

— Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xi.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “® (your company name) (year) All Rights Reserved.”

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

NOHCES it e e e e e e e e e xi
TradEMAIKS . . . o o o e e e e e e e e e e e e e xi
Double-Byte Character Set (DBCS) i i e xi
PRESENTATION DRIVER DEVELOPMENT PROGRAMFORM xiii
AboutThisBook e e e e XV

Part 1. Overview

Chapter 1. PresentationDriversOverview 1-1
Display DeVICES 14
Hardcopy Devices (PrintersandPlotters) L 1-4
Calling Conventionsttt e 16
Function Numberand Command Flags i, 1-6
DeVIiCe CoNteXt e e e e e e e e e 1-8
Device CONtEXt TYPOS . . . o oottt ettt et e e e e 1-8
Data Types (Hardcopy Drivers Only) i 1-8
Instance Data e e e e 1-9
Program Stack s 1-9
Dynamic Link Library Functions 1-9
Exported FUNCHIONS i i et e 1-9
Imported FUNCLIONS e 1-10
Presentation Driver Interface e 1-10

Part 2. Development Considerations

Chapter 2. DesignConslderations 2-1
ANGIES e s 2-1
Bounds COMPULatioNS e 21
CHPPING . .o o e 21
Closing Figuresin AreasandPaths i 2-1
Coordinate Values i e e e e 241
Positions Within Text FUNCHIONS e i 2-2
RetUIN COdeS ot e e e e e e e e 2-2
Transform Matrix Valueso ittt e e e e e e e e e e e e e 2-2
Allocating MemOrY e 2-2
Error Strategyot ot et 2-2
SBVBIIY i e e e 2-3
Presentation Manager Error Codesttt 23
EXit LISt PrOoCeSSINg ottt e s 2-4
INEEITUPES e e 24
Protecting Objects or Device Contexts 24
Design Considerations for Display Drivers i 2-5
Correlation e e e e e e e e 2-5
Drawingto Display Devices e 2-6
Design Considerations for Hardcopy Drivers i 2-6
Banding e 2-7
Document ProCcessingo i s 2-8
Extended AHIIDULES e e e 2-10
Hardcopy Device Names 2-11
Hardcopy Driver Migration e 2-11

© Copyright I1BM Corp. 1992 ili

Hardcopy Driver Outputto File 2-12
Help 2-12

Part 3. 0OS/2 2.0 Presentation Drivers

Chapter 3. Display Drivers 3-1
Exported Entry Points 3-1
MoveCursorBlock 3-1
082_PM_DRV_QUERYSCREENRESOLUTIONS 3-2
Chapter 4. Graphics Engine Hardcopy Drivers 4-1
Exported Entry Points 4-1
OS82 PM_DRV_DEVMODE 4-2
OS2_PM_DRV_DEVICENAMES 4-6
Drvinstall 4-7
DrvRemove 4-8
File System Emulation 4-9
PrADOIt . 4-10
PriClose 4-11
PriDevIOCH 4-12
PROpeN . . 4-13
PrWrite . . . 4-14
Spooler Components 4-15
Spool File Creation 4-15
PM_Q_STD 4-15
PM_Q_RAW . .. e 4-17
Querying and Setting ConfigurationData 4-18
Spooler Support Functions 4-19
SpIMessageBox 4-20
SpPIQMAbO It . . . 4-21
SpIQMADOMDOC 4-22
SplIAmClose 4-23
SPIAMENADOC 4-24
SPIAMODEN 4-25
SplQmMStantDoC 4-26
SPIAMWrite 4-27
Spooler Supportfor PM_Q_STDData Typeo 4-28
SpIStdClose 4-29
SpiStdDelete 4-30
SpIStdGetBits 4-31
SPIStdOPeN 4-32
SpiStdQuerylength 4-33
SpIStdStart 4-34
SpISHASIOD 4-35
Chapter 5. Queue Drivers (Queue Processors) 5-1
HowaQueue Driver Prints 5-1
PM_Q_STD . . . 5-1
PM O RAW . 5-1
UserDataTypes 5-1
SpIQPClose 52
SplQpControl 5-3
SplQplnstall 5-4
SPIQPOPEN . . 5-5

iV Presentation Driver Reference

SPIQPPHINt . . . e 5-7

SpIQpQueryDt e e e e e ... BB
SpPIQPQUerYFIags e 5-9
Chapter6. PortDrivers e 6-1
OS2SYS.INIFile Structure i e 6-1
SpPIPAENUMPOIt 6-2
SpIPdGetPOrtICON e e e e 6-3
SpIPdINItPOrt e e e 6-4
SpIPdInstallPort e e 6-5
SpIPdQUeryPoOrt e 6-6
SPIPAReMOVEPOIt e e, 6-7
SpIPASetPOrt e e e e 6-8
SpIPdTermPort e 6-9

Part 4. Reference Material

Chapter7. ExportedEntryPoints 7-1
082 PM_ DRV _RING _LEVELSt e e e e e i 7-1
082 PM_DRV_ENABLE_LEVELS i e e e e et e 7-2
OS2 _ PM_DRV ENABLE e e e e e 7-3
Enable Subfunction 01H — FillLogicalDeviceBlock 7-6
Enable Subfunction 02H — FillPhysicalDeviceBlock 7-8
Enable Subfunction 04H — DisablePhysicalDeviceBlock 7-11
Enable Subfunction 05H — EnableDeviceContext 7-12
Enable Subfunction 06H — DisableDeviceContext 7-16
Enable Subfunction 07H — SaveDCState 7-17
Enable Subfunction 08H — RestoreDCState, 7-18
Enable Subfunction09H — ResetDCState 7-19
Enable Subfunction 0AH — CompleteOpenDC 7-20
Enable Subfunction 0BH — BeginCloseDC 7-21
Chapter 8. Mandatory Functionsfor AllDrivers 8-1
Attribute and Bundle Definitions 8-1
ColOrS . . . 8-1
Mix Modes 8-2
Line Attributes e e 8-3
Area (Pattern) Attributes e 8-5
Character Attributes e 8-6
Image Attributes e 8-11
Marker Attributes e e 8-12
Bit-Map Functions e 8-13
Color FUNCHIONS e e 8-13
GreESCape e 8-15
Defined Escape Codes i e 8-16
Ranges for Additional Escape Codes 8-17
Line FUNCLIONS e 8-17
Mandatory Functions (for All Drivers) by Category 0. 8-22
GreAccumulateBounds e 8-25
GreBitblt 8-26
GreCharString e 8-30
GreCharStringPos e e e e 8-31
GreCreateLogColorTable e 8-34
GreDeviceCreateBitmap e 8-36
GreDeviceDeleteBitmap e e 8-41

GreDeviceGetAttributes 8-43

GreDeviceQueryFontAttributes 8-44
GreDeviceQueryFonts 8-45
GreDeviceSelectBitmap 8-47
GreDeviceSetAttributes e 8-48
GreDeviceSetDCOrigin e 8-50
GreDeviceSetGlobalAttribute 8-51
GreDisjointLines 8-52
GreDrawBits e e e e 8-53
GreDrawBorder 8-57
GreDrawlinesInPath e 8-60
GreErasePS e 8-62
GreEscape DEVESC_ABORTDOC (Hardcopy DriversOnly) 8-63
GreEscape DEVESC_BREAK_EXTRA (Hardcopy DriversOnly) 8-65
GreEscape DEVESC_CHAR_EXTRA (Hardcopy DriversOnly) 8-66
GreEscape DEVESC _DBE_FIRST (DBCS Support) 8-67
GreEscape DEVESC_DBE_LAST (DBCS Support) 8-68
GreEscape DEVESC_DRAFTMODE (Hardcopy DriversOnly) 8-69
GreEscape DEVESC_ENDDOC (Hardcopy DriversOnly) 8-70
GreEscape DEVESC_FLUSHOUTPUT (Hardcopy DriversOnly) 8-71
GreEscape DEVESC_GETCP (Hardcopy DriversOnly) 8-72
GreEscape DEVESC_GETSCALINGFACTOR (Hardcopy DriversOnly) 8-73
GreEscape DEVESC_NEWFRAME (Hardcopy Drivers Only) 8-74
GreEscape DEVESC_NEXTBAND (Hardcopy DriversOnly) 8-75
GreEscape DEVESC_QUERYESCSUPPORT 8-76
GreEscape DEVESC_QUERYVIOCELLSIZES (Display DriversOnly) 8-77
GreEscape DEVESC_RAWDATA (Hardcopy DriversOnly) e 8-79
GreEscape DEVESC_SETMODE (Hardcopy DriversOnly) 8-80
GreEscape DEVESC_STARTDOC (Hardcopy DriversOnly) e 8-81
GreEscape DEVESC_STD_JOURNAL (Hardcopy DriversOnly) 8-82
GreGetBitmapBits e 8-83
GreGetBoundsData e 8-86
GreGetCodePage e 8-87
GreGetCurrentPosition e 8-88
GreGetDCOrIgin e 8-89
GreGetLineOrigin e e e -8-90
GreGetPairKerningTable e e 8-91
GreGetPel e e 8-92
GrelmageData S e 8-93
GreLockDevice e 8-95
GreNotifyClipChange S e 8-96
‘GreNotifyTransformChange e 8-97
GrePolyLine e e e e e e e e e e 8-99
GrePolyMarker e e -8-101
GrePolyScanline e 8-102
GrePolyShorthine 8-104
GreQueryCharPositions e 8-106
GreQueryColorData e .8-108
GreQueryColorindex 8-109
GreQueryDeviceBitmaps e 8-110
‘GreQueryDeviceCaps 8-111
GreQueryDevResouUrce 8-113
GreQueryHardcopyCaps (Hardcopy DriversOnly) 8-118
~@reQueryLogColorTable e 8-120
GreQueryNearestColor e 8-121
~GreQueryRealColors e e 8-123

vi

Presentation Driver Reference

GreQuUeryRGBCOIOr e e 8-125

GreQueryTextBoX e 8-126
GreQueryWidthTable e 8-128
GreRealizeColorTable e 8-129
GreRealizeFont e e e 8-130
GreResetBounds 8-133
GreSetBitmapBits 8-134
GreSetCodePage e 8-137
GreSetCurrentPosition e 8-138
GreSetLineOrigin 8-140
GreSetPel e e 8-142
GreUnlockDevice e e e 8-143
GreUnrealizeColorTable e e 8-144
Chapter 9. Mandatory Functions for Display Drivers 9-1
AVIO FUNCHIONS e e e 9-1
Mandatory Functions (for Display Drivers)by Category 9-5
GreCharRect e e 9-6
GreCharStr e e 9-7
GreDeath e 9-8
GreDevicelnvalidateVisRegion 9-9
GreDeviceSetAVIOFONt e e 9-10
GreDeviceSetCUrSOr e e 9-11
GreGetPickWindow e 9-12
GreGetStyleRatio 9-13
GreRestoreScreenBits e e e e 9-14
GreResUrreCtioON e e e e 9-16
GreSaveScreenBits e 9-17
GreScrollRect e e e 9-18
GreSetColorCUISOr 9-19
GreSetPiIckWIindow e e e 9-20
GreSetStyleRatio e e 9-21
GreUpdateCuUrsor e e e e 9-22
Chapter 10. Simulated Functions 10-1
Arc FUNCHIONS e e e e 10-1
Area and Path FUNRCLiONS e e e 10-1
Clip FUNCHiONS e e 10-1
Region FUNCHIONS e e 10-2
Transform FUNCHONS e e e 10-2
Matrix Element Format e e 10-4
Device Transform Definition by Presentation Page Viewport 10-4
Bounds, Correlation, and Clipping e 10-5
Simulated Functions by Category 10-6
GreArC . . . e 10-8
GreAreaSetAttributes 10-10
GreBeginArea e 10-11
GreBeginPath o e e 10-13
GreBoxBoth e 10-15
GreBoxBoundary e 10-17
GreBoxInterior e 10-19
GreCloseFigure 10-21
GreCombineRectRegion 10-22
GreCombineRegion 10-23
GreCombineShortLineRegion e 10-24
GreConvert e e 10-26

Contents Vii

GreConvertWithMatrix 10-27

GreCopyClipRegion 10-28
GreCreateRectRegion 10-30
GreDestroyRegion e 10-31
GreDeviceAnimatePalette 10-32
GreDeviceCreatePalette 10-33
GreDeviceDeletePalette 10-35
GreDeviceResizePalette 10-37
GreDeviceSetPaletteEntries e 10-38
GreDrawRLE 10-39
GreEndArea 10-41
GreEndPath e, 10-43
GreEqualRegion 10-44
GreExcludeClipRectangle e 10-45
GreFillPath 10-47
GreFullArcBoth e 10-49
GreFullArcBoundary 10-51
GreFullArcInterior e 10-53
GreGetArcParameters 10-55
GreGetClipBOX 10-56
GreGetClipRects e 10-57
GreGetGlobalViewingXform 10-59
GreGetGraphicsField e 10-60
GreGetModelXform 10-61
GreGetPagelnits e, 10-62
GreGetPageViewport L e 10-63
GreGetRegionBox e 10-64
GreGetRegionRects 10-65
GreGetViewingLimits 10-67
GreGetWindowViewportXform e e e 10-68
GrelntersectClipRectangle 10-69
GreModifyPath 10-71
GreMultiplyXforms 10-73
GreOffsetClipRegion 10-74
GreOffsetRegion 10-75
GreOutlinePath 10-76
GrePaintRegion, 10-77
GrePartialArc e 10-78
GrePolyFillet e, 10-80
GrePolyFilletSharp e 10-82
GrePolySpline 10-84
GrePolygonSet 10-86
GrePtinRegion 10-88
GrePtVisible 10-89
GreQueryClipRegion 10-90
GreQueryHWPalettelnfo 10-91
GreQueryPaletteRealization 10-92
GreRealizePalette 10-93
GreRectinRegion, 10-95
GreRectVisible 10-96
GreRegionSelectBitmap e 10-97
GreRestorePath 10-98
GreRestoreRegion 10-99
GreRestoreXform 10-100
GreRestoreXformData 10-101
GreSavePath e 10-102

viii Presentation Driver Reference

A

GreSaveRegioN 10-103

GreSave X oMl . . . o e e e e 10-104
GreSaveXformbData e 10-105
GreSelectClipPath e e e e e 10-106
GreSelectClipRegION 10-108
GreSelectPathRegionot e e 10-110
GreSetArcParameters e e e e 10-111
GreSetGlobalViewingXform 10-112
GreSetGraphicsField 10-114
GreSetModelXfOrmM o e e e e e e 10-115
GreSetPageUnits 10-117
GreSetPageViewport 10-119
GreSetRectRegion 10-121
GreSetViewingLimits 10-122
GreSetWindowViewportXform 10-123
GreSetXiormMRECt e e e 10-125
GreSetupDC 10-126
GreStrokePath e e 10-128
GreUpdateColors 10-130
Chapter 11. Graphics Engine Internal Functionso 11-1
FOnt FUNCHIONS o o ot e e e e e e e e e e e e e 11-1
Journaling Functions (Hardcopy Drivers Only) 11-1
Graphics Engine Functions by Category 11-2
GreClosSeDC . . . e e 11-4
GreCopyDCLoadData ittt 11-5
GreCreateBitmap i e 11-7
GreCreatedournalFile e 11-12
GreCreateLogicalFont 11-14
GreDeleteBitmap 11-17
GreDeletedournalFile e e 11-18
GreDeleteSetld e e e e e 11-20
GreGetAlIDULES e e e e 11-21
GreGetBitmapDimension 11-22
GreGetBitmapParameters 1123
GreGetDefaultArcParameters e 11-26
GreGetDefaultAttribULES e e 11-27
GreGetDefaultViewingLimits P 11-28
GreGetHandle e e 11-29
GreGetProcessCONtIOl o e e 11-30
Grelnitialize AttribULES e 11-31
GreloadFont e e e e 11-32
GreOpPenDC 11-33
GreOpendournalFile 11-37
GrePlaydournalFile 11-38
GreQueryBitmapHandle 11-40
GreQueryCodePageVector 11-41
GreQueryENgineVersion 11-42
GreQueryFontAttributes 11-43
GreQueryFontFileDescriptions 11-44
GreQUEryFONES e 11-45
GreQuerylLogicalFONt 11-46
GreQueryNumberSetlds 11-47
GreQuerySetlds 11-48
GreResetDC e 11-50
GreRestoreDC e 11-52

Contents IX

GreSaveDC 11-54

GreSelectBitmap 11-56
GreSetAttributes 11-58
GreSetBitmapDimension 11-60
GreSetBitmapID 11-61
GreSetDefaultArcParameters 11-62
GreSetDefaultAttributes 11-63
GreSetDefaultViewingLimits 11-65
GreSetGlobalAttribute 11-66
GreSetHandle 11-67
GreSetProcessControl 11-68
GreStartdournalFile 11-69
GreStopdournalFile 11-714
GreUnLoadFont 11-72
Chapter 12. System Functions 12-1
GetDriverinfo 12-2
SetDriverinfo 12-3
SSAllocMem . . . 12-4
SSFreeMem 12-5
VisRegionNotify 12-6
WinSetErrorinfo 12-7
Appendix A. Syntax Conventions A-1
Parameter Names A-1
Appendix B. Journal Flle Format B-1
Appendix C. Bit Map Simulation (Hardcopy DriversOnly) C-1
GIOSSAry X-1
Index X-11

X Presentation Driver Reference

Notices

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation in
the United States and/or other countries:

IBM

0S/2

Presentation Manager
IBM Personal System/2

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of other
companies as follows:

PostScript Adobe Systems Incorporated
LaserJet Hewlett-Packard Company
Microsoft Microsoft Corporation
Windows Microsoft Corporation

Double-Byte Character Set (DBCS)

Throughout this publication, there are references to specific values for character strings. These values are
for the Single-Byte Character Set (SBCS). When using the Double-Byte Character Set, notice that one
DBCS character equals two SBCS characters.

© Copyright IBM Corp. 1992 xi

Xil Presentation Driver Reference

PRESENTATION DRIVER DEVELOPMENT PROGRAM FORM

To apply for membership in this program, you must be a licensee of the Developer’s Toolkit for 0S/2 2.0.
Please enclose the original “Proof of License” card from your Toolkit with this completed form and return
them to:

IBM Presentation Driver Development Program
Attention: M. Barovich, Internal Zip 1620

P.O. Box 1328

Boca Raton FL 33429-1328

This program is intended for developers who are planning to build 32-bit presentation drivers on 0S/2 2.0.
Members of this program will receive pre-release code that supports the development of presentation
drivers as described in the publication 0S/2 2.0 Presentation Driver Reference. This program will close
when this code becomes generally available to users of 0S/2 2.0.

Any information you provide on this form should be non-confidential to you or to any third party.

Your Name

Company Name (if applicable)

Mailing Address

Phone Number / FAX Number

Describe the presentation driver that you plan to develop:

Notices XIii

iV Presentation Driver Reference

~——

About This Book

“08/2,” as used in this book, refers to Version 2.00 of the OS/2 operating system unless stated otherwise.

The 0S/2 2.0 Presentation Driver Reference defines what a presentation driver is and how it operates. In
addition, a description of the types of presentation drivers, their interfaces, and the available system
services is provided. System programmers can use the information found in this book to write their own
presentation drivers.

Detailed descriptions of control structures, data structures and I/0 formats have been included where they
are needed in order to understand and use the interfaces. For further information about structures and
defined values, see the 0S/2 2.0 Presentation Manager Programming Reference and the header files
supplied with the Developer’s Toolkit for 0S/2 2.0.

Knowledge of at least one programming language that is used for writing OS/2 applications is necessary,
and the programmer must be familiar with the workings of the 0S/2 operating system, the Presentation
Manager interface, and 80386 architecture. The programming concepts that should be understood before
developing applications to run on 0S/2 2.0 are found in the 0S/2 2.0 Application Design Guide.

Note: Programmers who require information on 16-bit device drivers should refer to the 0S/2 2.0 Physical
Device Driver Reference.

This book consists of four parts: An introductory overview of presentation drivers (Part 1); an information
section on development considerations (Part 2); a breakdown of the different types of 0S/2 2.0 presentation
drivers (Part 3); and a detailed reference section (Part 4). Also included are three appendixes covering
syntax conventions, journal file format, and bitmap simulation. A more detailed description of the contents
follows:

Part 1. Overview

Chapter 1. Presentation Drivers Overview
This chapter gives some general guidance on presentation drivers by indicating where they reside in the
system and what they do.

Part 2. Development Considerations

Chapter 2. Design Considerations
This chapter describes general design considerations and specific design considerations for display and
hardcopy presentation drivers.

Part 3. 0S/2 2.0 Presentation Drivers

Chapter 3. Display Drivers
This chapter defines the entry points a display driver must export to the system so an application program
can query the display driver and the system can enable it.

Chapter 4. Graphics Engine Hardcopy Drivers
This chapter describes hardcopy drivers, which use the graphics engine dispatch table, and the support
functions that are provided by the spooler.

Chapter 5. Queue Drivers (Queue Processors)
This chapter describes the functions a queue driver must export so that they can be used by the spooler.

® Copyright IBM Corp. 1992 XV

Chapter 6. Port Drivers
This chapter describes the functions a port driver must export so that they can be used by the Workplace
Shell and spooler.

Part 4. Reference Material

Chapter 7. Exported Entry Points
This chapter describes the exported entry points, including the Enable entry point and all of its
subfunctions.

Chapter 8. Mandatory Functions for All Drivers
This chapter describes the internal functions that must be supported by handling routines in the
presentation driver. These functions must be supported by all presentation drivers.

Chapter 9. Mandatory Functions for Display Drivers
This chapter describes additional internal functions that must be supported by the display driver.

Chapter 10. Simulated Functions
This chapter describes internal functions that are supported in the operating system’s graphics engine and
can be hooked by the presentation driver in order to exploit special features in the device.

Chapter 11. Graphics Engine Internal Functions
This chapter describes internal functions that are supported in the graphics engine and can be called by
the presentation driver.

Chapter 12. System Functions
This chapter describes system functions that can be called by a presentation driver but are not part of the
08/2 Application Program Interface (API).

Appendixes

Appendix A. Syntax Conventions
This appendix shows the conventions that have been used for the parameter names found in the
Presentation Manager Library.

Appendix B. Journal File Format
This appendix shows the file format that the OS/2 graphics engine journal functions create in memory or on
disk.

Appendix C. Bitmap Simulation (Hardcopy Drivers Only)
This appendix describes the bitmap simulation for hardcopy drivers.

A glossary and an index are included at the back of this book.

XVi Presentation Driver Reference

Part 1. Overview

© Copyright IBM Corp. 1992

Presentation Driver Reference

~

presentation drivers overview

Chapter 1. Presentation Drivers Overview

08/2 operates within the confines of a four ring structure, Ring 0 through Ring 3. Ring 0 is the most
protected ring and contains the 0S/2 kernel, which is the main engine that drives the operating system.
Ring 3 is the least protected ring and contains applications and system services. Ring 1 is not used by
0S/2 2.0. Ring 2 is similar to Ring 0 in that it provides access to physical devices such as printers and
displays. Ring 2 is similar to Ring 3 in that it is prohibited from modifying kernel data structures.

(System Services run at Ring 3 in OS2 2.0)

Figure 1-1. Ring Structure

Throughout the ring structure, functions can be called from the same ring level or any numerically lower
ring level. Conversely, data can be accessed from the same ring level or any numerically higher ring level.

For the sake of compatibility between 16-bit and 32-bit code, all 32-bit code is treated as Ring 2 Conforming.
This means that 32-bit code runs at the ring level of its caller, for example, running at Ring 3 if called from
Ring 3 and running at Ring 2 if called from Ring 2. This allows easier access to functions and data, and
eliminates many of the costly ring transitions encountered in the previous 16-bit system. To be Ring 2
Conforming (rather than strictly Ring 2 or Ring 3), a function cannot call any strictly Ring 3 code or directly
access the hardware. That is, it must abide by the restrictions of both ring levels.

Many of the system services that exist at Ring 3 in dynamic link libraries (DLLs) access another DLL called
PMGRE.DLL, which is the graphics engine or kernel of the OS/2 graphics subsystem. The graphics engine
is composed entirely of Ring 2 Conforming code that interfaces with the presentation drivers, which
interface directly with the physical device drivers (at Ring 0) and the hardware. These DLLs are identified

- as presentation drivers for hardcopy devices (hardcopy drivers) by the filename extension DRV, and as

presentation drivers for display devices (display drivers) by the filename extension DLL. See Figure 1-3 on
page 1-5.

The graphics engine loads and enables the presentation drivers, then dispatches calls to them through
dispatch tables as Ring 2, Ring 3, or Ring 2 Conforming code. For optimal system performance, it is
recommended that all of the functions in 32-bit presentation drivers be written as Ring 2 Conforming. This

. eliminates the need for ring transitions from system services at Ring 3 and from 16-bit presentation drivers

at Ring 2.

By exporting a table named 0S2_PM_DRV_RING_LEVELS in 32-bit presentation drivers, the ring level of
each function call in the dispatch table can be selected.

© Copyright IBM Corp. 1992 1-1

presentation drivers overview

Note: If this table is not exported, all 32-bit functions will be dispatched as Ring 2 Conforming.

The presentation driver has certain responsibilities to the graphics engine. Specifically, a number of entry
points exist within the graphics engine that the presentation driver is required to hook (a mechanism by
which procedures are called) and support. Many of these functions (as they currently exist in the graphics
engine) are not truly functional, and if calls were made to these entry points, nothing would happen. In
many cases, they simply return when called.

There are other entry points in the graphics engine that can optionally be hooked by the presentation driver
(for example, where only light processing is required, it might be preferable to use the presentation driver).
These entry points can be called by the presentation driver for special processing.

The graphics engine calls the entry points within the presentation driver by means of a dispatch table. The
dispatch table is essentially a block of memory allocated by the graphics engine for the containment of
entry points, and is assigned for use by a presentation driver. Each presentation driver loaded by the
system is given its own separate dispatch table by the graphics engine. That is, when a presentation driver
device context is enabled, the graphics engine allocates a dispatch table for that presentation driver and
fills the dispatch table with pointers. Each entry in the table is a 32-bit pointer to a specific routine existing
back in the graphics engine.

Because many of these routines must be hooked by the presentation driver, the graphics engine refers to
the dispatch table to find the appropriate pointer any time that it calls a function in the presentation driver.
At this point, however, all of the pointers in the dispatch table point back to routines in the graphics engine.
The presentation driver must go into the dispatch table itself and replace some of the pointers with new
pointers that point to corresponding routines within the presentation driver. This is mandatory for some
routines, optional for others. The hooking of pointer entries in the dispatch table occurs the first time the
presentation driver is called at its 0S2_PM_DRV_ENABLE entry point for the first subfunction (see “Enable
Subfunction 01H — FillLogicalDeviceBlock” on page 7-6). See Figure 1-2 on page 1-3.

The exported entry point 0S2_PM_DRV_ENABLE (see page 7-3) has ten subfunctions. Four of these
subfunctions are used in the enable process of a device context, three are used in the disable process, one
is used to save the device context, one is used to restore the device context, and one is used to reset the
device context.

When Enable Subfunction 01H — FillLogicalDeviceBlock is called, the graphics engine passes to it a
pointer to the dispatch table that it allocated for the presentation driver. FillLogicalDeviceBlock then must
substitute all of the mandatory pointers (and perhaps some optional routines) in the dispatch table with
pointers to corresponding routines within the presentation driver itself.

1-2 Presentation Driver Reference

presentation drivers overview

Application

2

PMGRE.DLL

Graphics
engine

> simulation
routines

Graphics Function
Dispatch Table

(array of 32-bit pointers
to graphic function
routines)

0S2_PM_DRV_ENABLE

Presentation Driver
internal graphics routines

e

_ 2/

<— (4-bytes) —

Figure 1-2. FillLogicalDeviceBlock Routine.

The Developer’s Toolkit for 0S/2 2.0 provides support for writing source code in either C or Assembiler.
This support is comprised of a set of header files that define the functions, structures, and constants used
on the internal interface to the presentation driver. Presentation drivers might also need to include OS2.H
or 0S2.INC, which define system functions, structures and constants.

Chapter 1. Presentation Drivers Overview 1-3

presentation drivers overview

As with other components of 08/2 2.0, the presentation driver architecture ensures that:

* Once loaded, the presentation driver can be enabled for use by muitiple applications or processes.
* Once enabled, the presentation driver can support multiple instances of a device context for the owning
application or process.

Notice that though many of the functions must be hooked by the presentation driver, some might also be
passed back to the graphics engine for processing when called. It is recommended to save the original
pointer values stored in the dispatch table by the graphics engine before hooking them. Having access to
the original pointers to the graphics engine simulation routines allows the presentation driver to optionally
make calls back into the graphics engine (that is, to have the graphics engine do the processing instead).
This technique has often proven to be a tremendous time saver in developing 0S/2 presentation drivers,
especially when calling back to the graphics engine to perform clipping routines.

Display Devices

When the Presentation Manager® interface is initialized, the presentation driver for the attached display is
loaded and enabled. This driver has direct access to the video hardware. The function calls passed to the
presentation driver are processed and then passed to the adapter interface.

Hardcopy Devices (Printers and Plotters)

For hardcopy drivers, the presentation driver is loaded in response to an application or process calling
DevOpenDC. Upon receipt of this routine, the Presentation Manager interface looks to see if the required
presentation driver is loaded, and if it is able to handle the new device context (DC). If the presentation
driver is loaded and can handle the DC, the driver is enabled for the new DC. If either of these conditions
are not met, the required driver is loaded and then enabled.

* Trademark of the IBM Corporation

1-4 Presentation Driver Reference

presentation drivers overview

Applications make program | / O function calls

A4 \4 A4
DEV WIN
DOS KBD MOou TOU VIO (device AVIO (g:p::“) (display
context) windowing)
A
PM DYNAMIC LINK LIBRARY
modules running at Ring 3
A
v
Graphics Engine
PMGRE.DLL
A \
Presentation Presentation
Hardcopy Display
Driver Driver
ooaooo-oooéccooooﬁooo TR R E R XN N]
| Ring O
v
0S/2 KERNEL
v \
Video
\ POINTDD.SYS Hardware
P Physical Device
PMDD.SYS Drivers (Disk,
Keyboard, Mouse,
Printer, etc.)
Hardware
Interfaces

Figure 1-3. Presentation Drivers. Conceptual view of presentation drivers in the flow of control from an application
program to the hardcopy device and the display screen.

Chapter 1. Presentation Drivers Overview 1-5

presentation drivers overview

Calling Conventions

Presentation drivers interact with both the external API, and the internal interface to the graphics engine
and dispatch table. Parameters are passed as 32-bit values on the stack by using the C convention. These
parameters are pushed to the stack in reverse order of how they appear in the statement. The hardware
architecture locates the conceptual top of the stack at the high-order address of the stack space. When
data is pushed to the stack, the stack pointer is decremented so that upon completion, the pointer
addresses the first item of data. '

At entry to the handling routine, the stack contains a frame of 32-bit parameters and a return address as
shown in Figure 1-4.

High address

Parameter N

(Function Number
and Command Flag)

Parameter 1

Return address <<———Stack pointer

Low address

Figure 1-4. Stack Frame

Function Number and Command Flags

The first doubleword (DWORD) pulled from the stack contains two fields:

Field WORD Type Description

Function Number Low-order Identifies a specific function. Header files define symbolic names for the
Grexxx function numbers.

Command Flags High-order See below.

Command Flags The flags in this 16-bit field tell the presentation driver which operations need to be
done while it processes the function:

COM_DRAW Bit 0. If this flag is set, the presentation driver must draw the
output of the function at the device. When not set, the driver does
not draw the output. The function must stiil be processed to
update internal data such as current position and, if specified,
boundary calculations.

1-6 Presentation Driver Reference

COM_BOUND

COM_CORR

COM_ALT_BOUND

COM_AREA

COM_PATH

COM_TRANSFORM

COM_RECORDING
COM_DEVICE

presentation drivers overview

Bit 1. If set, the presentation driver must calculate the bounding
rectangle for the output of the specified function. Upon
completion, the driver calls its own GreAccumulateBounds
routine to accumulate the bounding rectangle (GPI_BOUNDS in
model space coordinates).

Note: All presentation drivers must be able to caiculate bounds
on any figure they can draw.

Bit 2. This flag is significant only for display drivers. If set, the
display driver must determine whether the output of the specified
function intersects the pick window. The result, TRUE or FALSE,
is passed back to the caller in the return code for the called
function. For details, see the function descriptions in Chapter 8,
“Mandatory Functions for All Drivers” and Chapter 10,
“Simulated Functions.”

Bit 3. This flag is significant only for display drivers. It indicates
that the display driver should accumulate USER_BOUNDS in
screen coordinates. Notice that user bounds are those used by
the Window Manager. Hardcopy drivers do not accumulate user
bounds.

Bit 4. If set, the function is part of an area. Calls to functions that
define an area (for example, GreSetCurrentPosition and

GrePolyLine), or that are invalid in an area definition, are passed
back to the graphics engine for processing by the default handier.

if all functions in the area component have been hooked by the
presentation driver, it is not necessary to pass back functions
received with COM_AREA set.

Bit 5. This flag is similar to the COM_AREA flag. Calls to
functions that define a path (for example, GrePolyLine and
GreSetCurrentPosition), or that are invalid in a path definition,
are passed back to the graphics engine for processing by the
default handler.

If all functions in the path component have been hooked by the
presentation driver, it is not necessary to pass back functions
received with COM_PATH set.

Bit 6. If set, any coordinates given for the specified function must
be transformed from world coordinates to device coordinates by
using GreConvert. lf not set, drawing functions expect or return
screen coordinates and region functions expect or return device
coordinates.

Note: For GreGetClipRects, if COM_TRANSFORM is set, device
coordinates are returned. If it is not set, screen
coordinates are returned.

Bit 7. This flag is ignored.

Bit 8. If set, the presentation driver must process the function.
The driver should not pass the function to the graphics engine.

Note: COM_DRAW, COM_BOUND, COM_CORR, COM_ALT_BOUND, COM_AREA, and
COM_PATH apply only to drawing functions. They are ignored by all other
functions. The remaining bits of the Command Flags field are not defined and
their values are ignored.

Chapter 1. Presentation Drivers Overview 1-7

presentation drivers overview

Device Context

Device contexts provide the mechanism that the application program uses to write output data to devices.
The application, or one of its processes, opens a device context with DevOpenDC, associates a
presentation space to the DC, and writes or draws in that space. Each DevOpenDC creates an instance of a
DC. That instance is eliminated when the application closes the device context. The created DC is seen
internally as a dispatch table. Calls from the application program to the DC are passed, as one or more
internal Grexxx routines, through the dispatch table to the handling routines in the presentation driver for
the DC, or are passed back to the Grexxx simulation routines.

Each instance of a device context has:

¢ Device context types

* Data types (for only OD_QUEUED device context type)
* Instance data

* Program stack

Device Context Types

The type of device to be opened is passed to the presentation driver when the device context is enabled:

OD_INFO The presentation driver does not generate any output. Information device contexts are
used to retrieve information. All Grexxx function routines passed to the presentation
driver are processed as if the type were OD_DIRECT. In this way, the operating system
can query statistics such as font metrics and boundaries.

OD_MEMORY The presentation driver processes the output data as for an OD_DIRECT device type
except the output is written to a bit map that is compatible with the physical device. (The
application program creates the bit map and associates it to the device context.)

OD_DIRECT The presentation driver processes the Grexxx routines to generate device-specific output
data. Hardcopy drivers use the file system Prtxxx interface to pass the output to the
physical device driver. Display drivers use the adapter interface, for example, the IBM
Personal System/2" Display Adapter 8514/A interface.

OD_QUEUED (Hardcopy drivers only.) The hardcopy driver opens a spool file and uses the spooler
Splxxx interface to send output to that file. For spooled output, the hardcopy driver must
consider the DC data type. See Data Types (Hardcopy Drivers Only).

Note: OD_METAFILE and OD_METAFILE_NOQUERY are handled by PMGPIL.DLL and are never passed to
the presentation driver.

Data Types (Hardcopy Drivers Only)

For presentation drivers that support the device context type, OD_QUEUED, the driver must support the
PM_Q_STD and PM_Q_RAW data types as defined by the Presentation Manager interface. Support for
other data types is optional.

The concept of data types only applies when the device context type is OD_QUEUED. For all other device
context types (OD_DIRECT, OD_MEMORY, OD_METAFILE, OD_METAFILE_NOQUERY, and OD_INFO), the
pszDataType field in the DEVOPENSTRUC structure has no meaning. See “Enable Subfunction 02H —
FillPhysicalDeviceBlock” on page 7-8 for details on when the DEVOPENSTRUC structure is passed to the
presentation driver. However, a hardcopy driver is never requested to open an OD_METAFILE or

* Trademark of the IBM Corporation

1-8 Presentation Driver Reference

presentation drivers overview

OD_METAFILE_NOQUERY device context type because these types are handled by GPl. See Chapter 4,
“Graphics Engine Hardcopy Drivers” for details on how the hardcopy driver creates the spool file.

The basic differences between data types, PM_Q_STD and PM_Q_RAW, are described below:

PM_Q_STD The hardcopy driver uses the spooler to create a device-independent spool file using the
SpiStdxxx and SplQmxxx interfaces.

PM_Q_RAW The hardcopy driver processes the Grexxx functions to generate device-specific output
data. This data is written using the spooler SplQmxxx interface to a spool file.

Instance Data

For every instance of a device context, the system has a doubleword that is reserved for use by the
presentation driver. Typically, this doubleword is used by the presentation driver to hold a pointer to
information about the current state of the device context. This pointer is returned to the system by the
driver when the device context is enabled. On subsequent calls through the dispatch table, the pointer is
passed back to the presentation driver as a parameter (plnstance) on the program stack. For more
information, see “Enable Subfunction 05H — EnableDeviceContext” on page 7-12.

Program Stack

Presentation drivers can assume that a stack of 4KB is available for use when a function is passed to the
driver at Ring 2. If it needs more than 4KB, the presentation driver should allocate its own stack space,
switch to that stack on entry, and switch back to the original stack on exit. AtRing 3, the presentation
driver will use the application’s stack when a function is passed to the driver.

Function calls to the presentation driver use C calling conventions. Parameters are pushed to the stack in
the opposite order as they are in the call statement.

Dynamic Link Library Functions

Functions exported and imported by a dynamic link library are identified in the library module definition
file. These provide links between libraries and subsystems. For example, the components of the
Presentation Manager interface must call an enable entry point in the presentation driver. The
presentation driver needs access to the simulated functions in the graphics engine. For information on how
to develop a dynamic link library (DLL), refer to the 0S/2 2.0 Programming Guide and 08/2 2.0 Application
Design Guide.
Note: The initialization routine for a dynamic link library, including presentation drivers, must be compiled
to run at Ring 3 (privilege level 3).

Exported Functions

There are two types of exported functions used by 0S8/2 2.0:

* Presentation drivers
* Graphic engine functions.

Presentation Drivers: Dynamic link libraries for presentation drivers must export the appropriate set
of the following entry points:

Chapter 1. Presentation Drivers Overview 1-9

presentation drivers overview

EXPORTS
MoveCursorBlock @103 /* Display drivers only */
0S2_PM_DRV_QUERYSCREENRESOLUTIONS /* Optional *x/
0S2_PM_DRV_DEVMODE /* Hardcopy drivers only */
0S2_PM_DRV_DEVICENAMES /* Hardcopy drivers only */
DrvInstall /* Optional *x/
DrvRemove /* Optional */
0S2_PM_DRV_RING_LEVELS /* A1l drivers */
0S2_PM_DRV_ENABLE_LEVELS /* A1l drivers */
0S2_PM_DRV_ENABLE /* A1l drivers */

In addition to the entry points listed above, hardcopy drivers should export entry points for the routines that
handle dialogs with the user. See “Exported Entry Points” on pages 3-1, 4-1, and 7-1.

Graphics Engine Functions: The graphics engine exports its own set of entry points. Those that are
significant to the presentation driver are:
EXPORTS

GETDRIVERINFO @30
SETDRIVERINFO @31

GETDRIVERINFO: Used by the presentation driver to get the instance pointer, plnstance, for a specified
device context, or to get a pointer to the bit-map header for a specified bit map. See Chapter 12, “System
Functions” for more information.

SETDRIVERINFO: Used by the presentation driver to set a specified value in the instance pointer of a
specified device context.

Note: Instance pointers (pinstance) and data are discussed under “Enable Subfunction 05H —
EnableDeviceContext” on page 7-12.

Imported Functions

To call a Grexxx function that is supported as a simulation or internal function in the graphics engine, call
the imported entry point with the Grexxx function parameters. The plnstance parameter should be NULL.
For example, to call GreCreateJournalFile with the name assigned in the module definition file, use:

result = GreCreatedournal (pszFileName, f10ption, cSize, OL, NGreCreatedournalFile);

Note: NGreCreateJournalFile is defined in the header file. See the description of GreCreateJournalFile on
page 11-12.

Simulations (presentation driver interface functions that are supported by handling routines in the graphics
engine) can also be called at the addresses given in the default dispatch table. Use the addresses
contained in the dispatch table that is passed to the presentation driver at Enable time.

Presentation Driver Interface

The internal Presentation Driver Interface (PDI) is comprised of a set of graphics engine (Grexxx) functions
that are called through a dispatch table. A dispatch table is an array of pointers to function handling
routines. The low-order byte of the function number identifies the member of the array that contains the
pointer for the function. The functions called through the dispatch table fall into three main groups:

* Functions that all presentation drivers must support. See Chapter 8, “Mandatory Functions for All
Drivers.”

* Functions that must be supported by display drivers. See Chapter 9, “Mandatory Functions for Display
Drivers.”

1-10 Presentation Driver Reference

b

presentation drivers overview

e Functions that are supported by simulations in the graphics engine. See Chapter 10, “Simulated
Functions.”

The first instance of a loaded presentation driver is given a copy of the default dispatch table. The Enable
routine in the presentation driver modifies this copy so that, for those functions supported in the driver, the
pointers address the function-handling routines of the presentation driver.

When the function is called a second time (or any time thereatiter) for the same presentation driver, a NULL

dispatch table pointer can be given because the graphics engine already has the table correctly initialized.
Therefore, it is not necessary to reinitialize the table.

Chapter 1. Presentation Drivers Overview 1-11

presentation drivers overview

1-12 Presentation Driver Reference

Part 2. Development Considerations

© Copyright IBM Corp. 1992

Presentation Driver Reference

design considerations

Chapter 2. Design Considerations

The following list contains design considerations for all presentation drivers:

* Angles

* Bounds computations

¢ Clipping

¢ Closing figures in areas and paths
* Coordinate values

¢ Positions within text functions

* Return codes

¢ Transform matrix values.

Angles

Angles are passed as signed 32-bit numbers. Zero refers to the direction of the positive x-axis; 360
represents 360°. Positive values represent counterclockwise angles from the positive x-axis.

Bounds Computations

All presentation drivers must accumulate bounds for unclipped primitives. Application bounds
(COM_BOUND,) are accumulated in model space. User bounds (COM_ALT_BOUND) are accumulated in
device-coordinate space.

Clipping

The presentation driver must perform clipping for drawing and text functions, except for
GreDrawLinesinPath and GrePolyShortLine. Clipping for these two functions is done by the graphics
engine. The minimum requirement is to render each primitive clipped to a single rectangle and to clip
each rectangle in turn. The rectangles can be enumerated by using “GreGetClipRects” on page 10-57.

Note: Rectangles might not always be valid. See “Drawing to Display Devices.”

Closing Figures in Areas and Paths

The graphics engine generates closure lines for figures within areas and paths unless the presentation
driver has opted to hook all the path and area functions. In this case, the presentation driver is responsible
for closing any figures. For details, see “Area and Path Functions” on page 10-1.

Coordinate Values

All coordinates are passed to the presentation driver as 32-bit values. Unless stated otherwise, these
values represent world coordinates. The graphics engine function, GreConvert, can be called to convert
coordinates from one type to another. Coordinates must be converted back to world coordinates before
returning to the presentation driver. Notice that screen coordinates are device coordinates to which the DC
origin has been added.

© Copyright IBM Corp. 1992 2-1

design considerations

Positions Within Text Functions

When positions are used, a text function takes the position from the base line of the text box. Descenders
such as the tail of a lowercase y are expressed as a negative value relative to the base line.

Return Codes

The presentation driver must always return a full 32-bit (LONG) value. For example, BOOLEAN TRUE and
FALSE are defined as:

#define TRUE (1L);
#define FALSE (OL);

Transform Matrix Values

Transform matrix elements are represented in fixed point notation, that is, as a 16-bit signed integer and a
16-bit fractional part. These precision limits apply during graphics engine matrix multiplication for all
initial, intermediate, and final matrix element values.

Allocating Memory

Presentation drivers can allocate and manage memory by using:

1. A Dosxxx function such as DosAllocMem.
2. The SSxxx functions described in Chapter 12, “System Functions” on page 12-1.

Display drivers, or presentation drivers that wish to share objects such as bit maps and regions, always
use the SSxxx functions to allocate memory for these objects. Memory allocated through calls to these
functions is shared memory controlled by the memory allocator component of the graphics engine.
Ownership of the memory can be transferred, or (when the owning DC ceases to exist) marked as having
no owner.

Error Strategy

Presentation drivers support the error strategy implemented by the Presentation Manager interface. When
an error occurs, the driver calls WinSetErrorinfo (see page 12-7) to log the appropriate error code and set
the return code to show that an error was detected.

The component that implements a function must provide error checking for the environment, objects, and
resources associated with it. The presentation driver needs to cater for:

¢ Fail-safe on routines that set attributes and transformation values. Any routine that changes attributes
or transformation values must be able to restore the initial values if an error occurs during the change.

* Full error checking on symbol sets, fonts, bit maps, and regions.

* Segment drawing, drawing primitives, and primitive attributes in draw mode, unchecked parameters
are passed directly to the graphics engine or the presentation driver. When one of these functions is
hooked by the presentation driver, the handling routine must do the necessary error checking and log
any errors, or reset any invalid values to their defaults, as appropriate.

* Any function with coordinates as parameters, the presentation driver must check that the values passed
are valid. When an invalid coordinate is detected, the handling routine must log an error or use a
default coordinate value, as appropriate.

2-2 Presentation Driver Reference

design considerations

For any defined error, the application sees the same error code regardless of whether the error was logged
by the Graphics Programming Interface (GPI), graphics engine, or presentation driver.

Severity

Four severity levels are defined for error messages:

Warning

Error

Severe error
irrecoverable error.

e & o o

Warning: Function detected a problem, took remedial action, and was able to complete successfully.

Error: Function detected a problem for which no sensible remedial action is possible. The function is not
executed and the system remains at the same state as when the function was requested.

Severe Error: Function detected a problem from which the system cannot reestablish its state. The
function has partially executed and the application must now make some corrective action to restore the
system to some known state.

Irrecoverable Error: Function detected an error from which it is impossible for the system to
reestablish the state that it held at the time that the function was called. It is also impossible for the
application to restore the system to some known state.

Presentation Manager Error Codes

Error codes are defined in the header file. These codes fall into two groups, general and specific. General
error codes that are appropriate to many Grexxx functions include:

Error Code Must be logged by:

PMERR_COORDINATE_OVERFLOW Functions requiring matrix computation
PMERR_INSUFFICIENT_MEMORY Functions resulting in memory allocation
PMERR_INV_HBITMAP Functions with hbm as an explicit or implicit parameter
PMERR_INV_HRGN Functions with hrgn as an explicit or implicit parameter
PMERR_INV_COORDINATE Functions with coordinate parameters
PMERR_INV_IN_AREA Functions that are invalid inside an open area bracket
PMERR_BASE_ERROR Functions that directly or indirectly issue DOS routines
PMERR_DEV_FUNC_NOT_INSTALLED Functions not supported by the presentation driver

Specific error codes listed in the descriptions of each Grexxx function are found in Chapter 8, “Mandatory
Functions for All Drivers” through Chapter 11, “Graphics Engine Internal Functions.”

To set an error code and the error’s severity, the presentation driver must call WinSetErrorinfo. See

Chapter. 12, “System Functions” All error codes are listed and explained in the 0S/2 2.0 Presentation
Manager Programming Reference.

Chapter 2. Design Considerations 2-3

design considerations

Exit List Processing

An exit list is a list of routines that are given control when the current process ends, normally or
abnormally. The following is an example of exit list processing:

1. When the presentation driver’s Enable subfunction 01H — FillLogicalDeviceBlock is called, the driver
can call function, DosExitList:

#define ROUTINE_ORDER 0x1600
usResult = DosExitList (EXLST_ADD|ROUTINE_ORDER, (PFNEXITLIST)MyExitProc);

This adds the function, MyExitProc, to the list of functions that are called when this process terminates
(either normally or because ot some error such as a GP fault).

2. When MyEXxitProc is called, the presentation driver can perform any necessary cleanup such as
releasing any semaphores. The last call in MyExitProc is another call to DosExitList:

usResult = DosExitList (EXLST_EXIT, (PFNEXITLIST)MyExitProc);

This allows the operating system to transfer control to the next function in the list of Exit List processing
functions for the process that has terminated. For more information, refer to DosExitList in the 0S/2 2.0
Control Program Programming Reference and 0S/2 2.0 Programming Guide.

At Enable time, the presentation driver must place an entry in the exit list for the application or process that
opens the DC. This entry is a pointer identifying the routine in the presentation driver that releases ali
resources owned by the DC.

Note: When writing a presentation driver, consider what would happen if another thread of the process
were to terminate.

Interrupts

Presentation drivers never use the CLI and STl macro assembler instructions because these instructions
can interfere with some of the base 0S/2 system operations.

Protecting Objects or Device Contexts

A process which attempts to use a locked object will return an error such as PMERR_HDC_BUSY. Aithough
a device context is owned by a single application or process, the owner can access the device context (DC)
through multiple threads. The presentation driver must provide a mechanism whereby a DC can register
that it is busy and block access from other threads. In its simplest form, this is performed by the
EnterDriver and LeaveDriver routines, which are called at the start and end of each function-handling
routine in the presentation driver.

2-4 Ppresentation Driver Reference

design considerations

An example of a typical EnterDriver routine for a display driver is as follows:
/*********************************** Typi ca] Enterorjver Rout-i ne ***********************************/

enter_driver()
{
do { /* Lock DC for exclusive use of the current thread */
SemEnter(Device) ; /* Some functions do not pass a Device Context (DC) handle */

if (hdc == NULL)
return(SUCCESS) ; /* Check validity of the passed DC handle */

if (hdc == ERROR) {
WinSetErrorInfo (SEVERITY_ERROR, PMERR_INV_HDC) ;
SemLeave(Device);

return(ERROR) ;
/* DC region must be validated before driver draws into it. */
if (hdc_is_not_dirty) /* Test the HDC_IS_DIRTY flag. If the flag is set, the DC */
return(SUCCESS) ; /* must be recalculated by the system. *f
SemLeave(Device) ; /* Unlock DC. Call back to engine to force DC calculation. */
VisRegionNotify(hdc); /* Loop back to reset lock and recheck. */

} while (TRUE);

Design Considerations for Display Drivers

When an application requires a user to choose an object from a presentation space, the user typically
selects the object by positioning the mouse cursor over the object and clicking the mouse buttons. This
action sends a message to the application, informing the program of the current (x, y) position of the mouse
cursor. However, it is still up to the application to determine the object selected. This is accomplished by
the application defining a rectangular area named the pick aperture, which is centered on the reported
mouse position, and determining which, if any, of the currently defined segments intersect or lie completely
within the pick aperture. The process of determining intersection or inclusion within the pick aperture is
called correlation.

Correlation

Correlation must be performed by all display drivers in page coordinates on fully-clipped primitives.
(Correlation is not required for hardcopy devices.) Correlating on areas is particularly complex because
GreSetCurrentPosition and GreEndArea generate a closure line when the current position is not at the start
of the current closed figure. This closure line can cause a correlation hit. Also, the area interior itself can
cause a correlation hit that must be reported on the GreEndArea order.

The lines (arcs, full arcs, boxes, and fillets) defining the area boundary can cause a correlation hit if the
area is specified with boundary. This hit must be reported when the function is issued. This means that
other work must be done in addition to journaling the functions that define the area boundary.

Correlation and Retained Segments: To be a candidate for correlation, a retained segment must.

* Have a unique identifier
¢ Be a non-dynamic object
* Be defined as detectable (see following explanation).

Each primitive or group of primitives within a given segment must be capable of maintaining tag

information. Tag information is added to an object in response to an application calling GpiSetTag(). The
pick tag is a positive integer. If 0 is specified as the pick tag, detectibility should be turned off for

Chapter 2. Design Considerations 2-5

design considerations

subsequent primitives. The pick tag is 0 by default. The tag specified in the most recent call to GpiSetTag()
is the current tag, and remains in effect for all subsequent drawing operations until another call to
GpiSetTag() is made. The tag is considered to be a part of the current attributes for the segment, and
therefore is affected by the current attribute mode of the segment.

An application can request correlation data for:

* Segments that have been defined as both detectable and visible
* All non-zero segments that intersect the pick aperture regardless of the object detectability and visibility
attributes.

The presentation driver returns the names of segments within the pick aperture in reverse order of their
occurrence on the segment chain. This data is returned in the form of segment and tag pairs. Each unique
segment and tag pair within the pick aperture is termed a correlation hit. Should two or more primitives
within the current pick aperture have the same tag, they are considered as a single correlation hit. When a
called segment is picked, correlation data is also returned for all segments above it in the hierarchy (up to
and including the root segment). This also constitutes a single correlation hit.

Correlation and Nonretained Segments: Nonretained graphics are those objects that are
correlated on during the drawing process. If nonretained objects are to be correlated on, they must have
unique identifiers and be defined as detectable. The application must set the correlate bit of the Draw
Control flag passed to the engine from the function GpiSetDrawControl().

Drawing to Display Devices

Because changes on the screen can affect more than one DC, the graphics engine notifies the display
driver when a change occurs. Notification is performed through a call to the GrelnvalidateVisRegion
function (see page 9-9) in the display driver. This routine identifies the affected DCs and supplies a pointer
(pInstance) to the instance data of each DC. The handling routine for GreinvalidateVisRegion sets a flag
such as HDC_IS_DIRTY in the instance data for all identified DCs.

All routines that draw on the screen test the HDC_IS_DIRTY flag. If this flag is set, the routines call
“VisRegionNotify” on page 12-6 before drawing the visible region.

Design Considerations for Hardcopy Drivers

For information on hardcopy drivers written to the graphics engine dispatch table, see Chapter 4,
“Graphics Engine Hardcopy Drivers,” Chapter 7, “Exported Entry Points,” Chapter 10, “Simulated
Functions,” Chapter 11, “Graphics Engine Internal Functions,” and Chapter 12, “System Functions”

The following list contains design considerations that apply to only hardcopy drivers:

* Banding

* Document processing

¢ Extended attributes

¢ Hardcopy device names

* Hardcopy driver migration

* Hardcopy driver output to file
Help

Job error dialog

2-6 Presentation Driver Reference

Py

A

design considerations

Banding

Banding is another technique that is available to presentation drivers for raster technology hardcopy
devices. Banding means to break up a whole page into two or more bands (or strips) of raster data, which
is recorded in memory as a bit map, and is then sent to the physical device or spooler. It is used to reach a
balance between memory requirements and performance. This technique uses the graphics engine’s
journaling functions to save and replay a journal file of the Grexxx calls for a whole page.

The hardcopy driver handles the output page as a number of bands and creates a bit map large enough for
one band at a time:

Band 1

Band 2

Band N

The DC origin of the bit map is manipulated so that it relates to each band in turn. The hardcopy driver
replays the journal file as many times as necessary to write into each band. Notice that Band 1 cannot be
written into while the Grexxx calls are being journaled. This is because the Command flag, COM_DRAW, is
turned off between calls to GreStartJournalFile and GreStopJournalFile unless the
JNL_DRAW_OPTIMIZATION flag is passed in on the call to function GreCreateJournalFile(). The hardcopy
driver is told not to perform any output while the Grexxx calls are being journaled unless the
JNL_DRAW_OPTIMIZATION bit flag is set.

The size (width and height) of each band is determined by each hardcopy driver, dependent upon the type
of physical device to which the output is to be sent and the amount of memory the hardcopy driver can use
to build its bit map. As an example, a color laser printer might need the full 24-bits per pel, in which case,
several bands might be needed to make a page. A simple dot matrix printer that uses 1-bit per pel could
treat the whole page as a single band.

The data for each band is sent as a single band to the physical device for an OD_DIRECT device context, or
to the spooler for an OD_QUEUED device context with a data type of PM_Q_RAW. Notice that the number of
bytes of data that is sent might not be the same as the number of bytes required to create the bit map for a
given band. This can be due to compression algorithms, which might be implemented in a given hardcopy
driver, and understood by the firmware of a given physical device.

The technique of banding is performed by recording all of the graphics for a whole page in a journal file.
When the journal file is complete (that is, the hardcopy driver has received either a DEVESC_NEXTBAND,
DEVESC_NEWFRAME, or DEVESC_ENDDOC escape), the hardcopy driver plays the journal file,
reprocesses the calls recorded to produce each band in turn, and clips the graphics recorded in the journal
file to each band output. After all bands are output, the journal file is deleted. This banding technique uses
the graphics engine journaling functions to save and replay a journal file of the Grexxx calls. These
graphics engine journaling functions are documented in “Journaling Functions (Hardcopy Drivers Only)” on
page 11-1.

Each page of output is handled as a separate entity. The GreEscape routine for DEVESC_STARTDOC
opens a journal file for the first page and registers it in the DC instance data. When GreEscape
DEVESC_NEWFRAME or DEVESC_ENDDOC is received, the hardcopy driver writes the bands and closes
the journal. If the escape code was DEVESC_NEWFRAME, the GreEscape routine opens and registers the
journal file for the next page.

Chapter 2. Design Considerations 2-7

design considerations

Figure 2-1 on page 2-8 gives an overview of how the presentation driver performs:

Select bitmap into display DC (only done
GreEscape (DEVESC_STARTDOC) >+ by raster printer drivers that use the
display driver for bitmap simulation)

A

QGreCreateJournalFile()
GreStartJournalFile()

v

Gre... calls journaled by the graphics engine

Drawing Calls >

v

GreEscape(DEVESC_NEWFRAME
or GreStopJournalFile()
DEVESC_ENDDOC)

A
GreSetupDC() -to set DC origin

Clear bitmap to color TRUE
GrePlayJournalFile()

Qet bitmap bits (only done by raster printer
drivers that use the display driver for bitmap
simulation)

Convert bitmap to output data
Send data to device or PM Spooler

No LAST

BAND
?

Yes

GreDeleteJournaiFlle()

End of Document

(The application may send escape No
DEVESC_STARTDOC to start
another document, or may close
the DC)

DEVESC_NEWFRAME

Figure 2-1. Overview of Presentation Driver Performance

Document Processing

Figure 2-2 on page 2-9 diagrams the state transitions for the GreEscape function calls used during
document processing. The GreEscape function names are abbreviated for ease of reading. For example,
GreEscape (DEVESC_STARTDOC) is shown as STARTDOC. See “Spool File Creation” on page 4-15 for
details on each of the output actions.

2-8 Presentation Driver Reference

NODE KEY

Input / Output

NEWFRAME /
End-Page
Processing
and Page Eject

ENDDOC / Final Processing

design considerations

STARTDOC / Initial Processing

NEWFRAME / Page Eject

Graphics / Graphics Processing

ENDDOC / End-Page Processing
Page Eject and
Final Processing

Figure 2-2. State Transitions for Document Processing by Hardcopy Drivers

Chapter 2. Design Considerations

Graphics / Graphics Processing

2-9

design considerations

Extended Attributes

Extended attributes (EA) are used for correct installation and operation of multi-file drivers. They are also
used for improved performance during installation.
Extended attributes serve three purposes:

* |nstallation of multi-file drivers
* Version numbering
¢ Improved performance of drivers in the Workplace Shell.

Names are comma separated when more than one name is defined in an extended attribute. The examples
that follow are for the HP LaserJet™ hardcopy driver.

Installation of Multi-File Drivers: The following extended attributes can be used for the installation
of multi-file drivers:

* VENDORNAME (Optional)
Vendor name of the supported printers. For example, VENDORNAME=HP.
* REQUIREDVENDORFILES (Optional, unless the driver requires other files)

Names of extra files required for correct operation by the driver files in the VENDORNAME directory.
For example, REQUIREDVENDORFILES=HP_ADDF.DLL.

* OPTIONALVENDORFILES

Names of extra files that are optional, that is, not required for correct operation. For example:
OPTIONALVENDORFILES=PCLHELP.HLP, HP_ADDF.SYM, HP_ADDF.MAP.

¢ CLASSNAME (Optional)
Name of the output stream created by the hardcopy driver. For example, CLASSNAME=PCL.
* REQUIREDCLASSFILES

(Optional uniess the driver requires other files) Names of extra files required for correct operation by
the driver files in the CLASSNAME directory. For example, REQUIREDCLASSFILES=GENERIC.DLL.

* OPTIONALCLASSFILES

Names of extra files that are optional, that is, not required for correct operation. For example:
OPTIONALCLASSFILES=*.FNT, GENERIC.SYM, GENERIC.MAP.

* REQUIREDDRIVERFILES

Names of extra files required by the driver for correct operation. For example,
REQUIREDDRIVERFILES=LASERJET.DRV.

* OPTIONALDRIVERFILES
Names of extra files that are optional, that is, not required for correct operation. For example,
OPTIONALDRIVERFILES=LASERJET.SYM, LASERJET.MAP.

The subdirectory structure on the boot driver created by the hardcopy driver install is as follows:
0S2\DLL\VENDORNAME\CLASSNAME\DRVNAME For example: 0S2\DLL\HP\PCL\LASERJET

Most hardcopy drivers need to be installed only in one subdirectory. In this case, omit CLASSNAME and
ensure that VENDORNAME is equal to the name of the DRYV file.

™ LaserJet is a trademark of the Hewlett-Packard Company

2-10 Presentation Driver Reference

design considerations

For example:

VENDORNAME = PSCRIPT
REQUIREDDRIVERFILES = PSCRIPT.DRV
OPTIONALDRIVERFILES = PSCRIPT.HLP

This will install the PostScript™ driver into a subdirectory named PSCRIPT.

Version Numbering: The extended attribute shown below can be used for version numbering:
¢ .VERSION (Optional)

Can be used to indicate the version number of a hardcopy driver, for example, .VERSION=13.328.
Hardcopy drivers can load this attribute and display it in 0S2_PM_DRV_DEVMODE dialogs. See
“Hardcopy Driver Migration” for more information.

Improved Performance of Drivers in the Workplace Shell: The following extended attributes
can be used to improve the performance of presentation drivers in the Workplace Shell:

¢ _[EXPAND (Optional)

List the device names supported by a hardcopy driver. Improves performance over use of
0S2_PM_DRV_DEVICENAMES (especially from a diskette). Names are zero-terminated strings with
NULL at the end. For example: .EXPAND=HP LaserJet II\OHP LaserJet III\0\O.

* _ICON (Optional)

Gives the icon definition used by the Workplace Shell to display this hardcopy driver. This extended
attribute is automatically created during the build process if the ICON keyword is used with a resource
identifier of 7, or if the DEFAULTICON keyword is used in the RC file for a hardcopy driver. For
example: .ICON 1 LASER.ICO.

¢ .HIDDEN (Optional)

Indicates which hardcopy driver is used by by files associated with a printer driver. This attribute is
used by the Workplace Shell to not display these files in a directory folder. For example:
.HIDDEN=LASERJET.DRV.

Hardcopy Device Names
if a hardcopy driver supports muiltiple devices, this is indicated at the APl and user level. There are three
parts:

¢ The hardcopy driver implements 0S2_PM_DRV_DEVICENAMES.

» The hardcopy driver accepts a device name in the szDeviceName field of pdriv. See “Enable
Subfunction 02H — FillPhysicalDeviceBlock” on page 7-8.

* The device name is accepted in 0S2_PM_DRV_MODES.

Hardcopy Driver Migration
Hardcopy drivers must be able to work with back-level and forward-level drivers across a network. Notice
that there are several possible driver version numbers:

e EA Version. Derived from a build number (for example, 13.160)

¢ Version Number of Dialog. Derived from the build number. Service representatives can use this
number to uniquely identify the build of the hardcopy driver and the fix level.

“ Postscript is a trademark of Adobe Systems Incorporated

Chapter 2. Design Considerations 2-11

design considerations

* INI File Data Version. This number identifies to the driver the version number of the data stored in the
0S2SYS.INI file. The numbering system and format is hardcopy driver defined.

¢ |Version Number. Given in the DrivData structure of job or printer properties. The numbering scheme
of this ULONG is hardcopy driver defined, but the following format of IVersion is suggested. ltis a
number of type FIXED:

— High WORD. System level in BCD (for example, 0020)
— Low WORD. Build level in BCD (for example, 0160).

For example, a new driver might use 20.0000. The next minor update might be labeled 20.0001. A major
update (for a new operating system release) might be labeled 21.0000.

For forward-level drivers reading back-level driver data, the data must be understood (by using the
{Version number as a guide to its format) and any missing data must be defaulted to the device defaults.
For back-level drivers reading forward-level driver data, as much as possible should be read and the rest
ignored. This implies that forward-level drivers only add new driver data fields at the end of the data.

Hardcopy Driver Output to File

Hardcopy drivers can print data to a disk file so that the print file can later be sent to the printer without the
need for the application. The print file can be used as a file interchange format. Printing to file means the
hardcopy driver converts the prespool input into a device-dependent format and stores the output directly

. to afile. File system errors must be reported.

Two methods the hardcopy driver implements to allow printing to disk are:

* The system-provided method for printing to disk requires that the hardcopy driver handle a file name as
a pszLogAddress on a OD_DIRECT Enable Subfunction 02H — FillPhysicalDeviceBlock.

¢ In addition to the above method, the hardcopy driver can implement printing to disk by changing the job
properties dialog to allow the user to input a fully qualified file name. There are circumstances in which
the hardcopy driver must know the format of the required output file. For example, a hardcopy driver
can output raw PostScript or Encapsulated PostScript (EPS).

Help

All hardcopy drivers have a Help function, which invokes contextual help. The help should be complete
and indexed.

Job Error Dialog

The following push buttons on a message box are presented to an end-user:
RETRY Retry sending print data

ABORT Delete job

IGNORE Cancel dialog.

The hardcopy driver will respond to each of the returns in the following manner:
MBID_RETRY Continue sending data to the output buffer (PriWrite)

MBID_ABORT Issue a PrtAbort to tell the spooler to delete the current job and set a flag that the job has
been aborted, then return from the write thread

MBID_IGNORE Continue sending data to the output buffer (PrtWrite).

The Job Error dialog contains a Help pushbutton and associated help.

2-12 Presentation Driver Reference

P

Part 3. 0S/2 2.0 Presentation Drivers

© Copyright iBM Corp. 1992

Presentation Driver Reference

~>

exported entry points

Chapter 3. Display Drivers

This chapter describes the types of exported entry ports used by 0S/2 2.0 display drivers.

Exported Entry Points

The following entry points are exported by the dynamic link library of a display driver:

EXPORTS
MoveCursorBlock @103
0S2_PM_DRV_QUERYSCREENRESOLUTIONS /* Optional */

MoveCursorBlock

Display drivers must export an entry point for the MoveCursorBlock table. This table contains information
about the display driver’s MoveCursor routine (code) and data areas. The table values are checked after
the display driver is initialized. This allows the driver to determine the correct values.
typedef struct _MCDESCRIPTION { /* mod */
PVOID pMoveCursor;
ULONG ulCodelength;
PVOID pCursorData;
ULONG ulDatalength;
} MCDESCRIPTION;
typedef MCDESCRIPTION FAR* PMCDESCRIPTION;

The fields in the typedef structure are described below:

pMoveCursor Flat address of the MoveCursor routine in the display driver
ulCodelLength Length in bytes of the MoveCursor routine

pCursorData Flat address of the data area used by the MoveCursor routine
ulDataLength Length in bytes of the data area used by the MoveCursor routine

This routine support calls from the system timer (at interrupt time). The strategy for the MoveCursor
routine is that the pointer is checked and, if necessary, redrawn or excluded at timed intervals. The
PMDD.SYS physical device driver creates a privilege level 0 alias for the data address and passes the alias
to the routine in the EAX register when MoveCursor is called at interrupt time. Therefore, all data
addressing within the routine must be performed relative to this address.

At entry to the MoveCursor routine, the stack contains the following:
VOID MoveCursor(LONG abs_x, LONG abs_y, PVOID pCursorData)

Using the C calling convention, the stack contains two LONGSs, which hold the x- and y-coordinates of the
cursor hot spot, and a PVOID that is a pointer to the cursor data area that is valid in the current context. All
references to this data area must be done relative to the address passed in. If the x- and y-coordinates are
set to 0x80000000, this signifies a CheckCursor call.

Regular timer interrupts give the presentation driver an opportunity to check whether the pointer is valid.
For example:

¢ Have new x- and y- coordinates been set?

* |s the pointer excluded because of a drawing operation. If so, has that operation been completed?

* |s the pointer currently visible (although it should be excluded) because it is in an area that is being
redrawn?

At the end of the MoveCursor routine, a check is performed to see if a new location was given for the
pointer while it was being drawn. If the pointer has moved again, it must be drawn at the new location or

© Copyright IBM Corp. 1992 3-1

exported entry points

be excluded because it has moved into the protection rectangle. This implies that the routine needs to
track both real (x, y) and pointer (x, y).

Programming Considerations: Typical cursors are an arrow, or a cross, with an action point called
the hot spot at the point of the arrow or the center of the cross. When the presentation driver draws a
cursor, the origin of the image must be offset to place the action point at the required (x, y) position. The
required offset is specified in the call to GreSetCursor. Because the cursor entry point can be called at
various times from many different places, the cursor routine uses semaphores to protect itself (protection is
the responsibility of the presentation driver). Similarly, because cursor drawing can be a time-consuming
operation, the display driver must also protect itself against re-entrance.

The display driver must resolve all interactions between cursor drawing at interrupt time and access to
video hardware. While in the background, the display driver does not draw any cursor image.

Caution should be used when the display is a buffered device and the cursor is drawn into a bit map in the
buffer. In this case, the display driver deletes the cursor and excludes it when a draw operation occurs at
the cursor location. To do this, the driver does a hit test for each output operation to see if the cursor
location is in the drawing area, and to set a protection rectangle that is used to exclude the cursor.

0S2_PM_DRV_QUERYSCREENRESOLUTIONS

0S2_PM_DRV_QUERYSCREENRESOLUTIONS should be exported by display drivers that support multiple
display resolutions. This entry point allows the operating system to determine the display modes
supported by the display driver.

Entry to the routine is as follows:
ULONG QueryResolutions (pBuf, pcbBuf)

Parameter Data Type Description
pBuf PVOID Pointer to the output buffer. See below.
pcbBuf PULONG Pointer to the number of bytes in the buffer. See below.
pBuf Pointer to the buffer that receives the output from this function. The output is returned in a

SCREENRESCOUNT structure followed by an array of SCREENRESOLUTION structures. This
function should fill pBuf with the following information:

typedef struct _SCREENRESCOUNT {
ULONG maxcount;
ULONG count;
ULONG res_struct_length;
} SCREENRESCOUNT;
typedef SCREENRESCOUNT *PSCREENRESCOUNT;

The SCREENRESCOUNT fields and descriptions are as follows:

maxcount Total number of screen resolutions supported.

count Number of SCREENRESOLUTION structures returned. This count will be
less than maxcount if the size of the pBuf buffer was defined too small as
identified by pcbBuf.

res_struct_length Length of a SCREENRESOLUTION structure. This value should be used to
increment between structures so that any future increase in the size of the
structure (to add additional information) will not cause a failure.

3-2 Presentation Driver Reference

pcbBuf

exported entry points

The SCREENRESCOUNT information should be followed by the SCREENRESOLUTION
information:

typedef struct _SCREENRESOLUTION {
ULONG width;
ULONG height;
ULONG colors;
ULONG planes;
ULONG floptions
} SCREENRESOLUTION;
typedef SCREENRESOLUTION *PSCREENRESOLUTION;

The SCREENRESOLUTION fields and descriptions are as follows:

width Width of the device in pels.

height Height of the device in pels.

colors Number of colors supported in this mode.
planes Number of display planes in this mode.

floptions Identifies optional information for each resolution. Valid values include:

DSP_RESOLUTION_OBTAINABLE Obtainable with the hardware configuration
DSP_RESOLUTION_DEFAULT Default resolution

Points to the number of bytes in the pScreenResolution buffer. If pScreenResolution is 0 on
input, this function stores the size (in bytes) needed to retrieve all of the screen resolution data in
pcbScreenResolution. If not 0, this field contains the number of bytes actually returned.

Return Codes: The return value depends upon the input value of pcbBuf.

0

Non-zero

Returns the size in bytes needed to retrieve all of the screen resolution data
Returns the number of bytes actually returned in pBuf

Chapter 3. Display Drivers 33

exported entry points

3-4 Presentation Driver Reference

graphics engine hardcopy drivers

Chapter 4. Graphics Engine Hardcopy Drivers

For the Presentation Manager interface, hardcopy devices such as printers and plotters are queued
devices. When an application writes to one of these devices, the presentation driver creates a spool file
and writes the data to that file. The data is printed when it is complete and the required device is free.

Two instances of a device context are required to support queued data. The first instance is opened as an
OD_QUEUED device by the application program. This DC buffers the data, does any processing that is
required, and then writes the data to a spool file. The second instance is opened as an OD_DIRECT device
by the queue processor. This DC receives data from the spool file, does any processing that is required,
and by using the Prtxxx interface, sends the data to the physical device driver.

When a device context is opened, the data type given (PM_Q_STD or PM_Q_RAW) is applicable only for the
OD_QUEUED device context type.

Exported Entry Points

The following entry points must be exported by a hardcopy driver dynamic link library:

EXPORTS
0S2_PM_DRV_DEVMODE
0S2_PM_DRV_DEVICENAMES
DrvInstall /* Optional */
DrvRemove /* Optional */

DiatogProc @2

Note: DialogProc is exported by ordinal. The entry point is used by the Presentation Manager interface to
manage the dialog initiated by the 0S2_PM_DEVMOVE routine (see “0S2_PM_DRV_DEVMODE” on
page 4-2).

© Copyright IBM Corp. 1992 4-1

0S2_PM_DRV_DEVMODE

0S2_PM_DRV_DEVMODE

This handling routine must be compiled to run at Ring 2 Conforming (privilege level 2) or Ring 3 (privilege
level 3). The Device Modes entry point is exported by hardcopy drivers as 0S2_PM_DRV_DEVMODE to
support the DevPostDeviceModes function at the Application Programming Interface (API). In the hardcopy
driver, the handling routine generates a DRIVDATA structure that defines the current setting of printer
properties or job properties, which identify the options that are set when the job is printed (see “Remarks”
on page 4-3). All hardcopy drivers must contain a handling routine for 0S2_PM_DRV_DEVMODE.

Applications such as the Presentation Manager Print Object call DevPostDeviceModes to configure the
device. Notice that such applications usually call this function twice, first with a NULL value for
pDriverData to query the length of the driver's DRIVDATA structure, and then with a valid pointer to get the
data.

The syntax used by the Presentation Manager interface to call the Device Modes routine in the hardcopy
driver is as follows:

LONG APIENTRY 0S2_PM_DRV_DEVMODES (pDriverData, pszDriverName, pszDeviceName, pszPrinterName, 10ption)

PDRIVDATA pDriverData;

PSZ pszDriverName;
PSZ pszDeviceName;
PSZ pszPrinterName;
ULONG 10ption;

Note: LONG, APIENTRY, PDRIVDATA (DRIVDATA *), and PSZ (char *) are defined in OS2DEF.H, which is
included through the header file 0S2.H.

Stack Frame: At entry to the device modes routine, the stack frame contains:

Parameter Description

pDriverData NULL or pointer to DRIVDATA structure. See below.

pszDriverName Pointer to a string containing the name of the hardcopy driver.

pszDeviceName Pointer to a string containing the device name, for example, HP LASERJET Il P, as defined by
the presentation driver.

pszPrinterName NULL or pointer to a string containing the printer name, such as PRINTER1, as defined by the
user through the Presentation Manager control panel. A NULL pointer or NULL string are both
valid conditions for this parameter.

IOption Option flag. See below.

pDriverData NULL or pointer to memory location for DRIVDATA structure:
cb Number of bytes in the structure.

IVersion Version number of the presentation driver. Subsequently used by the
presentation driver to verify its entry in the INI file.

szDeviceName[32] Device name.

abGeneralData Driver-specific data for job or printer properties. See “Remarks” on
page 4-3.

If pDriverData is NULL, the handling routine in the presentation driver must return the iength
of the driver’s DRIVDATA structure for either job or printer properties.

IOption Identifies the action that should be taken by the presentation driver:

4-2 Ppresentation Driver Reference

N T

0S2_PM_DRV_DEVMODE

DPDM_POSTJOBPROP Display a dialog for job properties and return the DRIVDATA
structure. Do not update OS2SYS.INI. The abGeneralData field
contains the job properties.

DPDM_CHANGEPROP Display a dialog for printer properties and device defaults, update
the OS2SYS.INI file, and return the DRIVDATA structure. The
abGeneralData field contains the printer properties.

DPDM_QUERYJOBPROP Return the DRIVDATA structure with device default job
properties. Do not display a dialog. The abGeneralData field
contains the device default job properties.

All other values are reserved.

Return Codes: The handling routine in the presentation driver returns a LONG integer. Valid values
are:

DPDM_ERROR Error
DPDM_NONE There are no settable options.

>0 The number of bytes for the required DRIVDATA structure when the input pointer
pDriverData=NULL.
DEV_OK The data block pointed to by the input parameter pDriverData was initialized (when the

pDriverData input pointer is not equal to NULL).

Remarks: The details about printer properties and job properties are stored as a set of flags or values
in the array abGeneralData. Do not store pointers in this array because they might not be valid when they
return. This array is driver-specific. What flags are needed and where those flags are in the array must be
determined to fully exploit the capabilities of the device.

A list of related terms and their definitions follows.

Properties: This is a descriptive term for software and hardware characteristics of hardcopy (printing,
plotting, camera, etc.) devices. For a particular property, there is a list of possible values from which the
user can select one or more values. This list can be extended by adding user-defined values but can never
be reduced by removing predefined values. For example, predefined forms, Letter and A4, can never be
deleted. However, the user can add a form named ‘Blue Letter’ to describe colored separator paper.

Job Properties: These are properties that can be changed from job to job. Typically, job property values
are set in the printer by sending software commands. Some job properties can be derived from printer
properties. Examples of typical job properties are:

Paper orientation

Forms required

Device resolution

Single-sided or duplex printing.

Printer Properties: These are properties that describe the printer physical characteristics. Printer
properties are mutually exclusive of job properties (see following description). Examples of typical printer
properties are:

Number of paper bins

Form size in each paper bin

Hardware fonts instatled

Font cartridges installed (cartridge slots download fonts at IPL time)

Availability of optional add-on hardware, such as an envelope feeder or SCSI hard disk available.

Chapter 4. Graphics Engine Hardcopy Drivers 4-3

0S2_PM_DRV_DEVMODE

User-Definable Values: For each individual property, there is a list of possible values which can be
extended by making use of user-definable values (for example, user-defined forms.) User-definable values
can only be defined or changed in the printer property dialogs, that is, when 0S2_PM_DRV_DEVMODE is
called with the DPDM_CHANGEPRORP flag.

Selected Values: Given a particular property and its set of values, the user can choose one or more to be
selected values. For example, Paper Bin 1 contains Letter paper, and the envelope bin accepts Com10, DL,
or B5 envelopes.

Device Default Properties: Device defaults can be set in the printer properties dialog. These defaults do
not usually contain user-defined values. The selectable values are chosen according to country code and
the most common delivery configuration of the device. In a hardcopy driver that supports multiple devices,
it is possible that the device default properties are different for different devices.

Option Flags

* DPDM_POSTJOBPROP
* DPDM_CHANGEPROP
* DPDM_QUERYJOBPROP

DPDM_POSTJOBPROP: Any application can call the 0S2_PM_DRV_DEVMODE handling routine by using
the flag option, DPDM_POSTJOBPROP. The calling program requires the user to select properties for a
specific job (draft or letter quality; size, style, and color of the default font, and so forth). The source for the
default value of the properties and device defaults is determined by the pszPrinterName parameter:

* If pszPrinterName points to a valid string, the handling routine searches the PM_SPOOLER_DD section
of OS2SYS.INI for the abGeneralData associated with the name.

* If pszPrinterName is NULL or points to a NULL string, the handling routine uses the values from
abGeneralData in the DRIVDATA structure addressed by pDriverData.

In both cases, the initial default values are used if the handling routine cannot find a valid abGeneralData
array.

When called with the DPDM_POSTJOBPROP flag option, hardcopy drivers:

* Examine the pDriverData parameter. If the pDriverData is valid, use these values as a basis of the
values to be displayed in the user dialog. If NULL, the driver version number is 0, or the pDriverData is
nonsense, use a set of device default job properties. There are two cases:

— If the printer name is given, use the job properties.
— If the printer name is NULL or not a valid printer name, use the job properties derived from the
device defaults.

* Update the job property values before displaying the user dialog. If the printer name is given, the
printer properties stored by that printer are examined and compared with the job properties. There are
two cases:

— Addition of extra values. If extra printer property values are defined, those that are applicable are
added to the user dialog. For example, if a new user-defined form was added to the printer
properties, it appears on the list of selectable forms.

— Removal of values. If printer property values are deleted, the deleted values do not appear in the
‘user dialog. If all the selected values are deleted from the printer properties, the device default
becomes the selected value. For example, if a user-defined form is removed from the printer
properties, it is replaced by a device default such as Letter (for the United States) or A4 (for France).

¢ Display the user dialog (the user makes selections). Notice that if the user presses Cancel on the
dialog, the hardcopy driver returns pDriverData unmodified. If pDriverData contains zeros or is not
understood by the hardcopy driver, the driver should return the default job properties for the device.

4-4 Ppresentation Driver Reference

~ =

0S2_PM_DRV_DEVMODE

¢ Return the data to the caller. Any updates in the user dialog must be reflected in an updated
pDriverData parameter, which is passed back to the caller of 0S2_PM_DRV_DEVMODE. This update
must occur regardless of whether an actual printer name or NULL printer name was passed in.

DPDM_CHANGEPROP: Only the Workplace Shell calls DevPostDeviceModes using this flag option.
Applications that must change options for a particular job use DPDM_POSTJOBPROP.

The calling program requires the user to identify the current settings of the device defaults and select the
device default properties. This usually requires two dialogs, one to identify options (such as the paper size
currently in the device and details of any memory or font cartridges that are installed), and the other to
establish a set of device default properties.

An error is returned if a NULL printer name is used. The pDriverData parameter is ignored. Given that a
printer name is passed in, the hardcopy driver needs to retrieve the printer properties for that printer and
the individual device for that driver. This means the hardcopy driver must store these properties in a
separate place from properties for other printers in order to avoid properties and selected values of one
printer interacting with another. An example of printer property interaction might be if one printer has a
user-defined form in Bin 1, and the other has no extra forms. It would be possible to send a job to the
second printer which uses a form that is only available in the first printer.

The hardcopy driver builds a complex keyname containing the printer name, hardcopy driver and device
name. It is recommended that the printer properties be stored under individual property keynames.

This format is easily extended for new printer properties. The format of the appname is:

PM_DD_<printer name>,<hardcopy driver>.<device name>

For example:

appname = PM_DD_PRINTER1, LASERJET.HP LaserdJet i
keyname = BINFORMS

value = Assignment of forms to paper bins

keyname = FORMSDATA

value = Definition of forms

appname = PM_DD_PRINTER2, LASERJET.HP LaserdJet Il
keyname = BINFORMS
value = Assignment of forms to paper bins.

The advantage of this method is that the appname is standardized, therefore:

¢ When a printer is renamed, the Workplace Shell can automatically move the data to a new appname
without the hardcopy driver involved.

¢ The initialization file can be cleaned up by the Workplace Shell when a printer is deleted, or when the
default hardcopy driver for a printer is changed.

DPDM_QUERYJOBPROP: Any application can call 0S2_PM_DRV_DEVMODE by using the
DPDM_QUERYJOBPROP flag option to find out the device default job properties. These defaults are
derived from the printer properties. There are two cases:

¢ The printer name is given so the properties can be retrieved from OS2SYS.INI under the
PM_DD_Printerxxx application name.

* The printer name is not given and the hardcopy driver uses the device default printer properties for that
device.

Note: Information concerning the design of dialogs and menus is given in Common User Access Interface
Design Guide.

Chapter 4. Graphics Engine Hardcopy Drivers 4-5

0S2_PM_DRV_DEVICENAMES

0S2_PM_DRV_DEVICENAMES

This handling routine must be compiled to run at Ring 3 (privilege level 3). The device names entry point is
exported as OS2_PM_DRV_DEVICENAMES by the presentation driver to support the
DevQueryDeviceNames function at the APl. Applications such as the Presentation Manager Print Object
call DevQueryDeviceNames to determine the device names and descriptions and the data types that the
presentation driver supports. Hardcopy drivers must contain a handling routine for
0S2_PM_DRV_DEVICENAMES.

Applications usually call this function twice, first with a NULL value for cNames and cDataTypes to query
the number of names and data types. After allocating the arrays, the application then calls this function
with valid values to get the data. If the value of cNames is NULL at the location addressed by pcNames, the
handling routine must update cNames to the actual count of names. If cNames has a valid value, the
routine must write device names and device descriptions into the arrays addressed by paDeviceName and
paDeviceDesc. Similarly, for cDataTypes, the handling routine either writes a valid value into cDataTypes
or writes data-type names into the array addressed by paDataType. Notice that when writing to an array,
the routine does not write past the end of the array as defined by the associated count.

The syntax used by the Presentation Manager interface to call the device names routine in the presentation
driver is as follows:

LONG APIENTRY 0S2_PM DRV_DEVICENAMES (pszDriverName, pcNames, paDeviceName, paDeviceDesc, pcDataTypes,
paDataType, 1Reservedl, 1Reserved2)

Stack Frame: At entry to the device names function, the stack frame contains:

Parameter Data Type Description

pszDriverName PSz Pointer to a string containing the name of the device driver, for example,
LaserJet

pcNames PLONG Pointer to count of fields, cNames, in DeviceName and DeviceDesc arrays

paDeviceName PSTR32 Pointer to DeviceName array, char[cNames,32]. Device names are
NULL-terminated strings such as 'HP LaserJet Il'.

paDeviceDesc PSTR64 Pointer to DeviceDesc array, char[cNames,64]. Device descriptions are
NULL-terminated strings such as 'HP LaserJet Il'.

pcDataTypes PLONG Pointer to count of fields, cDataTypes in DataType array

paDataType PSZ Pointer to DataType array, char[cDataTypes,16]

IReservedi ULONG Reserved

IReserved?2 ULONG Reserved

Note: LONG, APIENTRY, and PSZ (char *) are defined in file OS2DEF.H. PSTR16, PSTR32, and PSTR64 are
defined as pointers to fixed-length character arrays and are included in the header file OS2.H.

Return Codes: The handling routine in the presentation driver returns a LONG integer. Valid values
are:

—1 Successful.
0 Error.

Note: The system expects the successful and error return codes from 0S2_PM_DRV_DEVICENAMES to be
the opposite of those from 0OS2_PM_DRV_DEVMODE and the Enable subfunctions.

4-6 Presentation Driver Reference

Drvinstall

Drvinstall

Note: This entry point is optional.

This entry point informs the hardcopy driver that it is about to be installed or reinstalled. The driver is
given the opportunity to update data in the INI file.

void DrvInstall()

It is the responsibility of the caller to install the complete multi-file driver by using extended attributes.

Chapter 4. Graphics Engine Hardcopy Drivers

4-7

DrvRemove

DrvRemove

Note: This entry point is optional.

This entry point informs the hardcopy driver that it is about to be removed from the system (deleted from
hard disk). The driver is given the opportunity to remove data it owns from the INI file. The hardcopy
driver does not use this entry point to delete any of its own datafiles unless they are created after
installation.

void DrvRemove()

It is the responsibility of the caller to remove the complete multi-file driver by using extended attributes.

4-8 Presentation Driver Reference

file system emulation

File System Emulation

Presentation drivers for hardcopy devices use an internal interface to communicate with the device.
Hardcopy drivers do not differentiate between different types of ports (for example, LPT1 verses COM1).
The Prtxxx API routes the data to the appropriate physical device driver. This APl also handles
semaphoring the port so that two threads do not intermix output.

The internal interface is based on the DOS file system calls DosOpen, DosClose, DosWrite, and so forth.
Presentation drivers open a device and receive a handle that identifies the device as a file. Subsequent
operations such as writing to the device are implemented by writing to the returned handle.

The following functions are used by the presentation driver:

PrtAbort
PriClose
PrtDeviOCti
PrtOpen
PriWrite.

® o o o o

Chapter 4. Graphics Engine Hardcopy Drivers 4=9

file system emulation

PrtAbort

VOID APIENTRY PrtAbort (hDevice)

This function aborts operations to the output device identified by hDevice file handie. Any output data that
is held in buffers for the physical device driver is emptied. PrtAbort does not close the device, therefore,
the presentation driver must call PrtClose after aborting operations. If PriWrite is called to write to a
device whose output has been aborted, the call is not honored by the system.

Parameters
Parameter Data Type Description
hDevice HFILE Device handle

Return Codes: None. PrtAbort is a VOID function.

Remarks: Presentation drivers do not use PriClose to abort an output operation. The effect of PrtClose
is to output any buffered data before closing the device.

4-10 Presentation Driver Reference

~_

file system emulation

PrtClose

ULONG APIENTRY PrtClose (hDevice)

This function closes the output device identified by hDevice.

Parameters
Parameter Data Type Description
hDevice HFILE Device handle

Return Codes: This function returns the same codes as DosClose.

ERROR_ACCESS_DENIED

ERROR_FILE_NOT_FOUND
ERROR_INVALID_HANDLE
NO_ERROR.

Remarks: If this function returns an error, it is reissued to close the device.

Chapter 4. Graphics Engine Hardcopy Drivers 4-11

file system emulation

PrtDevIiOCti

ULONG- APIENTRY PrtDevIOCt] (pData, pParms, ulFunction, ulCategory, hDevice)

This function passes device-specific commands to the device. PrtDeviOCtl is an emulation of DosDevIOCtl.
For a full description of the parameters, see DosDevIlOCti in the 0S/2 2.0 Presentation Manager
Programming Reference. For further information about the IOCtl interface, see the chapter on generic
10Cti commands in the OS/2 2.0 Physical Device Driver Reference.

Parameters
Parameter Data Type Description
pData PVOID Pointer to a data packet
pParms PVOID Parameter list
ulFunction ULONG Function number
ulCategory ULONG Category code
hDevice HFILE Device handle

Return Codes: This function returns the same codes as DosDevIOCtl.

ERROR_BAD_DRIVER_LEVEL
ERROR_GEN_FAILURE
ERROR_INVALID_CATEGORY
ERROR_INVALID_DRIVE
ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
ERROR_MONITORS_NOT_SUPPORTED
ERROR_PROTECTION_VIOLATION -
ERROR_UNCERTAIN_MEDIA
NO_ERROR.

4-12 Presentation Driver Reference

file system emulation

PrtOpen

ULONG APIENTRY PrtOpen (pszDeviceName, phDevice, psAction, cbFile, ulFat , fnOpen, flMode, 1Res)

This function opens a device file for output and returns its handle in the location addressed by phDevice. If
an attempt is made to open a device file that is already open, an error is returned. PrtOpen is an emulation
of DosOpen. For a full description of the parameters, see DosOpen in the OS/2 2.0 Presentation Manager
Programming Reference.

Parameters

Parameter Data Type Description

pszDeviceName PSZ Pointer to a string identifying the device

phDevice PHFILE Pointer to a location for the returned file handle for the device

psAction PUSHORT Pointer to location for the returned value that identifies the action taken by
the system

cbFile ULONG Initial size, in bytes, of the output file

ulFat ULONG File attribute

fnOpen ULONG Open function type

fiIMode ULONG Open mode of file

IRes ULONG Reserved. Must be 0.

Return Codes: This function returns the same codes as DosOpen.

ERROR_ACCESS_DENIED
ERROR_CANNOT_MAKE
ERROR_DEVICE_IN_USE
ERROR_DISK_FULL
ERROR_DRIVE_LOCKED
ERROR_FILE_NOT_FOUND
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_ACCESS
ERROR_INVALID_PARAMETER
ERROR_NOT_DOS_DISK
ERROR_OPEN_FAILED
ERROR_PATH_NOT_FOUND
ERROR_PIPE_BUSY
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_SHARING_VIOLATION
ERROR_TOO_MANY_OPEN_FILES
NO_ERROR.

Chapter 4. Graphics Engine Hardcopy Drivers 4-13

file system emuiation

PrtWrite

ULONG APIENTRY PrtWrite (hDevice, pvoidData, cData, cWritten)

This function writes data to the device file identified by hDevice.

Parameters
Parameter Data Type Description
hDevice HFILE Device handle
pvoidData PVOID Pointer to data buffer
cData ULONG Length of data in bytes
cWritten PULONG Pointer to a count of bytes actually written to the device

Return Codes: This function returns the same codes as DosWrite.

ERROR_ACCESS_DENIED
ERROR_BAD_UNIT
ERROR_BROKEN_PIPE
ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION
ERROR_NOT_DOS_DISK
ERROR_OUT_OF_PAPER
ERROR_WRITEFAULT
NO_ERROR.

Remarks: Some physical device drivers return NO_ERROR even though cWritten is not equal to cData.
Presentation drivers should compare cData to cWritten to determine if a request has completed
successfully before checking for return codes. To complete the request when cData is not equal to
cWritten, the call must be issued after calculating the new starting point (pvoidData =
pvoidData + cWritten) and the remaining characters to transfer (cData = cData—cWritten).

4-14 presentation Driver Reference

Spooler Components

The spooler interface (Spl...) is implemented in two libraries, PMSPL.DLL and PMPRINT.QPR, that support
four activities:

Management of spool buffers for PM_Q_STD data (SplIStdxxx interface)
Management of queued files (SplIQmxxx interface)

Processing of queued files (SplQpxxx interface)

Displaying messages on the screen (SpiMesageBox).

Spool File Creation

The steps taken by the presentation driver to create a spool file are determined by the data type for which
the DC was enabled. All presentation drivers must support PM_Q_STD and PM_Q_RAW (overviews of
creating a spool file for these data types are shown beiow).

Data types can be defined by the user. A name should be chosen that is not likely to clash with other
user-defined data types. The name must be a string of up to 16 characters in the range of A—Z, 0—9, or _.
Notice that the data type is only useful to applications that know about it, and with presentation drivers that
implement it.

Print jobs must be spooled by using the data type given on the call to Enable Subfunction 02H —
FillPhysicalDeviceBlock. Therefore, print jobs queued PM_Q_STD can be printed with queue processor
options applied to the job.

PM_Q_STD

PM_Q_STD data is a file of Gpixxx calls that describe the output document. This data type is independent
of the device and the presentation driver. The presentation driver invokes the spooler’s standard interface
(SpiStdxxx). All subsequent Gpixxx calls and some escape codes sent to the DC are recorded in a spool
buffer. When DEVESC_ENDDOC is detected, the presentation driver ends the recording and invokes the
spooler’s interface (SplQmxxx) to write the buffered data into a spool file.

Normal sequence of events:
1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_STD data.
a. Hardcopy driver calls SpiStdOpen to open a recording.
2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls SplStdStart to start recording.
b. Spooler records all Gpixxx calls and some escape codes in the spool buffer.

Note: Recording does not stop the flow of Gpixxx calls through the system. These calls are
processed and the resulting Grexxx calls are passed on to handling routines in the graphics
engine and presentation driver. Special considerations apply for escape codes. For details,
see the individual escape codes under “GreEscape” on page 8-15.

c. Hardcopy driver DC is OD_INFO. The presentation driver tracks the current position, does any
bounds calculation required, and responds to queries from the application. In particular, the
presentation driver must be able to understand and reply to:

e DevQueryCaps

DevQueryHardCopyCaps

DevQueryDeviceNames

DevPostDeviceModes.

3. Application calls DevEscape with DEVESC_NEWFRAME.

Chapter 4. Graphics Engine Hardcopy Drivers 4-15

a. Hardcopy driver resets current position and bounds.
4. Application calls DevEscape with DEVESC_ENDDOC.
a. Hardcopy driver calls SplStdStop to stop the recording.
b. Hardcopy driver calls SplQmOpen and SplQmStartDoc to open and start a spool file.
c. Hardcopy driver calls SpiStdQueryLength to get the length, in bytes, of the spooled data.

d. Hardcopy driver calls SpiStdGetBits to get data from the spool buffer into memory that is owned by
the presentation driver. (The driver might need to loop on this step and the next if the spooled data
is larger than the available memory.)

e. Hardcopy driver calls SplQmWrite to write the data in the spool file.
f. Hardcopy driver calls SpiStdDelete to delete the data in the spool buffer.

g. Hardcopy driver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application’s
DevEscape with DEVESC_ENDDOC.

5. Application calls DevEscape with DEVESC_STARTDOC (repeat Step 2).

6. Application calls DevEscape with DEVESC_NEWFRAME (repeat Step 3).

7. Application calls DevEscape with DEVESC_ENDDOC to spool the second job (repeat Step 4).
8. Application calls DevCloseDC.

a. Hardcopy driver calls SpiStdClose and SplQmClose to close the spool buffer and the spool file.

Abort sequence of events:
1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_STD data.
a. Hardcopy driver calls SpIStdOpen to open a recording.
2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls SpiStdStart to start recording.
b. Spooler records all Gpixxx calls and some escape codes in the spool buffer.

Note: Recording does not stop the flow of Gpixxx calls through the system. These calls are
processed and the resulting Grexxx calls are passed on to handling routines in the graphics
engine and presentation driver. Special considerations apply for escape codes. For details,
see the individual escape codes under “GreEscape” on page 8-15.

c. Hardcopy driver behaves as if the DC was opened as OD_INFO. The presentation driver tracks the
current position, does any bounds calculation required and responds to queries from the application.
In particular, the presentation driver must be able to understand and reply to:

* DevQueryCaps

* DevQueryHardCopyCaps
* DevQueryDeviceNames
¢ DevPostDeviceModes.

The calls can be journaled but the journal file is not saved.
3. Application calls DevEscape with DEVESC_ABORTDOC to abort the document.

a. Hardcopy driver calls GreStopJournalFile.

b. Hardcopy driver calls GreDeleteJournalFile.

c. Hardcopy driver calls SplStdStop to stop the recording.

d. Hardcopy driver calls SpiStdDelete to delete the data in the spool buffer.
e. Hardcopy driver calls SplQmAbortDoc to stop the spool file.

4. The application calls DevCloseDC.

a. Hardcopy driver calls SpiStdClose and SplQmClose to close the recording and the spool file.

4-16 Presentation Driver Reference

’\

PM_Q_RAW

PM_Q_RAW data is a device-dependent bit stream.

Normal sequence of events:
1. Application calis DevOpenDC to open an OD_QUEUED device for printing PM_Q_RAW data.
a. Hardcopy driver calls SplQmOpen to open a spool file.
2. Application calls DevEscape with DEVESC_STARTDOC.

a. Hardcopy driver calls GreCreateJournalFile to create a journal file.
b. Hardcopy driver calls SplQmStartDoc to start the spool file.
c. Hardcopy driver calls GreStartJournalFile to start recording Grexxx calls.

Note: Recording does not block the flow of Grexxx calls to handling routines in the graphics engine
and presentation driver.

d. Hardcopy driver processes the incoming Grexxx calls to create the first band of data for the spool
file.

3. Application calls DevEscape with DEVESC_NEWFRAME to start new page.
a. Hardcopy driver calls GreStopJournalFile to stop the journal file.
b. Hardcopy driver calls SplQmWrite to write the first band in the spool file.
¢. Hardcopy driver moves clip rectangle to next band in presentation space.
d. Hardcopy driver calls GrePlayJournalFile to play the journal file.
e. Hardcopy driver processes each Grexxx call to create the second band of data for the spool file.
f. Hardcopy driver calls SplQmWrite to write the second band in the spool file.

. Hardcopy driver plays the journal file repeatedly until all the bands have been processed and
passed to the spooler.

«

h. Hardcopy driver issues a page eject, if necessary.
i. Hardcopy driver calls GreDeleteJournalFile.

j. Hardcopy driver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application’s
DevEscape with DEVESC_ENDDOGC.

Note: If no Grexxx calls have been made (that is, no output is required), only Steps a and h are
executed.

4. Application calls DevEscape with DEVESC_ENDDOC to end the document.
a. Hardcopy driver calls GreStopJournalFile to stop the journal file.
. Hardcopy driver calls SplQmWrite to write the first band in the spool file.
. Hardcopy driver calls GrePlayJournalFile to play the journal file.
. Hardcopy driver processes each Grexxx call to create the second band of data for the spool file.

. Hardcopy driver calls SplQmWrite to write the second band in the spool file.

- ® QO o0 U

. Hardcopy driver plays the journal file repeatedly until all the bands have been processed and
passed to the spooler.

g. Hardcopy driver cails GreDeleteJournalFile.

h. Hardcopy driver calls SplQmEndDoc to stop the spool file, and returns the Job ID to the application’s
DevEscape with DEVESC_ENDDOC.

Chapter 4. Graphics Engine Hardcopy Drivers 4-17

Note: [f no Grexxx calls have been made (that is, no output is required), only Steps a, i, and j are
executed. No page is ejected.

5. Application calls DevEscape with DEVESC_STARTDOC (repeat Step 2).

6. Application calls DevEscape with DEVESC_NEWFRAME to start new page (repeat Step 3).

7. Application calls DevEscape with DEVESC_ENDDOC to spool the second job (repeat Step 4).
8. Application calls DevCloseDC.

a. Hardcopy driver calls SplQmClose.

Abort sequence of events:
1. Application calls DevOpenDC to open an OD_QUEUED device for printing PM_Q_RAW data.
a. Hardcopy driver calls SpIStdOpen to open a spool file.
2. Application calls DevEscape with DEVESC_STARTDOC to start the document.

a. Hardcopy driver calls GreCreatedJournalFile to create a journal file.
b. Hardcopy driver calls SplQmStartDoc to start the spool file.
c. Hardcopy driver calls GreStartJournaiFile to start recording Grexxx calls.

Note: Recording does not block the flow of Grexxx calls to handling routines in the graphics engine
and presentation driver.

d. Hardcopy driver processes the incoming Grexxx calls to create the first band of data for the spool
file.

3. Application calls DevEscape with DEVESC_ABORTDOC to abort the document.

a. Hardcopy driver calls GreStopJournaiFile.
b. Hardcopy driver calls GreDeleteJournalFile.
c. Hardcopy driver calls SplQmAbortDoc to stop the spool file.

Note: The hardcopy driver can be processing the DEVESC_ENDDOC (banding, for example) and a
DEVESC_ABORT comes into the hardcopy driver on another thread.

4. Application calls DevCloseDC.

a. Hardcopy driver calls SplQmClose to close the spool file.

Querying and Setting Configuration Data

The configuration of printers and queues is stored in OS2SYS.INI. It is recommended that the SplxxxDevice
and SplxxxQueue functions are used as a high-level interface into OS2SYS.INIL. Refer to the 0S/2 2.0
Presentation Manager Programming Reference for further information.

4-18 Presentation Driver Reference

=

spooler support functions

Spooler Support Functions

The purpose of the spooler is to control the queues, create new spool files, and invoke the queue processor
when a job is ready for printing. The spooler also provides a function, SpIMessageBox, that can be called
to display a message to the user.

The following functions are available in the spooler:

SpiMessageBox
SplQmAbort
SpiQmAbortDoc
SplQmClose

¢ SplQmEndDoc
¢ SplQmOpen

¢ SplQmStartDoc
¢ SplQmWrite.

Chapter 4. Graphics Engine Hardcopy Drivers 4-19

spooler support functions

SplMessageBox

ULONG APIENTRY SplMessageBox (pszAddress, flErrorInfo, flErrorData, pszText, pszCaption, idNi'ndow, fsStyle)

This function creates and displays a message box. SplMessageBox is similar to WinMessageBox. For
details, see WinMessageBox in the 0S/2 2.0 Presentation Manager Programming Reference.

Parameters

Parameters Data Type Description

pszAddress PSz Pointer to a string containing the logical address of the device, such as
‘LPTT.

flErrorinfo ULONG Error information. See below.

flErrorData ULONG Error data. See below.

pszText PSZ Pointer to the text string for the message box.

pszCaption PSz Pointer to a string containing a meaningful title for the message box. The text
is centered in the title bar. If more than 40 characters are supplied, excess
characters at the beginning and end of the string are not displayed.

idWindow USHORT Window ID of the message box window.

fsStyle USHORT This bit array specifies the contents and function of the message box.

fiErrorinfo Error information. One of the following flags must be set to identify where the error

occurred:

SPLINFO_QPERROR Spooler queue processor error
SPLINFO_DDERROR Presentation driver error
SPLINFO_SPLERROR ‘Spooler error

SPLINFO_OTHERERROR Any other error.
One of the following flags is also set to indicate the severity of the error:
SPLINFO_INFORMATION Information only, no error

SPLINFO_WARNING Warning

SPLINFO_ERROR Recoverable error

SPLINFO_SEVERE Severe, irrecoverable error.

SPLINFO_USERINTREQD This flag is optional. It shows that recovery requires action from
the user.

flErrorData Error data:

SPLDATA_PRINTERJAM Printer is jammed, offline, or not powered on.
SPLDATA_FORMCHGREQD Form change required
SPLDATA_CARTCHGREQD Font cartridge change required

SPLDATA_PENCHGREQD Pen change required
SPLDATA_DATAERROR Data error, such as missing file
SPLDATA_UNEXPECTERROR Unexpected DOS error
SPLDATA_OTHER Any other error.

Return Codes: This function returns a USHORT value (sResponse) that indicates the user’s response.

4-20 Presentation Driver Reference

spooler support functions

SplGmAbort

BOOL APIENTRY SplQmAbort (hspl)

This function aborts and closes the spool file identified by hspl.

Parameters
Parameters Data Type Description
hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4=-21

spooler support functions

SpiQmAbortDoc

BOOL APIENTRY SplQmAbortDoc (hspl)

This function aborts the document on the spool file identified by hspl. All data for that document, including
SplQmsStartDoc data, is erased. SplQmAbortDoc does not close the spool file. The presentation driver can
restart the document by using the same spooler handle. If the hardcopy driver wants to abort the job and
close the file, it calls SpiQmAbort.

Parameters
Parameters Data Type Description
hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-22 Presentation Driver Reference

N

spooler support functions

SplQmCilose

BOOL APIENTRY Sp1QmClose (hspl)

This function closes the spool file identified by hspl. SplQmClose corresponds to DevCloseDC.

Parameters
Parameters Data Type Description
hspl HSPL Spooler handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4-23

spooler support functions

SplQmEndDoc

ULONG APIENTRY SpiQmEndDoc (hspl)

This function ends the document on the spool file identified by hspl. SplQmEndDoc corresponds to the
DEVESC_ENDDOC escape code. The return code, if not SPL_ERROR, is the spooler’s Job ID for the
document.

Parameters
Parameters Data Type Description
hspl HSPL Spooler handie

Return Codes

iddobld Job identifier
SPL_ERROR Error.

4-24 Presentation Driver Reference

spooler support functions

SplQmOpen

HSPL APIENTRY Sp1QmOpen (pszToken, cbData, pbData)

This function opens the spooler for output to a spool file. SplQmOpen is similar to SpiStdOpen. The return
code, if not SPL_ERROR, is the handle that identifies the spool file.

Parameters
Parameters Data Type Description
pszToken PSZ Pointer to token. This is a dummy parameter and is specified as **.
cbData LONG . Number of elements in the data structure.
pbData PQMOPENDATA Pointer to a DEVOPENSTRUC structure. See below.

pbData Pointer to a DEVOPENSTRUC structure containing information from the presentation driver’s
physical device block (see “Enable Subfunction 02H — FillPhysicalDeviceBlock” on page 7-8):

pszLogAddress Pointer to the name of the queue
pszDriverName Pointer to the name of the presentation device driver
pdriv Pointer to a DRIVDATA structure:
cb Number of bytes in structure
IVersion Version number
szDeviceName[32] Device hame
abGeneralData Driver-specific data
pszDataType Pointer to a string defining the data type of the queued file. All queue

processors must support PM_Q_STD and PM_Q_RAW.
pszComment Pointer to a natural language description of the file
pszQueueProcName Pointer to the name of the queue processor
pszQueueProcParams Pointer to a string of queue processor parameters

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks. Valid parameters are:

FORM=aaa Identifies the form name for the print job. Multiple names
are separated by commas (aaa,bbb,ccc). If this
parameter is not present in the string of spooler
parameters, the job is printed on the current form.

Form names are defined by the presentation driver.
Valid names are those that would be returned from a call
to the driver’s GreQueryHardcopyCaps handling routine.

PRTY=n ldentifies the priority for the print job. The priority can be
any value from 71—99 (1 is lowest priority). If this
parameter is not present, the priority value defaults to 50.

pszNetworkParams Pointer to string of networking parameters. These are only used in a
network environment and their nature is defined by the network
application.

Return Codes: This function returns the spooler handle (hspl), or SPL_ERROR if an error occurred.

Chapter 4. Graphics Engine Hardcopy Drivers 4-25

spooler support functions

SplQmStartDoc

BOOL APIENTRY SpiQmStartDoc (hspl, pszDocName)

This function signals the start of the document for the spool file and supplies a name that the spooler can
use to identify the job to the user. SplQmStartDoc corresponds to DevEscape(DEVESC_STARTDOC).

Parameters
Parameter Data Type Description
hspl HSPL Spooler handle.
pszDocName PSZ Pointer to the document name, which can be displayed by the spooler to the
user.

Return Codes: This function returns BOOLEAN (fSuccess):

' TRUE Successful
FALSE Error.

4-26 Presentation Driver Reference

spooler support functions

SplQmWrite

BOOL APIENTRY SplQmWrite (hspl, cbData, pbData)

This function writes data from the presentation driver’s buffer to the spool file.

Parameters
Parameter Data Type Description
hspl HSPL Spooler handle
cbData LONG Length of the buffer in bytes
pbData PBYTE Pointer to the start of the buffer

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Remarks: The size of the data buffer must not be greater than 64KB. Print jobs that exceed the
maximum buffer size must be written by repeatedly calling to this function.

Chapter 4. Graphics Engine Hardcopy Drivers 4-27

Spooler Support for PM_Q_STD Data Type

The following functions are available to help the hardcopy driver create a spool file containing PM_Q_STD
data:

SplStdClose
SplStdDelete

¢ SpiStdGetBits

¢ SpiStdOpen

* SpiStdQueryLength
* SplStdStart

* SplIStdStop.

The format of the PM_Q_STD data is a Presentation Manager metafile. Refer to the 0S/2 2.0 Presentation
Manager Programming Reference for format detail.

4-28 Presentation Driver Reference

SpliStdClose

BOOL APIENTRY Sp1StdClose (hdc)

This tunction closes the PM_Q_STD buffer. The call to SpIStdClose is made from the presentation driver's
BeginCloseDC routine when the device type is OD_QUEUED and the data type is PM_Q_STD. SpiStdClose
must not be called at any other time.

Parameters
Parameter Data Type Description
hdc HDC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4-29

SpliStdDelete

BOOL APIENTRY SpiStdDelete (hstd)

This function deletes the PM_Q_STD buifer identified by hstd. Any data in the buffer is lost.

Parameters
Parameter Data Type Description
hstd HSTD Handle to PM_Q_STD data

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-30 Presentation Driver Reference

SpiStdGetBits

BOOL APIENTRY Sp1StdGetBits (hstd, 1Start, cBytes, pAddress)

This function transfers data from the identified PM_Q_STD buffer into a buffer owned by the presentation
driver. Before calling SpIStdGetBits, the presentation driver calls SplStdQueryLength to determine the
length of the PM_Q_STD data. Depending upon the length, the hardcopy driver allocates a buffer large
enough to contain all of the data, or allocates a smaller buffer and receives the data in a series of calis to
SplStdGetBits.

Parameters
Parameter Data Type Description
hstd HSTD Handle to the PM_Q_STD buffer.
I1Start LONG Offset to the byte at which transfer must start. Used when the data is
obtained in a series of calls to SplStdGetBits.
cBytes LONG Number of bytes to transfer.
pAddress PCH Pointer to the presentation driver’s data buffer.

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

Chapter 4. Graphics Engine Hardcopy Drivers 4=-31

SpiStdOpen

BOOL APIENTRY Sp1StdOpen (hdc)

This function opens a spool buffer for PM_Q_STD data. The call to SpIStdOpen is made from the hardcopy
driver's CompleteOpenDC routine when the device type is OD_QUEUED and the data type is PM_Q_STD.
SplStdOpen must not be called at any other time.

Parameters
Parameter Data Type Description
hdc HDC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-32 Presentation Driver Reference

SpiStdQuerylLength

LONG APIENTRY SpiStdQuerylLength (hstd)

This function returns the number of data bytes in the PM_Q_STD buffer identified by hstd.

Parameters
Parameter Data Type Description
hstd HSTD Handle to the PM_Q_STD buffer

Return Codes: This function returns the size of hstd (cBytes), or SPL_ERROR if an error occurred.

Chapter 4. Graphics Engine Hardcopy Drivers 4-33

SpiStdStart

BOOL APIENTRY SpiStdStart (hdc)

This function starts the recording of GPl and DevEscape calls as a metafile in the PM_Q_STD buffer. Notice
that the calls are still processed by the system and passed on to the graphics engine and hardcopy driver
as calls to the relevant Grexxx functions.

The hardcopy driver’s Escape routine usually calls SplStdStart when DEVESC_STARTDOC is received.
Some prior-version presentation drivers made this call from the CompleteOpenDC routine to accommodate
applications that did not call DevEscape(DEVESC_STARTDOC) at the start of the document.

Parameters
Parameter Data Type Description
hdc HDC Device context handle

Return Codes: This function returns BOOLEAN (fSuccess):

TRUE Successful
FALSE Error.

4-34 Presentation Driver Reference

SpiStdStop

HSTD APIENTRY SpiStdStop (hdc)

This function stops the recording of GPl and DevEscape calls in the PM_Q_STD buffer. The hardcopy
driver’'s Escape routine calls SpiStdStop when DEVESC_ENDOC is received.

Parameters
Parameter Data Type Description
hdc HDC Device context handle

Return Codes: If successful, SpiStdStop returns the handle to the buffer (hstd) that contains the
recorded GP! and DevEscape data. If an error occurs, the function returns SPL_ERROR.

Chapter 4. Graphics Engine Hardcopy Drivers 4-35

4-36 Presentation Driver Reference

N

queue drivers

#

Chapter 5. Queue Drivers (Queue Processors)

The Workplace Shell uses the term queue driver to identify the queue processor. Each queue has its own
queue processor, which prints a spool file. The Presentation Manager interface delivers two different
queue drivers. Presentation Manager system queue drivers are supplied in the files, PMPRINT.QPR and
PMPLOT.QPR.

The following functions provide an interface to the queue driver:

¢ SplQpClose

¢ SpiQpControl

¢ SplQpinstall
SplQpOpen
SplQpPrint
SpiQpQueryDt
SpiQpQueryFlags

The spooler calls these functions by using DosLoadModule or DosGetProcAddr, and expects a 16-bit
interface. In addition to these functions, a visual interface is supplied through the SplMessageBox entry
point.

The user can supply queue drivers to support user data types, however, any queue driver created by the
user must support PM_Q_STD and PM_Q_RAW standard data types.

How a Queue Driver Prints

The method used by the queue driver to write data to the hardcopy device depends on whether the data
type is PM_Q_STD or PM_Q_RAW.

PM_Q_STD

PM_Q_STD performs in the following manner:

1. Opens a DC for the hardcopy device by using DevOpenDC and enables it as an OD_DIRECT device
_ 2. Calls DevEscape with DEVESC_STARTDOC

3. Writes data which is in metafile format by using GpiPlayMetafile

4. Calls DevEscape with DEVESC_ENDDOC

5. Closes hardcopy device DC by using DevCloseDC.

PM_Q_RAW

PM_Q_RAW performs in the following manner:

1. Opens a DC for the hardcopy device by using DevOpenDC and enables it as an OD_DIRECT device
2. Calls DevEscape with DEVESC_STARTDOC

3. Writes the data using DevEscape with DEVESC_RAWDATA

4. Calls DevEscape with DEVESC_ENDDOC

5. Closes hardcopy device DC by using DevCloseDC.

User Data Types

The processing required for user data types depends on the format of the data type. In some instances it
might be necessary to create a special queue processor to support the data type.

© Copyright 1BM Corp. 1992 5-1

queue drivers

SplQpClose

BOOL APIENTRY Sp1QpClose (hproc)

This function closes the queue driver (queue processor).

Parameters
Parameter Data Type Description
hproc HPROC Queue processor handle

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

5-2 Presentation Driver Reference

SplQpControl

queue drivers

BOOL APIENTRY SplQpControl (hproc, cmdCode)

This function controls the printing of a document.

Parameters
Parameter Data Type Description
hproc HPROC Queue processor handle
cmdCode LONG Control codes. See below.

cmdCode Control codes are as follows:

SPLC_ABORT Printing is aborted and the queue driver is closed.

SPLC_PAUSE Printing is paused. The spool file must not be open or allocated by the

queue driver.

SPLC_CONTINUE Printing resumes on a paused job. The spool file is unaltered.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Chapter 5. Queue Drivers (Queue Processors)

5-3

queue drivers

SplQpinstall

BOOL APIENTRY SplQpInstall (hwnd)

This function allows the user to configure a queue driver. SplQplinstali is optional.

Parameters
Parameter Data Type Description
hwnd HWND Window handle

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Remarks: This function is called by the Workplace Shell. It is used to display a dialog to the user for
queue driver (queue processor) configuration. The queue driver then stores the values in the OS2SYS.INI
file.

5-4 Presentation Driver Reference

queue drivers

SplQpOpen

HPROC APIENTRY SplQpOpen (cbData, pbData)

This function opens the queue driver and returns its handle. SpiQpOpen is normally called by the spooler.

Parameters
Parameter ‘Data Type Description
cbData LONG Number of elements in the SQPOPENDATA structure
pbData PSQPOPENDATA Pointer to SQPOPENDATA structure. See below.

pbData Pointer to SQPOPENDATA structure. This structure is based on the DEVOPENSTRUC and would
typically contain data extracted from the presentation driver’s physical device block.

pszLogAddress Pointer to logical address.
pszDriverName Pointer to presentation driver name.
pdriv Pointer to a DRIVDATA structure:
cb Size, in bytes, of this structure.
IVersion Version number of the data. Version numbers are

defined by the presentation driver.

szDeviceName[32] String identifying the device. Valid values are
supplied by the presentation driver.

abGeneralData ‘General data, the type of which is defined by the
presentation driver.

pszDataType Pointer to the data type of the queued file. All queue drivers must support
PM_Q_STD and PM_Q_RAW. User-defined data types are optional.

pszComment Pointer to a natural language description of the file which could, for
example, be displayed by the spooler to the user.

pszProcParams Pointer to a string of queue driver parameters.

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks. Valid parameters are:

FORM=aaa Identifies the form name for the print job. Multiple names
should be separated by commas (aaa,bbb,ccc). If this
parameter is not present, the job is printed on the current
form.

Form names are defined by the presentation driver. Valid
names are those that would be returned from a call to the
driver’'s GreQueryHardcopyCaps handling routine.

PRTY=n Identifies the priority for the print job. The priority can be
any value from 7—99 (1 is lowest priority). Notice that this
parameter has no significance when passed to SplQpOpen.

pszNetworkParams Pointer to string of networking parameters. These are only used in a
network environment and their nature is defined by the network
application. Typically, the queue driver ignores this parameter.

pszDocName Pointer to a string containing the document name.

Chapter 5. Queue Drivers (Queue Processors) 5-5

queue drivers

pszQueueName Pointer to a string containing the name of the queue from which the job
was sent by the spooler.

pszToken Pointer to the device information token. This identifies additional device
information held in the initialization file. This information is the same as
that which can be pointed to by pbData. Any information obtained from
pbData overrides the information obtained by using this parameter.

If Token is specified as *, no device information is taken from the
initialization file. 0S/2 2.0 behaves as if * is specified but it allows any
string.

idJobid This is a USHORT value that identifies the print job.
Return Codes: On completion, the handling routine must return:

SPL_ERROR Error
#0 Queue driver (queue processor) handle.

5-6 Presentation Driver Reference

queue drivers

SplQpPrint

BOOL APIENTRY Sp1QpPrint (hproc, pszFilename)

This function processes and prints the spool file. The handling routine in the queue driver opens a DC for
an OD_DIRECT device type. This instance of a DC processes the spooled data, and by using the Prtxxx
interface, passes the output through the physical device driver to the physical device. When the print job
ends, the queue driver assumes that the device is set at the start of a new page and issues a form feed to
the device.

Parameters
Parameter Data Type Description
hproc HPROC Queue processor handle
pszFilename pPSz Pointer to name of file containing the data

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Chapter 5. Queue Drivers (Queue Processors) 5-7

queue drivers

SplQpQueryDt

BOOL APIENTRY Sp1QpQueryDt (pcDatatypes, papszDatatypes)

This function returns a list of supported data types.

Parameters
Parameter Data Type Description
pcDatatypes PLONG Pointer to a value indicating the maximum number of data types. On
return, the value is updated to show the number of data types returned.
papszDatatypes PSZ Pointer to an array of pointers that address the locations for the returned
data type names. Each location must be an array of 16 characters to
accommodate a name of the maximum length with its terminating NULL.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Remarks: This function should be called once with pcDatatypes set to 0 to determine the number of data
types. The array papszDatatypes is not updated in this instance. The application can then allocate storage
for the array and call the function a second time to return a list of supported data types.

5-8 Presentation Driver Reference

Queue drivers

SplQpQueryFlags

BOOL APIENTRY SplQpQueryFlags (pulFlags)

This (optional) function queries print queue processor flags.

Parameters
Parameter Data Type Description
pulFlags PULONG Points to ULONG to receive flags value

Return Codes: On completion, this function returns BOOLEAN (fSuccess).

TRUE Successful, that is, *pulFlags=QP_RAWDATA_BYPASS(0x0001)
FALSE Not supported

Remarks: This function is called to determine if this print queue processor allows the spooler to bypass
it for PM_Q_RAW jobs. By exporting SplQpQueryFlags and setting the contents of pulFlags to
QP_RAWDATA_BYPASS, the spooler can bypass calling this print queue processor to print PM_Q_RAW
jobs that are still spooling.

Chapter 5. Queue Drivers (Queue Processors) 5-9

queue drivers

5-10 Presentation Driver Reference

port drivers

Chapter 6. Port Drivers

Port drivers are dynamic link libraries (DLLs) that contain a set of 32-bit functions which provide helper
functions for the spooler and Workplace Shell. For each port driver DLL, there should be a physical Port
device driver (SYS file) installed in CONFIG.SYS. The filetype of a port driver is PDR. The operating
system, by default, provides two port drivers named SERIAL.PDR and PARALLEL.PDR.

LPT4—9 are reserved and are installed into OS2SYS.INI by default. The Workplace Shell uses LPT4—9 for
NET USEs to a remote print queue. No port driver is provided by LPT4—9, or for ports that are named

pipes.

The functions exported from a port driver are:

SpIPdEnumPort
SpiPdGetPorticon
SpiPdinitPort
SplPdInstaliPort
SpiPdQueryPort
SpIPdRemovePort
SplPdSetPort
SplPdTermPort.

OS2SYS.INI File Structure

The contents of the INI file section for ports is as follows:

Port driver PDR install:
appname: PM_PORT_DRIVER keyname: <name> value: <full path to port driver>

For example:

PM_PORT_DRIVER, SERIAL, C:\0S2\DLL\SERIAL.PDR
PARALLEL, C:\0S2\DLL\PARALLEL.PDR
EXTLPT, C:\0S2\DLL\EXTLPT.PDR

This is written by the Workplace Shell during installation.

Ports known to the system:

appname: PM_<portname> keyname: DESCRIPTION value: <port description>
keyname: INITIALIZATION value: <initialization values>
keyname: TERMINATION value: <termination values>
keyname: PORTDRIVER value: <name of port driver>
keyname: TIMEOUT value: <timeout in seconds>

For example:

PM_COM1, DESCRIPTION, Serial Port COM1;
PM_COM1, INITIALIZATION, 9600;0;W;8;1;
PM_COM1, TERMINATION, ;

PM_COM1, PORTDRIVER, SERIAL;

PM_COM1, TIMEOUT, 45;

For compatibility, the existing port structure is also supported by all port drivers.

appname: PM_SPOOLER_PORT keyname: <port> value: <port init/term string>
For example:
PM_SPOOLER_PORT, LPT1, :

COoM1, 9600;0;W;8;1;

The port driver is expected to maintain its own sections in the OS2SYS.INI file. The format of the values
stored under the keynames INITIALIZATION and TERMINATION is port driver specific. Also, the port
driver might need to hold extra data under the PM_< port> appname.

© Copyright IBM Corp. 1992 6-1

port drivers

SpIPdEnumPort

APIERR APIENTRY Spl1PdEnumPort (hab, pBuf, cbBuf, pulReturned, pulTotal, pcbNeeded)

This function enumerates the port names and port descriptions that this port driver can manipulate.

Parameters
Parameters Data Types Description
hab HAB Handle to anchor block
pBuf PVOID Pointer to buffer of data structures
cbBuf ULONG Size of buffer in bytes
pulReturned PULONG Number of port entries returned
puiTotal PULONG Total number of port entries
pcbNeeded PULONG Size of buffer required for all data

Return Codes: This handling routine returns the following errors.

ERROR_INSUFFICIENT_BUFFER
ERROR_MORE_DATA
NO_ERROR.

The buffer, on return, consists of an array of the following data structure:

typedef struct _PORTNAMES {
PSZ pszPortName;
PSZ pszPortDesc;

} PORTNAMES;

Remarks: If the buffer is too small to hold even one data structure, then the error code,
ERROR_INSUFFICIENT_BUFFER is returned. If there is more data, ERROR_MORE_DATA, is returned and
cbRequired gives the size of buffer required to get all the data.

The Workplace Shell is the expected caller of this function and determines which ports to install in
OS2SYS.INI. The port descriptions are used to label the icon for each port. The Workplace Shell does not
allow the installation of ports that can be serviced by more than one port driver. The first port installed is
used. The Workplace Shell does not display other ports for installation. If another port is required, the first
port must be de-installed.

6-2 Presentation Driver Reference

port drivers

SpiPdGetPorticon

BOOL SplPdGetPortIcon (hab, idIcon)

This function queries the Resource ID of the icon that represents the port. Notice that only one icon is used
for all the ports supported by a port driver. This limitation is imposed to avoid confusing the user with too
many different icons.

Parameters
Parameters Data Types Description
hab HAB Handle to anchor block
idlcon PULONG Resource ID of icon bit map

Return Codes: This handliing routine returns FALSE if no icon is available. The system then uses a
default port icon.

Remarks: The Workplace Shell calls SpiQpQuerylcon to load and draw port icons, as appropriate.

Chapter 6. Port Drivers 6-3

port drivers

SpiPdInitPort

APIERR APIENTRY SpiPdInitPort (hfile, pszPortName)

This function initializes a port on behalf of the spooler.

Parameters
Parameters Data Types Description
hfile HFILE Handle to an open file
pszPortName PSZ Name of port to be initialized

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: The port driver reads the initialization data from the INI file, interprets the data, and issues
the appropriate DosDevIOCtls to the open port given by the file handle.

This function is called from the spooler function, PrtOpen, to complete port opening. Notice that PrtOpen
issues the actual DosOpen first. PrtOpen holds a semaphore for each port in use and a linked list of
threads waiting on the semaphore. This is because, although the spooler serializes output, it is still
possible for applications to write directly to the port by using DevOpenDC (OD_DIRECT).

6-4 Presentation Driver Reference

port drivers

SpiPdinstallPort

APIERR APIENTRY Spl1PdInstallPort (hab, pszPortName)

This function tells the port driver the name of the port that needs to be installed.

Parameters
Parameters Data Types Description
hab HAB Handle to anchor block
pszPortName PSZ Name of port to be installed

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: This function is called from the Workplace Shell. The port driver writes the initialization data
from the INI file. The Workplace Shell then typically calls SpiPdSetPort.

Chapter 6. Port Drivers 6-5

port drivers

SpiPdQueryPort

APIERR APIENTRY Sp1PdQueryPort (hab, pszPortName, pBuf, cbBuf, cltems)

This function returns textual data that describes the port configuration in a way that can be printed by the
Workplace Shell.

Parameters
Parameters Data Types Description
hab HAB Handle to anchor block
pszPortName PSZ Name of port to be configured
pBuf PVOID Pointer to buffer of data structures
cbBuf ‘ULONG Size of buffer in bytes
cltems PULONG Count of number of strings of description returned

Return Codes: This handling routine returns the following errors:

ERROR_INSUFFICIENT _BUFFER
NO_ERROR.

Remarks: The buffer consists of an array of strings (PSZ), the number of which is given by cltems. Each
string contains.one line of text that can be from 0—80 characters long. The port name and port description
is not required; the Workplace Shell can retrieve these from the OS2SYS.INI file.

The maximum size of the data returned is limited to 4KB. If the buffer is too small, the error code
ERROR_INSUFFICIENT _BUFFER is returned.

6-6 Presentation Driver Reference

port drivers

SpiPdRemovePort

APIERR APIENTRY Spl1PdRemovePort (hab, pszPortName)

This function tells the port driver the name of the port that needs to be removed.

Parameters
Parameters Data Types Description
hab HAB Handie to anchor block
pszPortName PSz Name of port to be removed

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: This function is called from the Workplace Shell and allows the port driver to remove its data
from the INI file.

Chapter 6. Port Drivers 6-7

port drivers

SpiPdSetPort

APIERR APIENTRY Sp1PdSetPort (hab, pszPortName, fl1Modified)

This function displays a dialog to aliow the user to browse and modify port configurations.

Parameters
Parameters Data Types Description
hab HAB Handle to anchor block
pszPortName PSZ Name of port to be configured
fiModified PULONG Flag to indicate that the configuration has been modified

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: This function is called from the Workplace Shell. The port driver retrieves the values
previously stored in OS2SYS.INi and displays a dialog. Default values are used the first time if no previous
values were stored in OS2SYS.INI.

When the user selects 0K on the dialog box, the port driver stores the changed values back into OS2SYS.INI.
The flag flModified is not set if the user did not modify anything, or if the user selected CANCEL on the dialog.

Note: The dialog should contain everything required for port initialization and termination.

6-8 Presentation Driver Reference

N F

port drivers

SpiPdTermPort

APIERR APIENTRY Sp1PdTermPort (hfile, pszPortName)

This function terminates a port on behalf of the spooler.

Parameters
Parameters Data Types Description
hfile HFILE Handle to an open file
pszPortName PSSz Name of the port to be terminated (closed)

Return Codes: This handling routine returns the following errors:

ERROR_INVALID_PARAMETER
NO_ERROR.

Remarks: The port driver reads the termination data from the INl file, interprets the data, and issues the
appropriate DosDevIOCtls to the open port given by the file handle.

This function is called from the spooler function, PriClose, to start port close down. Notice that PrtClose
then issues a DosClose.

Chapter 6. Port Drivers 6-9

port drivers

6-10 Presentation Driver Reference

S

E
Part 4. Reference Material

© Copyright iBM Corp. 1992

Presentation Driver Reference

0S2_PM_DRV_RING_LEVELS

Chapter 7. Exported Entry Points

This chapter describes the entry points that are exported by a presentation driver dynamic link library:

EXPORTS
0S2_PM_DRV_RING_LEVELS /* A1l drivers - Optional */
0S2_PM_DRV_ENABLE_LEVELS /* A1l drivers - Optional */
0S2_PM_DRV_ENABLE /* A1l drivers - Mandatory */

0S2_PM_DRV_RING_LEVELS

This entry point is the address of a table of ring levels required when dispatching each of the functions
hooked in the dispatch table by “Enable Subfunction 01H — FiliLogicalDeviceBlock” on page 7-6. The
table is an array of bytes corresponding to the functions in the dispatch table, terminating with a byte of 0
(that is, an ASCIIZ string). The most significant six bits of each byte are reserved and must be 0. The
remaining two bits of each byte represent the ring level to be used when dispatching the corresponding
function in the dispatch table.

00 = End of Table 10
01 = Ring 2 Conforming 11

Ring 2
Ring 3

Any function that does not have a corresponding byte in the table will be dispatched as Ring 2 Conforming.
This is the most desirable case from the standpoint of system performance.

Function Ring Level
GreGetArcParameters 0x01
GreSetArcParameters 0x01
GreArc 0x03
GrePartialArc 0x02
All others 0x00

The following table of 5 bytes would declare GreArc as Ring 3, GrePartialArc as Ring 2, and all other
functions as Ring 2 Conforming:

0x01 0x01 0x03 0x02 0x00

If this table is not exported, all functions will be dispatched as Ring 2 Conforming as if the table had
contained the single byte 0x00.

© Copyright IBM Corp. 1992 7-1

0S2_PM_DRV_ENABLE_LEVELS

0S2_PM_DRV_ENABLE_LEVELS

This entry point is the address of a table of ring levels required when calling each of the Enable
subfunctions. The table is an array of bytes corresponding to the subfunction numbers, terminating with a
byte of 0 (that is, an ASCIIZ string). The most significant six bits of each byte are reserved and must be 0.
The remaining two bits of each byte represent the ring level to be used when dispatching the
corresponding function in the dispatch table.

00 = End of Table 10
01

= Ring 2
Ring 2 Conforming 11 = Ring 3

Any subfunction that does not have a corresponding byte in the table will be dispatched as Ring 2
Conforming. This is the most desirable case from the standpoint of system performance.

Subfunction Ring Level
Unused 0x01
FillLogicalDeviceBlock 0x01.
FillPhysicalDeviceBlock 0x03
Unused 0x01
DisablePhysicalDeviceBlock 0x02
All others 0x00

The following table of 6 bytes would declare FillPhysicalDeviceBlock as Ring 3,
DisablePhysicalDeviceBlock as Ring 2, and all other subfunctions as Ring 2 Conforming:

0x01 0x01 0x03 0x01 0x02 0x00

If this table is not exported, all subfunctions will be called as Ring 2 Conforming as if the table had
contained the single byte 0x00.

7-2 Presentation Driver Reference

0S2_PM_DRV_ENABLE

0S2_PM_DRV_ENABLE

The enable entry point is exported as 0S2_PM_DRV_ENABLE by the presentation driver. The Enable
routine in the driver supports a set of subfunctions that enable or disable the environment for a device
context owned by a specific application or process. When a device context is opened or closed, the
Presentation Manager interface issues a series of calls to subfunctions at the enable entry point. These
calls initialize the presentation driver, the physical device, and the device context.

The syntax used by the Presentation Manager interface to call the Enable routine is:
LONG APIENTRY 0S2_PM_DRV_ENABLE (Subfunc, Paraml, Param2)

ULONG Subfunc;
ULONG Paraml;
ULONG Param2;

Note: LONG, ULONG (unsigned LONG), and APIENTRY are defined in OS2DEF.H, which is included
through the header file OS2.H.

Stack Frame: At entry to the Enable routine, the stack frame contains:

Parameter Description

Subfunction 32-bit value identifying the subfunction
Param1 First parameter

Param2 Second parameter

Subfunctions: Presentation drivers must support the following Enable subfunctions:

01H FillLogicalDeviceBlock
02H FillPhysicalDeviceBlock
04H DisablePhysicalDeviceBlock
05H EnableDeviceContext

06H DisableDeviceContext

07H SaveDCState

08H RestoreDCState

09H ResetDCState

0AH CompleteOpenDC

O0BH BeginCloseDC.

Note: The Enable function should return —1 (ERROR_MINUS) for Subfunction 03H, and numbers greater
than OBH.

Device Context Management: Device contexts are opened in response to an application or process
calling the DevOpenDC API function. On receiving this call, Presentation Manager loads the presentation
driver (if it is not already present and able to support the device context) and issues a series of calls to the
enable entry point.

Initially, when the presentation driver has not been enabled for use by the calling application or process,
the driver receives the series of calls shown in Figure 7-1. When the driver has been enabled for an
application or process, the sequence of calls to enable additional device contexts does not include
FillLogicalDeviceBlock and, depending upon a requirement that the driver posts in the initial enable
sequence, includes or excludes FillPhysicalDeviceBlock.

Chapter 7. Exported Entry Points 7~-3

0S2_PM_DRV_ENABLE

The 0OS2_PM_DRV_ENABLE entry point handles the DC management functions. Those functions can be
placed in three categories:

* Transactions involved in opening a DC
¢ Transactions involved in closing a DC
* Other DC functions including SaveDC, RestoreDC and ResetDC.

Opening and Closing DCs: The open and close transaction sequences are symmetrical:

Open Transactions Close Transactions
FilogosDovsonk | | | .. NoEquvalet. |
FlliPhysicalDeviceBlock DisablePhysicalDeviceBlock
EnableDeviceContext DisableDeviceContext

v T
CompleteOpenDC BeginCloseDC

Figure 7-1. Enabling a Presentation Driver

Device contexts are opened in response to an application or process calling the DevOpenDC API function.
On receiving this call, the graphics engine (PMGRE.DLL) loads the presentation driver, if it is not already

present and able to support the device context, and issues a series of calls to the 0S2_PM_DRV_ENABLE

entry point.

Initially, when the presentation driver has not been enabled for use by the calling application or process,
the driver receives the Open Transaction series of calls shown in Figure 7-1. When the driver has been
enabled for an application or process, the sequence of calls to enable additional device contexts can
include FillLogicalDeviceBlock and, depending upon a requirement that the driver posts in the initial enable
sequence, includes or excludes FillPhysicalDeviceBlock.

Each of the Close Transactions functions undoes actions taken by a corresponding Open Transaction
function. For example, the EnableDeviceContext function allocates the DDC data area within the
presentation driver and returns the hDDC handle. The DisableDeviceContext function dealliocates the DDC
data area.

The FillLogicalDeviceBlock transaction occurs when a thread of a process opens the first instance of a DC
for this presentation driver. During this transaction, a dispatch table will be created for later use by the
graphics engine.

The FillPhysicalDeviceBlock transaction will occur only if the result flags from the FiliLogicalDeviceBlock
transaction indicate that it is necessary. See the description of “Bit 2” in the “Enable Subfunction 02H —
FillPhysicalDeviceBlock” on page 7-8.)

This subfunction is used by presentation drivers which support multiple types of physical devices. It will
occur during the DevOpenDC call for every DC associated with a particular type of physical device. (This is
where any memory allocation and initializations relating to a physical device should be done.) During the
EnableDeviceContext transaction, the presentation driver will allocate and format the driver-specific data
(DDC) associated with the DC being constructed. At CompleteOpenDC time, the DC is completely
constructed and initialized. This transaction gives the presentation driver an opportunity to make final
adjustments to the DC before the application gets access to it.

7-4 Ppresentation Driver Reference

0S2_PM_DRV_ENABLE

If either the FillLogicalDeviceBlock or FillPhysicalDeviceBlock transactions return a failure return code, no
other transactions are requested by the graphics engine.

If the EnableDeviceContext fails, the DisablePhysicalDeviceBlock transaction is sent to the presentation
driver. If the CompleteOpenDC transaction fails, the BeginCloseDC, DisableDeviceContext, and
DisablePhysicalDeviceBlock transactions are sent to the presentation driver.

If an application has opened a device context but the application terminates before it closes the device
context, the graphics engine still calls the disable routines BeginCloseDC, DisableDeviceContext, and
DisablePhysicalDeviceBlock as expected by the presentation driver when a device context is closed
explicitly by an application.

Saving and Restoring DCs: The SaveDCState and RestoreDCState functions manage a stack of entries that
correspond to most of the state of a DC. SaveDCState pushes an entry on the stack. RestoreDCState
retrieves one of the pushed entries and uses it to revert the DC back to its earlier saved state. Notice thata
particular RestoreDCState call can pop more than one entry from the stack of SaveDC entries.

Reset DC: This call resets a DC to its original initialized state as it was just after the CompleteOpenDC
transaction. ‘

Chapter 7. Exported Entry Points 7-5

ENABLE 01H - FillLogicalDeviceBlock

Enable Subfunction 01H — FillLogicalDeviceBlock

This subfunction is called on the first occasion that a specific application or process opens a device context
that uses the called presentation driver. It is not called when the same application or process opens
additional DCs with the same presentation driver. However, the graphics engine can call this subfunction
at other times and the call should always be honored. If the value of pDispatchTable is non-zero, the
handling routine must initialize the dispatch table.

The major tasks that the handling routine must implement are:

1. Add an entry to the DosExitList to ensure that any allocated resources are freed when the owning
application or process terminates.

2. Save those pointers in the dispatch table that are needed to pass hooked functions back to the graphics
engine. A typical example is GreCharString, which must be hooked by the presentation driver but can
be passed back to the default handling routine.

3. Initialize the dispatch table. That is, modify the table so that the entries for functions hooked by the
presentation driver contain pointers to the driver’s handling routines.

4. Set flags to indicate how future DevOpenDC calls to this device should be handled.

In some typical presentation drivers, the handling routine for FillLogicalDeviceBlock allocates global heap
space for use by the device contexts. The memory for this heap space is obtained by calling the
SSAllocMem function described in Chapter 12, System Functions. This global heap space is available to

all instances of a DC that are opened by the application or process for which the presentation driver was
enabled.

Stack Frame

Parameter Description

ulSubfunction O1H.

pParam1 Pointer to a structure. See below.

pParam2 Pointer. See below.

pDispatchTable Pointer to the presentation driver’s copy of the dispatch table. This table is an array of
32-bit pointers to system-default function handling routines. The low-order byte of a
function number identifies the offset to the relevant pointer.

pParam1 Pointer to the following structure:
ulVersion Version number in binary coded decimal (BCD) of the graphic engine.

cTableSize The number of entries in the dispatch table. The presentation driver should not
replace pointers past the end of the table.

pParam2 Pointer to the following structure:

pfsFlags Pointer to a WORD of logical device flags. Flag bits, 0 and 2, apply to the
presentation driver and is set on or off, as appropriate, by the presentation
driver. All other flags are reserved for system use and must not be modified.

Bit0 Set on, if each DC for this presentation driver requires its own physical
device block. Even if the presentation driver sets this bit off, the
FillPhysicalDeviceBlock subfunction can still be called more than once
(though no work might need to be done after FillPhysicalDeviceBlock is
called the first time).

7-6 Presentation Driver Reference

ENABLE 01H — FiliLogicalDeviceBlock

Bit2 Seton, if the szDeviceName and pszDriverName fields of a
DevOpenDC call for this device are ignored. Setting bit 2 on indicates
that the presentation driver supports only one physical device in one
configuration. For example, the display driver. Hardcopy drivers do
not set this bit unless the hardcopy driver supports only one physical
device in one configuration.

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

Chapter 7. Exported Entry Points 7-7

ENABLE 02H — FillPhysicalDeviceBlock

Enable Subfunction 02H — FillPhysicalDeviceBlock

This subfunction is always called in the initial set of calls to the enable function for a specific application or
process. It is called only when additional device contexts are enabled if the value of flag bit 0, as set in the
initial call to FillLogicalDeviceBlock, shows that each device context requires its own physical device block.
However, the graphics engine can call this subfunction at other times. If it is called more than once when
the individual DCs do not require separate physical device blocks, the handling routine does nothing and
returns the existing ulStatelnfo handle or pointer from the DC instance data.

Print jobs must be spooled using the data type given on the call to Enable subfunction 02H
— FillPhysicaiDeviceBlock). Therefore, print jobs queued PM_Q_STD can be printed with queue processor
options applied to the job.

The physical device block is located in the driver's global heap. To initialize the block, the presentation
driver uses:

* Default values set by the presentation driver
¢ Values read from the initialization file
¢ Values from the DEVOPENSTRUC structure.

A typical physical device block is shown under “Remarks” below.

Stack Frame

Parameter Description

ulSubfunction 02H.

pParam1 Pointer to an extended DEVOPENSTRUC structure. See below.
ulParam2 Reserved.

pParam1 Pointer to an extended DEVOPENSTRUC structure (the structure is extended by adding a
DENPARAMS structure to give three additional fields, ulStatelnfo, ulType, and ulHDC):

pszLogAddress Pointer to the logical address of the device. For example, 'LPT1Q".
pszDriverName Pointer to name of the presentation driver. For example, 'LaserJet™’.
pdriv Pointer to DRIVDATA structure. This structure contains data generated

by the presentation driver during the dialog that set device modes.
See “0S2_PM_DRV_DEVMODE” on page 4-2.

cb Number of bytes in the structure
IVersion Version number
szDeviceName[32] Device name
abGeneralData Driver-specific data.
pszDataType Pointer to the name of the queue file data type:
PM_Q_STD
PM_Q_RAW
pszComment Pointer to a file description that the spooler could use in messages
displayed to the user; usually the name of the application by
convention.

* Trademark of the Hewlett-Packard Company.

7-8 Presentation Driver Reference

ENABLE 02H — FillPhysicalDeviceBlock

pszQueueProcName Pointer to name of queue driver (queue processor).
pszQueueProcParams Pointer to a string of queue processor parameters.

pszSpoolerParams Pointer to a string of spooler parameters separated by one or more
blanks.

FORM =aaa Identifies the form name for the print job. Multiple
names are separated by commas (aaa,bbb,ccc). If this
parameter is not present, the job is printed on the
current form.

Form names are defined by the presentation driver.
Valid names are those that are returned from a call to
the driver’s GreQueryHardcopyCaps handling routine.

pszNetworkParams Pointer to a string of networking parameters.

ulStateinfo Reserved. This field does not contain meaningful information at this
time.

ulType DC type (for example, OD_QUEUED).

ulHDC DC handle.

Return Codes: The handling routine should return a LONG integer. Valid values are:

-1 Error.
Other Handle or pointer, ulStatelnfo, to the physical device block. This pointer is passed back to the
presentation driver in subsequent calls to the Enable subfunctions, 04H and 05H.

Note: The name, pDCI, is used in place of ulStateinfo in some source code. See “Remarks”
below.

Remarks: Physical device blocks hold information about the presentation driver and the device that is
the same for every instance of a device context. The design of the presentation driver determines what
information is held in the physical device block. A typical printer physical device block is given below:

typedef struct
{

Dptr PDBDriverName; /* String for driver name */
Dptr PDBQutputName; /* String for output name */
unsigned PDBHandle; /* Handle for DOS device */
WORD PDBOutputType; /* Type of output; STD/ESC/RAW */
DeviceSemaphoreTable PDBDevice; /* Pointer to device table */
Byte PDBScratch[DCT_MAX_SIMPLE]; /* Scratch pad for printer */
DDTType DDT; /* Copy of the DDT to be used */
WORD RasterMode; /* Raster type used */
WORD PrintQuality; /* Draft or LQ printing */
WORD Orientation; /* Portrait or landscape *x/
DWORD Version; /* Driver version number */
DevRect FormClipRegion; /* Clip region for current form */
Byte DeviceName[32] ; /* Model number, and so forth. */

} PDBIType;

Hardcopy drivers must be able to accept a UNC queue name as a logical address on Enable subfunction
02H — FillPhysicalDeviceBlock. The UNC queue name is passed to the SplQmOpen AP! which handles
rerouting the spool job across the LAN.

Some applications use the SpoolerParams to submit form names. However, the forms can aiso be supplied
in driverdata. SpoolerParams take precedence over the driver data. At Enable subfunction 02H —
FillPhysicalDeviceBlock time, any SpoolerParams are integrated with the pdriv field of the DevOpenStruc.

Chapter 7. Exported Entry Points 7-9

ENABLE 02H — FillPhysicalDeviceBlock

If pdriv is NULL, it is created by obtaining the data from the system. The hardcopy driver attempts to find a

printer in the INI file that uses this port name, and derives job properties from the device defaults and
printer properties.

Note: Hardcopy drivers process all fields except pszQueueProcName, pszQueueProcParams, and
pszNetworkParams.

7-10 Presentation Driver Reference

ENABLE 04H — DisablePhysicalDeviceBlock

Enable Subfunction 04H — DisablePhysicalDeviceBlock

This subfunction in the presentation driver is called by the system to disable the specified device and to
free any associated memory. Presentation drivers for the primary display device return a value of 0
without taking any action.

Note: The operating system never calls this subfunction in the hardcopy driver if the driver uses one
physical device block to support multiple device contexts. Presentation drivers notify the operating
system of this capability by not setting bit 0 of the Logical Device flags returned to the system from
the FillLogicalDeviceBlock subroutine.

Stack Frame

Parameter Description

ulSubfunction 04H.

ulParam1 Handle or pointer, ulStatelnfo, to physical device block.
pParam2 Not used.

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successiul
-1 Error

Chapter 7. Exported Entry Points 7-11

ENABLE 05H — EnableDeviceContext

Enable Subfunction 05H — EnableDeviceContext

In response to this subfunction, the driver reserves the memory it needs to support this instance of a DC
and initializes the instance data. The value of the return code from this subfunction, if it is not —7, is saved
by the system and passed back to the presentation driver on all future calls to this DC instance. This value
is expected to be a pointer or handle to the instance data. Instance data is described under “Remarks” on
page 7-13.

The handling routine initializes relevant fields in the instance data to their default values. For example, it
calls WinQueryProcessCP to get the initial Code Page ID.

STARTDOC/ABORTDOC/ENDDOC (Hardcopy drivers only): The hardcopy driver allows the
following sequences to GreEscapes within Enable subfunction 05H — EnableDeviceContext and Enable
subfunction 0BH — BeginCloseDC brackets:

GreEscape DEVESC_STARTDOC

GreEscape DEVESC_ENDDOC — spools first job
GreEscape DEVESC_STARTDOC
GreEscape DEVESC_ENDDOC
GreEscape DEVESC_STARTDOC
GreEscape DEVESC_ENDDOC — etc.

spools second job

GreEscape DEVESC_STARTDOC

GreEscape DEVESC_ABORTDOC — aborts job
GreEscape DEVESC_STARTDOC

GreEscape DEVESC_ENDDOC — spools first job.

Stack Frame

Parameter Description

ulSubfunction O5H.

pParami Pointer to a DENPARAMS structure. See below.
pParam2 Not used.

pParam1 Pointer to a DENPARAMS structure:
ulStateinfo Value returned by FillPhysicalDeviceBlock.
ulType Type of device context. Defined values are:

OD_QUEUED
OD_DIRECT
OD_INFO
OD_MEMORY.

For details, see DevOpenDC in the 0S/2 2.0 Presentation Manager Programming
Reference.

ulHDC Device context handle.

Return Codes: The handling routine should return a LONG integer. Valid values are:

-1 Error.
other Pointer (pinstance) to the DC instance data.

7-12 Presentation Driver Reference

ENABLE 05H — EnableDeviceContext

Remarks: Instance data refers to information (such as the name of a spool file and whether a bit map
has been created) that applies to a specific instance of a device context. Global data, which applies to all
instances of a device context that is using the same presentation driver, is held in the Physical Device
Block (PDB). A pointer to this block is passed in the DENPARMS structure to the EnableDeviceContext
routine to be included in the instance data. See “Instance Data” on page 1-9.

Chapter 7. Exported Entry Points 7-13

ENABLE 05H — EnableDeviceContext

A typical example of instance data follows:
typedef struct DC { /* dc */

USHORT DCIIdentifier; /* Contains DC_IDENTIFIER
ULONG DCIDCType; /* DC type 0-8
HDC DCIhdc; /* DC handle
struct _DC * DCINextEntry; /* Next instance
LONG DCISaveCount; /* Number of saved DC states
pBitmapHeader DCISelListEntry; /* Selected bit-map 1ist entry
USHORT DCIBitmapType; /* Current bit-map type
POINTL DCICurrPos; /* Current position
DCHARBUNDLE DCICurTxtAts; /* Current Text attributes bundle
DLINEBUNDLE DCICurLinAts; /* Current Line attributes bundle
DAREABUNDLE DCICurPtnAts; /* Current Pattern attributes bundle
DIMAGEBUNDLE DCICurImgAts; /* Current Image attributes bundle
DMARKERBUNDLE DCICurMrkAts; /* Current Marker attributes bundle
USHORT DCILinePatCnt; /* Current line pattern count
USHORT DCILineTypMask; /* Mask used for line types
POINTL DCIPatternOrigin; /* Pattern oriéin
pBitmapHeader DCIMarker; /* Pointer to marker definition
BOOL DCIMarkerSimReq; /* On, if simulation required
USHORT DCIFontType; /* Type of current font
pRealizedFontType DCIRealizedFonts; /* Font table array
USHORT DCIFontTabNum; /* Number of Font table entries
BOOL DCIPairKerning; /* Enabled\disabled state
ULONG DCICodePage; /* Currently selected code page
BOOL DCITextSim; /* Set if text simulation required
POINTL DCIOrigin; /* Current DC origin
PCOLORTABLE DCIColorTable; /* Pointer to Color table
BOOL DCIBackgndDefined; /* Status of CLR_BACKGROUND
BOOL DCINeutralDefined; /* Status of CLR_NEUTRAL
USHORT DCICo1TabSize; /* Color table size
USHORT DCIColFormat; /* Format of color table
USHORT DCIColStatus; /* Status of color table
USHORT DCILowIndex; /* Lowest index in table
USHORT DCIHighIndex; /* Highest index in table
USHORT DCISysColState; /* Latest state of system colors
COLORPAIR DCILineColatts; /* Line color indexes
COLORPAIR DCIPattColatts; /* Pattern colors indexes
COLORPAIR DCICharColatts; /* Character colors indexes
COLORPAIR DCIImagColatts: /* Image colors indexes
COLORPAIR DCIMarkColatts; /* Marker colors indexes
ClipRectangle DCICTipRects [CACHED_CLIPS];
/* Clip rectangles

BOOL ClipChanged; /*
USHORT DCIC1ipOrder; /* Order of clip rectangles
USHORT DCICT1ipNum; /* Number of clip rectangles
RECTL DCIBoundingClip; /* Current screen/bit-map area
USHORT DCIEngineClips; /* Clip regions in engine
BOOL DCIIsDirty; /* Indicates when clip regions are invalid
RECTL DCIGPIBounds; /* Current GPI bounds

7-14 Presentation Driver Reference

~

BOOL
RECTL
BOOL
SHORT

BOOL

RECTL
DevRect

PRECTL

USHORT
USHORT

XFORM

FONTDETAILS

USHORT

USHORT
BOOL
ULONG

USHORT

POINTL
pBitmapHeader

AVIOINFO
FONTDETAILS
PDEVPAL
PRGB2

} oC;

DCIDefGPIBounds; /*
DCIUserBounds; /*
DCIDefUserBounds; /*
DCIConvFactor; /*

DCICorrInvalid; /*
DCIPickWindowPage; /*
DCIPickWindowDevice;

/*
DCICorrRects; /*
DCICorrNum; r*
DCICorrSize; /*
/*
DCITransform; /*

ENABLE 05H — EnableDeviceContext

On, if GPI bounds are default *x/
Current user bounds */
On, if user bounds are default */
For device, conversion */
Correlation rectangles invalid */
Pick window in page coordinates */
Pick window in device coordinates */
Current correlation rectangles */
Number of correlation rectangles */
Number of correlation rectangles for */
which storage has been allocated */
Transformation data */

DCIAvioFonts[CNT_LOADABLE_LCIDS + 1];

/*
DCIChanged; /*

DCISpacingType; /*

DCIXFrmSimple; /*
StyleNumber; /*

DCICommandMask; YAd

DCICurrPosWorld; /*

AVIO loadable font definitions */
Shows non-default bundles */
Spacing type of current font */
Transform type */
Line style state and mask */
Used to mask command bits */
Current world position */
Pattern for direct DC */
Avioparms material */
Presentation Manager format current font */
Handle/pointer of palette */

Device default palette that was current */
the last time color table indexes were */

Pattern; /*
DCIAviolInfo; /*
CurrentFont; /*
Palette; /*
DCIDeviceDefaultPalette;

/*

/*

/*

calculated */

.- .Ghapter 7. Exported Entry Points

7-15

ENABLE 06H — DisableDeviceContext

Enable Subfunction 06H — DisableDeviceContext

This subfunction is called when a device context is about to be deleted. In response, the presentation
driver must release any memory and other resources that it has allocated for the DC. The presentation
driver uses the DC instance data to identity this memory.

Stack Frame

Parameter Déscrlptlon

ulSubfunction 06H

pParami Pointer (pinstance) to the DC instance data
pParam2 Not used

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

7-16 Presentation Driver Reference

ENABLE 07H — SaveDCState

Enable Subfunction 07H — SaveDCState

This subfunction requests the presentation driver to save all of the information that it has about the device
context. The state of a DC might be saved multiple times in /ast in, first out (LIFO) order. The routine
returns an error code if there is not enough memory available to save the state.

Note: The handling routine must keep a count of the number of saved states.

Stack Frame

Parameter Description

ulSubfunction 07H

pParam1 Pointer (pinstance) to the DC instance data
pParam2 Not used

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

Chapter 7. Exported Entry Points ~ 7-17

ENABLE 08H — RestoreDCState

Enable Subfunction 08H — RestoreDCState

This subfunction restores a specific DC state from the saved DC states. An index to the required state is
supplied as Parameter 2. The presentation driver returns an error if the index is zero, or if it specifies a
value that does not identify a saved state.

Display drivers must be careful when handling this call. Some of the data stored in the DC instance data
must match the data held by the Window Manager. The handling routine for RestoreDCState does not
restore:

* DC origin
¢ User bounds

¢ Cached clipping rectangles
* HDC_IS_DIRTY flag.

Stack Frame

Parameter: Description

ulSubfunction 08H.

pParam1 Pointer (pinstance) to the DC instance data.

IParam2 Identifies which of the saved states are to be restored. See
below.

IParam2 Identifies which of the saved states are to be restored. Positive numbers indicate the specific
state counting from the first saved state, that is, 1 equals the first, 2 the second, and so forth..
All saved states following the one being restored are discarded. Preceding states remain
saved.

Negative numbers indicate the specific state counting from the last saved state, a value of —2
indicates that the last state is discarded and the state before that is restored.

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
. | Error

7-18 Presentation Driver Reference

ENABLE 09H — ResetDCState

Enable Subfunction 09H — ResetDCState

This subfunction resets the device context to its original initialized state. The presentation driver deletes
all fonts, patterns, and paths, and resets all attributes to their default values. Notice that when resources
are not owned by the presentation driver, the driver saves the relevant values so that they are available to
reset the device context. A typical example is when the defauit font is a graphics engine font. In this case,
the presentation driver saves the font flags and address passed in the first call to GreDeviceSetAttributes.

The visible region and the DG origin are not affected by this function.

Stack Frame

Parameter Description

ulSubfunction 09H.

pParamt Pointer (pinstance) to the DC instance data.
ulParam2 Reserved.

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

Chapter 7. Exported Entry Points 7-19

ENABLE 0AH — CompleteOpenDC

Enable Subfunction 0AH — CompleteOpenDC

This subfunction is called upon completion of the DevOpenDC process to tell the presentation driver that
the device context now has access to the graphics engine. Presentation drivers for the primary display
device return Successful without taking any action. For other devices, the handling routine in the
presentation driver completes the initialization process for any resources, such as bit maps, that are
obtained through calls to the graphics engine.

Hardcopy drivers do not use the CompleteOpenDC routine to open resources such as spool fites or journal
files. If these resources are required, they are opened in response to a call to GreEscape with
DEVESC_STARTDOC (see page 8-81). Such drivers set a flag in the instance data to show that
DEVESC_STARTDOC has been received, and do not process any output until that flag has been set.

Note: The presentation driver locks and unlocks resources such as bit maps and device contexts to
prevent simultaneous use of the resource by two threads belonging to the same process. Typically,
this is done by setting a semaphore or some other form of busy flag for the resource.

Stack Frame

Parameter Description

ulSubfunction 0AH

hdcParam1 Device context handle

pParam2 Pointer (pinstance) to the DC instance data

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

7-20 Presentation Driver Reference

ENABLE 0BH — BeginCloseDC

Enable Subfunction 0BH — BeginCloseDC

This subfunction is called to inform the presentation driver that the device context is being closed. This is
the last call made to the driver before it loses access to the graphics engine. Display drivers for the
primary display device, return Successful without taking any action. For other devices, the handling
routine in the presentation driver has to close any resources (such as journal files and bit maps) that it
owns.

Hardcopy drivers do not use the BeginCloseDGC routine to complete tasks such as writing spool files. The
tasks are completed in response to a call to GreEscape with DEVESC_ENDDOC (see page 8-70). The
DEVESC_ENDDOC routine resets the DEVESC_STARTDOC flag in the instance data. The BeginCloseDC
routine checks that the flag is reset before taking any action.

Stack Frame

Parameter Description

ulSubfunction 0BH

hdcParami Device context handle

pParam2 Pointer (pinstance) to the DC instance data

Return Codes: The handling routine should return a LONG integer. Valid values are:

0 Successful
-1 Error

Chapter 7. Exported Entry Points 7=-21

ENABLE 0BH — BeginCloseDC

7-22 Presentation Driver Reference

——

mandatory functions for all drivers

Chapter 8. Mandatory Functions for All Drivers

This chapter describes those functions, which must be supported for all devices, that are called through the
dispatch table by handling routines in the presentation driver. The dispatch table contains the address of
each function that the presentation driver can hook. Initially, when the presentation driver is first loaded, a
copy of the default dispatch table is passed to the driver. The presentation driver’s Enable routine modifies
this copy so that the entries for functions supported in the driver point to the handling routines in the driver.
Entries to the table that are to be modified can first be saved by the presentation driver in case they are
subsequently needed. The original saved table entries, and those that are not modified, point to the
engine-simulation routines for the functions concerned.

Functions listed in the dispatch table fall into two categories :

¢ Functions that the presentation driver must support (mandatory functions)
¢ Functions that are supported by the graphics engine but can be optionally hooked by the presentation
driver.

Descriptions are provided of the mandatory functions. Each description shows what the handling routine is
expected to do, the parameters passed to the routine, and the values that the routine returns. The
functions are grouped according to the conditional include sections of the header file:

Attribute functions (INCL_GRE_DEVMISC1)

Bit-map functions (INCL_GRE_BITMAPS)

Color tabie functions (INCL_GRE_COLORTABLE)
Device functions 2 (INCL_GRE_DEVMISC2)

Device functions 3 (INCL_GRE_DEVMISC3)
GreEscape functions (INCL_GRE_DEVICE)

Line functions (INCL_GRE_LINES, INCL_GRE_SCANS)
Marker functions (INCL_GRE_MARKERS)

Query functions (INCL_GRE_DEVICE)

Text (String) functions (INCL_GRE_STRINGS).

Additional functions that must be supported by presentation drivers for display devices are described in
Chapter 9, “Mandatory Functions for Display Drivers.” Hardcopy drivers must also provide some support
for these display device functions. This can be a common routine that returns Successful and posts the
warning, PMERR_DEV_FUNGC_NOT_INSTALLED.

The level of support provided in the handling routine for a particular function depends on the type of device
and the level of support provided for that device. At the minimum, the handling routine must indicate a
successful completion.

Attribute and Bundle Definitions

A general description of colors, mixes, patterns, and the attribute definitions for each attribute bundle type
are provided. For area definitions, the area must be filled by using the pattern that is current when
GreBeginArea is called.

Colors

All colors are passed as 32-bit signed values. These are either indexes into the Logical Color table, logical
palette indexes, or representations of 24-bit Red, Green, and Blue (RGB) values. Some special attribute
values can be passed to the graphics engine and returned by GreGetAttributes:

CLR_FALSE All color planes or bits, or both, are 0.

© Copyright IBM Corp. 1992 8-1

mandatory functions for all drivers

CLR_TRUE
CLR_WHITE

All color planes or bits, or both, are 1.

This index is never loaded explicitly. It always produces White when the default color

table is in force or when the index is set to RGB. With a realized color table and an index
that is not RGB, the value CLR_WHITE produces the background color
CLR_BACKGROUND.

CLR_BLACK

This index is never loaded explicitly. It always produces Black when the default color

table is in force or when the index is set to RGB. With a realized color table and an index
that is not RGB, CLR_BLACK produces the neutral color CLR_NEUTRAL. See “Color
Functions” on page 8-13.

CLR_FALSE and CLR_TRUE provide useful operands for Bitblt logical operations. CLR_DEFAULT is the
default value at the API. It is a reserved value and is not passed to the presentation driver.

Mix Modes

All values are passed to the graphics engine which passes them unchanged to the presentation driver.

Foreground Mix Mode

Background Mix Mode

Valid values are:

FM_OR
FM_OVERPAINT
FM_XOR
FM_LEAVEALONE
FM_AND
FM_SUBTRACT
FM_MASKSRCNOT
FM_ZERO
FM_NOTMERGESRC
FM_NOTXORSRC
FM_INVERT
FM_MERGESRCNOT
FM_NOTCOPYSRC
FM_MERGENOTSRC
FM_NOTMASKSRC
FM_ONE

OR

Overpaint

Exclusive-OR

Leave alone (invisible)

AND

(Inverse source) AND destination
Source AND (inverse destination)
All zeros

Inverse (source OR destination)
Inverse (source exclusive-OR destination)
Inverse of destination

Source OR (inverse destination)
Inverse of source

(Inverse source) OR destination
Inverse of (source AND destination)
All 1s.

Note: FM_DEFAULT is the default value at the API. Itis a reserved value and is
not passed to the presentation driver.

The presentation driver must support FM_OR, FM_OVERPAINT, FM_XOR, and
FM_LEAVEALONE. Other foreground mixes can be handled as FM_OVERPAINT.
Mixing, other than for FM_LEAVEALONE or FM_OVERPAINT, is performed on the
physical color index or logical palette index. When an indexed color table or
palette has been realized, this corresponds to the logical color index. In other
cases, the color resuiting from a mix cannot be predicted.

Note: An exception to this rule occurs when the same object is drawn twice with
FM_XOR and BM_LEAVEALONE, and no intermediate drawing is
performed in other mixes. The implementation must guarantee that this
always results in the object being erased cleanly.

Other valid mixes can also be supported for some primitive types. When a valid
mix is not supported, the default is FM_OVERPAINT. An error is raised only
when the specified mix value is not one of those listed above.

Valid values are:

BM_ERROR
BM_DEFAULT

8-2 Presentation Driver Reference

Error
Default

=

mandatory functions for all drivers

BM_OR OR
BM_OVERPAINT Overpaint
BM_XOR. Exclusive-OR

BM_LEAVEALONE Leave alone (invisible).

The presentation driver must support BM_OVERPAINT and BM_LEAVEALONE.
Other background mixes can be handled as BM_LEAVEALONE.

GreQueryDeviceCaps (see page 8-111) allows the application to determine the
mixes supported by the device.

Line Attributes

The device line attributes are bundled in a DLINEBUNDLE structure:

Parameter Description
cAttr Size of the logical attribute bundle.
cDefs Size of the LINEDEFS structure.
Ibnd LINEBUNDLE structure. The logical line bundle as seen by the application. See below.
Idet LINEDEFS structure:
defType Line definition. This is ignored by the presentation driver.

LINEBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
LINEBUNDLE structure. Valid flags and the fields that they identify are:

Flag Field
LBB_COLOR IColor
LBB_BACK_COLOR IBackColor
LBB_MIX_MODE usMixMode
LBB_BACK_MIX_MODE usBackMixMode
LBB_WIDTH fxWidth
LBB_GEOM_WIDTH IGeomWidth
LBB_TYPE usType
LBB_END usEnd
LBB_JOIN usJoin.

Ibnd The fields of a LINEBUNDLE structure are:

IColor
iBackColor
usMixMode

Line foreground color.
Line background color.

Line foreground mix mode.

usBackMixMode Line background mix mode.

fxWidth

Line-width multiplier. This value is expressed in fixed-point notation with a
notational binary point between the second and third bytes. Therefore, 1.0 is
represented by 10000H (or 65536). This multiplier is applied to the normal line
width. Valid values are:

Chapter 8. Mandatory Functions for All Drivers 8-3

mandatory functions for all drivers

8-4

IGeomWidth

usType

usEnd

usJoin

LINEWIDTH_DEFAULT Default line width. This is the same as
LINEWIDTH_NORMAL.

LINEWIDTH_NORMAL Normal line width.
LINEWIDTH_THICK Thick line width. This is double the normal width.

Typically, values equal or less than 7.0 are treated as LINEWIDTH_NORMAL and
values greater than 7.0 as LINEWIDTH_THICK.

Geometric line thickness in world-coordinate space specified as an integer value.
This is used only by GreStrokePath or when MPATH_STROKE is specified for
GreModifyPath. A value of 0 results in the thinnest line possible regardless of the
transform in force. Thick geometric lines are treated as polygons and are
transformed accordingly.

Specifies the cosmetic line type. Valid values are:

LINETYPE_DOT Dotted
LINETYPE_SHORTDASH Short-dashed
LINETYPE_DASHDOT Dash, dot
LINETYPE_DOUBLEDOT Double-dotted
LINETYPE_LONGDASH Long-dashed
LINETYPE_DASHDOUBLEDOT Dash, double-dot

. LINETYPE_SOLID Solid
LINETYPE_INVISIBLE Invisible
LINETYPE_ALTERNATE Every aiternate pel on.

Note: LINETYPE_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

Valid values are:

LINEEND_FLAT Flat
LINEEND_SQUARE Square
LINEEND_ROUND Round.

Note: LINEEND_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

Valid values are:

LINEJOIN_BEVEL Bevel
LINEJOIN_ROUND Round
LINEJOIN_MITRE Miter.

Note: LINEJOIN_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver.

When lines join at a very acute angle and a mitered joint has been specified, then
the length of the miter line could extend almost to infinity. To prevent this, when
the ratio of miter length to geometric line width exceeds 10:1, a bevel joint is
drawn. The miter length is the distance between the inner and outer intersection
points.

When a wide line is explicitly closed by a call to GreCloseFigure from within a
path, the style at the closure point is JOIN style not END style. If enough points
are given to implicitly close the figure, the END style is used at the closure
points. Notice that the LINEJOIN attribute is only to be used at wide line ends
when the figure has been closed by a call to GreCloseFigure.

Presentation Driver Reference

~—e

mandatory functions for all drivers

Area (Pattern) Attributes

The device area (pattern) attributes are bundled in a DAREABUNDLE structure:

Parameter Description

cAttr Size of the logical area bundle.

cDefs Size of the AREADEFS structure. This is 0 when no device area bundie
exists.

abnd AREABUNDLE structure. See below.

adef AREADEFS structure. See below.

AREABUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
AREABUNDLE structure. Valid flags and the fields that they identify are:

Flag Field
ABB_COLOR IColor
ABB_BACK_COLOR IBackColor
ABB_MIX_MODE usMixMode

ABB_BACK_MIX_MODE

usBackMixMode

ABB_SET usSet
ABB_SYMBOL usSymbol
ABB_REF_POINT ptiRefPoint

abnd

The fields of an AREABUNDLE structure are:

IColor
IBackColor
usMixMode
usBackMixMode

usSet

usSymbol

Area foreground color.

Area background color.

Area foreground mix mode.

Area background mix mode.

Local identifier (Icid) for a logical font or a bit map. Valid values are:

0 Base pattern set
Non-zero Local identifier for the logical font or bit map defined by the
cdef.defSet field in the area attributes bundle.

Identity of the required pattern in the current pattern set or logical font. This
attribute is ignored when the pattern set is a bit map. If the value is outside the
range of the logical font, the standard default pattern is used.

Values in the range 1—255 are valid. The defined values are:

PATSYM_ERROR Error

PATSYM_DEFAULT Default

PATSYM_DENSE1 Solid shading with decreasing intensity
PATSYM_DENSE2 Solid shading with decreasing intensity
PATSYM_DENSE3 Solid shading with decreasing intensity
PATSYM_DENSE4 Solid shading with decreasing intensity
PATSYM_DENSES Solid shading with decreasing intensity
PATSYM_DENSES Solid shading with decreasing intensity
PATSYM_DENSE7 Solid shading with decreasing intensity

Chapter 8. Mandatory Functions for All Drivers 8-5

mandatory functions for all drivers

ptiRefPoint

PATSYM_DENSES Solid shading with decreasing intensity
PATSYM_VERT Vertical lines

PATSYM_HORIZ Horizontal lines

PATSYM_DIAG1 Diagonal lines 1, bottom-left to top-right
PATSYM_DIAG2 Diagonal lines 2, bottom-left to top-right
PATSYM_DIAG3 Diagonal lines 1, top-left to bottom-right
PATSYM_DIAG4 Diagonal lines 2, top-left to bottom-right
PATSYM_NOSHADE No shading

PATSYM_SOLID Solid shading

PATSYM_BLANK Blank (same as PATSYM_NOSHADE)

PATSYM_HALFTONE Every alternate pel on. PATSYM_HALFTONE can be
similar to PATSYM_DENSE4 and PATSYM_DENSES
(solid patterns) but has a more stringent definition. It is
useful for generating gray text.

See the 0S/2 2.0 Presentation Manager Programming Reference for definitions
of these shading patterns.

Specifies the pattern origin for areas and thick lines. The pattern is mapped into
the area to be filled by conceptually replicating the pattern definition in both the
horizontal and vertical directions.

The pattern reference point is subject to all of the transforms. When an area is
moved by changing a transform and redrawing, the fill pattern also appears to
move so as to retain its position relative to the area boundaries. This allows part
of a picture to be moved with a Bitblt operation and the remainder to be drawn
by changing the appropriate transform with no discontinuity at the join.

The pattern reference point, which is specified in world coordinates, need not be
inside the actual area to be filled and is not subject to clipping, although the
area to be filled is subject to clipping.

adef The fields of an AREADEFS structure are:

defSet

fFlags
CodePage

Area definition. This can be a text pattern, predefined pattern, bit map, pointer to an
engine font, device font handie, or bit map handle.

The only valid flag is CDEF_GENERIC.
Code Page ID.

Character Attributes

The device character attributes are bundled in a DCHARBUNDLE structure:

Parameter Description

CAttr Size of the attribute bundle.

cDefs Size of the CHARDEFS structure.
cbnd CHARBUNDLE structure. See below.
cdef CHARDEFS structure.

CHARBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
CHARBUNDLE structure. Valid flags and the fields that they identify are:

8-6 Presentation Driver Reference

mandatory functions for all drivers

Flag Field
CBB_COLOR IColor
CBB_BACK_COLOR I1BackColor
CBB_MiX_MODE usMixMode
CBB_BACK_MIX_MODE usBackMixMode
CBB_SET usSet
CBB_MODE usPrecision
CBB_BOX sizfxCell
CBB_ANGLE ptiAngie
CBB_SHEAR ptiShear
CBB_DIRECTION usDirection
CBB_TEXT_ALIGN usTextAlign
CBB_EXTRA fxExtra
CBB_BREAK_EXTRA fxBreakExtra

cbnd The fields of a CHARBUNDLE structure are:

iIColor Character foreground color.
IBackColor Character background color.
usMixMode Character foreground mix mode.

usBackMixMode Character background mix mode.

usSet Specifies a local identifier (Icid) for a logical font. If usSet is 0, the current code
page and character precision are used to resolve the selection of the base font.
The code page (set by the function GreSetCodePage) identifies two base fonts,
an outline font and an image font. The value of usPrecision determines which
of these is selected. Valid values for usSet are:

0 Base font
Non-zero Local identifier for the logical font defined by the cdef.defSet field
in the character attributes bundie.

usPrecision Specifies the character mode. The value of usPrecision is used to select output
quality from Precision 1 (the lowest) to Precision 3. Presentation drivers
normally use Precision 3 except when performance is improved by using the
specified precision. For example, the EGA and VGA drivers always use
Precision 3 when the current font is an outline font but switch to the specified
precision for an image font.

Valid values for usPrecision are:

CM_MODE1 Precision 1. The selected font can be either an image or an
outline font. When an image font is used, the first character is
positioned with its reference point at the current position.
Subsequent characters are positioned by using FONTMETRICS.

CM_MODE2 Precision 2. The selected font can be either an image or outline
font. When an image font is used, the first character is
positioned with its reference point at the current position.
Subsequent characters are positioned by using the
FONTMETRICS, CBB_BOX, CBB_ANGLE, and CBB_SHEAR
attributes. This is done by constructing a transformation matrix

Chapter 8. Mandatory Functions for All Drivers 8-7

mandatory functions for ail drivers

8-8

sizfxCell

ptiAngle

that transforms the FONTMETRICS values, sXDeviceRes and
sYDeviceRes, to the rotated, scaled, and sheared character box
attributes, and translates the reference point of the first
character to the current position. The actual character positions
are then determined by applying this transform to the character
positions found by using the FONTMETRICS.

Notice that the character box attribute is subjected to the
rotation, scaling, and shear defined by the current
transformations, and defined by the other character attributes.

Note: Shear attributes affect only the horizontal position of
CM_MODE? characters when the character direction is
CHRDIRN_TOPBOTTOM or CHRDIRN_BOTTOMTOP.

CM_MODE3 Precision 3. The selected font must be an outline font.

Note: CM_DEFAULT is the defauit value at the API. It is a reserved value and
is not passed to the presentation driver.

For outline fonts, regardless of mode, all character attributes together with the
FONTMETRICS are used for positioning, scaling, rotating, and shearing the
characters. This is done by constructing a transformation matrix as described
above for CM_MODE2. The actual character vector stroke coordinates are then
determined by applying this transform to the character-definition coordinates
suitably modified (for character positioning) by the FONTMETRICS.

As with CM_MODE?2, the character box attribute is subjected to the rotation,
scaling, and shear defined by the current transformations, and defined by the
other character attributes.

The character reference point is defined as the intersection of the base line
and the left edge of the character. The baseline is defined as an offset,
pCellOffset, from the top of the character cell.

Specifies fixed-point numbers for the width and height of a character cell in
world-coordinate space. This defines the background area for a character.
Each dimension is represented as a signed 4-byte integer with a notional
binary point between bit 16 and bit 15. Therefore, +2.5 is represented by
00028000H and —2.5 is represented by FFFD800OH.

For CM_MODE(1, the cell has no effect when characters are drawn from an
image font. For CM_MODE2, the width determines the spacing of consecutive
characters along the baseline. Both width and height can be positive,
negative, or 0. When either parameter is negative, the spacing occurs in the
opposite direction to normal and each character is drawn reflected in
CM_MODES3. For example, a negative height in the standard direction in Mode
3 indicates that the characters are drawn upside down, and that the string is
drawn below the baseline (assuming no other transformations cause
inversion). A zero character width or height is also valid. The string of
characters collapses into a line. If both are 0, the string is drawn as a single
point in CM_MODES3.

Specifies integer values, x and y, for the coordinates of the end of a line
starting at the origin (0, 0). The baseline for subsequent character strings is
paraliel to this line.

For CM_MODEH1, the angle has no effect when characters are drawn.

For CM_MODE?2, the angle is used to determine the position of each image
character. However, the orientation of characters within the character box is
inherent in their definitions. The characters are positioned so that the

Presentation Driver Reference

ptiShear

usDirection

usTextAlign

mandatory functions for all drivers

lower-left corners of the character definitions are placed at the lower-left
corners of the character boxes.

For CM_MODES, the angle is observed accurately and the character boxes are
rotated to be normal to the character baseline. if the coordinate system is such
that one x-axis unit is not physically equal to one y-axis unit, a rotated
character appears to be sheared.

Specifies integer values, which identify the end coordinates of a line
originating at 0, 0. The vertical strokes in subsequent outline character strings
are drawn parallel to the defined line. For CM_MODE?1, the shear has no effect
when image characters are drawn. For CM_MODEZ2, the shear affects the
height of the character cell. Therefore, the position of characters drawn with
CDIRN_TOPBOTTOM or CDIRN_BOTTOMTOP. The top of the character box

- remains parallel to the character baseline.

If hx=0 and hy =1 (the standard default), upright characters resuit. If hx and
hy are both positive or both negative, the characters slope from bottom left to
top right. If hx and hy are of opposite signs, the characters slope from top left
to bottom right. No character inversion takes place as a result of shear alone.
(Inversion can be done with the charCell attribute.) Notice that it is incorrect to
specify a zero value for hy because this would imply an infinite shear.

Valid values are:

CHDIRN_LEFTRIGHT Left-to-right
CHDIRN_TOPBOTTOM Top-to-bottom
CHDIRN_RIGHTLEFT Right-to-left
CHDIRN_BOTTOMTOP Bottom-to-top.

Note: CHDIRN_DEFAULT is the default value at the API. It is a reserved value
and is not passed to the presentation driver. ‘

If the specified direction is not valid, the presentation driver uses
CHDIRN_LEFTRIGHT as the default.

Specifies the horizontal and vertical alignment of character strings. This
alignment defines a reference point within the string, which is positioned on
the starting point specified for the string.

The horizontal alignment values are as follows:

TA_NORMAL_HORIZ Normal alignment. This is the initial default. The
alignment assumed depends on the current
character direction:

CHDIRN_LEFTRIGHT Same as TA_LEFT
CHDIRN_TOPBOTTOM Same as TA_CENTER
CHDIRN_RIGHTLEFT Same as TA_RIGHT
CHDIRN_BOTTOMTOP Same as TA_CENTER

TA_LEFT Left alignment. The string is aligned on the left
edge of its leftmost character.

TA_CENTER Center alignment. The string is aligned on the
arithmetic mean of Left and Right.

TA_RIGHT Right alignment. The string is aligned on the right
edge of its rightmost character.

TA_STANDARD _HORIZ Standard alignment. The alignment assumed
depends on the current character direction:

CHDIRN_LEFTRIGHT Same as TA_LEFT

.Chapter 8. Mandatory Functions for All Drivers -8-9

mandatory functions for all drivers

CHDIRN_TOPBOTTOM Same as TA_LEFT
CHDIRN_RIGHTLEFT Same as TA_RIGHT
CHDIRN_BOTTOMTOP Same as TA_LEFT

The vertical alignment values are as follows:
TA_NORMAL_VERT Normal alignment. This is the initial default. The

alignment assumed depends on the current character
direction:

CHDIRN_LEFTRIGHT Same as TA_BASE
CHDIRN_TOPBOTTOM Same as TA_TOP
CHDIRN_RIGHTLEFT Same as TA_BASE
CHDIRN_BOTTOMTOP Same as TA_BOTTOM

TA_TOP Top alignment. The string is aligned on the top edge of
its topmost character.

TA_HALF Haif alignment. The string is aligned on the arithmetic
mean of Bottom and Top.

TA_BASE Base alignment. The string is aligned on the base of its
bottom character.

TA_BOTTOM Bottom alignment. The string is aligned on the bottom
edge of its bottom character.

TA_STANDARD Standard alignment. The alignment assumed depends

on the current character direction:

CHDIRN_LEFTRIGHT Same as TA_BOTTOM
CHDIRN_TOPBOTTOM Same as TA_TOP

CHDIRN_RIGHTLEFT Same as TA_BOTTOM
CHDIRN_BOTTOMTOP Same as TA_BOTTOM

The current position will also be modified relative to the current character
direction as shown:

Horizontal

Vertical

8-10 Presentation Driver Reference

For horizontal character directions:

Horlzontal Alignment New X Current Position

TA_LEFT Right

TA_CENTER Center

TA_RIGHT Left

Vertical Alignment New X Current Position
TA_TOP Top

TA_HALF Half

TA_BASE Base

TA_BOTTOM Bottom

For vertical character directions:

Horizontal Alignment New X Current Position
TA_LEFT Left

TA_CENTER Center

TA_RIGHT Right

Vertical Alignment New X Current Position
TA_TOP Bottom

TA_HALF Half

TA_BASE Base

TA_BOTTOM Top

fxExtra

fxBreakExtra

mandatory functions for all drivers

A fixed point world-coordinate distance, which is added between every
character as it is being placed.

A fixed point world-coordinate distance, which is added to the width of the
break character as it is placed.

cdef The fields of a CHARDEFS structure are:

defSet

fFlags

CodePage

charSpacing

Character set definition. If defSet is passed as 0, the presentation driver must use
the default device font (zero is passed only when the driver provides and manages
its own default font). Otherwise, the significance of defSet depends upon the state
of the CDEF_GENERIC flag. See below:

¢ |f the flag is set, defSet is a pointer to an engine font.
¢ If not set, defSet is a device font identifier defined by the driver.

When defSet is a pointer to an engine font, cdef is a pointer to an instance of the
FOCAFONT data structure. The definition of the FOCAFONT data structure is
included in the header file. For a detailed description of the types used in the
FOCAFONT data structure, refer to Appendix E in the OS/2 2.0 Presentation
Manager Programming Reference.

Valid flags are:

CDEF_GENERIC Engine font (not device font)
CDEF_BOLD Font must be emboldened
CDEF _ITALIC Font must be italicized

CDEF_UNDERLINE Font must be underlined
CDEF_STRIKEOUT Font must be StrikeOut.

Current code page. The presentation driver ignores this field when the font is not
a multi-code page font that needs translating.

Character spacing.

See the 0S/2 2.0 Programming Guide for examples of these attributes.

Image Attributes

The device image attributes are bundled in a DIMAGEBUNDLE structure:

Parameter Description

CAttr Size of the attributes structure.

cDefs Set to 0. There is no IMAGEDEFS structure.
ibnd IMAGEBUNDLE structure. See below.

IMAGEBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
IMAGEBUNDLE structure. Valid flags and the fields that they identify are:

Flag Field
IBB_COLOR IColor
IBB_BACK_COLOR IBackColor
IBB_MIX_MODE usMixMode
IBB_BACK_MIX_MODE usBackMixMode

Chapter 8. Mandatory Functions for All Drivers 8-11

mandatory functions for ail drivers

ibnd The fields of an IMAGEBUNDLE structure are:

IColor Image foreground color
IBackColor Image background color
usMixMode Image foreground mix mode

usBackMixMode Image background mix mode.

Marker Attributes

The device marker attributes are bundled in a DMARKERBUNDLE structure:

Parameter Description

CAttr Size of MARKERBUNDLE structure
cDefs Size of MARKERDEFS structure

mbnd MARKERBUNDLE structure. See below.
mdef MARKERDEFS structure. See below.

MARKERBUNDLE Mask: This mask is used in calls to GreDeviceSetAttributes to identify fields in the
MARKERBUNDLE structure. Valid flags and the fields that they identify are:

Flag Fleld
MBB_COLOR IColor
MBB_BACK_COLOR IBackColor
MBB_MIX_MODE usMixMode
MBB_BACK_MIX_MODE usBackMixMode
MBB_SET usSet
MBB_SYMBOL usSymbol
MBB_BOX sizfxCell

mbnd The fields of a MARKERBUNDLE structure are:

IColor Marker foreground color.
IBackColor Marker background color.
usMixMode Marker foreground mix mode.

usBackMixMode Marker background mix mode.
usSet Specifies a local identifier (Icid) for the logical font:

0 Base marker set
Non-zero Local identifier for the font identified in the mdef.defSet field of
the marker attributes bundle.

usSymbol Specifies the identity of the required marker symbol in the current marker set.
If the value of usSymbol does not identify a marker in the current font, the
standard default for the font is used. The default for the default font is a cross.
For a loaded font, it is the character identified by the usDefauitChar field of the
FOCAMETRICS structure.

8-12 Presentation Driver Reference

sizfxCell

mdef
defSet

fFlags

CodePage

mandatory functions for all drivers

All values in the range 0— 255 are valid. The defined values for the default

marker set are:

MARKSYM_CROSS
MARKSYM_PLUS
MARKSYM_DIAMOND
MARKSYM_SQUARE
MARKSYM_SIXPOINTSTAR
MARKSYM_EIGHTPOINTSTAR
MARKSYM_SOLIDDIAMOND
MARKSYM_SOLIDSQUARE
MARKSYM_DOT
MARKSYM_SMALLCIRCLE
MARKSYM_BLANK

Cross

Plus

Diamond
Square
Six-point star
Eight-point star
Filled diamond
Filled square
Dot

Small circle
Blank.

Note: MARKSYM_DEFAULT is the default value at the APL. ltis a reserved
value and is not passed to the presentation driver.

Specifies fixed-point numbers for the width and height of a marker cell in

world-coordinate space. This defines the background area for a marker. Each
dimension is represented as a signed 4-byte integer with a notional binary

point between bit 16 and bit 15. Therefore, +2.5 is represented by 00028000H,
and —2.5 is represented by FFFD8000H. The value of this attribute only affects
the size of markers drawn with an outline (vector) font or marker set. Markers

drawn from image (raster) sets are not affected.

Marker set definition.
use the default marker

The fields of a MARKERDEFS structure are:

If this value is passed as zero, the presentation driver must
set. If the CDEF_GENERIC flag is set, this is a pointer to an

engine font. Otherwise, it is a device-font identifier defined by the presentation

driver.
Valid flags are:

CDEF_GENERIC
CDEF_BOLD
CDEF_ITALIC
CDEF_UNDERLINE
CDEF_STRIKEOUT

Code page number.

Engine font {not device font)
Marker must be emboldened
Marker must be italicized
Marker must be underlined
Marker must be StrikeOut.

Bit-Map Functions

Presentation drivers for hardcopy vector devices can return Failure on all bit-map operations. The same
bit-map file format is used for bit maps, icons, and pointers. For details, refer to the OS/2 2.0 Presentation
Manager Programming Reference.

Color Functions

By default, the color mode for a DC is set to index mode, and the DC has a Logical Color table set to the
values given below. When in index mode, these defaults are always considered to be part of the color
table unless they are explicitly overwritten by CreateLogColorTable (see page 8-34).

Note: Presentation drivers that support less than 16 colors must map Value 0 (CLR_BACKGROUND)
through Value 15 (CLR_PALEGRAY) to device colors. If GreQueryColorData is called while the
detfault color table is the current color table, the presentation driver returns the device colors.

813

Chapter 8. Mandatory Functions for All Drivers

mandatory functions for all drivers

Default values for the Logical Color table are:

CLR_FALSE
CLR_TRUE
CLR_DEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_NEUTRAL

CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARKRED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_BROWN
CLR_PALEGRAY

(=5). All color planes or bits, or both, are FALSE.
(—4). All color planes or bits, or both, are TRUE.

(—3). This is the API default. Itis a reserved value and is not passed to the
presentation driver.

(—=2). This index is never loaded explicitly. It always produces white when the
default table is in force or when the index is set to RGB. When, with a realized
color table and an index that is not RGB, this option is unavailable, it produces
CLR_BACKGROUND.

(—1). This index is never loaded explicitly. It always produces biack when the
default table is in force or when the index is set to RGB. When, with a realized
color table and an index that is not RGB, this option is unavailable, it produces
CLR_NEUTRAL.

(0). This is the natural background color of the device. For a hardcopy device, it is
the paper color and for a display device it is the default window color,
SYSCLR_WINDOW.

M
@)
)
(4)
©®)
(6)

(7). This is a device-dependent contrasting color. For a display device, it is the
default window text color, SYSCLR_WINDOWTEXT.

8)
©)
(10)
(1)
(12)
(13)
(14)
(15)

Colors with indexes greater than 75 are device-dependent defaults, which must be defined by the
presentation driver. The effective range of the color table which includes the defauit color table, is =5
through Maxindex. Color indexes outside this range that have not been ioaded are not used by
applications because these colors cannot be guaranteed.

Where physically possible, the default colors are always available on a device. For devices that support
more than 16 colors, requested colors can be mapped to colors other than the defaults (when they exist).
Such colors cannot be guaranteed to be similar for different devices. They can be different for other
releases of applications and presentation drivers. Applications that depend on precise colors beyond the
defaults must query the available colors (see “GreQueryRealColors” on page 8-123) and, when necessary,
realize their own color tables (see “GreRealizeColorTable” on page 8-129).

8-14 Presentation Driver Reference

mandatory functions for all drivers

Support for Monochrome Devices: Presentation drivers for monochrome devices must be able to
draw pictures intended for color devices. A simple solution for hardcopy drivers is to map:

¢ Background color to paper color
* Foreground color to printer foreground except when:
— In RGB mode. If the foreground RGB matches the default background RGB, use paper color.
— Inindex mode. If the RGB foreground index matches the RGB color for Index 0, use paper color.

To map the RGB colors to the device, the presentation driver must first establish the reset color, which is
the base color for the device. The reset color can be:

* Paper color for a hardcopy device with no loaded color table
¢ SYSCLR_WINDOW for a monochrome display with no loaded color table
e CLR_BACKGROUND for any monochrome device that has a loaded color table

Any color that is not the reset color is considered to be the contrast color. The values for the reset color
and contrast color are either 000000H or FFFFFFH. When the reset color is 000000H, the contrast color is
FFFFFFH. CLR_TRUE, CLR_FALSE, and CLR_DEFAULT are always honored independently of the reset
color. The interpretation of CLR_BLACK and CLR_WHITE depends on the reset color.

When GreQueryNearestColor is called for a monochrome device, the value returned is either the reset
color or the contrast color. GreErasePS causes the color to be set to the value of the reset color. See
“GreErasePS” on page 8-62. GreBitblt can also be used to transfer a color bit map to a monochrome
device or bit map. In this case, the source image background color becomes the reset color and all other
pels are represented by the contrast color. See “GreBitblt” on page 8-26. More sophisticated presentation
drivers for monochrome devices should use half-toning for colors to provide more usable output.
Half-toning can be applied to all graphic primitives. '

GreEscape

The GreEscape handling routine in the presentation driver supports the DevEscape function and its escape
codes at the APl. While the primary function of GreEscape is to implement the required support for the
defined escape codes, it can be used to implement additional escape codes. There is a set of defined
ranges for additional escape codes. The range chosen determines how the operating system processes
the escape code when it is received as a parameter to DevEscape. On entry to GreEscape, the value of
IEscape on the stack identifies the escape code. The action taken is determined by the escape code and
the physical device that the presentation driver supports.

Support: GreEscape is called by DevEscape. GreEscape with the escape code,
DEVESC_QUERYESCSUPPORT, must be supported by all presentation drivers. Hardcopy drivers also
support the DEVESC_STARTDOC, DEVESC_ABORTDOC, DEVESC_NEXTFRAME, and DEVESC_ENDDOC
escape codes. The other escape codes are optional. See “Defined Escape Codes” on page 8-16 and the
individual escape codes that follow.

Stack Frame: On entry to the GreEscape routine, the stack frame contains:

Parameter Data Type Description

hdc HDC Device context handle.

IEscape LONG Escape code.

cinCount LONG Number of bytes pointed to by pinData.
pinData PBYTE Pointer to input data structure.

Chapter 8. Mandatory Functions for Ali Drivers 8-15

mandatory functions for all drivers

Parameter Data Type Description

pcOutCount PLONG Pointer to the number of bytes in output data structure. If the escape code
is one that returns data in the output data structure, the handling routine
changes the value addressed by pcOutCount to show the number of bytes
returned.

pOutData PLONG Pointer to output data structure.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successtul
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT INSTALLED
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Defined Escape Codes

The following list shows the escape codes that have been defined for Presentation Manager and the
devices to which they apply. GreEscape returns DEVESC_NOTIMPLEMENTED for escape codes that it does

not support.

DEVESC_ABORTDOC
DEVESC_BREAK_EXTRA
DEVESC_CHAR_EXTRA
DEVESC_DBE_FIRST
DEVESC_DBE_LAST
DEVESC_DRAFTMODE
DEVESC_ENDDOC
DEVESC_FLUSHOUTPUT
DEVESC_GETCP
DEVESC_GETSCALINGFACTOR
DEVESC_NEWFRAME
DEVESC_NEXTBAND
DEVESC_QUERYESCSUPPORT
DEVESC_QUERYVIOCELLSIZES
DEVESC_RAWDATA
DEVESC_SETMODE
DEVESC_STARTDOC
DEVESC_STD_JOURNAL

8-16 Presentation Driver Reference

(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(DBCS support)

(DBCS support)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Al drivers)

(Display drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)
(Hardcopy drivers only)

Ranges for Additional Escape Codes

mandatory functions for all drivers

The foliowing table indicates the defined ranges for additional escape codes, and shows how the operating
system processes the escape code when it is received as a parameter to DevEscape:

Table 8-1. Ranges for Additional Escape Codes

32768 — 40959 Escape is not metafiled or recorded by the spooler. The escape is passed to the presentation
driver in all cases.

40960 — 49151 Escape is metafiled but is not recorded by the spooler. For an OD_QUEUED device with
PM_Q_STD data and for all device types other than OD_METAFILE, the escape is passed to
the presentation driver.

49152 — 57343 Escape is metafiled and recorded by the spooler. For an OD_METAFILE device or for
OD_QUEUED with PM_Q_STD data, the escape is not passed to the presentation driver.

57344 — 65535 Escape is recorded by the spooler. The escape is passed to the presentation driver except
when the DC is an OD_QUEUED device with PM_Q_STD data.

Line Functions

The style of a line determines whether it is drawn solid, alternating, invisible, or as any one of a

combination of dots and dashes. This is determined by the usType parameter in the LINEBUNDLE structure

(see “Line Attributes” on page 8-3), which can have any one of the ten values shown in Table 8-2. For

each usType value, there is an associated 8-bit style mask whose bits form a template that corresponds to
whether pels are set on or off when the line is drawn on the device.

The 8-bit style masks used by 0S/2 2.0 are as follows:

Table 8-2.

usType Value StyleMask Bits Comment
LINETYPE_DEFAULT 0 OxFF 11111111 This is a solid line.
LINETYPE_DOT 1 OxAA 10101010
LINETYPE_SHORTDASH 2 0xCC 11001100
LINETYPE_DASHDOT 3 OxE4 11100100
LINETYPE_DOUBLEDOT 4 OxAO0 10100000
LINETYPE_LONGDASH 5 OxE7 11100111
LINETYPE_DASHDOUBLEDOT 6 OxEA 11101010
LINETYPE_SOLID 7 OxFF 11111111
LINETYPE_INVISIBLE 8 0x00 00000000
LINETYPE_ALTERNATE 9 OxAA 10101010

The style masks can be put into an array of bytes as illustrated in the following code example:

const BYTE bStyleMask[] =

b

OxFF,0xAA,0xCC,0xE4,0xA0,0xE7 ,0xEA,OxFF,0x00,0xAA

Chapter 8. Mandatory Functions for All Drivers

8-17

mandatory functions for all drivers

Consider the following code example and comments:

DrawHorizontalline(
SHORT sY, /* Y-value
SHORT sXo, /* Starting x-value
SHORT sX1, /* Ending x-value
USHORT usStyleRatio, /* Style ratio
USHORT usState /* Current mask state
PLINEBUNDLE pLbnd) /* plbnd contains usType parameter
USHORT usState0ld; /* Used for test
USHORT usOrigMask; /* Original mask
USHORT usMask; /* Current mask

The usState WORD structure is set up by the graphics engine. This structure is shown in Table 8-3.

Table 8-3. usState

5 bits (not used) 3 bits (mask position, value 0—7) 8 bits (error-term byte, value 0 — OxFF)

Note: This format is different from the way the graphics engine stores this value. The graphics engine
keeps the high and low bytes swapped, therefore, the calling routine must swap them before calling
this function.

The mask position has three bits and eight possible values, 0—7, that correspond to the number of bits in
the style mask. Notice that when the error-term byte overflows (exceeds 0xFF), it will increment the mask
position value. To get the unshifted mask value:

usMask = usOrigMask = bStyleMasks[pLbnd -> usType];

The mask must be shifted to the current position as shown above:
usMask <<= ((usState & 0x700) >> 8);

For each pel:
for(sX = sX0;sX <= sXl;sX++){

Because many devices have small pel sizes, it is often necessary to set more than one pel on per
corresponding bit in the style mask. This is accomplished by using a style ratio, which determines how
many pels on the line correspond to a bit in the style mask. As an example, for each pel on the line, the
most significant bit of the style mask is consulted. If this bit is 7, the pel is drawn. If this bit is 0, the pel is
not drawn:

if(usMask & 0x80)
DrawPel (sX,sY);

usState0ld = usState;

The style ratio is then added to the error-term byte of the usState parameter. When the error-term byte
overflows, the mask position value (high byte of usState) is incremented to the next position. If the mask
position exceeds 7, it is reset to 0:

usState = (usState + usStyleRatio) & Ox7ff;

The mask itself must now be shifted appropriately:

if(HIBYTE(usState) | = HIBYTE(usState01d)){ /* Has it changed? */
if(HIBYTE (usState) == 0) /* Back to zero? */
usMask - usOrigMask; /* Yes, reset it */
else
usMask <<= 1; /* Else shift it */
}
return(usState); /* Return the state for the next line */

8-18 Presentation Driver Reference

mandatory functions for all drivers

Styled line information is usually maintained by the presentation driver in the Device Context (DC) instance
data structure. See “Device Context” on page 1-8. Remember that the DC is a structure the presentation
driver creates. The definition of the DC data structure is specific and can be unique for each unique
presentation driver. This information can include:

typedef struc _DC {

USHORT usStyleRatioX; /* X-style ratio */
USHORT usStyleRatioY; /* Y-style ratio */
ULONG 1LineStyle; /* Current state information (GRE Backward Format) */
LINEBUNDLE 1bnd; /* Linebundie information contains usType parameter */
BYTE bMyCurrentMask; /* Current style mask */
} DC;

typedef DC *PDC;

The ILineStyle value has much of the same information as the usState parameter in the example function.
Its value is concurrently maintained by the graphics engine but has a different format from the example
above. The graphics engine can set or query this value by calling the functions, GreSetLineOrigin or
GreGetLineOrigin, respectively. Therefore, it is reasonable to keep a copy in the graphics engine format.

The graphics engine’s format for this value consists of three values:

* A flag indicating whether or not to draw the first pel of the current line
* The current mask position (explained above)
¢ The error-term byte (explained above).

They are stored in the foliowing manner:
High WORD 16-bits. Draw first pel flag. Can be 0x0000 (do not draw first pel) or 0x0001 (draw first pel).
Low WORD 16-bits, consisting of:

8 bits Error-term byte
5bits GRE internal flags
3 bits Mask position

If the two bytes of this low WORD are compared to the WORD in the above example, they are swapped.

Style Ratio: The most obvious way to generate styled lines is to draw a circle at the origin, and then
draw a dashed line from the origin to all points on the circle. The number of dashes in each line will be the
same and the lengths of all the dashes drawn will be equal. This is executed on firmware on some
devices. However, but it is too costly in terms of CPU time to implement it in software. Therefore, an
alternative method called the maximum metric is used in the graphics engine. This method can be
visualized by drawing a square centered at the origin, and then drawing a dashed line to any point on the
square. The number of dashes in each line will be the same but the lengths of the dashes will vary.

The maximum metric states that:

¢ |f the line is y-major as viewed on the device:

{y-major = ABS(yl—y0) > ABS(x1—x0)
where (x0, y0) and (x1, y1) are the endpoints of the line in device-coordinate space},
add pDC -> usStyleRatioY to error-term value upon each increment of y as line is drawn

¢ |f the line is x-major as viewed on the device:

{x-major = ABS(x1-x0) > ABS(yl-y0) in device-coordinate space},
add pDC -> usStyleRatioX to error-term value upon each increment of x as line is drawn

Chapter 8. Mandatory Functions for All Drivers 8-19

mandatory functions for all drivers

The line style as viewed on the device is determined:

if (ABS(pDC -> usStyleRatioX * sDeltaX) > ABS(pDC -> usStyleRatioY * sDeltaY))
LineStyleAsItLooksOnTheDevice = X~MAJOR;

else
LineStyleAsItLooksOnTheDevice = Y-MAJOR;

This might be coded similar to the following:

if (ABS(pDC -> usStyleRatioX * sDeltaX) > ABS(pDC -> usStyleRatioY * sDeltaY)) {
usChangeInStateForOnePixel = pDC -> usStyleRatioX; fAddThisWhen = X_INCREMENTS;
} else {
usChangeInStateForOnePixel = pDC -> usStyleRatioY; fAddThisWhen = Y_INCREMENTS;
}

It follows that for a line (AB), the total change in style state can be expressed as:

usChangeInStateForWholeLine = MAX(ABS(pDC -> usStyleRatioX * sDeltaX),
ABS(pDC -> usStyleRatioY * sDeltaY))
where sDeltaX = Bx-Ax and sDeltaY = By-Ay

For example, an EGA device that has a 640x350 (x-to-y) resotution is displayed on a monitor, which has an
x-to-y ratio of 1-to-.75, respectively. To calculate the aspect ratio:

x/y Ratio = 350/(640*.75) = .72917 Therefore: x = y*.72917 or y = x/.72917
This indicates that a pel is taller than it is wide.

e
72017

Figure 8-1. Pel

Assume that four pels in the x-direction is the desirable size of a styled-line dot. Because this display is 9.5
inches across and there are 640 pels across, the length of the four pels is:
(9.5inches/640pels) * 4dpels = .059375inches

This results in a pDC -> usStyleRatioX = 64:
64 = 256/4

Notice that 256 =0x100, which corresponds to an overflow of the error-term byte into the mask position. To
get the equivalent pDC -> usStyleRatioY value, take the desired distance and multiply it by y pels per inch:

(.059375inches * 350pels)/7.125inches = 2.917pels
Therefore: pDC -> usStyleRatioY = 256/2.917 = 87.76 (rounded to 88)

An easier method is to calculate pDC -> usStyleRatioY from pDC -> usStyleRatioX using the aspect ratio:
pDC -> usStyleRatioY = pDC -> usStyleRatioX / .72917 = 87.76 (rounded to 88)

Notice that the values, pDC -> usStyleRatioX and pDC -> usStyleRatioY, are the same as those returned
by GreGetStyleRatio.

An example of what is meant by as viewed on the device is as follows: If a line is drawn from (0, 0) to (100,
100) pels on the device, it is drawn as a diagonal line but does not look diagonal to an observer. Instead, it
looks like a line drawn to (100, 73). This is because of the aspect ratio. Each unit (pel) in the x-direction
travels only .72917 as far as a unit that travels in the y-direction. -All of the images on the device do not
look skewed because this is factored in when the application draws a diagonal line (for example, by
drawing from (0, 0) to (73, 100)). The styled lines are affected when a line that is drawn in pels as x-major
appears on the device as y-major. In this case, a line drawn from (0, 0) to (85, 64) is x-major as drawn in

8-20 Presentation Driver Reference

mandatory functions for all drivers

pels (because ABS(x1-x0) > ABS(y1-y0)) but appears on the device to be y-major. Notice that this line
must be styled y-major to look right on the device:

usChangeInStateForOnePixel = ABS(pDC -> usStyleRatioX * sDeltaX) > ABS(pDC -> usStyleRatioY * sDeltaY)?
pDC -> usStyleRatioX : pDC -> usStyleRatioY;

where:
ABS(pDC -> usStyleRatioX * sDeltaX) = 64 * 85 = 5440
ABS(pDC -> usStyleRatioY * sDeltaY¥) = 88 * 64 = 5632

Because 5440 < 5632, the line is styled y-major by using pDC -> usStyleRatioY. The x-major diagonal line
drawing routine usually adds pDC -> usStyleRatioX to the error-term byte for every increment of x. This is
correct if the aspect ratio is 1:1. However, because the aspect ratio is not 1:1, pDC -> usStyleRatioY must
be used in this case for every increment of y although the line is drawn as an x-major line with the x-major
routine. This means that regardiess of which way the line is drawn, it must be styled according to how it
looks on the device, which is determined by the maximum metric method described above.

LINETYPE_ALTERNATE is a special case of styled line. When drawing a line of this type (pLbnd -> usType
= LINETYPE_ALTERNATE), the x and y style ratios are temporarily set to 256 to set every other pel on the
line on. Notice that changing the values returned by GreGetStyleRatio is not necessary because the
graphics engine does not call this function if the line type is LINETYPE_ALTERNATE.

PolyShortLines and Styling: The graphics engine determines how to style the PolyShortLine, and
either sets the PSL_YMAJOR bit of the style field or clears it to 0. Therefore:

if(ps1 -> usStyle & PSL_YMAJOR) {

-Style it y-major by adding pDC -> usStyleRatioY to the error-term value upon each increment of y
as it is drawn.

}

else {

Style it x-major by adding pDC -> usStyleRatioX to the error-term value upon each increment of x
as it is drawn.

}

First and Last Pel Considerations: It is the responsibility of the presentation driver to ensure that a
series of line, arc, and fillet orders all join up correctly including the on/off counts defined by the current
line attributes. For example, when drawing connected lines (PolyLines), the handling routine must not
draw the first pel of the second, and subsequent, lines. Typically, the presentation driver maintains a flag
in the DC instance data structure to indicate whether the first pel of a line is to be drawn. This flag is set by
GreSetCurrentPosition and cleared by any subsequent drawing primitive. To ensure that a figure is closed
correctly, GreCloseFigure does not draw the last pel in the closure line.

Some orders are defined as move type operations. A move causes three things to happen:

¢ Line style sequence is reset.

¢ The next line, arc, fillet, or partial arc primitive is drawn with first and last pel (subject to the line style
sequence).

¢ In an area, if the current figure is not closed (that is, the current device coordinate position is not the
~same as the start device coordinate position), an implicit closure line is drawn to close it.

Subsequent start line, arc, fillet, and partial arc primitives are drawn to include the last but not the first pel
(subject to the line style sequence). Any closed figure (full arc, box, or pie slice drawn with a boundary), is
drawn with its boundary complete (no missing pels) and with the line-pattern sequence honored around all
the parts of its boundary. Such closed figures are not considered to be move type operations, and allow
construction of complex area boundaries.

Chapter 8. Mandatory Functions for All Drivers 8-21

mandatory functions (for all drivers) by category

Move type operations are:
¢ GreSetCurrentPosition.

* Any GreSetxxx function that changes or might change the transform from world-coordinate space to
device coordinates. For example, GreSetModelTransform or GreSetWindow/ViewportTransform.

* Any GreSetxxx function that changes or might change the current clipping. For examplie,
GreSetViewinglimits.

A different set of rules is necessary to construct a boundary for scan-line area filling. For example, ignore
line style and draw all lines solid with first pel off, last pel on (see “GreGetLineOrigin” on page 8-90). This
boundary is different from the boundary that is drawn on the screen after the interior is filled. Functions
such as GrePolylLine, GreArc, and GrePolyFillet that are preceded by a move operation are drawn with the
first pel on and the last pel set off.

Mandatory Functions (for All Drivers) by Category

Related mandatory functions for all presentation drivers can be grouped together into the following
categories:

Attribute Functions

* GreDeviceGetAttributes (see page 8-43)

¢ GreDeviceSetAttributes (see page 8-48)

¢ GreDeviceSetGlobalAttribute (see page 8-51)
¢ GreGetPairKerningTable (see page 8-91).

Bit-Map Functions

GreBitblt (see page 8-26)
GreDeviceCreateBitmap (see page 8-36)
GreDeviceDeleteBitmap (see page 8-41)
GreDeviceSelectBitmap (see page 8-47)
GreDrawBits (see page 8-53)
GreDrawBorder (see page 8-57)
GreGetBitmapBits (see page 8-83)
GreGetPel (see page 8-92)
GrelmageData (see page 8-93)
GreSetBitmapBits (see page 8-134)
GreSetPel (see page 8-142).

e & & o & & o O o o o

Color Table Functions

GreCreateLogColorTable (see page 8-34)
GreQueryColorData (see page 8-108)
GreQueryColorindex (see page 8-109)
GreQuerylLogColorTable (see page 8-120)
GreQueryNearestColor (see page 8-121)
GreQueryRealColors (see page 8-123)
GreQueryRGBColor (see page 8-125).
GreRealizeColorTable (see page 8-129).
GreUnrealizeColorTable (see page 8-144).

® & o o ¢ o o o o

8-22 Presentation Driver Reference

mandatory functions (for all drivers) by category

Device Functions 2

GreDeviceQueryFontAttributes (see page 8-44)
GreDeviceQueryFonts (see page 8-45)
GreErasePS (see page 8-62)
GreNotifyClipChange (see page 8-96)
GreNotifyTransformChange (see page 8-97)
GreRealizeFont (see page 8-130).

Device Functions 3

e ®© & o & o o o & o o

GreAccumulateBounds (see page 8-25)
GreDeviceSetDCOrigin (see page 8-50)
GreGetBoundsData (see page 8-86)
GreGetCodePage (see page 8-87)
GreGetDCOrigin (see page 8-89)
GreGetLineOrigin (see page 8-90)
GreLockDevice (see page 8-95)
GreResetBounds (see page 8-133)
GreSetCodePage (see page 8-137)
GreSetLineOrigin (see page 8-140)
GreUnlockDevice (see page 8-143).

GreEscape Functions

[]
[]
[]
*
[]
[]
L]
[]
[]
[]
[
L]
[]
[]
[]
°
[]

GreEscape DEVESC_ABORTDOC (see page 8-63)
GreEscape DEVESC_BREAK_EXTRA (see page 8-65)
GreEscape DEVESC_CHAR_EXTRA (see page 8-66)
GreEscape DEVESC_DBE_FIRST (see page 8-67)
GreEscape DEVESC_DBE_LAST (see page 8-68)
GreEscape DEVESC_DRAFTMODE (see page 8-69)
GreEscape DEVESC_ENDDOC (see page 8-70)

GreEscape DEVESC_FLUSHOUTPUT (see page 8-71)
GreEscape DEVESC_GETCP (see page 8-72)

GreEscape DEVESC_GETSCALINGFACTOR (see page 8-73)
GreEscape DEVESC_NEWFRAME (see page 8-74)
GreEscape DEVESC_NEXTBAND (see page 8-75)
GreEscape DEVESC_QUERYESCSUPPORT (see page 8-76)
GreEscape DEVESC_QUERYVIOCELLSIZES (see page 8-77)
GreEscape DEVESC_RAWDATA (see page 8-79)
GreEscape DEVESC_SETMODE (see page 8-80)
GreEscape DEVESC_STARTDOC (see page 8-81)
GreEscape DEVESC_STD_JOURNAL (see page 8-82).

Line Functions

GreDisjointLines (see page 8-52)
GreDrawlLinesInPath (see page 8-60)
GreGetCurrentPosition (see page 8-88)
GrePolyLine (see page 8-99)
GrePolyScanline (see page 8-102)
GrePolyShortLine (see page 8-104)
GreSetCurrentPosition (see page 8-138).

Marker Function

GrePolyMarker (see page 8-101).

Chapter 8. Mandatory Functions for All Drivers

8-23

mandatory functicns (for all drivers) by category

Query Functions

* GreQueryDeviceBitmaps (see page 8-110)
* GreQueryDeviceCaps (see page 8-111)

* GreQueryDevResource (see page 8-113)

* GreQueryHardcopyCaps (see page 8-118).

Text Functions

* GreCharString (see page 8-30)

¢ GreCharStringPos (see page 8-31)

* GreQueryCharPositions (see page 8-106)
¢ GreQueryTextBox (see page 8-126)

¢ GreQueryWidthTable (see page 8-128).

8-24 Presentation Driver Reference

~

device function 3

GreAccumulateBounds

#define INCL_GRE_DEVMISC3

BOOL GreAccumulateBounds (hdc, prclRect, pInstance, 1Function)

This function is called to merge bounds into the total bounds held by the presentation driver. The
presentation driver does bounds calculations for all drawing primitives. It must convert the bounds to
model space as they are accumulated before merging with the GPl bounds. This can be done with
GreConvert. GreAccumulateBounds is related to GreResetBounds (page 8-133) and GreGetBoundsData
(page 8-86).

Support: This function must be supported by the presentation driver. GreAccumulateBounds is used
when a drawing is created to maintain a rectangle that forms the bounding box for the entire drawing. This
rectangle is used in transforms and other functions that manipulate the entire drawing at once.
GreAccumulateBounds can be handled by bit-map emulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

prciRect PRECTL Pointer to rectangle, defined as a RECTL structure in device coordinates
pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreAccumulateBounds

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_RECT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter.8. .Mandatory Functions.for-AlLDrivers 8-25

bit-map function

GreBitblt

#define INCL_GRE_BITMAPS

LONG GreBitb1t (hdc, hdcSrc, cPoints, paptiPoint, 1Rop, flOptions, pBattrs, pInstance, 1Function)

This function modifies bit-map data at a target rectangle in the current DC. The modification can copy a
rectangle of data from a specified source DC to the target or perform a raster operation on the target. The
device contexts can be memory DCs with bit maps selected, or DCs belonging to devices that support
raster operations.

When copying bits from a color bit map to a monochrome bit map or device, only those pels that are in the
source background color are copied to the target as background color. All other pels are copied to the
target as foreground color. Copying is nondestructive. When the target and source rectangles are in the
same DC, no information is lost from the source if the rectangles overlap. When the target is expressed in
world coordinates (that is, the BBO_TARGWORLD flag is set in flOptions), they must be transformed to
device coordinates. The bits are transferred to an upright rectangle in device space, regardless of any
rotational elements that might have been present in the transforms.

The attribute structure identified by the pBattrs parameter defines the bit-map foreground and background
colors. If pBattrs is NULL, the handling routine uses the current foreground and background colors.

When the mix specified by IRop requires both source and pattern, a 3-way operation is performed by using
the current pattern in the target DC. If pattern mixing is not required, a 2-way operation is done. If any of
the source data is unavailable, the handling routine transfers those bits that are present and returns
without error. This might occur when the source DC is a window on the screen that has been overlaid by
another. In this example, the handling routine must proceed by reading what is there.

Support: This function must be supported by the presentation driver. GreBitblt is called by the function
GpiBitBlt, and is used to modify bit-map data within a target rectangle of the current device context.
However, if the destination is larger or smaller than the source, the presentation driver can pass this
function to the graphics engine by using the original pointer copied from the dispatch table.

Stack Frame

Parameter Data Type Description
hdc HDC Device context handle.
hdcSrc HDC Source device context or bit-map handie.
cPoints LONG Number of (x, y) pairs in paptiPoint. See below.
paptiPoint PPOINTL Pointer to an array of (x, y) coordinate pairs. See below.
IRop LONG Raster operation code. See below.
flOptions ULONG Specifies treatment of eliminated lines and columns when compression is
done. See below.
pBattrs PBITBLTATTRS Pointer to attributes. See below.
pinstance PVOID Pointer to instance data.
IFunction ULONG High-order WORD =flags; low-order WORD = NGreBitblt.
hdcSrc Handle to the source DC or bit map. When IRop does not require a source, hdcSrc is passed

as NULL. The handling routine then copies the current pattern to the currently selected bit
map or device.

8-26 Presentation Driver Reference

cPoints

paptiPoint

IRop

fiOptions

bit-map function

A count of the number of (X, y) pairs in the paptlPoint array. The count can be 2, 3, 4
cPoints=2 A raster operation (as determined by IRop) on the destination rectangle.

cPoints=3 A copy between two rectangles of the same size. Only the bottom-left corner is
given for the source rectangle.

cPoints=4 Operation is determined by comparing the sizes of the two rectangles:

Target<Source = Compress the source rectangle into the target rectangle.
The fiOptions flags determine how to handie eliminated rows
and columns. In this case, the function can be passed to the
GreBitblt routine in the graphics engine.

Target=Source Copy between equal rectangles.

Target>Source Stretch the source rectangle into the target rectangle. In this
case, the function can be passed to the GreBitblt routine in
the graphics engine.

Pointer to a block of (x, y) coordinate pairs that define the target and source rectangles. The
coordinates, which can be passed as a pair of RECTL structures, define the bottom-left and
top-right corners of the target and source rectangles (see cPoints above for exceptions):

(xTgtBL, yTgtBL), (xTgtTR, yTgtTR), (xSrcBL, ySrcBL), (xSrcTR, ySrcTR)

When the source rectangle is totally or partially outside the source bit map (or device), the
operation is implementation-dependent for that area (that is, the programmer of the called
presentation driver must decide what to do).

Note: When BBO_TARGWORLD is not set, the rectangles are noninclusive. That is, they
include the left and tower boundaries in device units but not the top and right
boundaries. When the bottom-left corner of a rectangle maps to the same device pel
as the top-right corner, that rectangle is considered to be empty.

When BBO_TARGWORLD is set, the target rectangle is inclusive at all boundaries.
The source is noninclusive.

Raster operation code. The low-order byte represents a mix value in the range 00H — FFH.
Raster operation code values and the mix-bit table are defined in the 0S/2 2.0 Presentation
Manager Programming Reference. The handling routine uses |Rop to determine the
operations to perform on the pattern, source, and target to get the required mix.

In addition to the ROP values defined at the API, the presentation driver must support
ROP_GRAY (000080CAH). This value is used to shade the text for menu items that are not
currently selectable. When ROP_GRAY is set, the handling routine overpaints the foreground
pattern by using the current pattern and the background pattern color (background pels for
the pattern are not changed). For the PATSYM_HALFTONE pattern, this overpaints the
background pattern color onto alternate pels leaving those in between unchanged.

Option flags:

BBO_OR Stretch and compress, as necessary, ORing any eliminated rows
and columns. Used for White on Black.

BBO_AND Stretch and compress, as necessary, ANDing any eliminated
rows and columns. Used for Black on White.

BBO_IGNORE Stretch and compress, as necessary, ignoring any eliminated
rows and columns. Used for color.

BBO_TARGWORLD The target rectangle is defined in world coordinates in the target

PS. When this option is specified, the target rectangle is
transformed to device coordinates. Where any shear or rotation
has occurred, this must be converted to an upright rectangle that

Chapter 8. Mandatory Functions for All Drivers ~ 8-27

bit-map function

pBattrs

bounds the transformed figure. This is then used as the target for
the operation. No inversion of the image takes place.

BLTMODE_SRC_BITMAP hdcSrc is a bit-map handle. The bit map must not be currently
selected into a device context. If this flag is not set, hdcSrc is a
DC handle.

BLTMODE_ATTRS_PRES If set, the pBattrs parameter is present. This option can be ORed
with any of the above options.

Note: Flags 15—31 are not used by the system. They are reserved for use by the
presentation driver.

This points to a BITBLTATTRS structure:

cSize Size of this structure
IColor Foreground color of source
IBackColor Background color of source.

The color values are used in conversions between monochrome and coior data, and is the
only format conversion required. The conversions are required for:

¢ Output of a monochrome pattern to a color device. In this case, the source pattern is
converted to a color pattern. This is performed by using the colors provided in the
BITBLTATTRS structure. If these colors are not provided, the handling routine uses the
current area colors for the target DC. See “Area (Pattern) Attributes” on page 8-5. The
bits are then transferred so that:

— Source 1s become (target area) foreground color
— Source 0s become (target area) background color.

* Transfer from a monochrome bit map to a color bit map or device. In this case, the source
bits are converted by using the current image colors. These are the colors provided in the
BITBLTATTRS structure. If these colors are not provided, the handling routine uses the
current image colors for the target DC. See “Image Attributes” on page 8-11. The bits
are then transferred so that:

— Source 1s become (target image) foreground color
— Source 0s become (target image) background color.

* Transfer from a color bit map to a monochrome bit map or device. In this case, the source
bit map is converted by using the source and target image colors. The target colors are
provided in the BITBLTATTRS structure. If these colors are not provided, the handiing
routine uses those in the image attributes bundle for the target DC. See “Image
Attributes” on page 8-11. When the source is a device context, the source-image
background color is that from the source DC. When the source is a bit-map handle, the
background color is taken from the BITBLTATTRS structure, if provided, or otherwise from
the background-image color of the target DC. The bits are then transferred so that:

— Source pels that are the source-image background color become target-image
background color.

— All other pels become target-image foreground color.

When IRop does not call for a pattern, the pattern set and pattern symbol are not used.
Neither the source nor the pattern is required when a bit map or part of a bit map is being
cleared to a particular color. When a pattern is required, dithering can be done for solid
patterns in a color that is not available on the device. Color dithering is described on page
8-121.

8-28 Presentation Driver Reference-

A4

bit-map function

Return Codes: On completion, the handling routine must return an LONG integer (cHits), indicating,
where appropriate, whether correlation hits have been detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_IS_SELECTED
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP_BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INCORRECT_DC_TYPE
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BITMAP_DIMENSION
PMERR_INV_BITBLT_MIX
PMERR_INV_BITBLT_STYLE
PMERR_INV_COLOR_ATTR
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_FORMAT
PMERR_INV_COLOR_INDEX
PMERR_INV_COLOR_OPTIONS
PMERR_INV_COLOR_START_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE
PMERR_INV_DRIVER_NAME
PMERR_INV_HBITMAP
PMERR_INV_HDC

PMERR_INV_ID

PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV_PATTERN_SET_FONT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_SCAN_START
PMERR_INV_USAGE_PARM
PMERR_UNSUPPORTED_ATTR_VALUE.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-29

text function

GreCharString

#define INCL_GRE_STRINGS

LONG GreCharString (hdc, cChars, pchString, pInstance, 1Function)

This function draws a character string starting at the current (x, y) position. Upon completion, the current
(x, y) position is the start point for the character cell immediately after the last character in the string.

Support: GreCharString must be supported by the presentation driver. The handling routine must
provide full support for drawing characters from an image font in CM_MODE1 when the character direction
is CHDIRN_LEFTRIGHT (see “Character Attributes” on page 8-6). For outline characters or characters in
any other mode or direction, the handling routine can dispatch the call to the graphics engine at the
address given for this call in the default dispatch table.

GreCharString is called by the function GpiCharString. GreCharString is used to draw a character string

from the current position within the presentation space. It updates the current presentation space position
upon completion of output and produces a call to GreSetCurrentPosition.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

cChars LONG Number of characters in string

pchString PCH Pointer to character string

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreCharString

Return Codes: On completion, the handling routine must return a LONG value (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on,
and a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_FONT_AND_MODE_MISMATCH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_LENGTH_OR_COUNT
PMERR_PATH_LIMIT_EXCEEDED.

8-30 Presentation Driver Reference

.=

text function

GreCharStringPos

#define INCL_GRE_STRINGS

LONG GreCharStringPos (hdc, ppt1Start, prclRect, flOptions, cChars, pchString, pAdx, pAttrs, pInstance, 1Function)

This function draws a character string. The string can be drawn from the current (x, y) position or from a
position specified.

Support: GreCharStringPos must be supported by the presentation driver. The handling routine must
provide full support for drawing characters from an image font in CM_MODE1 when the character direction
is CHDIRN_LEFTRIGHT (see “Character Attributes” on page 8-6). For outline characters or characters in
any other mode or direction, the handling routine can dispatch the call to the graphics engine at the
address given for this call in the default dispatch table.

GreCharStringPos is called by the function GpiCharStringAt. GreCharStringPos is used to draw a character
string either at the current position or at a specified position. It will also update the current presentation
space position upon completion of output.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle

pptiStart PPOINTL Pointer to (x, y) coordinates of start position.
prciRect PRECTL Pointer to an opaque or clip rectangle. See below.
fiOptions ULONG Flags. See below.

cChars LONG Number of characters in string.

pchString PCH Pointer to character string.

pAdx PLONG Pointer to Increment array. See below.

pAttrs PCSP_INFO Pointer to attributes structure. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD =NGreCharStringPos.

prciRect The clipping rectangle pointed to by this parameter is defined as a RECTL structure:

xLeft Minimum x-coordinate of rectangle
yBottom Minimum y-coordinate

xRight Maximum x-coordinate of rectangle
yTop Maximum y-coordinate.

This rectangle, which is in world coordinates, is used as the clipping rectangle or as the
background for the string (or both) depending on the value of flOptions. When the
CHS_OPAQUE flag is set, normal background mix attributes are ignored and the rectangle is
drawn using overpaint and the character background color attribute. When the CHS_OPAQUE
is not set, the background is drawn using the normal method. When neither CHS_OPAQUE
nor CHS_CLIP are specified, this parameter is ignored. Notice that points on the boundary of
this rectangle are considered to be inside the rectangle.

Chapter 8. Mandatory Functions for All Drivers 8-31

text function

fiOptions

pAdx

pAttrs

The following flags can be used in combination:

CHS_OPAQUE Background of characters is defined by the rectangle prclRect. The
rectangle is to be shaded (with background color and overpaint) before
drawing.

CHS_VECTOR Increment vector supplied (pAdx). If 0, pAdx is ignored.

CHS_LEAVEPOS Leave current position at the start of string.

CHS_CLIP Clip string to rectangle.

CHS_START_XY Start position of the string. When set, the handling routine must draw

the string from the position indicated by pptiStart. If this flag is not set,
the current position is used.

CHS_ATTR_INFO Attributes to be used. When this flag is set, pAttrs indicates the
foreground and background colors. Current attributes are unchanged.
If the flag is not set, the string is drawn using the current character
attributes. See “Character Attributes” on page 8-6.

CHS_UNDERSCORE Underscore the characters. See the FATTRS structure in
“GreCreateLogicalFont” on page 11-14.

CHS_STRIKEOUT Overstrike the characters.

Pointer to an array of LONG integers, one element for each character in the string. When
CHS_VECTOR is set, this array is used to set the spacing between characters. Each element
is the distance in world coordinates from the bottom-left corner of the corresponding
character in the string to the bottom-left corner of the next. The distance is measured along
the baseline for left-to-right and right-to-left character directions, and along the shear line for
top-to-bottom and bottom-to-top character directions. The final element is used to reposition
the current position, when necessary.

Pointer to a CSP_INFO structure. This structure contains the attributes to be used to draw the
string when the CHS_ATTR_INFO flag is set. These do not alter the current character
attributes (see “Character Attributes” on page 8-6). The CSP_INFO structure is defined as:

cSize Number of bytes in structure
IColor Use foreground color
IBackColor Use background color.

Return Codes: On completion, the handling routine must return a LONG value (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK
GPI_HITS

GPI_ERROR

Successful

Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_FONT_AND_MODE_MISMATCH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT_MEMORY

8-32 Presentation Driver Reference

text function

PMERR_INV_HDC
PMERR_INV_IN_AREA

PMERR_INV_LENGTH_OR_COUNT
PMERR_PATH_LIMIT_EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-33

color table function

GreCreatelLogColorTable

#define INCL_GRE_COLORTABLE

BOOL GreCreateLogColorTable (hdc, flOptions, 1Format, 1Start, cCount, pData, pInstance, 1Function)

This function defines the entries of the logical color table.

Support: This function must be supported by the presentation driver. GreCreateLogColorTable is called
by GpiCreateLogColorTable to create a logical color table, which is used in subsequent drawing
operations.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG See below.

IFormat LONG Format of entries in the table. See below.

IStart LONG Starting index, only relevant for LCOLF_CONSECRGB.

cCount LONG Number of elements supplied in appiication data area. See below.
pData PLONG Pointer to application data area. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreCreateLogColorTabie.

filOptions Valid options are:

LCOL_RESET Indicates that the handling routine must reset the color table to defauit
before processing the remainder of this function.

Note: This option is assumed when the color table is changed from
LCOLF_RGB to LCOLF_INDRGB or LCOLF_CONSECRGB.

LCOL_REALIZABLE Indicates that the application can call GreRealizeColorTable at the
appropriate time. This can affect the way the handling routine maps
the indexes when the logical color table is not realized. A realizable
color table is only required to provide color mapping for its color
indexes while it is realized.

If this flag is not set, GreRealizeColorTable has no effect and posts a
warning.

LCOL_PURECOLOR For solid patterns, pattern colors that are not available can be
approximated by dithering. When this flag is set, only pure colors are
used; the handling routine must not dither colors. The default is to
allow color dithering.

Other flags are reserved and must be 0.
IFormat Valid formats are:

LCOLF_INDRGB Array of (index, RGB) values. Each pair of values contains 8 bytes, a
4-byte index and a 4-byte color. This sets the color table into index
mode, and forces LCOL_RESET if it is in RGB mode.

8-34 Presentation Driver Reference

color table function

LCOLF_CONSECRGB Array of (RGB) values corresponding to color indexes starting from
IStart upwards. Each entry is a 4-byte value. This sets the color table
into index mode, and forces LCOL_RESET if it is in RGB mode.

LCOLF_RGB Color index = RGB. This sets the color table to RGB mode.

cCount The number of elements supplied in pData. This can be set to 0 if the color table is to be reset
to the default, or LCOLF_RGB. When this is 0, LCOLF_INDRGB and LCOLF_CONSECRGB have
the same effect.

For LCOLF_INDRGB, cGount must be an even number.

pData Data area containing the color table definition data. The format depends on the value of
IFormat. Each color value is a 4-byte integer with a value of:

(R*65536) + (6*256) + B

where:
=red intensity value
G=green intensity value
B=blue intensity value

The maximum intensity for each primary is 255.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: Error checking for this function is performed by the graphics engine. Error
codes for conditions the handling routine can expect to be passed by the graphics engine include:

PMERR_DEV_FUNGC_NOT_INSTALLED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_FORMAT
PMERR_INV_COLOR_INDEX
PMERR_INV_COLOR_START_INDEX
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_REALIZE_NOT_SUPPORTED.

Refer to Appendix B of the 0OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: See GpiCreateLogColorTable in the 0S/2 2.0 Presentation Manager Programming Reference
for a full description of this function.

Chapter 8. Mandatory Functions for All Drivers 8-35

bit-map function

GreDeviceCreateBitmap

#define INCL_GRE.BITMAPS

ULONG GreDeviceCreateBitmap (hdc, pInfoHd, flUsage, pBitmap, pInfo, pInstance, 1Function)

This function creates a bit map and obtains its handle.

Support: This function must be supported by the presentation driver. GreDeviceCreateBitmap is called
from GreCreateBitmap, which is one of the graphics engine internal device support functions.

Stack Frame

Parameter Data Type Description

hdc HDC

Device context handle.

pinfoHd PBITMAPINFOHEADER Pointer to BITMAPINFOHEADER or BITMAPINFOHEADER?2 structure

defining the new bit map. See below.

flUsage ULONG Additional information used when creating a new bit map. See below.
pBitmap PBYTE Pointer to bit-map initialization data. See below.

pinfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINFO2 structure. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order

WORD=NGreDeviceCreateBitmap.

pinfoHd Pointer to either a BITMAPINFOHEADER structure:

cbFix

cx

cy
cPlanes
cBitCount

Length in bytes of this structure

Bit-map width

Bit-map height

Number of color planes, 7 if standard format
Number of adjacent color bits per pel.

Notice that each plane has ((cx*cBitCount+31)/32*4*cy) bytes.
Or pointer to a BITMAPINFOHEADER?2 structure:

cbFix
cX

cy
cPlanes
cBitCount

ulCompression

cbimage

cxResolution

Length in bytes of this structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

8-36 Presentation Driver Reference

cyResolution

cclrUsed

ccirimportant

usUnits

usReserved

usRecording

usRendering

cSizel

cSlze2

ulColorEncoding

ulldentifier

bit-map function

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color tabie that are used by the bit
map. If it is 0 (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system. Further
entries can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes=1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map, however, it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the ccirimportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:
BRU_METRIC (Default.) Peis per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:
BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED (Default.) Bit-map data not half-toned.
BRH_ERRORDIFFUSION Error diffusion or damped error diffusion

algorithm.

BRH_PANDA Processing algorithm for noncoded document
acquisition.

BRH_SUPERCIRCLE Super circle algorithm.

Size value 7. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0—1700. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diftused.

if the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.

Chapter 8. Mandatory Functions for All Drivers ~ 8-37

bit-map function

flusage

The only valid flag is:

CBM_INIT When set, the pBitmap and palnfo parameters are used to initialize the newly
created bit map. It is assumed that enough data is passed to initialize the whole bit
map.

Other flags are reserved and must be ignored by the handling routine.

pBitmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates

pinfo

8-38

appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pel, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of zeros would be required to pad the line to a ULONG boundary.

Pointer to either a BITMAPINFO structure:

cbFix Length of structure
cx Bit-map width
cy Bit-map height
cPlanes Number of color planes, 7 if standard format
cBitCount Number of adjacent color bits per pel
argbColor[] Color table array of RGB structures:
bBlue
bGreen
bRed
Or pointer to a BITMAPINFO2 structure:
cbFix Length of structure
cX Bit-map width
cy Bit-map height
cPlanes Number of color planes, 71 if standard format
cBitCount Number of adjacent color bits per pel

ulCompression Compression scheme used to store the bit map:
BCA_UNCOMP Bit map is uncompressed (the only valid value).

cblmage Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

cxResolution Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

cyResolution Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

ccirUsed The number of color indexes from the color table that are used by the bit
map. If itis O (default), all the indexes are used. If it is non-zero, only the
first ccirUsed entries in the table are accessed by the system. Further
entries can be omitted.

Presentation Driver Reference

ccirimportant

usUnits

usReserved

usRecording

usRendering

cSizel

cSize2

ulColorEncoding

ulldentifier
argbColor[]

bit-map function

For standard formats with a ¢BitCount of 1, 4, or 8 (and cPlanes=1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, cclrUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map, however, it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the cclrimportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:
BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:
BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED (Default.) Bit-map data not half-toned.
BRH_ERRORDIFFUSION Error diffusion or damped error diffusion

algorithm.

BRH_PANDA Processing algorithm for noncoded document
acquisition.

BRH_SUPERCIRCLE Super circle algorithm.

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0— 700. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSizel is the
x-dimension of the pattern used in pels.

Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.
Color table array of RGB2 structures:

bBlue

bGreen

bRed

fcOptions Reserved.

Chapter 8. Mandatory Functions for All Drivers 8-39

bit-map function

Return Codes: On completion, the handling routine must return the bit-map handle (hbm), or
GPI_ERROR if an error is detected.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_BITMAP_DIMENSION
PMERR_INV_HDC
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_SCAN_START.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: Bit-map size is limited by available memory. The maximum width and height are 64KB.
Typically, the following standard bit-map formats are used:

Bitcount Planes
1 1
4 1
8 1
24 1

All presentation drivers must be able to create and use all of the standard formats. However, presentation
drivers for two-color devices will lose the color information.

The DC handie supplied to this function must never be NULL, because bit maps always belong to some
device. The bit map is created on the device specified and can be selected to a different device later
because the graphics engine can handle transfer of bits from one device to the other. When a presentation
driver supports only a single color format, requests for other color bit-map formats are mapped to the
supported function. No error is returned.

8-40 Presentation Driver Reference

bit-map function

GreDeviceDeleteBitmap

#define INCL_GRE_BITMAPS

BOOL GreDeviceDeleteBitmap (hdc, hbm, pReturns, flOptions, pInstance, 1Function)

This function destroys a bit map.

Support:

This function must be supported by the presentation driver.

Stack Frame

Note: The handling routine must not use the values passed on the stack in the locations reserved for hdc
and plnstance. These locations contain undefined data.

Parameter Data Type Description
hdc Reserved See Note above.
hbm ULONG Handle of bit map to be destroyed.
pReturns PDELETERETURN Pointer to returned bit-map parameters.
flOptions ULONG Additional information used by the engine when creating or deleting a bit
map. See below.
reserved ULONG See Note above.
IFunction ULONG High-order WORD = flags; low-order WORD = NGreDeviceDeleteBitmap.
) pReturns DELETERETURN structure:
pinfo Pointer to a BITMAPINFO or BITMAPINFO2 structure
pBits Pointer to bit map
flOptions The only valid flag is:

CBM_INIT When set, bit-map parameters must be returned in pReturns. This means that
before deleting the bit map, the handling routine must translate it into one of the
standard formats. The presentation driver must then allocate two blocks of
memory, one for the bit map and another for the bit-map parameters and color
translation table. The presentation driver can use any of the standard formats.
However, it must take into account the parameters originally specified in
GreDeviceCreateBitmap. It is recommended that the handling routine use the
format that uses the least amount of memory without losing any bit-map
-information.

When this flag is not set, bit-map data is not returned.

Other flags are reserved and should be ignored by the handling routine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE
FALSE

S~

Successful
Error.

Chapter 8. Mandatory Functions for All Drivers 8-41

bit-map function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_HDC
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_SCAN_START.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-42 Presentation Driver Reference

attribute function

GreDeviceGetAttributes

#define INCL_GRE_DEVMISC1

BOOL GreDeviceGetAttributes (hdc, 1PrimType, flAttrsMask, pAttrs, pInstance, 1Function)

This function queries the attribute values currently set in the device.
Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

IPrimType LONG Bundle primitive type. See below.

flAttrsMask ULONG Attribute mask. See below.

pAttrs PBUNDLE Pointer to the fixed-format bundle record to which the attributes are
returned. Fields other than those indicated by flAttrsMask must not be
modified.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreDeviceGetAtiributes.

IPrimType Indicates the bundle type. Valid primitive values are:

PRIM_LINE Line attribute bundie, see page 8-3.
PRIM_CHAR Character attribute bundle, see page 8-6.
PRIM_MARKER Marker attribute bundle, see page 8-12.
PRIM_AREA Pattern attribute bundle, see page 8-5.
PRIM_IMAGE Image attribute bundle, see page 8-11.

flAttrsMask Specifies the attributes to be returned. This mask contains a bit corresponding to each
attribute in the bundie record that is required. For each set bit, the handling routine must
return the corresponding attribute values and default mask bits. Only the foreground color
and background color attributes can be requested for any primitive type.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handiing routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-43

device function 2

GreDeviceQueryFontAttributes

#define INCL_GRE_DEVMISC2

BOOL GreDeviceQueryFontAttributes (hdc, cMetrics, pfmMetrics, pInstance, 1Function)

This function stores the metrics of the currently selected font at the location addressed by pfmMetrics.
Notice that the handling routine must transform device coordinates to world coordinates before returning
the results to the calling routine. This can be done by using GreConvert.

Support: This function must be supported by the presentation driver. GreDeviceQueryFontAttributes is
called from the graphics engine internal function GreQueryFontAttributes in response to an application
calling one of the GpiQueryFontxxx() APls. This call can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

cMetrics ULONG Size of FONTMETRICS structure

pfmMetrics PFONTMETRICS Pointer to FONTMETRICS structure

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order
WORD = NGreDeviceQueryFontAttributes

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-44 Presentation Driver Reference

device function 2

GreDeviceQueryFonts

#define INCL_GRE_DEVMISC2

LONG GreDeviceQueryFonts (hdc, f10ptions, pszFaceName, pfmMetrics, cMetrics, pcFonts, pInstance, 1Function)

If the QF_PUBLIC option flag (see below) is set, this function returns the characteristics of device fonts in an
array of FONTMETRICS structures. The returned fonts include those that correspond to device modes such
as expanded and expanded-bold. When the DC is not set to draft mode, the returned fonts are those that
can be positioned to the nearest pel. Such precision is not necessary if the DC is in draft mode. Draft
mode is set by the system calling the GreEscape DEVESC_DRAFTMODE.

In the FONTMETRICS structures, the handling routine sets:

* szFacename field to a meaningful name, for example, 'Courier Bold'.

¢ usCodepage field to 0. (This field has no significance in this context.)

¢ IMatch field to a negative value. This allows the presentation driver to map the font when the value is
specified in a call to GreRealizeFont.

The presentation driver must transform device coordinates to world coordinates before it returns the
results to the calling routine. This can be done by using GreConvert. For presentation drivers that support
only outline fonts, the return values are for outline fonts even when image fonts have been loaded.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle..

flOptions ULONG Option flags. See below.

pszFaceName PSzZ Pointer to FaceName to match. If this is a NULL pointer, all faces are
matched.

pfmMetrics PFONTMETRICS Pointer to array of FONTMETRICS structures.

cMetrics LONG Number of bytes of each metrics structure in the metrics array.

pcFonts PLONG Pointer to the number of fonts requested. See below.

pinstance PVOID Pointer to instance data.

|IFunction ULONG High-order WORD = flags; low-order WORD = NGreDeviceQueryFonts.

fiOptions The only valid flag for this function is:

QF _PUBLIC When this flag is set, the handling routine must return all device fonts. Device
fonts are public fonts and they are returned in the array addressed by
pfmMetrics. If this flag is not set, the handling routine should not return any
fonts.

pcFonts This is a pointer to the number of fonts requested. On completion, the handling routine
modifies the value indicated to the number of fonts returned. An application can determine the
number of public fonts available to it by passing a value of 0 at the address indicated by this
pointer.

Chapter 8. Mandatory Functions for All Drivers 8-45

device function 2

Return Codes: The handling routine should return the number of fonts not returned, or GPI_ALTERROR
if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-46 Presentation Driver Reference

=

bit-map function

GreDeviceSelectBitmap

#define INCL_GRE_BITMAPS

BOOL GreDeviceSelectBitmap (hdc, hbm, pInstance, 1Function)

This function informs the presentation driver that a new bit map is selected into the DC. See also
“GreSelectBitmap” on page 11-56.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

hbm ULONG Device bit-map handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDeviceSelectBitmap

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNGC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-47

attribute function

GreDeviceSetAttributes

#define INCL_GRE_DEVMISC1

BOOL GreDeviceSetAttributes (hdc, 1BType, flDefsMask, flAttrsMask, pAttrs, pInstance, 1Function)

This function sets attributes in the attribute bundle specified by IBType. Pointers to the current attribute
bundles are maintained by presentation drivers in the instance data structure. The handling routine for
GreDeviceSetAttributes modifies the specified bundie as directed by flAttrsMask and flDefsMask (see
“Remarks” on page 8-49).

The handling routine must allow any attribute to be set to any value in the defined range for that attribute
even when the value cannot be impiemented on the device. For example, the presentation driver for a
vector hardcopy device must accept BM_XOR background mix. When the hardcopy driver is called to write
to the device, it should map values that cannot be implemented to the default value. If this call would set
any of the attributes to a value that is not in the defined range of values for that attribute, the handling
routine must restore all attributes to the value they had on entry to this routine.

When this function is called for the first time to set the character attributes, the handling routine should set
the default font in the usSet parameter of the character attribute bundle (see page 8-6). If the default font is

an engine font, the presentation driver must save the address and flags of the font. This ensures that the
default font is restored if the DC is reset (see “Enable Subfunction 09H — ResetDCState” on page 7-19).

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle.

IBType LONG Bundle type. See below.

fiDefsMask ULONG Mask indicating the attributes to be set to their standard default values.
flAttrsMask ULONG Mask indicating the attributes to be modified.

pAttrs PBUNDLE Pointer to a bundle structure. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreDeviceSetAttributes.

IBType Device attribute bundle. The following device bundles are defined:

PRIM_AREA Pattern attribute bundle, see page 8-5.
PRIM_CHAR Character attribute bundle, see page 8-6.
PRIM_IMAGE Image attribute bundle, see page 8-11.
PRIM_LINE Line attribute bundle, see page 8-3.

PRIM_MARKER Marker attribute bundle, see page 8-12.

All device bundies share a similar format. They consist of two bundies, a bundie of logical
attributes and a bundle of device information.

pAttrs Pointer to the DLINEBUNDLE, DCHARBUNDLE, DMARKERBUNDLE, DAREABUNDLE, or
DIMAGEBUNDLE structure containing the new attributes.

8-48 Presentation Driver Reference

attribute function

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CODEPAGE
PMERR_INV_COLOR_ATTR
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_LINE_TYPE_ATTR
PMERR_INV_MIX_ATTR
PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV_PATTERN_SET_FONT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The parameters flDefsMask and flAttrsMask are instances of the mask for the specified
attribute bundle. Valid flags are listed under the bundle definitions on pages 8-3, 8-5, 8-6, 8-11, and 8-12.
Flags set in flAttrsMask identify which fields in the attribute bundle are to be changed. For each flag that is
set in fiAttrsMask, the state of that flag in flDefsMask determines the source for the new value of the field:
If the flag is set in both masks, the corresponding field should be set to its default value. If the flag is set in
flAttrsMask and not set in flDefsMask, the corresponding field will be set from the relevant field in the
bundle addressed by pAttrs.

In the attribute bundle addressed by pAttrs, the only fields that contain valid values are those that will be
used to modify the device context’s attribute bundie.

When setting pattern and area attributes, the pattern origin from world coordinates must be converted (in
the attributes bundle) to device coordinates (in the DC instance data).

Chapter 8. Mandatory Functions for All Drivers 8-49

device function 3

GreDeviceSetDCOrigin

#define INCL_GRE_DEVMISC3

BOOL GreDeviceSetDCOrigin (hdc, ppt1DC, pInstance, 1Function)

This function sets the origin of the device context, which when created, has its origin setto 0, 0.

Support: This function must be supported by presentation drivers for display devices and for hardcopy
devices that use banding. The minimum requirement for other hardcopy devices is for the handling routine
to return TRUE if the origin addressed by pptIDC is set to 0, or to log an error and return FALSE.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pptiDC PPOINTL Pointer to the DC origin. See below.

pinstance PVOID Pointer to instance data.

IFunction “ULONG High-order WORD = flags; low-order WORD = NGreDeviceSetDCOrigin.

pptiDC This is the offset to the origin of the device context indicated by hdc. Convert does not add in
this offset (see “GreConvert” on page 10-26). Therefore, the presentation driver must add it to
all device coordinates to make them screen coordinates.

Note: WORLD_COORDINATE to SCREEN_COORDINATE is not a valid conversion.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-50 Presentation Driver Reference

T

attribute function

GreDeviceSetGlobalAttribute

#define INCL_GRE_DEVMISC1

BOOL GreDeviceSetGlobalAttribute (hdc, 1AttrType, 1Attribute, flOptions, pInstance, 1Function)
This function sets the individual primitive attributes to the specified value in the line, area, character,
image and marker bundles. If this call sets any attributes to a value that is not in the defined range of

values for that attribute, the handling routine must restore all attributes to the value they had on entry to
this routine.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

IAttr Type LONG Specifies the attribute. See below.

IAttribute LONG New attribute value.

flOptions ULONG See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDeviceSetGlobalAttribute.

IAftrType Attribute type:

ATYPE_COLOR Foreground color
ATYPE_BACK_COLOR Background color
ATYPE_MIX_MODE Foreground mix

ATYPE_BACK_MIX_MODE Background mix.
ATYPE_BACK_COLOR and ATYPE_BACK_MiX_MODE do not apply to the line bundle.
fioptions The only allowable option is:

GATTR_DEFAULT When set, the attribute indicated by IAttrType is set to its default value.
When this flag is not set, the attribute is set to the value of |Attribute.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV_COLOR_ATTR
PMERR_INV_HDC
PMERR_INV_MIX_ATTR.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-51

line function

GreDisjointLines

#define INCL_GRE_LINES

LONG APIENTRY GreDisjointLines (hdc, paptlPoint, cPoints, pInstance, 1Function)

This function draws a sequence of disjoint straight lines using the end-point pairs specified. Notice that if
COM_TRANSFORM is not set, the pairs are expected in screen coordinates.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

paptiPoint PPOINTL Pointer to an array of cPoints (x, y) pairs containing the end-points for the
lines.

cPoints LONG Number of (x, y) pairs in the points array. When this is passed as 0, the
handling routine takes no action except to return Successful.

pinstance PVOID ‘Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD =NGreDisjointLines.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN.
PMERR_INV_RECT
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

.8-52 Presentation Driver Reference

GreDrawBits

bit-map function

#define INCL_GRE_BITMAPS

BOOL GreDrawBits (hdc, pBitmap, pInfo, cPoints, paptiPoint, 1Rop, flOptions, pInstance, 1Function)

This function draws a rectangle of bits.

Support: This function is supported by the graphics engine and can be hooked by the presentation

driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pBitmap PBYTE Pointer to bit-map data. See below.

pinfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINFO2 structure defining the new bit map.

See below.
cPoints LONG Number of (x, y) pairs in paptlPoint; this count must be equal to 4. See
below.

paptiPoint PPOINTL Pointer to an array of (x, y) coordinate pairs. See below.

IRop LONG Raster operation code. See below.

fiOptions ULONG Specified treatment of eliminated lines and columns when compression is

' done. See below.
plnstance PVOID Pointer to instance data.
IFunction ULONG High-order WORD =flags; low-order WORD =NGreDrawBits.
pBitmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are
stored beginning with the most significant bits of the first byte. The data for pels in each
scan line is packed together tightly. However, all scan lines are padded at the end so that
each one begins on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit
pel, three 8-bit pels, six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only
pel data for that scan line, one more byte of zeros would be required to pad the line to a
ULONSG boundary.
pinfo Pointer to either a BITMAPINFO structure:

E—

cbFix

cx

cy

cPlanes
cBitCount
argbColor[]

Length of structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format
Number of adjacent color bits per pel

Color table array of RGB structures:

bBlue

bGreen

bRed.

Or pointer to a BITMAPINFO2 structure:

cbFix

Length of structure

Chapter 8. Mandatory Functions for All Drivers 8-53

bit-map function

cX
cy
cPlanes
cBitCount

ulCompression

cbimage

cxResolution

cyResolution

cclrUsed

ccirimportant

usUnits

usReserved

usRecording

usRendering

8-54 Presentation Driver Reference

Bit-map width

Bit-map height

Number of color planes, 7 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed,
0 (default) can be specified.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified
by usUnits. This information enables an application to select from a
resource group the bit map that best matches the characteristics of the
current output device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified
by usUnits. This information enables an application to select from a
resource group the bit map that best matches the characteristics of the
current output device.

The number of color indexes from the color table that are used by the bit
map. lf itis 0 (default), all the indexes are used. If it is non-zero, only
the first cclrUsed entries in the table are accessed by the system; further
entries can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes=1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other
192 entries in the color table. For the 24-bitcount standard format,
cclrUsed is the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device palette. These additional colors can be
mapped to the nearest colors available. Zero (default) means that all
entries are important. For a 24-bitcount standard format, the
cclrimportant colors are also listed in the color table relating to this bit
map.

Units of measure of the horizontal and vertical components of
resolfution:

BRU_METRIC (Default.) Pels per meter.
Reserved field. If present, it must be 0.
Recording algorithm, the format in which bit-map data is recorded:

BRA_BOTTOMUP (Default.) Scan lines are recorded from

bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED
BRH_ERRORDIFFUSION

(Default.) Bit-map data not half-toned.

Error diffusion or damped error diffusion
algorithm

cPoints =4

paptiPoint

IRop

bit-map function

BRH_PANDA Processing algorithm for noncoded
document acquisition
BRH_SUPERCIRCLE Super circle algorithm
cSizet Size value 7. If BRH_ERRORDIFFUSION is specified in usRendering,

cSizel is the error damping as a percentage in the range 0—100. A
value of 100% indicates no damping. A value of 0% indicates that any
errors are not diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering,
this parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

ulColorEncoding Color encoding:
BCE_RGB (Default.) Each element in the color array is an RGB2 data

type.
ulidentifier Reserved for application use.
argbColor[] Color table array of RGB2 structures:
bBlue
bGreen
bRed

fcOptions Reserved. Must be 0.
The operation is determined by comparing the sizes of the two rectangles:

Target<Source = Compress the source rectangle into the target rectangle. The flOptions
flags determine how eliminated rows and columns should be handled.

Target=Source Copy between equal rectangles.

Target>Source Stretch the source rectangle into the target rectangle. In this case the
call can be passed to the GreBitblt routine in the graphics engine.

A pointer to a block of (x, y) coordinate pairs that define the target and source rectangles.
The coordinates, which can be passed as a pair of RECTL structures, define the bottom-left
and top-right corners of the target and source rectangles (see cPoints above for more
information):

(xTgtBL, yTgtBL), (xTgtTR, yTgtTR), (xSrcBL, ySrcBL), (xSrcTR, ySrcTR)

When the source rectangle is totally or partially outside the source bit map (or device), the
operation is implementation-dependent for that area, that is, the user must decide what to
do.

Note: When BBO_TARGWORLD is set, the target rectangle is inclusive at all boundaries.
The source is non-inclusive.

When BBO_TARGWORLD is not set, the rectangles are non-inclusive. That is, they
include the left and lower boundaries in device units but not the top and right
boundaries. When the bottom-left corner of a rectanglie maps to the same device pel
as the top-right corner, that rectangle is considered to be empty.

Raster operation code. The low-order byte represents a mix value in the range 00H — FFH.
Raster operation code values and the mix-bit table are defined in the OS/2 2.0 Presentation
Manager Programming Reference. The handling routine uses IRop to determine the
operations to perform on pattern, source and target to get the required mix.

In addition to the ROP values defined at the API, the presentation driver must support
ROP_GRAY (000080CAH). This value is used to shade the text for menu items that are not

Chapter 8. Mandatory Functions for All Drivers 8-55

bit-map function

currently selectable. When ROP_GRAY is set, the handling routine overpaints the
foreground pattern using the current pattern and the background pattern color (background
pels for the pattern are not changed). For the PATSYM_HALFTONE pattern, this overpaints
the background pattern color onto alternate pels leaving those in between unchanged.

flOptions Option flags:
BBO_OR

BBO_AND

BBO_IGNORE

BBO_TARGWORLD

BLTMODE_SRC_BITMAP

BLTMODE_ATTRS_PRES

Stretch and compress, as necessary, ORing any eliminated
rows and columns. Used for White on Black.

Stretch and compress, as necessary, ANDing any eliminated
rows and columns. Used for Black on White.

Stretch and compress, as necessary, ignoring any eliminated
rows and columns. Used for color.

The target rectangle is defined in world coordinates in the
target PS. When this option is specified, the target rectangie is
transfermed to device coordinates. Where any shear or
rotation has occurred, the target rectangle must be converted
to an upright rectangle that bounds the transformed figure.
This is then used as the target for the operation. No inversion
of the image takes place.

hdcSrc is a bit-map handle. The bit map must not be currently
selected into a device context. If this flag is not set, hdcSrc is a
DC handle.

If set, the pBattrs parameter is present. This option can be
ORed with any of the options above.

Note: Flags 15—31 are not used by the system; they are reserved for use by the

presentation driver.

Return Codes: On completion, the handling routine must return a LONG integer (cHits) indicating,
where appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by the display driver when the correlate flag is on,

and a hit is detected)
GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_HDC_BUSY
PMERR_INCORRECT_DC_TYPE
PMERR_INV_BITBLT_MIX
PMERR_INV_BITBLT_STYLE
PMERR_INV_COORDINATE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_RECT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-56 Presentation Driver Reference

GreDrawBorder

bit-map function

#define INCL_GRE_BITMAPS

BOOL GreDrawBorder (hdc, prciFrame, cxBorder, cyBorder, clrBorder, clrInterior, f1Cmd, pInstance, 1Function)

This fast-frame function draws an internal border in a rectangular frame. The interior can also be filled.

Support: This function must be hooked by all presentation drivers. Drivers for hardcopy devices do
nothing except return TRUE (Successful). Display drivers must return Failure if fast-frame drawing is not
supported. GreDrawBorder is not called by any specific function. It is used to do fast-frame drawing.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

prciFrame PRECTL Pointer to RECTL structure defining the frame in screen coordinates.

cxBorder ULONG Thickness of vertical border in device coordinates.

cyBorder ULONG Thickness of horizontal border in device coordinates.

cirBorder LONG Color of border in any valid format.

cirinterior LONG Color of interior in any valid format.

fiCmd ULONG Options. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDrawBorder.
prciFrame Pointer to a RECTL structure. Coordinates are passed in screen coordinates, which are

fiCmd

inclusive at the bottom-left corner and exclusive at the top-right corner.

Valid values are:
DB_ROP

DB_INTERIOR

An option flag that defines the mix to be used for the border and the
interior. The mixes are mutually exclusive with one another but can be
combined independently with DB_INTERIOR or DB_AREAATTRS. This
option can have any of the following values:

DB_PATCOPY (Default.) Use ROP_PATCOPY (see “GreBitbit” on
page 8-26). This is a copy of the pattern to the
destination.

DB_PATINVERT Exclusive-OR the current pattern and the

destination (ROP_PATINVERT). Current mix and
color parameters are ignored.

DB_DESTINVERT Inverts the destination (ROP_DESTINVERT).

DB_AREAMIXMODE Maps the current area foreground-mix attribute to a
Bitblt raster operation. The area background-mix
mode is ignored.

Fills the area defined by prclFrame excluding the border defined by
cxBorder and cyBorder.

Chapter 8. Mandatory Functions for All Drivers 8-57

bit-map function

DB_AREAATTRS When set, the pattern used for the border is the one currently defined in
the area attribute. The pattern used for the interior is the one that would
be obtained by calling GreSetAttributes with the area attribute background
color passed for the foreground color, and the area attribute foreground
color passed for the background. See “GreSetAttributes” on page 11-58.

When this flag is not set (default), the border pattern is equivalent to using
GreSetAttributes for the area attributes, which use clrBorder as foreground
color and clrinterior as the background. The Interior pattern is equivalent
to using GreSetAttributes for the area attributes, which use cirinterior color
as foreground color and clrBorder as the background.

The handling routine should ignore the remaining flags, DB_STANDARD and
DB_DLGBORDER, which are used by the Frame Manager.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_IS_SELECTED
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP_BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INCORRECT_DC_TYPE
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BITBLT_MiX
PMERR_INV_BITBLT STYLE
PMERR_INV_BITMAP_DIMENSION
PMERR_INV_COLOR_ATTR
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_FORMAT
PMERR_INV_COLOR_INDEX
PMERR_INV_COLOR_OPTIONS
PMERR_INV_COLOR_START_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE
PMERR_INV_DRAW_BORDER_OPTION
PMERR_INV_DRIVER_NAME
PMERR_INV_HBITMAP
PMERR_INV_HDC

PMERR_INV_ID

PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT

8-58 Presentation Driver Reference

bit-map function

PMERR_INV_PATTERN_SET ATTR
PMERR_INV_PATTERN_SET FONT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_SCAN_START
PMERR_INV_USAGE_PARM
PMERR_UNSUPPORTED_ATTR_VALUE.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The parameters, cxBorder and cyBorder, can be passed as 0. When both are 0, the interior
must still be drawn. When the x-borders and y-borders overlap, the border is drawn as a single rectangle
with no interior.

GreDrawBorder is a Bitblt accelerator and is similar in function and limitation to GreBitblt,
GreDeviceSetAttributes, and GreSetAttributes.

See the 0S/2 2.0 Presentation Manager Programming Reference for a description of the WinDrawBorder
function.

Chapter 8. Mandatory Functions for All Drivers 8-59

line function

GreDrawLinesInPath

#define INCL_GRE_LINES

LONG GreDrawlLinesInPath (hdc, prclBound, pLine, cLines, pInstance, 1Function)

This function draws a sequence of one or more straight lines from the sequence of linked structures
addressed by pLine. The structures can be a mixture of LINE, CURVE, and FILLETSHARP structures.
These have similar forms and the second field, bType, identifies the type of the structure. Starting at the
structure addressed by pLine, the handling routine examines the bType field of each structure in turn. If
bType is LINE_IDENTIFIER, the handling routine draws the line. Otherwise, it uses the value of the
npcvNext field to skip to the next structure. This process continues until the handling routine has drawn the
number of lines specified by cLines. Before drawing a line, the handling routine must check the
CURVE_DO_FIRST_PEL flag to determine whether it should draw the first pel of the line. When the line
passes between two pel positions, the presentation driver should round down to the nearest pel for values
of 0.5 or less.

The call to GreDrawLinesinPath in the presentation driver is made by the graphics engine. Notice that the
coordinates are passed as screen coordinates (device coordinates + DC origin) and the lines are already
completely clipped.

Support: This function must be supported by all presentation drivers. However, it is not called by any
specific function. GreDrawLinesinPath is used by the filing routines and the path rendering routines within
the graphics engine to produce output.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

prciBound PRECTL Pointer to a bounding box for the lines.

pLine PCURVE Pointer to the first of a series of linked structures. See below.
clines ULONG Count of LINE structures to draw.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreDrawLinesinPath.

prciBound Pointer to a RECTL structure:

xLeft Minimum x-coordinate of rectangle
yBottom Minimum y-coordinate of rectangle
xRight Maximum x-coordinate of rectangle
yTop Maximum y-coordinate of rectangle

pLine Pointer to the first structure in the path definition containing the lines that have to be drawn.
The LINE structure, shown below, is an example of the more general CURVE structure. These
two structures and the FILLETSHARP structure are defined in header file. They all take the
same general form and are distinguished by the value of bType.

The LINE structure is defined as:
bident Identifier. This value has no significance for the presentation driver.

bType Structure type. The only significant value is LINE_IDENTIFIER, which
indicates that this structure is a LINE structure. If any other value is detected,
the handling routine should skip to the structure addressed by npcvNext.

8-60 Presentation Driver Reference

line function

ulStyle Line style. See “Line Attributes” on page 8-3.
fi Flags. The only significant flag is:

CURVE_DO_FIRST_PEL When set, the handling routine must draw the first
pel in the line. See also “First and Last Pel
Considerations” on page 8-21.

pcvNext Pointer to next structure in the sequence.
pcvPrev Pointer to previous structure.

Reservedi[2] Reserved parameter.

ptfxA Start of the already clipped line (inclusive).
ptixC End of the already clipped line (inclusive).
ptlA Start point of unclipped line (inclusive).
ptiC End point of unclipped line (inclusive).
IRslope Ignored by the presentation driver.

Reserved2[4] Reserved parameter.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers ~ 8-61

device function 2

GreErasePS

#define INCL_GRE_DEVMISC2

BOOL GreErasePS (hdc, pInstance, 1Function)

This function resets the presentation space of the device context to the background color
CLR_BACKGROUND. Hardcopy drivers should return TRUE without taking any action. The handling
routine does not update GPI_BOUNDS or return correlation data, and it is not affected by the PCTL_DRAW
control or COM_DRAW command flag. However, in display drivers, the handling routine should update
USER_BOUNDS if the COM_ALT_BOUND command flag is set.

Support: This function must be supported by the presentation driver. GreErasePS is called from
GpiErase, and is used to erase the contents of the presentation space currently associated with the device
context. Hardcopy drivers should not take any action except to return TRUE (Successful).

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreErasePS

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function is subject to all clipping.

8-62 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_ABORTDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_ABORTDOC, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function aborts the current document. The handling routine in the presentation driver discards all data
(such as data in a spooler buffer or journal file) received for the current document and closes any files
associated with it. The current document is defined as any data back to, and including, the
DEVESC_STARTDOC statement.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

|IEscape LONG DEVESC_ABORTDOC

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: The following are three possible abort scenarios and the steps to be taken by a hardcopy
driver:

1. The user aborts a job:
a. The spooler calls SplQpControl(SPLC_ABORT).
b. The queue driver calls DevEscape(DEVESC_ABORTDOC).

c. The hardcopy driver sets a flag indicating that the job was aborted and returns the
DevEscape(DEVESC_ABORTDOC) thread. The next time PrtWrite returns, the hardcopy driver
completes the current page, for example, by sending a form feed and some null data to make sure
the printer is not in graphics mode.

d. The hardcopy driver calls PrtClose.

Note: The hardcopy driver must be able to accept DEVESC_ABORT while processing data or
DEVESC_ENDDOC.

2. The printer runs out of paper or is offline:
a. The spooler function, PrtWrite, fails and returns an error to the hardcopy driver.
b. If the job was aborted, the hardcopy driver calls PrtClose. Otherwise, it calls SpiMessageBox.

c. The spooler brings up a message box or sends a message to the user, holds the job, and waits on a
semaphore until the job is released (possibly across the network), in which case it will return

Chapter 8. Mandatory Functions for All Drivers 8-63

GreEscape function

RETRY. If the user selects ABORT, the hardcopy driver calls PrtAbort and PriClose. If the user
selects RETRY, the hardcopy driver will try PrtWrite again (see above).

Note: The spooler will ignore all PrtWrite operations after PrtAbort is calied. After the hardcopy driver
has called PrtClose, it should return errors until the DC is closed.
3. The application aborts the job while spooling:

a. The application calls DevEscape(DEVESC_ABORTDOC).
b. The hardcopy driver calls SplQmAbortDoc.

c. The hardcopy driver flags the DC as being aborted.
d. The application calls either DevCloseDC or DevEscape(DEVESC_STARTDOC) to start another job on

the same DC.
Note: This escape code is metafiled but not recorded.

8-64 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_BREAK_EXTRA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_BREAK_EXTRA, cInCount, pInData, pcOutCount, pOutData, pInstance, TFunction)

Note: This escape code is implemented by old hardcopy drivers. The function of this escape code is
replaced by the character attribute, fxBreakExtra. See “Character Attributes” on page 8-6.

This function changes the width of the break character on a hardcopy device. The handling routine sets or
resets, as determined by the value of cinCount, an extra width value for the break character. Upon
completion, the width of the break character is the default width specified by the font plus any extra widths
set by DEVESC_BREAK_EXTRA and DEVESG_CHAR_EXTRA. The extra widths can be positive, zero, or
negative.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie.

IEscape LONG DEVESC_BREAK_EXTRA.

cinCount LONG Number of bytes pointed to by pinData. When cinCount=0, the handling
routine resets the extra width to 0.

pinData PBYTE If cinCount is not equal to 0, pinData is a pointer to a FIXED value. This
value is the required extra width defined in world coordinates.

pcOutCount PLONG The handling routine ignores this parameter.

pOutData PLONG The handling routine ignores this parameter.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successiul
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-65

GreEscape function

GreEscape DEVESC_CHAR_EXTRA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_CHAR_EXTRA, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape code is implemented by old hardcopy drivers. The function of this escape code is
replaced by the character attribute, fxExtra. See “Character Attributes” on page 8-6.

This function changes the width of all characters including the break character on a hardcopy device. The
handling routine sets or resets, as defined by the value of cinCount, an extra width value. Upon
completion, the width of a character is the default width specified by the font plus the extra width set by
DEVESC_CHAR_EXTRA. The extra width can be positive, zero, or negative.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

|IEscape LONG DEVESC_CHAR_EXTRA.

cinCount LONG Number of bytes pointed to by pinData. When cInCount=0, the handling
routine should reset the extra width to 0.

pinData PBYTE If cinCount is not equal to 0, pInData is a pointer to a FIXED value. This
value is the required extra width defined in world coordinates.

pcOutCount PLONG The handling routine ignores this parameter.

pOutData PLONG The handling routine ignores this parameter.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

8-66 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_DBE_FIRST (DBCS Support)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DBE_FIRST, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function informs the presentation driver that character codes for subsequent output data will use two
bytes per character.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

IEscape LONG DEVESC_DBE_FIRST

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: For an OD_METAFILE device, DEVESC_DBE_FIRST is passed to the presentation driver but is
not metafiled. For an OD_QUEUED device with PM_Q_STD, the spooler records this escape and it is not
passed to the presentation driver.

Chapter 8. Mandatory Functions for All Drivers 8-67

GreEscape function

GreEscape DEVESC_DBE_LAST (DBCS Support)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DBE_LAST, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function informs the presentation driver that character codes for subsequent output data will use one
byte per character.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

IEscape LONG DEVESC_DBE_LAST

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: For an OD_METAFILE device, DEVESC_DBE_LAST is passed to the presentation driver but is
not metafiled. For an OD_QUEUED device with PM_Q_STD, the spooler records this escape and it is not
passed to the presentation driver.

8-68 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_DRAFTMODE (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_DRAFTMODE, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape code is implemented by old hardcopy drivers and is being phased out.

This function sets draft mode (text mode) on or off. Setting draft mode on, tells the presentation driver that
the coming page need not contain any graphics or all-points-addressable output. This escape code is valid
only at a page boundary, for example, after DEVESC_STARTDOC or DEVESC_NEWFRAME.

When draft mode is on, the presentation driver can choose to optimize throughput by:

« Ignoring all graphics primitives such as lines, arcs, and areas

¢ Using the fonts provided by the output device

e Approximating positions received in calls to functions such as GreSetCurrentPosition and
GreCharStringPos to the nearest character position that the output device supports for the current font.

The presentation driver must maintain current attributes such as color, mix, and transforms when draft
mode is on even though they might have no effect on the draft output. Similarly, the driver needs to track
font changes and respond by setting the appropriate device font such as enlarged, condensed, or italic.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this escape in the buffer and
does not pass it to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

|IEscape LONG DEVESC_DRAFTMODE.

cinCount LONG Number of bytes pointed to by pinData. This is 2.

pinData PBYTE Short integer value specifying the mode, 7 for draft mode on, 0 for off.
pcOutCount PLONG The handling routine ignores this parameter.

pOutData PLONG The handling routine ignores this parameter.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-69

GreEscape function

GreEscape DEVESC_ENDDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_ENDDOC, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function ends the current document. The handling routine does whatever work is required to complete
the job. For example, a DC for an OD_QUEUED device with PM_Q_STD data would close the spooler buffer
and transfer the buffered data to a spool file. As with DEVESC_STARTDOC, do not assume that this escape
code is always issued at the end of a document. When it has not been issued, the DEVESC_ENDDOC work
must be done in the BeginCloseDC or CloseDC routine.

Note: DEVESC_ENDDOC is mandatory at the APl when writing PM_Q_STD data to an OD_QUEUED device.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie.

|Escape LONG DEVESC_ENDDOC.

cinCount LONG The handling routine ignores this parameter.

pinData PBYTE The handling routine ignores this parameter.

pcOutCount PLONG Pointer. On input, this specifies the size of the buffer pointed to by

pOutData. On output, it is set to the number of data bytes returned in this
buffer. The input value of this parameter is usually 2. On completion, this
is set to 0 if no ID is returned in pOutData.

pOutData PLONG Pointer to a data area in which the Job ID of the spooled print job is
returned. Set to NULL if there is no Job ID, for example, when the
hardcopy DC is OD_DIRECT.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled but not recorded.

8-70 Presentation Driver Reference

<~

GreEscape function

GreEscape DEVESC_FLUSHOUTPUT (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_FLUSHOUTPUT, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape code is implemented by old hardcopy drivers and is being phased out.

This function flushes any output received for the current document. The handling routine discards all data
(such as data stored in a spooler buffer or journal file) received for the current document.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

IEscape LONG DEVESC_FLUSHOUTPUT

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-71

GreEscape function

GreEscape DEVESC_GETCP (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_GETCP, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape code is used only by hardcopy drivers with built-in fonts.

This function gets a hardcopy data stream that would set the specified code page in the hardcopy device.
The data stream should cater for options such as draft and NLQ as defined in the 082_PM_DRV_DEVMODE
dialog. The handling routine in the presentation driver responds by writing the data stream in the buffer
addressed by pOutData and the count of bytes into the LONG value addressed by pcOutCount.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

IEscape LONG DEVESC_GETCP.

cinCount LONG The handling routine ignores this parameter.

pinData PBYTE The handling routine ignores this parameter.

pcOutCount PLONG Pointer to a value that shows the number of bytes addressed by pOutData.

The handling routine should update this value to show the number of
bytes returned in the buffer.

pOutData PLONG Pointer to the buffer in which the handling routine returns the required
data.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is not metafiled or recorded.

8-72 Presentation Driver Reference

.

GreEscape function

GreEscape DEVESC_GETSCALINGFACTOR (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_GETSCALINGFACTOR, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function gets the incremental scaling factors for the (x, y) axes of a hardcopy device. The handling
routine returns the scaling factors as an SFACTORS structure at the location addressed by pOutData and
changes the value addressed by pcOutCount to show the number of bytes in the returned structure.

Scaling factors are used for physical devices where one unit on the x axis is not equal to one unit on the y
axis. The factors show an arbitrary unit length expressed in x units and y units. The length is chosen so
that the number of x units and y units can be expressed as an exponent of 2 and the exponents are returned
in the SFACTORS structure. For example, if there are 8 units of x in the arbitrary unit length, IXscale is set
to 3.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler passes this escape to the presentation
driver without recording it.

Stack Frame

Parameter Data Type Description
hdc HDC Device context handle.
|Escape LONG DEVESC_GETSCALINGFACTOR.
cinCount LONG The handling routine ignores this parameter.
pinData PBYTE The handling routine ignores this parameter.
pcOutCount PLONG Number of bytes pointed to by pOutData. On return, this is updated by the
handling routine to the number of bytes actually returned.
pOutData PLONG Pointer to SFACTORS structure:
IXscale X-scaling factor, as an exponent of 2.
IYscale Y-scaling factor, as an exponent of 2.
pinstance PVOID Pointer to instance data.
IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape.

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is not metafiled or recorded.

Chapter 8. Mandatory Functions for All Drivers 8-73

GreEscape function

GreEscape DEVESC_NEWFRAME (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_NEWFRAME, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function indicates that there is no more data for the current page. For a display device,
DEVESC_NEWFRAME is similar to GreErasePS. However, the handling routine should reset the attributes
(color and mix). For hardcopy devices, the handling routine would advance the paper to a new page.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this escape in the buffer and
does not pass it on to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

|Escape LONG DEVESC_NEWFRAME

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreEscape

Return Codes: The handiing routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: The following sequence implies that the previous page is completed and ejected, and then a
blank page is ejected, even if no other functions are called between the two GreEscapes.
GreEscape(DEVESC_NEWFRAME)

GreEscape (DEVESC_NEWFRAME)

This escape code is metafiled and recorded.

8-74 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_NEXTBAND (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_NEXTBAND, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape code is implemented by old hardcopy drivers that support banding and is being phased

out.

This function indicates that there is no more data for the current band and gets the coordinates of the next
band. If there is no current band, the handling routine returns the coordinates of the first band.
DEVESC_NEXTBAND is used by programs that do their own banding. It is not necessary for hardcopy
drivers for devices, which cannot use banded output, to support this escape code. See “Banding” on
page 2-7. Notice that DEVESC_NEWFRAME is issued to start a new page.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie

IEscape LONG DEVESC_NEXTBAND

cinCount LONG The handling routine ignores this parameter

pinData PBYTE The handling routine ignores this parameter

pcOutCount PLONG Number of bytes of data pointed to by pOutData. On return, this is
updated to the number of bytes actually returned.

pOutData PLONG Pointer to a BANDRECT structure where the device coordinates of the
next band are returned:
xLeft X-coordinate of the lower-left corner of the rectangular band
yBottom Y-coordinate of the lower-left corner of the rectangular band
xRight X-coordinate of the top-right corner of the rectangular band
yTop Y-coordinate of the top-right corner of the rectangular band.
An empty rectangle (xLeft=xRight or yTop=yBottom) marks the end of
the banding operation).

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape

Return Codes:

DEV_OK

DEVESC_NOTIMPLEMENTED

DEVESC_ERROR

Remarks:

The handling routine returns:

Successful
Escape not implemented for specified code
Error.

This escape code is metafiled but not recorded.

Chapter 8. Mandatory Functions for All Drivers

8-75

GreEscape function

GreEscape DEVESC_QUERYESCSUPPORT

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_QUERYESCSUPPORT, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function queries whether a particular escape code is implemented by the presentation driver. The
presentation driver returns DEV_OK if the specified escape is supported.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler passes this escape on to the
presentation driver without recording it.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

|Escape LONG DEVESC_QUERYESCSUPPORT

cinCount LONG Number of bytes pointed to by pinData

pinData PBYTE Pointer to an escape code value specifying the escape function to be
checked

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is not metafiled or recorded.

8-76 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_QUERYVIOCELLSIZES (Display Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_QUERYVIOCELLSIZES, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)
This function obtains the details of the VIO cell sizes supported by the presentation driver. The
DEVESC_QUERYVIOCELLSIZES must be implemented by presentation drivers for display devices that

provide two or more VIO fonts with different cell sizes. Other presentation drivers should not implement
this escape code.

Stack Frame

Parameter Data Type Description

hdec HDC Device context handle.

IEscape LONG DEVESC_QUERYVIOCELLSIZES.

cinCount LONG The handiing routine ignores this parameter.

pinData PBYTE The handling routine ignores this parameter.

pcOutCount PLONG Pointer. See below.

pOutData PLONG Pointer. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape.

pcOutCount Pointer to the number of bytes pointed to by pOutData. On return, the handling routine
updates the value indicated by this pointer to the number of bytes actually returned. This
value must be an even multiple of sizeof(LONG). When the value passed is less than
sizeof(LONG), the handling routine must change it to 0. Nothing is loaded at the address
indicated by pOutData.

When the value passed equals sizeof(LONG), the handling routine must return the number
of supported VIO character-cell sizes. The value indicated by pcOutCount is unchanged.
The contents of the address indicated by pOutData are updated so that maxcount is the
number of VIO cell sizes provided by the device. When the value passed is greater than
sizeof(LONG), the handling routine must update the buffer addressed by pOutData so that:

* maxcount is the number of VIO cell sizes provided by the device.
¢ count is the number of VIOFONTCELLSIZE structures returned. This can be 0 when
OutCount is 2*sizecf(LONG). For example:

count==((pcOutCount-2*sizeof (LONG)) /2*sizeof (LONG))
pOutData Pointer to the address of the data returned. The handling routine stores at this location the
following structures:

maxcount Total number of VIO cell sizes provided by the device
count Number of VIOFONTCELLSIZE structures that follow.

Followed by an array of VIOFONTCELLSIZE structures:

xWidth Width of the VIO character cell
yHeight Height of the VIO character cell.

Chapter 8. Mandatory Functions for All Drivers 8-77

GreEscape function

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is not metafiled or recorded.

8-78 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_RAWDATA (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_RAWDATA, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function sends device-specific data direct to the spooler or device. The action taken by the handling
routine is determined by the DC type. For example, OD_DIRECT DC would send the raw data directly to the
device using the Prtxxx APls. See “File System Emulation” on page 4-9.

As a general rule, an application should use DEVESC_RAWDATA only for a complete document or frame
within a document. DEVESC_RAWDATA must not be mixed with other drawing functions. If
DEVESC_RAWDATA and other drawing functions are called in a single frame, the results are dependent on
the implementation. For example, the presentation driver might choose to print the raw data and ignore
the other drawing calls.

Note: For an OD_QUEUED device with PM_Q_STD data, the spooler records this call in the buffer and does
not pass it on to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

|IEscape LONG DEVESC_RAWDATA

cinCount LONG Number of bytes pointed to by pinData

pinData PBYTE . Pointer to raw data

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD =NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

Chapter 8. Mandatory Functions for All Drivers 8-79

GreEscape function

GreEscape DEVESC_SETMODE (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_SETMODE, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function sets the printer into a particular mode. It is optional for hardcopy drivers to support this
GreEscape. However, those hardcopy drivers that do support it need to know the code page of any of the
built-in fonts. For example, if only Code Page 437 is built in, it is the code page used if 437 is requested by
GreEscape DEVESC_SETMODE. If Code Page 865 is requested, a suitable code page or font could be
downloaded.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie

IEscape LONG DEVESC_SETMODE

cinCount LONG Number of bytes pointed to by pinData

pinData PBYTE Pointer to the buffer that contains an ESCSETMODE structure
pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD =NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successful
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled and recorded.

8-80 Presentation Driver Reference

GreEscape function

GreEscape DEVESC_STARTDOC (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_STARTDOC, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

This function starts a new document. The handling routine in the presentation driver does whatever
initialization is required to spool or print the document. The driver continues to spool or print data until it
receives DEVESC_ENDDOC. This ensures that documents longer than one page are not interspersed with
other jobs.

Because DEVESC_STARTDOC is not mandatory at the API, it cannot be assumed that an application (when
opening a DC for printing) will pass DEVESC_STARTDOC to the presentation driver. In this case, the
presentation driver must initialize a spool file with no name or a journal file in the CompleteOpenDC
handling routine. If this is done, the presentation driver should set a flag so that initialization is not
repeated if DEVESC_STARTDOC is received. Notice that a handling routine is required for
DEVESC_STARTDOC to save the specified document name in the DC instance data.

Note: DEVESC_STARTDOC is mandatory at the API for an OD_QUEUED device with PM_Q_STD data.
When this function call is issued for an OD_QUEUED device, the presentation driver must start the
recording of data into the spool file by calling SplIStdStart. It should also call SpiQmStartDoc to pass the

name of the spool file to the visual spooler. See “SplStdStart” on page 4-34 and “SplQmStartDoc” on
page 4-26.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

IEscape LONG DEVESC_STARTDOC

cinCount LONG Number of bytes pointed to by pinData

pinData PBYTE Pointer to a string containing the name of the document
pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD =NGreEscape

Return Codes: The handling routine returns:

DEV_OK Successiul
DEVESC_NOTIMPLEMENTED Escape not implemented for specified code
DEVESC_ERROR Error.

Remarks: This escape code is metafiled but not recorded.

Chapter 8. Mandatory Functions for All Drivers 8-81

GreEscape function

GreEscape DEVESC_STD_JOURNAL (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreEscape (hdc, DEVESC_STD_JOURNAL, cInCount, pInData, pcOutCount, pOutData, pInstance, 1Function)

Note: This escape is implemented by old hardcopy drivers and is being phased out.

This function sends a standard journal file to the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

|IEscape LONG DEVESC_STD_JOURNAL

cinCount LONG Number of bytes pointed to by pinData

pinData PBYTE Pointer to journal data

pcOutCount PLONG The handling routine ignores this parameter

pOutData PLONG The handling routine ignores this parameter

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreEscape

Return Codes: The handling routine returns:

DEV_OK
DEVESC_NOTIMPLEMENTED
DEVESC_ERROR

8-82 Presentation Driver Reference

Successful
Escape not implemented for specified code
Error.

bit-map function

GreGetBitmapBits

#define INCL_GRE_BITMAPS

LONG GreGetBitmapBits (hdc, hbm, 1ScanStart, cScanCount, pBitmap, pInfo, pInstance, 1Function)

This function can be called for two reasons. If the pointer to application storage (pBitmap) is not NULL, the

function transfers bit-map data from a bit map to application storage. If pBitmap is NULL, this function must
only fill in the RGB values in the BITMAPINFO or BITMAPINFO2 data structure, which is pointed to by pinfo,
and then return the value 0.

The bit map can be specified by a bit-map handle, or (if this is NULL) a DC handle, in which case the device
context must be a memory DC with a bit map currently selected.

Support: This function must be supported by the presentation driver. GreGetBitmapBits is called from
GpiQueryBitmapBits, and is used to transfer bit-map data from the device context to application storage. It
can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie.

hbm HBITMAP Bit-map handle. If 0, the DC bit map is used.

IScanStart LONG Scan line number from where data transfer starts, 0 is the first.
cScanCount LONG Number of scan lines to be transferred.

pBitmap PBYTE Pointer to bit-map data or NULL. See below.

pinfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINFO2 structure. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreGetBitmapBits.

pBitmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pel, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of 0s would be required to pad the line to a ULONG boundary.

pinfo Pointer to either a BITMAPINFO structure:
cbFix Length of structure
X Bit-map width. This value is updated by the handling routine.
cy Bit-map height. This value is updated by the handling routine.
cPlanes Number of color planes, 17 if standard format
cBitCount Number of adjacent color bits per pel
argbColor[] Color table array of RGB structures:
bBlue
bGreen
bRed.

Chapter 8. Mandatory Functions for All Drivers 8-83

bit-map function

8-84

Or pointer to a BITMAPINFO2 structure:

cbFix

cX

cy
cPlanes
cBitCount

ulCompression

cbimage

cxResolution

cyResolution

ccirUsed

ccirimportant

usUnits

usReserved

usRecording

usRendering

Length of structure

Bit-map width

Bit-map height

Number of color planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bit map is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group, the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. Ifitis 0 (default), all the indexes are used. If it is non-zero, only the
first cclrUsed entries in the table are accessed by the system; further entries
can be omitted.

For standard formats with a ¢BitCount of 1, 4, or 8 (and cPlanes=1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, ccirUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the ccirimportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:
BRU_METRIC (Default.) Pels per meter.
Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:

* BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED (Default.) Bit-map data not half-toned.

BRH_ERRORDIFFUSION Errordiffusion or-damped error diffusion
algorithm

Presentation Driver Reference

—

bit-map function

BRH_PANDA Processing algorithm for noncoded document
acquisition
BRH_SUPERCIRCLE Super circle algorithm
cSizet Size value 7. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1

is the error damping as a percentage in the range 0—1700. A value of 100%
indicates no damping. A value of 0% indicates that any errors are not
diffused.

If the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

cSize2 Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. If the BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

ulColorEncoding Color encoding:
BCE_RGB (Default.) Each element in the color array is an RGB2 data

type.
ulidentifier Reserved for application use.
argbColor[] Color table array of RGB2 structures:
bBlue
bGreen
bRed

fcOptions Reserved. Mustbe 0.

Return Codes: On completion, the handling routine must return a LONG value (ILines), indicating the
number of lines transferred, or GPI_ALTERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INCORRECT_DC_TYPE
PMERR_INV_HBITMAP
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_SCAN_START.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When the bit-map handle is NULL, the DC must be a memory DC with a bit map currently
selected. Otherwise, the DC handle must be valid for that device. The BITMAPINFO or BITMAPINFO2
structure must be initialized with the values of cPlanes and cBitcount for the format of data required. This
must be one of the standard formats or a device-specific format that matches the DC. On return, cx, cy, and
argbColors are supplied by the system. Conversion of the bit-map data is carried out, if necessary.

pBitmap must point to a storage area large enough to contain data for the requested number of scan lines.
The amount of storage required for one scan line can be determined by calling GetBitmapParameters:

((cBitcount * cx + 31)/32) * cPlanes * 4 bytes

Chapter 8. Mandatory Functions for All Drivers 8-85

device function 3

GreGetBoundsData

#define INCL_GRE_DEVMISC3

BOOL GreGetBoundsData (hdc, f10ptions, pBoundsData, pInstance, 1Function)

This function stores the bounding rectangle of previous drawing primitives at the address indicated by
pBoundsData. All presentation drivers must support GPI bounds. These bounds should be transformed to
model space coordinates when they are accumulated. Display drivers must also support user bounds in
screen coordinates. Bounds are inclusive. A NULL boundary is represented by the minimum coordinates
of the rectangle, which are greater than its maximum coordinates. If the bounds have been reset, a NULL
value is returned for pBoundsData.

Support: This function must be supported by the presentation driver. GreGetBoundsData is called by
GpiQueryBoundaryData in response to an application’s request for the current boundary data for a
presentation space/device context pair. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle.

fiOptions ULONG Option flags. See below.

pBoundsData PRECTL Pointer to the address for the returned RECTL structure that defines the
specified bounding rectangle.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreGetBoundsData.

flOptions The option flags define which bounding rectangle the handling routine should return. Valid

values are:
GBD_GPI Return GPI bounds in model space coordinates
GBD_USER Return current user bounds in screen coordinates and reset user bounds to their

initial value.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-86 Presentation Driver Reference

~—

device function 3

GreGetCodePage

#define INCL_GRE_DEVMISC3

LONG GreGetCodePage (hdc, pInstance, 1Function)

This function returns the current code page. This is the default code page obtained by WinQueryProcessCp
during the enabling of the DC (page 7-12) or the code page set by GreSetCodePage. This function applies
to the default font, not the currently selected font, which can be determined with a call to
GreQueryFontAttributes (page 11-43).

Support: This function must be supported by the presentation driver. GreGetCodePage is called by
GpiQueryCP in response to an application requesting the currently selected code page for the device
context.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

plnstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreGetCodePage

Return Codes: On completion, the handling routine must return the current code page (ICodePage) or
GPI_ERROR.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. An error code for conditions that the handling routine is expected to check is:

PMERR_DEV_FUNC_NOT_INSTALLED.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-87

line function

GreGetCurrentPosition

#define INCL_GRE_LINES

BOOL GreGetCurrentPosition (hdc, pptlPosition, pInstance, 1Function)

This function takes the current (x, y) position in world coordinates from the DC instance data structure and
stores it at the location addressed by pptiPosition. If COM_TRANSFORM is not set, the current position is
returned in screen coordinates.

Support: This function must be supported by all presentation drivers. GreGetCurrentPosition is called
by the function GpiQueryCurrentPosition. GreGetCurrentPosition might also be called in response to any of
the Presentation Manager drawing functions that begin their operation from the current position within the
presentation space.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiPosition PPOINTL Pointer to current position

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; iow-order WORD = NGreGetCurrentPosition

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful.
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
- post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-88 Presentation Driver Reference

= 4

device function 3

GreGetDCOrigin

#define INCL_GRE_DEVMISC3

BOOL GreGetDCOrigin (hdc, ppt10rigin, pInstance, 1Function)

This function queries the origin of the device context that defines the bottom-left drawing origin for a
display device or a banded hardcopy device. The DC origin is set by GreSetupDC (page 10-126) at the
graphics engine, and by GreDeviceSetDCOrigin (page 8-50) at the presentation driver. This device context
origin is stored in the Device Context Instance (DCI) data structure addressed by plnstance. The DC origin
is always returned in screen coordinates.

Support: This function must be supported by presentation drivers for display devices and for hardcopy
devices that use banding. For other devices, the minimum requirement is for the handling routine to return
successful with pptlOrigin set to (0, 0).

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiOrigin PPOINTL Pointer to the (x, y) coordinates of the returned DC origin in screen
coordinates

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreGetDCOrigin

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Chapter 8. Mandatory Functions for All Drivers ~ 8-89

device function 3

GreGetLineOrigin

#define INCL_GRE_DEVMISC3

LONG GreGetLineOrigin (hdc, pptiXY, pInstance, TFunction)

This function returns the current line style from the DC instance data and stores the current position to the
address indicated by pptIXY. The presentation driver maintains the line style information. Some lines and
curves can be drawn either by the presentation driver or by simulations that must be able to query and set
the style as required. If COM_TRANSFORM is not set, the coordinate pair at pptIXY is returned in screen
coordinates.

The high-order WORD of the style number contains the first/last pel information. If the value of this byte is
0, the first pel is not drawn. (See “First and Last Pel Considerations” on page 8-21.) The low-order byte
indicates the position in the style mask. This is a count, held in the three least significant bits, of the
number of positions that the style mask byte is rotated. The next byte is the state of the style error value.

Support: This function must be supported by the presentation driver. GreGetLineOrigin is used to get
the line style and current position simultaneously. This function call can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiXy PPOINTL Pointer to an (x, y) coordinate pair to which the current position is
returned

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreGetLineOrigin

Return Codes: On completion, this function returns the style number (IStyle), or GPI_ALTERROR if an
error occurs.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-90 Presentation Driver Reference

—

attribute function

GreGetPairKerningTable

#define INCL_GRE_DEVMISC1

LONG GreGetPairKerningTable (hdc, cKernPairs, pKernPairs, pInstance, 1Function)

This function stores the kerning pairs of the current font to the buffer addressed by pKernPairs. The
handling routine must transform all kerning-pair coordinates from device to world coordinates before
sending the data to the calling routine. This can be done by using GreConvert. If it is unable to do this
because the transform matrix is singular, it must log PMERR_COORDINATE_OVERFLOW.

Support: This function must be supported by the presentation driver. The call parameters are passed
unchanged to the display driver’s dispatch table. GreGetPairKerningTable is called from
GpiQueryKerningPairs. GreGetPairKerningTable is used to return the kerning data for the currently
selected font. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

cKernPairs LONG Number of kerning pairs, requested by the application.

pKernPairs PKERNPAIRS Pointer to kern pair records. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreGetPairKerningTable.

pKernPairs KERNINGPAIRS structure:

sFirstChar Code point for the first character

sSecondChar Code point for the second character

sKerningAmount 2-byte signed integer indicating the amount of kerning. Positive
numbers specify increased inter-character spacing.

Return Codes: On completion, the handling routine must return the number of kerning pairs returned in
pKernPairs (cPairs), or GPI_ALTERROR if an error occurs.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_SETID.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The number of kerning pairs is a field in the FONTMETRICS structure.

Chapter 8. Mandatory Functions for All Drivers 8-91

bit-map function

GreGetPel

#define INCL_GRE_BITMAPS
LONG GreGetPel (hdc, pptiPel, pInstance, 1Function)
This function returns the color of a pel at a specified position. If COM_TRANSFORM is set, this position is

in world coordinates. If not set, the position is in screen coordinates. The return value of this function is
either the color index of the pel or its RGB value depending on the color mode of the device.

Support: This function must be supported by the presentation driver, and is called by GpiQueryPel.
GreGetPel is used to query the value of a pel at a specified (x, y) coordinate within the DC. This function
can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiPel PPOINTL Pointer to the coordinate (x, y) pair structure

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreGetPel

Return Codes: This function must return the color index value for the pel, or CLR_NOINDEX if there is
no index corresponding to the color. In addition, the handling routine must raise an error when the point is
subject to any clipping.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_RECT
PMERR_PEL_IS_CLIPPED
PMERR_PEL_NOT_AVAILABLE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-92 Presentation Driver Reference.

~——

bit-map function

GrelmageData

#define INCL_GRE_BITMAPS

LONG GreImageData (hdc, pData, cBits, offRow, pInstance, 1Function)

This function draws a single row of image data with one bit per pel by using the current image foreground
and background color and mix attributes. Drawing starts at the current x-position and at a y-position
defined as a row offset below the current y-position. Data is supplied as a series of bytes and a count of
the bits to be drawn. The handling routine cannot assume that unused bits at the end of the stream are set
to 0. Bits are drawn from left to right. The high-order bit of each byte is the leftmost-image bit. The 1 bits
are foreground and the 0 bits are background. Notice that this function does not affect the current position.

Support: This function must be supported by the presentation driver. GrelmageData is called by the
function Gpilmage. GrelmageData is called multiple times for each call made to Gpilmage, once for each
scan line in the monochrome bit map.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pData PBYTE Pointer to data string.

cBits LONG Number of bits in row (maximum is 2040).

offRow ULONG Row number relative to the current y-position. Zero is the current
position. A value of 7 indicates one row below the current position.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = fiags; low-order WORD = NGrelmageData.

Return Codes: On completion, the handling routine must return a LONG integer (cHits), indicating
whether correlation hits have been detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNGC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_HDC
PMERR_INV_IMAGE_DATA_LENGTH
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT

Chapter 8. Mandatory Functions for All Drivers 8-93

bit-map function

PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_INV_REGION_CONTROL
PMERR_INV_SCAN_START.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-94 Ppresentation Driver Reference

device function 3

GrelLockDevice

#define INCL_GRE_DEVMISC3

BOOL GreLockDevice (hdc, pInstance, 1Function)

This function locks a device for use by a single thread.

Support: This function must be supported by all presentation drivers. GreLockDevice prevents two
separate processes from accessing the resource (device context) at the same time. Hardcopy drivers need
do nothing except return TRUE (Successful).

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

|Function ULONG High-order WORD =flags; low-order WORD =NGreLockDevice

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function synchronizes the use and update of the visible region by allowing all current
and pending drawings to finish and then blocking any requests to draw from other threads until
GreUnlockDevice is called. On exit, the only thread allowed to continue with screen operations is the one
that acquires the lock. To prevent deadlock, GreDeath cannot be called while the visible region is locked.

Chapter 8. Mandatory Functions for All Drivers 8-95

device function 2

GreNotifyClipChange

#define INCL_GRE_DEVMISC2

BOOL GreNotifyClipChange (hdc, prclBound, cRect, idClipPath, pInstance, 1Function)

This function is called whenever there is any change to the DC region. The call gives the presentation
driver an opportunity to optimize clipping by enumerating the clip rectangles and caching them whenever
they change. Typically, the handling routine would allocate more memory for the new DC region (when
necessary) and call GreGetClipRects (page 10-57) to get the set of rectangles that define the new DC
region. Also (for display devices only), the handling routine must clear the HDC_IS_DIRTY flag. On
completion, the handling routine must redispatch this call to the graphics engine using the pointer supplied
in the default dispatch table.

Support: This function must be supported by the presentation driver. GreNotifyClipChange is called
from the graphics engine whenever an application calls a GPI function that modifies the clipping rectangles
within the device context. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

prciBound PRECTL Pointer to a rectangle that bounds the new region in screen coordinates.
cRect ULONG Number of rectangles in the new clip region as returned by GetClipRects.
idClipPath ULONG Current ClipPath ID. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =fiags; low-order WORD = NGreNotifyClipChange.

idClipPath For display devices, when idClipPath is passed as NCC_CLEANDC, the handling routine
should clear the HDC_IS_DIRTY flag and return Successful. See “VisRegionNotify” on
page 12-6 and “GreDevicelnvalidateVisRegion” on page 9-.

Presentation drivers for other devices ignore this parameter.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Note: Presentation drivers that do not cache the clip rectangles should return TRUE, if there are no errors.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORDINATE
PMERR_INV_HDC

PMERR_INV_RECT
PMERR_INV_REGION_CONTROL.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-96 Presentation Driver Reference

device function 2

GreNotifyTransformChange

#define INCL_GRE DEVMISC2

BOOL GreNotifyTransformChange (hdc, fl1Flags, pXformdata, pInstance, 1Function)

This function notifies the presentation driver of a change in the transform from world coordinates to device
coordinates. This function is called by the graphics engine to provide sufficient information to allow the
device to optimize its calling of the GreConvert function or, where possible, to make all point
transformations itself. The minimum requirement is for the handling routine to update the current position
and pattern origin, and then call back to the GreNotifyTransformChange routine in the graphics engine.
Notice that the handling routine must:

¢ Check that the new current position is valid.

* Check that the change will not cause an overflow of the 16-bit coordinates for the device space.

¢ Fail safe. If an error is detected or the call back to the graphics engine fails, the routine must restore
the initial values before returning FALSE.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description.
hdc HDC Device context handle.
fiIFlags ULONG See below.
pXformdata PNOTIFYTRANSFORMDATA Pointer to transform data structure. See below.
pinstance PVOID Pointer to instance data.
IFunction ULONG High-order WORD = flags; low-order
WORD = NGreNotifyTransformChange.

fiFlags A set of flags that pass information regarding the complexity of the 2x2 matrix of the M11,
M12, M21, and M22 components (of the composite transform from world coordinates to
device coordinates), and show if a translation is required. If the MATRIX_SIMPLE fiag is
not set, none of the other flags are valid.

MATRIX_SIMPLE Two entries are 0.
MATRIX_UNITS All entries are +7 or —1.
MATRIX_XY_EXCHANGE Zeros are on the diagonal.
MATRIX_X_NEGATE X is hit by negative (see Note).
MATRIX_Y_NEGATE Y is hit by negative (see Note).

MATRIX_TRANSLATION Non-zero translation.

Note: MATRIX_X_NEGATE and MATRIX_Y_NEGATE are only meaningful when both
MATRIX_SIMPLE and MATRIX_UNITS are set.

Examples:

Matrix = { 1.0, 0.0, 0.6, 1.0, 0, @ } =>

Flags = MATRIX_SIMPLE | MATRIX_UNITS

Matrix = { 1.0, 0.0, 0.0, 1.0, 5, 10 } =
Flags = MATRIX_SIMPLE | MATRIX_UNITS | MATRIX_TRANSLATION

Matrix = { 6.0, -1.0, 1.0, 0.0, 17, 5} =

Flags = MATRIX_SIMPLE | MATRIX_UNITS | MATRIX_XY_EXCHANGE |
MATRIX_Y_NEGATE | MATRIX_TRANSLATION

Chapter 8. Mandatory Functions for All Drivers 8-97

device function 2

pXformdata Pointer to NOTIFYTRANSFORMDATA structure:

usType Indicates fixed-point notation
fxM11 Fixed-point matrix elements
fxM12 Fixed-point matrix elements
fxM21 Fixed-point matrix elements
fxM22 Fixed-point matrix elements
IM41 Long translations

IM42 Long translations

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV_PICK_APERTURE_POSN
PMERR_PATH_LIMIT_EXCEEDED.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-98 Presentation Driver Reference

~_=

line function

GrePolyLine

#define INCL_GRE_LINES

LONG GrePolyLine (hdc, paptlPoint, cPoints, pInstance, 1Function)

This function draws a sequence of one or more lines starting at the current (x, y) position. As each line is
drawn, its end point becomes the start point for the next line. Upon completion, the current (x, y) position is
the end point of the last ine. When COM_TRANSFORM is not set, the function expects the array of points
to be in screen coordinates.

When the COM_AREA or COM_PATH flag is set, this function is part of an area or path definition. In either
case, the handling routine would usually pass the call back to the graphics engine for processing by the
default handling routine. The call would not be passed back to the graphics engine if the presentation
driver had hooked all of the area and path functions.

When this function is used to draw a closed figure, the handling routine must not draw the last point of the
last (closure) line. The handling routine can cail back to the graphics engine to do any necessary clipping.

Support: For performance reasons, all presentation drivers should support this function when drawing a
polyline to a single clipping rectangle. When the clip region is more complex, the handling routine can
forward the call to the graphics engine using the pointer supplied in the dispatch table when the
presentation driver was enabled. The engine will clip each line and return it to the presentation driver as a
call to GreDrawLinesinPath.

GrePolylLine is called by the function GpiPolyLine. GrePolyLine is also used by many of the complex object
rendering routines within the graphics engine.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

paptiPoint PPOINTL Pointer to an array of (x, y) points. See below.

cPoints LONG Number of (x, y) pairs in points array

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGrePolyLine
cPoints When this is passed as 0, the handling routine takes no action except to return Successful.
paptiPoint Pointer to an array of cPoints (x, y) pairs containing the (x, y) coordinates of the end points

for the lines.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on,
and a hit is detected)

GPI_ERROR Error.

Chapter 8. Mandatory Functions for All Drivers 8-99

line function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-100 Presentation Driver Reference

S

marker function

GrePolyMarker

#define INCL_GRE_MARKERS

LONG GrePolyMarker (hdc, paptlPoint, cPoints, pInstance, 1Function)

This function draws a sequence of one or more markers. The first marker is drawn at the current (x, y)
position. Subsequent markers are drawn at the specified (x, y) positions that indicate the centers of the
markers. Upon completion, the current (x, y) position is the center of the last marker. When
COM_TRANSFORM is not set, the function expects the array of points to be in screen coordinates.

Support: This function must be supported by the presentation driver. GrePolyMarker is called by
GpiPolyMarker and GpiMarker. GrePolyMarker is used to render one or more markers. The first marker is
drawn at the current position and the positions of any subsequent markers must be specified.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

paptiPoint PPOINTL Pointer to points array. See below.

cPoints LONG Number of markers to be drawn.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGrePolyMarker.
paptiPoint An array of (cPoints) (x, y) pairs that contain the (x, y) coordinates of the markers.
cPoints When this is passed as NULL, the handling routine takes no action except to return

Successful.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_IN_AREA
PMERR_INV_MARKER_SYMBOL_ATTR
PMERR_PATH_LIMIT_EXCEEDED
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8=-101

line function

GrePolyScanline

#define INCL_GRE_SCANS

LONG GrePolyScanline (hdc, pScanData, pInstance, 1Function)

This function fills an area lying between polyshortline pairs by using the current pattern attribute. Notice
that coordinates are passed as unclipped screen coordinates. Filling is inclusive at the left boundaries and
exclusive at the right boundaries. The scan lines are ordered from bottom-to-top and from left-to-right.

Support: This function must be supported by all presentation drivers except those that hook the
GreDrawRLE, GreEndArea, and GreFillPath functions. All function calls to GrePolyScanline come from the
GreDrawRLE, GreEndArea, or GreFillPath handling routines in the graphics engine. GrePolyScanline is not
called by any specific function. However, it is likely to be accessed by any area-filling functions.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pScanData PSCANDATA Pointer to a SCANDATA structure

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGrePolyScanline

pScanData Pointer to a SCANDATA structure:

psiFirstLeft Pointer to the left end of the first polyshortline
psiLastLeft Pointer the left end of the last polyshortline
psiFirstRight Pointer to right edge of first polyshortline
psiLastRight Pointer to right edge of last polyshortline

c Number of scan lines

rciBound RECTL structure defining the bounding rectangle.

Notice that a polyshortline consists of a list of linked SHORTLINE structures:
slh SHORTLINEHEADER structure:

ulStyle Line style

ulFormat Line format

ptiStart (x, y) position of start

ptiStop (x, y) position of end

IxLeft Left edge of bounding rectangle
IxRight Right edge of bounding rectangle
psihNext Pointer to next shortline
psihPrev Pointer to previous shortline.

This structure is a discrete representation of a curve that starts at point (x0, y0) and
ends at point (x1, y1). For each of the (y1-y0+ 1) rows, there is exactly one x value
contained in the x array. The final point in the series is not drawn.

ax Array of x values as screen coordinates.

8-102 Presentation Driver Reference

line function

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GP1_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_INV_REGION_CONTROL.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The handling routine can assume that the two polyshortlines do not cross and both
polyshortlines have the same height.

Chapter 8. Mandatory Functions for Al Drivers 8-103

line function

GrePolyShortLine

#define INCL_GRE_LINES

LONG GrePolyShortLine (hdc, psl, pInstance, 1Function)

This function draws a series of shortlines. The current (x, y) position is not changed. A polyshortline is a
linked list of shortlines. The function renders each SHORTLINE structure in the list until a NULL psihNext is
encountered. Notice that coordinates are passed as screen coordinates and are already completely
clipped.

Support: This function must be supported by all presentation drivers except those that hook GrePolyLine
and all of the GreArcxxx functions that are simulated by handling routines in the graphics engine. All
function calls to GrePolyShortLine come from either GrePolyLine or the GreArcxxx functions.
GrePolyShortLine might be accessed from any of the curve-rendering functions. However, it is not
guaranteed that curve-rendering will call GrePolyShoriLine.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

psl PSHORTLINE Pointer to SHORTLINE structure. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGrePoiyShortLine.

psl The shortlines are defined in a list of linked SHORTLINE structures:
slh SHORTLINEHEADER structure:

ulStyle Line style.

ulFormat Line format.

ptiStart (x, y) position of start (the start position is included in the line).
ptiStop (x, y) position of end (the end position is not included in the line).
IxLeft Left edge of bounding rectangle.

IxRight Right edge of bounding rectangle.

psihNext Pointer to next shortline.

psthPrev Pointer to previous shortline.

Notice that the boundaries of the rectangle are inclusive at the start points of the lines, and
exclusive at the stop points regardless of the direction.

This structure is a discrete representation of a curve that starts at point (x0, y0) and ends at
point (x1, y1). For each of the (y1-y0+ 1) rows, there is exactly one x value contained in the x
array. The final point in the series is not drawn.

ax Steps. This is an array of x-coordinates in absolute values. There is one coordinate value for
each shortline.

Return Codes: On completion, the handling routine must return an integer (cHits) indicating, where
appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

8-104 Presentation Driver Reference

~—

=

line function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-105

text function

GreQueryCharPositions

#define INCL_GRE_STRINGS

BOOL GreQueryCharPositions (hdc, pptiStart, flOptions, cChars, pchString, pAdx, paptXY, pInstance, 1Function)

This function stores at the location addressed by paptXY, an array of world coordinates identifying the start
points at which the device is to place each character of a given string. GreQueryCharPositions is required
for the management of device fonts in CM_MODE2 only. When the presentation driver has no device fonts,
the handling routine must post PMERR_DEV_FUNC_NOT_INSTALLED.

Support: This function must be supported by the presentation driver. GreQueryCharPositions is called
by GpiQueryCharStringPos, and is used to get the position where the next string output would occur
relative to the current presentation space position. It also returns the starting position of each character
within that string.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pptiStart PPOINTL Pointer to (x, y) coordinates of optional starting position.

fiOptions ULONG Flags. See below.

cChars LONG Number of bytes in string.

pchString PCH Pointer to character string.

pAdx PLONG Pointer to Increment array. See below.

paptXY PPOINTL Pointer to array where character positions are returned.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreQueryCharFésitions.

fiOptions The following flags can be set:

CHS_VECTOR If set, increment vector is present.
CHS_START_XY If set, starting position is present. Otherwise, pptlStart is ignored.

pAdx Vector of increment values with one element for each character in the string. After writing a
character, the increment specifies the absolute distance in world coordinates to get to the
starting point of the next character.

paptXyY Pointer to an array of (cChars + 1) returned positions. The first value in the array is the initial
current position; the last value is the current position on return.

Return Codes: On compietion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

8-106 Presentation Driver Reference

_F

text function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_CHAR_ANGLE_ATTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CHAR_POS_OPTIONS
PMERR_INV_CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_MATRIX_ELEMENT
PMERR_INV_SETID
PMERR_INV_TRANSFORM_TYPE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-107

color table function

GreQueryColorData

#define INCL_GRE_COLORTABLE

BOOL GreQueryColorData (hdc, cArray, pArray, pInstance, 1Function)

This function stores an array of information about the currently available logical color table and device
colors at the location addressed by pArray. When the current table is the default logical color table,
presentation drivers that support iess than 16 colors return the device colors that the 16 colors from 0
(CLR_BACKGROUND) through 15 (CLR_PALEGRAY) have been mapped to.

Support: This function must be supported by the presentation driver. GreQueryColorData is called by
GpiQueryColorData in response to an application’s request for the currently selected color table data for
the device context. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

cArray LONG Number of elements supplied in Array.

pArray PLONG Pointer to Array. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreQueryColorData.

pArray On return, this array contains:
IArray[QCD_LCT_FORMAT] Format of loaded color table (if any):
LCOLF_DEFAULT Default color table is in force.

LCOLF_INDRGB Color table loaded, which provides
translation from index to RGB.

LCOLF_RGB Color index = RGB.

LCOLF_PALETTE DC has a palette selected.
IArray[QCD_LCT_LOINDEX] Smallest color index loaded (always 0).
IArray[QCD_LCT_HINDEX] Largest color index loaded (never less than 15).

Information is only returned for the number of elements supplied, any extra elements supplied
must be zeroed by the handling routine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful

FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-108 Presentation Driver Reference

color table function

GreQueryColorindex

#define INCL_GRE_COLORTABLE

LONG GreQueryColorIndex (hdc, f1Options, rgbColor, pInstance, 1Function)

This function returns the logical color index that is closest to the specified RGB color representation for the
device. If the color index is RGB mode, the supplied RGB value is returned.

Support: This function must be supported by the presentation driver. GreQueryColorindex is called by
GpiQueryColorindex when an application requests the index of the color most closely matching a specified
color, relative to the current logical color table for the device context.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG See below.

rgbColor LONG Color, as an RGB value.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreQueryColorindex.

floptions The only valid option is:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if any)
is realized. Otherwise, the information is required when the logical
color table is not realized.

Other flags are reserved and must be 0.

Return Codes: On completion, the handling routine must return the color index providing the closest
match to the specified color (IColorindex), or GPI_ALTERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COLOR_OPTIONS
PMERR_INV_HDC
PMERR_INV_RGBCOLOR.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-109

query function

GreQueryDeviceBitmaps

#define INCL_GRE_DEVICE

BOOL GreQueryDeviceBitmaps (hdc, paOutData, cOutdata, pInstance, 1Function)

This function stores a list of bit-map formats supported by the device in the array addressed by paOutData.
The number of formats supported can be found by using GreQueryDeviceCaps. Each format is returned in
a pair of array elements and is in the form (cPlanes, cBitsPerPel). The first pair in the array must be the
format that most closely matches the device.

Support: This function must be supported by the presentation driver. GreQueryDeviceBitmaps is called
by GpiQueryDeviceBitmapFormats in response to the request of an application for a list of the bit-map
formats that the device context supports. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdec HDC Device context handle.

paOutData PLONG Pointer to array where the bit-map format data is returned; excess
elements are set to 0.

cOutData LONG Number of elements in the array pointed to by paOutData. This must be
even.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD =NGreQueryDeviceBitmaps.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successtul
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED '
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-110 Presentation Driver Reference

query function

GreQueryDeviceCaps

#define INCL_GRE_DEVICE

BOOL GreQueryDeviceCaps (hdc, 1Index, paOutData, cOutData, pInstance, 1Function)

This function supports DevQueryCaps at the APl. The handling routine returns the required information in
the device capabilities buffer addressed by paOutData. Calls to GreQueryDeviceCaps would not usually
require the handling routine to return data in all fields in the buffer. The parameters lindex and cOutData
identify the offset to the first field and the count of consecutive field for returned data.

Note: In 0S/2 2.0, if GreQueryDeviceCaps returns data in the CAPS_DRIVER_VERSION field, the return
value must be 00000200H.

Support: This function must be supported by the presentation driver. GreQueryDeviceCaps is called by
DevQueryCaps, and is used to return information regarding the general capabilities of the device.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle.

lindex LONG Identifies the first item required. See below.

paOutData PLONG Pointer to an array where information is returned.

cOutData LONG Number of items of information to be returned at paOutData.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryDeviceCaps.
lindex Indicates the element within the device capabilities array at which the presentation driver must

begin returning information. Device capabilities are held by the system in an array of ULONG
fields. For details, see DevQueryCaps in the OS/2 2.0 Presentation Manager Programming
Reference.

Additional information is provided in the array for communication between the presentation
driver and the graphics engine. The CAPS_ADDITIONAL_GRAPHICS field has two extra flags
and a CAPS_DEVICE_FONT_SIM field is provided.

The additional flags in CAPS_ADDITIONAL_GRAPHICS are used (in conjunction with the
CAPS_FONT_OUTLINE_DEFAULT and CAPS_FONT_IMAGE_DEFAULT flags) by the presentation
driver when it wants the graphics engine to manage transforms and mappings for the default
fonts that the driver supplies. The flags are:

CAPS_FONT_OUTLINE_MANAGE Set by the presentation driver to indicate that the graphics
engine must manage the default outline font

CAPS_FONT_IMAGE_MANAGE Set by the presentation driver to indicate that the graphics
engine must manage the default image font.

Note: If the presentation driver supplies the fonts but wants the graphics engine to manage
them, it must pass the font address to the graphics engine using GreQueryDevResource.

The CAPS_DEVICE_FONT_SIM field contains flags that the presentation driver sets so that the
graphics engine will handle simulations for the default fonts supplied by the driver:

CAPS_DEV_FONT_SIM_BOLD Indicates that the graphics engine should simulate
CDEF_BOLD for device fonts

Chapter 8. Mandatory Functions for All Drivers 8=111

query function

CAPS_DEV_FONT_SIM_ITALIC Indicates that the graphics engine should simulate
CDEF_ITALIC for device fonts

CAPS_DEV_FONT_SIM_UNDERSCORE Indicates that the graphics engine should simulate
CDEF_UNDERSCORE for device fonts

CAPS_DEV_FONT_SIM_STRIKEOUT Indicates that the graphics engine should simulate
CDEF_STRIKEOUT for device fonts.

Note: The font attributes CDEF_xxx are identified by the cdef.fFlags field in the character
attributes bundle (see page 8-6). In the presentation driver, routines that write character
strings should check the cdef.fFlags field to determine whether the call should be passed
to the default handling routine in the graphics engine.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful

FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT INSTALLED
PMERR_INV_LENGTH_OR._COUNT
PMERR_INV_QUERY_ELEMENT_NO.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-112 Presentation Driver Reference

e

query function

GreQueryDevResource

#define INCL_GRE_DEVICE

LONG GreQueryDevResource (hdc, 1Type, id, pInstance, 1Function)

This function indicates whether a specified resource is avaifable. If the resource is loaded, its handle is
returned so that it can be selected into the device context. The resources (display information, pointers, bit
maps, and fonts) are stored in DLL files. Some of these resources are linked by the presentation driver
when it is first enabled, others are loaded by the application with WinLoadPointer.

The two system fonts are queried by the graphics engine when the presentation driver is loaded. When the
presentation driver has a default font, it returns the handle of the font, as requested. When this function
returns a NULL handie for the system font, the graphics engine default fonts are used instead (see “Font
Functions” on page 11-1).

Support: This function must be supported by the display drivers, which must support the full range of
requests. GreQueryDevResource is used internally by the graphics engine. Hardcopy drivers are required
to provide a minimal level of support. Ata minimum, the hardcopy driver must return 0 to indicate that a
requested resource is not available. If a hardcopy driver has a raster or outline font that it requests the
graphics engine to use as the default, then the presentation driver must return the address of its raster or
outline font when the parameter, id, is equal to RT_FONT.

Stack Frame
Parameter Data Type Description
hdc. HDC Device context handle..
IType ULONG Resource type. See below.
id ULONG Defined resource value.
pinstance PVOID Pointer to instance data.
IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryDevResource.

IType Resource types returned by the presentation driver:

RT_DISPLAYINFO A structure containing some of the display constants required by the
Window Manager. This information is required for all display devices that
support windows. The format of the DISPLAYINFO structure is:

cb Size of this structure (always set to 26).
cxicon Count of pels for x-width of icon.
cylcon Count of pels for y-height of icon. When WinLoadPointer is

used to load the icon, it is stretched or compressed to the
size indicated by cxicon and cylcon.

cxPointer Count of pels for x-width of pointer.

cyPointer Count of pels for y-height of pointer. When WinLoadPointer
is used to load the pointer, it is stretched or compressed to
the size indicated by cxPointer and cyPointer.

cxBorder Count of pels for x-width of horizontal border.

cyBorder Count of pels for y-height vertical border.

Chapter 8. Mandatory Functions for All Drivers 8-113

query function

8-114

cxHSlider
cyVSiider
cxSizeBorder
cySizeBorder
cxDeviceAlign
cyDeviceAlign

Count of pels for x-width of horizontal scroll bar slider.
Count of pels for y-height of vertical scroll bar slider.
Count of pels for x-width of default border.

Count of pels for y-height of default border.

Count of pels for horizontal device alignment.

Count of pels for vertical device alignment. Some display
devices operate faster when operation coordinates are
aligned to a byte. Word or DWORD boundary.

These two parameters allow the presentation driver to
align windows on these boundaries and so optimize
window management operations.

RT_POINTER Defined system pointers are:

SPTR_ARROW Left-pointing arrow, usually the system
default.

SPTR_TEXT Text-insertion pointer, typically used when
the mouse pointer is on an edit control.

SPTR_WAIT An hourglass used to teil the user to wait
while the system is busy.

SPTR_MOVE Four arrows together, pointing north, south,
east and west, that tell the user that window
can be dragged in any of these directions.

SPTR_SIZENWSE An arrow pointing northwest and southeast,
that tells the user that the window can be
sized in these directions.

SPTR_SIZENESW An arrow pointing northeast and southwest,

SPTR_SIZEWE

SPTR_SIZENS

SPTR_APPICON

that tells the user that the window can be
sized in these directions.

An arrow pointing east and west, that tells
the user that the window can be sized in
these directions.

An arrow pointing north and south, that tells
the user that the window can be sized in
these directions.

Usually a blank icon. This is used when a
window that has been sized down to its
minimum (and has no normal icon) is
dragged across the screen.

SPTR_ICONINFORMATION Pointer used as part of a message box when

specified in a call to WinMessageBox.

SPTR_ICONQUESTION Pointer used as part of a message box when

specified in a call to WinMessageBox.

SPTR_ICONERROR Pointer used as part of a message box when

specified in a call to WinMessageBox.

SPTR_ICONWARNING Pointer used as part of a message box when

Presentation Driver Reference

specified in a call to WinMessageBox.

b

14

RT_BITMAP

SPTR_ILLEGAL

SPTR_MULTFILE

SPTR_PROGRAM

SPTR_FILE

SPTR_FOLDER

query function

Pointer used by the filing system to notify the
user of an illegal mouse-directed copy or
move operation.

Pointer used by the file system to indicate a
multiple file copy or move operation.

Pointer used by the file system to indicate a
copy or move operation on an executable
program file.

Pointer used by the file system to indicate a
copy or move operation on an ordinary file.

Pointer used by the file system to indicate a
copy or move operation on an entire
directory.

The following defined system bit maps are required in display drivers:

SBMP_BTNCORNERS

SBMP_DRIVE
SBMP_FILE
SBMP_FOLDER

SBMP_MENUATTACHED

SBMP_MENUCHECK

SBMP_PROGRAM

SBMP_SIZEBOX

Contains the rounded corners for pushbuttons.
It is arranged as three bit maps divided into 2x2
bit map arrays describing the corners of each
bit map. The three bit maps are defined as
follows:

¢ Contains the corners of an unselected
pushbutton, which is not a default
pushbutton.

¢ Holds the corners of a default pushbutton
that is currently not selected.

¢ Contains the corners of a currently selected
pushbutton, which can be either a default or
non-default pushbutton.

Used by the file system to display the logical
disk drive.

Used by the file system to indicate an unknown
file type.

Used by the file system to display a directory.

Drawn on the right edge of a menu item to
indicate that a pulldown menu is attached to
that item.

Displayed next to a menu item when the item is
checked. Menu items are displayed in the
system font and the menu checks are vertically
aligned next to them. The height of this bit map
must be no greater than the system font height
to ensure that consecutive menu-check bit
maps do not overlap. Its width is arbitrary, but
is normally the same as the system font width.

Used by the file system to mark EXE and COM
files.

Used by some applications to display a sizebox
in the bottom-right corner of a frame window.

Chapter 8. Mandatory Functions for All Drivers 8-115

query function

RT_FONT

SBMP_TREEMINUS Used by the file system to indicate there are no
more subdirectories to view.
SBMP_TREEPLUS Used by the file system to indicate there are

more subdirectories to view.

The following defined system bit maps are also required to ensure
compatibility with OS/2 Version 1.x applications:

SBMP_OLD_CHILDSYSMENU
SBMP_OLD_CHECKBOXES
SBMP_OLD_MAXBUTTON

‘SBMP_OLD_MINBUTTON

SBMP_OLD_RESTOREBUTTON
SBMP_OLD_SBDNARROW
SBMP_OLD_SBLFARROW
SBMP_OLD_SBRGARROW
SBMP_OLD_SBUPARROW
SBMP_OLD_SYSMENU.

The following defined system bit maps are provided by PMWIN.DLL and are
optional in display drivers:

SBMP_CHECKBOXES
SBMP_CHILDSYSMENU
SBMP_CHILDSYSMENUDEP
SBMP_CLOSEBUTTON
SBMP_CLOSEBUTTONDEP
SBMP_COMBODOWN
SBMP_MAXBUTTON
SBMP_MAXBUTTONDEP
SBMP_MINBUTTON
SBMP_MINBUTTONDEP
SBMP_RESTOREBUTTON
SBMP_RESTOREBUTTONDEP
SBMP_SBDNARROW
SBMP_SBDNARROWDEP
SBMP_SBDNARROWDIS
SBMP_SBLFARROW
SBMP_SBLFARROWDEP
SBMP_SBLFARROWDIS
SBMP_SBRGARROWDEP
SBMP_SBRGARROWDIS
SBMP_SBRGARRROW
SBMP_SBUPARROW
SBMP_SBUPARROWDEP
SBMP_SBUPARROWDIS
SBMP_SYSMENU
SBMP_SYSMENUDEP.

Refer to the function WinGetSysBitmap in 0S/2 2.0 Presentation Manager
Programming Reference for more information.

The default system fonts are:

SFONT_RASTER Default image font

SFONT_OUTLINE Default outline font.

Return Codes: This function returns the address of the indicated resource, 0 if no address is available,
or GPI_ALTERROR if an.error oceurs.

8-116

Presentation Driver Reference

query function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_DEV_FUNC_NOT_INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-117

query function

GreQueryHardcopyCaps (Hardcopy Drivers Only)

#define INCL_GRE_DEVICE

LONG GreQueryHardcopyCaps (hdc, 1Start, cCount, pInfo, pInstance, 1Function)

This function stores information about the hardcopy capabilities of the device in the buffer addressed by

pinfo. The information is stored as a sequence of one or more HCINFO structures defining the hardcopy

capabilities for one or more form codes. For presentation drivers that support more than one form code

with the relevant data held in a structure of HCINFO structures, the parameters IStart and cCount identify
the starting point in the main structure and the number of HCINFO structures to be stored.

It is usual for this function to be issued twice (initially with a value of 0 in cCount) to return the number of

forms available. Storage can be allocated and the function called again with cCount set to the number of
forms for which information is required.

Support: This function must be supported by hardcopy drivers. It is not required for display drivers.
GreQueryHardcopyCaps is called by the function DevQueryHardcopyCaps.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

IStart LONG Index. See below.

cCount LONG Number of forms. See below.

pinfo PHCINFO Pointer to buffer for returned form data. See below.

plnstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreQueryHardcopyCaps.

IStart Index to the required starting HCINFO structure. A value of 0 identifies the HCINFO for the first
form.

cCount Number of structures to be returned in the buffer. A value of 0 requests the handling routine to
set the return code to the number of forms that the driver supports.

pinfo A pointer to the buffer for the returned data. The data is returned as a set of one or more
HCINFO structures. When pinfo is not equal to NULL and IStart is greater than, or equal to, the
number of form codes that the hardcopy drivers supports, the hardcopy driver should return 0
without modifying the memory block pointed to by pinfo.

szFormname[32] Character string containing the name of the form

cx Width (left-to-right) in millimeters

cy Height (top-to-bottom) in millimeters

xLeftClip Left clip limit in millimeters

yBottomClip Bottom clip limit in millimeters

xRightClip Right clip limit in millimeters

yTopClip Top clip limit in millimeters

xPels Number of pels between left and right clip limits
yPels Number of pels between bottom and top clip limits
flAttributes Attributes describing the availability of the form:

8-118 Ppresentation Driver Reference

X_F

query function

HCAPS_CURRENT The form is currently available on the device. For
devices with multiple paper trays,
HCAPS_CURRENT says that the paper required for
this form is in the current paper tray.

HCAPS_SELECTABLE The form is installed on the device but has to be
selected. That is, the paper tray required for this
form is not the current one.

Return Codes: The value returned by the handling routine depends on the initial value of cCount. If
cCount=0, return the total number of form codes that the presentation driver supports. For any other
value, return the number of HCINFO structures that were transferred to the buffer.

Possible Errors Detected: When an error is detected, the handling routine must return DQHC_ERROR and
call WinSetErrorinfo to post the condition. An error code for conditions that the handling routine is
expected to check is:

PMERR_INV_LENGTH_OR._COUNT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-119

color table function

GreQueryLogColorTable

#define INCL_GRE_COLORTABLE

LONG GreQueryLogColorTable (hdc, flOptions, 1Start, cArray, pArray, pInstance, 1Function)

This function stores an array of the current logical color values at the location addressed by pArray.

Support: This function must be supported by the presentation driver. GreQuerylLogColorTable is called
by GpiQueryLogColorTable in response to an application’s request for the currently configured logical
color table. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG See below.

IStart LONG Starting index for which data is to be returned.

cArray LONG Number of elements available in the array.

pArray PLONG Pointer to the array in which the information is returned.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryLogColorTable.

fiOptions The only valid option flag is:
LCOLOPT_INDEX If set, the handling routine must return the index for each RGB value.

pArray When LCOLOPT_INDEX is set, pArray points to an array of alternating color indexes and
values (index1, value1, index2, value2, and so forth). If the logical color table is not ioaded
with a contiguous set of indexes, any index values that are not loaded are skipped.

When LCOLOPT_INDEX is not set, pArray points to an array of RGB color values in which the
information is to be returned. Each value is the same as those defined for
“GreCreatelLogColorTable” on page 8-34, starting with the specified index and ending when
there are no further loaded entries in the table or when cCount has been exhausted. If the
logical color table is not loaded with a contiguous set of indexes, QLCT_NOTLOADED is
returned as the color value for any index values that are not loaded.

Return Codes: The handling routine must return a LONG value indicating the number of elements
returned in pArray or:

QLCT_ERROR Error
QLCT_RGB Color table is in RGB mode and no elements are returned.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COLOR_OPTIONS
PMERR_INV_COLOR_START INDEX
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-120 Presentation Driver Reference

color table function

GreQueryNearestColor

#define INCL_GRE_COLORTABLE

LONG GreQueryNearestColor (hdc, f1Options, rgbColorin, pInstance, 1Function)

This function returns the available color nearest to the specified color on the currently associated device
even if it is not available in the logical color table. Both colors are specified as RGB values. The color
used for drawing primitives such as lines and text is the color returned. GreQueryNearestColor does not
consider the possibility of using dithered colors for filling areas. Where dithered colors are used for filling,
the color used for text and lines is likely to be different even when the same color index is selected.

The nearest color is determined by finding its position in RGB space. RGB space can be defined as a cube
with three axes (representing red, green and blue color intensities) radiating from one corner or origin.
Moving up the Red axis results in increasing red intensity. Different intensities of cyan can be produced by
moving along the Green and Blue axes. For EGA and VGA devices, dithering is performed by dividing the
RGB space into 9x9x9 cubical cells representing the colors that can be created. The cell each RGB color
falls into is determined and a lookup table is created to indicate which EGA planes to set on or off to create
each color.

When this function is called for a monochrome device, the color returned is either the reset color or the
contrast color for the device. See “Support for Monochrome Devices” on page 8-15.

Support: This function must be supported by the presentation driver. GreQueryNearestColor is called
by GpiQueryNearestColor when the application wants the available colors nearest to the specified color.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG See below.

rgbColorin LONG Color required.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryNearestColor.

fiOptions The only significant flag is:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if
any) is realized. When this flag is not set, the information is
required when the logical color table is not realized.

Other flags are reserved.

Return Codes: The handling routine must return the nearest available RGB color to that requested
(rgbColorOut), or GPI_ALTERROR if an error occurred.

Chapter 8. Mandatory Functions for All Drivers 8=-121

color table function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COLOR_OPTIONS
PMERR_INV_HDC
PMERR_INV_RGBCOLOR.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-122 Presentation.Driver Reference

GreQueryRealColors

color table function

#define INCL_GRE_COLORTABLE

LONG GreQueryRealColors (hdc, flOptions, 1Start, cArray, pArray, pInstance, 1Function)

This function stores, in the array addressed by pArray, the RGB values of the distinct colors available on
the currently associated device.

Support: This function must be supported by the presentation driver. GreQueryRealColors is called by
GpiQueryRealColors in response to an application requesting the currently available colors for the device

context.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG See below.

|Start LONG Ordinal number of the first color required. See below.

cArray LONG Number of elements available in the array.

pArray PLONG Pointer to array in which data is returned.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryRealColors.
flOptions Valid options are:

IStart

pArray

LCOLOPT_REALIZED

LCOLOPT_INDEX

If set, the information is required when the logical color table (if any)
is realized. When this flag is not set, the information is required
when the logical color table is not realized.

If set, the handling routine must return the index for each RGB value.
Other flags are reserved and must be 0.

Typically, this is 0 to start the sequence. This value does not necessarily bear any
relationship to the color index because the order in which the colors are returned is not

defined.

When LCOLOPT_INDEX is set, this is an array of alternating color indexes and values (in the
order, index1, valuel, index2, value2 and so forth). If there is a color table, colors that are not
in the table but are available on the device, have a special index of QLCT_NOTLOADED. In
RGB mode, the RGB value is returned in the color indexes.

When LCOLOPT_INDEX is not set, this is an array of color values. Each value is the same as
those defined for “GreCreateLogColorTable” on page 8-34.

Return Codes: On completion, the handling routine must return the number of colors returned in the
array (cColors), or GPI_ALTERROR if an error occurred

Chapter 8. Mandatory Functions for All Drivers 8-123

color table function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COLOR_OPTIONS
PMERR_INV_COLOR_START_INDEX
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

8-124 Presentation Driver Reference

~_¥F

color table function

GreQueryRGBColor

#define INCL_GRE_COLORTABLE

LONG GreQueryRGBColor (hdc, flOptions, iColor, pInstance, 1Function)

This function returns the actual RGB color that results from the specified color index for the specified
device If the color index is RGB mode, the nearest RGB color (the same as QueryNearestColor) is
returned. All defined indexes are valid except CLR_DEFAULT, which causes an error to be raised.

Support: This function must be supported by the presentation driver. GreQueryRGBColor is called by
GpiQueryRGBColor in response to the request of an application to convert a color index into the
corresponding RGB value. If the logical table is currently in RGB mode, the nearest RGB color is returned.
This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

fiOptions ULONG See below.

iColor LONG Color index.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryRGBColor.

flOptions Valid options are:

LCOLOPT_REALIZED If set, the information is required when the logical color table (if any)
is realized. When this flag is not set, the information is required
when the logical color table is not realized.

LCOLOPT_INDEX When set, the handling routine must return the actual RGB color
originally specified for this index. Otherwise, it must return the
nearest RGB color for this index, that is, the one which would result
from drawing on the specified device.

Other flags are reserved and must be 0.

Return Codes: On completion, the handling routine must return the nearest available RGB color to that
requested (rgbColor), or GPI_ALTERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COLOR_OPTIONS
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers ~ 8-125

text function

GreQueryTéxtBox

#define INCL_GRE_STRINGS

BOOL GreQueryTextBox (hdc, cChars, pchString, cptPosition, paptPosition, pInstance, 1Function)

This function processes a character string as if it were being drawn. The handling routine stores the
coordinates of the current text box (relative to the current (x, y) position) as an array at the location
indicated by paptPosition. The first four coordinate pairs identify the bounding parallelogram for the given
character string. The fifth coordinate pair is the (x, y) position of the starting point for the next character
position after the string, that is, the current position value that would be set by an equivalent call to
GpiCharStringAt. The positions take account of current values for character spacing such as kerning and
character space. The points on the borders of the character box are deemed to be inside the box.

When the character mode is CM_MODE2, this function is valid only if the character angle and shear
attributes are set to their default values. See “Character Attributes” on page 8-6.

Support: This function must be supported by the presentation driver. GreQueryTextBox is called by the
function GpiQueryTextBox, and is used to return a tight bounding box for the currently selected font of a
given string relative to the current position.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie.

cChars LONG Number of bytes in string.

pchString PCH Pointer to character string.

cptPosition LONG Number of (x, y) pairs that the Position array can contain.
paptPosition PPOINTL Pointer to position array. See below.

plnstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryTextBox.

paptPosition Pointer to the array in which the function returns the requested values. Upon completion,
the array contains cptPosition sets of (x, y) coordinates in the following order:

TXTBOX_TOPLEFT Top-left corner
TXTBOX_BOTTOMLEFT Bottom-left corner
TXTBOX_TOPRIGHT Top-right corner
TXTBOX_BOTTOMRIGHT Bottom-right corner
TXTBOX_CONCAT Start point of next character position.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNG_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY

8-126 Presentation Driver Reference

.7

PMERR_INSUFFICIENT_MEMORY
PMERR_INV_CHAR_ANGLE_ATTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_MATRIX_ELEMENT
PMERR_INV_SETID
PMERR_INV_TRANSFORM_TYPE.

text function

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers

8-127

text function

GreQueryWidthTable

#define INCL_GRE_STRINGS

BOOL GreQueryWidthTable (hdc, 1FirstChar, cWidthTable, paWidthTable, pInstance, TFunction)

This function stores, at the location addressed by paWidthTable, an array of world coordinates representing
the width table information of the currently selected font. The handling routine must use GreConvert (page
10-26) to transform the width-table information from device coordinates to world coordinates.

Support: This function must be supported by the presentation driver. GreQueryWidthTable is called by
the function GpiQueryWidthTable. GreQueryWidthTable returns an array of world coordinates representing
the width-table information for the currently selected font.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

IFirstChar LONG Code point of the initial character for which width-table information is
required

cWidthTable LONG Count of widths in the width-table data

paWidthTable PLONG Pointer to buffer of width-table data

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreQueryWidthTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_INSUFFICIENT _MEMORY
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CODEPAGE
PMERR_INV_COORD_SPACE
PMERR_INV_FIRST_CHAR
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_MATRIX_ELEMENT
PMERR_INV_SETID
PMERR_INV_TRANSFORM_TYPE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-128 Presentation Driver Reference

color table function

GreRealizeColorTable

#define INCL_GRE_COLORTABLE

BOOL GreRealizeColorTable (hdc, pInstance, 1Function)

Note: GreRealizeColorTable is provided for the support of older applications and is of less importance for
new applications.

This function causes the system to ensure that, for a realizable color table, the device physical color table
is set to the closest possible match to the logical color table. A device context such as a hardcopy DC can
implicitly realize a color table when it is created. in this case, the handling routine need only return
Successful. An error must be posted if this function is called for a color table that cannot be realized.

Support: This function must be supported by the presentation driver. GreRealizeColorTable is called by
GpiRealizeColorTable in response to the request of an application to realize the current logical color table
to device output capabilities. This function can be handled by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreRealizeColorTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COL_TABLE_NOT_REALIZABLE
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_REALIZE_NOT_SUPPORTED.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-129

device function 2

GreRealizeFont

#define INCL_GRE_DEVMISC2

ULONG GreRealizeFont (hdc, cmdCommand, pLogFont, pFont, pInstance, 1Function)

This function requests the presentation driver to realize or delete a font.

Support: This function must be supported by the presentation driver. GreRealizeFont is called during
the processing of GpiCreatelogFont to realize the specified logical font. This function call can be handled
by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

cmdCommand ULONG See below.

pLogFont PFATTRS Pointer to a logical font. See below.

pFont PULONG See below.

plnstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreRealizeFont.

cmdCommand Valid commands are;

8-130

RF_DEVICE_FONT

RF_LOAD_ENGINE_FONT

RF_DELETE_FONT

Presentation Driver Reference

(1). The graphics engine asks the presentation driver if it is
able to realize a device font for the logical font identified by
pLogFont. The action taken by the handling routine
depends on the match number of the logical font. The
match number is the IMatch parameter in the
FONTMETRICS structure of the font specified. Font
matching is discussed on page 11-1.

¢ If IMatch is negative, the request is for the device font
with the corresponding match number. The handling
routine must return the font handle, or 0 if no match was
found.

¢ |f IMatch is 0, the handling routine must search the
device fonts for an exact match to pLogFont and return
its handle, or 0 if no match was found.

* If IMatch is a positive value, the handling routine must
return 0 as if no font was found.

(2). The presentation driver is requested to convert an
engine font into a device font. The presentation driver
must return the font handle, or 0 if it is unable to convert
the font.

(3). The presentation driver is requested to delete a device
font. The 32-bit font handle is passed in pFont (see page
8-131).

device function 2

RF_DELETE_ENGINE_FONT (4). Informs the presentation driver that a previously
loaded engine font is being deleted. If font caching is not
supported, the handling routine performs action.

The font is passed to the presentation driver in the device character bundie during the
GreDeviceSetAttribute call. (See “Character Attributes” on page 8-6.) A bitinthe
CHARDEFS structure indicates whether this is a pointer to an engine font or the handle to
a device font.

pLogfont The initial value of cndCommand determines the nature of this parameter:
RF_DEVICE_FONT Pointer to a logical font
RF_LOAD_ENGINE_FONT Pointer to a logical font
RF_DELETE_FONT NULL pointer
RF_DELETE_ENGINE_FONT NULL pointer

pFont The initial value of cndCommand determines the nature of this parameter:
RF_DEVICE_FONT NULL pointer
RF_LOAD_ENGINE_FONT Pointer to an engine font
RF_DELETE_FONT 32-bit device font handle

RF_DELETE_ENGINE_FONT Pointer to an engine font.

Return Codes: The value returned by this function depends on whether the presentation driver is
requested to realize or to delete the font. When realizing or loading a font, the handling routine must return
a 32-bit logical font handle (GPI_ALTERROR), or 0 if the match (or load) was unsuccessful.

When deleting a font, the handling routine must return:

GPI_OK Successful
GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: GreRealizeFont is called by the graphics engine to allow the presentation driver to satisfy
logical font requests. The example below shows a typical font-matching algorithm for the presentation
driver:

/* If the face name is empty, the application is requesting the default font. Return NO_MATCH.*/
if(Font->szFacename = NULL)

{

return(0);

Chapter 8. Mandatory Functions for All Drivers 8-131

device function 2

/* If the match number is positive, an engine font is required. Return NO_MATCH. */

return(0);

/* 1f the match number is negative, a device font is required. The presentation driver should */

/* return the font if it exists; otherwise return NO_MATCH. */
if(Font->1Match < 0)
{
if(font with required 1Match exists)
/* Check the fsSelection flags and szFacename. If the font is unable to satisfy these */
/* flags, return NO_MATCH. Otherwise, return the device font handle. */
if((FATTR_FONTUSE_OUTLINE && font not outline)
| | (FATTR_FONTUSE_TRANSFORMABLE && font not outline) ||(szFacename does not match font))
return(0);
else
return(device_font_handle);
}
else
/* Attempt metrics match (i.e. all metrics including szFaceName, usCodePage, 1AveCharWidth */
/* and 1MaxBaselineExt). If match exists, return device font handle. Otherwise, return */
/* NO_MATCH. */
if(metric match exists)
{
return(device_font_handle);
}
else
return(0);
}
}
/* The match number is zero, the presentation driver should search for a font with the */
/* specified metrics, and if an exact match exists, return the device font handle. Otherwise, */
/¥ return NO_MATCH. */

if(Font->1Match = 0)
if(metrics match exists - see above)

/* Check the fsSelection flags. If the font is unable to satisfy these flags, return */
/* NO_MATCH. Otherwise, return the device font handle. */

if((FATTR_FONTUSE_OUTLINE && font not outline)
| | (FATTR_FONTUSE_TRANSFORMABLE 8& font not outline)
return(0);
else
return({device_font_handle);
}

else
return(0);

8-132 Presentation Driver Reference

e

device function 3

GreResetBounds

#define INCL_GRE_DEVMISC3

BOOL GreResetBounds (hdc, f10ptions, pInstance, 1Function)

This function resets the bounds to their initial values, 07FFFFFH for the minimum coordinates and F800000H
for the maximum coordinates. Hardcopy drivers are required to support only GPl bounds. Display drivers
must also support user bounds for the Window Manager.

Support: This function must be supported by the presentation driver. GreResetBounds is called by the
function GpiResetBoundaryData, and is used to reset the boundary data for a presentation space or device
context pair.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

flOptions ULONG Option flags. See below.

pinstance. PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD =NGreResetBounds.

fiOptions Valid flags are:

RB_GPI Reset the GPI bounds
RB_USER Reset the user bounds

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers 8-133

bit-map function

GreSetBitmapBits

#define INCL_GRE_BITMAPS

LONG GreSetBitmapBits (hdc, hbm, 1ScanStart, cScanCount, pBitmap, pInfo, pInstance, 1Function)

This function transfers bit-map data from application storage into the specified bit map or DC. The bit map
can be specified by its handle, or (if this is NULL) a DC handle. In this case, the device context must be a
memory DC with a bit map currently selected. This function does not set bits directly into any other kind of
device. When the format of the supplied bit map does not match that of the device, the handling routine
must convert it using the supplied BITMAPINFO or BITMAPINFO2 structure. Only standard formats and
device formats that are compatible with the target device are supported.

Support: This function must be supported by the presentation driver. GreSetBitmapBits is called from
the function GpiSetBitmapBits, and is used to transfer bit-map data from the device context to application
storage. This function can be handied by bit-map simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

hbm HBITMAP Bit-map handle.

IScanStart LONG Scan line number from where data transfer starts; 0 is the first.
cScanCount LONG Number of scan lines to be transferred.

pBitmap PBYTE Pointer to bit-map data. See below.

plinfo PBITMAPINFO Pointer to BITMAPINFO or BITMAPINFO2 structure. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreSetBitmapBits.

pBitmap Pointer to the pel data of the bit map. This data is stored in the order that the coordinates
appear on a display screen, that is, the pel in the lower-left corner is the first in the bit map.
Pels are scanned to the right, and upward, from that position. The bits of the first pel are stored
beginning with the most significant bits of the first byte. The data for pels in each scan line is
packed together tightly. However, all scan lines are padded at the end so that each one begins
on a ULONG boundary. That is, three bytes of pel data will hold one 24-bit pel, three 8-bit pels,
six 4-bit pels, or twenty-four 1-bit pels. If those three bytes are the only pel data for that scan
line, one more byte of zeros would be required to pad the line to a ULONG boundary.

pinfo Pointer to either a BITMAPINFO structure:
cbFix Length of structure
cx Bit-map width
cy Bit-map height
cPlanes Number of color planes, 1 if standard format
cBitCount Number of adjacent color bits per pel
argbColor[] Color table array of RGB structures:
bBlue
bGreen
bRed.
Or pointer to a BITMAPINFO2 structure:
cbFix Length of structure

8-134 Presentation Driver Reference

cx

cy

cPlanes
cBitCount
ulCompression

cbimage

cxResolution

cyResolution

ccirUsed

cclrimportant

usUnits

usReserved

usRecording

usRendering

bit-map function

Bit-map width

Bit-map height

Number of planes, 1 if standard format

Number of adjacent color bits per pel

Compression scheme used to store the bit map:

BCA_UNCOMP Bitmap is uncompressed (the only valid value).

Length of bit-map storage data in bytes. If the bit map is uncompressed, 0
(default) can be specified for this.

Horizontal component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

Vertical component of the resolution of the target device. That is, the
resolution of the device the bit map is intended for in the units specified by
usUnits. This information enables an application to select from a resource
group the bit map that best matches the characteristics of the current output
device.

The number of color indexes from the color table that are used by the bit
map. If itis 0 (default), all the indexes are used. I it is non-zero, only the
first ccirUsed entries in the table are accessed by the system,; further entries
can be omitted.

For standard formats with a cBitCount of 1, 4, or 8 (and cPlanes=1), any
indexes beyond cclrUsed are not valid. For example, a bit map with 64
colors can use the 8-bitcount format without having to supply the other 192
entries in the color table. For the 24-bitcount standard format, ccirUsed is
the number of colors used by the bit map.

Minimum number of colors indexes for satisfactory appearance of the bit
map. More colors can be used in the bit map but it is not necessary to
assign them to the device palette. These additional colors can be mapped to
the nearest colors available. Zero (default) means that all entries are
important. For a 24-bitcount standard format, the ccirimportant colors are
also listed in the color table relating to this bit map.

Units of measure of the horizontal and vertical components of resolution:
BRU_METRIC (Default.) Pels per meter.

Reserved field. If present, it must be 0.

Recording algorithm, the format in which bit-map data is recorded:
BRA_BOTTOMUP (Default.) Scan lines are recorded from bottom-to-top.

Half-toning algorithm used to record bit-map data that has been digitally
half-toned:

BRH_NOTHALFTONED

BRH_ERRORDIFFUSION Error diffusion or damped error diffusion
algorithm

(Default.) Bit-map data not half-toned.

Processing a!gorithm for noncoded document
acquisition

BRH_PANDA
BRH_SUPERCIRCLE Super circle algorithm

Chapter 8. Mandatory Functions for All Drivers ~ 8-1 35

bit-map function

cSize1

cSize2

ulColorEncoding

ulldentifier
argbColor[]

Size value 1. If BRH_ERRORDIFFUSION is specified in usRendering, cSize1
is the error damping as a percentage in the range 0—100. A value of 100%

diffused.

if the BRH_PANDA or BRH_SUPERCIRCLE is specified, cSize1 is the
x-dimension of the pattern used in pels.

Size value 2. If BRH_ERRORDIFFUSION is specified in usRendering, this
parameter is ignored. Ifthe BRH_PANDA or BRH_SUPERCIRCLE is
specified, cSize2 is the y-dimension of the pattern used in pels.

Color encoding:

BCE_RGB (Default.) Each element in the color array is an RGB2 data
type.

Reserved for application use.

Color table array of RGB2 structures:

bBlue

bGreen

bRed

fcOptions Reserved. Must be 0.

Return Codes: On completion, the handling routine must return a LONG value (ILines), indicating the
number of lines transferred, or GPI_ALTERROR if an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_DEV_FUNC_NOT _INSTALLED
PMERR_INCORRECT_DC_TYPE
PMERR_INV_HBITMAP
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH

PMERR_INV_INFO_TABLE

PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_SCAN_START.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: When the bit-map handle is NULL, the DC must be a memory DC with a bit map currently
selected. Otherwise, the DC must be valid for that device. When the format of the supplied bit map does
not match that of the device, the handling routine must use the supplied BITMAPINFO or BITMAPINFO2
structure to convert it.

8-136

Presentation Driver Reference

=

device function 3

GreSetCodePage

#define INCL_GRE_DEVMISC3

BOOL GreSetCodePage (hdc, 1CodePage, pInstance, 1Function)

This function sets the current code page for characters written with the base (default) font. The default is
the font that the system uses when the cbnd.usSet attribute is 0000H. (See “Character Attributes” on
page 8-6.) When the base font is not in use, ICodePage is saved until required. When a DC is initialized,
the code page is set to the default code page obtained from WinQueryProcessCp.

Support: This function must be supported by the presentation driver. GreSetCodePage is called by
GpiSetCP in response to an application requesting to change the currently selected code page for the
device context.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

ICodePage ULONG New code page

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreSetCodePage

Return Codes: On completion, the handling routine must return BOOLEAN {fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call Wi nSetErrorinfo to -
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_CODEPAGE
PMERR_INV_HDC
PMERR_INV_IN_AREA.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 8. Mandatory Functions for All Drivers ~ 8-137

line function

GreSetCurrentPosition

#define INCL_GRE_LINES

BOOL GreSetCurrentPosition (hdc, pptiPosition, pInstance, 1Function)

This function sets the current (x, y) position and resets the line type sequence. Typically, the handling
routine also sets a flag in the DC instance data structure to indicate that the first pel of the next line must be
drawn. When the COM_AREA or COM_PATH flag is set, this function is part of an area or path definition.

In either case, the handling routine usually passes the call back to the graphics engine for processing by
the default handling routine. The call would not be passed back to the graphics engine if the presentation
driver had hooked all of the area and path functions.

Support: This function must be supported by all presentation drivers. GreSetCurrentPosition is called
by the function GpiSetCurrentPosition. GreSetCurrentPosition might be called in response to any of the
Presentation Manager drawing functions, which end their operations by updating the current presentation
space position.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pptiPosition PPOINTL Pointer to new current position. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreSetCurrentPosition.

pptiPosition When COM_TRANSFORM is set, the current position is expressed in world coordinates.
Otherwise, this value is passed in device coordinates. The handling routine must transform
these values as appropriate. Typically, the presentation driver maintains the current
position in both coordinate sets in the DC instance data structure.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_GOUNT
PMERR_PATH_LIMIT_EXCEEDED.

Remarks: When the current context is in area, a figure closure line is generated (if necessary), which
can cause a correlation hit to occur on an area boundary. The current position should only be correlated
on, merged into the bounds, or both correlated and merged, if it is actually used in a drawing primitive.

8-138 Presentation Driver Reference

~—

S 4

line function

The following is an example:

GreSetCurrentPosition (hdc, pl);
GreSetCurrentPosition (hdc, p2);

GrePolyLine (hdc, to p3, n);

Notice that the sequence does not merge p1 into the bounds or correlate on it.

Chapter 8. Mandatory Functions for All Drivers ~ 8-139

device function 3

GreSetLineOrigin

#define INCL_GRE_DEVMISC3

BOOL GreSetLineOrigin (hdc, pptlXY, 1Style, pInstance, 1Function)

This function sets the current line style and current position. If COM_TRANSFORM is set, the current
position is expected in world coordinates. If COM_TRANSFORM is not set, the current position is expected
in screen coordinates. The new line style is stored in the DC instance data structure. Some lines and
curves can be drawn either by the presentation driver or by simulations, and therefore must be able to
query and set the style as required.

The high-order WORD of the style number contains the first/last pel information. The low-order byte
indicates the position in the style mask. The next byte is the state of the style error value. See
“GreGetLineOrigin” on page 8-90.

Support: This function must be supported by the presentation driver. GreSetLineOrigin is used to
enable the simultaneous update of line style and position. This function can be handled by bit-map
simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiXy PPOINTL . Pointer to an (x, y) coordinate pair to which the current position is
returned

I1Style ULONG Style number

plnstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreSetLineOrigin

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNG_NOT INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_PATH_LIMIT_EXCEEDED.

Refer to Appendix B of the 0OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: ThecC Language example that follows outlines a strategy by which the handling routine could
use the information from a call to GreSetLineOrigin.

8-140 Presentation Driver Reference

~a

/**/
I *
/* StyleMask is a single byte. usState is a USHORT with the */
/* error byte as the low-order byte and the mask position as */
/* the high-order byte. The three low-order bytes of the mask */
/* position represent the number of bits by which StyleMask has */
/* been rotated. */
*

/**/

while (necessary--)

/**/
/* */
/* Do we need to draw the first pel in the line? */

*

/*
/**/

if (stylemask & 0x80)
SetPel (x, y);

/**/

I */
/* Save the current style state. */
* */

/**/

usState0ld=usState;
switch (LineMajor)

case yMajor:
usState=usStatetyRatio;
break;

default:
usState=usState+xRatio;
break;

if HIBYTE (usState) != HIBYTE (usState0ld)

/**/

/* */
/* If the error byte has overflowed, rotate the style ratio. */
/* The style mask is reset every eighth rotation. */
/* *

/**/

RotateleftOne (StyleRatio);
UpDateNext (x, y);

/**/

r* */

/**/

device function 3

The values for pRatio are set and queried by SetStyleRatio and GetStyleRatio respectively (see pages 9-21
and 9-13). Alternatively, the programmer can specify device-specific defaults for xRatio and yRatio.

Chapter 8. Mandatory Functions for All Drivers 8-141

bit-map function

GreSetPel

#define INCL_GRE_BITMAPS

LONG GreSetPel (hdc, pptlPel, pInstance, 1Function)

This function sets a pel to the current line attribute, color and mix. If COM_TRANSFORM is set, the pel
position is expected in world coordinates. If COM_TRANSFORM is not set, the pel position is expected in
screen coordinates. This function is subject to all usual clipping. No error is returned when the point is
clipped.

Support: This function must be supported by the presentation driver. GreSetPel is called by the function
GpiSetPel, and is used to set the value of a pel at a specified (x, y) coordinate within a device context. This
function can be handled by bit map-simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pptiPel PPOINTL Pointer to pel position in world or screen coordinates
pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreSetPel

Return Codes: On completion, the handling routine must return a LONG integer (cHits) indicating,
where appropriate, whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by the display driver when the correlate flag is on,
and a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-142 Presentation Driver Reference

device function 3

GreUnlockDevice

#define INCL_GRE_DEVMISC3

BOOL GreUnlockDevice (hdc, pInstance, 1Function)

This function allows all pending screen input or output operations blocked by GreLockDevice to continue.

Support: This function must be supported by all presentation drivers. For hardcopy devices, the
hardcopy driver need do nothing except return TRUE (Successful). GreUnlockDevice is used to enable
another process to access a resource (device context) that had been previously locked to prevent
simultaneous update.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreUnlockDevice

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. An error code for conditions that the handling routine is expected to check is:

PMERR_DEV_FUNC_NOT_INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explahation.

Remarks: This function is used to synchronize the use and update of the visible region.

Chapter 8. Mandatory Functions for All Drivers 8-143

color table function

GreUnrealizeColorTable

#define INCL_GRE_COLORTABLE

BOOL GreUnrealizeColorTable (hdc, pInstance, 1Function)

Note: GreUnrealizeColorTable is provided for the support of older applications and is of less importance
for new applications.

This function reverses GreRealizeColorTable by causing the default physical color table for the device to
be reinstated. The logical color table is unaffected by this function.

Support: This function must be supported by the presentation driver. GreUnrealizeColorTable is called
by GpiUnRealizeColorTable in response to the request of an application to restore the application’s logical
color table prior to the last call to GpiRealizeColorTable. This function can be handied by bit-map
simulation.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreUnrealizeColorTable

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COL_TABLE_NOT_REALIZED
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

8-144 Presentation Driver Reference

~—

N 4

mandatory functions for display drivers

Chapter 9. Mandatory Functions for Display Drivers

This chapter describes the functions that must be supported by the display driver for the primary screen.
Although these functions are not required for hardcopy drivers, hardcopy drivers should provide a default
routine to handle the functions described in this chapter, and at FillLogicalDeviceBlock time, put a pointer
to the default routine in the relevant entries in the dispatch table. The default routine will post a warning
PMERR_DEV_FUNC_NOT_INSTALLED and return BOOLEAN TRUE.

Descriptions of these mandatory functions for display drivers are provided. The functions are grouped
according to the conditional include sections of the header file:

AVIO functions (INCL_AVIOP, INCL_GRE_DEVMISC1)

Bit-map functions (INCL_GRE_BITMAPS)

Device functions 2 (INCL_GRE_DEVMISC2)

Device functions 3 (INCL_GRE_DEVMISC3)

Miscellaneous screen functions (INCL_GRE_PICK, INCL_WINPOINTERS).

Each description shows what the handling routine is expected to do, the parameters passed to the routine,
and the values that the routine returns.

AVIO Functions

Advanced VIO (AVIO) functions are used to display characters. These functions must be supported for
Display DCs. Hardcopy drivers do not support AVIO functions. When writing to an AVIO presentation
space, an application must ensure that windows containing alphanumeric data are device-cell aligned,
where appropriate. The presentation driver can determine whether any characters, which are not cell
aligned, are visible. Most column, row, length, width, and height values correspond to cells within the
presentation space Logical Video Buffer (LVB) whose origin is assumed to be at the bottom-left corner of -
the buffer (0,0).

The presentation driver is expected to clip alphanumeric data to the DC region. This is performed in the
same way as for normal graphics, by enumerating the rectangles using GreGetClipRects and clipping each
line to a single rectangie. Although the presentation driver is neither expected to test for correlation hits
nor to accumulate GPI_BOUNDS, it should accumulate USER_BOUNDS for AVIO functions if the
COM_ALT_BOUNDS command flag is set.

The VIO presentation space is passed to the display driver as a pointer to a VioPresentationSpace
structure. The display driver uses this structure to extract the current state data to allow it to update the
display. The VioPresentationSpace structure is defined as:

PresentationSpaceLock Lock (not used by the presentation driver).

pLVB Pointer to the LVB. The LVB is a two-dimensional array of character celis and is
assumed to begin at offset zero within the segment. The presentation driver
must not alter the contents of this field.

pBVSCB Not used by the presentation driver.
rgfAVio Not used by the presentation driver.
CeliByteSize . Size in bytes of a cell in the logical video buffer (LVB). This value is either 2 or

4. The presentation driver must not alter the contents of this field.

BufferRowCount Number of cell rows in the logical video buffer. The presentation driver must
not alter the contents of this field.

© Copyright IBM Corp. 1992 9-1

mandatory functions for display drivers

BufferColumnCount

WindowOriginRow

WindowOriginColumn

TextCursorRow

TextCursorColumn

TextCursorStartLine

TextCursorEndLine

TextCursorWidth

TextCursorVisible

CellimageHeight

CellimageWidth

CodePagelD

WindowHeight
WindowWidth
hConsoleDisplayContext

hVioWindow
RowOrgLatch
ColOrgLatch

CursorRow
CursorCol

CursorStartLine

9-2

Number of cell columns in the logical video buffer. The presentation driver must
not alter the contents of this field.

Row index for the logical video buffer. This field, together with the parameter
WindowOriginColumn, indicates the logical video buffer cell that is drawn in the
bottom left of the window’s client area. The presentation driver must not alter
the contents of this field.

Column index for logical video buffer (see WindowOriginRow). The presentation
driver must not alter the contents of this field.

Row coordinate of flashing text cursor relative to the logical video buffer. The
presentation driver must not alter the contents of this field.

Column coordinate of flashing text cursor relative to the logical video buffer.
The presentation driver must not alter the contents of this field.

First scan line of a character-cell image overlaid by the text cursor. Lines in the
cell image are numbered from top-to-bottom. The first line is 0. The
presentation driver must not alter the contents of this field.

Last scan line of a character-cell image, overlaid by the text cursor. The
presentation driver must not alter the contents of this field.

Width of text cursor in pels. The presentation driver must not alter the contents
of this field.

Indicates whether the cursor is visible (non-zero) or invisible (zero). The
presentation driver must not alter the contents of this field.

Height of character cell in pels. When the value passed is 0 or invalid, the
presentation driver should reset it to the device default value.

Width of character cell in pels. When the value passed is 0 or invalid, the
presentation driver should reset it to the device default value.

ID of current code page for this presentation space. When the value passed is 0
or invalid, the presentation driver should reset it to the device default value.

Not used by the presentation driver.
Not used by the presentation driver.

Device context handle associated with the presentation space. The presentation
driver must not alter the contents of this field.

Not used by the display driver.
See ColOrglLatch.

Window origin coordinates, WindowOriginRow and WindowOriginColumn, saved
on completion of the last call to GreUpdateCursor. RowOrgLatch and
ColOrglLatch are used by the display driver to record the state of the currently
displayed cursor. They are interrogated by GreUpdateCursor to determine
whether the cursor has moved.

See CursorCol.

Cursor coordinates, TextCursorRow and TextCursorColumn, saved on
completion of the last call to GreUpdateCursor. These fields are used by the
display driver to record the state of the currently displayed cursor so that it can
be successfully erased.

See CursorEndLine.

Presentation Driver Reference

S

CursorEndLine

CursorWidth

PartialCellAdjust

XLatch
YLatch

WidthLatch
HelghtLatch

CellHeightLatch

rgfShieldStates

pFontslLoaded[3]
pMapFontsLoaded[3]
FormatiD

IpNLSExt

mandatory functions for display drivers

Cursor start and end lines, TextCursorStartLine and TextCursorEndLine, saved

on completion of the last call to GreUpdateCursor. These fields are used by the
display driver to record the state of the currently displayed cursor so that it can
be successfully erased.

Cursor width (TextCursorWidth) saved on completion of the iast call to
GreUpdateCursor. This field is used by the display driver to record the state of
the currently displayed cursor so that it can be successfully erased.

This is a negative value reflecting the partial cell height that must be below the
bottom of the window to ensure that a complete cell is positioned at the top of
the window (actual window height = WindowHeight rounded up to next
complete character cell — PartialCellAdjust). The presentation driver must not
alter the contents of this field.

See YLatch.

Pel coordinates of the bottom-left corner of the cursor rectangie relative to the
bottom-left corner of the window.

See HeightLatch.

The height and width in pels of the cursor saved on completion of the last call to
GreUpdateCursor. These are taken to be CelllmageHeight and the difference
between TextCursorStartLine and TextCursorEndLine, taking account of any
wrapping. The width and height latches are used by GreUpdateCursor to record
the screen region corresponding to an exclusive-OR cursor.

The height in pels of the character cell for which the cursor was last drawn.
This parameter is used to detect cell height changes. These values were saved
on completion of the last call to GreUpdateCursor.

Flags:

CursorShowing (0x0001) Cursor is visible on the screen. This flag is
maintained by display driver.

fHasTheFocus (0x0002) This window has the input focus. This flag is not
modified by display driver.
fCursorisOn (0x0004) Set to indicate that this is the on phase of the blink

cycle. The cursor should be invisible during the off
phase of the blink cycle. This flag is not modified by
display driver.

Array of pointers for AVIO fonts 1, 2, and 3
Array of pointers to code page maps for AVIO Fonts 1, 2, and 3.

Presentation-space format. This identifies the format of the attribute bytes in
the LVB:

OH CGA
OH Extended
70H World-wide format.

The presentation driver must not alter the value of this field.

Pointer to an National Language Support (NLS) extension structure where
Doubie Byte Character Set (DBCS) environment vectors are set for AVIO Fonts
1, 2, and 3. If the display driver is required to display DBCS, it must maintain
the array of DBCSEvinfox4x, instead of DBCSEvinfoxOx. When the display driver
supports NLS, it must set the DBCS vectors for Icid 1—3.

Chapter 9. Mandatory Functions for Display Drivers 9-3

mandatory functions for display drivers

Each character cell is contained in a 2-byte or 4-byte array in the LVB. The format.of the character-cell

array is:
Code Point
CGA Attribute Byte

Extended Attribute Byte

Extended Attribute Byte

Spare Attribute Byte
Spare Attribute Byte

Position of the character in the code table

Character attributes. The four low-order bits represent the foreground color and
the high-order bits represent the character background color. Each 4-bit color
value corresponds to an explicit 24-bit RGB value. The RGB values are defined
within the graphics engine and match the colors available on a CGA device.

Applies only to 4-byte cells. It is defined as:

Bit7 Underscore
Bit 6 Reverse video
Bit 4 Background transparency. When set, the background is transparent.

When clear, the background is opaque.
Bits 1—0 Character Set0, 1, 2, or 3.
(World-wide format). Applies only to 4-byte cells. It is defined as:

Bit7 Underscore

Bit6 Reverse video

Bit4 Background transparency. When set, the background is transparent.
When clear, the background is opaque.

Bit3 Left vertical grid

Bit4 Top horizontal grid

Bits 1—0 Character Set0, 1, 2, or 3.
Applies only to 4-byte character cells. It is reserved for the system.

(World-wide format). Applies only to 4-byte character cells.

Bit7 DBCS trailing byte maintained by the operating system
Bits 6—1 Reserved for the system
Bito DBCS byte maintained by the operating system.

Notice that applications are not allowed to set bit 7 and bit 0.

9-4 Presentation Driver Reference

~

mandatory functions (for display drivers) by category

Mandatory Functions (for Display Drivers) by Category

Related mandatory functions for display drivers can be grouped together into the following categories:

AVIO Functions

GreCharRect (see page 9-6)
GreCharStr (see page 9-7)
GreDeviceSetAVIOFont (see page 9-10)
GreScrollRect (see page 9-18)
GreUpdateCursor (see page 9-22)

Bit-Map Functions

* GreDeviceSetCursor (see page 9-11)
¢ GreRestoreScreenBits (see page 9-14)
¢ GreSaveScreenBits (see page 9-17)

Device Functions 2

¢ GreDevicelnvalidateVisRegion (see page 9-9)
* GreGetStyleRatio (see page 9-13)
¢ GreSetStyleRatio (see page 9-21)

Device Functions 3

* GreDeath (see page 9-8)
e GreResurrection (see page 9-16)

Miscellaneous Screen Functions

¢ GreGetPickWindow (see page 9-12)
¢ GreSetColorCursor (see page 9-19)
* GreSetPickWindow (see page 9-20)

Chapter 9. Mandatory Functions for Display Drivers

9-5

AVIO function

GreCharRect

#define INCL_AVIOP

LONG GreCharRect (hdc, pVioPS, pCharRect, pInstance, 1Function)

This function draws a rectangle of character cells from the LVB to the device context. The attributes for
each character are applied by the handling routine as the character is drawn.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pVioPS VioPresentationSpace * Pointer to the Vio presentation space.

pCharRect LPGridRectRef Pointer to a block of parameters for the call. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreCharRect.

pCharRect Pointer to a parameter block. This is a GridRectRef structure:

StartRow The starting row (relative to the bottom left of the LVB) of the character
rectangie to be drawn.

StartCol The starting column (relative to the bottom left of the LVB) of the character
rectangle to be drawn.

RectWidth The width in character cells of the rectangle to be updated.
RectHeight The height of the rectangle to be updated.

Return Codes: This function returns a LONG value as an error indicator:
NO_ERROR Successful
CE_INVALID_PRESENTATION_SPACE Error. For example, invalid CellByteSize.

Remarks: This function is used to implement the advanced Vio function, VioSetOrg.

9-6 Presentation Driver Reference

AVIO function

GreCharStr

#define INCL_AVIOP

LONG GreCharStr (hdc, pVioPS, pCharStr, plnstance, 1Function)
This function draws a string of character cells from the LVB to the device context. The attributes for each
character are applied by the handling routine as the character is drawn. When the end of a row is reached,

the next character is drawn in the first cell of the next row. Character drawing continues until either the
string or the logical video buffer is exhausted.

Support: This function must be supported by presentation drivers for display devices.

Stack Frame

Parameter Data Type . Description

hdc HDC Device context handle.

pVioPS VioPresentationSpace * Pointer to the Vio presentation space.

pCharStr LPGridRectRef Pointer to a block of parameters for the call. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreCharStr.
pCharStr Pointer to parameter block. This is a GridStringRef structure:

StartRow The starting row (relative to the bottom left of the LVB) of the character

rectangle to be drawn.

StartCol The starting column (relative to the bottom left of the LVB) of the character
rectangle to be drawn.

StringLength Number of characters to be written.

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR Successful.
GRE_INVALID_COLUMN_INDEX Invalid column index.
CE_INVALID_PRESENTATION_SPACE Error. For example, invalid CellByteSize.
CE_INVALID_ROW_INDEX Invalid row index.
GRE_NEGATIVE_LENGTH Negative iength.

Chapter 9. Mandatory Functions for Display Drivers 9-7

device function 3

GreDeath

#define INCL_GRE_DEVMISC3

BOOL GreDeath (hdc, pInstance, 1Function)

This function informs the presentation driver that the entire screen is required by another screen group (an
application that is not running under the Presentation Manager interface). Any current Presentation
Manager applications are set to the background. While this condition exists, the presentation driver must
handle all calls as usual. However, it may not affect the underlying hardware, that is, the presentation
driver must continue to accumulate bounds and respond to queries but it may not actually draw to the
display. When GreResurrection is called, the missing output will be recreated by the system sending a
WM_PAINT message to the application.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDeath

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. An error code for conditions that the handling routine is expected to check:

PMERR_DEV_FUNC_NOT_INSTALLED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function goes directly to the Presentation Driver Interface (PDI).

9-8 Presentation Driver Reference

~_

device function 2

GreDevicelnvalidateVisRegion

#define INCL_GRE_DEVMISC2

BOOL GreDevicelnvalidateVisRegion (hdc, cArray, paBlock, pInstance, 1Function)

This function notifies the presentation driver that the visible region and DC region of one or more DCs has
changed, and that the affected DCs must revalidate their visible regions before drawing in them. The array
identified by paBlock contains a series of structures, each of which identifies a DC and supplies the pointer
(pInstance) to its instance data. The display driver responds by setting a flag (HDC_IS_DIRTY) in the
instance data of each DC identified in array. The handling routines for all drawing functions should check
the HDC_IS_DIRTY flag before drawing. If the flag is set, VisRegionNotify (see page 12-6) must be called to
revalidate the DC’s visible region.

This function allows the system to defer the calculations caused by visible region changes. This enables
menus and dialogs to perform more efficiently.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

cArray LONG Number of elements in the array.

paBlock PDC_BLOCK Pointer to a parameter array. See below.

pinstance PVOID Pointer to instance data.

1Function ULONG High-order WORD = flags; low-order WORD = NGreDevicelnvalidateVisRegion.

paBlock Pointer to an array of DC_BLOCK structures:

hdc Device context handle
pDcl Pointer to instance data.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. An error code for conditions that the handling routine is expected to check:

PMERR_DEV_FUNC_NOT_INSTALLED.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers - 9-9

AVIO function

GreDeviceSetAVIOFont

#define INCL_GRE_DEVMISC1

BOOL GreDeviceSetAVIOFont (hdc, pLogFont, pFontDef, 1cid, pInstance, 1Function)

This function loads or deletes an image font used by the AVIO presentation space associated with the
device context. When loaded, the font is used by subsequent GreCharRect, GreCharStr, and GreScrollRect
calls to draw the character images for the appropriate AVIO set. ILcid identifiers LCID_AVIO 1,
LCID_AVIO_2, and LCID_AVIO_3 correspond to AVIO sets 1, 2, and 3 respectively.

If the font is not acceptable for use with an AVIO presentation space, the handling routine returns FALSE to
indicate an error. The font must be a fixed-pitch image (raster) font that matches one of the cell sizes for
the default font. If the font does not match a supported cell size, the characters are displayed in the

- presentation space as black cells.

A possible approach is for the presentation driver to realize the AVIO fonts required and store the pointers
to the fonts in the DC instance data structure.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hde HDC Device context handle

pLogFont PFATTRS Pointer to a logical font

pFontDef PBYTE Pointer to a physical font data structure

Icid LONG Local identifier value of -2, =3, or —4

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDeviceSetAVIOFont

pFontDef A pointer to a physical font data structure. When the value passed is 0, the handling routine
must delete the loaded font corresponding to ILcid. If the high-order bit of the high-order
WORD in ILcid is set, the handle is for a device font.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful. The font is acceptable for use with an AVIO presentation space.
FALSE Error.

9-10 Presentation Driver Reference

bit-map function

GreDeviceSetCursor

#define INCL_GRE_BITMAPS

BOOL GreDeviceSetCursor (hdc, pptlHotspot, hbm, pInstance, 1Function)

This function sets the cursor bit map that defines the cursor shape. GreDeviceSetCursor is subject to all
clipping.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pptiHotspot PPOINTL Pointer to hot spot coordinates. See below.

hbm ULONG Bit-map handle used for the cursor image.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreDeviceSetCursor.

pptiHotspot POINTS structure:

x X-position of the hotspot within the cursor bit map
y Y-position of the hotspot within the cursor bit map.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_COORDINATE
PMERR_INV_CURSOR_BITMAP
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The handling routine takes the previous cursor bit map and replaces it with the one indicated
by hbm. If hbm is NULL, the cursor has no shape and its image is removed from the display screen.

Chapter 9. Mandatory Functions for Display Drivers 9-11

miscellaneous function

GreGetPickWindow

#define INCL_GRE_PICK

BOOL GreGetPickWindow (hdc, pPick, pInstance, 1Function)

This function stores (at the location addressed by pPick) a RECTL structure giving the position and size of
the pick window in page-coordinate space.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pPick PRECTL Pointer to pick window. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =fiags; low-order WORD = NGreGetPickWindow.

pPick The pick window is defined as a RECTL structure in page coordinate space:

xLeft Minimum x-coordinate of window
yBottom Minimum y-coordinate

xRight Maximum x-coordinate of window
yTop Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).
TRUE Successful
FALSE Error.
Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further expianation.

9-12 Presentation Driver Reference

~

device function 2

GreGetStyleRatio

#define INCL_GRE_DEVMISC2

BOOL GreGetStyleRatio (hdc, pRatio, pInstance, 1Function)

This function stores the style ratio x-direction and y-direction step values at the location addressed by
pRatio. When the line type is LINETYPE_ALTERNATE, the handling routine must restore a value of 0 for the
style ratio to ensure that the style mask is rotated after each pel is drawn. See “Line Attributes” on

page 8-3.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pRatio PBYTE Pointer to style-ratio value. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreGetStyleRatio.

pRatio The style ratio is defined as a two-byte value. The low-order byte indicates a step in the
x-direction, the high-order byte a step in the y-direction.

Return Codes: On compietion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the 0OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-13

bit-map function

GreRestoreScreenBits

#define INCL_GRE_BITMAPS

BOOL GreRestoreScreenBits (hdc, hsbBits, prclRect, f10ptions, pInstance, 1Function)

This function restores a rectangle of bits to a screen rectangle and can also free the handle of the saved
bits.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

hsbBits ULONG Handle to screen bits to be restored.

prciRect PRECTL Pointer to a screen rectangle defined in screen coordinates.

flOptions ULONG Options flags. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreRestoreScreenBits.

flOptions Option flags, valid values are:

RSB_FREE 1 (free the save bits handle)
RSB_RESTORE 2 (restore the bits to the screen)

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must cail WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_IS_SELECTED
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HBITMAP_BUSY
PMERR_HDC_BUSY
PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INCORRECT_DC_TYPE
PMERR_INSUFFICIENT MEMORY
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV_BITBLT_MIX
PMERR_INV_BITBLT_STYLE
PMERR_INV_BITMAP_DIMENSION
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV_CHAR_MODE_ATTR

9-14 Presentation Driver Reference

bit-map function

PMERR_INV_CHAR_SET_ATTR
PMERR_INV_CHAR_SHEAR_ATTR
PMERR_INV_CODEPAGE
PMERR_INV_COLOR_ATTR
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_FORMAT
PMERR_INV_COLOR_INDEX
PMERR_INV_COLOR_OPTIONS
PMERR_INV_COLOR_START_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_DC_DATA
PMERR_INV_DC_TYPE
PMERR_INV_DRIVER_NAME
PMERR_INV_GEOM_LINE_WIDTH_ATTR
PMERR_INV_HBITMAP
PMERR_INV_HDC

PMERR_INV_HRGN

PMERR_INV_ID
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_INFO_TABLE
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_LINE_END_ATTR
PMERR_INV_LINE_JOIN_ATTR
PMERR_INV_LINE_TYPE_ATTR
PMERR_INV_LINE_WIDTH_ATTR
PMERR_INV_MARKER_SET_ATTR
PMERR_INV_MARKER_SYMBOL_ATTR
PMERR_INV_MIX_ATTR
PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV_PATTERN_SET_ATTR
PMERR_INV_PATTERN_SET_FONT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_PRIMITIVE_TYPE
PMERR_INV_RECT
PMERR_INV_REGION_CONTROL
'PMERR_INV_SCAN_START
PMERR_INV_SETID
PMERR_INV_USAGE_PARM
PMERR_REALIZE_NOT_SUPPORTED
PMERR_UNSUPPORTED_ATTR
PMERR_UNSUPPORTED_ATTR_VALUE.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: Clipping is done on the restored bits, as necessary.

Chapter 9. Mandatory Functions for Display Drivers 9-15

device function 3

GreResurrection

#define INCL_GRE_DEVMISC3

LONG GreResurection (hdc, cbhVmem, pReserved, pInstance, 1Function)

This function reverses the condition set by GreDeath and restores the screen to the Presentation Manager
interface. Presentation Manager applications are set to the foreground. The presentation driver is enabled
to update the screen for subsequent drawing calls.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

cbVmem LONG Number video memory bytes changed. See below.

pReserved PULONG Reserved pointer. Must be 0.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreResurrection.

cbVmem The number of bytes of video memory that have been corrupted (determined by the VIO). The
display driver can use this value to determine whether any of its video memory has been
destroyed by the application. Some display drivers can ignore this parameter.

Return Codes: On completion, the handling routine must return a LONG value (IResult):

0 Error
1 The screen has been successfully redrawn.
2 The screen has not been completely redrawn, further action is required from the application.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function goes directly to the Presentation Driver Interface (PDI).

9-16 Presentation Driver Reference

bit-map function

GreSaveScreenBits

#define INCL_GRE_BITMAPS

ULONG GreSaveScreenBits (hdc, prclRect, pInstance, 1Function)

This function saves a rectangle of screen bits.

Support: This function must be supported by display drivers. It is permissible to implement this function
by returning 0 to indicate that the bits were not saved, and therefore, must be saved by the calling routine.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handie

prclRect PRECTL Pointer to a screen rectangle defined in screen coordinates
pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD =NGreSaveScreenBits

Return Codes: On completion, the handling routine must return a handle to the saved bits (hsbBits) or
0 to indicate that the bits were not saved or that an error occurred.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: This function lets the user-interface routines improve the performance of dialog boxes.

Chapter 9. Mandatory Functions for Display Drivers 9-17

AVIO function

GreScroliRect

#define INCL_AVIOP

LONG GreScrollRect (hdc, pVioPS, paScroliRect, pInstance, 1Function)

This function scrolls the contents of the LVB through the DC. The contents of the LVB are not affected by
this function. Typically, the presentation driver responds to this call by calling GreCharRect. An
alternative approach is to use the horizontal and vertical movement fields to define a new source rectangle
in the DC and to use GreBitblt to transfer the bits. When new information is revealed from the LVB as a
result of the scroll, the handling routine calls GreCharRect to update the display. This approach provides
considerable performance advantages for devices that support GreBitbit. See “GreBitblt” on page 8-26.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pVioPS VioPresentationSpace * Pointer to the Vio presentation space.

paScrollRect LPScroliRectRef Pointer to a block of parameters for the call. See below.
pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreScrollRect.

paScroliRect Pointer to parameter block for this function. This block is defined as a ScrollRectRef

structure:

StartRow Starting row relative to the bottom left of the LVB

StartCol Starting column in the logical video buffer of the character string to be
output

RectWidth Width of the scroll rectangle

RectDepth Depth of the scroll rectangie

HorzMovement Number of columns to be scroiled
VertMovement Number of rows to be scrollied

Note: Positive values mean movement downward or to the right,
negative mean upward or to the left.

IpFHICell Pointer to a cell containing the character and attributes to be used for
filling the tail of the scroll region. This pointer is only used when
GreBitblt is used to implement this function. When this IpFiliCell is
passed as NULL, the logical video buffer has been updated. The handling
routine then must call GreCharRect to update the display.

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR Successful
CE_INVALID_PRESENTATION_SPACE Error. For example, invalid CeliByteSize

9-18 Presentation Driver Reference

miscellaneous function

GreSetColorCursor

#define INCL_WINPOINTERS

BOOL GreSetColorCursor (hdc, pPointerInfo, pInstance, 1Function)

This function sets the bit maps that define a color cursor or pointer. The handling routine in the
presentation driver updates its copy of the pointer definition to that identified by pPointerinfo.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pPointerinfo PPOINTERINFO Pointer to pointer information. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreDeviceSetCursor.

pPointerinfo Pointer to a POINTERINFO structure. This structure is described in the 0§/2 2.0
Presentation Manager Programming Reference.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNG_NOT_INSTALLED
PMERR_INV_COORDINATE
PMERR_INV_CURSOR_BITMAP
PMERR_INV_HDC.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-19

miscellaneous function

GreSetPickWindow

#define INCL_GRE_PICK

BOOL GreSetPickWindow (hdc, pPick, pInstance, 1Function)

This function sets the position and size of the pick window in page-coordinate space for subsequent
correlation operations.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pPick PRECTL Pointer to pick window. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreSetPickWindow.

PPick The pick window is defined as a RECTL structure in page-coordinate space:

xLeft ‘Minimum x-coordinate of window
yBottom Minimum y-coordinate

xRight Maximum x-coordinate of window
yTop Maximum y-coordinate.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH

"PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PICK_APERTURE_POSN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The boundary of the pick window is included in the correlated area.

9-20 Presentation Driver Reference

device function 2

GreSetStyleRatio

#define INCL_GRE_DEVMISC2

BOOL GreSetStyleRatio (hdc, pRatio, pInstance, 1Function)
This function sets the style ratio used by the presentation driver’s line-drawing algorithm to determine
which pels should be set on for a sloping line. Display drivers must support this function so that a

hardcopy driver (whose device can have a different style ratio) can use the display driver to draw into a bit
map that the hardcopy driver can use.

Support: This function must be supported by the presentation driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

pRatio PBYTE Pointer to two unsigned bytes corresponding to the aspect of the pels on
which a line is drawn

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreSetStyleRatio

pRatio The style ratio is defined as a two-byte value. The low-order byte indicates a step in the
x-direction, and the high-order byte a step in the y-direction. Typical values for style ratios are:

* For EGA devices, x-direction equals 64 and y-direction equals 85

¢ For one-to-one devices, x-direction equals 64 and y-direction equals 64. In this case, the
style ratio steps are set to 64:64 rather than 1:1 to ensure that a single dot in a line-style
pattern is a sensible length. The length of a single dot in the pattern is (256/step_value)
pels.

Return Codes: On completion, the handling routine must return BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possibie Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_INV_HDC.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 9. Mandatory Functions for Display Drivers 9-21

AVIO function

GreUpdateCursor

#define INCL_AVIOP

LONG GreUpdateCursor (hdc, pVioPS, pInstance, 1Function)

This function updates the drawn alphanumeric cursor to match the cursor state information contained in the
presentation space. This usually involves removing the previous cursor from the window and drawing the
new cursor, if visible, according to the presentation space information. The new cursor (if visible) is
positioned and clipped according to this information and the window's cell-buffer origin and size.

The cursor is drawn as an exclusive-OR bar. Its new position, size and shape are saved by the handling
routine in the Vio presentation space. Only one cursor can be visible on the screen at any time and this
must be in the window with the input focus. This is enforced by the operating system for VIO functions but
not for AVIO. The AVIO application must alter the visibility of the cursor when changing input focus. When
the text cursor collides with an AVIO and VIO drawing, the presentation driver must remove and redraw the
cursor around the alphanumeric updates.

Note: GreBitbit copies everything including the cursor.

The presentation driver can assume that the values in the RowOrglatch and CursorWidth fields of the
VioPresentationSpace structure parallel the WindowOriginRow and TextCursorWidth, respectively.

Support: This function must be supported by display drivers.

Stack Frame

Parameter Data Type Description

hdec HDC Device context handle

pVioPS VioPresentationSpace * Pointer to the Vio presentation space

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreUpdateCursor

Return Codes: This function returns a LONG value as an error indicator:

NO_ERROR Successful
CE_INVALID_PRESENTATION_SPACE Error. For example, invalid CeliByteSize.

9-22 Presentation Driver Reference

~

simulated functions

Chapter 10. Simulated Functions

These functions are simulated by handling routines in the graphics engine and are cailed through pointers
in the default dispatch table. Any simulated functions can be hooked to improve performance or to exploit
special features of the device. Hooking is performed by overwriting the pointer in the presentation driver’s
copy of the dispatch table with a pointer to the presentation driver’s handling routine. If this is done, the
the original pointer must be saved in order to pass calls to the engine’s handling routine.

When the presentation driver has hooked a function, all calls to that function are passed through the
dispatch table directly to the driver’'s handling routine. If the presentation driver cannot completely handle
a hooked function, it can pass the call to the engine’s routine for completion.

The functions in this chapter are grouped according to the conditional include sections of the header file:

Arc functions (INCL_GRE_ARCS)

Area and Path functions (INCL_GRE_PATHS)
Clip functions (INCL_GRE_CLIP)

Line functions (INCL_GRE_LINE)

Palette Manager functions (INCL_GRE_PALETTE)
Region functions (INCL_GRE_REGIONS)
Transform functions (INCL_GRE_XFORMS)

Each description shows what the handling routine is expected to do, the parameters passed to the routine,
and the values that the routine returns.

Arc Functions

Drawing functions such as those listed above pass individual drawing orders to the graphics engine. The
graphics engine then draws, correlates and takes, or takes bounds on the drawing primitives as directed by
the flags. The graphics engine is assumed to clip to the appropriate part of the window, which is the region
excluding any window border or frills.

Coordinates are passed as signed 32-bit numbers in a logical space called world-coordinate space. Angles
are also passed as signed 32-bit numbers. Zero refers to the direction of the positive x-axis, 231 represents
360°. Positive values are counterclockwise from the positive x-axis.

Area and Path Functions

A path is an area, or a shape, that can be used to define:

¢ Wide lines and curves to which changes of scale can be applied
¢ Shapes and areas for filling
¢ Irregular shapes to which subsequent primitives are clipped. This is known as a clip path.

Clip Functions

Clip regions are defined as rectangles in world coordinates. The boundaries of a clip region rectangle are
inclusive of the rectangle they define.

©® Copyright IBM Corp. 1992 10-1

simul_ated functions

Region Functions

Regions are defined as rectangles in device coordinates. They are inclusive at the bottom-left boundary
and exclusive at the top-right boundary. That is, the top-right coordinates are outside the rectangle they
define and the bottom-left coordinates are inside the rectangle. When both coordinate pairs are equal, the
rectangle dimension is 0.

Transform Functions

Transform functions provide a complete viewing pipeline whereby coordinates are transformed from
world-coordinates to model space to presentation page to device space. For more information, refer to the
08/2 2.0 Programming Guide Volume Il — Graphics Programming Interface. Figure 10-1 on page 10-3
diagrams the viewing pipeline.

10-2 Presentation Driver Reference

simulated functions

...................................

] \ | GpiSetDefaultViewMatrix !
World ' [s A
coordinate ! \ : | GpiCreatePs, :
spaces ", ‘\‘ E EGpiSetPageViewport E
\ \ ' T Saianbiel DELUIIRLEELLS
' : i Clip region
:. i (may consist
E ' of intersecting
. [‘: ; ' rectangles)
E] E E GpiSetClipRegion
E | Presentation ; . E
: ! + Device]
: : page space | space E

v-

Viewing limit (Clip) % Y
(always rectangular) l_{_l-___l

AN I > Page viewport
yavd

: GplSetDefViewingLimits, A

! GpiSetViewinglimits J)

i Origin Origin

; > > Client
!) Graphics field (Clip) Area
f Model space (always rectaigular) (Clip)
; GpiSetGraphicsField

=Viewing transformation

(always
M rectangular)
! Viewing Legend:
: limit
3 (Clip) =Model transformation
v >

.cnp Path (Clip) §
s (may use curved edges) E
' GplSetthPath E

=Device transfromation

O =Default viewing transformation

Figure 10-1. Transform and Clipping Pipeline.

Chapter 10. Simulated Functions 10-3

simulated functions

Matrix Element Format

The matrix elements for the model and viewing transforms are held in XFORM structures:

xM11 :
fxM12
fxM21
fxM22
IM41
IM42

M11, M12, M21, and M22 are fixed-point numbers represented as signed 4-byte integers with a notional
binary point between bits 16 and 15:
+2.5 is represented by 00028000H

-2.5 is represented by FFFDSOOOH
-0.5 is represented by FFFFS8000H

M41 and M42 are signed 4-byte numbers.

Device Transform Definition by Presentation Page Viewport

For a transform, defined by viewport and window rectangles whose bottom-left and top-right coordinates
are represented by (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4), respectively, the matrix elements are
determined as shown below. The point (X3-1/2, Y3-1/2) transforms to (X1-1/2, Y1-1/2), and the point
(X4+1/2, Y4+ 1/2) transforms to (X2+ 1/2, Y2+ 1/2). Therefore:

M12 = 0

M21 = 0

If X4 >= X3 then
M1l = (X2-X1+1) / (X4-X3+1)
M41 = (X1*X4-X3*X2+1/2 * (X2-X4 + X1-X3)) / (X4-X3+1)

If X4 < X3 then
M1l = (X2-X1+1) / (X4~-X3-1)
Mal = (X1*X4-X3*X2-1/2 * (X2+X4+X1+X3)) / (X4-X3-1)

If Y4 >= Y3 then
M22 = (Y2-Y1+1) / (Y4-Y3+1)
MA2 = (Y1*YA-Y3*Y2+1/2 * (Y2-Y4 + Y1-Y3)) / (Y4-Y3+1)

If Y4 < Y3 then
M22 = (Y2-Y1+l) / (Y4-Y3-1)
Ma2 = (Y1*Y4-Y3*Y2-1/2 * (Y2+Y4+Y1+Y3)) / (Y4-Y3-1)
Note: X4 is always greater than X3 and Y4 is always greater than Y3.

In the case of device transforms, (X3, Y3) is always (0, 0), Y4 is always greater than Y3, and the device
space coordinates (X2, Y2) are exclusive. This simplifies the formula to:

M2 =0

M21 = 0

M1l = (X2-X1) / (X4+1)

MA1 = (X1*X4+1/2 * (X2-1-X4+X1)) / (X4+1) = X1+1/2 (M11-1)
2 = (Y2-Y1) / (Y4+1)

M42 = (Y1*Y4+1/2 * (Y2-1-Y4+Y1)) / (YA+1) = Y1+1/2 (M22-1)

10-4 presentation Driver Reference

simulated functions by category

Bounds, Correlation, and Clipping

All presentation drivers must support bounds computation for both GPl bounds (COM_BOUND) and user
bounds (COM_ALT_BOUND). Bounds are calculated on unclipped primitives for all operations that draw to
the device, including AVIO functions. GPI bounds are passed in model space coordinates. User bounds
are calculated in device-coordinate space. To prevent inaccuracies from occurring when the transform
changes, the typical presentation driver maintains bounds in both coordinate sets in its instance data
structure. It then accumulates the transforms as they occur.

Correlation is performed in page-coordinate space on the output of primitives that have been clipped only
to the viewing limits and graphics field. Correlation is also performed on all operations that draw to the
device, except the AVIO function. Notice that hardcopy drivers are not required to perform correlation.

Simulated Functions by Category

Related simulated functions can be grouped together into the following categories:

Arc Functions

GreArc (see page 10-8)

GreBoxBoth (see page 10-15)
GreBoxBoundary (see page 10-17)
GreBoxInterior (see page 10-19)
GreFullArcBoth (see page 10-49)
GreFullArcBoundary (see page 10-51)
GreFullArclnterior (see page 10-53)
GreGetArcParameters (see page 10-55)
¢ GrePartialArc (see page 10-78)

¢ GrePolyFillet (see page 10-80)

¢ GrePolyFilletSharp (see page 10-82)

¢ GrePolySpline (see page 10-84)

¢ GreSetArcParameters (see page 10-111)

Area and Path Functions

e GreAreaSetAttributes (see page 10-10)
¢ GreBeginArea (see page 10-11)

¢ GreBeginPath (see page 10-13)

¢ GreCloseFigure (see page 10-21)

¢ GreEndArea (see page 10-41)

¢ GreEndPath (see page 10-43)
GreFillPath (see page 10-47)

¢ GreModifyPath (see page 10-71)

¢ GreOutlinePath (see page 10-76)

¢ GreRestorePath (see page 10-98)

¢ GreSavePath (see page 10-102)

¢ GreSelectClipPath (see page 10-106)
¢ GreStrokePath (see page 10-128)

Chapter 10. Simulated Functions 10-5

simulated functions by category

Clip Functions

* GreCopyClipRegion (see page 10-28)

¢ GreExcludeClipRectangle (see page 10-45)
¢ GreGetClipBox (see page 10-56)

¢ GreGetClipRects (see page 10-57)

¢ GrelntersectClipRectangle.(see page 10-69)
¢ GreOffsetClipRegion (see page 10-74)

¢ GrePtVisible (see page 10-89)

¢ GreQueryClipRegion (see page 10-90)

¢ GreRectVisible (see page 10-96)

¢ GreRegionSelectBitmap (see page 10-97)

* GreRestoreRegion (see page 10-99)
GreSaveRegion (see page 10-103)
GreSelectClipRegion (see page 10-108)
GreSelectPathRegion (see page 10-110)
GreSetupDC (see page 10-126)

¢ GreSetXformRect (see page 10-125)

Line Functions

¢ GreDrawRLE (see page 10-39)
¢ GrePolygonSet (see page 10-86)

Palette Manager Functions

¢ GreDeviceAnimatePalette (see page 10-32)

* GreDeviceCreatePalette (see page 10-33)

¢ GreDeviceDeletePalette (see page 10-35)

* GreDeviceResizePalette (see page 10-37)
GreDeviceSetPaletteEntries (see page 10-38)
GreQueryHWPalettelnfo (see page 10-91)
GreQueryPaletteRealization (see page 10-92)
* GreRealizePalette (see page 10-93)

¢ GreUpdateColors (see page 10-130)

® o o

Region Functions

¢ GreCombineRectRegion (see page 10-22)
* GreCombineRegion (see page 10-23)

¢ GreCombineShortLineRegion (see page 10-24)
* GreCreateRectRegion (see page 10-30)

e GreDestroyRegion (see page 10-31)

* GreEqualRegion (see page 10-44)

¢ GreGetRegionBox (see page 10-64)

¢ GreGetRegionRects (see page 10-65)

* GreOffsetRegion (see page 10-75)

* GrePaintRegion (see page 10-77)
GrePtinRegion (see page 10-88)
GreRectinRegion (see page 10-95)
GreSetRectRegion (see page 10-121)

e o o

10-6 Presentation Driver Reference

simulated functions by category

Transform Functions

GreConvert (see page 10-26)
GreConvertWithMatrix (see page 10-27)
GreGetGlobalViewingXform (see page 10-59)
GreGetGraphicsField (see page 10-60)
GreGetModelXform (see page 10-61)
GreGetPageUnits (see page 10-62)
GreGetPageViewport (see page 10-63)
GreGetViewingLimits (see page 10-67)
GreGetWindowViewportXform (see page 10-68)
GreMultiplyXforms (see page 10-73)
GreRestoreXform (see page 10-100)
GreRestoreXformData (see page 10-101)
GreSaveXform (see page 10-104)
GreSaveXformData (see page 10-105)
GreSetGlobalViewingXform (see page 10-112)
GreSetGraphicsField (see page 10-114)
GreSetModelXform (see page 10-115)
GreSetPageUnits (see page 10-117)
GreSetPageViewport (see page 10-119)
GreSetViewingLimits (see page 10-122)
GreSetWindowViewportXform (see page 10-123)

Chapter 10. Simulated Functions 10-7

arc function

GreArc

#define INCL_GRE_ARCS

LONG GreArc (hdc, paptiPoint, pInstance, 1Function)

This function draws an arc through the three points, which are the current position, and the two points
specified in the data structure. Upon completion, the current position is the third point of the arc. If GreArc
is used within a path definition or an area definition to continue a figure following a GreBoxxxx or
GreFullArcxxx function, the error PMERR_INV_NESTED_FIGURES is posted. This is because the
GreBoxxxx and GreFullArcxxx functions generate a closed figure within an area or path definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle

paptiPoint PPOINTL Pointer to ArcData array. See below.

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreArc

paptiPoint Pointer to an array of POINTL structures giving the mid and end points of the arc. If the
mid-point is coincident with the start or end point, a straight line is drawn from the start point
to the end point. If COM_TRANSFORM is not set, the function expects the array of points to be
in screen coordinates.

x X-coordinate of point
y Y-coordinate of point.

Return Codes: On completion, this function returns an integer (cHits) indicating, where appropriate,
whether correlation hits were detected:

GPI_OK Successful ‘ :

GPI_HITS Successful with correlate hit (returned by dispiay drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

10-8 Presentation Driver Reference

arc function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
\ post the condition. Error codes for conditions that the handling routine is expected to check inciude:

PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_MATRIX_ELEMENT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-9

areal/path function

GreAreaSetAttributes

#define INCL_GRE_PATHS

BOOL GreAreaSetAttributes (hdc, 1PrimType, flDefsMask, flAttrsMask, pAttrs, pInstance, 1Function)

This function is called by the graphics engine after processing a call to GreSetAtirs received inside an area
or path bracket. The handling routine in the graphics engine does nothing. Its purpose is to provide an
entry in the dispatch table that can be hooked by presentation drivers.

Support: This function must be hooked by presentation drivers that perform their own area or path
simulations.

Stack Frame: The parameters passed to GreAreaSetAttributes are identical to those passed to
GreSetAttrs.

Parameter Data Type Description

hdc HDC : Device context handle

IPrimType LONG Bundie primitive type. See below.

fiDefsMask ULONG Flags indicating which attributes are to be set to default

flAttrsMask ULONG Flags indicating which attributes are to be modified

pAtirs PBUNDLE Pointer to the fixed-format bundie record containing the attribute values to
be set. See below.

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD =flags; low-order WORD = NGreAreaSetAttributes

iPrimType Indicates the bundle type. Valid primitive values are:

PRIM_LINE Line attribute bundle
PRIM_CHAR Character attribute bundle
PRIM_MARKER Marker attribute bundle
PRIM_AREA Pattern attribute bundle
PRIM_IMAGE Image attribute bundle.

pAttrs This is a pointer to the fixed-format bundie record containing the attribute values to be set as
specified by flAttrsMask. Only the attribute fields corresponding to attribute flags set in
flAttrsMask, and not set in fiDetsMask, contain valid values. This buffer must only be large
enough to contain data for the highest offset attribute referenced.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

10-10 Presentation Driver Reference

N

arealpath function

GreBeginArea

#define INCL_GRE_PATHS

BOOL GreBeginArea (hdc, fiOptions, pInstance, 1Function)

This function indicates the beginning of a set of drawing functions that define the boundary of an area. All
of the boundaries of the area are considered to be part of the interior, and are filled. GreBeginArea has no
direct effect on current position, although it can be affected by drawing orders within the boundary
definition. When GreBoxxxx or GreFullArcxxx functions are used within an area definition, they generate
closed figures and must not be used within another figure definition. For more information, see
GpiBeginArea in the 0S/2 2.0 Presentation Manager Programming Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdec HDC Device context handle

flOptions ULONG Option flags. See below.

pinstance PVOID Pointer to instance data

IFunction ULONG High-order WORD = flags; low-order WORD = NGreBeginArea

fiOptions These flags designate whether the boundary is drawn and what the drawing mode is:
BA_NOBOUNDARY Do not draw boundary lines.

BA_BOUNDARY Draw boundary lines.
BA_ALTERNATE Alternate mode.
BA_WINDING Winding mode.

The defaults are BA_NOBOUNDARY and BA_ALTERNATE.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Area correlation hits are returned at End Area time. No hits are returned for primitives such as lines and
arcs that form part of the area definition.

Chapter 10. Simulated Functions 10-11

area/path function

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY_IN_AREA
PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_AREA_CONTROL
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_PATH_LIMIT_EXCEEDED.

Refer to Appendix B of the OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The following functions are valid when received after GreBeginArea and before GreEndArea:

® © & & & o o & o o o o o o

[

[]

GreArc

GreAreaSetAttributes (valid only for color, mix, and valid line attributes)
GreBoxBoundary

GreDeviceSetAttributes (valid only for color, mix, and valid line attributes)
GreDeviceSetGlobalAttribute (valid only for foreground color and mix)
GreFullArcBoundary

GrePartialArc

GrePolyFillet

GrePolyFilletSharp

GrePolyLine

GrePolySpline

GreQueryCharStringPos

GreQueryTextBox

GreSetArcParameters

GreSetAttributes (valid only for color, mix, and valid line attributes)
GreSetCurrentPosition

GreSetGlobalAttribute (valid only for foreground color and mix)
GreSetModelXform.

10-12 Presentation Driver Reference

area/path function

GreBeginPath

#define INCL_GRE_PATHS

BOOL GreBeginPath (hdc, idPath, pInstance, 1Function)

This function identifies the start of a sequence of figures that define a path. Notice that character attribute
setting functions are not allowed within a path definition. When GreBoxxxx or GreFullArcxxx functions are
used within a path definition, they generate closed figures and must not be used within another figure
definition. For more information, see GpiBeginPath in the 0S/2 2.0 Presentation Manager Programming
Reference.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

idPath LONG Path identifier. This value must be 7.

plnstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreBeginPath.

Return Codes: This function returns BOOLEAN (fSuccess).

TRUE Successful
FALSE Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY_IN_PATH
PMERR_BASE_ERROR
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_COORD_SPACE
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PATH_ID
PMERR_PATH_LIMIT_EXCEEDED.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Chapter 10. Simulated Functions 10-13

areal/path function

Remarks: The following functions are valid when received after GreBeginPath and before GreEndPath:

® & 6 & & o ¢ ¢ o o O o O O o & & 6 o o o

GreArc

GreAreaSetAttributes (valid only for color, mix, and valid line attributes)
GreBoxBoundary

GreCharString (outline characters only)

GreCharStringPos (outline characters only)

GreCloseFigure

GreDeviceSetGlobalAttribute (valid only for foreground color and mix)
GreFullArcBoundary

GrePartialArc

GrePolyFillet

GrePolyFilletSharp

GrePolyLine

GrePolyMarker (outline markers only)

GrePolySpline

GreQueryCharPositions

GreQueryTextBox

GreSetArcParameters

GreSetAttributes (valid only for color, mix, and valid line attributes)
GreSetGlobalAttribute (valid only for foreground color and mix)
GreSetCurrentPosition

GreSetModelXform.

10-14 Ppresentation Driver Reference

arc function

GreBoxBoth

#define INCL_GRE_ARCS

LONG GreBoxBoth (hdc, pBox, pInstance, 1Function)

This function draws and fills a rectangular box with one corner at the current (x, y) position and the
opposite corner at the specified (x, y) position. The current (x, y) position does not change. When this
function occurs within an area or path definition, it generates a closed figure. GreBoxBoth must not occur
within any other figure definition.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pBox PPOINTL Pointer to BOXDATA. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD = flags; low-order WORD = NGreBoxBoth.

pBox Pointer to a BOXDATA structure:

ptiOpposite POINTL structure defining the opposite corner of the box. If COM_TRANSFORM is
not set, the function expects the point to be in screen coordinates.

x X-coordinate of opposite corner
y Y-coordinate of opposite corner.

{HRound Horizontal length of the full axis of an ellipse. This field is used for rounding each
corner.

IVRound Vertical length of the full axis of an ellipse. This field is used for rounding each
corner.

Return Codes: On completion, this function returns an integer (cHits) indicating, where appropriate,
whether correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GPI_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_ALREADY_IN_AREA
PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_EXCEEDS_MAX_SEG_LENGTH
PMERR_HDC_BUSY
PMERR_HRGN_BUSY

Chapter 10. Simulated Functions 10-15

arc function

PMERR_HUGE_FONTS_NOT_SUPPORTED
PMERR_INSUFFICIENT_MEMORY
PMERR_INV_AREA_CONTROL
PMERR_INV_BACKGROUND_COL_ATTR
PMERR_INV_BACKGROUND_MIX_ATTR
PMERR_INV_BOX_ROUNDING_PARM
PMERR_INV_CHAR_DIRECTION_ATTR
PMERR_INV_CHAR_MODE_ATTR
PMERR_INV_CODEPAGE
PMERR_INV_COLOR_ATTR
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_COORDINATE
PMERR_INV_HDC

PMERR_INV_HRGN
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_LINE_TYPE_ATTR
PMERR_INV_MIX_ATTR
PMERR_INV_NESTED_FIGURES
PMERR_INV_PATTERN_REF_PT_ATTR
PMERR_INV_PATTERN_SET ATTR
PMERR_INV_PATTERN_SET FONT
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_INV_REGION_CONTROL
PMERR_NOT IN_AREA
PMERR_NOT_IN_PATH
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN
PMERR_REGION_IS_CLIP_REGION.

Refer to Appendix B of the 0OS/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The sides of the box (before transformation) are paraliel to the x-axis and y-axis. The corners
of the box can be rounded by means of quarter ellipses of the specified diameters. When the value of
either diameter is 0, no rounding occurs. When the value of either diameter exceeds the length of the
corresponding side, that length is used as the diameter instead. When the value of the diameters are equal
to the value of the sides, the corners are rounded with a quarter circle. If the current position is (x0, y0),
the box is drawn from the current position in a counterclockwise direction.

When correlating, the handling routine records a hit when the pick aperture intersects the boundary or
interior, or is completely within the interior (even if the mix used for the fill operation is LEAVEALONE).

10-16 Presentation Driver Reference

arc function

GreBoxBoundary

#define INCL_GRE_ARCS

LONG GreBoxBoundary (hdc, pBox, pInstance, 1Function)

This function draws a rectangular box with one corner at the current (x, y) position and the opposite corner
at the specified (x, y) position. The current (x, y) position does not change.

Support: This function is supported by the graphics engine and can be hooked by the presentation
driver.

Stack Frame

Parameter Data Type Description

hdc HDC Device context handle.

pBox PPOINTL Pointer to BOXDATA. See below.

pinstance PVOID Pointer to instance data.

IFunction ULONG High-order WORD =flags; low-order WORD = NGreBoxBoundary.

pBox Pointer to a BOXDATA structure:

ptiOpposite POINTL structure defining the opposite corner of the box. If COM_TRANSFORM is
not set, the function expects the point to be in screen coordinates.

x X-coordinate of opposite corner
y Y-coordinate of opposite corner.

IHRound Horizontal length of the full axis of an ellipse. This field is used for rounding each
corner.

IVRound Vertical length of the full axis of an ellipse. This field is used for rounding each
corner.

Return Codes: This function returns an integer (cHits) indicating, where appropriate, whether
correlation hits were detected:

GPI_OK Successful

GPI_HITS Successful with correlate hit (returned by display drivers when the correlate flag is on, and
a hit is detected)

GP1_ERROR Error.

Possible Errors Detected: When an error is detected, the handling routine must call WinSetErrorinfo to
post the condition. Error codes for conditions that the handling routine is expected to check include:

PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_COORDINATE_OVERFLOW
PMERR_DEV_FUNC_NOT_INSTALLED
PMERR_HDC_BUSY
PMERR_INV_BOX_ROUNDING_PARM
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_INDEX
PMERR_INV_COORD_SPACE
PMERR_INV_HDC

Chapter 10. Simulated Functions 10-17

arc function

PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_NESTED_FIGURES
PMERR_INV_PICK_APERTURE_POSN
PMERR_INV_RECT
PMERR_NOT_IN_PATH
PMERR_PATH_LIMIT_EXCEEDED
PMERR_PATH_UNKNOWN.

Refer to Appendix B of the 0S/2 2.0 Presentation Manager Programming Reference for further explanation.

Remarks: The sides of the box (before transformation) are parallel to the x-axis and y-axis. The corners
of the box can be rounded by means of quarter ellipses of the specified diameters. When the value of
either diameter is 0, no rounding occurs. When the value of either diameter exceeds the length of the
corresponding side, that length is used as the diameter instead. When the value of the diameters are equal
to the value of the sides, the corners are rounded with a quarter circle. If the current position is (x0, y0),
the box is drawn from t