAddSettingsPages 9-89
wpAddSoundWarningBeepPage 9-90
wpAddSystemConfirmationPage 9-91
wpAddSystemlogoPage 9-92
wpAddSystemPrintScreenPage 9-93
wpAddSystemWindowPage 9-94
wpAddToObjUselist 9-95
wpAllocMem 9-97
WPClock * A-125
wpClose 9-98
wpclsCreateDefaultTemplates 9-240
wpclsFindObjectEnd 9-241
wpclsFindObjectFirst 9-242
wpclsFindObjectNext 9-244
wpclslnitData 9-246
wpclsMakeAwake 9-247
wpclsNew 9-249
wpclsQueryDefaultHelp 9-251
wpclsQueryDefaultView 9-252
wpclsQueryDetails 9-253
wpclsQueryDetailslnfo 9-254
wpclsQueryEditString 9-257
wpclsQueryError 9-258
wpclsQueryFolder 9-259
wpclsQuerylcon 9-260
wpclsQuerylconData 9-261
wpclsQuerylnstanceFilter 9-262
wpclsQuerylnstanceType 9-263
wpclsQueryObject 9-264
wpclsQueryOpenFolders 9-265
wpclsQuerySettingsPageSize 9-266
wpclsQueryStyle 9-267
wpclsQueryTitle 9-268
wpclsSetError 9-269
wpclsUnlnitData 9-270
wpCnrlnsertObject 9-99
wpCnrRemoveObject 9-101
wpCnrSetEmphasis 9-102
wpConfirmDelete 9-103
wpCopiedFromTemplate 9-104
wpCopyObject 9-105
WPCountry * A-125
wpCreateFromTemplate 9-106
wpCreateShadowObject 9-107
WPDataFile * A-125
wpDelete 9-108
wpDeleteAllJobs 9-109
wpDeleteContents 9-110
wpDeleteFromObjUselist 9-111
wpDeleteJob 9-112
WPDesktop * A-125
WPDisk * A-125
wpDisplayHelp 9-113
wpDoesObjectMatch 9-114
wpDragCell 9-115

X-44 PM Programming Reference

wpDraggedOverObject 9-116
wpDragOver 9-118
wpDrop 9-119
wpDroppedOnObject 9-120
wpEditCell 9-121
wpEndConversation 9-122
WPFileSystem * A-125
wpFilterPopupMenu 9-123
wpFindUseltem 9-125
WPFolder * A-125
wpFormatDragltem 9-126
wpFree 9-127
wpFreeMem 9-128
wpHide 9-129
wpHideFldrRunObjs 9-130
wpHoldJob 9-131
wpHoldPrinter 9-132
wplnitData 9-133
wplnsertPopupMenultems 9-134
wplnsertSettingsPage 9-136
wplsCurrentDesktop 9-137
WPJob * A-126
WPKeyboard * A-126
wpMenultemHelpSelected 9-138
wpMenultemSelected 9-139
wpModifyPopupMenu 9-140
WPMouse * A-126
wpMoveObject 9-141
WPM_* values A-125
WPObject * A-126
WPOINT A-126
wpOpen 9-142
wpPaintCell 9-143
WPPalette * A-126
wpPopulate 9-144
WPPrinter * A-126
wpPrintJobNext 9-145
wpPrintMetaFile 9-146
wpPrintObject 9-147
wpPrintPifFile 9-148
wpPrintPlainTextFile 9-149
wpPrintPrinterSpecificFile 9-150
wpPrintUnknownFile 9-151
WPProgramFile * A-126
WPProgramGroup * A-126
WPProgram * A-126
wpQuery AssociationFilter 9-152, 9-153
wpQueryAssociationType 9-154, 9-155
wpQueryComputerName 9-156
wpQueryConfirmations 9-157
wpQueryContent 9-158
wpQueryDefaultHelp 9-159
wpQueryDefau ltView 9-160
wpQueryDetailsData 9-161
wpQueryError 9-163
wpQueryFldrAttr 9-164
wpQueryFldrDetailsClass 9-165
wpQueryFldrFlags 9-166
wpQueryFldrFont 9-167
wpQueryHandle 9-168
wpQuerylcon 9-169
wpQuerylconData 9-170
wpQuerylogicalDrive 9-171
wpQueryNextlconPos 9-172
wpQueryPaletteHelp 9-173
wpQueryPalettelnfo 9-174
wpQueryPrinterName 9-175

\
I

I

wpQueryProgDetails 9-176, 9-177
wpQueryRealName 9-178
wpQueryRootFolder 9-179
wpQueryShadowedObject 9-180
wpQueryStyle 9-181
wpQueryTitle 9-182
wpQueryType 9-183
wpRedrawCell 9-184
wpRefresh 9-185
wpRegisterView 9-186
wpReleaseJob 9-187
wpReleasePrinter 9-188
wpRender 9-189
wpRenderComptete 9-190
wpRestore 9-191
wpRestoreData 9-192
wpRestorelong 9-193
wpRestoreState 9-194
wpRestoreString 9-195
WPRootFotder * A-126
wpSaveData 9-196
wpSaveDeferred 9-197
wpSavetmmediate 9-198
wpSavelong 9-199
wpSaveState 9-200
wpSaveString 9-201
wpScanSetupString 9-202
wpSetAssociationFitter 9-204, 9-205
wpSetAssociationType 9-206, 9-207
wpSetComputerName 9-208
wpSetDefauttHetp 9-209
wpSetDefaultPrinter 9-210
wpSetDefaultView 9-211
wpSetError 9-212
wpSetFldrAttr 9-213
wpSetFldrDetailsClass 9-214
wpSetFldrFtags 9-215
wpSetFldrFont 9-216
wpSettcon 9-217
wpSettconData 9-218
wpSetNextlconPos 9-219
wpSetPalettelnfo 9-220
wpSetPrinterName 9-221
wpSetProgDetails 9-222, 9-223
wpSetRealName 9-224
wpSetShadowTitle 9-225
wpSetStyle 9-226
wpSetTitle 9-227
wpSetType 9-228
wpSetup 9-229
wpSetupCell 9-233
WPShadow * A-126
wpShowPalettePointer 9-234
WPSound * A-126
WPSpooler * A-126
WPSRCLASSBLOCK* A-126
wpStartJobAgain 9-235
wpSwitch To 9-236
WPSystem * A-127
wpUnlnitData 9-238
wpUnlockObject 9-237
WRECT A-127
Write Profile Data 6-19
Write Profile String 6-21
WS_* values 8-190, 12-2

x
XYF_*Values A-128
XYWINSIZE A-127

Index X-45

~ IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

----------- -- -.-= :-:. :;:: =="=':':::;

©IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6272

SHJG-6272-00

U I rn 11111 ~111
Pl0G6272

