

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--..

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page xi.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are Inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

/

Contents

Notices .. xi

Trademarks . xi

Double-Byte Character Set (DBCS) . xi

PRESENTATION DRIVER DEVELOPMENT PROGRAM FORM . xiii

About This Book . xv

Part 1. Overview

Chapter 1. Presentation Drivers Overview . 1-1

Display Devices . 1-4

Hardcopy Devices (Printers and Plotters) .. 1-4

Calling Conventions .. 1-6

Function Number and Command Flags . 1-6

Device Context . 1-8

Device Context Types . 1-8

Data Types (Hardcopy Drivers Only) ... 1-8

Instance Data ... 1-9

Program Stack .. 1-9

Dynamic Link Library Functions . 1-9

Exported Functions . 1·-9

Imported Functions . 1-10

Presentation Driver Interface . 1-10

Part. 2 •. Development Considerations

Chapter 2. Design Considerations . 2-1

Angles ... 2-1

Bounds Computations . 2-1

Clipping .. 2-1

Closing Figures in Areas and Paths .. 2-1

Coordinate Values .. . 2-1

Positions Within Text Functions ... 2-2

Return Codes . 2-2

Transform Matrix Values ... 2-2

Allocating Memory ... 2-2

Error Strategy .. 2-2.

Severity . 2-3

Presentation Manager Error Codes .. 2-3

Exit List Processing ... 2-4

Interrupts . 2-4

Protecting Objects or Device Contexts . 2-4

Design Considerations for Display Drivers . 2-5

Correlation . 2-5

Drawing to Display Devices . 2-6

Design Considerations for Hardcopy Drivers . 2-6

Banding ... 2-7

Document Processing ... 2-8

Extended Attributes . 2-10

Hardcopy Device Names
Hardcopy Driver Migration

© Copyright IBM Corp. 1992

2-11
2-11

Ill

Hardcopy Driver Output to File .. 2-12
Help .. 2-12
Job Error Dialog .. 2-12

Part 3. OS/2 2.0 Presentation Drivers

Chapter 3. Display Drivers . 3-1
Exported Entry Points ... 3-1

MoveCursorBlock . 3-1
OS2_PM_DRV _ QUERYSCREENRESOLUTIONS . 3-2

Chapter 4. Graphics Engine Hardcopy Drivers . 4-1
Exported Entry Points ... 4-1

OS2_PM_DRV _DEVMODE . 4-2
OS2_PM_DRV _DEVICENAMES . 4-6
Drvlnstall . 4-7
DrvRemove . 4-8

File System Emulation . 4-9
PrtAbort . 4-10
PrtClose . 4-11
PrtDevlOCtl ... 4-12
PrtOpen . 4-13
PrtWrite . 4-14

Spooler Components ... 4-15
Spool File Creation . 4-15

PM_Q_STD .. 4-15
PM_Q_RAW . 4-17

Querying and Setting Configuration Data . 4-18
Spooler Support Functions ... 4-19

Spl MessageBox . 4-20
SplQmAbort . 4-21
SplQmAbortDoc . 4-22
SplQmClose . 4-23
SplQmEndDoc . 4-24
SplQmOpen . 4-25
SplQmStartDoc . 4-26
SplQmWrite . 4-27

Spooler Support for PM_Q_STD Data Type .. 4-28
SplStdClose . 4-29
SplStdDelete . 4-30
SplStdGetBits . 4-31
SplStdOpen . 4-32
SplStdQuerylength . 4-33
SplStdStart . 4-34
SplStdStop . 4-35

Chapter 5. Queue Drivers (Queue Processors) . 5-1
How a Queue Driver Prints .. 5-1

PM_Q_STD ... 5-1
PM_Q_RAW .. 5-1
User Data Types . 5-1
SplQpClose . ·. . . . 5-2
SplQpControl . 5-3
SplQplnstall . 5-4
SplQpOpen . 5-5

iv Presentation Driver Reference

SplQpPrint . 5-7
SplQpQueryDt . 5-8
SplQpQueryFlags . 5-9

Chapter 8. Port Drivers . 6-1
OS2SYS.INI File Structure .. 6-1

SplPdEnumPort . 6-2
SplPdGetPortlcon .. 6-3
SplPdlnitPort ... 6-4
SplPdlnstallPort . 6-5
SplPdQueryPort ... 6-6
SplPdRemovePort .. 6-7
Spl PdSetPort . 6-8
SplPdTermPort .. 6-9

Part 4. Reference Material

Chapter 7. Exported Entry Points . 7-1
OS2_PM_DRV_RING_LEVELS .. 7-1
OS2_PM_DRV_ENABLE_LEVELS .. 7-2
OS2_PM_DRV _ENABLE .. 7-3

Enable Subfunction 01H - FillLogicalDeviceBlock 7-6
Enable Subfunction 02H - FillPhysicalDeviceBlock 7-8
Enable Subfunction 04H - DisablePhysicalDeviceBlock 7-11
Enable Subfunction 05H - EnableDeviceContext 7-12
Enable Subfunction 06H - DisableDeviceContext 7-16
Enable Subfunction 07H - SaveDCState . 7-17
Enable Subfunction 08H - RestoreDCState 7-18
Enable Subfunction 09H - ResetDCState . 7-19
Enable Subfunction OAH - CompleteOpenDC 7-20
Enable Subfunction OBH - BeginCloseDC 7-21

Chapter 8. Mandatory Functions for All Drivers . 8-1
Attribute and Bundle Definitions .. 8-1

Colors .. 8-1
Mix Modes . 8-2

Line Attributes . 8-3
Area (Pattern) Attributes ... 8-5
Character Attributes . 8-6
Image Attributes .. 8-11
Marker Attributes . 8-12
Bit-Map Functions . 8-13
Color Functions . 8-13
GreEscape . 8-15

Defined Escape Codes . 8-16
Ranges for Additional Escape Codes . 8-17

Line Functions . 8-17
Mandatory Functions (for All Drivers) by Category 8-22

GreAccumulateBounds ... 8-25
GreBitblt . 8-26
GreCharString . 8-30
GreCharStringPos . 8-31
GreCreateLogColorTable .. 8-34
GreDeviceCreateBitmap . 8-36
GreDeviceDeleteBitmap ... 8-41

Contents V

GreDeviceGetAttributes . 8-43
GreDeviceQueryFontAttributes . 8-44
GreDeviceQueryFonts . 8-45
GreDeviceSelectBitmap ... 8-47
GreDeviceSetAttributes ... 8-48
GreDeviceSetDCOrigin ... 8-50
GreDeviceS.etGlobalAttribute . 8-51
GreDisjointlines . 8-52
GreDrawBits . 8-53
GreDrawBorder .. 8-57
GreDrawlineslnPath . 8-60
GreErasePS . 8-62
GreEscape DEVESC_ABORTDOC (Hardcopy Drivers Only) 8-63
GreEscape DEVESC_BREAK_EXTRA (Hardcopy Drivers Only) 8-65
GreEscape DEVESC_CHAR_EXTRA (Hardcopy Drivers Only) 8-66
GreEscape DEVESC_DBE_FIRST (DBCS Support) 8-67
GreEscape DEVESC_DBE_LAST (DBCS Support) 8-68
GreEscape DEVESC_DRAFTMODE (Hardcopy Drivers Only)8-69
GreEscape DEVESC _ENDDOC (Hardcopy Drivers Only) . 8-70
GreEscape DEVESC_FLUSHOUTPUT (Hardcopy Drivers Only) 8-71
GreEscape DEVESC _ GETCP (Hardcopy Drivers Only) . 8-72
GreEscape DEVESC_GETSCALINGFACTOR (Hardcopy Drivers Only) . 8-73
GreEscape DEVESC_NEWFRAME (Hardcopy Drivers Only) 8-74
GreEscape DEVESC_NEXTBAND (Hardcopy Drivers Only) 8-75
GreEscape DEVESC_QUERYESCSUPPORT 8-76
GreEscape DEVESC_QUERYVIOCELLSIZES (Display Drivers Only) 8-77
GreEscape DEVESC_RAWDATA (Hardcopy Drivers Only) . 8-79
GreEscape DEVESC_SETMODE (Hardcopy Drivers Only) , 8-80
GreEscape DEVESC_STARTDOC (Hardcopy Drivers Only) 8-81
GreEscape DEVESC_STD_JOURNAL (Hardcopy Drivers Only) . 8-82
GreGetBitmapBits . 8-83
GreGetBoundsData . 8-86
GreGetCodePage .. 8-87
GreGetCurrentPosition . 8-88
GreGetDCOrigin .. 8-89
GreGetlineOrigin . 8-90
GreGetPairKerningTable . 8-91
GreGetPel ... 8•92
GrelmageData .. 8-93
GrelockDevice ... 8-95
GreNotifyCHpChange ... 8-96
GreNotifyTransformChange . 8-97
Gre.Polyline . 8-99
GrePolyMarker .. 8-101
GrePolyScanline . 8..;102
GrePolyShortUne .8-104
GreQueryCharPositions . 8-106
G-reQueryColorData . 8-108
GreQueryColorlndex . 8-109
GreQueryDeviceBitmaps . 8-11 O

· GreQueryDeviceCaps . 8-111
GreQueryDevResource . 8-113
GreQueryHardcopyCaps (Hardcopy Drivers Only) . 8-118
GreQuerylogColorTable . 8-120
GreQueryNearestColor . ·8-121
GreQueryRealColors . 8-123

Vi Presentation Driver Reference

GreQueryRGBColor . 8-125
GreQueryTextBox . 8-126
GreQueryWidthTable . 8-128
GreRealizeColorTable . 8-129
GreRealizeFont . 8-130
GreResetBounds . 8-133
GreSetBitmapBits . 8-134
GreSetCodePage . 8-137
GreSetCurrentPosition . 8-138
GreSetlineOrigin . 8-140
GreSetPel . 8-142
GreUnlockDevice . 8-143
GreUnrealizeColorTable . 8-144

Chapter 9. Mandatory Functions for Dlsplay Drivers . 9-1
AVIO Functions . 9-1
Mandatory Functions (for Display Drivers) by Category 9-5

GreCharRect ... 9-6
GreCharStr . 9-7
G re Death . 9-8
GreDevicelnvalidateVisRegion ... 9-9
GreDeviceSetAVIOFont ... 9-10
GreDeviceSetCursor . 9-11
GreGetPickWindow . 9-12
GreGetStyleRatio . 9-13
GreRestoreScreenBits . 9-14
GreResurrection . 9-16
GreSaveScreenBits .. 9-17
GreScrollRect . 9-18
GreSetColorCursor . 9-19
GreSetPickWindow .. 9-20
GreSetStyleRatio . 9-21
GreUpdateCursor ... 9-22

Chapter 10. Simulated Functions . 10-1
Arc Functions . 10-1
Area and Path Functions . 10-1
Clip Functions . 10-1
Region Functions . 10-2
Transform Functions . 10-2

Matrix Element Format . 10-4
Device Transform Definition by Presentation Page Viewport . 10-4
Bounds, Correlation, and Clipping . 10-5

Simulated Functions by Category . 10-5
GreArc . 10-8
GreAreaSetAttributes . 10-10
GreBeginArea . 10-11
GreBeginPath, . 10-13
GreBoxBoth . 10-15
GreBoxBoundary . 10-17
GreBoxlnterior . 10-19
GreCloseFigure . 10-21
GreCombineRectRegion . 10-22
GreCombineRegion . 10-23
GreCombineShortlineRegion . 10-24
GreConvert . 10-26

Contents Vii

GreConvertWithMatrix .. .
GreCopyClipRegion .. .
GreCreateRectRegion .. .
GreDestroyRegion .. .
GreDeviceAnimatePalette
GreDeviceCreatePalette
GreDeviceDeletePalette
GreDeviceResizePalette
GreDeviceSetPaletteEntries .. .
GreDrawRLE .. .
GreEndArea
GreEndPath
GreEqualRegion .. .
GreExcludeClipRectangle .. .
GreFillPath
GreFullArcBoth
GreFullArcBoundary
GreFullArclnterior
GreGetArcParameters .. .
GreGetClipBox
GreGetClipRects .. .
GreGetGlobalViewingXform .. .
GreGetGraphicsField
GreGetModelXform .. .
GreGetPageUnits
GreGetPageViewport
GreGetRegionBox
GreGetRegionRects .. .
GreGetViewinglimits
GreGetWindowViewportXform :
GrelntersectClipRectangle
GreModifyPath
GreMultiplyXforms .. .
GreOffsetClipRegion
GreOffsetRegion .. .
GreOutlinePath
GrePaintRegion .. .
GrePartialArc .. .
GrePolyFillet .. .
GrePolyFilletSharp .. .
GrePolySpline
GrePolygonSet
GrePtlnRegion
GrePtVisible
GreQueryClipRegion
GreQueryHWPalettelnfo
GreQueryPaletteRealization .. .
GreRealizePalette
GreRectlnRegion
GreRectVisible
GreRegionSelectBitmap
GreRestorePath .. .
GreRestoreRegion .. .
GreRestoreXform .. .
GreRestoreXformData
GreSavePath

Viii Presentation Driver Reference

10-27
10-28
10-30
10-31
10-32
10-33
10-35
10-37
10-38
10-39
10-41
10-43
10-44
10-45
10-47
10-49
10-51
10-53
10-55
10-56
10-57
10-59
10-60
10-61
10-62
10-63
10-64
10-65
10-67
10-68
10-69
10-71
10-73
10-74
10-75
10-76
10-77
10-78
10-80
10-82
10-84
10-86
10-88
10-89
10-90
10-91
10-92
10-93
10-95
10-96
10-97
10-98
10-99

10-100
10-101
10-102

\
J

GreSaveRegion
GreSaveXform
GreSaveXformData

GreSelectClipPath .. .

GreSelectClipRegion .. .

GreSelectPathRegion

GreSetArcParameters

GreSetGlobalViewingXform

GreSetGraphicsField .. .

GreSetModelXform

GreSetPageUnits .. .

GreSetPageViewport .. .

GreSetRectRegion

GreSetViewinglimits .. .

GreSetWindowViewportXform .. .

GreSetXformRect .. .

GreSetupDC .. .

GreStrokePath .. .

GreUpdateColors .

10-103
10-104
10-105
10-106
10-108
10-110
10-111
10-112
10-114
10-115
10-117
10-119
10-121
10-122
10-123
10-125
10-126
10-128
10-130

Chapter 11. Graphics Engine Internal Functions . 11-1

Font Functions . 11-1

Journaling Functions (Hardcopy Drivers Only) . 11-1

Graphics Engine Functions by Category . 11-2

GreCloseDC . 11-4

GreCopyDCLoadData . 11-5

GreCreateBitmap . 11-7

GreCreateJournalFile . 11-12

GreCreatelogicalFont . 11-14

GreDeleteBitmap . 11-17

GreDeleteJournalFile . 11-18

GreDeleteSetld . 11-20

GreGetAttributes . 11-21

GreGetBitmapDimension . 11-22

GreGetBitmapParameters . 11-23

GreGetDefaultArcParameters . 11-26

GreGetDefaultAttributes . 11-27

GreGetDefaultViewinglimits . 11-28

GreGetHandle . 11-29

GreGetProcessControl . 11-30

GrelnitializeAttributes . 11-31

GreLoadFont . 11-32

GreOpenDC . 11-33

GreOpenJournalFile . 11-37

GrePlayJournalFile . 11-38

GreQueryBitmapHandle . 11-40

GreQueryCodePageVector . 11-41

GreQueryEngineVersion . 11-42

GreQueryFontAttributes . 11-43

GreQueryFontFileDescriptions . 11-44

GreQueryFonts . 11-45

GreQueryLogicalFont . 11-46

GreQueryNumberSetlds . 11-47

GreQuerySetlds . 11-48

GreResetDC . 11-50

GreRestoreDC . 11-52

Contents ix

GreSaveDC
GreSelectBitmap
GreSetAttributes .. .
GreSetBitmapDimension .. .
GreSetBitmaplD .. .
G reSetDefaultArcParameters .
GreSetDefaultAttributes
GreSetDefaultViewinglimits .. .
GreSetGlobalAttribute .. .
GreSetHandle .. .
G reSetProcessControl .
GreStartJournalFile .. .
GreStopJournalFile .. .
GreUnloadFont .. .

Chapter 12. System Functions .
GetDriverlnfo
SetDriverlnfo
SSAllocMem
SSFreeMem .. .
VisRegionNotify
WinSetErrorlnfo

Appendix A. Syntax Conventions .
Parameter Names .

Appendix B. Journal Fiie Format

11-54
11-56
11-58
11-60
11-61
11-62
11-63
11-65
11-66
11-67
11-68
11-69
11-71
11-72

12-1
12-2
12-3
12-4
12-5
12-6
12-7

A-1
A-1

B-1

Appendix C. Bit Map Slmulatlon (Hardcopy Drivers Only} . C-1

Glossary .. X-1

Index ... X-11

X Presentation Driver Reference

Notices

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation i.n

the United States and/or other countries:

IBM
OS/2
Presentation Manager
IBM Personal System/2

The following terms, denoted by a double asterisk(**) in this publication, are trademarks of other
companies as follows:

Postscript
LaserJet
Microsoft
Windows

Adobe Systems Incorporated
Hewlett-Packard Company
Microsoft Corporation
Microsoft Corporation

Double-Byte Character Set (DBCS)

Throughout this publication, there are references to specific values for character strings. These values are

for the Single-Byte Character Set (SBCS). When using the Double-Byte Character Set, notice that one
DBCS character equals two SBCS characters.

© Copyright IBM Corp. 1992 xi

Xii Presentation Driver Reference

PRESENTATION DRIVER DEVELOPMENT PROGRAM FORM

To apply for membership in this program, you must be a licensee of the Developer's Toolkit for OS/2 2.0.
Please enclose the original "Proof of License" card from your Toolkit with this completed form and return
them to:

IBM Presentation Driver Development Program
Attention: M. Barovich, Internal Zip 1620
P.O. Box 1328
Boca Raton FL 33429-1328

This program is intended for developers who are planning to build 32-bit presentation drivers on OS/2 2.0.
Members of this program will receive pre-release code that supports the development of presentation
drivers as described in the publication OS/2 2.0 Presentation Driver Reference. This program will close
when this code becomes generally available to users of OS/2 2.0.

Any information you provide on this form should be non-confidential to you or to any third party.

Your Name

Company Name (if applicable)

Mailing Address

Phone Number I FAX Number

Describe the presentation driver that you plan to develop:

Notices Xiii

XIV Presentation Driver Reference

About This Book

"OS/2," as used in this book, refers to Version 2.00 of the OS/2 operating system unless stated otherwise.

The OS/2 2.0 Presentation Driver Reference defines what a presentation driver is and how it operates. In
addition, a description of the types of presentation drivers, their interfaces, and the available system
services is provided. System programmers can use the information found in this book to write their own
presentation drivers.

Detailed descriptions of control structures, data structures and 110 formats have been included where they
are needed in order to understand and use the interfaces. For further information about structures and
defined values, see the OS/2 2.0 Presentation Manager Programming Reference and the header files
supplied with the Developer's Toolkit for OS/2 2.0.

Knowledge of at least one programming language that is used for writing OS/2 applications is necessary,
and the programmer must be familiar with the workings of the OS/2 operating system, the Presentation
Manager interface, and 80386 architecture. The programming concepts that should be understood before
developing applications to run on OS/2 2.0 are found in the OS/2 2.0 Application Design Guide.

Note: Programmers who require information on 16-bit device drivers should refer to the OS/2 2.0 Physical
Device Driver Reference.

This book consists of four parts: An introductory overview of presentation drivers (Part 1); an information
section on development considerations (Part 2); a breakdown of the different types of OS/2 2.0 presentation
drivers (Part 3); and a detailed reference section (Part 4). Also included are three appendixes covering
syntax conventions, journal file format, and bitmap simulation. A more detailed description of the contents
follows:

Part 1. Overview

Chapter 1. Presentation Drivers Overview
This chapter gives some general guidance on presentation drivers by indicating where they reside in the
system and what they do.

Part 2. Development Considerations

Chapter 2. Design Considerations
This chapter describes general design considerations and specific design considerations for display and
hardcopy presentation drivers.

Part 3. OS/2 2.0 Presentation Drivers

Chapter 3. Dlsplay Drivers
This chapter defines the entry points a display driver must export to the system so an application program
can query the display driver and the system can enable it.

Chapter 4. Graphics Engine Hardcopy Drivers
This chapter describes hardcopy drivers, which use the graphics engine dispatch table, and the support
functions that are provided by the spooler.

Chapter 5. Queue Drivers (Queue Processors)
This chapter describes the functions a queue driver must export so that they can be used by the spooler.

© Copyright IBM Corp. 1992 xv

Chapter 6. Port Drivers
This chapter describes the functions a port driver must export so that they can be used by the Workplace
Shell and spooler.

Part 4. Reference Material

Chapter 7. Exported Entry Points
This chapter describes the exported entry points, including the Enable entry point and all of its
subfunctions.

Chapter 8. Mandatory Functions for All Drivers
This chapter describes the internal functions that must be supported by handling routines in the
presentation driver. These functions must be supported by all presentation drivers.

Chapter 9. Mandatory Functions for Display Drivers
This chapter describes additional internal functions that must be supported by the display driver.

Chapter 10. Simulated Functions
This chapter describes internal functions that are supported in the operating system's graphics engine and
can be hooked by the presentation driver in order to exploit special features in the device.

Chapter 11. Graphics Engine Internal Functions
This chapter describes internal functions that are supported in the graphics engine and can be called by
the presentation driver.

Chapter 12. System Functions
This chapter describes system functions that can be called by a presentation driver but are not part of the
OS/2 Application Program Interface (API).

Appendixes

Appendix A. Syntax Conventions
This appendix shows the conventions that have been used for the parameter names found in the
Presentation Manager Library.

Appendix B. Journal Fiie Format
This appendix shows the file format that the OS/2 graphics engine journal functions create in memory or on
disk.

Appendix C. Bitmap Slmulatlon (Hardcopy Drivers Only)
This appendix describes the bitmap simulation for hardcopy drivers.

A glossary and an index are included at the back of this book.

XVi Presentation Driver Reference

Part 1. Overview

© Copyright IBM Corp. 1992

Presentation Driver Reference

presentation drivers overview

Chapter 1. Presentation Drivers Overview

OS/2 operates within the confines of a four ring structure, Ring O through Ring 3. Ring O is the most
protected ring and contains the 05/2 kernel, which is the main engine that drives the operating system.
Ring 3 is the least protected ring and contains applications and system services. Ring 1 is not used by
05/2 2.0. Ring 2 is similar to Ring O in that it provides access to physical devices such as printers and
displays. Ring 2 is similar to Ring 3 in that it is prohibited from modifying kernel data structures.

(System Services run at Ring 3 in OSl2 2.0)

Figure 1-1. Ring Structure

Throughout the ring structure, functions can be called from the same ring level or any numerically lower
ring level. Conversely, data can be accessed from the same ring level or any numerically higher ring level.

For the sake of compatibility between 16-bit and 32-bit code, all 32-bit code is treated as Ring 2 Conforming.
This means that 32-bit code runs at the ring level of its caller, for example, running at Ring 3 if called from
Ring 3 and running at Ring 2 if called from Ring 2. This allows easier access to functions and data, and
eliminates many of the costly ring transitions encountered in the previous 16-bit system. To be Ring 2
Conforming (rather than strictly Ring 2 or Ring 3), a function cannot call any strictly Ring 3 code or directly
access the hardware. That is, it must abide by the restrictions of both ring levels.

Many of the system services that exist at Ring 3 in dynamic link libraries (Dlls) access another DLL called
PMGRE.DLL, which is the graphics engine or kernel of the OS/2 graphics subsystem. The graphics engine
is composed entirely of Ring 2 Conforming code that interfaces with the presentation drivers, which
interface directly with the physical device drivers (at Ring 0) and the hardware. These Dlls are identified
as presentation drivers for hardcopy devices (hardcopy drivers) by the filename extension ORV, and as
presentation drivers for display devices (display drivers) by the filename extension DLL. See Figure 1-3 on
page 1-5.

The graphics engine loads and enables the presentation drivers, then dispatches calls to them through
dispatch tables as Ring 2, Ring 3, or Ring 2 Conforming code. For optimal system performance, it is
recommended that all of the functions in 32-bit presentation drivers be written as Ring 2 Conforming. This
eliminates the need for ring transitions from system services at Ring 3 and from 16-bit presentation drivers
at Ring 2.

By exporting a table named OS2_PM_DRV _RING_LEVELS in 32-bit presentation drivers, the ring level of
each function call in the dispatch table can be selected.

© Copyright IBM Corp. 1992 1-1

presentation drivers overview

Note: If this table is not exported, all 32-bit functions will be dispatched as Ring 2 Conforming.

The presentation driver has certain responsibilities to the graphics engine. Specifically, a number of entry
points exist within the graphics engine that the presentation driver is required to hook (a mechanism by
which procedures are called) and support. Many of these functions (as they currently exist in the graphics
engine) are not truly functional, and if calls were made to these entry points, nothing would happen. In
many cases, they simply return when called.

There are other entry points in the graphics engine that can optionally be hooked by the presentation driver
(for example, where only light processing is required, it might be preferable to use the presentation driver).
These entry points can be called by the presentation driver for special processing.

The graphics engine calls the entry points within the presentation driver by means of a dispatch table. The
dispatch table is essentially a block of memory allocated by the graphics engine for the containment of
entry points, and is assigned for use by a presentation driver. Each presentation driver loaded by the
system is given its own separate dispatch table by the graphics engine. That is, when a presentation driver
device context is enabled, the graphics engine allocates a dispatch table for that presentation driver and
fills the dispatch table with pointers. Each entry in the table is a 32-bit pointer to a specific routine existing
back in the graphics engine.

Because many of these routines must be hooked by the presentation driver, the graphics engine refers to
the dispatch table to find the appropriate pointer any time that it calls a function in the presentation driver.
At this point, however, all of the pointers in the dispatch table point back to routines in the graphics engine.
The presentation driver must go into the dispatch table itself and replace some of the pointers with new
pointers that point to corresponding routines within the presentation driver. This is mandatory for some
routines, optional for others. The hooking of pointer entries in the dispatch table occurs the first time the
presentation driver is called at its OS2_PM_DRV _ENABLE entry point for the first subfunction (see "Enable
Subfunction 01H - FilllogicalDeviceBlock" on page 7-6). See Figure 1-2 on page 1-3.

The exported entry point OS2_PM_DRV_ENABLE (see page 7-3) has ten subfunctions. Four of these
subfunctions are used in the enable process of a device context, three are used in the disable process, one
is used to save the device context, one is used to restore the device context, and one is used to reset the
device context.

When Enable Subfunction 01 H - FilllogicalDeviceBlock is called, the graphics engine passes to it a
pointer to the dispatch table that it allocated for the presentation driver. FilllogicalDeviceBlock then must
substitute all of the mandatory pointers (and perhaps some optional routines) in the dispatch table with
pointers to corresponding routines within the presentation driver itself.

1-2 Presentation Driver Reference

Graphics Function
Dispatch Table
(array of 32-blt pointers
to graphic function
routines}

0

0

0

~(4-bytea) -1
Figure 1-2. Fil/LogicalDeviceBlock Routine.

presentation drivers overview

Application

PMGRE.DLL

Graphics
engine
simulation
routines

OS2_PM_DRV_ENABLE

Presentation Driver
Internal graphics routines

The Developer's Toolkit for OS/2 2.0 provides support for writing source code in either C or Assembler.

This support is comprised of a set of header files that define the functions, structures, and constants used

on the internal interface to the presentation driver. Presentation drivers might also need to include 052.H

or 052.INC, which define system functions, structures and constants.

Chapter 1. Presentation Drivers Overview 1-3

presentation drivers overview

As with other components of OS/2 2.0, the presentation driver architecture ensures that:
• Once loaded, the presentation driver can be enabled for use by multiple applications or processes.
• Once enabled, the presentation driver can support multiple instances of a device context for the owning

application or process.

Notice that though many of the functions must be hooked by the presentation driver, some might also be
passed back to the graphics engine for processing when called. It is recommended to save the original
pointer values stored in the dispatch table by the graphics engine before hooking them. Having access to
the original pointers to the graphics engine simulation routines allows the presentation driver to optionally
make calls back into the graphics engine (that is, to have the graphics engine do the processing instead).
This technique has often proven to be a tremendous time saver in developing OS/2 presentation drivers,
especially when calling back to the graphics engine to perform clipping routines.

Display Devices

When the Presentation Manager· interface is initialized, the presentation driver for the attached display is
loaded and enabled. This driver has direct access to the video hardware. The function calls passed to the
presentation driver are processed and then passed to the adapter interface.

Hardcopy Devices (Printers and Plotters)

For hardcopy drivers, the presentation driver is loaded in response to an application or process calling
DevOpenDC. Upon receipt of this routine, the Presentation Manager interface looks to see if the required
presentation driver is loaded, and if it is able to handle the new device context (DC). If the presentation
driver is loaded and can handle the DC, the driver is enabled for the new DC. If either of these conditions
are not met, the required driver is loaded and then enabled.

• Trademark of-the IBM Corporation

1-4 Presentation Driver Reference

presentation drivers overview

Applications make program I / 0 function calls

l
DEV WIN

DOS KBD MOU VIO (device
GPI

AVIO (dlaplay
(graphics)

context)

PM DYNAMIC LINK LIBRARY
modules running at Ring 3

GraphiCS Engine
PMGRE.DLL

Presentation
Hardcopy
Driver

Presentation
Display
Driver

•••••••••• ••••••••••

OS/2KERNEL

Physical Device
PMDD.SYS ------. Drivers (Disk,

Keyboard, Mouse,
Printer, etc.)

Hardware
Interfaces

POINTDD.SYS

windowing)

••••••••••••

Video
Hardware

Ring 0

Figure 1-3. Presentation Drivers. Conceptual view of presentation drivers in the flow of control from an application

program to the hardcopy device and the display screen.

Chapter 1. Presentation Drivers Overview 1-5

presentation drivers overview

Calling Conventions

Presentation drivers interact with both the external API, and the internal interface to the graphics engine and dispatch table. Parameters are passed as 32-bit values on the stack by using the C convention. These parameters are pushed to the stack in reverse order of how they appear in the statement. The hardware architecture locates the conceptual top of the stack at the high-order address of the stack space. When data is pushed to the stack, the stack pointer is decremented so that upon completion, the pointer addresses the first item of data.

At entry to the handling routine, the stack contains a frame of 32-bit parameters and a return address as shown in Figure 1-4.

High address..------------

Low address

Parameter N

{Function Number
and Command Flag)

Parameter 1

Return address ... ~t----Stack pointer

Figure 1-4. Stack Frame

Function Number and Command Flags

The first doubleword (DWORD) pulled from the stack contains two fields:

Field

Function Number

Command Flags

Command Flags

WORD Type Description

Low-order Identifies a specific function. Header files define symbolic names for the
Grexxx function numbers.

High-order See below.

The flags in this 16-bit field tell the presentation driver which operations need to be
done while it processes the function:

COM_ DRAW Bit O. If this flag is set, the presentation driver must draw the
output of the function at the device. When not set, the driver does
not draw the output. The function must still be processed to
update internal data such as current position and, if specified,
boundary calculations.

1-6 Presentation Driver Reference

COM_BOUND

presentation drivers overview

Bit 1. If set, the presentation driver must calculate the bounding

rectangle for the output of the specified function. Upon

completion, the driver calls its own GreAccumulateBounds

routine to accumulate the bounding rectangle (GPl_BOUNDS in

model space coordinates).

Note: All presentation drivers must be able to calculate bounds

on any figure they can draw.

COM_CORR Bit 2. This flag is significant only for display drivers. If set, the

display driver must determine whether the output of the specified

function intersects the pick window. The result, TRUE or FALSE,

is passed back to the caller in the return code for the called

function. For details, see the function descriptions in Chapter 8,

"Mandatory Functions for All Drivers" and Chapter 10,

"Simulated Functions."

COM_ALT_BOUND Bit 3. This flag is significant only for display drivers. It indicates

that the display driver should accumulate USER_BOUNDS in

screen coordinates. Notice that user bounds are those used by

the Window Manager. Hardcopy drivers do not accumulate user

bounds.

COM_AREA Bit 4. If set, the function is part of an area. Calls to functions that

define an area (for example, GreSetCurrentPosition and

GrePolyline), or that are invalid in an area definition, are passed

back to the graphics engine for processing by the default handler.

COM_PATH

If all functions in the area component have been hooked by the

presentation driver, it is not necessary to pass back functions

received with COM_AREA set.

Bit 5. This flag is similar to the COM_AREA flag. Calls to

functions that define a path (for example, GrePolyline and

GreSetCurrentPosition), or that are invalid in a path definition,

are passed back to the graphics engine for processing by the

default handler.

If all functions in the path component have been hooked by the

presentation driver, it is not necessary to pass back functions

received with COM_PATH set.

COM_ TRANSFORM Bit 6. If set, any coordinates given for the specified function must

be transformed from world coordinates to device coordinates by

using GreConvert. If not set, drawing functions expect or return

screen coordinates and region functions expect or return device

coordinates.

Note: For GreGetClipRects, if COM_ TRANSFORM is set, device

coordinates are returned. If it is not set, screen

coordinates are returned.

COM_RECORDING Bit 7. This flag is ignored.

COM_DEVICE Bit 8. If set, the presentation driver must process the function.

The driver should not pass the function to the graphics engine.

Note: COM_DRAW, COM_BOUND, COM_ CORR, ~OM_ALT_BOUND, COM_AREA, and

COM_PATH apply only to drawing functions. They are ignored by all other

functions. The remaining bits of the Command Flags field are not defined and

their values are ignored.

Chapter 1. Presentation Drivers Overview 1-7

presentation drivers overview

Device Context

Device contexts provide the mechanism that the application program uses to write output data to devices.
The application, or one of its processes, opens a device context with DevOpenDC, associates a
presentation space to the DC, and writes or draws in that space. Each DevOpenDC creates an instance of a
DC. That instance is eliminated when the application closes the device context. The created DC is seen
internally as a dispatch table. Calls from the application program to the DC are passed, as one or more
internal Grexxx routines, through the dispatch table to the handling routines in the presentation driver for the DC, or are passed back to the Grexxx simulation routines.

Each instance of a device context has:

• Device context types
• Data types (for only OD_ QUEUED device context type)
• Instance data
• Program stack

Device Context Types

The type of device to be opened is passed to the presentation driver when the device context is enabled:
OD_INFO The presentation driver does not generate any output. Information device contexts are

used to retrieve information. All Grexxx function routines passed to the presentation
driver are processed as if the type were OD_DIRECT. In this way, the operating system
can query statistics such as font metrics and boundaries.

OD_MEMORY The presentation driver processes the output data as for an OD_DIRECT device type
except the output is written to a bit map that is compatible with the physical device. (The
application program creates the bit map and associates it to the device context.)

OD_DIRECT The presentation driver processes the Grexxx routines to generate device-specific output
data. Hardcopy drivers use the file system Prtxxx interface to pass the output to the
physical device driver. Display drivers use the adapter interface, for example, the IBM
Personal System/2" Display Adapter 8514/A interface.

OD_QUEUED (Hardcopy drivers only.) The hardcopy driver opens a spool file and uses the spooler
Splxxx interface to send output to that file. For spooled output, the hardcopy driver must
consider the DC data type. See Data Types (Hardcopy Drivers Only).

Note: OD_METAFILE and OD_METAFILE_NOQUERY are handled by PMGPl.DLL and are never passed to
the presentation driver.

Data Types (Hardcopy Drivers Only)

For presentation drivers that support the device context type, OD_QUEUED, the driver must support the
PM_Q_STD and PM_Q_RAW data types as defined by the Presentation Manager interface. Support for
other data types is optional.

The concept of data types only applies when the device context type is OD_ QUEUED. For all other device
context types (OD_DIRECT, OD_MEMORY, OD_METAFILE, OD_METAFILE_NOQUERY, and OD_INFO), the
pszDataType field in the DEVOPENSTRUC structure has no meaning. See "Enable Subfunction 02H -
FillPhysicalDeviceBlock" on page 7-8 for details on when the DEVOPENSTRUC structure is passed to the
presentation driver. However, a hardcopy driver is never requested to open an OD_METAFILE or

• Trademark of the IBM Corporation

1-8 Presentation Driver Reference

presentation drivers overview

OD_METAFILE_NOQUERY device context type because these types are handled by GPI. See Chapter 4,

"Graphics Engine Hardcopy Drivers" for details on how the hardcopy driver creates the spool file.

The basic differences between data types, PM_Q_STD and PM_Q_RAW, are described below:

PM_Q_STD The hardcopy driver uses the spooler to create a device-independent spool file using the

SplStdxxx and SplQmxxx interfaces.

PM_Q_RAW The hardcopy driver processes the Grexxx functions to generate device-specific output

data. This data is written using the spooler SplQmxxx interface to a spool file.

Instance Data

For every instance of a device context, the system has a doubleword that is reserved for use by the

presentation driver. Typically, this doubleword is used by the presentation driver to hold a pointer to

information about the current state of the device context. This pointer is returned to the system by the

driver when the device context is enabled. On subsequent calls through the dispatch table, the pointer is

passed back to the .presentation driver as a parameter (plnstance) on the program stack. For more

information, see "Enable Subfunction 05H - EnableDeviceContext" on page 7-12.

Program Stack

Presentation drivers can assume that a stack of 4KB is available for use when a function is passed to the

driver at Ring 2. If it needs more than 4KB, the presentation driver should allocate its own stack space,

switch to that·stack on entry, and switch back to the original stack on exit. At Ring 3, the presentation

driver will use the application's stack when a function is passed to the driver.

Function calls to the presentation driver use C calling conventions. Parameters are pushed to the stack in

the op.posite order as they are in the call statement.

Dynamic Link Library Functions

Functions exported and imported by a dynamic link library are identified in the library module definition

file. These provide links between libraries and subsystems. For example, the components of the

Presentation Manager interface must call an enable entry point in the presentation driver. The

presentation driver needs access to the simulated functions in the graphics engine. For information on how

to develop a dynamic link library (DLL), refer to the OS/2 2.0 Programming Guide and DS/2 2.0 Application

Design Guide.

Note: The initialization routine for a dynamic link library, including presentation drivers, must be compiled

to run at Ring 3 (privilege level 3).

Exported Functions

There are two types of exported functions used by OS/2 2.0:

• Presentation drivers
• Graphic engine functions.

Presentation Drivers: Dynamic link libraries for presentation drivers must export the appropriate set

of the fol1owing entry points:

Chapter 1. PresentaUon Drivers Overview 1-9

presentation drivers overview

EXPORTS
MoveCursorBlock @103
OS2 PM ORV QUERYSCREENRESOLUTIONS
OS2-PM-DRV-DEVMODE
OS2-PM-DRV-DEVICENAMES
Drvlnstall-
DrvRemove
OS2_PM_DRV_RING_LEVELS
OS2_PM_DRV_ENABLE_LEVELS
OS2_PM_DRV_ENABLE

/* Display drivers only */
/* Optional */
/* Hardcopy drivers only */
/* Hardcopy drivers only */
/* Optional */
/* Optional */
/* All drivers */
/* All drivers *I
/* All drivers */

In addition to the entry points listed above, hardcopy drivers should export entry points for the routines that
handle dialogs with the user. See "Exported Entry Points" on pages 3-1, 4-1, and 7-1.

Graphics Engine Functions: The graphics engine exports its own set of entry points. Those that are
significant to the presentation driver are:

EXPORTS
GETDRIVERINFO @30
SETDRIVERINFO @31

GETDRIVERINFO: Used by the presentation driver to get the instance pointer, plnstance, for a specified
device context, or to get a pointer to the bit-map header for a specified bit map. See Chapter 12, "System
Functions" for more information.

SETDRIVERINFO: Used by the presentation driver to set a specified value in the instance pointer of a
specified device context.

Note: Instance pointers (plnstance) and data are discussed under "Enable Subfunction 05H -
EnableDeviceContext" on page 7-12.

Imported Functions

To call a Grexxx function that is supported as a simulation or internal function in the graphics engine, call
the imported entry point with the Grexxx function parameters. The plnstance parameter should be NULL.
For example, to call GreCreateJournalFile with the name assigned in the module definition file, use:

result = GreCreateJournal {pszFileName, flOption, cSize, 0L, NGreCreateJournalFile);
Note: NGreCreateJournalFile is defined in the header file. See the description of GreCreateJournalFile on

page 11-12.

Simulations (presentation driver interface functions that are supported by handling routines in the graphics
engine) can also be called at the addresses given in the default dispatch table. Use the addresses
contained in the dispatch table that is passed to the presentation driver at Enable time.

Presentation Driver Interface

The internal Presentation Driver Interface (POI) is comprised of a set of graphics engine (Grexxx) functions
that are called through a dispatch table. A dispatch table is an array of pointers to function handling
routines. The low-order byte of the function number identifies the member of the array that contains the
pointer for the function. The functions called through the dispatch table fall into three main groups:
• Functions that all presentation drivers must support. See Chapter 8, "Mandatory Functions for All

Drivers."

• Functions that must be supported by display drivers. See Chapter 9, "Mandatory Functions for Display
Drivers."

1-10 Presentation Driver Reference

presentation drivers overview

• Functions that are supported by simulations in the graphics engine. See Chapter 10, "Simulated

Functions."

The first instance of a loaded presentation driver is given a copy of the default dispatch table. The Enable

routine in the presentation driver modifies this copy so that, for those functions supported in the driver, the

pointers address the function-handling routines of the presentation driver.

When the function is called a second time (or any time thereafter) for the same presentation driver, a NULL

dispatch table pointer can be given because the graphics engine already has the table correctly initialized.

Therefore, it is not necessary to reinitialize the table.

Chapter 1. Presentation Drivers Overview 1-11

presentation drivers overview

1-12 Presentation Driver Reference

Part 2. Development Considerations

©Copyright IBM Corp. 1992

Presentation Driver Reference

i
/

design considerations

Chapter 2. Design Considerations

The following list contains design considerations for all presentation drivers:

• Angles
• Bounds computations
• Clipping
• Closing figures in areas and paths
• Coordinate values
• Positions within text functions
• Return codes
• Transform matrix values.

Angles

Angles are passed as signed 32-bit numbers. Zero refers to the direction of the positive x-axis; 360
represents 360°. Positive values represent counterclockwise angles from the positive x-axis.

Bounds Computations

All presentation drivers must accumulate bounds for unclipped primitives. Application bounds
(COM_BOUND) are accumulated in model space. User bounds (COM_ALT _BOUND) are accumulated in
device-coordinate space.

Clipping

The presentation driver must perform clipping for drawing and text functions, except for
GreDrawlineslnPath and GrePolyShortline. Clipping for these two functions is done by the graphics
engine. The minimum requirement is to render each primitive clipped to a single rectangle and to clip
each rectangle in turn. The rectangles can be enumerated by using "GreGetClipRects" on page 10-57.

Note: Rectangles might not always be valid. See "Drawing to Display Devices."

Closing Figures in Areas and Paths

The graphics engine generates closure lines for figures within areas and paths unless the presentation
driver has opted to hook all the path and area functions. In this case, the presentation driver is responsible
for closing any figures. For details, see "Area and Path Functions" on page 10-1.

Coordinate Values

All coordinates are passed to the presentation driver as 32-bit values. Unless stated otherwise, these
values represent world coordinates. The graphics engine function, GreConvert, can be called to convert
coordinates from one type to another. Coordinates must be converted back to world coordinates before
returning to the presentation driver. Notice that screen coordinates are device coordinates to which the DC
origin has been added.

© Copyright IBM Corp. 1992 2-1

design considerations

Positions Within Text Functions

When positions are used, a text function takes the position from the base line of the text box. Descenders
such as the tail of a lowercase y are expressed as a negative value relative to the base line.

Return Codes

The presentation driver must always return a full 32-bit (LONG) value. For example, BOOLEAN TRUE and
FALSE are defined as:

#define TRUE (ll);
#define FALSE (0L);

Transform Matrix Values

Transform matrix elements are represented in fixed point notation, that is, as a 16-bit signed integer and a
16-bit fractional part. These precision limits apply during graphics engine matrix multiplication for all
initial, intermediate, and final matrix element values.

Allocating Memory

Presentation drivers can allocate and manage memory by using:

1. A Dosxxx function such as DosAllocMem.
2. The SSxxx functions described in Chapter 12, "System Functions" on page 12-1.

Display drivers, or presentation drivers that wish to share objects such as bit maps and regions, always
use the SSxxx functions to allocate memory for these objects. Memory allocated through calls to these
functions is shared memory controlled by the memory allocator component of the graphics engine.
Ownership of the memory can be transferred, or (when the owning DC ceases to exist) marked as having
no owner.

Error Strategy

Presentation drivers support the error strategy implemented by the Presentation Manager interface. When
an error occurs, the driver calls WinSetErrorlnfo (see page 12-7) to log the appropriate error code and set
the return code to show that an error was detected.

The component that implements a function must provide error checking for the environment, objects, and
resources associated with it. The presentation driver needs to cater for:

• Fail-safe on routines that set attributes and transformation values. Any routine that changes attributes
or transformation values must be able to restore the initial values if an error occurs during the change.

• Full error checking on symbol sets, fonts, bit maps, and regions.

• Segment drawing, drawing primitives, and primitive attributes in draw mode, unchecked parameters
are passed directly to the graphics engine or the presentation driver. When one of these functions is
hooked by the presentation driver, the handling routine must do the necessary error checking and log
any errors, or reset any invalid values to their defaults, as appropriate.

• Any function with coordinates as parameters, the presentation driver must check that the values passed
are valid. When an invalid coordinate is detected, the handling routine must log an error or use a
default coordinate value, as appropriate.

2-2 Presentation Driver Reference

design considerations

For any defined error, the application sees the same error code regardless of whether the error was logged
by the Graphics· Programming Interface (GPI), graphics engine, or presentation driver.

Severity

Four severity levels are defined for error messages:

• Warning
• Error
• Severe error
• Irrecoverable error.

Warning: Function detected a problem, took remedial action, and was able to complete successfully.

Error: Function detected a problem for which no sensible remedial action is possible. The function is not
executed and the system remains at the same state as when the function was requested.

Severe Error: Function detected a problem from which the system cannot reestablish its state. The
function has partially executed and the application must now make some corrective action to restore the
system to some known state.

Irrecoverable Error: Function detected an error from which it is impossible for the system to
reestablish the state that it held at the time that the function was called. It is also impossible for the
application to restore the system to some known state.

Presentation Manager Error Codes

Error codes are defined in the header file. These codes fall into two groups, general and specific. General
error codes that are appropriate to many Grexxx functions include:

Error Code Must be logged by:

PMERR;...COORDINATE_OVERFLOW Functions requiring matrix computation

PMERR_INSUFFICIENT _MEMORY Functions resulting in memory allocation

PMERR_INV_HBITMAP Functions with hbm as an explicit or implicit parameter

PMERR_INV _HRGN Functions with hrgn as an explicit or implicit parameter

PMERR_INV _COORDINATE Functions with coordinate parameters

PMERR_INV _IN_AREA Functions that are invalid inside an open area bracket

PMERR_BASE_ERROR Functions that directly or indirectly issue DOS routines

PMERR_DEV_FUNC_NOT_INSTALLED Functions not supported by the presentation driver

Specific error codes listed in the descriptions of each Grexxx function are found in Chapter 8, "Mandatory
Functions for All Drivers" through Chapter 11, "Graphics Engine Internal Functions."

To set an error code and the error's severity, the presentation driver must call WinSetErrorlnfo. See
Chapter 12, "System Functions" All error codes are listed and explained in the OS/2 2.0 Presentation
Manager Programming Reference.

Chapter 2. Design Considerations 2-3

design considerations

Exit List Processing

An exit list is a list of routines that are given control when the current process ends, normally or
abnormally. The following is an example of exit list processing:

1. When the presentation driver's Enable subfunction 01 H - FilllogicalDeviceBlock is called, the driver
can call function, DosExitlist:

#define ROUTINE ORDER 0x1000
usResult = DosExitlist (EXLST_ADDIROUTINE_ORDER, (PFNEXITLIST)MyExitProc);

This adds the function, MyExitProc, to the list of functions that are called when this process terminates
(either normally or because of some error such as a GP fault).

2. When MyExitProc is called, the presentation driver can perform any necessary cleanup such as
releasing any semaphores. The last call in MyExitProc is another call to DosExitlist:
usResult = DosExitlist (EXLST_EXIT, (PFNEXITLIST)MyExitProc);

This allows the operating system to transfer control to the next function in the list of Exit List processing
functions for the process that has terminated. For more information, refer to DosExitlist in the OS/2 2.0
Control Program Programming Reference and OS/2 2.0 Programming Guide.

At Enable time, the presentation driver must place an entry in the exit list for the application or process that
opens the DC. This entry is a pointer identifying the routine in the presentation driver that releases all
resources owned by the DC.

Note: When writing a presentation driver, consider what would happen if another thread of the process
were to terminate.

Interrupts

Presentation drivers never use the CU and STI macro assembler instructions because these instructions
can interfere with some of the base OS/2 system operations.

Protecting Objects or Device Contexts

A process which attempts to use a locked object will return an error such as PMERR_HDC_BUSY. Although
a device context is owned by a single application or process, the owner can access the device context (DC)
through multiple threads. The presentation driver must provide a mechanism whereby a DC can register
that it is busy and block access from other threads. In its simplest form, this is performed by the
EnterDriver and LeaveDriver routines. which are called at the start and end of each function-handling
routine in the presentation driver.

2-4 Presentation Driver Reference

design considerations

An example of a typical EnterDriver routine for a display driver is as follows:

/*********************************** Typical EnterDriver Routine ***********************************/

enter drher()
{ -

do {
SemEnter(Device);

if (hdc == NULL)
return(SUCCESS);

if (hdc == ERROR) {

/* Lock DC for exclusive use of the current thread */
/* Some functions do not pass a Device Context (DC) handle */

/* Check validity of the passed DC handle */

WinSetErrorinfo (SEVERITY ERROR, PMERR INV HOC);
SemLeave(Device); - - -

}

return(ERROR);
}

if (hdc is not dirty)
return(SUCCESS);

SemLeave(Device);
VisRegionNotify(hdc);

} while (TRUE);

/* DC region must be validated before driver draws into it. */

/* Test the HDC_IS_DIRTY flag. If the flag is set, the DC */
/* must be recalculated by the system. */

/* Unlock DC. Call back to engine to force DC calculation. */
/* Loop back to reset lock and recheck. */

Design Considerations for Display Drivers

When an application requires a user to choose an object from a presentation space, the user typically

selects the object by positioning the mouse cursor over the object and clicking the mouse buttons. This

action sends a message to the application, informing the program of the current (x, y) position of the mouse

cursor. However, it is still up to the application to determine the object selected. This is accomplished by

the application defining a rectangular area named the pick aperture, which is centered on the reported

mouse position, and determining which, if any, of the currently defined segments intersect or lie completely

within the pick aperture. The process of determining intersection or inclusion within the pick aperture is

called correlation.

Correlation

Correlation must be performed by all display drivers in page coordinates on fully-clipped primitives.

(Correlation is not required for hardcopy devices.) Correlating on areas is particularly complex because

GreSetCurrentPosition and GreEndArea generate a closure line when the current position is not at the start

of the current closed figure. This closure line can cause a correlation hit. Also, the area interior itself can

cause a correlation hit that must be reported on the GreEndArea order.

The lines (arcs, full arcs, boxes, and fillets) defining the area boundary can cause a correlation hit if the

area is specified with boundary. This hit must be reported when the function is issued. This means that

other work must be done in addition to journaling the functions that define the area boundary.

Correlation and Retained Segments: To be a candidate for correlation, a retained segment must:

• Have a unique identifier
• Be a non-dynamic object
• Be defined as detectable (see following explanation).

Each primitive or group of primitives within a given segment must be capable of maintaining tag

information. Tag information is added to an object in response to an application calling GpiSetTag(). The

pick tag is a positive integer. If O is specified as the pick tag, detectibility should be turned off for

Chapter 2. Design Considerations 2-5

design considerations

subsequent primitives. The pick tag is 0 by default. The tag specified in the most recent call to GpiSetTag()
is the current tag, and remains in effect for all subsequent drawing operations until another call to
GpiSetTag() is made. The tag is considered to be a part of the current attributes for the segment, and
therefore is affected by the current attribute mode of the segment.

An application can request correlation data for:

• Segments that have been defined as both detectable and visible
• All non-zero segments that intersect the pick aperture regardless of the object detectability and visibility

attributes.

The presentation driver returns the names of segments within the pick aperture in reverse order of their
occurrence on the segment chain. This data is returned in the form of segment and tag pairs. Each unique
segment and tag pair within the pick aperture is termed a correlation hit. Should two or more primitives
within the current pick aperture have the same tag, they are considered as a single correlation hit. When a
called segment is picked, correlation data is also returned for all segments above it in the hierarchy (up to
and including the root segment). This also constitutes a single correlation hit.

Correlation and Nonretained Segments: Nonretained graphics are those objects that are
correlated on during the drawing process. If nonretained objects are to be correlated on, they must have
unique identifiers and be defined as detectable. The application must set the correlate bit of the Draw
Control flag passed to the engine from the function GpiSetDrawControl().

Drawing to Display Devices

Because changes on the screen can affect more than one DC, the graphics engine notifies the display
driver when a change occurs. Notification is performed through a call to the GrelnvalidateVisRegion
function (see page 9-9) in the display driver. This routine identifies the affected DCs and supplies a pointer
(plnstance) to the instance data of each DC. The handling routine for GrelnvalidateVisRegion sets a flag
such as HDC_IS_DIRTY in the instance data for all identified DCs.

All routines that draw on the screen test the HDC_IS_DIRTY flag. If this flag is set, the routines call
"VisRegionNotify" on page 12-6 before drawing the visible region.

Design ·Considerations for Hardcopy Drivers

For information on hardcopy drivers written to the graphics engine dispatch table, see Chapter 4,
"Graphics Engine Hardcopy Drivers," Chapter 7, "Exported Entry Points," Chapter 10, "Simulated
Functions," Chapter 11, "Graphics Engine Internal Functions," and Chapter 12, "System Functions"

The following list contains design considerations that apply to only hardcopy drivers:

• Banding
• Document processing
• Extended attributes
• Hardcopy device names
• Hardcopy driver migration
• Hardcopy driver output to file
•Help
• Job error dialog

2.i& Presentation Driver Reference

design considerations

Banding

Banding is another technique that is available to presentation drivers for raster technology hardcopy
devices. Banding means to break up a whole page into two or more bands (or strips) of raster data, which

is recorded in memory as a bit map, and is then sent to the physical device or spooler. It is used to reach a

balance between memory requirements and performance. This technique uses the graphics engine's

journaling functions to save and replay a journal file of the Grexxx calls for a whole page.

The hardcopy driver handles the output page as a number of bands and creates a bit map large enough for

one band at a time:

Band 1

Band 2

I

I

I

Band N

The DC origin of the bit map is manipulated so that it relates to each band in turn. The hardcopy driver

replays the journal file as many times as necessary to write into each band. Notice that Band 1 cannot be

written into while the Grexxx calls are being journaled. This is because the Command flag, COM_DRAW, is

turned off between calls to GreStartJournalFile and GreStopJournalFile unless the
JNL_DRAW_OPTIMIZATION flag is passed in on the call to function GreCreateJournalFile(). The hardcopy

driver is told not to perform any output while the Grexxx calls are being journaled unless the
JNL_DRAW_OPTIMIZATION bit flag is set.

The size (width and height) of each band is determined by each hardcopy driver, dependent upon the type

of physical device to which the output is to be sent and the amount of memory the hardcopy driver can use

to build its bit map. As an example, a color laser printer might need the full 24-bits per pel, in which case,

several bands might be needed to make a page. A simple dot matrix printer that uses 1-bit per pel could

treat the whole page as a single band.

The data for each band is sent as a single band to the physical device for an OD_DIRECT device context, or

to the spooler for an OD_QUEUED device context with a data type of PM_Q_RAW. Notice that the number of

bytes of data that is sent might not be the same as the number of bytes required to create the bit map for a

given band. This can be due to compression algorithms, which might be implemented in a given hardcopy

driver, and understood by the firmware of a given physical device.

The technique of banding is performed by recording all of the graphics for a whole page in a journal file.

When.the journal file is complete (that is, the hardcopy driver has received either a DEVESC_NEXTBAND,

DEVESC_NEWFRAME, or DEVESC_ENDDOC escape), the hardcopy driver plays the journal file,

reprocesses the calls recorded to produce each band in turn, and clips the graphics recorded in the journal

file to each band output. After all bands are output, the journal file is deleted. This banding technique uses

the graphics engine journaling functions to save and replay a journal file of the Grexxx calls. These

graphics engine journaling functions are documented in "Journaling Functions (Hardcopy Drivers Only)" on

page 11-1.

Each page of output is handled as a separate entity. The GreEscape routine for DEVESC_STARTDOC

opens a journal file for the first page and registers it in the DC instance data. When GreEscape

DEVESC_NEWFRAME or DEVESC_ENDDOC is received, the hardcopy driver writes the bands and closes

the journal. If the escape code was DEVESC_NEWFRAME, the GreEscape routine opens and registers the
journal file for the next page.

Chapter 2. Design Considerations 2-7

design considerations

Figure 2-1 on page 2-8 gives an overview of how the presentation driver performs:

GreEscape (DEVESC_STARTDOC)
Select bitmap Into display DC (only done

---by raster printer drivers that use the
display driver for bitmap simulation)

GreCreateJoumalFlleO
GreStartJournalFlleO

Gre... calls journaled by the graphics engine

Drawing Calls 1-----------

GreEscape(DEVESC_NEWFRAME
or i-----GreStopJoumalFlleO

DEVESC_ENDDOC)

End of Document

(The application may send escape
DEVESC_STARTDOC to start
another document, or may close
the DC)

GreSetupDC() -to set DC origin

Clear bitmap to color TRUE

GrePlayJournalFlle()

Get bitmap bits (only done by raster printer
drivers that use the display driver for bitmap
simulation)

Convert bitmap to output data

Send data to device or PM Spooler

No

GreDeleteJoumalFlleO

No

Figure 2-1. Overview of Presentation Driver Performance

Document Processing

Figure 2-2 on page 2-9 diagrams the state transitions for the GreEscape function calls used during
document processing. The GreEscape function names are abbreviated for ease of reading. For example,
GreEscape (DEVESC_STARTDOC) is shown as STARTDOC. See "Spool File Creation" on page 4-15 for
details on each of the output actions.

2-8 Presentation Driver Reference

NODE KEY

' Input I Output

NEWFRAME I
End-Page

Processing
and Page Eject

ENDDOC I Final Processing

design considerations

STARTDOC I Initial Processing

NEWFRAME I Page Eject

Graphics I Graphics Processing

Graphics I Graphics Processing

ENDDOC I End-Page Processing
Page Eject and
Final Processing

Figure 2-2. State Transitions for Document Processing by Hardcopy Drivers

Chapter 2. Design Considerations 2-9

design considerations

Extended Attributes

Extended attributes (EA) are used for correct installation and operation of multi-file drivers. They are also
used for improved performance during installation.

Extended attributes serve three purposes:

• Installation of multi-file drivers
• Version numbering
• Improved performance of drivers in the Workplace Shell.

Names are comma separated when more than one name is defined in an extended attribute. The examples
that follow are for the HP LaserJet** hardcopy driver.

Installation of Multi-File Drivers: The following extended attributes can be used for the installation
of multi-file drivers:

• VENDORNAME (Optional)

Vendor name of the supported printers. For example, VENDORNAME=HP.
• REQUIREDVENDORFILES (Optlonal, unless the driver requires other files)

Names of extra files required for correct operation by the driver files in the VENDORNAME directory.
For example, REQUIREDVENDORFILES=HP _ADDF .DLL.

• OPTIONALVENDORFILES

Names of extra files that are optional, that is, not required for correct operation. For example:
OPTIONALVENDORFILES=PCLHELP.HLP, HP_ADDF.SYM, HP_ADDF.MAP.

• CLASSNAME (Optlonal)

Name of the output stream created by the hardcopy driver. For example, CLASSNAME=PCL.
• REQUIREDCLASSFILES

(Optional unless the driver requires other files) Names of extra files required for correct operation by
the driver files in the CLASSNAME directory. For example, REQUIREDCLASSFILES=GENERIC.Dll.

• OPTIONALCLASSFILES

Names of extra files that are optional, that is, not required for correct operation. For example:
OPTIONALCLASSFILES=*.FNT, GENERIC.SYM, GENERIC.MAP.

• REQUIREDDRIVERFILES

Names of extra files required by the driver for correct operation. For example,
REQUIREDDRIVERFILES=LASERJET.DRV.

• OPTIONALDRIVERFILES

Names of extra files that are optional, that is, not required for correct operation. For example,
OPTIONALDRIVERFILES=LASERJET.SYM, LASERJET.MAP.

The subdirectory structure on the boot driver created by the hardcopy driver install is as follows:
OS2\DLL\VENDORNAME\CLASSNAME\DRVNAME For example: OS2\DLL\HP\PCL\LASERJET

Most hardcopy drivers need to be installed only in one subdirectory. In this case, omit CLASSNAME and
ensure that VENDORNAME is equal to the name of the ORV file.

•• LaserJet is a trademark of the Hewlett-Packard Company

2-10 Presentation Driver Reference

\
/

For example:

VENDORNAME = PSCRIPT
REQUIREDDRIVERFILES = PSCRIPT.DRV
OPTIONALDRIVERFILES = PSCRIPT.HLP

design considerations

This will install the Postscript** driver into a subdirectory named PSCRIPT.

Version Numbering: The extended attribute shown below can be used for version numbering:

• • VERSION (Optional)

Can be used to indicate the version number of a hardcopy driver, for example, • VERSION=13.328.
Hardcopy drivers can load this attribute and display it in OS2_PM_DRV _DEVMODE dialogs. See

"Hardcopy Driver Migration" for more information.

Improved Performance of Drivers in the Workplace Shell: The following extended attributes

can be used to improve the performance of presentation drivers in the Workplace Shell:

• .EXPAND (Optional)

List the device names supported by a hardcopy driver. Improves performance over use of
OS2_PM_DRV_DEVICENAMES (especially from a diskette). Names are zero-terminated strings with

NULL at the end. For example: • EXPAND=HP LaserJet I I\C:lHP LaserJet I 11\0\C:l.

• .ICON (Optional)

Gives the icon definition used by the Workplace Shell to display this hardcopy driver. This extended

attribute is automatically created during the build process if the ICON keyword is used with a resource

identifier of 1, or if the DEFAUL TICON keyword is used in the RC file for a hardcopy driver. For

example: • ICON 1 LASER. ICO.

• .HIDDEN (Optional)

Indicates which hardcopy driver is used by by files associated with a printer driver. This attribute is

used by the Workplace Shell to not display these files in a directory folder. For example:

.HIDOEN=LASERJET.ORV.

Hardcopy Device Names

If a hardcopy driver supports multiple devices, this is indicated at the API and user level. There are three

parts:

• The hardcopy driver implements OS2_PM_DRV _DEVICENAMES.

• The hardcopy driver accepts a device name in the szDeviceName field of pdriv. See "Enable

Subfunction 02H - FillPhysicalDeviceBtock" on page 7-8.

• The device name is accepted in OS2_PM_DRV_MODES.

Hardcopy Driver Migration

Hardcopy drivers must be able to work with back-level and forward-level drivers across a network. Notice

that there are several possible driver version numbers:

• EA Version. Derived from a build number (for example, 13.160)

• Version Number of Dialog. Derived from the build number. Service representatives can use this

number to uniquely identify the build of the hardcopy driver and the fix level.

•• Postscript is a trademark of Adobe Systems Incorporated

Chapter 2. Design Considerations 2-11

design considerations

• INI File Data Version. This number identifies to the driver the version number of the data stored in the
OS2SYS.INI file. The numbering system and format is hardcopy driver defined.

• !Version Number. Given in the DrivData structure of job or printer properties. The numbering scheme
of this ULONG is hardcopy driver defined, but the following format of !Version is suggested. It is a
number of type FIXED:

High WORD. System level in BCD (for example, 0020)
- Low WORD. Build level in BCD (for example, 0160).

For example, a new driver might use 20.0000. The next minor update might be labeled 20.0001. A major
update (for a new operating system release) might be labeled 21.0000.

For forward-level drivers reading back-level driver data, the data must be understood (by using the
!Version number as a guide to its format) and any missing data must be defaulted to the device defaults.
For back-level drivers reading forward-level driver data, as much as possible should be read and the rest
ignored. This implies that forward-level drivers only add new driver data fields at the end of the data.

Hardcopy Driver Output to File

Hardcopy drivers can print data to a disk file so that the print file can later be sent to the printer without the
need for the application. The print file can be used as a file interchange format. Printing to file means the
hardcopy driver converts the prespool input into a device-dependent format and stores the output directly
to a file. File system errors must be reported.

Two methods the hardcopy driver implements to allow printing to disk are:

• The system-provided method for printing to disk requires that the hardcopy driver handle a file name as
a pszlogAddress on a OD_DIRECT Enable Subfunction 02H - FillPhysicalDeviceBlock.

• In addition to the above method, the hardcopy driver can implement printing to disk by changing the job
properties dialog to allow the user to input a fully qualified file name. There are circumstances in which
the hardcopy driver must know the format of the required output file. For example, a hardcopy driver
can output raw Postscript or Encapsulated Postscript (EPS).

Help

All hardcopy drivers have a Help function, which invokes contextual help. The help should be complete
and indexed.

Job Error Dialog

The following push buttons on a message box are presented to an end-user:

RETRY Retry sending print data
ABORT Delete job
IGNORE Cancel dialog.

The hardcopy driver will respond to each of the returns in the following manner:

MBID_RETRY Continue sending data to the output buffer (PrtWrite)

MBID_ABORT Issue a PrtAbort to tell the spooler to delete the current job and set a flag that the job has
been aborted, then return from the write thread

MBID _IGNORE Continue sending data to the output buffer (PrtWrite).

The Job Error dialog contains a Help pushbutton and associated help.

2-12 Presentation Driver Reference

Part 3. OS/2 2.0 Presentation Drivers

© Copyright IBM Corp. 1992

Presentation. Driver Reference

exported entry points

Chapter 3. Display Drivers

This chapter describes the types of exported entry ports used by OS/2 2.0 display drivers.

Exported Entry Points

The following entry points are exported by the dynamic link library of a display driver:

EXPORTS
MoveCursorBlock @103
OS2_PM_DRV_QUERYSCREENRESOLUTIONS /* Optional */

MoveCursorBlock

Display drivers must export an entry point for the MoveCursorBlock table. This table contains information
about the display driver's MoveCursor routine (code) and data areas. The table values are checked after
the display driver is initialized. This allows the driver to determine the correct values.

typedef struct _MCDESCRIPTION { /* mod */
PVOID pMoveCursor;
ULONG ulCodelength;
PVOID pCursorData;
ULONG ulDatalength;

} MCDESCRIPTION;
typedef MCDESCRIPTION FAR* PMCDESCRIPTION;

The fields in the typedef structure are described below:

pMoveCursor
ulCodelength
pCursorData
ulDataLength

Flat address of the MoveCursor routine in the display driver
Length in bytes of the MoveCursor routine
Flat address of the data area used by the MoveCursor routine
Length in bytes of the data area used by the MoveCursor routine

This routine support calls from the system timer (at interrupt time). The strategy for the MoveCursor
routine is that the pointer is checked and, if necessary, redrawn or excluded at timed intervals. The
PMDD.SYS physical device driver creates a privilege level O alias for the data address and passes the alias
to the routine in the EAX register when MoveCursor is called at interrupt time. Therefore, all data
addressing within the routine must be performed relative to this address.

At entry to the MoveCursor routine, the stack contains the following:

VOID MoveCursor(LONG abs_x. LONG abs_y, PVOID pCursorData)

Using the C calling convention, the stack contains two LONGs, which hold the x- and y-coordinates of the
cursor hot spot, and a PVOID that is a pointer to the cursor data area that is valid in the current context. All
references to this data area must be done relative to the address passed in. If the x- and y-coordinates are
set to OxBOOOOOOO, this signifies a CheckCursor call.

Regular timer interrupts give the presentation driver an opportunity to check whether the pointer is valid.
For example:

• Have new x- and y- coordinates been set?
• Is the pointer excluded because of a drawing operation. If so, has that operation been completed?
• Is the pointer currently visible (although it should be excluded) because it is in an area that is being

) redrawn?
)

At the end of the MoveCursor routine, a check is performed to see if a new location was given for the
pointer while it was being drawn. If the pointer has moved again, it must be drawn at the new location or

© Copyright IBM Corp. 1992 3-1

exported entry points

be excluded because it has moved into the protection rectangle. This implies that the routine needs to
track both real (x, y) and pointer (x, y).

Programming Considerations: Typical cursors are an arrow, or a cross, with an action point called
the hot spot at the point of the arrow or the center of the cross. When the presentation driver draws a
cursor, the origin of the image must be offset to place the action point at the required (x, y) position. The
required offset is specified in the call to GreSetCursor. Because the cursor entry point can be called at
various times from many different places, the cursor routine uses semaphores to protect itself (protection is
the responsibility of the presentation driver). Similarly, because cursor drawing can be a time-consuming
operation, the display driver must also protect itself against re-entrance.

The display driver must resolve all interactions between cursor drawing at interrupt time and access to
video hardware. While in the background, the display driver does not draw any cursor image.

Caution should be used when the display is a buffered device and the cursor is drawn into a bit map in the
buffer. In this case, the display driver deletes the cursor and excludes it when a draw operation occurs at
the cursor location. To do this, the driver does a hit test for each output operation to see if the cursor
location is in the drawing area, and to set a protection rectangle that is used to exclude the cursor.

OS2_PM_DRV _ QUERYSCREENRESOLUTIONS

OS2_PM_DRV_QUERYSCREENRESOLUTIONS should be exported by display drivers that support multiple
display resolutions. This entry point allows the operating system to determine the display modes
supported by the display driver.

Entry to the routine is as follows:

ULONG QueryResolutions (pBuf, pcbBuf)

Parameter Data Type Description

pBuf PVOID Pointer to the output buffer. See below.

pcbBuf PU LONG Pointer to the number of bytes in the buffer. See below.

pBuf Pointer to the buffer that receives the output from this function. The output is returned in a
SCREENRESCOUNT structure followed by an array of SCREENRESOLUTION structures. This
function should fill pBuf with the following information:

typedef struct _SCREENRESCOUNT {
ULONG maxcount;
ULONG count;
ULONG res struct length;

} SCREENRESCOUNT; -
typedef SCREENRESCOUNT *PSCREENRESCOUNT;

The SCREENRESCOUNT fields and descriptions are as follows:

maxcount

count

res_ struct_ length

3-2 Presentation Driver Reference

Total number of screen resolutions supported.

Number of SCREENRESOLUTION structures returned. This count will be
less than maxcount if the size of the pBuf buffer was defined too small as
identified by pcbBuf.

Length of a SCREENRESOLUTION structure. This value should be used to
increment between structures so that any future increase in the size of the
structure (to add additional information) will not cause a failure.

exported entry points

The SCREENRESCOUNT information should be followed by the SCREENRESOLUTION
information:

typedef struct _SCREENRESOLUTION {
ULONG width;
ULONG height;
ULONG colors;
ULONG planes;
ULONG fl options

} SCREENRESOLUTION;
typedef SCREENRESOLUTION *PSCREENRESOLUTION;

The SCREENRESOLUTION fields and descriptions are as follows:

width Width of the device in pels.

height Height of the device in pels.

colors Number of colors supported in this mode.

planes Number of display planes in this mode.

floptlons Identifies optional information for each resolution. Valid values include:

DSP _RESOLUTION_ OBTAINABLE
DSP _RESOLUTION_DEFAUL T

Obtainable with the hardware configuration
Default resolution

pcbBuf Points to the number of bytes in the pScreenResolution buffer. If pScreenResolution is 0 on
input, this function stores the size (in bytes) needed to retrieve all of the screen resolution data in
pcbScreenResolution. If not 0, this field contains the number of bytes actually returned.

Return Codes: The return value depends upon the input value of pcbBuf.

0
Non-zero

Returns the size in bytes needed to retrieve all of the screen resolution data
Returns the number of bytes actually returned in pBuf

Chapter 3. Display Drivers 3-3

exported entry points

3-4 Presentation Driver Reference

graphics engine hardcopy drivers

Chapter 4. Graphics Engine Hardcopy Drivers

For the Presentation Manager interface, hardcopy devices such as printers and plotters are queued
devices. When an application writes to one of these devices, the presentation driver creates a spool file
and writes the data to that file. The data is printed when it is complete and the required device is free.

Two instances of a device context are required to support queued data. The first instance is opened as an
OD_QUEUED device by the application program. This DC buffers the data, does any processing that is
required, and then writes the data to a spool file. The second instance is opened as an OD_DIRECT device
by the queue processor. This DC receives data from the spool file, does any processing that is required,
and by using the Prtxxx interface, sends the data to the physical device driver.

When a device context is opened, the data type given (PM_Q_STD or PM_Q_RAW) is applicable only for the
OD_ QUEUED device context type.

Exported Entry Points

The following entry points must be exported by a hardcopy driver dynamic link library:

EXPORTS
OS2_PM_DRV_DEVMODE
OS2_PM_DRV_DEVICENAMES
Drvlnstall
DrvRemove

DialogProc @2

/* Optional */
/* Optional */

Note: DialogProc is exported by ordinal. The entry point is used by the Presentation Manager interface to
manage the dialog initiated by the OS2_PM_DEVMOVE routine (see "OS2_PM_DRV _DEVMODE" on
page 4-2).

© Copyright IBM Corp. 1992 4-1

OS2_PM_DRV _DEVMODE

OS2 PM DRY DEVMODE - - -
This handling routine must be compiled to run at Ring 2 Conforming (privilege level 2) or Ring 3 (privilege
level 3). The Device Modes entry point is exported by hardcopy drivers as OS2_PM_DRV _DEVMODE to
support the DevPostDeviceModes function at the Application Programming Interface (API). In the hardcopy
driver, the handling routine generates a DRIVDATA structure that defines the current setting of printer
properties or job properties, which identify the options that are set when the job is printed (see "Remarks"
on page 4-3). All hardcopy drivers must contain a handling routine for OS2_PM_DRV _DEVMODE.

Applications such as the Presentation Manager Print Object call DevPostDeviceModes to configure the
device. Notice that such applications usually call this function twice, first with a NULL value for
pDriverData to query the length of the driver's DRIVDATA structure, and then with a valid pointer to get the
data.

The syntax used by the Presentation Manager interface to call the Device Modes routine in the hardcopy
driver is as follows:

LONG APIENTRY OS2_PM_DRV_DEVMODES (pDriverData, pszDriverName, pszDeviceName, pszPrinterName, lOption)

PDRIVDATA
PSZ
PSZ
PSZ
ULONG

pDriverData;
pszDriverName;
pszDeviceName;
pszPrinterName;
lOption;

Note: LONG, APIENTRY, PDRIVDATA (DRIVDATA *),and PSZ (char*) are defined in OS2DEF.H, which is
included through the header file OS2.H.

Stack Frame: At entry to the device modes routine, the stack frame contains:

Parameter Description

pDriverData NULL or pointer to DRIVDATA structure. See below.

pszDriverName Pointer to a string containing the name of the hardcopy driver.

pszDeviceName Pointer to a string containing the device name, for example, HP LASERJET II P, as defined by
the presentation driver.

pszPrinterName NULL or pointer to a string containing the printer name, such as PRINTER1, as defined by the
user through the Presentation Manager control panel. A NULL pointer or NULL string are both
valid conditions for this parameter.

I Option Option flag. See below.

pDrlverData NULL or pointer to memory location for DRIVDATA structure:

I Option

cb Number of bytes in the structure.

!Version Version number of the presentation driver. Subsequently used by the
presentation driver to verify its entry in the INI file.

szDevlceName[32] Device name.

abGeneralData Driver-specific data for job or printer properties. See "Remarks" on
page 4-3.

If pDriverData is NULL, the handling routine in the presentation driver must return the length
of the driver's DRIVDATA structure for either job or printer properties.

Identifies the action that should be taken by the presentation driver:

4-2 Presentation Driver Reference

OS2_PM_DRV _DEVMODE

DPDM_POSTJOBPROP Display a dialog for job properties and return the DRIVDATA
structure. Do not update OS2SYS.INI. The abGeneralData field
contains the job properties.

DPDM_CHANGEPROP Display a dialog for printer properties and device defaults, update
the OS2SYS.INI file, and return the DRIVDATA structure. The
abGeneralData field contains the printer properties.

DPDM_QUERYJOBPROP Return the DRIVDATA structure with device default job
properties. Do not display a dialog. The abGeneralData field
contains the device default job properties.

All other values are reserved.

Return Codes: The handling routine in the presentation driver returns a LONG integer. Valid values

are:

DPDM_ERROR Error

DPDM_NONE There are no settable options.

>O The number of bytes for the required DRIVDATA structure when the input pointer
pDriverData =NULL.

DEV_OK The data block pointed to by the input parameter pDriverData was initialized (when the
pDriverData input pointer is not equal to NULL).

Remarks: The details about printer properties and job properties are stored as a set of flags or values
in the array abGeneralData. Do not store pointers in this array because they might not be valid when they
return. This array is driver-specific. What flags are needed and where those flags are in the array must be
determined to fully exploit the capabilities of the device.

A list of related terms and their definitions follows.

Properties: This is a descriptive term for software and hardware characteristics of hardcopy (printing,
plotting, camera, etc.) devices. For a particular property, there is a list of possible values from which the

user can select one or more values. This list can be extended by adding user-defined values but can never
be reduced by removing predefined values. For example, predefined forms, Letter and A4, can never be
deleted. However, the user can add a form named 'Blue Letter' to describe colored separator paper.

Job Properties: These are properties that can be changed from job to job. Typically, job property values

are set in the printer by sending software commands. Some job properties can be derived from printer
properties. Examples of typical job properties are:

• Paper orientation
• Forms required
• Device resolution
• Single-sided or duplex printing.

Printer Properties: These are properties that describe the printer physical characteristics. Printer
properties are mutually exclusive of job properties (see following description). Examples of typical printer
properties are:

• Number of paper bins
• Form size in each paper bin
• Hardware fonts installed
• Font cartridges installed (cartridge slots download fonts at IPL time)
• Availability of optional add-on hardware, such as an envelope feeder or SCSI hard disk available.

Chapter 4. Graphics Engine Hardcopy Drivers 4-3

OS2_PM_DRV _DEVMODE

User-Definable Values: For each individual property, there is a list of possible values which can be
extended by making use of user-definable values (for example, user-defined forms.) User-definable values
can only be defined or changed in the printer property dialogs, that is, when OS2_PM_DRV _DEVMODE is
called with the DPDM_CHANGEPROP flag.

Selected Values: Given a particular property and its set of values, the user can choose one or more to be
selected values. For example, Paper Bin 1 contains Letter paper, and the envelope bin accepts Com10, DL,
or 85 envelopes.

Device Default Properties: Device defaults can be set in the printer properties dialog. These defaults do
not usually contain user-defined values. The selectable values are chosen according to country code and
the most common delivery configuration of the device. In a hardcopy driver that supports multiple devices,
it is possible that the device default properties are different for different devices.

Option Flags

• DPDM_POST JOBPROP
• DPDM_CHANGEPROP
• DPDM_ QUERY JOBPROP

DPDM_POSTJOBPROP: Any application can call the OS2_PM_DRV_DEVMODE handling routine by using
the flag option, DPDM_POST JOBPROP. The calling program requires the user to select properties for a
specific job (draft or letter quality; size, style, and color of the default font, and so forth). The source for the
default value of the properties and device defaults is determined by the pszPrinterName parameter:

• If pszPrinterName points to a valid string, the handling routine searches the PM_SPOOLER_DD section
of OS2SYS.INI for the abGeneralData associated with the name.

• If pszPrinterName is NULL or points to a NULL string, the handlin.g routine uses the values from
abGeneralData in the DRIVDATA structure addressed by pDriverData.

In both cases, the initial default values are used if the handling routine cannot find a valid abGeneralData
array.

When called with the DPDM_POST JO.BPROP flag option, hardcopy drivers:

• Examine the pDrjverData parameter. If the pDriverData is valid, use these values as a basis of the
values to be displayed in the user dialog. If NULL, the driver version number is 0, or the pDriverData is
nonsense, use a set of device default job properties. There are two cases:

If the printer name is given, use the job properties.
- If the printer name is NULL or not a valid printer name, use the job properties derived from the

device defaults.

• Update the job property values before displaying the user dialog. If the printer name is given, the
printer properties stored .by that printer are examined and compared with the job properties. There are
two cases:

Addition of extra values. If extra printer property values are defined, those that are applicable are
added to the user dialog. For example, if a new user-defined form was added to the printer
properties, it appears on the list of selectable forms.

Removal of values. If printer property values are deleted, the deleted values do not appear in the
user dialog. If all the selected values are deleted from the printer properti.es, the device default
becomes the selected value. For example, if a user-defined form is removed from the printer
properties, it is replaced by a device default such as Letter (for the United States) or A4 (fo·r France).

• Display the user dialog (the user makes selections). Notice that if the user presses Cancel onthe
dialog, the hardcopy driver returns pDriverData unmodified. If pDriverData contains zeros or is not
understood by the hardcopy driver, the driver should return the default job properties for the device.

4•4 Presentation Driver Reference

/

OS2_PM_DRV _DEVMODE

• Return the data to the caller. Any updates in the user dialog must be reflected in an updated
pDriverData parameter, which is passed back to the caller of OS2_PM_DRV _DEVMODE. This update
must occur regardless of whether an actual printer name or NULL printer name was passed in.

DPDM_CHANGEPROP: Only the Workplace Shell calls DevPostDeviceModes using this flag option.
Applications that must change options for a particular job use DPDM_POST JOBPROP.

The calling program requires the user to identify the current settings of the device defaults and select the
device default properties. This usually requires two dialogs, one to identify options (such as the paper size
currently in the device and details of any memory or font cartridges that are installed), and the other to
establish a set of device default properties.

An error is returned if a NULL printer name is used. The pDriverData parameter is ignored. Given that a
printer name is passed in, the hardcopy driver needs to retrieve the printer properties for that printer and
the individual device for that driver. This means the hardcopy driver must store these properties in a
separate place from properties for other printers in order to avoid properties and selected values of one
printer interacting with another. An example of printer property interaction might be if one printer has a
user-defined form in Bin 1, and the other has no extra forms. It would be possible to send a job to the
second printer which uses a form that is only available in the first printer.

The hardcopy driver builds a complex keyname containing the printer name, hardcopy driver and device
name. It is recommended that the printer properties be stored under individual property keynames.

This format is easily extended for new printer properties. The format of the appname is:

PM_DD_<printer name>,<hardcopy driver>.<device name>

For example:

appname
keyname
value
keyname
value

= PM_DD_PRINTER1, LASERJET.HP LaserJet II
= BINFORMS
= Assignment of forms to paper bins
= FORMSDATA
= Definition of forms

appname = PM_DD_PRINTER2, LASERJET.HP LaserJet II
keyname = BINFORMS
value = Assignment of forms to paper bins.

The advantage of this method is that the appname is standardized, therefore:

• When a printer is renamed, the Workplace Shell can automatically move the data to a new appname
without the hardcopy driver involved.

• The initialization file can be cleaned up by the Workplace Shell when a printer is deleted, or when the
default hardcopy driver for a printer is changed.

DPDM_QUERYJOBPROP: Any application can call OS2_PM_DRV_DEVMODE by using the
DPDM_QUERYJOBPROP flag option to find out the device default job properties. These defaults are
derived from the printer properties. There are two cases:

• The printer name is given so the properties can be retrieved from OS2SYS.INI under the
PM_DD_Printerxxx application name.

• The printer name is not given and the hardcopy driver uses the device default printer properties for that
device.

Note: Information concerning the design of dialogs and menus is given in Common User Access Interface
Design Guide.

Chapter 4. Graphics Engine Hardcopy Drivers 4-5

OS2_PM_DRV _DEVICENAMES

OS2_PM_DRV _DEVICENAMES

This handling routine must be compiled to run at Ring 3 (privilege level 3). The device names entry point is
exported as OS2_PM_DRV_DEVICENAMES by the presentation driver to support the
DevQueryDeviceNames function at the API. Applications such as the Presentation Manager Print Object
call DevQueryDeviceNames to determine the device names and descriptions and the data types that the
presentation driver supports. Hardcopy drivers must contain a handling routine for
OS2_PM_DRV _DEVICENAMES.

Applications usually call this function twice, first with a NULL value for cNames and cDataTypes to query
the number of names and data types. After allocating the arrays, the application then calls this function
with valid values to get the data. If the value of cNames is NULL at the location addressed by pcNames, the
handling routine must update cNames to the actual count of names. If cNames has a valid value, the
routine must write device names and device descriptions into the arrays addressed by paDeviceName and
paDeviceDesc. Similarly, for cDataTypes, the handling routine either writes a valid value into cDataTypes
or writes data-type names into the array addressed by paDataType. Notice that when writing to an array,
the routine does not write past the end of the array as defined by the associated count.

The syntax used by the Presentation Manager interface to call the device names routine in the presentation
driver is as follows:

LONG APIENTRY OS2_PM_DRV_DEVICENAMES (pszDriverName, pcNames, paDeviceName, paDeviceDesc, pcDataTypes,
paDataType. lReservedl, 1Reserved2)

Stack Frame: At entry to the device names function, the stack frame contains:

Parameter Data Type Description

pszDriverName PSZ Pointer to a string containing the name of the device driver, for example,
LaserJet

pcNames PL ONG Pointer to count of fields, cNames, in DeviceName and DeviceDesc arrays

paDeviceName PSTR32 Pointer to DeviceName array, char[cNames,32]. Device names are
NULL-terminated strings such as 'HP LaserJet II'.

paDeviceDesc PSTR64 Pointer to DeviceDesc array, char[cNames,64]. Device descriptions are
NULL-terminated strings such as 'HP LaserJet 11'.

pcDataTypes PLONG Pointer to count of fields, cDataTypes in DataType array

paDataType PSZ Pointer to DataType array, char[cDataTypes, 16]

1Reserved1 UL ONG Reserved

1Reserved2 UL ONG Reserved

Note: LONG, APIENTRY, and PSZ (char*) are defined in file OS2DEF.H. PSTR16, PSTR32, and PSTR64 are
defined as pointers to fixed-length character arrays and are included in the header file OS2.H.

Return Codes: The handling routine in the presentation driver returns a LONG integer. Valid values
are:

-1 Successful.
0 Error.

Note: The system expects the successful and error return codes from OS2_PM_DRV _DEVICENAMES to be
the opposite of those from OS2_PM_DRV _DEVMODE and the Enable subfunctions.

4-6 Presentation Driver Reference

I;

J
)

Drvlnstall

Drvlnstall

Note: This entry point is optional.

This entry point informs the hardcopy driver that it is about to be installed or reinstalled. The driver is

given the opportunity to update data in the INI file.

void Drvlnstall()

It is the responsibility of the caller to install the complete multi-file driver by using extended attributes.

Chapter 4. Graphics Engine Hardcopy Drivers 4-7

DrvRemove

DrvRemove

Note: This entry point is optional.

This entry point informs the hardcopy driver that it is about to be removed from the system (deleted from
hard disk). The driver is given the opportunity to remove data it owns from the INI file. The hardcopy
driver does not use this entry point to delete any of its own datafiles unless they are created after
installation.

void DrvRemove()

It is the responsibility of the caller to remove the complete multi-file driver by using extended attributes.

4-8 Presentation Driver Reference

file system emulation

File System Emulation

Presentation drivers for hardcopy devices use an internal interface to communicate with the device.
Hardcopy drivers do not differentiate between different types of ports (for example, LPT1 verses COM1).
The Prtxxx API routes the data to the appropriate physical device driver. This API also handles
semaphoring the port so that two threads do not intermix output.

The internal interface is based on the DOS file system calls DosOpen, DosClose, DosWrite, and so forth.
Presentation drivers open a device and receive a handle that identifies the device as a file. Subsequent
operations such as writing to the device are implemented by writing to the returned handle.

The following functions are used by the presentation driver:

• PrtAbort
• PrtClose
• PrtDevlOCtl
• PrtOpen
• PrtWrite.

Chapter 4. Graphics Engine Hardcopy Drivers 4-9

Ille system emulation

PrtAbort

VOID APIENTRY PrtAbort (hDevice)

This function aborts operations to the output device identified by hDevice file handle. Any output data that
is held in buffers for the physical device driver is emptied. PrtAbort does not close the device, therefore,
the presentation driver must call PrtClose after aborting operations. If PrtWrite is called to write to a
device whose output has been aborted, the call is not honored by the system.

Parameters

Parameter Data Type Description

hDevice HFILE Device handle

Return Codes: None. PrtAbort is a VOID function.

Remarks: Presentation drivers do not use PrtClose to abort an output operation. The effect of PrtClose
is to output any buffered data before closing the device.

4-10 Presentation Driver Reference

PrtClose

ULONG APIENTRY PrtClose (hDevice)

This function closes the output device identified by hDevice.

Parameters

Parameter Data Type Description

hDevice HFILE Device handle

Return Codes: This function returns the same codes as DosClose.

ERROR_ACCESS_DENIED
ERROR_FILE_NOT _FOUND
ERROR_INVALID _HANDLE
NO_ERROR.

Remarks: If this function returns an error, it is reissued to close the device.

Ille system emulation

Chapter 4. Graphics Engine Hardcopy Drivers 4-11

flle system emulation

PrtDevlOCtl

ULONGAPIENTRY PrtDevIOCtl (pData, pPanns, ulFunction, ulCategory, hDevice)

This function passes device-specific commands to the device. PrtDevlOCtl is an emulation of DosDevlOCtl.
For a full description of the parameters, see DosDevlOCtl in the OS/2 2.0 Presentation Manager
Programming Reference. For further information about the IOCtl interface, see the chapter on generic
IOCtl commands in the OS/2 2.0 Physical Device Driver Reference.

Parameters

Parameter Data Type Description

pData PVOID Pointer to a data packet

pParms PVOID Parameter list

uJFunction ULONG Function number

ulCategory ULON.G Category code

hDevice HFILE Device handle

Return Codes: This function returns the same codes as DosDevlOCtl.

ERROR_BAD _DRIVER_LEVEL
ERROR_ GEN_FAILURE
ERROR_INVALID_CATEGORY
ERROR~_INVALID _DRIVE
ERROR_INVALID _FUNCTION
ERROR_INVALID _HANDLE
ERROR_INVALID _PARAMETER
ERROR_MONITORS_NOT _SUPPORTED
ERROR_PROTECTION_ VIOLATrON
ERROR;... UNCERTAIN_MEDIA
NO_ERROR.

4· 12 Presentation Driver Reference

file system emulation

PrtOpen

ULONG APIENTRY PrtOpen (pszDeviceName, phDevice, psAction, cbFile, ulFat , fnOpen, flMode, lRes)

This function opens a device file for output and returns its handle in the location addressed by phDevice. If
an attempt is made to open a device file that is already open, an error is returned. PrtOpen is an emulation
of DosOpen. For a full description of the parameters, see DosOpen in the OS/2 2.0 Presentation Manager
Programming Reference.

Parameters

Parameter Data Type Description

pszDeviceName PSZ Pointer to a string identifying the device

phDevice PH FILE Pointer to a location for the returned file handle for the device

psAction PUS HORT Pointer to location for the returned value that identifies the action taken by
the system

cbFile UL ONG Initial size, in bytes, of the output file

ulFat UL ONG File attribute

fnOpen ULONG Open function type

fl Mode ULONG Open mode of file

I Res UL ONG Reserved. Must be 0.

Return Codes: This function returns the same codes as DosOpen.

ERROR_ACCESS_DENIED
ERROR_CANNOT_MAKE
ERROR_DEVICE_IN_USE
ERROR_DISK_FULL
ERROR_DRIVE_LOCKED
ERROR_FILE_NOT _FOUND
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID _ACCESS
ERROR_INVALID _PARAMETER
ERROR_NOT _DOS_DISK
ERROR_OPEN_FAILED
ERROR_PATH_NOT_FOUND
ERROR_PIPE_BUSY
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_ SHARING_ VIOLATION
ERROR_TOO_MANY_OPEN_FILES
NO_ERROR.

Chapter 4. Graphics Engine Hardcopy Drivers 4-13

Ille system emulation

PrtWrite

ULONG APIENTRY PrtWrite (hDevice, pvoidData, cData, cWritten)

This function writes data to the device file identified by hDevice.

Parameters

Parameter Data Type Description

hDevice HFILE Device handle

pvoidData PVOID Pointer to data buffer

cData UL ONG Length of data in bytes

cWritten PU LONG Pointer to a count of bytes actually written to the device

Return Codes: This function returns the same codes as DosWrite.

ERROR_ACCESS_DENIED
ERROR_BAD_UNIT
ERROR_BROKEN_PIPE
ERROR_INVALID _HANDLE
ERROR_LOCK_ VIOLATION
ERROR_NOT _DOS_DISK
ERROR_OUT_OF_PAPER
ERROR_WRITEFAULT
NO_ERROR.

Remarks: Some physical device drivers return NO _ERROR even though cWritten is not equal to cData.
Presentation drivers should compare cData to cWritten to determine if a request has completed
successfully before checking for return codes. To complete the request when cData is not equal to
cWritten, the call must be issued after calculating the new starting point (pvoidData =
pvoidData+cWritten) and the remaining characters to transfer (cData = cData-cWritten).

4-14 Presentation Driver Reference

Spooler Components

The spooler interface (Spl...) is implemented in two libraries, PMSPL.DLL and PMPRINT.QPR, that support

four activities:

• Management of spool buffers for PM_Q_STD data (SplStdxxx interface)

• Management of queued files (SplQmxxx interface)
• Processing of queued files (SplQpxxx interface)
• Displaying messages on the screen (SplMesageBox).

Spool File Creation

The steps taken by the presentation driver to create a spool file are determined by the data type for which

the DC was enabled. All presentation drivers must support PM_Q_STD and PM_Q_RAW (overviews of

creating a spool file for these data types are shown below).

Data types can be defined by the user. A name should be chosen that is not likely to clash with other

user-defined data types. The name must be a string of up to 16 characters in the range of A-Z, 0-9, or_.

Notice that the data type is only useful to applications that know about it, and with presentation drivers that

implement it.

Print jobs must be spooled by using the data type given on the call to Enable Subfunction 02H -

FillPhysicalDeviceBlock. Therefore, print jobs queued PM_Q_STD can be printed with queue processor

options applied to the job.

PM_Q_STD

PM_Q_STD data is a file of Gpixxx calls that describe the output document. This data type is independent

of the device and the presentation driver. The presentation driver invokes the spooler's standard interface

(SplStdxxx). All subsequent Gpixxx calls and some escape codes sent to the DC are recorded in a spool

buffer. When DEVESC_ENDDOC is detected, the presentation driver ends the recording and invokes the

spooler's interface (SplQmxxx) to write the buffered data into a spool file.

Normal sequence of events:

1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_STD data.

a. Hardcopy driver calls SplStdOpen to open a recording.

2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls SplStdStart to start recording.
b. Spooler records all Gpixxx calls and some escape codes in the spool buffer.

Note: Recording does not stop the flow of Gpixxx calls through the system. These calls are

processed and the resulting Grexxx calls are passed on to handling routines in the graphics

engine and presentation driver. Special considerations apply for escape codes. For details,

see the individual escape codes under "GreEscape" on page 8-15.

c. Hardcopy driver DC is OD _INFO. The presentation driver tracks the current position, does any

bounds calculation required, and responds to queries from the application. In particular, the

presentation driver must be able to understand and reply to:

• DevQueryCaps
• DevQueryHardCopyCaps
• DevQueryDeviceNames
• DevPostDeviceModes.

3. Application calls DevEscape with DEVESC_NEWFRAME.

Chapter 4. Graphics Engine Hardcopy Drivers 4-15

a. Hardcopy driver resets current position and bounds.

4. Application calls DevEscape with DEVESC_ENDDOC.

a. Hardcopy driver calls SplStdStop to stop the recording.

b. Hardcopy driver calls SplQmOpen and SplQmStartDoc to open and start a spool file.

c. Hardcopy driver calls SplStdQuerylength to get the length, in bytes, of the spooled data.
d. Hardcopy driver calls SplStdGetBits to get data from the spool buffer into memory that is owned by

the presentation driver. (The driver might need to loop on this step and the next if the spooled data
is larger than the available memory.)

e. Hardcopy driver calls SplQmWrite to write the data in the spool file.

f. Hardcopy driver calls SplStdDelete to delete the data in the spool buffer.

g. Hardcopy driver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application's
DevEscape with DEVESC_ENDDOC.

5. Application calls DevEscape with DEVESC_STARTDOC (repeat Step 2).

6. Application calls DevEscape with DEVESC_NEWFRAME (repeat Step 3).

7. Application calls DevEscape with DEVESC_ENDDOC to spool the second job (repeat Step 4).
8. Application calls DevCloseDC.

a. Hardcopy driver calls SplStdClose and SplQmClose to close the spool buffer and the spool file.

Abort sequence of events:

1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_STD data.
a. Hardcopy driver calls SplStdOpen to open a recording.

2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls SplStdStart to start recording.
b. Spooler records all Gpixxx calls and some escape codes in the spool buffer.

Note: Recording does not stop the flow of Gpixxx calls through the system. These calls are
processed and the resulting Grexxx calls are passed on to handling routines in the graphics
engine and presentation driver. Special considerations apply for escape codes. For details,
see the individual escape codes under "GreEscape" on page 8-15.

c. Hardcopy driver behaves as if the DC was opened as OD_INFO. The presentation driver tracks the
current position, does any bounds calculation required and responds to queries from the application.
In particular, the presentation driver must be able to understand and reply to:

• DevQueryCaps
• DevQueryHardCopyCaps
• DevQueryDeviceNames
• DevPostDeviceModes.

The calls can be journaled but the journal file is not saved.

3. Application calls DevEscape with DEVESC_ABORTDOC to abort the document.

a. Hardcopy driver calls GreStopJournalfile.
b. Hardcopy driver calls GreDeleteJournalfile.
c. Hardcopy driver calls SplStdStop to stop the recording.
d. Hardcopy driver calls SplStdDelete to delete the data in the spool buffer.
e. Hardcopy driver calls SplQmAbortDoc to stop the spool file.

4. The application calls DevCloseDC.

a. Hardcopy driver calls SplStdClose and SplQmClose to close the recording and the spool file.

4-16 Presentation Driver Reference

PM_Q_RAW

PM_Q_RAW data is a device-dependent bit stream.

Normal sequence of events:

1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_RAW data.

a. Hardcopy driver calls SplQmOpen to open a spool file.

2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls GreCreateJournalFile to create a journal. file.
b. Hardcopy driver calls SplQmStartDoc to start the spool file.
c. Hardcopy driver calls GreStartJournalFile to start recording Grexxx calls.

Note: Recording does not block the flow of Grexxx calls to handling routines in the graphics engine
and presentation driver.

d. Hardcopy driver processes the incoming Grexxx calls to create the first band of data for the spool
file.

3. Ap.plication calls DevEscape with DEVESC_NEWFRAME to start new page.

a. Hardcopy driver calls GreStopJournalFile to stop the journal file.

b. Hardcopy driver calls SplQmWrite to write the first band in the spool file.

c. Hardcopy driver moves clip rectangle to next band in presentation space.

d. Hardcopy driver calls GrePlayJournalFile to play the journal file.

e. Hardcopy driver processes each Grexxx call to create the second band of data for the spool file.

f. Hardcopy driver calls SplQmWrite to write the second band in the. spool file.

g. Hardcopy driver plays the journal file repeatedly until all the bands have been processed and
passed to the spooler.

h. Hardcopy driver issues a page eject, if necessary.

i. Hardcopy driver calls GreDeleteJournalFile.

j. Hardcopy drtver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application's
DevEscape with DEVESC_ENDDOC.

Note: If no Grexxx calls have been made (that is, no output is required), only Steps a and hare
executed.

4. Application calls DevEscape with DEVESC_ENDDOC to end the document.

a. Hardcopy driver calls GreStopJournalFile to stop the journal file.

b. Hardcopy driver calls SplQmWrite to write the first band in the spool file.

c. Hardcopy driver catls GrePlayJournalFile to play the journal file.

d. Hardcopy driver processes each Grexxx call to create the second band of data for the spool file.

e. Hardcopy driver calls SplQmWrite to write the second band in the spool file.

f. Hardcopy driver plays the journal file repeatedly until all the bands have been processed and
passed to the spooler.

g. Hardcopy driver calls GreDeleteJournalFile.

t'J h. Hardcopy driver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application's
r' DevEscape with DEVESC_ENDDOC.

Chapter 4. Graphics Engine Hardcopy Drivers 4-17

Note: If no Grexxx calls have been made (that is, no output is required), only Steps a, i, and j are
executed. No page is ejected.

5. Application calls DevEscape with DEVESC_STARTDOC (repeat Step 2).

6. Application calls DevEscape with DEVESC _NEWFRAME to start new page (repeat Step 3).

7. Application calls DevEscape with DEVESC_ENDDOC to spool the second job (repeat Step 4).

8. Application calls DevCloseDC.

a. Hardcopy driver calls SplQmClose.

Abort sequence of events:

1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_RAW data.

a. Hardcopy driver calls SplStdOpen to open a spool file.

2. Application calls DevEscape with DEVESC_STARTDOC to start the document.

a. Hardcopy driver calls GreCreateJournalfile to create a journal file.
b. Hardcopy driver calls SplQmStartDoc to start the spool file.
c. Hardcopy driver calls GreStartJournalfile to start recording Grexxx calls.

Note: Recording does not block the flow of Grexxx calls to handling routines in the graphics engine
and presentation driver.

d. Hardcopy driver processes the incoming Grexxx calls to create the first band of data for the spool
file.

3. Application calls DevEscape with DEVESC_ABORTDOC to abort the document.

a. Hardcopy driver calls GreStopJournalFile.
b. Hardcopy driver calls GreDeleteJournalFile.
c. Hardcopy driver calls SplQmAbortDoc to stop the spool file.

Note: The hardcopy driver can be processing the DEVESC_ENDDOC (banding, for example) and a
DEVESC_ABORT comes into the hardcopy driver on another thread.

4. Application calls DevCloseDC.

a. Hardcopy driver calls SplQmClose to close the spool file.

Querying and Setting Configuration Data

The configuration of printers and queues is stored in OS2SYS.INI. It is recommended that the SplxxxDevice
and SplxxxQueue functions are used as a high-level interface into OS2SYS.INI. Refer to the OS/2 2.0
Presentation Manager Programming Reference for further information.

4-18 Presentation Driver Reference

spooler support functions

Spooler Support Functions

The purpose of the spooler is to control the queues, create new spool files, and invoke the queue processor

when a job is ready for printing. The spooler also provides a function, SplMessageBox, that can be called

to display a message to the user.

The following functions are available in the spooler:

• SplMessageBox
• SplQmAbort
• SplQmAbortDoc
• SplQmClose
• SplQmEndDoc
• SplQmOpen
• SplQmStartDoc
• SplQmWrite.

Chapter 4. Graphics Engine Hardcopy Drivers 4-19

spooler support functions

SplMessageBox

ULONG APIENTRY SplMessageBox (pszAddress, flErrorlnfo, flErrorData, pszText, pszCaption, idWindow, fsStyle)

This function creates and displays a message box. SplMessageBox is similar to WinMessageBox. For
details, see WinMessageBox in the OS/2 2.0 Presentation Manager Programming Reference.

Parameters

Parameters

pszAddress

flErrorlnfo

flErrorData

pszText

pszCaption

idWindow

fsStyle

flErrorlnfo

Data Type Description

PSZ Pointer to a string containing the logical address of the device, such as
'LPT1'.

UL ONG Error information. See below.

UL ONG Error data. See below.

PSZ Pointer to the text string for the message box.

PSZ Pointer to a string containing a meaningful title for the message box. The text
is centered in the title bar. If more than 40 characters are supplied, excess
characters at the beginning and end of the string are not displayed.

US HORT Window ID of the message box window.

USHORT This bit array specifies the contents and function of the message box.

Error information. One of the following flags must be set to identify where the error
occurred:

SPLINFO _ QPERROR
SPLINFO _DDERROR
SPLINFO _ SPLERROR
SPLINFO _ OTHERERROR

Spooler queue processor error
Presentation driver error
Spooler error
Any other error.

One of the following flags is also set to indicate the severity of the error:

SPLINFO _INFORMATION
SPLINFO _WARNING
SPLINFO _ERROR
SPLINFO _SEVERE
SPLINFO _ USERINTREQD

Information only, no error
Warning
Recoverable error
Severe, irrecoverable error.
This flag is optional. It shows that recovery requires action from
the user.

flErrorData Error data:

SPLDATA_PRINTERJAM
SPLDATA_FORMCHGREQD
SPLDATA_CARTCHGREQD
SPLDATA_PENCHGREQD
SPLDATA_DATAERROR
SPLDATA_UNEXPECTERROR
SPLDATA_OTHER

Printer is jammed, offline, or not powered on.
Form change required
Font cartridge change required
Pen change required
Data error, such as missing file
Unexpected DOS error
Any other error.

Return Codes: This function returns a USHORT value (sResponse) that indicates the user's response.

4-20 Presentation Driver Reference

SplQmAbort

BOOL APIENTRY SplQmAbort (hspl)

This function aborts and closes the spool file identified by hspl.

Parameters

Parameters Data Type Description

hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE
FALSE

Successful
Error.

spooler support functions

Chapter 4. Graphics Engine Hardcopy Drivers 4-21

spooler support functions

SplQmAbortDoc

BOOL APIENTRY SplQmAbortDoc (hspl)

This function aborts the document on the spool file identified by hspl. All data for that document, including
SplQmStartDoc data, is erased. SplQmAbortDoc does not close the spool file. The presentation driver can
restart the document by using the same spooler handle. If the hardcopy driver wants to abort the job and
close the file, it calls SplQmAbort.

Parameters

Parameters Data Type Description

hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-22 Presentation Driver Reference

~\

)

spooler support functions

SplQmClose

BOOL APIENTRY SplQmClose (hspl)

This function closes the spool file identified by hspl. SplQmClose corresponds to DevCloseDC.

Parameters

Parameters Data Type Description

hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE
FALSE

Successful
Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4-23

spooler support functions

SplQmEndDoc

ULONG APIENTRY SplQmEndDoc (hspl)

This function ends the document on the spool file identified by hspl. SplQmEndDoc corresponds to the
DEVESC_ENDDOC escape code. The return code, if not SPL_ERROR, is the spooler's Job ID for the
document.

Parameters

Parameters

hspl

Return Codes

ldJobld
SPL_ERROR

Data Type

HSPL

Job identifier
Error.

4-24 Presentation Driver Reference

Description

Spooler handle

spooler support functions

SplQmOpen

HSPL APIENTRY SplQmOpen (pszToken, cbOata, pbOata)

This function opens the spooler for output to a spool file. SplQmOpen is similar to SplStdOpen. The return

code, if not SPL_ERROR, is the handle that identifies the spool file.

Parameters

Parameters Data Type Description

pszToken PSZ Pointer to token. This is a dummy parameter and is specified as **.

cbData LONG
'

Number of elements in the data structure.

pbData PQMOPENDATA Pointer to a DEVOPENSTRUC structure. See below.

pbData Pointer to a OEVOPENSTRUC structure containing information from the presentation driver's
physical device block (see "Enable Subfunction 02H - FillPhysicalDeviceBlock" on page 7-8):

pszLogAddress

pszDrlverName

pd riv

Pointer to the name of the queue

Pointer to the name of the presentation device driver

Pointer to a DRIVDATA structure:

cb
I Version
szDevlceName[32]
abGeneralData

Number of bytes in structure
Version number
Device name
Driver-specific data

pszDataType Pointer to a string defining the data type of the queued file. All queue
processors must support PM_Q_STD and PM_Q_RAW.

pszComment Pointer to a natural language description of the file

pszQueueProcName Pointer to the name of the queue processor

pszQueueProcParams Pointer to a string of queue processor parameters

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks. Valid parameters are:

pszNetworkParams

FORM== aaa Identifies the form name for the print job. Multiple names
are separated by commas (aaa,bbb,ccc). If this
parameter is not present in the string of spooler
parameters, the job is printed on the current form.

PRTY==n

Form names are defined by the presentation driver.
Valid names are those that would be returned from a call
to the driver's GreQueryHardcopyCaps handling routine.

Identifies the priority for the print job. The priority can be
any value from 1-99 (1 is lowest priority). If this
parameter is not present, the priority value defaults to 50.

Pointer to string of networking parameters. These are only used in a
network environment and their nature is defined by the network
application.

Return Codes: This function returns the spooler handle (hspl), or SPL_ERROR if an error occurred.

Chapter 4. Graphics Engine Hardcopy Drivers 4-25

spooler support functions

SplQmStartDoc

BOOL APIENTRY SplQmStartDoc (hspl, pszDocName)

This function signals the start of the document for the spool file and supplies a name that the spooler can
use to identify the job to the user. SplQmStartDoc corresponds to DevEscape(DEVESC_STARTDOC).

Parameters

Parameter Data Type Description

hspl HSPL Spooler tiandle.

pszDocName PSZ Pointer to the document name, which can be displayed by the spooler to the
user.

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-26 Presentation Driver Reference

spooler support functions

SplQmWrite

BOOL APIENTRY SplQmWrite (hspl, cbData, pbData)

This function writes data from the presentation driver's buffer to the spool file.

Parameters

Parameter Data Type Description

hspl HSPL Spooler handle

cbData LONG Length of the buffer in bytes

pbData PBYTE Pointer to the start of the buffer

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Remarks: The size of the data buffer must not be greater than 64KB. Print jobs that exceed the

maximum buffer size must be written by repeatedly calling to this function.

Chapter 4. Graphics Engine Hardcopy Drivers 4-27

Spooler Support for·PM_Q_STD Data.Type

The following functions are available to help the hardcopy driver create a spool file containing PM_Q_STD
data:

• SplStdClose
• SplStdDelete
• SplStdGetBits
• SplStdOpen
• SplStdQuerylength
• SplStdStart
• · SplStdStop.

The format ofthe PM_Q_STD data is a Presentation Manager metafile. Refer to the OS/2 2.0 PresentaUon
Manager Programming Reference for format detail.

4-28 Presentation Driver Reference

~

I

SplStdClose

BOOL APIENTRY SplStdClose (hdc)

This function closes the PM_Q_STD buffer. The call to SplStdClose is made from the presentation driver's
BeginCloseDC routine when the device type is OD_QUEUED and the data type is PM_Q_STD. SplStdClose
must not be called at any other time.

Parameters

Parameter Data Type Description

hdc HOC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE
FALSE

Successful
Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4-29

SplStdDelete

BOOL APIENTRY SplStdDelete (hstd)

This function deletes the PM_Q_STD buffer identified by hstd. Any data in the buffer is lost.

Parameters

Parameter Data Type Description

hstd HSTD Handle to PM_Q_STD data

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-30 Presentation Driver Reference

SplStdGetBits

BOOL APIENTRY SplStdGetBits (hstd, lStart, cBytes, pAddress)

This function transfers data from the identified PM_Q_STD buffer into a buffer owned by the presentation
driver. Before calling SplStdGetBits, the presentation driver calls SplStdQuerylength to determine the
length of the PM_Q_STD data. Depending upon the length, the hardcopy driver allocates a buffer large
enough to contain all of the data, or allocates a smaller buffer and receives the data in a series of calls to
SplStdGetBits.

Parameters

Parameter Data Type Description

hstd HSTD Handle to the PM_Q_STD buffer.

I Start LONG Offset to the byte at which transfer must start. Used when the data is
obtained in a series of calls to SplStdGetBits.

cBytes LONG Number of bytes to transfer.

pAddress PCH Pointer to the presentation driver's data buffer.

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE
FALSE

Successful
Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4-31

SplStdOpen

BOOL APIENTRY SplStdOpen (hdc)

This function opens a spool buffer for PM_Q_STD data. The call to SplStdOpen is made from the hardcopy
driver's CompleteOpenDC routine when the device type is OD_QUEUED and the data type is PM_Q_STD.
SplStdOpen must not be called at any other time.

Parameters

Parameter Data Type Description

hdc HOC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-32 Presentation Driver Reference

SplStdQuerylength
)

;

LONG APIENTRY SplStdQuerylength (hstd)

This function returns the number of data bytes in the PM_Q_STD buffer identified by hstd.

Parameters

Parameter Data.Type Description

hstd HSTD Handle to the PM_Q_STD buffer

Return Codes: This function returns the size of hstd (cBytes), or SPL_ERROR if an error occurred.

)

Chapter 4. Graphics Engine Hardcopy Drivers 4-33

SplStdStart

BOOL APIENTRY SplStdStart (hdc}

This function starts the recording of GPI and DevEscape calls as a metafile in the PM_Q_STD buffer. Notice
that the calls are still processed by the system and passed on to the graphics engine and hardcopy driver
as calls to the relevant Grexxx functions.

The hardcopy driver's Escape routine usually calls SplStdStart when DEVESC_STARTDOC is received.
Some prior-version presentation drivers made this call from the CompleteOpenDC routine to accommodate
applications that did not call DevEscape(DEVESC_STARTDOC) at the start of the document.

Parameters

Parameter Data Type Description

hdc HOC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-34 Presentation Driver Reference

Sp I Std Stop

HSTD APIENTRY SplStdStop (hdc)

This function stops the recording of GPI and DevEscape calls in the PM_Q_STD buffer. The hardcopy
driver's Escape routine calls SplStdStop when DEVESC_ENDOC is received.

Parameters

Parameter Data Type Description

hdc HOC Device context handle

Return Codes: If successful, SplStdStop returns the handle to the buffer (hstd) that contains the
recorded GPI and DevEscape data. If an error occurs, the function returns SPL_ERROR.

Chapter 4. Graphics Engine Hardcopy Drivers 4-35

4-36 Presentation Driver Reference

queue drivers

Chapter 5. Queue Drivers (Queue Processors)

The Workplace Shell uses the term queue driver to identify the queue processor. Each queue has its own

queue processor, which prints a spool file. The Presentation Manager interface delivers two different

queue drivers. Presentation Manager system queue drivers are supplied in the files, PMPRINT.QPR and

PM PLOT.QPR.

The following functions provide an interface to the queue driver:

• SplQpClose
• SplQpControl
• SplQplnstall
• SplQpOpen
• SplQpPrint
• SplQpQueryDt
• SplQpQueryFlags

The spooler calls these functions by using DosloadModule or DosGetProcAddr, and expects a 16-bit

interface. In addition to these functions, a visual interface is supplied through the SplMessageBox entry

point.

The user can supply queue drivers to support user data types, however, any queue driver created by the

user must support PM_Q_STD and PM_Q_RAW standard data types.

How a Queue Driver Prints

The method used by the queue driver to write data to the hardcopy device depends on whether the data

type is PM_Q_STD or PM_Q_RAW.

PM_Q_STD

PM_Q_STD performs in the following manner:

1. Opens a DC for the hardcopy device by using DevOpenDC and enables it as an OD_DIRECT device

2. Calls DevEscape with DEVESC_STARTDOC

3. Writes data which is in metafile format by using GpiPlayMetafile

4. Calls DevEscape with DEVESC _ENDDOC

5. Closes hardcopy device DC by using DevCloseDC.

PM_Q_RAW

PM_Q_RAW performs in the following manner:

1. Opens a DC for the hardcopy device by using DevOpenDC and enables it as an OD_DIRECT device

2. Calls DevEscape with DEVESC_STARTDOC

3. Writes the data using DevEscape with DEVESC_RAWDATA

4. Calls DevEscape with DEVESC_ENDDOC

5. Closes hardcopy device DC by using DevCloseDC.

User Data Types
~\

) The processing required for user data types depends on the format of the data type. In some instances it

might be necessary to create a special queue processor to support the data type.

© Copyright IBM Corp. 1992 5-1

queue drivers

SplQpClose

BOOL APIENTRY SplQpClose (hproc)

This function closes the queue driver (queue processor).

Parameters

Parameter Data Type Description

hp roe HPROC Queue processor handle

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

5-2 Presentation Driver Reference

queue drivers

SplQpControl

BOOL APIENTRY SplQpControl (hproc. cmdCode)

This function controls the printing of a document.

Parameters

Parameter Data Type Description

hproc HPROC Queue processor handle

cmdCode LONG Control codes. See below.

cmdCode Control codes are as follows:

SPLC_ABORT Printing is aborted and the queue driver is closed.

SPLC_PAUSE Printing is paused. The spool file must not be open or allocated by the
queue driver.

SPLC_CONTINUE Printing resumes on a paused job. The spool file is unaltered.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 5. Queue Drivers (Queue Processors) 5-3

queue drivers

SplQplnstall

BOOL APIENTRY SplQplnstall (hwnd)

This function allows the user to configure a queue driver. SplQplnstall is optional.

Parameters

Parameter Data Type Description

hwnd HWND Window handle

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Remarks: This function is called by the Workplace Shell. It is used to display a dialog to the user for
queue driver (queue processor) configuration. The queue driver then stores the values in the OS2SYS.INI
file.

5-4 Presentation Driver Reference

queue drivers

SplQpOpen

HPROC APIENTRY SplQpOpen (cbData. pbData)

This function opens the queue driver and returns its handle. SplQpOpen is normally called by the spooler.

Parameters

Parameter Data Type Description

cbData LONG Number of elements in the SQPOPENDATA structure

pbData PSQPOPENDATA Pointer to SQPOPENDATA structure. See below.

pbD.ata Pointer to SQPOPENDATA structure. This structure is based on the DEVOPENSTRUC and would

typicaHy contain data extracted from the presentation driver's physical device block.

pszlogAddress

pszDrlverName

pd riv

Pointer to logical address.

Pointer to presentation driver name.

Pointer to a DRIVDATA structure:

cb Size, in bytes, of this structure.

IVersion Version number of the data. Version numbers are
defined by the presentation driver.

szDevlceName[32] String identifying the device. Valid values are
supplied by the presentation driver.

abGeneralData General data, the type of which is defined by the
presentation driver.

pszDataType Pointer to the data type of the queued file. All queue drivers must support
PM_Q_STD and PM_Q_RAW. User-defined data types are optional.

pszComment Pointer to a natural language description of the file which could, for
example, be displayed by the spooler to the user.

pszProcParams Pointer to a string of queue driver parameters.

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks. Valid parameters are:

FORM= aaa Identifies the form name for the print job. Multiple names
should be separated by commas (aaa,bbb,ccc). If this
parameter is not present, the job is printed on the current
form.

PRTY=n

Form names are defined by the presentation driver. Valid
names are those that would be returned from a call to the
driver's GreQueryHardcopyCaps handling routine.

Identifies the priority for the print job. The priority can be
any value from 1-99 (1 is lowest priority). Notice that this
parameter has no significance when passed to SplQpOpen.

pszNetworkParams Pointer to string of networking parameters. These are only used in a
network environment and their nature is defined by the network
application. Typically, the queue driver ignores this parameter.

pszDocName Pointer to a string containing the document name.

Chapter 5. Queue Drivers (Queue Processors) 5-5

queue drivers

pszQueueName

pszToken

ldJobld

Pointer to a string containing the name of the queue from which the job
was sent by the spooler.

Pointer to the device information token. This identifies additional device
information held in the initialization file. This information is the same as
that which can be pointed to by pbData. Any information obtained from
pbData overrides the information obtained by using this parameter.

If Token is specified as*, no device information is taken from the
initialization file. OS/2 2.0 behaves as if * is specified but it allows any
string.

This is a USHORT value that identifies the print job.

Return Codes: On completion, the handling routine must return:

SPL_ERROR
;i!O

Error
Queue driver (queue processor) handle.

5-6 Presentation Driver Reference

queue drivers

SplQpPrint

BOOL APIENTRY SplQpPrint (hproc, pszFilename)

This function processes and prints the spool file. The handling routine in the queue driver opens a DC for

an OD_DIRECT device type. This instance of a DC processes the spooled data, and by using the Prtxxx

interface, passes the output through the physical device driver to the physical device. When the print job

ends, the queue driver assumes that the device is set at the start of a new page and issues a form feed to

the device.

Parameters

Parameter Data Type Description

hproc HPROC Queue processor handle

pszFilename PSZ Pointer to name of file containing the data

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 5. Queue Drivers (Queue Processors) 5-7

queue drivers

SplQpQueryDt

BOOL AP I ENTRY Spl QpQue·ryDt (pcDatatypes, papszDatatypes)

This function returns a list of supported data types.

Parameters

Parameter Data Type Description

pc Data types PLO NG Pointer to a value indicating the maximum number of data types. On
return, the value is updated to show the number of data types returned.

papszDatatypes PSZ Pointer to an array of pointers that address the locations for the returned
data type names. Each location must be an array of 16 characters to
accommodate a name of the maximum length with its terminating NULL.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successfuf
Error.

Remarks: This function should be called once with pcDatatypes set to O to determine the number of data
types. The array papszDatatypes is not updated in this instance. The application can then allocate storage
for the array and call the function a second time to return a list of supported data types.

5-8 Presentation Driver Reference

SplQpQueryFlags

BOOL APIENTRY SplQpQueryFlags (pulFlags)

This (optional) function queries print queue processor flags.

Parameters

Parameter Data Type Description

pulFlags PU LONG Points to ULONG to receive flags value

Return Codes: On completion, this function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful, that is, *pu1Flags=QP _RAWDATA_BYPASS(Ox0001)
Not supported

queue drivers

Remarks: This function is called to determine if this print queue processor allows the spooler to bypass
it for PM_Q_RAW jobs. By exporting SplQpQueryFlags and setting the contents of pulFlags to
QP _RAWDATA_BYPASS, the spooler can bypass calling this print queue processor to print PM_Q_RAW
jobs that are still spooling.

Chapter 5. Queue Drivers (Queue Processors) 5-9

queue drivers

5-10 Presentation Driver Reference

port drivers

Chapter 6. Port Drivers

Port drivers are dynamic link libraries (Dlls) that contain a set of 32-bit functions which provide helper
functions for the spooler and Workplace Shell. For each port driver DLL, there should be a physical Port
device driver (SYS file) installed in CONFIG.SYS. The filetype of a port driver is PDR. The operating
system, by default, provides two port drivers named SERIAL.PDR and PARALLEL.PDR.

LPT4-9 are reserved and are installed into OS2SYS.INI by default. The Workplace Shell uses LPT4-9 for
NET USEs to a remote print queue. No port driver is provided by LPT4-9, or for ports that are named
pipes.

The functions exported from a port driver are:

• SplPdEnumPort
• Spl PdGetPortlcon
• SplPdlnitPort
• SplPdlnstallPort
• SplPdQueryPort
• SplPdRemovePort
• Spl PdSetPort
• SplPdTermPort.

OS2SVS.INI File Structure

The contents of the INI file section for ports is as follows:

• Port driver PDR install:

appname: PM_PORT_DRIVER keyname: <name> value: <full path to port driver>

For example:
PM_PORT_DRIVER, SERIAL, C:\OS2\DLL\SERIAL.POR

PARALLEL, C:\OS2\DLL\PARALLEL.PDR
EXTLPT, C:\OS2\DLL\EXTLPT.PDR

This is written by the Workplace Shell during installation.

• Ports known to the system:

appname: PM_<portname> keyname: DESCRIPTION
keyname: INITIALIZATION
keyname: TERMINATION
keyname: PORTDRIVER
keyname: TIMEOUT

For example:
PM_COMl, DESCRIPTION,
PM_COMl, INITIALIZATION,
PM_COMl, TERMINATION,
PM_COMl, PORTDRIVER,
PM_COMl, TIMEOUT,

Serial Port COMl;
96ee;e;w;a;1; .
SERIAL;
45;

value: <port description>
value: <initialization values>
value: <tennination values>
value: <name of port driver>
value: <timeout in seconds>

For compatibility, the existing port structure is also supported by all port drivers.
appname: PM_SPOOLER_PORT keyname: <port> value: <port init/term string>
For example:
PM_SPOOLER_PORT, LPTl,

COMl,
.
96ee;e;w;a;1;

The port driver is expected to maintain its own sections in the OS2SYS.INI file. The format of the values
stored under the keynames INITIALIZATION and TERMINATION is port driver specific. Also, the port
driver might need to hold extra data under the PM_< port> appname.

© Copyright IBM Corp. 1992 6-1

port drivers

SplPdEnumPort

APIERR APIENTRY SplPdEnumPort (hab, pBuf, cbBuf, pulReturned, pulTotal, pcbNeeded)

This function enumerates the port names and port descriptions that this port driver can manipulate.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

pBuf PVOID Pointer to buffer of data structures

cbBuf ULONG Size of buffer in bytes

pulReturned PU LONG Number of port entries returned

pulTotal PU LONG Total number of port entries

pcbNeeded PU LONG Size of buffer required for all data

Return Codes: This handling routine returns the following errors.

ERROR_INSUFFICIENT _BUFFER
ERROR_MORE_DATA
NO_ERROR.

The buffer, on return, consists of an array of the following data structure:

typedef struct _PORTNAMES {
PSZ pszPortName;
PSZ pszPortDesc;

} PORTNAMES;

Remarks: If the buffer is too small to hold even one data structure, then the error code,
ERROR_INSUFFICIENT_BUFFER is returned. If there is more data, ERROR_MORE_DATA, is returned and
cbRequired gives the size of buffer required to get all the data.

The Workplace Shell is the expected caller of this function and determines which ports to install in
OS2SYS.INI. The port descriptions are used to label the icon for each port. The Workplace Shell does not
allow the installation of ports that can be serviced by more than one port driver. The first port installed is
used. The Workplace Shell does not display other ports for installation. If another port is required, the first
port must be de-installed.

6-2 Presentation Driver Reference

port drivers

SplPdGetPortlcon

BOOL SplPdGetPortlcon (hab, idlcon)

This function queries the Resource ID of the icon that represents the port. Notice that only one icon is used
for all the ports supported by a port driver. This limitation is imposed to avoid confusing the user with too
many different icons.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

id Icon PU LONG Resource ID of icon bit map

Return Codes: This handling routine returns FALSE if no icon is available. The system then uses a
default port icon.

Remarks: The Workplace Shell calls SplQpQuerylcon to load and draw port icons, as appropriate.

Chapter 6. Port Drivers 6-3

port drivers

SplPdlnitPort

APIERR APIENTRY SplPdlnitPort (hfile, pszPortName)

This function initializes a port on behalf of the spooler.

Parameters

Parameters Data Types Description

hfile HFILE Handle to an open file

pszPortName PSZ Name of port to be initialized

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: The port driver reads the initialization data from the INI file, interprets the data, and issues
the appropriate DosDevlOCtls to the open port given by the file handle.

This function is called from the spooler function, PrtOpen, to complete port opening. Notice that PrtOpen
issues the actual DosOpen first. PrtOpen holds a semaphore for each port in use and a linked list of
threads waiting on the semaphore. This is because, although the spooler serializes output, it is still
possible for applications to write directly to the port by using DevOpenDC (OD_DIRECT).

6-4 Presentation Driver Reference

SplPdlnstallPort

APIERR APIENTRY SplPdinstallPort (hab, pszPortName)

This function tells the port driver the name of the port that needs to be installed.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

pszPortName PSZ Name of port to be installed

Return Codes: This handling routine returns the following errors:

ERROR_INVALID _PARAMETER
NO_ERROR.

port drivers

Remarks: This function is called from the Workplace Shell. The port driver writes the initialization data

from the INI file. The Workplace Shell then typically calls SplPdSetPort.

Chapter 6. Port Drivers 6-5

port drivers

SplPdQueryPort

APlERR APIENTRY SplPdQueryPort (hab, pszPortName, pBuf, cbBuf, .cltems)

This function returns textual data that describes the port configuration in a way that can be printed by the
Workplace Shell.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

pszPortName PSZ Name of port to be configured

pBuf PVOID Pointer to buffer of data structures

cbBuf ULONG Size of buffer in bytes

cltems PU LONG Count of number of strjngs of description returned

Return Codes: This handling routine returns the following errors:

ERROR_INSUFFICIENT _BUFFER
NO_ERROR.

Remarks: The buffer consists of an array of strings (PSZ), the number of which is given by cltems. Each
string contains one line of text that can be from 0-80 characters long. The port name and port description
is not required; the Workplace Shell can retrieve these from the OS2SYS.INI file.

The maximum size of the data returned is limited to 4KB. If the buffer is too small, the error code
ERROR_JNSUFFICIENT ...:.BUFFER is returned.

6~6 Presentation Driver Reference

.>

)

SplPdRemovePort

APIERR APIENTRY SplPdRemovePort (hab, pszPortName)

This function tells the port driver the name of the port that needs to be removed.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

pszPortName PSZ Name of port to be removed

Return Codes: This handling routine returns the following errors:

ERROR_INVALID _PARAMETER
NO_ERROR.

port drivers

Remarks: This function is called from the Workplace Shell and allows the port driver to remove its data
from the INI file.

Chapter 6. Port Drivers 6· 7

port drivers

SplPdSetPort

APIERR APIENTRY SplPdSetPort (hab, pszPortName, flModified)

This function displays a dialog to allow the user to browse and modify port configurations.

Parameters

Parameters Data Types Description

hab HAB Handle to anchor block

pszPortName PSZ Name of port to be configured

fl Modified PU LONG Flag to indicate that the configuration has been modified

Return Codes: This handling routine returns the following errors:

ERROR_INVALID _PARAMETER
NO_ERROR.

Remarks: This function is called from the Workplace Shell. The port driver retrieves the values
previously stored in OS2SYS.INI and displays a dialog. Default values are used the first time if no previous
values were stored in OS2SYS.INI.

When the user selects OK on the dialog box, the port driver stores the changed values back into OS2SYS.INI.
The flag flModified is not set if the user did not modify anything, or if the user selected CANCEL on the dialog.

Note: The dialog should contain everything required for port initialization and termination.

6-8 Presentation Driver Reference

SplPdTermPort

APIERR APIENTRY SplPdTennPort (hfile, pszPortName)

This function terminates a port on behalf of the spooler.

Parameters

Parameters Data Types Description

hfile HFILE Handle to an open file

pszPortName PSZ Name of the port to be terminated (closed)

Return Codes: This handling routine returns the following errors:

ERROR_INVALID _PARAMETER
NO_ERROR.

port drivers

Remarks: The port driver reads the termination data from the INI file, interprets the data, and issues the

appropriate DosDevlOCtls to the open port given by the file handle.

This function is called from the spooler function, PrtClose, to start port close down. Notice that PrtClose

then issues a DosClose.

Chapter 6. Port Drivers 6-9

port drivers

6-10 Presentation Driver Reference

Part 4. Reference Material

© Copyright IBM Corp. 1992

Presentation Driver Reference

OS2_PM_DRV _RING_LEVELS

Chapter 7. Exported Entry Points

This chapter describes the entry points that are exported by a presentation driver dynamic link library:

EXPORTS
OS2 PM DRV RING LEVELS
OS2-PM-DRV-ENABLE LEVELS
os2:PM=DRV=ENABLE-

/*All drivers - Optional */
/* All drivers - Optional */
/* All drivers - Mandatory */

OS2 PM DRV RING LEVELS - - - -
This entry point is the address of a table of ring levels required when dispatching each of the functions
hooked in the dispatch table by "Enable Subfunction 01H - FillLogicalDeviceBlock" on page 7-6. The
table is an array of bytes corresponding to the functions in the dispatch table, terminating with a byte of O

(that is, an ASCllZ string). The most significant six bits of each byte are reserved and must be 0. The

remaining two bits of each byte represent the ring level to be used when dispatching the corresponding
function in the dispatch table.

00 = End of Table 10 = Ring 2
01 = Ring 2 Confonning 11 = Ring 3

Any function that does not have a corresponding byte in the table will be dispatched as Ring 2 Conforming.

This is the most desirable case from the standpoint of system performance.

Function Ring Level

GreGetArcParameters Ox01

GreSetArcParameters Ox01

GreArc Ox03

GrePartialArc Ox02

All others OxOO

The following table of 5 bytes would declare GreArc as Ring 3, GrePartialArc as Ring 2, and all other
functions as Ring 2 Conforming:

0x01 0x01 0x03 0x02 0x00

If this table is not exported, all functions will be dispatched as Ring 2 Conforming as if the table had
contained the single byte OxOO.

© Copyright IBM Corp. 1992 7-1

OS2_PM_DRV _ENABLE_LEVELS

OS2 PM ORV ENABLE LEVELS - - - -
This entry point is the address of a table of ring levels required when calling each of the Enable
subfunctions. The table is an array of bytes correspondih.g to the subfunction numbers, terminating with a
byte of O (that is, an ASCllZ string). The most significant six bits of each byte are reserved and must be 0.
The remaining two bits of each byte represent the ring level to be used when dispatching the
corresponding function in the dispatch table.

00 = End of Table 10 = Ring 2
01 = Rtng 2 Confonni ng 11 = Ring 3

Any subfunction that does not have a corresponding byte in the table will be dispatched as Ring 2
Conforming. This is the most desirable case from the standpoint of system performance.

Su bf unction Ring Level

Unused Ox01

Fi I I Logical Device Block Ox01

Fil I Physical DeviceBlock Ox03

Unused Ox01

DisablePhysical DeviceBlock Ox02

All others OxOO

The following table of 6 bytes would declare FillPhysicalDeviceBlock as Ring 3,
DisablePhysicalDeviceBlock as Ring 2, and all other subfunctions as Ring 2 Conforming:

Gx01 Gx01 0x03 0x01 0x02 0x00

If this table is not exported, all subfunctions will be called as Ring 2 Conforming as if the table had
contained the single byte OxOO.

7-2 Presentation Driver Reference

OS2_PM_DRV_ENABLE

OS2 PM DRV ENABLE - - -
The enable entry point is exported as OS2_PM_DRV_ENABLE by the presentation driver. The Enable

routine in the driver supports a set of subfunctions that enable or disable the environment for a device

context owned by a specific application or process. When a device context is opened or closed, the

Presentation Manager interface issues a series of calls to subfunctions at the enable entry point. These

calls initialize the presentation driver, the physical device, and the device context.

The syntax used by the Presentation Manager interface to call the Enable routine is:

LONG APIENTRY OS2_PM_DRV_ENABLE (Subfunc, Paraml, Param2)

ULONG Subfunc;
ULONG Paraml;
ULONG Param2;

Note: LONG, ULONG (unsigned LONG), and APIENTRY are defined in OS2DEF.H, which is included

through the header file 082.H.

Stack Frame: At entry to the Enable routine, the stack frame contains:

Parameter Description

Subfunction 32-bit value identifying the subfunction

Param1 First parameter

Param2 Second parameter

Subfunctions: Presentation drivers must support the following Enable subfunctions:

01H FillLogicalDeviceBlock
02H FillPhysicalDeviceBlock
04H DisablePhysicalDeviceBlock
05H EnableDeviceContext
O&H DisableDeviceContext
07H SaveDCState
08H RestoreDCState
09H ResetDCState
OAH CompleteOpenDC
OBH BeginCloseDC.

Note: The Enable function should return -1 (ERROR_MINUS) for Subfunction 03H, and numbers greater

than OBH.

Device Context Management: Device contexts are opened in response to an application or process

calling the DevOpenDC API function. On receiving this call, Presentation Manager loads the presentation

driver (if it is not already present and able to support the device context) and issues a series of calls to the

enable entry point.

Initially, when the presentation driver has not been enabled for use by the calling application or process,

the driver receives the series of calls shown in Figure 7-1. When the driver has been enabled for an

application or process, the sequence of calls to enable additional device contexts does not include

FillLogicalDeviceBlock and, depending upon a requirement that the driver posts in the initial enable

sequence, includes or excludes FillPhysicalDeviceBlock.

Chapter 7. Exported Entry Points 7-3

OS2_PM_DRV _ENABLE

The OS2_PM_DRV _ENABLE entry point handles the DC management functions. Those functions can be
placed in three categories:

• Transactions involved in opening a DC
• Transactions involved in closing a DC
• Other DC functions including SaveDC, RestoreDC and ResetDC.

Opening and Closing DCs: The open and close transaction sequences are symmetrical:

Open Transactions Close Transactions

FlllLoglcalDevlceBlock
· -.. -......... - .. -.. -.. -...... - ... -...... -............... -,
' ' : .•. No Equivalent ..• :
':.. --.. ---- .. -.... - - - --- ----........... .

FlllPhyslcalDevlceBlock DisablePhysicalDeviceBlock

EnableDevlceContext DisableDeviceContext

CompleteOpenDC BeginCloseDC

Figure 7-1. Enabling a Presentation Driver

Device contexts are opened in response to an application or process calling the DevOpenDC API function.
On receiving this call, the graphics engine (PMGRE.DLL) loads the presentation driver, if it is not already
present and able to support the device context, and issues a series of calls to the OS2_PM_DRV _ENABLE
entry point.

Initially, when the presentation driver has not been enabled for use by the calling application or process,
the driver receives the Open Transaction series of calls shown in Figure 7-1. When the driver has been
enabled for an application or process, the sequence of calls to enable additional device contexts can
include FilllogicalDeviceBlock and, depending upon a requirement that the driver posts in the initial enable
sequence, includes or excludes FillPhysicalDeviceBlock.

Each of the Close Transactions functions undoes actions taken by a corresponding Open Transaction
function. For example, the EnableDeviceContext function allocates the DOC data area within the
presentation driver and returns the hDDC handle. The DisableDeviceContext function deallocates the DOC
data area.

The FilllogicalDeviceBlock transaction occurs when a thread of a process opens the first instance of a DC
for this presentation driver. During this transaction, a dispatch table will be created for later use by the
graphics engine.

The FillPhysicalDeviceBlock transaction will occur only if the result flags from the FilllogicalDeviceBlock
transaction indicate that itis necessary. See the description of "Bit 2" in the "Enable Subfunction 02H -
FillPhysicalDeviceBlock" on page 7-8.)

This subfunction is used by presentation drivers which support multiple types of physical devices. It will
occur during the DevOpenDC call for every DC associated with a particular type of physical device. (This is
where any memory allocation and initializations relating to a physical device should be done.) During the
EnableDeviceContext transaction, the presentation driver will allocate and format the driver-specific data
(DOC) associated with the DC being constructed. At CompleteOpenDC time, the DC is completely
constructed and initialized. This transaction gives the presentation driver an opportunity to make final
adjustments to the DC before the application gets access to it.

7-4 Presentation Driver Reference

OS2_PM_DRV_ENABLE

If either the FilllogicalDeviceBlock or FillPhysicalDeviceBlock transactions return a failure return code, no

other transactions are requested by the graphics engine.

If the EnableDeviceContext fails, the DisablePhysicalDeviceBlock transaction is sent to the presentation

driver. If the CompleteOpenDC transaction fails, the BeginCloseDC, DisableDeviceContext, and

DisablePhysicalDeviceBlock transactions are sent to the presentation driver.

If an application has opened a device context but the application terminates before it closes the device

context, the graphics engine still calls the disable routines BeginCloseDC, DisableDeviceContext, and

DisablePhysicalDeviceBlock as expected by the presentation driver when a device context is closed

explicitly by an application.

Saving and Restoring DCs: The SaveDCState and RestoreDCState functions manage a stack of entries that

correspond to most of the state of a DC. SaveDCState pushes an entry on the stack. RestoreDCState

retrieves one of the pushed entries and uses it to revert the DC back to its earlier saved state. Notice that a

particular RestoreDCState call can pop more than one entry from the stack of SaveDC entries.

Reset DC: This call resets a DC to its original initialized state as it was just after the CompleteOpenDC

transaction.

Chapter 7. Exported Entry Points 7-5

ENABLE 01 H - FillLogicalDeviceBlock

Enable Subfunction 01 H - FillLogicalDeviceBlock

This subfunction is called on the first occasion that a specific application or process opens a device context
that uses the called presentation driver. It is not called when the same application or process opens
additional DCs with the same presentation driver. However, the graphics engine can call this subfunction
at other times and the call should always be honored. If the value of pDispatchTable is non-zero, the
handling routine must initialize the dispatch table.

The major tasks that the handling routine must implement are:

1. Add an entry to the DosExitlist to ensure that any allocated resources are freed when the owning
application or process terminates.

2. Save those pointers in the dispatch table that are needed to pass hooked functions back to the graphics
engine. A typical example is GreCharString, which must be hooked by the presentation driver but can
be passed back to the default handling routine.

3. Initialize the dispatch table. That is, modify the table so that the entries for functions hooked by the
presentation driver contain pointers to the driver's handling routines.

4. Set flags to indicate how future DevOpenDC calls to this device should be handled.

In some typical presentation drivers, the handling routine for FilllogicalDeviceBlock allocates global heap
space for use by the device contexts. The memory for this heap space is obtained by calling the
SSAllocMem function described in Chapter 12, System Functions. This global heap space is available to
all instances of a DC that are opened by the application or process for which the presentation driver was
enabled.

Stack Frame

Parameter Description

ulSubfunction 01H.

pParam1 Pointer to a structure. See below.

pParam2 Pointer. See below.

pDispatch Table Pointer to the presentation driver's copy of the dispatch table. This table is an array of
32-bit pointers to system-default function handling routines. The low-order byte of a
function number identifies the offset to the relevant pointer.

pParam1 Pointer to the following structure:

ulVersion Version number in binary coded decimal (BCD) of the graphic engine.
cTableSize The number of entries in the dispatch table. The presentation driver should not

replace pointers past the end of the table.

pParam2 Pointer to the following structure:

pf sf lags Pointer to a WORD of logical device flags. Flag bits, O and 2, apply to the
presentation driver and is set on or off, as appropriate, by the presentation
driver. All other flags are reserved for system use and must not be modified.
Bit O Set on, if each DC for this presentation driver requires its own physical

device block. Even if the presentation driver sets this bit off, the
FillPhysicalDeviceBlock subfunction can still be called more than once
(though no work might need to be done after FillPhysicalDeviceBlock is
called the first time).

7-6 Presentation Driver Reference

ENABLE 01 H - FlllLoglcalDevlceBlock

Bit 2 Set on, if the szOeviceName and pszOriverName fields of a

DevOpenDC call for this device are ignored. Setting bit 2 on indicates

that the presentation driver supports only one physical device in one

configuration. For example, the display driver. Hardcopy drivers do

not set this bit unless the hardcopy driver supports only one physical

device in one configuration.

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

Chapter 7. Exported Entry Points 7-7

ENABLE 02H - FlllPhysicalDevlceBlock

Enable Subfunction 02H - FillPhysicalDeviceBlock

This subfunction is always called in the initial set of calls to the enable function for a specific application or
process. It is called only when additional device contexts are enabled if the value of flag bit 0, as set in the
initial call to FilllogicalDeviceBlock, shows that each device context requires its own physical device block.
However, the graphics engine can call this subfunction at other times. If it is called more than once when
the individual DCs do not require separate physical device blocks, the handling routine does nothing and
returns the existing ulStatelnfo handle or pointer from the DC instance data.

Print jobs must be spooled using the data type given on the call to Enable subfunction 02H
-FillPhysicalDeviceBlock). Therefore, print jobs queued PM_Q_STD can be printed with queue processor
options applied to the job.

The physical device block is located in the driver's global heap. To initialize the block, the presentation
driver uses:

• Default values set by the presentation driver
• Values read from the initialization file
• Values from the DEVOPENSTRUC structure.

A typical physical device block is shown under "Remarks" below.

Stack Frame

Parameter Description

ulSubfunction 02H.

pParam1 Pointer to an extended DEVOPENSTRUC structure. See below.
u1Param2 Reserved.

pParam1 Pointer to an extended DEVOPENSTRUC structure (the structure is extended by adding a
DENPARAMS structure to give three additional fields, ulStatelnfo, ulType, and ulHDC):
pszLogAddress

pszDrlverName

pd riv

pszDataType

pszComment

Pointer to the logical address of the device. For example, 1 LPT1Q 1
•

Pointer to name of the presentation driver. For example, 1 LaserJet** 1
•

Pointer to DRIVDATA structure. This structure contains data generated
by the presentation driver during the dialog that set device modes.
See "OS2_PM_DRV _DEVMODE" on page 4-2.

cb
IVerslon
szDevlceName[32]
abGeneralData

Number of bytes in the structure
Version number
Device name
Driver-specific data.

Pointer to the name of the queue file data type:

PM_Q_STD
PM_Q_RAW

Pointer to a file description that the spooler could use in messages
displayed to the user; usually the name of the application by
convention.

•• Trademark of the Hewlett-Packard Company.

7-8 Presentation Driver Reference

ENABLE 02H - FlllPhyslcalDevlceBlock

pszQueueProcName Pointer to name of queue driver (queue processor).

pszQueueProcParams Pointer to a string of queue processor parameters.

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks.

pszNetworkParams

ulStatelnfo

ulType

ulHDC

FORM =aaa Identifies the form name for the print job. Multiple
names are separated by commas (aaa,bbb,ccc). If this
parameter is not present, the job is printed on the
current form.

Form names are defined by the presentation driver.
Valid names are those that are returned from a call to
the driver's GreQueryHardcopyCaps handling routine.

Pointer to a string of networking parameters.

Reserved. This field does not contain meaningful information at this
time.

DC type (for example, OD_QUEUED).

DC handle.

Return Codes: The handling routine should return a LONG integer. Valid values are:

Error. -1
Other Handle or pointer, ulStatelnfo, to the physical device block. This pointer is passed back to the

presentation driver in subsequent calls to the Enable subfunctions, 04H and 05H.

Note: The name, pDCI, is used in place of ulStatelnfo in some source code. See "Remarks"
below.

Remarks: Physical device blocks hold information about the presentation driver and the device that is
the same for every instance of a device context. The design of the presentation driver determines what
information is held in the physical device block. A typical printer physical device block is given below:

typedef struct
{

Dptr
Dptr
unsigned
WORD
DeviceSemaphoreTable
Byte
DDTType
WORD
WORD
WORD
DWORD
DevRect
Byte

} PDBIType;

PDBDriverName;
PDBOutputName;
PDBHandle;
PDBOutputType;
PDBDevice;
PDBScratch[DCT_MAX_SIMPLE];
DDT;
RasterMode;
PrintQuality;
Orientation;
Version;
FonnClipRegion;
DeviceName[32];

/* String for driver name */
/* String for output name */
/* Handle for DOS device */
/* Type of output; STD/ESC/RAW */
/* Pointer to device table */
/* Scratch pad for printer */
/* Copy of the DDT to be used */
/* Raster type used */
/* Draft or LQ printing */
/* Portrait or landscape */
/* Driver version number */
/*Clip region for current fonn */
/* Model number, and so forth. */

Hardcopy drivers must be able to accept a UNC queue name as a logical address on Enable subfunction
02H - FillPhysicalDeviceBlock. The UNC queue name is passed to the SplQmOpen API which handles
rerouting the spool job across the LAN.

Some applications use the SpoolerParams to submit form names. However, the forms can also be supplied
in driverdata. SpoolerParams take precedence over the driver data. At Enable subfunction 02H -
FillPhysicalDeviceBlock time, any SpoolerParams are integrated with the pdriv field of the DevOpenStruc.

Chapter 7. Exported Entry Points 7-9

ENABLE 02H - FUIPhyslcalDeviceBlock

If pdriv is NULL, it is created by obtaining the data from the system. The hardcopy driver attempts to find a
printer in the INI file that uses this port name, and derives job properties from the device defaults and
printer properties.

Note: Hardcopy drivers process all fields except pszQueueProcName, pszQueueProcParams, and
pszNetworkParams.

7-10 Presentation Driver Reference

ENABLE 04H - DlsablePhysicalDevlceBlock

Enable Subfunction 04H - DisablePhysicalDeviceBlock

This subfunction in the presentation driver is called by the system to disable the specified device and to

free any associated memory. Presentation drivers for the primary display device return a value of 0

without taking any action.

Note: The operating system never calls this subfunction in the hardcopy driver if the driver uses one

physical device block to support multiple device contexts. Presentation drivers notify the operating

system of this capability by not setting bit O of the Logical Device flags returned to the system from

the FillLogicalDeviceBlock subroutine.

Stack Frame

Parameter Description

ulSubfunction 04H.

u1Param1 Handle or pointer, ulStatelnfo, to physical device block.

pParam2 Not used.

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

Chapter 7. Exported Entry Points 7-11

ENABLE OSH - EnableDeviceContext

Enable Subfunction OSH - EnableDeviceContext

In response to this subfunction, the driver reserves the memory it needs to support this instance of a DC
and initializes the instance data. The value of the return code from this subfunction, if it is not -1, is saved
by the system and passed back to the presentation driver on all future calls to this DC instance. This value
is expected to be a pointer or handle to the instance data. Instance data is described under "Remarks" on
page 7-13.

The handling routine initializes relevant fields in the instance data to their default values. For example, it
calls WinQueryProcessCP to get the initial Code Page ID.

STARTDOC/ ABORTDOC/ENDDOC (Hardcopy drivers only): The hardcopy driver allows the
following sequences to GreEscapes within Enable subfunction 05H - EnableDeviceContext and Enable
subfunction OBH - BeginCloseDC brackets:

GreEscape DEVESC _ STARTDOC
GreEscape DEVESC_ENDDOC - spools first job
GreEscape DEVESC _ STARTDOC
GreEscape DEVESC_ENDDOC - spools second job
GreEscape DEVESC _ST ARTDOC
GreEscape DEVESC_ENDDOC - etc.

GreEscape DEVESC _ST ARTDOC
GreEscape DEVESC_ABORTDOC - aborts job
GreEscape DEVESC_STARTDOC
GreEscape DEVESC_ENDDOC - spools first job.

Stack Frame

Parameter Description

ulSubfunction 05H.

pParam1 Pointer to a DENPARAMS structure. See below.

pParam2 Not used.

pParam1 Pointer to a DENPARAMS structure:

ulStatelnfo Value returned by FillPhysicalDeviceBlock.

ulType Type of device context. Defined values are:

ulHDC

OD_QUEUED
OD_DIRECT
OD_INFO
OD_MEMORY.

For details, see DevOpenDC in the OS/2 2.0 Presentation Manager Programming
Reference.

Device context handle.

Return Codes: The handling routine should return a LONG integer. Valid values are:

-1 Error.
other Pointer (plnstance) to the DC instance data.

7-12 Presentation Driver Reference

ENABLE OSH - EnableDeviceContext

Remarks: Instance data refers to information (such as the name of a spool file and whether a bit map

has been created) that applies to a specific instance of a device context. Global data, which applies to all

instances of a device context that is using the same presentation driver, is held in the Physical Device

Block (PDB). A pointer to this block is passed in the DENPARMS structure to the EnableDeviceContext

routine to be included in the instance data. See "Instance Data" on page 1-9.

Chapter 7. Exported Entry Points 7-13

ENABLE OSH - EnableDeviceContext

A typical example of instance data follows:
typedef struct _DC { /* de */

USHORT DCIIdentifier;
ULONG DCIDCType;
HOC DC Ihde;

struct _DC *
LONG

pBitmapHeader
US HORT

PO INTL

DCHARBUNDLE
DLINEBUNDLE
DAREABUNDLE
DIMAGEBUNDLE
DMARKERBUNDLE

US HORT
US HORT

PO INTL

pBitmapHeader
BOOL

USHORT

DCINextEntry;
DCISaveCount;

DCISelListEntry;
DCIBitmapType;

DCICurrPos;

DCICurTxtAts;
DCICurlinAts;
DCICurPtnAts;
DCICurimgAts;
DCICurMrkAts;

DCI Li nePatCnt;
DCILi neTypMask;

DCIPatternOrigin;

DCIMarker;
DCIMarkerSimReq;

DCIFontType;

/* Contains DC_IDENTIFIER
/* DC type 0-8
/* DC handle

/* Next instance
/* Number of saved DC states

/* Selected bit-map list entry
/* Current bit-map type

/* Current position

/* Current Text attributes bundle
/* Current Line attributes bundle
/* Current Pattern attributes bundle
/* Current Image attributes bundle
/* Current Marker attributes bundle

/* Current line pattern count
/*Mask used for line types

/* Pattern origin

/* Pointer to marker definition
/* On, if simulation required

/* Type of current font

pRealizedFontType DCIRealizedFonts; /* Font table array
USHORT DCIFontTabNum; /* Number of Font table entries
BOOL DCIPairKerning; /* Enabled\disabled state

ULONG

BOOL

PO INTL

PCOLORTABLE
BOOL
BOOL
US HORT
US HORT
US HORT
USHORT
USHORT
US HORT

COLORPAIR
COLORPAIR
COLORPAIR
COLORPAIR
COLOR PAIR

ClipRectangle

DCICodePage;

DCITextSim;

DCIOri gin;

DCIColorTable;
DCIBackgndDefined;
DCINeutralDefined;
DCIColTabSize;
DCIColFormat;
DCIColStatus;
DCILowlndex;
DCIHighlndex;
DCISysColState;

DCI Li neCo lat ts;
DCIPattColatts;
DCICharColatts;
DCIImagCo lat ts;
DCIMarkColatts;

/* Currently selected code page

/* Set if text simulation required

/* Current DC origin

/* Pointer to Color table
/* Status of CLR BACKGROUND
/* Status of CLR=NEUTRAL
/* Color table size
/* Format of color table
/* Status of color table
/* Lowest index in table
/* Highest index in table
/* Latest state of system colors

/* Line color indexes
/* Pattern colors indexes
/* Character colors indexes
/* Image colors indexes
/* Marker colors indexes

DCIClipRects[CACHED_CLIPS];

*/
*
*/

*/
*/

*/
*/

*/

*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/

*/
*/
*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

/* Clip rectangles */ BOOL
US HORT
US HORT
RECTL
US HORT
BOOL

RECTL

ClipChanged; /* */
DCIClipOrder; /*Order of clip rectangles */
DCIClipNum; /*Number of clip rectangles */
DCIBoundingClip; /* Current screen/bit-map area */
DCIEngineClips; /* Clip regions in engine */
DCIIsDirty; /* Indicates when clip regions are invalid */

DCIGPIBounds; /* Current GPI bounds */

7-14 Presentation Driver Reference

ENABLE 05H - EnableDevlceContext

BOOL DCIDefGPIBounds; /* On, if GPI bounds are default */
RECTL DCIUserBounds; /* Current user bounds */

'i BOOL DCIDefUserBounds; /* On, if user bounds are default */
I SHORT DCIConvFactor; /* For device, conversion */

BOOL DCICorrlnvalid; /*Correlation rectangles invalid */
RECTL DCIPickWindowPage; /* Pick window in page coordinates */
DevRect DCIPickWindowDevice;

/* Pick window in device coordinates */
PRECTL DCICorrRects; /* Current correlation rectangles */
USHORT DCICorrNum; /* Number of correlation rectangles */
USHORT DCICorrSize; /* Number of correlation rectangles for */

/* which storage has been allocated */

XFORM DCITransform; /* Transformation data */

FONTDETAILS DCIAvioFonts[CNT_LOADABLE_LCIDS + 1];
/* AVIO loadable font definitions */

USHORT DCIChanged; /* Shows non-default bundles */

USHORT DCISpacingType; /* Spacing type of current font */
BOOL DCIXFrmSimp le; /* Transform type */
ULONG StyleNumber; /* Line style state and mask */

USHORT DCIConnandMask; /* Used to mask connand bits */

PO INTL DCICurrPosWorld; /* Current world position */
pBitmapHeader Pattern; /* Pattern for direct DC */

AVIOINFO DCIAviolnfo; /* Avioparms material */
FONTDHAILS Current Font; /* Presentation Manager format current font */
PDEVPAL Palette; /* Handle/pointer .of palette */
PRGB2 DCIDeviceDefaultPalette;

/* Device default palette that was current */
/* the last time color table indexes were */
/* calculated */

} DC;

,Chapter 7. Exported Entry Points 7-15

ENABLE 06H - DlsableDevlceContext

Enable Subfunction 06H - DisableDeviceContext

This subfunction is called when a device context is about to be deleted. In response, the presentation
driver must release any memory and other resources that it has allocated for the DC. The presentation
driver uses the DC instance data to identify this memory.

Stack Frame

Parameter Description

ulSubfunction 06H

pParam1 Pointer (plnstance) to the DC instance data

pParam2 Not used

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

7-16 Presentation Driver Reference

ENABLE 07H - SaveDCState

Enable Subfunction 07H - SaveDCState

This subfunction requests the presentation driver to save all of the information that it has about the device

context. The state of a DC might be saved multiple times in last in, first out (LIFO) order. The routine

returns an error code if there is not enough memory available to save the state.

Note: The handling routine must keep a count of the number of saved states.

Stack Frame

Parameter Description

ulSubfunction 07H

pParam1 Pointer (plnstance) to the DC instance data

pParam2 Not used

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

Chapter 7. Exported Entry Points 7-17

ENABLE 08H - RestoreDCState

Enable Subfunction 08H - RestoreDCState

This subfunction restores a specific DC state from the saved DC states. An index to the required state is
supplied as Parameter 2. The presentation driver returns an error if the index is zero, or if it specifies a
value that does not identify a saved state.

Display drivers must be careful when handling this call. Some of the data stored in the DC instance data
must match the data held by the Window Manager. The handling routine for RestoreDCState does not
restore:

• DC origin
• User bounds
• Cached clipping rectangles
• HDC_IS:...DIRTY flag.

Stack Frame

Parameter· Description

uJSubfunction 08H.

pParam1 Pointer (plnstance) to the DC instance data.

1Param2 Identifies which of the saved states are to be restored. See
below.

1Param2 Identifies which of the saved states are to be restored. Positive numbers indicate the specific
state counting from the first saved state, that is, 1 equals the first, 2 the second, and so forth.
All saved states following the one being restored are discarded. Preceding states remain
saved.

Negative.numbers indicate the specific state counting from the last saved state, a value of -2
indicates that the last state is discarded and the state before that is restored.

Return Codes: The handling routine should return a LONG integ·er. Valid values are:
O Successful

. -1 Error

7-t8 Presentation Driver Reference

ENABLE 09H - ResetDCState

Enable Subfunction 09H - ResetDCState

This subfunction resets the device context to its original initialized state. The presentation driver deletes
all fonts, patterns, and paths, and resets all attributes to their default values. Notice that when resources
are not owned by the presentation driver, the driver saves the relevant values so that they are available to
reset the device context. A typical example is when the default font is a graphics engine font. In this case,
the presentation driver saves the font flags and address passed in the first call to GreDeviceSetAttributes.

The visible region and the DC origin are not affected by this function.

Stack Frame

Parameter Description

ulSubfunction 09H.

pParam1 Pointer (plnstance) to the DC instance data.

u1Param2 Reserved.

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

Chapter 7. Exported Entry Points 7-19

ENABLE OAH - CompleteOpenDC

Enable Subfunction OAH - CompleteOpenDC

This subfunction is called upon completion of the DevOpenDC process to tell the presentation driver that
the device context now has access to the graphics engine. Presentation drivers for the primary display
device return Successful without taking any action. For other devices, the handling routine in the
presentation driver completes the initialization process for any resources, such as bit maps, that are
obtained through calls to the graphics engine.

Hardcopy drivers do not use the CompleteOpenDC routine to open resources such as spool files or journal
files. If these resources are required, they are opened in response to a call to GreEscape with
DEVESC_STARTDOC (see page 8-81). Such drivers set a flag in the instance data to show that
DEVESC_STARTDOC has been received, and do not process any output until that flag has been set.

Note: The presentation driver locks and unlocks resources such as bit maps and device contexts to
prevent simultaneous use of the resource by two threads belonging to the same process. Typically,
this is done by setting a semaphore or some other form of busy flag for the resource.

Stack Frame

Parameter Description

ulSubfunction OAH

hdcParam1 Device context handle

pParam2 Pointer (plnstance) to the DC instance data

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

7-20 Presentation Driver Reference

ENABLE OBH - BeglnCloseDC

Enable Subfunction OBH - BeginCloseDC

This subfunction is called to inform the presentation driver that the device context is being closed. This is
the last call made to the driver before it loses access to the graphics engine. Display drivers for the
primary display device, return Successful without taking any action. For other devices, the handling
routine in the presentation driver has to close any resources (such as journal files and bit maps) that it
owns.

Hardcopy drivers do not use the BeginCloseDC routine to complete tasks such as writing spool files. The
tasks are completed in response to a call to GreEscape with DEVESC_ENDDOC (see page 8-70). The
DEVESC_ENDDOC routine resets the DEVESC_STARTDOC flag in the instance data. The BeginCloseDC
routine checks that the flag is reset before taking any action.

Stack Frame

Parameter Description

ulSubfunction OBH

hdcParam1 Device context handle

pParam2 Pointer (plnstance) to the DC instance data

Return Codes: The handling routine should return a LONG integer. Valid values are:

O Successful
-1 Error

Chapter 7. Exported Entry Points 7-21

ENABLE OBH - BeginCloseDC

7-22 Presentation Driver Reference

mandatory functions for all drivers

Chapter 8. Mandatory Functions for All Drivers

This chapter describes those functions, which must be supported for all devices, that are called through the

dispatch table by handling routines in the presentation driver. The dispatch table contains the address of

each function that the presentation driver can hook. Initially, when the presentation driver is first loaded, a

copy of the default dispatch table is passed to the driver. The presentation driver's Enable routine modifies

this copy so that the entries for functions supported in the driver point to the handling routines in the driver.

Entries to the table that are to be modified can first be saved by the presentation driver in case they are

subsequently needed. The original saved table entries, and those that are not modified, point to the

engine-simulation routines for the functions concerned.

Functions listed in the dispatch table fall into two categories:

• Functions that the presentation driver must support (mandatory functions)
• Functions that are supported by the graphics engine but can be optionally hooked by the presentation

driver.

Descriptions are provided of the mandatory functions. Each description shows what the handling routine is

expected to do, the parameters passed to the routine, and the values that the routine returns. The

functions are grouped according to the conditional include sections of the header file:

• Attribute functions (INCL_GRE_DEVMISC1)
• Bit-map functions (INCL_ GRE_BITMAPS)
• Color table functions (INCL_GRE_COLORTABLE)
• Device functions 2 (INCL_GRE_DEVMISC2)
• Device functions 3 (INCL_ GRE_DEVMISC3)
• GreEscape functions (INCL_GRE_DEVICE)
• Line functi.ons (INCL_GRE_LINES, INCL_GRE_SCANS)
• Marker functions (INCL_GRE_MARKERS)
• Query functions (INCL_GRE_DEVICE)
• Text (String) functions (INCL_GRE_STRINGS).

Additional functions that must be supported by presentation drivers for display devices are described in

Chapter 9, "Mandatory Functions for Display Drivers." Hardcopy drivers must also provide some support

for these display device functions. This can be a common routine that returns Successful and posts the

warning, PMERR_DEV _FUNC _NOT _INSTALLED.

The level of support provided in the handling routine for a particular function depends on the type of device

and the level of support provided for that device. At the minimum, the handling routine must indicate a

successful completion.

Attribute and Bundle Definitions

A general description of colo.rs, mixes; patterns, and the attribute definitions for each attribute bundle type

are provided. For area definitions, the area must be filled by using the pattern that is current when

GreBeginArea is catled.

Colors

All colors are passed as 32-bit signed values. These are either indexes into the Logical Color table, logical

palette indexes, or representations of 24-bit Red~ Green, and Blue (RGB) values. Some special attribute

values can be passed to the graphics engine and returned by GreGetAttributes:

CLA_FALSE All color planes or bits, or both, are 0.

©Copyright IBM Corp. 1992 8-1

mandatory functions for all drivers

CLR_TRUE

CLR_WHITE

CLR_BLACK

All color planes or bits, or both, are 1.

This index is never loaded explicitly. It always produces White when the default color
table is in force or when the index is set to RGB. With a realized color table and an index
that is not RGB, the value CLR_WHITE produces the background color
CLR_BACKGROUND.

This index is never loaded explicitly. It always produces Black when the default color
table is in force or when the index is set to RGB. With a realized color table and an index
that is not RGB, CLR_BLACK produces the neutral color CLR_NEUTRAL. See "Color
Functions" on page 8-13.

CLR_FALSE and CLR_TRUE provide useful operands for Bitblt logical operations. CLR_DEFAULT is the
default value at the API. It is a reserved value and is not passed to the presentation driver.

Mix Modes

All values are passed to the graphics engine which passes them unchanged to the presentation driver.

Foreground Mix Mode Valid values are:

FM_OR
FM_ OVERPAINT
FM_XOR
FM_LEAVEALONE
FM_AND
FM_SUBTRACT
FM_MASKSRCNOT
FM_ZERO
FM_NOTMERGESRC
FM_NOTXORSRC
FM_INVERT
FM_MERGESRCNOT
FM_NOTCOPYSRC
FM_MERGENOTSRC
FM_NOTMASKSRC
FM_ ONE

OR
Overpaint
Exclusive-OR
Leave alone (invisible)
AND
(Inverse source) AND destination
Source AND (inverse destination)
All zeros
Inverse (source OR destination)
Inverse (source exclusive-OR destination)
Inverse of destination
Source OR (inverse destination)
Inverse of source
(Inverse source) OR destination
Inverse of (source AND destination)
All 1s.

Note: FM_DEFAUL T is the default value at the API. It is a reserved value and is
not passed to the presentation driver.

The presentation driver must support FM_OR, FM_OVERPAINT, FM_XOR, and
FM_LEAVEALONE. Other foreground mixes can be handled as FM_OVERPAINT.
Mixing, other than for FM_LEAVEALONE or FM_OVERPAINT, is performed on the
physical color index or logical palette index. When an indexed color table or
palette has been realized, this corresponds to the logical color index. In other
cases, the color resulting from a mix cannot be predicted.

Note: An exception to this rule occurs when the same object is drawn twice with
FM_XOR and BM_LEAVEALONE, and no intermediate drawing is
performed in other mixes. The implementation must guarantee that this
always results in the object being erased cleanly.

Other valid mixes can also be supported for some primitive types. When a valid
mix is not supported, the default is FM_ OVERPAINT. An error is raised only
when the specified mix value is not one of those listed above.

Background Mix Mode Valid values are:

BM_ERROR
BM_DEFAULT

8-2 Presentation Driver Reference

Error
Default

mandatory functions for all drivers

BM_OR OR
BM_OVERPAINT Overpaint
BM_XOR. Exclusive-OR
BM_LEAVEALONE Leave alone (invisible).

The presentation driver must support BM_OVERPAINT and BM_LEAVEALONE.

Other background mixes can be handled as BM_LEAVEALONE.

GreQueryDeviceCaps (see page 8-111) allows the application to determine the

mixes supported by the device.

Line Attributes

The device line attributes are bundled in a DLINEBUNDLE structure:

Parameter Description

cAttr Size of the logical attribute bundle.

cDefs Size of the LINEDEFS structure.

lbnd LINEBUNDLE structure. The logical line bundle as seen by the application. See below.

I def LINEDEFS structure:

defType Line definition. This is ignored by the presentation driver.

LINEBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the

LINEBUNDLE structure. Valid flags and the fields that they identify are:

Flag Fie Id

LBB_COLOR I Color

LBB_BACK_COLOR IBackColor

LBB_MIX_MODE usMixMode

LBB_BACK_MIX_MODE usBackMixMode

LBB_WIDTH fxWidth

LBB_GEOM_WIDTH I Geom Width

LBB_TYPE us Type

LBB_END us End

LBB_JOIN usJoin.

lbnd The fields of a LINEBUNDLE structure are:

IColor Line foreground color.

IBackColor Line background color.

usMlxMode Line foreground mix mode.

usBackMlxMode Line background mix mode.

Ix Width Line-width multiplier. This value is expressed in fixed-point notation with a

notational binary point between the second and third bytes. Therefore, 1.0 is

represented by 10000H (or 65536). This multiplier is applied to the normal line

width. Valid values are:

Chapter 8. Mandatory Functions for All Drivers 8-3

mandatory functions for all drivers

IGeomWidth

us Type

usEnd

usJoin

LINEWIDTH_DEFAULT Default line width. This is the same as
LINEWIDTH_NORMAL

LINEWIDTH_NORMAL Normal line width.

LINEWIDTH_THICK Thick line width. This is double the normal width.

Typically, values equal or less than 1.0 are treated as LINEWIDTH_NORMAL and
values greater than 1.0 as LINEWIDTH_THICK.

Geometric line thickness in world-coordinate space specified as an integer value.
This is used only by GreStrokePath or when MPATH_STROKE is specified for
GreModifyPath. A value of O results in the thinnest line possible regardless of the
transform in force. Thick geometric lines are treated as polygons and are
transformed accordingly.

Specifies the cosmetic line type. Valid values are:

LINETYPE_DOT
LINETYPE_SHORTDASH
LINETYPE_DASHDOT
LINETYPE_DOUBLEDOT
LINETYPE_LONGDASH
LINETYPE_DASHDOUBLEDOT
LINETYPE_SOLID
LINETYPE_INVISIBLE
LINETYPE_AL TERNA TE

Dotted
Short-dashed
Dash, dot
Double-dotted
Long-dashed
Dash, double-dot
Solid
Invisible
Every alternate pel on.

Note: LINETYPE_DEFAUL T is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

Valid values are:

LINEEND_FLAT
LINEEND _SQUARE
LINEEND _ROUND

Flat
Square
Round.

Note: LINEEND_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

Valid values are:

LINEJOIN_ BEVEL
LINEJOIN_ROUND
LINEJOIN_MITRE

Bevel
Round
Miter.

Note: LINEJOIN_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

When lines join at a very acute angle and a mitered joint has been specified, then
the length of the miter line could extend almost to infinity. To prevent this, when
the ratio of miter length to geometric line width exceeds 10:1, a bevel joint is
drawn. The miter length is the distance between the inner and outer intersection
points.

When a wide line is explicitly closed by a call to GreCloseFigure from within a
path, the style at the closure point is JOIN style not END style. If enough points
are given to implicitly close the figure, the END style is used at the closure
points. Notice that the LINEJOIN attribute is only to be used at wide line ends
when the figure has been closed by a call to GreCloseFigure.

8-4 Presentation Driver Reference

mandatory functions for all drivers

Area (Pattern) Attributes

The device area (pattern) attributes are bundled in a DAREABUNDLE structure:

Parameter Description

cAttr Size of the logical area bundle.

cDefs Size of the AREADEFS structure. This is 0 when no device area bundle
exists.

abnd AREABUNDLE structure. See below.

adef AREADEFS structure. See below.

AREABUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the

AREABUNDLE structure. Valid flags and the fields that they identify are:

Flag Field

ABB_COLOR I Color

ABB _BACK_ COLOR IBackColor

ABB_MIX_MODE usMixMode

ABB_BACK_MIX_MODE usBackMixMode

ABB_SET usSet

ABB_SYMBOL usSymbol

ABB_REF _POINT ptl Ref Point

abnd The fields of an AREABUNDLE structure are:

IColor Area foreground color.

IBackColor Area background color.

usMixMode Area foreground mix mode.

usBackMlxMode Area background mix mode.

usSet Local identifier (lcid) for a logical font or a bit map. Valid values are:

usSymbol

O Base pattern set
Non-zero Local identifier for the logical font or bit map defined by the

cdef.defSet field in the area attributes bundle.

Identity of the required pattern in the current pattern set or logical font. This
attribute is ignored when the pattern set is a bit map. If the value is outside the
range of the logical font, the standard default pattern is used.

Values in the range 1 - 255 are valid. The defined values are:

PATSYM_ERROR
PATSYM_DEFAULT
PATSYM_DENSE1
PATSYM_DENSE2
PATSYM_DENSE3
PATSYM_DENSE4
PATSYM_DENSES
PATSYM_DENSE&
PATSYM_DENSE7

Error
Default
Solid shading with decreasing intensity
Solid shading with decreasing intensity
Solid shading with decreasing intensity
Solid shading with decreasing intensity
Solid shading with decreasing intensity
Solid shading with decreasing intensity
Solid shading with decreasing intensity

Chapter 8. Mandatory Functions for All Drivers 8-5

mandatory functions for all drivers

ptlRef Point

PATSYM_DENSE8
PATSYM_VERT
PATSYM_HORIZ
PATSYM_DIAG1
PATSYM_DIAG2
PATSYM_DIAG3
PATSYM_DIAG4
PATSYM_NOSHADE
PATSYM_SOLID
PATSYM_BLANK
PATSYM_HALFTONE

Solid shading with decreasing intensity
Vertical lines
Horizontal lines
Diagonal lines 1, bottom-left to top-right
Diagonal lines 2, bottom-left to top-right
Diagonal lines 1, top-left to bottom-right
Diagonal lines 2, top-left to bottom-right
No shading
Solid shading
Blank (same as PATSYM_NOSHADE)
Every alternate pal on. PATSYM_HALFTONE can be
similar to PATSYM_DENSE4 and PATSYM_DENSE5
(solid patterns) but has a more stringent definition. It is
useful for generating gray text.

See the OS/2 2.0 Presentation Manager Programming Reference for definitions
of these shading patterns.

Specifies the pattern origin for areas and thick lines. The pattern is mapped into
the area to be filled by conceptually replicating the pattern definition in both the
horizontal and vertical directions.

The pattern reference point is subject to all of the transforms. When an area is
moved by changing a transform and redrawing, the fill pattern also appears to
move so as to retain its position relative to the area boundaries. This allows part
of a picture to be moved with a Bitblt operation and the remainder to be drawn
by changing the appropriate transform with no discontinuity at the join.

The pattern reference point, which is specified in world coordinates, need not be
inside the actual area to be filled and is not subject to clipping, although the
area to be filled is subject to clipping.

adef The fields of an AREADEFS structure are:

defSet Area definition. This can be a text pattern, predefined pattern, bit map, pointer to an
engine font, device font handle, or bit map handle.

fflags The only valid flag is CDEF _GENERIC.

CodePage Code Page ID.

Character Attributes

The device character attributes are bundled in a DCHARBUNDLE structure:

Parameter Description

cAttr Size of the attribute bundle.

cDefs Size of the CHARDEFS structure.

cbnd CHARBUNDLE structure. See below.

cdef CHARDEFS structure.

CHARBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
CHARBUNDLE structure. Valid flags and the fields that they identify are:

8-6 Presentation Driver Reference

mandatory functions for all drivers

Flag Field

CBB_COLOR !Color

CBS _BACK_ COLOR IBackColor

CBB_MIX_MODE usMixMode

CBB_BACK_MIX_MODE usBackMixMode

CBB_SET usSet

CBB_MODE usPrecision

CBB_BOX sizfxCell

CBB_ANGLE ptlAngle

CBB_SHEAR ptlShear

CBB _DIRECTION usDirection

CBS_ TEXT _ALIGN usTextAlign

CBB_EXTRA fxExtra

CBB_BREAK_EXTRA fxBreakExtra

cbnd The fields of a CHARBUNDLE structure are:

IColor Character foreground color.

IBackColor Character background color.

usMlxMode Character foreground mix mode.

usBackMixMode Character background mix mode.

usSet Specifies a local identifier (lcid) for a logical font. If usSet is 0, the current code
page and character precision are used to resolve the selection of the base font.
The code page (set by the function GreSetCodePage) identifies two base fonts,
an outline font and an image font. The value of usPrecision determines which
of these is selected. Valid values for usSet are:

usPrecislon

O Base font
Non-zero Local identifier for the logical font defined by the cdef.defSet field

in the character attributes bundle.

Specifies the character mode. The value of usPrecision is used to select output
quality from Precision 1 (the lowest) to Precision 3. Presentation drivers
normally use Precision 3 except when performance is improved by using the
specified precision. For example, the EGA and VGA drivers always use
Precision 3 when the current font is an outline font but switch to the specified
precision for an image font.

Valid values for usPrecision are:

CM_MODE1 Precision 1. The selected font can be either an image or an
outline font. When an image font is used, the first character is
positioned with its reference point at the current position.
Subsequent characters are positioned by using FONTMETRICS.

CM_MODE2 Precision 2. The selected font can be either an image or outline
font. When an image font is used, the first character is
positioned with its reference point at the current position.
Subsequent characters are positioned by using the
FONTMETRICS, CBB_BOX, CBB_ANGLE, and CBB_SHEAR
attributes. This is done by constructing a transformation matrix

Chapter 8. Mandatory Functions for All Drivers 8-7

mandatory functions for all drivers

slzfxCell

ptlAngle

that transforms the FONTMETRICS values, sXDeviceRes and
sYDeviceRes, to the rotated, scaled, and sheared character box
attributes, and translates the reference point of the first
character to the current position. The actual character positions
are then determined by applying this transform to the character
positions found by using the FONTMETRICS.

Notice that the character box attribute is subjected to the
rotation, scaling, and shear defined by the current
transformations, and defined by the other character attributes.

Note: Shear attributes affect only the horizontal position of
CM_MODE2 characters when the character direction is
CHRDIRN_ TOPBOTTOM or CHRDIRN_BOTTOMTOP.

CM_MODE3 Precision 3. The selected font must be an outline font.

Note: CM_DEFAUL T is the default value at the API. It is a reserved value and
is not passed to the presentation driver.

For outline fonts, regardless of mode, all character attributes together with the
FONTMETRICS are used for positioning, scaling, rotating, and shearing the
characters. This is done by constructing a transformation matrix as described
above for CM_MODE2. The actual character vector stroke coordinates are then
determined by applying this transform to the character-definition coordinates
suitably modified (for character positioning) by the FONTMETRICS.

As with CM_MODE2, the character box attribute is subjected to the rotation,
scaling, and shear defined by the current transformations, and defined by the
other character attributes.

The character reference point is defined as the intersection of the base line
and the left edge of the character. The baseline is defined as an offset,
pCel I Offset, from the top of the character eel I.

Specifies fixed-point numbers for the width and height of a character cell in
world-coordinate space. This defines the background area for a character.
Each dimension is represented as a signed 4-byte integer with a notional
binary point between bit 16 and bit 15. Therefore, + 2.5 is represented by
00028000H and -2.5 is represented by FFFDSOOOH.

For CM_MODE1, the cell has no effect when characters are drawn from an
image font. For CM_MODE2, the width determines the spacing of consecutive
characters along the baseline. Both width and height can be positive,
negative, or 0. When either parameter is negative, the spacing occurs in the
opposite direction to normal and each character is drawn reflected in
CM_MODE3. For example, a negative height in the standard direction in Mode
3 indicates that the characters are drawn upside down, and that the string is
drawn below the baseline (assuming no other transformations cause
inversion). A zero character width or height is also valid. The string of
characters collapses into a line. If both are 0, the string is drawn as a single
point in CM_MODE3.

Specifies integer values, x and y, for the coordinates of the end of a line
starting at the origin (0, 0). The baseline for subsequent character strings is
parallel to this line.

For CM_MODE1, the angle has no effect when characters are drawn.

For CM_MODE2, the angle is used to determine the position of each image
character. However, the orientation of characters within the character box is
inherent in their definitions. The characters are positioned so that the

8-8 Presentation Driver Reference

ptlShear

usDirection

usTextAlign

mandatory functions for all drivers

lower-left corners of the character definitions are placed at the lower-left

corners of the character boxes.

For CM_MODE3, the angle is observed accurately and the character boxes are

rotated to be normal to the character baseline. If the coordinate system is such

that one x-axis unit is not physically equal to one y-axis unit, a rotated

character appears to be sheared.

Specifies integer values, which identify the end coordinates of a line

originating at 0, 0. The vertical strokes in subsequent outline character strings

are drawn parallel to the defined line. For CM_MODE1, the shear has no effect

when image characters are drawn. For CM_MODE2, the shear affects the

height of the character cell. Therefore, the position of characters drawn with

CDIRN_TOPBOTTOM or CDIRN_BOTTOMTOP. The top of the character box

remains parallel to the character baseline.

If hx = 0 and hy = 1 (the standard default), upright characters result. If hx and

hy are both positive or both negative, the characters slope from bottom left to

top right. If hx and hy are of opposite signs, the characters slope from top left

to bottom right. No character inversion takes place as a result of shear alone.

(Inversion can be done with the charCell attribute.) Notice that it is incorrect to

specify a zero value for hy because this would imply an infinite shear.

Valid values are:

CHDIRN _LEFTRIGHT
CHDIRN_TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Left-to-right
Top-to-bottom
Right-to-left
Bottom-to-top.

Note: CHDIRN_DEFAULT is the default value at the API. It is a reserved value

and is not passed to the presentation driver.

If the specified direction is not valid, the presentation driver uses

CHDIRN_LEFTRIGHT as the default.

Specifies the horizontal and vertical alignment of character strings. This

alignment defines a reference point within the string, which is positioned on

the starting point specified for the string.

The horizontal alignment values are as follows:

TA_NORMAL_HORIZ

TA....;LEFT

TA~CENTER

TA_RIGHT

TA_STANDARD_HORIZ

Normal alignment. This is the initial default. The
alignment assumed depends on the current
character direction:

CHDIRN_LEFTRIGHT
CHDIRN_TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_LEFT
Same as TA_CENTER
Same as TA_RIGHT
Same as TA_CENTER

Left alignment. The string is aligned on the left
edge of its leftmost character.

Center alignment. The string is aligned on the
arithmetic mean of Left and Right.

Right alignment. The string is aligned on the right
edge of its rightmost character.

Standard alignment. The alignment assumed
depends on the current character direction:

CHDIRN_LEFTRIGHT Same as TA_LEFT

,,Chapter 8. Mandatory Functions for All Drivers 8-9

mandatory functions for all drivers

CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_LEFT
Same as TA_RIGHT
Same as TA_LEFT

The vertical alignment values are as follows:

TA_NORMAL_VERT Normal alignment. This is the initial default. The
alignment assumed depends on the current character
direction:

TA_ TOP

TA_HALF

TA_BASE

TA_BOTTOM

CHDIRN_LEFTRIGHT
CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_BASE
Same as TA_TOP
Same as TA_BASE
Same as TA_BOTTOM

Top alignment. The string is aligned on the top edge of
its topmost character.

Half alignment. The string is aligned on the arithmetic
mean of Bottom and Top.

Base alignment. The string is aligned on the base of its
bottom character.

Bottom alignment. The string is aligned on the bottom
edge of its bottom character.

TA_STANDARD Standard alignment. The alignment assumed depends
on the current character direction:

CHDIRN_LEFTRIGHT
CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_BOTTOM
Same as TA_ TOP
Same as TA_BOTTOM
Same as TA_BOTTOM

The current position will also be modified relative to the current character
direction as shown:

Horlzontal

Vertical

8· 10 Presentation Driver Reference

For horizontal character directions:

Horlzontal Alignment
TA_LEFT
TA_ CENTER
TA_ RIGHT

Vertical Alignment
TA_ TOP
TA_ HALF
TA_BASE
TA_BOTTOM

New X Current Position
Right
Center
Left

New X Current Position
Top
Half
Base
Bottom

For vertical character directions:

Horizontal Alignment
TA_LEFT
TA_CENTER
TA_RIGHT

Vertical Alignment
TA_ TOP
TA_HALF
TA_BASE
TA_BOTTOM

New X Current Position
Left
Center
Right

New X Current Position
Bottom
Half
Base
Top

fxExtra

fxBreakExtra

mandatory functions for all drivers

A fixed point world-coordinate distance, which is added between every
character as it is being placed.

A fixed point world-coordinate distance, which is added to the width of the
break character as it is placed.

cdef The fields of a CHARDEFS structure are:

def Set

ff lags

Character set definition. If defSet is passed as 0, the presentation driver must use
the default device font (zero is passed only when the driver provides and manages
its own default font). Otherwise, the significance of defSet depends upon the state
of the CDEF _GENERIC flag. See below:

• If the flag is set, defSet is a pointer to an engine font.
• If not set, defSet is a device font identifier defined by the driver.

When defSet is a pointer to an engine font, cdef is a pointer to an instance of the
FOCAFONT data structure. The definition of the FOCAFONT data structure is
included in the header file. For a detailed description of the types used in the
FOCAFONT data structure, refer to Appendix E in the OS/2 2.0 Presentation
Manager Programming Reference.

Valid flags are:

CDEF _GENERIC
CDEF_BOLD
CDEF _ITALIC
CDEF _UNDERLINE
CDEF _STRIKEOUT

Engine font (not device font)
Font must be emboldened
Font must be italicized
Font must be underlined
Font must be Strikeout.

CodePage Current code page. The presentation driver ignores this field when the font is not
a multi-code page font that needs translating.

charSpacing Character spacing.

See the OS/2 2.0 Programming Guide for examples of these attributes.

Image Attributes

The device image attributes are bundled in a DIMAGEBUNDLE structure:

Parameter Description

cAttr Size of the attributes structure.

cDefs Set to 0. There is no IMAGEDEFS structure.

ibnd IMAGEBUNDLE structure. See below.

IMAGEBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
IMAGEBUNDLE structure. Valid flags and the fields that they identify are:

Flag Fie Id

IBB_COLOR I Color

IBB_BACK_COLOR IBackColor

IBB_MIX_MODE usMixMode

IBB_BACK_MIX_MODE usBackMixMode

Chapter 8. Mandatory Functions for All Drivers 8-11

mandatory functions for an drivers

ibnd The fields of an IMAGEBUNDLE structure are:

I Color
IBackColor
usMlxMode
usBackMlxMode

Image foreground color
Image background color
Image foreground mix mode
Image background mix mode.

Marker Attributes

The device marker attributes are bundled in a DMARKERBUNDLE structure:

Parameter Description

cAttr Size of MARKERBUNDLE structure

cDefs Size of MARKERDEFS structure

mbnd MARKERBUNDLE structure. See below.

mdef MARKERDEFS structure. See below.

MARKERBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
MARKERBUNDLE structure. Valid flags and the fields that they identify are:

Flag Fie Id

MBB_COLOR I Color

MBB_BACK_COLOR IBackColor

MBB_MIX_MODE usMixMode

MBB_BACK_MIX_MODE usBackMixMode

MBB_SET us Set

MBB_SYMBOL usSymbol

MBB_BOX sizfxCell

mbnd The fields of a MARKERBUNDLE.structure are:

IColor Marker foreground color.

IBackColor Marker background color.

usMlxMode Marker foreground mix mode.

usBackMlxMode Marker background mix mode.

usSet Specifies a local identifier (lcid) for the logical font:

usSymbol

O Base marker set
Non-zero Local. identifier for the font identified in the mdef.defSet field of

the marker attributes bundle.

Specifies the identity of the required marker symbol in the current marker set
If the value of usSymbol does not identify a marker in the currentfont, the
standard default for the font is used. The default for the default font is a cross.
For a loaded font, it is the character identified by the usDefaultChar field of the
FOCAMETRICS structure.

8-12 Presentation Driver Reference

slzfxCell

mandatory functions for all drivers

All values in the range 0-255 are valid. The defined values for the default
marker set are:

MARKSYM_CROSS
MARKSYM_PLUS
MARKSYM_DIAMOND
MARKSYM_SQUARE
MARKSYM_SIXPOINTSTAR
MARKSYM_EIGHTPOINTSTAR
MARKSYM_SOLIDDIAMOND
MARKSYM_SOLIDSQUARE
MARKSYM_DOT
MARKSYM_SMALLCIRCLE
MARKSYM_BLANK

Cross
Plus
Diamond
Square
Six-point star
Eight-point star
Filled diamond
Filled square
Dot
Small circle
Blank.

Note: MARKSYM_DEFAULT is the default value at the API. It is a reserved
value and is not passed to the presentation driver.

Specifies fixed-point numbers for the width and height of a marker cell in
world-coordinate space. This defines the background area for a marker. Each
dimension is represented as a signed 4-byte integer with a notional binary
point between bit 16 and bit 15. Therefore, +2.5 is represented by 00028000H,
and -2.5 is represented by FFFD8000H. The value of this attribute only affects
the size of markers drawn with an outline (vector) font or marker set. Markers
drawn from image (raster) sets are not affected.

mdef The fields of a MARKERDEFS structure are:

def Set

ff lags

CodePage

Marker set definition. If this value is passed as zero, the presentation driver must
use the default marker set. If the CDEF _GENERIC flag is set, this is a pointer to an
engine font. Otherwise, it is a device-font identifier defined by the presentation
driver.

Valid flags are:

CDEF _GENERIC
CDEF_BOLD
CDEF _ITALIC
CDEF _UNDERLINE
CDEF _STRIKEOUT

Code page number.

Engine font (not device font)
Marker must be emboldened
Marker must be italicized
Marker must be underlined
Marker must be Strikeout.

Bit-Map Functions

Presentation drivers for hardcopy vector devices can return Failure on all bit-map operations. The same
bit-map file format is used for bit maps, icons, and pointers. For details, refer to the OS/2 2.0 Presentation
Manager Programming Reference.

Color Functions

By default, the color mode for a DC is set to index mode, and the DC has a Logical Color table set to the
values given below. When in index mode, these defaults are always considered to be part of the color
table unless they are explicitly overwritten by CreatelogColorTable (see page 8-34).

Note: Presentation drivers that support less than 16 colors must map Value 0 (CLR_BACKGROUND)
through Value 15 (CLR_PALEGRAY) to device colors. If GreQueryColorData is called while the
default color table is the current color table, the presentation driver returns the device colors.

Chapter 8. Mandatory Functions for All Drivers 8-13

mandatory functions for all drivers

Default values for the Logical Color table are:

CLR_FALSE (-5). All color planes or bits, or both, are FALSE.

CLR_ TRUE (-4). All color planes or bits, or both, are TRUE.

CLR_DEFAULT (-3). This is the API default. It is a reserved value and is not passed to the
presentation driver.

CLR_WHITE (-2). This index is never loaded explicitly. It always produces white when the
default table is in force or when the index is set to RGB. When, with a realized
color table and an index that is not RGB, this option is unavailable, it produces
CLR_BACKGROUND.

CLR_BLACK (-1). This index is never loaded explicitly. It always produces black when the
default table is in force or when the index is set to RGB. When, with a realized
color table and an index that is not RGB, this option is unavailable, it produces
CLR_NEUTRAL.

CLR_BACKGROUND (0). This is the natural background color of the device. For a hardcopy device, it is
the paper color and for a display device it is the default window color,
SYSCLR_WINDOW.

CLR_BLUE (1)

CLR_RED (2)

CLR_PINK (3)

CLR_GREEN (4)

CLR_CYAN (5)

CLR_ YELLOW (6)

CLR_NEUTRAL (7). This is a device-dependent contrasting color. For a display device, it is the
default window text color, SYSCLR_WINDOWTEXT.

CLR_DARKGRAY (8)

CLR_DARKBLUE (9)

CLR_DARKRED (10)

CLR_DARKPINK (11)

CLR_DARKGREEN (12)

CLR_DARKCYAN (13)

CLR_BROWN (14)

CLR_PALEGRAY (15)

Colors with indexes greater than 15 are device-dependent defaults, which must be defined by the
presentation driver. The effective range of the color table which includes the default color table, is -5
through Maxlndex. Color indexes outside this range that have not been loaded are not used by
applications because these colors cannot be guaranteed.

Where physically possible, the default colors are always available on a device. For devices that support
more than 16 colors, requested colors can be mapped to colors other than the defaults (when they exist).
Such colors cannot be guaranteed to be similar for different devices. They can be different for other
releases of applications and presentation drivers. Applications that depend on precise colors beyond the
defaults must query the available colors (see "GreQueryRealColors" on page 8-123) and, when necessary,
realize their own color tables (see "GreRealizeColorTable" on page 8-129).

8-14 Presentation Driver Reference

mandatory functions for all drivers

Support for Monochrome Devices: Presentation drivers for monochrome devices must be able to

draw pictures intended for color devices. A simple solution for hardcopy drivers is to map:

• Background color to paper color
• Foreground color to printer foreground except when:

In RGB mode. If the foreground RGB matches the default background RGB, use paper color.

- In index mode. If the RGB foreground index matches the RGB color for Index 0, use paper color.

To map the RGB colors to the device, the presentation driver must first establish the reset color, which is

the base color for the device. The reset color can be:

• Paper color for a hardcopy device with no loaded color table

• SYSCLR_WINDOW for a monochrome display with no loaded color table

• CLR_BACKGROUND for any monochrome device that has a loaded color table

Any color that is not the reset color is considered to be the contrast color. The values for the reset color

and contrast color are either OOOOOOH or FFFFFFH. When the reset color is OOOOOOH, the contrast color is

FFFFFFH. CLR_TRUE, CLR_FALSE, and CLR_DEFAULT are always honored independently of the reset

color. The interpretation of CLR_BLACK and CLR_WHITE depends on the reset color.

When GreQueryNearestColor is called for a monochrome device, the value returned is either the reset

color or the contrast color. GreErasePS causes the color to be set to the value of the reset color. See

"GreErasePS" on page 8-62. GreBitblt can also be used to transfer a color bit map to a monochrome

device or bit map. In this case, the source image background color becomes the reset color and all other

pels are represented by the contrast color. See "GreBitblt" on page 8-26. More sophisticated presentation

drivers for monochrome devices should use half-toning for colors to provide more usable output.

Half-toning can be applied to all graphic primitives.

GreEscape

The GreEscape handling routine in the presentation driver supports the DevEscape function and its escape

codes at the API. While the primary function of GreEscape is to implement the required support for the

defined escape codes, it can be used to implement additional escape codes. There is a set of defined

ranges for additional escape codes. The range chosen determines how the operating system processes

the escape code when it is received as a parameter to DevEscape. On entry to GreEscape, the value of

!Escape on the stack identifies the escape code. The action taken is determined by the escape code and

the physical device that the presentation driver supports.

Support: GreEscape is called by DevEscape. GreEscape with the escape code,

DEVESC_QUERYESCSUPPORT, must be supported by all presentation drivers. Hardcopy drivers also

support the DEVESC_STARTDOC, DEVESC_ABORTDOC, DEVESC_NEXTFRAME, and DEVESC_ENDDOC

escape codes. The other escape codes are optional. See "Defined Escape Codes" on page 8-16 and the

individual escape codes that follow.

Stack Frame: On entry to the GreEscape routine, the stack frame contains:

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG Escape code.

clnCount LONG Number of bytes pointed to by plnData.

pin Data PBYTE Pointer to input data structure.

Chapter 8. Mandatory Functions for All Drivers 8-15

mandatory functions for all drivers

Parameter Data Type Description

pcOutCount PL ONG Pointer to the number of bytes in output data structure. If the escape code
is one that returns data in the output data structure, the handling routine
changes the value addressed by pcOutCount to show the number of bytes
returned.

pOutData PL ONG Pointer to output data structure.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ DEV _FUNC _NOT _INSTALLED
PMERR_INV _LENGTH_ OR_ COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Defined Escape Codes

The following list shows the escape codes that have been defined for Presentation Manager and the
devices to which they apply. GreEscape returns DEVESC_NOTIMPLEMENTED for escape codes that it does
not support.

DEVESC _ABORTDOC
DEVESC_BREAK_EXTRA
DEVESC_CHAR_EXTRA
DEVESC_DBE_FIRST
DEVESC_DBE_LAST
DEVESC_DRAFTMODE
DEVESC_ENDDOC
DEVESC_FLUSHOUTPUT
DEVESC_GETCP
DEVESC _ GETSCALINGFACTOR
DEVESC_NEWFRAME
DEVESC_NEXTBAND
DEVESC_QUERYESCSUPPORT
DEVESC_ QUERYVIOCELLSIZES
DEVESC_RAWDATA
DEVESC _SETMODE
DEVESC _STARTDOC
DEVESC_STD_JOURNAL

8-16 Presentation Driver Reference

(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(DBCS support)
(DBCS support)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(All drivers)
(Display drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)

mandatory functions for all drivers

Ranges for Additional Escape Codes

The following table indicates the defined ranges for additional escape codes, and shows how the operating
system processes the escape code when it is received as a parameter to DevEscape:

Table 8-1. Ranges for Additional Escape Codes

32768 - 40959 Escape is not metafiled or recorded by the spooler. The escape is passed to the presentation
driver in all cases.

40960-49151 Escape is metafiled but is not recorded by the spooler. For an OD_QUEUED device with
PM_Q_STD data and for all device types other than OD_METAFILE, the escape is passed to
the presentation driver.

49152-57343 Escape is metafiled and recorded by the spooler. For an OD_METAFILE device or for
OD_QUEUED with PM_Q_STD data, the escape is not passed to the presentation driver.

57344- 65535 Escape is recorded by the spooler. The escape is passed to the presentation driver except
when the DC is an OD_QUEUED device with PM_Q_STD data.

Line Functions

The style of a line determines whether it is drawn solid, alternating, invisible, or as any one of a
combination of dots and dashes. This is determined by the usType parameter in the LINEBUNDLE structure
(see "Line Attributes" on page 8-3), which can have any one of the ten values shown in Table 8-2. For
each usType value, there is an associated 8-bit style mask whose bits form a template that corresponds to
whether pels are set on or off when the line is drawn on the device.

The 8-bit style masks used by OS/2 2.0 are as follows:

Table 8-2.

us Type Value StyleMask Bits Comment

LINETYPE_DEFAUL T 0 Ox FF 11111111 This is a solid line.

LINETYPE_DOT 1 Ox AA 10101010

LINETYPE_ SHORTDASH 2 Ox CC 11001100

LINETYPE_DASHDOT 3 OxE4 11100100

LINETYPE_DOUBLEDOT 4 Ox AO 10100000

LINETYPE_LONGDASH 5 OxE7 11100111

LINETYPE_DASHDOUBLEDOT 6 Ox EA 11101010

LINETYPE_SOLID 7 Ox FF 11111111

LINETYPE_INVISIBLE 8 OxOO 00000000

LINETYPE_Al TERNA TE 9 Ox AA 10101010

The style masks can be put into an array of bytes as illustrated in the following code example:

const BYTE bStyleMask[] =
{
0xFF,0xM,0xCC,0xE4,0xA0,0xE7,0xEA,0xFF,0x00,0xAA

};

Chapter 8. Mandatory Functions for All Drivers 8-17

mandatory functions for all drivers

Consider the following code example and comments:

DrawHorizontalline(

{

SHORT sY,
SHORT sX0,
SHORT sXl,
USHORT usStyleRatio,
USHORT us State
PLINEBUNDLE plbnd)

US HORT
US HORT
US HORT

usStateOld;
usOrigMask;
usMask;

/* Y-value
/* Starting x-value
/* Ending x-value
/* Style ratio
/* Current mask state
/* plbnd contains usType parameter

/* Used for test
/* Original mask
/* Current mask

The usState WORD structure is set up by the graphics engine. This structure is shown in Table 8-3.

Table 8-3. usState

5 bits (not used) I 3 bits (mask position, value O - 7) l 8 bits (error-term byte, value 0- OxFF)

Note: This format is different from the way the graphics engine stores this value. The graphics engine
keeps the high and low bytes swapped, therefore, the calling routine must swap them before calling
this function.

The mask position has three bits and eight possible values, 0-7, that correspond to the number of bits in
the style mask. Notice that when the error-term byte overflows (exceeds OxFF), it will increment the mask
position value. To get the unshifted mask value:

usMask = usOrigM~sk = bStyleMasks[plbnd -> usType];

The mask must be shifted to the current position as shown above:
usMask <<= ((usState & 0x700) >> 8);

For each pel:

for(sX = sX0;sX <= sXl;sX++){

Because many devices have small pel sizes, it is often necessary to set more than one pel on per
corresponding bit in the style mask. This is accomplished by using a style ratio, which determines how
many pels on the line correspond to a bit in the style mask. As an example, for each pel on the line, the
most significant bit of the style mask is consulted. If this bit is 1, the pel is drawn. If this bit is 0, the pel is
not drawn:

if(usMask & 0x80)
DrawPel(sX,sY);

usStateOld = usState;

The style ratio is then added to the error-term byte of the usState parameter. When the error-term byte
overflows, the mask position value (high byte of usState) is incremented to the next position. If the mask
position exceeds 7, it is reset to 0:

usState = (usState + usStyleRatio) & 0x7ff;

The mask itself must now be shifted appropriately:

if(HIBYTE(usState) I = HIBYTE(usStateOld)){ /* Has it changed?
if(HIBYTE(usState) == 0) /* Back to zero?

usMask - usOrigMask; /* Yes, reset it
else

usMask <<= 1; /* Else shift it
}

*/
*/
*/

*/

return(usState); /* Return the state for the next line */

8-18 Presentation Driver Reference

mandatory functions for all drivers

Styled line information is usually maintained by the presentation driver in the Device Context (DC) instance
data structure. See "Device Context" on page 1-8. Remember that the DC is a structure the presentation
driver creates. The definition of the DC data structure is specific and can be unique for each unique
presentation driver. This information can include:

typedef struc _DC {

US HORT
USHORT
ULONG
LINEBUNDLE
BYTE

usStyleRatioX;
usStyleRatioY;
llineStyle;
lbnd;
bMyCurrentMask;

/* X-style ratio */
/* Y-style ratio */
/* Current state infonnation (GRE Backward Fonnat) */
/* Linebundle infonnation contains usType parameter */
/* Current style mask */

} DC;
typedef DC *PDC;

The ILineStyle value has much of the same information as the usState parameter in the example function.
Its value is concurrently maintained by the graphics engine but has a different format from the example
above. The graphics engine can set or query this value by calling the functions, GreSetlineOrigin or
GreGetlineOrigin, respectively. Therefore, it is reasonable to keep a copy in the graphics engine format.

The graphics engine's format for this value consists of three values:

• A flag indicating whether or not to draw the first pel of the current line
• The current mask position (explained above)
• The error-term byte (explained above).

They are stored in the following manner:

High WORD

Low WORD

16-bits. Draw first pel flag. Can be OxOOOO (do not draw first pel) or Ox0001 (draw first pel).

16-bits, consisting of:

8 bits
5 bits
3 bits

Error-term byte
GRE internal flags
Mask position

If the two bytes of this low WORD are compared to the WORD in the above example, they are swapped.

Style Ratio: The most obvious way to generate styled lines is to draw a circle at the origin, and then
draw a dashed line from the origin to all points on the circle. The number of dashes in each line will be the
same and the lengths of all the dashes drawn will be equal. This is executed on firmware on some
devices. However, but it is too costly in terms of CPU time to implement it in software. Therefore, an
alternative method called the maximum metric is used in the graphics engine. This method can be
visualized by drawing a square centered at the origin, and then drawing a dashed line to any point on the
square. The number of dashes in each line will be the same but the lengths of the dashes will vary.

The maximum metric states that:

• If the line is y-major as viewed on the device:

{y-major = ABS(yl-y0) > ABS(xl-x0)
where (x0, ye) and (xl, yl) are the endpoints of the line in device-coordinate space},
add pDC -> usStyleRatioY to error-tenn value upon each increment of y as line is drawn

• If the line is x-major as viewed on the device:

{x-major = ABS(xl-x0) > ABS(yl-y0) in device-coordinate space},
add pDC -> usStyleRatioX to error-tenn value upon each increment of x as line is drawn

Chapter 8. Mandatory Functions for All Drivers 8-19

mandatory functions for all drivers

The line style as viewed on the device is determined:

if {ABS{pDC -> usStyleRatioX * sDeltaX) > ABS{pDC -> usStyleRatioY * sDeltaY))
LineStyleAsltlooksOnTheDevice = X-MAJOR;

else
LineStyleAsltLooksOnTheDevice = Y-MAJOR;

This might be coded similar to the following:

if {ABS{pDC -> usStyleRatioX * sDeltaX) > ABS{pDC -> usStyleRatioY * sDeltaY)) {
usChangelnStateForOnePixel = pDC -> usStyleRatioX; fAddThisWhen = X_INCREMENTS;

} else {
usChangelnStateForOnePixel = pDC -> usStyleRatioY; fAddThisWhen = Y_INCREMENTS;

}

It follows that for a line (AB), the total change in style state can be expressed as:

usChangelnStateForWholeline = MAX{ABS{pDC -> usStyleRatioX * sDeltaX).
ABS(pDC -> usStyleRatioY * sDeltaY))

where sDeltaX = Bx-Ax and sDeltaY = By-Ay

For example, an EGA device that has a 640x350 (x-to-y) resolution is displayed on a monitor, which has an
x-to-y ratio of 1-to-.75, respectively. To calculate the aspect ratio:

x/y Ratio = 350/(640*.75) = .72917 Therefore: x = y*.72917 or y = x/.72917
This indicates that a pel is taller than it is wide.

'--v-1

.72917

Figure 8-1. Pel

Assume that four pels in the x-direction is the desirable size of a styled-line dot. Because this display is 9.5
inches across and there are 640 pels across, the length of the four pels is:

(9.5inches/640pels) * 4pels = .059375inches
This results in a pDC -> usStyleRatioX = 64:

64 = 256/4

Notice that 256=0x100, which corresponds to an overflow of the error-term byte into the mask position. To
get the equivalent pDC -> usStyleRatioY value, take the desired distance and multiply it by y pels per inch:

(.059375inches * 350pels)/7.125inches = 2.917pels
Therefore: pDC -> usStyleRatioY = 256/2.917 = 87.76 (rounded to 88)

An easier method is to calculate pDC -> usStyleRatioY from pDC -> usStyleRatioX using the aspect ratio:

pDC -> usStyleRatioY = pDC -> usStyleRatioX / .72917 = 87.76 (rounded to 88)

Notice that the values, pDC -> usStyleRatioX and pDC -> usStyleRatioY, are the same as those returned
by GreGetStyleRatio.

An example of what is meant by as viewed on the device is as follows: If a line is drawn from (0, 0) to (100,
100) pets on the device, it is drawn as a diagonal 1-ine but does not look diagonal to an observer. Instead, it
looks like a Hne drawn to (100, 73). This is because of the aspect ratio. Each unit (pel) in the x-direction
travels only .72917 as far as a unit that trave1s in they-direction. All.of the images on the device do not
look skewed because this is factored in when the application draws a diagonal line (for example, by
drawing from (0, 0) to (73, 100)). The styled ·lines are affected when a line that is drawn in pets as x-major
appears on the device as y-major. In this case, a line drawn from (0, 0) to (85, 64) is x-major as drawn in

8-20 Presentation Driver Reference

mandatory functions for all drivers

pels (because ABS(x1-x0) > ABS(y1-y0)) but appears on the device to bey-major. Notice that this line
must be styled y-major to look right on the device:

usChangelnStateForOnePixel = ABS(pDC -> usStyleRatioX * sDeltaX) > ABS(pDC -> usStyleRatioY * sDeltaY)?
pDC -> usStyleRatioX : pDC -> usStyleRatioY;

where:
ABS(pDC -> usStyleRatioX * sDeltaX) = 64 * 85 = 5440
ABS(pDC -> usStyleRatioY * sDeltaY) = 88 * 64 = 5632

Because 5440 < 5632, the line is styled y-major by using pDC -> usStyleRatioY. The x-major diagonal line
drawing routine usually adds pDC -> usStyleRatioX to the error-term byte for every increment of x. This is
correct if the aspect ratio is 1 :1. However, because the aspect ratio is not 1 :1, pDC - > usStyleRatioY must
be used in this case for every increment of y although the line is drawn as an x-major line with the x-major
routine. This means that regardless of which way the line is drawn, it must be styled according to how it
looks on the device, which is determined by the maximum metric method described above.

LINETYPE_ALTERNATE is a special case of styled line. When drawing a line of this type (plbnd -> usType
= LINETYPE_ALTERNATE), the x and y style ratios are temporarily set to 256 to set every other pel on the
line on. Notice that changing the values returned by GreGetStyleRatio is not necessary because the
graphics engine does not call this function if the line type is LINETYPE_ALTERNATE.

PolyShortLines and Styling: The graphics engine determines how to style the PolyShortline, and
either sets the PSL_ YMAJOR bit of the style field or clears it to 0. Therefore:

if(psl -> usStyle & PSL_YMAJOR) {

·Style it y-major by adding pDC -> usStyleRatioY to the error-tenn value upon each increment of y
as it is drawn.
}
else {

Style it x-major by adding pDC -> usStyleRatioX to the error-tenn value upon each increment of x
as it is drawn.
}

First and Last Pel Considerations: It is the responsibility of the presentation driver to ensure that a
series of line, arc, and fillet orders all join up correctly including the on/off counts defined by the current
line attributes. For example, when drawing connected lines (Polylines), the handling routine must not
draw the first pel of the second, and subsequent, lines. Typically, the presentation driver maintains a flag
in the DC instance data structure to indicate whether the first pal of a line is to be drawn. This flag is set by
GreSetCurrentPosition and cleared by any subsequent drawing primitive. To ensure that a figure is closed
correctly, GreCloseFigure does not draw the last pal in the closure line.

Some orders are d~ned as move type operations. A move causes three things to happen:

• Line style sequence is reset.

• The next line, arc, fillet, or partial arc primitive is drawn with first and last pal (subject to the line style
sequence).

• In an area, if the current figure is not closed (that is, the current device coordinate position is not the
same as the start device coordinate position), an implicit closure line is drawn to close it.

Subsequent start line, arc, fillet, and partial arc primitives are drawn to include the last but not the first pel
(subject to the line style sequence). Any closed figure (full arc, box, or pie slice drawn with a boundary), is
drawn with its boundary complete (no missing pals) and with the line-pattern sequence honored around all
the parts of its boundary. Such closed figures are not considered to be move type operations, and allow
construction of complex area boundaries.

Chapter 8. Mandatory Functions for All Drivers 8-21

mandatory functions (for all drivers) by category

Move type operations are:

• GreSetCurrentPosition.

• Any GreSetxxx function that changes or might change the transform from world-coordinate space to
device coordinates. For example, GreSetModelTransform or GreSetWindow/ViewportTransform.

• Any GreSetxxx function that changes or might change the current clipping. For example,
GreSetViewi ngli m its.

A different set of rules is necessary to construct a boundary for scan-line area filling. For example, ignore
line style and draw all lines solid with first pel off, last pel on (see "GreGetlineOrigin" on page 8-90). This
boundary is different from the boundary that is drawn on the screen after the interior is filled. Functions
such as GrePolyline, GreArc, and GrePolyFillet that are preceded by a move operation are drawn with the
first pel on and the last pel set off.

Mandatory Functions (for All Drivers) by Category

Related mandatory functions for all presentation drivers can be grouped together into the following
categories:

Attribute Functions

• GreDeviceGetAttributes (see page 8-43)
• GreDeviceSetAttributes (see page 8-48)
• GreDeviceSetGlobalAttribute (see page 8-51)
• GreGetPairKerningTable (see page 8-91).

Bit-Map Functions

• GreBitblt (see page 8-26)
• GreDeviceCreateBitmap (see page 8-36)
• GreDeviceDeleteBitmap (see page 8-41)
• GreDeviceSelectBitmap (see page 8-47)
• GreDrawBits (see page 8-53)
• GreDrawBorder (see page 8-57)
• GreGetBitmapBits (see page 8-83)
• GreGetPel (see page 8-92)
• GrelmageData (see page 8-93)
• GreSetBitmapBits (see page 8-134)
• GreSetPel (see page 8-142).

Color Table Functions

• GreCreatelogColorTable (see page 8-34)
• GreQueryColorData (see page 8-108)
• GreQueryColorlndex (see page 8-109)
• GreQuerylogColorTable (see page 8-120)
• GreQueryNearestColor (see page 8-121)
• GreQueryRealColors (see page 8-123)
• GreQueryRGBColor (see page 8-125).
• GreRealizeColorTable (see page 8-129).
• GreUnrealizeColorTable (see page 8-144).

8-22 Presentation Driver Reference

mandatory functions (for all drivers) by category

Device Functions 2

• GreDeviceQueryFontAttributes (see page 8-44)

• GreDeviceQueryFonts (see page 8-45)
• GreErasePS (see page 8-62)
• GreNotifyClipChange (see page 8-96)
• GreNotifyTransformChange (see page 8-97)

• GreRealizeFont (see page 8-130).

Device Functions 3

• GreAccumulateBounds (see page 8-25)
• GreDeviceSetDCOrigin (see page 8-50)
• GreGetBoundsData (see page 8-86)
• GreGetCodePage (see page 8-87)
• GreGetDCOrigin (see page 8-89)
• GreGetlineOrigin (see page 8-90)
• GrelockDevice (see page 8-95)
• GreResetBounds (see page 8-133)
• GreSetCodePage (see page 8-137)
• GreSetlineOrigin (see page 8-140)
• GreUnlockDevice (see page 8-143).

GreEscape Functions

• GreEscape DEVESC_ABORTDOC (see page 8-63)

• GreEscape DEVESC_BREAK_EXTRA (see page 8-65)

• GreEscape DEVESC_CHAR_EXTRA (see page 8-66)

• GreEscape DEVESC_DBE_FIRST (see page 8-67)

• GreEscape DEVESC_DBE_LAST (see page 8-68)

• GreEscape DEVESC_DRAFTMODE (see page 8-69)

• GreEscape DEVESC_ENDDOC (see page 8-70)
• GreEscape DEVESC_FLUSHOUTPUT (see page 8-71)

• GreEscape DEVESC _ GETCP (see page 8-72)

• GreEscape DEVESC_GETSCALINGFACTOR (see page 8-73)

• GreEscape DEVESC_NEWFRAME (see page 8-74)

• GreEscape DEVESC_NEXTBAND (see page 8-75)

• GreEscape DEVESC_QUERYESCSUPPORT (see page 8-76)

• GreEscape DEVESC _ QUERYVIOCELLSIZES (see page 8-77)

• GreEscape DEVESC_RAWDATA (see page 8-79)

• GreEscape DEVESC_SETMODE (see page 8-80)

• GreEscape DEVESC_STARTDOC (see page 8-81)

• GreEscape DEVESC_STD_JOURNAL (see page 8-82).

Line Functions

• GreDisjointlines (see page 8-52)
• GreDrawlineslnPath (see page 8-60)

• GreGetCurrentPosition (see page 8-88)
• GrePolyline (see page 8-99)
• GrePolyScanline (see page 8-102)
• GrePolyShortline (see page 8-104)
• GreSetCurrentPosition (see page 8-138).

Marker Function

• GrePolyMarker (see page 8-101).

Chapter 8. Mandatory Functions for All Drivers 8-23

mandatory functions (for all drivers) by category

Query Functions

• GreQueryDeviceBitmaps (see page 8-110)
• GreQueryDeviceCaps (see page 8-111)
• GreQueryDevResource (see page 8-113)
• GreQueryHardcopyCaps (see page 8-118).

Text Functions

• GreCharString (see page 8-30)
• GreCharStringPos (see page 8-31)
• GreQueryCharPositions (see page 8-106)
• GreQueryTextBox (see page 8-126)
• GreQueryWidthTable (see page 8-128).

8-24 Presentation Driver Reference

j

device function 3

GreAccumulateBounds

#define INCL_GRE_DEVMISC3

BOOL GreAccumulateBounds (hdc, prclRect, plnstance, lFunction)

This function is called to merge bounds into the total bounds held by the presentation driver. The
presentation driver does bounds calculations for all drawing primitives. It must convert the bounds to
model space as they are accumulated before merging with the GPI bounds. This can be done with
GreConvert. GreAccumulateBounds is related to GreResetBounds (page 8-133) and GreGetBoundsData
(page 8-86).

Support: This function must be supported by the presentation driver. GreAccumulateBounds is used
when a drawing is created to maintain a rectangle that forms the bounding box for the entire drawing. This
rectangle is used in transforms and other functions that manipulate the entire drawing at once.
GreAccumulateBounds can be handled by bit-map emulation.

Stack Frame

Parameter .Data Type Description

hdc HOC Device context handle

prclRect PRECTL Pointer to rectangle, defined as a RECTL structure in device coordinates

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreAccumulateBounds

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD ..;.SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_JNV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter.8 .. Mandatory Eunctiotui..for-AILDrivers 8-25

bit-map function

GreBitblt

#define INCL_GRE_BITMAPS

LONG GreBitblt (hdc, hdcSrc, cPoints, paptlPoint, lRop, flOptions, pBattrs, plnstance, lFunction)

This function modifies bit-map data at a target rectangle in the current DC. The modification can copy a
rectangle of data from a specified source DC to the target or perform a raster operation on the target. The
device contexts can be memory DCs with bit maps selected, or DCs belonging to devices that support
raster operations.

When copying bits from a color bit map to a monochrome bit map or device, only those pels that are in the
source background color are copied to the target as background color. All other pels are copied to the
target as foreground color. Copying is nondestructive. When the target and source rectangles are in the
same DC, no information is lost from the source if the rectangles overlap. When the target is expressed in
world coordinates (that is, the BBO_TARGWORLD flag is set in flOptions), they must be transformed to
device coordinates. The bits are transferred to an upright rectangle in device space, regardless of any
rotational elements that might have been present in the transforms.

The attribute structure identified by the pBattrs parameter defines the bit-map foreground and background
colors. If pBattrs is NULL, the handling routine uses the current foreground and background colors.

When the mix specified by IRop requires both source and pattern, a 3-way operation is performed by using
the current pattern in the target DC. If pattern mixing is not required, a 2-way operation is done. If any of
the source data is unavailable, the handling routine transfers those bits that are present and returns
without error. This might occur when the source DC is a window on the screen that has been overlaid by
another. In this example, the handling routine must proceed by reading what is there.

Support: This function must be supported by the presentation driver. GreBitblt is called by the function
GpiBitBlt, and is used to modify bit-map data within a target rectangle of the current device context.
However, if the destination is larger or smaller than the source, the presentation driver can pass this
function to the graphics engine by using the original pointer copied from the dispatch table.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hdcSrc HOC Source device context or bit-map handle.

cPoints LONG Number of (x, y) pairs in paptlPoint. See below.

paptlPoint PPOINTL Pointer to an array of (x, y) coordinate pairs. See below.

IRop LONG Raster operation code. See below.

fl Options ULONG Specifies treatment of eliminated lines and columns when compression is
done. See below.

pBattrs PBITBL TA TTRS Pointer to attributes. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreBitblt.

hdcSrc Handle to the source DC or bit map. When IRop does not require a source, hdcSrc is passed
as NULL. The handling routine then copies the current pattern to the currently selected bit
map or device.

8-26 Presentation Driver Reference

cPolnts

bit-map function

A count of the number of (x, y) pairs in the paptlPoint array. The count can be 2, 3, 4:

cPolnts - 2 A raster operation (as determined by IRop) on the destination rectangle.

cPolnts - 3 A copy between two rectangles of the same size. Only the bottom-left corner is
given for the source rectangle.

cPolnts -4 Operation is determined by comparing the sizes of the two rectangles:

Target<Source Compress the source rectangle into the target rectangle.
The flOptions flags determine how to handle eliminated rows
and columns. In this case, the function can be passed to the
GreBitblt routine in the graphics engine.

Target - Source Copy between equal rectangles.

Target>Source Stretch the source rectangle into the target rectangle. In this
case, the function can be passed to the GreBitblt routine in
the graphics engine.

paptlPolnt Pointer to a block of (x, y) coordinate pairs that define the target and source rectangles. The
coordinates, which can be passed as a pair of RECTL structures, define the bottom-left and
top-right corners of the target and source rectangles (see cPoints above for exceptions):

(xTgtBL, yTgtBL), (xTgtTR, yTgtTR), (xSrcBL, ySrcBL), (xSrcTR, ySrcTR)

When the source rectangle is totally or partially outside the source bit map (or device), the
operation is implementation-dependent for that area (that is, the programmer of the called
presentation driver must decide what to do).

Note: When BBO_TARGWORLD is not set, the rectangles are noninclusive. That is, they
include the left and lower boundaries in device units but not the top and right
boundaries. When the bottom-left corner of a rectangle maps to the same device pel
as the top-right corner, that rectangle is considered to be empty.

When BBO_TARGWORLD is set, the target rectangle is inclusive at all boundaries.
The source is noninclusive.

IRop Raster operation code. The low-order byte represents a mix value in the range OOH- FFH.

flOptions

Raster operation code values and the mix-bit table are defined in the OS/2 2.0 Presentation
Manager Programming Reference. The handling routine uses IRop to determine the
operations to perform on the pattern, source, and target to get the required mix.

In addition to the ROP values defined at the API, the presentation driver must support

ROP _GRAY (OOOOSOCAH). This value is used to shade the text for menu items that are not
currently selectable. When ROP _GRAY is set, the handling routine overpaints the foreground
pattern by using the current pattern and the background pattern color (background pels for
the pattern are not changed). For the PATSYM_HALFTONE pattern, this overpaints the
background pattern color onto alternate pels leaving those in between unchanged.

Option flags:

BBO_OR

BBO_AND

BBO_IGNORE

BBO_TARGWORLD

Stretch and compress, as necessary, ORing any eliminated rows
and columns. Used for White on Black.

Stretch and compress, as necessary, ANDing any eliminated
rows and columns. Used for Black on White.

Stretch and compress, as necessary, ignoring any eliminated
rows and columns. Used for color.

The target rectangle is defined in world coordinates in the target
PS. When this option is specified, the target rectangle is
transformed to device coordinates. Where any shear or rotation
has occurred, this must be converted to an upright rectangle that

Chapter 8. Mandatory Functions for All Drivers 8-27

bit-map function

pBattrs

bounds the transformed figure. This is then used as the target for
the operation. No inversion of the image takes place.

BLTMODE-.SRC_BITMAP hdcSrc is a bit-map handle. The bit map must not be currently
selected into a device context. If this flag is not set, hdcSrc is a
DC handle.

BLTMODE_ATTRS_PRES If set, the pBattrs parameter is present. This option can be ORed
with any of the above options.

Note: Flags 15-31 are not used by the system. They are reserved for use by the
presentation driver.

This points to a BITBLTATTRS structure:

cSlze
I Color
IBackColor

Size of this structure
Foreground color of source
Background color of source.

The color values are used in conversions between monochrome and color data, and is the
only format conversion required. The conversions are required for:

• Output of a monochrome pattern to a color device. In this case, the source pattern is
converted to a color pattern. This is performed by using the colors provided in the
BITBLTATTRS structure. If these colors are not provided, the handling routine uses the
current area colors for the target DC. See "Area (Pattern) Attributes" on page 8-5. The
bits are then transferred so that:

- Source 1 s become (target area) foreground color
- Source Os become (target area) background color.

• Transfer from a monochrome bit map to a color bit map or device. In this case, the source
bits are converted by using the current image colors. These are the colors provided in the
BITBLTATTRS structure. If these colors are not provided, the handling routine uses. the
current image colors for the target DC. See "Image Attributes" on page 8-11. The bits
are then transferred so that:

- Source 1s become (target image) foreground color
- Source Os become (target image) background color.

• Transfer from a color bit map to a monochrome bit map or device. In this case, the source
bit map is converted by using the source and target image colors. The target colors are
provided in the BITBLTATTRS structure. If these colors are not provided, the handling
routine uses those in the image attributes bundle for the target DC. See "Image
Attributes" on page 8-11. When the source is a device context, the source-image
background color is that from the source DC. When the source is a bit-map handle, the
background color is taken from the BITBLTATTRS structure, if provided, or otherwise from
the background-image color of the target DC. The bits are then transferred so that:

Source pels that are the source-image background color become target-image
background color.

All other pels become target-image foreground color.

When IRop does not call for a pattern, the pattern set and pattern symbol are not used.
Neither the source nor the pattern is required when a bit map or part of a bit map is being
cleared to a particular color. When a pattern is required, dithering can be done for solid
patterns in a color that is not available on the device. Color dithering is described on page
8-121.

8-28 Presentation Driver Reference

bit-map function

Return Codes: On completion, the handling routine must return an LONG integer (cHits), indicating,

where appropriate, whether correlation hits have been detected:

GPI_ OK Successful
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)

GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED

PMERR_BITMAP _NOT_SELECTED

PMERR_ COORDINATE_ OVERFLOW

PMERR _DEV _FUNC _NOT _INSTALLED

PMERR_EXCEEDS_MAX_SEG_LENGTH

PMERR_HBITMAP _BUSY

PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED

PMERR_INCOMPATIBLE_BITMAP

PMERR _INCORRECT _DC_ TYPE

PMERR_INSUFFICIENT _MEMORY

PMERR_INV _BACKGROUND_ COL_A TTR

PMERR_INV _BITMAP _DIMENSION

PMERR_INV _BITBLT _MIX

PMERR_INV _BITBLT _STYLE

PMERR_INV _COLOR_ATTR
PMERR_INV _ COLOR_DATA

PM ERR _INV_ COLOR_FORMAT

PMERR _INV_ COLOR_INDEX

PMERR_INV _COLOR_ OPTIONS

PMERR_INV _ COLOR_START _INDEX

PMERR_INV_COORD_SPACE

PMERR _INV_ COORDINATE

PMERR_INV_DC_DATA

PMERR_INV_DC_TYPE
PMERR_INV _DRIVER_NAME

PMERR_INV _HBITMAP
PMERR_INV_HDC
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR INV IN PATH - - -
PMERR_INV _INFO_ TABLE

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _PA TTERN_SET _A TTR

PMERR_INV _PA TTERN_SET _FONT

PMERR _INV _PICK_APERTURE_POSN

PMERR_INV_SCAN_START

PMERR_INV _ USAGE_PARM

PMERR_ UNSUPPORTED _A TTR_ VALUE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-29

text function

GreCharString

#define INCL_GRE_STRINGS

LONG GreCharString (hdct cCharst pchStringt plnstancet lFunction)

This function draws a character string starting at the current (x, y) position. Upon completion, the current
(x, y) position is the start point for the character cell immediately after the last character in the string.

Support: GreCharString must be supported by the presentation driver. The handling routine must
provide full support for drawing characters from an image font in CM_MODE1 when the character direction
is CHDIRN_LEFTRIGHT (see "Character Attributes" on page 8-6). For outline characters or characters in
any other mode or direction, the handling routine can dispatch the call to the graphics engine at the
address given for this call in the default dispatch table.

GreCharString is called by the function GpiCharString. GreCharString is used to draw a character string
from the current position within the presentation space. It updates the current presentation space position
upon completion of output and produces a call to GreSetCurrentPosition.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

cChars LONG Number of characters in string

pchString PCH Pointer to character string

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCharString

Return Codes: On completion, the handling routine must return a LONG value (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on,
and a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_FONT _AND _MODE_MISMATCH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS _NOT_ SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _LENGTH_ OR_COUNT
PMERR_PATH_LIMIT _EXCEEDED.

8-30 Presentation Driver Reference

text function

GreCharStringPos

#define INCL_GRE_STRINGS

LONG GreCharStringPos (hdc, pptlStart, prclRect, flOptions, cChars, pchString, pAdx, pAttrs, plnstance, lFunction)

This function draws a character string. The string can be drawn from the current (x, y) position or from a

position specified.

Support: GreCharStringPos must be supported by the presentation driver. The handling routine must

provide full support for drawing characters from an image font in CM_MODE1 when the character direction

is CHDIRN_LEFTRIGHT (see "Character Attributes" on page 8-6). For outline characters or characters in

any other mode or direction, the handling routine can dispatch the call to the graphics engine at the

address given for this call in the default dispatch table.

GreCharStringPos is called by the function GpiCharStringAt. GreCharStringPos is used to draw a character

string either at the current position or at a specified position. It will also update the current presentation

space position upon completion of output.

Stack Frame

Parameter

hdc

pptlStart

prclRect

fl Options

cChars

pchString

pAdx

pAttrs

plnstance

I Function

prclRect

Data Type Description

HOC Device context handle

PPOINTL Pointer to (x, y) coordinates of start position.

PRECTL Pointer to an opaque or clip rectangle. See below.

ULONG Flags. See below.

LONG Number of characters in string.

PCH Pointer to character string.

PLONG Pointer to Increment array. See below.

PCSP_INFO Pointer to attributes structure. See below.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreCharStringPos.

The clipping rectangle pointed to by this parameter is defined as a RECTL structure:

xLeft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

This rectangle, which is in world coordinates, is used as the clipping rectangle or as the
background for the string (or both) depending on the value of flOptions. When the
CHS_OPAQUE flag is set, normal background mix attributes are ignored and the rectangle is
drawn using overpaint and the character background color attribute. When the CHS_OPAQUE

is not set, the background is drawn using the normal method. When neither CHS_OPAQUE
nor CHS_CLIP are specified, this parameter is ignored. Notice that points on the boundary of
this rectangle are considered to be inside the rectangle.

Chapter 8. Mandatory Functions for All Drivers 8-31

text function

flOptions

pAdx

pAttrs

The following flags can be used in combination:

CHS_OPAQUE Background of characters is defined by the rectangle prclRect. The
rectangle is to be shaded (with background color and overpaint) before
drawing.

CHS_ VECTOR Increment vector supplied (pAdx). If 0, pAdx is ignored.

CHS_LEAVEPOS Leave current position at the start of string.

CHS_CLIP Clip string to rectangle.

CHS_START_XY Start position of the string. When set, the handling routine must draw
the string from the position indicated by pptlStart. If this flag is not set,
the current position is used.

CHS_ATTR_INFO Attributes to be used. When this flag is set, pAttrs indicates the
foreground and background colors. Current attributes are unchanged.
If the flag is not set, the string is drawn using the current character
attributes. See "Character Attributes" on page 8-6.

CHS_UNDERSCORE Underscore the characters. See the FATTRS structure in
"GreCreateLogicalFont" on page 11-14.

CHS_STRIKEOUT Overstrike the characters.

Pointer to an array of LONG integers, one element for each character in the string. When
CHS_ VECTOR is set, this array is used to set the spacing between characters. Each element
is the distance in world coordinates from the bottom-left corner of the corresponding
character in the string to the bottom-left corner of the next. The distance is measured along
the baseline for left-to-right and right-to-left character directions, and along the shear line for
top-to-bottom and bottom-to-top character directions. The final element is used to reposition
the current position, when necessary.

Pointer to a CSP _INFO structure. This structure contains the attributes to be used to draw the
string when the CHS_ATTR_INFO flag is set. These do not alter the current character
attributes (see "Character Attributes" on page 8-6). The CSP _INFO structure is defined as:

cSlze
IColor
IBackColor

Number of bytes in structure
Use foreground color
Use background color.

Return Codes: On completion, the handling routine must return a LONG value (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PM ERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_FONT _AND_MODE_MISMATCH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY

8-32 Presentation Driver Reference

PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_PATH_LIMIT _EXCEEDED.

text function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-33

color table function

GreCreateLogColorTable

#define INCL_GRE_COLORTABLE

BOOL GreCreatelogColorTable (hdc, flOptions, lFonnat, lStart, cCount, pData, pinstance, lFunction)

This function defines the entries of the logical color table.

Support: This function must be supported by the presentation driver. GreCreatelogColorTable is called
by GpiCreatelogColorTable to create a logical color table, which is used in subsequent drawing
operations.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Options UL ONG See below.

I Format LONG Format of entries in the table. See below.

I Start LONG Starting index, only relevant for LCOLF _CONSECRGB.

cCount LONG Number of elements supplied in application data area. See below.

pData PL ONG Pointer to application data area. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCreateLogColorTable.

flOptlons Valid options are:

I Format

LCOL_RESET Indicates that the handling routine must reset the color table to default
before processing the remainder of this function.

Note: This option is assumed when the color table is changed from
LCOLF _RGB to LCOLF _INDRGB or LCOLF _CONSECRGB.

LCOL_REALIZABLE Indicates that the application can call GreRealizeColorTable at the
appropriate time. This can affect the way the handling routine maps
the indexes when the logical color table is not realized. A realizable
color table is only required to provide color mapping for its color
indexes while it is realized.

If this flag is not set, GreRealizeColorTable has no effect and posts a
warning.

LCOL_PURECOLOR For solid patterns, pattern colors that are not available can be
approximated by dithering. When this flag is set, only pure colors are
used; the handling routine must not dither colors. The default is to
allow color dithering.

Other flags are reserved and must be 0.

Valid formats are:

LCOLF _INDRGB Array of (index, RGB) values. Each pair of values contains 8 bytes, a
4-byte index and a 4-byte color. This sets the color table into index
mode, and forces LCOL_RESET if it is in RGB mode.

8-34 Presentation Driver Reference

color table function

LCOLF _CONSECRGB Array of (RGB) values corresponding to color indexes starting from
IStart upwards. Each entry is a 4-byte value. This sets the color table
into index mode, and forces LCOL_RESET if it is in RGB mode.

LCOLF_RGB Color index = RGB. This sets the color table to RGB mode.

cCount The number of elements supplied in pData. This can be set to O if the color table is to be reset
to the default, or LCOLF_RGB. When this is 0, LCOLF_INDRGB and LCOLF_CONSECRGB have
the same effect.

For LCOLF _INDRGB, cCount must be an even number.

pData Data area containing the color table definition data. The format depends on the value of
!Format. Each color value is a 4-byte integer with a value of:

(R*65536) + (6*256) + B

where:
R=red intensity value
G=green intensity value
B=blue intensity value

The maximum intensity for each primary is 255.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: Error checking for this function is performed by the graphics engine. Error
codes for conditions the handling routine can expect to be passed by the graphics engine include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_FORMAT
PMERR_INV _ COLOR_INDEX
PMERR_INV _COLOR_START _INDEX
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_REALIZE_NOT _SUPPORTED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: See GpiCreateLogColorTable in the OS/2 2.0 Presentation Manager Programming Reference
for a full description of this function.

Chapter 8. Mandatory Functions for All Drivers 8-35

bit-map I.unction

GreDeviceCreateBitmap

#define INCL_GRE,;_BITMAPS

ULONG GreDeviceCreateBitmap (hdc, plnfoHd, flUsage, pBitmap, plnfo, plnstance, lFunction)

This function creates a bit map and obtains its handle.

Support: This function must be supported by the presentation driver. GreDeviceCreateBitmap is called
from GreCreateBitmap, which is one of the graphics engine internal device support functions.

Stack Frame

Parameter Data Type Description

hdc .HOC Device context handle.

plnfoHd PBITMAPINFOHEADER Pointer to BITMAPINFOHEADER or BITMAPINFOHEADER2 structure
defining the new bit map. See below.

fl Usage UL ONG Additional information used when creating a new bit map. See below.

pBitmap PBYTE Pointer to bit-map initialization data. See below.

plnfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINF02 structure. See below.

ptnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order
WORD= NGreDeviceCreateBitmap.

plnfoHd Pointer to either a BITMAPINFOHEADER structure:

ebFlx
ex
cy
ePlanes
eBltCount

Length in bytes of this structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pel.

Notice that each plane has ((cx*cBitCount+31)/32*4*cy) bytes.

Or pointer to a BITMAPINFOHEADER2 structure:

ebFlx

ex

cy

ePlanes

eBltCount

ulCompression

eblmage

exResolution

Length in bytes of this structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits p·er pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

8-3-6 Prese.ntation Driver Reference

cyResolution

cclrUsed

cclrlmportant

usUnlts

usReserved

usRecordlng

usRenderlng

cSize1

bit-map function

Vertical component of the resolution of the target device. That is, the

resolution of the device the bit map is intended for in the units specified by

usUnits. This information enables an application to select from a resource

group the bit map that best matches the characteristics of the current output

device.

The number of color indexes from the color table that are used by the bit

map. If it is 0 (default), all the indexes are used. If it is non-zero, only the

first cclrUsed entries in the table are accessed by the system. Further

entries can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any

indexes beyond cclrUsed are not valid. For example, a bit map with 64

colors can use the 8-bitcount format without having to supply the other 192

entries in the color table. For the 24-bitcount standard format, cclrUsed is

the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit

map. More colors can be used in the bit map, however, it is not necessary to

assign them to the device palette. These additional colors can be mapped to

the nearest colors available. Zero (default) means that all entries are

important. For a 24-bitcount standard format, the cclrlmportant colors are

also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTIOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally

half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION

BRH_PANDA

BRH_SUPERCIRCLE

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion

algorithm.

Processing algorithm for noncoded document

acquisition.

Super circle algorithm.

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1

is the error damping as a percentage in the range 0-100. A value of 100%

indicates no damping. A value of 0% indicates that any errors are not

diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the

x-dimension of the pattern used in pels.

cSlze2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this

parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is

specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncodlng Color encoding:

ulldentlfler

BCE_RGB (Default.) Each element in the color array is an RGB2 data

type.

Reserved for application use.

Chapter 8. Mandatory Functions for All Drivers 8-37

bit-map function

flUsage The only valid flag is:

CBM_INIT When set, the pBitmap and palnfo parameters are used to initialize the newly
created bit map. It is assumed that enough data is passed to initialize the whole bit
map.

Other flags are reserved and must be ignored by the handling routine.
pBltmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates

appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pel, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of zeros would be required to pad the line to a ULONG boundary.

pinto Pointer to either a BITMAPINFO structure:

ebFlx
ex
ey
ePlanes
eBitCount
argbColor[]

Length of structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pel
Color table array of RGB structures:
bBlue
bGreen
bRed

Or pointer to a BITMAPINF02 structure:

ebFlx Length of structure

ex

ey

ePlanes

eBitCount

ulCompression

eblmage

exResolutlon

eyResolution

eelrUsed

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If it is 0 (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system. Further
entries can be omitted.

8-38 Presentation Driver Reference

cclrlmportant

usUnits

usReserved

usRecordlng

usRendering

cSlze1

bit-map function

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map, however, it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrlmportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pets per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION

BRH_PANDA

BRH _ SUPERCIRCLE

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion
algorithm.

Processing algorithm for noncoded document
acquisition.

Super circle algorithm.

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pets.

cSlze2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pets.

ulColorEncoding Color encoding:

ulldentifier

argbColor[]

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.

Color table array of RGB2 structures:

bBlue
bGreen
bRed
fcOptions Reserved.

Chapter 8. Mandatory Functions for All Drivers 8-39

bit-map function

Return Codes: On completion, the handling routine must return the bit-map handle (hbm), or
GPl_ERROR if an error is detected.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _HDC
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SCAN_START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: Bit-map size is limited by available memory. The maximum width and height are 64KB.
Typically, the following standard bit-map formats are used:

Bitcount
1
4
8

24

Planes
1
1
1
1

All presentation drivers must be able to create and use all of the standard formats. However, presentation
drivers for two-color devices will lose the color information.

The DC handle supplied to this function must never be NULL, because bit maps always belong to some
device. The bit map is created on the device specified and can be selected to a different device later
because the graphics engine can handle transfer of bits from one device to the other. When a presentation
driver supports only a single color format, requests for other color bit-map formats are mapped to the
supported function. No error is returned.

8-40 Presentation Driver Reference

bit-map function

GreDeviceDeleteBitmap

#define INCL_GRE_BITMAPS

BOOL GreDeviceDeleteBitmap (hdc, hbm, pReturns, flOptions, plnstance, lFunction)

This function destroys a bit map.

Support: This function must be supported by the presentation driver.

Stack Frame

Note: The handling routine must not use the values passed on the stack in the locations ·reserved for hdc
and plnstance. These locations contain undefined data.

Parameter Data Type Description

hdc Reserved See Note above.

hbm UL ONG Handle of bit map to be destroyed.

pReturns PDELETERETURN Pointer to returned bit-map parameters.

flOptions UL ONG Additional information used by the engine when creating or deleting a bit
map. See below.

reserved UL ONG See Note above.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceDeleteBitmap.

pReturns DELETERETURN structure:

pinto Pointer to a BITMAPINFO or BITMAPINF02 structure
pBlts Pointer to bit map

flOptlons The only valid flag is:

CBM_INIT When set, bit-map parameters must be returned in pReturns. This means that
before deleting the bit map, the handling routine must translate it into one of the
standard formats. The presentation driver must then allocate two blocks of
memory, one for the bit map and another for the bit-map parameters and color
translation table. The presentation driver can use any of the standard formats.
However, it must take into account the parameters originally specified in
GreDeviceCreateBitmap. It is recommended that the handling routine use the
format that uses the least amount of memory without losing any bit-map
information.

When this flag is not set, bit-map data is not returned.

Other flags are reserved and should be ignored by the handling routine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 8. Mandatory Functions for All Drivers 8-41

bit-map function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _HDC
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SCAN_START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-42 Presentation Driver Reference

attribute function

GreDeviceGetAttributes

#define INCL_GRE_DEVMISCl

BOOL GreDeviceGetAttributes (hdc, lPrimType, flAttrsMask, pAttrs, plnstance, lFunction)

This function queries the attribute values currently set in the device.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

IPrimType LONG Bundle primitive type. See below.

flAttrsMask ULONG Attribute mask. See below.

pAttrs PBUNDLE Pointer to the fixed-format bundle record to which the attributes are

returned. Fields other than those indicated by flAttrsMask must not be

modified.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceGetAttributes.

IPrlmType Indicates the bundle type. Valid primitive values are:

PRIM_LINE
PRIM_CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle, see page 8-3.
Character attribute bundle, see page 8-6.
Marker attribute bundle, see page 8-12.
Pattern attribute bundle, see page 8-5.
Image attribute bundle, see page 8-11.

flAHrsMask Specifies the attributes to be returned. This mask contains a bit corresponding to each

attribute in the bundle record that is required. For each set bit, the handling routine must

return the corresponding attribute values and default mask bits. Only the foreground color

and background color attributes can be requested for any primitive type.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-43

device function 2

GreDeviceQueryFontAttributes

#define INCL_GRE_DEVMISC2

BOOL GreDeviceQueryFontAttributes (hdc, cMetrics, pfmMetrics, plnstance, lFunction)

This function stores the metrics of the currently selected font at the location addressed by pfmMetrics.
Notice that the handling routine must transform device coordinates to world coordinates before returning
the results to the calling routine. This can be done by using GreConvert.

Support:· This function must be supported by the presentation driver. GreDeviceQueryfontAttributes is
called from the graphics engine internal function GreQueryfontAttributes in response to an application
calling one-of the GpiQueryfontxxx() APls. This call can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

cMetrics UL ONG Size of FONTMETRICS structure

pfmMetrics PFONTMETRICS Pointer to FONTMETRICS structure

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order
WORD= NGreDeviceQueryFontAttributes

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-44 Presentation Driver Reference

device function 2

GreDeviceQueryFonts

#define INCL_GRE_DEVMISC2

LONG GreDeviceQueryFonts (hdc, flOptions, pszFaceName, pfmMetrics, cMetrics, pcFonts, plnstance, lFunction)

If the OF _PUBLIC option flag (see below) is set, this function returns the characteristics of device fonts in an
array of FONTMETRICS structures. The returned fonts include those that correspond to device modes such
as expanded and expanded-bold. When the DC is not set to draft mode, the returned fonts are those that
can be positioned to the nearest pel. Such precision is not necessary if the DC is in draft mode. Draft
mode is set by the system calling the GreEscape DEVESC_DRAFTMODE.

In the FONTMETRICS structures, the handling routine sets:

• szFacename field to a meaningful name, for example, 'Courier Bold'.
• usCodepage field to 0. (This field has no significance in this context.)
• IMatch field to a negative value. This allows the presentation driver to map the font when the value is

specified in a call to GreRealizeFont.

The presentation driver must transform device coordinates to world coordinates before it returns the
results to the calling routine. This can be done by using GreConvert. For presentation drivers that support
only outline fonts, the return values are for outline fonts even when image fonts have been loaded.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle ..

fl Options ULONG Option flags. See below.

pszFaceName PSZ Pointer to FaceName to match. If this is a NULL pointer, all faces are
matched.

pfmMetrics PFONTMETRICS Pointer to array of FONTMETRICS structures.

cMetrics LONG Number of bytes of each metrics structure in the metrics array.

pc Fonts PLONG Pointer to the number of fonts requested. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD=flags; low-order WORD= NGreDeviceQueryFonts.

flOptions The only valid flag for this function is:

pcfonts

OF _PUBLIC When this flag is set, the handling routine must return all device fonts. Device
fonts are public fonts and they are returned in the array addressed by
pfmMetrics. If this flag is not set, the handling routine should not return any
fonts.

This is a pointer to the number of fonts requested. On completion, the handling routine
modifies the value indicated to the number of fonts returned. An application can determine the
number of public fonts available to it by passing a value of 0 at the address indicated by this
pointer.

Chapter 8. Mandatory Functions for All Drivers 8-45

device function 2

Return Codes: The handling routine should return the number of fonts not returned, or GPl_ALTERROR

if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix 8 of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-46 Presentation Driver Reference

bit-map function

GreDeviceSelectBitmap

#define INCL_GRE_BITMAPS

BOOL GreDeviceSelectBitmap (hdc, hbm, plnstance, lFunction)

This function informs the presentation driver that a new bit map is selected into the DC. See also

"GreSelectBitmap" on page 11-56.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hbm ULONG Device bit-map handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreDeviceSelectBitmap

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-47

attribute function

GreDeviceSetAttributes

#define INCL_GRE_DEVMISCl

BOOL GreDeviceSetAttributes (hdc, lBType, flDefsMask, flAttrsMask, pAttrs, plnstance, lFunction)

This function sets attributes in the attribute bundle specified by IBType. Pointers to the current attribute
bundles are maintained by presentation drivers in the instance data structure. The handling routine for
GreDeviceSetAttributes modifies the specified bundle as directed by flAttrsMask and flDefsMask (see
"Remarks" on page 8-49).

The handling routine must allow any attribute to be set to any value in the defined range for that attribute
even when the value cannot be implemented on the device. For example, the presentation driver for a
vector hardcopy device must accept BM_XOR background mix. When the hardcopy driver is called to write
to the device, it should map values that cannot be implemented to the default value. If this call would set
any of the attributes to a value that is not in the defined range of values for that attribute, the handling
routine must restore all attributes to the value they had on entry to this routine.

When this function is called for the first time to set the character attributes, the handling routine should set
the default font in the usSet parameter of the character attribute bundle (see page 8-6). If the default font is
an engine font, the presentation driver must save the address and flags of the font. This ensures that the
default font is restored if the DC is reset (see "Enable Subfunction 09H - ResetDCState" on page 7-19).

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

IBType LONG Bundle type. See below.

flDefsMask UL ONG Mask indicating the attributes to be set to their standard default values.

flAttrsMask UL ONG Mask indicating the attributes to be modified.

pAttrs PBUNDLE Pointer to a bundle structure. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceSetAttributes.

IBType Device attribute bundle. The following device bundles are defined:

PRIM_AREA
PRIM_CHAR
PRIM_IMAGE
PRIM_LINE
PRIM_MARKER

Pattern attribute bundle, see page 8-5.
Character attribute bundle, see page 8-6.
Image attribute bundle, see page 8-11.
Line attribute bundle, see page 8-3.
Marker attribute bundle, see page 8-12.

All device bundles share a similar format. They consist of two bundles, a bundle of logical
attributes and a bundle of device information.

pAttrs Pointer to the DLINEBUNDLE, DCHARBUNDLE, DMARKERBUNDLE, DAREABUNDLE, or
DIMAGEBUNDLE structure containing the new attributes.

8-48 Presentation Driver Reference

attribute function

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV _ CHAR_MODE_A TTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _MIX_A TTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PATTERN_ SET _A TTR
PMERR_INV _PATTERN_SET _FONT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The parameters flDefsMask and flAttrsMask are instances of the mask for the specified

attribute bundle. Valid flags are listed under the bundle definitions on pages 8-3, 8-5, 8-6, 8-11, and 8-12.

Flags set in flAttrsMask identify which fields in the attribute bundle are to be changed. For each flag that is

set in flAttrsMask, the state of that flag in flDefsMask determines the source for the new value of the field:

If the flag is set in both masks, the corresponding field should be set to its default value. If the flag is set in

flAttrsMask and not set in flDefsMask, the corresponding field will be set from the relevant field in the

bundle addressed by pAttrs.

In the attribute bundle addressed by pAttrs, the only fields that contain valid values are those that will be

used to modify the device context's attribute bundle.

When setting pattern and area attributes, the pattern origin from world coordinates must be converted (in

the attributes bundle) to device coordinates (in the DC instance data).

Chapter 8. Mandatory Functions for All Drivers 8-49

device function 3

GreDeviceSetDCOrigin

#define INCL_GRE_DEVMISC3

BOOL GreDeviceSetDCOrigin (hdc, pptlDC, plnstance, lFunction)

This function sets the origin of the device context, which when created, has its origin set to 0, 0.

Support: This function must be supported by presentation drivers for display devices and for hardcopy
devices that use banding. The minimum requirement for other hardcopy devices is for the handling routine
to return TRUE if the origin addressed by pptlDC is set to 0, or to log an error and return FALSE.

Stack Frame

Parameter Data Type Description

hdc

pptlDC

plnstance

I Function

pptlDC

HOC Device context handle.

PPOINTL Pointer to the DC origin. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreDeviceSetDCOrigin.

This is the offset to the origin of the device context indicated by hdc. Convert does not add in
this offset (see "GreConvert" on page 10-26). Therefore, the presentation driver must add it to
all device coordinates to make them screen coordinates.

Note: WORLD_COORDINATE to SCREEN_COORDINATE is not a valid conversion.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-50 Presentation Driver Reference

attribute function

GreDeviceSetGlobalAttribute

#define INCL_GRE_DEVMISCl

BOOL GreDeviceSetGlobalAttribute (hdc, lAttrType, lAttribute, flOptions, plnstance, lFunction)

This function sets the individual primitive attributes to the specified value in the line, area, character,
image and marker bundles. If this call sets any attributes to a value that is not in the defined range of
values for that attribute, the handling routine must restore all attributes to the value they had on entry to

this routine.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

IAttrType LONG Specifies the attribute. See below.

I Attribute LONG New attribute value.

fl Options ULONG See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreDeviceSetGlobalAttribute.

IAttrType Attribute type:

ATYPE_COLOR
ATYPE_BACK_COLOR
ATYPE_MIX_MODE
ATYPE_BACK_MIX_MODE

Foreground color
Background color
Foreground mix
Background mix.

ATYPE_BACK_COLOR and ATYPE_BACK_MIX_MODE do not apply to the line bundle.

flOptlons The only allowable option is:

GATTR_DEFAULT When set, the attribute indicated by IAttrType is set to its default value.
When this flag is not set, the attribute is set to the value of IAttribute.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _ COLOR_A TTR
PMERR_INV _HDC
PMERR_INV _MIX_A TTR.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-51

line function

GreDisjointLines

#define INCL_GRE_LINES

LONG APIENTRY GreDisjointlines (hdc, paptlPoint, cPoints, plnstance, lFunction)

This function draws a sequence of disjoint straight lines using the end-point pairs specified. Notice that if
COM_ TRANSFORM is not set, the pairs are expected in screen coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to an array of cPoints (x, y) pairs containing the end-points for the
lines.

cPoints LONG Number of (x, y) pairs in the points array. When this is passed as 0, the
handling routine takes no action except to return Successful.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDisjointlines.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition .. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC..;.BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV ...:COLOR..JNDEX
PMERR_INV:COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN.
PMERR_INV _RECT
PMERR_PATH_UMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation .

. 8·52 Presentation Driver Reference

bit-map function

GreDrawBits

#define INCL_GRE_BITMAPS

BOOL GreDrawBits (hdc, pBitmap, plnfo, cPoints, paptlPoint, lRop, flOptions, plnstance, lFunction)

This function draws a rectangle of bits.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter

hdc

pBitmap

pinto

cPoints

paptlPoint

IRop

fl Options

plnstance

I Function

pBltmap

plnfo

Data Type Description

HOC Device context handle.

PBYTE Pointer to bit-map data. See below.

PBITMAPINFO Pointer to BITMAPINFO or BITMAPINF02 structure defining the new bit map.
See below.

LONG Number of (x, y) pairs in paptlPoint; this count must be equal to 4. See
below.

PPOINTL Pointer to an array of (x, y) coordinate pairs. See below.

LONG Raster operation code. See below.

ULONG Specified treatment of eliminated lines and columns when compression is
done. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreDrawBits.

Pointer to the pel data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are
stored beginning with the most significant bits of the first byte. The data for pels in each
scan line is packed together tightly. However, all scan lines are padded at the end so that
each one begins on a ULONG boundary. That is, three bytes of pel data_ will hold one 24-bit
pel, three 8-bit pels, six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only
pel data for that scan line, one more byte of zeros would be required to pad the line to a
ULONS boundary.

Pointer to either a BITMAPINFO structure:

cbFlx
ex
cy
cPlanes
cBltCount
argbColor[]

Length of structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pal
Color table array of RGB structures:
bBlue
bGreen
bRed.

Or pointer to a BITMAPINF02 structure:

cbFlx Length of structure

Chapter 8. Mandatory Functions for All Drivers 8-53

bit-map function

ex

cy

cPlanes

cBltCount

ulCompression

cblmage

cxResolutlon

cyResolutlon

cclrUsed

cclrlmportant

usUnits

usReserved

usRecording

usRendering

8-54 Presentation Driver Reference

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed,
0 (default) can be specified.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified
by usUnits. This information enables an application to select from a
resource group the bit map that best matches the characteristics of the
current output device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified
by usUnits. This information enables an application to select from a
resource group the bit map that best matches the characteristics of the
current output device.

The number of color indexes from the color table that are used by the bit
map. If it is 0 (default), all the indexes are used. If it is non-zero, only
the first cclrUsed entries in the table are accessed by the system; further
entries can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other
192 entries in the color table. For the 24-bitcount standard format,
cclrUsed is the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device palette. These additional colors can be
mapped to the nearest colors available. Zero (default) means that all
entries are important. For a 24-bitcount standard format, the
cclrlmportant colors are also listed in the color table relating to this bit
map.

Units of measure of the horizontal and vertical components of
resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTTOMUP (Default.) Scan lines are recorded from
bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion
algorithm

cPolnts==4

paptlPoint

IRop

cSize1

BRH_PANDA

BRH_SUPERCIRCLE

bit-map function

Processing algorithm for noncoded
document acquisition

Super circle algorithm

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering,
cSize1 is the error damping as a percentage in the range 0-100. A
value of 100% indicates no damping. A value of 0% indicates that any
errors are not diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering,
this parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncoding Color encoding:

ulldentlfler

argbColor[]

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.

Color table array of RGB2 structures:

bBlue
bGreen
bRed
fcOptlons Reserved. Must be 0.

The operation is determined by comparing the sizes of the two rectangles:

Target<Source Compress the source rectangle into the target rectangle. The flOptions
flags determine how eliminated rows and columns should be handled.

Target== Source Copy between equal rectangles.

Target>Source Stretch the source rectangle into the target rectangle. In this case the
call can be passed to the GreBitblt routine in the graphics engine.

A pointer to a block of (x, y) coordinate pairs that define the target and source rectangles.
The coordinates, which can be passed as a pair of RECTL structures, define the bottom-left
and top-right corners of the target and source rectangles (see cPoints above for more
information):

(xTgtBL, yTgtBL), (xTgtTR, yTgtTR), (xSrcBL, ySrcBL), (xSrcTR, ySrcTR)

When the source rectangle is totally or partially outside the source bit map (or device), the
operation is implementation-dependent for that area, that is, the user must decide what to
do.

Note: When BBO_TARGWORLD is set, the target rectangle is inclusive at all boundaries.
The source is non-inclusive.

When BBO_TARGWORLD is not set, the rectangles are non-inclusive. That is, they
include the left and lower boundaries in device units but not the top and right
boundaries. When the bottom-left corner of a rectangle maps to the same device pel
as the top-right corner, that rectangle is considered to be empty.

Raster operation code. The low-order byte represents a mix value in the range OOH - FFH.
Raster operation code values and the mix-bit table are defined in the OS/2 2.0 Presentation
Manager Programming Reference. The handling routine uses IRop to determine the
operations to perform on pattern, source and target to get the required mix.

In addition to the ROP values defined at the API, the presentation driver must support
ROP _GRAY (000080CAH). This value is used to shade the text for menu items that are not

Chapter 8. Mandatory Functions for All Drivers 8-55

bit-map function

flOptlons

currently selectable. When ROP _GRAY is set, the handling routine overpaints the
foreground pattern using the current pattern and the background pattern color (background
pels for the pattern are not changed). For the PATSYM_HALFTONE pattern, this overpaints
the background pattern color onto alternate pels leaving those in between unchanged.

Option flags:

BBO_OR Stretch and compress, as necessary, ORing any eliminated
rows and columns. Used for White on Black.

BBO_AND Stretch and compress, as necessary, ANDing any eliminated
rows and columns. Used for Black on White.

BBO_IGNORE Stretch and compress, as necessary, ignoring any eliminated
rows and columns. Used for color.

BBO_TARGWORLD The target rectangle is defined in world coordinates in the
target PS. When this option is specified, the target rectangle is
transformed to device coordinates. Where any shear or
rotation has occurred, the target rectangle must be converted
to an upright rectangle that bounds the transformed figure.
This is then used as the target for the operation. No inversion
of the image takes place.

BLTMODE_SRC_BITMAP hdcSrc is a bit-map handle. The bit map must not be currently
selected into a device context. If this flag is not set, hdcSrc is a
DC handle.

BLTMODE_ATIRS_PRES If set, the pBattrs parameter is present. This option can be
ORed with any of the options above.

Note: Flags 15-31 are not used by the system; they are reserved for use by the
presentation driver.

Return Codes: On completion, the handling routine must return a LONG integer (cHits) indicating,
where appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by the display driver when the correlate flag is on,
and a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_HDC_BUSY
PMERR_INCORRECT _DC_ TYPE
PMERR_INV _BITBLT _MIX
PMERR_INV _BITBLT _STYLE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-56 Presentation Driver Reference

bit-map function

GreDrawBorder

#define INCL_GRE_BITMAPS

BOOL GreDrawBorder (hdc, prclFrame, cxBorder, cyBorder, clrBorder, clrlnterior, flCmd, plnstance, lFunction)

This fast-frame function draws an internal border in a rectangular frame. The interior can also be filled.

Support: This function must be hooked by all presentation drivers. Drivers for hardcopy devices do
nothing except return TRUE (Successful). Display drivers must return Failure if fast-frame drawing is not
supported. GreDrawBorder is not called by any specific function. It is used to do fast-frame drawing.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclFrame PRECTL Pointer to RECTL structure defining the frame in screen coordinates.

cxBorder UL ONG Thickness of vertical border in device coordinates.

cyBorder UL ONG Thickness of horizontal border in device coordinates.

clrBorder LONG Color of border in any valid format.

clrlnterior LONG Color of interior in any valid format.

flCmd ULONG Options. See below.

plnstance PVOID Pointer to instance data.

IF unction UL ONG High-order WORD= flags; low-order WORD= NGreDrawBorder.

prclFrame Pointer to a RECTL structure. Coordinates are passed in screen coordinates, which are
inclusive at the bottom-left corner and exclusive at the top-right corner.

flCmd Valid values are:

DB_ROP

DB _INTERIOR

An option flag that defines the mix to be used for the border and the
interior. The mixes are mutually exclusive with one another but can be
combined independently with DB_INTERIOR or DB_AREAATTRS. This
option can have any of the following values:

DB_PATCOPY (Default.) Use ROP _PATCOPY (see "GreBitblt" on
page 8-26). This is a copy of the pattern to the
destination.

DB_PATINVERT Exclusive-OR the current pattern and the
destination (ROP _PATINVERT). Current mix and
color parameters are ignored.

DB_;DESTINVERT Inverts the destination (ROP _DESTINVERT).

DB_AREAMIXMODE Maps the current area foreground-mix attribute to a
Bitblt raster operation. The area background-mix
mode is ignored.

Fills the area defined by prclFrame excluding the border defined by
cxBorder and cyBorder.

Chapter 8. Mandatory Functions for All Drivers 8-57

bit-map function

DB_AREAATTRS When set, the pattern used for the border is the one currently defined in
the area attribute. The pattern used for the interior is the one that would
be obtained by calling GreSetAttributes with the area attribute background
color passed for the foreground color, and the area attribute foreground
color passed for the background. See "GreSetAttributes" on page 11-58.

When this flag is not set (default), the border pattern is equivalent to using
GreSetAttributes for the area attributes, which use clrBorder as foreground
color and clrlnterior as the background. The Interior pattern is equivalent
to using GreSetAttributes for the area attributes, which use clrlnterior color
as foreground color and clrBorder as the background.

The handling routine should ignore the remaining flags, DB_STANDARD and
DB_DLGBORDER, which are used by the Frame Manager.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INCORRECT _DC_ TYPE
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV _BITBLT _MIX
PMERR_INV _BITBLT _STYLE
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _COLOR_ATTR
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_FORMAT
PMERR_INV _ COLOR_INDEX
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _ COLOR_START _INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE
PMERR_INV _DRAW_BORDER_ OPTION
PMERR_INV _DRIVER_NAME
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT

8-58 Presentation Driver Reference

\
/

PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _SCAN_START
PMERR_INV _USAGE_PARM
PMERR_ UNSUPPORTED _A TTR_ VALUE.

bit-map function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The parameters, cxBorder and cyBorder, can be passed as 0. When both are 0, the interior
must still be drawn. When the x-borders and y-borders overlap, the border is drawn as a single rectangle
with no interior.

GreDrawBorder is a Bitblt accelerator and is similar in function and limitation to GreBitblt,
GreDeviceSetAttributes, and GreSetAttributes.

See the OS/2 2.0 Presentation Manager Programming Reference for a description of the WinDrawBorder
function.

Chapter 8. Mandatory Functions for All Drivers 8-59

line function

GreDrawLineslnPath

#define INCL_GRE_LINES

LONG GreDrawlineslnPath (hdc, prclBound, pline, clines, plnstance, lfunction)

This function draws a sequence of one or more straight lines from the sequence of linked structures

addressed by pline. The structures can be a mixture of LINE, CURVE, and FILLETSHARP structures.
These have similar forms and the second field, bType, identifies the type of the structure. Starting at the

structure addressed by pline, the handling routine examines the bType field of each structure in tum. If

bType is LINE_IDENTIFIER, the handling routine draws the line. Otherwise, it uses the value of the

npcvNext field to skip to the next structure. This process continues until the handling routine has drawn the

number of lines specified by clines. Before drawing a line, the handling routine must check the
CURVE_DO_FIRST_PEL flag to determine whether it should draw the first pel of the line. When the line

passes between two pel positions, the presentation driver should round down to the nearest pel for values

of 0.5 or less.

The call to GreDrawlineslnPath in the presentation driver is made by the graphics engine. Notice that the

coordinates are passed as screen coordinates (device coordinates+ DC origin) and the lines are already

completely clipped.

Support: This function must be supported by all presentation drivers. However, it is not called by any
specific function. GreDrawlineslnPath is used by the filing routines and the path rendering routines within

the graphics engine to produce output.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclBound PRECTL Pointer to a bounding box for the lines.

pline PCURVE Pointer to the first of a series of linked structures. See below.

clines UL ONG Count of LINE structures to draw.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreDrawLineslnPath.

prclBound Pointer to a RECTL structure:

pllne

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate of rectangle
Maximum x-coordinate of rectangle
Maximum y-coordinate of rectangle

Pointer to the first structure in the path definition containing the lines that have to be drawn.
The LINE structure, shown below, is an example of the more general CURVE structure. These
two structures and the FILLETSHARP structure are defined in header file. They all take the
same general form and are distinguished by the value of bType.

The LINE structure is defined as:

bl dent

bType

Identifier. This value has no significance for the presentation driver.

Structure type. The only significant value is LINE_IDENTIFIER, which
indicates that this structure is a LINE structure. If any other value is detected,
the handling routine should skip to the structure addressed by npcvNext.

8-60 Presentation Driver Reference

ulStyle

fl

Line style. See "Line Attributes" on page 8-3.

Flags. The only significant flag is:

line function

CURVE_DO_FIRST_PEL When set, the handling routine must draw the first

pel in the line. See also "First and Last Pel

Considerations" on page 8-21.

pcvNext

pcvPrev

Pointer to next structure in the sequence.

Pointer to previous structure.

Reserved1 [2] Reserved parameter.

pHxA Start of the already clipped line (inclusive).

pHxC End of the already clipped line (inclusive).

ptlA

ptlC

Start point of unclipped line (inclusive).

End point of unclipped line (inclusive).

IRslope Ignored by the presentation driver.

Reserved2[4] Reserved parameter.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where

appropriate, whether correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)

GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT_SELECTED
PMERR_COORDINATE_OVERFLOW

PMERR_DEV _FUNC _NOT _INSTALLED

PMERR_HDC_BUSY
PM ERR _!NV_ COLOR _DATA
PMERR _INV_ COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-61

device function 2

GreErasePS

#define INCL_GRE_DEVMISC2

BOOL GreErasePS (hdc, plnstance, lFunction)

This function resets the presentation space of the device context to the background color
CLR_BACKGROUND. Hardcopy drivers should return TRUE without taking any action. The handling
routine does not update GPl_BOUNDS or return correlation data, and it is not affected by the PCTL_DRAW
control or COM_DRAW command flag. However, in display drivers, the handling routine should update
USER_BOUNDS if the COM_ALT _BOUND command flag is set.

Support: This function must be supported by the presentation driver. GreErasePS is called from
GpiErase, and is used to erase the contents of the presentation space currently associated with the device
context. Hardcopy drivers should not take any action except to return TRUE (Successful).

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreErasePS

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is subject to all clipping.

8-62 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_ABORTDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_ABORTDOC, cinCount, pinData, pcOutCount, pOutData, pinstance, lFunction)

This function aborts the current document. The handling routine in the presentation driver discards all data
(such as data in a spooler buffer or journal file) received for the current document and closes any files
associated with it. The current document is defined as any data back to, and including, the
DEVESC _ STARTDOC statement.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC _ABORTDOC

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

Successful DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC _ERROR

Escape not implemented for specified code
Error.

Remarks: The following are three possible abort scenarios and the steps to be taken by a hardcopy
driver:

1. The user aborts a job:

a. The spooler calls SplQpControl(SPLC_ABORT).

b. The queue driver calls DevEscape(DEVESC _ABORTDOC).

c. The hardcopy driver sets a flag indicating that the job was aborted and returns the
DevEscape(DEVESC_ABORTDOC) thread. The next time PrtWrite returns, the hardcopy driver
completes the current page, for example, by sending a form feed and some null data to make sure
the printer is not in graphics mode.

d. The hardcopy driver calls PrtClose.

Note: The hardcopy driver must be able to accept DEVESC_ABORT while processing data or
DEVESC_ENDDOC.

2. The printer runs out of paper or is offline:

a. The spooler function, PrtWrite, fails and returns an error to the hardcopy driver.

b. If the job was aborted, the hardcopy driver calls PrtClose. Otherwise, it calls SplMessageBox.

c. The spooler brings up a message box or sends a message to the user, holds the job, and waits on a
semaphore until the job is released (possibly across the network), in which case it will return

Chapter 8. Mandatory Functions for All Drivers 8-63

GreEscape function

RETRY. If the user selects ABORT, the hardcopy driver calls PrtAbort and PrtClose. If the user
selects RETRY, the hardcopy driver will try PrtWrite again (see above).

Note: The spooler will ignore all PrtWrite operations after PrtAbort is called. After the hardcopy driver
has called PrtClose, it should return errors until the DC is closed.

3. The application aborts the job while spooling:

a. The application calls DevEscape(DEVESC_ABORTDOC).
b. The hardcopy driver calls SplQmAbortDoc.
c. The hardcopy driver flags the DC as being aborted.
d. The application calls either DevCloseDC or DevEscape(DEVESC_STARTDOC) to start another job on

the same DC.

Note: This escape code is metafiled but not recorded.

8-64 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_BREAK_EXTRA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_BREAK_EXTRA, cinCount, pinData, pcOutCount, pOutData, plnstance, lFunction)

Note: This escape code is implemented by old hardcopy drivers. The function of this escape code is
replaced by the character attribute, fxBreakExtra. See "Character Attributes" on page 8-6.

This function changes the width of the break character on a hardcopy device. The handling routine sets or

resets, as determined by the value of clnCount, an extra width value for the break character. Upon
completion, the width of the break character is the default width specified by the font plus any extra widths

set by DEVESC_BREAK_EXTRA and DEVESC_CHAR_EXTRA. The extra widths can be positive, zero, or
negative.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC_BREAK_EXTRA.

clnCount LONG Number of bytes pointed to by plnData. When clnCount=O, the handling
routine resets the extra width to 0.

pin Data PBYTE If clnCount is not equal to 0, plnData is a pointer to a FIXED value. This
value is the required extra width defined in world coordinates.

pcOutCount PLONG The handling routine ignores this parameter.

pOutData PLO NG The handling routine ignores this parameter.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED
DEVESC _ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-65

GreEscape function

GreEscape DEVESC_CHAR_EXTRA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_CHAR_EXTRA, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)
Note: This escape code is implemented by old hardcopy drivers. The function of this escape code is

replaced by the character attribute, fxExtra. See "Character Attributes" on page 8-6.

This function changes the width of all characters including the break character on a hardcopy device. The
handling routine sets or resets, as defined by the value of clnCount, an extra width value. Upon
completion, the width of a character is the default width specified by the font plus the extra width set by
DEVESC_CHAR_EXTRA. The extra width can be positive, zero, or negative.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC_CHAR_EXTRA.

clnCount LONG Number of bytes pointed to by plnData. When clnCount=O, the handling
routine should reset the extra width to 0.

pin Data PBYTE If clnCount is not equal to 0, plnData is a pointer to a FIXED value. This
value is the required extra width defined in world coordinates.

pcOutCount PL ONG The handling routine ignores this parameter.

pOutData PL ONG The handling routine ignores this parameter.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled and recorded.

8-66 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_DBE_FIRST (DBCS Support)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DBE_FIRST, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function informs the presentation driver that character codes for subsequent output data will use two
bytes per character.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC _DBE_FIRST

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PL ONG The handling routine ignores this parameter

pOutData PLO NG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC _NOTIMPLEMENTED
DEVESC _ERROR

Escape not implemented for specified code
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: For an OD_METAFILE device, DEVESC_DBE_FIRST is passed to the presentation driver but is
not metafiled. For an OD_QUEUED device with PM_Q_STD, the spooler records this escape and it is not
passed to the presentation driver.

Chapter 8. Mandatory Functions for All Drivers 8-67

GreEscape function

GreEscape DEVESC_DBE_LAST (DBCS Support)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DBE_LAST, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function informs the presentation driver that character codes for subsequent output data will use one
byte per character.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_DBE_LAST

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PL ONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _LENGTH_ OR_ COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: For an OD_METAFILE device, DEVESC_DBE_LAST is passed to the presentation driver but is
not metafiled. For an OD_:QUEUED device with PM_Q_STD, the spooler records this escape and it is not
passed to the presentation driver.

8-68 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_DRAFTMODE (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DRAFTMODE, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

Note: This escape code is implemented by old hardcopy drivers and is being phased out.

This function sets draft mode (text mode) on or off. Setting draft mode on, tells the presentation driver that

the coming page need not contain any graphics or all-points-addressable output. This escape code is valid

only at a page boundary, for example, after DEVESC_STARTDOC or DEVESC_NEWFRAME.

When draft mode is on, the presentation driver can choose to optimize throughput by:

• Ignoring all graphics primitives such as lines, arcs, and areas

• Using the fonts provided by the output device
• Approximating positions received in calls to functions such as GreSetCurrentPosition and

GreCharStringPos to the nearest character position that the output device supports for the current font.

The presentation driver must maintain current attributes such as color, mix, and transforms when draft

mode is on even though they might have no effect on the draft output. Similarly, the driver needs to track

font changes and respond by setting the appropriate device font such as enlarged, condensed, or italic.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this escape in the buffer and

does not pass it to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC _DRAFTMODE.

clnCount LONG Number of bytes pointed to by plnData. This is 2.

pin Data PBYTE Short integer value specifying the mode, 1 for draft mode on, 0 for off.

pcOutCount PL ONG The handling routine ignores this parameter.

pOutData PL ONG The handling routine ignores this parameter.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED

DEVESC _ERROR

Successful
Escape not implemented for specified code

Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-69

GreEscape function

GreEscape DEVESC_ENDDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_ENDDOC, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function ends the current document. The handling routine does whatever work is required to complete
the job. For example, a DC for an OD_QUEUED device with PM_Q_STD data would close the spooler buffer
and transfer the buffered data to a spool file. As with DEVESC_STARTDOC, do not assume that this escape
code is always issued at the end of a document. When it has not been issued, the DEVESC_ENDDOC work
must be done in the BeginCloseDC or CloseDC routine.

Note: DEVESC_ENDDOC is mandatory at the API when writing PM_Q_STD data to an OD_QUEUED device.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC _ENDDOC.

clnCount LONG The handling routine ignores this parameter.

pin Data PBYTE The handling routine ignores this parameter.

pcOutCount PLONG Pointer. On input, this specifies the size of the buffer pointed to by
pOutData. On output, it is set to the number of data bytes returned in this
buffer. The input value of this parameter is usually 2. On completion, this
is set to O if no ID is returned in pOutData.

pOutData PL ONG Pointer to a data area in which the Job ID of the spooled print job is
returned. Set to NULL if there is no Job ID, for example, when the
hardcopy DC is OD_DIRECT.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled but not recorded.

8-70 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_FLUSHOUTPUT (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_FLUSHOUTPUT, cinCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

Note: This escape code is implemented by old hardcopy drivers and is being phased out.

This function flushes any output received for the current document. The handling routine discards all data

(such as data stored in a spooler buffer or journal file) received for the current document.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_FLUSHOUTPUT

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-71

GreEscape function

GreEscape DEVESC_GETCP (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_GETCP, cinCount, pinData, pcOutCount, pOutData, plnstance, lFunction)
Note: This escape code is used only by hardcopy drivers with built-in fonts.

This function gets a hardcopy data stream that would set the specified code page in the hardcopy device.
The data stream should cater for options such as draft and NLQ as defined in the OS2_PM_DRV_DEVMODE
dialog. The handling routine in the presentation driver responds by writing the data stream in the buffer
addressed by pOutData and the count of bytes into the LONG value addressed by pcOutCount.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC _ GETCP.

clnCount LONG The handling routine ignores this parameter.

pin Data PBYTE The handling routine ignores this parameter.

pcOutCount PL ONG Pointer to a value that shows the number of bytes addressed by pOutData.
The handling routine should update this value to show the number of
bytes returned in the buffer.

pOutData PLONG Pointer to the buffer in which the handling routine returns the required
data.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED ·
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is not metafiled or recorded.

8-72 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_GETSCALINGFACTOR (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_GETSCALINGFACTOR, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function gets the incremental scaling factors for the (x. y) axes of a hardcopy device. The handling

routine returns the scaling factors as an SFACTORS structure at the location addressed by pOutData and

changes the value addressed by pcOutCount to show the number of bytes in the returned structure.

Scaling factors are used for physical devices where one unit on the x axis is not equal to one unit on they

axis. The factors show an arbitrary unit length expressed in x units and y units. The length is chosen so

that the number of x units and y units can be expressed as an exponent of 2 and the exponents are returned

in the SFACTORS structure. For example, if there are 8 units of x in the arbitrary unit length, IXscale is set

to 3.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler passes this escape to the presentation

driver without recording it.

Stack Frame

Parameter D.ata Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC _ GETSCALINGFACTOR.

clnCount LONG The handling routine ignores this parameter.

pin Data PBYTE The handling routine ignores this parameter.

pcOutCount PLONG Number of bytes pointed to by pOutData. On return, this is updated by the

handling routine to the number of bytes actually returned.

pOutData PL ONG Pointer to SFACTORS structure:

IXscale X-scaling factor, as an exponent of 2.

IV scale Y-scaling factor, as an exponent of 2.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape.

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED

DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is not metafiled or recorded.

Chapter 8. Mandatorv Functions for All Drivers 8-73

GreEscape function

GreEscape DEVESC_NEWFRAME (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_NEWFRAME, cinCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function indicates that there is no more data for the current page. For a display device,
DEVESC_NEWFRAME is similar to GreErasePS. However, the handling routine should reset the attributes
(color and mix). For hardcopy devices, the handling routine would advance the paper to a new page.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this escape in the buffer and
does not pass it on to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_NEWFRAME

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PLO NG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC _ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: The following sequence implies that the previous page is completed and ejected, and then a
blank page is ejected, even if no other functions are called between the two GreEscapes.
GreEscape(DEVESC_NEWFRAME)
GreEscape(DEVESC_NEWFRAME)

This escape code is metafiled and recorded.

8-7 4 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_NEXTBAND (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_NEXTBAND, cinCount, pinData, pcOutCount, pOutData, pinstance, lFunction)

Note: This escape code is implemented by old hardcopy drivers that support banding and is being phased
out.

This function indicates that there is no more data for the current band and gets the coordinates of the next
band. If there is no current band, the handling routine returns the coordinates of the first band.
DEVESC_NEXTBAND is used by programs that do their own banding. It is not necessary for hardcopy
drivers for devices, which cannot use banded output, to support this escape code. See "Banding" on
page 2-7. Notice that DEVESC_NEWFRAME is issued to start a new page.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_NEXTBAND

clnCount LONG The handling routine ignores this parameter

pin Data PBYTE The handling routine ignores this parameter

pcOutCount PLONG Number of bytes of data pointed to by pOutData. On return, this is
updated to the number of bytes actually returned.

pOutData PLONG Pointer to a BANDRECT structure where the device coordinates of the
next band are returned:

xLeft X-coordinate of the lower-left corner of the rectangular band
yBottom Y-coordinate of the lower-left corner of the rectangular band
xRlght X-coordinate of the top-right corner of the rectangular band
yTop Y-coordinate of the top-right corner of the rectangular band.

An empty rectangle (xLeft=xRight or yTop=yBottom) marks the end of
the banding operation).

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled but not recorded.

Chapter 8. Mandatory Functions for All Drivers 8-75

GreEscape function

GreEscape DEVESC QUERYESCSUPPORT

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_QUERYESCSUPPORT, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function queries whether a particular escape code is implemented by the presentation driver. The
presentation driver returns DEV_ OK if the specified escape is supported.

Note: For an OD_ QUEUED device with PM_Q_STD data, the spooler passes this escape on to the
presentation driver without recording it.

Stack Frame

Parameter Data.Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_QUERYESCSUPPORT

clnCount LONG Number of bytes pointed to by plnData

pin Data PBYTE Pointer to an escape code value specifying the escape function to be
checked

pcOutCount PL ONG The handling routine ignores this parameter

pOutData PL ONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is not metafiled or recorded.

8· 76 Presentation Driver Reference

GreEscape function

GreEscape DEVESC QUERYVIOCELLSIZES (Display Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_QUERYVIOCELLSIZES, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function obtains the details of the VIO cell sizes supported by the presentation driver. The
DEVESC_QUERYVIOCELLSIZES must be implemented by presentation drivers for display devices that
provide two or more VIO fonts with different cell sizes. Other presentation drivers should not implement

this escape code.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Escape LONG DEVESC_ QUERYVIOCELLSIZES.

clnCount LONG The handling routine ignores this parameter.

pin Data PBYTE The handling routine ignores this parameter.

pcOutCount PL ONG Pointer. See below.

pOutData PL ONG Pointer. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape.

pcOutCount Pointer to the number of bytes pointed to by pOutData. On return, the handling routine
updates the value indicated by this pointer to the number of bytes actually returned. This
value must be an even multiple of sizeof(LONG). When the value passed is less than
sizeof(LONG), the handling routine must change it to 0. Nothing is loaded at the address
indicated by pOutData.

pOutData

When the value passed equals sizeof(LONG), the handling routine must return the number
of supported VIO character-cell sizes. The value indicated by pcOutCount is unchanged.
The contents of the address indicated by pOutData are updated so that maxcount is the
number of VIO cell sizes provided by the device. When the value passed is greater than
sizeof(LONG), the handling routine must update the buffer addressed by pOutData so that:

• maxcount is the number of VIO cell sizes provided by the device.
• count is the number of VIOFONTCELLSIZE structures returned. This can be 0 when

OutCount is 2*sizeof(LONG). For example:

count==((pc0utCount-2*s i zeof (LONG)) /2*si zeof (LONG))

Pointer to the address of the data returned. The handling routine stores at this location the
following structures:

maxcount
count

Total number of VIO cell sizes provided by the device
Number of VIOFONTCELLSIZE structures that follow.

Followed by an array of VIOFONTCELLSIZE structures:

xWidth Width of the VIO character cell
yHeight Height of the VIO character cell.

Chapter 8. Mandatory Functions for All Drivers 8-77

GreEscape function

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is not metafiled or recorded.

8-78 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_RAWDATA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_RAWDATA, clnCount, pinData, pcOutCount, pOutData, pinstance, lFunction)

This function sends device-specific data direct to the spooler or device. The action taken by the handling
routine is determined by the DC type. For example, OD_DIRECT DC would send the raw data directly to the
device using the Prtxxx APls. See "File System Emulation" on page 4-9.

As a general rule, an application should use DEVESC_RAWDATA only for a complete document or frame
within a document. DEVESC_RAWDATA must not be mixed with other drawing functions. If
DEVESC_RAWDATA and other drawing functions are called in a single frame, the results are dependent on
the implementation. For example, the presentation driver might choose to print the raw data and ignore
the other drawing calls.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this call in the buffer and does
not pass it on to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_RAWDATA

clnCount LONG Number of bytes pointed to by plnData

pin Data PBYTE Pointer to raw data

pcOutCount PL ONG The handling routine ignores this parameter

pOutData PLO NG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_ OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-79

GreEscape function

GreEscape DEVESC_SETMODE (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_SETMODE, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function sets the printer into a particular mode. It is optional for hardcopy drivers to support this
GreEscape. However, those hardcopy drivers that do support it need to know the code page of any of the
built-in fonts. For example, if only Code Page 437 is built in, it is the code page used if 437 is requested by
GreEscape DEVESC_SETMODE. If Code Page 865 is requested, a suitable code page or font could be
downloaded.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_SETMODE

clnCount LONG Number of bytes pointed to by plnData

pin Data PBYTE Pointer to the buffer that contains an ESCSETMODE structure

pcOutCount PL ONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pin stance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled and recorded.

8-80 Presentation Driver Reference

~' ,)

i/

GreEscape function

GreEscape DEVESC _ STARTDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_STARTDOC, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

This function starts a new document. The handling routine in the presentation driver does whatever
initialization is required to spool or print the document. The driver continues to spool or print data until it
receives DEVESC_ENDDOC. This ensures that documents longer than one page are not interspersed with
other jobs.

Because DEVESC_STARTDOC is not mandatory at the API, it cannot be assumed that an application (when
opening a DC for printing) will pass DEVESC_STARTDOC to the presentation driver. In this case, the
presentation driver must initialize a spool file with no name or a journal file in the CompleteOpenDC
handling routine. If this is done, the presentation driver should set a flag so that initialization is not
repeated if DEVESC_STARTDOC is received. Notice that a handling routine is required for
DEVESC_STARTDOC to save the specified document name in the DC instance data.

Note: DEVESC_STARTDOC is mandatory at the API for an OD_QUEUED device with PM_Q_STD data.

When this function call is issued for an OD_ QUEUED device, the presentation driver must start the
recording of data into the spool file by calling SplStdStart. It should also catl SplQmStartDoc to pass the
name of the spool file to the visual spooler. See "SplStdStart" on page 4-34 and "SplQmStartDoc" on
page 4-26.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC _ STARTDOC

clnCount LONG Number of bytes pointed to by plnData

pin Data PBYTE Pointer to a string containing the name of the document

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLO NG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC _NOTIMPLEMENTED
DEVESC_ERROR

Successful
Escape not implemented for specified code
Error.

Remarks: This escape code is metafiled but not recorded.

Chapter 8. Mandatory Functions for All Drivers 8-81

GreEscape function

GreEscape DEVESC STD JOURNAL (Hardcopy Drivers Only) - -
#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_STD_JOURNAL, clnCount, plnData, pcOutCount, pOutData, plnstance, lFunction)

Note: This escape is implemented by old hardcopy drivers and is being phased out.

This function sends a standard journal file to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

I Escape LONG DEVESC_STD_JOURNAL

clnCount LONG Number of bytes pointed to by plnData

pin Data PBYTE Pointer to journal data

pcOutCount PLONG The handling routine ignores this parameter

pOutData PL ONG The handling routine ignores this parameter

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

8-82 Presentation Driver Reference

Successful
Escape not implemented for specified code
Error.

bit-map function

GreGetBitmapBits

#define INCL_GRE_BITMAPS

LONG GreGetBitmapBits (hdc, hbm, lScanStart, cScanCount, pBitmap, plnfo, plnstance, lFunction)

This function can be called for two reasons. If the pointer to application storage (pBitmap) is not NULL, the
function transfers bit-map data from a bit map to application storage. If pBitmap is NULL, this function must
only fill in the RGB values in the BITMAPINFO or BITMAPINF02 data structure, which is pointed to by plnfo,
and then return the value 0.

The bit map can be specified by a bit-map handle, or (if this is NULL) a DC handle, in which case the device
context must be a memory DC with a bit map currently selected.

Support: This function must be supported by the presentation driver. GreGetBitmapBits is called from
GpiQueryBitmapBits, and is used to transfer bit-map data from the device context to application storage. It
can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hbm HBITMAP Bit-map handle. If 0, the DC bit map is used.

IScanStart LONG Scan line number from where data transfer starts, 0 is the first.

cScanCount LONG Number of scan lines to be transferred.

pBitmap PBYTE Pointer to bit-map data or NULL. See below.

plnfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINF02 structure. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetBitmapBits.

pBltmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pel, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of Os would be required to pad the line to a ULONG boundary.

pinto Pointer to either a BITMAPINFO structure:

cbFlx
ex
cy
cPlanes
cBltCount
argbColor[]

Length of structure
Bit-map width. This value is updated by the handling routine.
Bit-map height. This value is updated by the handling routine.
Number of color planes, 1 if standard format
Number of adjacent color bits per pel
Color table array of RGB structures:
bBlue
bGreen
bRed.

Chapter 8. Mandatory Functions for All Drivers 8-83

bit-map function

Or pointer to a BITMAPINF02 structure:

cbFlx Length of structure

ex

cy

cPlanes

cBitCount

ulCompresslon

cblmage

ex Resolution

cyResolutlon

cclrUsed

cclrlmportant

usUnlts

usReserved

usRecordlng

usRenderlng

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, O
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group, the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If it is O (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system; further entries
can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device pal.ette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrlmportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved fie1d. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA..,;BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION

(Default.) Bit•map data not half-toned.

Error diffusion or-damped error diffusion
algorithm

8-84 Presentation Driver Reference

\
)

cSlze1

BRH_PANDA

BRH_SUPERCIRCLE

bit-map function

Processing algorithm for noncoded document
acquisition

Super circle algorithm

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pals.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncodlng Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use. ulldentlfler

argbColor[] Color table array of RGB2 structures:

bBlue
bGreen
bRed
fcOptlons Reserved. Must be 0.

Return Codes: On completion, the handling routine must return a LONG value (llines), indicating the
number of lines transferred, or GPl_AL TERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT_ SELECTED
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INCORRECT _DC_ TYPE
PMERR_INV _HBITMAP
PMERR_INV _IN_AREA
PMERR INV IN PATH - - -
PMERR_INV _INFO_ TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _SCAN_START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When the bit-map handle is NULL, the DC must be a memory DC with a bit map currently
selected. Otherwise, the DC handle must be valid for that device. The BITMAPINFO or BITMAPINF02
structure must be initialized with the values of cPlanes and cBitcount for the format of data required. This
must be one of the standard formats or a device-specific format that matches the DC. On return, ex, cy, and
argbColors are supplied by the system. Conversion of the bit-map data is carried out, if necessary.

pBitmap must point to a storage area large enough to contain data for the requested number of scan lines.
The amount of storage required for one scan line can be determined by calling GetBitmapParameters:

((cBitcount * ex+ 31)/32) * cPlanes * 4 bytes

Chapter 8. Mandatory Functions for All Drivers 8-85

device function 3

GreGetBoundsData

#define INCL_GRE_DEVMISC3

BOOL GreGetBoundsData {hdc, flOptions, pBoundsData, plnstance, lFunction)

This function stores the bounding rectangle of previous drawing primitives at the address indicated by
pBoundsData. All presentation drivers must support GPI bounds. These bounds should be transformed to
model space coordinates when they are accumulated. Display drivers must also support user bounds in
screen coordinates. Bounds are inclusive. A NULL boundary is represented by the minimum coordinates
of the rectangle, which are greater than its maximum coordinates. If the bounds have been reset, a NULL
value is returned for pBoundsData.

Support: This function must be supported by the presentation driver. GreGetBoundsData is called by
GpiQueryBoundaryData in response to an application's request for the current boundary data for a
presentation space/device context pair. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Options UL ONG Option flags. See below.

pBoundsData PRECTL Pointer to the address for the returned RECTL structure that defines the
specified bounding rectangle.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetBoundsData.

flOptions The option flags define which bounding rectangle the handling routine should return. Valid
values are:

GBD_GPI
GBD_USER

Return GPI bounds in model space coordinates
Return current user bounds in screen coordinates and reset user bounds to their
initial value.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-86 Presentation Driver Reference

device function 3

GreGetCodePage

#define INCL_GRE_DEVMISC3

LONG GreGetCodePage (hdc, plnstance, lFunction)

This function returns the current code page. This is the default code page obtained by WinQueryProcessCp

during the enabling of the DC (page 7-12) or the code page set by GreSetCodePage. This function applies

to the default font, not the currently selected font, which can be determined with a call to

GreQueryFontAttributes (page 11-43).

Support: This function must be supported by the presentation driver. GreGetCodePage is called by

GpiQueryCP in response to an application requesting the currently selected code page for the device

context.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetCodePage

Return Codes: On completion, the handling routine must return the current code page (ICodePage) or

GPI ERROR.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. An error code for conditions that the handling routine is expected to check is:

PMERR_DEV _FUNC_NOT _INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference tor further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-87

llne function

GreGetCurrentPosition

#define INCL_GRE_LINES

BOOL GreGetCurrentPosition (hdc, pptlPosition. plnstance. lFunction)

This function takes the current (x, y) position in world coordinates from the DC instance data structure and
stores it at the location addressed by pptlPosition. If COM_ TRANSFORM is not set, the current position is
returned in screen coordinates.

Support: This function must be supported by all presentation drivers. GreGetCurrentPosition is called
by the function GpiQueryCurrentPosition. GreGetCurrentPosition might also be called in response to any of
the Presentation Manager drawing functions that begin their operation from the current position within the
presentation space.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlPosition PPOINTL Pointer to current position

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetCurrentPosition

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful.
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-88 Presentation Driver Reference

device function 3

GreGetDCOrigin

#define INCL_GRE_DEVMISC3

BOOL GreGetDCOrigin (hdc, pptlOrigin, plnstance, lFunction)

This function queries the origin of the device context that defines the bottom-left drawing origin for a

display device or a banded hardcopy device. The DC origin is set by GreSetupDC (page 10-126) at the

graphics engine, and by GreDeviceSetDCOrigin (page 8-50) at the presentation driver. This device context

origin is stored in the Device Context Instance (DCI) data structure addressed by plnstance. The DC origin

is always returned in screen coordinates.

Support: This function must be supported by presentation drivers for display devices and for hardcopy

devices that use banding. For other devices, the minimum requirement is for the handling routine to return

successful with pptlOrigin set to (0, 0).

Stack Frame

Parameter Data Type Description

hdc HOC Device context hand~e

pptlOrigin PPOINTL Pointer to the (x, y) coordinates of the returned DC origin in screen

coordinates

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetDCOrigin

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 8. Mandatory Functions for All Drivers 8•89

device function 3

GreGetLineOrigin

#define INCL_GRE_DEVMISC3

LONG GreGetlineOrigin (hdc, pptlXY, plnstance, lFunction)

This function returns the current line style from the DC instance data and stores the current position to the
address indicated by pptlXY. The presentation driver maintains the line style information. Some lines and
curves can be drawn either by the presentation driver or by simulations that must be able to query and set
the style as required. If COM_TRANSFORM is not set, the coordinate pair at pptlXY is returned in screen
coordinates.

The high-order WORD of the style number contains the first/last pel information. If the value of this byte is
0, the first pel is not drawn. (See "First and Last Pel Considerations" on page 8-21.) The low-order byte
indicates the position in the style mask. This is a count, held in the three least significant bits, of the
number of positions that the style mask byte is rotated. The next byte is the state of the style error value.

Support: This function must be supported by the presentation driver. GreGetlineOrigin is used to get
the line style and current position simultaneously. This function call can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlXY PPOINTL Pointer to an (x, y) coordinate pair to which the current position is
returned

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetlineOrigin

Return Codes: On completion, this function returns the style number (!Style), or GPl_AL TERROR if an
error occurs.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-90 Presentation Driver Reference

\
)

attribute function

GreGetPairKerningTable

#define INCL_GRE_DEVMISCl

LONG GreGetPairKerningTable (hdc, cKernPairs, pKernPairs, plnstance, lFunction)

This function stores the kerning pairs of the current font to the buffer addressed by pKernPairs. The
handling routine must transform all kerning-pair coordinates from device to world coordinates before
sending the data to the calling routine. This can be done by using GreConvert. If it is unable to do this
because the transform matrix is singular, it must log PMERR_COORDINATE_OVERFLOW.

Support: This function must be supported by the presentation driver. The call parameters are passed
unchanged to the display driver's dispatch table. GreGetPairKerningTable is called from
GpiQueryKerningPairs. GreGetPairKerningTable is used to return the kerning data for the currently
selected font. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cKernPairs LONG Number of kerning pairs, requested by the application.

pKernPairs PKERNPAIRS Pointer to kern pair records. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD=flags; low-order WORD= NGreGetPairKerningTable.

pKernPairs KERNINGPAIRS structure:

sFirstChar
sSecondChar
sKernlngAmount

Code point for the first character
Code point for the second character
2-byte signed integer indicating the amount of kerning. Positive
numbers specify increased inter-character spacing.

Return Codes: On completion, the handling routine must return the number of kerning pairs returned in
pKernPairs (cPairs), or GPl_ALTERROR if an error occurs.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SETID.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The number of kerning pairs is a field in the FONTMETRICS structure.

Chapter 8. Mandatory Functions for All Drivers 8-91

bit-map function

GreGetPel

#define INCL_GRE_BITMAPS

LONG GreGetPel (hdc, pptlPel, plnstance, lFunction)

This function returns the color of a pel at a specified position. If COM_ TRANSFORM is set, this position is
in world coordinates. If not set, the position is in screen coordinates. The return value of this function is
eitherthe color index of the pel or its RGB value depending on the color mode of the device.

Support: This function must be supported by the presentation driver, and is called by GpiQueryPel.
GreGetPel is used to query the value of a pel at a specified (x, y) coordinate within the DC. This function
can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlPel PPOINTL Pointer to the coordinate (x, y) pair structure

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetPel

Return Codes: This function must return the color index value for the pel, or CLR_NOINDEX if there is
no index corresponding to the color. In addition, the handling routine must raise an error when the point is
subject to any clipping.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT _SELECTED
PM ERR,;_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _RECT
PMERR_PEL_IS_CLIPPED
PMERR_PEL_NOT_AVAILABLE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-92 Presentation Driver Reference

bit-map function

GrelmageData

#define INCL_GRE_BITMAPS

LONG GrelmageData (hdc, pData, cBits, offRow, plnstance, lFunction)

This function draws a single row of image data with one bit per pel by using the current image foreground
and background color and mix attributes. Drawing starts at the current x-position and at a y-position
defined as a row offset below the current y-position. Data is supplied as a series of bytes and a count of
the bits to be drawn. The handling routine cannot assume that unused bits at the end of the stream are set
to 0. Bits are drawn from left to right. The high-order bit of each byte is the leftmost-image bit. The 1 bits
are foreground and the 0 bits are background. Notice that this function does not affect the current position.

Support: This function must be supported by the presentation driver. GrelmageData is called by the
function Gpilmage. GrelmageData is called multiple times for each call made to Gpilmage, once for each
scan line in the monochrome bit map.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pData PBYTE Pointer to data string.

cBits LONG Number of bits in row (maximum is 2040).

off Row UL ONG Row number relative to the current y-position. Zero is the current
position. A value of 1 indicates one row below the current position.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGrelmageData.

Return Codes: On completion, the handling routine must return a LONG integer (cHits), indicating
whether correlation hits have been detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _IMAGE_DATA_LENGTH
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT

Chapter 8. Mandatory Functions for All Drivers 8-93

bit-map function

PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_INV _SCAN_START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-94 Presentation Driver Reference

device function 3

GreLockDevice

#define INCL_GRE_DEVMISC3

BOOL GrelockDevice (hdc, plnstance, lFunction)

This function locks a device for use by a single thread.

Support: This function must be supported by all presentation drivers. GrelockDevice prevents two
separate processes from accessing the resource (device context) at the same time. Hardcopy drivers need
do nothing except return TRUE (Successful).

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGrelockDevice

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function synchronizes the use and update of the visible region by allowing all current
and pending drawings to finish and then blocking any requests to draw from other threads until
GreUnlockDevice is called. On exit, the only thread allowed to continue with screen operations is the one
that acquires the lock. To prevent deadlock, GreDeath cannot be called while the visible region is locked.

Chapter 8. Mandatory Functions for All Drivers 8-95

device function 2

GreNotifyClipChange

#define INCL_GRE_DEVMISC2

BOOL GreNotifyClipChange (hdc, prclBound, cRect, idClipPath, plnstance, lFunction)

This function is called whenever there is any change to the DC region. The call gives the presentation
driver an opportunity to optimize clipping by enumerating the clip rectangles and caching them whenever
they change. Typically, the handling routine would allocate more memory for the new DC region (when
necessary) and call GreGetClipRects (page 10-57) to get the set of rectangles that define the new DC
region. Also (for display devices only), the handling routine must clear the HDC_IS_DIRTY flag. On
completion, the handling routine must redispatch this call to the graphics engine using the pointer supplied
in the default dispatch table.

Support: This function must be supported by the presentation driver. GreNotifyClipChange is called
from the graphics engine whenever an application calls a GPI function that modifies the clipping rectangles
within the device context. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclBound PRECTL Pointer to a rectangle that bounds the new region in screen coordinates.

cRect UL ONG Number of rectangles in the new clip region as returned by GetClipRects.

idClipPath UL ONG Current ClipPath ID. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreNotifyClipChange.

idCllpPath For display devices, when idClipPath is passed as NCC_CLEANDC, the handling routine
should clear the HDC_IS_DIRTY flag and return Successful. See "VisRegionNotify" on
page 12-6 and "GreDevicelnvalidateVisRegion" on page 9-9.

Presentation drivers for other devices ignore this parameter.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Note: Presentation drivers that do not cache the clip rectangles should return TRUE, if there are no errors.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-96 Presentation Driver Reference

device function 2

GreNotifyTransformChange

#define INCL_GRE~DEVMISC2

BOOL GreNotifyTransfonnChange (hdc, flFlags, pXfonndata, plnstance, lFunction)

This function notifies the presentation driver of a change in the transform from world coordinates to device
coordinates. This function is called by the graphics engine to provide sufficient information to allow the
device to optimize its calling of the GreConvert function or, where possible, to make all point
transformations itself. The minimum requirement is for the handling routine to update the current position
and pattern origin, and then call back to the GreNotifyTransformChange routine in the graphics engine.
Notice that the handling· routine must:

• Check that the new current position is valid.
• Check that the change will not cause an overflow of the 16-bit coordinates for the device space.
• Fail safe. If an error is detected or the call back to the graphics engine fails, the routine must restore

the initial values before returning FALSE.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter

hdc

fl Flags

pXformdata

ptnstance

I Function

fl Flags

Data Type Description.

HOC Device context handJe.

UL ONG See below.

PNOTIFYTRANSFORMDATA Pointer to transform data structure. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order
WORD= NGreNotifyTransformChange.

A set of flags that pass information regarding the complexity of the 2x2 matrix of the M11,
M12, M21, and M22 components (of the composite transform from world coordinates to
device coordinates), and show if a translation is required. If the MATRIX.;...SIMPLE flag is
not set, none of the other flags are valid.

MATRIX_SIMPLE
MATRIX_ UNITS
MATRIX_XY _EXCHANGE
MATRIX_X_NEGATE
MATRIX_ Y _NEGATE
MATRIX_ TRANSLATION

Two entries are 0.
All entries are + 1 or -1.
Zeros are on the diagonal.
Xis hit by negative (see Note).
Y is hit by negative (see Note).
Non-zero translation~

Note: MATRIX_X_NEGATE and MATRIX_Y_NEGATE are only meaningful when both
MATRIX_SIMPLE and MATRIX_UNITS are set.

Examples:

Matrix = { 1.e, e.e, e.e, 1.e, e, e } =>
Flags = MATRIX_SIMPLE I MATRIX_UNITS

Matrix = { 1.e, e.e, e.e, 1.e, 5, 10 } =>
Flags = MATRIX_SIMPLE I MATRIX_UNITS I MATRIX_TRANSLATION

Matrix = { e.e, -1.0, 1.e, a.a, 17, 5 } =>
Flags = MATRIX_SIMPLE I MATRIX_UNITS I MATRIX_XY_EXCHANGE
MATRIX_Y_NEGATE I MATRIX_TRANSLATION

Chapter 8. Mandatory Functions for All Drivers 8-97

device function 2

pXformdata Pointer to NOTIFYTRANSFORMDATA structure:

us Type
fxM11
fxM12
fxM21
fxM22
IM41
IM42

Indicates fixed-point notation
Fixed-point matrix elements
Fixed-point matrix elements
Fixed-point matrix elements
Fixed-point matrix elements
Long translations
Long translations

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _PATTERN_REF _PT _ATTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-98 Presentation Driver Reference

llne function

GrePolyLine

#define INCL_GRE_LINES

LONG GrePolyline (hdc, paptlPoint, cPoints, plnstance, lFunction)

This function draws a sequence of one or more lines starting at the current (x, y) position. As each line is
drawn, its end point becomes the start point for the next line. Upon completion, the current (x, y) position is
the end point of the last line. When COM_TRANSFORM is not set, the function expects the array of points
to be in screen coordinates.

When the COM_AREA or COM_PATH flag is set, this function is part of an area or path definition. In either
case, the handling routine would usually pass the call back to the graphics engine for processing by the
default handling routine. The call would not be passed back to the graphics engine if the presentation
driver had hooked all of the area and path functions.

When this function is used to draw a closed figure, the handling routine must not draw the last point of the
last (closure) line. The handling routine can call back to the graphics engine to do any necessary clipping.

Support: For performance reasons, all presentation drivers should support this function when drawing a
polyline to a single clipping rectangle. When the clip region is more complex, the handling routine can
forward the call to the graphics engine using the pointer supplied in the dispatch table when the
presentation driver was enabled. The engine will clip each line and return it to the presentation driver as a
call to GreDrawlineslnPath.

GrePolyline is called by the function GpiPolyline. GrePolyline is also used by many of the complex object
rendering routines within the graphics engine.

Stack Frame

Parameter

hdc

paptlPoint

cPoints

plnstance

I Function

cPolnts

paptlPoint

Data Type Description

HOC Device context handle

PPOINTL Pointer to an array of (x, y) points. See below.

LONG Number of (x, y) pairs in points array

PVOID Pointer to instance data

UL ONG High-order WORD= flags; low-order WORD= NGrePolyline

When this is passed as 0, the handling routine takes no action except to return Successful.

Pointer to an array of cPoints (x, y) pairs containing the (x, y) coordinates of the end points
for the lines.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on,
and a hit is detected)
Error.

Chapter 8. Mandatory Functions for All Drivers 8-99

. nne function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions thatthe handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _ COORD _SPACE
PMERR_JNV _HDC
PMERR..JNV _IN_ AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _.:RECT
.PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8· 100 Presentation Driver Reference

\

}

marker function

GrePolyMarker

#define INCL_GRE_MARKERS

LONG GrePolyMarker (hdc, paptlPoint, cPoints, plnstance, lFunction)

This function draws a sequence of one or more markers. The first marker is drawn at the current (x, y)
position. Subsequent markers are drawn at the specified (x, y) positions that indicate the centers of the
markers. Upon completion, the current (x, y) position is the center of the last marker. When
COM_ TRANSFORM is not set, the function expects the array of points to be in screen coordinates.

Support: This function must be supported by the presentation driver. GrePolyMarker is called by
GpiPolyMarker and GpiMarker. GrePolyMarker is used to render one or more markers. The first marker is
drawn at the current position and the positions of any subsequent markers must be specified.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to points array. See below.

cPoints LONG Number of markers to be drawn.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGrePolyMarker.

paptlPolnt
cPolnts

An array of (cPoints) (x, y) pairs that contain the (x, y) coordinates of the markers.
When this is passed as NULL, the handling routine takes no action except to return
Successful.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _IN_AREA
PMERR_INV_MARKER_SYMBOL_ATTR
PMERR_PATH_LIMIT _EXCEEDED
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-101

line function

GrePolyScanline

#define INCL_GRE_SCANS

LONG GrePolyScanline (hdc, pScanData, plnstance, lFunction)

This function fills an area lying between polyshortline pairs by using the current pattern attribute. Notice
that coordinates are passed as unclipped screen coordinates. Filling is inclusive at the left boundaries and
exclusive at the right boundaries. The scan lines are ordered from bottom-to-top and from left-to-right.

Support: This function must be supported by all presentation drivers except those that hook the
GreDrawRLE, GreEndArea, and GreFillPath functions. All function calls to GrePolyScanline come from the
GreDrawRLE, GreEndArea, or GreFillPath handling routines in the graphics engine. GrePolyScanline is not
called by any specific function. However, it is likely to be accessed by any area-filling functions.

Stack Frame

Parameter

hdc

pScanData

plnstance

I Function

pScanData

Data Type Description

HOC Device context handle

PSCANDATA Pointer to a SCANDATA structure

PVOID Pointer to instance data

ULONG High-order WORD= flags; low-order WORD= NGrePolyScanline

Pointer to a SCANDATA structure:

pslflrstleft
psllastleft
pslFlrstRlght
psllastRight
c
rel Bound

Pointer to the left end of the first polyshortline
Pointer the left end of the last polyshortline
Pointer to right edge of first polyshortline
Pointer to right edge of last polyshortline
Number of scan lines
RECTL structure defining the bounding rectangle.

Notice that a polyshortline consists of a list of linked SHORTLINE structures:

slh SHORTLINEHEADER structure:

ulStyle
ulformat
ptlStart
ptlStop
Ix left
Ix Right
pslhNext
pslhPrev

Line style
Line format
(x, y} position of start
(x, y} position of end
Left edge of bounding rectangle
Right edge of bounding rectangle
Pointer to next shortline
Pointer to previous shortline.

This structure is a discrete representation of a curve that starts at point (xO, yO) and
ends at point (x1, y1). For each of the (y1-y0+ 1) rows, there is exactly one x value
contained in the x array. The final point in the series is not drawn.

ax Array of x values as screen coordinates.

8-102 Presentation Driver Reference

llne function

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where

appropriate, whether correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT_ SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The handling routine can assume that the two polyshortlines do not cross and both

polyshortlines have the same height.

Chapter 8. Mandatory Functions for All Drivers 8-103

line function

GrePolyShortLine

#define INCL_GRE_LINES

LONG GrePolyShortline (hdc, psl, plnstance, lFunction)

This function draws a series of shortlines. The current (x, y) position is not changed. A po/yshortline is a
linked list of shortlines. The function renders each SHORTLINE structure in the list until a NULL pslhNext is
encountered. Notice that coordinates are passed as screen coordinates and are already completely
clipped.

Support: This function must be supported by all presentation drivers except those that hook GrePolyline
and all of the GreArcxxx functions that are simulated by handling routines in the graphics engine. All
function calls to GrePolyShortline come from either GrePolyline or the GreArcxxx functions.
GrePolyShortline might be accessed from any of the curve-rendering functions. However, it is not
guaranteed that curve-rendering will call GrePolyShortline.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

psi PSHORTLINE Pointer to SHORTLINE structure. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePolyShortline.

psi The shortlines are defined in a list of linked SHORTLINE structures:

slh SHORTLINEHEADER structure:

ulStyle
ulFormat
ptlStart
ptlStop
Ix Left
Ix Right
pslhNext
pslhPrev

Line style.
Line format.
(x, y) position of start (the start position is included in the line).
(x, y) position of end (the end position is not included in the line).
Left edge of bounding rectangle.
Right edge of bounding rectangle.
Pointer to next shortline.
Pointer to previous shortline.

Notice that the boundaries of the rectangle are inclusive at the start points of the lines, and
exclusive at the stop points regardless of the direction.

This structure is a discrete representation of a curve that starts at point (xO, yO) and ends at
point (x1, y1). For each of the (y1-y0+1) rows, there is exactly one x value contained in the x
array. The final point in the series is not drawn.

ax Steps. This is an array of x-coordinates in absolute values. There is one coordinate value for
each shortline.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

8-104 Presentation Driver Reference

line function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_lNDEX
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_lNV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_:POSN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-105

text function

GreQueryCharPositions

#define INCL_GRE_STRINGS

BOOL GreQueryCharPositions (hdc, pptlStart, flOptions, cChars, pchString, pAdx, paptXY, plnstance, lFunction)

This function stores at the location addressed by paptXY, an array of world coordinates identifying the start
points at which the device is to place each character of a given string. GreQueryCharPositions is required
for the management of device fonts in CM_MODE2 only. When the presentation driver has no device fonts,
the handling routine must post PMERR_DEV _FUNC_NOT _INSTALLED.

Support: This function must be supported by the presentation driver. GreQueryCharPositions is called
by GpiQueryCharStringPos, and is used to get the position where the next string output would occur
relative to the current presentation space position. It also returns the starting position of each character
within that string.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pptlStart PPOINTL Pointer to (x, y) coordinates of optional starting position.

fl Options ULONG Flags. See below.

cChars LONG Number of bytes in string.

pchString PCH Pointer to character string.

pAdx PL ONG Pointer to Increment array. See below.

paptXY PPOINTL Pointer to array where character positions are returned.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryCharP~sitions.

flOptlons The following flags can be set:

pAdx

paptXY

CHS_VECTOR
CHS_START_XY

If set, increment vector is present.
If set, starting position is present. Otherwise, pptlStart is ignored.

Vector of increment values with one element for each character in the string. After writing a
character, the increment specifies the absolute distance in world coordinates to get to the
starting point of the next character.

Pointer to an array of (cChars+ 1) returned positions. The first value in the array is the initial
current position; the last value is the current position on return.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

8-106 Presentation Driver Reference

text function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED

PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_CHAR_ANGLE_ATTR
PMERR_INV _ CHAR_MODE_A TTR
PMERR_INV _CHAR_POS_OPTIONS
PMERR_INV _CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _SETID
PMERR_INV _TRANSFORM_ TYPE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-107

color table function

GreQueryColorData

#define INCL_GRE_COLORTABLE

BOOL GreQueryColorData (hdc, cArray, pArray,. plnstance, lFunction)

This function stores an array of information about the currently available logical color table and device
colors at the location addressed by pArray. When the current table is the default logical color table,
presentation drivers that support less than 16 colors return the device colors that the 16 colors from 0
(CLR_BACKGROUND) through 15 (CLR_PALEGRAY) have been mapped to.

Support: This function must be supported by the presentation driver. GreQueryColorData is called by
GpiQueryColorData in response to an application's request for the currently selected color table data for
the device context. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc

cArray

pArray

p.lnstance

I Function

pArray

HOC Device context handle.

LONG Number of elements supplied in Array.

PLO NG Pointer to Array. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreQueryColorData.

On return, this array contains:

IArray[QCD_LCT_FORMAT] Format of loaded color table (if any):

LCOLF _DEFAULT Default color table is in force.

LCOLF _INDRGB Color table loaded, which provides
translation from index to RGB.

LCOLF_RGB Color index= RGB.

LCOLF_PALETIE DC has a palette selected.

IArray[QCD_LCT_LOINDEX] Smallest color index loaded (always 0).

IArray[QCD_LCT_HllNDEX] Largest color index loaded (never less than 15).

Information is only returned for the number of elements supplied, any extra elements supplied
must be zeroed by the handling routine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference tor further explanation.

8-108 Presentation Driver Reference

color table function

GreQueryColorlndex

#define INCL_GRE_COLORTABLE

LONG GreQueryColorlndex (hdc, flOptions, rgbColor, plnstance, lFunction)

This function returns the logical color index that is closest to the specified RGB color representation for the
device. If the color index is RGB mode, the supplied RGB value is returned.

Support: This function must be supported by the presentation driver. GreQueryColorlndex is called by
GpiQueryColorlndex when an application requests the index of the color most closely matching a specified
color, relative to the current logical color table for the device context.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Options UL ONG See below.

rgbColor LONG Color, as an RGB value.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryColorlndex.

flOpllons The only valid option is:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if any)
is realized. Otherwise, the information is required when the logical
color table is not realized.

Other flags are reserved and must be 0.

Return Codes: On completion, the handling routine must return the color index providing the closest
match to the specified color (IColorlndex), or GPl_AL TERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _HDC
PMERR_INV _RGBCOLOR.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-109

query function

GreQueryDeviceBitmaps

#define INCL_GRE_DEVICE

BOOL GreQueryDeviceBitmaps (hdc, paOutData, cOutdata, plnstance, lFunction)

This function stores a list of bit-map formats supported by the device in the array addressed by paOutData.
The number of formats supported can be found by using GreQueryDeviceCaps. Each format is returned in
a pair of array elements and is in the form (cPlanes, cBitsPerPel). The first pair in the array must be the
format that most closely matches the device.

Support: This function must be supported by the presentation driver. GreQueryDeviceBitmaps is called
by GpiQueryDeviceBitmapFormats in response to the request of an application for a list of the bit-map
formats that the device context supports. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paOutData PL ONG Pointer to array where the bit-map format data is returned; excess
elements are set to 0.

cOutData LONG Number of elements in the array pointed to by paOutData. This must be
even.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryDeviceBitmaps.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8· 110 Presentation Driver Reference

I

J
I

query function

GreQueryDeviceCaps

#define INCL_GRE_DEVICE

BOOL GreQueryDeviceCaps (hdc, llndex, paOutData, cOutData, plnstance, lFunction)

This function supports DevQueryCaps at the API. The handling routine returns the required information in
the device capabilities buffer addressed by paOutData. Calls to GreQueryDeviceCaps would not usually
require the handling routine to return data in all fields in the buffer. The parameters llndex and cOutData
identify the offset to the first field and the count of consecutive field for returned data.

Note: In OS/2 2.0, if GreQueryDeviceCaps returns data in the CAPS_DRIVER_ VERSION field, the return
value must be 00000200H.

Support: This function must be supported by the presentation driver. GreQueryDeviceCaps is called by
DevQueryCaps, and is used to return information regarding the general capabilities of the device.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

llndex LONG Identifies the first item required. See below.

paOutData PL ONG Pointer to an array where information is returned.

cOutData

plnstance

I Function

llndex

LONG Number of items of information to be returned at paOutData.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreQueryDeviceCaps.

Indicates the element within the device capabilities array at which the presentation driver must
begin returning information. Device capabilities are held by the system in an array of ULONG
fields. For details, see DevQueryCaps in the OS/2 2.0 Presentation Manager Programming
Reference.

Additional information is provided in the array for communication between the presentation
driver and the graphics engine. The CAPS_ADDITIONAL_GRAPHICS field has two extra flags
and a CAPS_DEVICE_FONT_SIM field is provided.

The additional flags in CAPS_ADDITIONAL_GRAPHICS are used (in conjunction with the
CAPS_FONT _OUTLINE_DEFAUL T and CAPS_FONT _IMAGE_DEFAUL T flags) by the presentation
driver when it wants the graphics engine to manage transforms and mappings for the default
fonts that the driver supplies. The flags are:

CAPS_FONT_OUTLINE_MANAGE Set by the presentation driver to indicate that the graphics
engine must manage the default outline font

CAPS_FONT_IMAGE_MANAGE Set by the presentation driver to indicate that the graphics
engine must manage the default image font.

Note: If the presentation driver supplies the fonts but wants the graphics engine to manage
them, it must pass the font address to the graphics engine using GreQueryDevResource.

The CAPS_DEVICE_FONT_SIM field contains flags that the presentation driver sets so that the
graphics engine will handle simulations for the default fonts supplied by the driver:

CAPS_DEV _FONT _SIM_BOLD Indicates that the graphics engine should simulate
CDEF _BOLD for device fonts

Chapter 8. Mandatory Functions for All Drivers 8-111

query function

CAPS_DEV_FONT_SIM_ITALIC Indicates that the graphics engine should simulate
CDEF _ITALIC for device fonts

CAPS_DEV_FONT_SIM_UNDERSCORE Indicates that the graphics engine should simulate
CDEF _UNDERSCORE for device fonts

CAPS_DEV_FONT_SIM_STRIKEOUT Indicates that the graphics engine should simulate
CDEF _STRIKEOUT for device fonts.

Note: The font attributes CDEF _xxx are identified by the cdef.fF/ags field in the character
attributes bundle (see page 8-6). In the presentation driver, routines that write character
strings should check the cdef.fF/ags field to determine whether the call should be passed
to the default handling routine in the graphics engine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV_LENGTH_OR._COUNT
PMERR_INV _QUERY _ELEMENT _NO.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-112 Presentation Driver Reference

query function

GreQueryDevResource

#define INCL_GRE_DEVICE

LONG GreQueryDevResource (hdc, Hype. id, plnstance, lFunctfon)

This functton indicates whether a specified resource is available. If the resource is loaded, its handle is
returned so that it can be selected into the device context. The resources (display information, pointers, bit
maps, and fonts) are stored in DLL files. Some of these resources are linked by the presentation driver
when it is first enabled, others are loaded by the application with WinLoadPointer.

The two system fonts are queried by the graphics engine when the presentation driver is loaded. When the
presentation driver has a default font, it returns the handle of the font, as requested. When this function
returns a NULL handle for the system font, the graphics engine default fonts are used instead (see "Font
Functions" on page 11-1).

Support: This· function must be supported by the display drivers, which must support the full range of
requests. GreQueryDevResource is used internally by the graphics engine. Hardcopy drivers are required
to provide a minimal level of support. At a minimum, the hardcopy driver must return Oto indicate that a
requested resource is not available. If a hardcopy driver has a raster or outline font that it requests the
graphics engine to use as the default, then the presentation driver must return the address of its raster or
outline font when the parameter, id, is equal to RT_FONT.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

IType UL ONG Resource type. See below.

id UL ONG Defined resource value.

plnstance PVOIO Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryDevResource.

IType Resource. types returned by the presentation driver:

RT _DISPLA YINFO A structure containing some of the display constants required by the
Window Manager. This information is required for all display devices that
support windows. The format of the DISPLAYINFO structure is:

cb

cxlcon

cylcon

cxPolnter

cyPolnter

cxBorder

cyBorder

Size of this structure (always set to 26).

Count of pels for x-width of icon.

Count of pets for y-height of icon. When WinLoadPointer is
used to load the icon, it is stretched or compressed to the
size indicated by cxlcon and cylcon.

Count of pels for x-width of pointer.

Count of pels for y-height of pointer. When WinLoadPointer
is used to load the pointer, it is stretched or compressed to
the size indicated by cxPointer and cyPointer.

Count of pels for x-width of horizontal border.

Count of pels for y-height vertical border.

Chapter 8. Mandatory Functions for All Drivers 8-113

query function

RT_POINTER

cxHSllder Count of pels for x-width of horizontal scroll bar slider.

cyVSllder Count of pels for y-height of vertical scroll bar slider.

cxSlzeBorder Count of pels for x-width of default border.

cySlzeBorder Count of pels for y-height of default border.

cxDevlceAllgn Count of pels for horizontal device alignment.

cyDevlceAllgn Count of pels for vertical device alignment. Some display
devices operate faster when operation coordinates are
aligned to a byte. Word or DWORD boundary.

These two parameters allow the presentation driver to
align windows on these boundaries and so optimize
window management operations.

Defined system pointers are:

SPTR_ARROW

SPTR_TEXT

SPTR_WAIT

SPTR_MOVE

SPTR_SIZENWSE

SPTR_SIZENESW

SPTR_SIZEWE

SPTR_SIZENS

SPTR_APPICON

Left-pointing arrow, usually the system
default.

Text-insertion pointer, typically used when
the mouse pointer is on an edit control.

An hourglass used to tell the user to wait
while the system is busy.

Four arrows together, pointing north, south,
east and west, that tel I the user that window
can be dragged in any of these directions.

An arrow pointing northwest and southeast,
that tells the user that the window can be
sized in these directions.

An arrow pointing northeast and southwest,
that tells the user that the window can be
sized in these directions.

An arrow pointing east and west, that tells
the user that the window can be sized in
these directions.

An arrow pointing north and south, that tells
the user that the window can be sized in
these directions.

Usually a blank icon. This is used when a
window that has been sized down to its
minimum (and has no normal icon) is
dragged across the screen.

SPTR_ICONINFORMATION Pointer used as part of a message box when
specified in a call to WinMessageBox.

SPTR_ICONQUESTION Pointer used as part of a message box when
specified in a call to WinMessageBox.

SPTR_ICONERROR Pointer used as part of a message box when
specified in a call to WinMessageBox.

SPTR_ICONWARNING Pointer used as part of a message box when
specified in a call to WinMessageBox.

8-114 Presentation Driver Reference

RT_BITMAP

SPTR_ILLEGAL

SPTR_MULTFILE

SPTR_PROGRAM

SPTR_FILE

SPTR_FOLDER

query function

Pointer used by the filing system to notify the
user of an illegal mouse-directed copy or
move operation.

Pointer used by the file system to indicate a
multiple file copy or move operation.

Pointer used by the file system to indicate a
copy or move operation on an executable
program file.

Pointer used by the file system to indicate a
copy or move operation on an ordinary file.

Pointer used by the file system to indicate a
copy or move operation on an entire
directory.

The following defined system bit maps are required in display drivers:

SBMP _BTNCORNERS Contains the rounded corners for pushbuttons.
It is arranged as three bit maps divided into 2x2
bit map arrays describing the corners of each
bit map. The three bit maps are defined as
follows:

• Contains the corners of an unselected
pushbutton, which is not a default
pushbutton.

• Holds the corners of a default pushbutton
that is currently not selected.

• Contains the corners of a currently selected
pushbutton, which can be either a default or
non-default pushbutton.

SBMP _DRIVE Used by the file system to display the logical
disk drive.

SBMP _FILE Used by the file system to indicate an unknown
file type.

SBMP _FOLDER Used by the file system to display a directory.

SBMP _MENUATTACHED Drawn on the right edge of a menu item to
indicate that a pulldown menu is attached to
that item.

SBMP _MENUCHECK Displayed next to a menu item when the item is
checked. Menu items are displayed in the
system font and the menu checks are vertically
aligned next to them. The height of this bit map
must be no greater than the system font height
to ensure that consecutive menu-check bit
maps do not overlap. Its width is arbitrary, but
is normally the same as the system font width.

SBMP _PROGRAM Used by the file system to mark EXE and COM
files.

SBMP _SIZEBOX Used by some applications to display a sizebox
in the bottom-right corner of a frame window.

Chapter 8. Mandatory Functions for All Drivers 8-115

query function

RT_FONT

SBMP _ TREEMINUS

SBMP _ TREEPLUS

Used by the file system to indicate there are no
more subdirectories to view.

Used by the file system to indicate there are
more subdirectories to view.

The following defined system bit maps are also required to ensure
compatibility with OS/2 Version 1.x applications:

SBMP _OLD_ CHILDSYSMENU
SBMP _OLD_ CHECKBOXES
SBMP_OLD_MAXBUTTON
SBMP _OLD_MINBUTTON
SBMP_OLD_RESTOREBUTTON
SBMP _OLD_SBDNARROW
SBMP _OLD_SBLFARROW
SBMP _OLD_ SBRGARROW
SBMP _OLD_ SBUPARROW
SBMP _OLD _SYSMENU.

The following defined system bit maps are provided by PMWIN.DLL and are
optional in display drivers:

SBMP _ CHECKBOXES
SBMP _ CHILDSYSMENU
SBMP _ CHILDSYSMENUDEP
SBMP_CLOSEBUTTON
SBMP _ CLOSEBUTTONDEP
SBMP _COMBODOWN
SBMP _MAXBUTTON
SBMP_MAXBUTTONDEP
SBMP _MINBUTTON
SBMP _MINBUTTONDEP
SBMP_RESTOREBUTTON
SBMP_RESTOREBUTTONDEP
SBMP _SBDNARROW
SBMP _SBDNARROWDEP
SBMP _SBDNARROWDIS
SBMP _SBLFARROW
SBMP _ SBLFARROWDEP
SBMP _SBLFARROWDIS
SBMP _SBRGARROWDEP
SBMP _SBRGARROWDIS
SBMP _SBRGARRROW
SBMP _SBUPARROW
SBMP _SBUPARROWDEP
SBMP _SBUPARROWDIS
SBMP _SYSMENU
SBMP _SYSMENUDEP.

Refer to the function WinGetSysBitmap in OS/2 2.0 Presentation Manager
Programming Reference for more information.

The default system :fonts are:

SFONT_RASTER Default image font
SFONT_OUTLINE Default outline font.

Return Codes: This function returns the address of the indicated resource, O if no address is available,
or GPl_AL TERROR if an error occurs.

8-116 Presentation Driver Reference

query function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_DEV _FUNC _NOT _INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-117

query function

GreQueryHardcopyCaps (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreQueryHardcopyCaps (hdc, lStart, cCount, plnfo, plnstance, lFunction)

This function stores information about the hardcopy capabilities of the device in the buffer addressed by
plnfo. The information is stored as a sequence of one or more HCINFO structures defining the hardcopy
capabilities for one or more form codes. For presentation drivers that support more than one form code
with the relevant data held in a structure of HCINFO structures, the parameters !Start and cCount identify
the starting point in the main structure and the number of HCINFO structures to be stored.

It is usual for this function to be issued twice (initially with a value of O in cCount) to return the number of
forms available. Storage can be allocated and the function called again with cCount set to the number of
forms for which information is required.

Support: This function must be supported by hardcopy drivers. It is not required for display drivers.
GreQueryHardcopyCaps is called by the function DevQueryHardcopyCaps.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

I Start LONG Index. See below.

cCount LONG Number of forms. See below.

plnfo PHCINFO Pointer to buffer for returned form data. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryHardcopyCaps.

IStarl Index to the required starting HCINFO structure. A value of 0 identifies the HCINFO for the first
form.

cCount Number of structures to be returned in the buffer. A value of 0 requests the handling routine to
set the return code to the number of forms that the driver supports.

plnfo A pointer to the buffer for the returned data. The data is returned as a set of one or more
HCINFO structures. When plnfo is not equal to NULL and IStart is greater than, or equal to, the
number of form codes that the hardcopy drivers supports, the hardcopy driver should return 0
without modifying the memory block pointed to by pinto.

szFormname[32] Character string containing the name of the form
ex Width (left-to-right) in millimeters
cy Height (top-to-bottom) in millimeters
xLeftCllp Left clip limit in millimeters
yBottomCllp Bottom clip limit in millimeters
xRightCllp Right clip limit in millimeters
yTopCllp Top clip limit in millimeters
xPels Number of pels between left and right clip limits
yPels Number of pels between bottom and top clip limits
flAttributes Attributes describing the availability of the form:

8-118 Presentation Driver Reference

query function

HCAPS_CURRENT The form is currently available on the device. For

devices with multiple paper trays,

HCAPS_CURRENT says that the paper required for

this form is in the current paper tray.

HCAPS_SELECTABLE The form is installed on the device but has to be

selected. That is, the paper tray required for this

form is not the current one.

Return Codes: The value returned by the handling routine depends on the initial value of cCount. If

cCount = 0, return the total number of form codes that the presentation driver supports. For any other

value, return the number of HCINFO structures that were transferred to the buffer.

Possible Errors Detected: When an error is detected, the handling routine must return DQHC_ERROR and

call WinSetErrorlnfo to post the condition. An error code for conditions that the handling routine is

expected to check is:

PMERR_INV _LENGTH_ OR._COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-119

color table function

GreQuerylogColorTable

#define INCL_GRE_COLORTABLE

LONG GreQuerylogColorTable (hdc, flOptions, lStart, cArray, pArray, plnstance, lFunction)

This function stores an array of the current logical color values at the location addressed by pArray.

Support: This function must be supported by the presentation driver. GreQuerylogColorTable is called
by GpiQuerylogColorTable in response to an application's request for the currently configured logical
color table. This function can be handled by bit-map simulation.

Stack Frame

Parameter

hdc

fl Options

I Start

cArray

pArray

plnstance

I Function

flOpllons

pArray

Data Type Description

HOC Device context handle.

UL ONG See below.

LONG Starting index for which data is to be returned.

LONG Number of elements available in the array.

PL ONG Pointer to the array in which the information is returned.
PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreQueryLogColorTable.

The only valid option flag is:

LCOLOPT_INDEX If set, the handling routine must return the index for each RGB value.
When LCOLOPT _INDEX is set, pArray points to an array of alternating color indexes and
values (index1, value1, index2, value2, and so forth). If the logical color table is not loaded
with a contiguous set of indexes, any index values that are not loaded are skipped.
When LCOLOPT _INDEX is not set, pArray points to an array of RGB color values in which the
information is to be returned. Each value is the same as those defined for
"GreCreatelogColorTable" on page 8-34, starting with the specified index and ending when
there are no further loaded entries in the table or when cCount has been exhausted. If the
logical color table is not loaded with a contiguous set of indexes, QLCT _NOTLOADED is
returned as the color value for any index values that are not loaded.

Return Codes: The handling routine must return a LONG value indicating the number of elements
returned in pArray or:

QLCT_ERROR
QLCT_RGB

Error
Color table is in RGB mode and no elements are returned.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _COLOR_ START _INDEX
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-120 Presentation Driver Reference

y

color table function

GreQueryNearestColor

#define INCL_GRE_COLORTABLE

LONG GreQueryNearestColor (hdc. flOptions. rgbColorin. plnstance. lFunction)

This function returns the available color nearest to the specified color on the currently associated device
even if it is not available in the logical color table. Both colors are specified as RGB values. The color
used for drawing primitives such as lines and text is the color returned. GreQueryNearestColor does not
consider the possibility of using dithered colors for filling areas. Where dithered colors are used for filling,
the color used for text and lines is likely to be different even when the same color index is selected.

The nearest color is determined by finding its position in RGB space. RGB space can be defined as a cube
with three axes (representing red, green and blue color intensities) radiating from one corner or origin.
Moving up the Red axis results in increasing red intensity. Different intensities of cyan can be produced by
moving along the Green and Blue axes. For EGA and VGA devices, dithering is performed by dividing the
RGB space into 9x9x9 cubical cells representing the colors that can be created. The cell each RGB color
falls into is determined and a lookup table is created to indicate which EGA planes to set on or off to create
each color.

When this function is called for a monochrome device, the color returned is either the reset color or the
contrast color for the device. See "Support for Monochrome Devices" on page 8-15.

Support: This function must be supported by the presentation driver. GreQueryNearestColor is called
by GpiQueryNearestColor when the application wants the available colors nearest to the specified color.

Stack Frame

Parameter

hdc

fl Options

rgbColorln

plnstance

I Function

fl Options

Data Type Description

HOC Device context handle.

UL ONG See below.

LONG Color required.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreQueryNearestColor.

The only significant flag is:

LCOLOPT _REALIZED

Other flags are reserved.

If set, the information is required when the logical color table (if
any) is realized. When this flag is not set, the information is
required when the logical color table is not realized.

Return Codes: The handling routine must return the nearest available RGB color to that requested
(rgbColorOut), or GPl_ALTERROR if an error occurred.

Chapter 8. Mandatory Functions for Al I Drivers 8-121

color table function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _HDC
PMERR_INV _RGBCOLOR.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-122 Presentation Driver Reference

color table function

GreQueryRealColors

#define INCL_GRE_COLORTABLE

LONG GreQueryRealColors (hdc, flOptions, lStart, cArray, pArray, plnstance, lFunction)

This function stores, in the array addressed by pArray, the RGB values of the distinct colors available on

the currently associated device.

Support: This function must be supported by the presentation driver. GreQueryRealColors is called by

GpiQueryRealColors in response to an application requesting the currently available colors for the device

context.

Stack Frame

Parameter

hdc

fl Options

I Start

cArray

pArray

ptnstance

I Function

flOptlons

I Start

pArray

Data Type Description

HOC Device context handle.

ULONG See below.

LONG Ordinal number of the first color required. See below.

LONG Number of elements available in the array.

PLONG Pointer to array in which data is returned.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreQueryRealColors.

Valid options are:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if any)
is realized. When this flag is not set, the information is required
when the logical color table is not realized.

LCOLOPT_INDEX If set, the handling routine must return the index for each RGB value.
Other flags are reserved and must be 0.

Typically, this is 0 to start the sequence. This value does not necessarily bear any
relationship to the color index because the order in which the colors are returned is not

defined.

When LCOLOPT_INDEX is set, this is an array of alternating color indexes and values (in the
order, index1, value1, index2, value2 and so forth). If there is a color table, colors that are not
in the table but are available on the device, have a special index of QLCT _NOTLOADED. In
RGB mode, the RGB value is returned in the color indexes.

When LCOLOPT_INDEX is not set, this is an array of color values. Each value is the same as

those defined for "GreCreatelogColorTable" on page 8-34.

Return Codes: On completion, the handling routine must return the number of colors returned in the

array (cColors), or GPl_AL TERROR if an error occurred

Chapter 8. Mandatory Functions for All Drivers 8-123

color table function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _ COLOR_OPTIONS
PMERR_INV _ COLOR_START _INDEX
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-124 Presentation Driver Reference

color table function

GreQueryRGBColor

#define INCL_GRE_COLORTABLE

LONG GreQueryRGBColor (hdc, flOptions, iColor, plnstance, lFunction)

This function returns the actual RGB color that results from the specified color index for the specified

device If the color index is RGB mode, the nearest RGB color (the same as QueryNearestColor) is

returned. All defined indexes are valid except CLR_DEFAULT, which causes an error to be raised.

Support: This function must be supported by the presentation driver. GreQueryRGBColor is called by

GpiQueryRGBColor in response to the request of an application to convert a color index into the

corresponding RGB value. If the logical table is currently in RGB mode, the nearest RGB color is returned.

This function can be handled by bit-map simulation.

Stack Frame

Parameter

hdc

fl Options

iColor

plnstance

I Function

flOptlons

Data Type Description

HOC Device context handle.

ULONG See below.

LONG Color index.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreQueryRGBColor.

Valid options are:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if any)

is realized. When this flag is not set, the information is required

when the logical color table is not realized.

LCOLOPT_INDEX When set, the handling routine must return the actual RGB color

originally specified for this index. Otherwise, it must return the

nearest RGB color for this index, that is, the one which would result

from drawing on the specified device.

Other flags are reserved and must be 0.

Return Codes: On completion, the handling routine must return the nearest available RGB color to that

requested (rgbColor), or GPl_AL TERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV_COLOR_DATA
PMERR_INV _COLOR_INDEX
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-125

text function

GreQueryTextBox

#define INCL_GRE_STRINGS

BOOL GreQueryTextBox (hdc, cChars, pchString, cptPosition, paptPosition, plnstance, lFunction)

This function processes a character string as if it were being drawn. The handling routine stores the
coordinates of the current text box (relative to the current (x, y) position) as an array at the location
indicated by paptPosition. The first four coordinate pairs identify the bounding parallelogram for the given
character string. The fifth coordinate pair is the (x, y) position of the starting point for the next character
position after the string, that is, the current position value that would be set by an equivalent call to
GpiCharStringAt. The positions take account of current values for character spacing such as kerning and
character space. The points on the borders of the character box are deemed to be inside the box.

When the character mode is CM_MODE2, this function is valid only if the character angle and shear
attributes are set to their default values. See "Character Attributes" on page 8-6.

Support: This function must be supported by the presentation driver. GreQueryTextBox is called by the
function GpiQueryTextBox, and is used to return a tight bounding box for the currently selected font of a
given string relative. to the current position.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cChars LONG Number of bytes in string.

pchString PCH Pointer to character string.

cptPosition LONG Number of (x, y) pairs that the Position array can contain.
paptPosition PPOINTL Pointer to position array. See below.
plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryTextBox.

paptPositlon Pointer to the array in which the function returns the requested values. Upon completion,
the array contains cptPosition sets of (x, y) coordinates in the following order:
TXTBOX_ TOPLEFT
TXTBOX_BOTTOMLEFT
TXTBOX_ TOPRIGHT
TXTBOX_BOTTOMRIGHT
TXTBOX_CONCAT

Top-left corner
Bottom-left corner
Top-right corner
Bottom-right corner
Start point of next character position.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_EXCEEDS _MAX_ SEG_LENGTH
PMERR_HDC_BUSY

8-126 Presentation Driver Reference

PMERR_INSUFFICIENT _MEMORY
PMERR_INV_CHAR_ANGLE_ATTR
PMERR_INV _CHAR_MODE_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _SETID
PMERR_INV _TRANSFORM_ TYPE.

text function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-127

text function

GreQueryWidthTable

#define INCL_GRE_STRINGS

BOOL GreQueryWidthTable (hdc, lFirstChar, cWidthTable, paWidthTable, plnstance, lFunction)

This function stores, at the location addressed by paWidthTable, an array of world coordinates representing
the width table information of the currently selected font. The handling routine must use GreConvert (page
10-26) to transform the width-table information from device coordinates to world coordinates.

Support: This function must be supported by the presentation driver. GreQueryWidthTable is called by
the function GpiQueryWidthTable. GreQueryWidthTable returns an array of world coordinates representing
the width-table information for the currently selected font.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

IFirstChar LONG Code point of the initial character for which width-table information is
required

cWidthTable LONG Count of widths in the width-table data

pa Width Table PL ONG Pointer to buffer of width-table data

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryWidthTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ CHAR_MODE_A TTR
PMERR_INV _CODEPAGE
PMERR_INV _ COORD _SPACE
PMERR_INV _FIRST_ CHAR
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _SETID
PMERR_INV _TRANSFORM_ TYPE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-128 Presentation Driver Reference

color table function

GreRealizeColorTable

#define INCL_GRE_COLORTABLE

BOOL GreRealizeColorTable (hdc, plnstance, lFunction)

Note: GreRealizeColorTable is provided for the support of older applications and is of less importance for

new applications.

This function causes the system to ensure that, for a realizable color table, the device physical color table

is set to the closest possible match to the logical color table. A device context such as a hardcopy DC can

implicitly realize a color table when it is created. In this case, the handling routine need only return

Successful. An error must be posted if this function is called for a color table that cannot be realized.

Support: This function must be supported by the presentation driver. GreRealizeColorTable is called by

GpiRealizeColorTable in response to the request of an application to realize the current logical color table

to device output capabilities. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreRealizeColorTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COL_TABLE_NOT_REAUZABLE
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_REALIZE_NOT _SUPPORTED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-129

device function 2

GreRealizeFont

#define INCL_GRE_DEVMISC2

ULONG GreRealizeFont (hdc, cmdConmand, plogFont, pFont, pinstance, lFunction)

This function requests the presentation driver to realize or delete a font.

Support: This function must be supported by the presentation driver. GreRealizeFont is called during
the processing of GpiCreatelogFont to realize the specified logical font. This function call can be handled
by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cmdCommand UL ONG See below.

plogFont PFAITRS Pointer to a logical font. See below.

pFont PU LONG See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRealizeFont.

cmdCommand Valid commands are:

RF _DEVICE_FONT

RF _LOAD_ENGINE_FONT

RF _DELETE_FONT

8-130 Presentation Driver Reference

(1). The graphics engine asks the presentation driver if it is
able to realize a device font for the logical font identified by
plogFont. The action taken by the handling routine
depends on the match number of the logical font. The
match number is the !Match parameter in the
FONTMETRICS structure of the font specified. Font
matching is discussed on page 11-1.

• If !Match is negative, the request is for the device font
with the corresponding match number. The handling
routine must return the font handle, or 0 if no match was
found.

• If !Match is 0, the handling routine must search the
device fonts for an exact match to plogFont and return
its handle, or O if no match was found.

• If !Match is a positive value, the handling routine must
return Oas if no font was found.

(2). The presentation driver is requested to convert an
engine font into a device font. The presentation driver
must return the font handle, or O if it is unable to convert
the font.

(3). The presentation driver is requested to delete a device
font. The 32-bit font handle is passed in pFont (see page
8-131).

device function 2

RF _DELETE_ENGINE_FONT (4). Informs the presentation driver that a previously
loaded engine font is being deleted. If font caching is not
supported, the handling routine performs action.

The font is passed to the presentation driver in the device character bundle during the
GreDeviceSetAttribute call. (See "Character Attributes" on page 8-6.) A bit in the
CHARDEFS structure indicates whether this is a pointer to an engine font or the handle to
a device font.

plogfont . The initial value of cmdCommand determines the nature of this parameter:

RF _DEVICE_FONT
RF _LOAD _ENGINE_FONT
RF _DELETE_FONT
RF _DELETE_ENGINE_FONT

Pointer to a logical font
Pointer to a logical font
NULL pointer
NULL pointer

pFont The initial value of cmdCommand determines the nature of this parameter:

RF _DEVICE_FONT
RF _LOAD_ENGINE_FONT
RF _DELETE_FONT
RF _DELETE_ENGINE_FONT

NULL pointer
Pointer to an engine font
32-bit device font handle
Pointer to an engine font.

Return Codes: The value returned by this function depends on whether the presentation driver is
requested to realize or to delete the font. When realizing or loading a font, the handling routine must return
a 32-bit logical font handle (GPl_AL TERROR), or O if the match (or load) was unsuccessful.

When deleting a font, the handling routine must return:

GPl_OK Successful
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: GreRealizeFont is called by the graphics engine to allow the presentation driver to satisfy
logical font requests. The example below shows a typical font-matching algorithm for the presentation
driver:

/* If the face name is empty, the application is requesting the default font. Return NO_MATCH.*/

if(Font->szFacename = NULL)
{

return(e);
}

Chapter 8. Mandatory Functions for All Drivers 8-131

device function 2

/* If the match number is positive, an engine font is required. Return NO_MATCH. */

:~I~--~ ,1.i:u~~~~ , O\
11 \ru111.-~1 ll'IQl.\.11 - U/

{
return(0);

}

/* If the match number is negative, a device font is required. The presentation driver should */
/* return the font if it exists; otherwise return NO_MATCH. */

if(Font->lMatch < 0)
{

}

if(font with required lMatch exists)
{
/* Check the fsSelection flags and szFacename. If the font is unable to satisfy these */
/* flags, return NO_MATCH. Otherwise, return the device font handle. */

}

if((FATTR FONTUSE OUTLINE && font not outline)
ll(FATTR FONTUSE TRANSFORMABLE && font not outline) ll(szFacename does not match font))
return(B); -

else
return(device_font_handle);

else
{
/* Attempt metrics match
/*and lMaxBaselineExt).
/* NO_MATCH.

if(metric match exists)
{

(i.e. all metrics including szFaceName, usCodePage, lAveCharWidth */
If match exists, return device font handle. Otherwise, return */

*/

return(device_font_handle);

}

}
else

return(0);

/* The match number is zero, the presentation driver should search for a font with the */
/* specified metrics, and if an exact match exists, return the device font handle. Otherwise, */
/* return NO~MATCH. */

if(Font->lMatch = e)
{

if(metrics match exists - see above)
{
/* Check the fsSelection flags. If the font is unable to satisfy these flags, return */
l* NO_MATCH. Otherwise, return the device font handle. */

}

i f((FATTR FONTUSE OUTLINE && font not outline)
ll(FATTR FoNTUSE TRANSFORMABLE && font not outline)

return(e); -
else

return(device_font_handle);

else
return(e);

}

8-132 Presentation Driver Reference

device function 3

GreResetBounds

#define INCL_GRE_DEVMISC3

BOOL GreResetBounds (hdc, flOptions, plnstance, lFunction)

This function resets the bounds to their initial values, 07FFFFFH for the minimum coordinates and F800000H

for the maximum coordinates. Hardcopy drivers are required to support only GPI bounds. Display drivers

must also support user bounds for the Window Manager.

Support: This function must be supported by the presentation driver. GreResetBounds is called by the

function GpiResetBoundaryData, and is used to reset the boundary data for a presentation space or device

context pair.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Options ULONG Option flags. See below.

plnstance. PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreResetBounds.

flOptlons Valid flags are:

RB_GPI Reset the GPI bounds
RB_USER Reset the user bounds

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-133

bit-map function

GreSetBitmapBits

#define INCL_GRE_BITMAPS

LONG GreSetBitmapBits (hdc, hbm, lScanStart, cScanCount, pBitmap, plnfo, plnstance, lFunction)

This function transfers bit-map data from application storage into the specified bit map or DC. The bit map
can be specified by its handle, or (if this is NULL) a DC handle. In this case, the device context must be a
memory DC with a bit map currently selected. This function does not set bits directly into any other kind of
device. When the format of the supplied bit map does not match that of the device, the handling routine
must convert it using the supplied BITMAPINFO or BITMAPINF02 structure. Only standard formats and
device formats that are compatible with the target device are supported.

Support: This function must be supported by the presentation driver. GreSetBitmapBits is called from
the function GpiSetBitmapBits, and is used to transfer bit-map data from the device context to application
storage. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hbm HBITMAP Bit-map handle.

IScanStart LONG Scan line number from where data transfer starts; O is the first.

cScanCount LONG Number of scan lines to be transferred.

pBitmap PBYTE Pointer to bit-map data. See below.

plnfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINF02 structure. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetBitmapBits.

pBitmap Pointer to the pal data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pal, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of zeros would be required to pad the line to a ULON~ boundary.

pinto Pointer to either a BITMAPINFO structure:

cbfix
ex
cy
cPlanes
cBitCount
argbColor[]

Length of structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pal
Color table array of RGB structures:
bBlue
bGreen
bRed.

Or pointer to a BITMAPINF02 structure:

cbfix Length of structure

8-134 Presentation Driver Reference

ex

cy

cPlanes

cBltCount

ulCompression

cblmage

ex Resolution

cyResolution

cclrUsed

cclrlmportant

usUnits

us Reserved

usRecordlng

usRendering

Bit-map width

Bit-map height

bit-map function

Number of planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, O

(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the

resolution of the device the bit map is intended for in the units specified by

usUnits. This information enables an application to select from a resource

group the bit map that best matches the characteristics of the current output

device.

Vertical component of the resolution of the target device. That is, the

resolution of the device the bit map is intended for in the units specified by

usUnits. This information enables an application to select from a resource

group the bit map that best matches the characteristics of the current output

device.

The number of color indexes from the color table that are used by the bit

map. If it is 0 (default), all the indexes are used. If it is non-zero, only the

first cclrUsed entries in the table are accessed by the system; further entries

can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any

indexes beyond cclrUsed are not valid. For example, a bit map with 64

colors can use the 8-bitcount format without having to supply the other 192

entries in the color table. For the 24-bitcount standard format, cclrUsed is

the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit

map. More colors can be used in the bit map but it is not necessary to

assign them to the device palette. These additional colors can be mapped to

the nearest colors available. Zero (default) means that all entries are

important. For a 24-bitcount standard format, the cclrlmportant colors are

also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally

half-toned:

BRH_NOTHALFTONED

BRH _ERRORDIFFUSION

BRH_PANDA

BRH_SUPERCIRCLE

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion

algorithm

Processing algorithm for noncoded document

acquisition

Super circle algorithm

Chapter 8. Mandatory Functions for All Drivers 8-135

bit-map function

cSize1 Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping. A vaiue oi 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncoding Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

ulldentlfler

argbColor[]

Reserved for application use.

Color table array of RGB2 structures:

bBlue
bGreen
bRed
fcOptions Reserved. Must be 0.

Return Codes: On completion, the handling routine must return a LONG value (llines), indicating the
number of lines transferred, or GPl_ALTERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT _SELECTED
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INCORRECT _DC_ TYPE
PMERR_INV _HBITMAP
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SCAN_ START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When the bit-map handle is NULL, the DC must be a memory DC with a bit map currently
selected. Otherwise, the DC must be valid for that device. When the format of the supplied bit map does
not match that of the device, the handling routine must use the supplied BITMAPINFO or BITMAPINF02
structure to convert it.

8-136 Presentation Driver Reference

device function 3

GreSetCodePage

#define INCL_GRE_DEVMISC3

BOOL GreSetCodePage (hdc, lCodePage, pinstance, lFunction)

This function sets the current code page for characters written with the base (default) font. The default is

the font that the system uses when the cbnd.usSet attribute is OOOOH. (See "Character Attributes" on

page 8-6.) When the base font is not in use, ICodePage is saved until required. When a DC is initialized,

the code page is set to the default code page obtained from WinQueryProcessCp.

Support: This function must be supported by the presentation driver. GreSetCodePage is called by

GpiSetCP in response to an application requesting to change the currently selected code page for the

device context.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

ICodePage ULONG New code page

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetCodePage

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to·

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _:INSTALLED

PMERR_EXCEEDS~MAX_SEG_LENGTH

PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV _HDC
PMERR...JNV _IN_AREA.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8•137

line function

GreSetCurrentPosition

#define INCL_GRE_LINES

BOOL GreSetCurrentPosition (hdc, pptlPosition, plnstance, lFunction)

This function sets the current (x, y) position and resets the line type sequence. Typically, the handling
routine also sets a flag in the DC instance data structure to indicate that the first pel of the next line must be
drawn. When the COM_AREA or COM_PATH flag is set, this function is part of an area or path definition.
In either case, the handling routine usually passes the call back to the graphics engine for processing by
the default handling routine. The call would not be passed back to the graphics engine if the presentation
driver had hooked all of the area and path functions.

Support: This function must be supported by all presentation drivers. GreSetCurrentPosition is called
by the function GpiSetCurrentPosition. GreSetCurrentPosition might be called in response to any of the
Presentation Manager drawing functions, which end their operations by updating the current presentation
space position.

Stack Frame

Parameter

hdc

pptlPosition

plnstance

I Function

pptlPosltlon

Data Type Description

HOC Device context handle.

PPOINTL Pointer to new current position. See below.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreSetCurrentPosition.

When COM_ TRANSFORM is set, the current position is expressed in world coordinates.
Otherwise, this value is passed in device coordinates. The handling routine must transform
these values as appropriate. Typically, the presentation driver maintains the current
position in both coordinate sets in the DC instance data structure.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT
PMERR_PATH_LIMIT _EXCEEDED.

Remarks: When the current context is in area, a figure closure line is generated (if necessary), which
can cause a correlation hit to occur on an area boundary. The current position should only be correlated
on, merged into the bounds, or both correlated and merged, if it is actually used in a drawing primitive.

8-138 Presentation Driver Reference

llne function

The following is an example:

GreSetCurrentPosition (hdc. pl);

GreSetCurrentPosition (hdc. p2);

GrePolyline (hdc. to p3. n);

Notice that the sequence does not merge p1 into the bounds or correlate on it.

Chapter 8. Mandatory Functions for All Drivers 8-139

device function 3

GreSetLineOrigin

#define INCL_GRE_DEVMISC3

BOOL GreSetlineOrigin (hdc, pptlXY, lStyle, plnstance, lFunction)

This function sets the current line style and current position. If COM_TRANSFORM is set, the current
position is expected in world coordinates. If COM_TRANSFORM is not set, the current position is expected
in screen coordinates. The new line style is stored in the DC instance data structure. Some lines and
curves can be drawn either by the presentation driver or by simulations, and therefore must be able to
query and set the style as required.

The high-order WORD of the style number contains the first/last pel information. The low-order byte
indicates the position in the style mask. The next byte is the state of the style error value. See
"GreGetlineOrigin" on page 8-90.

Support: This function must be supported by the presentation driver. GreSetlineOrigin is used to
enable the simultaneous update of line style and position. This function can be handled by bit-map
simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlXY PPOINTL Pointer to an {x, y) coordinate pair to which the current position is
returned

I Style UL ONG Style number

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetlineOrigin

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_PATH_LIMlT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The C Language example that follows outlines a strategy by which the handling routine could
use the info;mation from a callto GreSetLineOrigin.

8-140 Presentation Driver Reference

/**/
/* */
/* StyleMask is a single byte. usState is a USHORT with the */
/* error byte as the low-order byte and the mask position as */
/* the high-order byte. The three low-order bytes of the mask */
/* position represent the number of bits by which StyleMask has */
/* been rotated. */
/* */
/**/

while (necessary--)

{

/**/
/* */
/* Do we need to draw the first pel in the line? */
/* */
/**/

if (stylemask & exae)
SetPel (x, y);

/**/
/* */
/* Save the current style state. */
/* */
/**/

usStateOld=usState;
switch (LineMajor)

{
case yMajor:

usState=usState+yRatio;
break;

default:

}

usState=usState+xRatio;
break;

if HIBYTE (usState) != HIBYTE (usStateOld)

/**/
/* */
/* If the error byte has overflowed, rotate the style ratio. */
/* The style mask is reset every eighth rotation. */
/* */
/**/

}

RotateleftOne (StyleRatio);
UpDateNext (x, y);

/**/
/* */
/**/

device function 3

The values for pRatio are set and queried by SetStyleRatio and GetStyleRatio respectively (see pages 9-21
and 9-13). Alternatively, the programmer can specify device-specific defaults for xRatio and yRatio.

Chapter 8. Mandatory Functions for All Drivers 8-141

bit-map function

GreSetPel

#define INCL_GRE_BITMAPS

LONG GreSetPel (hdc, pptlPel, plnstance, lfunction)

This function sets a pel to the current line attribute, color and mix. If COM_ TRANSFORM is set, the pel
position is expected in world coordinates. If COM_ TRANSFORM is not set, the pel position is expected in
screen coordinates. This function is subject to all usual clipping. No error is returned when the point is
clipped.

Support: This function must be supported by the presentation driver. GreSetPel is called by the function
GpiSetPel, and is used to set the value of a pel at a specified (x, y) coordinate within a device context. This
function can be handled by bit map-simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlPel PPOINTL Pointer to pel position in world or screen coordinates

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetPel

Return Codes: On completion, the handling routine must return a LONG integer (cHits) indicating,
where appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by the display driver when the correlate flag is on,
and a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-142 Presentation Driver Reference

device function 3

GreUnlockDevice

#define INCL_GRE_DEVMISC3

BOOL GreUnlockDevice (hdc, plnstance, lfunction)

This function allows all pending screen input or output operations blocked by GreLockDevice to continue.

Support: This function must be supported by all presentation drivers. For hardcopy devices, the
hardcopy driver need do nothing except return TRUE (Successful). GreUnlockDevice is used to enable
another process to access a resource (device context) that had been previously locked to prevent
simultaneous update.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreUnlockDevice

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. An error code for conditions that the handling routine is expected to check is:

PMERR_DEV _FUNC _NOT _INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is used to synchronize the use and update of the visible region.

Chapter 8. Mandatory Functions for All Drivers 8-143

color table function

GreUnrealizeColorTable

#define INCL_GRE_COLORTABLE

BOOL GreUnrealizeColorTable (hdc, plnstance, lFunction)

Note: GreUnrealizeColorTable is provided for the support of older applications and is of less importance
for new applications.

This function reverses GreRealizeColorTable by causing the default physical color table for the device to
be reinstated. The logical color table is unaffected by this function.

Support: This function must be supported by the presentation driver. GreUnrealizeColorTable is called
by GpiUnRealizeColorTable in response to the request of an application to restore the application's logical
color table prior to the last call to GpiRealizeColorTable. This function can be handled by bit-map
simulation.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreUnrealizeColorTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COL_TABLE_NOT_REALIZED
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-144 Presentation Driver Reference

mandatory functions for display drivers

Chapter 9. Mandatory Functions for Display Drivers

This chapter describes the functions that must be supported by the display driver for the primary screen.
Although these functions are not required for hardcopy drivers, hardcopy drivers should provide a default
routine to handle the functions described in this chapter, and at FillLogicalDeviceBlock time, put a pointer
to the default routine in the relevant entries in the dispatch table. The default routine will post a warning
PMERR_DEV_FUNC_NOT_INSTALLED and return BOOLEAN TRUE.

Descriptions of these mandatory functions for display drivers are provided. The functions are grouped
according to the conditional include sections of the header file:

• AVIO functions (INCL_AVIOP, INCL_GRE_DEVMISC1)
• Bit-map functions (INCL_ GRE_BITMAPS)
• Device functions 2 (INCL_GRE_DEVMISC2)
• Device functions 3 (INCL_GRE_DEVMISC3)
• Miscellaneous screen functions (INCL_GRE_PICK, INCL_WINPOINTERS).

Each description shows what the handling routine is expected to do, the parameters passed to the routine,
and the values that the routine returns.

AVIO Functions

Advanced VIO (AVIO) functions are used to display characters. These functions must be supported for
Display DCs. Hardcopy drivers do not support AVIO functions. When writing to an AVIO presentation
space, an application must ensure that windows containing alphanumeric data are device-cell aligned,
where appropriate. The presentation driver can determine whether any characters, which are not cell
aligned, are visible. Most column, row, length, width, and height val.ues correspond to cells within the
presentation space Logical Video Buffer (LVB) whose origin is assumed to be at the bottom-left corner of
the buffer (0,0).

The presentation driver is expected to clip alphanumeric data to the DC region. This is performed in the
same way as for normal graphics, by enumerating the rectangles using GreGetClipRects and clipping each
line to a single rectangle. Although the presentation driver is neither expected to test for correlation hits
nor to accumulate GPl_BOUNDS, it should accumulate USER_BOUNDS for AVIO functions if the
COM_ALT _BOUNDS command flag is set.

The VIO presentation space is passed to the display driver as a pointer to a VioPresentationSpace
structure. The display driver uses this structure to extract the current state data to allow it to update the
display. The VioPresentationSpace structure is defined as:

PresentatlonSpaceLock Lock (not used by the presentation driver).

pLVB Pointer to the LVB. The LVB is a two-dimensional array of character cells and is
assumed to begin at offset zero within the segment. The presentation driver
must not alter the contents of this field.

pBVSCB Not used by the presentation driver.

rgfAVlo Not used by the presentation driver.

CellByteSize Size in bytes of a cell in the logical video buffer (LVB). This value is either 2 or
4. The presentation driver must not alter the contents of this field.

BufferRowCount

©Copyright IBM Corp. 1992

Number of cell rows in the lo.gical video buffer. The presentation driver must
not alter the contents of this field.

9-1

mandatory functions for display drivers

BufferColumnCount Number of cell columns in the logical video buffer. The presentation driver must
not alter the contents of this field.

WlndowOrlglnRow Row index for the logical video buffer. This field, together with the parameter
WindowOriginColumn, indicates the logical video buffer cell that is drawn in the
bottom left of the window's client area. The presentation driver must not alter
the contents of this field.

WlndowOrlglnColumn Column index for logical video buffer (see WindowOriginRow). The presentation
driver must not alter the contents of this field.

TextCursorRow Row coordinate of flashing text cursor relative to the logical video buffer. The
presentation driver must not alter the contents of this field.

TextCursorColumn Column coordinate of flashing text cursor relative to the logical video buffer.
The presentation driver must not alter the contents of this field.

TextCursorStartllne First scan line of a character-cell image overlaid by the text cursor. Lines in the
cell image are numbered from top-to-bottom. The first line is 0. The
presentation driver must not alter the contents of this field.

TextCursorEndline Last scan line of a character-cell image, overlaid by the text cursor. The
presentation driver must not alter the contents of this field.

TextCursorWidth Width of text cursor in pels. The presentation driver must not alter the contents
of this field.

TextCursorVlslble Indicates whether the cursor is visible (non-zero) or invisible (zero). The
presentation driver must not alter the contents of this field.

CelllmageHelght Height of character cell in pels. When the value passed is 0 or invalid, the
presentation driver should reset it to the device default value.

CelllmageWidth Width of character cell in pels. When the value passed is O or invalid, the
presentation driver should reset it to the device default value.

CodePagelD ID of current code page for this presentation space. When the value passed is O
or invalid, the presentation driver should reset it to the device default value.

WindowHeight Not used by the presentation driver.

WlndowWldth Not used by the presentation driver.

hConsoleDlsplayContext Device context handle associated with the presentation space. The presentation
driver must not alter the contents of this field.

hVloWlndow Not used by the display driver.

RowOrglatch See ColOrglatch.

ColOrglatch Window origin coordinates, WindowOriginRow and WindowOriginColumn, saved
on completion of the last call to GreUpdateCursor. RowOrglatch and
ColOrglatch are used by the display driver to record the state of the currently
displayed cursor. They are interrogated by GreUpdateCursor to determine
whether the cursor has moved.

CursorRow See CursorCol.

CursorCol Cursor coordinates, TextCursorRow and TextCursorColumn, saved on
completion of the last call to GreUpdateCursor. These fields are used by the
display driver to record the state of the currently displayed cursor so that it can
be successfully erased.

CursorStartllne See CursorEndline.

9-2 Presentation Driver Reference

CursorEndLlne

CursorWldth

PartlalCellAdjust

Xlatch

Ylatch

Width Latch

Helghtlatch

CellHelghtlatch

rgfShieldStates

pFontsloaded[3]

pMapFontsloaded[3]

FormatlD

lpNLSExt

mandatory functions for display drivers

Cursor start and end lines, TextCursorStartline and TextCursorEndline, saved
on completion of the last call to GreUpdateCursor. These fields are used by the
display driver to record the state of the currently displayed cursor so that it can
be successfully erased.

Cursor width (TextCursorWidth) saved on completion of the last call to
GreUpdateCursor. This field is used by the display driver to record the state of
the currently displayed cursor so that it can be successfully erased.

This is a negative value reflecting the partial cell height that must be below the
bottom of the window to ensure that a complete cell is positioned at the top of
the window (actual window height= WindowHeight rounded up to next
complete character cell - PartialCellAdjust). The presentation driver must not
alter the contents of this field.

See Ylatch.

Pel coordinates of the bottom-left corner of the cursor rectangle relative to the
bottom-left corner of the window.

See Heightlatch.

The height and width in pels of the cursor saved on completion of the last call to
GreUpdateCursor. These are taken to be CelllmageHeight and the difference
between TextCursorStartline and TextCursorEndline, taking account of any
wrapping. The width and height latches are used by GreUpdateCursor to record
the screen region corresponding to an exclusive-OR cursor.

The height in pels of the character cell for which the cursor was last drawn.
This parameter is used to detect cell height changes. These values were saved
on completion of the last call to GreUpdateCursor.

Flags:

CursorShowlng (Ox0001)

fHasTheFocus (Ox0002)

Cursor is visible on the screen. This flag is
maintained by display driver.

This window has the input focus. This flag is not
modified by display driver.

fCursorlsOn (Ox0004) Set to indicate that this is the on phase of the blink
cycle. The cursor should be invisible during the off
phase of the blink cycle. This flag is not modified by
display driver.

Array of pointers for A VIO fonts 1, 2, and 3

Array of pointers to code page maps for AVIO Fonts 1, 2, and 3.

Presentation-space format. This identifies the format of the attribute bytes in
the LVB:

OH CGA
OH Extended

70H World-wide format.

The presentation driver must not alter the value of this field.

Pointer to an National Language Support (NLS) extension structure where
Double Byte Character Set (DBCS) environment vectors are set for AVIO Fonts
1, 2, and 3. If the display driver is required to display DBCS, it must maintain
the array of DBCSEvlnfox4x, instead of DBCSEvlnfoxOx. When the display driver
supports NLS, it must set the DBCS vectors for lcid 1 - 3.

Chapter 9. Mandatory Functions for Display Drivers 9-3

mandatory functions for display drivers

Each character cell is contained in a 2-byte or 4-byte array in the LVB. The format of the character-cell
array is:

Code Point Position of the character in the code table

CGA Attribute Byte Character attributes. The four low-order bits represent the foreground color and
the high-order bits represent the character background color. Each 4-bit color
value corresponds to an explicit 24-bit RGB value. The RGB values are defined
within the graphics engine and match the colors available on a CGA device.

Extended Attribute Byte Applies only to 4-byte cells. It is defined as:

Bit 7 Underscore

Bit 6 Reverse video

Bit 4 Background transparency. When set, the background is transparent.
When clear, the background is opaque.

Bits 1 - O Character Set 0, 1, 2, or 3.

Extended Attribute Byte (World-wide format). Applies only to 4-byte cells. It is defined as:

Spare Attribute Byte

Spare Attribute Byte

Bit 7 Underscore

Bit 6 Reverse video

Bit 4 Background transparency. When set, the background is transparent.
When clear, the background is opaque.

Bit 3 Left vertical grid

Bit 4 Top horizontal grid

Bits 1 - 0 Character Set 0, 1, 2, or 3.

Applies only to 4-byte character cells. It is reserved for the system.

(World-wide format). Applies only to 4-byte character cells.

Bit7
Bits 6-1
BltO

DBCS trailing byte maintained by the operating system
Reserved for the system
DBCS byte maintained by the operating system.

Notice that applications are not allowed to set bit 7 and bit 0.

9-4 Presentation Driver Reference

mandatory functions (for display drivers) by category

Mandatory Functions (for Display Drivers) by Category

Related mandatory functions for display drivers can be grouped together into the following categories:

AVIO Functions

• GreCharRect (see page 9-6)
• GreCharStr (see page 9-7)
• GreDeviceSetAVIOFont (see page 9-10)
• GreScrollRect (see page 9-18)
• GreUpdateCursor (see page 9-22)

Bit-Map Functions

• GreDeviceSetCursor (see page 9-11)
• GreRestoreScreenBits (see page 9-14)
• GreSaveScreenBits (see page 9-17)

Device Functions 2

• GreDevicelnvalidateVisRegion (see page 9-9)
• GreGetStyleRatio (see page 9-13)
• GreSetStyleRatio (see page 9-21)

Device Functions 3

• GreDeath (see page 9-8)
• GreResurrection (see page 9-16)

Miscellaneous Screen Functions

• GreGetPickWindow (see page 9-12)
• GreSetColorCursor (see page 9-19)
• GreSetPickWindow (see page 9-20)

Chapter 9. Mandatory Functions for Display Drivers 9-5

AVIO function

GreCharRect

#define INCL_AVIOP

LONG GreCharRect (hdc, pVioPS, pCharRect, plnstance, lFunction)

This function draws a rectangle of character cells from the LVB to the device context. The attributes for
each character are applied by the handling routine as the character is drawn.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pVioPS VioPresentationSpace * Pointer to the Vio presentation space.

pCharRect LPGridRectRef Pointer to a block of parameters for the call. See below.
plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCharRect.

pCharRect Pointer to a parameter block. This is a GridRectRef structure:

StartRow The starting row (relative to the bottom left of the LVB) of the character
rectangle to be drawn.

StartCol The starting column (relative to the bottom left of the LVB) of the character
rectangle to be drawn.

RectWldth The width in character cells of the rectangle to be updated.

RectHeight The height of the rectangle to be updated.

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR
CE_INVALID_PRESENTATION_SPACE

Successful
Error. For example, invalid CellByteSize.

Remarks: This function is used to implement the advanced Vio function, VioSetOrg.

9-6 Presentation Driver Reference

AVIO function

GreCharStr

#define INCL_AVIOP

LONG GreCharStr (hdc. pVioPS. pCharStr. plnstance. lFunction)

This function draws a string of character cells from the LVB to the device context. The attributes for each

character are applied by the handling routine as the character is drawn. When the end of a row is reached,

the next character is drawn in the first cell of the next row. Character drawing continues until either the

string or the logical video buffer is exhausted.

Support: This function must be supported by presentation drivers for display devices.

Stack Frame

Parameter

hdc

pVioPS

pCharStr

plnstance

I Function

pCharStr

Data Type Description

HOC Device context handle.

VioPresentationSpace * Pointer to the Vio presentation space.

LPGridRectRef Pointer to a block of parameters for the call. See below.

PVOID Pointer to instance data.

ULONG High-order WORD=flags; low-order WORD= NGreCharStr.

Pointer to parameter block. This is a GridStringRef structure:

StartRow The starting row (relative to the bottom left of the LVB) of the character

rectangle to be drawn.

StartCol The starting column (relative to the bottom left of the LVB) of the character

rectangle to be drawn.

StrlngLength Number of characters to be written.

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR
GRE_INVALID _COLUMN_INDEX
CE_INVALID _PRESENTATION_ SPACE
CE_INVALID _ROW _INDEX
GRE_NEGATIVE_LENGTH

Successful.
Invalid column index.
Error. For example, invalid CellByteSize.
Invalid row index.
Negative length.

Chapter 9. Mandatory Functions for Display Drivers 9-7

device function 3

GreDeath

#define INCL_GRE_DEVMISC3

BOOL GreDeath (hdc, plnstance, lFunction)

This function informs the presentation driver that the entire screen is required by another screen group (an
application that is not running under the Presentation Manager interface). Any current Presentation
Manager applications are set to the background. While this condition exists, the presentation driver must
handle all calls as usual. However, it may not affect the underlying hardware, that is, the presentation
driver must continue to accumulate bounds and respond to queries but it may not actually draw to the
display. When GreResurrection is called, the missing output will be recreated by the system sending a
WM_PAINT message to the application.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeath

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. An error code for conditions that the handling routine is expected to check:

PMERR_DEV _FUNC _NOT _INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference tor further explanation.

Remarks: This function goes directly to the Presentation Driver Interface (POI).

9-8 Presentation Driver Reference

j

device function 2

GreDevicelnvalidateVisRegion

#define INCL_GRE_DEVMISC2

BOOL GreDevicelnvalidateVisRegion (hdc, cArray, paBlock, pinstance, lFunction)

This function notifies the presentation driver that the visible region and DC region of one or more DCs has
changed, and that the affected DCs must revalidate their visible regions before drawing in them. The array

identified by paBlock contains a series of structures, each of which identifies a DC and supplies the pointer

(plnstance) to its instance data. The display driver responds by setting a flag (HDC_IS_DIRTY) in the

instance data of each DC identified in array. The handling routines for all drawing functions should check

the HDC_IS_DIRTY flag before drawing. If the flag is set, VisRegionNotify (see page 12-6) must be called to

revalidate the DC's visible region.

This function allows the system to defer the calculations caused by visible region changes. This enables

menus and dialogs to perform more efficiently.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cArray LONG Number of elements in the array.

pa Block PDC_BLOCK Pointer to a parameter array. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreDevicelnvalidateVisRegion.

paBlock Pointer to an array of DC_BLOCK structures:

hdc Device context handle
pDcl Pointer to instance data.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. An error code for conditions that the handling routine is expected to check:

PMERR_DEV_FUNC_NOT_1NSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manag.er Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-9

AVIO function

GreDeviceSetA VIOFont

#define INCL_GRE_DEVMISCl

BOOL GreDeviceSetAVIOFont (hdc, plogfont, pfontDef, lcid, plnstance, lfunction)

This function loads or deletes an image font used by the AVIO presentation space associated with the
device context. When loaded, the font is used by subsequent GreCharRect, GreCharStr, and GreScrollRect
calls to draw the character images for the appropriate AVIO set. ILcid identifiers LCID_AV10_1,
LCID_AV10_2, and LCID_AVI0_3 correspond to AVIO sets 1, 2, and 3 respectively.

If the font is not acceptable for use with an AVIO presentation space, the handling routine returns FALSE to
indicate an error. The font must be a fixed-pitch image (raster) font that matches one of the cell sizes for
the default font. If the font does not match a supported cell size, the characters are displayed in the
presentation space as black cells.

A possible approach is for the presentation driver to realize the AVIO fonts required and store the pointers
to the fonts in the DC instance data structure.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pLogFont PFATTRS Pointer to a logical font

pFontDef PBYTE Pointer to a physical font data structure

lcid LONG Local identifier value of -2, -3, or -4

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceSetAVIOFont

pFontDef A pointer to a physical font data structure. When the value passed is 0, the handling routine
must delete the loaded font corresponding to ILcid. If the high-order bit of the high-order
WORD in ILcid is set, the handle is for a device font.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful. The font is acceptable for use with an AVIO presentation space.
FALSE Error.

9-10 Presentation Driver Reference

bit-map function

GreDeviceSetCursor

#define INCL_GRE_BITMAPS

BOOL GreDeviceSetCursor (hdc, pptlHotspot, hbm, plnstance, lFunction)

This function sets the cursor bit map that defines the cursor shape. GreDeviceSetCursor is subject to all
clipping.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pptlHotspot PPOINTL Pointer to hot spot coordinates. See below.

hbm UL ONG Bit-map handle used for the cursor image.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD=flags; low-order WORD= NGreDeviceSetCursor.

pptlHotspot POINTS structure:

x X-position of the hotspot within the cursor bit map
y Y-position of the hotspot within the cursor bit map.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _COORDINATE
PMERR_INV _ CURSOR_BITMAP
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference tor further explanation.

Remarks: The handling routine takes the previous cursor bit map and replaces it with the one indicated
by hbm. If hbm is NULL, the cursor has no shape and its image is removed from the display screen.

Chapter 9. Mandatory Functions for Display Drivers 9-11

mlscellaneous function

GreGetPickWindow

#define INCL_GRE_PICK

BOOL GreGetPickWindow (hdc, pPick, plnstance, lFunction)

This function stores (at the location addressed by pPick) a RECTL structure giving the position and size of
the pick window in page-coordinate space.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pPick PRECTL Pointer to pick window. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetPickWindow.

pPlck The pick window is defined as a RECTL structure in page coordinate space:

xleft
yBottom
xRight
yTop

Minimum x-coordinate of window
Minimum y-coordinate
Maximum x-coordinate of window
Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

9-12· Presentation Driver Reference

device function 2

GreGetStyleRatio

#define INCL_GRE_DEVMISC2

BOOL GreGetStyleRatio (hdc, pRatio, plnstance, lFunction)

This function stores the style ratio x-direction and y-direction step values at the location addressed by
pRatio. When the line type is LINETYPE_ALTERNATE, the handling routine must restore a value of O for the
style ratio to ensure that the style mask is rotated after each pel is drawn. See "Line Attributes" on
page 8-3.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pRatio PBYTE Pointer to style-ratio value. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetStyleRatio.

pRatlo The style ratio is defined as a two-byte value. The low-order byte indicates a step in the
x-direction, the high-order byte a step in they-direction.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-13

bit-map function

GreRestoreScreenBits

#define INCL_GRE_BITMAPS

BOOL GreRestoreScreenBits (hdc, hsbBits, prclRect, flOptions, plnstance, lFunction)

This function restores a rectangle of bits to a screen rectangle and can also free the handle of the saved
bits.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hsbBits ULONG Handle to screen bits to be restored.

prclRect PRECTL Pointer to a screen rectangle defined in screen coordinates.

fl Options ULONG Options flags. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreRestoreScreenBits.

flOptlons Option flags, valid values are:

RSB_FREE 1 (free the save bits handle)
RSB_RESTORE 2 (restore the bits to the screen)

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED
PMERR_BITMAP _NOT_ SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INCORRECT _DC_ TYPE
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV _BITBLT _MIX
PMERR_INV _BITBLT _STYLE
PMERR_iNV _BiTMAP _DIMENSION
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV _CHAR_MODE_ATTR

9-14 Presentation Driver Reference

PMERR_INV _CHAR_ SET _A TTR
PMERR_INV _CHAR_ SHEAR_A TTR
PMERR_INV _CODEPAGE
PMERR_INV_COLOR_ATTR
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_FORMAT
PMERR_INV _ COLOR_INDEX
PMERR_INV _COLOR_ OPTIONS
PMERR_INV _ COLOR_START _INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE
PMERR_INV _DRIVER_NAME
PMERR_INV_GEOM_LINE_WIDTH_ATTR
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_END _A TTR
PMERR_INV _LINE_JOIN_A TTR
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _LINE_ WIDTH_A TTR
PMERR_INV _MARKER_SET _ATTR
PMERR_INV_MARKER_SYMBOL_ATTR
PMERR_INV _MIX_A TTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _PRIMITIVE_ TYPE
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_INV_SCAN_START
PMERR_INV _SETID
PMERR_INV _ USAGE_PARM
PMERR_REAUZE_NOT _SUPPORTED
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE.

bit-map function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: Clipping is done on the restored bits, as necessary.

Chapter 9. Mandatory Functions for Display Drivers 9-15

device function 3

GreResurrection

#define INCL_GRE_DEVMISC3

LONG GreResurection (hdc, cbVmem, pReserved, plnstance, lFunction)

This function reverses the condition set by GreDeath and restores the screen to the Presentation Manager
interface. Presentation Manager applications are set to the foreground. The presentation driver is enabled
to update the screen for subsequent drawing calls.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cbVmem LONG Number video memory bytes changed. See below.

pReserved PU LONG Reserved pointer. Must be 0.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreResurrection.

cbVmem The number of bytes of video memory that have been corrupted (determined by the VIO). The
display driver can use this value to determine whether any of its video memory has been
destroyed by the application. Some display drivers can ignore this parameter.

Return Codes: On completion, the handling routine must return a LONG value (!Result):

O Error
1 The screen has been successfully redrawn.
2 The screen has not been completely redrawn, further action is required from the application.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function goes directly to the Presentation Driver Interface (POI).

9-16 Presentation Driver Reference

bit-map function

GreSaveScreenBits

#define INCL_GRE_BITMAPS

ULONG GreSaveScreenBits {hdc, prclRect, plnstance, lFunction)

This function saves a rectangle of screen bits.

Support: This function must be supported by display drivers. It is permissible to implement this function
by returning 0 to indicate that the bits were not saved, and therefore, must be saved by the calling routine.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

prclRect PRECTL Pointer to a screen rectangle defined in screen coordinates

plnstance PVOID Pointer to instance data

I Function UL ONG High~order WORD= flags; low-order WORD= NGreSaveScreenBits

Return Codes: On completion, the handling routine must return a handle to the saved bits (hsbBits) or
Oto indicate that the bits were not saved or that an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function lets the user-interface routines improve the performance of dialog boxes.

Chapter 9.. Mandatory Functions for Display Drivers 9-17

AVIO function

GreScrollRect

#define INCL_AVIOP

LONG GreScrollRect (hdc, pVioPS, paScrollRect, plnstance, lFunction)

This function scrolls the contents of the LVB through the DC. The contents of the LVB are not affected by
this function. Typically, the presentation driver responds to this call by calling GreCharRect. An
alternative approach is to use the horizontal and vertical movement fields to define a new source rectangle
in the DC and to use GreBitblt to transfer the bits. When new information is revealed from the LVB as a
result of the scroll, the handling routine calls GreCharRect to update the display. This approach provides
considerable performance advantages for devices that support GreBitblt. See "GreBitblt" on page 8-26.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pVioPS VioPresentationSpace * Pointer to the Vio presentation space.

paScrol I Rect LPScrol I RectRef Pointer to a block of parameters for the call. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreScrollRect.

paScrollRect Pointer to parameter block for this function. This block is defined as a ScrollRectRef
structure:

StartRow Starting row relative to the bottom left of the LVB

StartCol Starting column in the logical video buffer of the character string to be
output

RectWldth Width of the scroll rectangle

RectDepth Depth of the scroll rectangle

HorzMovement Number of columns to be scrolled

VertMovement Number of rows to be scrolled

lpFlllCell

Note: Positive values mean movement downward or to the right,
negative mean upward or to the left.

Pointer to a cell containing the character and attributes to be used for
filling the tail of the scroll region. This pointer is only used when
GreBitblt is used to implement this function. When this lpFillCell is
passed as NULL, the logical video buffer has been updated. The handling
routine then must call GreCharRect to update the display.

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR Successful
CE_INVALID _PRESENTATION_SPACE Error. For example, invalid CellByteSize

9-18 Presentation Driver Reference

miscellaneous function

GreSetColorCursor

#define INCL_WINPOINTERS

BOOL GreSetColorCursor (hdc, pPointerlnfo, plnstance, lFunction)

This function sets the bit maps that define a color cursor or pointer. The handling routine in the
presentation driver updates its copy of the pointer definition to that identified by pPointerlnfo.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pPointerlnfo PPOINTERINFO Pointer to pointer information. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceSetCursor.

pPolnterlnfo Pointer to a POINTERINFO structure. This structure is described in the OS/2 2.0
Presentation Manager Programming Reference.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_INV _COORDINATE
PMERR_INV _ CURSOR_BITMAP
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-19

miscellaneous function

GreSetPickWindow

· #define INCL_GRE_PICK

BOOL GreSetPickWindow (hdc, pPick, .plnstance, lFunction)

This function sets the position and size of the pick window in page-coordinate space for subsequent
correlation operations.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pPick PRECTL Pointer to pick window. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetPickWindow.

pPlck The pick window is defined as a RECTL structure in page-coordinate space:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of window
Minimum y-coordinate
Maximum x-coordinate of window
Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_JNV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _;LENGTH_ OR_COUNT
PMERR_INV _PICK_APERTURE_POSN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The boundary of the pick window is included in the correlated area.

9-20 Presentation Driver Reference

device function 2

GreSetStyleRatio

#define INCL_GRE_DEVMISC2

BOOL GreSetStyleRatio (hdc, pRatio, plnstance, lFunction)

This function sets the style ratio used by the presentation driver's line-drawing algorithm to detc·rmine
which pels should be set on for a sloping line. Display drivers must support this function so that a
hardcopy driver (whose device can have a different style ratio) can use the display driver to draw into a bit
map that the hardcopy driver can use.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc

pRatio

plnstance

I Function

pRatio

HOC Device context handle

PBYTE Pointer to two unsigned bytes corresponding to the aspect of the pels on
which a line is drawn

PVOID Pointer to instance data

UL ONG High-order WORD= flags; low-order WORD= NGreSetStyleRatio

The style ratio is defined as a two-byte value. The low-order byte indicates a step in the
x-direction, and the high-order byte a step in they-direction. Typical values for style ratios are:

• For EGA devices, x-direction equals 64 and y-direction equals 85
• For one-to-one devices, x-direction equals 64 and y-direction equals 64. In this case, the

style ratio steps are set to 64:64 rather than 1 :1 to ensure that a single dot in a line-style
pattern is a sensible length. The length of a single dot in the pattern is (256/step_val ue)
pels.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-21

AVIO function

GreUpdateCursor

#define INCL_AVIOP

LONG GreUpdateCursor (hdc, pVioPS, plnstance, lFunction)

This function updates the drawn alphanumeric cursor to match the cursor state information contained in the
presentation space. This usually involves removing the previous cursor from the window and drawing the
new cursor, if visible, according to the presentation space information. The new cursor (if visible) is
positioned and clipped according to this information and the window's cell-buffer origin and size.

The cursor is drawn as an exclusive-OR bar. Its new position, size and shape are saved by the handling
routine in the Vio presentation space. Only one cursor can be visible on the screen at any time and this
must be in the window with the input focus. This is enforced by the operating system for VIO functions but
not for AVIO. The AVIO application must alter the visibility of the cursor when changing input focus. When
the text cursor collides with an AVIO and VIO drawing, the presentation driver must remove and redraw the
cursor around the alphanumeric updates.

Note: GreBitblt copies everything including the cursor.

The presentation driver can assume that the values in the RowOrgLatch and CursorWidth fields of the
VioPresentationSpace structure parallel the WindowOriginRow and TextCursorWidth, respectively.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pVioPS VioPresentationSpace * Pointer to the Vio presentation space

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreUpdateCursor

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR Successful
CE_INVALID _PRESENTATION_SPACE Error. For example, invalid CellByteSize.

9-22 Presentation Driver Reference

simulated functions

Chapter 10. Simulated Functions

These functions are simulated by handling routines in the graphics engine and are called through pointers

in the default dispatch table. Any simulated functions can be hooked to improve performance or to exploit

special features of the device. Hooking is performed by overwriting the pointer in the presentation driver's

copy of the dispatch table with a pointer to the presentation driver's handling routine. If this is done, the

the original pointer must be saved in order to pass calls to the engine's handling routine.

When the presentation driver has hooked a function, all calls to that function are passed through the

dispatch table directly to the driver's handling routine. If the presentation driver cannot completely handle

a hooked function, it can pass the call to the engine's routine for completion.

The functions in this chapter are grouped according to the conditional include sections of the header file:

• Arc functions (INCL_GRE_ARCS)
• Area and Path functions (INCL_GRE_PATHS)
• Clip functions (INCL_GRE_CLIP)
• Line functions (INCL_GRE_LINE)
• Palette Manager functions (INCL_GRE_PALETTE)
• Region functions (INCL_GRE_REGIONS)
• Transform functions (INCL_GRE_XFORMS)

Each description shows what the handling routine is expected to do, the parameters passed to the routine,

and the values that the routine returns.

Arc Functions

Drawing functions such as those listed above pass individual drawing orders to the graphics engine. The

graphics engine then draws, correlates and takes, or takes bounds on the drawing primitives as directed by

the flags. The graphics engine is assumed to clip to the appropriate part of the window, which is the region

excluding any window border or frills.

Coordinates are passed as signed 32-bit numbers in a logical space called world-coordinate space. Angles

are also passed as signed 32-bit numbers. Zero refers to the direction of the positive x-axis, 231 represents

360°. Positive values are counterclockwise from the positive x-axis.

Area and Path Functions

A path is an area, or a shape, that can be used to define:

• Wide lines and curves to which changes of scale can be applied
• Shapes and areas for filling
• Irregular shapes to which subsequent primitives are clipped. This is known as a clip path.

Clip Functions

Clip regions are defined as rectangles in world coordinates. The boundaries of a clip region rectangle are

inclusive of the rectangle they define.

© Copyright IBM Corp. 1992 10-1

simulated functions

Region Functions

Regions are defined as rectangles in device coordinates. They are inclusive at the bottom-left boundary
and exclusive at the top-right boundary. That is, the top-right coordinates are outside the rectangle they
define and the bottom-left coordinates are inside the rectangle. When both coordinate pairs are equal, the
rectangle dimension is 0.

Transform Functions

Transform functions provide a complete viewing pipeline whereby coordinates are transformed from
world-coordinates to model space to presentation page to device space. For more information, refer to the
OS/2 2.0 Programming Guide Volume Ill - Graphics Programming Interface. Figure 10-1 on page 10-3
diagrams the viewing pipeline.

10-2 Presentation Driver Reference

simulated functions

~----------------------------------, I I

: GplSetModelTransformMatrix :
I I

·-----------------------------------

World
coordinate
spaces

' I r------------------------------------•
I I I

~ : GpiSetVlewingTransformMatrix :
I I I

I ~------------------------------------' I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\

\ :6;i8-~t-o~"f~-~1-tvi-~~-M~-t~i~---:
I I I \ ·----------~--------:::::::::::: ______________ _

~ : : GpiCreatePS, :
\ I I

'. ' : GpiSetPageViewport
~ ~--------------------------

\
I
I
\

Model space '
Clip region ·
(may consist
of intersecting
rectangles)
GplSetCllpReglon

: ,"8
Presentation
page space

Device
space

I

•,'

, ..

,
J'
I

, •

Viewing limlt (Cllp)
(always rectangular)
GplSetDefViewingLimits,
GpiSetViewinglimits

Model space

Viewing
limit
(Clip)

r-------------------------------
',,, : Clip Path (Clip) :

',,l (may use curved edges)
I

: GpiSetClipPath
~------------------------------!

Origin Origin

Graphics field (Clip)
(always rectaigular)
GpiSetGraphicsField

Client
Area
(Clip)

Page viewport
(always
rectangular)

Legend:

D =Model transfor.mation

D =Viewing transformation

C> =Default viewing transformation

[>- =Device transfromation

~1 Figure 10-1. Transform and Clipping Pipeline.
)

Chapter 10. Simulated Functions 10-3

simulated functions

Matrix Element Format

The matrix elements for the model and viewing transforms are held in XFORM structures:

fxM11
fxM12
fxM21
fxM22
IM41
IM42

M11, M12, M21, and M22 are fixed-point numbers represented as signed 4-byte integers with a notional
binary point between bits 16 and 15:

+2.5 is represented by 00028000H
-2.5 is represented by FFFD8000H
-0.5 is represented by FFFF8000H

M41 and M42 are signed 4-byte numbers.

Device Transform Definition by Presentation Page Viewport

For a transform, defined by viewport and window rectangles whose bottom-left and top-right coordinates
are represented by (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4), respectively, the matrix elements are
determined as shown below. The point (X3-1/2, Y3-1/2) transforms to (X1-1/2, Y1-1/2), and the point
(X4+1 /2, Y 4 + 1 /2) transforms to (X2 + 1 /2, Y2+1 /2). Therefore:

M12 = 0
M21 = 0

If X4 >= X3 then
Mll = (X2-Xl+l) I (X4-X3+1)
M41 = (Xl*X4-X3*X2+1/2 * (X2-X4 + Xl-X3)) / (X4-X3+1)

If X4 < X3 then
Mll = (X2-Xl+l) I (X4-X3-l)
M41 = (Xl*X4-X3*X2-1/2 * (X2+X4+Xl+X3)) I (X4-X3-1)

If Y4 >= Y3 then
M22 = (Y2-Yl+l) I (Y4-Y3+1)
M42 = (Yl*Y4-Y3*Y2+1/2 * (Y2-Y4 + Yl-Y3)) I (Y4-Y3+1)

If Y4 < Y3 then
M22 = (Y2-Yl+l) I (Y4-Y3-l)
M42 = (Yl*Y4-Y3*Y2-1/2 * (Y2+Y4+Yl+Y3)) I (Y4-Y3-1)

Note: X4 is always greater than X3 and Y4 is always greater than Y3.

In the case of device transforms, (X3, Y3) is always (0, 0), Y 4 is always greater than Y3, and the device
space coordinates (X2, Y2) are exclusive. This simplifies the formula to:

M12 = 0
M21 = 0

Mll = (X2-Xl) I (X4+1)
M41 = (Xl*X4+1/2 * (X2-1-X4+Xl)) / (X4+1) = Xl+l/2 (Mll-1)

M22 = (Y2-Yl) I (Y4+1)
M42 = (Yl*Y4+1/2 * (Y2-1-Y4+Yl)) / (Y4+1) = Yl+l/2 (M22-1)

10-4 Presentation Driver Reference

simulated functions by category

Bounds, Correlation, and Clipping

All presentation drivers must support bounds computation for both GPI bounds (COM_BOUND) and user
bounds (COM_ALT_BOUND). Bounds are calculated on unclipped primitives for all operations that draw to
the device, including AVIO functions. GPI bounds are passed in model space coordinates. User bounds
are calculated in device-coordinate space. To prevent inaccuracies from occurring when the transform
changes, the typical presentation driver maintains bounds in both coordinate sets in its instance data
structure. It then accumulates the transforms as they occur.

Correlation is performed in page-coordinate space on the output of primitives that have been clipped only
to the viewing limits and graphics field. Correlation is also performed on all operations that draw to the
device, except the AVIO function. Notice that hardcopy drivers are not required to perform correlation.

Simulated Functions by Category

Related simulated functions can be grouped together into the following categories:

Arc Functions

• GreArc (see page 10-8)
• GreBoxBoth (see page 10-15)
• GreBoxBoundary (see page 10-17)
• GreBoxlnterior (see page 10-19)
• GreFullArcBoth (see page 10-49)
• GreFullArcBoundary (see page 10-51)
• GreFullArclnterior (see page 10-53)
• GreGetArcParameters (see page 10-55)
• GrePartialArc (see page 10-78)
• GrePolyFillet (see page 10-80)
• GrePolyFilletSharp (see page 10-82)
• GrePolySpline (see page 10-84)
• GreSetArcParameters (see page 10-111)

Area and Path Functions

• GreAreaSetAttributes (see page 10-10)
• GreBeginArea (see page 10-11)
• GreBeginPath (see page 10-13)
• GreCloseFigure (see page 10-21)
• GreEndArea (see page 10-41)
• GreEndPath (see page 10-43)
• GreFillPath (see page 10-47)
• GreModifyPath (see page 10-71)
• GreOutlinePath (see page 10-76)
• GreRestorePath (see page 10-98)
• GreSavePath (see page 10-102)
• GreSelectClipPath (see page 10-106)
• GreStrokePath (see page 10-128)

Chapter 10. Simulated Functions 10-5

simulated functions by category

Clip Functions

• GreCopyClipRegion (see page 10-28)
• GreExcludeClipRectangle (see page 10-45}
• GreGetClipBox (see page 10;.56)
• GreGetClipRects (see page 10-57)
• GrelntersectClipRectangle.(see page 10-69)
• GreOffsetClipRegion (see page 10-74)
• GrePtVisible (see page 10-89)
• GreQueryClipRegion (see page 10-90)
• GreRectVisible (see page 10-96)
• GreRegionSelectBitmap (see page 10-97)
• GreRestoreRegion (see page 10-99)
• GreSaveRegion (see page 10-103)
• GreSelectClipRegion (see page 10-108)
• GreSelectPathRegion (see page 10-110)
• GreSetupDC (see page 10-126)
• GreSetXformRect (see page 10-125)

Line Functions

• GreDrawRLE (see page 10-39)
• GrePolygonSet (see page 10-86)

Palette Manager Functions

• GreDeviceAnimatePalette (see page 10-32)
• GreDeviceCreatePalette (see page 10-33)
• GreDeviceDeletePalette (see page 10-35)
• GreDeviceResizePalette (see page 10-37)
• GreDeviceSetPaletteEntries (see page 10-38)
• GreQueryHWPalettelnfo (see page 10-91)
• GreQueryPaletteRealization (see page 10-92)
• GreReaHzePalette (see page 10.-93)
• GreUpdateColors (see page 10-130)

Region Functions

• GreCombineRectRegion (see page 10-22)
• GreComb~neRegion (see page 10-23)
• GreCombineShortlineRegion (see page 10-24)
• GreCreateRectRegion (see page 10-30)
• GreDestroyRegion (see page 10-31)
• GreEqualRegion (see page 10-44)
• GreGetRegionBox (see page 10~64)
• GreGetRegionRects (see page 10-65)
• GreOffsetRegion (see page 10-75)
• GrePaintRegion (see page 10-77)
• GrePtlnRegion (see page 10-88)
• GreRectlnRegion (see page 10-95)
• GreSetRectRegion (see page 10-121)

10-6 Presentation Driver Reference

simulated functions by category

Transform Functions

• GreConvert (see page 10-26)
• GreConvertWithMatrix (see page 10-27)
• GreGetGlobalViewingXform (see page 10-59)
• GreGetGraphicsField (see page 10-60)
• GreGetModelXform (see page 10-61)
• GreGetPageUnits (see page 10-62)
• GreGetPageViewport (see page 10-63)
• GreGetViewinglimits (see page 10-67)
• GreGetWindowViewportXform (see page 10-68)
• GreMultiplyXforms (see page 10-73)
• GreRestoreXform (see page 10-100)
• GreRestoreXformData (see page 10-101)
• GreSaveXform (see page 10-104)
• GreSaveXformData (see page 10-105)
• GreSetGlobalViewingXform (see page 10-112)
• GreSetGraphicsField (see page 10-114)
• GreSetModelXform (see page 10-115)
• GreSetPageUnits (see page 10-117)
• GreSetPageViewport (see page 10-119)
• GreSetViewinglimits (see page 10-122)
• GreSetWindowViewportXform (see page 10-123)

Chapter 10. Simulated Functions 1O·7

arc function

GreArc

#define INCL_GRE_ARCS

LONG GreArc (hdc, paptlPoint, plnstance, lfunction)

This function draws an arc through the three points, which are the current position, and the two points
specified in the data structure. Upon completion, the current position is the third point of the arc. If GreArc
is used within a path definition or an area definition to continue a figure following a GreBoxxxx or
GrefullArcxxx function, the error PMERR_INV_NESTED_FIGURES is posted. This is because the
GreBoxxxx and GrefullArcxxx functions generate a closed figure within an area or path definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

paptlPoint PPOINTL Pointer to ArcData array. See below.

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreArc

paptlPolnt Pointer to an array of POINTL structures giving the mid and end points of the arc. If the
mid-point is coincident with the start or end point, a straight line is drawn from the start point
to the end point. If COM_ TRANSFORM is not set, the function expects the array of points to be
in screen coordinates.

x X-coordinate of point
y Y-coordinate of point.

Return Codes: On completion, this function returns an integer (cHits) indicating, where appropriate,
whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

10-8 Presentation Driver Reference

arc function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-9

area/path function

GreAreaSetAttributes

#define INCL_GRE_PATHS

BOOL GreAreaSetAttributes (hdc, lPrimType, flDefsMask, flAttrsMask, pAttrs, plnstance, lFunction)

This function is called by the graphics engine after processing a call to GreSetAttrs received inside an area
or path bracket. The handling routine in the graphics engine does nothing. Its purpose is to provide an
entry in the dispatch table that can be hooked by presentation drivers.

Support: This function must be hooked by presentation drivers that perform their own area or path
simulations.

Stack Frame: The parameters passed to GreAreaSetAttributes are identical to those passed to
GreSetAttrs.

Parameter Data Type Description

hdc HDC Device context handle

IPrimType LONG Bundle primitive type. See below.

flDefsMask ULONG Flags indicating which attributes are to be set to default

flAttrsMask UL ONG Flags indicating which attributes are to be modified

pAttrs PBUNDLE Pointer to the fixed-format bundle record containing the attribute values to
be set. See below.

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreAreaSetAttributes

IPrlmType Indicates the bundle type. Valid primitive values are:

pAttrs

PRIM_LINE
PRIM_CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle
Character attribute bundle
Marker attribute bundle
Pattern attribute bundle
Image attribute bundle.

This is a pointer to the fixed-format bundle record containing the attribute values to be set as
specified by flAttrsMask. Only the attribute fields corresponding to attribute flags set in
flAttrsMask, and not set in flDefsMask, contain valid values. This buffer must only be large
enough to contain data for the highest offset attribute referenced.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

10-10 Presentation Driver Reference

area/path function

GreBeginArea

#define INCL_GRE_PATHS

BOOL GreBeginArea (hdc, flOptions, plnstance, lFunction)

This function indicates the beginning of a set of drawing functions that define the boundary of an area. All
of the boundaries of the area are considered to be part of the interior, and are filled. GreBeginArea has no
direct effect on current position, although it can be affected by drawing orders within the boundary
definition. When GreBoxxxx or GreFullArcxxx functions are used within an area definition, they generate
closed figures and must not be used within another figure definition. For more information, see
GpiBeginArea in the OS/2 2.0 Presentation Manager Programming Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

flOptions UL ONG Option flags. See below.

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreBeginArea

flOptions These flags designate whether the boundary is drawn and what the drawing mode is:

BA_NOBOUNDARY
BA_BOUNDARY
BA_ALTERNATE
BA_ WINDING

Do not draw boundary lines.
Draw boundary lines.
Alternate mode.
Winding mode.

The defaults are BA_NOBOUNDARY and BA_ALTERNATE.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Area correlation hits are returned at End Area time. No hits are returned for primitives such as lines and
arcs that form part of the ar-ea definition.

Chapter 10. Simulated Functions 10-11

area/path function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN_AREA
PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _AREA_ CONTROL
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_PATH_LI MIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The following functions are valid when received after GreBeginArea and before GreEndArea:

• GreArc
• GreAreaSetAttributes (valid only for color, mix, and valid line attributes)
• G reBoxBoundary
• GreDeviceSetAttributes (valid only for color, mix, and valid line attributes)
• GreDeviceSetGlobalAttribute (valid only for foreground color and mix)
• GreFullArcBoundary
• GrePartialArc
• GrePolyFillet
• GrePolyFilletSharp
• GrePolyline
• GrePolySpline
• GreQueryCharStringPos
• GreQueryTextBox
• GreSetArcParameters
• GreSetAttributes (valid only for color, mix, and valid line attributes)
• GreSetCurrentPosition
• GreSetGlobalAttribute (valid only for foreground color and mix)
• GreSetModelXform.

10-12 Presentation Driver Reference

area/path function

GreBeginPath

#define INCL_GRE_PATHS

BOOL GreBeginPath (hdc, idPath, plnstance, lFunction)

This function identifies the start of a sequence of figures that define a path. Notice that character attribute
setting functions are not allowed within a path definition. When GreBoxxxx or GreFullArcxxx functions are
used within a path definition, they generate closed figures and must not be used within another figure
definition. For more information, see GpiBeginPath in the OS/2 2.0 Presentation Manager Programming
Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

idPath LONG Path identifier. This value must be 1.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreBeginPath.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN_PATH
PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _PATH_ID
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-13

area/path function

Remarks: The following functions are valid when received after GreBeginPath and before GreEndPath:

• GreArc
• GreAreaSetAttributes (valid only for color, mix, and valid line attributes)
• GreBoxBoundary
• GreCharString (outline characters only)
• GreCharStri.ngPos (outline characters only)
• GreCloseFigure
• GreDeviceSetGlobalAttribute (valid only for foreground color and mix)
• GreFullArcBoundary
• GrePartialArc
• GrePolyFillet
• GrePolyFilletSharp
• GrePolyLine
• GrePolyMarker (outline markers only)
• GrePolySpline
• GreQueryCharPositions
• GreQueryTextBox
• GreSetArcParameters
• GreSetAttributes (valid only for color, mix, and valid line attributes)
• GreSetGlobalAttribute (valid only for foreground color and mix)
• GreSetCurrentPosition
• GreSetModelXform.

10-14 Presentation Driver Reference

arc function

GreBoxBoth

#define INCL_GRE_ARCS

LONG GreBoxBoth (hdc, pBox, plnstance, lFunction)

This function draws and fills a rectangular box with one corner at the current (x, y) position and the

opposite corner at the specified (x, y) position. The current (x, y) position does not change. When this

function occurs within an area or path definition, it generates a closed figure. GreBoxBoth must not occur

within any other figure definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pBox PPOINTL Pointer to BOXDATA. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreBoxBoth.

pBox Pointer to a BOXDATA structure:

ptlOpposlte POINTL structure defining the opposite corner of the box. If COM_ TRANSFORM is

not set, the function expects the point to be in screen coordinates.

x X-coordinate of opposite corner
y Y-coordinate of opposite corner.

IHRound Horizontal length of the full axis of an ellipse. This field is used for rounding each

corner.

IVRound Vertical length of the full axis of an ellipse. This field is used for rounding each

corner.

Return Codes: On completion, this function returns an integer (cHits) indicating, where appropriate,

whether correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN_AREA
PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW

PMERR _DEV _FUNC _NOT _INSTALLED

PMERR_EXCEEDS_MAX_SEG_LENGTH

PMERR _HDC _BUSY
PMERR_HRGN_BUSY

Chapter 10. Simulated Functions 10-15

arc function

PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _AREA_CONTROL
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _BOX_ROUNDING_PARM
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_ATTR
PMERR_INV _MIX_A TTR
PMERR_INV _NESTED _FIGURES
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_NOT _IN_AREA
PMERR_NOT _IN_PATH
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The sides of the box (before transformation) are parallel to the x-axis and y-axis. The corners
of the box can be rounded by means of quarter ellipses of the specified diameters. When the value of
either diameter is 0, no rounding occurs. When the value of either diameter exceeds the length of the
corresponding side, that length is used as the diameter instead. When the value of the diameters are equal
to the value of the sides, the corners are rounded with a quarter circle. If the current position is (xO, yO),
the box is drawn from the current position in a counterclockwise direction.

When correlating, the handling routine records a hit when the pick aperture intersects the boundary or
interior, or is completely within the interior (even if the mix used for the fill operation is LEAVEALONE).

10-16 Presentation Driver Reference

arc function

GreBoxBoundary

#define INCL_GRE_ARCS

LONG GreBoxBoundary {hdc, pBox, plnstance, lFunction)

This function draws a rectangular box with one corner at the current (x, y) position and the opposite corner

at the specified (x, y) position. The current (x, y) position does not change.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pBox PPOINTL Pointer to BOXDATA. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreBoxBoundary.

pBox Pointer to a BOXDATA structure:

ptlOpposite POINTL structure defining the opposite corner of the box. If COM_ TRANSFORM is
not set, the function expects the point to be in screen coordinates.

x X-coordinate of opposite corner
y Y-coordinate of opposite corner.

IHRound Horizontal length of the full axis of an ellipse. This field is used for rounding each
corner.

IV Round Vertical length of the full axis of an ellipse. This field is used for rounding each
corner.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_BOX_ROUNDING_PARM
PMERR_INV _COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _HDC

Chapter 10. Simulated Functions 10-17

arc function

PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _NESTED _FIGURES
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_NOT _IN_PATH
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_ UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The sides of the box (before transformation) are parallel to the x-axis and y-axis. The corners
of the box can be rounded by means of quarter ellipses of the specified diameters. When the value of
either diameter is 0, no rounding occurs. When the value of either diameter exceeds the length of the
corresponding side, that length is used as the diameter instead. When the value of the diameters are equal
to the value of the sides, the corners are rounded with a quarter circle. If the current position is (xO, yO),
the box is drawn from the current position in a counterclockwise direction.

When correlating, the handling routine records a hit when the pick aperture intersects the boundary.

10-18 Presentation Driver Reference

arc function

GreBoxlnterior

#define INCL_GRE_ARCS

LONG GreBoxlnterior (hdc, pBox, plnstance, lFunction}

This function draws a rectangular box with one corner at the current (x, y) position and the opposite corner

at the specified (x, y) position. The current (x, y) position does not change. When this function occurs

within an area or path definition, it generates a closed figure. GreBoxlnterior must not occur within any

other figure definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pBox PPOINTL Pointer to BOXDATA. See below.

plnstance PVOID Pointer to instance data.

1Function UL ONG High-order WORD= flags; low-order WORD= NGreBoxlnterior.

pBox Pointer to a BOXDAT A structure:

ptlOpposlte POINTL structure defining the opposite corner of the box. If COM_ TRANSFORM is

not set, the function expects the point to be in screen coordinates.

x X-coordinate of opposite corner
y Y-coordinate of opposite corner.

IHRound Horizontal length of the full axis of an ellipse. This field is used for rounding each

corner.

IVRound Vertical length of the full axis of an ellipse. This field is used for rounding each

corner.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether

correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN...;.AREA
PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_OVERFLOW
PMERR_DEV _FUNC ~NOT _;INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY

Chapter 10. Simulated Functions 10-19

arc function

PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _AREA_CONTROL
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV _BOX_ROUNDING_PARM
PMERR_INV _CHAR_DIRECTION_ATTR
PMERR_INV _ CHAR_MODE_A TTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _MIX_ATTR
PMERR_INV _NESTED_FIGURES
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_NOT_IN_AREA
PMERR_NOT_IN_PATH
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The sides of the box (before transformation) are parallel to the x-axis and y-axis. The corners
of the box can be rounded by means of quarter ellipses of the specified diameters. When the value of
either diameter is 0, no rounding occurs. When the value of either diameter exceeds the length of the
corresponding side, that length is used as the diameter instead. When the value of the diameters are equal
to the value of the sides, the corners are rounded with a quarter circle. If the current position is (xO, yO),
the box is drawn from the current position in a counterclockwise direction. This is significant when, for
example, the area mode is BA_WINDING.

When correlating, the handling routine records a hit when the pick aperture intersects, or is completely
within, the interior (even if the mix used for the fill operation is LEAVEALONE).

10-20 Presentation Driver Reference

area/path function

GreCloseFigure

#define INCL_GRE_PATHS

BOOL GreCloseFigure (hdc, plnstance, lFunction)

This function closes a figure within a path definition by drawing a line from the current (x, y) position to the
start point of the figure. Upon completion, the current position is the start point of the figure. Open figures
can be generated by starting a new figure (with a Move function) or by ending the path without first closing
the figure. GreCloseFigure is valid outside of a path definition. When this occurs, this function has no
effect and the handling routine ignores it. For more information, see GpiCloseFigure in the OS/2 2.0
Presentation Manager Programming Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCloseFigure

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_NOT _IN_PATH
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-21

region function

GreCombineRectRegion

#define INCL_GRE_REGIONS

LONG GreCombineRectRegion (hdc, hrgnDst, prclRect, hrgnSrc, cmdMode, plnstance, lFunction)

This function combines a region with a rectangle to make a new region. If COM_ TRANSFORM is not set,
the function expects the point to be in device coordinates. The destination region can be the same as the
source region. An error is raised if either of the regions specified is currently selected as the clip region.
The source and destination regions must be of the same device class.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgnDst HRGN Destination region handle.

prclRect PRECTL Pointer to rectangle.

hrgnSrc HRGN Region handle.

cmdMode LONG Method of combination. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCombineRectRegion.

cmdMode Method of combination:

CRGN_OR
CRGN_COPY
CRGN_XOR
CRGN_AND
CRGN_DIFF

Union of hrgnSrc and prclRect.
prclRect only. hrgnSrc is ignored.
Symmetric difference of hrgnSrc and prclRect.
Intersection of hrgnSrc and prclRect.
hrgnSrc and NOT(prclRect).

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the new
region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnto to
post the condition. Error codes tor conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_INV _REGION_MIX_MODE
PMERR..:_REGION_IS_CLIP ..;REGION.

Refer to Appendix B of the OS/2 2:0 Presentation Manager Programming Reference tor further explanation.

10-22 Presentation Driver Reference

region function

GreCombineRegion

#define INCL_GRE_REGIONS

LONG GreCombineRegion (hdc, hrgnDst, hrgnSrcl, hrgnSrc2, cmdMode, plnstance, lFunction)

This function combines two regions to make a third. The destination region can be the same as one of the
source regions. An error is raised when any one of the specified regions is currently selected as the clip
region. All source and target regions must be of the same device class.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgnDst HRGN Destination region handle.

hrgnSrc1 HRGN First region handle.

hrgnSrc2 HRGN Second region handle.

cmdMode LONG Method of combination. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCombineRegion.

cmdMode Method of combination:

Union of hrgnSrc1 and hrgnSrc2.
hrgnSrc1 only. hrgnSrc2 is ignored.

CRGN_OR
CRGN_COPY
CRGN_XOR
CRGN_AND
CRGN_DIFF

Symmetric difference of hrgnSrc1 and hrgnSrc2.
Intersection of hrgnSrc1 and hrgnSrc2.
hrgnSrc1 and NOT(hrgnSrc2).

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the new
region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-23

region function

GreCombineShortLineRegion

#define INCL_GRE_REGIONS

BOOL GreCombineShortlineRegion (hdc, hrgn, pScanData, plnstance, lFunction)

This function combines an area lying between polyshortline pairs, which is represented by a SCANDATA
structure, with a region. pScanData is ORed into the region. This function is used to build regions for path
simulation. The function always expects the points in the shortlines to be in device coordinates. An error

is raised when the region specified is currently selected as the clip region.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter

hdc

hrgn

pScanData

plnstance

I Function

pScanData

Data Type Description

HOC Device context handle.

HRGN Region handle.

PSCANDATA Pointer to a SCAN DAT A structure. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreCombineShortlineRegion.

Pointer to a SCANDATA structure:

pslFlrstLeft
pslLastLeft
pslFlrstRlght
pslLastRlght
c
rel Bound

Pointer to the left end of the first polyshortline
Pointer the left end of the last polyshortline
Pointer to right edge of first polyshortline
Pointer to right edge of last polyshortline
Number of scan lines
RECTL structure defining the bounding rectangle.

Notice that a polyshortline consists of a list of linked SHORTLINE structures:

slh SHORTLINEHEADER structure:

ulStyle Line style
ulFormat Line format
ptlStart (x, y) position of start
ptlStop (x, y) position of end
lxLeft Left edge of bounding rectangle
lxRlght Right edge of bounding rectangle
pslhNext Pointer to next shortline
pslhPrev Pointer to previous shortline.

This structure is a discrete representation of a curve that starts at point (xO, yO) and
ends at point (x1, y1). For each of the (y1-y0+ 1) rows, there is exactly one x value
contained in the x-array. The final point in the series is not drawn.

ax Array of x values, as device coordinates.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

10-24 Presentation Driver Reference

region function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _HRGN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-25

transform function

GreConvert

#define INCL_GRE_XFORMS

BOOL GreConvert (hdc, lSrc, lDst, paptlPoint, cPoints, plnstance, lFunction)

This function converts the specified coordinates from one coordinate space to another by using the current
values of the transforms.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

ISrc LONG Source-coordinate space. See below.

I Ost LONG Target-coordinate space. See below.

paptlPoint PPOINTL Pointer to array of (x, y) coordinates to transform. The result is also
returned to this parameter.

cPoints LONG Count of coordinate pairs in the array.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NG reconvert.

ISrc These values define the source-coordinate space:

CVTC_WORLD
CVTC_MODEL
CVTC_DEFAULTPAGE
CVTC_PAGE
CVTC _DEVICE

World-coordinate space.
Model space.
Default page-coordinate space.
Page-coordinate space.
Device-coordinate space. Screen coordinates are 32-bit signed integers
and are used by the presentation driver as screen pel addresses.

IDst Target-coordinate space defined by the same values as ISrc (see above).

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_HDC _BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-26 Presentation Driver Reference

transform function

GreConvertWithMatrix

#define INCL_GRE_XFORMS

BOOL GreConvertWithMatrix (hdc, paptlPoint, cPoints, paXfonn, plnstance, lFunction)

This function converts a series of points by using the matrix indicated. Other current transform matrixes
are ignored.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to array of (x, y) coordinates to transform. The result is also
returned to this parameter.

cPoints LONG Count of coordinate pairs in the array.

paXform PXFORM Pointer to an array of 6 matrix elements for two-dimensional formation.
These are M11, M12, M21, M22, M41, and M42.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreConvertWithMatrix.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR _COORDINATE_ OVERFLOW
PMERR_INV _LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-27

clip function

GreCopyClipRegion

#define INCL_GRE_CLIP

LONG GreCopyClipRegion (hdc, hrgn, prclBounds, flOptions, plnstance, lFunction)

This function copies the visible region, clip region, or DC region, and returns the complexity and bounds of
the resulting region.

Support: This function is supported by the engine and can be hooked by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgn HRGN Visible region handle

prclBounds PRECTL Bounding rectangle

fl Options UL ONG Option flags

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCopyCI ipRegion

prclBounds Pointer to the bounding rectangle of the returned region. The bounding rectangle is returned
in the same coordinate system as the region defined by flOptions. This rectangle is
inclusive at the bottom and left boundaries, exclusive at the top and right boundaries. When
specified as NULL, the bounding rectangle is not returned.

flOptions These flags determine the type of region to be returned in hrgn:

COPYCRGN_ALLINTERSECT The function must return the intersection of all clipping. This
value describes the DC region and is expressed in screen
coordinates.

COPYCRGN_VISRGN The function must return a copy of the visible region only.
This value is returned in screen coordinates.

COPYCRGN_CLIPRGN The function must return a copy of the clip region only. The
clip region is expressed in device coordinates.

Return Codes:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

This function returns an integer (!Complexity) indicating the complexity of the region:

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

10-28 Presentation Driver Reference

)

cllp function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-29

region function

GreCreateRectRegion

#define .INCL_GRE_REGIONS

HRGN GreCreateRectRegion (hdc, paRegion, cRect, plnstance, lFunction)

This function creates a region by taking the OR of a series of rectangles. When no rectangles are specified
(that is, cRect is 0), an empty region is created. If COM_TRANSFORM is not set, the function expects the
points to be in device coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paRegion PRE CT Pointer to the region definition, which is an array of rectangle structures.
See below.

cRect LONG Number of rectangles in the region definition. If this is 0, an empty region
is created.

plnstance PVOID Pointer to .instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCreateRectRegion.

paRegion This is a pointer to an array of rectangles, which defines the region. Each rectangle is
described by a RECTL structure:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

For each rectangle, xRight must be equal to, or greater than, xleft. yTop must be equal to, or
greater than, yBottom. The bottom and left boundaries of each rectangle are part of the
interior of the region; the top and right boundaries are not.

Return Codes: On completion, the handling routine returns the region handle (hrgn), or RGN_ERROR if
an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INSUFFICIENT _MEMORY
PMERR_INV _.COORDINATE
.PMERR_INV ...;HRGN
PMERR_INV _LENGTH_OR_ COUNT
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-30 Presentation Driver Reference

region function

GreDestroyRegion

#define INCL_GRE_REGIONS

BOOL GreDestroyRegion (hdc, hrgn, pinstance, lFunction)

This function deletes the specified region unless it has been selected as a clipping region. In this case, an
error is raised. When a null region is specified, GreDestroyRegion does not delete any region and returns
without logging an error.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgn HRGN Region handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreDestroyRegion

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _HRGN
PMERR_REGION_IS_CLIP _REGION.

Notice that when an error occurs, the region is not deleted. Refer to Appendix B of the OS/2 2.0
Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-31

palette manager function

GreDeviceAnimatePalette

#define INCL_GRE_PALETTE

DDIENTRY GreDeviceAnimatePalette (hdc, hdevpal, ulFormat, ulStart, cclr, pclr, plnstance, lFunction)

This function is the presentation driver version of GreAnimatePalette. It is called for every device that has
the palette from GreAnimatePalette selected into it.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hdevpal UL ONG Device palette handle

ulFormat UL ONG Specifies the entry format. Must be LCOLF _CONSECRGB.

ulStart ULONG Starting index, that is, first palette entry to change

cclr UL ONG Count of palette entries to change

pclr PU LONG Pointer to table of new RGB2 palette entries

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceAnimatePalette

Return Codes: On completion, this function returns the following value:

cclr Count of the hardware palette slots changed.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _DC
PMERR_PAL_ERROR.

10-32 Presentation Driver Reference

palette manager function

GreDeviceCreatePalette

#define INCL_GRE_PALETTE

DDIENTRY GreDeviceCreatePalette (hdc, ppalinfo, hdevpal, plnstance, lFunction)

This function is called by GreSelectPalette. The presentation driver is expected to perform any allocation
and data structure initialization needed for a subsequent GreDeviceRealizePalette to succeed.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

ppalinfo PPALETTEINFO Pointer to table of palette data from GreCreatePalette. See below.

hdevpal ULONG Device palette handle (NULL, if new). See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceCreatePalette.

ppallnfo The structure of palinfo is as follows:

struct _PALETTEINFO { /* palinfo */

ULONG fl Cmd;
ULONG ul Fonnat;
ULONG lStart;
ULONG cl Col orData;
RGB2; argb[l];

} PALETTEINFO;

/* Options from create */
/* Specifies fonnat of entries at create */
/* Starting index from create */
/* Number of elements supplied at create */

/* Pa 1 ette entries *I

hdevpal If hdevpal =O, ppalinfo points to a palette information structure, which must be set into a new
palette whose handle is returned. The new palette is then selected into the DC.

If hdevpal is non-zero, ppalinfo is ignored, the palette is selected into the DC, and hdevpal is a
device palette handle previously returned by the presentation driver. In this case, hdevpal is
used to bind the palette with the new ddc. This technique is the driver level mechanism for
sharing palettes among contexts on the same device.

Return Codes: On completion, this function returns the following value:

hdevpal Handle to the device palette.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ERROR_NEG.

Chapter 10. Simulated Functions 10-33

palette manager function

Remarks: If a palette is selected, it should be used by the presentation driver, where possible.

When an application sets a bit map, the bits are specified as indices into the color table supplied with the
bit map. The presentation driver allocates its own copy of the bit map. The driver-level pels contain
indices to the nearest color in the default physical palette. Notice that this means GreGetBitmapBits does
not necessarily return the same bit map that the application set. Information is potentially lost if the bit
map is taken to a less co/or-capable system and then brought back to the (more capable) system on which
it was created.

Bit maps have an implicit palette based on their color table. An application can select a palette into a
memory DC. However, this causes the color table and the bit-map bits to change to the nearest mapping to
the new palette. As with UpdateColors on a memory DC, the application must keep a copy of the original
bit map if it needs the original bits after selecting a palette on the memory DC. Unlike a shared device
such as the display, calls to GreRealizePalette are not performed on memory DCs. The palette takes effect
as soon as it is selected.

Palette-using applications must process the new WM_PALETTECHANGED message and not pass this on to
DefWndProc. If DefWndProc receives this message for a foreground window, it causes the default system
palette to be realized.

10-34 Presentation Driver Reference

I\
)

palette manager function

GreDeviceDeletePalette

#define INCL_GRE_PALETTE

DDIENTRY GreDeviceDeletePalette (hdc, hdevpal, plnstance, lFunction)

This function is called by the graphics engine when a palette is selected out of a device context. It informs

the device to delete its instance of the palette for the given device context. It is the responsibility of the
presentation driver to determine if any other device contexts are using the palette. In this case, the

presentation driver does not free the internal data structures needed for palette realization.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hdevpal ULONG Handle to the dev1ce palette from GreDeviceCreatePalette

plnstance PVOIO Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreDeviceDeletePalette

Return Codes: On completion, this function returns the following value:

GPl_OK Successful
ERROR_ZERO Error

Chapter 10. Simulated Functions 10-35

palette manager function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ERROR_ZERO
PMERR_INV _PALETIE.

10-36 Presentation Driver Reference

palette manager function

GreDeviceResizePalette

#def;ne INCL_GRE_PALETTE

DDIENTRY GreDeviceRes;zePalette (hdc, hdevpal, ulSize, plnstance, lFunction)

This function changes the size of a logical palette. If the size is reduced, the removed entries are deleted.
If the size is increased, the new entries are set to Black.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hdevpal UL ONG Device palette handle

ulSize UL ONG New palette size

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreDeviceResizePalette

Return Codes: On completion, this function returns the following values:

GPl_ OK Successful
GPl_ERROR Error

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _PALETTE

Chapter 10. Simulated Functions 10-37

palette manager function

GreDeviceSetPaletteEntries

#define INCL_GRE_PALETTE

DDIENTRY GreDeviceSetPaletteEntries (hdc, hdevpal, ulFonnat, ulStart, cclr, pclr, plnstance, lFunction}

This function changes the entries in a palette. These changes do not become apparent until an application
calls WinRealizePalette. lfan application changes its palette rapidly and makes those changes
immediately apparent, it calls GreAnimatePalette.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Parameter Data Type Description

hdc. HOC Device context handle.

hdevpal UL ONG Device palette handle.

ulFormat ULONG Specifies the entry format. Must be LCOLF _CONSECRGB.

ulStart ULONG Starting index, that is, first palette entry to change.

cclr UL ONG Count of palette entries to change.

pclr PULONG Pointer to table of new RGB2 palette entries.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeviceSetPaletteEntries.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful, if entries set without error.
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _PALETTE.

10;.38 Presentation Driver Reference

line function

GreDrawRLE

#define INCL_GRE_LINE

ULONG GreDrawRLE (hdc, pRLEHDR, plnstance, lFunction)

This function draws a run-length-encoded shape. If the call is passed back to the graphics engine, it calls
the GrePolyScanline entry point. GreDrawRLE is called by the area fill code in the graphics engine. These
calling functions query the driver with the CAPS_ADDITIONAL_GRAPHICS index to see if the
CAPS_ CLIP _FILLS bit is set. If it is set, the data delivered to GreDrawRLE has already been clipped.
Notice that all coordinates are passed as screen coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pRLEHDR PRLEHDR Pointer to run-length-encoding data header. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDrawRLE.

pRLEHDR Pointer an RLEHDR structure:

typedef struct {
LONG
BRECTL
PVOID

} RLEHDR;

Hype;
brectlBounds;
pRLE;

GreDrawRLE always supports /Type= 0. In this format, the pRLE field in the RLE header
points to an array of POINTL structures (see below). The brect/Bounds rectangle contains the
tightest rectangle that fits around the shape.

The RLE array starts with an (x, y) pair, where y is they-coordinate, and xis the number of
runs on the line. The number of (x, y) pairs follow, where xis the left side of the run and y is
the right side, exclusive. The next (x, y) pair holds the header of the next line. The
y-coordinate must increase. If the number of points is 0, the end of the data has been
reached. For example, the following array of eight POINTL structures defines two scan lines
of run-length-encoded data:

(3,45). (20,25), (42,56), (100,350), (Three pairs of runs at Scan Line 45)
(2,46), (19,26), (43,56), (Two pairs of runs at Scan Line 46)
(0,47) (End of RLE data indicator)

The presentation driver draws lines between the following device-coordinate-space pairs,
inclusive, given the data in the above example:

(20 ,45) to (24 ,45)
(42 ,45) to (55 ,45)
(100,45) to (349,45)
(19 ,46) to (25 ,46)
(43 ,46) to (55 ,46)

Notice that pels are drawn up to, but not including, the right coordinate of the run. That is,
runs are filled inclusive or exclusive.

Chapter 10. Simulated Functions 10-39

llne function

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-40 Presentation Driver Reference

area/path function

GreEndArea

#define INCL_GRE_PATHS

LONG GreEndArea (hdc, flCancel, plnstance, lFunction)

This function indicates the end of a set of drawing functions that define the boundary of an area. If the final
(x, y) position is not the same as the starting position of the last figure in the area, the handling routine
must close the figure by drawing a line from the current position to the start of the final figure. Upon
completion, the current (x, y) position is the last (x, y) position specified in the area boundary unless a
closure line was drawn. In this case, the start of the last figure in the area definition becomes the current
(x, y) position.

The area fill can be built up in memory or on devices that have hardware assist for area fill in the device.
For convex figures, there can be a performance gain in simply recording the start and end pel positions
across each scan line. Whatever algorithm is used to fill the area, the interior fill must be identical in each
occurrence. If it is not identical, bit-map operations can fail to join correctly when copied to the screen.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Cancel ULONG Cancel. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreEndArea.

flCancel The value of this flag specifies whether this call cancels the area definition:

EA_DRAW Draw the area. This is the default.
EA_CANCEL If set, cancel the area definition. Otherwise, draw the area.

Note: When GreBeginArea is not called and EA_ CANCEL is set, GreEndArea is valid but has no
effect, thus allowing the handling routine to reset an area bracket to a known state when
it has no knowledge of the actual current state.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on,
and a hit is detected) on any part of the interior, regardless of mix.
Error.

Chapter 10. Simulated Functions 10-41

area/path function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _AREA_ CONTROL
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _COLOR_ATTR
PMERR_INV _ COLOR_DATA
PMERR_INV _COLOR_INDEX
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_ AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _MIX_ATTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_NOT _IN_AREA
PMERR_PATH_LIMIT _EXCEEDED
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-42 Presentation Driver Reference

area/path function

GreEndPath

#define INCL_GRE_PATHS

BOOL GreEndPath (hdc, flCancel, plnstance, lFunction)

This function identifies the end of a sequence of figures that define a path. This function is valid outside a

path definition but has no effect. When this occurs, the handling routine should ignore it.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fl Cancel UL ONG Cancel. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEndPath.

flCancel The value of flCancel specifies whether this call cancels the path definition:

EA_DRAW Create the current path
EA_CANCEL Cancel the path definition.

When Gre.BeginPath is not called and EA_ CANCEL is set, GreEndPath is valid but has no effect,

thus allowing the handling routine to reset a path bracket to a known state when it has no

knowledge of the actual current state.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR:._ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED

PMERR_HDC_BUSY
PMERR_INV_END_PATH_OPTIONS.
PMERR_INV _HDC
PMERR,;..NOT _IN_PATH
PMERR_PATH_UMIT_EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-43

region function

GreEqualRegion

#define INCL_GRE_REGIONS

LONG GreEqualRegion (hdc, hrgnSrcl, hrgnSrc2, plnstance, lFunction)

This function checks whether two regions, owned by the device identified by hdc, are identical. An error is
raised when either region is currently selected as the clip region.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgnSrc1 HRGN First region handle

hrgnSrc2 HRGN Second region handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreEqualRegion

Return Codes: This function returns an integer (!Equality) indicating whether the regions are equal:
EQRGN_EQUAL
EQRGN_ERROR
EQRGN_NOTEQUAL

Equal
Error
Not equal.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _HRGN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-44 Presentation Driver Reference

cllp function

GreExcludeClipRectangle

#define INCL_GRE_CLIP

LONG GreExcludeClipRectangle (hdc, prclRect, pinstance, lFunction)

This function excludes the specified rectangle from the clipping region, that is, the area covered by the
rectangle will be outside the resulting clip region. If COM_ TRANSFORM is not set, the function expects the
rectangle points to be in device coordinates. GreExcludeClipRectangle creates a clip region when none
exists. The application is responsible for deleting this clip region when it is finished. Otherwise, it is not
deleted until the DC is closed.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclRect PRECTL Pointer to rectangle In world or device coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreExcludeClipRectangle.

prclRect RECTL structure:

xLefl Minimum x-coordinate of rectangle
yBottom Minimum y-coordinate
xRlght Maximum x-coordinate of rectangle
yTop Maximum y-coordinate.

All the boundaries of this rectangle are considered to be part of the interior and are clipped
accordingly.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the DC
region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Chapter 10. Simulated Functions 10-45

clip function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE~OVERFLOW

PMERR_DEV _FUNC _NOT JNSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV ..,;.COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _fN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-46 Pcesentation,Driver Reference

area/path function

GreFillPath

#define INCL_GRE_PATHS

LONG GreFillPath (hdc, idPath, flOptions, pinstance, lFunction)

This function fills the interior of the closed figure defined in the path by using the current pattern attributes.
Before filling the path, the handling routine must close any open figures in the path definition. On
completion, it must delete the path. All of the boundaries of the area are considered to be part of the
interior and are filled.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

id Path LONG Path ID. Must be 1.

fl Options ULONG Option flags. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD=flags; low-order WORD= NGreFillPath.

flOptlons These flags determine how the path is to be filled:

FPATH_ALTERNATE
FPATH_WINDING

Fill is performed by using the odd/even (alternate) rule.
Fill is performed by using the winding rule.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _FILL_PATH_ OPTIONS
PMERR_INV _HDC
PMERR_INV _HRGN

Chapter 10. Simulated Functions 10-47

area/path function

PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PATH_ID
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-48 Presentation Driver Reference

arc function

GreFullArcBoth

#define INCL_GRE_ARCS

LONG GreFullArcBoth (hdc, fxMultiplier, plnstance, lFunction)

This function draws and fills a full arc centered on the current (x, y) position. The current line attributes

apply to the boundary line, and the current pattern attributes to the interior. The dimensions of the arc are

defined as a multiplier that is applied to the current arc parameters. GreFullArcBoth does not affect the

current position. When the COM_PATH or the COM_AREA flag is set, this function must raise an error.

When correlating, the handling routine must return a hit when the pick aperture intersects the boundary, or

is completely within the interior, even when the mix is LEAVEALONE. See "Mix Modes" on page 8-2.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fxMultiplier FIXED Multiplier. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreFullArcBoth.

fxMultlplier The value of this parameter defines the size of the required arc in relation to an arc drawn

with the current arc parameters. The multiplier is a fixed-point value. The high-order

WORD contains the integer portion; the low-order WORD contains the fractional portion. A

value of 64KB gives a multiplier of 1. The implementation limit of the multiplier is 255.

Notice that this value must not be negative.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether

correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN_AREA
PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC _BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _AREA_ CONTROL

Chapter 10. Simulated Functions 10-49

arc function

PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV _CHAR_MODE_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _MIX_A TTR
PMERR_INV _MULTIPLIER
PMERR_INV _NESTED _FIGURES
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV_PATTERN_SET_FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_NOT _IN_AREA
PMERR_NOT_IN_PATH
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When correlating, the handling routine records a hit when the pick aperture intersects the
boundary or interior, or is completely within the interior (even if the mix used for the fill operation is
LEA VEALONE}.

10-50 Presentation Driver Reference

arc function

GreFullArcBoundary

#define INCL_GRE_ARCS

LONG GreFullArcBoundary (hdc, fxMultiplier, plnstance, lFunction)

This function draws a line by using the current line attributes around the edge of a full arc centered on the

current (x, y) position. The dimensions of the arc are defined as a multiplier that is applied to the current

arc parameters. Gref ullArcxxx functions do not affect the current position.

When correlating, the handling routine must return a hit when the pick aperture intersects the boundary.

See "Mix Modes" on page 8-2.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fxMultiplier FIXED Multiplier. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreFul I Arc Boundary.

fxMultlpller The value of this parameter defines the size of the required arc in relation to an arc drawn

with the current arc parameters. The multiplier is a fixed-point value. The high-order

WORD contains the integer portion; the low-order WORD contains the fractional portion. A

value of 64KB gives a multiplier of 1. The implementation limit of the multiplier is 255.

Notice that this value must not be negative.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether

correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR _COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC...;BUSY
PMERR_INV ~COLOR_DATA
PMERR_INV _COLOR_JNDEX
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _JN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT

Chapter 10. Simulated Functions 10-51

arc function

PMERR_INV _MULTIPLIER
PMERR_INV _NESTED _FIGURES
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_NOT _IN_PATH
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_ UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When correlating, the handling routine records a hit when the pick aperture intersects the
boundary line.

10-52 Presentation Driver Reference

arc function

GreFullArclnterior

#define INCL_GRE_ARCS

LONG GreFullArclnterior (hdc, fxMultiplier. plnstance, lFunction)

This function draws a filled, full arc by using the current pattern attributes with its center at the current (x,

y) position. The dimensions of the arc are defined by a multiplier that is applied to the current arc

parameters. GreFullArcxxx functions do not affect the current position. The arc boundary is not drawn.

When the COM_PATH or the COM_AREA flag is set, this function must raise an error.

When correlating, the handling routine must return a hit when the pick aperture intersects the interior, or is

completely within the interior, even when the mix is LEAVEALONE. See "Mix Modes" on page 8-2.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

fxMultiplier FIXED Multiplier. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreFullArclnterior.

fxMultlpller This parameter defines the size of the required arc in relation to an arc drawn with the

current arc parameters. The multiplier is a fixed-point value. The high-order WORD

contains the integer portion; the low-order WORD contains the fractional portion. A value of

64KB gives a multiplier of 1. The implementation limit of the multiplier is 255. Notice that

this value must be positive or 0.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether

correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY _IN_AREA
PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _AREA_ CONTROL

Chapter 10. Simulated Functions 10-53

arc function

PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV~ CHAR_DIRECTION_A TTR
PMERR_INV _ CHAR_MODE_A TTR
PMERR;.,.INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _ COLOR_DATA
PMERR_INV _COLOR_INDEX
l;>MERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A ITR
PMERR_INV _MIX_ATTR
PMERR_INV _MULTIPLIER
PMERR_INV_NESTED_FIGURES
PMERR_INV_PATTERN;,_REF _PT_ATTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV _PATTERN_ SET _FONT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_NOT _IN;,_AREA
PMERR_NOT_IN_PATH
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When correlating, the handling routine records a hit when the pick aperture intersects, or is
completely within, the interior (even if the mix used for the fill operation is transparent).

10•54 Presentation Driver Reference

\

/

arc function

GreGetArcParameters

#define INCL_GRE_ARCS

BOOL GreGetArcParameters (hdc, pArcParms, plnstance, lFunction)

This function stores the current arc parameters in the buffer addressed by pArcParms.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pArcParms PARCPARAMS Pointer to ARCPARAMS structure

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetArcParameters

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-55

clip function

GreGetClipBox

#define INCL_GRE_CLIP

LONG GreGetClipBox (hdc, prclRect, plnstance, lfunction)

This function determines the dimensions of the tightest rectangle around the DC region in world

coordinates. The DC region is defined as the intersection of the visible region, clip region, viewing limits,

graphics field, and clip path. The bounding rectangle is inclusive. Points on its boundary are deemed to be

inside it. If COM_ TRANSFORM is not set, the rectangle points are returned in screen coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclRect PRECTL Pointer to rectangle in world or screen coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetClipBox.

prclRect RECTL structure:

xLeft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

prclRect is a NULL rectangle when the value of xRight is less than xleft, and yTop is less than

yBottom.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the resultant

clipping region, which is defined as the intersection of all clipping (that is, the clip path, viewing limits,

graphics field, clip region, and visible region).

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-56 Presentation Driver Reference

cllp function

GreGetClipRects

#define INCL_GRE_CLIP

BOOL GreGetClipRects (hdc, prclBound, pControl, parclRect, plnstance, lFunction)

This function fills the buffer indicated by parclRect with a list of (x, y) coordinate pairs specifying the
rectangles, which define the DC region and intersect an optional bounding rectangle (prclRect). The DC
region is the intersection of the visible region, clip region, viewing limits, graphics field, and clip path.

Clipping, when performed by the graphics engine, carries a heavy processing overhead. For simple
clipping, the presentation driver gains a significant performance advantage by calling this function to
enumerate the clip region, and clipping the line to each rectangle in turn.

Note: If COM_TRANSFORM is set, the rectangle points are returned in device coordinates. If
COM_ TRANSFORM is not set, the rectangle points are returned in screen coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclBound PRECTL Pointer to bounding rectangle in device or screen coordinates. See
below.

pControl PRGNRECT Pointer to control structure. See below.

parclRect PRECTL Pointer to array of rectangle (RECTL) structures.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetClipRects.

prelBound Pointer to a RECTL structure:

pControl

xleft
yBottom
xRight
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

Only rectangles intersecting this bounding rectangle are returned. When this pointer is NULL,
all rectangles in the region are enumerated. When this pointer is not NULL, each rectangle
returned is the intersection of the bounding rectangle with a rectangle in the region.

If COM_ TRANSFORM is set, the function expects the bounding rectangle to be in device
coordinates. If COM_ TRANSFORM is not set, the function expects the bounding rectangle to be
in screen coordinates.

Pointer to a control structure containing additional parameters:

IStart The rectangle number to start enumerating (1 indicates start at the beginning).
By updating this value, the function can be called repeatedly to allow for more
rectangles than can be stored in the receiving buffer.

ere The number of rectangles that can fit into the buffer (at least 1).

ereReturned Number of rectangles that were written into the buffer. If less than !Start, there
are no more rectangles to enumerate.

Chapter 10. Simulated Functions 10-57

clip function

usDlrectlon The direction in which the rectangles are listed:

RECTDIR_LFRT_ TOPBOT
RECTDIR_RTLF _ TOPBOT
RECTDIR_LFRT _BOTTOP
RECTDIR_RTLF _BOTTOP

Left-to-right, top-to-bottom
Right-to-left, top-to-bottom
Left-to-right, bottom-to-top
Right-to-left, bottom-to-top

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-58 Presentation Driver Reference

transform function

GreGetGlobalViewingXform

#define INCL_GRE_XFORMS

BOOL GreGetGlobalViewingXfonn (hdc, paXfonnData, plnstance, lFunction)

This function queries the global viewing transform matrix. On completion, paXformData points to an array
of two-dimensional values that defines the global viewing transform matrix.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

paXformData PXFORM Pointer to return data in which the array of 6 matrix elements (M11, M12, M21,
M22, M41, and M42) are to be stored

pfnstance PVOID Pointer to instance data

!Function UL ONG High-order WORD= flags; low-order WORD= NGreGetGlobalViewingXform

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC _BUSY
PMERR_JNV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-59

transform function

GreGetGraphicsField

#define INCL_GRE_XFORMS

BOOL GreGetGraphicsfield (hdc. prclGraphicsField, plnstance. lfunction)

This function loads the buffer indicated by prclGraphicsField with the integer values that identify the
boundaries of the graphics field.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

prclGraphicsField PRECTL Pointer to graphics field. See below.

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetGraphicsField

prclGraphlcsFleld RECTL structure:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of graphics field
Minimum y-coordinate
Maximum x-coordinate of graphics field
Maximum y-coordinate.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC _BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-60 Presentation Driver Reference

transform function

GreGetModelXform

#define INCL_GRE_XFORMS

BOOL GreGetModelXfonn (hdc, paXfonnData, plnstance, lFunction)

This function queries the current model transform matrix. On completion, paXformData is an array of
two-dimensional values defining the current model transform matrix.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

paXformData PXFORM Pointer to return data in which the array of 6 matrix elements (M11, M12,
M21, M22, M41 and M42) are to be stored

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetModelXform

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-61

transform function

GreGetPageUnits

#define INCL_GRE_XFORMS

ULONG GreGetPageUnits (hdc, pExtent, plnstance, lFunction)

This function returns the page units for the specified display context. On completion, the structure
addressed by pExtent contains the dimensions of the page expressed in the units indicated by the return
value of this function.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pExtent PSIZEL Pointer to a SIZEL structure where the page dimensions are returned

plnstance ·pvo10 Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetPageUnits

pExtent On completion, the SIZEL structure contains the actual dimensions of the page:

IWldth Page width
IHeight Page height.

Return Codes: This function returns the page units, or GPl_ERROR if an error occurred. The defined
page units are described under "GreSetPageUnits" on page 10-117.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-62 Presentation Driver Reference

"1,l

)

transform function

GreGetPageViewport

#define INCL_GRE_XFORMS

BOOL GreGetPageViewport (hdc, prclViewport, plnstance, lFunction)

This function loads the buffer indicated by prclViewport with the page viewport coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclViewport PRECTL Pointer to page viewport boundaries. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetPageViewport.

prclVlewport This is a RECTL structure in device coordinates:

xLefl
yBottom
xRlght
yTop

Minimum x-coordinate of viewport

Minimum y-coordinate
Maximum x-coordinate of viewport

Maximum y-coordinate.

Boundaries are inclusive at the bottom-left corner, and exclusive at the top-right corner.

Return Codes: This function returns BOOLEAN (fSuccess}.

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-63

region function

GreGetRegionBox

#define INCL_GRE_REGIONS

LONG GreGetRegionBox (hdc, hrgn, prclRect, plnstance, lFunction)

This function loads the buffer pointed to by prclRect with the dimensions of the tightest rectangle around
the region indicated by hrgn. Notice that the rectangle is always returned in device coordinates.
GreGetRegionBox raises an error when hrgn is the handle of the currently selected clip region.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle.

prclRect PRECTL Pointer to rectangle in device coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetRegionBox.

prclRect RECTL structure:

xleft
yBottom
xRight
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the region:
RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _HRGN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When the region is empty, the rectangle is returned with the right boundary equal to the left,
and the top boundary equal to the bottom. GreGetRegionBox must return an error when the region
indicated by hrgn is selected into the DC as a clip region.

10-64 Presentation Driver Reference

region function

GreGetRegionRects

#define INCL_GRE_REGIONS

BOOL GreGetRegionRects (hdc, hrgn, prclBoundRect, pControl, parclRect, plnstance, lFunction)

This function fills the array pointed to by parclRect with a list of (x, y) coordinate pairs specifying the

rectangles that together define the region associated with hrgn. All rectangle coordinates are inclusive at

the bottom-left corner, and exclusive at the top-right corner. Notice that the coordinates of the bounding

box, and the rectangles returned, will be in device coordinates. GreGetRegionRects raises an error when

hrgn is the handle of a currently selected clip region.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle.

prclBoundRect PRECTL Pointer to bounding rectangle. See below.

pControl PRGNRECT Pointer to control structure. See below.

parclRect PRECTL Pointer to array of rectangle structures that define the region.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetRegionRects.

prelBoundRect RECTL structure:

pControl

xleft
yBottom
xRight
yTop

Minimum x-coordinate of window
Minimum y-coordinate
Maximum x-coordinate of window
Maximum y-coordinate.

Only rectangles intersecting this bounding rectangle are returned. If this pointer is NULL,

all rectangles in the region are enumerated. If this pointer is not NULL, only rectangles
that intersect the bounding rectangle are returned. Each of these rectangles is the
intersection of the bounding rectangle with a rectangle in the region ..

This is a pointer to a RGNRECT structure:

lreStart The rectangle number to start enumerating (1 indicates start at the
beginning).

ere The number of rectangles that can fit into the buffer (at least 1).

ereReturned Number of rectangles that were written into the buffer. If less than
lrcStart, there are no more rectangles to enumerate.

usDireetion The direction in which the rectangles are listed:

RECTDIR_LFRT _ TOPBOT
RECTDIR_RTLF _ TOPBOT
RECTDIR_LFRT _BOTTOP
RECTDIR_RTLF _BOTTOP

Left-to-right, top-to-bottom
Right-to-left, top-to-bottom
Left-to-right, bottom-to-top
Right-to-left, bottom-to-top.

Chapter 10. Simulated Functions 10-65

region function

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-66 Presentation Driver Reference

transform function

GreGetViewingLimits

#define INCL_GRE_XFORMS

BOOL GreGetViewingLimits (hdc, prclViewingLimits, plnstance, lFunction)

This function loads the array indicated by prclViewinglimits with the boundaries of the viewing window in

graphic model-space coordinates. All boundaries are inclusive.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclViewingLimits PRECTL Pointer to limits of viewing area. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetViewingLimits.

prclViewlnglimlts Pointer to a RECTL structure:

xLeft
yBottom
xRlght
yTop

Minimum x-coordinate of viewing limits

Minimum y-coordinate
Maximum x-coordinate of viewing limits

Maximum y-coordinate.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2:0 Presentation Manager Programming Reference fo.r further explanation.

Chapter 10. Simulated Functions 10-67

transform function

GreGetWindowViewportXform

#define INCL_GRE_XFORMS

BOOL GreGetWindowViewportXfonn (hdc, paXfonnData, plnstance, lFunction)

This function queries the current window or viewport transform matrix. On completion, paXformData is an
array of two-dimensional values defining the current window or viewport transform matrix.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

paXformData PXFORM Pointer to return data in which the array of 6 matrix elements (M11, M12, M21,
M22, M41, and M42) are to be stored

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetWindowViewportXform

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-68 Presentation Driver Reference

cllp function

GrelntersectClipRectangle

#define INCL_GRE_CLIP

LONG GrelntersectClipRectangle (hdc. prclRect. plnstance. lFunction)

This function sets the new clipping region to the intersection of the current clip region and the specified

rectangle. When no clip region exists, GrelntersectClipRectangle must create one. The application must

then free the handle when it subsequently selects another clip region. The return value of this function is

the complexity of resultant DC region, which is defined as the intersection of all clipping.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclRect PRECTL Pointer to rectangle in world or device coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGrelntersectClipRectangle.

prclRect RECTL structure, defined in world or device coordinates:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

All the boundaries of the rectangle are inclusive (part of the interior) and are not clipped. If
COM_ TRANSFORM is not set, the function expects the rectangle to be in device coordinates.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the DC
region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Chapter 10. Simulated Functions 10-69

cllp function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_:.HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_COUNT
PMERR_INV _RECT
PMERR_INV~REGION_CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-70 Presentation Driver Reference

area/path function

GreModifyPath

#define INCL_GRE_PATHS

BOOL GreModifyPath (hdct idPatht cmdModet plnstancet lFunction)

This function modifies a path. When the transform is singular, GreModifyPath is invalid and causes an
error to be logged.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

id Path LONG Path ID.

cmdMode LONG Modify mode. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreModifyPath.

cmdMode The only valid flag is:

MPATH_STROKE This replaces the original path (with a path that encloses the shape
produced by stroking the original path) by using the current geometric
wide line attribute. Any open figures within the path are not closed.

The envelope includes the effects of line joins and line ends according to
the current values of these attributes. For example, where a line joins an
arc, the common point is handled according to the line join attribute in the
current line attribute bundle. (See "Line Attributes" on page 8-3.) When a
figure is closed by using GreCloseFigure, the line join attribute in the
current line bundle is applied to the start and end points. The envelope
takes account of any crossings. For example, a stroked X does not have a
hole in the middle if it is subsequently drawn in exclusive-OR mode.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _ COORD _SPACE

Chapter 10. Simulated Functions 10-71

area/path function

PMERR_INV _COORDINATE
PMERR_INV_FILL_PATH_OPTIONS
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _MODIFY _PATH_MODE
PMERR_INV_PATH_ID
PMERR_INV_PATIERN_REF _PT_ATIR
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_INV _TRANSFORM_ TYPE
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When this function is performed on a path, the only subsequent operations allowed are
GreFillPath (in winding mode) and GreSelectClipPath (in winding mode).

10-72 Presentation Driver Reference

transform function

GreMultiplyXforms

#define INCL_GRE_XFORMS

BOOL GreMultiplyXforms (hdc, paXform, paNewXformData, lMode, plnstance, lFunction)

This function multiplies the transform matrix (defined by paNewXformData) by the corresponding matrix in
paXform. The result is stored in paXform. When this function is used to make a series of matrix
multiplications on the same matrix, some loss of accuracy can occur due to rounding because no higher
precision can be retained across calls.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paXform PXFORM Pointer to an array of 6 matrix elements for two-dimensional formation.
These are M11, M12, M21, M22, M41, and M42.

paNewXformData PXFORM Pointer to an array of 6 matrix elements for two-dimensional formation.
These are M11, M12, M21, M22, M41, and M42.

I Mode LONG Specifies how supplied array is used to set matrix. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreMultiplyXforms.

I Mode Indicates how to use the array to set the matrix:

SX_UNITY
SX_CAT_AFTER
SX_ CAT _BEFORE
SX_OVERWRITE

Set unity transform, ignore array values
Concatenate after
Concatenate before
Overwrite.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _MATRIX_ELEMENT
PMERR_INV _TRANSFORM_ TYPE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-73

cllp function

GreOffsetClipRegion

#define INCL_GRE_CLIP

LONG GreOffsetClipRegion (hdc, pdpt, plnstance, lFunction)

This function moves the clipping region by the specified amount. The value returned is the complexity of
the resultant DC region, that is, the intersection of all clipping (such as clip path, viewing limits, graphics
field, clip region, and visible region).

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pd pt PPOINTL Pointer to offset by which clipping region is to be moved. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreOffsetClipRegion.

pdpt Offsets by which the clip region is to be moved in world coordinates:

dx X offset
dy Y offset.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COORD _OFFSET
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-7 4 Presentation Driver Reference

\

/

region function

GreOffsetR·egion

#define INCL_GRE_REGIONS

BOOL GreOffsetRegion (hdc, hrgn, pdpt, plnstance, lFunction)

This function moves the given region by the specified amounts (unless the region is in use as a clipping
region when an error is raised).

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle.

pd pt PPOINTL Pointer to offset by which region is to be moved. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreOffsetRegion.

pdpt Offsets, in device coordinates:

dx X offset
dy Y offset.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_HRGN_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_REGION_IS~ CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-75

area/path function

GreOutlinePath

#define INCL_GRE_PATHS

LONG GreOutlinePath (hdc, idPath, flOptions, plnstance, lFunction)

This function draws the boundary of the path indicated by idPath. GreOutlinePath is also used to draw area
boundaries.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

id Path LONG Path ID. Must be 1.

fl Options ULONG All these flags are reserved.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreOutlinePath.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _FILL_PATH_ OPTIONS
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PATH_ID
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-76 Presentation Driver Reference

region function

GrePaintRegion

#define INCL_GRE_REGIONS

LONG GrePaintRegion (hdc, hrgn, plnstance, lFunction)

This function paints the specified region by using the current area foreground and background colors.
Mixing is controlled only by the area foreground mix. GrePaintRegion returns an error when the region is
currently selected as a clip region.

If the preprocessor in the graphics engine receives a GrePaintRegion call for a null region, the
preprocessor returns GPl_OK and does not forward the call through the dispatch table to the handling
routine. Presentation drivers for devices that do not support BitBlt operations (for example, vector devices
such as plotters) do not hook this function. Such drivers hook only the function to return an error code.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgn HRGN Region handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePaintRegion

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-77

arc function

GrePartialArc

#define INCL_GRE_ARCS

LONG GrePartialArc (hdc, pptlCenter. fxMultiplier, fxStart, fxSweep, plnstance, lFunction)

This function draws a straight line from the current position to the starting point of a partial arc, and draws
the specified partial arc. Upon completion, the current (x, y) position is the end of the partial arc. The
dimensions of the full arc are defined as a multiplier, which is applied to the current arc parameters. The
partial arc that is drawn is the section of the full arc that is enclosed by the specified start and sweep
angles.

If GrePartialArc is used within a path or an area definition to continue a figure following a GreBoxxxx or
GreFullArcxxx function, the error PMERR_INV_NESTED_FIGURES is posted. This is because GreBoxxxx
and GreFullArcxxx generate a closed figure within an area or path definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter

hdc

pptlCenter

fxMultiplier

fxStart

fxSweep

plnstance

I Function

pptlCenter

fxMultlpller

fxStart/fxSweep

Data Type Description

HOC Device context handle.

PPOINTL Pointer to (x, y) coordinates for center of arc.

FIXED Multiplier. See below.

FIXED Start angle that defines the starting .point on the curve. See below.

FIXED Sweep angle that defines the extent of the curve to be drawn. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGrePartialArc.

If COM_ TRANSFORM is not set, the function expects the center of arc position to be in
screen coordinates.

This parameter defines the size of the full arc in relation to an arc drawn with the
current arc parameters. The multiplier is a fixed-point value. The high-order WORD
contains the integer portion; the low-order WORD contains the fractional portion. A
value of 64KB gives a multiplier of 1. There is an implementation limit of 255 for this
value, which must not be negative.

Start and sweep angles are measured counterclockwise from the x-axis at the center of
the arc before the arc parameters are applied. IUhe current arc parameters do not
specify a circle, the angles are skewed to the same degree that the full arc is a skewed
circle.

The angles are specified as doubleword values in fixed-point format. The high-order
WORD contains the integer portion; the low-order WORD contains the fractional
portion. A value of 6553 gives an angle of 1°. Both angles mustbe positive. Whether
the arc is drawn in a clockwise or counterclockwise direction is determined by the arc
parameters. An angle greaterthan 360° is also valid. In this case, after the initial line,
a full arc is drawn followed by a partial arc of (ISweep MOD 360)0

• See also
GpiPartialArc in the OS/2 2.0 Presentation Manager Programming Reference.

10-78 Presentation Driver Reference

arc function

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

Successful GPl_OK
GPl_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and

a hit is detected)
GPl_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC _BUSY
PMERR_INV _ANGLE_PARM
PMERR_INV_COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _MULTIPLIER
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-79

arc function

GrePolyFillet

#define INCL_GRE_ARCS

LONG GrePolyFillet (hdc, paptlPoint, cPoints, plnstance, lFunction)

This function draws a fillet on a series of connected lines with the first line starting at the current (x, y)
position. Upon completion, the current (x, y) position is set to the last point in the series.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to coordinates array. See below.

cPoints LONG Number of coordinate pairs. If this value is passed as 0, the handling
routine does nothing and returns Successful.

plnstance PVOID Pointer to instance data.

!Function UL ONG High-order WORD= flags; low-order WORD= NGrePolyFillet.

paptlPoint An array of cPoints (x, y) pairs, which contain the (x, y) coordinates of the end points for the
lines. If COM_ TRANSFORM is not set, the function expects the points to be in screen
coordinates.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

10-80 Presentation Driver Reference

arc function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The shape of the fillet is controlled by a set of coordinates for a series of two or more

connected lines. The fillet is tangential to the start point of the first line and to the end point of the last line.

When more than two sets of coordinates are supplied, the fillet passes through the mid-points of the

intermediate lines. An individual fillet always lies within the area bounded by the start, end, and control

points. See GpiPolyFillet in the OS/2 2.0 Presentation Manager Programming Reference for more

information.

Chapter 10. Simulated Functions 10-81

arc function

GrePolyFilletSharp

#define INCL_GRE_ARCS

LONG GrePolyFilletSharp (hdc, paptlPoint, cPoints, pfxSharp, plnstance, lFunction)

This function draws a sequence of one or more sharp fillets starting at the current (x, y) position. As each
fillet is drawn, the end point for the fillet becomes the start point for the next fillet. Upon completion, the current (x, y) position is the end point of the last fillet. Each fillet is controlled by a set of coordinates for
two connected lines and by a sharpness value. The fillet is tangential to the start point of the first line and
to the end point of the second line.

The sharpness value is determined from:
Sharpness = WO/DB
where:

W is the mid-point of the line joining the end points
B is the control point above the top of the fillet
D is the point where the fillet intersects the line WC.

See GpiPolyFillet in the OS/2 2.0 Presentation Manager Programming Reference for more detail.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter D~t~ Type n 1 .. 11 ----··rr••1W'••

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to Coordinates array. See below.
cPoints LONG Number of coordinate pairs.

pfxSharp PFIXED Pointer to Sharpness array. See below.
plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePolyFilletSharp.

paptlPolnt An array of cPoints (x, y) pairs. These are groups of four elements where each group
contains two pairs of (x, y) coordinates for the control and end points of the fillets. If
COM_ TRANSFORM is not set, the function expects the points to be in screen coordinates.

cPolnts When this is passed as 0, the function does nothing and returns Successful.
pfxSharp An array of sharpness values with one element for each fillet. Sharpness is defined as a

fixed-point value. The high-order WORD contains the integer portion; the low-order WORD
contains the fractional portion. A value of 64KB gives a sharpness of 1.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

10-82 Presentation Driver Reference

arc function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED

PMERR_COORDINATE_OVERFLOW

PMERR_DEV _FUNC _NOT _INSTALLED

PMERR_HDC_BUSY
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX

PMERR_INV _COORD_SPACE

PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN

PMERR_INV _RECT
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 1.D-83

arc function

GrePolySpline

#define INCL_GRE_ARCS

LONG GrePolySpline (hdc, paptlPoint, cPoints, plnstance, lFunction)

This function draws a sequence of one or more Bezier splines starting at the current (x, y) position. As
each spline is drawn, the specified end point for the spline becomes the start point for the next spline.
Upon completion, the current (x, y) position is the end point of the last spline.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paptlPoint PPOINTL Pointer to coordinates array. See below.

cPoints LONG Number of coordinate pairs in the array.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePolySpline.

paptlPolnt An array of (3 x cPoints)(x, y) values in groups of six elements where each group contains
three pairs of (x, y) coordinates for the control and end points for the splines. If
COM_TRANSFORM is not set, the function expects the points to be in screen coordinates.

cPolnts When this is passed as 0, the function does nothing and returns Successful.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PM ERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH

10-84 Presentation Driver Reference

PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN.

arc function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The shape of each spline is controlled by a set of coordinates for three connected lines. The
spline starts at the current position and ends at the end point of the third line. The end points of the first
and second lines are used as control points. An individual spline always lies within the area bounded by
the start, end, and control points. See GpiPolySpline in the OS/2 2.0 Presentation Manager Programming
Reference for more information.

Chapter 10. Simulated Functions 10-85

Hne function

GrePolygonSet

#define INCL_GRE_LINE

LONG GrePolygonSet (hdc, flModel, flOptions, paPolygon, cPolygons, plnstance, lFunction)

This function draws a set of closed polygons. The polygons are filled using the current AREABUNDLE
structure values. For the first polygon, the current position is the first point. For all subsequent polygons,
all points that define the polygon are given explicitly. The polygons are automatically closed, if necessary,
by drawing a line from the last vertex to the first. Notice that polygons can overlap, if needed.

Note: GrePolygonSet is not valid when the COM_ AREA or COM_PATH flag is set.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter

hdc

fl Model

fl Options

paPolygon

cPolygons

plnstance

I Function

fl Model

fl Options

Data Type Description

HOC Device context handle.

LONG Model flags. See below.

ULONG Option flags. See below.

PPOLYGON Pointer to an array of POLYGON structures. See below.

LONG Number of POLYGON structures. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; Low-order WORD = NGrePotygonSet.

These flags determine how polygons are drawn:

POLYGON_INCL
POLYGON_EXCL

Default setting. Fill is inclusive of bottom right.
Fill is exclusive of bottom right. Aids migration from other graphics
models.

These flags determine how the polygons are filled:

POLYGON_ALTERNATE
POLYGON_ WINDING
POLYGON_BOUNDARY
POLYGON_NOBOUNDARY

Fill is performed by using the alternate mode.
Fill is performed by using the winding mode.
Draw boundary lines.
Do not draw boundary lines.

paPolygon Pointer to an array of POLYGON structures:

ulPolnts Number of points in this polygon
aPolntl Array of points defining polygon

If COM_ TRANSFORM is notset, the function expects the points to be in screen coordinates.

cPolygons When this is passed as 0, the handHng routine takes no action except to return Successful.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl,;,.HITS.

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and a
hit is detected)

GPl_ERROR Error.

10-86 Presentation Driver Reference

llne function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-87

region function

GrePtlnRegion

#define INCL_GRE_REGIONS

LONG GrePtlnRegion (hdc, hrgn, pptlPoint, plnstance, lFunction)

This function checks whether a point lies within a region. GrePtlnRegion raises an error when hrgn is the
handle of the currently selected clip region. The point is always expected in device coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgn HRGN Region handle

pptlPoint PPOINTL Pointer to (x, y) point specified in device coordinates

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePtlnRegion

Return Codes: This function returns an integer (!Inside) indicating whether the point is inside the
region:

RGN_ERROR
PRGN_INSIDE
PRGN_OUTSIDE

Error
In region
Not in region.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_REGION_IS_CUP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-88 Presentation Driver Reference

cllp function

GrePtVisible

#define INCL_GRE_CLIP

LONG GrePtVisible (hdc, pptlPoint, pinstance, lFunction)

This function checks whether a point is visible within the DC region of the specified device context. The DC

region is defined as the intersection of the application clipping and the window clipping.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

pptlPoint PPOINTL Pointer to {x, y) point in world or screen coordinates

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGrePtVisible

pptlPolnt If COM_ TRANSFORM is not set, the function expects the point to be in screen coordinates.

Return Codes: This function returns an integer (!Visible) indicating the visibility of the point:

PVIS_ERROR
PVIS _INVISIBLE
PVIS _VISIBLE

Error
Not visible
Visible.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-89

clip function

GreQueryClipRegion

#define INCL_GRE_CLIP

HRGN GreQueryClipRegion (hdc, plnstance, lFunction)

This function returns the handle of the currently selected clip region, or NULL (if none exists).

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter

hdc

plnstance

I Function

Return Codes:
hrgn
NULL
HRGN_ERROR

Data Type Description

HOC Device context handle

PVOID Pointer to instance data

ULONG High-order WORD= flags; low-order WORD= NGreQueryClipRegion

This function returns the handle of the clip region:

Region handle
Null handle (no region selected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-90 Presentation Driver Reference

palette manager function

GreQueryHWPalettelnfo

#define INCL_GRE_PALETTE

DDIENTRY GreQueryHWPaletteinfo (hdc, ulStart, cclr, pclr, pinstance, lFunction)

This function fills a buffer with all the information for the hardware palette. If cclr=O, only the size required

for the buffer is returned. The information returned is the same as that which is used to create a palette.
This allows a caller to use the returned information directly to create the same palette in another context by

using the first four DWORDs directly and a pointer to the color entries.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

ulStart UL ONG Starting index, first palette entry to query

cclr UL ONG Count of palette entries

pclr PU LONG. Pointer to table of RGB2 palette entries

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryHWPalettelnfo

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _PALETTE.

Remarks: The existing color table GreQueryxxx APls are still supported.

Chapter 10. Simulated Functions 10-91

palette manager function

GreQueryPaletteRealization

#define INCL_GRE_PALETTE

DDIENTRY GreQueryPaletteRealization (hdc, ulStart, cclr, pclr, pinstance, lFunction}

This function returns the mapping from the logical palette to the HW palette as an array of ULONGs.
GreQueryPaletteRealization gives applications the ability to predict the outcome of color mixing
operations.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

ulStart UL ONG Starting index, first palette entry to query

cclr ULONG Count of palette entries

pclr PU LONG Pointer to table of RGB2 palette entries

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryPaletteRealization

Return Codes: This function returns the count of the palette entries.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _DC.

10-92 Presentation Driver Reference

palette manager function

GreRealizePalette

#define INCL_GRE_PALETTE

DDIENTRY GreRealizePalette (hdc, pflType, pcSlotsChanged, pinstance, lFunction)

This function is called by the Window Manager during processing of a call to WinRealizePalette.

GreRealizePalette takes a logical palette and assigns it slots in the hardware palette.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pflType PU LONG Specifies whether the DC is a foreground or background window. Used to

indicate if the default colors have changed. See below.

pcSlotsChanged PU LONG Pointer to the returned count of hardware slots changed.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreRealizePalette.

pflType Specifies whether the DC represents a foreground or background window. The possible values

are:

RP _BACKGROUND== 0 When the presentation driver receives this call for a background

DC, it constructs the logical-to-physical Index Translate table for

the DC's palette (by using available slots and the nearest

mapping to used, non-animating slots), and marks the translate

table as clean.

RP _FOREGROUND== 1 When the presentation driver receives this call for a foreground

DC, it sets the DC's selected palette into the physical palette. It

also marks all the translate tables for the other logical palettes as

dirty.

RP _DEFAUL TSCHANGED == 2 Returned by the presentation driver to indicate that all direct DCs

need repainting.

Return Codes: On completion, this function returns the following value:

cclr Number of mappings that changed.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_INV _DC
PMERR_NO_PALETTE
PMERR_PAL_ERROR.

Chapter 10. Simulated Functions 10-93

palette manager function

Remarks: If a palette has not been explicitly selected into the DC before a call to GreRealizePalette is
made, the default palette is implicitly in effect and is realized. This function requires no action for memory
DCs. A call to GreRealizePalette is a real operation only when an actual device with a palette is referred
to. It does not return an error for memory DCs, therefore, an application need not be concerned with the
DC type if it has a number of DCs with palettes.

When GreBitblt is performed between a memory DC and a device DC, the presentation driver has to do the
appropriate translation between the memory bit map's color table or logical palette and the physical
palette.

10-94 Presentation Driver Reference

GreRectlnRegion

#define INCL_GRE_REGIONS

LONG GreRectinRegion (hdc, hrgn, prclRect, pinstance, lFunction)

This function checks whether any part of a given rectangle lies within the specified region.
GreRectlnRegion raises an error if hrgn is the handle of the currently selected clip region.

region function

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle.

prclRect PRECTL Pointer to rectangle in device coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRectlnRegion.

prclRect RECTL structure:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

The rectangle passed is considered exclusive on the right and top sides. If the rectangle
represents the bounding box of a graphic object to be drawn, the drawing might include the
right and top sides. In this case, the caller should inflate the top and right sides by one unit in
device-coordinate space.

Return Codes: This function returns an integer (!Inside) indicating whether the rectangle is inside the
region:

RRGN_ERROR
RRGN _INSIDE
RRGN_PARTIAL
RRGN_ OUTSIDE

Error
All in region
Partially in region
Not in region.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-95

clip function

GreRectVisible

#define INCL_GRE_CLIP

LONG GreRectVisible (hdc. prclRect. plnstance. lFunction)

This function checks whether any part of the given rectangle is visible within the DC region. The DC region
is the intersection of the application clipping and the window clipping.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclRect PRECTL Pointer to rectangle in world or screen coordinates. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRectVisible.

prclRect RECTL structure:

xLeft
yBottom
xRight
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

The rectangle passed is considered exclusive on the right and top sides. If the rectangle
represents the bounding box of a graphic object to be drawn, the drawing might include the
right and top sides. In this case, the caller should inflate the top and right sides by one unit in
screen-coordinate space. This factor can be difficult to control in world coordinates. If
precision is required, use screen coordinates.

Return Codes: This function returns an integer (!Visible) indicating the visibility of the rectangle.

RVIS_ERROR
RVIS _INVISIBLE
RVIS_PARTIAL
RVIS _VISIBLE

Error
Not visible
Partially visible
All visible.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_ COUNT
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-96 Presentation Driver Reference

clip function

GreRegionSelectBitmap

#define INCL_GRE_CLIP

BOOL GreRegionSelectBitmap (hdc, hbm, plnstance, lFunction)

This function is called when a new bit-map handle is selected into a memory DC. It removes the old visible
region and informs the presentation driver that the DC region must be recalculated.

Note: In a nondisplay DC, the visible region represents the device boundary.

Support: This function is supported by the engine and can be hooked by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hbm HBITMAP Handle of bit map to be selected

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreRegionSelectBitmap

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-97

area/path function

GreRestorePath

#define INCL_GRE_PATHS

BOOL GreRestorePath (hdc, cSave, plnstance, lFunction)

This function is called during RestoreDC and CloseDC to allow the path handling routines to restore their
local data structures. When a DC is closed, GreRestorePath is called with a count of O to free its local data.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cSave LONG DC save level. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRestorePath.

cSave Indicates the saved DC state, which the handling routine uses to restore the path. When cSave is
passed as -1, the handling routine resets the path to its initial state (-1 is passed to this routine
from GreResetDC and is the only valid negative value). A value of O indicates that the path is
restored to its initial state. Other positive values identify which saved level is restored. See
"Enable Subfunction 08H - RestoreDCState" on page 7-18.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is required to ensure that memory is freed.

10-98 Presentation Driver Reference

clip function

GreRestoreRegion

#define INCL_GRE_CLIP

BOOL GreRestoreRegion (hdc, cSave, plnstance, lFunction)

This function is called during RestoreDC and CloseDC to allow the region handling routines to restore their

local data structures. When a DC is closed, GreRestoreRegion is called with a count of 0 to free its local

data. The clip region currently selected into the DC is deleted by this function.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cSave LONG DC save level. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreRestoreRegion.

cSave Indicates the saved DC state, which the handling routine uses to restore the region. When this is

passed as -1, the handling routine resets the region to its initial state (-1-is passed to this routine

from GreResetDC and is the only valid negative value). A value of 0 indicates that the region is

restored to its initial state. Other positive values identify which saved level is restored. See

"Enable Subfunction 08H - RestoreDCState" on page 7-18.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_lNV _RECT
,PMERR_INV ~REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is required to ensure that memory is freed.

Chapter 10. Simulated Functions 10-99

transform function

GreRestoreXform

#define INCL_GRE_XFORMS

BOOL GreRestoreXfonn (hdc, cSave, plnstance, lfunction)

This function is called during RestoreDC and CloseDC to allow simulations to restore their local data
structures. When a DC is closed, GreRestoreXform is called with a count of O to free its local data.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cSave LONG DC save level. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRestoreXform.

cSave Indicates the saved DC state, which the handling routine uses to restore the transform. When
cSave is passed as -1, the handling routine resets the transform to its initial state (-1 is passed
to this routine from GreResetDC and is the only valid negative value). A value of O indicates that
the transform is reset to its initial state. Other positive values identify which saved level is
restored. See "Enable Subfunction 08H - RestoreDCState" on page 7-18.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-100 Presentation Driver Reference

transform function

GreRestoreXformData

#define INCL_GRE_XFORMS

BOOL GreRestoreXfonnData (hdc. ulSize, pBuffer, plnstance, lFunction)

This function restores a previously saved transform state. The current transform state is overwritten.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

ulSize UL ONG Size in bytes of pBuffer

pBuffer PBYTE Pointer to stored transform data

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRestoreXformData

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORD _SPACE
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-101

area/path function

GreSavePath

#define INCL_GRE~PATHS

BOOL GreSavePath (hdct cSavet plnstancet lFunction)

This function is called during SaveDC and OpenDC to allow the path handling routines to save their local
data structures. When a new DC is created, GreSavePath is called with a count of 1 to initialize its local
data. A Save with a count of one more than the current save level generates intervening levels.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data,Type Description

hdc HOC Device,context handle.

cSave LONG DC save level. This must not be a negative value.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSavePath.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is required to ensure that the path data is saved.

10-102 Presentation Driver Reference

''\.
I

clip function

GreSaveRegion

#define INCL_GRE_CLIP

BOOL GreSaveRegion (hdc, cSave, plnstance, lFunction)

This function is called during SaveDC and OpenDC to allow the region handling routines to save their local
data structures. When a new DC is created, GreSaveRegion is called with a save level of 1 to initialize its
local data. A Save with a count of one more than the current save level generates intervening levels. A
negative save value is invalid. When initializing a new DC, a valid visible region handle must be created.

Support: This function is supported by the graphics engine, it can be hooked by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cSave LONG DC save level. This must not be a negative value.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSaveRegion.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
·post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC _BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is required to ensure that the region data is saved.

Chapter 10. Simulated Functions 10-103

transform function

GreSaveXform

#define INCL_GRE_XFORMS

BOOL GreSaveXfonn (hdc, cSave, plnstance, lFunction)

This function is called during SaveDC and OpenDC to allow simulations to save their local data structures.
A Save with a count of one more than the current save level generates intervening levels. When a new DC
is created, GreSaveXform is called with a count of 1 to initialize its local data.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

cSave LONG DC save level. This must not be a negative value.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSaveXform.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When initializing a new DC, the default transform must be set.

10-104 Presentation Driver Reference

~)
v

transform function

GreSaveXformData

#define INCL_GRE_XFORMS

ULONG GreSaveXfonnData (hdc, ulSize, pBuffer, plnstance, lFunction)

This function stores the current transform state in pBuffer.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

ulSize UL ONG Size in bytes required for pBuffer. See below.

pBuffer PBYTE Pointer to an area where the data is to be stored.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSaveXformData.

ulSlze Can be specified as 0. In this case, the function returns the size of the transform data:

ulSize=GreSaveXfonnData (hdc, 0, G); /* Find out how large the buffer must be, */
GreSaveXfonnData (hdc, ulSize, pBuffer); /*then save the transfonn state. */

Return Codes: When called with ulSize specified as 0, this function returns the size of the buffer

required to save the transform state. Otherwise, it returns GPl_OK to indicate a successful completion. In

either case, GPl_ERROR is returned to indicate failure.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _HDC
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-105

area/path function

GreSelectClipPath

#define INCL_GRE_PATHS

BOOL GreSelectClipPath (hdc. idPath. flOptions. plnstance. lFunction)

This function resets or modifies the currently selected clip path. Before modifying the clip path, the
handling routine must close all open figures in the path. The modified clip path consists of the areas
common to both the old clip path and the figures in the specified path. When the constituent paths are
defined, the modified clip path is bound in device coordinates and is used for all subsequent drawing,
including filling. All of the boundaries of the area are considered to be part of the interior and are not
clipped. Upon completion, the handling routine deletes the old clip path indicated by idPath, allowing a
new path definition, which can co-exist with the new clip path, to begin as required. For more information,
see GpiSetClipPath in the OS/2 2.0 Presentation Manager Programming Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

id Path LONG Path ID. See below.

fl Options UL ONG Option flags. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSelectClipPath.

ldPath When this is passed as 0, the path is reset to no clipping. Otherwise, the new clip path is
intersected with the existing clip path.

flOptlons The following flags determine the path mode:

SCP_ALTERNATE
SCP_ WINDING

(Default.) Use alternate mode for intersection.
Use winding mode for intersection.

The following flags determine whether the new path replaces or intersects the initial path:

SCP_AND Intersect the two clip paths. If idPath is not 1, this flag is invalid and the
handling routine must log an error.

SCP _RESET (Default). Replace the initial clip path. If idPath is not 0, this flag is invalid and
the handling routine must log an error.

Other flags are reserved and must be 0.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

10· 106 Presentation Driver Reference

area/path function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC _BUSY
PMERR_HRGN_BUSY
PMERR:._INSUFFICIENT _MEMORY
PMERR_INV_CLIP _PATH_OPTIONS
PMERR_INV _ COLOR_DATA
PMERR_INV _ COLOR_INDEX
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _PATH_ID
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_PATH_LIMIT _EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-107

cllp function

GreSelectClipRegion

#define INCL_GRE_CLIP

LONG GreSelectClipRegion (hdc, hrgn, phrgnOld, plnstance, lFunction)

This function specifies the region to be used for clipping. A region can only be selected by one DC at a
time. Once a region is selected, operations that reference its handle are invalid. The coordinates of the
region are in device coordinates within the DC. Clipping is inclusive at the left and bottom boundaries,
exclusive at the right and top boundaries. Functions that modify the clipping region also modify the region
when its handle is returned by a subsequent GreSelectClipRegion.

GreSelectClipRegion passes the handle of the previously selected clip region back to the calling routine at
the location addressed by phrgnOld. If this handle is not NULL, the calling routine is responsible for
deleting the previous clip region. If the default clip region is in use when GreSelectClipRegion is called, a
null region handle is returned.

Note: The clip region should be deleted whether it was created explicitly, or in a call to
GrelntersectClipRectangle or GreExcludeClipRectangle.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle. See below.

phrgnOld PHRGN Pointer to old region handle.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSelectClipRegion.

hrgn
phrgnOld

When NULL, the clip region is set to no clipping (the initial state).
Previously selected region. If this is a NULL handle, there was no clip region.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the DC
region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

10-108 Presentation Driver Reference

cllp function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-109

clip function

GreSelectPathRegion

#define INCL_GRE_CLIP

BOOL GreSelectPathRegion (hdc, hrgn, plnstance, lFunction)

This function merges a region representing a path into the DC region. A path region behaves exactly like
any other region. It has no special properties relating to paths.

Support: This function is supported by the graphics engine.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgn HRGN Region handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreSelectPathRegion

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_REGIONJS_CUP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-110 Presentation Driver Reference

arc function

GreSetArcParameters

#define INCL_GRE_ARCS

BOOL GreSetArcParameters (hdc, pArcPanns, plnstance, lFunction)

This function sets the arc parameters.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

pArcParms PARCPARAMS Pointer to an array containing the arc parameters. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetArcParameters.

pArcParms ARCPARAMS structure:

IP P coefficient
IQ Q coefficient
IR R coefficient
IS S coefficient.

See the OS/2 2.0 Presentation Manager Programming Reference for a full description of the
arc parameters structure.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC _BUSY
PMERR_INV _HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-111

transform function

GreSetGlobalViewingXform

#define INCL_GRE_XFORMS

BOOL GreSetGlobalViewingXfonn (hdc, paXfonnData, flOptions, plnstance, lFunction)

This function sets the global viewing transform matrix elements.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type

hdc HOC

paXformData PXFORM

flOptions LONG

plnstance PVOID

I Function ULONG

flOptlons Valid values are:

SX_UNITY
SX_CAT_AFTER
SX_ CAT _BEFORE
SX_OVERWRITE

Description

Device context handle.

Pointer to an array of 6 matrix elements for two-dimensional formation. These
are M11, M12, M21, M22, M41, and M42.

Specifies how the supplied array is used to set the matrix. See below.

Pointer to instance data.

High-order WORD= flags; low-order WORD= NGreSetGlobalViewingXform.

Set unity transform. Ignore array values.
Concatenate after.
Concatenate before.
Overwrite.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _MATRIX_ELEMENT

10-112 Presentation Driver Reference

PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _TRANSFORM_ TYPE
PMERR_PATH_LIMIT _EXCEEDED.

transform function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-113

transform function

GreSetGraphicsField

#define INCL_GRE_XFORMS

BOOL GreSetGraphicsField (hdc, prclGraphicsField, plnstance, lFunction)

This function sets the boundaries of the graphics field (clip) limits in page-coordinate space. The
boundaries are inclusive so that points on them are not clipped. By default, no clipping is performed.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclGraphicsField PRECTL Pointer to graphics field. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetGraphicsField.

prclGraphlcsFleld RECTL structure:

xLeft
yBottom
xRlght
yTop

Minimum x-coordinate of graphics field
Minimum y-coordinate
Maximum x-coordinate of graphics field
Maximum y-coordinate.

An error is raised when xleft is greater than xRight, or yBottom is greater than yTop.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _COORDINATE
PMERR_INV _ GRAPHICS_FIELD
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-114 Presentation Driver Reference

\
I

/

transform function

GreSetModelXform

#define INCL_GRE_XFORMS

BOOL GreSetModelXfonn (bdc, paXfonnData, flOptions, plnstance, lFunction)

This function sets the model transform matrix elements as specified.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paXformData PXFORM Pointer to an array of 6 matrix elements for two-dimensional formation.
These are M11, M12, M21, M22, M41, and M42.

ff Options LONG Specifies how the supplied array is used to set the matrix. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetModelXform.

flOptlons Valid values are:

SX_UNITY
SX_ CAT _AFTER
SX_ CAT _BEFORE
SX_ OVERWRITE

Set unity transform. 1gnore array values.
Concatenate after.
Concatenate before.
Overwrite.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT

Chapter 10. Simulated Functions 10-115

transform function

PMERR_INV _PATTERN_REF _PT _ATTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _TRANSFORM_ TYPE
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-116 Presentation Driver Reference

transform function

GreSetPageUnits

#define INCL_GRE_XFORMS

BOOL GreSetPageUnits (hdc, ulUnits, lWidth, lHeight, plnstance, lFunction)

This function sets the page units controlling the device transform.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

ulUnits UL ONG Page units. See below.

I Width LONG Page width (w). See below.

I Height LONG Page height (h). See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetPageUnits.

ulUnlts Page units, as:

I Width

PU_ARBITRARY Isotropic, arbitrary units defined by IHeight and IWidth. The page viewport is
constructed to give equal x and y spacing on the physical device with at least
one dimension of the page completely filling the corresponding default device
dimension (that is, maximized window size and paper size). The origin is at
the bottom left.

PU_PELS Pel coordinates with the origin at the bottom left.

PU_LOMETRIC Low resolution metric. These are units of 0.1mm with the origin at the bottom
left.

PU_HIMETRIC High resolution metric. These are units of 0.01mm with the origin at the
bottom I eft.

PU_LOENGLISH Units of 0.01 inch with the origin at the bottom left.

PU_HIENGLISH Units of 0.001 inch with the origin at the bottom left.

PU_TWIPS Twentieths of an imperial point. These are units of 1/1440 inch with the origin
at the bottom left.

Other bits are reserved, and must be preserved and returned by GetPageUnits.

For PU_ARBITRARY. When either IWidth or !Height is passed as 0, that dimension is set to
produce equal x and y spacing on the physical device with both dimensions completely filling the
default device dimensions. When both are passed as 0, then they are set to produce equal x and
y spacing on the physical device.

IWidth and !Height completely fill the default device dimensions so that one is equal to the
corresponding default device dimension, and the other is equal to, or greater than, its
corresponding default device dimension. These are measured in pets. For other units, a value
of O for w or h causes the page to be set to the corresponding default dimension (that is,
maximized window size and paper size) in page units or pels for isotropic units.

IHeight See !Width.

Chapter 10. Simulated Functions 10-117

transform function

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call Wins·etErrorlnfo to
postthe condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _IN_AREA
PMERR:_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT.
PMERR_INV _MATRIX_ELEMENT
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _RECT
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function causes the Window/Viewport Transform, Page Viewport, and Device Transform
matrixes to be updated as shown below. For PU_LOMETRIC, PU_HIMETRIC, PU_TWIPS, PU_LOENGLISH,
PU_HIENGLISH, and PU_PELS:

Wlndow/Vlewport Transform
Page Vlewport
Device Transform

Unity
(0,0) (sx*IWidth-1, sy*IHeight-1)
As defined by the mapping from Page Window to Page Viewport

Where sx is the horizontal scaling required by page units for the device (or 1 for PU_PELS), and sy is the
vertical scaling required by page units for the device (or 1 for PU_PELS).

For PU_ARBITRARY:

Wlndow/Vlewport Transform
Page Vlewport
Device Transform

Unity
(0,0) (X2, Y2)
As defined by the mapping from Page Window to Page Viewport

Where Dh is the default device (maximized window) height in pels, Dw is the default device (maximized
window) width in pels, and Par is the pel (width/height) aspect ratio. X2 and Y2 are integers, determined as
follows:

When (1Width/1Height) > Par*(Dw/Dh):
X2 = Dw-1
Y2 = Par*Dw * (lWidth/lHeight)-1

When (1Width/1Height) < Par*(Dw/Dh):
X2 = (1/Par) * Dh * (lWidth/lHeight)-1
Y2 = Dh-1

Otherwise, when (1Width/1Height) = Par*(Dw/Dh):
X2 = Dw..-1
Y2 = Dh-1

10-118 Presentation Driver Reference

~\
)

transform function

GreSetPageViewport

#define INCL_GRE_XFORMS

BOOL GreSetPageViewport (hdc, prclViewport, flOptions, plnstance, lFunction)

This function sets the page viewport in device coordinates so that the graphics engine can update the

device transform by using the page window and page viewport coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclViewport PRECTL Pointer to page viewport boundaries in device coordinates. See below.

fl Options ULONG Reserved parameter. The only valid value is 0.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetPageViewport.

prclVlewport RECTL structure:

xleft
yBottom
xRlght
yTop

Minimum x-coordinate of viewport
Minimum y-coordinate
Maximum x-coordinate of viewport
Maximum y-coordinate.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _MATRIX_ELEMENT

Chapter 10. Simulated Functions 10-119

transform function

PMERR_INV _PAGE_ VIEWPORT
PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _SET_ VIEWPORT _OPTION
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-120 Presentation Driver Reference

region function

GreSetRectRegion

#define INCL_GRE_REGIONS

BOOL GreSetRectRegion (hdc, hrgn, parcRgn, cRect, plnstance, lFunction)

This function sets the specified region to the region definition given by an array of rectangles unless the

region is in use as a clipping region (in which case, an error is raised). When no rectangles are specified

(that is, cRect is 0), GreSetRectRegion produces an empty region.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

hrgn HRGN Region handle

parcRgn PRECTL Pointer to region definition. See below.

cRect LONG Count of rectangles in the region definition.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetRectRegion.

parcRgn The region is defined as an array of rectangles. Each rectangle in the array is defined by a

RECTL structure:

xLeft
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

The region is defined by the OR of all the rectangles. For each rectangle, xRight must be equal
to, or greater than, xleft. yTop must be equal to, or greater than, yBottom. The bottom and left
boundaries of each rectangle are part of the interior of the region, the top and right boundaries
are not. If COM_ TRANSFORM is not set, the function expects rectangles to be in device

coordinates.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HRGN
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _RECT
PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-121

transform function

GreSetViewingLimits

#define INCL_GRE_XFORMS

BOOL GreSetViewinglimits (hdc, prclViewinglimits, plnstance, lFunction)

This function sets the boundaries of the viewing (clip) limits (in model space) to the specified values. The
boundaries are inclusive and are not clipped. The viewing-limits coordinates are transformed to make a
clipping rectangle in page-coordinate or device-coordinate space. Any rotation or shear of this rectangle is
ignored. When the left boundary is greater than the right, or the bottom boundary is greater than the top, a
NULL rectangle is defined and all points are clipped.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

prclViewinglimits PRECTL Pointer to limits of viewing area. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetViewinglimits.

prclVlewlngLlmlts RECTL structure:

xleft
yBottom
xRight
yTop

Minimum x-coordinate of viewing limits
Minimum y-coordinate
Maximum x-coordinate of viewing limits
Maximum y-coordinate.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_HDC_BUSY
PMERR_INV _COORDINATE
PMERR_INV _GRAPHICS_FIELD
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-122 Presentation Driver Reference

transform function

GreSetWindowViewportXform

#define INCL_GRE_XFORMS

BOOL GreSetWindowViewportXfonn (hdc, paXfonnData, flOptions, plnstance, lFunction)

This function sets the window or viewport transform matrix elements as specified.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

paXformData PXFORM Pointer to an array of 6 matrix elements for two-dimensional formation. These
are M11, M12, M21, M22, M41, and M42.

flOptions LONG Specifies how the supplied array should be used to set the matrix. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetWindowViewportXform.

flOptlons Valid values are:

SX_UNITY
SX_CAT_AFTER
SX_ CAT _BEFORE
SX_ OVERWRITE

Set unity transform. Ignore array values.
Concatenate after.
Concatenate before.
Overwrite.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _MATRIX_ELEMENT

Chapter 10. Simulated Functions 10-123

transform function

PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PICK_APERTURE_POSN
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_INV _TRANSFORM_ TYPE
PMERR_PATH_LIMIT _EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

10-124 Presentation Driver Reference

'

cllp function

GreSetXformRect

#define INCL_GRE_CLIP

LONG GreSetXfonnRect (hdc, prclRect, plnstance, lFunction)

This function intersects a rectangle in device coordinates with the DC region. The rectangle is inclusive at

the bottom and left boundaries, exclusive at the top and right boundaries.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

prclRect PRECTL Pointer to a rectangle in device coordinates

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetXformRect

prclRect RECTL structure:

xlefl
yBottom
xRlght
yTop

Minimum x-coordinate of rectangle
Minimum y-coordinate
Maximum x-coordinate of rectangle
Maximum y-coordinate.

Return Codes: This function returns an integer (!Complexity) indicating the complexity of the DC

region:

RGN_ERROR
RGN_NULL
RGN_RECT
RGN_COMPLEX

Error
Null region
Rectangular region
Complex region (more than 1 rectangle).

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC _BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _COORDINATE
PMERR_INV _HDC
PMERR_INV_HRGN
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-125

clip function

GreSetupDC

#define INCL_GRE_CLIP

BOOL GreSetupDC (hdc, hrgnVis, xOrg, yOrg, prclBounds, flOptions, plnstance, lFunction)

This function initializes the device context to the region determined by flOptions.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

hrgnVis HRGN Visible region handle

xOrg LONG X-coordinate of DC origin, specified in screen coordinates
yOrg LONG Y-coordinate of DC origin, specified in screen coordinates
prclBounds PRECTL Bounding rectangle in device coordinates

fl Options UL ONG Option flags. See below.

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetupDC

flOptions These flags determine the region returned in prclBounds:

SETUPDC_VISRGN Replace the contents of the visible region of hdc with the
contents of hrgnVis.

SETUPDC_ORIGIN Set the DC origin to (xOrg, yOrg).

SETUPDC_ACCUMBOUNDSON Turn on bounds accumulation. This only affects the
COM_ALT_BOUND flag. If COM_ALT_BOUND (see 1-6) is
not set, the bounds rectangle is reset to an empty rectangle.
If COM_ALT_BOUND is already set, the bounds rectangle is
not changed.

SETUPDC_ACCUMBOUNDSOFF Turn off bounds accumulation.

SETUPDC_REALCLIP Recalculate the true device clipping region. This bit is
normally set, but can be O when immediate recalculation is
not required.

SETUPDC_SETOWNER When this bit is set, the DC must belong to the current
process.

SETUPDC _CLEANDC When this bit is set, the simulation marks the visible regions
as valid and calls GreNotifyClipChange in the presentation
driver.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

10-126 Presentation Driver Reference

clip function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to

post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ COORDINATE_ OVERFLOW

PMERR_DEV_FUNC_NOT_INSTALLED

PMERR_HDC_BUSY

PMERR_HRGN_BUSY

PMERR_INSUFFICIENT _MEMORY

PMERR_INV _COORD_SPACE

PMERR_INV _COORDINATE

PMERR_INV _HDC

PMERR_INV_HRGN

PMERR_INV _LENGTH_OR_COUNT

PMERR_INV _RECT
PMERR_INV _REGION_CONTROL

PMERR_REGION_IS_CLIP _REGION.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-127

area/path function

GreStrokePath

#define INCL_GRE_PATHS

LONG GreStrokePath (hdc, idPath, flOptions, plnstance, lFunction)

This function converts a path to the envelope of a wide line by using the current geometric line attribute
(see "Line Attributes" on page 8-3). The converted path is filled by using winding mode and the current
area attributes (see "Area (Pattern) Attributes" on page 8-5), and then drawn. When the path has been
drawn, it is deleted. Notice that GreStrokePath is equivalent to GreModifyPath followed by GreFillPath. It
is provided to allow the presentation driver to optimize its storage.

Note: GreModifyPath and GreStrokePath are the only functions that can construct geometric wide lines.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle.

id Path LONG Path ID. The only valid value is 1.

fl Options UL ONG Reserved. Must be 0.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreStrokePath.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPl_OK
GPl_HITS

GPl_ERROR

Successful
Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP _NOT _SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _ COLOR_DATA
PMERR_INV _COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV _FILL_PATH_ OPTIONS
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH

10-128 Presentation Driver Reference

PMERR_INV _LENGTH_OR_COUNT

PMERR_INV _MATRIX_ELEMENT

PMERR_INV _MODIFY _PATH_MODE

PMERR_INV _PATH_ID
PMERR_INV _PA TTERN_REF _PT _A TTR

PMERR_INV _PICK_APERTURE_POSN

PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _TRANSFORM_ TYPE

PMERR_PATH_LIMIT _EXCEEDED

PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP _REGION.

area/path function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-129

palette manager function

GreUpdateColors

#define INCL_GRE_PALETTE

DDIENTRY GreUpdateColors (hdc, plnstance, lFunction)

This function causes a pel-by-pel remapping of the DCs visible area on the screen, and is typically called
when an application receives notification from the Window Manager that the physical palette has changed.
This indicates that the window colors might have changed to incorrect colors if the window is in the
background. By calling GreUpdateColors, the pels are changed to the color in the current physical palette
that comes closest to the desired color.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreUpdateColors

Return Codes: On completion, this function returns the following values:

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorlnfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ERROR_ZERO
PMERR_INV _DC
PMERR_NO _PALETTE.

10-130 Presentation Driver Reference

graphics engine functions

Chapter 11. Graphics Engine Internal Functions

The handling routines for these functions are in the graphics engine. Because they are not called through
the dispatch table, they cannot be hooked by the presentation driver. Descriptions of these internal
functions are provided. The functions are grouped according to the conditional include sections of the
header file:

• Device context functions (INCL_ GRE_DCS)
• Device support functions (INCL_GRE_DEVSUPPORT)
• Font functions (INCL_GRE_FONTS)
• Journal functions (INCL_GRE_JOURNALING)
• LCID functions (INCL_ GRE_LCID)
• Set ID functions (INCL_GRE_SETID).

Each description shows what the function does, the parameters passed to the engine and the values that
the function returns.

Font Functions

When Presentation Manager is initialized, the engine is responsible for establishing the default image and
outline fonts, and the default pattern and marker sets. The presentation driver can supply device fonts as
default fonts. If this is done, the driver can request the graphics engine to manage the device fonts by
setting the CAPS_FONT_OUTLINE_MANAGE or CAPS_FONT_IMAGE_MANAGE flag in the array of device
capabilities (see "GreQueryDeviceCaps" on page 8-111). When these flags are set, the engine performs
any mapping and transforms that might be necessary. To use a default font belonging to the presentation
driver, the font handle is passed to the engine in response to GreQueryDevResource (see page 8-113).

Font Matching: When requested by an application, the mapping of a font to a loaded font that is
physically available is done by the graphics engine. A physical font can be one that is built into a particular
device or a public font loaded from a FON file when Presentation Manager is initialized. The engine
matches fonts by checking the values for szFacename and !Match (in the font metrics structures) against
those passed to it in GreCreatelogicalFont. If no match is found, the engine proceeds as if the match
number was passed with a value of 0. When a value of 0 is passed for either szFaceName or IMatch, the
engine ignores that parameter and considers it to match anything. If no face name is specified, the engine
supplies a default font from the presentation driver (see "GreQueryDevResource" on page 8-113), or if
none is available, maps the requested font to one of its own default fonts.

When a face name is specified and the match number is 0, the engine checks to see if an image font was
requested and, if true, then searches for a font of the specified dimensions. If this search fails, the engine
then attempts to match the font to an outline font with the face name and selection flags requested. When
the match number is 0 and the required font is an outline font, the engine searches for an outline font.
Should all these searches fail, a default font is used. See "GreRealizeFont" on page 8-130.

Journaling Functions (Hardcopy Drivers Only)

Journal functions allow presentation drivers to optimize the processing of data for raster devices such as
dot-matrix or laser printers, which print bands of data. The size of a band is determined by the type of
device and the amount of memory the driver can use to build its bit map. As an example, a color laser
printer might need the full 24 bits per pel. In this case, several bands may be needed to make a page. A
simple dot matrix printer that uses 1 bit per pel could treat the whole page as a singl.e band. Refer to
"Banding" for a description of how a presentation driver would use journaling functions to perform the
technique of banding.

© Copyright IBM Corp. 1992 11-1

graphics engine functions by category

The hardcopy driver creates a journal file when the DC is enabled and starts recording in response to
GreEscape (DEVESC_STARTDOC). The graphics engine stores the Grexxx functions in the journal file as
they are passed to the DC until told to stop recording by the hardcopy driver.

If the presentation driver passes the bit flag JNL_DRAW_OPTIMIZATION when it calls
GreCreateJournalFile, the hardcopy driver processes the calls to produce the first band while the journal
file is being accumulated. Otherwise, the COM_DRAW command bit flag is turned off and the hardcopy
driver is, in effect, told not to draw while the journal file is being accumulated.

When the journal file is complete, if the JNL_DRAW_OPTIMIZATION bit flag was set on when the function
GreCreateJournalFile was called, the hardcopy driver passes the completed band to the spooler or
hardcopy device. It then plays the journal file and reprocesses the calls to produce the next band.
Otherwise, the hardcopy driver plays the journal file and reprocesses the calls to produce all bands
including the first.

Graphics Engine Functions by Category

Related graphics engine functions can be grouped together into the following categories:

Device Context Functions

• GreCloseDC (see page 11-4)
• GreGetHandle (see page 11-29)
• GreGetProcessControl (see page 11-30)
• GreOpenDC (see page 11-33)
• GreQueryEngineVersion (see page 11-42)
• GreResetDC (see page 11-50)
• GreRestoreDC (see page 11-52)
• GreSaveDC (see page 11-54)
• GreSetHandle (see page 11-67)
• GreSetProcessControl (see page 11-68)

Device Support Functions

• GreCreateBitmap (see page 11-7)
• GreDeleteBitmap (see page 11-17)
• GreGetAttributes (see page 11-21)
• GreGetBitmapDimension (see page 11-22)
• GreGetBitmapParameters (see page 11-23)
• GreGetDefaultArcParameters (see page 11-26)
• GreGetDefaultAttributes (see page 11-27)
• GreGetDefaultViewinglimits (see page 11-28)
• GrelnitializeAttributes (see page 11-31)
• GreSelectBitmap (see page 11-56)
• GreSetAttributes (see page 11-58)
• GreSetBitmapDimension (see page 11-60)
• GreSetDefaultArcParameters (see page 11-62)
• GreSetDefaultAttributes (see page 11-63)
• GreSetDefaultViewinglimits (see page 11-65)
• GreSetGlobalAttribute (see page 11-66)

11 ·2 Presentation Driver Reference

graphics engine functions by category

Font Functions

• GreCreatelogicalFont (see page 11-14)
• GreloadFont (see page 11-32)
• GreQueryCodePageVector (see page 11-41)
• GreQueryFontAttributes (see page 11-43)
• GreQueryFontFileDescriptions (see page 11-44)
• GreQueryFonts (see page 11-45)
• GreQuerylogicalFont (see page 11-46)
• GreUnloadFont (see page 11-46)

Journaling Functions (Hardcopy drivers only)

• GreCreateJournalFile (see page 11-12)
• GreDeleteJournalFile (see page 11-18)
• GreOpenJournalFile (see page 11-37)
• GrePlayJournalFile (see page 11-38)
• GreStartJournalFile (see page 11-69)
• GreStopJournalFile (see page 11-71)

LCID Functions

• GreCopyDCLoadData (see page 11-5)
• GreQueryBitmapHandle (see page 11-40)
• GreSetBitmaplD (see page 11-61)

Set ID Functions

• GreDeleteSetld (see page 11-20)
• GreQueryNumberSetlds (see page 11-47)
• GreQuerySetlds (see page 11-48)

Chapter 11. Graphics Engine Internal Functions 11-3

device context function

GreCloseDC

#define INCL_GRE_DCS

BOOL GreCloseDC (hdc, plnstance, lFunction)

This function closes a device context. If the device context is a memory DC, which has a bit map selected,
the engine deselects the bit map before destroying the DC. This function deletes any visible regions and
clip regions selected into the DC.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreCloseOC

R.eturn Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE~ERROR

PMERR_BITMAP _IS_SELECTED
PMERR_DEV~FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _CODEPAGE
PMERR_INV _COORDINATE
PMERR_INV _DC_ TYPE
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _tN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL
PMERR_INV_SCAN_START

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-4 Presentation Driver Reference

LCID function

GreCopyDCLoadData

#define INCL_GRE_LCID

BOOL GreCopyDCLoadData (hdc, flCmd, hdcSrc, plnstance, lFunction)

This function copies the loaded fonts, bit maps, color table, and default attributes from one DC to another.

Device-dependent attributes such as pick aperture, character cell, and marker cell are copied only when

they have been set by the application. Otherwise, the target device defaults are used.

In response to this call, the graphics engine does the following:

• Transfers the contents of the source DC's lcid table to the target DC's lcid table.

• Translates any bit maps when the devices associated with the source and target DCs are different.

• Calls GreCreatelogicalFont for the target DC, as necessary.

• Transfers the color table and checks that the resulting color table in the target DC is the same as the

one in the source DC.

• Resets the source DC using GreResetDC. When the save level of the source DC is not 1, it is restored to

the default value before GreResetDC is called. The color table is also reset to the default value.

The values of the GPI handles in the source DC are preserved. This function fails if the target DC lcid table

already has lcids set in the range specified. If the target DC does not support LCOL_REALIZABLE (see

"GreCreatelogColorTable" on page 8-34), a warning (PMERR_REALIZE_NOT _SUPPORTED) is raised and

the color table is treated as nonrealizable.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type

hdc

flCmd

hdcSrc

plnstance

I Function

flCmd

HOC

UL ONG

HOC

PVOID

UL ONG

Valid flags are:

LCID _RANGE_ GPI
LCID _RANGE_AVIO
LCID _RANGE_BOTH

Description

Handle of target DC.

Flags indicating which fonts to copy. See below.

Handle of source DC.

Pointer to instance data.

High-order WORD= flags; low-order WORD= NGreCopyDCLoadData.

GPI
AVIO
GPI and AVIO.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 11. Graphics Engine Internal Functions 11 ·5

LCID function

Remarks: This function has the following affect on fonts:

• Any logical font in force on the source DC is reloaded onto the target with the original parameters
specified by the application.

• A generic font selected by Match ID can be selected into the target DC provided that it is suitable. For
example, an image font cannot be selected for a hardcopy DC.

• Any device font (selected by Match ID) can be selected for the target DC provided that the new device
has a font with the same Match ID. If not, the defaults are used. It is the responsibility of the
presentation driver to manage this. When it is necessary to use a specific font on the new device, the
presentation driver should call GreQueryFonts to determine the characteristics and Match ID of the font
for the new device and then to reload it.

• A warning is raised when it is not possible to reload a font on association (not on reassociation). This
warning is one of the following:

PMERR_FONT _NOT _LOADED
PMERR_KERNING_NOT _SUPPORTED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-6 Presentation Driver Reference

device support function

GreCreateBitmap

#define INCL_GRE_DEVSUPPORT

HBITMAP GreCreateBitmap (hdc, pinfoHd, flUsage, pBitmap, palnfo, pinstance, lFunction)

This function creates a bit map and returns its handle.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

plnfoHd PBITMAPINFOHEADER Pointer to BITMAPINFOHEADER or BITMAPINFOHEADER2 structure for
new bit map. See below.

fl Usage UL ONG Additional information, used when creating a new bit map. See below.

pBitmap PBYTE Pointer to bit-map initialization data.

palnfo PBITMAPINFO Pointer to BITMAPINF02 or BITMAPINF02 structure for initialization data.
See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreCreateBitmap.

plnfoHd Pointer to either a BITMAPINFOHEADER structure:

ebFlx
ex
ey
ePlanes
eBitCount

Length in bytes of this structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pel

Each plane has ((cx*cBitCount+31)/32*4*cy) bytes.

Or pointer to a BITMAPINFOHEADER2 structure:

ebFlx Length in bytes of this structure

ex

ey

ePlanes

eBltCount

ulCompresslon

eblmage

exResolution

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Chapter 11. Graphics Engine Internal Functions 11-7

device support function

cyResolutlon

cclrUsed

cclrlmportant

usUnlts

usReserved

usRecordlng

usRenderlng

cSize1

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If it is O (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system; further entries
can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes= 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map. However, it is not necessary
to assign them to the device palette. These additional colors can be mapped
to the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrlmportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTIOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION

BRH_PANDA

BRH_SUPERCIRCLE

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion
algorithm

Processing algorithm for non-coded document
acquisition

Super circle algorithm

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncoding Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

ulldentlfler Reserved for applications.

11 ·8 Presentation Driver Reference

device support function

flUsage The only defined flag- is:

palnfo

CBM_INIT When set, the pBitmap and palnfo parameters are used to initialize the newly
created bit map. If this flag is not set, the bit map initialization is device
dependent. It is assumed that sufficient data is supplied to initialize the
whole bit map.

Other flags (16- 31) can be used for special purposes known to be supported
by a particular presentation driver.

Pointer to either a BITMAPINFO structure:

ebFlx
ex
cy
ePlanes
eBllCount
argbColor[]

Length of structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pel
Color table array of R'GB structures:
bBlue
bGreen
bRed.

Or to a BITMAPINF02 structure:

ebFlx

ex

ey

cPlanes

cBltCount

ulCompresslon

eblmage

ex Resolution

cyResolutlon

cclrUsed

Length in bytes of this structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression- scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, O
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If it is 0 (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system; further entries
can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Chapter 11. Graphics Engine Internal Functions 11-9

device support function

cclrlmportant

usUnlts

usReserved

usRecordlng

usRenderlng

cSlze1

cSlze2

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrlmportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be O

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTIOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED (Default.) Bit-map data not half-toned.

BRH_ERRORDIFFUSION Error diffusion or damped error diffusion
algorithm

BRH_PANDA Processing algorithm for non-coded document
acquisition

BRH_SUPERCIRCLE Super circle algorithm

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping a value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is they-dimension of the pattern used in pels.

ulColorEncodlng Color encoding:

ulldentlfler

argbColor[]

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.

Color table array of RGB2 structures:

bBlue
bGreen
bRed
fcOptlons Reserved. Must be 0.

Note: The same bit-map file format is used for bit maps, icons and pointers. For details, refer to the OS/2
2.0 Presentation Manager Programming Reference.

Return Codes: On completion, the handling routine must return the handle of the bit map (hbm), or O if
an error occurs.

11-10 Presentation Driver Reference

device support function

Possible Errors Detected: Error codes posted by the engine for this function include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _HDC
PMERR_INV _INFO_ TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _SCAN_START
PMERR_INV _ USAGE_PARM

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: Bit-map size is limited by available memory; the maximum width and height are 64KB. The
following standard bit-maps formats should normally be used:

Bitcount

1
4
8

24

Planes

1
1
1
1

Display drivers must support at least 4 bits per pel. For other devices, the presentation driver must be able
to create and accept any of the standard formats even though they might not use the color information.

The DC handle supplied to this function must never be NULL. Bit maps always belong to some device. The
bit map is created on the device specified and can be selected to a different device later as the engine can
handle the transfer of bits from one device to another. When the value specified for cPlanes or cBitcount is
incompatible with the physical device specified by the DC handle, an error is raised.

Chapter 11. Graphics Engine Internal Functions 11-11

journal function

· GreCreateJournalFile

#define INCL_GRE_JOURNALING

ULONG GreCreateJournalFile (pszFileNamet flOptiont cSize, plnstance, lFunction)

This function creates a journal file on disk. The presentation driver calls GreCreateJournal when
responding to DevEscape DEVESC _ST ARTDOC.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

pszFileName PSZ Pointer to a string containing the file name.

fl Option UL ONG Options. See below.

cSize UL ONG Size. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreCreateJournalFile.

flOptlons Defined values are:

cSize

JNL_ TEMP _FILE An ordinary temporary journal file is created. pszFileName is
ignored.

JNL_PERM_FILE A permanent journal file is created. pszFileName points to a
fully qualified path or file name.

JNL_ENGINERAM_FILE A memory journal file is created in shared memory allocated
by the engine. pszFileName is ignored.

JNL_USERRAM_FILE A memory journal file is created in memory supplied by the
caller. The location in memory is identified by the pointer
passed in pszfileName.

JNL_DRAW_OPTIMIZATION If set, the process control flag PCTL_DRAW is reset
(optimization occurs). The Draw bit is not affected.

JNL_BOUNDS_OPTIMIZATION If set, the process control flag PCTL...;BOUND is reset
(BOUNDS is turned off). Otherwise, current behavior
conti nue.s.

If greater than 0, cSize is an indication as to how large the file must be. If flOption is
JNL_..:USERRAM_FILE, cSize must be greaterthan O and is the size of the buffer, which cannot be
extended.

1f cSize is 0, the calling routine does not know the size of the file.

Return Codes: This function returns the journal file handle (ULONG), or if an error occurs, NULL.

11-12 Presentation Driver Reference

Journal function

Possible Errors Detected: If this function fails, the graphics engine will set one of the following error

codes:

PMERR_BASE_ERROR
PMERR_INSUFFICIENT _MEMORY

PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _JOURNAL_OPTION

PMERR_RAM_JNL_FILE_TOO_SMALL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-13

font function

GreCreateLogicalFont

#define INCL_GRE_FONTS

LONG GreCreatelogicalFont (hdc, lcid, pchName, pAttrs, plnstance, lFunction)

This function sets the local identifier (lcid) for a logical font. The parameters passed to the function identify
the name and attributes of the required font. The graphics engine selects a font from the list of available
fonts that provides the best match for the font attributes addressed by pAttrs.

The selection is made in one of two ways:

1. If the IMatch attribute is non-zero, the calling program has already determined (from a call to
GreQueryFonts) which font it requires. In this case, the graphics engine selects the font identified by
the IMatch and szFaceName attributes (or, if szFaceName is not specified, IMatch alone).

2. If IMatch is O or a suitable match could not be found, the system examines the other fields in the
attributes structure and selects the font that gives the best match.

If no match is found, the default font is used. Once assigned, the system will not change the relationship of
a specific lcid to a specific font.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

lcid

pchName

pAttrs

plnstance

I Function

pAttrs

Data Type Description

HOC Device context handle.

LONG Local identifier that is to be assigned to the font.

PST RB Pointer to an eight-character name used to describe the logical. font

PFATTRS Pointer to font attributes structure. See below.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreCreateLogicalFont.

Pointer to a FATIRS structure containing the font attributes:

usRecordLength Length in bytes of this structure

fsSelection Flags that can be set to define those features to be simulated by the
system:

I Match

szFaceName

FATTR_SEL_ITALIC
FATTR_SEL_UNDERSCORE
FATTR_SEL_STRIKEOUT
FATTR_SEL_BOLD

Italic characters are required.
Underscored characters are required.
Strikeout characters are required.
Bold characters are required.

The match number for the font. GreQueryFonts returns a unique match
number for each font that, together with szFaceName, can be used for
font selection. If the match number is negative, a device font is
selected. If it is positive, an engine font is selected.

The typeface name to which the font is designed. If the szFaceName is
provided, an attempt is made to select the font with that face name. If
the szFaceName is blank (0 length or NULL), then a default font is used.

11-14 Presentation Driver Reference

)

Id Registry

usCodePage

font function

The Registry number for the font. This should be set to the value

returned by GreQueryFonts.

Defines the code page supported by the font.

IMaxBasellneExt The required (average) height above the baseline for uppercase
characters in world coordinates. For outline and transformable fonts

(FATTR_FONTUSE_OUTLINE and FATTR_FONTUSE_TRANSFORM),

IMaxBaselineExt should be set to 0.

IAveCharWidth

fsType

fsfontUse

For image fonts, the required average inter-character increment for the

font in world coordinates. For outline and transformable fonts
(FATTR_FONTUSE_OUTLINE and FATTR_FONTUSE_TRANSFORM),

IAveCharWidth should be set to 0.

Type indicator. Setting fsType to FATTR_TYPE_KERNING indicates that

kerning is to be used if the font provides kerning information.

Flags containing information about how the font is to be related to the

character attributes:

FATTR_FONTUSE_NOMIX
Specifies that permissive mixing is allowed when the font is used. fhe

engine can ignore any interaction with graphics primitives and can use

overpaint and leave alone as the foreground and background mixes
rather than using the current mix attributes.

FA TTR_FONTUSE_ OUTLINE
Specifies that the font must be an outline font. When the font is not

defined by !Match and FATTR_FONTUSE_OUTLINE is specified, the

system searches for an outline font. If the search fails, a default font is

selected. When the font is not defined by !Match and
FATTR_FONTUSE_OUTLINE is not set, the system searches for an

image font that matches IMaxBaselineExt and IAveCharWidth. If this

fails, it searches for an outline font with the required szFaceName and
fsSelection flags.

FATTR_FONTUSE_TRANSFORMABLE
Specifies that the font must be transformable (that is, it can be scaled,

rotated and sheared). Transformable fonts are used only in
CM_MODE3. Non-transformable fonts can be used in CM_MODE1 or

CM_MODE2 but not in CM_MODE3.

Return Codes: This function returns a LONG value indicating whether the font has been matched:

FONT _DEFAULT
FONT_MATCH
GPl_ERROR

The font was not matched. The default font is to be used.
The font has been matched successfully.
Error.

Chapter 11. Graphics Engine Internal Functions 11-15

font function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC _BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV _ COORD _SPACE
PMERR_INV _EXTENDED_LCID
PMERR_INV _FONT _A TTRS
PMERR_INV _FONTDEF
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV _SETID
PMERR_ SETID _IN_ USE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The interaction between fonts and character attributes depends on the state of the
FATTRS_FONTUSE_TRANSFORMABLE flag in the font attributes structure. When this flag is set:

• The size of the characters is determined by the values of the character attributes at the time that the
characters are drawn.

• The characters are positioned, rotated, and sheared, as required.

• No checking is done.

• Any transformation is performed by mapping the box defined by the FONTMETRICS parameters,
xMaxCharlnc and yEmHeight, to the character box under the influence of character angle and shear.

When the FATTRS_FONTUSE_TRANSFORMABLE flag is not set, the IAveCharWidth and IBaselineExt
parameters in the font attributes structure define the size of the font to be used. The character box attribute
has no effect.

Transformable fonts cannot be used in Character Modes 1 and 2. Non-transformable fonts cannot be used
in Character Mode 3. If the font is not compatible with the character mode, the engine raises an error when
the presentation driver attempts to draw characters. The characteristics of the character modes are:

CM_MODE1 The position of characters after the first character is determined by the font metrics
information. Character box, angle, shear, extra, break extra, and spacing are ignored.

CM_MODE2 The position of characters is determined by the font metrics information and the character
attributes. Characters are not scaled, rotated, or sheared.

CM_MODE3 The position of characters is determined by the font metrics information and all character
attributes. Characters can be scaled, rotated, and sheared.

Positioning is performed by using the character reference point defined within the font. When characters
that are not hollow are drawn using an outline font, they are filled using the character foreground color and
mix.

11-16 Presentation Driver Reference

device support function

GreDeleteBitmap

#define INCL_GRE_DEVSUPPORT

BOOL GreDeleteBitmap (hbm, plnstance, lFunction)

This function deletes the bit map identified by hbm. If the bit map is currently selected into a DC,
GreDeleteBitmap returns an error.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hbm HBITMAP Bit-map handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreDeleteBitmap

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
'FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BITMAP _IS_ SELECTED
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HBITMAP _BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _SCAN_START

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference tor further explanation.

Chapter 11. Graphics Engine Internal Functions 11-17

journal function

GreDeleteJournalFile

#define INCL_GRE_JOURNALING

BOOL GreDeleteJournalfile (hJournal, plnstance, lfunction)

This function deletes a journal file and frees any objects associated with the journal file handle (such as
compatible DCs, private clone regions or bit maps, and global memory segments). When the handle
belongs to a temporary file, the file is also deleted. Finally, the file handle itself is freed.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hJournal UL ONG Journal file handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeleteJournalFile

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CHAR_SET_ATTR
PMERR_INV _CHAR_SHEAR_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV_DC_TYPE
PMERR_INV_GEOM_LINE_WIDTH_ATTR
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HJOURNAL

11-18 Presentation Driver Reference

PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV_LINE_END_ATTR
PMERR_INV _LINE_JOIN_A TTR
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV_LINE_WIDTH_ATTR
PMERR_INV _ MARKER_SET _A TTR
PMERR_INV _MARKER_SYMBOL_A TTR
PMERR_INV _METAFILE
PMERR_INV _MIX_A TTR
PMERR_INV _PATTERN_REF _PT _ATTR
PMERR_INV _PA TTERN_SET _A TTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _PRIMITIVE_ TYPE
PMERR_INV _ RECT
PMERR_INV _REGION_CONTROL
PMERR_INV _SCAN_ START
PMERR_INV _SETID
PMERR_JFILE_BUSY
PMERR_REGION_IS_CLIP _REGION
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE

Journal function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-19

Set ID function

GreDeleteSetld

#define INCL_GRE_SETID

BOOL GreDeleteSetld (hdc, lcid, plnstance, lFunction)

This function deletes the character set, marker set, or pattern set identified by lcid. Base sets cannot be
deleted. An error is logged. if GreDeleteSetld is called to delete the current character, marker, or pattern
set.

Support: This function is supported by the graphics engine.

Stack Frame.

Parameters Data Type Description

hdc HOC Device context handle.

lcid LONG Local identifier. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreDeleteSetld.

lcid When identifying a bit map, only the lcid is deleted. The bit map will have no LCID but it will still
exist. When lcid=LCID_ALL, all loaded graphics local identifiers such as logical fonts and
Bit-Map IDs are destroyed. In this case, AVIO fonts are unaffected and can only be deleted
explicitly.

LCID_AVI0_1, LCID_AVI0_2, and LCID_AV10_3 represent AVIO fonts 1, 2, and 3, respectively.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PM ERR_ COORDINATE_ OVERFLOW
PMERR~DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV _EXTENDED _LCID
PMERR_INV _FONTDEF
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _SETID
PMERR_SETID_IN_USE
PMERR_SETID_NOT _FOUND

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-20 Presentation Driver Reference

device support function

GreGetAttributes

#define INCL_GRE_OEVSUPPORT

LONG GreGetAttributes (hdc, lPrimType, flAttrsMask, pAttrs, pinstance, lFunction)

This function returns the current value of the attributes indicated in flAttrsMask. When a specified attribute
is currently set to its default value, the corresponding flag in the returned defaults mask is set and the
returned value for this attribute is undefined.

The graphics engine either:

• Returns the value of each specified attribute and resets the corresponding bit in the returned mask, or

• Sets the bit in the returned mask to indicate that the specified attribute is set to its default. Notice that
the the corresponding value in the attribute buffer is not valid and is likely to have been overwritten by
the engine.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

IPrimType

flAttrsMask

pAttrs

plnstance

I Function

IPrlmType

flAttrsMask

pAttrs

Data Type Description

HOC Device context handle.

LONG Bundle primitive type. See below.

UL ONG Attribute mask. See below.

PBUNDLE Pointer to the fixed format bundle record containing the attributes
returned.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreGetAttributes.

Indicates the bundle type. Valid primitive values are:

PRIM_LINE
PRIM_CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle
Character attribute bundle
Marker attribute bundle
Pattern attribute bundle
Image attribute bundle.

Specifies the attributes to be returned. This mask contains a bit corresponding to each
attribute in the bundle record. For each set bit, the graphics engine returns the
corresponding attribute values and default mask bits.

The returned attribute value (bundle). The only fields that are updated are those whose
corresponding flags in flAttrsMask have been set.

Return Codes: This function returns the default attribute bit mask. Only bits with corresponding set bits
in flAttrsMask are updated. Otherwise, this function returns the error, GPl_AL TERROR.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Chapter 11. Graphics Engine Internal Functions 11-21

device support function

GreGetBitmapDimension

#define INCL_GRE_DEVSUPPORT

BOOL GreGetBitmapDimension (hbm, pDimension, plnstance, lFunction)

This function renders height and width values for the bit map indicated by hbm. These are values that have
been set by a previous call to GreSetBitmapDimension. They are not used by the system.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hbm HBITMAP Bit-map handle

pDimension PSIZEL Pointer to width and height values in 0.1mm units

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreGetBitmapDimension

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BITMAP _IS_SELECTED
PMERR_HBITMAP _BUSY
PMERR_INV _HBITMAP

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-22 Presentation Driver Reference

device support function

GreGetBitmapParameters

#define INCL_GRE_DEVSUPPORT

BOOL GreGetBitmapParameters (hbm, plnfoHd, plnstance, lFunction)

This function returns, in the buffer addressed by plnfoHd, header information for the specified bit map. The

header information is returned as a BITMAPINFOHEADER or BITMAPINFOHEADER2 structure and gives
details such as the width, height, number of planes, and number of bits per pel.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hbm HBITMAP Bit-map handle.

plnfoHd PBITMAPINFOHEADER Pointer to a BITMAPINFOHEADER or BITMAPINFOHEADER2 structure
where the returned information is stored. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order
WORD= NGreGetBitmapParameters.

plnfoHd Pointer to either a BITMAPINFOHEADER structure:

ebFlx
ex
ey
ePlanes
eBltCount

Length in bytes of this structure
Bit-map width
Bit-map height
Number of color planes, 1 if standard format
Number of adjacent color bits per pel

Each plane has ((cx*cBitCount+31)/32*4*cy) bytes.

Or pointer to a BITMAPINFOHEADER2 structure:

ebflx

ex

ey

ePlanes

eBltCount

ulCompresslon

cblmage

cxResolutlon

Length in bytes of this structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Chapter 11. Graphics Engine Internal Functions 11-23

device support function

cyResolution

cclrUsed

cclrlmportant

usUnlts

usReserved

usRecordlng

usRenderlng

cSlze1

cSlze2

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If it is 0 (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system; further entries
can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes = 1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map. However, it is not necessary
to assign them to the device palette. These additional colors can be mapped
to the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrlmportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:

BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED (Default.) Bit-map data not half-toned.

BRH_ERRORDIFFUSION Error diffusion or damped error diffusion
algorithm

BRH_PANDA Processing algorithm for non-coded document
acquisition

BRH_SUPERCIRCLE Super circle algorithm

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0-100. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

ulColorEncodlng Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

ulldentlfler Reserved for application use

11-24 Presentation Driver Reference

device support function

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_BITMAP _IS_SELECTED
PMERR_HBITMAP _BUSY
PMERR_INV _HBITMAP

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-25

device support function

GreGetDefaultArcParameters

#define INCL_GRE_DEVSUPPORT

BOOL GreGetDefaultArcParameters (hdc, pArcPanns, plnstance, lfunction)

This function stores the default arc parameters in the buffer addressed by pArcParms.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

pArcParms PARCPARAMS Pointer to ARCPARAMS structure

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetDefaultArcParameters

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-26 Presentation Driver Reference

device support function

GreGetDefaultAttributes

#define INCL_GRE_DEVSUPPORT

BOOL GreGetDefaultAttributes (hdc, lPrimType, flAttrsMask, pAttrs, plnstance, lFunction)

This function returns the default values of the attributes indicated in flAttrsMask.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

IPrimType

flAttrsMask

pAttrs

plnstance

I Function

IPrlmType

flAttrsMask

Data Type Description

HOC Device context handle.

LONG Bundle primitive type. See below.

ULONG Attribute mask. See below.

PB UN OLE Pointer to the fixed format bundle record containing the attributes
returned.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreGetDefaultAttributes.

Indicates the bundle type. Valid primitive values are:

PRIM_LINE
PRIM_CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle
Character attribute bundle
Marker attribute bundle
Pattern attribute bundle
Image attribute bundle.

Specifies the attributes to be returned. This mask contains a bit corresponding to each

attribute in the bundle record. For each set bit, the engine returns the corresponding

attribute values and default mask bits.

Return Codes: This function returns the default attribute bit mask. Only bits with corresponding set bits

in flAttrsMask are updated. Otherwise, this function returns the error, ATIRS_ERROR.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-27

device support function

GreGetDefaultViewingLimits

#define INCL_GRE_DEVSUPPORT

BOOL GreGetDefaultViewinglimits (hdc, prclViewinglimits, plnstance, lFunction)

This function loads the array indicated by prclViewinglimits with the default boundaries of the viewing
window in graphic model space coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

prclViewinglimits PRECTL Pointer to limits of viewing area. See below.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetDefaultViewinglimits.

prclVlewingllmits RECTL structure:

xLeft
yBoHom
xRlght
yTop

Minimum x-coordinate of viewing limits
Minimum y-coordinate
Maximum x-coordinate of viewing limits
Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-28 Presentation Driver Reference

device context function

GreGetHandle

#define INCL_GRE_DCS

LONG GreGetHandle (hdc, ilndex, plnstance, lFunction)

This function returns the handle or variable (stored in the DC corresponding to ilndex) previously set by

GreSetHandle.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HDC Device context handle.

ilndex ULONG Index value of the returned handle in the range 0- 3. A value of 1 can be

used to get the associated AVIO presentation space handle.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetHandle.

Return Codes: On completion, the graphics engine returns the handle requested (hHandle), or

GPl_AL TERROR if an error occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-29

device context function

GreGetProcessControl

#define INCL_GRE_DCS

LONG GreGetProcessControl (hdc, plnstance, lFunction)

This function returns the process control flags.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreGetProcessControl

Return Codes: This function returns the process control flags (flProcess), or DCTL_ERROR if an error
occurs. The flags returned are:

PCTL_DRAW
PCTL_BOUND
PCTL_ CORRELATE
PCTL_USERBOUNDS
PCTL_AREA
COM_PATH

Draw flag
GPl_BOUNDS flag
Correlate flag
USER_BOUNDS flag
When set, an area definition is in progress.
When set, a path definition is in progress.

Other flags are reserved and should be ignored.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-30 Presentation Driver Reference

device support function

GrelnitializeAttributes

#define INCL_GRE_DEVSUPPORT

BOOL GrelnitializeAttributes (hdc, flOptions, plnstance, lFunction)

This function sets the current default attributes to the initial standard default values. It can also be used to
reset the current attributes to the current default values. GrelnitializeAttributes affects all bundle attributes
that can be set with GreSetAttributes, arc parameters, and viewing limits.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

fl Options UL ONG Option flags. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGrelnitial izeAttributes.

flOptions Valid flags are:

INAT_DEFAULTATTRIBUTES When set, all the current default attributes are set to their initial
standard default values.

INAT_CURRENTATTRIBUTES When set, all the current attributes are set to their current
default values.

Notice that when both flags are set, INAT_DEFAULTATTRIBUTES is processed first.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 11. Graphics Engine Internal Functions 11-31

font function

GreLoadFont

#define INCL_GRE_FONTS

BOOL GreloadFont (pszFilename, plnstance, lFunction)

This function loads fonts from a resource file. All fonts in the file are private and are only available to the
process that called this function.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

pszFilename PSZ Pointer to a NULL-terminated string containing path and name of the font
file, identified by the file extension FON

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreLoadFont

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _FONT _FILE_DATA

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-32 Presentation Driver Reference

device context function

GreOpenDC

#define INCL_GRE_DCS

HOC GreOpenDC (hdc, ulType, pszToken, cData, pszData, pinstance, lFunction)

This function creates an output device context (DC). The new device context inherits the current code page
of the process that created it. Subsequent calls to DosSetCp do not alter the code page of an existing DC.
Default VIO and KBD code pages are always in the last code page set by any application process.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc

ulType

pszToken

cData

pszData

plnstance

I Function

hdc

ulType

HOC Device context handle. See below.

ULONG Type of DC being opened. See below.

PSZ This parameter is ignored by the graphics engine.

LONG Number of elements in the data structure.

PDEVOPENDATA Pointer to data structure. See below.

PVOJD Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreOpenDC.

When ulType is OD_MEMORY, this parameter is a handle to a device context compatible with bit
maps that are used with this device context. If this is NULL, compatibility with the screen is
assumed.

Type of device context:

OD_ QUEUED The DC is for a hardcopy device for which output is to be queued by the
spooler.

OD_DIRECT The DC is for a device for which output is not to be queued by the spooler.

OD_INFO This is similar to OD_DIRECT except that it is only used to retrieve information
such as font metrics. Drawing can be done to a presentation space associated
with such a DC but no output medium is updated.

OD_MEMORY The new DC is a memory DC used to contain a bit map. hdc identifies the
device with which the bit map is to be compatible.

pszData Pointer to DEVOPENDATA structure:

pszlogAddress

pszDrlverName

pd riv

Pointer to logical address, for example, LPT1Q.

Pointer to presentation driver name, for example, LASERJET.

Pointer to a DRIVDAT A structure:

cb

IVerslon

Size in bytes of this structure

Version number of the data. Version numbers
are defined by the presentation driver.

szDevlceName[32] String identifying the device. Valid values are
supplied by the presentation driver.

Chapter 11. Graphics Engine Internal Functions 11-33

device context function

8bGener81D818 General data defined by the presentation driver.
This does not contain pointers as they might not
be valid when passed to the driver.

pszD818Type Pointer to a data type of the queued file. Supported data types are:

PM_Q_STD
PM_Q_RAW

User-defined data types can also be supported.

pszComment Pointer to a description of the file that can be displayed by the spooler
to the user

pszQueueProcN8me Pointer to name of queue processor

pszQueueProcP8r8ms Pointer to a string of queue processor parameters

pszSpoolerP8r8ms Pointer to a string of spooler parameters separated by one or more
blanks. Valid parameters are:

FORM== 888 Identifies the form name for a print job. Multiple
names are separated by commas (aaa,bbb,ccc). If this
parameter is not present, the current form is used.

PRTY==n

Form names are defined by the presentation driver.
Valid names are those that would be returned from a
call to the driver's GreQueryHardcopyCaps handling
routine.

Identifies the priority for the print job. The priority can
be any value from 1-99 (1 is lowest priority). If this
parameter is not present, the priority value defaults to
50.

pszNetworkP8r8ms Pointer to a string of networking parameters, which are used only in a
network environment. Their nature is defined by the network
application.

Return Codes: On completion, the graphics engine returns the handle of the new device context (hdc),
or DEV_ ERROR if an error occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _BITMAP _DIMENSION
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV _CHAR_MODE_A TTR
PMERR_INV _CODEPAGE
PMERR_INV_COLOR_ATTR
PMERR_INV _COORD_SPACE

11-34 Presentation Driver Reference

PMERR_INV _COORDINATE
PMERR_INV _DC_DATA
PMERR_INV _DC_ TYPE
PMERR_INV _DRIVER_NAME
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _MIX_A TTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _SCAN_START

device context function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When this function is called for the first time, the graphics engine performs the following
sequence:

DosloadModule(11 NEWDRIVER 11
• &hDriver)

/**/
/* Load the presentation driver DLL file. */
/**/

DosGetProcAddr(hDriver. 11 0S2_PM_DRV_ENABLE 11
• &Enable)

/**/
/* Find the presentation driver's Enable function. */
/* See 11 0S2_PM_DRV_ENABLE. 11 * /
/**/

*Enable(FilllogicalDeviceBlock. &DispatchTable)
/**/
/* The presentation driver must: */
/* Save the addresses of the engine simulations */
/* Overwrite the dispatch table, as necessary */
/* Hook the Exitlist for the calling process */
/**/

hPhysDev=*Enable(FillPhysicalDeviceBlock, pDevOpenStructure)
/**/
/* Create the physical device block. */
/**/

plnstance=*Enable(EnableDeviceContext, hdc, Type. hPhysDev)
/**/
/* The presentation driver must create an instance */
/* data structure for the DC. */
/**/

*Enable(CompleteOpenDC, hdc, plnstance)
/**/
/* The presentation driver must infonn the system */
/* that the DC is open and ready to receive output. */
/**/

Chapter 11. Graphics Engine Internal Functions 11-35

device context function

For subsequent calls to GreOpenDC for the same DC, the graphics engine calls Enable
(EnableDeviceContext) to create a new instance for the DC and then calls Enable (CompleteOpenDC).
When GreOpenDC is called for the same DC by a different process, the graphics engine calls
DosloadModule to load the presentation driver. It then calls Enable (FilllogicalDeviceBlock), Enable
(EnableDeviceContext), and Enable (CompleteOpenDC).

11-36 Presentation Driver Reference

~\
~)

journal function

GreOpenJournalFile

#define INCL_GRE_JOURNALING

ULONG GreOpenJournalFile (pszFileName, flOption, cBufSize, plnstance, lFunction)

This function opens a journal file for play. The journal file must exist and must contain valid journaled

calls.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

pszFileName PSZ Pointer a string containing the file name
~

fl Option ULONG See below.

cBufSize ULONG Size of buffer required for the file

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreOpenJournalFile

flOptlon An option flag that identifies the type of journal file. Valid values are:

JNL_PERM_FILE A disk file with the name pszFileName, which was created by using

GreCreateJournalFile (JNL_PERM_FILE).

Bit 3 A shared memory file pointed to by pszFileName and already filled with

complete journal records. This journal file might have been created by

using GreCreateJournalFile (JNL_USERRAM_FILE) and filled by the engine,

or it might have been produced in some other way.

Return Codes: This function returns the journal file handle (ULONG), or if an error occurs, NULL.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _JOURNAL_ OPTION

PMERR_RAM_JNL_FILE_ TOO _SMALL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-37

journal function

GrePlayJournalFile

#define INCL_GRE_JOURNALING

BOOL GrePlayJournalFile (hdc, hJournal, plnstance, lFunction)

This function plays a journal file to the specified DC. The journal file is read into memory and each
journaled call is played. Each journaled record is processed before playing to fix-up data pointers, and
create clone objects that is, (regions or bit maps), if necessary, from the journaled data. It is assumed that
any single journaled function and associated data fits in a 32KB buffer. If the journaled record contains
region rectangles or bit-map bits, they are not considered in this restriction.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

hJournal ULONG Journal file handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGrePlayJournalFile

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_ SELECTED
PMERR_BITMAP _NOT _SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS _NOT_ SUPPORTED
PMERR_INCORRECT _DC_TYPE
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV _CHAR_MODE_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV_COORD_SPACE
PMERR_INV _COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE

11-38 Presentation Driver Reference

~
I

/

PMERR_INV _DRIVER_NAME
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HJOURNAL
PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV_INFO_TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _METAFILE
PMERR_INV _MIX_A TTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV _PA TTERN_SET _FONT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _REGION_MIX_MODE
PMERR_INV _SCAN_START
PMERR_INV _ USAGE_PARM
PMERR_JFILE_BUSY
PMERR_RAM_JNL_FILE_ TOO _SMALL
PMERR_REGION_IS_CLIP _REGION

Journal function

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-39

LCID function

GreQueryBitmapHandle

#define INCL_GRE_LCID

HBITMAP GreQueryBitmapHandle (hdc, llcid, plnstance, lFunction)

This function gets the bit-map handle for the specified local identifier (lcid). When llcid does not reference
a bit map, an error is raised by the graphics engine.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

ILcid LONG Local identifier for which the bit-map handle is required

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryBitmapHandle

Return Codes: This function returns the bit-map handle (hbm), or GPl_ERROR if an error occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_B!TMAP _NOT _SELECTED
PMERR_HDC_BUSY
PMERR_INV _HDC
PMERR_INV_SETID

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-40 Presentation Driver Reference

font function

GreQueryCodePageVector

#define INCL_GRE_FONTS

PUSHORT GreQueryCodePageVector (ulCodePage, plnstance, lFunction)

This function returns a pointer to a vector of 256 WORDs, which is the code point to the glyph mapping
number.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

ulCodePage ULONG Code page number

plnstance PVOIO Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryCodePageVector

Return Codes: This function returns a pointer to the code page vector, or GPl_ERROR if an error
occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-41

device context function

GreQueryEngineVersion

#define INCL_GRE_DCS

LONG GreQueryEngineVersion (plnstance, lFunction)

This function returns the version number of the graphics engine.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryEngineVersion

Return Codes: GreQueryEngineVersion returns the engine version number (!Version), or
GPl_AL TERROR if an error occurs. For example, ex0e0e00200L = 2. 0.

11-42 Presentation Driver Reference

font function

GreQueryfontAttributes

#define INCL_GRE_FONTS

BOOL GreQueryFontAttributes (hdc, cbMetrics, pfmMetrics, plnstance, lFunction)

This function returns the metrics of the current font at the location addressed by pfmMetrics.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

cbMetrics ULONG Size, in bytes, of the font metrics buffer

pfmMetrics PFONTMETRICS Pointer to font metric block where the information is to be returned

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQueryFontAttributes

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV_SETID

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-43

font function

GreQueryFontFileDescriptions

#define INCL_GRE_FONTS

ULONG GreQueryFontFileDescriptions (pszFileName, pcFonts, paszNames, plnstance, lFunction}

This function determines whether a file is a font file, and (if so) returns the family and face names for the
fonts in the file. The names are returned at the location addressed by paszNames. Typically, the calling
routine calls GreQueryFontFileDescriptions twice. The first call sets pcFonts to 0 and determines the
number of fonts in the file. When sufficient storage is allocated for the names,
GreQueryFontFileDescriptions is called again with pcFonts pointing to the font count.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

pszFileName PSZ Pointer to the file path and name of the font file.

pc Fonts PULONG Pointer to a count of the maximum number of family and face name pairs to be
returned. On completion, this is updated to the number of pairs actually
returned.

paszNames PSZ Pointer to an array of 2xpcFonts 32-bit fields in which the family and face name
pairs are returned. The family name is the first in each pair.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryFontFileDescriptions.

Return Codes: This function returns the number of fonts not returned, or GPl_AL TERROR if an error
occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_INV _FONT _flLE_pATA

Refer to Appendix B of the OS/2 2.0 Presentation Manag~r Programming Reference for further explanation.

11-44 Presentation Driver fleference

font function

GreQueryFonts

#define INCL_GRE_FONTS

LONG GreQueryFonts (hdc, flOptions, pszFaceName, paMetrics, cMetriclen, pcFontCount, plnstance, lFunction)

This function returns the details of fonts that match the face name addressed by pszFaceName.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

fl Options ULONG Flags indicating whether private fonts, public fonts, or both are required.
See below.

pszFaceName PSZ Pointer to a string specifying the face name. When this is NULL, all faces
are matched.

paMetrics PFONTMETRICS Pointer to an array of font element records to which the metrics of
matching fonts are returned. See below.

cMetricLen ULONG Length in bytes of each metrics structure in the paMetrics array.

pcFontCount PU LONG Pointer to cFontCount that specifies the number of fonts for which metrics
are required. On return, this is updated to the number of fonts for which
metrics were returned.

plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryFonts.

flOptlons These flags can be used in combination:

QFF_PUBLIC
QFF _PRIVATE

Enumerate public fonts
Enumerate private fonts

paMetrlcs This is a pointer to an array of up to cFontCount font metric records, each of which contains a
maximum of cMetriclen bytes. Notice that for multi-code page fonts the usCodePage field
has no meaning and is set to 0.

Return Codes: This function returns the number of fonts not returned, or GPl_ALTERROR if an error
occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _ COORD _SPACE
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _ OR_INCOMPAT _OPTIONS

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-45

font function

GreQueryLogicalFont

#define INCL_GRE_FONTS

BOOL GreQueryLogicalFont (hdc, lcid, pchName, pLogFont, cLogFont, plnstance, lFunction)

This function returns the 8-character name and attributes for the logical font that is defined for the specified
lcid. The data is returned in the locations addressed by pchName and plogFont. When lcid identifies a
Bit-Map ID, an error is raised by the graphics engine.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HDC Device context handle

lcid LONG Local identifier for the logical font

pchName PSTR8 Pointer to an a-character name used to describe the logical font

pLogFont PFATTRS Pointer to a font attribute structure

cLogFont UL ONG Number of bytes of font attribute information requested

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreQueryLogicalFont

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SETID

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-46 Presentation Driver Reference

Set ID function

GreQueryNumberSetlds

#define INCL_GRE_SETID

LONG GreQueryNumberSetlds (hdc, lRange, plnstance, lFunction)

This function returns the total number of LCIDs such as logical fonts and Bit-Map IDs that have been

created.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type

hdc

I Range

plnstance

I Function

I Range

HOC

UL ONG

PVOID

ULONG

Valid ranges are:

LCID _RANGE_ GPI
LCID_RANGE_AVIO

LCID_RANGE_BOTH

Description

Device context handle.

Indicates whether GPI, or AVIO LCIDs, or both are to be returned. See

below.

Pointer to instance data.

High-order WORD= flags; low-order WORD= NGreQueryNumberSetlds.

GPI
AVIO
GPI and AVIO.

Return Codes: This function returns the number of LCIDs, or GPl_ALTERROR if an error occurs.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC
PMERR_INV _SETID
PMERR_INV _ SETID _TYPE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-47

Set ID function

GreQuerySetlds

#define INCL_GRE_SETID

BOOL GreQuerySetlds (hdc, cSets, paTypes, paszNames, palcid, lRange, plnstance, lFunction)

This function returns a list of created LCIDs with their names and types in the buffers addressed by paLcid,
paszNames, and paTypes.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

cSets LONG Number of sets to return.

pa Types PL ONG Pointer to an array of cSets elements indicating the type of the
corresponding set. See below.

paszNames PSTR8 Pointer to an array of 8-character names associated with the
corresponding LCIDs. For a bit map, the name string is filled with Os.

palcid PL ONG Pointer to an array of cSets elements to which the lcids are returned.

I Range UL ONG Indicates whether GPI, or AVIO local identifiers, or both are to be
returned. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreQuerySetlds.

paTypes Each element in this array is a LONG value indicating the type of the corresponding local
identifier:

LCIDT_FONT
LCIDT _BITMAP

Logical font
Bit-Map ID.

I Range Valid ranges are:

LCID _RANGE_ GPI
LCID _RANGE_AVIO
LCID _RANGE_BOTH

GPI
AVIO
GPI and AVIO.

LCID_AVI0_1, LCID_AV10_2, and LCID_AVI0_3 represent AVIO sets of 1, 2, and 3.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

11-48 Presentation Driver Reference

Set ID function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _SETID
PMERR_INV_SETID_TYPE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When cSets is greater than the number of lcids, the unused elements of paTypes and palcid
are set to 0.

Chapter 11. Graphics Engine Internal Functions 11-49

device context function

GreResetDC

#define INCL_GRE_DCS

BOOL GreResetDC (hdc, flOptions, plnstance, lFunction)

Calling this function restores a DC to its created state. All objects such as fonts, patterns and paths are
deleted. All attributes are set to their defaults. Any clip region selected into the DC is deleted.

This function does not alter Window Manager information stored in the DC instance data. Window Manager
information includes:

• The visible region
• The DC origin
• User bounds
• Cached clipping rectangles
• The HDC_IS_DIRTY flag.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

fl Options

plnstance

I Function

flOptlons

Data Type Description

HOC Device context handle.

ULONG Option flags. See below.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreResetDC.

Valid flags are:

RDC_SETOWNERTOSHELL When set, the graphics engine sets the ownership of the reset
DC to the process that first initialized the engine, (normally the
Presentation Manager interface).

RDC_RGBMODE Sets the DC's logical color table to RGB mode.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

11-50 Presentation Driver Reference

device context function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_SELECTED
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BITMAP _DIMENSION
PMERR_INV _CODEPAGE
PMERR_INV _COORDINATE
PMERR_INV_DC_TYPE
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_OR_COUNT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _SCAN_START

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-51

device context function

GreRestoreDC

#define INCL_GRE_DCS

BOOL GreRestoreDC (hdc, idDC, plnstance, lFunction)

This function restores the contents of a previously saved device context.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

id DC LONG DC state identifier. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreRestoreDC.

ldDC Identifies the DC state to be restored. When this is passed as a negative value, it indicates the
number of device contexts that must be popped off the stack to access the required DC. -1
indicates that the most recently saved DC must be restored.

• When this parameter is passed as a positive value (>0) and a corresponding DC does not exist,
an error is returned. The current DC is not modified.

• When passed as a negative value and there are insufficient entries on the stack, an error is
raised. The current DC is not modified.

• When the value passed corresponds to a saved DC, all entries on the stack up to the one
indicated are discarded. Any clip regions selected into the discarded DCs are destroyed.

• A value of 1 resets the DC stack. All entries are removed from the stack.

• A value of 0 raises an error and the DC is not modified.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE. Error.

11-52 Presentation Driver Reference

1
/

device context function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV _COORDINATE
PMERR_INV_DC_TYPE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV_ID
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _RECT
PMERR_INV _REGION_CONTROL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-53

device context function

GreSaveDC

#define INCL_GRE_DCS

LONG GreSaveDC (hdc, plnstance, lFunction)

This function saves the device context's state on a stack and returns an identifier to allow for its
subsequent restoration. The following information is saved:

• Current position
• Current attributes
• Current transforms, viewing limits, and clip path
• Any reference to a selected clip window
• Any loaded logical color table
• References to any loaded logical fonts
• References to the regions created on the associated DC.

The following are not saved:

• Visible region
• Process controls.

Any resources such as clip region and logical fonts, which are referenced in a saved DC, should not be
deleted. The ID of a saved DC is only unique within the DC for which it is issued. Other DCs can have
saved states with the same ID. The returned identifier can be used for a subsequent GreRestoreDC. This
identifier represents the level of the saved DC on the save/restore stack. The first DC saved is identified by
a value of 1, the second by 2, and so on.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc UL ONG Device context handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSaveDC

Return Codes: This function returns the identifier for the saved DC state (idDC), or GPl_ERROR if an
error occurs.

11-54 Presentation Driver Reference

\
)

)

device context function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _CODEPAGE
PMERR_INV _COORDINATE
PMERR_INV _DC_ TYPE
PMERR_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-55

device support function

GreSelectBitmap

#define INCL_GRE_DEVSUPPORT

HBITMAP GreSelectBitmap (hdc, hbm, plnstance, lFunction)

This function selects a bit map into a memory DC, or (if called with a NULL bit-map handle) deselects the
existing bit map from the DC. If GreSelectBitmap is called to deselect a bit map, the return code is the
handle of the deselected bit map.

Once created, a bit map has to be selected into a DC before the presentation driver can write to it. A bit
map can be selected into the DC that created it or into any DC that has a compatible bit-map format.
Compatibility can be ensured by using one of the standard formats. Notice that the presentation driver
must select a bit map into a device context before attempting to draw it.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

hbm HBITMAP Bit-map handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreSelectBitmap

Return Codes: On completion, this function returns an HBITMAP value:

HBM_ERROR
Null
Other

Error
Successful
Handle of deselected bit map.

An error is raised when the bit map:

• Is incompatible with the DC and cannot be converted.
• Is already selected into a DC.
• Has been assigned a Set ID for use as a pattern in an area fill operation.

11-56 Presentation Driver Reference

device support function

Possible Errors Detected: Error codes posted by the graphics engine for this function include:

PMERR_BITMAP _IS_SELECTED
PMERR_DEV _FUNC _NOT JNSTALLED
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_BITMAP _DIMENSION
PMERR_INV _COORDINATE
PMERR_INV _HBITMAP
PMERA_INV _HDC
PMERR_INV _HRGN
PMERR_INV _IN_ AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV _SCAN_ START

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-57

device support function

GreSetAttributes

#define INCL_GRE_DEVSUPPORT

BOOL GreSetAttributes (hdc, lPrimType, flDefsMask, flAttrsMask, pAttrs, plnstance, lFunction)

This function sets the attributes for the specified primitive type according to the flags set in flDefsMask and
flAttrsMask. Notice that:

• Only attributes whose flags are set in flAttrsMask are modified.

• Attributes whose flags are set in both flDefsMask and flAttrsMask are set to their default values.

• Attributes whose flags are set only in flDefsMask, or whose flags are not set either in flDefsMask or
flAttrsMask, are unchanged.

• Attributes whose flags are set only in flAttrsMask are set to the value specified by pAttrs.

When GreSetAttributes occurs within a path bracket, it must not be used to set the geometric line width for
line attributes, nor used to set the foreground and background colors and mixes for character and marker
attributes.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

IPrimType

flDefsMask

flAttrsMask

pAttrs

plnstance

I Function

IPrlmType

pAttrs

Data Type Description

HOC Device context handle.

LONG Bundle primitive type. See below.

UL ONG Flags indicating the attributes to be set to default.

ULONG Flags indicating the attributes to be modified.

PBUNDLE Pointer to the fixed-format bundle record containing the attribute values to
be set. See below.

PVOID Pointer to instance data.

ULONG High-order WORD= flags; low-order WORD= NGreSetAttributes.

Indicates the bundle type. Valid primitive values are:

PRIM_LINE
PRIM_ CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle
Character attribute bundle
Marker attribute bundle
Pattern attribute bundle
Image attribute bundle.

This is a pointer to the fixed format-bundle record containing the attribute values to be set
as specified by flAttrsMask. Only the attribute fields corresponding to attribute flags set in
flAttrsMask, and not set in flDefsMask, contain valid values.

This buffer need only be large enough to contain data for the highest offset attribute
referenced.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

11-58 Presentation Driver Reference

device support function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the

condition. Reasons for failure of this function include:

PMERR_COORDINATE_OVERFLOW

PMERR_DEV _FUNC _NOT _INSTALLED

PMERR_EXCEEDS_MAX_SEG_LENGTH

PMERR_HDC_BUSY

PMERR_HUGE_FONTS_NOT _SUPPORTED

PMERR_INSUFFICIENT _MEMORY

PMERR_INV _BACKGROUND_ COL_A TTR

PMERR_INV _BACKGROUND _MIX_A TTR

PMERR_INV _ CHAR_DIRECTION_A TTR

PMERR_INV_CHAR_MODE_ATTR

PMERR_INV _CHAR_ SET _A TTR

PMERR_INV _CHAR_ SHEAR_A TTR

PMERR_INV _CODEPAGE

PMERR_INV _ COLOR_A TTR

PM ERR _INV_ COORD _SPACE

PMERR_INV _GEOM_LINE_WIDTH_ATTR

PMERR _INV _HDC
PMERR_INV_IN_AREA

PMERR_INV _LENGTH_OR_COUNT

PMERR_INV _LINE_END _A TTR

PMERR_INV _LINE_JOIN _A TTR

PMERR_INV_LINE_TYPE_ATTR

PMERR _!NV _LINE_ WIDTH _A TTR

PMERR_INV _MARKER_SET _A TTR

PMERR_INV ..:.MARKER_SYMBOL_A TTR

PMERR_INV _MIX_ATTR

PMERR_INV_PATTERN_REF _PT_ATTR

PMERR_INV _PATTERN_ SET _A TTR

PMERR_INV _PA TTERN_SET _FONT

PMERR_INV _PRIMITIVE_ TYPE

PMERR _INV_ SETID

PMERR_UNSUPPORTED_ATTR

PMERR_UNSUPPORTED_ATTR_VALUE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When this function is called within an area definition, an error is raised by the engine and the

condition PMERR_INV _IN_AREA is posted.

Chapter 11. Graphics Engine Internal Functions 11-59

device support function

GreSetBitmapDimension

#define INCL_GRE_DEVSUPPORT

BOOL GreSetBitmapDimension (hbm, pDimension, pinstance, lfunction)

This function associates height and width values for the bit map indicated by hbm. These values can be
read back later by calling GreGetBitmapDimension.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hbm HBITMAP Bit-map handle.

pDimension PSIZEL Pointer to width and height values in 0.1mm units. See below.
plnstance PVOID Pointer to instance data.

I Function ULONG High-order WORD= flags; low-order WORD= NGreSetBitmapDimension.

pDimension Pointer to a pair of parameters:

ulWldth Width of bit map in 0.1 mm units
ulHelght Height of bit map in 0.1 mm units.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BITMAP _IS_SELECTED
PMERR_HBITMAP _BUSY
PMERR_INV _HBITMAP

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-60 Presentation Driver Reference

LCID function

GreSetBitmaplD

#define INCL_GRE_LCID

BOOL GreSetBitmapID (hdc, hbm, llcid, plnstance, lFunction)

This function sets the local identifier (lcid) for a bit map. The presentation driver needs to assign an lcid
before the bit map can be used for area shading or as the pattern in a BitBlt operation. The bit map can be
of any format supported by the device. However, it can be simplified by the graphics engine before use.

Errors are raised by the graphics engine when:

• The local identifier is already in use.
• The bit map is already selected into a memory DC.

Note: When a bit map is destroyed, its lcid becomes undefined.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

hbm HBITMAP Bit-map handle

ILcid LONG Local identifier to be associated with the bit map

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetBitmaplD

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BITMAP _IS_SELECTED
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_INV _HBITMAP
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-61

device support function

GreSetDefaultArcParameters

#define INCL_GRE_DEVSUPPORT

BOOL GreSetDefaultArcParameters (hdc, pArcParms, plnstance, lFunction)

This function sets the arc parameters to the default values.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

pArcParms PARCPARAMS Pointer to the default arc parameters. See below.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetDefaultArcParameters.

pArcParms Pointer to an ARCPARAMS structure:

IP P coefficient
IQ Q coefficient
IR R coefficient
IS S coefficient.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-62 Presentation Driver Reference

device support function

GreSetDefaultAttributes

#define INCL_GRE_DEVSUPPORT

BOOL GreSetDefaultAttributes (hdc, lPrimType, flAttrsMask, pAttrs, plnstance, lFunction)

This function sets the default attributes for the specified primitive type according to the flags set in

flAttrsMask. Notice that:

• Only attributes whose flags are set in flAttrsMask are modified.

• Attributes whose flags are not set in flAttrsMask are unchanged.

• Attributes whose flags are set in flAttrsMask are set to the value specified by pAttrs.

When this function occurs within a path bracket, it must not be used to set the geometric line width for line

attributes. In addition, it must not be used to set the foreground and background colors and mixes for

character and marker attributes.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

IPrimType

flAttrsMask

pAttrs

plnstance

I Function

IPrlmType

pAttrs

Data Type Description

HOC Device context handle.

LONG Bundle primitive type. See below.

ULONG Flags indicating which attributes are to be modified.

PBUNDLE Pointer to the fixed-format bundle record containing the attribute values to

be set. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreSetDefaultAttributes.

Indicates the bundle type. Valid primitive values are:

PRIM_LINE
PRIM_CHAR
PRIM_MARKER
PRIM_AREA
PRIM_IMAGE

Line attribute bundle
Character attribute bundle
Marker attribute bundle
Pattern attribute bundle
Image attribute bundle.

This is a pointer to the fixed format-bundle record containing the attribute values to be set as

specified by flAttrsMask. Only the attribute fields corresponding to attribute flags set in

flAttrsMask contain valid values.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Chapter 11. Graphics Engine Internal Functions 11-63

device support function

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC _NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _ CHAR_DIRECTION_A TTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CHAR_SET_ATTR
PMERR_INV_CHAR_SHEAR_ATTR
PMERR_INV _CODEPAGE
PMERR_INV _ COLOR_A TTR
PMERR_INV _ COORD _SPACE
PMERR_INV_GEOM_LINE_WIDTH_ATTR
PMERR_INV _HDC
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_END _A TTR
PMERR_INV _LINE_JOIN_A TTR
PMERR_INV_LINE_TYPE_ATTR
PMERR_INV _LINE_ WIDTH_A TTR
PMERR_INV _MARKER_SET _A TTR
PMERR_INV _MARKER_SYMBOL_A TTR
PMERR_INV _MIX_A TTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV _PATTERN_ SET _FONT
PMERR_INV _PRIMITIVE_ TYPE
PMERR_INV _SETID
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-64 Presentation Driver Reference

device support function

GreSetDefaultViewingLimits

#define INCL_GRE_DEVSUPPORT

BOOL GreSetDefaultViewinglimits (hdc, prclViewinglimits, plnstance, lFunction)

This function sets the boundaries of the default viewing (clip) limits to the values specified by
prclViewinglimits. The current viewing limits are unaffected by this call (see "GreGetViewinglimits" on
page 10-67).

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle.

prclViewinglimits PRECTL Pointer to limits of viewing area. See below.

plnstance PVOID Pointer to instance data.

IF unction ULONG High-order WORD= flags; low-order WORD= NGreSetDefaultViewinglimits.

prclVlewlngLlmlts RECTL structure:

xLeft
yBottom
xRight
yTop

Minimum x-coordinate of viewing limits
Minimum y-coordinate
Maximum x-coordinate of viewing limits
Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _COORDINATE
PMERR_INV _ GRAPHICS_FIELD
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-65

device support function

GreSetGlobalAttribute

#define INCL_GRE_DEVSUPPORT

BOOL GreSetGlobalAttribute (hdc, lAttrType, lAttribute, flOptions, plnstance, lFunction)

This function sets the specified attribute in the pen, pattern, character, image, and marker bundles. The
attribute can be set to its default value or to a specified value.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc

IAttrType

I Attribute

fl Options

plnstance

I Function

IAttrType

flOptlons

HOC Device context handle.

LONG Specifies the attribute. See below.

LONG New attribute value.

UL ONG Option flag. See below.

PVOID Pointer to instance data.

UL ONG High-order WORD= flags; low-order WORD= NGreSetGlobalAttribute.

Attribute type:

A TYPE_ COLOR
ATYPE_BACK_COLOR
ATYPE_MIX_MODE
ATYPE_BACK_MIX_MODE

Foreground color
Background color
Foreground mix
Background mix.

Note: ATYPE_BACK_COLOR and ATYPE_BACK_MIX_MODE do not apply to the line bundle.

The only allowable option flag is GA TTR_DEFAUL T, which specifies that the attribute
indicated by IAttrType should be set to its default value. If the GATTR_DEFAULT flag is not
set, the function sets the attribute to the value specified by !Attribute.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_HDC_BUSY
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _ COLOR_A TTR
PMERR_INV _HDC
PMERR_INV _IN_AREA
PMERR_INV _MIX_A TTR
PMERR_INV _RESET_ OPTIONS

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-66 Presentation Driver Reference

device context function

GreSetHandle

#define INCL_GRE_DCS

BOOL GreSetHandle (hdc, hHandle, ilndex, plnstance, lFunction)

This function stores a handle or variable in the device context. Up to four handles can be stored in a DC at
one time. The presentation driver can only use this function for device contexts that it has created for its
own use with GreOpenDC.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc UL ONG Device context handle.

hHandle UL ONG Handle to be associated with hdc.

ilndex ULONG Index value of the handle in the range 0-3. For a normal device context,
this is a reserved parameter.

plnstance PVOID Pointer to instance data.

I Function UL ONG High-order WORD= flags; low-order WORD= NGreSetHandle.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC_BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-67

device context function

GreSetProcessControl

#define INCL_GRE_DCS

BOOL GreSetProcessControl (hdc, flMask, flProcess, plnstance, lFunction)

This function provides a mechanism to control drawing, boundary computation and correlation. Bounds
are returned in graphics model;.space coordinates. If a composite transform is applied to the drawing
primitives, the bounds values must be transformed back to their original values before merging with the
previous bounds values.

Correlation is performed in page-coordinate space on the output of primitives that have been clipped only
to the viewing limits and graphics field. Notice that correlation is performed for all functions except
alphanumeric functions and GreErasePS. Boundary computation is performed for all functions except
GreErasePS.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters

hdc

fl Mask

fl Process

plnstance

I Function

fl Process

Data Type

HOC

UL ONG

ULONG

PVOID

ULONG

Process-control flags:

PCTL_DRAW

PCTL_BOUND

PCTL_ CORRELATE

Description

Device context handle.

Only those flags with the corresponding bit in this parameter set are
modified.

Process flags. See below.

Pointer to instance data.

High-order WORD= flags; low-order WORD= NGreSetProcessControl.

Has no effect on GreErasePS. If set, drawing primitives should
appear on screen. Otherwise, output operations such as GreBitblt,
GrePaintRegion, GreSetPel and other drawing primitives are not
displayed.

Set to indicate that GPl_BOUNDS must be accumulated.

Set to indicate that correlation is to be done.

PCTL_USERBOUNDS When set, indicates that USER_BOUNDS are to be collected for the
window manager.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_HDC _BUSY
PMERR_INV _HDC

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-68 Presentation Driver Reference

journal function

GreStartJournalFile

#define INCL_GRE_JOURNALING

BOOL GreStartJournalFile (hdc, hJournal, plnstance, lFunction)

This function starts the journaling process. Opens the previously created journal file and turns on the
COM_RECORDING bit. Subsequent calls to this DC drop through GreAccumulateJournalFile until
GreStopJournalFile is called.

Note: The COM_DRAW bit is turned off until GreStopJournalFile is called.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

hJournal UL ONG Journal file handle

plnstance PVOID Pointer to instance data

I Function ULONG High-order WORD= flags; low-order WORD= NGreStartJournalFile

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_BITMAP _IS_ SELECTED
PMERR_ COORDINATE_ OVERFLOW
PMERR_DEV _FUNC_NOT _INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP _BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT _SUPPORTED
PMERR_INSUFFICIENT _MEMORY
PMERR_INV _BACKGROUND_ COL_A TTR
PMERR_INV _BACKGROUND _MIX_A TTR
PMERR_INV _BITMAP _DIMENSION
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV _ CHAR_MODE_A TTR
PMERR_INV _CODEPAGE
PMERR_INV _COLOR_A TTR
PMERR_INV _ COORD _SPACE
PMERR_INV _COORDINATE
PMERR_INV_DC_DATA
PMERR_INV _DC_ TYPE
PMERR_INV _DRIVER_NAME
PMERR_INV _HBITMAP
PMERR_INV _HDC
PMERR_INV _HJOURNAL

Chapter 11. Graphics Engine Internal Functions 11-69

journal function

PMERR_INV _HRGN
PMERR_INV _ID
PMERR_INV _IN_AREA
PMERR_INV _IN_PATH
PMERR_INV _INFO_ TABLE
PMERR_INV _LENGTH_ OR_ COUNT
PMERR_INV _LINE_ TYPE_A TTR
PMERR_INV _METAFILE
PMERR_INV _MIX_ATTR
PMERR_INV _PA TTERN_REF _PT _A TTR
PMERR_INV _PATTERN_SET _A TTR
PMERR_INV_PATTERN_SET_FONT
PMERR_INV _RECT
PMERR_INV _REGION_ CONTROL
PMERR_INV_SCAN_START
PMERR_JFILE_BUSY
PMERR_RAM_JNL_FILE_TOO_SMALL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-70 Presentation Driver Reference

Journal function

GreStopJournalfile

#define INCL_GRE_JOURNALING

BOOL GreStopJournalFile (hdc, hJournal, plnstance, lFunction)

This function writes the END_OF _JOURNALFILE marker into the journal file, closes the journal file, and
turns off the COM_RECORDING bit.

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

hdc HOC Device context handle

hJournal UL ONG Journal file handle

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD=flags; low-order WORD= NGreStopJournalFile

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_INV_DC_DATA
PMERR_INV _HDC
PMERR_INV _HJOURNAL
PMERR_INV _IN_AREA
PMERR_INV_IN_PATH
PMERR_INV _METAFILE
PMERR_JFILE_BUSY
PMERR_RAM_JNL_FILE_TOO_SMALL

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 11. Graphics Engine Internal Functions 11-71

font function

GreUnLoadFont

#define INCL_GRE_FONTS

BOOL GreUnloadFont (pszFilename, plnstance, lFunction)

This function unloads the private font definitions previously loaded from the resource file indicated by
pszFilename. Before unloading any fonts, the caller must ensure that:

• The fonts are not in use for the current character set.
• The relevant lcids have been deleted (see "GreDeleteSetld" on page 11-20).

Support: This function is supported by the graphics engine.

Stack Frame

Parameters Data Type Description

pszFilename PSZ Pointer to a NULL-terminated string containing the file path and name of
the font file

plnstance PVOID Pointer to instance data

I Function UL ONG High-order WORD= flags; low-order WORD= NGreUnLoadFont

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

Successful
Error.

Possible Errors Detected: When an error is detected, the graphics engine calls WinSetErrorlnfo to post the
condition. Reasons for failure of this function include:

PMERR_BASE_ERROR
PMERR_FONT _FILE_NOT _LOADED

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

11-72 Presentation Driver Reference

system functions

Chapter 12. System Functions

This chapter describes system functions that are available to presentation drivers:

• GetDrive.rlnfo (see page 12-2)
• SetDriverlnfo (see page 12-3)
• SSAllocMem (see page 12-4)
• SSFreeMem (see page 12-5)
• VisRegionNotify (see page 12-6)
• WinSetErrorlnfo (see page 12-7)

© Copyright IBM Corp. 1992 12-1

system function

GetDriverlnfo

LONG APIENTRY GetDriverinfo (hEngObject, ullndex, hdc)

This function returns a driver object handle for the engine object identified by hEngObject. The parameter
hEngObject can be a DC handle or an engine bit-map handle (for example, the source handle, which would
be passed to the presentation driver's GreBitblt routine). If hEngObject is a DC, the return code is a pointer
(plnstance) to the instance data of that DC. If hEngObject is a bit map, the return code is the driver's
handle for the bit map (that is the handle returned to the presentation driver when the bit map was
created).

GetDriverlnfo includes a check to ensure that the object is, or was created by, an instance of a DC for the
same device as the DC identified by hdc. If the check is not successful, the function returns
GPl_AL TERROR. GetDriverlnfo is exported by the graphics engine at ordinal 30 and, if the presentation
driver wants to call this function, it must be imported by the driver's module definition file.

Parameters

Parameters Data Type Description

hEngObject ULONG Handle of a DC or bit map

ullndex ULONG Has the following settings:

lndex=O hEngObject is a DC handle
lndex-1 hEngObject is a bit-map handle

hdc ULONG Device context handle, which identifies the calling DC

Return Codes: If successful, the function returns the instance pointer associated with the object DC or
the presentation driver's handle to the object bit map. If an error is detected, the function returns
GPl_ALTERROR.

12-2 Presentation Driver Reference

system function

SetDriverlnfo

LONG APIENTRY SetDriverlnfo (hDrvObject, hEngObject, ullndex, hdc)

This function associates a driver object handle with the object identified by an engine object handle.
Object handles are stored in the bit maps when they are created. Calling SetDriverlnfo provides a method
the presentation driver can use to change the driver handle in the bit map. SetDriverlnfo includes a check
to ensure that the object is, or was created by, an instance of a DC for the same device as the DC identified
by hdc. If the check is not successful, the function returns GPl_ALTERROR.

SetDriverlnfo is exported by the graphics engine at ordinal 31. If a presentation driver calls this function, it
must be imported by the driver's module definition file.

Parameters

Parameters Data Type Description

hDrvObject UL ONG Driver's handle for the object. This value must not be -1.

hEngObject UL ONG Engine's handle for the object. This value must not be -1.

ullndex UL ONG Has the following settings:

llndex - 0 Reserved.
llndex - 1 hObject is a bit-map handle.

hdc UL ONG Device context handle.

Return Codes: If successful, the function returns the driver object handle that was associated with the
object before any changes were made by SetDriverlnfo. If an error is detected, the function returns
GPl_AL TERROR.

Chapter 12. System Functions 12-3

system function

SSAUocMem

ULONG APIENTRY SSAllocMem (pBaseAddress, ObjectSize, Flags)

This function allocates a shared memory object that is managed by the selector server component of the
graphics engine. Display drivers should use SSAllocMem to allocate memory for objects such as bit maps
and regions. This is necessary to ensure that the returned memory object is a global memory object for
which the system can set a new owner, or which can be marked as having no owner.

Parameters

Parameters Data Type Description

pBaseAddress PVOID Pointer to a variable, which will receive the base address of the allocated
memory.

ObjectSize UL ONG Value that specifies the size in bytes of the shared memory to allocate.
The size is rounded up to the next page boundary.

Flags UL ONG Reserved. Must be 0.

Return Codes: SSAllocMem returns a ULONG value:

NO_ERROR
ERROR_INVALID_PARAMETER
ERROR_NOT _ENOUGH_MEMORY.

Note: Other return codes listed under DosAllocSharedMem might also apply.

12-4 Presentation Driver Reference

SSFreeMem

ULONG APIENTRY SSFreeMem (BaseAddress)

This function frees shared memory that was allocated by a call to SSAllocMem.

Parameter

Parameters Data Type Description

BaseAddress PVOID Base address of the memory object to be freed

Return Codes: SSFreeMem returns a ULONG value:

NO_ERROR
ERROR_ACCESS_DENIED
ERROR_INVALID_PARAMETER.

system function

Chapter 12. System Functions 12-5

system function

VisRegionNotify

BOOL APIENTRY VisRegionNotify (hdc)

This function recalculates the visible region and validates the DC region. The handling routine in the
graphics engine does the necessary calculations and calls the GreNotifyClipChange (page 8-96) routine in
the presentation driver so that the driver can receive the new clip regions.

VisRegionNotify is used only by display drivers. These drivers maintain an HDC_IS_DIRTY flag that is set
on by GreDevicelnvalidateClipRegion and cleared by GreNotifyClipChange. In the display driver, the
handling routines for all drawing functions should check the HDC_IS_DIRTY flag, and if it is set, call
VisRegionNotify before drawing.

VisRegionNotify is available across the system at Ring 3. Presentation drivers do not need to import this
function through the module definition file.

Parameter

Parameters Data Type Description

hdc UL ONG Device context handle

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

12-6 Presentation Driver Reference

~
j

system function

WinSetErrorlnfo

VOID cdecl WinSetErrorlnfo (idError. fsOptions. argl ... argN)

This function posts an error message, which can be retrieved by an application that calls WinGetLastError.

The syntax of the call to WinSetErrorlnfo allows a variable number of parameters. The minimum

requirement is the appropriate ERRORID structure and a NULL value for fsOptions.

Note: Presentation drivers do not need to import this function through the module definition file.

Parameters

Parameters

id Error

ts Options

arg1...argN

Id Error

fsOptions

Data Type Description

ERRORID ERRORID structure. See below.

ULONG Option flags. See below.

ULONG Variable number of optional arguments. See below.

An ERRORID structure with the following values:

ISeverity Valid values are:

SEVERITY _ERROR
SEVERITY _NOERROR
SEVERITY_ SEVERE
SEVERITY_WARNING
SEVERITY_ UNRECOVERABLE

IErrorCode Error code. See "Presentation Manager Error Codes" on page 2-3 for a list of

defined values.

Option flags:

4000H
2000H
0008H
0004H

Do not call DosBeep.
Do not prompt the user.
The next parameter is a base OS/2 error code.
fsOptions must be set to 0004H to use the variable arguments arg1 ... argN. arg1

must contain the number of arguments that follow, not including arg1 itself. Notice

that fsOptions cannot equal OOOCH, that is, DOSERROR and argcount are mutually

exclusive.

arg1 ••• argN Variable number of optional arguments. These parameters have no significance except

when the presentation driver is reporting a base OS/2 error. The two examples below show

how WinSetErrorlnfo is used to post a presentation driver error and to post a base OS/2

error:

Example #1. To post a presentation driver error:

WinSetErrorlnfo (ERRORID (SEVERITY_ERROR, PMERR_INV_COORDINATE), NOBEEP);

Example #2. To post a base OS/2 error:

WinSetErrorlnfo (ERRORID (SEVERITY_WARNING, ErrorCode). (DOSERROR+NOBEEP+NOPROMPT). DosErrorCode);

Return Codes: This function returns VOID.

Chapter 12. System Functions 12-7

system function

12-8 Presentation Driver Reference

Appendix A. Syntax Conventions

The programming statements in this book use the C language syntax. Support for code written in C is
provided in header files identified by the .H file extension. Assembler support is provided in the include
files identified by the .INC extension.

Parameter Names

Parameter names are constructed to show the data type of the parameter and to indicate its use:

• A lowercase prefix of one or more characters that indicates the data type.
• An optional qualifier starting with an uppercase letter.

Where possible, standard names have been used to describe parameters. Where multiple word
qualifiers are used, the order of the words is not significant.

For example:

hdc /* device context handle */
pszFilename /* pointer to a character string */

The following standard base tags and their associated type names are defined:

Tag
f

ch
s

uch
us
ul
b
sz
f b
f s
fl

r
rd
pf n
x
y

Data Type
BOOL

CHAR
SHORT

LONG

UCHAR
USHORT
ULONG
BYTE
CHAR[]
UCHAR
US HORT
UL ONG

REAL
DOUBLE

Description
Flag or Boolean variable. The qualifier describes the condition associated with the
flag when it is TRUE. For example, fSuccess is TRUE if successful, FALSE if not;
whereas fError is TRUE if an error occurred, FALSE if no error occurred. For
objects of type BOOL, the value 0 implies FALSE, any non-zero value implies
TRUE.
Signed 8-bit quantity; a character.
Signed 16-bit quantity; a SHORT. This is often used in place of us when it does not
matter whether the value is signed or unsigned.
Signed 32-bit quantity; a LONG. This is often used in place of ul when it does not
matter whether the value is signed or unsigned.
Unsigned 8-bit quantity.
Unsigned 16-bit quantity.
Unsigned 32-bit quantity.
Unsigned 8-bit quantity; a byte. Same as uch.
NULL-terminated string of characters.
Byte of flags, that is, an array of flags packed in a BYTE.
SHORT of flags, that is, an array of flags packed in a USHORT.
LONG of flags, that is, an array of flags packed in a ULONG. The three preceding
types are used when more than one flag is combined into a byte, SHORT or LONG.
Typically, the values are combined with the OR operator and are always unsigned.
Real number, single precision 32-bits.
Real number, double precision 64-bits.
Pointer to a function.
X-coordi nate.
Y-coordinate.

The following standard prefixes are also defined:

Prefix
p
a
i
c

Description
32-bit pointer for an 80386 processor. For example, pch is a pointer to a character.
Array. For example, ach is an array of characters.
Index into an array. For example, an ich is used to index an ach.
Count. For example, cch is a count of characters.

© Copyright IBM Corp. 1992 A-1

Prefix
d

h

mp

off

id

cmd

Description
Delta or difference between instances of a type. For example, dx is the difference between two

values of x.
Handle. A value that uniquely identifies an object but cannot directly be used to access it. For
example, hps is a PS handle.
Mapping array. This prefix is always followed by two base types rather than just one and
represents the most general case of an array. Mathematically, an array is simply a function
mapping the index to the value stored in the array. mp is an abbreviation of map. In the
construct mpab, a is the type of the index and bis the type of the value stored in the array. In

most cases, the only type that is important is the type of the value. The index is usually an
integer with no other meaning (the "a" prefix is used in this instance).
Offset. Generally used as an offset within a data structure. The actual address of the element
within the data structure is derived by adding an offset to a pointer, which points to the
beginning of the data structure. Normally, off is a byte offset. For example: pfoo = (FOO
*}((BYTE *}pfooBase + offfoo}
Identifier. This is generally used for values that identify some object. Usually the association of
the ID value and the object are established by the programmer. For example, all windows are
identified by their Window ID, which can be set and queried by the programmer.
Command. Used for command values, typically as function parameters.

Some types of parameter are used in pairs; the qualifiers used reflect the relationship between the two

variables. For example:

First/Last

Min/Max

Old/New

Next/Prev

Src/Dst
T
Save
Cur

First and last elements in a set. These are typically used with indexes or pointers (pchFirst,
pchlast). Both values represent valid values (compare with Min/Max below). For all valid

values of x: xFirst < = x < = xlast. The use of > with First or < with Last is almost always

an off-by-one error.

For example, to determine whether an ich is within ichFirst and ichlast:

if (ich >= ichfirst && ich <= ichlast}

A typical loop:
for (ich = ichfirst; ich <= ichlast; ich++}

Similar to First/Last except that Max is not a valid value in the set (Min is a valid value). For
all valid values of x in the set: xMin < = x < xMax. The use of > with Min or < = with Max
is almost always an off-by-one error.

For example, to determine whether an ich is within ichMin and ichMax:

if (ich >= ichMin && ich < ichMax}

A typical loop:
for (ich = ichMin; ich < /* or != */ ichMax; ich++}

The current value (Cur) qualifier can be used with Min and Max when Min or Max can
change over time (for example, pbStackMaxCur).
Old and new. Typically used for values or states when it is necessary to compare the old

and new states of the value.
Next and previous. Typically used in situations where items are being enumerated such as
with linked lists.
Source and destination. Typically used in transfer operations.
A temporary value.
A temporary saved value. Typically used when saving and restoring some state.
Current value.

A-2 Presentation Driver Reference

The base types and their prefixes are defined as follows:

Data Type Prefix
PSZ psz
PCH pch
HAB hab
HPS hps
HOC hdc
HRGN hrgn
HBITMAP hbmp
PLO NG pl
POI NTL ptl
POI NTL pt
RECTL rel
REC TL re
HWND hwnd
WPOINT wpt
WRECT wrc
FIXED f x

Parameters for defined structures are the defined parameter names. For example:

AREADEFS struct
{

def Set
fFlags
CodePage

}AREADEFS

System-defined constants and flags are represented as two or more uppercase WORDs or mnemonic
abbreviations separated by underscores. For example, SYS_CONSTANT and SYS_FLAG.

Return Values: Function handling routines pass full 32-bit return codes back to the calling function. In
MASM, the return code is passed in the EAX Register.

Register Content Preservation: Registers EAX, ECX, and EDX can be destroyed. All other registers
must be preserved.

Handles: All handles and pointers are 32-bit values.

Coordinates: All coordinates are passed as signed 32-bit values unless stated otherwise. World,
model, and presentation-page space coordinates are restricted to the 28 low-order bits and lie within the
range FSOOOOOOH through 07FFFFFFH. Device space coordinates are restricted to the 16 low-order bits and
lie within the range FFFFOOOOH through OOOOFFFFH.

Appendix A. Syntax Conventions A-3

A-4 Presentation Driver Reference

Appendix B. Journal File Format

Note: The journal file format is subject to change and should only be accessed by the engine functions. It
is presented here to aid debugging of hardcopy drivers that use journal files.

The OS/2 graphics engine journal functions create a file, either in memory or on disk. This file is used to
record all OS/2 Presentation Manager graphics functions so that a balance can be achieved between
memory usage, image detail, hardcopy device capabilities, and hardcopy device performance.

The format of the record is as follows:

Flags Length Function Arguments arg data (If any)

1 WORD 1 WORD (arg cnt DWORDs) Variable size

LOW memory HIGH memory

The arg data is the data pointed to by any arguments in the function argument list. The actual journaled
argument is changed into an offset to the journal arg data and is fixed up at playback time.

If the bit-map bits or region rects are dumped, they will be written to disk immediately following the journal
record to which they belong.

The format of this additional data for bit maps is:

Data Size Bit Map Height Planes Bit Count BITS
Width

1 DWORD 1 WORD 1 WORD 1 WORD 1 WORD n bytes, where n =
((bitcount*width + 31)/32)*height*planes*4

The format of this additional data for regions rects is:

Data Size DATA

1 DWORD Data size/ 16 RECTs

The journal record for any function (including any arg data but not including dumped bit map or region
data) is assumed to fit into the journal buffer. If regions or bit maps are written out, they are first dumped
into the region/bit-map buffer. It is not necessary for the data to fit into this buffer all at once. However, it
is assumed that regions do not have more than 64KB rectangles and bit maps do not have more than 64KB
scans.

When private objects are created for the four special case functions, they are recorded. In this way, they
can be destroyed by DeleteJournalFile and re-used on subsequent playbacks to the same journal file
handle. If metafiling this, avoid recreating the regions from rects or the bit map from the bits for every
play.

© Copyright IBM Corp. 1992 B-1

B-2 Presentation Driver Reference

Appendix C. Bit Map Simulation (Hardcopy Drivers Only)

Presentation drivers for monochrome raster devices can use the system's display driver, DISPLAY.DLL, to

draw the page image on a bit map. This technique reduces the amount of code in the hardcopy driver and

ensures that all devices use the same drawing algorithms.

To use the display driver, the hardcopy driver has to open and manage a display DC. It must do this
without invoking the graphics engine (the hardcopy driver has to act as if it were the engine). When an

application opens a hardcopy DC, the Enable subfunctions in the hardcopy driver must issue appropriate

calls to the Enable subfunctions in the display driver.

Note: This technique is works well for IBM display drivers. However, there is no guarantee of continued
compatibility when using OEM display drivers.

These Enable subfunctions perform the following actions:

• FlllLogicalDevlceBlock

1. Loads the display driver and gets the address of its enable entry point.

2. Saves a copy of the default dispatch table to pass to the display driver's FilllogicalDeviceBlock
routine.

3. Calls the display driver's enable entry point with the parameters set for FilllogicalDeviceBlock and

passes a pointer to the saved default dispatch table. The display driver initializes this dispatch table

and it can then be used to pass Grexxx routines to the display DC.

• FlllPhyslcalDevlceBlock

1. Saves the address of the display driver's enable entry point in the hardcopy driver's physical device

block.

2. Calls the display driver's enable entry point with the parameters set for FillPhysicalDeviceBlock and

OD _MEMORY device type.

3. Saves the value returned from the display driver's FillPhysicalDeviceBlock routine. (The value,

ulStatelnfo, is passed back to the display driver's EnableDeviceContext routine.)

Note: In some source code, the name, pDCI, is used for the ulStatelnfo parameter.

• EnableDevlceContext

1. Calls the display driver's enable entry point with the parameters set for EnableDeviceContext. The

DENPARAMS structure passed to the EnableDeviceContext routine contains the same DC handle

(ulHDC) that was received by the hardcopy driver.

2. Saves the value returned from the display driver's FillPhysicalDeviceBlock routine. This value,
plnstance, needs to be passed back to the display driver on every call through the dispatch table.

Note: In source code, plnstance might be referred to as the magic cookie.

• CompleteOpenDC

1. Calls the display driver's enable entry point with the parameters set for CompleteOpenDC.

Any Grexxx functions called from the operating system to the DC will enter the hardcopy DC through its

dispatch table. Function handling routines in the hardcopy driver monitor the incoming calls and redirect
those calls that affect the image through the display DC's dispatch table. When a GreEscape routine for

DEVESC_NEWFRAME or DEVESC_ENDDOC is detected, the hardcopy driver transfers the bit-map bits from

j the display DC to a local buffer and sends them as scan lines or bands to the physical device driver.

© Copyright IBM Corp. 1992 C-1

C-2 Presentation Driver Reference

Glossary

This glossary defines the terms used in this book. It
includes terms and definitions from the IBM Dictionary
of Computing, SC20-1699 as well as terms specific to
the Presentation Manager but it is not a complete
glossary for OS/2 2.0.

A
accelerator. A single keystroke that invokes an
application-defined function.

action. One of a set of defined tasks a computer
performs. Users request the application to perform an
action in several ways: typing a command, pressing a
function key or selecting the action name from an
action bar or menu.

action bar. The area at the top of a panel that contains
keywords that give users access to actions available in
the current panel. When users select an action bar
choice, a group of actions or additional keywords
appear in a pull-down extension from the action bar.

action point. The current position on the screen at
which the pointer is pointing. (Contrast with hotspot
and input focus.)

active program. A program currently running on the
computer. See also interactive program,
non interactive program and foreground program.

active window. The window with which the user is
currently interacting.

alphanumeric video output. Output to the logical video
buffer when the video adapter is in text mode and the
logical video buffer is addressed by an application as a
rectangular array of character cells.

anchor block. An area of Presentation
Manager-internal resources allocated to a process or
thread that calls Winlnitialize.

anchor point. A point in a window used by a program
designer or by a window manager to position a
subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface. The formally
defined programming language that is between an IBM
application program and the user of the program. See
also GPI.

area. In computer graphics, a filled shape such as a
solid rectangle.

© Copyright IBM Corp. 1992

ASCII. American National Standard Code for
Information Interchange.

aspect ratio. In computer graphics, the width-to-height
ratio of an area, symbol or shape.

asynchronous. (1) Without regular time relationship.
(2) Unexpected or unpredictable with respect to the
execution of a program's instructions.

attributes. Characteristics or properties that can be
controlled, usually to obtain a required appearance; for
example, the color of a line. See also graphics
attributes and segment attributes.

AVIO. Advanced Video Input/Output.

B
background color. The color in which the background
of a graphic primitive is drawn.

background mix. An attribute that determines how the
background of a graphic primitive is combined with the
existing color of the graphics presentation space.
Contrast with mix.

Bezier curves. A mathematical technique of specifying
smooth continuous lines and surfaces which require a
starting point and a finishing point with several
intermediate points that influence or control the path of
the linking curve. Named after Dr. P. Bezier.

bitmap. A representation in memory of the data
displayed on an APA device, usually the screen.

border. A visual indication (for example, a separator
line or a background color) of the boundaries of a
window.

button. A mechanism on a pointing device, such as a
mouse, used to request or initiate an action. Contrast
with pushbutton and radio button.

c
cancel. An action that removes the current window or
menu without processing it and returns the previous
window.

CASE statement. Provides, in C/2, the body of a
window procedure. There is one CASE statement for
each message type written to take specific actions.

cell. See character cell.

CGA. Color graphics adapter.

X-1

chained llst. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonym for linked
list.

character. A letter, digit or other symbol.

character box. In computer graphics, the boundary
that defines in world coordinates the horizontal and
vertical space occupied by a single character from a
character set. See also character mode. Contrast with
character cell.

character cell. The physical, rectangular space in
which any single character is displayed on a screen or
printer device. Position is addressed by row and
column coordinates. Contrast with character box.

character code. The means of addressing a character
in a character set, sometimes called code point.

character mode. The character mode in conjunction
with the font type, determines the extent to which
graphics characters are affected by the character box,
shear and angle attributes.

check box. A control window shaped like a square
button on the screen, that can be in a checked or
unchecked state. It is used to select one or more items
from a list. Contrast with radio button.

check mark. The symbol (..j) that is used to indicate a
selected item on a pull-down.

choice. An option that can be selected. The choice can
be presented as text, as a symbol (number or letter) or
as an icon (a pictorial symbol).

class. See window class.

class style. The set of properties that apply to every
window in a window class.

cllent area. The area in the center of a window that
contains the main information of the window.

clipboard. An area of main storage that can hold data
being passed from one Presentation Manager
application to another. Various data formats can be
stored.

clipping. In computer graphics, removing those parts
of a display image that lie outside a given boundary.

clip limits. The area of the paper that can be reached
by a printer or plotter.

clipping path. A clipping boundary in world coordinate
space.

code page. An assignment of graphic characters and
control function meanings to all code points.

X-2 Presentation Driver Reference

code point. Synonym for character code.

color dithering. A process that simulates a single
color on the screen by setting alternate pels, for
example, to different colors.

command. (1) The name and parameters associated
with an action that can be performed by a program. A
command is one form of action request. Users type in
the command and enter it. (2) An action users request
to interact with the command area.

command area. An area composed of two elements: a
command field prompt and a command entry field.

command entry fleld. An entry field in which users
type commands. The entry field is preceded by a
command field prompt. These two elements make up
the command area.

command line. On a display screen, a display line
(usually at the bottom of the screen) in which only
commands can be entered.

command prompt. A field prompt showing the location
of the command entry field in a panel.

Common Programming Interface. A consistent set of
specifications for languages, commands and calls to
enable applications to be developed across all SAA
environments. See also Systems Application
Architecture.

Common User Access. A set of rules that define the
way information is presented on the screen and the
techniques for the user to interact with the information.

control. The means by which an operator gives input
to an application. A choice corresponds to a control.

Control Panel. In the Presentation Manager, a
program used to set up user preferences that act
globally across the system.

Control Program. The basic function of OS/2 including
DOS emulation and the support for keyboard, mouse
and VIO.

control window. A class of window used to handle a
specific kind of user interaction. Radio buttons and
check boxes are examples.

correlation. The action of determining which element
or object within a picture is at a given position on the
display. This follows a pick operation.

CPI. Common Programming Interface.

current position. The point from which the next
primitive will be drawn.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor indicates

where input from the device will be placed. Types of
cursors include text cursors, graphics cursors and
selection cursors. Contrast with pointer and input
focus.

D
data structure. (ISO) The syntactic structure of
symbolic expressions and their storage allocation
characteristics.

DBCS. See double-byte character set.

default procedure. Function provided by the
Presentation Interface that may be used to process
standard messages from dialogs or windows.

default value. A value used when no value is explicitly
specified by the user. For example, in the graphics
programming interface, the default line type is 'solid'.

Desktop Manager. In the Presentation Manager, a
window from which users can start one or more listed
programs.

desktop window. The window corresponding to the
physical device against which all other types of
windows are established.

device context. A logical description of a data
destination such as memory, metafile, display, printer
or plotter. See also direct device context, information
device context, memory device context, metafile device
context, queued device context and screen device
context.

device driver. A file that contains the code needed to
attach and use a device such as a display, printer or
plotter.

device space. Coordinate space in which graphics are
assembled after all GPI transformations have been
applied. Device space is defined in device-specific
units.

dialog. The interchange of information between a
computer and its user through a sequence of requests
by the user and the presentation of responses by the
computer.

dialog box. A type of window that contains one or
more controls for the formatted display and entry of
data. Also known as a pop-up window. A modal dialog
box is used to implement a pop-up window.

Dialog Box Editor. A what-you-see-is-what-you-get
(WYSIWYG) editor that creates dialog boxes for
communicating with the application user.

dlalt-g Item. A component (for example, a menu or a
button) of a dialog box. Dialog items are also used
when creating dialog templates.

dialog tag language. A markup language used by the
DTL compiler to create dialog objects. It is based on
the Standard Generalized Markup Language (SGML).

dialog template. The definition of a dialog box which
contains details of its position, appearance and window
ID; and the window ID of each of its child windows.

direct device context. A logical description of a data
destination that is a device other than the screen (for
example, a printer or plotter) and where the output is
not to go through the spooler. Its purpose is to satisfy
queries. See also device context.

direct manipulation. The action of using the mouse to
move objects around the screen. For example, moving
files and directories about in the File Manager.

directory. A type of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pel.

dithering. The process used in color displays whereby
every other pel is set to one color and the intermediate
pels are set to another. Together they produce the
effect of a third color at normal viewing distances. This
process can only be used on solid areas of color; it
does not work on narrow lines.

double-byte character set (DBCS). A set of characters
in which each character is represented by two bytes.
Languages such as Japanese, Chinese and Korean
which contain more characters than can be
represented by 256 code points require double-byte
character sets. As each character requires two bytes,
the entering, displaying and printing of DBCS
characters requires hardware and software that can
support DBCS.

dragging. In computer graphics, moving an object on
the display screen as if it were attached to the pointer.

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged by releasing the select button of the pointing
device.

DTL. See dialog tag language.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved
from one screen position to another without affecting
the rest of the displayed picture.

Glossary X-3

E
EGA. Extended graphics adapter.

element. An entry in a graphics segment that
comprises one or more graphics orders and that is
addressed by the element pointer.

entry field. A panel element in which users type
information. Compare to selection field.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts and explanatory text.

extended help. A facility that provides users with
information about an entire application panel rather
than a particular item on the panel.

entry-field control. The means by which the
application receives data entered by the user in an
entry field. When it has the input focus, it displays a
flashing pointer at the position where the next typed
character will go.

exit. The action that terminates the current function
and returns the user to a higher level function.
Repeated exit requests return the user to the point from
which all functions provided to the system are
accessible. Contrast with cancel.

extended-choice selection. A mode that allows the
user to select more than one item from a window. Not
all windows allow extended choice selection. Contrast
with multiple-choice selection.

F
field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used. The information is
dependent upon the context within the work session.

File Manager. In the Presentation Manager, a program
that displays directories and files and allows various
actions on them.

file specification. The full identifier for a file which
includes its file name, extension, path and drive.

fillet. A curve that is tangential to the end points of two
adjoining lines. See also polyfillet.

font. A particular size and style of typeface that
contains definitions of character sets, marker sets and
pattern sets.

X-4 Presentation Driver Reference

foreground program. The program with which the user
is currently interacting. Also known as interactive
program.

frame. The part of a window that can contain several
different visual elements specified by the application
but drawn and controlled by the Presentation Manager.
The frame encloses the client area.

frame styles. Different standard window layouts
provided by the Presentation Manager.

full-screen application. An application program that
occupies the whole screen.

function key. A key that causes a specified sequence
of operations to be performed when it is pressed; for
example, F1 and Alt-K.

G
glyph. A graphic symbol whose appearance conveys
information.

GPI. Graphics Programming Interface. The formally
defined programming language that is between an IBM
graphics program and the user of the program. See
also AP/.

graphics. A picture defined in terms of graphic
primitives and graphics attributes.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type and
shading-pattern definition. See also segment
attributes.

graphics field. The clipping boundary that defines the
visible part of the presentation-page contents.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any model
transforms have been applied. Also known as model
space.

graphic primitive. A single item of drawn graphics,
such as a line, arc, or graphics text string. See also
graphics segment.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a pull-down is
unavailable.

group. A collection of logically-connected controls.
For example, the buttons controlling paper size for a
printer. See also program group.

H
half-toning. The conversion of colors to gray tones to

simulate color on a monochrome device.

handle. An identifier that represents an object, such

as a device or window, to the Presentation Interface.

hardcopy. Physical output (such as paper, slides or

transparencies) from a device.

hard error. An error condition on a network that

requires either that the system be reconfigured or that

the source of the error be removed before the system

can resume reliable operation.

heap. An area of free storage available for dynamic

allocation by the program. Its size varies depending on

the storage requirements of the program.

help. A function that provides information about a

specific field, an application panel or information about

the help facility. It provides field help when the cursor

is on a selection or entry field in an application panel

or another help panel. It provides information about

the application panel, called extended help, when the

cursor is not in an interactive field.

help Index. A facility that allows the user to select

topics for which help is available.

help panel. A panel with information to assist users

that is displayed in response to a help request from the

user.

help window. A Common User Access defined

secondary window that displays information when the

user requests help.

hit testing. The means of identifying which window is

associated with which input device event.

hook. A mechanism by which procedures are called

when certain events occur in the system. For example,

the filtering of mouse and keyboard input before it is

received by an application program.

hook chain. A sequence of hook procedures that are

"chained" together so that each event is passed in turn

to each procedure in the chain.

hotspot. The part of the pointer that must touch an

object before it can be selected. This is usually the tip

of the pointer. Contrast with action point.

I
Icon. A pictorial representation of an item the user can

select. Icons can represent items (such as a document

file) that the user wants to work on and actions that the

user wants to perform. In the Presentation Manager,

icons are used for data objects, system actions and

minimized programs.

image font. A set of symbols each of which is

described in a rectangular array of pets. Some of the

pels in the array are set to produce the image of the

symbol. Contrast with outline font.

Information device context. A logical description of a

data destination other than the screen (for example, a

printer or plotter) but where no output will occur. Its

purpose is to satisfy queries. See also device context.

Information panel. A defined panel type characterized

by a body containing only protected information.

input focus. The area of the screen that will receive

input from an input device (typically the keyboard).

input router. OS/2 internal process that removes

messages from the system queue.

interactive graphics. Graphics that can be moved or

manipulated by a user at a terminal.

interactive program. A program that is running

(active) and is ready to receive (or is receiving) input

from the user. Compare with active program and

contrast with noninteractive program.

Also known as a foreground program.

interchange file. Data that can be sent from one

Presentation Interface application to another.

J
journal. A special-purpose file that is used to record

changes made in the system.

K
kerning. The design of graphics characters so that

their character boxes overlap. Used to space text

proportionally.

keys help. A facility that gives users a listing of all the

key assignments for the current application.

Glossary X-5

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the segment.

LIFO stack. A data stack from which data is retrieved
in last-in, first-out order.

linked list. Synonym for chained list.

LVB. Logical Video Buffer.

M
main window. The window that is positioned relative
to the desktop window.

marker box. In computer graphics, the boundary that
defines in world coordinates the horizontal and vertical
space occupied by a single marker from a marker set.

marker symbol. A symbol centered on a point.
Graphs and charts can use marker symbols to indicate
the plotted points.

maximize. A window-sizing action that makes the
window the largest size possible.

media window. The part of the physical device
(display, printer or plotter) on which a picture is
presented.

memory device context. A logical description of a data
destination that is a memory bitmap. See also device
context.

menu. A type of panel that consists of one or more
selection fields. Also called a menu panel.

message. 1. In Presentation Manager, a packet of data
used for communication between the Presentation
Interface and windowed applications.

2. In a user interface, information not requested by
users but presented to users by the computer in
response to a user action or internal process.
Messages on status, problems or user actions from a
computer application should be distinguished from a
"message" or note sent to users by other users over a
communications link.

message flller. The means of selecting which
messages from a specific window will be handled by
the application.

message queue. A sequenced collection of messages
to be read by the application.

metafile. The generic name for the definition of the
contents of a picture. Metafiles are used to allow
pictures to be used by other applications.

X-6 Presentation Driver Reference

metaflle device context. A logical description of a data
destination that is a metafile which is used for graphics
interchange. See also device context.

metalanguage. A language used to specify another
language. In this publication, the data types are
described using a metalanguage so as to make the
descriptions independent of any one computer
language.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function calls
is available.

minimize. A window-sizing action that makes the
window the smallest size possible. In the Presentation
Manager, minimized windows are represented by
icons.

mix. An attribute that determines how the foreground
of a graphic primitive is combined with the existing
color of graphics output. Also known as foreground
mix. Contrast with background mix.

mixed character string. A string containing a mixture
of one-byte and kanji or hangeul (two-byte) characters.

modal dialog box. The type of control that allows the
operator to perform input operations on only the
current dialog box or one of its child windows. Also
known as a serial dialog box. Contrast with parallel
dialog box.

modeless dialog box. The type of control that allows
the operator to perform input operations on any of the
application's windows. Also known as a parallel dialog
box. Contrast with modal dialog box.

model space. See graphics model space.

mouse. A hand-held device that is moved around to
position the pointer on the screen.

multitasking. The concurrent processing of
applications or parts of applications. A running
application and its data are protected from other
concurrently running applications.

N
named pipe. A named object that provides
client-to-server, server-to-client or duplex
communication between unrelated processes. Contrast
with unnamed pipe.

nonlnteractlve program. A program that is running
(active) but is not ready to receive .input from the user.
Compare with active program and contrast with
interactive program.

nonretalned graphics. Graphic primitives that are not

remembered by the Presentation Interface once they

have been drawn. Contrast with retained graphics.

null-terminated string. A string of (n + 1) characters

where the (n + 1)th character is the 'null' character

(X'OO') and is used to represent an n-character string

with implicit length. Also known as 'zero-terminated'

string and 'ASCllZ' string.

0
object window. A window that does not have a parent

but which may have child windows. An object window

cannot be presented on a device.

open. To start working with a file, directory or other

object.

outline font. A set of symbols each of which is created

as a series of lines and curves. Contrast with image

font.

output area. The area of the output device within

which the picture is to be displayed, printed or plotted.

owner window. A window into which specific events

that occur in another (owned) window are reported.

p

page viewport. A boundary in device coordinates that

defines the area of the output device in which graphics

are to be displayed. The presentation page contents

are transformed automatically to the page viewport in

device space.

paint. The action of drawing or redrawing the contents

of a window.

panel. A particular arrangement of information

grouped together for presentation to the user in a

window.

panel area. An area within a panel that contains

related information. The three major panel areas

defined by the Common User Access are the action

bar, the function key area and the panel body.

panel body. The portion of a panel not occupied by the

action bar, function key area, title or scroll bars. The

panel body may contain protected information,

selection fields and entry fields. The layout and content

of the panel body determine the panel type.

panel body area. The part of a window not occupied

by the action bar or function key area. The panel body

area may contain information, selection fields and

entry fields. Also known as client area.

panel body area separator. A line or color boundary

that provides users with a visual distinction between

two adjacent areas of a panel.

panel definition. A description of the contents and

characteristics of a panel. Thus, a panel definition is

the application developer's mechanism for predefining

the format to be presented to users in a window.

panel ID. A panel element located in the upper

left-hand corner of a panel body that identifies that

particular panel within the application.

paper size. The size of paper, defined in either

standard U.S. or European names (for example, A, 8,

A4) and measured in inches or millimeters

respectively.

parallel dialog box. See modeless dialog box.

pel. The smallest area of a display screen capable of

being addressed and switched between visible and

invisible states. Synonymous with display point, pixel

and picture element.

pick. To select part of a displayed object using the

pointer.

picture chain. See segment chain.

picture element. Synonym for pel.

pipe. See named pipe, unnamed pipe.

pixel. Synonym for pel.

plotter. An output device that uses pens to draw its

output on paper or transparency foils.

pointer. The symbol displayed on the screen that is

moved by a pointing device such as a mouse. The

pointer is used to point at items that users can select.

Contrast with cursor.

pointing device. A device (such as a mouse) used to

move a pointer on the screen.

polntlngs. Pairs of x-y coordinates produced by an

operator defining positions on a screen with a pointing

device such as a mouse.

polyfillet. A curve based on a sequence of lines. It is

tangential to the end points of the first and last lines

and tangential also to the midpoints of all other lines.

See also fillet.

polyline. A sequence of adjoining lines.

pop. To retrieve an item from a last-in-first-out stack of

items. Contrast with push.

pop-up window. A window that appears on top of

another window in a dialog. Each pop-up window must

Glossary X-7

be completed before returning to the underlying
window.

Presentation Manager. The OS/2 Control Program
plus the visual component that presents, in windows, a
graphics-based interface to applications and files
installed and running in OS/2.

presentation page. The coordinate space in which a
picture is assembled for display.

presentation space (PS). Contains the
device-independent definition of a picture.

primary window. The window in which the main dialog
between users and the application takes place. In a
multi-programming environment, each application
starts in its own primary window. The primary window
remains for the duration of the application although the
panel displayed will change as the user's dialog moves
forward. See also secondary window.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print job. The result of sending a document or picture
to be printed.

Print Object. In the Presentation Manager, the part of
the spooler that manages the spooling process. It also
allows users to view print queues and to manipulate
print jobs.

process. An instance of an executing application and
the resources it is using.

program group. In the Presentation Manager, several
programs that can be acted upon as a single entity.

program name. The full file specification of a program.
Contrast with program title.

program tllle. The name of a program as it is listed in
the Desktop Manager window. Contrast with program
name.

push. To add an item to a last-in-first-out stack of
items. Contrast with pop.

pushbutton. A control window shaped like a
rounded-corner rectangle and containing text, that
invokes an immediate action such as 'enter' or 'cancel'.

Q
queue. A list of print jobs waiting to be printed.

queued device context. A logical description of a data
destination (for example, a printer or plotter) where the
output is to go through the spooler. See also device
context.

X-8 Presentation Driver Reference

R
radio button. A control window shaped like a round
button on the screen that can be in a checked or
unchecked state. It is used to select a single item from
list. Contrast with check box.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. A word or phrase that is
emphasized in a device-dependent manner in order to
inform the user that additional information for the word
or phrase is available.

reference phrase help. Provides help information on a
selectable phrase.

refresh. To update a window with changed information
to its current status.

region. A clipping boundary in device space.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators and
mnemonics; the definitions are held in a resource file.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Interface after they
have been drawn. Contrast with nonretained graphics.

reverse video. A form of alphanumeric highlighting for
a character, field or cursor in which its color is
exchanged with that of its background. For example,
changing a red character on a black background to a
black character on a red background.

RGB. Red-green-blue. For example "RGB display".

s
screen. The physical surface of a workstation or
terminal upon which information is presented to users.

screen device context. A logical description of a data
destination that is a particular window on the screen.
See also device context.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears at
one edge as existing data disappears at the opposite
edge.

secondary window. A type of window associated with
the primary window in a dialog. A secondary window

begins a secondary and parallel dialog that runs at the
same time as the primary dialog.

segment. See graphics segment.

segment attributes. Attributes that apply to the
segment as an entity as opposed to the individual
primitives within the segment. For example, the
visibility or detectability of a segment.

segment chain. All segments in a graphics
presentation space that are defined with the 'chained'
attribute. Synonymous with picture chain.

segment store. An area in a normal graphics
presentation space where retained graphics segments
are stored.

select. To mark or choose an item. Notice that select
means to mark or type in a choice on the screen; enter
means to send all selected choices to the computer for
processing.

semaphore. An object used by multi-threaded
applications for signaling purposes and for controlling
access to serially reusable resources.

separator. See panel body area separator.

serial dialog box. See modal dialog box.

serially reusable resource (SRR). A logical resource
or object that can be accessed by only one task at a
time.

session. A routing mechanism for user interaction via
the console.

shear. The tilt of graphics text when each character
leans to the left or right while retaining a horizontal
baseline.

shortline. A collection of monotonically increasing
x-values representing the first of each group of
x-values associated with each y-value.

shutdown. In the Desktop Manager, the procedure
required before the computer is switched off to ensure
that data is not lost.

spline. A sequence of one or more Bezier curves.

spooler. A program that intercepts the data going to
printer devices and writes it to disk. The data is printed
or plotted when it is complete and the required device
is available. The spooler prevents output from different
sources being intermixed.

standard window. A collection of windows that form a
panel.

style. See window style.

suballocatlon. The allocation of a part of one extent for
occupancy by elements of a component other than the
one occupying the remainder of the extent.

symbolic identifier. A text string that equates to an
integer value in an include file that is used to identify a
programming object.

system queue. This is the master queue for all pointer
device or keyboard events.

Systems Application Architecture. A formal set of
rules that enables applications to be run without
modification in different computer environments.

T
template. An ASCII-text definition of an action bar and
pull-down menu held in a resource file or as a data
structure in program memory.

text. Characters or symbols.

text window. Also known as the VIO window. The
environment in which OS/2 runs AVIO applications.

thread. A unit of execution within a process.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating or translating.
(2) The object that performs or defines such a
modification; also referred to as a transformation.

u
unnamed pipe. A circular buffer created in memory;
used by related processes to communicate with one
another. Contrast with named pipe.

update region. A system provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window that are
visually invalid or incorrect and therefore in need of
repainting.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user
to manage applications and files installed and running
under OS/2.

v
vector font. A set of symbols, each of which is created
as a series of lines and curves. Contrast with image
font and outline font.

VGA. Video graphics array.

viewing pipeline. The series of transformations
applied to a graphic object to map the object to the
device on which it is to be presented.

Glossary X-9

viewing window. Clipping boundary that defines the
visible part of model space.

VIO. Video Input/Output.

virtual memory (VM). Addressable space that is
apparent to_the user as the processor storage space
but not having a fixed physical location.

vlslble region. A window's presentation space clipped
to the boundary of the window and the boundaries of
any overlying window.

w
wlld-card character. The global file-name characters?
or*.

window. A rectangular area of the screen through
which a panel or portion of a panel is displayed. A
window can be smaller than or equal in size to the
screen. Windows can overlap on the screen and give
the appearance of one window being on top of another.

window class. The grouping of windows whose
processing needs conform to the services provided by
one window procedure.

X-10 Presentation Driver Reference

window coordinates. The means by which a window
position or size is defined; measured in device units or
pels.

window rectangle. The means by which the size and
position of a window is described in relation to the
desktop window.

world coordinates. Application-convenient coordinates
used for drawing graphics.

world-coordinate space. Coordinate space in which
graphics are defined before transformations are
applied.

WYSIWYG. What You See Is What You Get. A
capability that enables text to be displayed on a screen
in the same way that it will be formatted on a printer.

z
zooming. In graphics applications, the process of
increasing or decreasing the size of picture.

Index

A
abGeneral Data 4-3, 7-8
AbortDoc escape code 8-63
AccumulateBounds 8-25
advanced VIO (AVIO) functions 9-1
algorithms, compression 2-7
algorithms, drawing C-1
allocation, memory 2-2, 7-4
angles 2-1
API 1-6
APIENTRY 4-2, 4-6, 7-3, 8-52
Application Programming Interface (API) 4-2
appname 4-5
Arc 10-8
arc functions 8-104, 10-1

GreArc 10-8
GreBoxBoth 10-15
GreBoxBoundary 10-17
GreBoxlnterior 10-19
GreFullArcBoth 10-49
GreFullArcBoundary 10-51
GreFullArclnterior 10-53
GreGetArcParameters 10-55
GreGetDefaultArcParameters 11-26
GrePartialArc 10-78
GrePolyFillet 10-80
GrePolyFi I letSharp 10-82
GrePolyMarker 8-101
GrePolySpline 10-84
GreSetArcParameters 10-111
GreSetDefaultArcParameters 11-62

arc primitive 8-21
ARCPARAMS structure 10-111
area attributes 8-5
area functions 10-1

GreAreaSetAttributes 10-10
GreBeginArea 10-11
GreBeginPath 10-13
GreCloseFigure 10-21
GreEndArea 10-41
GreEndPath 10-43
GreFillPath 10-47
GreModifyPath 10-71
GreOutlinePath 10-76
GreSelectClipPath 10-106
GreStrokePath 10-128

AREABUNDLE mask 8-5
AREABUNDLE structure 8-5, 10-86
AREADEFS structure 8-5
array 4-3, 4-6
ASCllZ string 7-1, 7-2
Assembler 1-3

© Copyright IBM Corp. 1992

attribute functions 8-1
GreAreaSetAttributes 10-10
GreDeviceGetAttributes 8-43
GreDeviceQueryFontAttributes 8-44
GreDeviceSetAttributes 8-48
GreDeviceSetGlobalAttribute 8-51
GreGetAttributes 11-21
GreGetDefaultAttributes 11-27
GreGetPairKerningTable 8-91
GrelnitializeAttributes 11-31
GreQueryFontAttributes 11-43
GreSetAttributes 11-58
GreSetDefaultAttributes 11-63
GreSetGlobalAttribute 11-66

attributes 8-1
area 8-5
character 8-6
color 8-1
font 11-14
image 8-11
line 8-3
marker 8-12
pattern 8-5

AVIO character cell 9-3
AVIO functions 9-1

GreCharRect 9-6
GreCharStr 9-7
GreDeviceSetAVIOFont 9-10
GreScrollRect 9-18
GreUpdateCursor 9-22

AX register 3-1

B
back-level drivers 2-11
background mix mode 8-2
band size 2-7
banding 2-7
BANDRECT structure 8-75
BeginArea 10-11
BeginCloseDC, OBH 7-21
BeginPath 10-13
Bezier spline 10-84
bit map 2-7, 3-2, C-1
bit-map file formats 8-13
bit-map functions 8-13

GreBitblt 8-26
GreCreateBitmap 11-7
GreDeleteBitmap 11-17
GreDeviceCreateBitmap 8-36
GreDeviceDeleteBitmap 8-41
GreDeviceSelectBitmap 8-47
GreDeviceSetCursor 9-11
GreDrawBits 8-53

X-11

bit-map functions (continued)
GreDrawBorder 8-57
GreGetBitmapBits 8-83
GreGetBitmapDimension 11-22
GreGetBitmapParameters 11-23
GreGetPel 8-92
GrelmageData 8-93
GreQueryBitmapHandle 11-40
GreQueryDeviceBitmaps 8-110
GreRegionSelectBltmap 10-97
GreRestoreScreenBits 9-14
GreSaveScreenBits 9-17
GreSelectBitmap 11-56
GreSetBitmapBits 8-134
GreSetBitmapDimension 11-60
GreSetBitmaplD 11-61
GreSetPel 8-142

bit-map simulation C-1
Bitblt 8-26, 8-59
BITBLTATTRS structure 8-28
bitmap 7-20
BITMAPINFO structure 8-83
BOOLEAN (fSuccess) 8-88
border functions

GreDrawBits 8-53
GreDrawBorder 8-57

boundary data
GPl_BOUNDS 1-7

boundary functions
GreAccumulateBounds 8-25
GreBoxBoundary 10-17
GreFullArcBoundary 10-51
GreGetBoundsData 8-86
GreResetBounds 8-133

boundary, noninclusive 8-27, 8-55
bounds 10-5
bounds, computations 2-1
box functions

GreBoxBoth 10-15
GreBoxBoundary 10-17
GreBoxlnterior 10-19
GreGetClipBox 10-56
GreGetRegionBox 10-64
GreQueryTextBox 8-126

BoxBoth 10-15
Box Boundary 10-17
Boxlnterior 10-19
BreakExtra escape code 8-65
bType 8-60

LINE_IDENTIFIER 8-60
buffered device 3-2
bundle attribute functions
bundles 8-1

area 8-5
character 8-7
image 8-12
line 8-3
pattern 8-5

X-12 Presentation Driver Reference

c
C language 1-3, 1-9
calling conventions 1-6
category, graphics engine internal functions

device context functions 11-2
GreCloseDC 11-4
GreGetHandle 11-29
GreGetProcessControl 11-30
GreOpenDC 11-33
GreQueryEngineVersion 11-42
GreResetDC 11-50
GreRestoreDC 11-52
GreSaveDC 11-54
GreSetHandle 11-67
GreSetProcessControl 11-68

device support functions 11-2
GreCreateBitmap 11-7
GreDeleteBitmap 11-17
GreGetAttributes 11-21
GreGetBitmapDimension 11-22
GreGetBitmapParameters 11-23
GreGetDefaultArcParameters 11-26
GreGetDefaultAttributes 11-27
GreGetDefaultViewinglimits 11-28
GrelnitializeAttributes 11-31
GreSelectBitmap 11-56
GreSetAttributes 11-58
GreSetBitmapDimension 11-60
GreSetDefaultArcParameters 11-62
GreSetDefaultAttributes 11-63
GreSetDefaultViewinglimits 11-65
GreSetmobalAttribute 11-66

font functions 11-3
GreCreatelogicalFont 11-14
GreloadFont 11-32
GreQueryCodePageVector 11-41
GreQueryFontAttributes 11-43
GreQueryFontFileDescriptions 11-44
GreQueryFonts 11-45
GreQueryLogicalFont 11-46
GreUnloadFont 11-72

journaling functions 11-3
GreCreateJournalFile 11-12
GreDeleteJournalFile 11-18
GreOpenJournalFile 11-37
GrePlayJournalFile 11-38
GreStartJournalFile 11-69
GreStopJournalFile 11-71

LCID functions 11-3
GreCopyDCLoadData 11-5
GreQueryBitmapHandle 11-40
GreSetBitmaplD 11-61

Set ID functions 11-3
GreDeleteSetld 11-20
GreQueryNumberSetlds 11-47
GreQuerySetlds 11-48

category, mandatory functions (all drivers)
attribute functions 8-22

GreDeviceGetAttributes 8-43
GreDeviceSetAttributes 8-48
GreDeviceSetGtobatAttribute 8-51
GreGetPairKerningTabte 8-91

bit-map functions 8-22
GreBitbtt 8-26
GreCreatelogCotorTabte 8-34
GreDeviceCreateBitmap 8-36
GreDeviceDeleteBitmap 8-41
GreDeviceSelectBitmap 8-47
GreDrawBits 8-53
GreDrawBorder 8-57
GreGetBitmapBits 8-83
GreGetPel 8-92
GrelmageData 8-93
GreQueryColorData 8-108
GreQueryColorlndex 8-109
GreQuerylogColorTable 8-120
GreQueryNearestColor 8-121
GreQueryRealColors 8-123
GreQueryRGBColor 8-125
GreRealizeColorTable 8-129
GreSetBitmapBits 8-134
GreSetPel 8-142
GreUnrealizeColorTable 8-144

device functions 2 8-23
GreDeviceQueryFontAttributes 8-44
GreDeviceQueryFonts 8-45
GreErasePS 8-62
GreNotifyClipChange 8-96
GreNotifyTransformChange 8-97
GreRealizeFont 8-130

device functions 3 8-23
GreAccumulateBounds 8-25
GreDeviceSetDCOrigin 8-50
GreGetBoundsData 8-86
GreGetCodePage 8-87
GreGetDCOrigin 8-89
GreGetlineOrigin 8-90
GrelockDevice 8-95
GreResetBounds 8-133
GreSetCodePage 8-137
GreSetlineOrigin 8-140
GreUnlockDevice 8-143

GreEscape functions 8-23
DEVESC _ABORTDOC 8-63
DEVESC_BREAK_EXTRA 8-65
DEVESC_ CHAR_EXTRA 8-66
DEVESC_DBE_FIRST 8-67
DEVESC_DBE_LAST 8-68
DEVESC _ DRAFTMODE 8-69
DEVESC_ENDDOC 8-70
DEVESC_FLUSHOUTPUT 8-71
DEVESC_GETCP 8-72
DEVESC _ GETSCALINGFACTOR 8-73
DEVESC_NEWFRAME 8-74
DEVESC_NEXTBAND 8-75

category, mandatory functions (all drivers) (continued)
GreEscape functions (continued)

DEVESC _ QUERYESCSUPPORT 8-76
DEVESC _ QUERYVIOCELLSIZES 8-77
DEVESC_RAWDATA 8-79
DEVESC_SETMODE 8-80
DEVESC_STARTDOC 8-81
DEVESC_STD_JOURNAL 8-82

line functions 8-23
GreDisjointlines 8-52
GreDrawlineslnPath 8-60
GreGetCurrentPosition 8-88
GrePolyline 8-99
GrePolyScanline 8-102
GrePolyShortline 8-104
GreSetCurrentPosition 8-138

marker function 8-23
GrePolyMarker 8-101

query functions 8-24
GreQueryDeviceBitmaps 8-110
GreQueryDeviceCaps 8-111
GreQueryDevResource 8-113
GreQueryHardcopyCaps 8-118

text functions 8-24
GreCharString 8-30
GreCharStringPos 8-31
GreQueryCharPositions 8-106
GreQueryTextBox 8-126
GreQueryWidthTable 8-128

category, mandatory functions (display drivers)
AVIO functions 9-5

GreCharRect 9-6
GreCharStr 9-7
GreDeviceSetAVIOFont 9-10
GreScrollRect 9-18
GreUpdateCursor 9-22

bit-map functions 9-5
GreDeviceSetCursor 9-11
GreRestoreScreenBits 9-14
GreSaveScreenBits 9-17

device functions 2 9-5
GreDevicelnvalidateVisRegion 9-9
GreGetStyleRatio 9-13
GreSetStyleRatio 9-21

device functions 3 9-5
GreDeath 9-8
GreResurrection 9-16

miscellaneous screen functions 9-5
GreGetPickWindow 9-12
GreSetColorCursor 9-19
GreSetPickWindow 9-20

category, simulated functions
arc functions 10-5

GreArc 10-8
GreBoxBoth 10-15
GreBoxBoundary 10-17
GreBoxlnterior 10-19
GreFullArcBoth 10-49
GreFullArcBoundary 10-51

Index X-13

category, simulated functions (continued)
arc functions (continued)

GreFullArclnterior 10-53
GreGetArcParameters 10-55
GrePartialArc 10-78
GrePolyFillet 10-80
GrePolyFilletSharp 10-82
GrePolySpline 10-84
GreSetArcParameters 10-111

area and path functions 10-5
GreAreaSetAttri butes 10-1 O
GreBeginArea 10-11
GreBeginPath 10-13
GreCloseFigure 10-21
GreEndArea 10-41
GreEndPath 10-43
GreFillPath 10-47
GreModifyPath 10-71
GreOutlinePath 10-76
GreRestorePath 10-98
GreSavePath 10-102
GreSelectClipPath 10-106
GreStrokePath 10-128

clip functions 10-6
GreCopyClipRegion 10-28
GreExcludeClipRectangle 10-45
GreGetClipBox 10-56
GreGetClipRects 10-57
GrelntersectClipRectangle 10-69
GreOffsetClipRegion 10-74
GrePtVisible 10-89
GreQueryClipRegion 10-90
GreRectVisible 10-96
GreRegionSelectBitmap 10-97
GreRestoreRegion 10-99
GreSaveRegion 10-103
GreSelectClipRegion 10-108
GreSelectPathRegion 10-110
GreSetupDC 10-126
GreSetXformRect 10-125

line functions 10-6
GreDrawRLE 10-39
GrePolygonSet 10-86

palette manager functions 10-6
GreDeviceAnimatePalette 10-32
GreDeviceCreatePalette 10-33
GreDeviceDeletePalette 10-35
GreDeviceResizePalette 10-37
GreDeviceSetPaletteEntries 10-38
GreQueryHWPalettelnfo 10-91
GreQueryPaletteRealization 10-92
GreRealizePalette 10-93
GreUpdateColors 10-130

region functions 10-6
GreCombineRectRegion 10-22
GreCombineRegion 10-23
GreCombineShortlineRegion 10-24
GreCreateRectRegion 10-30
GreDestroyRegion 10-31

X-14 Presentation Driver Reference

category, simulated functions (continued)
region functions (continued)

GreEqualRegion 10-44
GreGetRegionBox 10-64
GreGetRegionRects 10-65
GreOffsetRegion 10-75
GrePaintRegion 10-77
GrePtlnRegion 10-88
GreRectlnRegion 10-95
GreSetRectRegion 10-121

transform functions 10-7
GreConvert 10-26
GreConvertWithMatrix 10-27
GreGetGlobalViewingXform 10-59
GreGetGraphicsField 10-60
GreGetModelXform 10-61
GreGetPageUnits 10-62
GreGetPageViewport 10-63
GreGetViewinglimits 10-67
GreGetWindowViewportXform 10-68
GreMultiplyXforms 10-73
GreRestoreXform 10-100
GreRestoreXformData 10-101
GreSaveXform 10-104
GreSaveXformData 10-105
GreSetGlobalViewingXform 10-112
GreSetGraphicsField 10-114
GreSetModelXform 10-115
GreSetPageUnits 10-117
GreSetPageViewport 10-119
GreSetViewinglimits 10-122
GreSetWindowViewportXform 10-123

cDataTypes 4-6
character attributes 8-6
character cell 9-3
character mode 8-7
character-set functions

GreDeleteSetld 11-20
GreQueryNumberSetlds 11-47
GreQuerySetlds 11-48

CHARBUNDLE mask 8-6
CHARBUNDLE structure 8-7
CHARDEFS structure 8-6
CharExtra escape code 8-66
CharRect 9-6
CharStr 9-7
CharString 8-30
CharStringPos 8-31
CHDIRN_LEFTRIGHT 8-9
CheckCursor 3-1
cHits 10-40
cu 2-4
clines 8-60
clip functions 10-1

GreCopyClipRegion 10-28
GreExcludeClipRectangle 10-45
GreGetClipBox 10-56
GreGetClipRects 10-57

clip functions (continued)
GreGetGlobalViewingXform 10-59
GreGetGraphicsField 10-60
GreGetModelXform 10-61
GreGetPageUnits 10-62
GreGetPageViewport 10-63
GreGetViewinglimits 10-67
GreGetWindowViewportXform 10-68
GrelntersectClipRectangle 10-69
GreNotifyClipChange 8-96
GreOffsetClipRegion 10-74
GrePtVisible 10-89
GreQueryClipRegion 10-90
GreRegionSelectBitmap 10-97
GreRestoreRegion 10-99
GreSaveRegion 10-103
GreSelectClipPath 10-106
GreSelectClipRegion 10-108
GreSelectPathRegion 10-110
GreSetGraphicsField 10-114
GreSetPageUnits 10-117
GreSetPageViewport 10-119
GreSetupDC 10-126
GreSetViewinglimits 10-122
GreSetXformRect 10-125

clip path 10-1
clipping 2-1, 10-5
Close Transaction functions 7-4
CloseDC 11-4
CloseFigure 10-21
closure lines 2-1
CM_MODE1 8-7
cNames 4-6
code page 7-12
code page functions

GreGetCodePage 8-87
GreQueryCodePageVector 11-41
GreSetCodePage 8-137

color dithering 8-34, 8-121
color functions 8-13
color table functions

GreCreateLogColorTable 8-34
GreQueryColorData 8-108
GreQueryColorlndex 8-109
GreQueryLogColorTable 8-120
GreQueryNearestColor 8-121
GreQueryRealColors 8-123
GreQueryRGBColor 8-125
GreRealizeColorTable 8-129
GreUnrealizeColorTable 8-144

CombineRectRegion 10-22
CombineRegion 10-23
CombineShortlineRegion 10-24
command flags 1-6

COM_AL T _BOUND 1-7
COM_AREA 1-7
COM_BOUND 1-7
COM_CORR 1-7

command flags (continued)
COM_DEVICE 1-7
COM_DRAW 1-6
COM_PATH 1-7
COM_TRANSFORM 1-7

compatibility, 16-bit and 32-bit 1-1
CompleteOpenDC, OAH 7-20, C-1
COMuAREA 10-86
COMuPATH 10-86
COM_ALT_BOUND 1-7, 2-1
COM_AREA 1-7, 8-99, 8-138
COM_BOUND 1-7, 2-1

COM_BOUND 1-7
COM_CORR flag 1-7
COM_DEVICE flag 1-7
COM_DRAW 1-6, 2-7
COM_PATH 1-7, 8-99, 8-138
COM_TRANSFORM 1-7, 8-138
control functions

GreDeath 9-8
GreDeviceSetCursor 9-11
GreErasePS 8-62
GreGetPickWindow 9-12
GrelockDevice 8-95
GreResurrection 9-16
GreSetColorCursor 9-19
GreSetPickWindow 9-20
GreUnlockDevice 8-143
SplQpControl 5-3

control panel 4-2
conventions

parameter names A-1
Convert 10-26
ConvertWithMatrix 10-27
coordinate values 2-1
CopyClipRegion 10-28
CopyDCLoadData 11-5
correlation 2-5, 10-5
CreateBitmap 8-36, 11-7
CreateJournalFile 11-12
CreatelogColorTable 8-34
CreatelogicalFont 11-14
CreateRectRegion 10-30
cTableSize 7-6
current position 8-88, 8-138

GreGetCurrentPosition 8-88
GreSetCurrentPosition 8-138

cursor 3-1, 3-2
cursor functions

GreDeviceSetCursor 9-11
GreSetColorCursor 9-19
GreUpdateCursor 9-22

CURVE structure 8-60
curve styling 8-17
CURVE_DO_FIRST_PEL 8-60

Index X-15

D
DAREABUNDLE structure 8-5
data structures

See?
data type

PM_Q_RAW 1-9
PM_Q_STD 1-9

data types 1-8
DbeFirst escape code 8-67
Dbelast escape code 8-68
DC management functions 7-4
DC origin 8-60
DC region validation 12-6
DC type

OD_DIRECT 1-8
OD_INFO 1-8
OD_MEMORY 1-8
OD_QUEUED 1-8

DCHARBUNDLE structure 8-6
DCI C-1
DC, reset 7-5
DC, saving and restoring 7-5
Death 9-8
default handling routine 7-6, 8-99
definition, attributes 8-1
definition, bundles 8-1
DeleteBitmap 8-41, 11-17
DeleteJournalFile 11-18
DELETERETURN structure 8-41
DeleteSetld 11-20
DENPARAMS structure 7-8, 7-12, C-1
design considerations 2-1
DestroyRegion 10-31
DevCloseDC 1-9
DEVESC_ABORTDOC 7-12, 8-63
DEVESC_BREAK_EXTRA 8-65
DEVESC_CHAR_EXTRA 8-66
DEVESC_DBE_FIRST 8-67
DEVESC_DBE_LAST 8-68
DEVESC DRAFTMODE 8-69
DEVESC=ENDDOC 2-7, 7-12, 8-70, C-1
DEVESC_FLUSHOUTPUT 8-71
DEVESC GETCP 8-72
DEVESC - GETSCALINGFACTOR 8-73
DEVESC=NEWFRAME 2-7, 8-74, C-1
DEVESC_NEXTBAND 2-7, 8-75
DEVESC _ QUERYESCSUPPORT 8-76
DEVESC_QUERYVIOCELLSIZES 8-77
DEVESC_RAWDATA 8-79
DEVESC SETMODE 8-80
DEVESC=STARTDOC 2-7, 7-12, 8-81
DEVESC_STD_JOURNAL 8-82
device capabilities 8-118

GreQueryDeviceBitmaps 8-110
GreQueryDeviceCaps 8-111
GreQueryDevResource 8-113
GreQueryHardcopyCaps 8-118

X-16 Presentation Driver Reference

device context 1-8, 7-3
BeginCloseDC (OBH) 7-21
CompleteOpenDC (OAH) 7-20
DisableDeviceContext (06H) 7-16
dispatch table 1-10
EnableDeviceContext (05H) 7-12
instance data 1-9, 7-12
program stack 1-9
queued devices 4-1
ResetDCState (09H) 7-19
RestoreDCState (08H) 7-18
SaveDCState (07H) 7-17

device context handle 7-12
ulHDH 7-12

device context management 7-3
device context (DC) 1-4, 7-6, 7-13
device coordinate 8-138
device coordinate space 2-1
device coordinates 1-7, 8-60
device functions 2

GreDevicelnval idateVisRegion 9-9
GreDeviceQueryFontAttributes 8-44
GreDeviceQueryFonts 8-45
GreErasePS 8-62
GreGetStyleRatio 9-13
GreNotifyClipChange 8-96
GreNotifyTransformChange 8-97
GreRealizeFont 8-130
GreSetStyleRatio 9-21

device functions 3
GreAccumulateBounds 8-25
GreDeath 9-8
GreDeviceSetDCOrigin 8-50
GreGetBoundsData 8-86
GreGetCodePage 8-87
GreGetDCOrigin 8-89
GreGetlineOrigin 8-90
GrelockDevice 8-95
GreResetBounds 8-133
GreResurrection 9-16
GreSetCodePage 8-137
GreSetlineOrigin 8-140
GreUnlockDevice 8-143

device support functions
GreCreateBitmap 11-7
GreDeleteBitmap 11-17
GreGetAttributes 11-21
GreGetBitmapDimension 11-22
GreGetBitmapParameters 11-23
GreGetDefaultArcParameters 11-26
GreGetDefaultAttributes 11-27
GreGetDefaultviewinglimits 11-28
GrelnitializeAttributes 11-31
GreSelectBitmap 11-56
GreSetAttributes 11-58
GreSetBitmapDimension 11-60
GreSetDefaultArcParameters 11-62
GreSetDefaultAttributes 11-63

device support functions (continued)
G1-eSetDefaultViewinglimits 11-65
GreSetGlobalAttribute 11-66

device type
OD_DIRECT 1-8
OD_INFO 1-8
OD_MEMORY 1-8
OD_QUEUED 1-8

device types 1-8
DeviceAnimatePalette 10-32
DeviceCreateBitmap 8-36
DeviceCreatePalette 10-33
DeviceDeleteBitmap 8-41
DeviceDeletePalette 10-35
DeviceGetAttributes 8-43
Devicelnval idateVisRegion 9-9
DeviceModes 4-2
DeviceNames 4-6
DeviceQueryFontAttributes 8-44
DeviceQueryFonts 8-45
DeviceResizePalette 10-37
DeviceSelectBitmap 8-47
DeviceSetAttributes 8-48
DeviceSetA VIOFont 9-1 o
DeviceSetCursor 9-11
DeviceSetDCOrigin 8-50
DeviceSetGlobalAttribute 8.-51
DeviceSetPaletteEntries 10-38
DevOpenDC 1-4, 1-8, 7-3, 7-4, 7-6, 7-20
DevOpenStruc 7,;.9
DEVOPENSTRUC structure 7-8
DevPostDeviceModes 2-12, 4-2
DevQueryDeviceNames 4-6
DEV_OK 4-3
DIMAGEBUNDLE structure 8-11
dirty visible region 2-6
DisableDeviceContext, 06H 7-16
DisablePhysicalDeviceBlock, 04H 7-11
Disjointlines 8-52
dispatch table 1-1, 1-2, 1-8, 1-10, 7-4, 8-1, C-1
display DC C-1
display devices 1-4
display drivers 1-1
DISPLAYfNFO structure 8-113
DISPLAY.DLL C-1
dithering 8-34
DLINEBUNDLE structure 8-3
DMARKERBUNDLE structure 8-12
DosAllocMem 2-2
DosExitlist 2-4, 7-6
doubleword 1-6, 1-9
DPDM_ CHANGEPROP 4-3, 4-4
DPDM:_ERROR 4-3
DPDM_NONE 4-3
DPDM_POST JOBPROP 4-3
DPDM_QUERYJOBPROP 4-3
DraftMode escape code 8-69

DrawBits 8-53
DrawBorder 8-57
drawing functions 8-138

GreDrawlineslnPath 8-60
GreDrawRLE 10,..39
GreGetBoundsData 8-86

DrawlineslnPath 8-60
DrawRLE 10-39
DRIVDATA 2-12, 7-9
DRIVDAT A structure 4-2, 7-8
driver name 7-8
driver-specific data (DOC) 7-4

DOC 7-4
DriverData 4-5
Drvtnstall 4•7
DrvRemove 4..S
DWORD 1-6

E
Enable entry point

See entry point, Enable
Enable subfunctions

See?
EnableDeviceContext C-1
EnableDeviceContext, 05H 7-12, C-1
EndArea 10-41
EndDoc escape code 8-70
EndPath 10-43
engine-simulation routines 8-1
EnterDriver 2-4
entry point 7-3
entry points 1-2, 1-9, 4-1, 7-1
entry points, display driver only

MoveCursorBlock 3-1
OS2_PM_DRV _ QUERYSCREENRESOLUTIONS 3-2

entry points, exported 3-1
entry points, graphics engine

GetDriverlnfo 12-2
SetDriverlnfo 12-3

entry points, hardcopy driver only
Drvlnstall 4-7
DrvRemove 4-8
OS2_PM_DRV _DEVICENAMES 4-6
OS2_PM_DRV _DEVMODE 4-2

entry points, presentation drivers
Drvlnstall 4-7
DrvRemove 4-8
graphics engine 1-10
imported 1-10
MoveCursorBlock 3-1
OS2_PM_DRV _DEVICENAMES 4-6
OS2_PM_DRV _DEVMODE 4-2
OS2_PM_DRV_ENABLE 7-3
OS2_PM_DRV _ENABLE_LEVELS 7-2
OS2_PM_DRV _ QUERYSCREENRESOLUTIONS 3-2
OS2_PM_DRV_RING_LEVELS 7-1

Index X-17

entry points, system
entry point, cursor 3-2
entry point, Enable

BeginCloseDC (OBH) 7-21
CompleteOpenDC (OAH) 7-20
DisableDeviceContext (06H) 7-16
DisablePhysicalDeviceBlock (04H) 7-11
EnableDeviceContext (05H) 7-12
FillLogicalDeviceBlock, 01H 7-6
FillPhysicalDeviceBlock (02H) 7-8
ResetDCState (09H) 7-19
RestoreDCState (08H) 7-18
SaveDCState (07H) 7-17

EqualRegion 10-44
ErasePS 8-62
error codes 2-3, 8-52, 8-61, 8-88, 8-100, 8-103, 8-105,

8-138, 10-40, 10-87
general 2-3
WinSetErrorlnfo 12-7

error logging
severity levels 2-3

error severity levels 2-3
error strategy 2-2
ERROR_MINUS 7-3
escape routine 8-15
ExcludeClipRectangle 10-45
exit list 2-4
exit list processing 2-4
exported entry points 1-9

See also entry points, presentation drivers

F
failure return code 7-5
fast-safe RAM semaphores
FATTRS structure 11-14
figure functions

GreCloseFigure 10-21
file format, journal B-1
file system emulation 4-9

PrtAbort 4-10
PrtClose 4-11
PrtDevlOCtl 4-12
PrtOpen 4-13
PrtWrite 4-14

filename extension (DLL) 1-1
filename extension (ORV) 1-1
fillet 8-21, 8-102
fillet functions

GrePolyFillet 10-80
GrePolyFilletSharp 10-82

FILLETSHARP structure 8-60
fillet, monotonic 8-104
FillLogicalDeviceBlock, 01H 7-6, C-1
FillPath 10-47
FillPhysicalDeviceBlock, 02H 7-8, C-1
firmware 2-7

X-18 Presentation Driver Reference

flag 4-3, 4-4, 8-21, 8-60, 8-138, 10-86.
flags 1-6, 7-6

COM_AL T _BOUND 1-7
COM_AREA 1-7
COM_CORR 1-7
COM_DEVICE 1-7
COM_DRAW 1-6
COM_PATH 1-7
COM_TRANSFORM 1-7

FlushOutput escape code 8-71
font

attributes 11-14
physical 11-1
private 11-1
selection 11-1

font functions 11-1
GreCreateLogicalFont 11-14
GreDeviceQueryFontAttributes 8-44
GreDeviceQueryFonts 8;.45
GreDeviceSetAVIOFont 9-10
GreGetCodePage 8-87
GreGetPairKerningTable 8-91
GreloadFont 11-32
GreQueryCodePageVector 11-41
GreQueryFontAttributes 11-43
GreQueryFontFileDescriptions 11-44
GreQueryFonts 11-45
GreQuerylogicalFont 11-46
GreQueryWidthTable 8-128
GreRealizeFont 8-130
GreUnLoadFont 11-72

format, bit-map file 8-13
format, device-dependent 2-12
forward-level drivers 2-11
FullArcBoth 10-49
FullArcBoundary 10-51
FullArclnterior 10-53
function number 1-6
functions, Close Transaction 7-4
functions, Open Transaction 7-4
functions, presentation driver interface 1-9

G
geometric wide line 10-128
GetArcParameters 10-55
GetAttributes 11-21
GetBitmapBits 8-83
GetBitmapDimension 11-22
GetBitmapParameters 11-23
GetClipBox 10-56
GetClipRects 10-57
GetCodePage 8-87
GetCodePage escape code 8-72
GetCurrentPosition 8-88
GetDCOrigin 8-89
GetDefaultArcParameters 11-26

GetDefaultAttributes 11-27
GetDefaultViewinglimits 11-28
GETDRIVERINFO 1-10, 12-2
GetGlobalViewingXform 10-59
GetGraphicsField 10-60
GetHandle 11-29
GetlineOrigin 8-90
GetModelXform 10-61
GetPageUnits 10-62
GetPageViewport 10-63
GetPel 8-92
GetPickWindow 9-12
GetProcessControl 11-30
GetRegionBox 10-64
GetRegionRects 10-65
GetScalingFactor escape code 8-73
GetViewinglimits 10-67
GetWindowViewportXform 10-68
global data 7-13
global heap space 7-6, 7-8
GP fault 2-4
GpiPolyline 8-99
GpiQueryCurrentPosition 8-88
GpiSetCurrentPosition 8-138
GPl_BOUNDS 1-7
GPl_ERROR 8-52
GPl_HITS 8-52
GPl_OK 8-52
graphics engine

clipping 2-1
entry points 1-10
functions 1-10
graphics engine internal interface 1-2
internal interface 1-6
journaling functions 2-7
PMGRE.DLL 7-4

graphics engine entry points 1-10
See also entry points, graphics engine

graphics engine internal 11-1
graphics engine internal functions by category

See category, graphics engine internal functions
GreAccumulateBounds 1-7, 8-25
GreArc 8-22, 10-8
GreAreaSetAttributes 10-10
GreBeginArea 10-11
GreBeginPath 10-13
GreBitblt 8-26
GreBoxBoth 10-15
GreBoxBoundary 10-17
GreBoxlnterior 10-19
GreCharRect 9-6
GreCharStr 9-7
GreCharString 7-6, 8-30
GreCharStringPos 8-31
GreCloseDC 11-4
GreCloseFigure 8-21, 10-21
GreCombineRectRegion 10-22

GreCombineRegion 10-23
GreCombineShortlineRegion 10-24
GreConvert 1-7, 2-1, 10-26
GreConvertWithMatrix 10-27
GreCopyClipRegion 10-28
GreCopyDCLoadData 11-5
GreCreateBitmap 11-7
G rec reateJou rnal Fi le 2-7, 11-12
GreCreatelogColorTable 8-34
GreCreatelogicalFont 11-14
GreCreateRectRegion 10-30
GreDeath 9-8
GreDeleteBitmap 11-17
GreDeleteJournalFile 11-18
GreDeleteSetld 11-20
GreDestroyRegion 10-31
GreDeviceAnimatePalette 10-32
GreDeviceCreateBitmap 8-36
GreDeviceCreatePalette 10-33
GreDeviceDeleteBitmap 8-41
GreDeviceDeletePalette 10-35
GreDeviceGetAttributes 8-43
GreDevicelnvalidateVisRegion 9-9
GreDeviceQueryFontAttri butes 8-44
GreDeviceQueryFonts 8-45
GreDeviceResizePalette 10-37
GreDeviceSelectBitmap 8-47
GreDevlceSetAttributes 7-19, 8-48
GreDeviceSetAVIOFont 9-10
GreDeviceSetCursor 9-11
GreDeviceSetDCOrigin 8-50
GreDeviceSetGlobalAttribute 8-51
GreDeviceSetPaletteEntries 10-38
GreDisjointlines 8-52
GreDrawBits 8-53
GreDrawBorder 8-57
GreDrawlineslnPath 2-1, 8-60
GreDrawRLE 10-39
GreEndArea 2-5, 8-102, 10-41
GreEndPath 10-43
GreEqualRegion 10-44
GreErasePS 8-62
GreEscape 7-12, 8-15

DEVESC_ABORTDOC 8-63
DEVESC_BREAK_EXTRA 8-65
DEVESC_CHAR_EXTRA 8-66
DEVESC_DBE_FIRST 8-67
DEVESC_DBE_LAST 8-68
DEVESC_DRAFTMODE 8-69
DEVESC_ENDDOC 8-70
DEVESC_FLUSHOUTPUT 8-71
DEVESC_GETCP 8-72
DEVESC_GETSCALINGFACTOR 8-73
DEVESC_NEWFRAME 8-74
DEVESC_NEXTBAND 8-75
DEVESC _ QUERYESCSUPPORT 8-76
DEVESC _ QUERYVIOCELLSIZES 8-77
DEVESC_RAWDATA 8-79

Index X-19

GreEscape (continued)
DEVESC_SETMODE 8-80
DEVESC_STARTDOC 8-81
DEVESC_STD_JOURNAL 8-82

GreExcludeClipRectangle 10-45
GreFillPath 8-102, 10-47
GreFullArcBoth 10-49
GreFullArcBoundary 10-51
GreFullArclnterior 10-53
GreGetArcParameters 10-55
GreGetAttributes 11-21
GreGetBitmapBits 8-83
GreGetBitmapDimension 11-22
GreGetBitmapParameters 11-23
GreGetBoundsData 8-86
GreGetClipBox 10-56
GreGetClipRects 2-1, 10-57
GreGetCodePage 8-87
GreGetCurrentPosition 8-88
GreGetDCOrigin 8-89
GreGetDefaultArcParameters 11-26
GreGetDefaultAttributes 11-27
GreGetDefaultViewinglimits 11-28
GreGetGlobalViewingXform 10-59
GreGetGraphicsField 10-60
GreGetHandle 11-29
GreGetlineOrigin 8-90
GreGetModelXform 10-61
GreGetPageUnits 10-62
GreGetPageViewport 10-63
GreGetPairKerningTable 8-91
GreGetPel 8-92
GreGetPickWindow 9-12
GreGetProcessControl 11-30
GreGetRegionBox 10-64
GreGetRegionRects 10-65
GreGetStyleRatio 9-13
GreGetViewinglimits 10-67
GreGetWindowViewportXform 10-68
GrelmageData 8-93
GrelnitializeAttributes 11-31
GrelntersectClipRectangle 10-69
GrelnvalidateVisRegion 2-6
GreloadFont 11-32
GrelockDevice 8-95
GreModifyPath 10-71
GreMultiplyXforms 10-73
GreNotifyClipChange 8-96
GreNotifyTransformChange 8-97
GreOffsetClipRegion 10-74
GreOffsetRegion 10-75
GreOpenDC 11-33
GreOpenJournalFile 11-37
GreOutlinePath 10-76
GrePaintRegion 10-77
GrePartialArc 10-78
GrePlayJournalFile 11-38

X-20 Presentation Driver Reference

GrePolyFillet 8-22, 10-80
GrePolyFilletSharp 10-82
GrePolygonSet 10-86
GrePolyline 1-7, 8-22, 8-99
GrePolyMarker 8-101
GrePolyScanline 8-102
GrePolyShortli ne 2-1, 8-104
GrePolySpline 10-84
GrePtlnRegion 10-88
GrePtVisible 10-89
GreQueryBitmapHandle 11-40
GreQueryCharPositions 8-106
GreQueryClipRegion 10-90
GreQueryCodePageVector 11-41
GreQueryColorData 8-108
GreQueryColorlndex 8-109
GreQueryDeviceBitmaps 8-11 O
GreQueryDeviceCaps 8-111
GreQueryDevResource 8-113
GreQueryEngineVersion 11-42
GreQueryFontAttributes 11-43
GreQueryFontFileDescriptions 11-44
GreQueryFonts 11-45
GreQueryHardcopyCaps 8-118
GreQueryHWPalettelnfo 10-91
GreQuerylogColorTable 8-120
GreQuerylogicalFont 11-46
GreQueryNearestColor 8-121
GreQueryNumberSetlds 11-47
GreQueryPaletteRealization 10-92
GreQueryRealColors 8-123
GreQueryRGBColor 8-125
GreQuerySetlds 11-48
GreQueryTextBox 8-126
GreQueryWidthTable 8-128
GreRealizeColorTable 8-129
GreRealizeFont 8-130
GreRealizePalette 10-93
GreRectlnRegion 10-95
GreRectVisible 10-96
GreRegionSelectBitmap 10-97
GreResetBounds 8-133
GreResetDC 11-50
GreRestoreDC 11-52
GreRestorePath 10-98
GreRestoreRegion 10-99
GreRestoreScreenBits 9-14
GreRestoreXform 10-100
GreRestoreXform Data 10-101
GreResurrection 9-16
GreSaveDC 11-54
GreSavePath 10-102
GreSaveRegion 10-103
GreSaveScreenBits 9-17
GreSaveXform 10-104
GreSaveXformData 10-105
GreScrollRect 9-18

GreSelectBitmap 11-56
GreSelectClipPath 10-106
GreSelectClipRegion 10-108
GreSelectPathRegion 10-110
GreSetArcParameters 10-111
GreSetAttributes 11-58
GreSetBitmapBits 8-134
GreSetBitmapDimension 11-60
GreSetBitmaplD 11-61
GreSetCodePage 8-137
GreSetColorCursor 9-19
GreSetCurrentPosition 1-7, 2-5, 8-21, 8-138
GreSetCursor 3-2
GreSetDefaultArcParameters 11-62
GreSetDefaultAttributes 11-63
GreSetDefaultlimits 11-65
GreSetGlobalAttribute 11-66
GreSetGlobalViewingXform 10-112
GreSetGraphicsField 10-114
GreSetHandle 11-67
GreSetlineOrigin 8-140
GreSetModelXform 10-115
GreSetPageUnits 10-117
GreSetPageViewport 10-119
GreSetPel 8-142
GreSetPickWindow 9-20
GreSetProcessControl 11-68
GreSetRectRegion 10-121
GreSetStyleRatio 9-21
GreSetupDC 10-126
GreSetViewinglimits 10-122
GreSetWindowViewportXform 10-123
GreSetXformRect 10-125
GreStartJournalFile 2-7, 11-69
GreStopJournalFile 2-7, 11-71
GreStrokePath 10-128
GreUnLoadFont 11-72
GreUnlockDevice 8-143
GreUnrealizeColorTable 8-144
GreUpdateColors 10-130
GreUpdateCursor 9-22

H
handling routine 8-1
hardcopy device names 2-11
hardcopy devices 1-4
hardcopy devices, raster 2-7
hardcopy driver migration 2-11
hardcopy drivers 1-1, 1-4, 1-8, 4-1, C-1
hardcopy driver, file output 2-12
HCINFO structure. 8-118
HDC_IS_DIRTY 2-6
hddc handle 7-4
header files 1-3
heap space, global 7-6, 7-8
help 2-12

help, contextual 2-12
high WORD 2-12
hit test 3-2
hooking 1-2, 10-1
HP LaserJet II 4-6
HP LASERJET II P 4-2

image attributes 8-11
IMAGEBUNDLE mask 8-11
IMAGEBUNDLE structure 8-12
lmageData 8-93
imported entry points 1-10
include files
INI file 4-7, 4-8, 7-10
initialization file
lnitializeAttributes 11-31
instance data 1-9, 7-12, 7-13, 7-18, 8-21, 8-138

GetDriverlnfo 12-2
SetDriverlnfo 12-3

instance pointers 1-10
instance, DC 1-8
internal graphics engine 11-1
internal interfaces
interrupts 2-4, 3-1
lntersectClipRectangle 10-69
lnvalidateVisRegion 9-9
IOCtl

PrtDevlOCtl 4-12

J
JNL_ORAW_OPTIMIZATION 2-7
job dialogs 2-12
job error dialog 2-12
journal file 2-7
journal file format B-1
JournalData escape code 8-82
journaling functions 11-1

GreCreateJournalFile 11-12
GreDeleteJournalFile 11-18
GreEscape DEVESC_STD_JOURNAL 8-82
GreOpenJournalFile 11-37
GrePlayJournalFile 11-38
GreStartJournalFile 11-69
GreStopJournalFile 11-71

K
keyname 4-5

L
LAN 7-9
LaserJet 4-6, 7-8
LCID functions

GreCopyDCLoadData 11-5
GreQueryBitmapHandle 11-40

Index X-21

LCID functions (continued)
GreSetBitmaplD 11-61

LeaveDriver 2-4
libraries

dynamic link libraries (DLLs) 1-1
DISPLAY.DLL C-1
filename extension (DLL) 1-1
filename extension (ORV) 1-1
functions 1-9
graphics engine 1-1
initialization routine 1-9
PMGRE.DLL 1-1

LIFO order 7-17
line attributes 8-3, 10-71
line functions

GreDisjointlines 8-52
GreDrawlineslnPath 8-60
GreDrawRLE 10-39
GreGetCurrentPosition 8-88
GreGetlineOrigin 8-90
GrePolygonSet 10-86
GrePolyline 8-99
GrePolyScanline 8-102
GrePolyShortline 8-104
GreSetCurrentPosition 8-138
GreSetlineOrigin 8-140

LINE structure 8-60
line styling 8-17
LINEBUNDLE mask 8-3
LINEBUNDLE structure 8-3, 8-17
LINEDEFS structure 8-3
LINE_IDENTIFIER 8-60
LoadFont 11-32
LockDevice 8-95
logical address 2-12, 7-8
logical color table 8-13
logical color table functions

See color table functions
logical device block 7-6
logical video buffer 9-1
low WORD 2-12
LVB 9-1
IVersion 2-12

M
macro assembler 2-4
magic cookie C-1
mandatory functions

all drivers 8-1
display drivers 9-1

mandatory functions (all drivers) by category
See category, mandatory functions (all drivers)

mandatory functions (display drivers) by category
See category, mandatory functions (display drivers)

marker attributes 8-12
marker functions

GrePolyMarker 8-101

X-22 Presentation Driver Reference

MARKERBUNDLE mask 8-12
MARKERBUNDLE structure 8-12
MARKERDEFS structure 8-12
mask

AREABUNDLE 8-5
CHARBUNDLE 8-6
IMAGEBUNDLE 8-11
LINEBUNDLE 8-3
MARKERBUNDLE 8-12

mask position value 8-18
matrix element format 10-4
matrix element values 2-2
MBID_ABORT 2-12
MBID_IGNORE 2-12
MBID_RETRY 2-12
memory allocation 2-2, 7-4
memory management

SSAllocMem 12-4
SSFreeMem 12-5

message box 2-12
message, user

SplMessageBox 4-20
miscellaneous screen functions

GreGetPickWindow 9-12
GreSetColorCursor 9-19
GreSetPickWindow 9-20

mix modes 8-2
ModifyPath 10-71
module definition file 1-9
monochrome device 8-15
monotonic fillet 8-104
MoveCursor 3-1
MoveCursorBlock 3-1
multi-file driver 4-7
MultiplyXforms 10-73
MyExitProc 2-4

N
naming conventions A-1
NewFrame escape code 8-74
NextBand escape code 8-75
NGreCreateJournalFile 1-10
noninclusive boundary 8-27, 8-55
NotifyClipChange 8-96
NotifyTransformChange 8-97
NOTIFYTRANSFORMDATA structure 8-98
NULL pointer 1-11

0
OD_DIRECT 1-8, 2-7, 2-12, 7-12
OD_INFO 1-8, 7-12
OD_MEMORY 1-8, 7-12, C-1
OD_QUEUED 1-8, 2-7, 7-12
OffsetClipRegion 10-74
OffsetRegion 10-75

Open Transaction functions 7-4
OpenDC 11-33
OpenJournalFile 11-37
082DEF.H 4-2, 4-6, 7-3
0828Y8.INI 4-3, 4-4, 4-5, 6-1
082.H 1-3, 4-2, 4-6, 7-3
082.INC 1-3
082_PM_DRV_DEVICENAMES 2-11, 4-6
OS2_PM_DRV _DEVMODE 4-2
OS2_PM_DRV_ENABLE 1-2, 7-3

See a/so entry point, Enable
FillLogicalDeviceBlock 1-2

OS2_PM_DRV _ENABLE_LEVELS 7-2
OS2_PM_DRV_MODES 2-11
OS2_PM_DRV _QUERY8CREENRE80LUTION8 3-2
OS2_PM_DRV_RING_LEVELS 1-1, 7-1
08/2 1-1

OS/2 kernel 1-1
OutlinePath 10-76
output banding 2-7

p
PaintRegion 10-77
palette manager functions

GreDeviceAnimatePalette 10-32
GreDeviceCreatePalette 10-33
GreDeviceDeletePalette 10-35
GreDeviceResizePalette 10-37
GreDeviceSetPaletteEntries 10-38
GreQueryHWPalettelnfo 10-91
GreQueryPaletteRealization 10-92
GreRealizePalette 10-93
GreUpdateColors 10-130

paNewXformData 10-73
parameter names A-1
Param1 7-3
Param2 7-3
PartialArc 10-78
path functions 10-1

GreBeginPath 10-13
GreCloseFigure 10-21
GreDrawLineslnPath 8-60
GreEndPath 10-43
GreFillPath 10-47
GreModifyPath 10-71
GreOutlinePath 10-76
GreRestorePath 10-98
Gre8avePath 10-102
GreSelectClipPath 10-106
GreSelectPathRegion 10-110
GreStrokePath 10-128

pattern attributes 8-5
paXform 10-73
pDCI 7-9, C-1
PdEnumPort 6-2
PdGetPortlcon 6-3

PdlnitPort 6-4
PdlnstallPort 6-5
pDispatchTable 7-6
PdQueryPort 6-6
PdRemovePort 6-7
pdriv 2-11, 7-10
Pd8etPort 6-8
PdTermPort 6-9
pel considerations 8-21
PERR_HDC_BUSY 2-4
physical device block 7-9

disable 7-11
fill 7-8

physical device driver 3-1, C-1
physical font 11-1
physical Port device driver 6-1
plnstance 1-9, 1-10, 7-13
PlayJournalFile 11-38
PMDD.SY8 3-1
PMDEV.H 4-6
PMGRE.DLL 1-1, 7-4
PM_Q_RAW 1-9, 2-7
PM_Q_RAW data

format 4-17
PM_Q_STD 1-9, 7-8
PM_ Q_STD data

format 4-15
PM_8POOLER_DD 4-4
POINTL structure 10-8
POINTS structure 9-11
PolyFillet 10-80
PolyFi lletSharp 10-82
polygon 10-86
POLYGON structure 10-86
PolygonSet 10-86
POLYGON_ALTERNATE 10-86
POLYGON_WINDING 10-86
Polyline 8-99
Polylines 8-21
PolyMarker 8-101
Poly8canline 8-102
Poly8hortline 8-104
Poly8pline 10-84
port drivers 6-1

SplPdEnumPort 6-2
SplPdGetPortlcon 6-3
8plPdlnitPort 6-4
SplPdlnstallPort 6-5
SplPdQueryPort 6-6
SplPdRemovePort 6-7
8plPdSetPort 6-8
8plPdTermPort 6-9

PostDeviceModes 4-2
Postscript, Encapsulated 2-12
precision 8-7
presentation driver

architecture 1-4
dynamic link library 3-1, 4-1, 7-1

Index X-23

presentation driver (continued)
entry points 3-1, 4-1, 7-1
interface 1-1, 1-10
overview 1-1

presentation driver interface 1-10
Presentation Manager 4-2, 4-6, 7-3, 8-88
primitives, unclipped 2-1
private font 11-1
process control flags

GreGetProcessControl 11-30
GreSetProcessControl 11-68

program stack 1-9
frame 1-6

programming considerations 3-2
properties, device defaults 4-4
properties, hardcopy 4-3
properties, job 4-3
properties, printer 4-3
protection rectangle 3-2
PrtAbort 2-12, 4-10
PrtClose 4-11
PrtDevlOCtl 4-12
PrtOpen 4-13
PrtWrite 2-12, 4-14
pszDriverName 7-7
PtlnRegion 10-88
PtVisible 10-89

Q
QmAbort 4-21
QmAbortDoc 4-22
QmClose 4-23
QmEndDoc 4-24
QmOpen 4-25
QmStartDoc 4-26
QmWrite 4-27
QpClose 5-2
QpControl 5-3
Qplnstall 5-4
QpOpen 5-5
QpPrint 5-7
QpQueryDt 5-8
QpQueryFlags 5-9
query functions

GreDeviceQueryFontAttributes 8-44
GreDeviceQueryFonts 8-45
GreEscape DEVESC_QUERYESCSUPPORT 8-76
GreEscape DEVESC_QUERYVIOCELLSIZES 8-77
GreQueryBitmapHandle 11-40
GreQueryCharPositions 8-106
GreQueryClipRegion 10-90
GreQueryCodePageVector 11-41
GreQueryColorData 8-108
GreQueryColorlndex 8-109
G reQueryDeviceBitmaps 8-110
GreQueryDeviceCaps 8-111
GreQueryDevResource 8-113

X-24 Presentation Driver Reference

query functions (continued)
GreQueryEngineVersion 11-42
GreQueryFontAttributes 11-43
GreQueryFontFileDescriptions 11-44
GreQueryFonts 11-45
GreQueryHardcopyCaps 8-118
GreQuerylogColorTable 8-120
GreQuerylogicalFont 11-46
GreQueryNearestColor 8-121
GreQueryNumberSetlds 11-47
GreQueryRealColors 8-123
GreQueryRGBColor 8-125
GreQuerySetlds 11-48
GreQueryTextBox 8-126
GreQueryWidthTable 8-128
QueryDeviceNames 4-6
SplQpQueryDt 5-8
SplQpQueryFlags 5-9
WinQueryProcessCp 8-87

QueryHWPalettelnfo 10-91
QueryPaletteRealization 10-92
queue drivers 5-1

SplQpClose 5-2
SplQpControl 5-3
SplQplnstall 5-4
SplQpOpen 5-5
SplQpPrint 5-7
SplQpQueryDt 5-8
SplQpQueryFlags 5-9

queue manager 4-19
queue processors 5-1

See also queue drivers
queued devices 4-1

R
raster data 2-7
raster devices C-1
raster hardcopy devices 2-7
raster operation 8-26
RawData escape code 8-79
Real izeFont 8-130
RealizePalette 10-93
RectlnRegion 10-95
RECTL structure 9-12, 10-64
RectVisible 10-96
region functions 10-2

GreCombineRectRegion 10-22
GreCombineRegion 10-23
GreCombineShortlineRegion 10-24
GreCopyClipRegion 10-28
GreCreateRectRegion 10-30
GreDestroyRegion 10-31
GreDevicelnvalidateVisRegion 9-9
GreEqualRegion 10-44
GreExcludeClipRectangle 10-45
GreGetClipBox 10-56
GreGetClipRects 10-57

region functions (continued)
GreGetRegionBox 10-64
GreGetRegionRects 10-65
GrelntersectClipRectangle 10-69
GreNotifyClipChange 8-96
GreOffsetClipRegion 10-74
GreOffsetRegion 10-75
GrePaintRegion 10-77
GrePtlnRegion 10-88
GreQueryClipRegion 10-90
GreRectlnRegion 10-95
GreRectVisible 10-96
GreRegionSelectBitmap 10-97
GreRestoreRegion 10-99
GreSaveRegion 10-103
GreSelectClipRegion 10-108
GreSelectPathRegion 10-110
GreSetRectRegion 10-121
VisRegionNotify 12-6

RegionSelectBitmap 10-97
register, AX 3-1
ResetBounds 8-133
ResetDC 11-50
ResetDCState, 09H 7-19
RestoreDC 11-52
RestoreDCState, 08H 7-18
RestorePath 10-98
RestoreRegion 10-99
RestoreScreenBits 9-14
RestoreXform 10-100
RestoreXformData 10-101
Resurrection 9-16
return code 7-12
return code format 2-2
return codes 8-88, 8-99, 8-103, 8-104, 8-138
return code, failure 7-5
revalidating the visible region 12-6
RGNRECT structure 10-65
ring level 7-1, 7-2
ring structure 1-1
ring transitions 1-1
ring O 1-1
ring 1 1-1
ring 2 1-1, 7-1, 7-2
ring 2 conforming 1-1, 7-1, 7-2
ring 3 1-1, 7-1, 7-2

s
SaveDC 11-54
SaveDCState, 07H 7-17
SavePath 10-102
SaveRegion 10-103
SaveScreenBits 9-17
SaveXform 10-104
SaveXformData 10-105
scan functions

GrePolyScanline 8-102

SCANDATA structure 8-102, 10-24
screen coordinate 8-104
screen coordinates 2-1, 8-60
screen switching 9-8, 9-16
scrolling 9-18

using GreBitblt 9-18
ScrollRect 9-18
select font 11-1
SelectBitmap 8-47, 11-56
SelectClipPath 10-106
SelectClipRegion 10-108
selected values 4-4
SelectPathRegion 10-110
semaphore 3-2, 7-20
semaphores
Set ID functions

GreDeleteSetld 11-20
GreQueryNumberSetlds 11-47
GreQuerySetlds 11-48

SetArcParameters 10-111
SetAttributes 11-58
SetAVIOFont 9-10
SetBitmapBits 8-134
SetBitmapDimension 11-60
SetBitmaplD 11-61
SetCodePage 8-137
SetColorCursor 9-19
SetCurrentPosition 8-138
SetDCOrigin 8-50
SetDefaultArcParameters 11-62
SetDefaultAttributes 11-63
SetDefaultlimits 11-65
SETDRIVERINFO 1-10, 12-3
SetErrorlnfo 12-7
SetGlobalAttribute 11-66
SetGlobalViewingXform 10-112
SetGraphicsField 10-114
SetHandle 11-67
SetlineOrigin 8-140
SetMode escape code 8-80
SetModelXform 10-115
SetPageUnits 10-117
SetPageViewport 10-119
SetPel 8-142
SetPickWindow 9-20
SetProcessControl 11-68
SetRectRegion 10-121
SetStyleRatio 9-21
SetupDC 10-126
SetViewinglimits 10-122
SetWindowViewportXform 10-123
SetXform Rect 10-125
severity of errors 2-3
SFACTORS structure 8-73
shortline 8-102, 8-104
SHORTLINE structure 8-104
SHORTLINEHEADER structure 8-102, 8-104

Index X-25

simulated functions 10-1
simulated functions by category

See category, simulated functions
simulations

bit map C-1
function 1-10
presentation driver interface 10-1

SIZEL structure 10-62
spline 10-84
spline functions

GrePolySpline 10-84
SplMessageBox 4-20
SplPdEnumPort 6-2
SplPdGetPortlcon 6-3
SplPdlnitPort 6-4
SplPdlnstallPort 6-5
SplPdQueryPort 6-6
SplPdRemovePort 6-7
SplPdSetPort 6-8
SplPdTermPort 6-9
SplQmAbort 4-21
SplQmAbortDoc 4-22
SplQmClose 4-23
SplQmEndDoc 4-24
SplQmOpen 4-25, 7-9
SplQmStartDoc 4-26
SplQmWrite 4-27
SplQpClose 5-2
SplQpControl 5-3
SplQplnstall 5-4
SplQpOpen 5-5
SplQpPrint 5-7
SplQpQueryDt 5-8
SplQpQueryFlags 5-9
SplStdClose 4-29
SplStdDelete 4-30
SplStdGetBits 4-31
SplStdOpen 4-32
SplStdQuerylength 4-33
SplStdStart 4-34
SplStdStop 4-35
spooler 4-1, 4-19

components 4-15
configuration data 4-18
data types 4-15
PM_Q_RAW data type 4-17
PM_Q_STD data type 4-15
querying 4-18
spool file 4-15
spool file creation 4-15

spooler support for PM_Q_STD 4-28
spooler support functions 4-19

SplMessageBox 4-20
SplQmAbort 4-21
SplQmAbortDoc 4-22
SplQmClose 4-23
SplQmEndDoc 4-24
SplQmOpen 4-25

X-26 Presentation Driver Reference

spooler support functions (continued)
SplQmStartDoc 4-26
SplQmWrite 4-27

spooler support functions for PM_Q_STD
SplStdClose 4-29
SplStdDelete 4-30
SplStdGetBits 4-31
SplStdOpen 4-32
SplStdQuerylength 4-33
SplStdStart 4-34
SplStdStop 4-35

spoolerparams 7-9
SSAllocMem 7-6, 12-4
SSFreeMem 12-5
stack 1-6, 1-9, 3-1, 7-3
stack frame 7-3
StartDoc escape code 8-81
StartJournalFile 11-69
StdJournal escape code 8-82
STI 2-4
StopJournalFile 11-71
string functions

GreCharRect 9-6
GreCharStr 9-7
GreCharString 8-30
GreCharStringPos 8-31
GreQueryCharPositions 8-106
GreQueryTextBox 8-126
GreQueryWidthTable 8-128
GreScrollRect 9-18
GreUpdateCursor 9-22

StrokePath 10-128
structures

ARCPARAMS 10-111
AREA BUNDLE 8-5, 10-86
AREADEFS 8-5
BANDRECT 8-75
BITBLT A TTRS 8-28
BITMAPINFO 8-83
CHARBUNDLE 8-7
CHARDEFS 8-6
CURVE 8-60
DAREABUNDLE 8-5
DCHARBUNDLE 8-6
DELETERETURN 8-41
DENPARAMS 7-8
DEVOPENSTRUC 7-8
DIMAGEBUNDLE 8-11
DISPLAYINFO 8-113
DLINEBUNDLE 8-3
DMARKERBUNDLE 8-12
DRIVDATA 4-2, 7-8
FATTRS 11-14
FILLETSHARP 8-60
HCINFO 8-118
IMAGEBUNDLE 8-12
LINE 8-60
LINEBUNDLE 8-3, 8-17

structures (continued)
LINEDEFS 8-3
MARKERBUNDLE 8-12
MARKERDEFS 8-12
NOTIFYTRANSFORMDATA 8-98
POINTL 10-8
POINTS 9-11
POLYGON 10-86
RECTL 9-12, 10-64
RGNRECT 10-65
SCANDATA 8-102, 10-24
SFACTORS 8-73
SHORTLINE 8-104
SHORTLINEHEADER 8-102, 8-104
SIZEL 10-62

style mask 8-17
style ratio functions

GreGetStyleRatio 9-13
GreSetStyleRatio 9-21

styling
curves 8-17
lines 8-17

subfunctions, Enable
Enable subfunctions 1-2
OAH, CompleteOpenDC 7-20
OBH, BeginCloseDC 7-21
01H, FilllogicalDeviceBlock 7-6
02H, FillPhysicalDeviceBlock 7-8
04H, DisablePhysicalDeviceBlock 7-11
05H, EnableDeviceContext 7-12
06H, DisableDeviceContext 7-16
07H, SaveDCState 7-17
08H, RestoreDCState 7-18
09H, ResetDCState 7-19

syntax conventions A-1
system functions 12-1

GetDriverlnfo 12-2
SetDriverlnfo 12-3
SSAllocMem 12-4
SSFreeMem 12-5
VisRegionNotify 12-6
WinSetErrorlnfo 12-7

system services 1-1
szDeviceName 2-11, 7-7
szDeviceName[32] 7-8

T
table entries 8-1
text functions 2-2

See also string functions
text mode 8-69
thread 2-4, 7-4, 7-20
transform functions 10-2

GreConvert 10-26
GreConvertWithMatrix 10-27
GreGetDCOrigin 8-89
GreGetDefaultViewinglimits 11-28

transform functions (continued)
GreGetGlobalViewingXform 10-59
GreGetGraphicsField 10-60
GreGetModelXform 10-61
GreGetPageUnits 10-62
GreGetPageViewport 10-63
GreGetViewinglimits 10-67
GreGetWindowViewportXform 10-68
GreMultiplyXforms 10-73
GreNotifyTransformChange 8-97
GreRestoreXform 10-100
GreRestoreXformData 10-101
GreSaveXform 10-104
GreSaveXformData 10-105
GreSetDefaultViewinglimits 11-65
GreSetGlobalViewingXform 10-112
GreSetGraphicsField 10-114
GreSetModelXform 10-115
GreSetPageUnits 10-117
GreSetPageViewport 10-119
GreSetViewinglimits 10-122
GreSetWindowViewportXform 10-123
GreSetXformRect 10-125

transform matrix values 2-2
transform structure 8-98

u
ulHDC 7-8, 7-12, C-1
ulStatelnfo 7-8, C-1
ulType 7-8
ulVersion 7-6
UNC queue name 7-9
UnloadFont 11-72
UnlockDevice 8-143
UpdateColors 10-130
UpdateCursor 9-22
user dialog 4-4
user interface

Spl MessageBox 4-20
user-definable values 4-4
USER_BOUNDS 1-7
usResult 2-4

v
validating the visible region 12-6
values, selected 4-4
values, user-definable 4-4
version number 4-2, 8-111
VIO functions 9-1
visible region

dirty vis region 2-6
GreDevicelnvalidateVisRegion 9-9
GrePtVisible 10-89
GreRectVisible 10-96

VisRegionNotify 2-6, 12-6

Index X-27

visual interface
SplMessageBox 4-20

void 4-7, 4-8

w
Window Manager 1-7, 7-18
WinMessageBox 4-20
WinQueryProcessCp 8-87
WinQueuryProcessCP 7-12
WinSetErrorlnfo 8-52, 8-61, 10-40, 12-7
Workplace Shell 4-5, 5-1
world coordinate 8-138
world coordinates 1-7, 2-1

Numerics
OAH, CompleteOpenDC 7-20
OBH, BeginCfoseDC 7-21
01H, FilllogicalDeviceBlock 7-6
02H, FillPhysicalDeviceBlock 7-8
04H, DisablePhysicalDeviceBlock 7-11
05H, EnableDeviceContext 7-12
06H, DisableDeviceContext 7-16
07H, SaveDCState 7-17
08H, RestoreDCState 7-18
09H, ResetDCState 7-19
16-bit and 32-bit compatibility 1-1

X-28 Presentation Driver Reference

®IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

---- ------- - - --- - -- - ---- - - ------- ------·@

© IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6267

Sl0G-6267-00

u 1 rn 1111111 n
Pl0G6267

