

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--.

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page vii.

First Edition (March 1.992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

ii PM Programming Reference

About this Book

The Presentation Manager Programming Reference is a detailed technical reference, in three
volumes, for application programmers creating programs using the Presentation Manager interface.

Chapter 1 contains important information. You should read it before using this book.

This reference does not give guidance on how to use the functions, nor does it contain information
about how the functions are related to each other. It is intended to be used in conjunction with the
Programming Guide Volumes II and Ill.

Prerequisite Knowledge
The OS/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which OS/2 programs can be written. The information in the

Technical Library assumes that you are new to programming with OS/2 and the Presentation

Manager. You should understand the OS/2 services available to users.

Related Publications
The Application Design Guide and the Programming Guide Volumes I, II, and Ill introduce the
programming concepts that you should understand before you begin developing applications to run

on the OS/2 operating system. Getting Started describes the online programming books, tools,
programming aids, and sample programs that make up the IBM Developer's Toolkit for OS/2 2.0.

Organization of this Book
This book is in three volumes. The contents of each volume are as follows:

Volume I (Functions)
Chapter 1, "Introduction" on page 1-1

You should read this chapter before using this book.

Chapter 2, "Device Functions" on page 2-1

Chapter 3, "Direct Manipulation Functions" on page 3-1

Chapter 4, "Dynamic Data Formatting Functions" on page 4-1

Chapter 5, "Graphics Functions" on page 5-1

Chapter 6, "Profile Functions" on page 6-1

Chapter 7, "Spooler Functions" on page 7-1

Volume II (Functions and Workplace)
Chapter 8, "Window Functions" on page 8-1

Chapter 9, "Workplace Classes, Instance Methods, and Class Methods" on page 9-1

About this Book iii

Volume Ill (Related Information and Data Types)
Chapter 10, "Functions Supplied by Applications" on page 10-1

Chapter 11, "Introduction to Message Processing" on page 11-1

Chapter 12, "Default Window Procedure Message Processing" on page 12-1

Chapter 13, "Button Control Window Processing" on page 13-1

Chapter 14, "Entry Fleld Control Window Processing" on page 14-1

Chapter 15, "Frame Control Window Processing" on page 15-1

Chapter 16, "List Box Control Window Processing" on page 16-1

Chapter 17, "Menu Control Window Processing" on page 17-1

Chapter 18, "Multi-Line Entry Field Control Window Processing" on page 18-1

Chapter 19, "Prompted Entry Field Control Window Processing" on page 19-1

Chapter 20, "Scroll Bar Control Window Processing" on page 20-1

Chapter 21, "Spin Button Control Window Processing" on page 21-1

Chapter 22, "Static Control Window Processing" on page 22-1

Chapter 23, "Title Bar Control Window Processing" on page 23-1

Chapter 24, "Container Control Window Processing" on page 24-1

Chapter 25, "Notebook Control Window Processing" on page 25-1

Chapter 26, "Slider Control Window Processing" on page 26-1

Chapter 27, "Value Set Control Window Processing" on page 27-1

Chapter 28, "Clipboard Messages" on page 28-1

Chapter 29, "Direct Manlpulatlon (Drag) Messages" on page 29-1

Chapter 30, "Dynamic Data Exchange Messages" on page 30-1

Chapter 31, "Help Manager Messages" on page 31-1

Chapter 32, "Resource Files" on page 32-1

Chapter 33, "Graphics Orders" on page 33-1

iv PM Programming Reference

Chapter 34, "Code Pages" on page 34-1

Appendix A, "Data Types" on page A-1

Appendix B, "Error Codes" on page B-1

Appendix C, "Error Explanations" on page C-1

Appendix D, "Standard Bit-Map Formats" on page D-1

Appendix E, "Fonts Supplied with OS/2" on page E-1

Appendix F, "The Font-File Format" on page F-1

Appendix G, "Format of Interchange Flies" on page G-1

Appendix H, "Initialization File Information" on page H-1

Appendix I, "Virtual Key Definitions" on page 1-1

About this Book v

vi PM Programming Reference

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM product,

program or service is not intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's

intellectual property rights or other legally protectible rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The following terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM

Corporation in the United States and/or other countries:

IBM
Common User Access
CUA
Operating System/2
OS/2
Presentation Manager
SAA
System Application Architecture

The following terms, denoted by a double asterisk(**) in this publication, are trademarks of other

companies as follows:

Adobe
Helvetica
LaserJet
Intel
Microsoft
Postscript
Times New Roman
Windows

Adobe Systems Incorporated
Linotype AG
Hewlett-Packard Company
Intel Corporation
Microsoft Corporation
Adobe Systems Incorporated
Monotype Corporation
Microsoft Corporation

Notices vii

viii PM Programming Reference

Functions and Workplace

Chapter 8. Window Functions . 8-1

WinAddAtom - Add Atom .. 8-7

WinAddSwitchEntry - Add Switch Entry . 8-9

WinAlarm - Sound Alarm . 8-11

WinAssociateHelplnstance - Associate Help Instance . 8-13

WinBeginEnumWindows - Begin Window Enumeration . 8-16

WinBeginPaint - Begin Paint . 8-18

WinBroadcastMsg - Broadcast Message . 8-20

WinCalcFrameRect - Calculate Frame Rectangle 8-22

WinCallMsgFilter - Call Message Filter . 8-24

WinCancelShutdown - Cancel Shutdown . 8-26

WinChangeSwitchEntry - Change Switch Entry . 8-28

WinCheckButton - Set Checkstate of Button . 8-30

WinCheckMenultem - Check Menu Item . 8-32

WinCloseClipbrd - Close Clipboard . 8-34

WinCompareStrings - Compare Strings 8-35

WinCopyAccelTable - Copy Accelerator Table . 8-37

WinCopyRect - Copy Rectangle . 8-39

WinCpTranslateChar - Translate Character with Code Page . 8-40

WinCpTranslateString - Translate String with Code Page . 8-42

WinCreateAccelTable - Create Accelerator Table . 8-44

WinCreateAtomTable - Create Atom Table 8-46

WinCreateCursor - Create Cursor . 8-48

WinCreateDlg - Create Dialog . 8-50

WinCreateFrameControls - Create Frame Controls . 8-52

WinCreateHelplnstance - Create Help Instance . 8-54

WinCreateHelpTable - Create Help Table . 8-56

WinCreateMenu - Create Menu . 8-58

WinCreateMsgQueue - Create Message Queue 8-60

WinCreateObject - Create Workplace Object . 8-62

WinCreatePointer - Create Pointer . 8-64

WinCreatePointerlndirect - Create Pointer Indirect . 8-66

WinCreateStdWindow - Create Standard Window

WinCreateSwitchEntry - Create Switch Entry .

WinCreateWindow - Create Window

WinDdelnitiate - Dynamic Data Exchange Initiate (NLS) .

WinDdePostMsg - Dynamic Data Exchange Post Message (NLS)

WinDdeRespond - Dynamic Data Exchange Respond (NLS} .

WinDefDlgProc - Default Dialog Procedure .

WinDefFileDlgProc - S.tandard File Dialog Default Procedure

WinDefFontDlgProc - Standard Font Dialog Default Procedure

WinDefWindowProc - Default Window Procedure

WinDeleteAtom - Delete Atom .

WinDeletelboxltem - Delete Listbox Item

WinDeletelibrary - Delete Library

WinDeleteProcedure - Delete Procedure .

WinDeregisterObjectClass - Deregister Workplace Object Class

WinDestroyAccelTable - Destroy Accelerator Table

WinDestroyAtomTable - Destroy Atom Table

WinDestroyCursor - Destroy Cursor .

WinDestroyHelplnstance - Destroy Help Instance

WinDestroyMsgQueue - Destroy Message Queue

WinDestroyObject - Destroy Workplace Object .

WinDestroyPointer - Destroy Pointer

WinDestroyWindow - Destroy Window .

WinDismissDlg - Dismiss Dialog .

WinDispatchMsg - Dispatch Message

WinDlgBox - Load and Process Modal Dialog .

WinDrawBitmap - Draw Bit Map

8-68
8-72
8-74
8-78
8-80
8-83
8-85
8-87
8-88
8-89
8-91
8-93
8-95
8-96
8-97
8-98
8-99

8-101
8-102
8-104
8-106
8-107
8-109
8-111
8-113
8-115
8-118

Functions and Workplace

WinDrawBorder - Draw Border
WinDrawPointer - Draw Pointer
WinDrawText - Draw Text
WinEmptyClipbrd - Empty Clipboard
WinEnableControl - Enable Control of Button Id
WinEnableMenultem - Enable Menu Item .
WinEnablePhyslnput - Enable Physical Input
WinEnableWindow - Set Window Enabled State
WinEnableWindowUpdate - Enable Window Update
WinEndEnumWindows - End Window Enumeration
WinEndPaint - End Paint .. .
WinEnumClipbrdFmts - Enumerate Clipboard Formats
WinEnumDlgltem - Enumerate Dialog Item
WinEnumObjectClasses - Enumerate Object Classes .
WinEqualRect - Equal Rectangle
WinExcludeUpdateRegion - Exclude Update Region
WinFileDlg - Standard File Dialog
WinFillRect - Fill Rectangle
WinFindAtom - Find Atom
WinFlashWindow - Flash Window
WinFocusChange - Change Focus Window
WinFontDlg - Standard Font Dialog .
WinFreeErrorlnfo - Free Error Information
WinFreeFileDlglist - Free Standard File Dialog File List
WinFreeFilelcon - Free File Icon
WinGetClipPS - Get Clipped Presentation Space
WinGetCurrentTime - Get Current Time
WinGetDlgMsg - Get Dialog Message .
WinGetErrorlnfo - Get Error Information
WinGetKeyState - Get Key State
WinGetLastError - Get Last Error
WinGetMaxPosition - Get Maximum Position
WinGetMinPosition - Get Minimum Position
WinGetMsg - Get Message .
WinGetNextWindow - Get Next Window
WinGetPhysKeyState - Get Physical Key State .
WinGetPS - Get Presentation Space
WinGetScreenPS - Get Screen Presentation Space
WinGetSysBitmap - Get System Bit Map .
WinlnflateRect - Inflate Rectangle
Winlnitialize - Initialize
WinlnSendMsg - In Send Message
WinlnsertLboxltem - Insert Listbox Item
WinlntersectRect - Intersect Rectangle
WinlnvalidateRect - Invalidate Rectangle
WinlnvalidateRegion - Invalidate Region .
WinlnvertRect - Invert Rectangle
WinlsChild - Is Child .. .
WinlsControlEnabled - Is Control Enabled
WinlsMenultemChecked - Is Menu Item Checked .
WinlsMenultemEnabled - Is Menu Item Enabled
WinlsMenultemValid - Is Menu Item Valid
WinlsPhyslnputEnabled - Is Physical Input Enabled .
WinlsRectEmpty - Is Rectangle Empty
WinlsThreadActive - Is Thread Active
WinlsWindow - Is Window
WinlsWindowEnabled - Query Window Enabled State
WinlsWindowShowing - Query Window Showing
WinlsWindowVisible - Query Window Visibility
WinLoadAccelTable - Load Accelerator Table
WinLoadDlg - Load Dialog .
WinLoadFilelcon - Load File Icon
WinLoadHelpTable - Load Help Table

PM Programming Reference

8-121
8-124
8-126
8-130
8-131
8-132
8-134
8-135
8-137
8-139
8-141
8-143
8-145
8-147
8-148
8-150
8-152
8-154
8-156
8-158
8-160
8-163
8-165
8-166
8-168
8-169
8-171
8-172
8-175
8-176
8-178
8-179
8-181
8-183
8-186
8-188
8-190
8-192
8-194
8-197
8-199
8-201
8-203
8-205
8-207
8-209
8-211
8-213
8-214
8-216
8-218
8-220
8-222
8-223
8-224
8-226
8-228
8-230
8-232
8-234
8-236
8-239
8-241

WinLoadlibrary - Load library . 8-243

WinLoadMenu - Load Menu . 8-244

WinLoadMessage - Load Message . 8-246

WinLoadPointer - Load Pointer . 8-248

WinLoadProcedure - Load Procedure . 8-250

WinLoadString - Load String . 8-251

WinLockVisRegions - Lock Visible Regions . 8-253

WinLockWindowUpdate - Lock Window Update . 8-255

WinMakePoints - Make Points . 8-257

WinMakeRect - Make Rectangle . 8-258

WinMapDlgPoints - Map Dialog Points . 8-259

WinMapWindowPoints - Map Window Points . 8-260

WinMessageBox - Message Box . 8-262

WinMultWindowFromlDs - Get Multiple Windows From Identities 8-266

WinNextChar - Move to Next Character . 8-268

WinOffsetRect - Offset Rectangle . 8-270

WinOpenClipbrd - Open Clipboard . 8-272

WinOpenWindowDC - Open Window Device Context . 8-273

WinPeekMsg - Peek Message . 8-275

WinPopupMenu - Pop-up Menu . 8-277

WinPostMsg - Post Message . 8-281

WinPostQueueMsg - Post Queue Message . 8-283

WinPrevChar - Move to Previous Character . 8-285

WinProcessDlg - Process Modal Dialog . 8-287

WinPtlnRect - Point In Rectangle . 8-289

WinQueryAccelTable - Query Accelerator Table . 8-291

WinQueryActiveWindow - Query Active Window . 8-293

WinQueryAnchorBlock - Query Anchor Block . 8-294

WinQueryAtomLength - Query Atom Length . 8-295

WinQueryAtomName - Query Atom Name . 8-297

WinQueryAtomUsage - Query Atom Usage . 8-299

WinQueryButtonCheckstate - Query Checkstate of Button . 8-300

WinQueryCapture - Query Capture . 8-302

WinQueryClasslnfo - Query Class Information . 8-303

WinQueryClassName - Query Class Name . 8-305

WinQueryClassThunkProc - Query Class Pointer-Conversion Procedure 8-307

WinQueryClipbrdData - Query Clipboard Data . 8-308

WinQueryClipbrdFmtlnfo - Query Clipboard Format Information 8-310

WinQueryClipbrdOwner - Query Clipboard Owner . 8-312

WinQueryClipbrdViewer - Query Clipboard Viewer . 8-313

WinQueryCp - Query Code Page . 8-314

WinQueryCplist - Query Code Page List . 8-315

WinQueryCursorlnfo - Query Cursor Information . 8-316

WinQueryDesktopBkgnd - Query Desktop Background . 8-317

WinQueryDesktopWindow - Query Desktop Window . 8-319

WinQueryDlgltemShort - Query Dialog Item Short . 8-321

WinQueryDlgltemText - Query Dialog Item Text . 8-323

WinQueryDlgltemTextLength - Query Dialog Item Text Length 8-325

WinQueryFocus - Query Focus . 8-327

WinQueryHelplnstance - Query Help Instance . 8-328

WinQueryLboxCount - Counts Number of Items in Listbox . 8-330

WinQueryLboxltemText - Query Listbox Item Text . 8-331

WinQueryLboxltemTextLength - Query Listbox Item Text Length 8-333

WinQueryLboxSelectedltem - Query the Selected Item in Listbox 8-335

WinQueryMsgPos - Query Message Position . 8-336

WinQueryMsgTime - Query Message Time . 8-338

WinQueryObjectWindow - Query Object Window . 8-340

WinQueryPointer - Query Pointer . 8-342

WinQueryPointerlnfo Query Pointer Information . 8-343

WinQueryPointerPos Query Pointer Position . 8-345

WinQueryPresParam Query Presentation Parameter . 8-347

WinQueryQueuelnfo - Query Queue Information . 8-350

WinQueryQueueStatus - Query Queue Status . 8-352

Functions and Workplace

WinQuerySessionTitle - Query Session Title
WinQuerySwitchEntry - Query Switch Entry
WinQuerySwitchHandle - Query Switch Handle .
WinQuerySwitchlist - Query Switch List
WinQuerySysColor - Query System Color .
WinQuerySysModalWindow - Query System Modal Window
WinQuerySysPointer - Query System Pointer
WinQuerySysValue - Query System Value .
WinQuerySystemAtomTable - Query System Atom Table
WinQueryTaskSizePos - Query Task Window Size and Position
WinQueryTaskTitle - Query Task Title
WinQueryUpdateRect - Query Update Rectangle .
WinQueryUpdateRegion - Query Update Region .
WinQueryVersion - Query Version
WinQueryWindow - Query Window
WinQueryWindowDC - Query Window Device Context
WinQueryWindowModel - Query Window Model
WinQueryWindowPos - Query Window Position
WinQueryWindowProcess - Query Window Process
WinQueryWindowPtr - Query Window Pointer
WinQueryWindowRect - Query Window Rectangle
WinQueryWindowText - Query Window Text
WinQueryWindowTextLength - Query Window Text Length
WinQueryWindowThunkProc - Query Window Pointer-Conversion Procedure
WinQueryWindowULong - Query Window Long
WinQueryWindowUShort - Query Window Short
WinQueryObject - Query Workplace Object Handle .
WinRealizePalette - Realize Palette
WinRegisterClass - Register Window Class .
WinRegisterObjectClass - Register Workplace Object Class
WinRegisterUserDatatype - Register User Data Type .
WinRegisterUserMsg - Register User Message .
WinReleaseHook - Release Hook .
WinReleasePS - Release Presentation Space
WinRemovePresParam - Remove Presentation Parameter
WinRemoveSwitchEntry - Remove Switch Entry .
WinReplaceObjectClass - Replace Workplace Object Class
WinRequestMutexSem - Request Mutex Semaphore
WinRestoreWindowPos - Restore Window Position
WinSaveWindowPos - Save Window Position
WinScrollWindow - Scroll Window .
WinSendDlgltemMsg - Send Message to Dialog Item .
WinSendMsg - Send Message
WinSetAccelTable - Set Accelerator Table
WinSetActiveWindow - Set Active Window .
WinSetCapture - Set Capture
WinSetClassMsglnterest - Set Class Message Interest
WinSetClassThunkProc - Set Class Pointer-Conversion Procedure
WinSetClipbrdData - Set Clipboard Data .
WinSetClipbrdOwner - Set Clipboard Owner
WinSetClipbrdViewer - Set Clipboard Viewer
WinSetCp - Set Code Page .
WinSetDesktopBkgnd - Set Desktop Background
WinSetDlgltemShort - Set Dialog Item Short .
WinSetDlgltemText - Set Dialog Item Text .
WinSetFilelcon - Set File Icon
WinSetFocus - Set Focus .
WinSetHook - Set Hook
WinSetKeyboardStateTable - Set Keyboard State Table
WinSetLboxltemText - Set Listbox Item Text
WinSetMenultemText - Set Menu Item Text
WinSetMsglnterest - Set Message Interest
WinSetMsgMode - Set Message Mode .

PM Programming Reference

8-355
8-357
8-358
8-360
8-362
8-364
8-365
8-368
8-372
8-373
8-375
8-377
8-379
8-381
8-382
8-384
8-385
8-386
8-388
8-390
8-392
8-394
8-396
8-397
8-398
8-400
8-402
8-403
8-405
8-407
8-408
8-415
8-418
8-420
8-422
8-424
8-426
8-427
8-429
8-430
8-432
8-435
8-437
8-439
8-441
8-442
8-444
8-447
8-449
8-452
8-454
8-456
8-457
8-459
8-461
8-463
8-464
8-466
8-468
8-470
8-472
8-473
8-476

WinSetMultWindowPos - Set Multiple Window Positions . 8-478
WinSetObjectData - Set Object Data . 8-480
WinSetOwner - Set Owner . 8-481
WinSetParent - Set Parent . 8-482
WinSetPointer - Set Pointer . 8-484
WinSetPointerPos - Set Pointer Position . 8-486
WinSetPresParam - Set Presentation Parameter . 8-487
WinSetRect - Set Rectangle . 8-489
WinSetRectEmpty - Set Rectangle Empty . 8-491
WinSetSynchroMode - Set Synchronization Mode . 8-492
WinSetSysColors - Set System Colors . 8-494
WinSetSysModalWindow - Set System Modal Window . 8-500
WinSetSysValue - Set System Value . 8-502
WinSetWindowBits - Set Window Word Bits . 8-504
WinSetWindowPos - Set Window Position . 8-506
WinSetWindowPtr - Set Window Words Pointer . 8-510
WinSetWindowText - Set Window Text . 8-512
WinSetWindowThunkProc - Set Window Pointer-Conversion Procedure 8-514
WinSetWindowULong - Set Window Word Long . 8-515
WinSetWindowUShort - Set Window Word Short . 8-517
WinShowCursor - Show Cursor . 8-518
WinShowPointer - Show Pointer . 8-520
WinShowTrackRect - Show Tracking Rectangle . 8-522
WinShowWindow - Show Window . 8-523
WinShutdownSystem - Shutdown System . 8-525
WinStartApp - Window Start Application . 8-526
WinStartTimer - Start Timer . 8-529
WinStopTimer - Stop Timer . 8-531
WinStoreWindowPos Store Window Position . 8-533
WinSubclassWindow - Subclass Window . 8-534
WinSubstituteStrings - Substitute Strings . 8-536
WinSubtractRect - Subtract Rectangle . 8-538
WinSwitchToProgram - Switch To Program . 8-540
WinTerminate - Terminate . 8-542
WinTerminateApp - Terminate Application . 8-544
WinTrackRect - Draw Tracking Rectangle . 8-546
WinTranslateAccel - Translate Accelerator . 8-550
WinUnionRect - Union Rectangle . 8-552
WinUpdateWindow - Update Window . 8-554
WinUpper - Uppercase String . 8-556
WinUpperChar - Uppercase Character . 8-558
WinValidateRect - Validate Rectangle . 8-560
WinValidateRegion - Validate Region . 8-562
WinWaitEventSem - Wait Event Semaphore . 8-565
WinWaitMsg - Wait Message . 8-567
WinWaitMuxWaitSem - Wait MuxWait Semaphore or Message 8-569
WinWindowFromDC - Query Window Handle From Device Context 8-572
WinWindowFromlD - Query Window Handle From Identifier 8-574
WinWindowFromPoint - Window From Point . 8-576

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-1
Workplace object classes . 9-2
WP Abstract . 9-4
WPClock . 9-5
WPColorPalette . 9-6
WPCountry . 9-8
WPDataFile ... 9-9
WPDesktop . 9-1 O
WP Disk . 9-11
WPDrives . 9-13
WPFileSystem . 9-14
WPFolder . 9-16
WPFontPalette . 9-19

Functions and Workplace

WP Job ... · ·
WPKeyboard .
WPMouse .. .
WPObject .. .
WPPalette .. .
WPPort
WPPrinter .. .
WPPrinterDriver .. .
WPProgram
WPProgramFile .. .
WPSchemePalette .
WPShadow
WPShredder
WPSound
WPSpecialNeeds
WPSpooler
WPStartup .. .
WPSystem
WPTemplateFolder .
WPTransient .
WPQueueDriver .

9-21
9-22
9-23
9-24
9-27
9-30
9-31
9-33
9-34
9-37
9-40
9-41
9-43
9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51

Workplace Instance Methods . 9-52
wpAddClockAlarmPage - WPClock instance method . 9-53
wpAddClockDateTimePage - WPClock instance method . 9-54
wpAddClockView1 Page - WPClock instance method . 9-55
wpAddClockView2Page - WPClock instance method . 9-56
wpAddCountryDatePage - WPCountry instance method . 9-57
wpAddCountryNumbersPage - WPCountry instance method . 9-58
wpAddCountryPage - WPCountry instance method . 9-59
wpAddCountryTimePage - WPCountry instance method . 9-60
wpAddDesktoplockup1Page WPDesktop instance method . 9-61
wpAddDesktoplockup2Page - WPDesktop instance method . 9-62
wpAddDesktoplockup3Page - WPDesktop instance method . 9-63
wpAddDiskDetailsPage - WPDisk instance method . 9-64
wpAddFileMenuPage - WPFileSystem instance method . 9-65
wpAddFileTypePage - WPDataFile instance method . 9-66
wpAddFile1Page WPFileSystem instance method . 9-67
wpAddFile2Page - WPFileSystem instance method . 9-68
wpAddFile3Page - WPFileSystem instance method . 9-69
wpAddFolderBackgroundPage - WPFolder instance method . 9-70
wpAddFolderlncludePage - WPFolder instance method . 9-71
wpAddFolderSortPage - WPFolder instance method . 9-72
wpAddFolderView1Page WPFolder instance method . 9-73
wpAddFolderView2Page - WPFolder instance method . 9-74
wpAddFolderView3Page - WPFolder instance method . 9-75
wpAddKeyboardMappingsPage - WPKeyboard instance method 9-76
wpAddKeyboardSpecialNeedsPage - WPKeyboard instance method 9-77
wpAddKeyboardTimingPage - WPKeyboard instance method 9-78
wpAddMouseMappingsPage - WPMouse instance method . 9-79
wpAddMouseTimingPage - WPMouse instance method . 9-80
wpAddMouseTypePage - WPMouse instance method . 9-81
wpAddObjectGeneralPage - WPObject instance method . 9-82
wpAddProgramAssociationPage - WPProgramFile instance method 9-83
wpAddProgramAssociationPage - WPProgram instance method 9-84
wpAddProgramPage - WPProgram instance method 9-85
wpAddProgramPage - WPProgramFile instance method . 9-86
wpAddProgramSessionPage - WPProgram instance method . 9-87
wpAddProgramSessionPage - WPProgramFile instance method 9-88
wpAddSettingsPages - WPObject instance method . 9-89
wpAddSoundWarningBeepPage - WPSound instance method 9-90
wpAddSystemConfirmationPage - WPSystem instance method 9-91
wpAddSystemlogoPage - WPSystem instance method 9-92
wpAddSystemPrintScreenPage - WPSystem instance method 9-93

PM Programming Reference

wpAddSystemWindowPage - WPSystem instance method
wpAddToObjUselist - WPObject instance method
wpAllocMem - WPObject instance method .
wpClose - WPObject instance method
wpCnrlnsertObject - WPObject instance method .
wpCnrRemoveObject - WPObject instance method .
wpCnrSetEmphasis - WPObject instance method
wpConfirmDelete - WPObject instance method
wpCopiedFromTemplate - WPObject instance method
wpCopyObject - WPObject instance method .
wpCreateFromTemplate - WPObject instance method
wpCreateShadowObject - WPObject instance method
wpDelete - WPObject instance method .
wpDeleteAllJobs - WPPrinter instance method
wpDeleteContents - WPFolder instance method
wpDeleteFromObjUselist - WPObject instance method .
wpDeleteJob - WPJob instance method
wpDisplayHelp - WPObject instance method .
wpDoesObjectMatch - WPObject instance method
wpDragCell - WPPalette instance method .
wpDraggedOverObject - WPObject instance method .
wpDragOver - WPObject instance method .
wpDrop - WPObject instance method .
wpDroppedOnObject - WPObject instance method .
wpEditCell - WPPalette instance method
wpEndConversation - WPObject instance method
wpFilterPopupMenu - WPObject instance method
wpFindUseltem - WPObject instance method .
wpFormatDragltem - WPObject instance method .
wpFree - WPObject instance method
wpFreeMem - WPObject instance method
wpHide - WPObject instance method
wpHideFldrRunObjs - WPFolder instance method
wpHoldJob - WPJob instance method .
wpHoldPrinter - WPPrinter instance method
wplnitData - WPObject instance method
wplnsertPopupMenultems - WPObject instance method
wplnsertSettingsPage - WPObject instance method
wplsCurrentDesktop - WPDesktop instance method
wpMenultemHelpSelected - WPObject instance method
wpMenultemSelected - WPObject instance method
wpModifyPopupMenu - WPObject instance method
wpMoveObject - WPObject instance method
wpOpen - WPObject instance method .
wpPaintCell - WPPalette instance method
wpPopulate - WPFolder instance method .
wpPrintJobNext - WPJob instance method .
wpPrintMetaFile - WPDataFile instance method
wpPrintObject - WPObject instance method
wpPrintPifFile - WPDataFile instance method
wpPrintPlainTextFile - WPFileSystem instance method
wpPrintPrinterSpecificFile - WPDataFile instance method
wpPrintUnknownFile - WPDataFile instance method
wpQueryAssociationFilter - WPProgram instance method
wpQueryAssociationFilter - WPProgramFile instance method
wpQueryAssociationType - WPProgram instance method
wpQueryAssociationType - WPProgramFile instance method
wpQueryComputerName - WPPrinter instance method
wpQueryConfirmations - WPObject instance method
wpQueryContent - WPFolder instance method
wpQueryDefaultHelp - WPObject instance method
wpQueryDefaultView - WPObject instance method
wpQueryDetailsData - WPObject instance method

9-94
9-95
9-97
9-98
9-99

9-101
9-102
9-103
9-104
9-105
9-106
9-107
9-108
9-109
9-110
9-111
9-112
9-113
9-114
9-115
9-116
9-118
9-119
9-120
9-121
9-122
9-123
9-125
9-126
9-127
9-128
9-129
9-130
9-131
9-132
9-133
9-134
9-136
9-137
9-138
9-139
9-140
9-141
9-142
9-143
9-144
9-145
9-146
9-147
9-148
9-149
9-150
9-151
9-152
9-153
9-154
9-155
9-156
9-157
9-158
9-159
9-160
9-161

Functions and Workplace

wpQueryError - WPObject instance method . 9-163
wpQueryFldrAttr - WPFolder instance method . 9-164
wpQueryFldrDetailsClass - WPFolder instance method . 9-165
wpQueryFldrFlags - WPFolder instance method . 9-166
wpQueryFldrFont - WPFolder instance method . 9-167
wpQueryHandle - WPObject instance method . 9-168
wpQuerylcon - WPObject instance method . 9-169
wpQuerylconData - WPObject instance method . 9-170
wpQuerylogicalDrive - WPDisk instance method . 9-171
wpQueryNextlconPos - WPFolder instance method . 9-172
wpQueryPaletteHelp - WPPalette instance method . 9-173
wpQueryPalettelnfo - WPPalette instance method . 9-174
wpQueryPrinterName - WPPrinter instance method . 9-175
wpQueryProgDetails - WPProgram instance method . 9-176
wpQueryProgDetails - WPProgramFile instance method . 9-177
wpQueryRealName - WPFileSystem instance method . 9-178
wpQueryRootFolder - WPDisk instance method . 9-179
wpQueryShadowedObject - WPShadow instance method . 9-180
wpQueryStyle - WPObject instance method . 9-181
wpQueryTitle - WPObject instance method . 9-182
wpQueryType - WPFileSystem instance method . 9-183
wpRedrawCell - WPPalette instance method . 9-184
wpRefresh - WPFileSystem instance method . 9-185
wpRegisterView - WPObject instance method . 9-186
wpReleaseJob - WPJob instance method . 9-187
wpReleasePrinter - WPPrinter instance method . 9-188
wpRender - WPObject instance method . 9-189
wpRenderComplete - WPObject instance method . 9-190
wpRestore - WPObject instance method . 9-191
wpRestoreData - WPObject instance method . 9-192
wpRestorelong - WPObject instance method . 9-193
wpRestoreState - WPObject instance method . 9-194
wpRestoreString - WPObject instance method . 9-195
wpSaveData - WPObject instance method . 9-196
wpSaveDeferred - WPObject instance method . 9-197
wpSavelmmediate - WPObject instance method . 9-198
wpSavelong - WPObject instance method . 9-199
wpSaveState - WPObject instance method . 9-200
wpSaveString - WPObject instance method . 9-201
wpScanSetupString - WPObject instance method . 9-202
wpSetAssociationFilter - WPProgram instance method . 9-204
wpSetAssociationFilter - WPProgramFile instance method . 9-205
wpSetAssociationType - WPProgram instance method . 9-206
wpSetAssociationType - WPProgramFile instance method . 9-207
wpSetComputerName - WPPrinter instance method . 9-208
wpSetoefaultHelp - WPObject instance method . 9-209
wpSetoefaultPrinter - WPPrinter instance method . 9-210
wpSetDefaultView - WPObject instance method . 9-211
wpSetError - WPObject instance method . 9-212
wpSetFldrAttr - WPFolder instance method . 9-213
wpSetFldrDetailsClass - WPFolder instance method . 9-214
wpSetFldrFlags - WPFolder instance method . 9-215
wpSetFldrFont - WPFolder instance method . 9-216
wpSetlcon - WPObject instance method . 9-217
wpSetlconData - WPObject instance method . 9-218
wpSetNextlconPos - WPFolder instance method . 9-219
wpSetPalettelnfo - WPPalette instance method . 9-220
wpSetPrinterName - WPPrinter instance method . 9-221
wpSetProgDetails - WPProgram instance method . 9-222
wpSetProgDetails - WPProgramFile instance method . 9-223
wpSetRealName - WPFileSystem instance method . 9-224
wpSetShadowTitle - WPShadow instance method . 9-225
wpSetStyle - WPObject instance method . 9-226

PM Programming Reference

wpSetTitle - WPObject instance method . 9-227
wpSetType - WPFileSystem instance method . 9-228
wpSetup - WPObject instance method . 9-229
wpSetupCell - WPPalette instance method . 9-233
wpShowPalettePointer - WPPalette instance method . 9-234
wpStartJobAgain - WPJob instance method . 9-235
wpSwitchTo - WPObject instance method . 9-236
wpUnlockObject - WPObject instance method . 9-237
wpUnlnitData - WPObject instance method . 9-238
Workplace Class Methods . 9-239
wpclsCreateDefaultTemplates - WPObject class method . 9-240
wpclsFindObjectEnd - WPObject class method . 9-241
wpclsFindObjectFirst - WPObject class method . 9-242
wpclsFindObjectNext - WPObject class method . 9-244
wpclslnitData - WPObject class method . 9-246
wpclsMakeAwake - WPObject class method . 9-247
wpclsNew - WPObject class method . 9-249
wpclsQueryDefaultHelp - WPObject class method . 9-251
wpclsQueryDefaultView - WPObject class method . 9-252
wpclsQueryDetails - WPObject class method . 9-253
wpclsQueryDetailsJnfo - WPObject class method . 9-254
wpclsQueryEditString - WPPalette class method . 9-257
wpclsQueryError - WPObject class method . 9-258
wpclsQueryFolder - WPObject class method . 9-259
wpclsQuerylcon - WPObject class method . 9-260
wpclsQuerylconData - WPObject class method . 9-261
wpclsQuerylnstanceFilter - WPFileSystem class method . 9-262
wpclsQuerylnstanceType - WPFileSystem class method . 9-263
wpclsQueryObject - WPObject class method . 9-264
wpclsQueryOpenFolders - WPFolder class method . 9-265
wpclsQuerySettingsPageSize - WPObject class method . 9-266
wpclsQueryStyle - WPObject class method . 9-267
wpclsQueryTitle - WPObject class method . 9-268
wpclsSetError - WPObject class method . 9-269
wpclsUnlnitData - WPObject class method . 9-270

Functions and Workplace

PM Programming Reference

Chapter 8. Window Functions

Window Functions by Functional Area
The following table shows how all of the Window (WIN) functions are related within functional areas.
The functions are in alphabetic order within these areas.

CName CName

Accelerators

WinCopyAccelTable WinQueryAccelTable

Wi nCreateAccelTable WinSetAccelTable

Wi nDestroy Acee IT able WinTranslateAccel

WinloadAccelTable

Alarms

WinAlarm Win Message Box

WinFlashWindow

Atom Manager

WinAddAtom WinQuery Atom length

WinCreateAtomTable WinQueryAtomName

WinDeleteAtom WinQueryAtomUsage

Win Destroy Atom Table WinQuerySystemAtomTable

WinFindAtom

Button

Wi nCheckButton WinQueryButtonCheckstate

Clipboard

WinCloseClipbrd WinQueryClipbrdOwner

WinEmptyClipbrd WinQueryClipbrdViewer

WinEnumClipbrdFmts WinSetClipbrdData

WinOpenClipbrd WinSetClipbrdOwner

Wi nQueryCli pbrdData WinSetClipbrdViewer

WinQueryClipbrdFmtlnfo

Coordinate Mapping

WinMakePoints WinMapWindowPoints

WinMapDlgPoints

Cursor

WinCreateCursor WinQueryCursorlnfo

WinDestroyCursor WinShowCursor

Dialog Boxes

WinCreateDlg WinFileDlg

WinDefDlgProc WinFontDlg

WinDefFileDlgProc WinFreeFileDlglist

Chapter 8. Window Functions 8-1

CName CName

WinDefFontDlgProc WinGetDlgMsg

WinDismissDlg WinLoadDlg

WinDlgBox WinProcessDlg

WinEnableControl

Drawing Management

Drawing

WinBeginPaint WinlockVisRegions

WinEnableWindowUpdate WinOpenWindowDC

WinEndPaint WinQueryUpdateRect

WinExcludeUpdateRegion Wi nQueryUpdateRegion

WinGetClipPS WinRealizePalette

WinGetPS WinReleasePS

WinGetScreenPS WinShowWindow

Wi nlnval idateRect WinUpdateWindow

WinlnvalidateRegion WinValidateRect

WinlsWindowShowing WinValidateRegion

WinlsWindowVisible

Drawing Helpers

WinDrawBitmap WinlnvertRect

WinDrawBorder WinQueryPresParam

WinDrawPointer WinRemovePresParam

WinDrawText WinScrollWindow

WinFillRect WinSetPresParam

WinGetSysBitmap

Dynamic Data Exchange (DDE) Support

WinDdelnitiate WinDdeRespond

WinDdePostMsg

Error Processing

WinFreeErrorlnfo WinGetLastError

WinGetErrorlnfo

Help Manager

WinAssociateHelplnstance WinDestroyHel plnstance

WinCreateHelplnstance WinLoadHelpTable

WinCreateHelpTable Wi nQueryHelplnstance

Initialization and Termination

WinCancelShutdown WinQuery Anchor Block

Winlnitial ize WinQueryVersion

WinTerminate

Keyboard

WinEnablePhyslnput WinlsPhyslnputEnabled

8-2 PM Programming Reference

CName CName

Wi nFocusChange WinQueryFocus

WinGetKeyState WinSetFocus

WinGetPhysKeyState WinSetKeyboardState Table

Library Support

WinDeletelibrary Winloadlibrary

WinDeleteProcedure WinloadProcedure

List Box

WinDeletelboxltem WinQuerylboxltem Textlength

Winlnsertlboxltem WinSetlboxltem Text

WinQuerylboxCount WinQuerylboxSelectedltem

WinQuerylboxltemText

Menus

WinCheckMenultem WinlsMenultemValid

WinCreateMenu WinloadMenu

WinEnableMenultem WinPopupMenu

WinlsMenultemChecked WinSetMenultemText

WinlsMenultemEnabled

Message Management

WinBroadcastMsg WinQueryQueuelnfo

WinCreateMsgQueue WinQueryQueueStatus

WinDestroyMsgQueue WinRegisterUserDatatype

WinDispatchMsg WinRegisterUserMsg

WinGetMsg WinSendDlgltemMsg

WinlnSendMsg WinSendMsg

WinloadMessage WinSetClassMsglnterest

WinPeekMsg WinSetMsglnterest

WinPostMsg WinSetMsgMode

WinPostQueueMsg WinSetSynchroMode

WinQueryMsgPos WinWaitMsg

WinQueryMsgTime WinRequestMutexSem

WinWaitEventSem WinWaitMuxWaitSem

Mouse Capture

WinQueryCapture WinSetCapture

Mouse Tracking

WinShowTrackRect WinTrackRect

Pointer

WinCreatePointer WinQueryPointerPos

WinCreatePointerlndirect WinQuerySysPointer

WinDestroyPointer WinSetPointer

WinloadPointer WinSetPointerPos

Chapter 8. Window Functions 8-3

CName CName

WinQueryPointer Wi nShowPointer

WinQueryPointerlnfo

Rectangles

WinCopyRect Wi nOffsetRect

WinEqualRect WinPtlnRect

WinlnflateRect WinSetRect

WinlntersectRect WinSetRectEmpty

WinlsRectEmpty WinSubtractRect

WinMakeRect WinUnionRect

Standard Window

WinCalcFrameRect WinCreateStdWindow

WinCreateFrameControls

String/Character and Code Pages

WinCompareStrings WinQueryCp

WinCpTranslateChar Wi nQueryCplist

WinCpTranslateString WinSetCp

WinloadString Wi nSubstituteStrings

WinNextChar Win Upper

WinPrevChar WinUpperChar

Task List

WinAddSwitchEntry Wi nQueryTaskSizePos

Wi nChangeSwitchEntry Wi nQueryTaskTitle

Wi nCreateSwitchEntry Wi nRemoveSwitchEntry

Wi nQuerySession Title WinStartApp

WinQuerySwitchEntry WinSwitchToProgram

WinQuerySwitchHandle WinTerminateApp

WinQuerySwitchlist

System and Queue Hooks

WinCallMsgFilter WinSetHook

WinReleaseHook

System Colors

WinQuerySysColor Wi nSetSysColors

System Modal Management

WinQuerySysModalWindow WinSetSysModalWindow

System Values

WinQuerySysValue WinSetSysValue

Timers

WinGetCurrentTime WinStopTimer

WinStartTimer

8-4 PM Programming Reference

CName CName

Window Management

Activation, Size and Position

WinGetMaxPosition WinSaveWindowPos

WinGetMinPosition WinSetActiveWindow

WinQueryActiveWindow WinSetMultWindowPos

WinQueryWindowPos WinSetWindowPos

Creation and Class Information

WinCreateWindow WinQueryClassName

WinDefWindowProc WinRegisterClass

WinDestroyWindow WinSubclassWindow

WinQueryClasslnfo

General Window Information

WinEnableWindow WinQueryWindowDC

Win ls ThreadActive WinQueryWindowProcess

WinlsWindow WinQueryWindowRect

WinlsWindowEnabled WinSetDesktopBkgnd

WinQueryDesktopBkgnd WinWindowFromDC

WinQueryDesktopWindow WinWindowFromlD

WinQueryObjectWindow WinWindowFromPoint

Locking

WinlockWindowUpdate

Window Hierarchies

WinBeginEnumWindows WinMultWindowFromlDs

WinEndEnumWindows WinQueryWindow

WinEnumDlgltem WinSetOwner

WinGetNextWindow WinSetParent

WinlsChild

Mixed Memory Model Support

WinQueryClassThunkProc WinSetClassThunkProc

WinQueryWindowModel Wi nSetWindowThunkProc

WinQueryWindowThunkProc

Window Text
--- -

WinQueryDlgltemShort Wi nQueryWindowTextlength

WinQueryDlgltemText WinSetDlgltemShort

Wi nQueryDlgltem Textlength WinSetDlgltemText

WinQueryWindowText WinSetWindowText

Window Words

WinQueryWindowPtr WinSetWindowPtr

WinQueryWindowULong WinSetWindowULong

WinQueryWindowUShort WinSetWindowUShort

Chapter 8. Window Functions 8-5

CName CName

WinSetWindowBits

8-6 PM Programming Reference

WinAddAtom

#define INCL_WINATOM I* Or use INCL_WIN or INCL_PM */

ATOM WlnAddAtom (HATOMTBL hatomtblAtomTbl, PSZ pszAtomName)

This function adds an atom to an atom table.

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

This is the handle returned by a previous call to WinCreateAtomTable or
WinQuerySystemAtomTable.

pszAtomName (PSZ) - input
Atom name.

This is a character string to be added to the table.

Add Atom

If the string begins with an "#" character, the five ASCII digits that follow are converted into an
integer atom. If this integer is a valid integer atom, this function returns that atom, without
modifying the atom table.

If the string begins with an "!" character, the next two bytes are interpreted as an atom. If it is
an integer atom, that atom is returned. If it is not an integer atom and it is a valid atom for the
given atom table (that is, it has an atom name and use count associated with it) the use count of
that atom is incremented by one and the atom is returned. Otherwise 0 is returned.

If the high order word of the string is minus one, the low order word is an atom. If it is an integer
atom, that atom is returned. If it is not an integer atom and it is a valid atom for the given atom
table (that is, it has an atom name and use count associated with it) the use count of that atom is
incremented by one and the atom is returned. Otherwise 0 is returned.

Returns
Atom value:

Atom The atom associated with the passed string

O Invalid atom-table handle or invalid atom name specified.

Possible returns from WinGetlastError

PMERR_INVALID _HATOMTBL

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID_ATOM_NAME

PMERR_ATOM_NAME_NOT_FOUND

Remarks

An invalid atom-table handle was specified.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

If the atom name represents an integer atom, this function returns the atom represented by the
passed atom name.

If the atom name does not represent an integer atom and if the atom name already exists in the atom
table, this function increments the use count of that atom by one. Otherwise, the atom is added to the

table and its use count is set to one. In either case this function returns the atom represented by the
passed atom name.

Chapter 8. Window Functions 8-7

WinAddAtom
Add Atom

Related Functions
• WinCreateAtomTable
• WinDeleteAtom
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomlength
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Example Code
This example creates an Atom Table and then adds the atom 'newatom' to the new table; it then

checks the count for this new atom to verify that it is 1.

#define INCL_WINATOM
#include <os2.h>

/* Window Atom Functions */

ATOM atom; /* new atom value */
HATOMTBL hatomtblAtomTbl; /*atom-table handle */
char pszAtomName[10]; /*atom name */
ULONG ullnitial = 0; /* initial atom table size (use default)*/
ULONG ulBuckets = 0; /* size of hash table (use default) */
ULONG ulCount; /* atom usage count */
BOOL atomCountl = FALSE;/* indicates atom count == 1 */

/* create atom table of default size */
hatomtblAtomTbl = WinCreateAtomTable(ullnitial, ulBuckets);

/* define name for new atom and add to table */
strcpy(pszAtomName, 11 newatom 11

);

atom= WinAddAtom(hatomtblAtomTbl, pszAtomName);

ulCount = WindQueryAtomUsage(hatomtblAtomTbl, atom);

/* verify that usage count is 1 */
if (ulCount == 1)

atomCountl = TRUE;

8-8 PM Programming Reference

WinAddSwitchEntry
Add Switch Entry

#define INCL_WINSWITCHLIST /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HSWITCH WlnAddSwltchEntry (PSWCNTRL pswctlSwltchData)

This function adds an entry to the Window List. This is a list of running programs that is displayed to
the user by the operating system.

Parameters
pswctlSwitchData (PSWCNTRL) - input

Switch data.

Contains information about the newly created Window List entry.

If the szSwtitle[MAXNAMEL + 1] field of the SWCNTRL structure is 0, the system uses the name
under which the application is started. This only applies for programs written for OS/2 Versions
1.1 and later, and only for the first call to this function since the program started. Otherwise, a
NULL entry name is invalid.

The title is truncated, if necessary, to 60 characters.

If the hprog field of the SWCNTRL structure is NULLHANDLE, the value used by the system when
the program was loaded (if it has been loaded) is substituted.

If the idProcess field of the SWCNTRL structure is 0, the current process ID is used.

If the idSession field of the SWCNTRL structure is 0, the current session ID is used.

If the hwndlcon field of the SWCNTRL structure is NULLHANDLE, the system supplies a default
icon.

Returns
Handle to the newly created Window List entry.

There is a system limit to the number of Window List entries. However, this is a large number
(several hundred) and is unlikely to be reached in practice because other system limits, such as
memory size, restrict the number before this limit is reached.

NULLHANDLE Error occurred

Other Handle to the newly created Window List entry.

Possible returns from WinGetLastError

PMERR_NO_SPACE

PMERR_INVALID _WINDOW

PMERR_INVALID _SESSION_ID

Remarks

The limit on the number of Window list entries has been
reached with WinAddSwitchEntry.

The window specified with a Window List function is not a
valid frame window.

The specified session identifier is invalid. Either zero (for
the application's own session) or a valid identifier must
be specified.

Neither this function nor the WinRemoveSwitchEntry function are required if the main window is
created with the frame creation flags FCF_TASKLIST or FCF_STANDARD, because these flags
automatically update the Window List when the main window is created or destroyed.

Chapter 8. Window Functions 8-9

WinAddSwitchEntry
Add Switch Entry

Related Functions
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

Example Code
This example calls WinQueryWindowProcess to get the current process identifier (needed for the
SWCNTRL structure). It then sets up the swctl structure and calls WinAddSwitchEntry to add the
name of the program to the task list. The returned handle can be used in subsequent calls to
WinChangeSwitchEntry if the title needs to be changed. The variables swctl, hswitch, and pid should
be global if the application will be calling the WinChangeSwitchEntry function to avoid having to set
up the structure again.

#define INCL_WINSWITCHLIST
#include <os2.h>

/* Window Task Switch Functions */

SWCNTRL swctl;
HSWITCH hswitch;
PIO pid;

/* switch control data
/* switch handle
/* process id

HWNO hwndFrame; /* frame handle

WinQueryWindowProcess(hwndFrame, &pid, NULL);

swctl.hwnd = hwndFrame;
swctl.hwndlcon = NULLHANOLE;
swctl.hprog = NULLHANOLE;
swctl.idProcess = pid;
swctl.idSession = 0;
swctl.uchVisibility = SWL_VISIBLE;
swctl.fbJump = SWL_JUMPABLE;
swctl.szSwtitle[e] = e;

hswitch = WinAddSwitchEntry(&swctl);

8-10 PM Programming Reference

/* window handle */
/* icon handle */
/* program handle */
/* process identifier */
/* session identifier */
/* visibility */
/* jump indicator */
/* program name */

*/
*/
*/
*/

WinAlarm
Sound Alarm

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnAlarm (HWND hwndDeskTop, ULONG flStyle)

This function generates an audible alarm.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop window

Other Specified desktop window.

flStyle (ULONG) - input
Alarm style.

Used to signify different situations to the operator.

The duration and frequency of the alarms can be changed by the WinSetSysValue function. The
alarm frequency is defined to be in the range X' 0025' through X' 7FFF'. The alarm is not
generated if system value SV_ALARM is set to FALSE. The alarms are dependent on the device
capability.

Different alarms are selected by use of these values:

WA_ WARNING

WA_ NOTE

WA_ERROR

Returns
Alarm-generated indicator:

TRUE Alarm generated

FALSE Alarm not generated.

Possible returns from WinGetLastError

PMERR_INVALID_HWND

PMERR_INVALID_FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

Although this function is in the INCL_WINDIALOGS section, it is part of the common subset and is
also included if INCL_COMMON is defined.

Related Functions
• WinFlashWindow
• WinMessageBox

Chapter 8. Window Functions 8-11

WinAlarm -
Sound Alarm

Example Code
This example calls an application-defined initialization function, and calls WinAlarm to generate an
audible alarm to notify the user if the function fails.

#define INCL_WINDIALOGS
#include <os2.h>

/* Window Dialog Mgr Functions */

if (!Genericlnit()) /* general initialization */
WinAlann(HWND_DESKTOP, WA_ERROR);

8-12 PM Programming Reference

WinAssociateHelplnstance
Associate Help Instance

#define INCL_WINHELP /*Or use INCL_WIN or INCL_PM */

BOOL WinAssoclateHelplnstance (HWND hwndHelplnstance, HWND hwndApp)

This function associates the specified instance of the help manager with the window chain of the
specified application window.

Parameters
hwndHelplnstance (HWND) - input

Handle of an instance of the help manager.

This is the handle returned by the WinCreateHelplnstance call.

NULLHANDLE Dissociates an instance of the help manager from a window chain when the
instance has been destroyed.

Other The handle of an instance of the help manager to be associated with the
application window chain.

hwndApp (HWND) - input
Handle of an application window.

The handle of the application window with which the instance of the help manager will be
associated. The instance of the help manager is associated with the application window and any
of its children or owned windows.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
In order to provide help, the application must associate an instance of the help manager with a chain
of application windows. This association lets the help manager know which instance should provide
the help function.

The help manager traces the window chain, starting from the window where help is requested. The
application window in the chain with the associated help instance will be the one with which the help
manager communicates and next to which the help window is positioned, unless a
HM_SET_ACTIVE_WINDOW message is sent to the help manager. If the HM_SET_ACTIVE_WINDOW
message is sent to the help manager, the active window parameter is the window with which the
help manager communicates. The help manager positions the help window next to the window
specified as the relative window.

Related Functions
• WinCreateHelplnstance
• WinCreateHelpTable
• WinDestroyHelplnstance
• WinloadHelpTable
• WinQueryHelplnstance

Chapter 8. Window Functions 8-13

WinAssociateHelplnstance
Associate Help Instance

Related Messages
• HM_SET_ACTIVE_WINDOW

Example Code
This example shows a typical main function for an application which uses help. Following creation of
the main application window the help manager is initialized and associated with the window. The
help table is defined in the application's resources. When the window is destroyed, terminating the
application, the help instance is also destroyed.

#define INCL=_WIN
#include <os2.h>

#define IDHT_APPLICATION
*/

100 /* id of HELP TABLE in resource file

main(int argc, char *argv[], char *envp[]
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG flStyle;
HELPINIT helpinit;

/* Setup the help initialization structure */
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/* Help table in application resource */
helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANOLE;
/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = 11 APPNAME HELP";
helpinit.fShowPanelld = CMIC_SHOW_PANEL_ID;
hel pi nit. pszHel pli braryName = 11 APPNAME.HLP 11

;

/* Register the class */
if(WinRegisterClass(.•• })
{

/* create the main window */
flStyle = FCF STANDARD;
hwnd = WinCreateStdWindow();

if (hwnd)
{

/* Create and associate the help instance */
hwndHelp = WinCreateHelplnstance(hab, &helpinit);

if(hwndHelp && WinAssociateHelplnstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0))
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

8-14 PM Programming Reference

}

}
}

WinAssociateHelplnstance -
Associate Help Instance

/* Remove help instance - note: add */
/* WinAssociateHelpinstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelpinstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

Chapter 8. Window Functions 8-15

WinBeginEnumWindows
Begin Window Enumeration

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HENUM WinBeginEnumWlndows (HWND hwndParenl)

This function begins the enumeration process for all of the immediate child windows of a specified
window.

Parameters
hwndParenl (HWND) - input

Handle of the window whose child windows are to be enumerated:

HWND_DESKTOP Enumerate all main windows

HWND_OBJECT Enumerate all object windows

Other Enumerate all immediate children of the specified window.

Returns
Enumeration handle.

This is used in subsequent calls to the WinGetNextWindow function to return the immediate
child-window handles in succession.

When the application has finished the enumeration, the enumeration handle must be destroyed
with the WinEndEnumWindows call.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function remembers the window hierarchy at the time of invocation of the call. Thereafter the
information is referenced by use of the Henum parameter and does not change during the
enumeration by the WinGetNextWindow call. The windows are enumerated in the z-order at the time
enumeration is begun, with the topmost child window enumerated first.

Only the immediate children of the specified window are enumerated; child windows of the child
windows are excluded.

The enumerated windows are not locked by this function and can thus be destroyed between the time
that it is called and the time that the WinGetNextWindow function is used to obtain the handle for the
window.

Related Functions
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetOwner
• WinSetParent

8-16 PM Programming Reference

Example Code

WinBeginEnumWindows -
Begin Window Enumeration

This example begins window enumeration of all main windows (i.e. all immediate children of the
Desktop), after which WinGetNextWindow is called in a loop to enumerate all the children, until all
children are found and the enumeration ends.

#define INCL_WINWINOOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND hwndParent;

HWNO hwndNext;
HENUM henum;
BOOL fSuccess;
SHORT sRetlen;
SHORT slength = 10;
char pchBuffer[lO];

/* Handle of the window whose child windows
are to be enumerated *I

/* current enumeration handle */
/* enumeration hand 1 e *I
/* success i ndi ca tor * /
/* returned string length */
/* string buffer length */
/* string buffer *I

hwndParent = HWND_DESKTOP;

henum = WinBeginEnumWindows(hwndParent);

while ((hwndNext = WinGetNextWindow(henum)) != NULLHANDLE) {

}

fSuccess = WinEndEnumWindows (henum);

Chapter 8. Window Functions 8-17

WinBeginPaint
Begin Paint

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HPS WinBeginPalnt (HWND hwnd, HPS hps, PRECTL prclRect)

This function obtains a presentation space whose associated update region is set ready for drawing
in a specified window.

Parameters
hwnd (HWND) - input

Handle of window where drawing is going to occur:

HWND_DESKTOP The desk top window.

Other Specified window.

hps (HPS) - input
Presentation-space handle:

NULLHANDLE Obtain a cache presentation space.

Other Presentation-space handle. This function sets its clipping region to the update
region of the hwnd parameter.

prclRect (PRECTL) - output
Bounding rectangle:

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

NULL No bounding rectangle; that is, repainting is not required.

Other Specifies the smallest rectangle bounding the update region, in window coordinates.

Returns
Presentation-space handle:

NULLHANDLE Error occurred

Other Presentation-space handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INV _HPS

Remarks

An invalid window handle was specified.

An invalid presentation-space handle was specified.

This function is generally made during the processing of a WM_PAINT message when the application
needs to update the content of the window.

If the presentation space already exists, its update region is set and the device context of the window
is associated with the presentation space. Otherwise, a cache presentation space is obtained
specifically for the window.

The update region associated with hwnd is reset to NULLHANDLE. It is assumed that any drawing
following this function restores the content of the window to a fully correct state.

This function hides the pointer if it is in the window and the WinEndPaint function restores it.

8-18 PM Programming Reference

WinBeginPaint -
Begin Paint

This function hides the tracking rectangle if it is active and might hide part of the painting window;
that is, if hwnd is a child of the window specified by the hwnd parameter in the WinTrackRect
function. The WinEndPaint function shows it again.

WinEndPaint must be called after the application completes drawing, and can be nested for the same
window.

Related Functions
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePaiette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_PAINT

Example Code
This example uses WinBeginPaint to obtain and associate a presentation space with the update
region of a window so that redrawing can take place.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND
RECTL
HPS

hwnd;
rel;
hps;

case WM PAINT:

/* parent window
/* update region
/* presentation-space handle

*/

*/
*/
*/

hps-= WinBeginPaint(hwnd, /*handle of the window */
NULLHANDLE, /* get a cache presentation space */
&rel); /* receives update rectangle */

WinFillRect(hps, &rel, CLR_WHITE);
WinEndPaint(hps);

Chapter 8. Window Functions 8-19

WinBroadcastMsg
Broadcast Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinBroadcastMsg (HWND hwndParent, ULONG ulMsgld, MPARAM mpParam1,

MPARAM mpParam2, ULONG flCmd)

This function broadcasts a message to multiple windows.

Parameters
hwndParent (HWND) - input

Parent-window handle.

ulMsgld (ULONG) - input
Message identifier.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

flCmd (ULONG) - input
Broadcast message command:

BMSG_POST Post the message. This value is mutually exclusive with BMSG_SEND
and BMSG_POSTQUEUE.

BMSG_SEND Send the message. This value is mutually exclusive with BMSG_POST

and BMSG_POSTQUEUE.

BMSG_POSTQUEUE Post a message to all threads that have a message queue. This value
is mutually exclusive with BMSG_POST and BMSG_SEND. The hwnd

parameter of the QMSG structure is set to NULL.

BMSG_DESCENDANTS Broadcast the message to all the descendants of the hwndParent

parameter.

BMSG_FRAMEONLY Broadcast the message only to windows with a style of CS_FRAME.

Returns
Success indicator:

TRUE Message was sent or posted successfully to all applicable windows

FALSE Error occurred.

Remarks
This function sends or posts a message to all the immediate child windows of hwndParent, except in

the case when f/Cmd is BMSG_DESCENDANTS.

The ulMsgld, mpParam1, and mpParam2 parameters make up the message sent or posted. The

window handle of the receiving window is added to the message.

8-20 PM Programming Reference

Related Functions
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code

WinBroadcastMsg
Broadcast Message

This example broadcasts a WM_CLOSE message to all descendants of the specified window.

#define INCL_WINMESSAGEMGR
#include <os2.h>

/* Window Message Functions

BOOL fSuccess;
HWND hwndParent;
ULONG ulMsgld;
MPARAM mpParaml;
MPARAM mpParam2;
ULONG flCmd;

/* Success indicator
/* parent window handle
/* Message identifier
/* Parameter 1
/* Parameter 2
/* message command

/* set msg to close window, parameters to NULL */
ulMsgld = WM_CLOSE;
mpParaml = MPVOID;
mpParam2 = MPVOID;

/* broadcast to all descendants */
flCmd = BMSG_DESCENDANTS;

fSuccess = WinBroadcastMsg(hwndParent, ulMsgld, mpParaml,
mpParam2, flCmd);

*/

*/
*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-21

WinCalcFrameRect -
Calculate Frame Rectangle

#define INCL_WINFRAMEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnCalcFrameRect (HWND hwnd, PRECTL prclRect, BOOL fFrame)

This function calculates a client rectangle from a frame rectangle, or a frame rectangle from a client
rectangle.

Parameters
hwnd (HWND) - input

Frame-window handle.

prclRect (PRECTL) - input/output
Window rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

fFrame (BOOL) - input
Frame indicator:

TRUE Frame rectangle provided

FALSE Client-area rectangle provided.

Returns
Rectangle-calculated indicator:

TRUE Rectangle successfully calculated

FALSE Error occurred, or the calculated rectangle is empty.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function provides the size and position of the client area within the specified frame rectangle for
the specified frame window, or conversely, the size and position of the frame window that would
contain a client window of the specified size and position.

This function sends a WM_CALCFRAMERECT message to the frame window. This enables a
subclassed frame control to implement the calculation correctly.

This function works if hwnd is hidden; hwnd should be hidden if it is required that the window shows
a particular client rectangle when the window is first shown.

Related Functions
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

8-22 PM Programming Reference

WinCalcFrameRect -
Calculate Frame Rectangle

Related Messages
• WM_CALCFRAMERECT

Example Code
This example converts a client window's boundaries into screen coordinates and calls

WinCalcFrameRect to calculate an equivalent frame rectangle size.

#define INCL_WINFRAMEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Frame Functions
/* Window Manager Functions

BOOL fSuccess;
HWND hwndClient;
HWND hwndFrame;
RECTL rclBoundary;

/* Success indicator
/* client window
/* frame window
/* Boundary rectangle

*/
*/

*/
*/
*/
*/

/* convert client boundary coordinates to screen coordinates */
WinMapWindowPoints(hwndClient, HWND_DESKTOP, (PPOINTL)&rclBoundary,

2);

/* calculate equivalent frame boundary from boundary data */
fSuccess = WinCalcFrameRect(hwndFrame, &rclBoundary, FALSE);

Chapter 8. Window Functions 8-23

WinCallMsgFilter -
Call Message Filter

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL WlnCallMsgFlller (HAB hab, PQMSG pqmsgpqmsg, ULONG ulFlller)

This function calls a message-filter hook.

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsgpqmsg (PQMSG) - input
Message to be passed to the message-filter hook.

ulFlller (ULONG) - input
Filter.

Message-filter code passed to the message-filter hook. This can be one of the standard MSGF _ *
values (see MsgFilterHook) or an application-specific value.

Returns
Message-filter hook return indicator:

TRUE A message-filter hook returns TRUE

FALSE All message-filter hooks return FALSE, or no message-filter hooks are defined.

Remarks
This function allows an application to pass a message to the message-filter hook procedure(s).

Related Functions
• WinReleaseHook
• WinSetHook

8-24 PM Programming Reference

Example Code

WinCaUMsgFilter -
Call Message Filter

This example calls a message filter hook and passes a WM_ CLOSE message in message box mode.

#define INCL_WINHOOKS
#include <os2.h>

/* Window Hook Functions */

BOOL fHookRet; /* filter hook return indicator */
HAB hab; /* Anchor-block handle */
QMSG pqmsgpqmsg; /* Message to be passed to the

message-filter hook */
ULONG ulFilter; /* Filter */
PO INTL ptrPos = {5L,5L} ;/* pointer position *I

/* initialize message structure */
pqmsgpqmsg.hwnd = HWND_DESKTOP;
pqmsgpqmsg.msg = WM_CLOSE;
pqmsgpqmsg.mpl = MPVOID;
pqmsgpqmsg.mp2 = MPVOID;
pqmsgpqmsg.time = OL;
pqmsgpqmsg.ptl = ptrPos;

/* call hook in message box mode */
ulFilter = MSGF_MESSAGEBOX;

fHookRet = WinCallMsgFilter(hab, &pqmsgpqmsg, ulFilter);

Chapter 8. Window Functions 8-25

WinCancelShutdown
Cancel Shutdown

#define INCL WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnCancelShutdown {HMQ hmq, BOOL fCancelAlways)

This function cancels a request for an application to shut down.

Parameters
hmq {HMO) - input

Handle of message queue for current thread.

fCancelAlways {BOOL) - input
Cancellation control.

TRUE No WM_QUIT message should be placed on this queue during system shutdown.

FALSE The applications ignore any outstanding WM_ QUIT messages already sent to it, but a
message should be sent during other system shutdowns.

Returns
Success indicator.

TRUE Successful completion

FALSE Error occurred.

Remarks
On a system shutdown, each message queue is normally posted a WM_QUIT message. An
application can process this message in one of two ways:

• Destroy its message queue using WinDestroyMsgQueue (hmq) or,
• Call WinCancelShutdown (hmq, FALSE)

Either way the system can proceed to the next queue.

If the application determines that it never wants a message queue to receive a WM_ QUIT message as
a result of a system shutdown, it should call WinCancelShutdown (hmq, TRUE), typically right after
creating the message queue.

Related Functions
• WinTerminate
• WinCreateMsgQueue
• Winlnitialize
• WinTerminate

Related Messages
• WM_QUIT

8-26 PM Programming Reference

Example Code

WinCancelShutdown -
Cancel Shutdown

This example cancels a shutdown request (WM_QUIT message) and specifies that the message
queue will not accept any new WM_QUIT messages.

#define INCL_WINMESSAGEMGR
#include <os2.h>
HAB hab,

/* Window Message Functions

BOOL fSuccess;
HMQ hmq;

/* Success indicator
/* queue handle

hmq = WinCreateMsgQueue(hab, 0);
fSuccess = WinCancelShutdown(hmq, TRUE);

*/

*/
*/

Chapter 8. Window Functions 8-27

WinChangeSwitchEntry
Change Switch Entry

#define INCL_WINSWITCHLIST I* Or use INCL_WIN or INCL_PM */

ULONG WlnChangeSwltchEntry (HSWITCH hswltchSwltch, PSWCNTRL pswctlSwltchData)

This function changes the information in a Window List entry.

Parameters
hswltchSwltch (HSWITCH) - input

Handle to the Window List entry to be changed.

pswctlSwitchData (PSWCNTRL) - input
Switch-control data.

Contains the information to change the Window List entry.

If the idProcess field of the SWCNTRL structure is 0, the current process ID is used.

If the idSession field of the SWCNTRL structure is 0, the current session ID is used.

Returns
Return code:

0 Successful completion

Other Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID~SWITCH_HANDLE

PMERR_INVALID _WINDOW

Remarks

An invalid Window List entry handle was specified.

The window specified with a Window List function is not a
valid frame window.

Leading and trailing blanks are removed from the title and, if necessary, it is truncated to 60
characters.

8-28 PM Programming Reference

Example Code

WinChangeSwitchEntry -
Change Switch Entry

This example changes the program name of a task-list entry to 'Generic: NEW.APP' using the handle
returned by WinAddSwitchEntry.

#define INCL_WINSWITCHLIST
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Switch List Functions */
/* Window Manager Functions */

HSWITCH hswitch;
SWCNTRL swctl;
PID pid;

/* task-list entry handle
/* switch-control data

*/
*/
*/
*/
*/

/* process id
HAB hab;
HWND hwndFrame;

/* anchor-block handle
/* frame handle

hab = WinQueryAnchorBlock(hwndFrame); /*gets anchor block*/
WinQueryWindowProcess(hwndFrame, &pid, NULL);/* gets process id*/

/* initialize switch structure */
swctl.hwnd = hwndFrame;
swctl.hwndlcon = NULLHANDLE;
swctl.hprog = NULLHANDLE;
swctl.idProcess = pid;
swctl.idSession = 0;
swctl.uchVisibility = SWL_VISIBLE;
swctl.fbJump = SWL_JUMPABLE;
swctl.szSwtitle[0]= 0;

/* window handle */
/* icon handle */
/* program handle */
/* process identifier */
/* session identifier */
/* visibility */
/* jump indicator */
/* program name */

hswitch = WinCreateSwitchEntry(hab, &swctl);

/* set application name */
strcpy(swctl.szSwtitle, 11 Generic: NEW.APP");

WinChangeSwitchEntry(hswitch, &swctl);

Chapter 8. Window Functions 8-29

WinCheckButton -
Set Checkstate of Button

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

USHORT WlnCheckButton (HWND hwndDlg, USHORT usld, USHORT usChkstate)

This macro sets the checked state of the specified button control. It returns the previous check state.

Parameters
hwndDlg (HWND) - input

Dialog window handle.

usld (USHORT} - input
Button control identity.

usChkstate (USHORT} - input
Indicates the current checked state of the button.

Returns
Returns the previous checkstate.

Remarks
This macro expands to:

#define WinCheckButton(hwndDlg, usld, usChkstate)
((USHORT)WinSendDlgltemMsg(hwndDlg,

usld,
BM SETCHECK,
MPFROMSHORT(usChkstate),
(MPARAM)NULL))

This call requires the existence of a message queue.

Related Functions
• WinSendDlgltemMsg

Related Messages
• BM_SETCHECK

8-30 PM Programming Reference

WinCheckButton -
Set Checkstate of Button

Example Code
This example responds to a button click (BN_CLICKED, WM_CONTROL message) on a check box by

setting the checked state of the button.

#define INCL_WINWINDOWMGR
#define INCL_WINBUTTONS
#include <os2.h>

/* Window Manager Functions
/* Window Button definitions

USHORT usCheckid;
HWND hwndDlg;
USHORT usChkstate;
USHORT usOldstate;
MPARAM mpl;
MPARAM mp2;

case WM_CONTROL:

/* check box id
/* dialog window handle
/* new checked state
/* old checked state
/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)

/* switch on control code */
switch(SHORT2FROMMP(mpl))

{
case BN CLICKED:

}

usCheckid = SHORTlFROMMP(mpl);

/* query current check state */
usChkstate = WinQueryButtonCheckstate(hwndDlg,

usCheckid);

/* set box check state */
usOldstate = WinCheckButton(hwndDlg, usCheckid,

usChkstate);
break;

*/
*/

*/
*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-31

WinCheckMenultem
Check Menu Item

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnCheckMenultem (HWND hwndMenu, USHORT usld, BOOL fCheck)

This macro sets the check state of the specified menu item to the flag.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Item identifier.

fCheck (BOOL) - input
Check flag.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinCheckMenuitem(hwndMenu, usid, fCheck)
((BOOL)WinSendMsg(hwndMenu,

MM SETITEMATTR,
MPFROM2SHORT(usid, TRUE),
MPFROM2SHORT(MIA_CHECKED, (BOOL)(fCheck) ? MIA_CHECKED : 0)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• MM_SETITEMATTR

8-32 PM Programming Reference

Example Code

WinCheckMenultem
Check Menu Item

This example responds to a select menu message (WM_MENUSELECT) by querying (via
WinlsMenultemChecked) the check attribute and then setting the check state of the menu item that
was selected.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

US HORT
HWND
BOOL
BOOL
MPARAM
MPARAM

usltemld;
hwndMenu;
usChkstate;
fSuccess;
mpl;
mp2;

case WM MENUSELECT:

/* menu item id
/* menu handle
/* new checked state
/* success indicator
/* Parameter 1 (menu item id)
/* Parameter 2 (menu handle)

usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* query current check state */
usChkstate = WinlsMenultemChecked(hwndMenu, usltemld);

/* set menu item check state */

*/

*/
*/
*/
*/
*/
*/

fSuccess = WinCheckMenultem(hwndMenu, usltemld, ! usChkstate);

Chapter 8. Window Functions 8-33

WinCloseClipbrd
Close Clipboard

#define INCL_WINCLIPBOARD /*Or use INCL_WIN or INCL_PM */

I BOOL WlnCloseCllpbrd (HAB hab)

This function closes the clipboard, allowing other applications to open it with the WinOpenClipbrd
function.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function causes the contents of the clipboard to be drawn in the clipboard viewer window (if
any), by sending it a WM_DRAWCLIPBOARD message. This action occurs only if the clipboard data
has changed.

The clipboard must be open before this function is invoked.

Related Functions
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Related Messages
• WM_DRAWCLIPBOARD

Example Code
This example closes the clipboard, previously opened by WinOpenClipbrd, to allow other
applications to open it for use.

#define INCL_WINCLIPBOARD
#include <os2.h>

/*Window Clipboard Functions */

BOOL fSuccess;
HAB hab;

/* success indicator
/* anchor-block handle

fSuccess = WinCloseClipbrd(hab);

8-34 PM Programming Reference

*/
*/

WinCompareStrings -
Compare Strings

#define INCL WINCOUNTRY /*Or use INCL_WIN or INCL_PM */

ULONG WlnCompareStrlngs (HAB hab, ULONG ldCodepage, ULONG ldCountryCode,
PSZ pszStrlng1, PSZ pszStrlng2, ULONG flOptions)

Compares two null-terminated strings defined using the same code page.

Parameters
hab (HAB) - input

Anchor-block handle.

ldCodepage (ULONG) - input
Code page identity of both strings.

ldCountryCode (ULONG) - input
Country code.

pszStrlng1 (PSZ) - input
String 1.

pszStrlng2 (PSZ) - input
String 2.

flOptlons (ULONG) - input
Reserved.

0 Reserved value.

Returns
Comparison result:

WCS_EQ Strings are equal

WCS_LT String 1 is less than string 2

WCS_GT String 1 is greater than string 2

WCS_ERROR Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _STRING_PARM The specified string parameter is invalid.

Related Functions
• WinloadString
• WinNextChar
• WinPrevChar
• WinSubstituteStrings
• WinUpper
• WinUpperChar

Chapter 8. Window Functions 8-35

WinCompareStrings
Compare Strings

Example Code
This example compares two strings using the same code page: the first string is loaded from a
resource DLL, while the second is created by the application.

#define INCL_WlNCOUNTRY
#define lNCL_WINWINDOWMGR
#define INCL_DOSMODULEMGR
#include <os2.h>

/* Window Country Functions
/* Window Manager Functions
/* Module Manager Functions

*/
*/
*/

ULONG ulResult; /* comparison result */
HAB hab; /* anchor-block handle */
ULONG idCodepage=437; /* Code page identity of both strings */
ULONG idCountryCode=l;/* Country code */
char pszStringl[l0]; /*first string */
char pszString2[10]; /* second string */
LONG lLength; /* length of string */
ULONG idString = STRING_ID; /* String identifier */
LONG lBufferMax = 10;/* Size of buffer */
HMODULE hmodDLL; /* Handle of the module which contains

the help table and help subtable
resources. *I

CHAR LoadError[l00]; /*object name buffer for DosLoad */
ULONG re; /* return code *I

/* obtain resource handle */
re= DosLoadModule(LoadError, sizeof(LoadError), "RES.DLL 11

,

&hmodDLL);

/* load string from resource */
if (re == 0)

llength = WinloadString(hab, hmodDLL, idString, lBufferMax,
pszStringl);

/* compare strings */
if (lLength > 0)

{
/* set second string */
strcpy(pszString2, 11 Compare 11

);

ulResult = WinCompareStrings(hab. idCodepage. idCountryCode,
pszStringl. pszString2, 0);

}

8-36 PM Programming Reference

WinCopy AccelTable
Copy Accelerator Table

#define INCL_WINACCELERATORS /*Or use INCL_WIN or INCL_PM */

ULONG WlnCopyAccelTable (HACCEL hAccel, PACCELTABLE pacctAccelTable,
ULONG ulCopyMax)

This function is used to get the accelerator-table data corresponding to an accelerator-table handle,
or to determine the size of the accelerator-table data.

Parameters
hAccel (HACCEL) - input

Accelerator-table handle.

pacctAccelTable (PACCELTABLE) - input/output
Accelerator-table data area:

NULL Return the size, in bytes, of the complete accelerator table, and ignore the u/CopyMax
parameter.

Other Copy up to u/CopyMax bytes of the accelerator table into this data area.

ulCopyMax (ULONG) - input
Maximum data area size.

Returns
Amount copied or size required:

Other Amount of data copied into the data area, or the size of data area required for the
complete accelerator table.

O Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HACCEL An invalid accelerator-table handle was specified.

Related Functions
• WinCreateAccelTable
• WinDestroyAccelTable
• WinloadAccelTable
• WinQueryAccelTable
• WinSetAccelTable
• WinTranslateAccel

Chapter 8. Window Functions 8-37

WinCopyAccelTable -
Copy Accelerator Table

Example Code
This example gets the accelerator-table data corresponding to an accelerator-table handle returned

by WinCreateAccelTable or WinloadAccelTable and assigns the accelerator table code page to a
variable.

#define INCL_WINACCELERATORS
#include <os2.h>

/* Window Accelerator Functions */

ULONG ul Copied; /* bytes copied * /
HACCEL hAccel; /*Accelerator-table handle */
ACCELTABLE pacctAccelTable;/* Accelerator-table data area */
ULONG ulCopyMax; /* Maximum data area size */
ULONG ulAccelCP; /* code page */

ulCopyMax = sizeof(pacctAccelTable);
if (hAccel)

ulCopied = WinCopyAccelTable(hAccel, &pacctAccelTable,
ulCopyMax);

if (ulCopied)
ulAccelCP = pacctAccelTable.codepage;

8-38 PM Programming Reference

WinCopyRect -
Copy Rectangle

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WlnCopyRect (HAB hab, PRECTL prclDest, PRECTL prclSrc)

This function copies a rectangle from prc/Src to pre/Dest.

Parameters
hab (HAB) - input

Anchor-block handle.

prclDest (PRECTL) - output
Destination rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

prclSrc (PRECTL) - input
Source rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Related Functions
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Example Code
This example copies a rectangle using WinCopyRect.

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

BOOL fSuccess; /* success indicator
HAB hab; /* anchor-block handle
RECTL prc1Rect2 = {e,e,2ee,2ee}; /* source rectangle
RECTL prclRectl; /* destination rectangle

fSuccess = WinCopyRect(hab, &prclRectl, &prc1Rect2);

*/
*/
*/
*/

Chapter 8. Window Functions 8-39

WinCpTranslateChar -
Translate Character with Code Page

#define INCL WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

UCHAR WlnCpTranslateChar (HAB hab, ULONG ldCpSource, UCHAR ucSource,
ULONG idCpDest)

This function translates a character from one code page to another.

Parameters
hab (HAB) - input

Anchor-block handle.

ldCpSource (ULONG) - input
Source-character code page.

ucSource (UCHAR) - input
Character to be translated.

ldCpDest (ULONG) - input
Code page of the resultant character.

Returns
If nonzero, the translated or substitution (X 1 FF') character.

Possible returns from WinGetlastError

PMERR_INVALID _STRING_PARM

PMERR_INVALID _SRC _CODEPAGE

PMERR_INVALID_DST_CODEPAGE

Remarks

The specified string parameter is invalid.

The source code page parameter is invalid.

The destination code page parameter is invalid.

Successful invocation of this function indicates that either (1) the character was directly mapped into
the destination code page or, (2) the substitution character (X' FF') was returned.

See the WinQueryCplist function for Code Page acceptable in this function.

Related Functions
• WinCpTranslateString
• WinQueryCp
• WinQueryCplist
• WinSetCp

8-40 PM Programming Reference

Example Code

WinCpTranslateChar -
Translate Character with Code Page

This example translates a character from US code page 437 to multilingual code page 850.

#define INCL_WINCOUNTRY
#include <os2.h>

HAB hab;
UCHAR ucDest;

/* Window Country Functions

/* anchor-block handle
/* translated character

UC HAR ucSource = 1A1
; /*source character

ULONG idCpSource=437; /* Code page of source character (US)
ULONG idCpDest=850; /* Code page of dest. character (multi)

*/

*/
*/
*/
*/
*/

ucDest = WinCpTranslateChar(hab, idCpSource, ucSource, idCpDest);

Chapter 8. Window Functions ·s-41

WinCpTranslateString
Translate String with Code Page

#define INCL_WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

BOOL WlnCpTranslateStrlng (HAB hab, ULONG ldCpSource, PSZ pszSource,
ULONG ldCpDest, ULONG cbLenDest, PSZ pszDest)

This function translates a string from one code page to another.

Parameters
hab (HAB) - input

Anchor-block handle.

ldCpSource (ULONG) - input
Source-string code page.

pszSource (PSZ) - input
String to be translated.

This is a null-terminated string.

ldCpDest (ULONG) - input
Code page of the resultant string.

cbLenDest (ULONG) - input
Maximum length of output string.

An error is raised if this is not large enough to contain the translated string.

pszDest (PSZ) - output
The translated string.

This is a null-terminated string.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_STRING_PARM The specified string parameter is invalid.

PMERR_INVALID_SRC_CODEPAGE The source code page parameter is invalid.

PMERR_INVALID_DST_CODEPAGE The destination code page parameter is invalid.

PMERR_PARAMETER_OUT_OF _RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
Successful invocation of this function indicates that either (1) the character was directly mapped into
the destination code page or, (2) the substitution character (X'FF') was returned.

See the WinQueryCplist function for Code Pages acceptable in this function.

8-42 PM Programming Reference

Related Functions
• WinCpTranslateChar
• WinQueryCp
• WinQueryCplist
• WinSetCp

Example Code

WinCpTranslateString -
Translate String with Code Page

This example translates a string from US code page 437 to multilingual code page 850.

#define INCL_WINCOUNTRY
#include <os2.h>

/* Window Country Functions */

HAB hab; /* anchor-block handle *I
ULONG idCpSource=437; /* Code page of source character (US) */
ULONG idCpDest=850; /* Code page of dest. character (multi) */
char pszSource[10]; /*source string */
char pszDest[10]; /*destination string */
ULONG cblenDest = 9L; /* max length of destination string */
BOOL fSuccess;
strcpy(pszSource, "TRANSLATE");
fSuccess = WinCpTranslateString(hab, idCpSource, pszSource,

idCpDest, cblenDest, pszDest);

Chapter 8. Window Functions 8-43

WinCreateAccelTable -
Create Accelerator Table

#define INCL WINACCELERATORS /*Or use INCL_WIN or INCL_PM */

HACCEL WlnCreateAccelTable (HAB hab, PACCELTABLE pacctAccelTable)

This function creates an accelerator table from the accelerator definitions in memory.

Parameters
hab (HAB) - input

Anchor-block handle.

pacctAccelTable (PACCELTABLE) - input
Accelerator table.

Returns
Accelerator-table handle.

Remarks
This function returns a different hAccel value when called twice in succession with the same
parameter values.

Related Functions
• WinCopyAccelTable
• WinDestroyAccelTable
• WinloadAccelTable
• WinQueryAccelTable
• WinSetAccelTable
• WinTranslateAccel

8-44 PM Programming Reference

Example Code

WinCreateAccelTable -
Create Accelerator Table

This example creates an accelerator-table handle for an in memory accelerator table consisting of 3
accelerator keys, using US codepage 437.

#define INCL_WINACCELERATORS
#define INCL_WININPUT
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Accelerator Functions */
/* Key constants *I
/* Frame control constants */

HACCEL hAccel; /*Accelerator-table handle */
ACCELTABLE pacctAccelTable;/* Accelerator-table data area */
HAB hab; /* anchor-block handle */
/* in memory accelerator table */
ACCEL acctable[] = {

AF SYSCOMMAND I AF ALT I AF VIRTUALKEY,VK F4,SC CLOSE,
AF SYSCOMMAND I AF ALT I AF VIRTUALKEY,VK F7,SC MOVE,

AF_SYSCOMMAND I AF_ALT I AF_VIRTUALKEY,VK_F8,SC_SIZE};

/* initialize accelerator table structure, including in memory
accelerator table */

pacctAccelTable.cAccel = 3;
pacctAccelTable.codepage = 437;
pacctAccelTable.aaccel[e] = acctable[e];

hAccel = WinCreateAccelTable(hab, &pacctAccelTable);

Chapter 8. Window Functions 8-45

WinCreateAtomTable
Create Atom Table

#define INCL WINATOM I* Or use INCL_WIN or INCL_PM */

HATOMTBL WlnCreateAtomTable (ULONG ullnltlal, ULONG ulBuckets)

This function creates an empty atom table of the specified size.

Parameters
ullnltlal (ULONG) - input

Initial bytes.

Initial number of bytes to be reserved for the atom table. This is a lower bound on the amount of
memory reserved. The amount of memory actually used by an atom table depends upon the
actual number of atoms stored in the table. If zero, the size of the atom table is the minimum
size needed to store the atom hash table.

ulBuckets (ULONG) - input
Size of the hash table.

Used to access atoms. If zero, the default value of 37 is used. The best results are achieved if a
prime number is used.

Returns
Atom-table handle:

NULLHANDLE Call failed.

Other Atom-table handle. This must be passed as a parameter in subsequent atom
manager cal Is.

Remarks
The minimum size of atom table allocated is 16+(2*u/Buckets).

The atom table is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it is still in existence when the process terminates, it will
automatically be deleted by the system.

There is a system atom table which is created at boot time, which cannot be destroyed, and which
can be accessed by any process in the system. The handle of the system atom table is queried with
the WinQuerySystemAtomTable function.

Related Functions
• WinAddAtom
• WinDeleteAtom
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomlength
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

8-46 PM Programming Reference

WinCreateAtomTable -
Create Atom Table

Example Code
This example creates an Atom Table of default size, adds the atom 'newatom' to the new table, and

then destroys the table.

#define INCL_WINATOM
#include <os2.h>

/* Window Atom Functions */

ATOM atom; /* new atom value * /
HATOMTBL hatomtblAtomTbl; /*atom-table handle */
HATOMTBL hatomtblDestroy; /* result of destroy table */
char pszAtomName[10]; /*atom name */
ULONG ullnitial = 0; /* initial atom table size (use default)*/
ULONG ulBuckets = 0; /* size of hash table (use default) */

/* create atom table of default size */
hatomtblAtomTbl = WinCreateAtomTable(ullnitial, ulBuckets);

/* define name for new atom and add to table */
strcpy(pszAtomName, 11 newatom 11

);

atom= WinAddAtom(hatomtblAtomTbl, pszAtomName);

hatomtblDestroy = WinDestroyAtomTable(hatomtblAtomTbl);

Chapter 8. Window Functions 8-47

WinCreateCursor
Create Cursor

#define INCL WINCURSORS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnCreateCursor (HWND hwnd, LONG Ix, LONG ly, LONG lex, LONG Icy, ULONG ulrgf,
PRECTL prclCllp)

This function creates or changes a cursor for a specified window.

Parameters
hwnd (HWND) - input

Handle of window in which cursor is displayed.

This must be the handle of a window for which the application can receive input.

Ix (LONG) - input
x-position of cursor.

ly (LONG) - input
y-position of cursor.

lex (LONG) - input
x-size of cursor.

If 0, the system nominal border width (SV_CXBORDER) is used.

Icy (LONG) - input
y-size of cursor.

If 0, the system nominal border height (SV_CYBORDER) is used.

ulrgf (ULONG) - input
Controls the appearance of the cursor:

CURSOR_SOLID The cursor is solid.

CURSOR_HALFTONE The cursor is halftone.

CURSOR_FRAME The cursor is a rectangular frame.

CURSOR_FLASH The cursor flashes.

CURSOR_SETPOS Set a new cursor position. lex and Icy are ignored. Used when a cursor
has already been created. In this case, all other appearance flags are
ignored.

prclClip (PRECTL) - input
Cursor rectangle.

A rectangle within which the cursor is visible. If the cursor goes outside this rectangle, it is
clipped away and is invisible.

The rectangle is specified in window coordinates.

If pre/Clip is NULL, the drawing of the cursor is clipped to the window rectangle of hwnd.

Note: The cursor is always clipped to the window rectangle, even if part of pre/Clip is outside it.

The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

8-48 PM Programming Reference

Returns
Success indicator:

WinCreateCursor
Create Cursor

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The cursor is used to indicate the position of text input. It is initially hidden and must be made
visible using the WinShowCursor function.

This function destroys any existing cursor, as it is confusing to the user if two cursors are visible at
any one time. An application creates and displays a cursor when it has the input focus, or is the
active window. Creating a cursor at any other time can stop the cursor from flashing in another
window. Similarly, when the application loses the input focus or becomes inactive, it destroys its
cursor using the WinDestroyCursor function.

The cursor width is generally specified as 0 {nominal border width is used). This is preferable to a
value of 1, for example, as such a fine width is almost invisible on a high-resolution device.

Related Functions
• WinDestroyCursor
• WinQueryCursorlnfo
• WinShowCursor

Example Code
This example creates a cursor of default height and width at {0,200) which will be vis.ible within the

entirety of the input window.

#define INCL_WINCURSORS
#include <os2.h>

BOOL
HWND
LONG
LONG
ULONG

fSuccess;
hwnd;

lx = e;
ly = 200;
ulrgf;

/* Window Cursor F\Jnctions

/* success indicator
/* cursor display window
/* cursor x position
/* cursor y position
/* cursor appearance

*/

*/
*/
*/
*/
*l

fSuccess = WinCreateCu.rsor(hwnd, lx, ly, e, e, ulrgf, NULL);

Chapter 8. Window Functions 8-49

WinCreateDlg
Create Dialog

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM */

HWND WinCreateDlg (HWND hwndParent, HWND hwndOwner, PFNWP pDlgProc,
PDLGTEMPLATE pdlgtDlgTmp, PVOID pCreateParams)

This function creates a dialog window.

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window:

HWND_DESKTOP The desktop window

HWND_OBJECT Object window

Other Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

The actual owner window is calculated using the algorithm specified in the description of the
WinloadDlg function.

pDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

pcllgtDlgTmp (PDLGTEMPLATE) - input
Dialog template.

pCreateParams (PVOID) - input
Application-defined data area.

This is passed to the dialog procedure in the WM_INITDLG message.

Returns
Dialog-window handle:

NULLHANDLE Dialog window not created

Other Dialog-window handle.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT _FOUND

Remarks

An invalid window handle was specified.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

This function is identical to the WinloadDlg call except that it creates a dialog window from
pdlgtD/gTmp in memory, rather than a dialog template in a resource file.

This function should not be used while the pointing device capture is set (see WinSetCapture).

8-50 PM Programming Reference

Related Functions
• WinDefDlgProc
• WinDismissDlg
• WinDlgBox
• WinGetDlgMsg
• WinloadDlg
• WinProcessDlg

Related Messages
• WM_INITDLG

Example Code

WinCreateDlg -
Create Dialog

This example loads a dialog template from the application's resources and uses the template with
the WinCreateDlg function to create a dialog window. This example is identical to calling the
WinloadDlg function, but gives the application the advantage of reviewing and modifying the dialog
template before creating the dialog window.

#define INCL_WINDIALOGS
#define INCL_DOSRESOURCES
#include <os2.h>

/* Window Dialog Mgr Functions */
/* OS/2 Resource functions */

PFNWP MyDlgProc;
#define ID_DIALOG 1

PDLGTEMPLATE pdlgt; /* dialog template

DosGetResource(0L, RT_DIALOG, ID_DIALOG, (PVOID)pdlgt);

/* make any changes to dialog template here */

WinCreateDlg(HWND_DESKTOP,
NULLHANDLE, /* owner window */
MyDlgProc, /* address of dialog procedure */
pdlgt, /* address of dialog structure */
NULL); /*application-specific data */

*/

Chapter 8. Window Functions 8-51

WinCreateFrameControls
Create Frame Controls

#define INCL_WINFRAMEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinCreateFrameControls (HWND hwndframe, PFRAMECDATA pfcdata, PSZ pszTltle)

This function creates the standard frame controls for a specified window.

Parameters
hwndframe (HWND) - input

Frame-window handle.

Becomes the parent and owner window of all the frame controls that are created:

HWND_DESKTOP The desktop window

HWND_OBJECT Object window

Other Specified window.

pFcdata (FRAMECDATA} - input
Frame-control data.

This includes a combination of frame creation flags (FCF _ *), that specifies which frame controls

are to be created. For further information, see "Frame Creation Flags" on page 15-1.

pszTltle (PSZ) - input
Title string.

A string that is displayed in the WC_TITLEBAR control when FCF_TITLEBAR is specified in
pFcdata.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERRJNVALID_HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

This function·is typically used when the standard frame controls are needed for use with a
nonstandard window (such as a non WC_FRAME class).

All of the controls are created with the standard FID_ *window identifiers; see Chapter 15, Frame
Control Window Processing.

The controls are created but not formatted. Formatting must be done by setting the required
positions. All controls are created with position and size set to zero and WS~VISIBLE is not set.

8-52 PM Programming Reference

WinCreateFrameControls -
Create Frame Controls

Related Functions
• WinCalcFrameRect
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

Example Code
This example creates frame controls (title bar, system menu, size border, and min/max buttons) for
a button window created by WinCreateWindow. The new controls are owned by and children of the
button window.

#define INCL_WINWINDOWMGR
#define INCL_WINLISTBOXES
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* List Box definitions
/* Frame Manager Functions

HWND hwnd;
ULONG flStyle;
USHORT Buttonld;
BOOL fSuccess;
FRAMECDATA pFcdata;
USHORT usFrameld;

/* cursor display window
/* window style
/*window id (app supplied)
/* success indicator
/* Frame-control data
/* frame resource id (app supplied)

*/
*/
*/

*/
*/
*/
*/
*/
*/

flStyle = WS_VISIBLE; /* create window visible */

/* create button window (no frame controls) */
hwnd = WinCreateWindow(HWND_DESKTOP, /* parent window

WC_BUTTON, /* class name
"new button", /* window text
flStyle, /* window style
e, 0, /* position (x,y)

*/

200, 100, /* size (width,height)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SL, /* owner window
HWND_TOP, /* sibling window
Buttonld, /* window id
NULL, /* control data
NULL); /* presentation parms

/******************************
* initialize frame structure*
******************************/

pFcdata.cb = sizeof(FRAMECDATA); /* Length */
/* Frame-creation flags */
pFcdata.flCreateFlags = FCF_TITLEBAR I FCF_SYSMENU I

FCF_SIZEBORDER I FCF_MINMAX;
pFcdata.hmodResources = 0L; /* resource in EXE */
pFcdata.idResources = usFrameid; /*resource id*/

/* create frame controls; display 'button frame' on title bar */
fSuccess = WinCreateFrameControls(hwnd, &pFcdata, "button frame");

Chapter 8. Window Functions 8-53

WinCreateHelplnstance
Create Help Instance

#define INCL_WINHELP I* Or use INCL_WIN or INCL_PM */

HWND WlnCreateHelplnstance (HAB hab, PHELPINIT phlnltHMlnltStructure)

This function creates an instance of the help manager with which to request help manager functions.

Parameters
hab (HAB) - input

Anchor-block handle.

The handle of the application anchor block returned from the Winlnitialize function.

phlnltHMlnltStructure (PHELPINIT) - input/output
Help manager initialization structure.

Returns
Help manager handle.

NULLHANDLE Error occurred

Other Help manager handle.

Remarks
If an error occurs, it is in the ulReturnCode parameter of the HELPINIT structure.

Related Functions
• WinAssociateHelplnstance
• WinCreateHelpTable
• WinDestroyHelplnstance
• WinLoadHelpTable
• WinQueryHelplnstance

Example Code
This example shows a typical main function for an application which uses help. Following creation of
the main application window the help manager is initialized and associated with the window. The
help table is defined in the application's resources. When the window is destroyed, terminating the
application, the help instance is also destroyed.

#define INCL=_WIN
#include <os2.h>

#define IDHT_APPLICATION
*/

100 /* id of HELP TABLE in resource file

main(int argc, char *argv[], char *envp[]
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG fl Style;
HELPINIT helpinit;

8-54 PM Programming Reference

}

/* Setup the help initialization structure */
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/* Help table in application resource */

WinCreateHelplnstance -
Create Help Instance

helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANDLE;
/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = "APPNAME HELP";
helpinit.fShowPanelid = CMIC_SHOW_PANEL_ID;
helpinit.pszHelpLibraryName = 11 APPNAME.HLP 11

;

/* Register the class */
if(WinRegisterClass(•••))
{

/* create the main window */
flStyle = FCF_STANDARD;
hwnd = WinCreateStdWindow();

if (hwnd)
{

/* Create and associate the help instance */
hwndHelp = WinCreateHelpinstance(hab, &helpinit);

}
}

if(hwndHelp && WinAssociateHelpinstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0)
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

/* Remove help instance - note: add */
/* WinAssociateHelpinstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelpinstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

Chapter 8. Window Functions 8-55

WinCreateHelpTable
Create Help Table

#define INCL_WINHELP I* Or use INCL_WIN or INCL_PM */

BOOL WlnCreateHelpTable (HWND hwndHelplnstance, PHELPTABLE phtHelpTable)

This function is used to identify or change the help table.

Parameters
hwndHelplnstance (HWND) - input

Handle of an instance of the help manager.

This is the handle returned by the WinCreateHelplnstance call.

phtHelpTable (PHELPTABLE) - input
Help table allocated by the application.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function corresponds to the HM_CREATE_HELP _TABLE message that identifies a help table that
is in memory.

Related Functions
• WinAssociateHelplnstance
• WinCreateHelplnstance
• WinDestroyHelplnstance
• WinloadHelpTable
• WinQueryHelplnstance

Related Messages
• HM_CREATE_HELP_TABLE

8-56 PM Programming Reference

Example Code

WinCreateHelpTable -
Create Help Table

This example creates a help table in memory and passes the table to the Help Manager via
WinCreateHelpTable. The help instance must have been created by WinCreateHelplnstance.

#define INCL_WINHELP
#include <os2.h>

/* defines for window id's, menu items, controls, panels, etc. should */
/* be inserted here or in additional include files. */

/* Subtable for the main window's help */
HELPSUBTABLE phtMainTable[] = { 2, /* length of each
entry */

/* fill in one line for each menu item */
IDM_FILE,
IDM_FILENEW,
IDM_FILEOPEN,
IDM_FILESAVE,
IDM_FILESAVEAS,
IDM_FI LEEXIT,

PANELID_FILEMENU,
PANELID_FILENEW,
PANELID_FILEOPEN,
PANELID_FILESAVE,
PANELID FILESAVEAS,
PANELID=FILEEXIT };

/* Subtable for the dialog window's help */
HELPSUBTABLE phtDlgTable[] = { 2, /* length of each
entry */

/*fill in one line for each control */
IDC_EDITFLD, PANELID_DLGEDITFLD,
I DC_ OK, PANELID_DLGOK,
IDC CANCEL, PANELID DLGCANCEL,
IDC=HELP, PANELID=HELP };

/* Help table for the applications context sensitive help */
HELPTABLE phtHelpTable[]= { WINDOWID_MAIN, phtMainTable,
PANELID_MAINEXT,

WINDOWID_DLG, phtDlgTable, PANELID DLGEXT,
0, NULL, 0 }; -

BOOL CreateHelpTable(HWND hWnd)
{

}

BOOL bSuccess = FALSE;
HWND hwndHelp;

/* get the associated help instance */
hwndHelp = WinQueryHelplnstance(hWnd);

if(hwndHelp)
{

/* pass address of help table to the help manager */
bSuccess = WinCreateHelpTable(hwndHelp, phtHelpTable);

}

/* return success indicator */
return bSuccess;

Chapter 8. Window Functions 8-57

WinCreateMenu
Create Menu

#define INCL_WINMENUS I* Or use INCL_WIN or INCL_PM */

HWND WlnCreateMenu (HWND hwndOwner, PVOID pmtMenutmp)

This function creates a menu window from the menu template.

Parameters
hwndOwner (HWND) - input

Owner- and parent-window handle of the created menu window.

If this is HWND_OBJECT or a window handle returned by the WinQueryObjectWindow call, the
menu window is created as an object window.

HWND_DESKTOP The desktop window

HWND _OBJECT Object window

Other Specified window.

pmtMenutmp (PVOID) - input
Menu template in binary format.

Returns
Menu-window handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The menu window is created with an identity of FID_MENU.

When a WC_MENU window is created with the WinCreateWindow call, pCt/Data is assumed to be a
menu template, which is used to create the menu. If pCt/Data is NULL, an empty menu is created.

Related Functions
• WinloadMenu
• WinPopupMenu

8-58 PM Programming Reference

Example Code

WinCreateMenu
Create Menu

This code will load a menu template from a dll and then use it to add a menu to the frame window
hwndFrame which has been previously created without a menu.

HMOD hmod;
HWND hwndFrame, hwndMenu;
USHORT idMenu = 999;
BYTE FAR *lpmt;

DosloadModule(NULL, 0, 11 MYDLL.DLL 11
, &hmod);

/* Load menu template */
DosGetResource2(hmod, (USHORT)RT_MENU, idMenu, &lpmt);

hwndMenu = WinCreateMenu(hwndFrame, lpmt); /*Create a menu*/

DosFreeResource(lpmt); /* free menu template resource*/

Chapter 8. Window Functions 8-59

WinCreateMsgQueue
Create Message Queue

#define INCL WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HMQ WinCreateMsgQueue (HAB hab, LONG IQueueslze)

This function creates a message queue.

Parameters
hab (HAB) - input

Anchor-block handle.

IQueueslze (LONG) - input
Maximum queue size.

This is the maximum number of messages that can be queued.

0 Use the system default queue size.

Other Maximum queue size.

Returns
Message-queue handle:

NULLHANDLE Queue cannot be created.

Other Message-queue handle.

Possible returns from WinGetLastError

PMERR_HEAP _MAX_SIZE_REACHED

PMERR_HEAP _OUT_OF _MEMORY

PMERR_RESOURCE_NOT_FOUND

PMERR_NOT_IN_A_PM_SESSION

PMERR_ QUEUE_ALREADY _EXISTS

Remarks

The heap has reached its maximum size (64KB), and
cannot be increased.

An attempt to increase the size of the heap failed.

The specified resource identity could not be found.

An attempt was made to access function that is only
available from PM programs from a non-PM session.

An attempt to create a message queue for a thread failed
because one already exists for the calling thread.

Most PM calls require a message queue. WinCreateMsgQueue must be issued after the Winlnitialize
function, but before any other PM calls are invoked. It must be issued only once per thread.

The system default queue size allows for 10 messages.

8-60 PM Programming Reference

Related Functions
• WinCancetShutdown
• Wintnitiatize
• WinTerminate
• WinBroadcastMsg
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WintnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuetnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDtgttemMsg
• WinSendMsg
• WinSetClassMsgtnterest
• WinSetMsgtnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example creates a message queue of default size.

WinCreateMsgQueue
Create Message Queue

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

*/
*/

HAB
HMQ
QMSG

hab;
hmq;
qmsg;

hab = Winlnitialize(0);

/* anchor-block handle
/* message queue handle
/* message

/* initialize PM*/

*/
*/
*/

hmq = WinCreateMsgQueue(hab, O); /*create default size queue*/

/*

• initialize windows

*/

/* get and dispatch messages from queue */
while (WinGetMsg(hab, &qmsg, 0, 0, 0))

WinDispatchMsg(hab, &qmsg);

Chapter 8. Window Functions 8-61

WinCreateObject -
Create Workplace Object

#define INCL_WINWORKPLACE

HOBJECT WlnCreateObject (PSZ pszClassName, PSZ pszTltle, PSZ pszSetupStrlng,
PSZ pszlocation, ULONG ulFlags)

This WinCreateObject function creates an instance of object class pszClassName, with title pszTitle,
and places the icon and title in the location referred to by pszlocation.

Parameters
pszClassName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the class of which this object is
a member.

pszTitle (PSZ) - input

A pointer to a zero-terminated string which contains the initial title of the object as it is to appear
when displayed on the user interface underneath an icon or on the title bar of an open object.

pszSetupStrlng (PSZ) - input

Pointer to setup string.

pszlocatlon (PSZ) - input
Folder location.

This value can be in any of the following formats:

• Predefined object ids of system folders.

"<WP _NOWHERE>"
"<WP _DESKTOP>"
"<WP _OS2SYS>"
"<WP_ TEMPS>"
"<WP _CONFIG>"
"<WP _START>"
"<WP _INFO>"
"<WP _DRIVES>"

The hidden folder.
The Desktop.
The System folder.
The Templates folder.
The System Setup folder.
The Startup folder.
The Information folder.
The Drives folder.

• Real name specified as a fully qualified path name.

ulFlags (ULONG) - input
Creation flags:

• CO _FAILIFEXISTS
• CO _REPLACEIFEXISTS

Returns
Success indicator:

NULLHANDLE Error occurred.

Other A handle to the object created. This handle is persistent and can be used for
the WinSetObjectData and WinDestroyObject function calls.

8-62 PM Programming Reference

Remarks

WinCreateObject
Create Workplace Object

The pszSetupString contains a series of "keyname=value" pairs separated by commas, that change
the behavior of the object. Each object class documents its keynames and the parameters
parameters it expects to see immediately following. Note that ALL parameters have safe defaults, so
it is never necessary to pass unnecessary parameters to an object.

These are the keyname - value pairs supported by the WPObject class:

KEYNAME VALUE Description

TITLE Title This sets the object's title. This is equivalent to
calling the wpSetTitle method.

ICON filename This sets the object's icon. This is equivalent to
calling the wpSetlconData method.

HELPPANEL id This sets the object's default help panel. This is
equivalent to calling the wpSetDefaultHelp
method.

TEMPLATE YES This sets the object's template property. This is
equivalent to calling the wpSetStyle method with
a style of OBJSTYLE_TEMPLATE.

NO This resets the object's template property.

NO DELETE YES This sets the object's no delete property. This is
equivalent to calling the wpSetStyle method with
a style of OBJSTYLE_NODELETE.

NO This resets the object's no delete property.

NOCOPY YES This sets the object's no copy property. This is
equivalent to calling the wpSetStyle method with
a style of OBJSTYLE_NOCOPY.

NO This resets the object's no copy style.

NO MOVE YES This sets the object's no move property. This is
equivalent to calling the wpSetStyle method with
a style of OBJSTYLE_NOMOVE.

NO This resets the object's no move property.

NOLINK YES This sets the object's no link property. This is
equivalent to calling the wpSetStyle method with
a style of OBJSTYLE_NOLINK.

NO This resets the object's no link property.

Related Functions
• WinRegisterObjectClass
• WinDeregisterObjectClass
• WinDestroyObject
• WinReplaceObjectClass
• WinSetObjectData

Chapter 8. Window Functions 8-63

WinCreatePointer
Create Pointer

#define INCL_WINPOINTERS I* Or use INCL_WIN or INCL_PM */

HPOINTER WlnCreatePolnter (HWND hwndDeskTop, HBITMAP hbmBllMap, BOOL fPolnterSlze,
LONG lxHotspot, LONG lyHotspot)

This function creates a pointer from a bit map.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle or HWND_DESKTOP.

hbmBllMap (HBITMAP) - input
Bit-map handle from which the pointer image is created.

The bit map must be logically divided into two sections vertically, each half representing one of
the two images used as the successive drawing masks for the pointer.

fPointerSlze (BOOL) - input
Pointer-size indicator:

TRUE The bit map should be stretched (if necessary) to the system pointer dimensions.
FALSE The bit map should be stretched (if necessary) to the system icon dimensions.

lxHotspot (LONG) - input
x-offset of hot spot within pointer from its lower left corner (in pels).

lyHotspot (LONG) - input
y-offset of hot spot within pointer from its lower left corner (in pels).

Returns
Pointer handle:

NULLHANDLE Error

Other Handle of the newly created pointer.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_HBITMAP _BUSY

Remarks

An invalid window handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

A pointer can be created either as a true pointer (at pointer size), or as an icon pointer (at icon size).
The latter is useful when using icons as direct-manipulation objects that the user can "pick up" and
move about the screen as a means of performing some operation.

See also WinCreatePointerlndirect.

This function makes copies of the supplied bit maps.

8-64 PM Programming Reference

Related Functions
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Example Code

WinCreatePointer -
Create Pointer

This example creates a pointer from a bit map during the creation of the window (WM_CREATE).
The bit map (id IDP _BITMAP in the EXE file) is loaded via GpiloadBitmap.

#define INCL_WINPOINTERS
#define INCL_GPIBITMAPS
#include <os2.h>

HPS hps;
HWND hwnd;
HPOINTER hptr;
HBITMAP hbm;

case WM CREATE:

/* Window Pointer Functions
/* Graphics bit map Functions

/* presentation-space handle
/* window handle
/* bit-map pointer handle
/* bit-map handle

hps = WinBeginPaint(hwnd, NULLHANDLE, NULL);
hbm = GpiloadBitmap(hps, GL, IDP_BITMAP, 64L, 64L);
WinEndPaint(hps);

hptr = WinCreatePointer(HWND_DESKTOP, hbm,

*/
*/

*/
*/
*/
*/

TRUE, /* use true (system) pointer */
e, e); /*hot spot offset (e,e) */

Chapter 8. Window Functions 8-65

WinCreatePointerlndirect
Create Pointer Indirect

#define INCL WINPOINTERS I* Or use INCL_WIN or INCL_PM */

HPOINTER WlnCreatePolnterlndlrect (HWND hwndDeskTop, PPOINTERINFO pptrlPolnterlnfo)

This function creates a colored pointer or icon from a bit map.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle or HWND_DESKTOP.

pptrlPolnterlnfo (POINTERINFO) - input
Pointer information structure.

The fields in this structure must be set before the call is made:

• u/Pointer is set to TRUE if a pointer is being created, or to FALSE if an icon is being created

• xHotspot and yHotspot are set to the relative position in the icon or pointer that is
associated with the mouse position

• hbmPointer is a bit map that specifies the AND and XOR masks, as used for black and white
pointers and icons

• hbmColor is a color bit map that describes the color content of the pointer or icon.

It is an error if hbmPointer is NULLHANDLE. Also, the width of hbmPointer must be the same as
that of hbmColor, and the height of hbmPointer must be double that of hbmColor {to allow for
both the AND and the XOR mask).

Returns
Pointer handle:

NULLHANDLE Error

Other Handle of the newly created pointer or icon.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_HBITMAP _BUSY

Remarks

An invalid window handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

A pointer can be created either as a true pointer (at pointer size), or as an icon pointer (at icon size).
The latter is useful when using icons as direct-manipulation objects that the user can "pick up" and
move about the screen as a means of performing some operation (see also WinCreatePointer).

This function makes copies of the supplied bit maps.

8-66 PM Programming Reference

Related Functions
• WinCreatePointer
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Example Code

WinCreatePointerlndirect -
Create Pointer Indirect

This example creates a colored pointer from a bit map during the creation of the window
(WM_CREATE). The pointer bit map (id IDP _BITMAPPTR in the EXE) and color bit map (id
IDP _BITMAPCLR in the EXE file) are loaded via GpiloadBitmap.

#define INCL WINPOINTERS
#define INCL=GPIBITMAPS
#include <os2.h>

/* Window Pointer Functions */
/* Graphics bit map Functions */

HPS hps; /* presentation-space handle */
HWND hwnd; /* window handle * /
HPOINTER hptr; /* bit-map pointer handle */
HBITMAP hbmPointer; /* bit-map handle (AND/XOR) */
HBITMAP hbmColor; /* bit-map handle (color) */
POINTERINFO pptriPointerlnfo; /* pointer info structure */

case WM CREATE:
hps = WinBeginPaint(hwnd, NULLHANDLE, NULL);
/* load pointer bit map */
hbmPointer = GpiLoadBitmap(hps, NULLHANDLE, IDP_BITMAPPTR, 64L, 128L);
/* load color bit map */
hbmColor = GpiLoadBitmap(hps, NULLHANDLE, IDP_BITMAPCLR, 64L, 64L);
WinEndPaint(hps);

/* initialize POINTERINFO structure*/
pptriPointerlnfo.fPointer =TRUE; /* creating pointer*/
pptriPointerlnfo.xHotspot = 0; /* x coordinate of hotspot */
pptriPointerlnfo.yHotspot = 0; /* y coordinate of hotspot */
pptriPointerlnfo.hbmPointer = hbmPointer;
pptriPointerinfo.hbmColor = hbmColor;

hptr = WinCreatePointerlndirect(HWND_DESKTOP,
&pptriPointerlnfo);

Chapter 8. Window Functions 8-67

WinCreateStdWindow
Create Standard Window

#define INCL_WINFRAMEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HWND WlnCreateStdWlndow (HWND hwndParent, ULONG flStyle, PULONG pflCreateFlags,
PSZ pszClassCllent, PSZ pszTltle, ULONG flStyleCllent,
HMODULE Resource, ULONG ulld, PHWND phwndCllent)

This function creates a standard window.

Parameters
hwndParent (HWND) - input

Parent-window handle.

If this parameter is a window handle returned from the WinQueryDesktopWindow function, or is
HWND_DESKTOP, a main window is created.

If hwndParent is a window handle returned from WinQueryObjectWindow, or is HWND_OBJECT,
an object window is created.

flStyle (ULONG) - input
Frame-window style.

This is a combination of any of the WS_ *styles (see "Window Styles" on page 12-2) and the
FS_ *(see "Frame Control Styles" on page 15-3) frame styles.

The interpretation of the parameters is affected by the use of all the styles, except for
WS_MINIMIZED and WS_MAXIMIZED. These two styles are ignored if they are specified.

pflCreateFlags (PULONG) - input
Frame-creation flags.

This contains a combination of any of the FCF _ * flags.

The interpretation of the parameters is affected by the use of these flags; see /FCFVALS/.

pszClassCllent (PSZ) - input
Client-window class name.

If pszC/assC/ient is not a zero-length string, a client window of style flStyleC/ient and class
pszC/assClient is created. pszC/assClient is either an application specified name as defined by
WinRegisterClass or the name of a preregistered WC_* class; see "Control Window Message
Processing" on page 11-2. Preregistered class names are of the form '#nnnnn', where nnnnn is
1 through 5 digits corresponding to the value of the WC_* class name constant.

If pszC/assC/ient is NULL, no client area is created.

This parameter can also be specified directly as aWC_* constant.

pszTltle (PSZ) - input
Title-bar text.

This is ignored if FCF_TITLEBAR (or FCF_STANDARD) is not specified in pf/CreateF/ags.

flStyleClient (ULONG) - input
Client-window style.

This is ignored H pszC/assC/ient is a zero-length string.

8-68 PM Pro__grammingJ:leference

Resource (HMODULE) - input
Resource identifier.

WinCreateStdWindow
Create Standard Window

This is ignored unless FCF_MENU, FCF_STANDARD, FCF_ACCELTABLE, or FCF_ICON is
specified.

NULLHANDLE Resource definitions are contained in the application .EXE file.

Other The module handle returned by the DosLoadModule or DosGetModHandle call of the
Dynamic Link Library (DLL) containing the resource definitions.

ulld (ULONG) - input
Frame-window identifier.

The identifier within the resource definition of the required resource.

It is the responsibility of the application to ensure that all of the resources related to one frame
window have the same ulld value.

phwndClient (PHWND) - output
Client-window handle.

This is returned if a client window is created.

Returns
Frame-window handle.

This is NULLHANDLE if no window i$ created.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT_FOUND

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The specified atom is not a valid integer atom .

.. An invalid atom name string was passed.

The specified atom name is not in the atom table.

Chapter 8. Window Functions 8-69

WinCreateStdWindow
Create Standard Window

Remarks
The window is created with zero width and depth and positioned at the bottom left of the hwndParent,
unless FCF _SHELLPOSITION is specified, in which case the size and position are set by the shell.
The window can be positioned and sized by use of WinSetWindowPos.

If WS_ VISIBLE is set, the frame window is created visible. It is recommended that standard windows
that are not main windows are created with WS_VISIBLE not set.

hwndFrame is the window handle of the frame window, that is, the window of class WC_FRAME, and
has a parent of hwndParent.

The frame window is created with identity ulld, all the component windows, known as the frame
controls, have the standard window identifiers FID_*; see Chapter 15, "Frame Control Window
Processing" on page 15-1. The identifier FID_CLIENT is used for the client area of the window.

It may be necessary to change the ul/d of the frame window after it has been created, so that another
frame window can be created with the same resource tables, and still maintain distinct window
identities. This can be achieved with the WinSetWindowUShort call.

Some combinations of frame control flags are valid, but leave visual holes in the frame window.
Specifically, if the pf/CreateFlags parameter specifies any of FCF _SYSMENU, FCF _MINBUTTON,
FCF _MAXBUTTON or FCF _MINMAX, but not FCF _ TITLEBAR, the area of the top title line between the
optional system menu and the minimize/maximize icons is not drawn by the default frame window
procedure.

None of the following can be used with WinCreateStdWindow:

• WS_CLIPCHILDREN for the frame style

• WS_CLIPSIBLINGS for the style of the client window or any of the frame control windows

• CS_CLIPSIBLINGS for the class style of the window.

If any of the above are specified, the window is not redrawn correctly. Any style can be used for the
children of the client. If it really is required that a client or a frame control is CLIPSIBLINGS, the
application must ensure that it is in front of the client and all the other frame controls, for it to be
drawn.

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

8-70 PM Programming Reference

Example Code

WinCreateStdWindow -
Create Standard Window

This example shows a typical initialization function for a window. The function first registers the
window class, then calls WinCreateStdWindow to create a standard window and returns immediately
if the function fails. Otherwise, it continues on to do other initialization processing. Note: The
FCF _STANDARD constant can only be used if you have all the resources in defines. If you use this
constant without an accelerator table for example, the function will fail.

#define INCL_WINFRAMEMGR /* Window Frame Functions */
#include <os2.h>
#define IDM_RESOURCE 1
HAB hab; /* Anchor-block handle */
CHAR szClassName[] = 11 Generic 11

; /*window class name */
HWND hwndClient; /* handle to the client */
HWND hwndFrame; /* handle to the frame */
PFNWP GenericWndProc;
BOOL Genericlnit()
{

ULONG fl Style;

flStyle = FCF STANDARD;
if (!WinRegisterClass(hab, szClassName, GenericWndProc, 0L, 0))

return (FALSE);

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0L,
&fl Style,
szClassName,
11 Generic Application 11

,

0L,
NULLHANDLE,
IDM RESOURCE,
&hwndClient);

if (! hwndFrame)
return (FALSE);

else {

/* frame-window style */
/* window style *I
/* cl ass name *I
/* window title */
/* default client style */
/* resource in executable file */
/* resource id *I
/* receives client window handle*/

• /* other initialization code */

Chapter 8. Window Functions 8-71

WinCreateSwitchEntry
Create Switch Entry

#define INCL_WINSWITCHLIST I* Or use INCL_WIN or INCL_PM */

HSWITCH WlnCreateSwltchEntry (HAS hab, PSWCNTRL pswctlSwltchData)

This function adds an entry to the Window List.

Parameters
hab (HAB) - input

Anchor-block handle.

pswctlSwltchData (PSWCNTRL) - input
Switch data.

Contains information about the newly created Window List entry.

If the szSwtitle[MAXNAMEL + 1] field of the SWCNTRL structure is NULL, the system uses the
name under which the application is started. This only applies for OS/2 Version 2.0 programs,
and only for the first call to this function since the program started. Otherwise, a NULL entry
name is invalid.

Leading and trailing blanks are removed from the title, which, if necessary, is also truncated to
60 characters.

If the hprog field of the SWCNTRL structure is NULLHANDLE, the value used by the system when
the program was loaded (if it has been loaded) is substituted.

If the idProcess field of the SWCNTRL structure is 0, the current process ID is used.

If the idSession field of the SWCNTRL structure is 0, the current session ID is used.

Returns
Handle to the newly created Window List entry.

There is a system limit to the number of Window List entries. However, this is a large number
(several hundred) and is unlikely to be reached in practice since other system limits, such as
memory size, are likely to be reached first.

NULLHANDLE Error occurred

Other Handle to the newly created Window List entry.

Possible returns from WinGetLastError

PMERR_NO_SPACE

PMERR_INVALID _WINDOW

PMERR_INVALID _SESSION_ID

Remarks

The limit on the number of Window List entries has been
reached with WinAddSwitchEntry.

The window specified with a Window List function is not a
valid frame window.

The specified session identifier is invalid. Either zero (for
the application's own session) or a valid identifier must
be specified.

Both this function and the WinRemoveSwitchEntry function are not required if the main window is
created with the frame creation flags FCF_TASKLIST or FCF_STANDARD, as these styles
automatically update the Window List when the main window is created or destroyed, or when its
title changes (see also WinAddSwitchEntry).

8-72 PM Programming Reference

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

Example Code

WinCreateSwitchEntry -
Create Switch Entry

This example creates a task-list entry for program name 'Generic: NEW.APP'.

#define INCL_WINSWITCHLIST
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Switch List Functions */
/* Window Manager Functions */

HSWITCH hswitch;
SWCNTRL swctl;
PIO pid;
HAB hab;
HWND hwndFrame;

/* task-list entry handle
/* switch-control data
/* process id
/* anchor-block handle
/* frame handle

*/
*/
*/
*/
*/

hab = WinQueryAnchorBlock(hwndFrame); /*gets anchor block*/
WinQueryWindowProcess(hwndFrame. &pid. NULL);/* gets process id*/

/* initialize switch structure */
swctl.hwnd = hwndFrame; /*window handle */
swctl .hwndlcon = NULLHANDLE; /* icon handle */
swct 1 . hprog = NULLHANDLE; /* program handle *I
swctl.idProcess = pid; /*process identifier*/
swctl.idSession = e; /*session identifier*/
swctl.uchVisibility = SWL_VISIBLE; /*visibility */
swctl .fbJump = SWL_JUMPABLE; /*jump indicator */
strcpy(swctl.szSwtitle."Generic: NEW.APP"); /*program name */

hswitch = WinCreateSwitchEntry(hab. &swctl);

Chapter -8. Window Functions 8-73

WinCreateWindow
Create Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WlnCreateWlndow (HWND hwndParent, PSZ pszClassName, PSZ pszName,
ULONG flStyle, LONG lxcoord, LONG lycoord, LONG IWldth,
LONG IHelght, HWND hwndOwner, HWND hwndBehlnd, ULONG Id,
PVOID pCtlData, PVOID pPresParams)

This function creates a new window of class pszC/assName and returns hwnd.

Parameters
hwndParent (HWND) - input

Parent-window handle.

If hwndParent is a desktop window handle, or is HWND_DESKTOP, a main window is created.

If hwndParent is HWND_OBJECT, or is a window handle returned by WinQueryObjectWindow, an
object window is created.

pszClassName (PSZ) - input
Registered-class name.

pszClassName is either an application-specified name as defined by WinRegisterClass or the
name of a preregistered WC_* class; see Control Window Message Processing. Preregistered
class names are of the form '#nnnnn', where nnnnn is 1 through 5 digits corresponding to the
value of the WC_* class-name constant.

This parameter can also be specified directly as a WC_* constant.

pszName (PSZ) - input
Window text.

The actual structure of the data is class-specific. It is usually a null-terminated string that is
often displayed in the window.

flStyle (ULONG) - input
Window style.

lxcoord (LONG) - input
x-coordinate of window position.

The value is in window coordinates relative to the origin of the parent window.

lycoord (LONG) - input
y-coordinate of window position.

The value is in window coordinates relative to the origin of the parent window.

IWldth (LONG) - input
Width of window, in window coordinates.

IHelght (LONG) - input
Height of window, in window coordinates.

hwndOwner (HWND) - input
Owner-window handle.

Windows that send messages send them to their owner, as defined by this parameter. When an
owner window is destroyed, all windows owned by it are also destroyed. The owner window
must belong to the current thread.

hwndBehlnd (HWND) - input
Sibling-window handle.

This is the sibling window behind which hwnd is placed. If this parameter is HWND_TOP or

8-74 PM Programming Reference

WinCreateWindow
Create Window

HWND_BOTTOM, hwnd is placed on top of all, or behind all of its siblings. This parameter must
be HWND_TOP, HWND_BOTTOM, or a child of hwndParent.

Id (ULONG) - input
Window identifier.

A value given by the application, that enables specific children of a window to be identified. For
example, the controls of a dialog have unique identifiers so that an owner can distinguish which
control has notified it. Window identifiers are also used for frame windows.

pCtlData (PVOID) - input
Control data.

This is class-specific data passed to the window procedure by the WM_CREATE message.

pPresParams (PVOID) - input
Presentation parameters.

This is class-specific presentation data passed to the window procedure by the WM_CREATE
message.

Returns
Window handle:

NULLHANDLE Error occurred

Other Window handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

PMERR_INVALID_INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT _FOUND

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

The appearance and behavior of a window are determined by its style, which is the combination of
the style established by pszClassName and f/Style ORed together. Any of the standard styles WS_ *
(see "Window Styles" on page 12-2) can be used in addition to any class-specific styles that may be
defined.

A window is usually created enabled and invisible. For more information on the initial state of a
created window, see the list of the standard window styles.

Messages may be received from other processes or threads when this function is called.

This function sends the WM_CREATE message to the window procedure of the window being created.

This function sends the WM_ADJUSTWINDOWPOS message after the WM_CREATE message, and
before the window is displayed (if applicable). The values passed are those given to the
WinCreateWindow function. If the window has style WS_ VISIBLE, the window is created visible.

The WM_SIZE message is not sent by the WinCreateWindow function while the window is being
created. Any required size processing can be performed during the processing of the WM_CREATE
message.

Chapter 8. Window Functions 8-75

WinCreateWindow
Create Window

Because windows are often created with zero height or width and sized later, it is good practice not
to perform any size-related processing if the size of the window is zero.

If the WinCreateWindow function is called for a window of class WC_FRAME, the controls specified by
f/CreateF/ags are created but not formatted. The frame is formatted when a WM_FORMATFRAME
message is received but this is not sent during window creation. To cause the frame to format,
either a WM_FORMATFRAME message must be sent, or the window position adjusted using the
WinSetWindowPos function call which sends a WM_SIZE message if the position or size is changed.

The only limitation to the size and position specified for a window is the number range allowed for
the size and position parameters; that is, an application can create windows that are larger than the
screen or that are positioned partially or totally off the screen. However, the user interface for
manipulation of window sizes and positions is affected if part or all of the window is off the screen.

It is recommended that part of the title bar be left on the screen, if the window has one, to enable the
user to move the window around.

When a WC_MENU window is created with this call, pCt/Data is assumed to be a menu template,
which is used to create the menu. If pCt/Data is NULL, an empty menu is created.

Related Functions
• WinCalcFrameHect
• WinCreateFrameControls
• WinCreateStdWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

Related Messages
• WM_ADJUSTWINDOWPOS
• WM~CREATE

• WM_FORMATFRAME
• WM_SIZE

8-76 PM Programming Reference

WinCreateWindow -
Create Window

Example Code
This example creates a list box window named 'new button' as a child of the Desk Top, located at
(0,0) of size 200x100. window.

#define INCL_WINWINDOWMGR
#define INCL_WINLISTBOXES
#include <os2.h>

/* Window Manager Functions
/* List Box definitions

HWND hwnd;
ULONG Buttonld;
ULONG flStyle;

/* cursor display window
/*window id (app supplied)
/* window style

*/
*/

*/
*/
*/

flStyle = WS_VISIBLE; /* create window visible */

/* create button window */
hwnd = WinCreateWindow(HWND_DESKTOP,

WC_LISTBOX,
11 new button",
fl Style,
0, a,
209, 100,
NULLHANDLE,
HWND_TOP,
Buttonld,
NULL,
NULL);

/* parent window
/* class name
/* window text
/* window style
/* position (x,y)
/* size (width,height)
/* owner window
/* sibling window
/* window id
/* control data
/* presentation parms

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-77

WinDdelnitiate
Dynamic Data Exchange Initiate (NLS)

#define INCL WINDDE I* Or use INCL_WIN or INCL_PM */

BOOL WlnDdelnltlate (HWND hwndCllent, PSZ pszAppName, PSZ pszToplcName,
PCONVCONTEXT pContext)

This function is issued by a client application to one or more other applications, to request initiation

of a dynamic data exchange conversation with a national language conversation context.

Parameters
hwndCllent (HWND) - input

Client's window handle.

This window will typically not be visible.

pszAppName (PSZ) - input
Application name.

This is the name of the desired server application. If it is a zero-length string, any application
can respond.

Application names may not contain slashes or backslashes.

pszToplcName (PSZ) - input
Topic name.

This is the name of the desired topic. If it is a zero-length string, each responding application
will respond once for each topic which it can support.

pContext (PCONVCONTEXT) - input
Conversation context.

Returns
Success indicator:

TRUE Successful completion. The WM_DDE_INITIATE message is successfully sent to all
appropriate windows.

FALSE Error occurred.

Remarks
This function sends a WM_DDE_INITIATE message to all top level frame windows. These are
windows registered with CS_FRAME, whose parent is the desktop window. No message is sent to
object windows.

The WinDdelnitiate function does not return to the client application until all receiving applications
have, in sequence, processed the WM_DDE_INITIATE message, and the client application has
received all the corresponding WM_DDE_INITIATEACK messages (see WinDdeRespond).

To support DOE conversations between applications running in different memory models (16-bit and

32-bit) it is necessary to process all DOE messages in the application window procedure. The use of

the WinDispatchMsg function ensures that conversion is performed on memory or segment
addresses.

8-78 PM Programming Reference

WinDdelnitiate -
Dynamic Data Exchange Initiate (NLS)

Related Functions
• WinDdePostMsg
• WinDdeRespond

Related Messages
• WM_DDE_INITIATE
• WM_DDE_INITIATEACK

Example Code
This example uses WinDdelnitiate to initiate - during the creation of a client window - a dynamic data
exchange (DOE) conversation with any available server applications, asking that the server
applications respond for each topic they can support. It also allocates the shared memory that will
be used once the conversation is established.

#define INCL_WINDDE
#define INCL_DOSMEMMGR
#include <os2.h>

/* Window DOE Functions
/* Memory Manager values

BOOL fSuccess; /* success indicator
HWND hwndClient; /* client window
char pszAppName[l5]= 1111 ;/* server application
char pszTopicName[15]= 1111 ;/* topic
CONVCONTEXT Context;
PDDESTRUCT pddeData; /* ODE structure

case WM_CREATE:
/* issue ODE initialize call */
fSuccess = WinDdelnitiate(hwndClient, pszAppName,

pszTopicName, &Context);

/* allocate shared memory for conversation data */
DosAllocSharedMem((PVOID)pddeData, 11 DDESHAREMEM 11

,

sizeof(DDESTRUCT) + 50,
PAG_READ I PAG_WRITE I PAG_COMMIT
OBJ_GIVEABLE I OBJ_GETTABLE);

*/
*/

*/
*/
*/
*/

*/

Chapter 8. Window Functions 8-79

WinDdePostMsg
Dynamic Data Exchange Post Message (NLS)

#define INCL_WINDDE I* Or use INCL_WIN or INCL_PM */

BOOL WinDdePostMsg (HWND hwndTo, HWND hwndfrom, USHORT usMsgld,
PDDESTRUCT pData, ULONG ulOptlons)

This function is issued by an application to post a message to another application with which it is
carrying out a dynamic data exchange conversation with a national language conversation context.

Parameters
hwndTo (HWND) - input

Window handle of target.

hwndfrom (HWND) - input
Window handle of originator.

usMsgld (USHORT) - input
Message identifier.

Identifies the message to be posted.

The following messages are valid:

WM_DDE_ACK
WM_DDE_ADVISE
WM_DDE_DATA
WM_DDE_EXECUTE
WM_DDE_POKE
WM_DDE_REQUEST
WM_DDE_ TERMINATE
WM_DDE_UNADVISE.

pData (PDDESTRUCT} - input
DOE structure passed.

Points to a DDESTRUCT structure. This parameter is always sent to an application as a 16-bit
address. For a 32-bit application, a conversion to a flat address is required. Use public macros
DOSFLATTOSEL or DOSSELTOFLAT to convert 0:32 to 16:16 or vice versa.

ulOptions (ULONG) - input
Options.

DDEPM_RETRY This controls what happens if the message cannot be posted because the
destination queue is full.

If this option is set, then message posting is retried at 1-second intervals,
until the message is posted successfully. In this case, this function
dispatches any messages in the queue of the application issuing this
function, by calling the WinPeekMsg and WinDispatchMsg functions in a
loop, so that messages sent by other applications can be received. This
means that the application can continue to receive DOE messages (or other
kinds of messages), while attempting to post DOE messages, thereby
preventing deadlock between two applications whose queues are full and
who are both attempting to post a message to each other with this option
set.

8-80 PM Programming Reference

WinDdePostMsg
Dynamic Data Exchange Post Message (NLS)

Applications which rely on inspecting messages prior to issuing the
WinPeekMsg function can either, use the WinSetHook function and detect the
above situation in the invoked hook procedure by testing the
MSGF _DDEPOSTMSG value of the usContext parameter, or not use this
option, in order to avoid the deadlock situation.

If this option is not set, then this function returns FALSE without retrying.

Nole: If the message posting fails for any other reason (for example, an
invalid window handle is specified), this function returns FALSE even
if this option has been selected.

DDEPM_NOFREE Indicates that the receiver is not to free the memory on behalf of the
originator.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
To support DOE conversations between applications running in different memory models (16-bit and
32-bit) it is necessary to process all DOE messages in the application window procedure. The use of
the WinDispatchMsg function ensures that conversion is performed on memory or segment
addresses.

Related Functions
• WinDdelnitiate
• WinDdeRespond

Related Messages
• WM_DDE_ACK
• WM_DDE_ADVISE
• WM_DDE_DATA
• WM_DDE_EXECUTE
• WM_DDE_POKE
• WM_DDE_REQUEST
• WM_DDE_ TERMINATE
• WM_DDE_UNADVISE

Chapter 8. Window Functions 8-81

WinDdePostMsg -
Dynamic Data Exchange Post Message (NLS)

Example Code
This example uses WinDdePostMsg to request a security item from the server once it has received
an acknowledgement (via WM_DDEINITIATEACK) to the WinDdelnitiate call. Note the use of the
shared memory segment to pass and receive necessary information.

#define INCL WINDDE
#define INCL=DOSMEMMGR
#include <os2.h>

/* Window ODE Functions
/* Memory Manager values

BOOL fSuccess; /* success indicator
HWND hwndClient; /* client window
HWND hwndServer; /* server window
char pszAppName[15]= 111';/* server application
char pszTopicName[15]= 1111 ;/* topic
HWND hwndTo; /* target window
HWND hwndFrom; /* source window
USHORT usMsgld; /* message id
BOOL fRetry; /* retry indicator
CONVCONTEXT Context;
PDDESTRUCT pddeData; /* ODE structure
MRESULT mresReply; /* message return data

case WM CREATE:
fSuccess = WinDdeinitiate(hwndClient, pszAppName,

pszTopicName, &Context);
DosA 11 ocSha redMem ((PVOID) pddeDa ta, 11 DDESHAREMEM 11

,

sizeof(DDESTRUCT) + 50,
PAG READ I PAG WRITE I PAG COMMIT I
OBJ=GIVEABLE 1-0BJ_GETTABLE);

case WM_DDE_INITIATEACK:
/* issue a request message to DOE partner */
usMsgld = WM_DDE_REQUEST;

/* initialize ODE conversation structure */

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

pddeData.cbData = sizeof(DDESTRUCT); /*Total length */
pddeData.fsStatus = DDE_FACK; /* Status - positive ack */
pddeData.usFormat = DDEFMT_TEXT; /* Data format */
pddeData.offszitemName = sizeof(DDESTRUCT);/* Offset to item */

/*set name of item to 'Security', copying the information to
the shared memory at the end of pddeData */

strcpy((BYTE *)pddeData + pddeData->offszitem,
SZDDESYS_ITEM_SECURITY);

/* Offset to beginning of data (notice additional offset due
to item information) */

pddeData.offabData = sizeof(DDESTRUCT) +
strlen(SZDDESYS_ITEM_SECURITY);

/*set name of item to 'Security', copying the information to
the shared memory at the end of pddeData */

strcpy((BYTE *)pddeData + pddeData->offszltem,
SZDDESYS_ITEM_SECURITY);

fSuccess = WinDdePostMsg(hwndTo, hwndFrom, usMsgld, pddeData,
fRetry);

8-82 PM Programming Reference

WinDdeRespond
Dynamic Data Exchange Respond (NLS)

#define INCL_WINDDE I* Or use INCL_WIN or INCL_PM */

MRESUL T WlnDdeRespond (HWND hwndCllent, HWND hwndServer, PSZ pszAppName,
PSZ pszTopicName, PCONVCONTEXT pContext)

This function is issued by a server application to indicate that it can support a dynamic data
exchange conversation on a particular topic with a national language conversation context.

Parameters
hwndClient (HWND) - input

Client's window handle.

hwndServer (HWND) - input
Server's window handle.

If a server application is responding for more than one topic, it must use a different window for
each topic.

pszAppName (PSZ) - input
Application name.

This is the name of the responding server application. It must not be a zero-length string.

Application names may not contain slashes or backslashes.

pszToplcName (PSZ) - input
Topic name.

This is the name of the topic which the server is willing to support. It must not be a zero-length
string.

pContexl (PCONVCONTEXT) - input
Conversation context.

Returns
Message return data.

Remarks
This function is issued by a server application after receiving a WM_DDE_INITIATE message that
identifies this server application {or indicates that any application can respond), and also either
identifies a particular topic which the server can support, or asks for all supported topics {see
WinDdelnitiate). This function sends a WM_DDE_INITIATEACK message back to the client, that is the
sender of the WM_DDE_INITIATE message.

If the server application can respond, it issues this function once if a specific topic was requested, or
once for each topic which it can support, if all supported topics were requested.

A DOE conversation is initiated each time this function is successfully issued. The client is expected
to terminate all unwanted conversations. Once a conversation is initiated, it is controlled by the
client issuing WinDdePostMsg functions.

To support DOE conversations between applications running in different memory models (16-bit and
32-bit) it is necessary to process all DOE messages in the application window procedure. The use of
the WinDispatchMsg function ensures that conversion is performed on memory or segment
addresses.

Chapter 8. Window Functions 8-83

WinDdeRespond -
Dynamic Data Exchange Respond (NLS)

Related· Functions
• WinDdelnitiate
• WinDdePostMsg

Related Messages
• WM_DDE_INITIATE
• WM_DDE_INITIATEACK

Example Code
This example uses WinDdeRespond to respond to an initiate message (WM_DDEINITIATE) generated
by the client window issuing WinDdelnitiate. Here, the server responds as a DDE Server that
supports a System topic.

#define INCL_WINDDE
#include <os2.h>

/* Window DOE Functions */

HWND hwndClient; /* client window */
HWND hwndServer; /* server window */
char pszAppName[15]= 11 DDE Server"; /* server application */
char pszTopicName[15]=SZDDESYS_TOPIC; /*topic ('System') */
MRESULT mresReply; /* message return data */
CONVCONTEXT Context;
case WM DOE INITIATE:

mresReply = WinDdeRespond(hwndClient, hwndServer, pszAppName,
pszTopicName, &Context);

:.8 .. 84 PM Programming Reference

WinDefDlgProc
Default Dialog Procedure

#define INCL_WINDIALOGS /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESUL T WlnDefDlgProc (HWND hwndDlg, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function invokes the default dialog procedure with hwndDlg, u/Msgid, mpParam1, and
mpParam2.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-return data.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

The action taken by the default dialog procedure is such that the values passed in mpParam1 and
mpParam2, and the values returned in mresReply are defined for each u/Msgid.

The default dialog procedure provides default processing for any dialog window messages that an
application chooses not to process. It can be used to ensure that every message is processed and is
called with the same parameters that were received by the dialog procedure.

The action of the WinDefDlgProc function on receiving messages is precisely the same as for the
frame window procedure except for WM_CLOSE messages where WinDismissDlg will be called. If an
application processes a message instead of sending it to the WinDefDlgProc function, it may be
required to perform some or all of the frame window procedure actions for itself.

Related Functions
• WinCreateDlg
• WinDismissDlg
• WinDlgBox
• WinGetDlgMsg
• WinloadDlg
• WinProcessDlg

Chapter 8. Window Functions 8-85

WinDefDlgProc -
Default Dialog Procedure

Example Code
This example shows a typical dialog box procedure. A switch statement is used to process
individual messages. All messages not processed are passed on to the WinDefDlgProc function.

#define INCL_WINDIALOGS
#include <os2.h>

/* Window Dialog Mgr Functions */

MRESULT AboutDlg(HWND hwnd, ULONG ulMessage, MPARAM mpl,
MPARAM mp2)

{

}

switch (ulMessage) {

}

/*
* Process whatever messages you want here and send the rest
* to WinDefDlgProc.
*/

default:
return (WinDefDlgProc(hwnd, ulMessage, mpl, mp2));

8-86 PM Programming Reference

#define INCL_WINSTDFILE

WinDefFileDlgProc -
Standard File Dialog Default Procedure

MRESULT WlnDefFileDlgProc (HWND hwndDlg, ULONG ulMsgid, MPARAM mpParam1,
MPARAM mpParam2)

This function is the default dialog procedure for the file dialog.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

ulMsgld (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-return data.

Remarks
All unprocessed messages in a custom dialog procedure should be passed to the default file dialog

procedure so that the dialog can implement its default behavior.

Example Code
This example uses the default dialog procedure for the file dialog to cause default processing of

unprocessed dialog messages.

#define INCL_WINSTDFILE /*Window Standard File Functions */
#include <os2.h>

MRESULT MyFileDlgProc(HWND hwndDlg, ULONG ulMsgid, MPARAM Paraml,
MPARAM Param2)

{
switch(ulMsgid)

{

}

/**/
/* Process user-supported messages */
/**/

default:
return (WinDefFileDlgProc(hwndDlg, ulMsgid, Paraml. Param2));

}

Chapter 8. Window Functions 8-87

WinDefFontDlgProc -
Standard Font Dialog Default Procedure

#define INCL_WINSTDFONT

MRESUL T WlnDefFontDlgProc (HWND hwndDlg, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function is the default dialog procedure for the font dialog.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-return data.

Remarks
All unprocessed messages in a custom dialog procedure should be passed to the default font dialog
procedure so that the dialog can implement its default behavior.

Example Code
This example uses the default dialog procedure for the font dialog to cause default processing of
unprocessed dialog messages.

#define INCL_WINSTDFONT /* Window Standard Font Functions */
#include <os2.h>

MRESULT MyFontDlgProc(HWND hwndDlg, ULONG ulMsgid, MPARAM Paraml,
MPARAM Param2)

{
switch(ulMsgid)

{

}

/**/
/* Process user-supported messages */
/**/

default:
return (WinDefFontDlgProc(hwndDlg, ulMsgid, Paraml, Param2));

}

8-88 PM Programming Reference

WinDefWindowProc
Default Window Procedure

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESUL T WinDelWindowProc (HWND hwnd, ULONG ulMsgid, MPARAM mpParam1,
MPARAM mpParam2)

This function invokes the default window procedure.

Parameters
hwnd (HWND) - input

Window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-return data.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

The default window provides default processing for any window messages that an application
chooses not to process. It can be used to ensure that every message is processed. This function
should be made with the same parameters as those received by the window procedure.

The action taken by the default window procedure, the values passed in mpParam1, mpParam2 and
the values returned in mresReply are defined for each u/Msgid. {See Chapter 11, "Introduction to
Message Processing" on page 11-1.)

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDestroyWrndow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

Chapter.B. Window Functions 8-89

WinDefWindowProc -
Default Window Procedure

Example Code
This example uses the default window procedure, called by WinDefWindowProc, for default
processing of non supported window messages.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

MRESULT GenericWndProc(HWND hwnd, ULONG ulMsgid, MPARAM mpl,
MPARAM mp2)

{
switch(ulMsgid)

{
/*

• process user supported messages

*/

default:
return (WinDefWindowProc(hwnd, ulMsgid, mpl, mp2));

}
}

8-90 PM Programming Reference

*/

#define INCL_WINATOM I* Or use INCL_WIN or INCL_PM */

WinDeleteAtom
Delete Atom

ATOM WinDeleteAtom {HATOMTBL hatomtblAtomTbl, ATOM atom)

This function deletes an atom from an atom table.

Parameters
hatomtblAtomTbl {HATOMTBL) - input

Atom-table handle.

This is the handle returned from a previous WinCreateAtomTable or WinQuerySystemAtomTable
function.

atom {ATOM) - input
Atom identifying the atom to be deleted.

Returns
Return code:

0 Call successful

Other The call fails and the atom has not been deleted, in which case this is equal to the atom
parameter.

Possible returns from WinGetlastError

PMERR_INVALID_HATOMTBL

PMERR_INVALID _ATOM

Remarks

An invalid atom-table handle was specified.

The specified atom does not exist in the atom table.

If the passed atom is an integer atom, 0 is returned. If it is not an integer atom and it is a valid atom
for the given atom table, that is, it has an atom name and use count, its use count is decremented by
one and O is returned. If the use count has been decremented to zero, the atom name and use count
are removed from the atom table.

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomlength
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Chapter 8. Window Functions 8-91

WinDeleteAtom
Delete Atom

Example Code
This example deletes a newly created atom in an Atom Table based on the atom value returned by

WinAddAtom.

#define INCL_WINATOM
#include <os2.h>

/* Window Atom Functions */

ATOM atom; /* new atom value */
ATOM atomOelete; /* result of atom delete */
HATOMTBL hatomtblAtomTbl; /*atom-table handle */
char pszAtomName[10]; /*atom name */
ULONG ullnitial =a; /* initial atom table size (use default)*/
ULONG ulBuckets = 0; /* size of hash table (use default) */

/* create atom table of default size */
hatomtblAtomTbl = WinCreateAtomTable(ullnitial, ulBuckets);

/* define name for new atom and add to table */
strcpy(pszAtomName, 11 newatom 11

);

atom= WinAddAtom(hatomtblAtomTbl, pszAtomName);

atomOelete = WinOeleteAtom(hatomtblAtomTbl, atom);

8-92 PM Programming Reference

WinDeleteLboxltem -
Delete Listbox Item

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

SHORT WinDeletelboxltem (HWND hwndlbox, SHORT slndex)

This macro deletes the indexed item from the List Box. It returns the number of items left.

Parameters
hwndlbox (HWND) - input

Listbox handle.

slndex (SHORT) - input
Index of the listbox item.

Returns
Number of items left.

Remarks
This macro expands to:

#define WinDeletelboxitem(hwndlbox, slndex)
((SHORT)WinSendMsg(hwndlbox,

LM DELETE ITEM,
MPFROMSHORT(slndex),
(MPARAM)NULL))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_DELETEITEM

Chapter 8. Window Functions 8-93

WinDeleteLboxltem
Delete Listbox Item

Example Code
This example responds to an item in the list box being selected (LN_SELECT, WM_CONTROL
message) by deleting the selected item using WinDeletelboxltem.

#define INCL_WINWINDOWMGR
#define INCL_WINLISTBOXES
#include <os2.h>

/* Window Manager Functions */
/* Window List Box definitions */

SHORT slndex;
SHORT sLeft;
HWND hwndLbox;
MPARAM mpl;
MPARAM mp2;

case WM_CONTROL:

/* selected item index
/* items left after delete
/* list box window handle
/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)

/* switch on control code */
switch(SHORT2FROMMP(mpl))

{
case LN SELECT:

}

hwndLbox = HWNDFROMMP(mp2);

/* query index of selected item */
slndex = WinQueryLboxSelectedltem(hwndLbox);

/*delete selected listbox item*/
sLeft = WinDeleteLboxitem(hwndLbox, slndex);
break;

8-94 PM Programming Reference

*/
*/
*/
*/
*/

#define INCL WINLOAD /*Or use INCL_WIN or INCL_PM */

BOOL WlnDeleleLibrary (HAB hab, HLIB hllbLlbhandle)

WinDeleteLibrary -
Delete Library

This function deletes the library hlibLibhandle, which is previously loaded by the Winloadlibrary

function.

Parameters
hab (HAB) - input

Anchor-block handle.

hllbLlbhandle (HUB) - input
Library handle to be deleted.

Returns
Library-deleted indicator.

TRUE Library successfully deleted

FALSE Library not successfully deleted.

Related Functions
• WinDeleteProcedure
• Winloadlibrary
• WinloadProcedure

Example Code
This example deletes the library identified by the library handle returned from Winloadlibrary.

#define INCL_WINLOAD
#include <os2.h>

BOOL
HAB
HLIB

fSuccess;
hab;
hlib;

/* Window Load Functions

/* success indicator
/* anchor-block handle
/* library handle

fSuccess = WinDeletelibrary(hab, hlib);

*/

*/
*/
*/

Chapter 8. Window Functions 8-95

WinDeleteProcedure
Delete Procedure

#define INCL_WINLOAD /*Or use INCL_WIN or INCL_PM */

BOOL WlnDeleteProcedure (HAB hab, PFNWP pwndproc)

This function deletes the window or dialog procedure that was previously loaded using the
WinLoadProcedure function.

Parameters
hab (HAB) - input

Anchor-block handle.

pwndproc (PFNWP) - input
Window procedure identifier to be deleted.

Returns
Procedure-deleted indicator.

TRUE Procedure successfully deleted

FALSE Procedure not successfully deleted.

Rela~ed Functions
• WinDeletelibrary
• Winloadlibrary
• WinLoadProcedure

Example Code
This example deletes the procedure identified by the procedure pointer returned from
WinLoadProcedure.

#define INCL_WINLOAD
#include <os2.h>

BOOL
PFNWP
HAB

fSuccess;
pWndproc;
hab;

/* Window Load Functions

/* success indicator
/* procedure pointer
/* anchor-block handle

fSuccess = WinDeleteProcedure(hab, pWndproc);

8-96 PM Programming Reference

*/

*/
*/
*/

#define INCL WINWORKPLACE

WinDeregisterObjectClass -
Deregister Workplace Object Class

BOOL WlnDereglsterObJectClass (PSZ pszClassName)

The WinDeregisterObjectClass function deregisters (removes) a workplace object class.

Parameters
pszClassName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the object class being removed
from the workplace.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Workplace object classes are not deleted unless the application issues a WinDeregisterObjectClass.
Object classes will be automatically registered when a dynamic-link library containing an object
definition is added to the system. The only advantage of deregistering an object class is to optimize
the system performance. All registered classes are maintained in the OS2.INI and are cached upon
system initialization. If the class is no longer needed, it should be removed.

Related Functions
• WinCreateObject
• WinRegisterObjectClass
• WinReplaceObjectClass

Chapter 8. Window Functions 8-97

WinDestroyAccelTable -
Destroy Accelerator Table

#define INCL WINACCELERATORS I* Or use INCL_WIN or INCL_PM */

BOOL WlnDestroyAccelTable (HACCEL haccelAccel)

This function destroys an accelerator table.

Parameters
haccelAccel (HACCEL) - input

Accelerator-table handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HACCEL An invalid accelerator-table handle was specified.

Remarks
Before an application is terminated, it should call the WinDestroyAccelTable function for every
accelerator table that is created with the WinCreateAccelTable function.

Related Functions
• WinCopyAccelTable
• WinCreateAccelTable
• WinloadAccelTable
• WinQueryAccelTable
• WinSetAccelTable
• WinTranslateAccel

Example Code
This example destroys an accelerator-table based on the handle returned from either

WinCreateAccelTable or WinloadAccelTable.

#define INCL_WINACCELERATORS
#include <os2.h>

/* Window Accelerator Functions */

HACCEL hAccel;
BOOL fSuccess;

/* Accelerator-table handle
/* success indicator

fSuccess = WinDestroyAccelTable(hAccel);

8-98 PM Programming Reference

*/
*/

WinDestroyAtomTable
Destroy Atom Table

#define INCL_WINATOM I* Or use INCL_WIN or INCL_PM */

HATOMTBL WlnDestroyAtomTable (HATOMTBL hatomtblAtomTbl)

This function destroys an atom table, which is created by WinCreateAtomTable

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

This is the handle returned from a previous call to the WinCreateAtomTable function. If NULL
then this function does nothing.

Returns
Return code:

0 Function successful.

Other The call fails and the atom table has not been destroyed, in which case this is equal to
the hatomtb/AtomTbl parameter.

Possible returns from WinGetLastError

PMERR_INVALID _HATOMTBL An invalid atom-table handle was specified.

Remarks
This function makes no attempt to ensure that the handle to the atom table is not reused by a later
call to the WinCreateAtomTable function.

The system atom table (see the WinQuerySystemAtomTable function) cannot be destroyed.

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDeleteAtom
• WinFindAtom
• WinQueryAtomLength
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Chapter 8. Window Functions 8-99

WinDestroyAtomTable
Destroy Atom Table

Example Code
This example destroys an Atom Table of one atom, based on its handle, which is returned by

WinCreateAtomTable.

#define INCL_WINATOM
#include <os2.h>

/* Window Atom Functions */

ATOM atom; /* new atom value */
HATOMTBL hatomtblAtomTbl; /*atom-table handle */
HATOMTBL hatomtblDestroy; /* result of destroy table */
char pszAtomName[10]; /*atom name */
USHORT uslnitial = 0; /* initial atom table size (use default)*/
USHORT usBuckets = 0; /* size of hash table (use default) */

/* create atom table of default size */
hatomtblAtomTbl = WinCreateAtomTable(uslnitial, usBuckets);

/* define name for new atom and add to table */
strcpy(pszAtomName, 11 newatom 11

);

atom= WinAddAtom(hatomtblAtomTbl, pszAtomName);

hatomtblDestroy = WinDestroyAtomTable(hatomtblAtomTbl);

8-100 PM Programming Reference

WinDestroyCursor -
Destroy Cursor

#define INCL_WINCURSORS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WinDestroyCursor (HWND hwnd)

This function destroys the current cursor, if it belongs to the specified window.

Parameters
hwnd (HWND) - input

Window handle to which the cursor belongs.

This can be the desktop-window handle or HWND_DESKTOP.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function has no effect if the current cursor does not belong to the specified window.

It is not necessary to call this function before calling the WinCreateCursor function.

Related Functions
• WinCreateCursor
• WinQueryCursorlnfo
• WinShowCursor

Example Code
This example destroys the cursor defined for the specified input window.

#define INCL_WINCURSORS
#include <os2.h>

BOOL fSuccess;
HWND hwnd;

/* Window Cursor Functions

/* success indicator
/* cursor display window

fSuccess = WinDestroyCursor(hwnd);

*/

*/
*/

Chapter 8. Window Functions 8-101

WinDestroyHelplnstance
Destroy Help Instance

#define INCL_WINHELP I* Or use INCL_WIN or INCL_PM */

BOOL WinDestroyHelplnstance (HWND hwndHelplnstance)

This function destroys the specified instance of the help manager.

Parameters
hwndHelplnstance (HWND) - input

Handle of the instance of the help manager to be destroyed.

This is the handle returned by the WinCreateHelplnstance call.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Related Functions
• WinAssociateHelplnstance
• WinCreateHelplnstance
• WinCreateHelpTable
• WinloadHelpTable
• WinQueryHelplnstance

Example Code
This example shows a typical main function for an application which uses help. Following creation of
the main application window the help manager is initialized and associated with the window. The
help table is defined in the application's resources. When the window is destroyed, terminating the
application, the help instance is also destroyed.

#define INCL=_WIN
#include <os2.h>

#define IDHT_APPLICATION
*/

100 /* id of HELP TABLE in resource file

main(int argc, char *argv[]; char *envp[]
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG flStyle;
HELPINIT helpinit;

/* Setup the help initialization structure */
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/*Help table in application resource*/
helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANDLE;

8-102 PM Programming Reference

}

WinDestroyHelplnstance -
Destroy Help Instance

/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = 11 APPNAME HELP";
helpinit.fShowPanelld = CMIC_SHOW_PANEL_ID;
helpinit.pszHelpLibraryName = 11 APPNAME.HLP 11

;

/* Register the class */
if(WinRegisterClass(..•))
{

/* create the main window */
flStyle = FCF STANDARD;
hwnd = WinCreateStdWindow();

if (hwnd)
{

/* Create and associate the help instance */
hwndHelp = WinCreateHelplnstance(hab, &helpinit);

}
}

if(hwndHelp && WinAssociateHelplnstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0)
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

/* Remove help instance - note: add * /
/* WinAssociateHelplnstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelplnstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

Chapter 8. Window Functions 8-103

WinDestroyMsgQueue
Destroy Message Queue

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnDestroyMsgQueue (HMQ hmq)

This function destroys the message queue.

Parameters
hmq (HMQ) - input

Message-queue handle.

Returns
Queue-destroyed indicator:

TRUE Queue destroyed

FALSE Queue not destroyed.

Possible returns from WinGetlastError

PMERR_INVALID _HMQ

Remarks

An invalid message-queue handle was specified.

This function must be called before terminating a thread or an application. Only the thread that
called WinCreateMsgQueue may call this function with that handle.

Related Functions
• WinCancelShutdown
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

8-104 PM Programming Reference

WinDestroyMsgQueue -
Destroy Message Queue

Example Code
This example destroys, using WinDestroyMsgQueue, a message queue previously created by

Wi nCreateMsgQueue.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

BOOL
HAB
HMQ

fDestroyed;
hab;
hmq;

hab = Winlnitialize(0);

/* success of destroy call
/* anchor-block handle
/* message queue handle

/* initialize PM */

hmq = WinCreateMsgQueue(hab, 0); /*create default size queue*/

/*

. initialize windows, message loop

*/

fDestroyed = WinDestroyMsgQueue(hmq);

*/
*/

*/
*/
*/

Chapter 8. Window Functions 8-105

WinDestroyObject -
Destroy Workplace Object

#define INCL WINWORKPLACE

BOOL WlnDestroyObject (HOBJECT object)

The WinDestroyObject function is called to delete a workplace object.

Parameters
object (HOBJECT) - input

Handle to a workplace object.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The WinDestroyObject function will permanently remove an object that was created with the
WinCreateObject function.

Related Functions
• WinCreateObject
• WinSetObjectData

8-106 PM Programming Reference

WinDestroyPointer -
Destroy Pointer

#define INCL WINPOINTERS I* Or use INCL_WIN or INCL_PM */

BOOL WlnDestroyPolnter (HPOINTER hptrPolnter)

This function destroys a pointer or icon.

Parameters
hptrPolnter (HPOINTER) - input

Handle of pointer to be destroyed.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HPTR An invalid pointer handle was specified.

Remarks
A pointer can only be destroyed by the thread that created it.

The system pointers and icons must not be destroyed.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Chapter 8. Window Functions 8-107

WinDestroyPointer
Destroy Pointer

Example Code
This example destroys a bit-map pointer, created by either WinCreatePointer or

WinCreatePointerlndirect, once the window has received a close message (WM_CLOSE).

#define INCL_WINPOINTERS
#define INCL_GPIBITMAPS
#include <os2.h>
#define IDP_BITMAP 1

/* Window Pointer Functions */
/* Graphics Bit-map Functions */

HPS hps;
HWND hwnd;
HPOINTER hptr;
HBITMAP hbm;
BOOL fSuccess;

case WM CREATE:

/* presentation-space handle
/* window handle
/* bit-map pointer handle
/* bit-map handle
/* success indicator

hps = WinBeginPaint(hwnd, NULLHANDLE, NULL);
hbm = GpiLoadBitmap(hps, 0L, IDP_BITMAP, 64L, 64L);
WinEndPaint(hps);

hptr = WinCreatePointer(HWND_DESKTOP, hbm,

*/
*/
*/
*/
*/

TRUE, /* use true (system) pointer */
0, 0); /*hot spot offset (0,0) */

case WM CLOSE:
fSuccess = WinDestroyPointer(hptr);

8-108 PM Programming Reference

WinDestroyWindow
Destroy Window

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnDeatroyWlndow (HWND hwnd)

This call destroys a window and its child windows.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Window-destroyed indicator:

TRUE Window destroyed

FALSE Window not destroyed.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The window to be destroyed must have been created by the thread that is issuing this call. Before
hwnd is itself destroyed, all windows owned by hwnd are also destroyed.

If hwnd cannot be destroyed, for example because hwnd is an invalid window handle or is not
associated with the current thread, fSuccess returns FALSE.

Note: If hwnd is locked, this call does not return until the window is unlocked (and destroyed).

Messages may be received from other processes or threads during the processing of this call.

If a Presentation Space is associated with the window, it is disassociated from it by this function. If

the presentation space was obtained by use of the GpiCreatePS function, then it is disassociated

from the window, but not destroyed. That is, this function performs the GpiAssociate function to
disassociate the presentation space but does not perform the GpiDestroyPS function. If the

presentation space was obtained by use of the WinGetPS function, it is released by this function; that
is, this function performs the WinReleasePS function.

Messages sent by this call are:

WM_DESTROY

WM_ACTIVATE

WM_RENDERALLFMTS

Always sent to the window being destroyed after the window has
been hidden on the device, but before its child windows have been
destroyed. The message is sent first to the window being
destroyed, then to the child windows as they are destroyed.
Therefore, during processing the WM_DESTROY it can be
assumed that all the children still exist.

Sent with usactive set to FALSE if the window being destroyed is
the active window.

Sent if the clipboard owner is being destroyed, and there are
unrendered formats in the clipboard.

Chapter 8. Window Functions 8-109

WinDestroyWindow
Destroy Window

If the window being destroyed is the active window, both the active window and the input focus
window are transferred to another window when the window is destroyed. The window that becomes
the active window is the next window, as defined for the 'Alt+Esc' function. This usually corresponds
to the next application in the sequence. The input focus transfers to whichever window the new
active window decides should have it.

If a menu window is being destroyed, any bit maps associated with the menu are not deleted. They
will be deleted automatically when the application terminates.

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

Related Messages
• WM_ACTIVATE
• WM_DESTROY
• WM_RENDERALLFMTS

Example Code
This example destroys the specified window and all other windows owned by that window in
response to a WM_CLOSE message.

#define INCL_WINWINDOWMGR
#include <os2.h>
ULONG fSuccess;

/* Window Manager Functions

HWND hwnd; /* cursor display window

case WM CLOSE:
fSuccess = WinDestroyWindow(hwnd);

8-110 PM Programming Reference

*/

*/

WinDismissDlg
Dismiss Dialog

#define INCL_WINDIALOGS /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnDlsmlssDlg (HWND hwndDlg, ULONG ulResult)

This function hides the modeless dialog window, or destroys the modal dialog window, and causes
the WinProcessDlg or WinDlgBox functions to return.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

ulResult (ULONG) - input
Reply value.

Returned to the caller of the WinProcessDlg or WinDlgBox functions.

Returns
Dialog-dismissed indicator:

TRUE Dialog successfully dismissed

FALSE Dialog not successfully dismissed.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function is required to complete the processing of a modal dialog window and is called from its
dialog procedure. It is made implicitly if the dialog procedure passes a WM_ COMMAND message to
WinDefDlgProc or if a WM_QUIT message is encountered during a WinProcessDlg or WinGetDlgMsg
function.

This function hides the dialog window, and re-enables any windows that were disabled by a
WinProcessDlg or WinGetDlgMsg function.

It does not destroy the dialog window; a WinDestroyWindow function must be issued to destroy the
dialog window when it is no longer needed. However, the WinDlgBox function destroys the dialog
window it creates, when the dialog window is dismissed by the use of this function.

This function can be issued during the processing of the the WM_INITDLG (Default Dialogs) message.

Note: This function can be made from a modeless dialog window, although this is not necessary as
there is no internal message processing loop. If it is called, the dialog window is hidden and
it is the responsibility of the application to destroy the dialog window, if required.

Related Functions
• WinCreateDlg
• WinDefDlgProc
• WinDlgBox
• WinGetDlgMsg
• WinloadDlg
• WinProcessDlg

Chapter 8. Window Functions 8-111

WinDismissDlg
Dismiss Dialog

Related Messages
• WM_COMMAND
• WM_QUIT
• WM_INITDLG (Default Dialogs)

Example Code
This example shows a typical dialog procedure that has both an OK and a Cancel button. If the user
selects the OK button, WinDismissDlg is called with a result value of TRUE. If the user selects the
Cancel button, WinDismissDlg is called with a result value of TRUE.

#define INCL_WINDIALOGS
#include <os2.h>
#define ID_ENTER 101;
#define ID_CANCEL 102;
MPARAM mpl;
HWND hwnd;

case WM COMMAND:
switch {SHORTlFROMMP{mpl)) {

/* Window Dialog Mgr Functions */

case ID ENTER: /* OK button selected */
WinDismissDlg{hwnd, TRUE);
return {0L);

case ID CANCEL: /* Cancel button selected */
WinDismissDlg{hwnd, FALSE);
return {0L);

8-112 PM Programming Reference

WinDispatchMsg
Dispatch Message

#define INCL WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESUL T WlnDlspatchMsg (HAB hab, PQMSG pqmsgMsg)

This function invokes a window procedure.

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsgMsg (PQMSG) - input
Message structure.

Returns
Message-return data.

Remarks
This function is equivalent to using the WinSendMsg function with the parameters corresponding to
those in pqmsgMsg.

The time and pointer position information within pqmsgMsg can be obtained by the window
procedure with the WinQueryMsgTime and WinQueryMsgPos functions.

mresReply is the value returned by the invoked window procedure. For standard window classes,
the values of mresReply are documented with the message definitions; see Chapter 11,
"Introduction to Message Processing" on page 11-1.

Related Functions
• WinCancelShutdown
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Chapter 8. Window Functions 8-113

WinDispatchMsg -
Dispatch Message

Example Code
This example, after uses WinDispatchMsg within a WinGetMsg loop to dispatch window messages to
a window procedure.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

HAB hab;
HMQ hmq;
QMSG qmsg;

/* anchor-block handle
/* message queue handle
/* message

hab = Winlnitialize(O); /* initialize PM*/

*/
*/

*/
*/
*/

hmq = WinCreateMsgQueue(hab, O); /*create default size queue*/

/*

• initialize windows

*/

/* get and dispatch messages from queue */
while (WinGetMsg(hab, &qmsg, 0, 0, 0))

WinDispatchMsg(hab, &qmsg);

8-114 PM Programming Reference

WinDlgBox -
Load and Process Modal Dialog

#define INCL WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

ULONG WlnDlgBox (HWND hwndParent, HWND hwndOwner, PFNWP pDlgProc,
HMODULE Resource, ULONG ulDlgid, PVOID pCreateParams)

This function loads and processes a modal dialog window and returns the result value established by
the WinDismissDlg call.

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window:

HWND_DESKTOP The desktop window

HWND_OBJECT Object window

Other Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

The actual owner window is calculated using the algorithm specified in the description of the
WinloadDlg function.

pDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

Resource (HMODULE) - input
Resource identity containing the dialog template.

NULLHANDLE Use the application's .EXE file.

Other Module handle returned from the DosloadModule or DosGetModHandle call.

ulDlgld (ULONG) - input
Dialog-template identity within the resource file.

It is also used as the identity of the created dialog window.

pCreateParams (PVOID) - input
Application-defined data area.

This is passed to the dialog procedure in the WM_INITDLG message.

Returns
~ply value.

Value established by the WinDismissDlg call or DID_ERROR if an error occurs.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT_FOUND

PMERR_RESOURCE_NOT _FOUND

An invalid window handle was specified.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

The specified resource identity could not be found.

Chapter 8. Window Functions 8-115

Win Dig Box
Load and Process Modal Dialog

Remarks
The use of parameters to this function are the same as those of the WinloadDlg function.

This function should not be used while pointing device capture is set (see "WinSetCapture - Set
Capture" on page 8-442).

This function does not return until WinDismissDlg is called.

This function is equivalent to:

Wi nloadDl g (., • , • , . , • , . , dl g);
WinProcessDlg (dlg, result);
WinDestroyWindow (dlg, success);
return (result);

and the remarks documented under these calls also apply.

If a dialog template (typically compiled using the resource compiler) references another resource
(for example an icon resource for an icon static control), this function always searches for that
resource in the .EXE file. If an application wishes to keep resources referenced by a dialog template
in a .DLL library, these resources must be loaded by an explicit function call during the processing of
the WM_INITDLG message.

Note: This can be considered to be a customizable "read from screen" call. The caller supplies a
data buffer (the pCreateParams parameter), filled with initial values. It receives a return code
which indicates whether the data in the buffer has been updated and validated, or whether the
end user cancelled the dialog.

The end user interface is encapsulated within the dialog window. The dialog template
provides a view of the current state of the data buffer, the dialog procedure defines how the
user can change the data.

The caller need know nothing about the details of the end user interface. It makes a single
"read from screen" call and continues with its work.

Related Functions
• WinCreateDlg
• WinDefDlgProc
• WinDismissDlg
• WinGetDlgMsg
• WinloadDlg
• WinProcessDlg

Related Messages
• WM_INITDLG

8-116 PM Programming Reference

WinDlgBox -
Load and Process Modal Dialog

Example Code
This example processes an application-defined message (IDM_OPEN) and calls WinDlgBox to load a

dialog box.

#define IDD_OPEN 1
#define INCL_WINDIALOGS
#include <os2.h>

/* Window Dialog Mgr Functions */

HWND hwndFrame;
PFNWP OpenDlg;

/* frame window handle

case IDM OPEN:
if (WinDlgBox(HWND_DESKTOP,

hwndFrame, /* handle of the owner */
OpenDlg, /* dialog procedure address */
NULLHANDLE, /* location of dialog resource */
IDD OPEN, /* resource identifier */
NULL)) { /* application-specific data */

. /* code executed if dialog box returns TRUE */

}

*/

Chapter 8. Window Functions 8-117

WinDrawBitmap
Draw Bit Map

#define INCL_WINWINOOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnDrawBltmap (HPS hps, HBITMAP hbm, PRECTL prclSrc, PPOINTL pptlDest,
LONG IForeColor, LONG IBackColor, ULONG flRgf)

This function draws a bit map using the current image colors and mixes.

Parameters
hps (HPS) - input

Handle of presentation space in which the bit map is drawn.

hbm (HBITMAP) - input
Bit-map handle.

prclSrc (PRECTL) - input
Subrectangle of bit map to be drawn:

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

NULL The whole of the bit map is drawn

Other The whole of the bit map is not drawn.

pptlDest (PPOINTL) - input
Bit-map destination.

The bottom left corner of the bit-map destination is specified in device coordinates.

IForeColor (LONG) - input
Foreground color.

This is used if hbm refers to a monochrome bit map. In this instance, bit-map bits that are set to
1 are drawn using IForeColor. Ignored if DBM_IMAGEATTRS is specified.

IBackColor (LONG) - input
Background color.

This is used if hbm refers to a monochrome bit map. In this instance, bit-map bits that are set to
zero are drawn using /BackColor. Ignored if DBM_IMAGEATTRS is specified.

flRgf (ULONG) - input
Flags that determine how the bit map is drawn:

DBM_NORMAL Draw the bit map normally using ROP _SRCCOPY, as defined in GpiBitBlt.

DBM_INVERT Draw the bit map inverted using ROP _NOTSRCCOPY, as defined in
GpiBitBlt.

DBM_STRETCH pptlDest points to a RECT data structure, representing a rectangle in the
destination presentation space, to which the bit map should be stretched
or compressed. If compression is required, some rows and columns of
the bit map are eliminated.

DBM_HALFTONE Use the OR operator to combine the bit map with an alternating pattern of
ones or zeros before drawing it. It can be used with either DBM_NORMAL
or DBM_INVERT.

DBM_IMAGEATIRS If this is specified, color conversion of monochrome bit maps is done by
using the image attributes.

8-118 PM Programming Reference

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _FLAG

PMERR_HBITMAP _BUSY

Remarks

WinDrawBitmap
Draw Bit Map

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

This function should only be used in draw mode (DM_DRAW) to a screen device context (see
GpiSetDrawingMode). The presentation space handle can be to either a micro-presentation space or
a normal presentation space (see GpiCreatePS).

If hbm refers to a color bit map, no color conversion is performed.

The current position in the presentation space is not changed by this function.

Related Functions
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

Chapter 8. Window Functions 8-119

WinDrawBitmap
Draw Bit Map

Example Code
This example uses WinDrawBitmap to draw the system-defined menu check mark bit map in
response to the user selecting a menu item (WM_MENUSELECT), using the bit-map handle returned
by WinGetSysBitmap.

#define INCL_WINWINOOWMGR
#define INCL_WINPOINTERS
#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Manager Functions
/* Window Pointer Functions
/* Window Message Functions
/* Window Menu Functions

HPS hps;
HBITMAP hbmCheck;
HWNO hwndMenu;
USHORT usltemld;
RECTL rclltem;
MPARAM mpl;
MPARAM mp2;

/* presentation-space handle
/* check mark bit-map handle
/* menu handle

case WM_CREATE:

/* menu item id
/* item border rectangle
/* Parameter 1 (menu item id)
/* Parameter 2 (menu handle)

/* obtain check mark bit-map handle */
hbmCheck = WinGetSysBitmap(HWND_DESKTOP, SBMP_MENUCHECK);

case WM MENUSELECT:
usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNOFROMMP(mp2);

/* get rectangle of selected item */
WinSendMsg(hwndMenu,

MM QUERYITEMRECT,
MPFROM2SHORT(usltemld, TRUE),
MPFROMP(&rclltem));

/* draw the check mark in the lower left corner of item's
rectangle */

if (hbmCheck != NULL)
{
WinDrawBitmap(hps,

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

hbmCheck, /* check mark */
NULL, /* draw whole bit map */
(PPOINTL)&rclltem,/* bit-map destination */
GL, /* ignored since color */
GL, /* bit map */
OBM_NORMAL); /*draw normal size */

}

8-120 PM Programming Reference

WinDrawBorder
Draw Border

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WinDrawBorder (HPS hps, PRECTL prclRectangle, LONG IVertSideWidth,
LONG IHorizSideWidth, LONG IBorderColor, LONG llnterlorColor,
ULONG flCmd)

This function draws the borders and interior of a rectangle.

Parameters
hps (HPS) - input

Presentation-space handle.

prclRectangle (PRECTL) - input
Bounding rectangle for the border.

The rectangle is in device coordinates.

The border is drawn within the rectangle. Along the bottom and left edges of the rectangle, the
edges of the border coincide with the rectangle edges. Along the top and right edges of the
rectangle, the border is drawn one device unit inside the rectangle edges.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

IVertSideWidth (LONG) - input
Width of border rectangle vertical sides.

This is the width of the left and right sides in device coordinates.

IHorizSideWidth (LONG) - input
Width of border rectangle horizontal sides.

This is the width of the top and bottom sides in device coordinates.

IBorderColor (LONG) - input
Color of edge of border.

Not used if DB_AREAATTRS is specified.

llnteriorColor (LONG) - input
Color of interior of border.

Not used if DB_AREAATTRS is specified.

flCmd (ULONG) - input
Flags controlling the way in which the border is drawn.

Some of the DB_ flags are mutually exclusive. Only one of these four can be significant:

• DB_PATCOPY (default)
• DB_PATINVERT
• DB_DESTINVERT
• DB_AREAMIXMODE.

DB_ROP
A group of flags that specify the mix to be used, for both the border and the interior.

DB_PATCOPY
Use the ROP _PATCOPY raster operation (see GpiBitBlt). This is a copy of the pattern to the
destination.

Chapter 8. Window Functions 8-121

WinDrawBorder
Draw Border

DB_PATINVERT
Use the ROP _PATINVERT raster operation (see GpiBitBlt). This is an exclusive-OR of the
pattern with the destination.

DB _DESTINVERT
Use the ROP _DESTINVERT raster operation (see GpiBitBlt). This inverts the destination.

DB_AREAMIXMODE
Map the current area foreground mix attribute into a Bitblt raster operation (see GpiBitBlt).
The area background mix mode is ignored.

DB_INTERIOR
The area contained within the given rectangle, and not included within the borders (as given
by IVertSideWidth and /HorizSideWidth), is drawn.

DB_AREAATIRS

• If this is specified:

For any border, the pattern used is the pattern as currently defined in the area attribute.

For any interior, the pattern used is the same as if a GpiSetAttrs function for the area
attributes is made with the background color of the area attribute being passed for the
foreground color, and the foreground color of the area attribute being passed as the
background color.

• If this is not specified (default):

For any border, the pattern used is the same as if a GpiSetAttrs function for the area
attributes is made with a foreground color of /BorderColor, and a background color of
II nteriorColor.

For any interior, the pattern used is the same as if a GpiSetAttrs function for the area
attributes is made with a foreground color of llnteriorColor, and a background color of
/BorderColor.

DB_STANDARD
IVertSideWidth and /HorizSideWidth are multiplied by the system SV_CXBORDER and
SV_CYBORDER constants to produce the widths of the vertical and horizontal sides of the
border.

DB_DLGBORDER
A standard dialog border is drawn, in the active titlebar color if DB_PATCOPY is specified, or
the inactive titlebar color if DB_PATINVERT is specified. Other DB_ROP options, and
DB_AREAATTRS, are ignored.

DB_ROP and DB_AREAATTRS are also ignored for the interior. The interior is drawn in the
color specified by llnteriorColor.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _FLAG

PMERR_INV_DRAW_BORDER_OPTION

8-122 PM Programming Reference

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

An invalid option parameter was specified with
WinDrawBorder.

Remarks

WinDrawBorder
Draw Border

A border is a rectangular frame, normally used around the edge of a window.

This function should only be used in draw mode (DM_DRAW), to a screen device context; hps can be
either a micro-presentation space or a normal presentation space (see GpiCreatePS).
DB_DESTINVERT inverts the destination.

If DB_AREAMIXMODE is given, the foreground mix mode from the area attribute is mapped into an
equivalent ROP _value (see GpiBitBlt). The area background mix mode is ignored.

Either or both /VertSideWidth or /HorizSideWidth can be zero. If both are zero, the interior is still
drawn. If either the x borders overlap or the y borders overlap, the border is drawn as a single
rectangle with no interior.

Related Functions
• WinDrawBitmap
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

Example Code
This example uses WinDrawBorder to draw the border (width of 5) and interior of a 300x200
rectangle anchored at (0,0), and using the area's current attributes for both the border and interior
colors.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HPS hps; /* presentation-space handle */
BOOL fSuccess; /* success i ndi ca tor * /
RECTL prc1Rectangle={0,0,300,200}; /* border rectangle */
LONG 1VertSideWidth=5; /* Width of border rectangle vertical

sides */
LONG 1HorizSideWidth=5;/* Width of border rectangle horizontal

sides */
ULONG fl Cmd; /* draw flags *I

/* use current area attributes */
flCmd = DB_AREAATTRS;

fSuccess = WinDrawBorder(hps, &prclRectangle, lVertSideWidth,
lHorizSideWidth, 0L, 0L, flCmd);

Chapter 8. Window Functions 8-123

WinDrawPointer
Draw. Pointer

#define INCL_WINPOINTERS /*Or use INCL_WIN or INCL_PM */

BOOL WlnDrawPolnter (HPS hps, LONG Ix, LONG ly, HPOINTER hptrPolnter,
ULONG ulHalflone)

This function draws a pointer in the passed hps at the passed coordinates [Ix, /y].

Parameters
hps (HPS) - input

Presentation-space handle into which the pointer is drawn.

This can be either a micro presentation space or a normal presentation space (see
GpiCreatePS).

Ix (LONG) - input
x coordinate at which to draw the pointer, in device coordinates.

ly (LONG) - input
y coordinate at which to draw the pointer, in device coordinates.

hptrPointer (HPOINTER) - input
Pointer handle.

This is equivalent to a bit-map handle and is returned from calls such as the GpiloadBitmap
function.

ulHalflone (ULONG) - input
Shading control with which to draw the pointer:

DP _NORMAL As it normally appears.

DP _HALFTONED With a halftone pattern where black normally appears.

DP _INVERTED Inverted, black for white and white for black.

Returns
Success indicator:

TRUE Successful completion

FALSE Function failed.

Possible returns from WinGetLastError

PMERR_INVALID _HPTR

PMERR_INVALID _FLAG

Remarks

An invalid pointer handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

This function should only be used in draw mode (DM_DRAW) to a screen device context.

8-124. PM Programming Reference

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Example Code

WinDrawPointer -
Draw Pointer

This example draw a bit map pointer, created by either WinCreatePointer or
WinCreatePointerlndirect, in response to a paint message (WM_PAINT).

#define INCL_WINPOINTERS
#define INCL_GPIBITMAPS
#include <os2.h>

/* Window Pointer Functions */
/* Graphics bit-map functions */

HPS hps; /* presentation-space handle */
HWND hwnd; /* window handle * /
HPOINTER hptr; /* bit-map pointer handle */
HBITMAP hbm; /* bit-map handle *I
BOOL fSuccess; /* success i ndi ca tor *I
ULONG ulHalftone=DP_NORMAL; /* draw with normal shading */

case WM CREATE:
hps = WinBeginPaint(hwnd, NULLHANDLE, NULL);
hbm = GpiLoadBitmap(hps, 0L, IDP_BITMAP, 64L, 64L);
WinEndPaint(hps);

hptr = WinCreatePointer(HWND_DESKTOP, hbm,
TRUE, /* use true (system) pointer */
0, 0); /*hot spot offset (0,0) */

case WM PAINT:
hps = WinBeginPaint(hwnd, NULLHANDLE, NULL);
fSuccess = WinDrawPointer(hps, 50, 50, hptr, ulHalftone);
WinEndPaint(hps);

Chapter 8. Window Functions 8-125

Win Drawl ext
Draw Text

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

LONG WlnDrawText (HPS hps, LONG ICount, PCH pchText, PRECTL prclRectangle,

LONG IForeColor, LONG IBackColor, ULONG flCmd)

This function draws a single line of formatted text into a specified rectangle.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Count of the number of characters in the string:

-1 The string is null-terminated and its length is to be calculated by this function.

Other Count of the number of characters in the string.

pchText (PCH) - input
Character string to be drawn.

A carriage-return or line-feed character terminates the line, even if the line is less than /Count.

prclRectangle (PRECTL) - input/output
Text rectangle.

Rectangle within which the text is to be formatted, in world coordinates. Points on the boundary

of this rectangle are deemed to be inside the rectangle.

The return value is only of interest in the instance where DT_QUERYEXTENT is set in flCmd.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The

data type WRECT can also be used, if supported by the language.

IForeColor (LONG) - input
Foreground color.

Ignored if DT_TEXTATTRS is specified.

IBackColor (LONG) - input
Background color.

The background is drawn with the current background mix. The default is BM_LEAVEALONE,

that is, IBackColor is ignored unless GpiSetBackMix is called.

The background rectangle is the rectangle that bounds the text; it is not the input parameter

rectangle.

This parameter is ignored if OT_ TEXT A TTRS is specified.

8-126 PM Programming Reference

flCmd (ULONG) - input

WinDrawText -
Draw Text

An array of flags that determines how the text is drawn.

Some of the OT_ flags are mutually exclusive. Only one from each of these groups is significant:

• DT_LEFT (default), DT_CENTER, DT_RIGHT
• DT_TOP (default), DT_VCENTER, DT_BOTTOM.

When mutually-exclusive flags are used together, the function gives indeterminate results.

If OT _HALFTONE, DT _ERASERECT, or OT _MNEMONIC is used, the presentation space must be in
PU_PELS units.

DT_LEFT

DT_CENTER

DT_RIGHT

DT_VCENTER

DT_TOP

DT_BOTTOM

OT _HALFTONE

DT_MNEMONIC

DT _ QUERYEXTENT

DT_WORDBREAK

Left-justify the text.

Center the text.

Right-justify the text.

Vertically center the text.

Top-justify the text.

Bottom-justify the text.

Halftone the text display.

If a mnemonic prefix character is encountered, the next character is
drawn with mnemonic emphasis.

No drawing is performed. pre/Rectangle is changed to a rectangle
that bounds the string if it were drawn with WinDrawText.

Only words that fit completely within the supplied rectangle are
drawn. A word is defined as:

Any number of leading spaces followed by one or more visible
characters and terminated by a space, carriage return, or line-feed
character.

When calculating whether a particular word fits within the given
rectangle, this function does not consider the trailing blanks. Only
the length of the visible part of the word is tested against the right
edge of the rectangle.

Also, note that this function always tries to draw at least one word,
even if that word does not fit in the passed rectangle. This is so that
progress is always made when drawing multiline text.

DT_EXTERNALLEADING This flag causes the "external leading" value for the current font to
be added to the bottom of the bounding rectangle before returning. It
has an effect only when both DT_TOP and DT_QUERYEXTENT are
also specified.

DT_TEXTATTRS If this is specified, text is drawn using the character foreground and
background colors of the presentation space, and IForeColor and
IBackColor are ignored.

DT _ERASERECT If this is specified, the rectangle defined by pre/Rectangle is erased
before drawing the text. Otherwise, the background of the characters
themselves can be erased if the character background mix (see
GpiSetAttrs and GpiSetBackMix) is set to BM_OVERPAINT.

DT_UNDERSCORE Underscore the characters. See FATTR_SEL_UNDERSCORE in the
FATTRS datatype.

DT_STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT in the
FA TTRS datatype.

Chapter 8. Window Functions 8-127

Win Drawl ext
Draw Text

Returns
Count of characters drawn within the rectangle.

If DT_WORDBREAK is specified, this parameter returns the number of characters displayed.
However, if the first word of the string does not fit in the rectangle, this parameter reflects the
fact that the entire word is drawn.

If DT_WORDBREAK is not specified, the count returned is the full length of the string regardless
of how much fits into the bounding rectangle.

0 Error occurred

Other Count of characters drawn within the rectangle.

Possible returns from WinGetlastError

PMERR_INVALID _FLAG

Remarks

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

Text is always drawn in the current font with the current foreground and background mix modes.

This function must only be used in draw mode (DM_DRAW), to a screen device context; hps can be
either a micro presentation space or a normal presentation space (see GpiCreatePS).

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

8-128 PM Programming Reference

Example Code

WinDrawText -
Draw Text

This example shows how the WinDrawText function can be used to wrap text within a window by
using the DT_WORDBREAK flag. The cchDrawn variable receives the number of characters actually
drawn by the WinDrawText function. If this value is zero, no text is drawn and the for loop is exited.
This can occur if the vertical height of the window is too short for the entire text. Otherwise,
cchDrawn is added to the hTotalDrawn variable to provide an offset into the string for the next call to
WinDrawText.

#define INCL_WINWINOOWMGR
#include <os2.h>

/* Window Manager Functions */

HWNO
RECTL
HPS
char
LONG
LONG
LONG
LONG
LONG
LONG
LONG

hwnd;
rel;
hps;
*pszText;
hText;

cyCharHeight;
hTotalOrawn;
hOrawn;
cchText;
cchTotalOrawn;
cchDrawn;

/* parent window
/* update region
/* presentation-space handle
/* string

/* length of string
/* set character height

/* total characters drawn
/* characters drawn by WinDrawText

*/
*/
*/
*/

*/
*/

*/
*/

hps = WinGetPS(hwnd); /*get a ps for the entire window*/

WinQueryWindowRect(hwnd, &rel); /*get window dimensions*/

Wi nFi ll Rect (hps, &rel, CLR_WHITE);

cchText = (LONG)strlen(pszText);
cyCharHeight = 15L;

/* clear entire window */

/* get length of string */
/* set character height */

/* until all chars drawn */
for (cchTotalDrawn = 0; hTotalOrawn != hText;

rcl.yTop -= cyCharHeight)
{
/* draw the text */

hOrawn = WinOrawText(hps,
hText - hTotalDrawn,

pszText + hTotalOrawn,
&rel,
eL,
eL,
OT WORDBREAK I OT TOP I

if (cchOrawn) -
hTotalOrawn += hOrawn;

else
break;

}

WinReleasePS(hps);

/* presentation-space handle */
/* length of text to draw */
/* address of the text */
/* rectangle to draw in * /
/* foreground col or *I
/* background color */

OT_LEFT I OT_TEXTATTRS);

/* text could not be drawn */

/* release the ps */

Chapter 8. Window Functions 8-129

WinEmptyClipbrd
Empty Clipboard

#define INCL_WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

I BOOL WlnEmptyCllpbrcl (HAB hab)

This function empties the clipboard, removing and freeing all handles to data that is in the clipboard.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The clipboard must be opened using WinOpenClipbrd before using this function.

This function will send a WM_DESTROYCLIPBOARD message to the clipboard owner.

Related Functions
• WinCloseClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Example Code
This example empties the clipboard (opened by WinOpenClipbrd), removing and freeing all handles

to data in the clipboard.

#define INCL_WINCLIPBOARD
#include <os2.h>

/* Window Clipboard Functions */

BOOL fSuccess;
HAB hab;

/* success indicator
/* anchor-block handle

fSuccess = WinOpenClipbrd(hab);

if (fSuccess)
fSuccess = WinEmptyClipbrd(hab);

8-130 PM Programming Reference

*/
*/

WinEnableControl -
Enable Control of Button Id,

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnEnableControl (HWND hwndDlg, USHORT usld, BOOL tEnable)

This macro sets the enable state of the item in the dialog template to the enable flag.

Parameters
hwndDlg (HWND) - input

Dialog window handle.

usld (USHORT) - input
Identity of the item in the dialog template (button id).

tenable (BOOL) - input
Enable flag.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinEnableControl(hwndDlg, usld, fEnable)
WinEnableWindow(WinWindowfromld(hwndDlg, usld), fEnable)

This function requires the existence of a message queue.

Related Functions
• WinEnableWindow
• WinWindowFromlD

Example Code
This example uses WinEnableControl to enable a dialog control if it is currently disabled.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND hwndDlg;
MPARAM mpl;
USHORT usld;

/* dialog window
/* Parameter 1
/* dialog control id

if (!WinlsControlEnabled(hwndDlg, usld))
WinEnableControl(hwndDlg, usld, TRUE);

*/
*/
*/

Chapter 8. Window Functions 8-131

WinEnableMenultem
Enable Menu Item

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnEnableMenullem (HWND hwndMenu, USHORT usld, BOOL fEnable)

This macro sets the state of the specified menu item to the enable flag.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Item identifier.

fEnable (BOOL) - input
Enable flag.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinEnableMenultem(hwndMenu, usld, fEnable)
((BOOL)WinSendMsg(hwndMenu,

MM SETITEMATTR,
MPFROM2SHORT(usld, TRUE),
MPFROM2SHORT(MIA_DISABLED, (BOOL)(fEnable) ? 0 MIA_DISABLED)))

This function requires the existence of a messhge queue.

Related Functions
• WinSendMsg

Related Messages
• MM_SETITEMATTR

8-132 PM Programming Reference

WinEnableMenultem -
Enable Menu Item

Example Code
This example uses WinEnableMenultem to make a menu item selection available when the menu is
initialized (WM_INITMENU).

#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Message Functions
/* Window Menu Functions

BOOL
MPARAM
MPARAM
US HORT
HWND

fResult;
mpl;
mp2;
usltemld;
hwndMenu;

case WM INITMENU:

/* message-posted indicator
/* Parameter 1 (rectl strucfure)
/* Parameter 2 (frame boolean)
/* menu item id
/* menu handle

usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* enable menu item */
fResult = WinEnableMenultem(hwndMenu, usltemld, TRUE);

*/
*/

*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-133

WinEnablePhyslnput -
Enable Physical Input

#define INCL WININPUT I* Or use INCL_WIN or INCL_PM */

BOOL WlnEnablePhyslnput (HWND hwndDeskTop, BOOL INewlnputState)

This function enables or disables queuing of physical input (keyboard or mouse).

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

INewlnputState (BOOL) - input
New state for the queuing of physical input:

TRUE Pointing device and keyboard input are queued

FALSE Pointing device and keyboard input are disabled.

Returns
Previous state for the queuing of physical input:

TRUE Pointing device and keyboard input were queued

FALSE Pointing device and keyboard input were disabled.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinFocusChange
• WinGetKeyState
• WinGetPhysKeyState
• WinQueryFocus
• WinSetFocus
• WinSetKeyboardStateTable

Example Code
This example uses WinEnablePhyslnput to enable queuing of physical input (pointing device and
keyboard).

#define INCL_WININPUT
#include <os2.h>

/* Window Input Functions

BOOL fOldlnputState; /* previous queuing state
BOOL fNewlnputState=TRUE;/* new queuing state

/* enable queuing of physical input */

*/

*/
*/

fOldlnputState = WinEnablePhyslnput(HWND_DESKTOP, fNewinputState);

8-134 PM Programming Reference

WinEnableWindow -
Set Window Enabled State

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnEnableWindow (HWND hwnd, BOOL fNewEnabled)

This function sets the window enabled state.

Parameters
hwnd (HWND) - input

Window handle.

fNewEnabled (BOOL) - input
New enabled state:

TRUE Set window state to enabled

FALSE Set window state to disabled.

Returns
Window enabled indicator:

TRUE Window enabled state successfully updated

FALSE Window enabled state not successfully updated.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
If the enable state of hwnd is changing, a WM_ENABLE message is sent before this function returns.

If a window is disabled, its child windows are also disabled, although they are not sent the
WM_ENABLE message. Typically, a window changes appearance when disabled. For example, a

disabled pushbutton is displayed with half-tone text.

If hwnd is disabled, and it, or one of its descendants, is the focus window, that window loses the

focus, so that no window has the focus. However, a disabled window may subsequently be assigned

the focus, in which case it should respond to keyboard input.

Related Functions
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

Chapter 8. Window Functions 8-135

WinEnableWindow -
Set Window Enabled State

Related Messages
• WM_ENABLE

Example Code
This example uses WinEnableWindow to enable the system menu window for the given parent

window, after verifying that the parent window handle is valid (WinlsWindow), belongs to the calling
thread (WinlsThreadActive), and is not presently enabled (WinlsWindowEnabled).

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

HAB hab;
HWND hwndSysmenu;
HWND hwnd;
BOOL fSuccess;

/* anchor-block handle
/* system menu window
/* parent window
/* success indicator

*/
*/

*/
*/
*/
*/

/* if handle specifies a valid window and the window belongs to the
current thread, query the enabled status of the system menu */

if (WinlsWindow(hab, hwnd) && WinlsThreadActive(hab))
{
/* obtain handle for system menu */
hwndSysmenu = WinWindowFromID(hwnd,FID_SYSMENU);

/* if system menu is not enabled, enable it */
if (IWinisWindowEnabled(hwndSysmenu))

fSuccess = WinEnableWindow(hwndSysmenu, TRUE);
}

8-136 PM Programming Reference

WinEnableWindowUpdate
Enable Window Update

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinEnableWlndowUpdate (HWND hwnd, BOOL fNewVisibility)

This function sets the window visibility state for subsequent drawing.

Parameters
hwnd (HWND) - input

Window handle.

fNewVisibllity (BOOL) - input
New visibility state:

TRUE Set window state visible

FALSE Set window state invisible.

Returns
Visibility-changed indicator:

TRUE Window visibility successfully changed

FALSE Window visibility not successfully changed.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

This function can be used to defer drawing when making a series of changes to the window. The
window can be redrawn by use of the WinShowWindow function.

WS_ VISIBLE is set to fNewVisibility without causing redrawing. This implies that if the window was
previously visible, it remains visible on the device when WS_ VISIBLE is reset, and conversely, if the
window was previously invisible, it is not shown when WS_ VISIBLE is set. If fNewVisibility is set to
TRUE, any subsequent drawing into the window is visible. If fNewVisibility is set to FALSE, any
subsequent drawing into the window is not visible.

If the value of the WS_ VISIBLE style bit has been changed, the WM_ SHOW message is sent to the
window of hwnd before the call returns. This function is usually used to disable drawing before
making a serjes of changes to a window to prevent unnecessary drawing. To show a window and
ensure that it is redrawn after calling the WinEnableWindowUpdate function with fNewVisibility set to
FALSE, use the WinShowWindow function with fNewVisibility set to TRUE.

Any alteration to the appearance of a window disabled for window update is not presented.
Therefore, the application must ensure that the window is redrawn. In particular, if a window is
destroyed while in this state its image is not removed from the display. After window updating is
reenabled, the application should ensure that the window gets totally invalidated so that it repaints.

Chapter 8. Window Functions 8-137

WinEnableWindowUpdate
Enable Window Update

Related Functions
• WinBeginPaint
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_ERASEWINDOW
• WM_PAINT

Example Code
This example uses WinEnableWindowUpdate to set a window's WS_VISIBLE style to visible and

cause the window to be updated by a WM_PAINT message.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwnd; /* parent window
BOOL fSuccess; /* success indicator

case WM_CREATE:
/* if window has WS VISIBLE off, set state to visible */
if (!WinisWindowVisible(hwnd))

{
/* set state to visible and cause WM_PAINT message */
fSuccess = WinEnableWindowUpdate(hwnd, EWUF_ENABLE);
}

8-138 PM Programming Reference

*/

*/
*/

WinEndEnumWindows -
End Window Enumeration

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnEndEnumWlndows (HENUM henum)

This function ends the enumeration process for a specified enumeration.

Parameters
henum (HENUM) - input

Enumeration handle.

Returned by previous call to the WinBeginEnumWindows call.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HENUM An invalid enumeration handle was specified.

Remarks
This function destroys the window hierarchy remembered by the WinBeginEnumWindows function.
After this function, the henum parameter is no longer valid.

Related Functions
• WinBeginEnumWindows
• WinEnumDlgltem -
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetOwner
• WinSetParent

Chapter 8. Window Functions 8-139

WinEndEnumWindows -
End Window Enumeration

Example Code
This example ends the child window enumeration and releases the enumeration handle supplied by

WinBeginEnumWindows after WinGetNextWindow has enumerated all immediate children of the
Desktop.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND hwndParent;

HWND hwndNext;
HENUM henum;
BOOL fSuccess;
SHORT sRetlen;
SHORT slength = 10;
char pchBuffer[10];

/* Handle of the window whose child windows
are to be enumerated */

/* current enumeration handle */
/* enumeration handle */
/* success indicator */
/* returned string length */
/* string buffer length */
/* string buffer *I

hwndParent = HWND_DESKTOP;

henum = WinBeginEnumWindows(hwndParent);

while ((hwndNext = WinGetNextWindow(henum)) != NULLHANDLE) {

}
fSuccess = WinEndEnumWindows (henum);

8-140 PM Programming Reference

WinEndPaint -
End Paint

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnEndPalnt (HPS hps)

This function indicates that the redrawing of a window is complete, generally as part of the
processing of a WM_PAINT message.

Parameters
hps (HPS) - input

Presentation-space handle.

Handle of the presentation space that is used for drawing and that is returned by a previous call
to the WinBeginPaint function.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The presentation space is restored to its state before the WinBeginPaint function:

• Cache presentation space is returned to the cache.

• Other presentation spaces have their original drawing state restored, including reassociating the
original device context (if there was one).

If the pointer is hidden by the WinBeginPaint function, it is reshown by this function.

Any child windows having a synchronous painting style of the window associated with the
presentation space are updated during the processing of this function, if they have non-NULL update
regions.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect

Chapter 8. Window Functions 8-141

WinEndPaint
End Paint

• WinValidateRegion

Related Messages
• WM_PAINT

Example Code
This example uses WinEndPaint to end the update of a region and release the presentation space
obtained by WinBeginPaint.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwnd;
RECTL rel;
HPS hps;

case WM PAINT:

/* parent window
/* update region
/* presentation-space handle

/* handle of the window */

*/

*/
*/
*/

hps-= WinBeginPaint(hwnd,
NULLHANDLE,
&rel);

WinFillRect(hps, &rel,
WinEndPaint(hps);

/* get a cache presentation space */
/* receives update rectangle */

CLR_WHITE);

8-142 PM Programming Reference

WinEnumClipbrdFmts -
Enumerate Clipboard Formats

#define INCL_WINCLIPBOARD /*Or use INCL_WIN or INCL_PM */

ULONG WlnEnumCllpbrdFmts (HAB hab, ULONG ulPrev)

This function enumerates the list of clipboard data formats available in the clipboard.

Parameters
hab (HAB) - input

Anchor-block handle.

ulPrev (ULONG) - input
Previous clipboard-data format index.

Specifies the index of the last clipboard data format enumerated using this function.

This should start at zero, in which instance the first available format is obtained. Subsequently,
it should be set to the last format index value returned by this function.

Returns
Next clipboard-data format index:

O Enumeration is complete; that is, there are no more clipboard formats available.

Other Index of the next available clipboard-data format in the clipboard.

Remarks
The clipboard should be open before this function is used.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Chapter 8. Window Functions 8-143

WinEnumClipbrdFmts -
Enumerate Clipboard Formats

Example Code
This example enumerates and counts the available clipboard data formats for the clipboard opened
by WinOpenClipbrd.

#define INCL_WINCLIPBOARD
#include <os2.h>

/*Window Clipboard Functions */

BOOL fSuccess; /* success i ndi ca tor *I
HAB hab; /* anchor-block handle */
ULONG ulNext; /* next fonnat index */
ULONG ulPrev; /* previous fonnat index */
ULONG ulNumFonnats=0; /* number of available fonnats */

fSuccess = WinOpenClipbrd(hab);

if (fSuccess)
{
ulPrev = 0;
/* enumerate fonnats and maintain count */
while ((ulNext = WinEnumClipbrdFmts(hab, ulPrev)) != 0)

{

}

ulNumFonnats++;
ulPrev = ulNext;
}

8-144 PM Programming Reference

WinEnumDlgltem
Enumerate Dialog Item

#define INCL WINDIALOGS I* Or use INCL_WIN or INCL_PM */

HWND WlnEnumDlgltem (HWND hwndDlg, HWND hwnd, ULONG ulCode)

This function returns the window handle of a dialog item within a dialog window.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

hwnd (HWND) - input
Child-window handle.

This may be an immediate child of the dialog window or a window lower in the window
hierarchy, such as a child of a child window.

NULLHANDLE can be specified if u/Code is EDl_FIRSTTABITEM or EDl_LASTTABITEM.

ulCode (ULONG) - input
Item-type code.

Determines the type of dialog item to return.

EDl_PREVTABITEM Previous item with style WS_TABSTOP. Wraps around to end of dialog
item list when beginning is reached.

EDl_NEXTTABITEM Next item with style WS_TABSTOP. Wraps around to beginning of
dialog item list when end is reached.

EDl_FIRSTTABITEM First item in dialog with style WS_TABSTOP. hwnd is ignored.

EDl_LASTTABITEM Last item in dialog with style WS_TABSTOP. hwnd is ignored.

EDl_PREVGROUPITEM Previous item in the same group. Wraps around to end of group when
the start of the group is reached. For information on the WS_GROUP
style, see "Window Styles" on page 12-2.

EDl_NEXTGROUPITEM Next item in the same group. Wraps around to beginning of group
when the end of the group is reached.

EDl_FIRSTGROUPITEM First item in the same group.

EDl_LASTGROUPITEM Last item in the same group.

Returns
Item-window handle.

As dictated by u/Code.

The window is always an immediate child of hwndD/g, even if hwnd is not an immediate child
window.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was. specified.

Chapter 8. Window Functions 8-145

WinEnumDlgltem -
Enumerate Dialog Item

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetOwner
• WinSetParent

Example Code
This example uses WinEnumDlgltem to query the first dialog item for each immediate child of the
specified dialog window. The immediate children are enumerated using a WinBeginEnumWindows -
WinGetNextWindow - WinEndEnumWindows loop.

#define INCL_WINDIALOGS
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Dialog Mgr Functions */
/* Window Manager Functions */

HWND hwndDlg;
HWND hwndChild;
HWND hwndltem;
HENUM henum;
BOOL fSuccess;

/* Handle of the parent dialog window */
/* current dialog child */
/* first dialog item */
/* enumeration handle */
/* success indicator */

henum = WinBeginEnumWindows(hwndDlg);

while ((hwndChild = WinGetNextWindow(henum)) != NULL)
hwndltem = WinEnumDlgltem(hwndDlg, hwndChild, EDI_FIRSTTABITEM);

fSuccess = WinEndEnumWindows (henum);

8-146 PM Programming Reference

#define INCL_WINWORKPLACE

WinEnumObjectClasses -
Enumerate Object Classes

BOOL WlnEnumObjectClasses (POBJCLASS pObJClass, PULONG pSlze)

The WinEnumObjectClasses function will return a list of all workplace object classes that have been
registered.

Parameters
pOb)Class (POBJCLASS) - input

A pointer to a buffer to be filled with information about the registered workplace object classes.

pSlze (PULONG) - input/output

Length of the pObjClass buffer in bytes. If pObjC/ass is NULL, the actual size of pObjC/ass is
returned in pSize

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
WinEnumObjectClasses will return a buffer containing all workplace object classes that are currently
registered with the system. Workplace object classes are registered with the system through the
function call WinRegisterObjectClass.

Related Functions
• WinRegisterObjectClass
• WinReplaceObjectClass

Chapter 8. Window Functions 8-147

WinEqualRect -
Equal Rectangle

#define INCL WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WinEqualRect (HAB hab, PRECTL prc1Rect1, PRECTL prc1Rect2)

This function compares two rectangles for equality.

Parameters
hab (HAB) - input

Anchor-block handle.

prc1Rect1 (PRECTL) - input
First rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

prc1Rect2 (PRECTL) - input
Second rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

Returns
Equality indicator:

TRUE Rectangles are identical

FALSE Rectangles are not identical, or an error occurred.

Remarks
If both rectangles are empty (for example, yTop is equa1 to yBottom or xRight is equal to xleft), they
are considered equal even if the actual coordinate values are different.

Related Functions
• WinCopyRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

8-148 PM Programming Reference

Example Code
This example compares two rectangles for equality.

WinEqualRect -
Equal Rectangle

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

BOOL fEqual; /*equal indicator
HAB hab; /* anchor-block handle
RECTL prclRectl = {e,e,1ee,1ee}; /* first rectangle
RECTL prc1Rect2 = {e,e,2ee,2ee}; /* second rectangle

fEqual = WinEqualRect(hab, &prclRectl, &prc1Rect2);

*/
*/
*/
*/

Chapter 8. Window Functions 8-149

WinExcludeUpdateRegion
Exclude Update Region

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

LONG WlnExcludeUpdateReglon (HPS hps, HWND hwnd)

This function subtracts the update region (invalid region) of a window from the clipping region of a

presentation space.

Parameters
hps (HPS) - input

Presentation-space handle whose clipping region is to be updated.

hwnd (HWND) - input
Window handle.

Handle of window whose update region is subtracted from the clipping region of the presentation
space.

Returns
Complexity value.

This indicates the resulting form of the clipping area. The values and meanings of this
parameter are defined in the GpiCombineRegion function.

Complexity of resulting region/error indicator:

EXRGN_NULL Null Region

EXRGN_RECT Rectangle region

EXRGN_COMPLEX Complex region

EXRGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function is typically used to prevent drawing into parts of a window that are known to be invalid,
as during an incremental update optimization process.

It is the application's responsibility to reset the clipping region when necessary.

8-150 PM Programming Reference

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code

WinExcludeUpdateRegion
Exclude Update Region

This example uses WinExcludeUpdateRegion to prevent drawing into the window's known invalid

regions (to optimize updates) by excluding the window's update region from the clipping region of

the presentation space. The clipping region will need to be reset later by the application, which can

accomplished using GpilntersectClipRectangle with the rectangle comprising the window as input.

#define INCL_WINWINDOWMGR
#define INCL_GPIREGIONS
#include <os2.h>

/* Window Manager Functions
/* Region functions

LONG lComplexity;
HWND hwnd;
RECTL rel;
HPS hps;

case WM PAINT:

/* clipping complexity/error return
/* parent window
/* update region
/* presentation-space handle

lComplexity = WinExcludeUpdateRegion(hps. hwnd);

*/
*/

*/
*/
*/
*/

hps = WinBeginPaint(hwnd,
NULLHANDLE,
&rel);

WinFillRect(hps. &rel.
WinEndPaint(hps);

/* handle of the window */
/* get a cache presentation space */
/* receives update rectangle */

CLR_WHITE);

Chapter 8. Window Functions 8-151

WinFileDlg
Standard File Dialog

#define INCL_WINSTDFILE

HWND WlnFlleDlg (HWND hwndParent, HWND hwndOwner, PFILEDLG pfdFlledlg)

This function creates and displays the file dialog and returns the user's selection or selections.

Parameters
hwndParent (HWND) - input

Parent-window handle.

Parent-window handle of the created dialog window.

HWND_DESKTOP The desktop window.

Other Specified window.

hwndOwner (HWND) - input
Requested owner-window handle.

Requested owner-window handle of the created dialog window.

The actual owner window is calculated using the algorithm specified i the description of the
WinloadDlg function.

pfdFlledlg (PFILEDLG) - input
Pointer.

Pointer to a FILEDLG structure.

Returns
File dialog window handle.

If the FDS_MODELESS flag is set by the application, the return value is the window handle of the
file dialog, or NULLHANDLE if the dialog cannot be created. If the FDS_MODELESS flag is not
set, the return value is TRUE if dialog creation is successful, or NULLHANDLE if it is
unsuccessful.

Remarks
The pfdFiled/g parameter is required and the FILEDLG structure must be properly initialized.

On return, the FILEDLG structure is updated with any user alterations, and the /Return field is set to
-the value returned by the file dialog's WinDismissDlg function. By default, this is the ID of the
pushbutton pressed to dismiss the dialog, DID_OK or DID_CANCEL, unless the application supplied
additional pushbuttons in its template.

For convenience, the pointer to the FILEDLG structure is placed in the QWL_USER field of the
dialog's frame window. If in a custom file dialog procedure the pointer to the FILEDLG structure is
desired, it should be queried from the frame window with the WinQueryWindowULong function.

To subclass the default file dialog with a new template, the application must give the module and ID
of the new file dialog template and the address of a dialog procedure for message handling. Window
IDs in the range X'OOOO' through X'OFFF' are reserved for the standard file dialog controls. IDs from
outside this range must be chosen for any controls or windows added to a custom file dialog.

When a modeless dialog is dismissed, the owner of the file dialog will receive a WM_COMMAND
message with the ussource parameter equal to CMDSRC_FILEDLG and the uscmd parameter equal
to the ID of the file dialog.

8-152 PM Programming Reference

WinFileDlg
Standard File Dialog

Example Code
This example uses WinFileDlg to create and display a single file selection dialog using the system
default open file dialog template and procedure.

#define INCL_WINSTDFILE /* Window Standard File Functions */
#include <os2.h>

FILEDLG pfdFiledlg; /* File dialog info structure */
char pszTitle[10] = "Open File"; /* Title of dialog */
char pszFullFile[CCHMAXPATH] = "*.C";/* File filter string */
HWND hwndMain; /* Window that owns the file dialog */
HWND hwndDlg; /* File dialog window */

/***/
/* Initially set all fields toe */
/***/

memset(&pfdFiledlg, e, sizeof(FILEDLG));

/***/
/* Initialize those fields in the FILEDLG structure that are */
/* used by the application */
/***/
pfdFiledlg.cbSize = sizeof(FILEDLG); /*Size of structure */
pfdFiledlg.fl = FDS_HELPBUTTON I FDS_CENTER I FDS_OPEN_DIALOG;

/* FDS_* flags */
pfdFiledlg.pszTitle = pszTitle; /* Dialog title string */
strcpy(pfdFiledlg.szFullFile, pszFullFile); /* Initial path, */

/* file name, or */
/* file filter */

/***/
/* Display the dialog and get the file */
/***/

hwndDlg = WinFileDlg(HWND_DESKTOP, hwndMain, &pfdFiledlg);

if (hwndDlg && (pfdFiledlg.lReturn == DID_OK))
{

}

/**/
/* Upon successful return of a file, open it for reading and */
/* further processing */
/**-****I

Chapter 8. Window Functions 8-153

WinFillRect -
Fill Rectangle

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnFlllRect (HPS hps, PRECTL prclRect, LONG IColor)

This function draws a filled rectangular area.

Parameters
hps (HPS) - input

Presentation-space handle.

This can be either a micro-presentation space or a normal presentation space.

prclRect (PRECTL} - input
Rectangle to be filled, in window coordinates.

Points on the left and bottom boundaries of the rectangle are included in the fill, but points on the
right and top boundaries are not, except where they are also on the left and bottom boundaries;
that is, the top-left and bottom-right corners.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

IColor (LONG) - input
Color with which to fill the rectangle.

This is either a color index, or an RGB color value, depending upon whether and how a logical
color table has been loaded. (See the GpiCreatelogColorTable and GpiSetColor functions.)

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function does not change any presentation space state.

This function must only be used in draw mode (DM_DRAW) to a screen device context.

If an empty rectangle is specified, this function draws nothing and completes successfully (that is,
TRUE is returned).

8-154 PM Programming Reference

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam
• Wi nCopyRect
• WinEqualRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Example Code

WinFillRect -
Fill Rectangle

This example fills an update rectangle with a white background in response to the WM_PAINT
message, after obtaining a presentation space handle via WinBeginPaint.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

BOOL fSuccess; /* success indicator
HAB hab; /* anchor-block handle
RECTL prclRectl = {e,e,1ee,1ee}; /* fill rectangle
LONG lColor=CLR_WHITE; /* fill color
HWND hwnd; /* client window handle
HPS hps; /* presentation-space handle

case WM PAINT:
hps = WinBeginPaint(hwnd, NULLHANDLE, &prclRectl);
fSuccess = WinFillRect(hps, &prclRectl, lColor);
WinEndPaint(hps);

*/
*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-155

WinFindAtom
Find Atom

#define INCL_WINATOM I* Or use INCL_WIN or INCL_PM */

ATOM WlnFlndAtom (HATOMTBL hatomtblAtomTbl, PSZ pszAtomName)

This function finds an atom in the atom table.

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

This is the handle returned from a previous WinCreateAtomTable or WinQuerySystemAtomTable
function.

pszAtomName (PSZ) - input
Atom name.

This is a null terminated character string to be found in the table.

If the string begins with a"#" character, the five ASCII digits that follow are converted into an
integer atom.

If the string begins with a"!" character, the next two bytes are interpreted as an atom.

If the high order word of the string is -1, the low order word is an atom.

Returns
Atom value:

Atom The atom associated with the passed string

0 Invalid atom table handle or invalid atom name specified.

Possible returns from WinGetlastError

PMERR_INVALID _HATOMTBL

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT _FOUND

Remarks

An invalid atom-table handle was specified.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

This function is identical to the WinAddAtom function, except that:

• If the atom name is not found in the table, it is not added to the table and 0 is returned.

• If the atom name is found in the table, the use count is not incremented.

Because integer atoms do not have a use count and do not actually occupy memory in the atom
table, this function is identical to WinAddAtom with respect to integer atoms.

8-156 PM Programming Reference

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDeleteAtom
• WinDestroyAtomTable
• WinQueryAtomlength
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Example Code

WinFindAtom
Find Atom

This example queries an Atom Table for the atom name of a newly created atom 'newatom' and then
verifies that the atom value returned by the query matches the atom value returned by WinAddAtom.

#define INCL_WINATOM
#include <os2.h>

/* Window Atom Functions */

ATOM atom; /* new atom value */
ATOM atomFound; /* atom value from WinFindAtom */
HATOMTBL hatomtblAtomTbl; /*atom-table handle */
char pszAtomName[10]; /*atom name */
ULONG ullnitial = 0; /* initial atom table size (use default)*/
ULONG ulBuckets = 0; /* size of hash table (use default) */
BOOL atomMatch = FALSE; /* indicates atom values match */

/* create atom table of default size */
hatomtblAtomTbl = WinCreateAtomTable(ullnitial. ulBuckets);

/* define name for new atom and add to table */
strcpy(pszAtomName."newatom11

);

atom= WinAddAtom(hatomtblAtomTbl. pszAtomName);

atomFound = WinFindAtom(hatomtblAtomTbl. pszAtomName);

/* verify that the atom values match */
if (atom == atomFound)

atomMatch = TRUE;

Chapter 8. Window Functions 8-157

WinFlashWindow
Flash Window

#define INCL_WINFRAMEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnFlashWlndow (HWND hwnd, BOOL IFlash)

This function starts or stops a window flashing.

Parameters
hwnd (HWND) - input

Handle of window to be flashed.

IFlash (BOOL) - input
Start-flashing indicator:

TRUE Start window flashing

FALSE Stop window flashing.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

Remarks

An invalid window handle was specified.

Flashing a window brings the user's attention to a window that is not the active window, where some
important message or dialog must be seen by the user.

Flashing is typically done by inverting the title bar continuously. The alarm is sounded for the first
five flashes.

Note: It should be used only for important messages, for example, where some component of the
system is failing and requires immediate attention to avoid damage.

Related Functions
• WinAlarm
• WinMessageBox

8-158 PM Programming Reference

Example Code

WinFlashWindow -
Flash Window

This example uses WinFlashWindow to flash an inactive window to draw the user's attention to an
important message in the window.

#define INCL_WINFRAMEMGR
#define INCL_WINDIALOGS
#include <os2.h>

/* Window Frame Functions */
/* Window Dialog Mgr Functions */

BOOL fSuccess;
HWND hwnd;

/* Success indicator
/* window handle

/* flash window to get user's attention */
fSuccess = WinFlashWindow(hwnd, TRUE);

/* vital message is displayed */
WinMessageBox(HWND_DESKTOP,

hwnd, /*client-window handle */
"Important message: must be seen by user",/* message*/
"Vital message", /*title of the message */
e, /* message box id */
MB_NOICON I MB_OK); /* icon and button flags */

*/
*/

Chapter 8. Window Functions 8-159

WinFocusChange
Change Focus Window

#define INCL WININPUT /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnFocusChange (HWND hwndDeskTop, HWND hwndNewFocus,
ULONG flFocusChange)

This function changes the focus window.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

hwndNewFocus (HWND) - input
Window handle to receive the focus.

flFocusChange (ULONG) - input
Focus changing indicators.

These indicators are passed on in the WM_FOCUSCHANGE message:

FC _NOSETFOCUS
Do not send the WM_SETFOCUS message to the window receiving the focus.

FC_NOLOSEFOCUS
Do not send the WM_SETFOCUS message to the window losing the focus.

FC_NOSETACTIVE
Do not send the WM_ACTIVATE message to the window being activated.

FC _NOLOSEACTIVE
Do not send the WM_ACTIVATE message to the window being deactivated.

FC_NOSETSELECTION
Do not send the WM_SETSELECTION message to the window being selected.

FC _NOLOSESELECTION
Do not send the WM_SETSELECTION message to the window being deselected.

FC_NOBRINGTOTOP
Do not bring any window to the top.

FC_NOBRINGTOTOPFIRSTWINDOW
Do not bring the first frame window to the top.

FC_SETACTIVEFOCUS
Set the focus to the child window that previously had the focus of the first window in the
parentage of hwndNewFocus, which has the CS_FRAME style.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

8-160 PM Programming Reference

Remarks

WinFocusChange
Change Focus Window

This function sends a WM_FOCUSCHANGE message to the window that is losing the focus and a
WM_FOCUSCHANGE message to the window that is receiving the focus.

This function fails if another process or thread is currently using this function.

Other messages may be sent as a consequence of the frame control processing of the
WM_FOCUSCHANGE (in Frame Controls) message, depending on the value of the f/FocusChange
parameter. These messages, if sent, are sent in this order:

1. WM_SETFOCUS to the window losing the focus.
2. WM_SETSELECTION to the windows losing their selection.
3. WM_ACTIVATE to the windows being deactivated.
4. WM_ACTIVATE to the windows being activated.
5. WM_SETSELECTION to the windows being selected.
6. WM_SETFOCUS to the window receiving the focus.

Note: If the WinQueryFocus function is used during processing of this function:

• The window handle of the window losing the focus is returned while the
WM_FOCUSCHANGE message with the usSetFocus parameter set to FALSE is being
processed.

• The window handle of the window receiving the focus is returned while the
WM_FOCUSCHANGE (in Frame Controls) message with the usSetFocus parameter set to
TRUE is being processed.

If the WinQueryActiveWindow function is used during processing of this function:

• The window handle of the window being deactivated is returned while the WM_ACTIVATE
message with the usactive parameter set to FALSE is being processed.

• The window handle of the window being activated is returned while the WM_ACTIVATE
message with the usactive parameter set to TRUE is being processed.

Also, there is a short period during the time after the old active window has acted on the
deactivation message and before the new active window has acted on the activation message
when the WinQueryActiveWindow function returns NULLHANDLE.

This function should not be made unless it is directly or indirectly the result of operator input.

Even if FC_NOSETSELECTION is not specified, the WM_SETSELECTION is not sent to a frame window
that is already selected. This can occur if the focus is being transferred from a parent to a child
window and FC_NOLOSESELECTION was specified.

Related Functions
• WinEnablePhyslnput
• WinGetKeyState
• WinGetPhysKeyState
• WinQueryFocus
• Wi nSetFocus
• WinSetKeyboardStateTable

Related Messages
• WM_ACTIVATE
• WM_FOCUSCHANGE
• WM_SETFOCUS
• WM_SETSELECTION

Chapter 8. Window Functions 8-161

WinFocusChange -
Change Focus Window

Example Code
This example uses WinFocusChange to change the focus to the selected window, using the handle
returned by WinQueryFocus.

#define INCL_WININPUT
#include <os2.h>

HWND hwndNewFocus;
BOOL fSuccess;
MPARAM mpl;

case WM_SETSELECTION:

/* Window Input Functions

/* Handle of new focus window
/* success indicator
/* Parameter 1 (select boolean)

*/

*/
*/
*/

/* if window is being selected, change focus to the window */
if (SHORTFROMMP(mpl))

{
if ((hwndNewFocus =

}

WinQueryFocus(HWND DESKTOP)) != 0L)
fSuccess = WinFocusChange(HWND_DESKTOP, hwndNewFocus,

0L);

8-162 PM Programming Reference

#define INCL_WINSTDFONT

WinFontDlg
Standard Font Dialog

HWND WlnFontDlg (HWND hwndParent, HWND hwndOwner, PFONTDLG pfntdFontdlg)

This dialog allows the user to select a font.

Parameters
hwndParent (HWND) - input

Parent-window handle.

Parent-window handle of the created dialog window.

HWND_DESKTOP The desktop window.

Other Specified window.

hwndOwner (HWND) - input
Requested owner-window handle.

Requested owner-window handle of the created dialog window.

The actual owner window is calculated using the algorithm specified in the description of the
WinloadDlg function.

pfntdFontdlg (PFONTDLG) - input
Pointer.

Pointer to an initialized FONTDLG structure.

Returns
Font dialog window handle.

If the FNTS_MODELESS flag is set by the application, the return value is the window handle of
the font dialog, or NULLHANDLE if the dialog cannot be created. If the FNTS_MODELESS flag is
not set, the return value is TRUE if dialog creation is successful, or NULLHANDLE if it is
unsuccessful.

Remarks
The pfntdFontdlg parameter is required and the FONTDLG structure must be properly initialized.

Upon return, the FONTDLG structure is updated with any user alterations and the /Return field
contains the value returned by the font dialog's WinDismissDlg function. By default this is the ID of
the pushbutton pressed to dismiss the dialog, DID_OK or DID_CANCEL, unless the application
supplied additional pushbuttons in its template.

The pointer to the FONTDLG structure is placed in the QWL_USER field of the dialog's frame window.
If in a custom font dialog procedure the pointer to the FONTDLG structure is desired, it should be
queried from the frame window with WinQueryWindowULong.

To subclass the default font dialog with a new template, the application must give the module and ID
of the new font dialog template and the address of a dialog procedure for message handling.
Window IDs in the range X'OOOO' through X'OFFF' are reserved for the font dialog controls. IDs from
outside this range must be chosen for any controls added to a custom font dialog.

When a modeless dialog is dismissed, the owner of the font dialog will receive a WM_ COMMAND
message with the ussource parameter equal to CMDSRC_FONTDLG and the uscmd parameter equal
to the ID of the font dialog.

Chapter 8. Window Functions 8-163

WinFontDlg
Standard Font Dialog

Example Code
This example displays a font selection dialog by using WinFontDlg, which allows the user to select a
font.

#define INCL-'-WINSTDFONT /* Window Standard Font Functions */
#include <os2.h>
#include <string.h>

HPS hpsScreen;
FONTDLG pfdFontdlg;
HWND hwndMain;
HWND hwndFontDlg;

/* Screen presentation space */
/* Font dialog info structure */
/* Window that owns the font dialog */
/* Font dialog window */

char szFamilyname[FACESIZE];

/***/
/* Initially set all fields to 0 */
/***/
memset(&pfdFontdlg, e, sizeof(FONTDLG));

/***/
/* Initialize those fields in the FONTDLG structure that are */
/*used by the application */
/***/
pfdFontdlg.cbSize = sizeof(FONTDLG); /*Size of structure */
pfdFontdlg.hpsScreen hpsScreen; /* Screen presentation */

/* space */
szFami lyname[0] = 0; /* Use default font *I
pf dF ontd 1 g. ps z F ami 1 yname s zF amil yname;
pfdFontdlg.usFamilyBuflen strlen(szFamilyname);
pfdFontdlg.fxPointSize = MAKEFIXED(l0,0); /* Font point size */
pfdFontdl g. fl = FNTS_HELPBUTTON I FNTS_CENTER; /* FNTS_ * flags * /
pfdFontdlg.clrFore = CLR_BLACK; /* Foreground color */
pfdFontdlg.clrBack = CLR_WHITE; /* Background color */
pfdFontdlg.fAttrs.usCodePage = 437; /*Code page to select */

/* from */

/***/
/* Display the font di al og and get the font *I
/***/
hwndFontOlg = WinFontDlg(HWND""'"DESKTOP, hwndMain, &pfdFontdlg);

if (hwndFontDlg && (pfdFontdlg. lReturn == DID_OK))
{

/**/
/* Upon successful return of a font, the application can */
/* use font information selected by the user to create a */
/* font, 1 oad a font, and so forth *I
/**/

}

8-164 PM Programming Reference

#define INCL WINERRORS /*Or use INCL_WIN or INCL_PM */

BOOL WinFreeErrorlnfo (PERRINFO perrlErrorlnfo)

WinFreeErrorlnfo -
Free Error Information

This function releases memory allocated for an error-information block.

Parameters
perrlErrorlnfo (PERRINFO) - input

Error-information block whose memory is to be released.

Returns
Success indicator:

TRUE Successful completion

FALSE perriErrorlnfo is not an error-information block for the current thread.

Related Functions
• WinGetErrorlnfo
• WinGetLastError

Example Code
This example frees memory allocated (by WinGetErrorlnfo) for an error-information block using

WinFreeErrorlnfo.

#define INCL_WINERRORS
#include <os2.h>

/* Window Error Functions

BOOL fSuccess; /* success indicator
ERRORID erridErrorCode;/* last error id code
PERRINFO perriErrorlnfo;/* error info structure
HAB hab; /* anchor-block handle

/* obtain error block and assign error code */
perriErrorlnfo = WinGetErrorinfo(hab);
erridErrorCode = perriErrorlnfo->idError;

/* free error block */
fSuccess = WinFreeErrorlnfo(perriErrorlnfo);

*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-165

WinFreeFileDlgList -
Free Standard File Dialog File List

#define INCL WINSTDFILE

BOOL WlnFreeFlleDlgLlsl (PAPSZ papszFQFllename)

This function frees the storage allocated by the file dialog when the FDS_MUL TIPLESEL dialog flag is
set.

Parameters
papszFQFllename (PAPSZ) - input

Pointer.

Pointer to a table of pointers of fully-qualified file names returned by the dialog.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
When the FDS_MULTIPLESEL style flag is set and the user selects one or more files from the file
name list box, the fully-qualified file names of the selected files are returned in the papszFQFilename
field of the FILEDLG structure. After the application retrieves all of the information it needs from the
papszFQFilename array, it should call WinFreeFileDlglist to free the storage.

Example Code
This example uses the WinFreeFileDlglist function to deallocate the table of file name pointers
returned by the WinFileDlg function when the FDS_MUL TIPLESEL flag is set in the fl field of the
FILEDLG structure.

#define INCL_WINSTDFILE /*Window Standard File Functions */
#include <os2.h>

BOOL fSuccess;
FILEDLG pfdFiledlg;
HWND hwndMain;
HWND hwndDlg;

/* Success indicator
/* File dialog info structure
/* Window that owns the file dialog
/* File dialog window

*/
*/
*/
*/

/***/
/* initialize FILEDLG structure */
/***/
pfdFiledlg.cbSize = sizeof(FILEDLG); /*Size of structure */
pfdFiledlg.fl = FDS_MULTIPLESEL I FDS_HELPBUTTON I FDS_CENTER

FDS_OPEN_DIALOG; /* FDS_* flags */

/***/
/* Set remaining fields here */
/***/

/***/
/* Display the dialog and get the files */
/***/

8-166 PM Programming Reference

WinFreeFileDlgList
Free Standard File Dialog File List

hwndDlg = WinFileDlg(HWND_DESKTOP, hwndMain, &pfdFiledlg);

if (hwndDlg && (pfdFiledlg.lReturn == DID_OK))
{

}

/**/
/* Upon successful return of the files. open them for further */
/* processing using the table of file name pointers */
/**/

/**/
/* Find out whether the pointer array was allocated */
/**/

if (pfdFiledlg.papszFQFilename)

/***/
/* If so, free the table of file name pointers */
/***/

fSuccess = WinFreeFileDlgList(pfdFiledlg.papszFQFilename);

Chapter 8. Window Functions 8-167

WinFreeFilelcon
Free File Icon

#define INCL_WINWORKPLACE

BOOL Wlnfreefilelcon (HPOINTER hptr)

The WinFreeFilelcon function will free the pointer to an icon allocated by WinloadFilelcon.

Parameters
hptr (HPOINTER) - input

A pointer to an icon loaded by WinloadFilelcon.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Related Functions
• WinSetFilelcon
• WinloadFilelcon

8-168 PM Programming Reference

WinGetClipPS
Get Clipped Presentation Space

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HPS WlnGetCllpPS (HWND hwnd, HWND hwndCllpWindow, ULONG ulClipflags)

This function obtains a clipped cache presentation space.

Parameters
hwnd (HWND) - input

Handle of window for which the presentation space is required.

hwndClipWindow (HWND) - input
Handle of window for clipping.

Values to be specified can be one of the following:

HWND_BOTTOM Clip the last window in the sibling chain and continue clipping until the next
window is hwnd or NULLHANDLE.

HWND_TOP Clip the first window in the sibling chain and continue clipping until the next
window is hwnd or NULLHANDLE.

NULLHANDLE CJip all siblings to the window hwnd.

ulCUpflags (ULONG) - input
Clipping control flags.

PSF _CLIPSIBLINGS Clip out all siblings of hwnd.

PSF_CLIPCHILDREN Clip out all children of hwnd.

PSF _CLIPUPWARDS Taking hwndClipWindow as a reference window, clip out all
sibling windows before hwndC/ipWindow. This value may not be
used with PSF_CLIPDOWNWARDS.

PSF _CLIPDOWNWARDS Taking hwndC/ipWindow as a reference window, clip out all
sibling windows after hwndC/ipWindow. This value may n.ot be
used with PSF _CLIPUPWARDS.

PSF _LOCKWINDOWUPDATE Calculate a presentation space that keeps a visible region even
though output may be locked by the WinLockWindowUpdate
function.

PSF _PARENTCLIP Cafculate a presentation space that uses the visible region of the
parent of hwnd but with an origin calculated for hwnd.

Returns
Presentation-space handle that can be used for drawing.

Poss.ible returns from WinGetlastError

PMERR_JNVALID_HWND An invalid window handle was specified.

Remarks
The presentation· space obtained by this function is a cache "micro-presentation space" present in
the system. ·This can be used for simple drawing operations that do not depend on long-term data
being stored in the presentation space.

Chapter 8. Window Functions 8-169

WinGetClipPS -
Get Clipped Presentation Space

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code
This example responds to an application defined message (IDM_FILL) and uses WinGetClipPS to
obtain and associate a cached presentation space with a window, where the PS is clipped to the
children of the window.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND
HWND
RECTL
HPS

hwnd;
hwndClip;

rel;
hps;

case IDM FILL:

/* PS window
/* clipping window
/* update region
/* presentation-space handle

/* handle of the PS window */ hps-= WinGetClipPS(hwnd,
hwndClip,
PSF_CLIPCHILDREN);

WinFillRect(hps, &rel,
WinReleasePS(hps);

/* handle of clipping window*/
/* clipping flags */

CLR_WHITE);

8-170 PM Programming Reference

*/
*/
*/
*/

WinGetCurrentTime -
Get Current Time

#define INCL_WINTIMER /*Or use INCL_WIN or INCL_PM */

I ULONG WlnGetCurrentTime (HAB hab)

This function returns the current time.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
System-timer count.

The time is in milliseconds, from the system Initial Program Load (IPL). This is the same value
as stored in the information segment.

Related Functions
• WinQueryMsgTime
• WinStartTimer
• WinStopTimer

Example Code
This example uses WinGetCurrentTime to return the current time.

#define INCL_WINTIMER
#include <os2.h>

HAB hab;
ULONG ulTime;

/* Window Timer Functions

/* anchor-block handle
/* current time

ulTime = WinGetCurrentTime(hab);

*/

*/
*/

Chapter 8. Window Functions 8-171

WinGetDlgMsg
Get Dialog Message

#define INCL WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnGetDlgMsg (HWND hwndDlg, PQMSG pqmsgmsg)

This function obtains a message from the application's queue associated with the specified dialog.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

pqmsgmsg (PQMSG) - output
Message structure.

Returns
Continue message indicator:

TRUE Message returned is not a WM_ QUIT message and the dialog has not been dismissed.

FALSE Message returned is a WM_QUIT message or the dialog has been dismissed.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function enables a language that cannot support window procedures to provide the function of a
modal dialog. The application creates a modeless dialog by the use of the WinCreateDlg or the
WinloadDlg functions and then issues this call to process messages only associated with the dialog.

The first time that this function is issued, the owner of the window specified by hwndD/g is disabled,
thereby preventing input into windows other than the dialog. The owner of the window specified by
hwndDlg is enabled when the WinDismissDlg function is issued either by the application or by the
default dialog procedure.

If a WM_QUIT is encountered, WinGetDlgMsg itself issues a WinDismissDlg function, and posts the
WM_QUIT message back to the queue so that the application main loop terminates in the normal
way.

I

8-172 PM ,J:>rogramming Reference

Related Functions
• WinCreateDlg
• WinDefDlgProc
• WinDismissDlg
• WinDlgBox
• WinloadDlg
• WinProcessDlg
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Related Messages
• WM_QUIT

WinGetDlgMsg
Get Dialog Message

Chapter 8. Window Functions 8-173

WinGetDlgMsg -
Get Dialog Message

Example Code
This example uses WinGetDlgMsg to provide a modal dialog. When the user causes an open
message (application defined IDM_OPEN), the dialog is loaded and displayed; WinGetolgMsg then
loops, grabbing messages from the queue and calling MyDlgRoutine -the dialog procedure which
processes the messages- with the appropriate parameters. When the dialog issues a WM_QUIT,
WinGetolgMsg returns FALSE and the loop ends, returning control to owner window.

#define INCL_WINDIALOGS
#include <os2.h>

/*Window Dialog Mgr Functions */

HWND hwnd;
HWND hwndDlg;
QMSG qmsg;

case IDM_OPEN:

/* owner window
/* dialog window
/* message

*/
*/
*/

hwndDlg = WinLoadDlg(HWND_DESKTOP,
hwnd,

/* parent is desk top */

NULL,
0L,
DLG ID,
NULL);

/* owner window handle */
/* modeless dialog */
/* load from .EXE */
/* dialog resource id */

/* no dialog parameters */

/* loop and process dialog messages until WM_QUIT, calling
dialog procedure for each message */

while (WinGetDlgMsg(hwndDlg, &qmsg))
MyDlgRoutine(hwndDlg, qmsg.msg, qmsg.mpl, qmsg.mp2);

break;

MRESULT MyDlgRoutine(HWND hwndDlg, ULONG usMsgid, MPARAM mpl,
MPARAM mp2)

{
switch(usMsgid)

{
/*

• process messages

*/

default:
return (WinDefDlgProc(hwndDlg, usMsgid, mpl, mp2));

}
}

8-174 PM Programming Reference

#define INCL_WINERRORS /*Or use INCL_WIN or INCL_PM "/

I PERRINFO WlnGetErrorlnfo (HAB hab)

This function returns detailed error information.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Error information.

WinGetErrorlnfo
Get Error Information

This structure contains information about the previous error code for the current thread:

NULL No error information available

Other Error information.

Remarks
This function allocates a single private segment to contain the ERRINFO structure. All the pointers to
string fields within the ERRINFO structure are offsets to memory within that segment.

The memory allocated by this function is not released until the returned pointer is passed to the
WinFreeErrorlnfo function.

Related Functions
• WinFreeErrorlnfo
• WinGetlastError

Example Code
This example uses WinGetErrorlnfo to obtain detailed error information, assigns the error code, and

frees the error block with WinFreeErrorlnfo.

#define INCL_WINERRORS
#include <os2.h>

/* Window Error Functions

BOOL fSuccess; /* success indicator
ERRORID erridErrorCode;/* last error id code
PERRINFO perriErrorlnfo;/* error info structure
HAB hab; /* anchor-block handle

/* obtain error block */
perriErrorlnfo = WinGetErrorlnfo(hab);
erridErrorCode = perriErrorlnfo->idError;

/* free error block */
fSuccess = WinFreeErrorlnfo(perriErrorinfo);

*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-175

WinGetKeyState
Get Key State

#define INCL WININPUT /*Or use INCL_WIN or INCL_PM */

LONG WlnGetKeyState (HWND hwndDeskTop, LONG IVk)

This function returns the state of the key at the time that the last message obtained from the queue
was posted.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

IVk (LONG) - input
Virtual key value.

Contains the virtual key value in the low-order byte, and zero in the high-order byte.

Returns
Key state.

This value is the OR combination of the following bits:

X '0001 ' The key has been pressed an odd number of times since the system has been
started.

X'8000' The key is down.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
See also the WinGetPhysKeyState function. This function is used to determine whether a virtual key
is up, down, or toggled.

This function can be used to obtain the state of the pointing device buttons with the VK_BUTTON1,
VK_BUTTON2, and VK_BUTTON3 virtual key codes.

Related Functions
• WinEnablePhyslnput
• WinFocusChange
• WinGetPhysKeyState
• WinQueryFocus
• Wi nSetFocus
• WinSetKeyboardStateTable

8-176 PM Programming Reference

Example Code

WinGetKeyState -
Get Key State

This example uses WinGetKeyState to check if mouse button 1 was depressed when a WM_ TIMER
message was received. A high pitched beep is emitted if it was depressed, and a low pitched beep if
it was not.

#define INCL_WININPUT
#define INCL_DOSPROCESS
#include <os2.h>

LONG lKeyState;
LONG 1 Vk;

case WM_TIMER:

/* Window Input Functions
/* OS/2 Process Functions

/* key state
/* virtual key value

/* get key state of mouse button 1 */
lVk = VK BUTTON!;
lKeyState = WinGetKeyState(HWND_DESKTOP, lVk);

*/
*/

*/
*/

/* emit high pitched beep if mouse button 1 is depressed
when timer message occurred; otherwise, emit low pitched
beep */

if (lVk & exaeee)
DosBeep(1eee,1eeL);

else
DosBeep(2ee,1eeL);

Chapter 8. Window Functions 8-177

WinGetLastError
Get Last Error

#define INCL WINERRORS /*Or use INCL_WIN or INCL_PM */

I ERRORID WlnGellaslError (HAB hab)

This function returns the error state set by the failure of a Presentation Manager function.

Parameters
hab (HAB} - input

Anchor-block handle.

Returns
Last-error state.

Remarks
Returns the last nonzero error code, and sets the error code to zero.

The current error state is reset to zero.

In multiple thread applications where there are multiple anchor blocks, errors are stored in the
anchor block created by the Winlnitialize function of the thread invoking a call. The last error for the
process and thread on which this function call is made will be returned.

Related Functions
• WinFreeErrorlnfo
• WinGetErrorlnfo

Example Code
This example uses WinGetLastError to obtain the error code corresponding to the last nonzero error

for the specified anchor block. If only the error code is required, this function is preferable to the
WinGetErrorlnfo/WinFreeErrorlnfo call sequence.

#define INCL_WINERRORS
#include <os2.h>

/* Window Error Functions

ERRORID erridErrorCode;/* last error id code
HAB hab; /* anchor-block handle

/* get last nonzero error for this anchor block */
erridErrorCode = WinGetlastError(hab);

8-178 PM Programming Reference

*/

*/
*/

WinGetMaxPosition
Get Maximum Position

#define INCL WINFRAMEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnGetMaxPosltlon (HWND hwnd, PSWP pSwp)

The WinGetMaxPosition function fills an SWP structure with the maximized-window size and position.

Parameters
hwnd (HWND) - input

Frame-window handle.

Identifies the window whose maximum size will be retrieved.

pSwp (PSWP) - output
Set window position structure.

Points to the SWP structure that retrieves the size and position of a maximized window.

The SWP _SIZE and SWP _MOVE indicators are set in this parameter on return from this call,
implying that the x, y, ex, and cy parameters have been initialized.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Chapter 8. Window Functions 8-179

WinGetMaxPosition -
Get Maximum Position

Example Code
This example uses WinGetMaxPosition to determine the maximized position for the window in
response to a maximize message (WM_MINMAXFRAME}, and then calls WinSetWindowPos to
maximize the window to that position.

#define INCL_WINFRAMEMGR
#include <os2.h>

BOOL fSuccess;
HWND hwnd;
MPARAM mpl;
PSWP pSwp;

case WM MINMAXFRAME:

/* Window Frame Functions

/* Success indicator
/* window handle
/* Parameter 1 (window position)
/* Set window position structure

pSwp = (PSWP)PVOIDFROMMP(mpl);

switch(pSwp->fl)
{
case SWP MAXIMIZE:

fSuccess = WinGetMaxPosition(hwnd, pSwp);

WinSetWindowPos(hwnd, 0L,
pSwp->x, /* x pos */
pSwp->y, /* y pos */
pSwp->cx, /* x size */
pSwp->cy, /* y size */
SWP_MAXIMIZE); /*flags */

break;
}

8-180 PM Prqgramming Reference

*/

*/
*/
*/
*/

WinGetMinPosition
Get Minimum Position

#define INCL_WINFRAMEMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnGetMlnPosltlon (HWND hwnd, PSWP pSwp, PPOINTL pptlPolnt)

This function returns the position to which a window is minimized.

Parameters
hwnd (HWND) - input

Frame-window handle.

pSwp (PSWP) - output
Set window position structure.

The SWP _SIZE and SWP _MOVE indicators are set in this parameter on return from this function,
implying that the x, y, ex, and cy parameters have been initialized.

pptlPolnt (PPOINTL) - input
Preferred position:

NULL System is to choose the position

Other System is to choose the position nearest to the specified point.

Returns
Success indicator:

TRUE Successful completion.

The WS_MINIMIZE style is set for hwnd. This enables the system to determine which
other frame windows are minimized, during the enumeration process performed by
this function.

Also, the window words QWS_XMINIMIZE and QWS_YMINIMIZE for hwnd are
initialized. This enables the system to ensure that no windows that have been, or are
being, minimized use the same position.

FALSE Error occurred.

Remarks
This function chooses the position for a minimized window. It enumerates all the siblings of the
specified window to determine the first available position.

Related Functions
• WinOueryActiveWindow
• WinQueryWindowPos
• WinSaveWindowPos
• WinSetActiveWindow
• WinSetMultWindowPos
• WinSetWindowPos

Chapter 8. Window Functions 8-181

WinGetMinPosition -
Get Minimum Position

Example Code
This example uses WinGetMinPosition to determine the minimized position for the window in
response to a minimize message (WM_MINMAXFRAME), and then calls WinSetWindowPos to
minimize the window to that position.

#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Frame Functions

BOOL fSuccess;
HWND hwnd;
MPARAM mpl;
PSWP pSwp;

/* Success indicator
/* window handle
/* Parameter 1 (window position)
/* Set window position structure

case WM MINMAXFRAME:
pSwp = (PSWP)PVOIDFROMMP(mpl);

switch (pSwp->fl)
{
case SWP MINIMIZE:

fSuccess = WinGetMinPosition(hwnd, pSwp, NULL);

}

WinSetWindowPos(hwnd,
pSwp->x,
pSwp->y,
pSwp->cx,
pSwp->cy,
SWP_MINIMIZE);

break;

8-182 PM Programming Reference

0L,
/* x pos */
/* y pos */
/* x size */
/* y size */
/* flags */

*/

*/
*/
*/
*/

WinGetMsg
Get Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnGetMsg (HAB hab, PQMSG pqmsgmsg, HWND hwndFllter, ULONG ulFlrst,
ULONG ulLast)

This function gets, waiting if necessary, a message from the thread's message queue and returns
when a message conforming to the filtering criteria is available.

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsgmsg (PQMSG) - output
Message structure.

hwndFllter (HWND) - input
Window filter.

ulFirst (ULONG) - input
First message identity.

ulLast (ULONG) - input
Last message identity.

Returns
Continue message indicator:

TRUE Message returned is not a WM_QUIT message

FALSE Message returned is a WM_QUIT message.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
If system or queue hooks are installed, they are called before this function returns.

fResult is generally used to determine when to terminate the application's main loop and exit the
program.

hwndFilter constrains the returned message to be for a specific window or its children. When
hwndFilter is null, the returned message can be for any window. The message identity is restricted
to the range of message identities specified by u/First and u/Last inclusive. When u/First and u/Last

are both zero, any message satisfies the range constraint. When u/First is greater than u/Last,
messages except those whose identities lie between u/First and u/Last are eligible to be returned.
Messages that do not conform to the filtering criteria remain in the queue.

When hwndFilter is null, and u/First and u/Last are both zero, all messages are returned in the order

that they were posted to the queue.

By using filtering, messages can be processed in an order that is different from the one in the queue.
Filtering is used in situations where applications receive messages of a particular type, rather than
having to deal with other types of message at an inconvenient point in the logic of the application.
For example, when a "mouse down" message is received, filtering can be used to wait for the
"mouse up" message without having to be concerned with receiving other messages.

Chapter 8. Window Functions 8-183

WinGetMsg
Get Message

These constants can also be used when filtering messages:

WM_MOUSEFIRST
WM_MOUSELAST
WM_BUTIONCLICKFIRST
WM_BUTIONCLICKLAST
WM_DDE_FIRST
WM_DDE_LAST

Lowest value pointing device message
Highest value pointing device message
Lowest value pointing device button click message
Highest value pointing device button click message
Lowest value DOE message
Highest value DOE message.

Great care must be taken if filtering is used, to ensure that a message that satisfies the specification
of the filtering parameters can occur, otherwise this function cannot complete. For example, calling
this function with u/First and u/Last equal to WM_ CHAR and with hwndFilter set to a window handle
that does not have the input focus, prevents this function from returning.

Keystrokes are passed to the WinTranslateAccel call, which implies that accelerator keys are
translated into WM_COMMAND or WM_SYSCOMMAND messages, and so are not seen as WM_ CHAR
messages by the application.

Note: An application must be prepared to receive messages other than those documented in this
publication. All messages that an application does not want to handle should be dispatched to
the appropriate window procedure using the WinDispatchMsg function.

Related Functions
• WinCancelShutdown
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendotgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Related Messages
• WM_CHAR
• WM_CHAR
• WM_QUIT
• WM_SYSCOMMAND

8-184 PM Programming Reference

Example Code

WinGetMsg -
Get Message

This example uses WinGetMsg to continually loop and retrieve messages from the message queue
until a WM_QUIT message occurs.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

HAB
HMQ
QMSG

hab;
hmq;
qmsg;

hab = Wtninitialize(0);

/* anchor-block handle
/* message queue handle
/* message

/* initialize PM*/

hmq = WinCreateMsgQueue(hab, 0); /*create default size queue*/

/*

. initialize windows

*/

/* get and dispatch messages from queue */
while (WinGetMsg(hab, &qmsg, 0, 0, 0))

WinDispatchMsg(hab, &qmsg);

*/
*/

*/
*/
*/

. Chapter 8. Window Functions 8-185

WinGetNextWindow
Get Next Window

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I HWND WlnGatNaxtWlndow (HENUM hanum)

This function gets the window handle of the next window in a specified enumeration list.

Parameters
henum (HENUM) - input

Enumeration handle.

Returned by previous call to the WinBeginEnumWindows call.

Returns
Next window handle in enumeration list:

NULLHANDLE Error occurred, henum was invalid, or all the windows have been enumerated.

Other Next window handle.

Possible returns from WinGetlastError

PMERR_INVALID _HENUM An invalid enumeration handle was specified.

Remarks
Enumeration starts with the topmost child window and then proceeds downward through the
enumeration list, in z-order at the time the WinBeginEnumWindows was issued, until all the windows
have been enumerated. At this point, the call returns NULLHANDLE. The enumeration then wraps
and the handle of the topmost child window is returned on the next call. This function does not lock
windows. Window locking is not required in OS/2 release 1.2 and above.

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetOwner
• WinSetParent

8-186 PM Programming Reference

Example Code

WinGetNextWindow -
Get Next Window

This example moves through all the child windows in a enumeration list, using an enumeration
handle provided by WinBeginEnumWindows; for each child window, the class name is queried and
placed in a buffer.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND hwndParent;

HWND hwndNext;
HENUM henum;
BOOL fSuccess;
SHORT sRetlen;
SHORT slength = 10;
char pchBuffer[10];

/* Handle of the window whose child windows
are to be enumerated */

/* current enumeration handle */
/* enumeration handle */
/* success indicator */
/* returned string length */
/* string buffer 1 ength *I
/* string buffer */

hwndParent = HWND_DESKTOP;

henum = WinBeginEnumWindows(hwndParent);

while ((hwndNext = WinGetNextWindow(henum)) != NULLHANDLE)
sRetlen = WinQueryClassName(hwndNext, slength, pchBuffer);

fSuccess = WinEndEnumWindows (henum);

Chapter 8. Window Functions 8-187

WinGetPhysKeyState -
Get Physical Key State

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM */

LONG WlnGetPhysKeyState (HWND hwndDeskTop, LONG IScancode)

This function returns the physical key state.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

IScancode (LONG) - input
Hardware scan code.

Contains the scan code value in the low-order byte, and zero in the high-order byte.

Returns
Key state:

This value is the OR combination of the following bits:

X '0001 ' The key has been pressed an odd number of times since the system has been
started.

X'0002' The key has been pressed since the last time this function was issued, or since the
system has been started if this is the first time the call has been issued.

X' 8000' The key is down.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function returns information about the asynchronous (interrupt level) state of the virtual key
indicated by the /Scancode parameter.

This function returns the physical state of the key; it is not synchronized to the processing of input
(see the WinGetKeyState function).

Related Functions
• WinEnablePhyslnput
• WinFocusChange
• WinGetKeyState
• WinQueryFocus
• WinSetFocus
• WinSetKeyboardState Table

8-188 PM Programming Reference

WinGetPhysKeyState -
Get Physical Key State

Example Code
This example uses WinGetPhysKeyState to check the current state of the caps lock key; if it is

depressed, a high pitch beep is emitted, while a low pitch beep is emitted if it is not depressed.

#define INCL_WININPUT
#define INCL_DOSPROCESS
#include <os2.h>

LONG lKeyState;
LONG lScancode;

/* Window Input Functions
/* OS/2 Process Functions

/* key state
/* scan code value

/* get physical key state for caps lock key */
lScancode = VK CAPSLOCK;
lKeyState = WinGetPhysKeyState(HWND_DESKTOP, lScancode);

/* emit high pitched beep if caps lock is currently depressed;
otherwise, emit low pitched beep */

if (lScancode & 0x8000)
DosBeep(1000,100L);

else
DosBeep(200,100L);

*/
*/

*/
*/

Chapter 8. Window Functions 8-189

WinGetPS
Get Presentation Space

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I HPS WlnGetPS (HWND hwnd)

This function gets a cache presentation space.

Parameters
hwnd (HWND) - input

Handle of window for which the presentation space is required:

HWND_DESKTOP The desktop-window handle; a presentation space for the whole of the
desktop window is returned

Other Handle of window for which the presentation space is required.

Returns
Presentation-space handle that can be used for drawing in the window.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The presentation space created by this function is a cache "micro presentation space" present in the
system. This can be used for simple drawing operations that do not depend on long-term data being
stored in the presentation space.

The initial state of the presentation space is the same as that of a presentation space created using
the GpiCreatePS function. The color table is in default color index mode. The visible region
associated with hps depends upon the window and class styles of hwnd:

Style
WS_ CLIPCHILDREN
WS_ CLIPSIBLINGS
CS_PARENTCLIP

Vlslble region of presentation space
All child windows of the window are excluded.
All the sibling windows of hwnd are excluded.
Is the same as that of the parent window of the window.

The presentation space origin is established normally, that is, relative to the
lower left of the window itself, not its parent.

This style optimizes the use of the presentation space cache by minimizing
the calculation of the visible region for child windows.

Any presentation space created by WinGetPS must be released by calling WinReleasePS. This
should be done before the application terminates.

8-190 PM Programming Reference

WinGetPS
Get Presentation Space

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code
This example processes an application-defined message (IDM_FILL). It calls WinGetPS to get a
presentation space to the entire window. It gets the dimensions of the current window, fills the
window, and calls WinReleasePS to release the presentation space.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND
RECTL
HPS

hwnd;
rel;
hps;

/* parent window
/* update region

*/
*/
/ / presentation-space handle

case IDM FILL:
hps; WinGetPS(hwnd); /* get presentation space for */

/* the entire window */

WinQueryWindowRect(hwnd, &rel); /* get window dimensions */

WinFillRect(hps, &rel, CLR_WHITE); /*clear entire window */

WinReleasePS(hps); /* release the presentation */
/* space *I

return SL;

Chapter 8. Window Functions 8-191

WinGetScreenPS
Get Screen Presentation Space

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

HPS WlnGetScreenPS (HWND hwndDeskTop)

This function returns a presentation space that can be used for drawing anywhere on the screen.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Presentation-space handle

A micro presentation space that can be used for drawing over the entire desktop window (the
whole screen):

NULLHANDLE hwndDeskTop is not HWND_DESKTOP or a desktop window handle obtained
from the WinQueryDesktopWindow function.

Other Presentation space handle.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
Take great care when using this function. The returned presentation space is not clipped to any of
the other windows present on the screen. Thus it is possible to draw in regions belonging to
windows of other threads and processes.

The WinlockWindowUpdate function should be used to avoid simultaneous updates to the same part
of the screen. This does not cause the presentation space returned by this function to become
clipped in any way. Care of the appearance of windows of other threads is still the responsibility of
the user of the screen presentation space.

When the application finishes using the screen presentation space, it should be destroyed using the
WinReleasePS call.

8-192 PM Programming Reference

WinGetScreenPS
Get Screen Presentation Space

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code
This example processes an application-defined message (IDM_FILL). It calls WinGetScreenPS to get
a presentation space for the entire desktop window, gets the dimensions of the current window, fills
the window, and calls WinReleasePS to release the presentation space.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND
RECTL
HPS

hwnd;
rel;
hps;

case IDM_FILL:

/* parent window
/* update region
/* presentation-space handle

/* get presentation space for the entire desktop */
hps = WinGetScreenPS(HWND_DESKTOP);

*/

*/
*/
*/

WinQueryWindowRect(hwnd, &rel); /* get window dimensions */

WinFillRect(hps, &rel, CLR_WHITE); /*clear entire window */

WinReleasePS(hps);
return 0L;

/* release the presentation space *

Chapter 8. Window Functions 8-193

WinGetSysBitmap -
Get System Bit Map

#define INCL WINPOINTERS I* Or use INCL_WIN or INCL_PM */

HBITMAP WlnGetSysBltmap (HWND hwndDeskTop, ULONG ullndex)

This function returns a handle to one of the standard bit maps provided by the system.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

ullndex (ULONG) - input
System bit-map index value:

SBMP _SYSMENU System menu

SBMP _SYSMENUDEP System menu in depressed state

SBMP _SBUPARROW Scroll bar up arrow

SBMP _SBUPARROWDEP Scroll bar up arrow in depressed state

SBMP _SBUPARROWDIS Scroll bar up arrow in disabled state

SBMP _SBDNARROW Scroll bar down arrow

SBMP _SBDNARROWDEP Scroll bar down arrow in depressed state

SBMP _SBDNARROWDIS Scroll bar down arrow in disabled state

SBMP _SBRGARROW Scroll bar right arrow

SBMP _SBRGARROWDEP Scroll bar right arrow in depressed state

SBMP _SBRGARROWDIS Scroll bar right arrow in disabled state

SBMP _SBLFARROW Scroll bar left arrow

SBMP _SBLFARROWDEP Scroll bar left arrow in depressed state

SBMP _SBLFARROWDIS Scroll bar left arrow in disabled state

SBMP _MENUCHECK Menu check mark

SBMP _MENUATTACHED Cascading menu mark

SBMP _ CHECKBOXES Check box or radio button check marks

SBMP_COMBODOWN Combobox down arrow

SBMP _BTNCORNERS Pushbutton corners

SBMP _MINBUTTON Minimize button

SBMP _MINBUTTONDEP Minimize button in depressed state

SBMP _MAXBUTTON Maximize button

SBMP _MAXBUTTONDEP Maximize button in depressed state

SBMP _RESTOREBUTTON Restore button

SBMP _RESTOREBUTTONDEP Restore button in depressed state

SBMP _CHILDSYSMENU System menu for child windows

8-194 PM Programming Reference

SBMP _CHILDSYSMENUDEP

SBMP_DRIVE

SBMP_FILE

SBMP _FOLDER

SBMP _ TREEPLUS

SBMP _TREEMINUS

SBMP_CLOSEBUTTON

SBMP_CLOSEBUTTONDEP

SBMP _PROGRAM

SBMP _SIZEBOX

Returns
System bit-map handle.

NULLHANDLE Error occurred

WinGetSysBitmap
Get System Bit Map

System menu for child windows in depressed state

Drive

File

Folder

Used by the file system to indicate that an entry in the directory
can be expanded.

Used by the file system to indicate that an entry in the directory
can be collapsed.

Hide button

Hide button in depressed state

Used by the file system to mark .EXE and .COM files.

Used by some applications to display a sizebox in the
bottom-right corner of a frame window.

Other System bit-map handle.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

PMERR_RESOURCE_NOT_FOUND The specified resource identity could not be found.

Remarks
The bit map returned can be used for any of the normal bit-map operations. This function provides a
new copy of the system bit map each time it is called. The application should release any bit maps it
gets with this function by using the GpiDeleteBitmap function.

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

Chapter 8. Window Functions 8-195

WinGetSysBitmap -
Get System Bit Map

Example Code
This example uses WinGetSysBitmap to retrieve the system defined handle for the menu check mark
bit map during the window creation phase. The bit-map handle is then later used to draw the check
mark in response to user selection of a menu item.

#define INCL_WINWINDOWMGR
#define INCL_WINPOINTERS
#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Manager Functions
/* Window Pointer Functions
/* Window Message Functions
/* Window Menu Functions

HPS hps;
HBITMAP hbmCheck;
HWND hwndMenu;
USHORT usltemld;
MPARAM mpl;
MPARAM mp2;
RECTL rclltem;

/* presentation-space handle
/* check mark bit-map handle
/* menu handle

case WM_CREATE:

/* menu item id
/* Parameter 1 (menu item id)
/* Parameter 2 (menu handle)
/* item border rectangle

/* obtain check mark bit-map handle */
hbmCheck = WinGetSysBitmap(HWND_DESKTOP, SBMP_MENUCHECK);

case WM MENUSELECT:
usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* get rectangle of selected item */
WinSendMsg(hwndMenu,

MM QUERYITEMRECT,
MPFROM2SHORT(usltemld, TRUE),
MPFROMP(&rclltem));

/* draw the check mark in the lower left corner of item's
rectangle */

if (hbmCheck ! = NULL)
{
WinDrawBitmap(hps,

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

hbmCheck, /* check mark */
NULL, /* draw whole bit map */
(PPOINTL)&rclltem,/* bit-map destination */
0L, /* ignored since color */
0L, /* bit map */
DBM_NORMAL); /*draw normal size */

}

8-196 PM Programming Reference

WinlnflateRect -
Inflate Rectangle

#define INCL WINRECTANGLES /*Or use INCL_WIN or INCL_PM */

BOOL WinlnflateRect (HAB hab, PRECTL prclrect, LONG lex, LONG Icy)

This function expands a rectangle.

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - input/output
Rectangle to be expanded.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

lex (LONG) - input
Horizontal expansion.

Icy (LONG) - input
Vertical expansion.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function adjusts the size of the rectangle by applying the lex parameter horizontally at both
vertical edges and the Icy parameter vertically at both horizontal edges.

The lex parameter is subtracted from the left and added to the right of the rectangle, and the Icy
parameter is subtracted from the bottom and added to the top of the rectangle.

If the values of the lex and Icy parameters are both positive, the rectangle is enlarged and surrounds
the original rectangle. Conversely, if both these values are negative, the rectangle is reduced in size
and is inset with respect to the original rectangle.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Chapter 8. Window Functions 8-197

WinlnflateRect -
Inflate Rectangle

Example Code
This example doubles the size of a rectangle if the mouse is double clicked (WM_BUTTON1 DBLCLK)

within the rectangle (WinPtlnRect).

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

BOOL fSuccess; /* success i ndi ca tor * /
HAB hab; /* anchor-block handle */
RECTL prclRectl = {0,0,100,100}; /* rectangle */
LONG lex = 100; /* Horizontal expansion */
LONG lcy = 100; /* Vertical expansion */
POINTL ptl; /*current mouse position */
MPARAM mpl; /* Parameter 1 (x,y) point value */

case WM BUTTONlDBLCLK:
ptl.x = (LONG) SHORTlFROMMP(mpl);
ptl.y =(LONG) SHORT2FROMMP(mpl);

if (WinPtlnRect(hab, &prclRectl, &ptl))
fSuccess = WinlnflateRect(hab, &prclRectl, lex, lcy);

8-198 PM Programming Reference

"4'/i11l11itii1liz.:t
l11itii11ize

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I HAB Wlnlnlliallze (ULONG llOpllons)

This function initializes the PM facilities for use by an application.

Parameters
llOptlons (ULONG) - input

Initialization options:

0 The initial state for newly created windows is that all messages for the window are available

for processing by the application.

This is the only option available in PM.

Returns
Anchor-block handle:

NULLHANDLE An error occurred.

Other Anchor-block handle.

Remarks
This must be the first PM call issued by any application thread using Presentation Manager facilities.

It returns hab, which is NULL if the initialization is not successful.

The operating system does not generally use the information supplied by the hab parameter to its

calls; instead, it deduces it from the identity of the thread that is making the call. Thus an OS/2
application is not required to supply any particular value as the hab parameter. However, in order to
be portable to other environments, an application must provide the hab, that is returned by the

Winlnitialize function of the thread, to any OS/2 function that requires it.

f/Options determines the initial state of message processing with respect to a created window.

Related Functions
• WinCancelShutdown
• WinCreateMsgQueue
• WinTerminate

Chapter 8. Window Functions 8-199

\'li11l11itie1lize
lnitie11ize

Example Code
This example uses Winlnitialize to obtain an anchor block and initialize Presentation Manager.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

HAB
HMQ
QMSG

hab;
hmq;
qmsg;

hab = Winlnitialize(0);

/* anchor-block handle
/* message queue handle
/* message

/* initialize PM*/

*/
*/

*/
*/
*/

hmq = WinCreateMsgQueue(hab, 0); /*create default size queue*/

/*

• initialize windows

*/

/* get and dispatch messages from queue */
while (WinGetMsg(hab, &qmsg, 0, 0, 0))

WinDispatchMsg(hab, &qmsg);

8-200 PM Programming Reference

WinlnSendMsg
In Send Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnlnSendMsg (HAB hab)

This function determines whether the current thread is processing a message sent by another
thread.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Message-processing indicator:

TRUE Current thread is processing a message sent by another thread

FALSE Current thread is not processing a message, or an error o.ccurred.

Remarks
If the message is from another thread this function determines whether or not the message was
initiated by the active thread. The 'active thread' is the thread associated with the current active
window. (See also the WinlsThreadActive function.)

TypicaUy this function is used by applications to determine how to proceed with errors when the
window processing the message is not the active window. For example, if the active window uses
the WinSendMsg function to send a request for information to another window, the other window
cannot become active until it returns control from the WinSendMsg function. The only methods an
inactive window has to inform the user of an error are to create a message box (see
WinMessageBox), or to flash a window (see WinFlashWindow).

This function can be used to tell if a function is being called recursively.

Chapter 8. Window Functions 8,,-201

WinlnSendMsg
In Send Message

Related Functions
• WinBroadcastMsg
• Wi nCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example determines, during a WM_ERROR message, if the current thread is processing a
message sent by another thread using WinlnSendMsg; if so, a message box is generated with the
error information to alert the active window that originally sent the message.

#define INCL_WINMESSAGEMGR
#define INCL_WINDIALOGS
#include <os2.h>

/* Window Message Functions */
/* Window Dialog Mgr Functions */

HAB hab; /* anchor-block handle
/* Success indicator
/* Parameter 1
/* error code
/* message text

BOOL fSuccess;
MPARAM mpl;
USHORT errorcode;
CHAR szMsg[100];
HWND hwnd; /* handle of window with error msg

case WM_ERROR:
/* get error code */
errorcode = SHORTlFROMMP(mpl);

if (WinlnSendMsg(hab))
{
/* parse and display error message */
sprintf(szMsg, "Error code %d occurred",
WinMessageBox(HWND_DESKTOP,

errorcode);

*/
*/
*/
*/
*/
*/

hwnd,
szMsg,
"Error notification",
0,
MB_NOICON I MB_OK);

/* client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

}

8-202 PM Programming Reference

Winlnsertlboxltem -
Insert Listbox Item

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

SHORT WlnlnserlLboxllem (HWND hwndLbox, SHORT slndex, PSZ pszTexl)

This macro inserts text into a list box at index, index may be a LIT_ constant. This macro returns the
actual index where it was inserted.

Parameters
hwndLbox (HWND) - input

List box handle.

slndex (SHORT) - input
Index of the list box item.

pszTexl (PSZ) - input
Text to be inserted.

Returns
Actual index where it was inserted.

Remarks
This macro expands to:

#define Winlnsertlboxltem(hwndlbox, slndex, pszText)
((SHORT)WinSendMsg(hwndlbox,

LM INSERTITEM,
MPFROMSHORT(slndex),
MPFROMP(pszText)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_INSERTITEM

Chapter 8. Window Functions 8-203

Winlnsertlboxltem
Insert Listbox Item

Example Code
This example calls Winlnsertlboxltem to insert items in a list box as part of initializing a dialog
(WM_INITDLG message).

#define INCL_WINWINDOWMGR
#define INCL_WINLISTBOXES
#include <os2.h>

/* Window Manager Functions */
/* Window List Box definitions */

SHORT slndex; /* inserted item index
HWND hwndLbox; /* list box window handle
MPARAM mpl; /* Parameter 1 (window handle)
/*Array of list box item names */
PSZ pszltems[3] = {11 Iteml 11

,
11 Item2 11

,
11 1tem3 11

};

case WM_INITDLG:

/*******************************/
/* Initialize List Box Control */
/*******************************/

/* get handle of list box */
hwndLbox = HWNDFROMMP(mpl);

/* insert 3 items into list box*/
slndex = WinlnsertLboxltem(hwndLbox, LIT_END, pszltems[0]);
slndex = WinlnsertLboxltem(hwndLbox, LIT_END, pszltems[l]);
slndex = WinlnsertLboxltem(hwndLbox, LIT_END, pszltems[2J);

8-204 PM programming Reference

*/
*/
*/

WinlntersectRect -
Intersect Rectangle

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WinlntersectRect (HAB hab, PRECTL prclDest, PRECTL prc1Recl1, PRECTL prc1Recl2)

This function calculates the intersection of the two source rectangles and returns the result in the
destination rectangle.

Parameters
hab (HAB) - input

Anchor-block handle.

prclDest (PRECTL) - output
Intersection rectangle.

Is the intersection of prc/Rect1 and prc/Rect2.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

prc1Rect1 (PRECTL) - input
First rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

prc1Recl2 (PRECTL) - input
Second rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

Returns
Success indicator:

TRUE Source rectangles intersect

FALSE Source rectangles do not intersect, or an error occurred.

Remarks
If there is no intersection, an empty rectangle is returned in pre/Dest.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Chapter 8. Window Functions 8-205

WinlntersectRect -
Intersect Rectangle

Example Code
This example determines the intersection of two rectangles and places the result in a third rectangle

structure.

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

BOOL fSuccess; /* success indicator
HAB hab; /* anchor-block handle
RECTL prclRectl = {e.e.1ee.1ee}; /* rectangle 1
RECTL prc1Rect2 = {e,e.2ee,2ee}; /* rectangle 2
RECTL prclDest; /* destination rectangle

fSuccess = WinintersectRect(hab, &prclDest, &prclRectl,
&prc1Rect2);

8-206 PM Programming Reference

*/
*/
*/
*/
*/

WinlnvalidateRect -
Invalidate Rectangle

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnlnvalldateRect (HWND hwnd, PRECTL prclPrc, BOOL flncludeClippedChildren)

This function adds a rectangle to a window's update region.

Parameters
hwnd (HWND) - input

Handle of window whose update region is to be changed:

HWND_DESKTOP This function applies to the whole screen (or desktop)

Other Handle of window whose update region is to be changed.

prclPrc (PRECTL) - input
Update rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

NULL The whole window is to be added into the window's update region.

Other Rectangle to be added to the window's update region.

flncludeClippedChildren (BOOL) - input
Invalidation-scope indicator:

TRUE Include the descendants of hwnd in the invalid rectangle.

FALSE Include the descendants of hwnd in the invalid rectangle, but only if the parent does not
have a WS_CLIPCHILDREN style.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The update region is a subregion of a window that is deemed "invalid" or incorrect in visual terms
and in need of redrawing.

If the window has a CS_SYNCPAINT style, it is redrawn during the processing of this function and the
update region should be NULL on return from this function.

If the window has a WS_CLIPCHILDREN style with part of its update region overlapping child
windows with a CS_SYNCPAINT style, those children are updated before this function returns.

This function should not be called in response to a WM_PAINT request for windows of style
CS_SYNCPAINT. CS_SYNCPAINT means that windows are updated synchronously when invalidated,

Chapter 8. Window Functions 8-207

WinlnvalidateRect -
Invalidate Rectangle

which generates a WM_PAINT message. Thus, invalidating the window in response to a WM_PAINT
message would cause another invalidate, and another WM_PAINT, and so on.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_ERASEWINDOW
• WM_PAINT

Example Code
This example gets the dimensions of the window and calls WinlnvalidateRect to invalidate the
window. The application will be sent a WM_PAINT message with the entire window as the update
rectangle.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwnd;
RECTL rel;

/* parent window
/* update region

WinQueryWindowRect(hwnd, &rel);

WinlnvalidateRect(hwnd,
&rel,
FALSE);

/*window to invalidate */
/* invalid rectangle */
/* do not include children */

8-208 PM Programming Reference

*/

*/
*/

Win Invalidate Region
Invalidate Region

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnlnvalldateRegion (HWND hwnd, HRGN hrgn, BOOL flncludeCllppedChlldren)

This function adds a region to a window's update region.

Parameters
hwnd (HWND) - input

Handle of window whose update region is to be changed.

HWND_DESKTOP This function applies to the whole screen (or desktop).

Other Handle of window whose update region is to be changed.

hrgn (HRGN) - input
Handle of the region to be added to the update region of the window.

NULLHANDLE The whole window is to be added into the window's update region.

Other Handle of the region to be added to the window's update region.

flncludeClippedChildren (BOOL) - input
Invalidation-scope indicator:

TRUE Include the descendants of hwnd in the invalid rectangle.

FALSE Include the descendants of hwnd in the invalid rectangle, but only if the parent does not
have a WS_CLIPCHILDREN style.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_HRGN_BUSY

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The update region is a subregion of a window that is deemed "invatid" or incorrect in visual terms
and is in need of redrawing.

If the window has a CS_SYNCPAINT style, it is redrawn during the processing of this function and the
update region should be NULL on return from this function.

If the window has a WS_CUPCHILDREN style with part of its update region overlapping child
windows with a CS_SYNCPAINT style, those children are updated before this function returns.

This function should not be called in response to a WM_PAINT request for windows of style
CS_SYNCPAINT. CS_SYNCPAINT means that windows are updated synchronously when invalidated,

Chapter 8. Window Functions 8-209

WinlnvalidateRegion
Invalidate Region

which generates a WM_PAINT message. Thus, invalidating the window in response to a WM_PAINT
message would cause another invalidate, another WM_PAINT, and so on.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlsWindowShowing
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_ERASEWINDOW
• WM_PAINT

Example Code
This example invalidates the entire window by adding the whole window to the window's update
region using WinlnvalidateRegion. This single call accomplishes the same as paired calls to
WinQueryWindowRect and WinlnvalidateRect. If less than the entire window is desired, the NULL
value in the second parameter can be replaced with a region handle that corresponds to a subregion
of the window.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwnd; /* window handle

WinlnvalidateRegion(hwnd, NULLHANDLE, 0);

8-210 PM Programming Reference

*/

*/

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnlnvertRect {HPS hps, PRECTL prclRect)

This function inverts a rectangular area.

Parameters
hps (HPS) - input

Presentation-space handle.

The presentation space contains the rectangle to be inverted.

prclRect {PRECTL) - input
Rectangle to be inverted.

WinlnvertRect -
Invert Rectangle

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Inversion is a logical-NOT operation and has the effect of flipping the bits of each pel.

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

Chapter 8. Window Functions 8-211

WinlnvertRect -
lnve:rt Rectangle

Example Code
Thjs example inverts a rectangle if the mouse button is released {WM_BUTTON1UP) within the
rectangle (WinPtlnRect); the presentation space handle is obtained via WinBeginPaint.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

BOOL fSuccess; /* success i ndi ca tor *I
HAB hab; /* anchor-block handle */
RECTL prcl Rectl = {0,0, 100, 100}; /* rectangle *I
HWND hwnd; /* client window handle */
HPS hps; /* presentation-space handle *I
POINTL ptl; /*current mouse position */
MPARAM mpl; /* Parameter 1 (x,y) point value */

case WM BUTTONlUP:
ptl.x = (LONG) SHORTlFROMMP(mpl);
ptl.y = (LONG) SHORT2FROMMP(mpl);

if (WinPtlnRect(hab, &prclRectl, &ptl))
{
hps = WinBeginPaint(hwnd, NULLHANDLE, &prclRectl);
fSuccess = WinlnvertRect(hps, &prclRectl);
WinEndPaint(hps);
}

8-212 PM Programming Reference

WinlsChild

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnlsChild (HWND hwndChlld, HWND hwndParent)

This function tests if one window is a descendant of another window.

Parameters
hwndChlld (HWND) - input

Child-window handle.

hwndParent (HWND) - input
Parent-window handle.

Returns
Related indicator:

TRUE Child window is a descendant of the parent window, or is equal to it

Is Child

FALSE Child window is not a descendant of the parent, or is an Object Window (even if
hwndParent is specified as the desktop or HWND_DESKTOP), or an error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetOwner
• WinSetParent

Example Code
This example uses WinlsChild to determine if one window is a descendant of another window.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND
HWND

hwndChild;
hwndParent;

/* child window to check
/* parent window to check

if (WinisChild(hwndChild, hwndParent))
{
/* hwndChild is a descendant of hwndParent */
}

else
{
/* hwndChild is not a descendant of hwndParent */
}

*/
*/

Chapter 8. Window Functions 8-213

WinlsControlEnabled
Is Control Enabled

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinlsControlEnabled (HWND hwndDlg, USHORT usld)

This macro returns the state (enable/disable) of the specified item in the dialog template within a
dialog box.

Parameters
hwndDlg (HWND) - input

Dialog window handle.

usld (USHORT) - input
Identity of the specified item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinlsControlEnabled(hwndDlg, usld)
((BOOL)WinlsWindowEnabled(WinWindowFromID(hwndDlg, usld)))

This function requires the existence of a message queue.

Related Functions
• WinlsWindowEnabled
• WinWindowFromlD

8-214 PM Programming Reference

Example Code

WinlsControlEnabled -
Is Control Enabled

This example uses WinlsControlEnabled to determine if a selected control is valid; if it is not, an
error message box is displayed.

#define INCL_WINWINDOWMGR
#define INCL_WINDIALOGS
#include <os2.h>

/* Window Manager Functions */
/* Window Dialog Mgr Functions */

HWND hwndDlg;
MPARAM mpl;
USHORT usld;

/* dialog window
/* Parameter 1

*/
*/
/ / dialog control id

case WM CONTROL:
usld = SHORTlFROMMP(mpl);

if (!WinlsControlEnabled(hwndDlg, usld))
{
WinMessageBox(HWND_DESKTOP,

hwndDlg,

}

"Control is not valid",
"Error notification",
0,
MB_NOICON I MB_OK);

/*client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

Chapter 8. Window Functions 8-215

WinlsMenultemChecked
Is Menu Item Checked

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinlsMenultemChecked (HWND hwndMenu, USHORT usld)

This macro returns the state (checked/not checked) of the identified menu item.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinlsMenultemChecked(hwndMenu, usld)
((BOOL)WinSendMsg(hwndMenu,

MM QUERYITEMATTR,
MPFROM2SHORT(usld, TRUE),
MPFROM2SHORT(MIA_CHECKED)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• MM_QUERYITEMATTR

8-216 PM Programming Reference

WinlsMenultemChecked
Is Menu Item Checked

Example Code
This example uses WinlsMenultemChecked to query the check attribute of a selected menu item

before setting the check state of that menu item.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

US HORT
HWND
BOOL
BOOL
MPARAM
MPARAM

usltemld;
hwndMenu;
usChkstate;
fSuccess;
mpl;
mp2;

case WM MENUSELECT:

/* menu item id
/* menu handle
/* new checked state
/* success indicator
/* Parameter 1 (menu item id)
/* Parameter 2 (menu handle)

usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* query current check state */
usChkstate = WinlsMenultemChecked(hwndMenu, usltemld);

/* set menu item check state */

*/

*/
*/
*/
*/
*/
*/

fSuccess = WinCheckMenultem(hwndMenu, usitemld, usChkstate);

Chapter 8. Window Functions 8-217

WinlsMenultemEnabled
Is Menu Item Enabled

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnlsMenultemEnabled (HWND hwndMenu, USHORT usld)

This macro returns the state (enable/disable) of the menu item specified.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinlsMenultemEnabled(hwndMenu, usld)
(l(BOOL)WinSendMsg(hwndMenu,

MM_QUERYITEMATTR,
MPFROM2SHORT(usld, TRUE),
MPFROMSHORT(MIA_DISABLED)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• MM_QUERYITEMATIR

8-218 PM Programming Reference

WinlsMenultemEnabled
Is Menu Item Enabled

Example Code
This example uses WinlsMenultemEnabled to determine if a selected menu item is available for use.
If the item is not valid (WinlsMenultemValid) or not enabled, a beep is emitted.

#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#define INCL_DOSPROCESS
#include <os2.h>

/* Window Message Functions
/* Window Menu Functions
/* OS/2 Process Functions

MPARAM mpl;
MPARAM mp2;
USHORT usltemld;
HWND hwndMenu;

/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)
/* menu item id
/* menu handle

case WM MENUSELECT:
usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* if menu item is not valid or enabled, emit beep */
if (!WinlsMenultemValid(hwndMenu, usltemld) II

!WinlsMenultemEnabled(hwndMenu, usltemld})
DosBeep(800,100L);

*/
*/
*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-219

WinlsMenultemValid
Is Menu Item Valid

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnlsMenultemValid (HWND hwndMenu, USHORT usld)

This macro returns TRUE if the specified item is a valid choice.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinlsMenultemValid{hwndMenu, usld)
{{BOOL)WinSendMsg(hwndMenu,

MM ISITEMVALID,
MPFROM2SHORT{usld, TRUE),
MPFROMSHORT(FALSE)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• MM_ISITEMVALID

8-220 PM Programming Reference

WinlsMenultemValid
Is Menu Item Valid

Example Code
This example uses WinlsMenultemValid to determine if a selected menu item is available for use. If

the item is not enabled (WinlsMenultemEnabled) or not valid, a beep is emitted.

#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#define INCL_DOSPROCESS
#include <os2.h>

/* Window Message Functions
/* Window Menu Functions
/* OS/2 Process Functions

MPARAM mpl;
MPARAM mp2;
USHORT usltemld;
HWND hwndMenu;

/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)
/* menu item id
/* menu handle

case WM MENUSELECT:
usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* if menu item is not valid or enabled, emit beep*/
if (!WinlsMenultemValid(hwndMenu, usltemld) II

!WinlsMenultemEnabled(hwndMenu, usltemld))
DosBeep(800,100L);

*/
*/
*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-221

WinlsPhyslnputEnabled -
Is Physical Input Enabled

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM */

BOOL WlnlsPhyslnputEnabled (HWND hwndDeskTop)

This function returns the status of hardware input (on/off).

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Returns
Return value.

TRUE If input is enabled.

FALSE If input is disabled.

Related Functions
• WinEnablePhyslnput

Example Code
This example uses WinlsPhyslnputEnabled to determine if physical input is enabled; if it is not, then
WinEnablePhyslnput is called to enable it.

#define INCL_WININPUT
#include <os2.h>

/* Window Input Functions

if (!WinlsPhyslnputEnabled(HWND_DESKTOP))
/* enable queuing of physical input */
WinEnablePhyslnput(HWND_DESKTOP, TRUE);

8-222 PM Programming Reference

*/

WinlsRectEmpty -
Is Rectangle Empty

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WlnlsRectEmpty (HAB hab, PRECTL prclprc)

This function checks whether a rectangle is empty.

Parameters
hab (HAB) - input

Anchor-block handle.

prclprc (PRECTL) - input
Rectangle to be checked.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT can also be used, if supported by the language.

Returns
Empty indicator:

TRUE Rectangle is empty

FALSE Rectangle is not empty.

Remarks
A rectangle has area if its left edge coordinate is less than its right edge coordinate, and its bottom
edge coordinate is less than its top edge coordinate. An empty rectangle is one with no area.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Example Code
This example checks if a rectangle is empty (i.e. it has no area).

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

BOOL fEmpty; /* empty indicator
HAB hab; /* anchor-block handle
RECTL prclRectl = {e,e,1ee,1ee}; /* rectangle

fEmpty = WinlsRectEmpty(hab, &prclRectl);

*/
*/
*/

Chapter 8. Window Functions 8-223

WinlsThreadActive
Is Thread Active

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnlsThreadAcllva (HAB hab)

This function determines whether the active window belongs to the calling execution thread.

Parameters
hab (HAB) - input

Anchor-block handle of calling thread.

Returns
Active-window indicator:

TRUE Active window belongs to calling thread

FALSE Active window does not belong to calling thread.

Related Functions
• WinEnableWindow
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

8-224 PM Programming Reference

WinlsThreadActive
Is Thread Active

Example Code
This example uses WinlsThreadActive to verify that the active window belongs to the current thread
before querying and enabling the system menu window via WinlsWindowEnabled and
WinEnableWindow.

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

HAB hab;
HWND hwndSysmenu;
HWND hwnd;

/* anchor-block handle
/* system menu window
/* parent window

BOOL fSuccess; /* success indicator

/* if the active window belongs to the current thread, query the
enabled status of the system menu */

if (WinisThreadActive(hab))
{
/* obtain handle for system menu */
hwndSysmenu = WinWindowFromID(hwnd,FID_SYSMENU);

/* if system menu is not enabled, enable it */
if (!WinisWindowEnabled(hwndSysmenu))

fSuccess = WinEnableWindow(hwndSysmenu, TRUE);
}

*/
*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-225

WinlsWindow
Is Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnlsWlndow (HAB hab, HWND hwnd)

This function determines if a window handle is valid.

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle.

Returns
Validity indicator:

TRUE Window handle is valid

FALSE Window handle is not valid.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

8-226 PM Programming Reference

An invalid window handle was specified.

Example Code

WinlsWindow -
Is Window

This example uses WinlsWindow to verify that the parent window is valid before querying and
enabling the system menu window via WinlsWindowEnabled and WinEnableWindow.

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

HAB hab;
HWND hwndSysmenu;
HWND hwnd;
BOOL fSuccess;

/* anchor-block handle
/* system menu window
/* parent window
/* success indicator

*/
*/

*/
*/
*/
*/

/* if handle specifies a valid window, query the enabled status of
the system menu */

if (WinisWindow(hab, hwnd))
{
/* obtain handle for system menu */
hwndSysmenu = WinWindowFromID(hwnd,FID_SYSMENU);

/* if system menu is not enabled, enable it */
if (!WinisWindowEnabled(hwndSysmenu))

fSuccess = WinEnableWindow(hwndSysmenu, TRUE);
}

Chapter 8. Window Functions 8-227

WinlsWindowEnabled -
Query Window Enabled State

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnlsWlndowEnabled (HWND hwnd)

This function returns the enabled/disabled state of a window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Enabled-state indicator:

TRUE Window is enabled

FALSE Window is not enabled.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

8-228 PM Programming Reference

An invalid window handle was specified.

WinlsWindowEnabled
Query Window Enabled State

Example Code
This example uses WinlsWindowEnabled to check that the parent window is currently disabled

before calling WinEnableWindow to enable the system menu window.

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

HAB hab;
HWND hwndSysmenu;
HWND hwnd;
BOOL fSuccess;

/* anchor-block handle
/* system menu window
/* parent window
/* success indicator

/* obtain handle for system menu */
hwndSysmenu = WinWindowFromID{hwnd,FID_SYSMENU);

/* if system menu is not enabled, enable it */
if {!WinlsWindowEnabled{hwndSysmenu))

fSuccess = WinEnableWindow{hwndSysmenu, TRUE);

*/
*/

*/
*/
*/
*/

Chapter 8. Window Functions 8-229

WinlsWindowShowing
Query Window Showing

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnlsWindowShowlng (HWND hwnd)

This function determines whether any part of the window hwnd is physically visible.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Showing state indicator:

TRUE Some part of the window is displayed on the screen

FALSE No part of the window is displayed on the screen.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function is useful for applications that constantly output new information. If value FALSE is
returned (that is, no part of the window is physically visible), the application can choose not to
redraw, since redrawing is not necessary.

If an application is using WinlsWindowShowing, it must issue the call every time it has new
information that needs to be updated. If this is not done, invalid screen content could result. The
alternative to this approach for a constantly-updating application that has new information is for it to
invalidate its window and redraw within a WinBeginPaint - WinEndPaint sequence.

FALSE is returned if the PM session is not currently visible.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

8-230 PM Programming Reference

WinlsWindowShowing -
Query Window Showing

Example Code
This example uses WinlsWindowShowing to check if any part of the window is physically visible

before causing a redraw of the window via WinlnvalidateRect.

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

HWND hwnd;
RECTL rel;

/* window handle
/* update region

/* if any part of the window is visible, cause a redraw */
if (WinlsWindowShowing(hwnd))

{
WinQueryUpdateRect(hwnd, &rel);

WinlnvalidateRect(hwnd,
&rel,
FALSE);

}

/*window to invalidate */
/* invalid rectangle */
/* do not include children */

*/
*/

*/
*/

Chapter 8. Window Functions 8-231

WinlsWindowVisible -
Query Window Visibility

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnlsWlndowVlslble (HWND hwnd)

This function returns the visibility state of a window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Visibility-state indicator:

TRUE Window and all its parents have the WS_VISIBLE style bit set on

FALSE Window or one of its parents have the WS_ VISIBLE style bit set off.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
Because fVisible reflects only the values of WS_ VISIBLE style bits, fVisible may be set to TRUE even
if hwnd is totally obscured by other windows.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

8-232 PM Programming Reference

WinlsWindowVisible -
Query Window Visibility

Example Code
This example uses WinlsWindowVisible to query the visibility state of a window (i.e. the value of the

WS_ VISIBLE style bits) when the window is created, so that the window can be designated as visible,

if necessary, by calling WinEnableWindowUpdate.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwnd; /* parent window
BOOL fSuccess; /* success indicator

case WM_CREATE:
/* if window has WS VISIBLE off, set state to visible */
if (!WinisWindowVisible(hwnd))

{
/* set state to visible and cause WM_PAINT message */
fSuccess = WinEnableWindowUpdate(hwnd, TRUE);
}

*/

*/
*/

Chapter 8. Window Functions 8-233

WinLoadAccelTable -
Load Accelerator Table

#define INCL_WINACCELERATORS I* Or use INCL_WIN or INCL_PM */

HACCEL WlnloadAccelTable (HAB hab, HMODULE Resource, ULONG ldAccelTable)

This function loads an accelerator table.

Parameters
hab (HAB) - input

Anchor-block handle.

Resource (HMODULE) - input
Resource identity containing the accelerator table.

Module handle returned by the DosloadModule or DosGetModHandle functions referencing a
dynamic link library containing the resource or NULLHANDLE for the application's module.

ldAccelTable (ULONG) - input
Accelerator-table identifier, within the resource file.

Returns
Accelerator-table handle.

Possible returns from WinGetlastError

PMERR_RESOURCE_NOT_FOUND The specified resource identity could not be found.

Remarks
This function returns a different value when called twice in succession with the same parameter
values.

The accelerator table is owned by the process from which this function is issued. It cannot be
accessed directly from any other process. If it still exists when the process terminates, it is
automatically deleted by the system.

Related Functions
• WinCopyAccelTable
• WinCreateAccelTable
• WinDestroyAccelTable
• WinQueryAccelTable
• WinSetAccelTable
• WinTranslateAccel

8-234 PM Programming Reference

WinLoadAccelTable -
Load Accelerator Table

Example Code
This example loads an accelerator-table, using the application defined accelerator id, from a

resource using the resource handle returned by DosloadModule or DosQueryModuleHandle. The

returned table handle is then used by WinCopyAccelTable to copy the table into an in-memory

accelerator table structure.

#define INCL_WINACCELERATORS
#define INCL_DOSMODULEMGR
#include <os2.h>

/* Window Accelerator Functions */
/* Module Manager Functions */

#define ACCEL_ID 1

ULONG ulCopied; /* bytes copied */
HACCEL hAccel; /*Accelerator-table handle */
ACCELTABLE pacctAccelTable;/* Accelerator-table data area */
ULONG ulCopyMax; /* Maximum data area size */
ULONG idAccelTable=ACCEL_ID;/* Accelerator-table identifier */
HAB hab; /* anchor-block handle */
HMODULE hmodDLL; /* resource module *I
CHAR LoadError[lGG]; /*object name buffer for Dosload */
ULONG re; /* return code *I

/* obtain resource handle */
re= DosloadModule(LoadError, sizeof(LoadError), 11 RES.DLL 11

,

&hmodDLL);

if (re == e)
hAccel = WinloadAccelTable{hab, hmodDLL, idAccelTable);

ulCopyMax = sizeof(pacctAccelTable);
if {hAccel)

ulCopied = WinCopyAccelTable(hAccel, &pacctAccelTable,
ulCopyMax);

Chapter 8. Window Functions 8-235

WinLoadDlg
Load Dialog

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

HWND WlnLoadDlg (HWND hwndParent, HWND hwndOwner, PFNWP pDlgProc,
HMODULE Resource, ULONG idDlgld, PVOID pCreateParams)

This function creates a dialog window from the dialog template idD/gid in Resource and returns the
dialog window handle.

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window:

HWND_DESKTOP The desktop window

HWND_OBJECT Object window

Other Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

The actual owner window is calculated using the algorithm specified below.

pDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

Resource (HMODULE) - input
Resource identity containing the dialog template.

NULLHANDLE Use the application's .EXE file.

Other Module handle returned from the DosloadModule or DosGetModHandle
functions.

idDlgid (ULONG) - input
Dialog-template identity within the resource file.

It is also used as the identity of the created dialog window.

pCreateParams (PVOID) - input
Application-defined data area.

This is passed to the dialog procedure in the WM_INITDLG message.

Returns
Dialog-window handle:

NULL Dialog window not created

Other Dialog window handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT_FOUND

PMERR_RESOURCE_NOT _FOUND

8-236 PM Programming Reference

An invalid window handle was specified.

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

The specified resource identity could not be found.

Remarks

Win Load Dig
Load Dialog

Unless window style WS_ VISIBLE is specified for the dialog window in the DIALOG statement within
the dialog template, the dialog window is created as an invisible window.

The dialog window owner may be modified, in order to ensure acceptable results if it is later
processed as a modal dialog using the WinProcessDlg or WinGetDlgMsg functions. A search is
made up the parent hierarchy, starting at the window specified by the hwndOwner parameter, until a
child of the window specified by the hwndParent is found. If such a window exists, it is made the
actual owner of the dialog. If no such window exists the actual owner of the dialog is set to
NULLHANDLE.

This function returns immediately after creating the dialog window. A WM_INITDLG (Default Dialogs)
message is sent to the dialog procedure before this function returns.

This function should not be used while pointing device capture is set (see WinSetCapture).

As each of the controls defined within the template of this dialog window is created during the
processing of this function, the dialog procedure may receive various control notifications before this
function returns.

A dialog window can be destroyed with the WinDestroyWindow function.

Because windows are created from the template, strings in the template are processed with
WinSubstituteStrings. Any resultant WM_SUBSTITUTESTRING messages are sent to the dialog
procedure before this function returns.

When the child windows of the dialog are created, the WinSubstituteStrings function is used to allow
the child windows to perform text substitutions in their window text. If any of the child window text
strings contain the percent(%) substitution character, there is an upper limit of 256 on the length of
the text string, after it is returned from the substitution.

If a dialog template (typically compiled using the resource compiler) references another resource
(for example an icon resource for an icon static control), this function always searches for that
resource in the .EXE file. If an application wishes to keep resources referenced by a dialog template
in a .DLL library, these resources must be loaded by an explicit function call during the processing of
the WM_INITDLG message.

Note: In general, it is better to create the dialog window invisible as this allows for optimization. In
particular, an experienced user can type ahead, anticipating the processing in the dialog
window.

In this instance, there may be no need to display the dialog window at all, as the user might
have finished the interaction before the window can be displayed.

This is in fact how the WinProcessDlg function works; it does not display the dialog window
while there are still WM_CHAR messages in the input queue, but allows these to be processed
first.

Related Functions
• WinCreateDlg
• WinDefDlgProc
• WinDismissDlg
• WinDlgBox
• WinGetDlgMsg
• WinProcessDlg

Chapter 8. Window Functions 8-237

Win Load Dig
Load Dialog

Related Messages
• WM_INITDLG (Default Dialogs)
• WM_SUBSTITUTESTRING
• WM_CHAR

Example Code
This example uses WinloadDlg to load a dialog template from the application's .EXE file.

,l/defi ne INCL_WINDIALOGS
#include <os2.h>

/* Window Dialog Mgr Functions */

HWND hwndOwner;
HWND hwndDlg;

/* owner window */
*/
*/ PFNWP GenericDlgProc;

/* Dialog-window handle
/* dialog process

hwndDlg = WinloadDlg(HWND_DESKTOP,
hwndOwner,
GenericDlgProc,
0L,
DLG ID,
NULL);

8-238 PM Programming Reference

/* parent is desk top */
/* owner is main frame */

/* dialog procedure */
/* load from resource file */

/* dialog resource id */
/* no dialog parameters */

#define INCL_WINWORKPLACE

WinLoadFilelcon
Load File Icon

HPOINTER WinLoadFllelcon (PSZ pszFlleName, BOOL f Private)

The WinloadFilelcon function will return a pointer to an icon which is associated with the file
specified by pszFileName.

Parameters
pszFileName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the file whose icon will be
loaded.

fPrivate (BOOL) - input
Icon usage flag:

TRUE A private copy of this icon is requested. This flag should be used if the application
needs to modify the icon.

FALSE A shared pointer to this icon is requested. This flag should be used if application needs
to display the icon without modifying it. This should be used whenever possible to
optimize system resource use.

Returns
Success indicator:

NULL Error occurred.

OTHER Handle to an icon.

Remarks
The icon will be retrieved in the following order until an icon has been found:

• .ICON extended attribute
• .ICO file in same directory with same prefix
• Application specific icon (if PM executable or MS Windows executable*)
• PM application icon (if PM executable)
• MS Windows application icon (if MS Windows application executable)*
• OS/2 application icon (if OS/2 full-screen only executable)
• OS/2 window icon (if OS/2 window compatible executable)
• DOS windowed application icon (if DOS windowed executable)
• Program application (if unknown type executable)
• Data icon specified by associated application
• Data icon of associated application
• Data file icon (if not program or directory)
• Directory icon (if directory)

The HPOINTER returned in fPrivate should be freed by the caller via WinFreeFilelcon when it is no
longer being used.

Chapter 8. Window Functions 8-239

WinLoadFilelcon
Load File Icon

Related Functions
• WinSetFilelcon
• WinFreeFilelcon

8-240 PM Programming Reference

#define INCL_WINHELP I* Or use INCL_WIN or INCL_PM */

WinLoadHelpTable
Load Help Table

BOOL WlnLoadHelpTable (HWND hwndHelplnstance, ULONG ldHelpTable, HMODULE Module)

This function identifies the module handle and identity of the help table to the instance of the help
manager.

Parameters
hwndHelplnstance (HWND) - input

Handle of an instance of the help manager.

This is the handle returned by the WinCreateHelplnstance call.

ldHelpTable (ULONG) - input
Identity of the help table.

Module (HMODULE) - input
Handle of the module which contains the help table and help subtable resources.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
An application specifies or changes the handle of the module which contains the help table or the
identity of the help table.

This function corresponds to the HM_LOAD_HELP_TABLE message that identifies the identifier of a
help table and the handle of the module which contains the help table and its associated help
subtables.

Related Functions
• WinAssociateHelplnstance
• WinCreateHelplnstance
• WinCreateHelpTable
• WinDestroyHelplnstance
• WinQueryHelplnstance

Related Messages
• HM_LOAO~HELP_TABLE

Chapter 8. Window Functions 8-241

WinLoadHelpTable
Load Help Table

Example Code
BOOL LoadHelpTable(HWND hWnd, USHORT usResource, PSZ pszModuleName)
{

}

BOOL bSuccess = FALSE;
HMODULE hmodule;
HWND hwndHelp;
PSZ pszObjNameBuf[80];

/* get the DLL loaded */
if(!DosloadModule(pszObjNameBuf, sizeof(pszObjNameBuf),

pszModuleName, &hmodule))
{

}

/* get the associated help instance */
hwndHelp = WinQueryHelpinstance(hWnd);

if(hwndHelp)
{

}

/* pass address of help table to the help manager */
bSuccess = WinloadHelpTable(hwndHelp, usResource, hmodule);

/* return success indicator */
return bSuccess;

8-242 PM Programming Reference

#define INCL WINLOAD /*Or use INCL_WIN or INCL_PM */

HLIB WlnLoadLlbrary (HAB hab, PSZ pszLlbname)

This function makes the library available to the application.

Parameters
hab (HAB) - input

Anchor-block handle.

pszLlbname (PSZ) - input
Library name.

Returns
Library handle:

NULLHANDLE Library not successfully loaded

Other Library handle.

Remarks

WinLoadLibrary -
Load Library

This function makes the library pszLibname {containing procedures, or resources, or both) available
to the application. All of the dynamic link libraries have the .DLL filename extension by default.

Related Functions
• WinDeletelibrary
• WinDeleteProcedure
• WinLoadProcedure

Example Code
This example loads the RES.DLL resource/procedure library, returning a library handle that is then
used by WinloadProcedure to load procedures from that library.

#define INCL_WINLOAD
#include <os2.h>

/* Window Load Functions

PFNWP
HAB
HLIB
char
char

pWndproc; /* procedure pointer
hab; /* anchor-block handle
hlib; /* library handle
pszlibname[l0]= 11 RES.DLL 11

; /*library name string
pszProcname[l0]= 11 WndProc 11

; /* procedure name string

/* load RES.DLL */
hlib = Winloadlibrary(hab, pszlibname);

/* load WndProc */
pWndproc = WinloadProcedure(hab, hlib, pszProcname);

*/

*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-243

WinloadMenu
Load Menu

#define INCL_WINMENUS I* Or use INCL_WIN or INCL_PM */

HWND WlnloadMenu (HWND hwndOwner, HMODULE Resource, ULONG ldMenuld)

This function creates a menu window from the menu template idMenuid from Resource, and returns
in hwndMenu the window handle for the created window.

Parameters
hwndOwner (HWND) - input

Owner- and parent-window handle:

HWND_DESKTOP The desktop window

HWND_OBJECT Object window

Other Specified window.

Resource (HMODULE) - input
Resource identifier.

NULLHANDLE The resource is in the &periodEXE file of the application.

Other The module handle returned by the DosLoadModule or DosGetModHandle call.

ldMenuld (ULONG) - input
Menu identifier within the resource file.

Returns
Menu-window handle.

Rema·rks
The menu window is created with its parent and owner set to hwndOwner, and with identity
FID_MENU. If hwndOwner is HWND_OBJECT or a window handle returned from
WinQueryObjectWindow, the menu window is created as an object window.

Action bar menus are created as child windows of the frame window and are initially visible.
Submenus are initially created as object windows that are owned by the window frame.

Related Functions
• WinCreateMenu
• WinPopupMenu

8-244 PM Pro_gramming Reference

Example Code

Win Load Menu
Load Menu

This example creates a menu window from the menu template (idMenuld) located in 'RES.DLL' and
returns a menu handle which is used by WinPopupMenu.

#define INCL_WINWINDOWMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Manager Functions
/* Window Menu Functions

HWND hwndMenu;
HWND hwndOwner;
HMODULE hmodDLL;
ULONG idMenuid;
BOOL fSuccess;
HWND hwndParent;
ULONG flOptions;

/* menu window
/* owner window
/* resource handle
/* resource menu id
/* success indicator
/* parent window
/* pop-up menu options

if (DosQueryModuleHandle(11 RES.DLL 11 ,&hmodDLL))
hwndMenu = WinLoadMenu(hwndOwner, hmodDLL, idMenuid);

flOptions = PU_MOUSEBUTTONlDOWN I PU_KEYBOARD I PU_MOUSEBUTTONl;
fSuccess = WinPopupMenu(hwndParent, hwndOwner, hwndMenu, 0, 50,

0, fl Options);

*/
*/

*/
*/
*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-245

WinLoadMessage
Load Message

#define INCL_WINWINDOWMGR r Or use INCL_WIN or INCL_PM */

LONG WinLoadMessage (HAB hab, HMODULE hmodMod, ULONG ulld, LONG lcchMax,
PSZ pszBuffer)

This function loads a message from a resource, copies the message to the specified buffer, and
appends a terminating null character.

Parameters
hab (HAB) - input

Anchor-block handle.

hmodMod (HMODULE) - input
Module handle.

ulld (ULONG) - input
Message identifier.

lcchMax (LONG) - input
Specifies the size of buffer.

pszBuffer (PSZ) - input
Points to the buffer that receives the message

Returns
The length of the string returned.

This excludes the terminating null, and has the following values:

0 Error

Other A maximum value of (/cchMax-1).

Remarks
Message resources contain up to 16 messages each. The resource ID is calculated from the id
parameter value passed to this function as follows:

resource ID = (id I 16) + 1

To save storage on disk and in memory, applications should number their message resources
sequentially, starting at some multiple of 16.

Related Functions
• WinloadString

8-246 PM Programming Reference

Example Code

Win Load Message
Load Message

This example loads an error message from ERR.DLL using the resource handle from

DosloadModule and uses the message in a message box.

#define INCL_WINWINDOWMGR
#define INCL_DOSMODULEMGR
#define INCL_WINDIALOGS
#include <os2.h>
#define ERRMSG_ID 1

/* Window Manager Functions */
/* Module Manager Functions */
/* Window Dialog Mgr Functions */

LONG l Length; /* length of string * /
HAB hab; /* anchor-block handle *I
HMODULE hmodDLL; /* Handle of resource module */
LONG lBufferMax = 100;/* Size of buffer */
char pszErrMsg [100] ; /* error message * /
CHAR LoadError[100]; /*object name buffer for DosLoad */
ULONG re; /* return code * /
HWND hwnd; /* window handle * /

/* obtain resource handle */
re= DosLoadModule(LoadError, sizeof(LoadError), "ERR.DLL",

&hmodDLL);

/* load message from resource */
if (re == 0)

{
/* load error message string */
lLength = WinLoadMessage(hab, hmodDLL, ERRMSG_ID, lBufferMax,

pszErrMsg);

/* display error message box */
WinMessageBox(HWND_DESKTOP,

hwnd, /*client-window handle */
/* message */
/* title of the message */
/* message box id */
/* icon and button flags */

pszErrMsg,
"Error message",
0,
MB_NOICON I MB_OK);

}

Chapter 8. Window Functions 8-247

WinLoadPointer
Load Pointer

#define INCL_WINPOINTERS I* Or use INCL_WIN or INCL_PM */

HPOINTER WlnloadPolnter (HWND hwndDeskTop, HMODULE Resource, ULONG idPolnter)

This function loads a pointer from a resource file into the system.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop window

Other Desktop-window handle returned by WinQueryDesktopWindow.

Resource (HMODULE) - input
Resource identity containing the pointer definition.

NULLHANDLE Use the resources file for the application.

Other Module handle returned by the DosLoadModule or DosGetModHandle call
referencing a dynamic-link library containing the resource.

idPointer (ULONG) - input
Identifier of the pointer to be loaded.

Returns
Pointer handle:

NULLHANDLE Error has occurred

Other Handle of loaded pointer.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

PMERR_RESOURCE_NOT_FOUND

Remarks

An invalid window handle was specified.

The specified resource identity could not be found.

A new copy of the pointer is created each time this function is called. The pointer created by this
function can be destroyed using the WinDestroyPointer function. To get one of the standard system
pointers, use the WinQuerySysPointer function.

The pointer is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

8-248 PM Programming Reference

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Example Code

WinLoadPointer -
Load Pointer

This example calls WinloadPointer to load an application defined pointer. When processing the
WM_MOUSEMOVE message, the loaded pointer is displayed by calling WinSetPointer.

#define INCL_WINPOINTERS
#include <os2.h>

/* Window Pointer Functions */

HPOINTER hptrCrossHair;/* pointer handle */

case WM CREATE:
hptrCrossHair = WinloadPointer(HWND~DESKTOP,

0L, /* l-0ad from .exe file */
IDP_CROSSHAIR); /* identifies the pointer */

case WM MOUSEMOVE:
WinSetPointer(HWND_DESKTOP, hptrCrossHair);

... Chapter 8. Window Functions 8-249

WinLoadProcedure
Load Procedure

#define INCL_WINLOAD /*Or use INCL_WIN or INCL_PM */

PFNWP WlnLoadProcedure (HAB hab, HLIB hllbLlbhandle, PSZ pszProcname)

This function loads the window or dialog procedure from a specified dynamic link library.

Parameters
hab (HAB) - input

Anchor-block handle.

hllbLlbhandle (HUB) - input
Library handle.

pszProcname (PSZ) - input
Procedure name.

Returns
Window-procedure identifier:

NULL Procedure not successfully loaded

Other Window-procedure identifier.

Remarks
This function loads the window or dialog procedure pszProcname from the library hlibLibhandle.

Related Functions
• WinDeletelibrary
• WinDeleteProcedure
• Winloadlibrary

Example Code
This example loads the WndProc procedure, returning a pointer to the procedure, from the RES.DLL
library, based on the library handle returned by Winloadlibrary.

#define INCL_WINLOAD
#include <os2.h>

/* Window Load Functions

PFNWP
HAB
HUB
char
char

pWndproc; /* procedure pointer
hab; /* anchor-block handle
hlib; /* library handle
pszlibname[10]="RES.DLL"; /*library name string
pszProcname[10]= 11 WndProc 11

; /* procedure name string

/* load RES.DLL */
hlib = Winloadlibrary(hab, pszlibname);

/* load WndProc */
pWndproc = WinloadProcedure(hab, hlib, pszProcname);

8-250 PM Programming Reference

*/

*/
*/
*/
*/
*/

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

WinLoadString
Load String

LONG WlnLoadSlrlng (HAB hab, HMODULE Resource, ULONG idSlrlng, LONG IBufferMax,
PSZ pszBuffer)

This function loads a string from a resource.

Parameters
hab (HAB) - input

Anchor-block handle.

Resource (HMODULE) - input
Resource identity containing the string.

NULLHANDLE Use the application's own resources file.

Other Module handle returned by the DosloadModule or DosGetModHandle call
referencing a dynamic-link library containing the resource.

ldSlrlng (ULONG) - input
String identifier.

IBufferMax (LONG) - input
Size of buffer.

pszBuffer (PSZ) - output
Buffer that is to receive the string.

Returns
The length of the string returned.

This excludes the terminating null, and has the following values:

0 Error

Other A maximum value of (IBufferMax-1).

Possible returns from WinGetlastError

PMERR_RESOURCE_NOT _FOUND The specified resource identity could not be found.

Remarks
This function loads a string resource identified by the idString and the Resource parameters into the
pszBuffer parameter, and appends a terminating null character.

RT_STRING resources (string resources) contain up to 16 strings each (see "Resource (.RES) File
Specification" on page 32-27). The resource ID is calculated from the idString passed to this
function as follows:

resource ID = (idString / 16) + 1

To save storage on disk and in memory, applications should number their string resources
sequentially, starting at some multiple of 16.

Chapter 8. Window Functions 8-251

WinLoadString
Load String

Related Functions
• WinCompareStrings
• WinNextChar
• WinPrevChar
• WinSubstituteStrings
• WinUpper
• WinUpperChar

Example Code
This example loads a string from RES.DLL using the resource handle from DosLoadModule.

#define INCL_WINWINDOWMGR
#define INCL_DOSMODULEMGR
#include <os2.h>
#define STRING_ID 1

/* Window Manager Functions
/* Module Manager Functions

*/
*/

LONG l Length; /* length of string * /
HAB hab; /* anchor-block handle * /
HMODULE hmodDLL; /* Handle of resource module */
ULONG idString = STRING_ID; /* String identifier */
LONG lBufferMax = 19;/* Size of buffer */
char pszString1[10}; /* first string */
CHAR LoadError[100]; /*object name buffer for DosLoad */
ULONG re; /* return code * /

/* obtain resource handle */
re= DosLoadModule(LoadError, sizeof(LoadError), 11 RES.DLL 11

,

&hmodDLL);

/* load string from resource */
if (re == 0)

lLength = WinLoadString(hab, hmodDLL, idString, lBufferMax,
pszStringl);

8-252 PM Programming Reference

WinLockVisRegions
Lock Visible Regions

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnLockVisReglons (HWND hwndDeskTop, BOOL flock)

This function locks or unlocks the visible regions of all the windows on the screen, preventing any of

the visible regions from changing.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle or HWND_DESKTOP.

flock (BOOL) - input
Indicates whether the visible regions are being locked or unlocked:

TRUE Lock the visible regions
FALSE Unlock the visible regions.

Returns
Success indicator.

TRUE Successful.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

This function is useful to threads that need to prevent window visible regions from changing while
some screen operation, such as copying screen pels into a memory bit map, is being performed.

Any other thread that tries to alter the visible regions is blocked while the visible regions are locked.
While the visible regions are locked, no messages must be sent and no functions called that can

send messages.

Only one thread can lock the visible regions at any one time. The same thread can call
WinLockVisRegions multiple times. A lock count is maintained by the system and is incremented

each time a locking call is made, and decremented each time an unlocking call is made. The visible

regions are unlocked when the count is zero.

Nole: Locking the visible regions does not prevent painting of a window by another process.

Chapter 8. Window Functions 8-253

WinLockVisRegions -
Lock Visible Regions

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code
This example uses WinlockVisRegions to prevent any window's visible region from changing while

a screen operation is executing. WinLockVisRegions is called before the screen operation to lock
the visible regions and again after the operation to unlock the regions.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

BOOL fSuccess; /* success indicator

/* lock visible regions */
fSuccess = WinlockVisRegions(HWND_DESKTOP, TRUE);

/*

. executing screen operation

*/

/* unlock visible regions */
fSuccess = WinlockVisRegions(HWND_DESKTOP, FALSE);

8-254 PM Programming Reference

*/

*/

WinLockWindowUpdate
Lock Window Update

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnLockWindowUpdate (HWND hwndDeskTop, HWND hwndLockUpdate)

This function disables or enables output to a window and its descendants.

Parameters
hwndDeskTop (HWND) - input

Desktop handle of the screen containing the window to be locked:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

hwndLockUpdate (HWND) - input
Handle of window in which output is to be prevented:

NULLHANDLE Enable output in the locked window and its descendants.

Other Handle of the window in which output is to be prevented. Output is also
prevented in the descendants of the window.

Returns
Success indicator:

TRUE Successful operation.

FALSE Error occurred.

Remarks
This function is used by threads that need to draw on an area of the screen over which they have no
control. For example, the user interface sizing and moving calls use this call when drawing the
shadow box, as a window is sized or moved.

All threads continue to run while the window is disabled; only output is prevented.

If one thread disables the window, other threads using this function are blocked until the first enables
the window, although they can still receive messages.

This function does not prevent screen group switches, because these may be necessary to handle
"hard errors" in other screen groups.

Chapter 8. Window Functions 8-255

WinLockWindowUpdate
Lock Window Update

Example Code
This example disables output to a window and its children during a move operation {WM_MOVE) and

then re-enables output once the move is finished.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions

HWND hwndlock;
BOOL fSuccess;

/* handle of window to be (un)locked
/* success indicator

case WM_MOVE:
/* lock output */
fSuccess = WinlockWindowUpdate(HWND_DESKTOP, hwndlock);

/*

• execute window move

*/

/* unlock output */
fSuccess = WinlockWindowUpdate(HWND_DESKTOP, NULLHANDLE);

8-256 PM Programming Reference

*/

*/
*/

WinMakePoints -
Make Points

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WlnMakePoints (HAB hab, PWPOINT pwptppt, ULONG ccount)

This function converts points to graphics points.

Parameters
hab (HAB) - input

Anchor-block handle.

pwptppt (PWPOINT) - input/output
Points to be converted.

The data type of these points after conversion is POINTL.

ccount (ULONG) - input
Number of points to be converted.

Must be positive.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function converts the array of points from a WPOINT data structure into a POINTL data structure.

Example Code
This example calls WinMakePoints to convert a 3-element array of points from window points
{WPOINT structure) to graphics points {POINTL structure).

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

HAB hab; /* anchor-block handle
BOOL fSuccess; /* success i ndi ca tor
/* array of window points */
WPOINT pwptppt[3] = {e,e,e,e,2e,0,5e,e,1ee,0,6e,0};

/* convert points */
fSuccess = WinMakePoints(hab, pwptppt, 3);

*/
*/

Chapter 8. Window Functions 8-257

WinMakeRect -
Make Rectangle

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WlnMakeRect (HAB hab, PWRECT pwrcprc)

This function converts a rectangle to a graphics rectangle.

Parameters
hab (HAB) - input

Anchor-block handle.

pwrcprc (WRECT) - input/output
Rectangle to be converted.

The data type of the rectangle after conversion is RECTL.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function converts a rectangle from a WRECT data structure into a RECTL data structure.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Example Code
This example calls WinMakeRect to convert a window rectangle (WRECT structure) to a graphics
rectangle (RECTL structure).

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

HAB hab;
BOOL fSuccess;
/* window rectangle */

/* anchor-block handle
/* success indicator

WRECT pwrcprc = {a,a,e,a,se,a,sa,e};

/* convert rectangle */
fSuccess = WinMakeRect(hab, &pwrcprc);

8-258 PM Programming Reference

*/
*/

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM *I

WinMapDlgPoints -
Map Dialog Points

BOOL WlnMapDlgPolnts (HWND hwndDlg, PPOINTL aptlPolnts, ULONG ulCount,
BOOL fOptlons)

This function maps points from dialog coordinates to window coordinates, or from window
coordinates to dialog coordinates.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

aptlPolnts (PPOINTL) - input/output
Coordinate points to be mapped.

The mapped points are substituted.

ulCount (ULONG) - input
Number of coordinate points.

fOptlons (BOOL) - input
Calculation control:

TRUE The points are in dialog coordinates and are to be mapped into window coordinates
relative to the window specified by the hwndD/g parameter.

FALSE The points are in window coordinates relative to the window specified by the hwndD/g
parameter and are to be mapped into dialog coordinates.

Returns
Coordinates-mapped indicator:

TRUE Coordinates successfully mapped

FALSE Coordinates not successfully mapped.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Related Functions
• WinMapWindowPoints

Example Code
This example calls WinMapDlgPoints to map a point from dialog coordinates to window coordinates
relative to the dialog window.

#define INCL_WINDIALOGS
#include <os2.h>

/* Window Dialog Mgr Functions */

HWND hwndDlg;
BOOL fSuccess;
POINTL aptlPoint;

/* handle of dialog window
/* success indicator
/* point to be mapped

/* map point to relative window coordinates */
fSuccess = WinMapDlgPoints(hwndDlg, &aptlPoint, 1, TRUE);

*/
*/
*/

Chapter 8. Window Functions 8-259

WinMapWindowPoints
Map Window Points

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnMapWlndowPolnts (HWND hwndFrom, HWND hwndTo, PPOINTL aptlPolnts,
LONG ICount)

This function maps a set of points from a coordinate space relative to one window into a coordinate
space relative to another window.

Parameters
hwndFrom (HWND) - input

Handle of the window from whose coordinates points are to be mapped:

HWND_DESKTOP Points are mapped from screen coordinates

Other Points are mapped from window coordinates.

hwndTo (HWND) - input
Handle of the window to whose coordinates points are to be mapped:

HWND_DESKTOP .Points are mapped into screen coordinates

Other Points are mapped into window coordinates.

aptlPolnts (PPOINTL) - input/output
Points to be mapped to the new coordinate system.

ICount (LONG) - input
Number of points to be mapped.

apt/Points can be a RECTL structure, in which case this parameter should have the value 2.

Note: This is not supported in all languages.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID..,.HWND

Related. Functions
• WinMapDlgPoints

8-260 PM Programming Reference

An invaJid window handle was specified.

WinMapWindowPoints -
Map Window Points

Example Code
This example calls WinMapWindowPoints to map a mouse point on the desktop window to a mouse
point in the client window and then checks whether the mouse pointer is inside the client area or not.

#define INCL_WINWINDOWMGR
#define INCL_WINRECTANGLES
#define INCL_WINPOINTERS
#include <os2.h>

/* Window Manager Functions */
/* Window Rectangle Functions */
/* Window Pointer Functions */

HAB hab;
HWND hwndClient;
BOOL fSuccess;
POINTL ptlMouse;
RECTL rclWork;

/* anchor-block handle
/* handle of client window
/* success indicator
/* mouse pointer position
/* client area

/* get current mouse pointer position */
WinQueryPointerPos(HWND_DESKTOP, &ptlMouse);

/* map from desktop to client window */
fSuccess = WinMapWindowPoints(HWND_DESKTOP, hwndClient,

&ptlMouse, 1);

/* check if new mouse position is inside the client area */
WinQueryWindowRect(hwndClient, &rclWork);
if (WinPtlnRect(hab, &rclWork, &ptlMouse))

{
/*pointer is in client area */
}

*/
*/
*/
*/
*/

Chapter 8. Window Functions 8-261

WinMessageBox
Message Box

#define INCL WINDIALOGS /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

USHORT WlnMessageBox (HWND hwndParent, HWND hwndOwner, PSZ pszText,
PSZ pszTitle, USHORT usWlndow, ULONG flStyle)

This function creates, displays, and operates a message box window.

Parameters
hwndParent (HWND) - input

Parent-window handle of the created message-box window:

HWND_DESKTOP The message box is to be main window

Other Parent-window handle.

hwndOwner (HWND) - input
Requested owner-window handle of the created message-box window.

The actual owner window is calculated using the algorithm specified in the description of the
WinLoadDlg function.

pszText (PSZ) - input
Message-box window message.

The text of the message to be displayed within the message-box window. If multiple lines are
required, carriage-return characters must be inserted into the text at appropriate points.

pszTitle (PSZ) - input
Message-box window title:

The text for the title should not be longer than 40 characters. If text longer than this is supplied,
text centering is still performed, even though the beginning and end of the string are not visible.

NULL The text Error is to be displayed as the title of the message-box window.

Other The text to be displayed as the title of the message-box window.

usWindow (USHORT) - input
Message-box window identity.

This value is passed to the HK_HELP hook if the WM_HELP message is received by the
message-box window.

flStyle (ULONG) - input
Message-box window style.

These values may be combined using the logical-OR operation but only one value can be taken
from each of the following groups:

Button or Button Group

MB_OK Message box contains an OK pushbutton.

MB_OKCANCEL Message box contains both OK and CANCEL pushbuttons.

MB_CANCEL Message box contains a CANCEL pushbutton.

MB_ENTER Message box contains an ENTER pushbutton.

MB_ENTERCANCEL Message box contains both ENTER and CANCEL pushbuttons.

MB_RETRYCANCEL Message box contains both RETRY and CANCEL pushbuttons.

MB_ABORTRETRYIGNORE Message box contains ABORT, RETRY, and IGNORE pushbuttons.

MB_YESNO Message box contains both YES and NO pushbuttons.

8-262 PM Programming Reference

MB_ YESNOCANCEL

Help button

MB_HELP

Color or Icon

MB_NOICON

MB_ICONHAND

MB_ICONQUESTION

MB_ICONEXCLAMATION

MB _ICONASTERISK

MB_INFORMATION

MB_QUERY

MB_WARNING

MB_ERROR

Default action

MB_DEFBUTTON1

MB_DEFBUTTON2

MB_DEFBUTTON3

Modality indicator

MB_APPLMODAL

MB_SYSTEMMODAL

Mobility indicator

MB_MOVEABLE

Win Message Box
Message Box

Message box contains YES, NO, and CANCEL pushbuttons.

Message box contains a HELP pushbutton.

When this is selected a WM_HELP message is sent to the window
procedure of the message box.

Message box is not to contain an icon.

Message box contains a hand icon.

Message box contains a question mark(?) icon.

Message box contains an exclamation point(!) icon.

Message box contains an asterisk(*) icon.

Message box contains a black information 'i' in a square box.

Message box contains a question mark in a square box.

Message box contains a black'!' in a square box.

Message box contains a STOP sign on a white background.

The first button is the default selection. This is the default case, if none
of MB_DEFBUTTON1, MB_DEFBUTTON2, and MB_DEFBUTTON3 is
specified.

The second button is the default selection.

The third button is the default selection.

Message box is application modal. This is the default case. Its owner
is disabled; therefore, do not specify the owner as the parent if this
option is used.

Message box is system modal.

Message box is moveable.

The message box is displayed with a title bar and a system menu,
which shows only the Move, Close, and Task Manager choices, which
can be selected either by use of the pointing g device or by
accelerator keys.

If the user selects Close, the message box is removed and the
usResponse is set to MBID_CANCEL, whether or not a cancel button
existed within the message box.

Chapter 8. Window Functions 8-263

Win Message Box
Message Box

Returns
User-response value:

MBID_ENTER ENTER pushbutton was selected

MBID_OK OK pushbutton was selected

MBID_CANCEL CANCEL pushbutton was selected

MBID_ABORT ABORT pushbutton was selected

MBID_RETRY RETRY pushbutton was selected

MBID_IGNORE IGNORE pushbutton was selected

MBID_YES YES pushbutton was selected

MBID_NO NO pushbutton was selected

MBID_ERROR Function not successful; an error occurred.

Possible returns from WinGetlastError

PMERRJNVALID_HWND

PMERR_INVALID_FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The message box consists of a message and a simple dialog with the user.

This function behaves in a similar way to WinDlgBox, and the remarks concerning modality which
are documented under that call, and also under the WinloadDlg and WinProcessDlg functions, also
apply here.

This function should not be used while pointing device capture is set (see WinSetCapture).

If the keyboard is used to cycle from one window to the next, the message box and its parent window
are considered to be next to each other in the sequence.

If a message box is created as part of the processing of a dialog window, where the dialog window
has not been dismissed, the dialog window should be made the owner of the message box window.

If a system modal message box is created to indicate to the user that the system is running out of
memory, the strings passed into this call must not be taken from a resource file, as an attempt to
load the resource file could fail because of the lack of memory. However, such a message box can
safely use the hand icon because this icon is always memory-resident.

The size of the message box is determined as follows:

• The minimum width of a message box is enough to display 40 characters of average width.

• The minimum height of a message box is enough to display 2 lines.

• The text of a message box is word-wrapped by default. If more than two lines are required to
display the text, the height of the message box is increased up to a maximum of two thirds of the
screen height. The height of a message box can never exceed this value.

• If necessary, the width of a message box is increased to allow room to display the title.

Text is wrapped at word boundaries (spaces). If a word is too big to fit on one line, the start of the
word is not wrapped to the next line, but stays adjacent to the text it follows, and the word is split at
the box boundary.

The message box is centered on the screen.

8-264 PM Programming Reference

Win Message Box
Message Box

If a message box window has a CANCEL button, the MBID_CANCEL value is returned if either the
Escape or Cancel keys are pressed. If the message box window has no CANCEL button, pressing the
Escape key has no effect.

Example Code
This example shows a typical use of the WinMessageBox function when debugging an application.

The C run-time function sprintf is used to format the body of the message. In this case, it converts
the coordinates of the mouse pointer (retrieved with the WinQueryPointerPos function) into a string.
The string is then displayed by calling WinMessageBox.

#define INCL_WINDIALOGS
#define INCL_WINPOINTERS
#include <os2.h>

/* Window Dialog Mgr Functions */
/* Window Pointer Functions */

CHAR szMsg [100] ;
POINTL ptl;
HWND hwndClient;

/* message
/* message data
/* ~lient window handle

WinQueryPointerPos(HWND_DESKTOP, &ptl);
sprintf{szMsg, 11 x = ld y = ld 11

, ptl .x, ptl .y);
WinMessageBox(HWND_DESKTOP,

hwndClient,
szMsg,
"Debugging information",
e.
MB_NOICON I MB_OK);

/* client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

*/
*/
*/

.Chapter 8. Window Functions 8-265

WinMultWindowFromlDs -
Get Multiple Windows From Identities

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

LONG WlnMultWlndowFromlDs (HWND hwndParent, PHWND ahwnd, ULONG ulFlrst,
ULONG ulLast)

This function finds the handles of child windows that belong to a specified window and have window
identities within a specified range.

Parameters
hwndParent (HWND) - input

Parent-window handle.

ahwnd (PHWND) - output
Window handles.

This array must contain (u/Last- u/First + 1) elements. The handle of a window, whose identity
is WID (in the range u/First to u/Last), has a zero-based index in the array of (WID - u/First). If
there is no window for a window identity within the range, the corresponding element in the
array is NULLHANDLE.

ulFlrst (ULONG) - input
First window identity value in the range (inclusive).

ulLast (ULONG) - input
Last window identity value in the range (inclusive).

Returns
Number of window handles returned:

0 No window handles returned

Other Number of window handles returned.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function can be used to enumerate all the items in a dialog group, or to enumerate all the frame
controls of a standard window. This function is faster than individual calls to the WinWindowFromlD
function.

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinlsChild
• WinQueryWindow
• WinSetOwner
• WinSetParent

8-266 PM Programming Reference

WinMultWindowFromlDs -
Get Multiple Windows From Identities

Example Code
This example finds the handles of all frame controls of a specified window via the
WinMultWindowFromlDs call. The handles are returned in an array of window handles, and after the
call completes, the handle for the minmax control window is assigned to a variable if a handle for it
was found (i.e. handle not equal to NULLHANDLE).

#define INCL_WINWINDOWMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

/* Window Manager Functions
/* Window Frame Functions

*/
*/

HWND hwndParent; /* parent window *I
HWND ahwnd[FID_CLIENT-FID_SYSMENU]; /*window handle array */
HWND hwndMinMax; /* minmax control window handle */
LONG lHandles; /* number of handles returned */

/* get all control handles between and including system menu and
client windows */

lHandles = WinMultWindowFromIDs(hwndParent, ahwnd, FID_SYSMENU,
FID_CLIENT);

/* if any handles returned and the handle for the minmax control is
not null, assign a variable to the minmax handle*/

if (lHandles > 0 && ahwnd[FID MINMAX -
FID SYSMENU] != NULLHANDLE)
hwndMinMax = ahwnd[FID_MINMAX - FID_SYSMENU];

Chapter 8. Window Functions 8-267

WinNextChar -
Move to N.ext Character

#define INCL_WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

PSZ WlnNextChar (HAB hab, ULONG ulCodepage, ULONG ulCountry, PSZ. pszCurrentChar)

This function moves to the next character in a string.

Parameters
hab (HAB) - input

Anchor-block handle.

ulCodepage (ULONG) - input
Code page.

ulCountry (ULONG) - input
Country code.

psz.CurrentChar (PSZ) - input
Current character in a null-terminated string.

Returns
Next character in the null-terminated string:

NULL End of string reached

Other Next character.

Possible returns from WinGetlastError

PMERR_INVALID _STRING_PARM The specified string parameter is invalid.

Remarks
This function handles DBCS strings.

Related Functions
• WinCompareStrings
• WinloadString
• WinPrevChar
• WinSubstituteStrings
• WinUpper
• WinUpperChar

8-268 PM Programming Reference

Example Code

WinNextChar -
Move to Next Character

This example uses WinNextChar to traverse a string until a specified character is found, while
maintaining an index to point to the character's position.

#define INCL_WINCOUNTRY
#include <os2.h>

/* Window Country Functions */

HAB hab; /* anchor-block handle */
ULONG idCodepage=437; /* Code page identity of both strings */
ULONG idCountryCode=l;/* Country code */
char pszStringl[l0]; /*first string */
char *pszNextChar; /* next character * /
char *pszCurrentChar; /* current character */
ULONG ullndex; /* array index */

/* set string */
strcpy(pszStringl, 11 Compare 11

);

pszCurrentChar = pszStringl;
do

{
pszNextChar = WinNextChar(hab, idCodepage, idCountryCode,

(psz)pszCurrentChar);

if (pszCurrentChar[e] == 1 p1
)

break;

ullndex++;
}

while (pszNextChar !=NULL);

Chapter 8. Window Functions 8-269

WinOffsetRect -
Offset Rectangle

#define INCL_WINRECTANGLES I* Or use INCL_WIN or INCL_PM */

BOOL WlnOffsetRect (HAB hab, PRECTL prclrect, LONG lex, LONG Icy)

This function offsets a rectangle.

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - input/output
Rectangle to be offset.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

lex (LONG) - input
x-value of offset.

Icy (LONG) - input
y-value of offset.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function offsets the coordinates of prclrect by adding the value of the lex parameter to both the
left and right coordinates, and the value of the Icy to both the top and bottom coordinates.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

8-270 PM Programming Reference

Example Code

WinOffsetRect -
Offset Rectangle

This example moves a rectangle in response to the movement of the mouse (WM_MOUSEMOVE);
the rectangle is moved (offset) based on the distance moved by the mouse since its previous
position.

#define INCL_WINRECTANGLES
#include <os2.h>

/* Window Rectangle Functions */

int main(void)
{
BOOL fSuccess; /* success i ndi ca tor *I
HAB hab; /* anchor-block handle */
RECTL prclRectl = {e,e,1ee,1ee}; /* rectangle */
LONG lex; /* Horizontal expansion */
LONG lcy; /* Vertical expansion */
POINTL ptlPrev; /* previous mouse position */
POINTL ptlCurr; /* current mouse position */
MPARAM mpl; /* Parameter 1 (x,y) point value */

case WM MOUSEMOVE:
ptlCurr.x = (LONG) SHORTlFROMMP(mpl);
ptlCurr.y = (LONG) SHORT2FROMMP(mpl);

/* calculate distance from previous mouse position */
lex= (LONG)(ptlPrev.x - ptlCurr.x);
lcy = (LONG)(ptlPrev.y - ptlCurr.y);

fSuccess = WinOffsetRect(hab, &prclRectl, lex, lcy);

Chapter 8. Window Functions 8-271

WinOpenClipbrd
Open Clipboard

#define INCL_WINCLIPBOARD /*Or use INCL_WIN or INCL_PM */

I BOOL WlnOpenCllpbrd (HAB hab)

This function opens the clipboard.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Success indicator:

TRUE Clipboard successfully opened

FALSE Error occurred.

Remarks
The process reading the clipboard does not become the owner of the object in it; it must not update
or free the object.

This function prevents other threads and processes from examining or changing the clipboard
contents.

If another thread or process already has the clipboard open, this function does not return until the
clipboard is closed.

Messages can be received from other threads and processes during the processing of this function.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• Wi nQueryCI ipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Example Code
This example opens the clipboard for use by the current process.

#define INCL_WINCLIPBOARD
#include <os2.h>

/*Window Clipboard Functions */

BOOL fSuccess;
HAB hab;

/* success indicator
/* anchor-block handle

fSuccess = WinOpenClipbrd(hab);

8-272 PM Programming Reference

*/
*/

WinOpenWindowDC
Open Window Device Context

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I HDC WlnOpenWlndowDC (HWND hwnd)

This function opens a device context for a window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Device-context handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
hdc is used to associate a presentation space with the window.

Note: The window device context is automatically closed when its associated window is destroyed.
ltmust not be closed with the DevCloseDC call.

The visible region of the device context is updated automatically as windows are rearranged.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvaHdateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinReaHzePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Chapter 8. Window Functions 8-273

WinOpenWindowDC -
Open Window Device Context

Example Code
This example calls WinOpenWindowDC to open a device context for a window, the handle to which
is then used to associate a presentation space with the window.

#define INCL_WINWINDOWMGR
#define INCL_GPICONTROL
#include <os2.h>

/* Window Manager Functions
/* Gpi Control Functions

HWND hwnd; /* window handle
HPS hps; /* presentation-space handle
SIZEL pagesize={OL,OL}; /* Presentation page size
HAB hab; /* Anchor-block handle
HOC hdc; /* device-context handle

case WM_CREATE: /* Window just created

*/
*/

*/
*/
*/
*/
*/

*/

hdc = WinOpenWindowDC(hwnd);

hps = GpiCreatePS(hab,

/* Open window device context */

hdc,
&pagesize,
PU PELS I
GPIF LONG I
GPl(ASSOC);

8-274 PM Programming Reference

/* Create GPI PS and */
/* associate with DC */
/* default size */
/* pixel units */
/* 4-byte coordinates */
/* associate with device */

WinPeekMsg
Peek Message

#define INCL WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnPeekMsg (HAB hab, PQMSG pqmsgmsg, HWND hwndFllter, ULONG ulFlrst,
ULONG ulLast, ULONG flOptlons)

This function inspects the thread's message queue and returns to the application with or without a
message.

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsgmsg (PQMSG) - output
Message structure.

hwndFllter (HWND) - input
Window filter.

ulFlrst (ULONG) - input
First message identity.

ulLast (ULONG) - input
Last message identity.

flOptlons (ULONG) - input
Options.

If neither of the following flags is specified, the message is not removed. If both of the following
flags are specified, the message is removed:

PM_REMOVE Remove message from queue

PM_NOREMOVE Do not remove message from queue.

Returns
Message-available indicator:

TRUE Message available

FALSE No message available.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

This function is identical to the WinGetMsg function, except that it does not wait for the arrival of a
message. The message can be left on the queue, by using f/Options.

For details of hwndFilter, u/First, and u/Last, see the WinGetMsg function.

The window handle within pqmsgmsg is null if the message is posted to the queue with a hwnd that
is null.

Chapter 8. Window Functions 8-275

WinPeekMsg
Peek Message

Related Functions
• WinCancelShutdown
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• W:inQueryMsgT1me
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example uses WinPeekMsg to count the total number of pending messages for the window

corresponding to hwndFilter.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Message Functions
/* Window Manager Functions

HAB
QMSG
HWND
ULONG
ULONG

hab;
qmsg;
hwndFilter;
fl Options;
ulMsgCount=O;

/* anchor-block handle
/* message
/*message queue filter
/* peek options
/* message count

/* don 1 t remove messages */
flOptions = PM_NOREMOVE;

/* count number of messages for filter window */
whi 1 e (Wi nPeekMsg (hab, &qmsg, hwndFil ter, 0, 0, fl Options))

ulMsgCount++;

a.:216 PM Programming.Reference

*/
*/

*/
*/
*/
*/
*/

WinPopupMenu
Pop-up Menu

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnPopupMenu (HWND hwndParent, HWND hwndOwner, HWND hwndMenu, LONG Ix,
LONG ly, ULONG ldltem, USHORT fsOptlons)

This function causes a pop-up menu to be presented.

Parameters
hwndParent (HWND) - input

Parent-window handle.

hwndOwner (HWND) - input
Owner-window handle.

The owner window receives all the notification messages generated by the pop-up menu.

hwndMenu (HWND) - input
Pop-up menu-window handle.

The pop-up menu must have been created, by use of either the WinCreateMenu or WinLoadMenu
functions.

Ix (LONG) - input
x-coordinate of the pop-up menu position.

The value is in window coordinates relative to the origin of the parent window.

The x-coordinate of the origin of the pop-up menu can be affected, if either of the
PU_POSITIONONITEM or PU_HCONSTRAIN values of the fsOptions parameter is also set.

ly (LONG) - input
y-coordinate of the pop-up menu position.

The value is in window coordinates relative to the origin of the parent window.

They-coordinate of the origin of the pop-up menu can be affected, if either of the
PU_POSITIONONITEM or PU_VCONSTRAIN values of the fsOptions parameter is also set.

ldltem (ULONG) - input
Item identity.

This is used if either the PU_POSITIONONITEM or PU_SELECTITEM of the fsOptions parameter is
also set.

fsOptlons (USHORT) - input
Options.

Position
Pop-up menu position.

PU _POSITIONONITEM Position the pop-up menu so that the item identified by the idltem
parameter of the top-level menu specified by the hwndMenu
parameter lies directly under the pointer.

The position of the pop-up menu can be affected, if either the
PU_HCONSTRAIN or or PU_VCONSTRAIN values of the fsOptions
parameter is also set.

This value also causes the pop-up menu item identified by the
idltem to be selected.

Chapter 8. Window Functions 8-277

WinPopupMenu
Pop-up Menu

Restrain
Pop-up menu position constraints.

These options allow the application to ensure that the pop-up menu is visible on the
desktop.

PU_HCONSTRAIN Constrain the pop-up menu so that its width is wholly visible on the
desktop.

If necessary the position of the pop-up menu will be adjusted so that its
left edge is coincident with the left edge of the desktop or that its right
edge is coincident with the right edge of the desktop.

PU_VCONSTRAIN Constrain the pop-up menu so that its height is wholly visible on the
desktop.

lnltlalState

If necessary the position of the pop-up menu will be adjusted so that its
top edge is coincident with the top edge of the desktop or that its bottom
edge is coincident with the bottom edge of the desktop.

Initial input state of the pop-up menu.

This allows the user interaction which caused the application to summon the pop-up menu
to be carried through as the initial user interaction with the pop-up menu.

For example, this permits the application to support the user interface in which mouse
button 1 can be depressed to cause the pop-up menu to be presented and held down while
moving the mouse over the menu in order to select another menu item and then released to
dismiss the menu.

Only one of the following values can be selected:

PU_MOUSEBUTTON1DOWN The pop-up menu is initialized with mouse button 1
depressed.

PU_MOUSEBUTTON2DOWN The pop-up menu is initialized with mouse button 2
depressed.

PU_MOUSEBUTTON3DOWN The pop-up menu is initialized with mouse button 3
depressed.

PU_NONE The pop-up menu is to be presented uninfluenced by the user
interaction which caused it to be summoned.

This is the default value.

Select
Item selection.

PU_SELECTITEM The item identified by idltem is to be selected. This is only valid if
PU_NONE is set in the lnitialState parameter.

Usage
Input device usage.

If the identified item is in a submenu of the pop-up menu, then all the
previous submenus in the menu hierarchy are presented with the
correct path to the identified item.

The window procedure controlling the pop-up menu must be informed of which input devices
are available for interaction with the pop-up menu.

These options are independent to those of the lnitia/State parameter. Therefore, if an
application indicates in the lnitialState parameter that the pop-up menu is to be initialized
with a particular user interaction, then the mechanism which permits that user interaction
would usually be specified in this parameter. In this way the user's expectation, that once a
device has been employed for the manipulation of the pop-up menu then that device can
continue to be used for that purpose, is fulfilled.

8-278 PM Programming Reference

Returns

WinPopupMenu
Pop-up Menu

It is valid to specify a user interaction as an initialization of the pop-up menu by an input

mechanism which is not identified as available for interaction with the pop-up menu. This

implies that the user cannot necessarily complete the interaction with the pop-up menu with

that input mechanism.

For example, if a pop-up menu is initialized with a mouse button depressed but that mouse

button is not identified as available for manipulating the pop-up menu, then that mouse

button can manipulate the pop-up menu until it is released. Assuming that the pop-up menu

is not dismissed when that mouse button is released, then the mouse button cannot be used

for further interaction with the pop-up menu, since it is not identified as available for that

use.

The following list shows the input device valid for interaction with the pop-up menu with

each option:

PU_KEYBOARD The keyboard.

PU_MOUSEBUTTON1 Mouse button 1.

PU_MOUSEBUTTON2 Mouse button 2.

PU_MOUSEBUTTON3 Mouse button 3.

Pop-up menu invoked indicator:

This function returns as soon as the pop-up menu has been invoked, which might be before the

user has completed interacting with the pop-up menu.

TRUE Pop-up menu successfully invoked.

FALSE Pop-up menu not successfully invoked.

Remarks
A pop-up menu is the unanchored equivalent of a pull-down menu, that is it can be positioned

anywhere rather than being associated with an action bar. Typically, pop-up menus are related to

specific objects, such as an icon, or with a particular area of the application's presentation space.

Once invoked, a pop-up menu behaves in exactly the same way as a pull-down menu.

Related Functions
• WinCreateMenu
• WinloadMenu

Chapter 8. Window Functions 8-279

WinPopupMenu
Pop-up Menu

Example Code
This example presents a pop-up menu (loaded from RES.DLL by WinloadMenu) with the following

characteristics: located at (0,50); initialized with mouse button 1 depressed; allowing keyboard and
mouse button 1 interaction.

#define INCL_WINWINDOWMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Manager Functions
/* Window Menu Functions

HWND hwndMenu;
HWND hwndOwner;
HMODULE hmodDLL;
ULONG idMenuid;
BOOL fSuccess;
HWND hwndParent;
ULONG flOptions;

/* menu window
/* owner window
/* resource handle
/* resource menu id
/* success indicator
/* parent window
/* pop-up menu options

if (DosQueryModuleHandle(11 RES.DLL 11 ,&hmodDLL))
hwndMenu = WinloadMenu(hwndOwner, hmodDLL, idMenuid);

flOptions = PU_MOUSEBUTTONlDOWN I PU_KEYBOARD I PU_MOUSEBUTTONl;
fSuccess = WinPopupMenu(hwndParent, hwndOwner, hwndMenu, 0, 50,

0, flOptions);

8-280 PM Programming Reference

*/
*/

*/
*/
*/
*/
*/
*/
*/

WinPostMsg
Post Message

#define INCL_WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnPostMsg (HWND hwnd, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function posts a message to the message queue associated with the window defined by hwnd.

Parameters
hwnd (HWND) - input

Window handle:

NULL The message is posted into the queue associated with the current thread. When the
message is received by using the WinGetMsg or WinPeekMsg functions, the hwnd
parameter of the QMSG structure is NULL.

Other Window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-posted indicator:

TRUE Message .successfully posted

FALSE Message could not be posted; for example, because the message queue was full.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The message contains hwnd, u/Msgid, mpParam1, mpParam2, and the time and pointer position
when this function is called.

WinPostMsg returns immediately, whUe WinSendMsg waits for the receiver to return.

A thread which does not have a message queue can still call WinPostMsg but cannot call
WinSendMsg.

Chapter 8. Window Functions .. ~1

WinPostMsg -
Post Message

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example posts a Set menu item checked attribute message (MM_SETITEMA TTR) to the
message queue associated with the window handle in response to a menu select message
(WM_MENUSELECT).

#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Message Functions
/* Window Menu Functions

BOOL
ULONG
MPARAM
MPARAM
US HORT
HWND

fResult;
ulMsgid;
mpl;
mp2;
usltemld;
hwndMenu;

case WM MENUSELECT:

/* message-posted indicator
/* message id
/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)
/* menu item id
/* menu handle

usltemld = SHORTlFROMMP(mpl);
hwndMenu = HWNDFROMMP(mp2);

/* initialize message id, parameters */
ulMsgid = MM_SETITEMATTR;
mpl = MPFROM2SHORT(usltemld, TRUE);
mp2 = MPFROM2SHORT(MIA_CHECKED, TRUE);

fResult = WinPostMsg(hwndMenu, ulMsgid, mpl, mp2);

8-282 PM Programming Reference

*/
*/

*/
*/
*/
*/
*/
*/

WinPostQueueMsg
Post Queue Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnPostQueueMsg (HMQ hmq, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function posts a message to a message queue.

Parameters
hmq (HMQ) - input

Message-queue handle.

ulMsgld (ULONG) - input
Message identifier.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred, or the queue was full.

Possible returns from WinGetLastError

PMERR_INVALID _HMQ An invalid message-queue handle was specified.

Remarks
This function can be used to post messages to any queue in the system.

It constructs a QMSG structure by setting its hwnd parameter to NULL, setting its msg, mp1, and mp2
parameters from the corresponding parameters of this function, and by deriving its time and pt/
parameters from the system time and pointer position when this function was called. The QMSG
structure is then placed on the specified queue.

Chapter 8. Window Functions 8-283

WinPostQueueMsg -
Post Queue Message

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example posts a Set menu item checked attribute message (MM_SETITEMATTR) to the

specified message queue in response to a menu select message (WM_MENUSELECT).

#define INCL_WINMESSAGEMGR
#define INCL_WINMENUS
#include <os2.h>

/* Window Message Functions
/* Window Menu Functions

BOOL
ULONG
HMQ
MPARAM
MPARAM
US HORT

fResult;
ulMsgid;
hmq;
mpl;
mp2.;
usltemld;

case WM MENUSELECT:

/* message-posted indicator
/* message id
/* message queue handle
/* Parameter 1 (rectl structure)
/* Parameter 2 (frame boolean)
/* menu item id

usitemid = SHORTlFROMMP{mpl);

/* initialize message id, parameters */
ulMsgid = MM~SETITEMATTR;
mpl = MPFROM2SHORT(usitemid., TRUE);
mp2 = MPFROM2SHORT(MIA_CHECKED, TRUE);

fResult = WinPostQueueMsg.(hmq, ulMsgid, mpl, mp2);

8-284 PM Programming Reference

*/
*/

*/
*/
*/
*/
*/
*/

WinPrevChar -
Move to Previous Character

#define INCL WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

PSZ WlnPrevChar (HAB hab, ULONG ulCodepage, ULONG ulCountry, PSZ pszStart,
PSZ pszCurrentChar)

This function moves to the previous character in a string.

Parameters
hab (HAB) - input

Anchor-block handle.

ulCodepage (ULONG) - input
Code page.

ulCountry (ULONG) - input
Country code.

pszStart (PSZ) - input
Character string that contains pszCurrentChar.

pszCurrentChar (PSZ) - input
Current character.

Returns
Previous character.

The previous character, or the first character if pszCurrentChar is the first character of pszStart.

Possible returns from WinGetlastError

PMERR_INVALID _STRING_PARM The specified string parameter is invalid.

Remarks
This function handles DBCS strings.

Related Functions
• WinCompareStrings
• WinloadString
• WinNextChar
• WinSubstituteStrings
• WinUpper
• WinUpperChar

Chapter 8. Window Functions 8-285

WinPrevChar -
Move to Previous Character

Example Code
This example uses WinPrevChar to return a pointer to the previous character in a string.

#define INCL_DOSNLS
#define INCL_WINCOUNTRY
#include <OS2.H>
#include <stdio.h>
#define CURRENT_COUNTRY e

main()
{
HAB hab; /* anchor-block handle. */
char string[] = "ABCDEFGHIJ";
char *ptoE = &string[4];
char *ptoD;
ULONG CodePage;
ULONG DataLength;
COUNTRYCODE Country;
COUNTRYINFO CtryBuffer;

/* List (returned) */
/*Length of list (returned) */

Country.country = CURRENT_COUNTRY;

DosQueryCp((ULONG)2,
&CodePage, /* get code page identifier of calling */

/* process. */
&DataLength);

/* first WORD contains the codepage. */
Country.codepage= (ULONG)HIUSHORT(CodePage);

/* get corresponding country code */
DosQueryCtrylnfo(sizeof(CtryBuffer), /*Length of data area*/

&Country,
&CtryBuffer,

&DataLength);

/* provided */
/* Input data structure */
/* Data area to be filled */
/* by function */
/* Length of data */

/* should return a pointer to character "D" in the string */

ptoD = WinPrevChar(hab,

printf(ptoE);
}

(ULONG)CodePage,
(ULONG)CtryBuffer.country,

(PSZ)string,
ptoE); /*pointer to character "E"

/* string.

8-286 PM Programming Reference

in the */
*/

#define INCL WINDIALOGS /*Or use INCL_WIN or INCL_PM */

I ULONG WlnProcessDlg (HWND hwndDlg)

WinProcessDlg
Process Modal Dialog

This function dispatches messages while a modal dialog window is displayed.

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

Returns
Reply value.

Value established by the WinDismissDlg function.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
If the dialog has an owner window, that window is disabled. This means that all user input to the

owner, and its descendants, is prevented.

This function then dispatches messages from the queue to the appropriate window or dialog
procedure until the dialog is dismissed by the WinDismissDlg function. This is usually done by the

dialog procedure on receipt of an appropriate message, but also occurs if the dialog procedure

passes a WM_COMMAND message to WinDefDlgProc or if a WM_QUIT message is encountered
before the dialog window is dismissed. In this latter case, WinProcessDlg itself issues a
WinDismissDlg function, and posts the WM_QUIT message back to the queue so that the application

main loop terminates in the normal way.

This function shows the window, if it is hidden, when the queue is empty. It is therefore possible for
the experienced user to type ahead and cause the dialog to be dismissed before it becomes visible.

The WinDismissDlg function hides the dialog window without destroying it, and also re-enables any

window that was disabled by this function.

This function does not return until a WinDismissDlg call is issued in one of the ways listed above.
This is true even if the application main window has not been disabled, for example because the

dialog window has no owner. In this case, the dialog will appear to the user to be modeless; the user
will continue to be able to interact with the application, and possibly create multiple instances of the

dialog. In such circumstances the operating system calls the application main window procedure

recursively before WinProcessDlg returns.

It is not possible to temporarily disable more than one window using this function; a dialog window

can have at most one owner. If an application has more than one main window which should be

disabled while the modal dialog is displayed, it can be done by setting appropriate hooks using the
WinSetHook function.

If the dialog window is a descendant of its owner, this function disables input to the dialog itself.
However, this situation can only occur by explicitly changing the window hierarchy. Dialog windows

are created using the WinLoadDlg or WinCreateDlg functions, which modify the owner window

specified on their parameter lists.

Chapter 8. Window Functions 8-287

WinProcessDlg -
Process Modal Dialog

Related Functions
• WinCreateDlg
• WinDefDlgProc
• WinDismissDlg
• WinDlgBox
• WinGetOlgMsg
• WinloadDlg

Related Messages
• WM_COMMAND
• WM_QUIT

Example Code
This function is used to process messages while a dialog is active.

#define INCL_WIN
#define INCL_WINDIALOGS
#include <OS2.H>
#define IDD_OPEN WM_USER+200
#define IDM_OPEN WM_USER+201

HWND hwndDlg;
HWND hwndFrame;
PFNWP OpenDlg;

/* Inside client procedure. */

switch(msg)
{
case WM_COMMAND:
/* The user has chosen a menu item. Process the selection */
/* accordingly. */

switch (SHORTlFROMMP(mpl))
{
case IDM OPEN:

if (WinDlgBox(HWND_DESKTOP,
hwndFrame, /* handle of the owner */

OpenDlg, /* dialog procedure address */
(ULONG)e, /* location of dialog resource */

IDD OPEN, /* resource identifier */
NULL)) { /* application-specific data */

WinProcessDlg(hwndDlg);
}

break;

}
break;

8-288 PM Programming Reference

WinPtlnRect -
Point In Rectangle

#define INCL_WINRECTANGLES /*Or use INCL_WIN or INCL_PM */

BOOL WlnPtlnRect (HAB hab, PRECTL prclrect, PPOINTL pptlpolnt)

This function queries whether a point lies within a rectangle.

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - input
Rectangle to be queried.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

pptlpoint (PPOINTL) - input
Point to be queried.

Returns
Success indicator:

TRUE pptlpoint lies within prclrect

FALSE pptlpoint does not lie within prclrect, or an error occurred.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Chapter 8. Window Functions 8-289

WinPtlnRect -
Point In Rectangle

Example Code
This example processes a WM_BUTTON1UP message, converts the mouse pointer coordinates into a
POINTL structure, and calls WinPtlnRect to determine if the mouse was clicked in the predefined
global rectangle.

#define INCL_WIN
#define INCL_WINRECTANGLES
#include <052.H>

HAB hab; /* anchor-block handle */
/* • */
/* • */
RECTL rclGlobal;
POINTL ptl;
HPS hps;

USHORT msg;
MPARAM mpl;

/* inside client window function. */

switch(msg}
{

}

case WM_COMMAND:
/* The user has chosen a menu item. Process the selection */
/* accordingly. */

switch (SHORTlFROMMP(mpl }
{

case WM BUTTONlUP:
ptl.x-= (LONG} SHORTlFROMMP(mpl};
ptl.y =(LONG} SHORT2FROMMP(mpl};

WinPtlnRect(hab, /* anchor-block handle */
&rclGlobal, /*address of the rectangle*/
&ptl}; /*address of the point */

break;
}

break;

8-290 PM Programming Reference

WinQueryAccelTable -
Query Accelerator Table

#define INCL_WINACCELERATORS /*Or use INCL_WIN or INCL_PM */

HACCEL WlnQueryAccelTable (HAB hab, HWND hwndFrame)

This function queries the window or queue accelerator table.

Parameters
hab (HAB) - input

Anchor-block handle.

hwndFrame (HWND) - input
Frame-window handle:

NULLHANDLE Return queue accelerator.

Other Return the window accelerator table, by sending the WM_QUERYACCELTABLE
message to hwndFrame.

Returns
Accelerator-table handle:

NULLHANDLE Error occurred

Other Accelerator-table handle.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinCopyAccelTable
• WinCreateAccelTable
• Win Destroy AccelTable
• WinLoadAccelTable
• WinSetAccelTable
• WinTranslateAccel

Related Messages
• WM_QUERYACCELTABLE

Chapter 8. Window Functions 8-291

WinQueryAccelTable -
Query Accelerator Table

Example Code
This example shows how to get the accelerator table for the frame window.

#define INCL_WINWINDOWMGR
#define INCL_WINACCELERATORS
#include <052.H>

HACCEL haccel;
HWND hwndFrame, hwndClient; /*window handles. */
HAB hab; /* anchor b 1 ock. *I

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT); /*get handle of parent, */

/* whi.ch is frame window. */

/* Now get the accel table for the frame window */
haccel = WinQueryAccelTable(hab,

hwndFrame);

8;.292 PM Programming Reference

WinQueryActiveWindow -
Query Active Window

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

HWND WlnQueryAcllveWindow (HWND hwndParent)

This function returns the active window for HWND_DESKTOP, or other parent window.

Parameters
hwndParent (HWND} - input

Parent-window handle for which the active window is required:

HWND_DESKTOP The desktop-window handle that causes this function to return the top-level
frame window.

Other Specified parent-window handle.

Returns
Active-window handle:

NULLHANDLE No window is active

Other Active-window handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinGetMinPosition
• WinQueryWindowPos
• WinSaveWindowPos
• WinSetActiveWindow
• WinSetMultWindowPos
• WinSetWindowPos

Example Code
This example shows how the WinQueryActiveWindow can be used to find the active window.

#define INCL_WINWINDOWMGR
#include <OS2.H>

HWND hwndActive;

hwndActive = WinQueryActiveWindow(HWND_DESKTOP)

Chapter 8. Window Functions 8-293

WinQueryAnchorBlock
Query Anchor Block

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I HAB WlnQueryAnchorBlock (HWND hwnd)

This function returns the anchor block handle of the caller.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Anchor block handle.

NULLHANDLE Invalid hwnd parameter

Other Anchor block handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Example Code
This function obtains the anchor block handle of the caller.

#define INCL_WINWINDOWMGR
#include <OS2.H>

HAB hab;
HWND hwnd;

hab = WinQueryAnchorBlock(hwnd);

8-294 PM Programming Reference

WinQuery Atom Length
Query Atom Length

#define INCL_WINATOM /*Or use INCL_WIN or INCL_PM */

ULONG WlnQueryAtomLength (HATOMTBL hatomtblAtomTbl, ATOM atom)

This function queries the length of an atom represented by the specified atom.

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

The handle returned from a previous WinCreateAtomTable or WinQuerySystemAtomTable

function.

atom (ATOM) - input
Atom whose associated character-string length is to be returned.

Returns
String length:

O The specified atom or the atom table is invalid.

Other The length of the character string associated with the atom excluding the null

terminating byte. Integer atoms always return a length of six.

Possible returns from WinGetlastError

PMERR_INVALID _HATOMTBL

PMERR_INVALID _ATOM

Remarks

An invalid atom-table handle was specified.

The specified atom does not exist in the atom table.

The purpose of this function is to allow an application to determine the size of buffer to use in the

WinQueryAtomName call.

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDeleteAtom
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomName
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Chapter 8. Window Functions 8-295

WinQueryAtomLength
Query Atom Length

Example Code
This function queries the length of an atom.

#define INCL_WINATOM
#include <052.H>

HATOMTBL atomtbl;
ATOM atom = 25;

WinQueryAtomlength(atomtbl, /*atom handle.*/
atom);

8-296 PM Programming Reference

WinQueryAtomName
Query Atom Name

#define INCL_WINATOM /*Or use INCL_WIN or INCL_PM */

ULONG WinQueryAtomName (HATOMTBL hatomtblAtomTbl, ATOM atom, PSZ pszBuffer,
ULONG · ulBufferMax)

This function returns an atom name associated with an atom.

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

The handle returned from a previous WinCreateAtomTable or WinQuerySystemAtomTable
function.

atom (ATOM) - input
ldentifies the character string to be retrieved.

pszBuffer (PSZ) - output
Buffer to receive the character string.

ulBufferMax (ULONG) - input
Buffer size in bytes.

Returns
Length of retrieved character string:

O The specified atom or the atom table is invalid.

Other The number of bytes copied to the buffer excluding the terminating zero.

Possible returns from WinGetlastError

PMERR_INVALID _HATOMTBL

PMERR_INVALID _ATOM

PMERR_INVALID_STRING_PARM

Remarks

An invalid atom-table handle was specified.

The specified atom does not exist in the atom table.

The specified string parameter is invalid.

For integer atoms, the format of the string is "#ddddd" where ''ddddd" are decimal digits in the
system code page (an ASCII code page). No leading zeros are generated, and the length can be
from 3 through 7 characters.

:Related Functions
• WinAddAtom
• WinCreateAtomTable
• W•nDel·eteAtom
• WinOestroyAtomTable
• WinFindAtom
• WinQueryAtomlength
• WinQueryAtomUsage
• WinQuerySystemAtomTable

Chapter 8. Window Functions 8-297

WinQueryAtomName
Query Atom Name

Example Code
This function obtains the name of an atom given the atom id.

#define INCL_WINATOM
#include <OS2.H>
HATOMTBL atomtbl;
char atomname[256];
ATOM atom = 25;

WinQueryAtomName(atomtbl,
atom,
atomname,
sizeof(atomname));

8-298 PM Programming Reference

WinQueryAtomUsage
Query Atom Usage

#define INCL_WINATOM /*Or use INCL_WIN or INCL_PM */

ULONG WlnQueryAtomUsage (HATOMTBL hatomtblAtomTbl, ATOM atom)

This function returns the number of times an atom has been used.

Parameters
hatomtblAtomTbl (HATOMTBL) - input

Atom-table handle.

The handle returned from a previous WinCreateAtomTable or WinQuerySystemAtomTable
function.

atom (ATOM) - input
Atom whose use count is to be returned.

Returns
Use count of the atom:

65535 Integer atom

0 The specified atom or the atom table is invalid

Other Use count.

Possible returns from WinGetlastError

PMERR_INVALID _HATOMTBL

PMERR_INVALID _ATOM

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDeleteAtom
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomlength
• WinQueryAtomName
• WinQuerySystemAtomTable

Example Code

An invalid atom-table handle was specified.

The specified atom does not exist in the atom table.

This function returns the number of times an atom has been used.

#define INCL_WINATOM
#include <OS2.H>

HATOMTBL atomtbl;
ATOM atom = 25;

WinQueryAtomlength(atomtbl,
atom);

Chapter 8. Window Functions 8-299

WinQueryButtonCheckstate
Query Checkstate of Button

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

USHORT WinQueryButtonCheckstate (HWND hwndDlg, USHORT usld)

This macro returns the checked state of the button control specified.

Parameters
hwndDlg (HWND) - input

Dialog window handle.

usld (USHORT) - input
Button control identity.

Returns
Returns the checkstate of the specified button control.

Remarks
This macro expands to:

#define WinQueryButtonCheckstate(hwndDlg, usid)
((USHORT)WinSendDlgitemMsg(hwndDlg,

us Id,
BM QUERYCHECK,
(MPARAM)NULL,
(MPARAM)NULL))

This function requires the existence of a message queue.

Related Functions
• WinSendDlgltemMsg

Related Messages
• BM_QUERYCHECK

8-300 PM Programming Reference

Example Code

WinQueryButtonCheckstate -
Query Checkstate of Button

This function returns the checked state of the button control specified.

#define INCL_WINWINDOWMGR
#include <OS2.H>
#define IDM_BUTTONA gee

HWND hwndDlg;
USHORT ChkState;

ChkState = WinQueryButtonCheckState(hwndDlg.

switch (ChkState)
{

}

case e:

/* Unchecked */
break;

case 1:

/* Checked */
break;

case 2:

/* Indeterminate. */
break;

IDM_BUTTONA);

Chapter 8. Window Functions 8-301

WinQueryCapture
Query Capture

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM */

HWND WinQueryCapture (HWND hwndDesktop)

This function returns the handle of the window that has the pointer captured.

Parameters
hwndDesktop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Handle of the window with the pointer captured:

NULLHANDLE No window has the pointer captured, or an error occurred

Handle Handle of the window with the pointer captured.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinSetCapture

Example Code
This function returns the handle of the window that has the pointer captured.

#define INCL_WININPUT
#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd; /* handle of window that has pointer captured */

hwnd = WinQueryCapture(HWND_DESKTOP); /*window that has */
/* pointer captured */

8-302 PM Programming Reference

WinQueryClasslnfo -
Query Class Information

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnQueryClasslnfo (HAB hab, PSZ pszClassName, PCLASSINFO pclsiClasslnfo)

This function returns window class information.

Parameters
hab (HAB) - input

Anchor-block handle.

pszClassName (PSZ) - input
Class name.

pclsiClasslnfo (PCLASSINFO) - output
Class information structure.

Returns
Class-exists indicator:

TRUE Class does exist

FALSE Class does not exist.

Possible returns from WinGetlastError

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID_ATOM_NAME

PMERR_ATOM_NAME_NOT _FOUND

Remarks

The specified atom is not a valid integer atom.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

pszClassName is either an application-specified name (as defined by the WinRegisterClass call) or
the name of a preregistered WC_* class; see page 11-2. Preregistered class names are of the form
#nnnnn, where nnnnn is up to five digits corresponding to the value of the WC_* class name constant.

This function provides information that is needed to create a subclass of a given class (see
WinSubclassWindow).

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClassName
• WinRegisterClass
• WinSubclassWindow

Chapter 8. Window Functions 8-303

WinQueryClasslnfo -
Query Class Information

Example Code
This example obtains a pointer to the window procedure of the window class WC_COMBOBOX.

#define INCL_WINWINDOWMGR
#define INCL WINENTRYFIELDS
#include <OS2.H>
HAB hab;
/* • */
CLASSINFO classinfo;
PFNWP pWindowProc;

WinQueryClasslnfo(hab,
WC COMBOBOX,
&classinfo);

pWindowProc = classinfo.pfnWindowProc;

8-304 PM Programming Reference

WinQueryClassName
Query Class Name

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

LONG WlnQueryClassName (HWND hwnd, LONG !Length, PCH pchBuffer)

This function copies the window class name, as a null-terminated string, into a buffer.

Parameters
hwnd (HWND) - input

Window handle.

If this window is of any of the preregistered WC_* classes (see page 11-2), the class name
returned in the pchBuffer parameter is in the form "#nnnnn," where "nnnnn" is a group of up to
five digits that corresponds to the value of the WC_* class name constant.

ILength (LONG) - input
Length of pchBuffer.

pchBuffer (PCH) - output
Class name.

If the class name is longer than (ILength-1) only the first (/Length-1) characters of class name
are copied.

Returns
Returned class name length.

This is the length, excluding the null-termination character.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _STRING_PARM

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinRegisterClass
• WinSubclassWindow

An invalid window handle was specified.

The specified string parameter is invalid.

Chapter 8. Window Functions 8-305

WinQueryClassName
Query Class Name

Example Code
This example obtains a pointer to the window procedure of the window class, given that we know the
window handle.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
/* • */
HWND hwnd;
CLASSINFO classinfo;
PFNWP pWindowProc;
char *classname;

WinQueryClassName(hwnd,
sizeof(classname),
classname);

WinQueryClassinfo(hwnd,
classname,
&classinfo);

pWindowProc = classinfo.pfnWindowProc;

8-306 PM Programming Reference

WinQueryClassThunkProc -
Query Class Pointer-Conversion Procedure

#define INCL WINTHUNKAPI /*Or use INCL_WIN or INCL_PM */

PFN WlnQueryClassThunkProc (PSZ pszClassName)

This call queries the pointer-conversion procedure associated with a class.

Parameters
pszClassName (PSZ) - input

Window-class name.

Returns
Pointer-conversion procedure identifier:

NULL No pointer-conversion procedure is associated with this class.

Other Identifier of the pointer-conversion procedure associated with this class.

Related Functions
• WinQueryWindowModel
• WinQueryWindowThunkProc
• WinSetClassThunkProc
• WinSetWindowThunkProc

Example Code
This example obtains the pointer conversion procedure of the window class, given that we have an
anchor-block handle.

#define INCL_WINWINDOWMGR
#def;ne INCL_WINTHUNKAPI
f;nclude <052.H>
HWND hwnd;
/* • */
PFN pfn;
char *classname;

w;nQueryClassName(hwnd,
s;zeof(classname),
classname);

pfn = w;nQueryClassThunkProc(classname);

Chapter 8. Window Functions 8-307

WinQueryClipbrdData
Query Clipboard Data

#define INCL_WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

ULONG WlnQueryCllpbrdData (HAB hab, ULONG ullmt)

This function obtains a handle to the current clipboard data with a specified format.

Parameters
hab (HAB) - input

Anchor-block handle.

ullmt (ULONG) - input
Format of the data to be accessed.

R-eturns
Handle to the clipboard data:

0 Format does not exist, or an error occurred

Other Handle to the clipboard data.

Remarks
The returned data handle must not be used after the WinCloseClipbrd function is called. For this
reason, the application must either copy the data (if required for long-term use) or process the data
before the WinCloseClipbrd function is called. The application must neither free the data handle
itself, nor leave it locked in any way.

Information about the format of the data in the clipboard can be obtained from
WinQueryClipbrdFmtlnfo.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetCUpbrdViewer

8-308 PM Programming Refere_nce

Example Code

WinQueryClipbrdData -
Query Clipboard Data

This example obtains a handle to the current clipboard data of text format.

#define INCL_WINCLIPBOARD
#include <OS2.H>
HAB hab;
/* • */
ULONG hclipbrdData;

hclipbrdData = WinQueryClipbrdData(hab,
CF_TEXT);

Chapter 8. Window Functions 8-309

WinQueryClipbrdFmtlnfo -
Query Clipboard Format Information

#define INCL_WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

BOOL WlnQueryCHpbrdFmtlnfo (HAB hab, ULONG ulfmt, PULONG pulFmtlnfo)

This function determines whether a particular format of data is present in the clipboard, and if so,
provides information about that format.

Parameters
hab (HAB) - input

Anchor-block handle.

ulfmt (ULONG) - input
Format of the data to be queried.

pulFmtlnfo (PULONG) - output
Memory model and usage flags.

These are the usage flags set by the setting application; that is, the CFI_ * flags of the f/Fmtlnfo
parameter of the WinSetClipbrdData function.

If the format is CF _BITMAP, CF _DSPBITMAP, CF _METAFILE or CF _DSPMETAFILE, pu/Fmtlnfo is
set to CFl_HANDLE. If the format is CF_ TEXT or CF _DSPTEXT, pu/Fmtlnfo is set to CFl_POINTER.
If the format is user-defined, pu/Fmtlnfo is set to the value used in the WinSetClipbrdData
function.

Returns
Format-exists indicator:

TRUE ulfmt exists in the clipboard and pu/Fmtlnfo is set

FALSE ulfmt does not exist in the clipboard and pu/Fmtlnfo is not set.

Possible returns from WinGetlastError

PMERR_INVALID _FLAG

Remarks

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

This function does not cause the data to be rendered.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

8-310 PM Programming Reference

WinQueryClipbrdFmtlnfo -

Query Clipboard Format Information

Example Code
This example obtains a handle to the current clipboard data of text format if that format is present in

the clipboard.

#define INCL_WINCLIPBOARD
#include <052.H>
HAB hab;
/* . */
ULONG fonnat;
ULONG hclipbrdData;

if (WinQueryClipbrdData(hab,CF_TEXT))
{

}

hclipbrdData = WinQueryClipbrdFmflnfo(hab,
CF TEXT
&format);

Chapter 8. Window Functions 8-311

WinQueryClipbrdOwner
Query Clipboard Owner

#define INCL WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

I HWND WlnQueryCllpbrdOwner (HAB hab)

This function obtains any current clipboard owner window.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Window handle of the current clipboard owner:

NULLHANDLE If the clipboard is not owned by any window, or if an error occurred.

Other Window handle of the current clipboard owner.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Example Code
This example finds out which window currently owns the clipboard.

#define INCL WINCLIPBOARD
#include <OS2.H>
HAB hab;
/* . */
HWND hwndClipbrdOwner;

hwndClipbrdOwner = WinQueryClipbrdOwner(hab);

8-312 PM Programming Reference

WinQueryClipbrdViewer -
Query Clipboard Viewer

#define INCL_WINCLIPBOARD /*Or use INCL_WIN or INCL_PM */

I HWND WlnQueryClipbrdVlewer (HAS hab)

This function obtains any current clipboard viewer window.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Current clipboard viewer window handle:

NULLHANDLE Clipboard does not have a current viewer window, or an error occurred

Other Current clipboard viewer window handle.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinSetClipbrdData
• WinSetClipbrdOwner
• WinSetClipbrdViewer

Example Code
This example finds out which window currently owns the clipboard.

#define INCL_WINCLIPBOARD
#include <OS2.H>
HAB hab;
/* . */
HWND hwndCli pbrdVi ewer;

hwndCl i pbrdVi ewer = Wi nQueryCl i pbrdVi ewer.(hab);

Chapter 8. Window Functions 5.;.313

WinQueryCp -
Query Code Page

#define INCL WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

I ULONG WlnQueryCp (HMO hmq}

This function returns the queue code page for the specified message queue.

Parameters
hmq (HMQ) - input

Message queue.

Returns
Code page:

0 Error occurred

Other Queue code page for the specified message queue.

Possible returns from WinGetlastError

PMERR_INVALID _HMQ An invalid message-queue handle was specified.

Related Functions
• WinCpTranslateChar
• WinCpTranslateString
• WinQueryCplist
• WinSetCp

Example Code
This example returns the queue code page for the specified queue.

#define INCL_WINCOUNTRY
#include <OS2.H>

HMQ hmq;
/* • */
ULONG cp;

cp = WinQueryCp(hmq);

8-314 PM Programming Reference

WinQueryCpList -
Query Code Page List

#define INCL_WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

ULONG WlnQueryCpList (HAB hab, ULONG ulcount, PULONG aulCodepage)

This function queries available code pages.

Parameters
hab (HAB) - input

Anchor-block handle.

ulcount (ULONG) - input
Maximum number of code pages returned.

aulCodepage (PULONG) - output
Code page I ist.

An array of ulcount elements, that contains a list of code pages available to the program.

For more information about code pages, see Chapter 34, "Code Pages" on page 34-1.

Returns
Total number of code pages available:

0 An error occurred

Other Total number of code pages available.

Possible returns from WinGetLastError

PMERR_PARAMETER_OUT_OF _RANGE The value of a parameter was not within the defined valid
range for that parameter.

Related Functions
• WinCpTranslateChar
• WinCpTranslateString
• WinQueryCp
• WinSetCp

Example Code
This example queries available code pages.

#define INCL_WINCOUNTRY
#include <052.H>
#define maxcount 8
HAB hab;
/* . */
ULONG aulCodepage[maxcount];

WinQueryCplist(hab,
(ULONG)maxcount,
(PULONG) aulCodepage);

Chapter 8. Window Functions 8-315

WinQueryCursorlnfo -
Query Cursor Information

#define INCL WINCURSORS I* Or use INCL_WIN or INCL_PM */

BOOL WinQueryCursorlnfo (HWND hwndDeskTop, PCURSORINFO pcsrlCursorlnfo)

This function obtains information about any current cursor.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

pcsrlCursorlnfo (PCURSORINFO) - output
Cursor information.

The values are equivalent to the parameters of the WinCreateCursor function except that u/rgf
never includes the CURSOR_SETPOS option.

The size and position of the cursor are returned in window coordinates relative to the window
identified by the hwnd parameter of the structure.

Returns
Current-cursor indicator:

TRUE Cursor exists

FALSE Cursor does not exist, pcsriCursorlnfo is not updated by this call.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Related Functions
• WinCreateCursor
• WinDestroyCursor
• WinSh.owCursor

Example Code
This example obtains information about any current cursor.

#define INCL_WINCURSORS
#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd; /* handle of window that has pointer captured */
CURSORINFO cursorinfo;

WinQueryCursorlnfo(hwnd DESKTOP;
&cursori nfo) ;

8-316 PM Programming Reference

/* get cursor info */

WinQueryDesktopBkgnd -
Query Desktop Background

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnQueryDesktopBkgnd (HWND hwndDeskTop, PDESKTOP pDeskTopState)

This function returns the desktop structure, which contains the information about the current state of
the desktop background.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop window

Other Specified desktop window.

pDeskTopState (PDESKTOP) - output
Desktop-state structure.

Returns
Success indicator:

TRUE Desktop-window status provided

FALSE Desktop-window status not provided.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function allows an application to query the background information of the desktop window. This
application must be acting as the OS/2 PM shell in place of the IBM supplied shell. If the IBM
supplied shell is executing it maintains control of the background of the desktop window, and
WinQueryDesktopBkgnd will have no effect on the desktop window background, but will indicate a
successful return code.

Related Functions
• WinSetDesktopBkgnd

Chapter 8. Window Functions 8-317

WinQueryDesktopBkgnd -
Query Desktop Background

Example Code
This example uses WinQueryDesktopBkgnd to query the current desktop background bit map before
setting it to a new bit map with WinSetDesktopBkgnd.

#define INCL_WINDESKTOP
#define INCL_WINWINDOWMGR
#include <052.H>
HAB hab;
HWND hwndDeskTop;
DESKTOP DeskTopState;
HBITMAP hbm;
HBITMAP hbm_user;

WinQueryDesktopBkgnd(HWND_DESKTOP,
&DeskTopState);

if (hbm_user != DeskTopState.hbm)
{

DeskTopState.fl = SDT_LOADFILE;
/* the szFile is used to load the bit map because */
/* the fl parameter is set to SDT_LOADFILE. */

strcpy(DeskTopState.szFile, 11 fruit.bmp 11
);

DeskTopState.hbm = hbm_user;
WinSetDesktopBkgnd(hwndDeskTop,

&DeskTopState);
}

8-318 PM Programming Reference

WinQueryDesktopWindow -
Query Desktop Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WlnQueryDesktopWlndow (HAB hab, HDC hdc)

This function returns the desktop-window handle.

Parameters
hab (HAB) - input

Anchor-block handle.

hdc (HOC) - input
Device-context handle:

NULLHANDLE Default device (the screen).

Returns
Desktop-window handle:

NULLHANDLE Error occurred

Other Desktop-window handle.

Possible returns from WinGetlastError

PMERR_INV _HDC An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

Remarks
Only the screen device supports windowing.

Many of the calls that require a desktop-window handle accept HWND_DESKTOP instead. For
example, WinCreateWindow accepts HWND_DESKTOP for the parent-window handle to create a main
window that is a child of the desktop window.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

Chapter 8. Window Functions 8-319

WinQueryDesktopWindow
Query Desktop Window

Example Code
This function is used to find the desktop window handle. For most calls however, the parameter
HWND_DESKTOP can be used.

#define INCL_WINDESKTOP
#include <OS2.H>
HAB hab;
HWND hwndDeskTop;

hwndOeskTop = WinQueryDesktopWindow(hab,
NULLHANDLE);

8-320 PM Programming Reference

WinQueryDlgltemShort -
Query Dialog Item Short

#define INCL_WINDIALOGS /*Or use INCL_ WIN or INCL_PM. Also in COMMON section*/

BOOL WlnQueryDlgltemShort (HWND hwndDlg, ULONG ldltem, PSHORT psResult,
BOOL fSlgned)

This function converts the text of a dialog item into an integer value.

Parameters
hwndDlg (HWND) - input

Parent-window handle.

ldltem (ULONG) - input
Identity of the child window whose text is to be converted.

psResult (PSHORT) - output
Integer value resulting from the conversion.

ISlgned (BOOL) - input
Sign indicator:

TRUE Signed text. It is inspected for a minus sign{-).

FALSE Unsigned text.

Returns
Success indicator:

TRUE Successful conversion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERRJNVALID _HWND An invalid window handle was specified.

Remarks
This function is useful for converting a numerical input field into a binary number for further
processing. The text of a dialog item is assumed to be an ASCII string.

This function is valid for any window with children. However, it is typically used for dialog items in a
dialog window.

Related Functions
• WinQueryDlgltemText
• WinQueryDlgltemTextLength
• WinQueryWindowText
• WinQueryWindowTextlength
• WinSetDlgltemShort
• WinSetDlgltemText
• WinSetWindowText

Chapter 8. Window Functions 8-321

WinQueryDlgltemShort -
Query Dialog Item Short

Example Code
This example gets the text from a Dialog Box entry field as an integer value.

#define INCL_WINDIALOGS
#include <052.H>
#define ID_ENTRYFLD 900
HAB hab;
HWND hwnd;
ULONG msg;
MPARAM mpl;
SHORT iconverted;
/* . */
switch(msg)

{
case WM_INITDLG:

case WM COMMAND:
switch(SHORTIFROMMP(mpl))
{

}
}

case DID OK:
WinQueryDlgltemShort(hwnd,

ID_ENTRYFLD,
&iconverted, /* integer result */
TRUE); /*Get the short */

8-322 PM Programming Reference

WinQueryDlgltemText -
Query Dialog Item Text

#define INCL_WINDIALOGS /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

ULONG WlnQueryDlgltemText (HWND hwndDlg, ULONG ldltem, LONG IMaxText, PSZ pszText)

This function queries a text string in a dialog item.

Parameters
hwndDlg (HWNO) - input

Parent-window handle.

ldltem (ULONG) - input
Identity of the child window whose text is to be queried.

IMaxText (LONG) - input
Length of pszText.

pszText (PSZ) - output
Output string.

This is the text string that is obtained from the dialog item.

Returns
Actual number of characters returned:

O Error occurred

Other Actual number of characters returned, not including the null-terminating character. The
maximum value is (/MaxText-1).

Possible returns from WinGetLastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function is valid for any window with children. However, it is typically used for dialog items in a
dialog window.

Related Functions
• WinQueryOlgltemShort
• WinQueryDlgltemTextlength 4

;,

• WinQueryWindowText
• WinQueryWindowTextLength
• WinSetDlgltemShort
• WinSetDlgltemText
• WinSetWindowText

Chapter 8. Window Functions 8-323

WinQueryDlgltemText -
Query Dialog Item T·ext

Example Code
This example is the beginning of a function which processes the text which is displayed in the
message text line.

#define INCL_WINDIALOGS
#include <052.H>
#define DID MSGEDIT 900
void SelectMessageFromText(hwndDlg)
HWND hwndDlg;
{

}

char szTemp[80];

/* First get the edit text from the string */
WinQueryDlgitemText(hwndDlg, DlD_MSGEDIT, sizeof(szTemp),

(PSZ)szTemp);
/* . */
/* . */

8-324 PM Programming Reference

WinQueryDlgltemTextLength -
Query Dialog Item Text Length

#define INCL_WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

LONG WlnQueryDlgltemTextLength (HWND hwndDlg, ULONG ldltem)

This function queries the length of the text string in a dialog item, not including any null termination
character.

Parameters
hwndDlg (HWND) - input

Parent-window handle.

ldltem (ULONG) - input
Identity of the child window whose text is to be queried.

Returns
Length of text:

0 Error occurred

Other Length of text.

Remarks
This function is valid for any window with children. However, it is typically used for dialog items in a
dialog window.

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryWindowText
• WinQueryWindowTextLength
• WinSetDlgltemShort
• WinSetDlgltemText
• WinSetWindowText

Chapter 8. Window Functions 8-325

WinQueryDlgltemTextLength -
Query Dialog Item Text Length

Example Code
This example is the beginning of a function which processes the text which is displayed in the
message text line.

#define INCL_WINDIALOGS
#define INCL_DOSMEMMGR
#include <OS2.H>
#define DID MSGEDIT 900
void SelectMessageFromText(hwndDlg)
HWND hwndDlg;
{

char *szTemp;
LONG length;

/* First get the edit text from the string */

length = WinQueryDlgitemTextLength(hwndDlg,
DID_MSGEDIT);

/* now we know the buffer size needed. */

DosAllocMem((PPVOID)szTemp,

}

(ULONG)length,
PAG_READ I
PAG_WRITE I
PAG_COMMIT);

WinQueryDlgltemText(hwndDlg,

I* . */
/* . */

DID MSGEDIT,
sizeof(szTemp),
(PSZ)szTemp);

8-326 PM Programming Reference

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM */

HWND WinQueryFocus {HWND hwndDeskTop}

WinQueryFocus -
Query Focus

This function returns the focus window. It is NULLHANDLE if there is no focus window.

Parameters
hwndDeskTop (HWND} - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Focus-handle.

NULL Error occurred or no focus window.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Related Functions
• WinEnablePhyslnput
• WinFocusChange
• WinGetKeyState
• WinGetPhysKeyState
• Wi nSetFocus
• WinSetKeyboardStateTable

Example Code
This example checks to see if the menu has the focus.

#define INCL_WININPUT
#include <052.H>
#define SYS_MENU 900
HWND hwndFrame;

if (WinQueryFocus(HWND_DESKTOP)
WinWindowFromID(hwndFrame, SYS_MENU))

{
/* • */

}

Chapter 8. Window Functions 8-327

WinQueryHelplnstance
Query Help Instance

#define INCL_WINHELP I* Or use INCL_WIN or INCL_PM */

HWND WlnQueryHelplnstance (HWND hwndApp)

This function enables the application to query the instance of the help manager associated with the
application-supplied window handle.

Parameters
hwndApp (HWND) - input

Handle of the application window.

Returns
Help manager window handle:

NULLHANDLE No help manager instance is associated with the application window.

Other Help manager window handle.

Remarks
The help manager first traces the parent window chain until it is NULLHANDLE or HWND_DESKTOP.
Then help manager traces the owner chain. If a parent of the owner window exists, the trace begins
again with the parent chain.

The window chain will be traced until the help manager finds an instance of the help manager or until
both the parent and owner windows are NULLHANDLE or HWND_DESKTOP.

Related Functions
• WinAssociateHelplnstance
• WinCreateHelplnstance
• WinCreateHelpTable
• WinDestroyHelplnstance
• WinloadHelpTable

8-328 PM Programming Reference

WinQueryHelplnstance -
Query Help Instance

Example Code

This example shows the use of the WinQueryHelplnstance call during the processing of a
WM_INITMENU message in order to obtain the handle for sending an HM_SET_ACTIVE_WINDOW
message.

#define INCL_WIN
#include <os2.h>

MRESULT wm_initmenu(HWND hWnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

}

/* Send message to establish the current window's parent */
/* as the active help window. */
WinSendMsg(WinQueryHelpinstance(hWnd).

HM SET ACTIVE WINDOW,
(MPARAM)WinQueryWindow(hWnd, QW_PARENT).
(MPARAM)WinQueryWindow(hWnd, QW_PARENT));

/* Pass message on for default processing */
return WinDefWindowProc(hWnd, ulMsg, mpl, mp2);

Chapter 8. Window Functions 8-329

WinQueryLboxCount -
Counts Number of Items in Listbox

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

SHORT WlnQueryLboxCount (HWND hwndLbox)

This macro returns the number of items in the List Box.

Parameters
hwndLbox (HWND) - input

Listbox handle.

Returns
Number of items in the list box.

Remarks
This macro expands to:

#define WinQuerylboxCount(hwndlbox)
((SHORT)WinSendMsg(hwndlbox,

LM QUERYITEMCOUNT,
(MPARAM)NULL,
(MPARAM)NULL))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_QUERYITEMCOUNT

Example Code
This example uses WinQuerylboxCount to find the number of list box items and selects them all.

#define INCL_WINLISTBOXES
#define INCL WINWINDOWMGR
#include <OSl.H>
SHORT cWindows;
HWND hwndWindowLB;

cWindows = WinQuerylboxCount(hwndWindowLB);
while (cWindows)
{

/* Loop through all windows, selecting all */

WinSendMsg(hwndWindowLB,

}

LM SELECTITEM,
(MPARAM)--cWindows,
(MPARAM)TRUE) ;

8-330 PM Programming Reference

WinQueryLboxltemText -
Query Listbox Item Text

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

SHORT WlnQuerylboxltemText (HWND hwndlbox, SHORT slndex, PSZ pszText,
SHORT scchMax)

This macro fills the buffer with the text of the indexed item. It returns the length of the text.

Parameters
hwndlbox (HWND) - input

List box handle.

slndex (SHORT) - input
Index of the listbox item.

pszText (PSZ) - input
Pointer to a null terminated string.

scchMax (SHORT} - input
Maximum number of characters allocated to the string.

Returns
Actual text length copied.

Remarks
This macro expands to:

#define WinQuerylboxltemText(hwndlbox, slndex, pszText, scchMax)
((SHORT)WinSendMsg(hwndlbox,

LM QUERYITEMTEXT,
MPFROM2SHORT((slndex), (scchMax)),
MPFROMP(pszText)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_INSERTITEM

Chapter 8. Window Functions 8-331

WinQueryLboxltemText
Query Listbox Item Text

Example Code
This example uses WinQuerylboxltemText to copy all of the list box items into a buffer.

#define INCL_WINLISTBOXES
#define INCL_WINWINDOWMGR
#include <OS2.H>
SHORT.cWindows;
char *szTemp;
HWND hwndLB;
SHORT maxchar, index = 0;

cWindows = WinQuerylboxCount(hwndLB);

/* allocate a buffer for cWindows items. */

DosAllocMem((PPVOID)&szTemp,
(ULONG)cWindows*256*sizeof(char),

PAG READ I
PAG-WRITE I
PA(COMMIT);

/* loop through all of the items; copying each */
/* one the buffer. *I

while (index <= cWi ndows)
{

}

maxchar = WinQuerylboxltemTextlength(hwndLB,index);

WinQuerylboxltemText(hwndLB,
index++,
szTemp,
maxchar);

(*szTemp)+=maxchar*sizeof(char); /*increment pointer by number*/
/* of bytes copied. */

8-332 PM Programming Reference

WinQueryLboxltemTextLength -
Query Listbox Item Text Length

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

SHORT WinQueryLboxltemTextLength (HWND hwndLbox, SHORT slndex)

This macro returns the length of the text of the indexed item in the List Box.

Parameters
hwndlbox (HWND) - input

Listbox handle.

slndex (SHORT) - input
Index of the item in the List Box.

Returns
Text length of the indexed item.

Remarks
This macro expands to:

#define WinQuerylboxitemTextlength(hwndlbox, sindex)
((SHORT)WinSendMsg(hwndlbox,

LM QUERYITEMTEXTLENGTH,
MPFROMSHORT(slndex),
(MPARAM)NULL))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_ QUERYITEMTEXTLENGTH

Chapter 8. Window Functions 8-333

WinQueryLboxltemTextLength -
Query Listbox Item Text Length

Example Code
This example uses WinQuerylboxltemText to copy all of the list box items into a buffer.

#define INCL_WINLISTBOXES
#define INCL_WINWINDOWMGR
#include <OS2.H>
SHORT cWindows;
char *szTemp;
HWND hwndLB;
SHORT maxchar, index = 0;

cWindows = WinQuerylboxCount(hwndLB);

/* allocate a buffer for cWindows items. */

DosAllocMem((PPVOID)&szTemp,
(ULONG)cWindows*256*sizeof(char),

PAG READ I
PAG-WRITE I
PA(COMMIT);

/* loop through all of the items; copying each */
/* one the buffer. */

wh i 1 e (index <= 'CWi ndows)
{

}

maxchar = WinQueryLboxltemTextLength(hwndLB,index);

WinQuerylboxltemText(hwndLB,
index++,
szTemp,
maxchar);

(*szTemp)+=maxchar*sizeof(char); /* increment pointer by number*/
/* of bytes copied. */

8-334 PM Programming Reference

WinQueryLboxSelectedltem -
Query the Selected Item in Listbox

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

SHORT WlnQueryLboxSelectedltem (HWND hwndLbox)

This macro returns the index of the selected item in the List Box (for single selection only).

Parameters
hwndLbox (HWND) - input

List box handle.

Returns
Index of the selected item.

Remarks
This macro expands to:

#define WinQueryLBoxSelecteditem (hwndlbox)
((SHORT)WinSendMsg(hwndlbox,

LM QUERYSELECTION,
MPFROMSHORT(LIT FIRST),
(MPARAM)NULL)) -

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_ QUERYSELECTION

Example Code
This example copies the text from the selected item in a list box to a buffer.

#define INCL_WINLISTBOXES
#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwndLB;
SHORT index;
char szTemp[256];

index= WinQueryLboxSelecteditem(hwndLB);

WinQuerylboxitemText(hwndLB,
index,
szTemp,

WinQuerylboxitemTextlength(hwndLB,index));

Chapter 8. Window Functions 8-335

WinQueryMsgPos -
Query Message Position

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnQueryMsgPos (HAB hab, PPOINTL pptlptrpos)

This function returns the pointer position, in screen coordinates, when the last message obtained
from the current message queue is posted.

Parameters
hab (HAB) - input

Anchor-block handle.

pptlptrpos (PPOINTL) - output
Pointer position in screen coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The pointer position is the same as that in the pt/ parameter of a QMSG structure.

To obtain the current position of the pointer, use the WinQueryPointerPos function.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

8-336 PM Programming Reference

Example Code

WinQueryMsgPos -
Query Message Position

This example returns position and time of the the last message obtained from the current message
queue.

#define INCL_WINMESSAGEMGR
#define INCL_WINDIALOGS
#include <OS2.H>
#include <stdio.h>
HAB hab;
POINTL ptl;
CHAR szMsg[lee];
HWND hwnd;
ULONG ulTime;

WinQueryMsgPos(hab, &ptl);

ulTime = WinQueryMsgTime(hab);

sprintf(szMsg, "x = %ld y = %ld\n\ntime = %1d",
ptl.x, ptl.y, ulTime);

WinMessageBox(HWND_DESKTOP,
hwnd,
szMsg,
"Debugging infonnation",
e,
MB_NOICON I MB_OK);

/* client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

Chapter 8. Window Functions 8-337

WinQueryMsgTime
Query Message Time

#define INCL_WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM */

I ULONG WlnQueryMsgTlme (HAB hab)

This function returns the message time for the last message retrieved by the WinGetMsg or
WinPeekMsg functions from the current message queue.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Time in milliseconds.

Remarks
The message time is the time the message is posted, measured in milliseconds, from the time the
system is started. Its value is the same as that in the time parameter of the QMSG structure.

To calculate time delays between messages, the time of the first message is subtracted from the
time of the second message.

Time values do not always increase because the value is the number of milliseconds since the
system was started, and the system accumulator for this count can wrap through zero.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

8-338 PM Programming Reference

Example Code

WinQueryMsgTime -
Query Message Time

This example returns position and time of the the last message obtained from the current message

queue.

#define INCL_WINMESSAGEMGR
#define INCL_WINDIALOGS
#include <052.H>
#include <stdio.h>
HAB hab;
POINTL ptl;
CHAR szMsg[100];
HWND hwnd;
ULONG ulTime;

WinQueryMsgPos(hab, &ptl);

ulTime = WinQueryMsgTime(hab);

sprintf(szMsg, 11 x = %ld y = %ld\n\ntime = %ld 11
,

ptl.x, ptl.y, ulTime);
WinMessageBox(HWND_DESKTOP,

hwnd,
szMsg,
"Debugging infonnation 11

,

e,
MB_NOICON I MB_OK);

/* client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

Chapter 8. Window Functions 8-339

WinQueryObjectWindow
Query Object Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WlnQueryObJectWlndow (HWND hwndDeskTop)

This function returns the desktop object window handle.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Object-window handle.

NULLHANDLE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
Any window created as a descendant of hwndObject is an object window.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

.8-340 PM Programming Reference

Example Code

WinQueryObjectWindow -
Query Object Window

This example calls WinQueryObjectWindow to return the desktop object window handle. All
windows created as descendants of this object window - as in the example - will be object windows.

#define INCL_WINWINDOWMGR
#include <os2.h>

/* Window Manager Functions */

HWND hwndObject; /* desktop object window */
HWND hwndObjectl; /* descendant object window */
USHORT Windowid;
hwndObject = WinQueryObjectWindow(HWND_DESKTOP);

/* create object window */
hwndObjectl = WinCreateWindow(hwndObject, /* parent window */

11 NewClass 11
, /*class name */

"new button", /* window text * /
WS VISIBLE, /* window style */
0,-0, /* position (x,y) */
200, 100, /* size (width,height) */
0L, /* owner window */
HWND_TOP, /* sibling window */
Windowid, /* window id */
NULL, /* control data */
NULL); /*presentation parms */

Chapter 8. Window Functions 8-341

WinQueryPointer
Query Pointer

#define INCL_WINPOINTERS I* Or use INCL_WIN or INCL_PM */

HPOINTER WlnQueryPolnter (HWND hwndDeskTop)

This function returns the pointer handle for hwndDeskTop.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Pointer handle.

NULLHANDLE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinLoadPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Example Code
This example obtains the pointer handle from the desktop window handle.

#define INCL_WINPOINTERS
#define INCL_WINDESKTOP
#include <OS2.H>
HAB hab;
HPOINTER hpointer;

hpointer = WinQueryPointer(HWND_DESKTOP);

8-342 PM Programming Reference

WinQueryPointerlnfo
Query Pointer Information

#define INCL_WINPOINTERS /*Or use INCL_WIN or INCL_PM */

BOOL WinQueryPolnterlnfo (HPOINTER hptr, PPOINTERINFO pptriPolnterlnfo)

This function returns pointer information.

Parameters
hptr (HPOINTER) - input

Pointer handle.

pptriPolnterlnfo (POINTERINFO) - output
Pointer-information structure.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HPTR

Remarks

An invalid pointer handle was specified.

The pointer information structure contains information such as the bit-map handle of the pointer and

action point coordinates. The values returned for the xHotspot and the yHotspot parameters are in

units relative to the size of the system icon or system pointer.

For example, if the application creates a pointer out of a bit map xWide units wide and positions the

x-coordinate of the pointer's action point at xHot, then this function will return the value of the

xHotspot as:

xHotspot = (xHot * SystemPointerWidth) / xWide

where SystemPointerWidth can be obtained by using the WinQuerySysValue function.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Chapter 8. Window Functions 8-343

WinQueryPointerlnfo -
Query Pointer Information

Example Code
This example uses the WinQueryPointerlnfo call to obtain the bit-map handle of the color bit map.
#define INCL_WINPOINTERS
#define INCL_WINDESKTOP
#include <OS2.H>
HAB hab;
HPOINTER hpointer;
POINTERINFO pointerinfo;
HBITMAP hbm; /* Bit-map handle of color bit map */

hpointer = WinQueryPointer(HWND_DESKTOP);

WinQueryPointerlnfo(hpointer,
&pointerinfo);

hbm = pointerinfo.hbmColor;

8-344 PM Programming Reference

WinQueryPointerPos -
Query Pointer Position

#define INCL_WINPOINTERS /*Or use INCL_WIN or INCL_PM */

BOOL WlnQueryPolnterPos (HWND hwndDeskTop, PPOINTL pptlPolnt)

This function returns the pointer position.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window hand!e.

pptlPolnt (PPOINTL) - output
Pointer position in screen coordinates.

Returns
Pointer position returned indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
The WinQueryMsgPos is used to get the pointer position of the last message obtained by means of

the WinGetMsg or WinPeekMsg functions.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

Chapter 8. Window Functions 8-345

WinQueryPointerPos -
Query Pointer Position

Example Code
This example displays the pointer position.

#define INCL_WINWINDOWMGR
#define INCL_WINPOINTERS
#include <052.H>
HWND hwndClient;
CHAR szMsg[100];
POINTL ptl;

WinQueryPointerPos{HWND_DESKTOP, &ptl);
sprintf{szMsg. "x = ld y = ld", ptl.x, ptl.y);
WinMessageBox{HWND_DESKTOP,

hwndClient,
szMsg,
"Debugging infonnation 11

,

0,
MB_NOICON I MB_OK);

8-346 PM Programming Reference

/*client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

WinQueryPresParam
Query Presentation Parameter

#define INCL WINSYS /*Or use INCL_WIN or INCL_PM */

ULONG WlnQueryPresParam (HWND hwnd, ULONG ldAHrType1, ULONG idAHrType2,
PULONG pldAHrTypeFound, ULONG cbAHrValueLen,
PVOID pAHrValue, ULONG flOptlons)

This function queries the values of presentation parameters for a window

Parameters
hwnd (HWND) - input

Window handle.

ldAHrType1 (ULONG) - input
First attribute type identity.

This identifies the first presentation parameter attribute to be queried It can be zero to reference
no presentation parameter attribute.

ldAHrType2 (ULONG) - input
Second attribute type identity.

This identifies the second presentation parameter attribute to be queried. It can be zero to
reference no presentation parameter attribute.

pidAHrTypeFound (PULONG) - input/output
Attribute type identity found.

This identifies which of the presentation parameter attributes idAttrType1 and idAttrType2 has
been found. This parameter can be passed as NULL (if, for example, only one attribute is being
queried).

cbAHrValueLen (ULONG) - input
Byte count of the size of the pAttrValue parameter.

pAHrValue (PVOID) - output
Attribute value.

The value of the presentation parameter attribute found.

flOptlons (ULONG) - input
Options.

Options controlling the query. Any of these can be ORed together.

QPF_NOINHERIT For the purposes of this query, presentation parameters are not
inherited from the owners of the window specified by hwnd. If not
specified (default), presentation parameters are inherited.

QPF_ID1COLORINDEX idAttrType1 refers to a color index presentation parameter attribute,
the value of which, if found, is to be converted to RGB before being
passed back in pAttrValue.

QPF_ID2COLORINDEX idAttrType2 refers to a color index presentation parameter attribute,
the value of which, if found, is to be converted to RGB before being
passed back in pAttrValue.

QPF _PURERGBCOLOR Specifies that either or both of idAttrType1 and idAttrType2 reference
RGB color, and that these colors must be pure. This is necessary when
specifying text foreground and background colors. This is applied after
QPF _101 COLORINDEX and QPF _ID2COLORINDEX.

Chapter 8. Window Functions 8-347

WinQueryPresParam
Query Presentation Parameter

Returns
Length of presentation parameter value passed back.

Zero Presentation parameter not found or error occurred

Other Length of presentation parameter value passed back in pAttrValue.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
Two presentation parameter attribute identities can be passed, and both will be searched for, along
the chain of owners of the window hwnd (subject to QPF _NOINHERIT). The first one found satisfies
the query. If both idAttrType1 and idAttrType2 are present for the same window, idAttrType1 takes
precedence.

If the presentation parameter attribute value is too long to fit in the pAttrValue buffer provided, it is
truncated, and the number of bytes copied is returned in cbRetlen. (See also WinSetPresParam and
WinRemovePresParam).

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinRemovePresParam
• WinScrollWindow
• WinSetPresParam

8;.348 PM Programming Reference

Example Code

WinQueryPresParam -
Query Presentation Parameter

This example queries the disable-foreground attribute; if it is a valid attribute of the window, it is
removed via WinRemovePresParam.

#define INCL_WINSYS
#include <OS2.H>
HWND hwnd;
ULONG AttrFound;
ULONG AttrValue[32];
ULONG cbRetlen;

cbRetlen = WinQueryPresParam(hwnd,
PP_DISABLEDFOREGROUNDCOLORINDEX,
e,
&AttrFound,

sizeof(AttrValue),
&AttrValue,
QPF_IDlCOLORINDEX I QPF_NOINHERIT);

if(PP_DISABLEDFOREGROUNDCOLORINDEX == AttrFound);

WinRemovePresParam(hwnd,
PP_DISABLEDFOREGROUNDCOLORINDEX);

Chapter 8. Window Functions 8-349

WinQueryQueuelnfo -
Query Queue Information

#define INCL WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnQueryQueuelnfo (HMQ hmq, PMQINFO pmqlMqlnfo, ULONG cbCopled)

This function returns the information for the specified queue.

Parameters
hmq (HMQ) - input

Queue handle.

It must be created by a previous call to WinCreateMsgQueue or HMQ_CURRENT.

pmqiMqinfo (PMQINFO) - output
Message queue information structure to contain the queue information.

cbCopled (ULONG) - input
Size of message queue information structure that is provided (in bytes).

Specifies the maximum number of bytes to be copied into the pmqiMqinfo parameter. This
should be the size of an MQINFO structure.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueueStatus
• Wi nRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

8-350 PM Programming Reference

Example Code

WinQueryQueuelnfo -
Query Queue Information

This example retrieves the process identity from a queue by passing the queue handle to
WinQueryQueuelnfo

#define INCL_WINMESSAGEMGR
#include <052.H>
HMQ hmq;
MQINFO mqinfo;
PIO pid;

WinQueryQueuelnfo(hmq,

pid = mqinfo.pid;

&mqinfo,
sizeof(MQINFO));

Chapter 8. Window Functions 8-351

WinQueryQueueStatus
Query Queue Status

#define INCL WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM */

ULONG WlnQueryQueueStatus (HWND hwndDeskTop)

This function returns a code indicating the status of the message queue associated with the caller.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Desktop-window handle returned by WinQueryDesktopWindow.

Returns
Status information.

Summary
Summary of message types existing on the queue.

This field contains a combination of the following values:

QS_KEY An input event (keyboard or journaling) has caused a WM_CHAR
message to be placed in the queue.

QS_MOUSE An input event has caused a WM_MOUSEMOVE, WM_BUTTON1UP,
WM_BUTTON1 DOWN, WM_BUTTON1 DBLCLK, WM_BUTTON2UP,
WM_BUTTON2DOWN, or WM_BUTTON2DBLCLK message to be
placed in the queue.

QS_MOUSEBUTTON An input event has caused a WM_BUTTON1UP, WM_BUTTON1DOWN,
WM_BUTTON1DBLCLK, WM_BUTTON2UP, WM_BUTTON2DOWN, or
WM_BUTTON2DBLCLK message to be placed in the queue.

QS_MOUSEMOVE An input event has caused a WM_MOUSEMOVE message to be
placed in the queue.

QS_TIMER A timer event has caused a WM_ TIMER message to be placed in the
queue.

QS_PAINT

QS_SEM1

QS_SEM2

QS_SEM3

QS_SEM4

QS_POSTMSG

QS_SENDMSG

A WM_PAINT message is available.

A WM_SEM1 message is available.

A WM_SEM2 message is available.

A WM_SEM3 message is available.

A WM_SEM4 message is available.

A message has been posted to the queue. Note that this message is
probably not one of the messages listed above, but could be a
WM_CHAR, WM_MOUSEMOVE or similar message if an application
has posted one of these. In this case, the corresponding input status
flag (QS_KEY, QS_MOUSE, and so on) is not set.

A message has been sent by another application to a window
associated with the current queue.

8-352 PM Programming Reference

Added
Message type additions.

WinQueryQueueStatus -
Query Queue Status

Message types added to the queue since the last use of this function. The value of this field
is a subset of the Summary field.

Remarks
This function is an efficient method for determining whether input is available for processing by the
WinGetMsg or WinPeekMsg functions.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Related Messages
• WM_BUTTON1UP
• WM_BUTTON1 DOWN
• WM_BUTTON1 DBLCLK
• WM_ BUTTON2UP
• WM_BUTTON2DOWN
• WM_BUTTON2DBLCLK
• WM_CHAR
• WM_MOUSEMOVE
• WM_PAINT
"' WM_SEM1
• WM_SEM2
• WM_SEM3
• WM_SEM4
• WM_TIMER

Chapter 8. Window Functions 8-353

WinQueryQueueStatus
Query Queue Status

Example Code
This example uses the WinQueryQueueStatus to see if a WM_MOUSEMOVE message has been
placed in the queue.

#define INCL_WINMESSAGEMGR
#include <052.H>
HAB hab;

if(WinQueryQueueStatus(HWND_DESKTOP) == QS_MOUSEMOVE)
{

}

/* . */
/* . */

8-354 PM Programming Reference

WinQuerySessionTitle
Query Session Title

#define INCL_WINSWITCHLIST /*Or use INCL_WIN or INCL_PM */

ULONG WlnQuerySesslonTllle (HAB hab, ULONG ulSesslon, PSZ pszTllle, ULONG ulTlllelen)

This function obtains the title under which a specified application is started, or is added to the
Window List.

Parameters
hab (HAB) - input

Anchor-block handle.

ulSesslon (ULONG) - input
IBM Operating System/2 session identity of application whose title is requested:

O Use the session identity of the caller

Other Use the specified session identity.

pszTltle (PSZ) - output
Window List title.

This is the title of the application with a process identity, if the application is present in the
Window List.

ulTltlelen (ULONG) - input
Maximum length of data returnable, in bytes.

If the pszTitle parameter is longer than this value, the title is truncated. However, the
terminating null character is left at the end of the string. The maximum number of title
characters copied is (u/Titlelen-1).

Returns
Return code:

O Successful completion

Ott.er Error occurred.

Remarks
This function is useful when an application uses the same name in its window title (and in its entry in
the Window List) as the end user invokes to start the application. This provides a visual link for the
end user.

If this function is used after a Window List entry is created for the application, the title in the Window
List entry is obtained. (See also WinQueryTaskTitle.)

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

Chapter 8. Window Functions 8-355

WinQuerySessionTitle
Query Session Title

Example Code
This example calls WinQuerySessionTitle to re1rieve the application's title, and then sets the title bar
of the frame window to that title.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
HWND hwndFrame, hwndClient;
CHAR szTitle[MAXNAMEL + 1];

WinQuerySessionTitle(hab,
0, szTitle,
sizeof(szTitle));

hwndFrame = WinQueryWindow(hwndClient.
QW_PARENT); /*get handle of parent, */

/* which i.s frame window. */
WinSetWindowText(hwndFrame, szTitle);

8-356 PM Programming Reference

WinQuerySwitchEntry -
Query Switch Entry

#define INCL WINSWITCHLIST I* Or use INCL_WIN or INCL_PM */

ULONG WlnQuerySwltchEntry (HSWITCH hswitchSwltch, PSWCNTRL pswctlSwltchData)

This function obtains a copy of the Window List data for a specific application.

Parameters
hswitchSwitch (HSWITCH) - input

Handle to the Window List entry.

This can be obtained using the WinQuerySwitchHandle function.

pswctlSwltchData (PSWCNTRL) - output
Switch control data.

Contains information about the specified Window List entry. The hprog field contains the
program handle used to start the program.

Returns
Return code.

0 Successful completion

Other Error occurred.

Remarks
This function is available to PM and non PM applications.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchHandle
• WinQuerySwitchList
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

Example Code
This example calls WinQuerySwitchHandle to get the Task List handle of a frame window, and then
calls WinQuerySwitchEntry to retrieve information about that application.

#define INCL_WINSWITCHLIST
#include <OS2.H>
HAB hab;
HWND hwndFrame;
HSWITCH hswitch;
SWCNTRL swctl;

hswitch = WinQuerySwitchHandle(hwndFrame, 0);
WinQuerySwitchEntry(hswitch, &swctl);

Chapter 8. Window Functions 8-357

WinQuerySwitchHandle
Query Switch Handle

#define INCL WINSWITCHLIST I* Or use INCL_WIN or INCL_PM */

HSWITCH WlnQuerySwltchHandle (HWND hwnd, PID ldProcess)

This function obtains the Window List handle belonging to a window.

Parameters
hwnd (HWND) - input

Window handle of an application.

Window handle of an application running in the OS/2 session for which the Window List handle is
required.

NULLHANDLE Application is not an OS/2 application

Other Window handle of an application.

idProcess (PIO) - input
Process identity of the application.

Returns
Switch list handle for the specified application:

NULLHANDLE Application is not in the switch list, or an error occurred

Other Switch list handle.

Remarks
If both a window handle and a process identity are supplied, they must be consistent.

If the window handle is NULLHANDLE and the process identity supplied cannot be found in the switch
list then the switch handle returned is the handle for the most proximal ancestor process. Once the
switch list handle is obtained, it may be used in various other calls to manipulate the switch list entry
or the program which it references.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

8-358 PM Programming Reference

Example Code

WinQuerySwitchHandle -
Query Switch Handle

This example calls WinQuerySwitchHandle to get the Task list handle of a frame window, and then

calls WinQuerySwitchEntry to retrieve information about that application.

#define INCL_WINSWITCHLIST
#include <052.H>
HAB hab;
HWND hwndFrame;
HSWITCH hswitch;
SWCNTRL swctl;

hswitch = WinQuerySwitchHandle(hwndFrame, 0);
WinQuerySwitchEntry(hswitch, &swctl);

Chapter 8. Window Functions 8-359

WinQuerySwitchList
Query Switch List

#define INCL WINSWITCHLIST I* Or use INCL_WIN or INCL_PM */

ULONG WlnQuerySwltchLlst (HAB hab, PSWBLOCK pswblkBlock, ULONG ulLength)

This function obtains information about the entries in the Window List.

Parameters
hab (HAB) - input

Anchor-block handle.

pswblkBlock (PSWBLOCK) - input/output
Switch entries block.

Contains a description of all the entries in the current switch list. This is held in a SWBLOCK
structure, which has a count of the number of switch list entries, plus a record for each entry
containing data such as the process and session identities, the icon handle, and the window
handle for the running program.

NULL No information returned; the return parameter however contains the total number of
switch list entries.

Other Switch entries block.

ulLength (ULONG) - input
Maximum length of data returnable in bytes.

This is the maximum length in bytes of the data that can be returned in the pswblkB/ock
parameter.

0 No information returned, however the return parameter contains the total number of
switch I ist entries.

Other Maximum length of data returnable.

Returns
Total number of switch list entries present in the system.

O Error occurred

Other Total number of switch list entries present in the system.

Remarks
It is possible to obtain information about all the programs currently executing in a single operation,
with one array entry for each program.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

8-360 PM Programming Reference

Example Code

WinQuerySwitchList -
Query Switch List

This example calls WinQuerySwitchlist to determine the number of items in the Task List, allocates
memory for the required buffer, and calls WinQuerySwitchlist again to fill the buffer with the
information about each program in the Task List.

#define INCL_DOSMEMMGR
#define INCL_WINSWITCHLIST
#include <OS2.H>
HAB hab;
HWND hwndFrame;
ULONG cbltems, cbBuf;
ULONG pBase;
PSWBLOCK pswblk;
SEL sel;

DosAllocMem((PPVOID)pBase,

/* . */

(ULONG)40000,
PAG READ I
PAG)RITE);

cbltems = WinQuerySwitchList(hab, NULL, 0); /*gets num. of items */
cbBuf = (cbltems * sizeof(SWENTRY)) + sizeof(HSWITCH);
DosSubAllocMem((PVOID)pBase,

(PPVOID)pswblk,
(ULONG)cbBuf);

WinQuerySwitchList(hab, pswblk, cbBuf); /*gets struct. array*/

Chapter 8. Window Functions a..:351

WinQuerySysColor -
Query System Color

#define INCL_WINSYS I* Or use INCL_WIN or INCL_PM */

LONG WlnQuerySysColor (HWND hwndDeskTop, LONG IColor, LONG IReserved)

This function returns the system color.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

IColor (LONG) - input
System color-index value.

Must be one of the SYSCLR_ * index values defined under the WinSetSysColors function.

IReserved (LONG) - input
Reserved.

O Reserved value; must be 0.

Returns
RGB value.

RGB value corresponding to the /Color parameter.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
This function returns the color value that corresponds to the specified color index of the specified
color palette.

Related Functions
• WinSetSysColors

8-362 PM Programming Reference

Example Code

WinQuerySysColor -
Query System Color

This example uses the WinQuerySysColor to find the RGB index of the system pushbutton,
SYSCLR_BUTTONDEFAULT

#define INCL_WINSYS
#define INCL_WINDESKTOP
#include <OS2.H>
HAB hab;
LONG lRgbColor;

lRgbColor = WinQuerySysColor(HWND_DESKTOP,
SYSCLR BUTTONDEFAULT,
0L); -

Chapter 8. Window Functions 8-363

WinQuerySysModalWindow -
Query System Modal Window

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

HWND WlnQuerySysModalWlndow (HWND hwndDeskTop)

This function returns the current system modal window.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Returns
Handle of system modal window:

NULLHANDLE No system modal window

Other Handle of system modal window.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
For a full description of the operation of the system modal window, see the WinSetSysModalWindow
function.

Related Functions
• WinSetSysModalWindow

Example Code
This example uses the WinQuerySysModalWindow to find the handle of the system modal window.

#define INCL_WINWINDOWMGR
#include <OS2 .. H>
HAB hab;
HWND hwndDeskTop, hwndSysModal;
LONG lRgbColor;

/* Input processing can enter a "system modal" state. In*/
/* this state, all pointing device and keyboard input */
/* is directed to a special window, known as the */
/* system-modal window. Typically, this will be a dialog */
/* window requiring input. */

hwndSysModal = WinQuerySysModalWindow(hwndDeskTop);

8-364 PM Programming Reference

WinQuerySysPointer -
Query System Pointer

#define INCL_WINPOINTERS /*Or use INCL_WIN or INCL_PM */

HPOINTER WlnQuerySysPolnler (HWND hwndDeskTop, LONG lldenllfier, BOOL fCopy)

This function returns the system-pointer handle.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

lldentlfler (LONG) - input
System-pointer identifier:

SPTR_ARROW Arrow pointer

SPTR_TEXT Text I-beam pointer

SPTR_WAIT Hourglass pointer

SPTR_SIZE Size pointer

SPTR_MOYE Move pointer

SPTR_SIZENWSE Downward-sloping, double-headed arrow pointer

SPTR_SIZENESW Upward-sloping, double-headed arrow pointer

SPTR_SIZEWE Horizontal, double-headed arrow pointer

SPTR_SIZENS Vertical, double-headed arrow pointer

SPTR_APPICON Standard application icon pointer

SPTR_ICONINFORMATION Information icon pointer

SPTR_ICONQUESICON Question mark icon pointer

SPTR_ICONERROR Exclamation mark icon pointer

SPTR_ICONWARNING Warning icon pointer

SPTR_ILLEGAL Illegal operation icon pointer

SPTR_FILE Single file icon pointer

SPTR_MULTFILE Multiple files icon pointer

SPTR_FOLDER Folder icon pointer

SPTR_PROGRAM Application program icon pointer

fCopy (BOOL) - input
Copy indicator:

TRUE Create a copy of the system pointer and return its handle. Specify this value if the
system pointer is to be modified.

FALSE Return the handle of the system pointer.

Chapter 8. Window Functions 8-365

WinQuerySysPointer -
Query System Pointer

Returns
Pointer handle.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF _RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
Take care when using the pointer bit-map handles returned by the WinQueryPointerlnfo function in
the POINTERINFO structure. If the handle is a system-pointer handle, or is returned by the
WinQueryPointerlnfo function, it is possible that another application is also accessing the bit-map
handle. If this is so, selecting the bit map into a presentation space may fail. Only the active thread
may use the bit-map handle returned by either the WinQuerySysPointer function, when fCopy is
FALSE, or by the WinQueryPointerlnfo function.

Note: This rule is not enforced by the system; therefore, ensure that the program handles selection
failures correctly.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinSetPointer
• WinSetPointerPos
• WinShowPointer

8-366 PM Programming Reference

Example Code

WinQuerySysPointer -
Query System Pointer

This example calls WinQuerySysPointer to get a handle to the system pointer, and then loads an
application-defined pointer. After it has finished using the application-defined pointer, it restores the
system pointer.

#define INCL_WINPOINTERS
#include <OS2.H>
#define IDP_CROSSHAIR 900
HWND hptrDefault, hptrCrossHair;

/* get the system pointer */

hptrDefault = WinQuerySysPointer(HWND_DESKTOP, SPTR_ARROW, FALSE);

/* load an application-defined pointer*/

hptrCrossHair = WinloadPointer(HWND_DESKTOP, (ULONG)O, IDP_CROSSHAIR);

/*change the pointer to the application pointer*/

WinSetPointer(HWND_DESKTOP, hptrCrossHair);

/* restore the system pointer */

WinSetPointer(HWND_DESKTOP, hptrDefault);

Chapter 8. Window Functions 8-367

WinQuerySysValue -
Query System Value

#define INCL WINSYS I* Or use INCL_WIN or INCL_PM */

LONG WlnQuerySysValue (HWND hwndDeskTop, LONG IValueld)

This function returns a system value.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP Return the system values for the desktop-window handle

Other Return the system values for the specified desktop-window handle.

IValueld (LONG) - input
System-value identity.

This must be one of the following SV_ *constants.

Note: Not all system values can be set with the WinSetSysValue function; those that can be set
are marked with an asterisk(*).

SV _ CXSCREEN

SV _CYSCREEN

SV _ CXVSCROLL

SV _ CYHSCROLL

SV _CYVSCROLLARROW

SV _CXHSCROLLARROW

SV _ CYTITLEBAR

SV _ CXBORDER

SV _ CYBORDER

SV _ CXSIZEBORDER

SV _ CYSIZEBORDER

SV _CXDLGFRAME

SV _CYDLGFRAME

SV _ CYVSLIDER

SV _ CXHSLIDER

SV _CXMINMAXBUTTON

SV _CYMINMAXBUTTON

SV_CYMENU

SV _ CXFULLSCREEN

SV _ CYFULLSCREEN

SV_CXICON

SV_CYICON

SV _ CXPOINTER

8-368 PM Programming Reference

Width of the screen.

Height of the screen.

Width of the vertical scroll-bar.

Height of the horizontal scroll-bar.

Height of the vertical scroll-bar arrow bit maps.

Width of the horizontal scroll-bar arrow bit maps.

Height of the caption.

Width of the nominal-width border.

Height of the nominal-width border.

(*) Width of the sizing border.

(*) Height of the sizing border.

Width of the dialog-frame border.

Height of the dialog-frame border.

Height of the vertical scroll-bar thumb.

Width of the horizontal scroll-bar thumb.

Width of the minimize/maximize buttons.

Height of the minimize/maximize buttons.

Height of the single-line menu height.

Width of the client area when the window is full screen.

Height of the client area when the window is full screen
(excluding menu height).

Icon width.

Icon height.

Pointer width.

SV _ CYPOINTER

SV_DEBUG

SV _CMOUSEBUTTONS

SV _POINTERLEVEL

SV_CTIMERS

SV _SWAPBUTTON

SV _ CURSORRATE

SV _DBLCLKTIME

SV _ CXDBLCLK

SV _ CYDBLCLK

SV_ALARM

SV _ WARNINGFREQ

SV _WARNINGDURATION

SV _NOTEFREQ

SV_NOTEDURATION

SV _ERRORFREQ

SV_ERRORDURATION

SV _FIRSTSCROLLRATE

SV _SCROLLRATE

SV _ CURSORLEVEL

SV_TRACKRECTLEVEL

SV _ CXBYTEALfGN

SV _ CYBYTEALIGN

SV _SETLIGHTS

Pointer height.

WinQuerySysValue
Query System Value

FALSE indicates this is not a debug system.

The number of buttons on the pointing device (zero if no
pointing device is installed).

Pointer hide level. If the pointer level is zero, the pointer is
visible. If it is greater than zero, the pointer is not visible. The
WinShowPointer call is invoked to increment and decrement the
SV _POINTERLEVEL, but its value cannot become negative.

Count of available timers.

(*)TRUE if pointing device buttons are swapped. Normally, the
pointing device buttons are set for right-handed use. Setting this
value changes them for left-handed use.

If TRUE, WM_LBUTTON* messages are returned when the user
presses the right button, and WM_RBUTTON* messages are
returned when the left button is pressed. Modifying this value
affects the entire system. Applications should not normally read
or set this value; users update this value by means of the user
interface shell to suit their requirements.

(*) Cursor blink rate, in milliseconds.

(*) Pointing device double-click time, in milliseconds.

(*)Width of the pointing device double-click sensitive area. The
default is the system-font character width.

(*)Height of the pointing device double-click sensitive area. The
default is half the height of the system font character height.

(*) TRUE if the alarm sound generated by WinAlarm is enabled;
FALSE if the alarm sound is disabled.

(*)Frequency for warning alarms generated by WinAlarm.

(*)Duration for warning alarms generated by WinAlarm.

(*)Frequency for note alarms generated by WinAlarm.

(*)Duration for note alarms generated by WinAlarm.

(*) Frequency for error alarms generated by WinAlarm.

(*)Duration for error alarms generated by WinAlarm.

(*) The delay (in milliseconds) before autoscrolling starts, when
using a scroll bar.

(*)The delay- (in milliseconds) between scroll operations, when
using a scroll bar.

The cursor hide level.

The hide level of the tracking rectangle (zero if visible, greater
than zero if not).

Horizontal count of pels for alignment.

Vertical count of pels for alignment.

(*)When TRUE, the appropriate light is set when the keyboard
state table is set.

Chapter 8. Window Functions 8-369

WinQuerySysValue -
Query System Value

SV _INSERTMODE (*) TRUE if the system is in insert mode (for edit and multi-line
edit controls); FALSE if in overtype mode.

This system value is toggled by the system when the insert key
is toggled, regardless of which window has the focus at the time.

SV_MENUROLLDOWNDELAY (*)The delay in milliseconds before displaying a pull down
referred to from a submenu item, when the button is already
down as the pointer moves onto the submenu item.

SV_MENUROLLUPDELAY (*)The delay in milliseconds before hiding a pull down referred
to from a submenu item, when the button is already down as the
pointer moves off the submenu item.

SV_MOUSEPRESENT When TRUE a mouse pointing device is attached to the system.

SV _MONOICONS When TRUE preference is given to black and white icons when
selecting which icon resource definition to use on the screen.
Black and white icons may have more clarity than color icons on
LCD and Plasma display screens.

SV _KBDAL TERED Hardware ID of the newly attached keyboard.

SV _PRINTSCREEN

SV _BEGINDRAG

SV_ENDDRAG

SV _BEGINSELECT

SV _ENDSELECT

SV_OPEN

SV _ CONTEXTMENU

SV _ TEXTEDIT

SV_CONTEXTMENUKB

SV _ TEXTEDITKB

8-370 PM Programming Reference

Note: The OS/2 National Language Support is only loaded once
per system IPL. The OS/2 NLS translation is based partially on
the type of keyboard device attached to the system. There are
two main keyboard device types: PC AT styled and Enhanced
styled. Hot Plugging between these two types of devices may
result in typing anomalies due to a mismatch in the NLS device
tables loaded and that of the attached device. It is strongly
recommended that keyboard hot plugging be limited to the
device type that the system was IPL'd with. In addition, OS/2
support will default to the 101/102 key Enhanced keyboard if no
keyboard or a NetServer Mode password was in use during
system IPL. (See Category 4, IOCtls 77h and 7 Ah for more
information on keyboard devices and types.)

(*) TRUE when the Print Screen function is enabled; FALSE when
the Print Screen function is disabled.

Mouse begin drag (low word=mouse message id (WM_*), high
word=keyboard control code (KC_*))

Mouse end drag (low word=mouse message id (WM_*), high
word=keyboard control code (KC_*))

Mouse begin swipe select (low word=mouse message id
(WM_*), high word=keyboard control code (KC_*))

Mouse select or end swipe select (low word=mouse message id
(WM_*), high word=keyboard control code (KC_*))

Mouse open (low word=mouse message id (WM_*), high
word=keyboard control code (KC_*))

Mouse request popup menu (low word=mouse message id
(WM_*), high word=keyboard control code (KC_*))

Mouse begin direct name edit (low word=mouse message id
(WM_*), high word=keyboard control code (KC_*))

Keyboard request popup menu (low word=virtual key code
(VK_*), high word=keyboard control code (KC_*))

Keyboard begin direct name edit (low word=virtual key code
(VK_*), high word=keyboard control code (KC_*))

Returns
System value:

O Error occurred

WinQuerySysValue -
Query System Value

Other System value. Dimensions are in pels and times are in milliseconds.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Related Functions
• WinSetSysValue

Example Code
This example uses the WinQuerySysValue function to query the sizing border dimensions.

#define INCL_WINSYS
#include <OS2.H>
LONG vlXBorder, vlYBorder;

vlXBorder = WinQuerySysValue(HWND_DESKTOP,
SV_CXSIZEBORDER};

vlYBorder = WinQuerySysValue(HWND DESKTOP,
SV_CYSIZEBORDER);

Chapter 8. Window Functions 8-371

~

WinQuerySystemAtomTable
Query System Atom Table

#define INCL_WINATOM /*Or use INCL_WIN or INCL_PM */

l HATOMTBL WlnQuerySystemAtomTable 0

This function returns the handle of the system atom table.

Parameters

:Returns
System atom-table handle.

Remarks
The system atom table can be accessed by any process in the system. It is created at boot time and
cannot be destroyed.

Related Functions
• WinAddAtom
• WinCreateAtomTable
• WinDeleteAtom
• WinDestroyAtomTable
• WinFindAtom
• WinQueryAtomLength
• WinQueryAtomName
• WinQueryAtomUsage

Example Code
This function queries the length of an atom.

#define INCL_WINATOM
#include <OS2.H>

HATOMTBL hatomtbl;
ATOM atom;
unsigned char szAtomName;

hatomtbl = WinQuerySystemAtomTable();

atom= WinFindAtom(hatomtbl, &szAtomName);

8-372 PM Programming Reference

WinQueryTaskSizePos
Query Task Window Size and Position

#define INCL_WINSWITCHLIST /*Or use INCL_WIN or INCL_PM */

ULONG WlnQueryTaskSlzePos (HAB hab, ULONG ullD, PSWP pswp)

This function obtains the recommended size, position and status for the first window of a newly
started application (typically the main window).

Parameters
hab (HAB) - input

Anchor-block handle.

ullD (ULONG) - input
Session.

If zero is specified, the session number of the caller is used.

pswp (PSWP) - output
Window position and size data.

Contains the recommended size and position for the first (main) window of the application. The
window flags are set to indicate whether this window should be activated, minimized, or
maximized.

Returns
Return code:

O Successful completion

Other Error occurred.

Remarks
The recommended size, position, and status for the program which is starting up, may be contained
in the initialization file. However, if no data is available in the initialization file, the system generates
values.

The coordinates returned are screen coordinates.

Note: For a standard window, the values returned apply to the frame window, not the client window.
Where generated values are supplied, they are such as to guarantee a non null client window area
within a FS_STANDARD frame window.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskTitle
• WinRemoveSwitchEntry
• WinSwitchToProgram

Chapter 8. Window Functions 8-373

WinQueryTaskSizePos -
Query Task Window Size and Position

Example Code
This example uses the recommended size, position and status from the WinQueryTaskSize function
to position the first window of a newly-started application (typically the main window).

#define INCL_WINSWITCHLIST
#define INCL_WINFRAMEMGR
#include <OS2.H>
HAB hab;
SWP winpos;
HWND hwndFrame;

WinQueryTaskSizePos(hab,
(;)'
&winpos);

WinSetWindowPos(hwndFrame, HWND_TOP,
winpos.x,
winpos.y,
winpos.cx,

/* x pos */
/* y pos */
/* x size */
/* y size */ winpos.cy,

SWP _ACTIVATE SWP_MOVE SWP_SIZE I SWP_SHOW); /* flags*/

8-374 PM Programming Reference

WinQueryTaskTitle
Query Task Title

#define INCL_WINSWITCHLIST /*Or use INCL_WIN or INCL_PM */

ULONG WinQueryTaskTltle (ULONG ulSession, PSZ pszTille, ULONG ulTltlelen)

This function obtains the title under which a specified application is started, or is added to the

Window List. (See also WinQuerySessionTitle, which you should use for preference.)

Parameters
ulSession (ULONG) - input

Session identity of application whose title is requested:

0 Use the session identity of the caller

Other Use the specified session identity.

pszTille (PSZ) - output
Window List title.

This is the title of the application with a process identity, if the application is present in the

Window List.

ulTltlelen (ULONG) - input
Maximum length of data returnable, in bytes.

If the pszTitle parameter is longer than this, the title is truncated. However, the terminating null

character is left at the end of the string. The maximum number of title characters copied is

(u/Tit/e/en-1).

Returns
Return code:

0 Successful completion

Other Error occurred.

Remarks
This function is useful when an application uses the same name in its window title (and in its entry in

the Window List) as the end user invokes to start the application. This provides a visual link for the

end user.

If this function is used after a Window List entry is created for the application, the title in the Window

List entry is obtained.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinRemoveSwitchEntry
• WinSwitchToProgram

Chapter 8. Window Functions 8-375

WinQueryTaskTitle
Query Task Title

Example Code
This example calls WinQueryTaskTitle to retrieve the application's title, and then sets the title bar of
the frame window to that title. (The WinQuerySessionTitle could be used instead).
#define INCL_WINSWITCHLIST
#include <OS2.H>
HAB hab;
HWND hwndFrame, hwndClient;
CHAR szTitle[MAXNAMEL + 1];
HSWITCH hswitch;
SWCNTRL swctl;

hswitch = WinQuerySwitchHandle(hwndFrame, 0);
WinQuerySwitchEntry(hswitch, &swctl);

WinQueryTaskTitle(e,
szTitle,
sizeof(szTitle));

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT); /*get handle of parent, */

/* which is frame window. */
WinSetWindowText(hwndFrame, szTitle);

8-376 PM Programming Reference

WinQueryUpdateRect -
Query Update Rectangle

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL~PM */

BOOL WinQueryUpdateRect (HWND hwnd, PRECTL prclPrc)

This function returns the rectangle that bounds the update region of a specified window.

Parameters
hwnd (HWND) - input

Handle of window whose update rectangle is to be queried.

prclPrc (PRECTL) - output
Update region that bounds the rectangle (in window coordinates).

Note: The value of each field in this structure mustbe in the range -32 768 through 32 767. The

data type WRECT may also be used, if supported by the language.

Returns
Success indicator:

TRUE Successful completion

FALSE Window has no update region; it is wholly valid, therefore pre/Pre is NULL.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function is useful for implementing an incremental update scheme as an alternative to the

WinBeginPaint and WinEndPaint functions.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvaJidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Chapter 8. Window Functions 8-377

WinQueryUpdateRect -
Query Update Rectangle

Example Code
This example gets the dimensions of the window and calls WinlnvalidateRect to invalidate the
window. The application will be sent a WM_PAINT message with the entire window as the update
rectangle.

#define INCL_WINWINDOWMGR
#include <052.H>
HAB hab;
HWND hwnd;
RECTL rel;

WinQueryWindowRect(hwnd, &rel);
WinlnvalidateRect(hwnd, /*window to invalidate */

&rel, /*invalid rectangle */
FALSE); /*do not include children*/

8-378 PM Programming Reference

WinQueryUpdateRegion
Query Update Region

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

LONG WinQueryUpdateRegion (HWND hwnd, HRGN hrgn}

This call obtains an update region of a window.

Parameters
hwnd (HWND} - input

Handle of window whose update region is to be queried.

hrgn (HRGN} - input
Handle of the window's update region.

The window's update region, in window coordinates, is copied into hrgn.

Returns
Complexity of resulting region/error indicator:

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

PMERR_HRGN_BUSY

Remarks

An invalid window handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

This call is useful for implementing an alternate update scheme to those used by the WinBeginPaint,

and WinEndPaint functions, together with the WinValidateRegion function.

The application can use the returned update region as the clip region for a presentation space, so

that drawing output can be clipped to the window's update region.

Chapter 8. Window Functions 8-379

WinQueryUpdateRegion
Query Update Region

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Example Code
This example gets the region that needs to be updated and then repaints the invalid region, if
necessary.

#define INCL_WINWINDOWMGR
#define INCL_GPIREGIONS
#include <OS2.H>
HWND hwnd;
HRGN hrgn; /* region handle. */

if (RGN_NULL != WinQueryUpdateRegion(hwnd. hrgn)) {
/* repaint the invalid region */

}

8-380 PM Programming. Reference

WinQueryVersion
Query Version

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section */

I ULONG WinOueryVerslon (HAB heb)

This function returns the version, the revision level and the environment of PM.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
System information within which the application is operating:

SYSINF_ENV
Environment:

QV _ OS2 OS/2.

SYSINF _MAJVER
Major version number of PM.

10 OS/2 Presentation Manager Version 1.

SYSINF _MINVER
Minor version (revision) number of PM.

10 Revision 1

20 Revision 2.

Example Code
This example gets the version of PM that is running.

#define INCL_GPIREGIONS
#include <OS2.H>
#include <stdio.h>
HAB hab;
ULONG lVer;
lVer = WinQueryVersion(hab);
printf("PM revision is %d ",lVer);

Chapter 8. Window Functions 8-381

WinQueryWindow
Query Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WlnQueryWlndow (HWND hwnd, LONG ICode)

This function returns the handle of a window that has a specified relationship to a specified window.

Parameters
hwnd (HWND) - input

Handle of window to query.

ICode (LONG) - input
Type of window information.

Determines what window information is returned:

QW_NEXT

QW_PREV

QW_TOP

QW_BOTTOM

QW_OWNER

QW_PARENT

QW_NEXTTOP

Next window in z-order (window below).

Previous window in z-order (window above).

Topmost child window.

Bottommost child window.

Owner of window.

Parent of window.

Returns the next window of the owner window hierarchy subject to their
z-ordering.

The enumeration is evaluated in this order:

1. The hierarchy of windows owned by this window in their z-order.
2. The hierarchy of windows of the next z-ordered window having the

same owner as this window.
3. The hierarchy of windows in their z-order having the same owner as

the owner of this window. This step is repeated until the top of the
owner tree for this window is reached.

4. The hierarchy of windows in their z-order of unowned windows.

QW_PREVTOP Returns the previous main window, in the enumeration order defined by
QW_NEXTTOP.

QW_FRAMEOWNER Returns the owner of hwnd normalized so that if shares the same parent
as hwnd.

Returns
Window handle.

Handle of window related to hwnd.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

8-382 PM Programming Reference

Remarks

WinQueryWindow -
Query Window

If this function is used to enumerate windows of other threads, it cannot be ensured that all the
windows are enumerated, because the z-ordering of the windows can change during the
enumeration. WinGetNextWindow must be used for this purpose.

If this function is called with QW_OWNER or QW_PARENT, the return value is
WinQueryDesktopWindow(hab, NULLHANDLE), and not HWND_DESKTOP, when the desktop window
is reached.

If this function is called with QW_PARENT for an object window, the return value is the handle of the
object window associated with the desktop window as returned by the WinQueryObjectWindow
function.

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinSetOwner
• WinSetParent

Example Code
This example shows how to get the frame window handle from the client window handle.

#define INCL_WINWINDOWMGR
#define INCL_WINACCELERATORS
#include <OS2.H>

HACCEL haccel;
HWND hwndFrame, hwndClient; /*window handles. */
HAB hab; /* anchor block. * /

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT); /*get handle of parent, */

/* which is frame window. */

Chapter 8. Window Functions 8-383

WinQueryWindowDC -
Query Window Device Context

#define INCL_WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

I HDC WlnQueryWlndowDC (HWND hwnd)

This function returns the device context for a given window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Device-context handle:

NULLHANDLE Either WinOpenWindowDC has not been called for this window, or an error has
occurred.

Other Device context handle.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
A handle is returned only if a device context has been opened for the window with
WinOpenWindowDC.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

Example Code
This example shows how to check if WinOpenWindowDC has been called for this window.

#define INCL_WINWINDOWMGR
#include <052.H>

HWND hwndClient; /* window handle. */

if(WinQueryWindowDC(hwndClient))
{

/* ... */
}

8-384 PM Programming Reference

WinQueryWindowModel
Query Window Model

#define INCL_WINTHUNKAPI /*Or use INCL_WIN or INCL_PM */

I ULONG WlnQueryWlndowMoclel (HWND hwnd)

This function queries the memory model associated with a window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Memory model associated with the window:

PM_MODEL_1X The 16-bit memory model of the 80386 processor.

PM_MODEL_2X The 32-bit memory model of the 80386 processor.

Remarks
This function enables an application to query the memory model associate with a particular window
to find out whether or not conversion of application-defined data is required. This may be necessary,
for example, when sending DOE data. An existing OS/2 Version 1.1 or 1.2 application does not know
about pointer conversion, so its data has to be converted for use in a 32-bit application.

The memory model is determined by how the window procedure was registered. If an application
calls WinRegisterClass from 32-bit code, any windows created with that class are called 32-bit
windows. If the application calls WinSubclassWindow from 16-bit code on a 32-bit window, that
window becomes a 16-bit window.

Related Functions
• WinQueryClassThunkProc
• WinQueryWindowThunkProc
• WinSetClassThunkProc
• WinSetWindowThunkProc

Example Code
This example shows how to check if WinOpenWindowDC has been called for this window.

#define INCL_WINHOOKS
#define INCL_WINTHUNKAPI
#include <OS2.H>
HWND hwndClient; /* window handle. */

if{WinQueryWindowModel{hwndClient) == PM_MODEL_2X)
{

/* The 32-bit memory model of the 80386 processor. */
}

Chapter 8. Window Functions 8-385

WinQueryWindowPos -
Query Window Position

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnQueryWlndowPos (HWND hwnd, PSWP pswp)

This function queries the window size and position of a visible window.

Parameters
hwnd (HWND) - input

Window handle.

pswp (PSWP) - output
SWP structure.

The fields are set such that a call to WinSetWindowPos with those values sets the window to its
current size and position, with the exception of the f/Options bits which are set as follows:

• SWP _MOVE and SWP _SIZE are set to TRUE.
• SWP_ACTIVATE and SWP_DEACTIVATE, are set to the current state of the window.
• If the window is minimized, SWP _MINIMIZE, is set and SWP _MAXIMIZE, is zero.
• If the window is maximized, SWP _MAXIMIZE, is set and SWP _MINIMIZE, is zero.
• If the window is neither minimized nor maximized, both SWP _MINIMIZE, and

SWP _MAXIMIZE, are zero.
• All other bits are set to zero.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID_FLAG

Related Functions
• WinGetMinPosition
• WinQueryActiveWindow
• WinSaveWindowPos
• WinSetActiveWindow
• WinSetMultWindowPos
• WinSetWindowPos

8-386 PM Programming Reference

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

Example Code

WinQueryWindowPos -
Query Window Position

This example shows how to center a dialog box within the Screen using WinQueryWindowPos.

#define INCL_WINWINDOWMGR
#define INCL_WINSYS
#include <OS2.H>
HWND hwnd; /* window handle. */
SHORT ix, iy;
SHORT iwidth, idepth;
SWP swp;

/* Query width and height of Screen device */
iwidth = WinQuerySysValue(HWND DESKTOP, SV CXSCREEN);
idepth = WinQuerySysValue(HWND=DESKTOP, SV=CYSCREEN);

/* Query width and height of dialog box */
WinQueryWindowPos(hwnd, (PSWP)&swp);

/* Center dialog box within the Screen */
ix= (SHORT)((iwidth - swp.cx) / 2);
iy = (SHORT)((idepth - swp.cy) / 2);
WinSetWindowPos(hwnd, HWND_TOP, ix, iy, e, 0, SWP_MOVE);

Chapter 8. Window Functions 8-387

WinQueryWindowProce.ss
Query Window Process

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnQueryWlndowProcess (HWND hwnd, PPID pldpld, PTID pldtld)

This function obtains the process identity and thread identity of the thread that created a window.

Parameters
hwnd (HWND) - input

Window handle.

pldpld (PPID) - output
Process identity of the thread that created the window.

pidtld (PTID) - output
Thread identity of the thread that created the window.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowRect
• WinWindowf romDC
• WinWindowfromlD
• WinWindowFromPoint

8-388 PM Programming Reference

WinQueryWindowProcess -
Query Window Process

Example Code
This example shows how to query a window's process and use that information to add a switch entry.
window.

#define INCL_WINWINDOWMGR
#define INCL_WINSYS
#include <OS2.H>
HWND hwndFrame; /* window handle. */
SWCNTRL swctl;
PIO pid;
TIO tid;
HSWITCH hsw;
char szTitle[] = 11 app.exe 11

;

WinQueryWindowProcess(hwndFrame, &pid, &tid);
swctl.hwnd = hwndFrame;
swctl.idProcess = pid;
strcpy(swctl.szSwtitle, szTitle);
hsw = WinAddSwitchEntry(&swctl);

Chapter 8. Window Functions 8-389

WinQueryWindowPtr -
Query Window Pointer

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

PVOID WlnQueryWlndowPlr (HWND hwnd, LONG lb)

This function retrieves a pointer value from the memory of the reserved window word.

Parameters
hwnd (HWND) - input

Window handle which has the pointer to retrieve.

lb (LONG) - input
Index.

Zero-based index of the pointer value to retrieve. The units of b are bytes. Valid values are
zero through (usExtra -4), where usExtra is the parameter in WinRegisterClass that specifies
the number of bytes available for application-defined storage.

The value QWP _PFNWP can be used for the address of the window's window procedure.

Returns
Pointer value.

NULL Error occurred.

Other Pointer value.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
The lb parameter is valid only if all of the bytes referenced are within the reserved memory.

Related Functions
• WinQueryWindowULong
• WinQueryWindowUShort
• WinSetWindowBits
• WinSetWindowPtr
• WinSetWindowULong
• WinSetWindowUShort

8-390 PM Programming Reference

WinQueryWindowPtr -

Query Window Pointer

Example Code
This function retrieves a pointer value from the memory of the reserved window word.

MyWindowProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{
MYINSTANCEDATA *InstanceData; /* application defined structure */

switch (msg) {
case WM CREATE:

DosAllocMem(&lnstanceData, sizeof(MYINSTANCEDATA), fALLOC);
/* WindowProcedure initializes instance data for this window*/

/* set pointer to instance in window words */
WinSetWindowPtr(hwnd, G, InstanceData);
break;

case WM_USER + 1: /* application defined message*/
/* Window procedure retrieves instance data to */
/* process this message *I

InstanceData = WinQueryWindowPtr(hwnd, G);

break;

Chapter 8. Window Functions 8-391

WinQueryWindowRect -
Query Window Rectangle

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnQueryWlndowRect (HWND hwnd, PRECTL prclRect)

This function returns a window rectangle.

Parameters
hwnd (HWND) - input

Window handle whose rectangle is retrieved.

prclRect (PRECTL) - output
Window rectangle.

Window rectangle of hwnd, in window coordinates.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

Returns
Rectangle-returned indicator:

TRUE Rectangle successfully returned

FALSE Rectangle not successfully returned.

Possible returns from WinGetLastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
The rectangle is in window coordinates relative to itself, so that the bottom left corner is at the
position (0,0).

If the size of a frame window has been changed to zero by WinSetWindowPos or
WinSetMultWindowPos, the original size is returned because the window is hidden, not sized, in this
instance.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinWindowFromDC
• WinWindowFromlD
• WinWindowFromPoint

8-392 PM Programming Reference

WinQueryWindowRect -
Query Window Rectangle

Example Code
This example gets the dimensions of the window and calls WinlnvalidateRect to invalidate the
window. The application will be sent a WM_PAINT message with the entire window as the update
rectangle.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
HWND hwnd;
RECTL rel;

WinQueryWindowRect(hwnd, &rel);
WinlnvalidateRect(hwnd, /*window to invalidate */

&rel, /* invalid rectangle * /
FALSE); /*do not include children*/

Chapter 8. Window Functions 8-393

WinQueryWindowText
Query Window Text

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

LONG WlnQueryWlndowText (HWND hwnd, LONG ILength, PCH pchBuffer)

This function copies window text into a buffer.

Parameters
hwnd (HWND) - input

Window handle.

If hwnd is a frame-window handle, the title-bar window text is copied.

ILength (LONG) - input
Length.

Length of pchBuffer.

pchBuffer (PCH) - output
Window text.

Returns
Length of returned text.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

If the window text is longer than (/Length-1) only the first (/Length-1) characters of window text are
copied.

If the window is the frame window, the title bar window text is copied.

This function sends a WM_QUERYWINDOWPARAMS message to hwnd.

If this function references the window of another process, pchBuffer must be in memory that is
shared by both processes, otherwise a memory fault can occur.

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryDlgltemTextLength
• WinQueryWindowTextLength
• WinSetDlgltemShort
• WinSetDlgltemText
• WinSetWindowText

Related Messages
• WM_QUERYWINDOWPARAMS

a..;394 PM Programming Reference

Example Code

WinQueryWindowText -

Query Window Text

This example shows how to query window text.

#define INCL_WINWINDOWMGR
#include <OS2.H>
#define FID_CLIENT 255
HWND hwndFrame;
HWND hwndClient;
char szTitle[32];

/*
This function creates a new window of
class Generic
and returns hwnd.
*/

hwndClient = WinCreateWindow(hwndFrame,
"Generic",

(PSZ)"My Window", /*no window text. */
0UL, /* no window style. */
e,e,e,e, /* position and size. */

(HWND)NULL, /* no owner. */
HWND_TOP, /* on top of siblings */
FID_CLIENT, /*client window id. */
NULL, /* control data. */
NULL); /*pres. params. */

WinQueryWindowText(hwndFrame, sizeof(szTitle), szTitle);

Chapter 8. Window Functions 8-395

WinQueryWindowTextLength
Query Window Text Length

#define INCL WINWINDOWMGR I* Or use INCL_ WIN or INCL_PM */

LONG WlnQueryWlndowTextLength (HWND hwnd)

This call returns the length of the window text, excluding any null termination character.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Length of the window text.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

This function sends a WM_QUERYWINDOWPARAMS message to hwnd.

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryDlgltemTextLength
• WinQueryWindowText
• WinSetDlgltemShort
• WinSetDlgltemText
• WinSetWindowText

Related Messages
• WM_QUERYWINDOWPARAMS

Example Code
This example shows how to get the tile-bar window text.

#define INCL_WINWINOOWMGR
#define INCL_DOSMEMMGR
#include <OS2.H>
HWND hwndFrame;
PSZ szTitle;
ULONG cbBytes;

cbBytes = WinQueryWindowTextlength(hwndFrame);
OosAllocMem((PPVOID)szTitle,

(ULONG)cbBytes,
PAG READ I
PAG-WRITE I
PAG -COMMIT) ;

WinQueryWindowText(hwndFrame, sizeof(szTitle}, szTitle);

8-396 PM Programming Reference

WinQueryWindowThunkProc -

Query Window Pointer-Conversion Procedure

#define INCL_WINTHUNKAPI I* Or use INCL_WIN or INCL_PM */

PFN WlnQueryWlndowThunkProc (HWND hwnd)

This function queries the pointer-conversion procedure associated with a window.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Pointer-conversion procedure identifier:

NULL No pointer-conversion procedure is associated with this window.

Other Identifier of the pointer-conversion procedure associated with this window.

Related Functions
• WinQueryClassThunkProc
• WinQueryWindowModel
• WinSetClassThunkProc
• WinSetWindowThunkProc

Example Code
This example shows how to get pointer conversion procedure associated with the frame window.

#define INCL_WINTHUNKAPI
#include <OS2.H>
HWND hwndFrame;
PFN pthnkproc;

pthnkproc = WinQueryWindowThunkProc(hwndFrame);

Chapter 8. Window Functions 8-397

WinQueryWindowULong
Query Window Long

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

ULONG WlnQueryWlndowULong (HWND hwnd, LONG lb)

This function obtains the unsigned long integer value, at a specified offset, from the memory of a
reserved window word, of a given window.

Parameters
hwnd (HWND) - input

Handle of window to be queried.

lb (LONG) - input
Index.

Zero-based index into the window words of the value to be queried. The units of bare bytes.
Valid values are zero through (usExtra -4), where usExtra is the parameter in WinRegisterClass
that specifies the number of bytes available for application-defined storage. Any of the QWL_ *
values, are also valid.

Note: QWS_* values cannot be used.

QWL_HMQ Handle of message queue of window. Note that the leading 16 bits of
this value are zero.

QWL_STYLE Window style.

QWL_HHEAP Heap handle used by child windows of this window.

QWL_HWNDFOCUSSAVE Window handle of the child windows of this window that last

QWL_USER

QWL_DEFBUTTON

Other

Returns

possessed the focus when this frame window was last deactivated.

A ULONG value for applications to use is present at offset
OWL_ USER in windows of the following preregistered window
classes:

WC_FRAME (includes dialog windows)
WC_LISTBOX
WC_BUTTON
WC_STATIC
WC _ENTRYFIELD
WC_SCROLLBAR
WC_MENU

This value can be used to place application-specific data in controls.

The default pushbutton for a dialog.

The default pushbutton is the one that sends its WM_ COMMAND
message when the enter key is pressed.

Zero-based index.

Value contained in the window word.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

8-398 PM Programming Reference

Remarks

WinQueryWindowULong -
Query Window Long

The window handle that is passed to this function can be the handle of a window with the same, or
different, message queue as the caller, thereby allowing the caller to obtain data from windows
belonging to other threads.

The specified lb is valid only if all of the bytes referenced are within the reserved memory.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowUShort
• WinSetWindowBits
• WinSetWindowPtr
• WinSetWindowULong
• WinSetWindowUShort

Example Code
This example shows how to get the handle of the message queue of a window.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd;
HMQ hmq;

hmq = (HMQ)WinQueryWindowULong(hwnd, QWL_HMQ);

Chapter 8. Window Functions 8-399

WinQueryWindowUShort
Query Window Short

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

ULONG WlnQueryWlndowUShort (HWND hwnd, LONG lb)

This function obtains the unsigned short integer value at a specified offset from the reserved window
word's memory of a given window.

Parameters
hwnd (HWND) - input

Handle of window to be queried.

lb (LONG) - input
Index.

Zero-based index into the window words of the value to be queried. The units of bare bytes.
Valid values are zero through (usExtra -2), where usExtra is the parameter in WinRegisterClass
that specifies the number of bytes available for application-defined storage. Any of the QWS_ *
values, are valid.

Note: QWL_* values cannot be used.

QWS_ID

QWS_FLAGS

QWS_RESULT

QWS_XRESTORE

QWS_ YRESTORE

Window identity. The value of the Id parameter of the WinCreateWindow
function.

These indicators apply only to frame or dialog windows, and contain
combinations of the following indicators:

FF _FLASHWINDOW
FF_ACTIVE
FF _SELECTED
FF _FLASHHILITE

FF_ OWNERHIDDEN

FF _DLGDISMISSED

FF_ OWNERDISABLED

Frame window is flashing.
Frame window is displayed in the active state.
Frame window is selected.
Window is currently flashed. This indicator
toggles with each flash.
Frame window is hidden as a result of its owner
being hidden or minimized. This indicator is set
only if the window and its owner are siblings.
Dialog has been dismissed by the WinDismissDlg
function.
Window's owner is disabled. This indicator is only
set if the window and its owner are siblings.

Dialog-result parameter, as established by the WinDismissDlg function.

The x-coordinate of the position to which the window is restored.

See also the QWS_CYRESTORE value.

They-coordinate of the position to which the window is restored.

See also the QWS_CYRESTORE value.

QWS_CXRESTORE The width to which the window is restored.

See also the QWS_CYRESTORE value.

QWS_CYRESTORE The height to which the window is restored.

These values are only valid while the window is maximized or minimized
(that is, while either the WS_MINIMIZED or WS_MAXIMIZED window style
indicators are set). Changing these values with the WinSetWindowUShort
call alters the restore size and position.

8-400 PM Programming Reference

QWS_XMINIMIZE

QWS_ YMINIMIZE

Other

Returns

WinQueryWindowUShort -
Query Window Short

The x-coordinate of the position to which the window is minimized. If this
value is -1, the window has not been minimized.

See also the QWS_ YMINIMIZE value.

The y-coordinate of the position to which the window is minimized.

When the window is minimized for the first time an arbitrary position is
chosen. Changing these values with the WinSetWindowUShort call alters
the position of the minimized window, but only when the window is not in a
minimized state.

Zero-based index.

Value contained in the indicated window word.

Possible returns from WinGetLastError

PMERR_INVALID;,_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF _RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
The window handle that is passed to this function can be the handle of a window with the same, or
different, message queue as the caller, thereby allowing the caller to obtain data from windows
belonging to other threads.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowULong
• WinSetWindowBits
• WinSetWindowPtr
• WinSetWindowULong
• WinSetWindowUShort

Related Messages
• WM_COMMAND

Example Code
In this example, the WinQueryWindowUShort call is used to query the window words to see if a
window has been minimized.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd;
USHORT usResult;

usResult = WinQueryWindowUShort(hwnd, QWS_XMINIMIZE);
if (-1 == (LONG)usResult)
{
/* window has not been minimized. */
}

Chapter 8. Window Functions 8-401

WinQueryObject -
Query Workplace Object Handle

#define INCL_WINWORKPLACE

HOBJECT WlnQueryOb)ect (PSZ pszOb)ectlD)

The WinQueryObject function returns a handle to the given object

Parameters
pszOb)ectlD (PSZ) - input

The ObjectlD of an existing object, for example <WP _DESKTOP>, or alternatively the fully
qualified filename of any file or directory.

Returns
MRESULT

Persistent object handle, or NULLHANDLE if the object does not exist or could not be awakened.

Remarks
This function allows you to obtain the persistant object handle for any file object, by passing the fully
qualified filename. Similarly any objects' handle can be retrieved if its ObjectlD string is passed.
Once a program has an object handle, it is able to change the objects state by using the
WinSetObjectData function or delete the object using the WinDestroyObject function. Note that valid
ObjectlD strings must always start with the'<' character and be terminated by the'>' character,
and are thus invalid file system names.

Related Functions
• WinCreateObject
• WinDestroyObject
• WinSetObjectData

8-402 PM Programming Reference

#define INCL_WIN I* Or use INCL_PM */

WinRealizePalette
Realize Palette

LONG WlnReallzePalette (HWND hwnd, HPS hps, PULONG pcclr)

This function indicates that drawing is about to take place after a palette has been selected.

Parameters
hwnd (HWND) - input

Window handle where drawing is taking place.

hps (HPS) - input
Presentation-space handle.

pcclr (PULONG) - output
Number of physical palette entries changed

A value of zero indicates that the palette was successfully realized without changing any entries
in the display hardware physical table. A non-zero value gives the number of hardware table
entries that were changed and indicates that a WM_REALIZEPALETIE message has been posted
to all other applications.

Returns
Number of colors remapped.

PAL_ERROR Error occurred

Otherwise Number of colors that are remapped. This includes both animating and
non-animating indexes that have matches in the physical palette. This
information can be used to determine whether the window needs repainting.

Note that this information may already be out of date if there are other
palette-using applications running.

Possible returns from WinGetlastError

PMERR_NO _PALETTE_SELECTED

PMERRJNVALID_HWND

PMERRJNV _HDC

PMERR_HDC_BUSY

PMERRJNV JN_AREA

Remarks

An attempt to realize a palette failed because no palette
was previously selected into the Presentation Space.

An invalid window handle was specified.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An internal device context busy error was detected. The
device context was locked by one thread during an
attempt to access it from another thread.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

This function is typically used after a GpiSelectPalette function or in response to a
WM_REALIZEPALETIE message. It causes the system to ensure that the palette is appropriately
realized for all drawing operations.

Chapter 8. Window Functions 8-403

WinRealizePalette
Realize Palette

When the window has the input focus, the palette will be realized absolutely. Otherwise, the
realization is on a best-can-do basis. If the palette is larger than the currently associated device can
support, as many entries as possible are realized, starting from the lowest index.

If the presentation space is currently associated with a device context of type OD_MEMORY (see
DevOpenDC), then this function performs no function other than returning without error.

This function must not be called while processing a WM_SETFOCUS message, because a window's
activation state is not known until processing of this message is complete.

Note that the palette cannot be physically changed on all devices. The effect of this call is therefore
device dependent.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExctudeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_SETFOCUS
• WM_REALIZEPALETTE

Example Code
In this example, the WinRealizePalette call is issued in response to a WM_REALIZEPALETTE. This
ensures that the palette is appropriately realized for all drawing operations.

#define INCL_WIN
#include <OS2.H>
HWND hwnd;
ULONG cclr;
USHORT msg;
HPS hps;

switch(msg)
{
case WM_REALIZEPALETTE:

WinRealizePalette(hwnd,hps,&cclr);
}

8-404 PM Programming Reference

WinRegisterClass
Register Window Class

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnReglsterClass (HAB hab, PSZ pszClassName, PFNWP pWndProc,
ULONG flClassStyle, USHORT usExtra)

This function registers a window class.

Parameters
hab (HAB) - input

Anchor-block handle.

pszClassName (PSZ} - input
Window-class name.

An application-specified class name.

pWndProc (PFNWP} - input
Window-procedure identifier.

Can be NULL if the application does not provide its own window procedure.

flClassStyle (ULONG} - input
Default-window style.

This can be any of the standard class styles (CS_*) (see page 12-1) in addition to any
class-specific styles that are defined. These styles can be augmented when a window of this
class is created.

A public window class is created if the CS_PUBLIC style is specified, otherwise a private class is
created. The CS_PUBLIC style must only be specified for the shell process.

Public classes are available for creating windows from any process. Private classes are only
available to the registering process.

usExtra (USHORT) - input
Reserved storage.

This is the number of bytes of storage reserved per window created of this class for application
use.

Returns
Window-class-registration indicator:

TRUE Window class successfully registered

FALSE Window class not successfully registered.

Possible returns from WinGetLastError

PMERR_INVALID_FLAG

PMERR_INVALID _INTEGER_ATOM

PMERR_INVALID_HATOMTBL

PMERR_INVALID _ATOM_NAME

PMERR_ATOM_NAME_NOT_FOUND

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The specified atom is not a valid integer atom.

An invalid atom-table handle was specified.

An invalid atom name string was passed.

The specified atom name is not in the atom table.

Chapter 8. Window Functions 8~05

WinRegisterClass -
Register Window Class

Remarks
When an application registers a private class with the window procedure in a dynamic link library, it

is the application's responsibility to resolve the window-procedure address before issuing this
function.

A private class must not be registered with the same name as a public class in the same process.

However, if a private class is registered with the same name as one that already exists, the
parameters replace the old class parameters, and the return value is TRUE. The window procedure
of an existing window can be changed using WinSubclassWindow or WinSetWindowPtr. The style of
an existing window can be changed with the WinSetWindowULong or WinSetWindowUShort functions.
The number of bytes of storage allocated for application use cannot be changed once the window is

created.

Private classes are deleted when the process that registers them terminates.

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinSubclassWindow

Example Code
This example calls WinRegisterClass to register a class or returns FALSE if an error occurs.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
CHAR szClassName[] = 11 Generic 11

; /* window class name */
PFNWP pGenericWndProc;

if (!WinRegisterClass(hab,
szClassName,
pGenericWndProc,
0L,
0))

return (FALSE);

8-406 PM Programming Reference

/* anchor-block handle */
/* class name */
/* window procedure */

/* window style */
/* amount of reserved memory */

#define INCL_WINWORKPLACE

WinRegisterObjectClass
Register Workplace Object Class

BOOL WlnReglsterObjectClass (PSZ pszClassName, PSZ pszModname)

The WinRegisterObjectClass function registers a workplace object class.

Parameters
pszClassName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the object class being

registered in the workplace.

pszModname (PSZ) - input

A pointer to a zero-terminated string which contains the name of the DLL which holds the object

definition.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The DLL must be one created using the IBM System Object Model. Object classes will automatically

be added to the system when installing a DLL which contains an object definition. Generally, it is not

required for the object DLL to be present at the time WinReglsterObJectClass is called. However, if

the object class overrides wpclsQuerylnstanceType or wpclsQuerylnstanceFilter, the DLL must be

present at the time of the class registration.

Related Functions
• WinCreateObject
• WinDeregisterObjectClass
• WinReplaceObjectClass

Chapter 8. Window Functions 8-407

WinRegisterUserDatatype
Register User Data Type

#define INCL_WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnReglsterUserDatatype (HAB hab, LONG IDatatype, LONG ICount, PSHORT asTypes)

This function registers a data type and defines its structure.

Parameters
hab (HAB) - input

Anchor-block handle.

IDatatype (LONG) - input
Data type code to be defined.

This must not be less than DTYP _USER, and must not have been defined previously.

ICount (LONG) - input
Number of elements.

Must not be less than one.

asTypes (PSHORT) - input

8-408

Data type codes of structure components.

Valid data types are the system-defined data types and their pointer equivalents,
application-defined data types and their pointer equivalents, and control data types. Note that
not all of the data types that occur in the CPI can be specified on this function.

A control data type is followed by one or more entries in the asTypes array that are interpreted
in a special way. Control data types allow arrays, offsets, and lengths to be defined.

Simple Data Types:

DTYP_ATOM See ATOM data type.

DTYP_BIT16 See USHORT data type.

DTYP_BIT32 See ULONG data type.

DTYP_BIT8 See UCHAR data type.

DTYP_BOOL See BOOL data type.

DTYP _ COUNT2 See USHORT data type.

DTYP _ COUNT2B See USHORT data type.

DTYP _ COUNT2CH See USHORT data type.

DTYP _COUNT4B See ULONG data type.

DTYP_CPID See USHORT data type.

DTYP _ERRORID See ERRORID data type.

DTYP _IDENTITY See USHORT data type.

DTYP JDENTITY4 See ULONG data type.

DTYP _INDEX2 See USHORT data type.

DTYPJPT See IPT data type.

DTYP _LENGTH2 See USHORT data type.

DTYP _LENGTH4 See ULONG data type.

DTYP_LONG See LONG data type.

PM Programming Reference

DTYP_OFFSET2B

DTYP_PID

DTYP_PIX

DTYP _PROGCATEGORY

DTYP _PROPERTY2

DTYP _PROPERTY4

DTYP_RESID

DTYP _SEGOFF

DTYP_SHORT

DTYP_TID

DTYP_TIME

DTYP_UCHAR

DTYP_ULONG

DTYP _ USHORT

DTYP _ WIDTH4

DTYP _WNDPROC

Handle Data Types:

DTYP_HAB

DTYP _HACCEL

DTYP_HAPP

DTYP _HATOMTBL

DTYP _HBITMAP

DTYP_:HDC

DTYP_HENUM

DTYP_HINI

DTYP_HLIB

DTYP_HMF

DTYP_HMQ

DTYP _HPOINTER

DTYP _HPROGRAM

DTYP_HPS

DTYP_HRGN

DTYP_HSEM

DTYP_HSPL

DTYP _HSWITCH

·oTYP_HWND

WinRegisterUserDatatype -
Register User .Data Type

See USHORT data type.

See PIO data type.

See PIX data type.

See PROGCATEGORY data type.

See USHORT data type.

See LONG data type.

See HMOOULE data type.

See NPBYTE data type.

See SHORT data type.

See TIO data type.

See LONG data type.

See UCHAR data type.

See ULONG data type.

See USHORT data type.

See LONG data type.

See PFNWP data type.

See HAB data type.

See HACCEL data type.

See HAPP data type.

See HATOMTBL data type.

See HBITMAP data type.

See HOC data type.

See HENUM data type.

See HINI data type.

See HUB data type.

See HMF data type.

See HMQ data type.

See HPOINTER data type.

See HPROGRAM data type.

See HPS data type.

See HRGN data type.

See HSEM data type.

See HSPL data type.

See HSWITCH data type.

See HWNO data type.

Character/String/Buffer Data Types:

DTYP""'"BYTE

DTYP_CHAR

See BYTE data type.

See CHAR data type.

Chapter 8. Window Functions 8-409

WinRegisterUserDatatype
Register User Data Type

DTYP_STRL

DTYP_STR16

DTYP_STR32

DTYP_STR64

DTYP_STR8

Structure Data Types:

DTYP_ACCEL

DTYP _ACCELTABLE

DTYP _ARCPARAMS

DTYP _AREABUNDLE

DTYP _BITMAPINFO

DTYP _BITMAPINFOHEADER

DTYP _BTNCDATA

DTYP _CATCHBUF

DTYP _ CHARBUNDLE

DTYP _ CLASSINFO

DTYP_CREATESTRUCT

DTYP _ CURSORINFO

DTYP_DEVOPENSTRUC

DTYP _DLGTEMPLATE

DTYP _DLGTITEM

DTYP _ENTRYFDATA

DTYP _FA TTRS

DTYP _FFDESCS

DTYP_FIXED

DTYP _FONTMETRICS

DTYP _FRAMECDATA

DTYP _ GRADIENTL

DTYP _HCINFO

DTYP _IMAGEBUNDLE

DTYP _KERNINGPAIRS

DTYP _LINEBUNDLE

DTYP _MARGSTRUCT

DTYP_MARKERBUNDLE

DTYP _MATRIXLF

DTYP _MLECTLDATA

DTYP _OVERFLOW

DTYP _ OWNERITEM

DTYP _POINTERINFO

8-410 PM Programming Reference

See PSZ data type.

See STR16 data type.

See STR32 data type.

See STR64 data type.

See STR8 data type.

See ACCEL data type.

See ACCEL TABLE data type.

See ARCPARAMS data type.

See AREABUNDLE data type.

See BITMAPINFO data type.

See BITMAPINFOHEADER data type.

See BTNCDATA data type.

See CATCHBUF data type.

See CHARBUNDLE data type.

See CLASSINFO data type.

See CREATESTRUCT data type.

See CURSORINFO data type.

See DEVOPENSTRUC data type.

See DLGTEMPLATE data type.

See DLGTITEM data type.

See ENTRYFDATA data type.

See FA TTRS data type.

See FFDESCS data type.

See FIXED data type.

See FONTMETRICS data type.

See FRAMECDATA data type.

See GRADIENTL data type.

See HCINFO data type.

See IMAGEBUNDLE data type.

See KERNINGPAIRS data type.

See LINEBUNDLE data type.

See MLEMARGSTRUCT data type.

See MARKERBUNDLE data type.

See MATRIXLF data type.

See MLECTLDATA data type.

See MLEOVERFLOW data type.

See OWNERITEM data type.

See POINTERINFO data type.

DTYP _POINTL

DTYP_PROGRAMENTRY

DTYP _PROGTYPE

DTYP_QMSG

DTYP_RECTL

DTYP_RGB

DTYP _RGNRECT

DTYP _SBCDATA

DTYP_SIZEF

DTYP_SIZEL

DTYP _SWBLOCK

DTYP _SWCNTRL

DTYP _SWENTRY

DTYP_SWP

DTYP _ TRACKINFO

DTYP _USERBUTION

DTYP _WNDPARAMS

DTYP _WPOINT

DTYP_WRECT

DTYP _XYWINSIZE

Pointer Data Types:

DTYP_Pxxxx

WinRegisterUserDatatype
Register User Data Type

See POINTL data type.

See PROGRAMENTRY data type.

See PROGTYPE data type.

See QMSG data type.

See RECTL data type.

See RGB data type.

See RGNRECT data type.

See SBCDATA data type.

See SIZEF data type.

See SIZEF data type.

See SWBLOCK data type.

See SWCNTRL data type.

See SWENTRY data type.

See SWP data type.

See TRACKINFO data type.

See USERBUTTON data type.

See WNDPARAMS data type.

See WPOINT data type.

See WRECT data type.

See XYWINSIZE data type.

Pointer to an item of data type DTYP _xxxx, where DTYP _xxxx is
one of the data types in the preceding lists. The value of a
pointer data type is the value of the corresponding non-pointer
data type prefixed with minus to make it negative.

Minimum Application Data Type:

DTYP_USER

Control Data Types:

DTYP _ CTL_ARRAY

Minimum value for application-defined non-pointer data type.

This starts a sequence of three array elements that define an
array; the array resides in the structure being defined, and may
have a fixed number of elements, or a variable number of
elements.

Element Value

n DTYP_CTL_ARRAY

n+1 data type of array data.

n+2 minus the number of elements in the array (for an
array of fixed size), or the index of the element in
as Types corresponding to the structure component
which contains the number of elements in the array
being defined; this component must have a suitable
numeric data type; the array-size element must
precede element 'n' in asTypes. The index is
zero-based.

Chapter 8. Window Functions 8-411

WinRegisterUserDatatype
Register User Data Type

DTYP _ CTL_LENGTH

DTYP _ CTL_ OFFSET

8-412 PM Programming Reference

This starts a sequence of four array elements that define a
structure component containing the length of part or all of the
structure. The length component resides at this point in the
structure.

Element

n

n+1

n+2

Value

DTYP _ CTL_LENGTH

data type of structure component that contains the
length (must be a suitable numeric data type).

the index of the element in as Types corresponding to
the first structure component that is included in the
length; a value of -1 denotes the start of the
structure. The index is zero-based.

The element specified must not be one that is the
second or subsequent element in a DTYP_CTL_*
sequence of elements.

n+3 the index of the el.ement in as Types corresponding to
the last structure component that is included in the
length; it must not be less than the value contained in
element n+2. A value of -1 denotes the end of the
structure. The index is zero-based.

The element specified must not be one that is the
second or subsequent element in a DTYP _CTL_*
sequence of elements.

If the value is -1, the length includes all offset data
residing at the end of the structure.

This starts a sequence of four array elements that define data
addressed by an offset. The offset resides at this point in the
structure, and contains the offset in bytes of the data from the
start of the outermost structure in which this component resides.
The data addressed by the offset must occupy storage following
the fixed part of the structure. The data may be scalar data or
array data.

Element

n

n+1

n+2

n+3

Value

DTYP _ CTL_ OFFSET

data type of the structure component that contains
the offset (must be a suitable unsigned numeric
datatype).

data type of offset data.

minus the number of elements in the array (for an
array of fixed size), or the index of the element in
asTypes corresponding to the structure component
that contains the number of elements in the array
being defined; this component must have a suitable
numeric data type; the array"-size element may occur
earlier or later in the structure. The index is
zero-based.

A value of -1 indicates that the data is not an array.

DTYP _CTL_PARRAY

Returns
Success indicator:

WinRegisterUserDatatype
Register User Data Type

This starts a sequence of three array elements that define a
pointer to an array; the pointer resides at this point in the
structure, the array resides elsewhere. The array may have a
fixed or variable number of elements.

Element

n

n+1

n+2

Value

DTYP_CTL_PARRAY

data type of array data.

minus the number of elements in the array (for an
array of fixed size), or the index of the element in
asTypes corresponding to the structure component
that contains the number of elements in the array
being defined; this component must have a suitable
numeric data type. The array-size element may
occur earlier or later in the structure. The index is
zero-based.

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_DATATYPE_TOO_SMALL

PMERR_DATATYPE_NOT_UNIQUE

The data type specified was too smal I.

An attempt to register a datatype failed because it is not
unique.

PMERR_ARRAY_TOO_SMALL The array specified was too small.

PMERR_DATATYPE_ENTRY_NOT_NUM The datatype entry specified was not numerical.

PMERR_DATATYPE_ENTRY_NOT_OFF The datatype entry specified was not an offset.

PMERR_DATATYPE_ENTRY_BAD_INDEX An invalid datatype entry index was specified.

PMERR_DATATYPE_ENTRY_CTL_MISS The datatype entry control was missing.

PMERR_DATATYPE_ENTRY_CTL_BAD An invalid datatype entry control was specified.

Remarks
This function has no effect unless the RegisterUserMsg hook, which is invoked by this function, has
been set.

The value to be used should be obtained by calling WinAddAtom with the handle of the system atom
manager, and subtracting DTYP _ATOM_OFFSET from the result.

WinAddAtom is guaranteed to return values in the range OxCOOO to OxFFFF.

When a data type is defined using this function, a definition for the corresponding pointer data type is
automatically established.

Chapter 8. Window Functions 8-413

WinRegisterUserDatatype
Register User Data Type

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example calls WinRegisterClass to register a class or returns FALSE if an error occurs.

#define INCL_WINMESSAGEMGR
#define INCL_WINTYPES
#include <OS2.H>
#define DTYP_MINE DTYP_USER + 1

HAB hab;
LONG asTypes[3] = {DTYP_CHAR,

DTYP STRL,
DTYP)TR32};

WinRegisterUserDataType(hab,
DTYP_MINE,
3,
asTypes);

8-414 PM Programming Reference

WinRegisterUserMsg
Register User Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnReglsterUserMsg (HAB hab, ULONG ulMsgld, LONG 1Type1, LONG 1Dlr1,
LONG 1Type2, LONG 1Dir2, LONG ITyper)

This function registers a user message and defines its parameters.

Parameters
hab (HAB) - input

Anchor-block handle.

ulMsgid (ULONG) - input
Message identifier.

This must not be less than WM_USER, and must not have been defined previously.

1Type1 (LONG) - input
Data type of message parameter 1.

Valid data types are listed below. For data types that are shorter than 4 bytes, the data must be
placed in the least-significant bytes, with the most significant bytes nullified (unsigned data
types) or signed-extended (signed data types).

DTYP _BIT16 See USHORT data type.

DTYP _ BIT32 See ULONG data type.

DTYP _BITS See UCHAR data type.

DTYP_BOOL See BOOL data type.

DTYP _LONG See LONG data type.

DTYP _SHORT See SHORT data type.

DTYP _ UCHAR See UCHAR data type.

DTYP _ ULONG See ULONG data type.

DTYP _ USHORT See USHORT data type.

DTYP _P* A pointer to a system data type. Note that not all of the system data types that
exist in the CPI are valid.

< -DTYP _USER A pointer to a user data type. The user data type must have already been
defined via WinRegisterUserDatatype.

1Dir1 (LONG) - input
Direction of message parameter 1.

If the message parameter is a pointer, the direction values listed below apply to the contents of
the storage location pointed at, as well as to the message parameter itself.

RUM_IN Input parameter (inspected by the recipient of the message, but not altered)

RUM_ OUT Output parameter (altered by the recipient of the message, without inspecting its
value first)

RUM_INOUT Input/output parameter (inspected by the recipient of the message, and then
altered).

1Type2 (LONG) - input
Data type of message parameter 2.

See the description of /Type1.

Chapter 8. Window Functions 8-415

WinRegisterUserMsg
Register User Message

1Dlr2 (LONG) - input
Direction of message parameter 2.

See the description of /Dirt.

ITyper (LONG) - input
Data type of message reply.

See the description of /Type1. The message reply is always an output parameter.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_MSGID_ TOO_SMALL

PMERR_DATATYPE_INVALID

PMERR_DATATYPE_ TOO _LONG

Remarks

The message identifier specified is too small.

An invalid datatype was specified.

The datatype specified was too long.

This function has no effect unless the RegisterUserMsg hook, which is invoked by this function, has
been set.

It is an error to attempt to register the same message identifier more than once within a single OS/2
process.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

8-416 PM Programming Reference

Example Code

WinRegisterUserMsg -
Register User Message

This example uses the WinRegisterUserMsg call to register a user-defined message and define its
parameters.

#define INCL_WINMESSAGEMGR
#define INCL_WINTYPES
#include <052.H>
#define WM_MY_MESSAGE WM_USER + 11

HAB hab;

WinRegisterUserMessage(hab,
WM_MY_MESSAGE,
DTYP_BIT16, /* paraml is a USHORT */
RUM_INOUT, /* paraml is input/output */
DTYP_BIT16, /* param2 is a USHORT */
RUM_INOUT, /* param2 is input/output */
DTYP_BIT16); /*reply is a USHORT */

Chapter 8. Window Functions 8-417

WinReleaseHook
Release Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL WlnReleaseHook (HAB hab, HMQ hmq, LONG IHook, PFN pAddress,
HMODULE Module)

This function releases an application hook from a hook chain.

Parameters
hab (HAB) - input

Anchor-block handle.

hmq (HMQ) - input
Handle of message queue from which the hook is to be released:

HMQ_CURRENT The hook is released from the message queue associated with the current
thread (calling thread).

NULLHANDLE The hook is released from the system hook chain.

IHook (LONG) - input
Type of hook chain.

This must be one of the HK_* values; see WinSetHook.

pAddress (PFN) - input
Address of the hook routine.

Module (HMODULE) - input
Module handle:

NULLHANDLE The hook procedure is in the application's .EXE file.

Module This is the module that contains the application procedure, as returned by the
DosLoadModule or DosGetModHandle call.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HMQ An invalid message-queue handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Related Functions
• WinCallMsgFilter
• WinSetHook

8-418 PM Programming Reference

Example Code

WinReleaseHook -
Release Hook

This example uses the WinReleaseHook call to release a hook that records user-input messages
from the application queue.

#define INCL_WINHOOKS
#include <OS2.H>
void RecordHook(HAB hab, PQMSG pqmsg);
samp()
{
HAB hab;

WinSetHook(hab,
HMQ_CURRENT,
HK JOURNALRECORD,
(PFN)RecordHook,
(HMODULE)0); /*hook is into application queue. */

WinReleaseHook(hab,
HMQ_CURRENT,
HK JOURNALRECORD,
(PFN)RecordHook,
(HMODULE)0); /*hook is into application queue, */

}
/* This hook records user-input messages. */
void RecordHook(HAB hab, PQMSG pqmsg)
{

/* ... */
}

Chapter 8. Window Functions 8-419

WinReleasePS
Release Presentation Space

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnReleasePS (HPS hps)

This function releases a cache presentation space obtained using the WinGetPS or the
WinGetScreenPS call.

Parameters
hps (HPS) - input

Handle of the cache presentation space to release.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Only cache presentation spaces can be released using this function, after which the presentation
space is returned to the cache to be used again. The presentation-space handle should not be used
following this call.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinShowWindow
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

8-420 PM Programming Reference

Example Code

WinReleasePS -
Release Presentation Space

This example shows how a thread can access a presentation space, draw to it, and release it.

#define INCL_DOSSEMAPHORES
#define INCL_GPIPRIMITIVES
#define INCL_WINWINDOWMGR
#include <052.H>
HPS hps;

hps = WinGetPS(hwndClient);

/* Draw client area */

/* Release the presentation space */

WinReleasePS(hps);

*/
*/

Chapter 8. Window Functions 8-421

WinRemovePresParam
Remove Presentation Parameter

#define INCL_WINSYS I* Or use INCL_WIN or INCL_PM */

BOOL WinRemovePresParam (HWND hwnd, ULONG ldAttrType)

This function removes a presentation parameter associated with the window hwnd.

Parameters
hwnd (HWND) - input

Window handle.

ldAttrType (ULONG) - input
Attribute type identity.

The type of the presentation parameter attribute that is to be removed.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
See also WinSetPresParam and WinQueryPresParam.

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinScrollWindow
• WinSetPresParam

8-422 PM Programming Reference

Example Code

WinRemovePresParam -

Remove Presentation Parameter

This example removes the disable-foreground attribute after querying to ensure that the referenced

window has this attribute defined.

#define INCL_WINSYS
#include <os2.h>

HWND hwnd;
ULONG AttrFound;
ULONG AttrValue[32];
ULONG cbRetlen;

/* System values

/* window handle
/* attributes found
/* attribute value */
/* length of returned value

*/

*/
*/

*/

WinRemovePresParam(hwnd, PP_DISABLEDFOREGROUNDCOLORINDEX);

Chapter 8. Window Functions 8-423

WinRemoveSwitchEntry
Remove Switch Entry

#define INCL_WINSWITCHLIST I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

USHORT WlnRemoveSwltchEntry (HSWITCH hswllchSwltch)

This function removes a specified entry from the Window List.

Parameters
hswllchSwltch (HSWITCH) - input

Switch-list (Window List) entry handle.

Returns
Success indicator:

0 Successful completion

Other Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _SWITCH_ HANDLE

PMERR_INVALID _WINDOW

Remarks

An invalid Window List entry handle was specified.

The window specified with a Window List function is not a
valid frame window.

An application that uses the operating system effectively should, at least, add its main window to the
Window List when it starts, and remove it from the Window List when it stops.

Window List entries for non-OS/2 applications cannot be removed using this function. These entries
are removed automatically by the system when the session they occupy terminates.

Note: This function and the WinCreateSwitchEntry and WinAddSwitchEntry functions are not
required if the main window is created with the frame style FCF_TASKLIST or
FCF_STANDARD, as these styles automatically update the Window List when the main window
is created, destroyed, or its title changes.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinSwitchToProgram

8-424 PM Programming Reference

Example Code

WinRemoveSwitchEntry -
Remove Switch Entry

This example calls WinQuerySwitchHandle to get the Task List handle of a frame window, and then

calls WinRemoveSwitchEntry to remove it.

#define INCL_WINSWITCHLIST
#include <OS2.H>
HAB hab;
HWND hwndFrame;
HSWITCH hswitch;
SWCNTRL swctl;

hswitch = WinQuerySwitchHandle(hwndFrame, O);
WinRemoveSwitchEntry(hswitch);

Chapter 8. Window Functions 8-425

WinReplaceObjectClass -
Replace Workplace Object Class

#define INCL_WINWORKPLACE

BOOL WlnReplaceObJectClass (PSZ pszOldClassName, PSZ pszNewClassName,
BOOL fReplace)

The WinReplaceObjectClass function replaces a registered class with another registered class. If
fReplace is FALSE, pszO/dClassName will revert back to its original definition.

Parameters
pszOldClassName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the object class being replaced
by pszNewC/assName in the workplace.

pszNewClassName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the object class replacing the
pszOldClassName class.

fReplace (BOOL) - input

TRUE Replace the function of class pszO/dC/assName with the function of the class
pszNewC/assName.

FALSE Undo the replacement of the pszO/dClassName with pszNewC/assName by restoring
the pszO/dC/assName back to its original functionality.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The class specified by pszNewC/assName must be a descendant of the class specified by
pszO/dC/assName, otherwise an error will be returned. Replacing an object is useful if it is desired
to modify the behavior of objects which are instances of the class pszOldC/assName and which are
not aware of the class pszNewC/assName.

Related Functions
• WinCreateObject
• WinDeregisterObjectClass
• WinRegisterObjectClass

8-426 PM Programming Reference

#define INCL_WINMESSAGEMGR

WinRequestMutexSem
Request Mutex Semaphore

ULONG WinRequestMutexSem (HMTX hmtx, ULONG ulTlmeout)

WinRequestMutexSem requests ownership of a mutex semaphore or waits for a Presentation

Manager message.

Parameters
hmtx (HMTX) - input

The handle of the mutex semaphore to request.

ulTlmeout (ULONG) - input

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the

thread to be blocked.

This parameter can also have the following values:

Definition Value

0 (SEM_IMMEDIATE_RETURN) WinRequestMutexSem returns immediately without

blocking the calling thread.

-1 (SEM_INDEFINITE_WAIT) WinRequestMutexSem blocks the calling thread

indefinitely.

Returns
Return Code.

WinRequestMutexSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
95 ERROR_INTERRUPT
103 ERROR_TOO_MANY_SEM_REQUESTS
105 ERROR_SEM_OWNER_DIED
640 ERROR_ TIMEOUT

Remarks
WinRequestMutexSem is similar to DosRequestMutexSem and requests ownership of a mutex

semaphore or waits for a window message sent by the WinSendMsg function from another thread to

be received.

This function can be called by any thread in the process that created the semaphore. Threads in

other processes can also call this function, but they must first gain access to the semaphore by

issuing DosOpenMutexSem.

Since the processing of a window message may take longer than the value specified by the

u/Timeout parameter, this function may not return within the time specified by that value.

Chapter 8. Window Functions 8-427

WinRequestMutexSem -
Request Mutex Semaphore

Related Functions
• WinSendMsg
• WinPostMsg

Example Code
This example requests ownership of a mutex semaphore. Assume that the handle of the semaphore
has been placed into hmtx already.

u/Timeout is the number of milliseconds that the calling thread will wait for ownership of the mutex
semaphore. If the specified mutex semaphore is not released during this time interval, the calling
thread does not receive ownership of it.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#define INCL_WINMESSAGEMGR
#include <os2.h>
#include <stdio.h>

#ifndef ERROR_TIMEOUT
#define ERROR_ TIMEOUT 640
#define ERROR_INTERRUPT 95

#endif

HMTX hmtx;
ULONG ulTimeout;
ULONG re;

/* Mutex semaphore handle */
/* Number of milliseconds to wait */
/* Return code */

ulTimeout = 60000; /* Wait for a maximum of 1 minute */

re= WinRequestMutexSem(hmtx, ulTimeout);

if (re == ERROR TIMEOUT)
{ -

}

printf("WinRequestMutexSem call timed out");
return;

if (re == ERROR INTERRUPT)
{ -

}

printf("WinRequestMutexSem call was interrupted");
return;

if (re != 0)
{

}

printf("WinRequestMutexSem error: return code= %ld 11
, re);

return;

8-428 PM Programming Reference

#define INCL_WINWORKPLACE

WinRestoreWindowPos
Restore Window Position

BOOL WinRestoreWindowPos (PSZ pszAppName, PSZ pszKeyName, HWND hwnd)

The WinRestoreWindowPos function will restore the size and position of the window specified by

hwnd to the state it was in when WinStoreWindowPos was last called with the same pszAppName
and pszKeyName.

Parameters
pszAppName (PSZ) - input

A pointer to a zero-terminated string which contains the application name.

pszKeyName (PSZ) - input

A pointer to a zero-terminated string which contains the key name.

hwnd (HWND) - input

Window handle of the window to restore.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function will also restore presentation parameters which were saved by a previous call to
WinStoreWindowPos.

Related Functions
• WinStoreWindowPos

Chapter 8. Window Functions 8-429

WinSaveWindowPos -
Save Window Position

#define INCL_WINFRAMEMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnSaveWlndowPos (HSVWP hsvwp, PSWP aswpaswp, ULONG ccswp)

This function associates an array of SWP structures with the process of repositioning a frame
window.

Parameters
hsvwp (HSVWP) - input

Identifier of the frame window repositioning process.

This handle is provided in the second parameter of the WM_ADJUSTFRAMEPOS message.

aswpaswp (PSWP) - input
Array of SWP structures.

ccswp (ULONG) - input
Count of SWP structures.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function is used only during the processing of the WM_ADJUSTFRAMEPOS message.

Related Functions
• WinGetMinPosition
• WinQueryActiveWindow
• WinQueryWindowPos
• WinSetActiveWindow
• WinSetMultWindowPos
• WinSetWindowPos

Related Messages
• WM_ADJUSTFRAMEPOS

8-430 PM Programming Reference

Example Code

WinSaveWindowPos -
Save Window Position

This example shows how the repositioning of a window is recorded in SWP structures with the

WinSaveWindowPos call.

#define INCL_WINFRAMEMGR
#include <OS2.H>
#define COUNT 10
HSAVEWP hsvwp;
SWP aswp[COUNT];
ULONG msg;

switch (msg){

case WM ADJUSTFRAMEPOS:
WinSaveWindowPos(hsvwp,aswp,COUNT);
}

Chapter 8. Window Functions 8-431

WinScrollWindow
Scroll Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

LONG WlnScrollWlndow (HWND hwnd, LONG IDx, LONG IDy, PRECTL prclScroll,
PRECTL prclCllp, HRGN hrgnUpdateRgn, PRECTL prclUpdate,
ULONG flOptlons)

This function scrolls the contents of a window rectangle.

Parameters
hwnd (HWND) - input

Window handle.

IDx (LONG) - input
Amount of horizontal scroll to the right (in device units).

IDy (LONG) - input
Amount of vertical scroll upward (in device units).

prclScroll (PRECTL) - input
Scroll rectangle.

If this is NULL, the entire window is scrolled.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

prclCllp (PRECTL) - input
Clip rectangle.

If not NULL, this defines a clip rectangle that clips the destination of the scroll.

hrgnUpdateRgn (HRGN) - input
Update region.

If not NULLHANDLE, this contains the region uncovered by the scroll when returned.

prclUpdate (PRECTL) - input/output
Update rectangle.

If not NULL, this contains the bounding rectangle of the invalid bits uncovered by the scroll when
returned.

flOptlons (ULONG) - input
Scroll options.

SW _SCROLLCHILDREN
Unless this is set, child windows are not scrolled. If this is set, and pre/Scroll is NULL, all the
child windows are scrolled by /Dx and /Dy units. If pre/Scroll is not NULL, only those child
windows that intersect pre/Scroll are scrolled.

SW _INVALIDATERGN
The invalid region created as a result of the scroll is added to the update regions of those
windows affected. This may result in sending WM_PAINT messages to CS_SYNCPAINT
windows before the call returns.

8-432 PM Programming Reference

Returns

WinScrollWindow
Scroll Window

Complexity of resulting region/error indicator:

RGN_NULL NULL rectangle invalid

RGN_RECT Simple rectangle invalid

RGN_COMPLEX Complex rectangle invalid

RGN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

PMERR_HRGN_BUSY

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

This function scrolls the contents of a rectangle defined by pre/Scroll in the window hwnd, by /Dx
units horizontally and /Dy units vertically. All coordinates must be in device units.

Clipping takes place on the final image of the scrolling. Even if the scroll rectangle lies outside the
clip rectangle, these bits are scrolled, if their destination lies within the intersection of the clip
rectangle and the destination rectangle.

This function returns an RGN_ * value, indicating the type of invalid region created by the scroll as
returned by GpiCombineRegion. RGN_ERROR is returned if hwnd is invalid.

Note: If hwnd has style WS_CLIPCHILDREN, portions of any child window within the scroll area are
scrolled. In this instance, this function must be called with f/Options SW_SCROLLCHILDREN.

This is the only function that can be used by a thread to move bits within its own window, because of
the critical section nature of window update regions.

Scrolling is fastest without SW_SCROLLCHILDREN and SW_INVALIDATERGN. When scrolling needs
to be repeated quickly, do not include the SW_INVALIDATERGN flag and repaint the invalid area if the
invalid region is rectangular, otherwise invalidate and update.

If the scrolling is infrequent, include the SW_INVALIDATERGN flag. This function invalidates and
updates synchronous-paint windows· automatically before returning.

The cursor and the track rectangle are scrolled when they intersect with the scrolled region. Any
part of the window's initial update region that intersects the scrolled region is also offset.

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinSetPresParam

Chapter 8. Window Functions 8-433

WinScrollWindow
Scroll Window

Related Messages
• WM_ERASEWINDOW
• WM_PAINT

Example Code
This example shows a very small part of the processing that must be done for a WM_ VSCROLL
message, which will be sent when a vertical scroll bar has a significant event to notify its owner.

#define INCL_WINSCROLLBARS
#define INCL_WINWINDOWMGR
#include <052.H>
#define COUNT 10
HWND hwndClient;
MPARAM mp2;
ULONG msg;

switch(msg)
{

case WM_VSCROLL:

switch (SHORT2FROMMP(mp2))

case SB_LINEUP: /* Sent if the operator */

break;
}

/* clicks on the up arrow */
/* of the scroll bar, or */
/* presses the VK_UP */
/* key. */

WinScrollWindow(hwndClient,
0,

break;

(LONG)20, /* vertical scroll */
(PRECTL)NULL,
(PRECTL)NULL,
(HRGN)NULLHANDLE,
(PRECTL)NULL,
0);

8-434 PM Programming Reference

WinSendDlgltemMsg
Send Message to Dialog Item

#define INCL_WINDIALOGS /*Or use INCL_WIN or INCL_PM */

MRESULT WlnSendDlgllemMsg (HWND hwndDlg, ULONG ldltem, ULONG ulMsgld,
MPARAM mpParam1, MPARAM mpParam2)

This function sends a message to the dialog item defined by id/tam in the dialog window specified by
hwndD/g.

Parameters
hwndDlg (HWND) - input

Parent-window handle.

ldltem (ULONG) - input
Identity of the child window.

ulMsgld (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Message parameter 1.

mpParam2 (MPARAM) - input
Message parameter 2.

Returns
Message-return data.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

This function is equivalent to the WinSendMsg function, in which the receiving window procedure is
specified by means of the item identity of the child window and parent-window handle.

It does not return until the message has been processed by the dialog item, whose return value is
returned in mresReply.

The call is equivalent to:

WinSendMsg (WinWindowFromID(hwndDlg, idltem), msgid, paraml, param2, reply);

This function is valid for any window with children; however, it is typically used for dialog items in a
dialog window.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• Wi nPostMsg

Chapter 8. Window Functions 8-435

WinSendDlgllemMsg -
Send Message to Dialog Item

• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example processes an application-defined message (IOM_SHOW) and sets a check mark next to
the selected item.

#define INCL_WIN
#define INCL_WINDIALOGS
#include <OS2.H>
#define IDM_SHOW 902

HWND hwndframe;
ULONG msg;
MPARAM mpl;

/* Inside client procedure. */

switch(msg)
{
case WM_COMMAND:
/* The user has chosen a menu item.
/* accordingly.

switch (SHORTlFROMMP(mpl))
{

case IDM SHOW:

Process the selection */
*/

WinSendDlgitemMsg(hwndFrame, (ULONG) FID_MENU,
(ULONG) MM SETITEMATTR,

MPFROM2SHORT(IDM SHOW, TRUE),
MPFROM2SHORT(MI(CHECKED,MIA_CHECKED));

}

break;

}
break;

8-436 PM Programming Reference

WinSendMsg
Send Message

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

MRESULT WlnSendMsg (HWND hwnd, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function sends a message with identity u/Msgid to hwnd, passing mpParam1 and mpParam2 as
the parameters to the window.

Parameters
hwnd (HWND) - input

Window handle.

ulMsgld (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
Message-return data.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_WINDOW _NOT _LOCKED

Remarks

An invalid window handle was specified.

The window specified in WinSendMsg was not locked.

mresReply is the value returned by the window procedure that is invoked. For standard window
classes, the values of mresReply are documented with the message definitions.

This function does not complete until the message has been processed by the window procedure
whose return value is returned in mresReply.

If the window receiving the message belongs to the same thread, the window function is called
immediately as a subroutine. If the window is of another thread or process, the operating system
switches to the appropriate thread that enters the necessary window procedure recursively. The
message is not placed in the queue of the destination thread.

Chapter 8. Window Functions 8-437

WinSendMsg -
Send Message

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example gets the window handle of the system menu and calls WinSendMsg to send a message
to disable the Close menu item.

#define INCL_WINMENUS
#define INCL_WINMESSAGEMGR
#define INCL_WINFRAMEMGR
#include <052.H>
HWND hwndDlg;
HWND hwndSysMenu;

hwndSysMenu = WinWindowFromID(hwndDlg, FID_SYSMENU);
WinSendMsg(hwndSysMenu, MM_SETITEMATTR,

MPFROM2SHORT(SC_CLOSE, TRUE),
MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED));

8-438 PM Programming Reference

WinSetAccelTable
Set Accelerator Table

#define INCL_WINACCELERATORS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSelAccelTable {HAS hab, HACCEL haccelAccel, HWND hwndframe)

This function sets the window-accelerator, or queue-accelerator table.

Parameters
hab {HAB) - input

Anchor-block handle.

haccelAccel {HACCEL) - input
Accelerator-table handle:

NULLHANDLE Remove any accelerator table in effect for the window or the queue

Other Accelerator-table handle.

hwndframe {HWND) - input
Frame-window handle:

NULLHANDLE Set the queue-accelerator table

Other Set the window-accelerator table.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _HACCEL

An invalid window handle was specified.

An invalid accelerator-table handle was specified.

Related Functions
• WinCopyAccelTable
• WinCreateAccelTable
• WinDestroyAccelTable
• WinloadAccelTable
• WinQueryAccelTable
• WinTranslateAccel

Chapter 8. Window Functions 8-439

WinSetAccelTable -
Set Accelerator Table

Example Code
This example uses the WinSetAccelTable call to remove any accelerator table in effect for the
window.

#define INCL_WIN
#include <OS2.H>
HWND hwndFrame, hwndClient;
HAB hab;
HACCEL haccel;

hwndFrame = WinQueryWindow(hwndClient,

WinSetAccelTable(hab,

QW_PARENT); /*get handle of parent, */
/* which is frame window. */

(HACCEL)e, /* remove any accelerator table in */
/* effect. *I

hwndFrame);

8-440 PM Programming Reference

WinSetActiveWindow -

Set Active Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section */

BOOL WlnSetAcllveWlndow {HWND hwndDeskTop, HWND hwnd)

This function makes the frame window the active window.

Parameters
hwndDeskTop {HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

hwnd {HWND) - input
Window handle.

hwnd is either the frame window or its child. If it is a child, the parent frame window will

become the active window.

Returns
Active-window-set indicator:

TRUE Active window is set

FALSE Active window is not set.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function is equivalent to the WinFocusChange function in which the f/FocusChange parameter is

set to FC_SETACTIVEFOCUS.

Related Functions
• WinGetMinPosition
• WinQueryActiveWindow
• WinQueryWindowPos
• WinSaveWindowPos
• WinSetMultWindowPos
• WinSetWindowPos

Example Code
This example uses the WinSetActiveWindow call to make the main window the active window.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd;
WinSetActiveWindow(HWND_DESKTOP,hwnd);

Chapter 8. Window Functions 8-441

WinSetCapture
Set Capture

#define INCL WININPUT I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetCapture (HWND hwndDesktop, HWND hwnd)

This function captures all pointing device messages.

Parameters
hwndDesktop (HWND) - input

Desktop-window handle, or HWND_DESKTOP.

hwnd (HWND) - input
Handle of the window that is to receive all pointing device messages.

hwnd can take the special value HWND_THREADCAPTURE to capture the pointing device to the
current thread rather than to a particular window. HWND_THREADCAPTURE is unique among
window handles.

If hwnd is NULLHANDLE, pointing device capture is released.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred. If the pointing device has already been captured by another thread or
window, the call fails. This is to prevent applications from removing the capture from
other windows or threads.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function assigns the pointing device capture to hwnd.

With the pointing device capture set to a window, all pointing device input is directed to that window,
regardless of whether the pointing device pointer is over that window.

When this function (hwndDesktop, NULLHANDLE) is called to release the pointing device capture, a
WM_MOUSEMOVE message is posted regardless of whether the pointing device pointer has actually
moved. This ensures that the window below the pointing device, at that time, is able to change
features, such as the shape of the pointing device pointer.

If this function (hwndDesktop, HWND_THREADCAPTURE) is called, the pointing device is captured to
the current thread. Pointing device QMSGs processed in this manner have NULLHANDLE window
handles, and the pointing device coordinates are relative to the screen.

This function returns an unlocked window handle.

It must only be called while processing pointing device or keyboard input. A message box or dialog
box must not be created while the pointing device is captured.

8-442 PM Programming Reference

WinSetCapture

Related Functions
• WinQueryCapture

Related Messages
• WM_MOUSEMOVE

Example Code

Set Capture

This example uses the WinSetCapture call to capture the mouse until the button is released. The user

has selected a specific object with mouse button 2.

#define INCL~WININPUT
#include <OS2.H>
HWND hwnd;
USHORT msg;
WinSetCapture(hwnd,HWND_DESKTOP);

switch (msg) {
case WM_BUTTON2DOWN:

/***/

}

/*An object has been picked. Set the mouse capture until */
/* a 'button up' message is detected. */
/***/

if (hwnd != WinQueryFocus(HWND_DESKTOP)){
WinSetFocus(HWND_DESKTOP, hwnd);

}
WinSetCapture(HWND_DESKTOP, hwnd);
break;

Chapter 8. Window Functions 8-443

WinSetClassMsg.lnterest -
Set Class Message Interest

#define INCL_WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnSetClassMsglnterest (HAB hab, PSZ pszClassName, ULONG ulMsgClass,
LONG IControl)

This function sets the message interest of a window class.

Parameters
hab (HAB) - input

Anchor-block handle.

pszClassName (PSZ) - input
Window-class name.

ulMsgClass (ULONG) - input
Message class to have interest level set:

msgld A single message identity (for example, WM_SHOW)

SMIM_ALL All messages (except for WM_QUIT if /Control is SMl_AUTODISPATCH or
SMl_NOINTEREST).

IControl (LONG) - input
Interest identifier for the message class:

SMl_INTEREST Interested in the message, or messages

SMl_NOINTEREST Not interested in the message, or messages

SMl_AUTODISPATCH Interested in the message or messages, but they are to be automatically
dispatched to the window procedure.

8-444 PM Programming Reference

Returns
Interest-changed indicator:

TRUE Interest successfully changed

FALSE Interest not successfully changed.

Possible returns from WinGetlastError

WinSetClassMsglnterest -
Set Class Message Interest

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function has no effect unless the MsgCtlHook hook, which is invoked by this function, has been

set. The interest for WM_QUIT cannot be set to SMl_AUTODISPATCH using SMIM_ALL, because

WM_QUIT is the normal means of terminating an application. It can be set specifically, if required.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Chapter 8. Window Functions 8-445

WinSetClassMsglnterest -
Set Class Message Interest

Example Code
This example uses the WinSetClassMsglnterest call to set the message interest of window class
WC_MENU. It allows one to process the messages of this window class in the MsgControlHook
procedure.

#define INCL_WINMESSAGEMGR
#define INCL_WINHOOKS
#define INCL_WINMENUS /* for WC_MENU parameter definition. */
#include <052.H>
main()
{

/* Hook Procedure Prototype */

BOOL MsgControlHook(HAB hab,LONG idContext, /* this hook can */

HWND hwnd;
HAB hab;

HWND hwnd, PSZ pszClassname, /* be given any */
ULONG ulMsgclass, /* name. */
LONG idControl, PBOOL fSuccess);

BOOL fSuccess;

/* This function passes the hook procedure address to the system. */

WinSetHook(hab,
(HMQ)e,

/*

MCHK CLASSMSGINTEREST,
(PFN)MsgControlHook,
(HMODULE)0); /*hook is into application queue. */

This function sets the message interest of a window class.
*/

WinSetClassMsglnterest(hab,

}
/*

WC_MENU, /* menu window class. */
SMIM_ALL, /* set interest level for all */

/* messages. *I
SMI_AUTODISPATCH); /*interested in the*/

/* messages, but they are to */
/* be automatically dispatched */
/* to the window procedure. */

This hook allows the call which determine the flow of messages to be
intercepted. It must be present for the WinSetClassMsglnterest
call to have an effect.

*/

BOOL MsgControlHook(HAB hab,LONG idContext,
HWND hwnd, PSZ pszClassname,
ULONG ulMsgclass,
LONG idControl, PBOOL fSuccess)

{
/* ... */
}

8-446 PM Programming Reference

/* this hook can */
/* be given any */
/* name. */

WinSetClassThunkProc -
Set Class Pointer-Conversion Procedure

#define INCL_WINTHUNKAPI I* Or use INCL_WIN or INCL_PM */

BOOL WinSetClassThunkProc (PSZ pszClassName, PFN pthunkpr)

This function associates a pointer-conversion procedure with a window class.

Parameters
pszClassName (PSZ) - input

Window-class name.

pthunkpr (PFN) - input
Pointer-conversion procedure identifier:

NULL Any existing pointer-conversion procedure is dissociated from this class.

By default, a class has no pointer-conversion procedure associated with it.

Other The pointer-conversion procedure to be associated with this class.

Returns
Success indicator:

TRUE Successful completion

FALSE An error occurred.

Remarks
This function does not alter the pointer-conversion procedure associated with any existing window.
It changes the pointer-conversion procedure that will be associated with a window created with a
subsequent WinCreateWindow or WinCreateStdWindow function.

Related Functions
• WinQueryClassThunkProc
• WinQueryWindowModel
• WinQueryWindowThunkProc
• WinSetWindowThunkProc

Chapter 8. Window Functions 8-447

WinSetClassThunkProc -
Set Class Pointer-Conversion Procedure

Example Code
This example sets the pointer conversion procedure of the window class, given that we have an
anchor-block handle.

#define INCL_WINWINDOWMGR
#define INCL_WINTHUNKAPI
#include <OS2.H>

LONG thunkpr(LONG *p); /*prototype definition. */
main()
{
HAB hab;
PFN pfn;
char *classname;

WinQueryClassName(hab,
sizeof(classname),
classname);

WinSetClassThunkProc(classname,
(PFN)thunkpr);

}

LONG thunkpr(LONG *p)
{
/* 16-bit to 32-bit pointer conversion procedure. */
}

8-448 PM Programming Reference

WinSetClipbrdData
Set Clipboard Data

#define INCL_WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetClipbrdData (HAB hab, ULONG ulh, ULONG ulfmt, ULONG flFmtlnfo)

This call puts data into the clipboard.

Parameters
hab (HAB) - input

Anchor-block handle.

ulh (ULONG) - input
Handle.

General handle to the data object being set into the clipboard. If NULLHANDLE, a
WM_RENDERFMT message is sent to the clipboard-owner window to render the format when
WinQueryClipbrdData is called with the specified format.

Once the data has been set into the clipboard, this handle can no longer be used by the
application.

If CFl_POINTER is specified, this parameter contains a pointer to memory. The memory must
have been allocated as unnamed and shareable, by DosAllocSharedMem with the
OBJ_GIVEABLE attribute.

ulfmt (ULONG) - input
Format.

Clipboard format of the data object referenced by ulh.

The standard clipboard formats are shown in the following list. In addition to these predefined
formats, any format value registered through the standard system atom manager displays this
format in preference to privately-formatted data.

CF_TEXT Text format. Each line ends with a carriage-return/line-feed combination.
Tab characters separate fields within a line. A NULL character signals the
end of the data.

CF_DSPTEXT Text display format associated with private format.

CF_BITMAP Bit map.

CF _DSPBITMAP Bit-map display format associated with private format.

CF _METAFILE Metafile.

CF _DSPMETAFILE Metafile display format associated with private format.

CF _PALETTE Palette.

flFmtlnfo (ULONG) - input
Information.

Information about the type of data referenced by the ulh parameter.

Memory Model

One and only one of CFl_POINTER and CFl_HANDLE must be specified, unless
CFl_OWNERDISPLAY is also specified.

CFl_POINTER The ulh parameter is a flat pointer to the object.

When this memory model is specified, the system:

Chapter 8. Window Functions 8-449

WinSetClipbrdData
Set Clipboard Data

CFl_HANDLE

Usage Flags

• saves the address (accessing it from the shell process), so that if
the setting application terminates normally or abnormally, the data
is still available.

• frees the memory from the setting process, so that the setting
application may no longer use it.

CFl_POINTER must be specified if the ulfmt parameter is CF_ TEXT or
CF_DSPTEXT.

The ulh parameter is the handle to a metafile or bit map.

This must be specified if the ulfmt parameter is CF _BITMAP,
CF_DSPBITMAP, CF_METAFILE or CF_DSPMETAFILE.

CFl_OWNERFREE Handle is not freed by WinEmptyClipbrd. The application must free the
data if necessary.

CFl_OWNERDISPLAY This flag indicates that the format is drawn by the clipboard owner in the
clipboard viewer window by means of the WM_PAINTCLIPBOARD
message. The ulh parameter should be NULL.

Returns
Data-placed indicator.

Indicates whether data is placed into clipboard by this call:

TRUE Data placed into clipboard.

FALSE Data is not placed into clipboard, either an error occurred, or ulh is NULL.

Possible returns from WinGetLastError

PMERR_INVALID _FLAG

PMERR_INVALID _INTEGER_ATOM

Remarks

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The specified atom is not a valid integer atom.

Data of the specified format, already in the clipboard, is freed by this call.

An object passed to the clipboard becomes the property of the system, and is not deleted when the
'process that created it terminates.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdOwner
• WinSetClipbrdViewer

8-450 PM Programming Reference

Related Messages
• WM_RENDERFMT
• WM_PAINTCLIPBOARD

Example Code
This example puts a bit map into the clipboard.

#define INCL_WINCLIPBOARD
#include <052.H>
HAB hab; /* anchor-block handle. */
HBITMAP bmap; /* bit-map handle. */

WinOpenClipbrd(hab);
WinSetClipbrdData(hab,

WinSetClipbrdData -
Set Clipboard Data

(ULONG)bmap,
CF BITMAP,
CFI_HANDLE); /*tells the system that the */

/* bmap parameter is a handle */
/* to a bit map. */

WinCloseClipbrd(hab);

Chapter 8. Window Functions 8-451

WinSetClipbrdOwner
Set Clipboard Owner

#define JNCL WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetCllpbrdOwner (HAB hab, HWND hwnd)

This function sets the current clipboard-owner window.

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle of the new clipboard owner:

NULLHANDLE Clipboard-owner window is released and no new clipboard-owner window is
established.

Other Window handle of the new clipboard owner.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The clipboard owner window receives the following clipboard-related messages at appropriate
times:

WM_DESTROYCLIPBOARD
WM_HSCROLLCLIPBOARD
WM_PAINTCLIPBOARD
WM_RENDERFMT
WM_RENDERALLFMTS
WM_SIZECLIPBOARD
WM_ VSCROLLCLIPBOARD.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdViewer

8-452 PM Programming Reference

Related Messages
• WM_DESTROYCLIPBOARD
• WM_HSCROLLCLIPBOARD
• WM_PAINTCLIPBOARD
• WM_RENDERALLFMTS
• WM_RENDERFMT
• WM_SIZECLIPBOARD
• WM_ VSCROLLCLIPBOARD

Example Code
This example places a bit map into the clipboard.

#define INCL_WINCLIPBOARD
#include <OS2.H>
HAB hab; /* anchor-block handle. */
HBITMAP bmap; /* bit-map handle. */
HWND hwnd;

WinOpenClipbrd(hab);
WinSetClipbrdOwner(hab,

WinSetClipbrdOwner -
Set Clipboard Owner

hwnd); /*window handle of the clipboard*/
/* owner. */

WinSetClipbrdData(hab,
(ULONG)bmap,
CF BITMAP,
CFI_HANDLE); /*tells the system that the */

/* bmap parameter is a handle */
/* to a bit map. */

WinCloseClipbrd(hab);

Chapter 8. Window Functions 8-453

WinSetClipbrdViewer
Set Clipboard Viewer

#define INCL_WINCLIPBOARD I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetCllpbrdVlewer (HAB hab, HWND hwndNewCllpVlewer)

This function sets the current clipboard-viewer window to a specified window.

Parameters
hab (HAB) - input

Anchor-block handle.

hwndNewClipVlewer (HWND) - input
Window handle of the new clipboard viewer:

NULLHANDLE The clipboard-viewer window is released and no new clipboard-viewer window
is established.

Other Window handle of the new clipboard viewer.

Returns
Success indicator:

TRUE Valid, new clipboard-viewer window established

FALSE There is no new clipboard-viewer window established.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The clipboard-viewer window receives the WM_DRAWCLIPBOARD message when the contents of the
clipboard change. This allows the viewer window to display an up-to-date version of the clipboard
contents.

The clipboard must be open before this function is invoked.

Related Functions
• WinCloseClipbrd
• WinEmptyClipbrd
• WinEnumClipbrdFmts
• WinOpenClipbrd
• WinQueryClipbrdData
• WinQueryClipbrdFmtlnfo
• WinQueryClipbrdOwner
• WinQueryClipbrdViewer
• WinSetClipbrdData
• WinSetClipbrdOwner

Related Messages
• WM_DRAWCLIPBOARD

8-454 PM Programming Reference

Example Code

WinSetClipbrdViewer -
Set Clipboard Viewer

This example shows how a window views the clipboard contents.

#define INCL_WINCLIPBOARD
#include <OS2.H>
ULONG hclipbrdData;
HAB hab; /* anchor-block handle. */
HBITMAP bmap; /* bit-map handle. */
HWND hwnd;

WinOpenClipbrd{hab);
WinSetClipbrdViewer{hab,

hwnd); /*window handle of the clipboard*/
/* vi ewer. *I

hclipbrdData = WinQueryClipbrdData{hab,
CF _TEXT);

WinCloseClipbrd{hab);

Chapter 8. Window Functions 8-455

WinSetCp -
Set Code Page

#define INCL WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetCp (HMQ hmq, ULONG ulCodePage)

This function sets the code page for a queue.

Parameters
hmq (HMQ) - input

Message-queue handle.

ulCodePage (ULONG) - input
Code page.

Either of the two ASCII code pages specified in CONFIG.SYS can be selected.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HMQ

PMERR_RESOURCE_NOT _FOUND

Related Functions
• WinCpTranslateChar
• WinCpTranslateString
• WinQueryCp
• WinQueryCplist

Example Code

An invalid message-queue handle was specified.

The specified resource identity could not be found.

This example sets the code page for a message queue to 850 if it is not already set.

#define INCL_WINCOUNTRY
#include <OS2.H>
HMQ hmq;

if(WinQueryCp(hmq) != 850)
{
WinSetCp(hmq, 850);

}

8-456 PM Programming Reference

WinSetDesktopBkgnd
Set Desktop Background

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HBITMAP WinSetDesktopBkgnd (HWND hwndDeskTop,·PDESKTOP pDeskTopState)

This function sets the desktop window state.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

pDeskTopState (PDESKTOP) - input
Desktop-state structure.

If the fl parameter has the SDT _LOADFILE flag set then the szfile[MAX_FILENAME] is used to
load the bit map. If the SDT _NOBKGND flag is set, then the background is unaffected although
the bit-map file may still be loaded and tiled, or scaled as requested.

Returns
Desktop background bit-map handle loaded or set:

NULLHANDLE Error occurred.

Other Bit-map handle loaded, set, or both for desktop background. The bit-map
handle returned may be different from that passed into call if any scaling or
tiling is performed.

Possible returns from WinGetlastError

PMERR_INVALID _HPTR

PMERR_INVALID_HWND

Remarks

An invalid pointer handle was specified.

An invalid window handle was specified.

This function allows an application to present an image in the background of the desktop window.
This application must be acting as the OS/2 PM shell in place of the IBM supplied shell. If the IBM
supplied shell is executing it maintains control of the background of the desktop window, and
WinSetDesktopBkgnd will have no effect on the desktop window background, but will indicate a
successful return code. The background of the desktop window is that portion of the desktop on
which no other windows have been painted.

The system assumes ownership of the bit map which forms the desktop background. This implies
that once the bit map is set to form the desktop background, it is no longer available to an application
and therefore must not be associated with any application presentation space or any symbol set
LCID. The system repaints the desktop background automatically to show any changes.

The most recent invocation of this function sets the state of the desktop background. Consequently,
any application which sets the desktop background must be aware that changing the desktop
background every time the application is activated, which implies the repainting of the whole
desktop, could be distracting, if not disorienting, to the user. Therefore, such an application should
determine if the correct desktop background is already showing by processing theWM_ACTIVATE
message and if its usactive parameter is set to TRUE, determining the desktop background state by
using the WinQueryDesktopBkgnd function and checking the bit-map handle of the current desktop
background with the desired bit-map handle.

When setting a new desktop background, it is important to ensure that any previous desktop
background bit map is destroyed, in order to preventthe system becoming cluttered with unused bit
maps.

Chapter 8. Window Functions 8-457

WinSetDesktopBkgnd -
Set Desktop Background

Related Functions
• WinQueryDesktopBkgnd

Example Code
This example sets the desktop background with a bit map if it is not already set.

#define INCL_WINDESKTOP
#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwndDeskTop;
HAB hab;
DESKTOP DeskTopState;
HBITMAP hbm;
HBITMAP hbm_user;

WinQueryDesktopBkgnd{HWND_DESKTOP.
&DeskTopState);

if {hbm_user != DeskTopState.hbm)
{

}

DeskTopState.fl = SDT_LOADFILE;
/* the szFile is used to load the bit map because*/
/* the fl parameter is set to SDT_LOADFILE. */

strcpy{DeskTopState. szFile, 11 fruit.bmp");
DeskTopState.hbm = hbm_user;
WinSetDesktopBkgnd{hwndDeskTop,

&DeskTopState);

8-458 PM Programming Reference

WinSetDlgltemShort -
Set Dialog Item Short

#define INCL_WINDIALOGS /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnSetDlgltemShort (HWND hwndDlg, ULONG idltem, USHORT usValue, BOOL fSigned)

This function converts an integer value into the text of a dialog item.

Parameters
hwndDlg (HWND) - input

Parent-window handle.

ldltem (ULONG) - input
Identity of the child window whose text is to be changed.

usValue (USHORT) - input
Integer value used to generate the dialog item text.

fSigned (BOOL) - input
Sign indicator:

TRUE Signed integer value

FALSE Unsigned integer value.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The text produced is an ASCII string.

This function is valid for any window with children; however, it is typically used for dialog items in a
dialog window.

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryDlgltemTextLength
• WinQueryWindowText
• Wi nQueryWi ndowTextLength
• WinSetDlgltemText
• WinSetWindowText

Chapter 8. Window Functions 8-459

WinSetDlgltemShort -
Set Dialog Item Short

Example Code
This example gets the text from a Dialog Box entry field as an integer value.

#define INCL_WINDIALOGS
#define INCL_WINBUTTONS
#include <052.H>
#define ID_ENTRYFLD 900
#define EM_SETTEXTLIMIT 2
HAB hab;
HWND hwnd;
ULONG msg;

switch(msg)
{
case WM_INITDLG:

/* set entry field text limit. */
WinSendDlgitemMsg(hwnd.

/* identifier of the entry field window. which is */
/* a child of the the window defined by hwnd. */

(ULONG)ID ENTRYFLD.
(ULONG) EM)ETTEXTLIMH, /* Limit 1 ength * /

/* MPFROM2SHORT macro is of the form (low 2 bytes. */
/*high 2 bytes), the the number passed is simply 2. */

MPFROM2SHORT(2.0),
(MPARAM)0);

/* set entry field to 12. */
WinSetDlgitemShort(hwnd. ID_ENTRYFLD, (SHORT)l2,TRUE);

}

8-460 PM Programming Reference

WinSetDlgltemText -
Set Dialog Item Text

#define INCL WINDIALOGS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnSetDlgltemText (HWND hwndDlg, ULONG idltem, PSZ pszText)

This function sets a text string in a dialog item.

Parameters
hwndDlg (HWND) - input

Parent-window handle.

idltem (ULONG) - input
Identity of the child window whose text is to be set.

pszText (PSZ) - input
Source string.

This is the text string that is to be set into the dialog item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function is valid for any window with children. However, it is typically used for dialog items in a
dialog window.

This function is equivalent to:

WinSetWindowText(WinWindowFromID(hwndDlg. idltem. pszText);

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryDlgltemTextlength
• WinQueryWindowText
• WinQueryWindowTextlength
• Wi~SetDlgltemShort

• WinSetWindowText

Chapter 8. Window Functions 8-461

WinSetDlgltemText -

Set Dialog Item Text

Example Code
This example sets the text "CALENDAR" in a dialog box.

#define INCL_WINDIALOGS
#include <OS2.H>
#define ID_DLG_CALENDAR 900
HWND hwndDlg;

WinQuerySetDlgltemText{hwndDlg,
ID DLG CALENDAR,
II CALENDAR II) ;

8-462 PM Programming Reference

WinSetFilelcon
Set File Icon

#define INCL WINWORKPLACE

BOOL WlnSetFilelcon (PSZ pszFileName, PICONINFO picon)

The WinSetFilelcon function will set the icon on the file specified by pszFileName to be that specified
by picon.

Parameters
pszFileName (PSZ) - input

A pointer to a zero-terminated string which contains the name of the file whose icon will be set.

picon (PICONINFO) - input

A pointer to an ICONINFO structure containing an icon specification.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The specified icon is written to the file's .ICON extended attribute.

Related Functions
• WinloadFilelcon
• WinFreeFilelcon

Chapter 8. Window Functions 8-463

WinSetFocus
Set Focus

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnSetfocus (HWND hwndDeskTop, HWND hwndNewFocus)

This function sets the focus window.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

hwndNewfocus (HWND) - input
Window handle to receive the focus.

If hwndNewFocus identifies a desktop window, no window on the device associated with the
hwndDeskTop receives the focus.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function is equivalent to the WinFocusChange call in which the f/FocusChange parameter is set
to 0.

If no window has the input focus, WM_ CHAR messages are posted to the queue of the active window
and are not thrown away.

When this function is called a WM_MOUSEMOVE message is posted regardless of whether the
pointing device pointer has actually moved. This ensures that the window below the pointing device,
at that time, is able to change features, such as the shape of the pointing device pointer.

This function requires the existence of a message queue.

Related Functions
• WinEnablePhyslnput
• WinFocusChange
• WinGetKeyState
• WinGetPhysKeyState
• WinQueryFocus
• WinSetKeyboardStateTable

8-464 PM Programming Reference

Related Messages
• WM_CHAR
• WM_MOUSEMOVE

Example Code
This example gives the client the focus if it does not already have it.

#define INCL_WININPUT
#include <OS2.H>
#define SYS_MENU 900
HWND hwndFrame;

if (WinQueryFocus(HWND_DESKTOP) != /* returns handle of */

WinSetFocus -
Set Focus

/* window with focus. */
Wi nWi ndowFromlD(hwndFrame, FID_CLIENT))

{
WinSetFocus(HWND DESKTOP,
Wi nWi ndowFromID(hwndFrame, FID_CLIENT)); /* handle of client * /

/* window. */

}

Chapter 8. Window Functions 8-465

WinSetHook
Set Hook

#define INCL_WINHOOKS /*Or use INCL_WIN or INCL_PM */

BOOL WlnSetHook (HAB hab, HMQ hmq, LONG IHookType, PFN pHookProc,
HMODULE Module)

This function installs an application procedure into a specified hook chain.

Parameters
hab (HAB) - input

Anchor-block handle. ·

hmq (HMQ) - input
Queue identity.

This parameter identifies the queue to which the hook chain belongs. If hmq is set to
NULLHANDLE, the hook is installed in the system hook chain. If hmq is set to HMQ_CURRENT,
the hook is installed in the message queue associated with the current thread (calling thread).

IHookType (LONG) - input
Hook-chain type.

HK_ CHECKMSGFILTER See CheckMsgFilterHook.

HK_CODEPAGECHANGE See CodePageChangeHook.

HK_DESTROYWINDOW See DestroyWindowHook.

HK_HELP See HelpHook.

HK_INPUT See lnputHook.

HK_JOURNALPLAYBACK See JournalPlaybackHook.

HK_JOURNALRECORD See JournalRecordHook.

HK_LOADER See LoaderHook.

HK_MSGCONTROL See MsgCtlHook.

HK_MSGFILTER See MsgFilterHook.

HK_REGISTERUSERMSG See RegisterUserMsg.

HK_SENDMSG See SendMsgHook.

pHookProc (PFN) - input
Address of the application hook procedure.

Module (HMODULE) - input
Resource identity.

Handle of the module that contains the application hook procedure, as returned by the
DosloadModule or DosGetModHandle call. This parameter can be NULLHANDLE when a queue
hook is being installed by an application into its own message queue.

When hooking a system hook this parameter must be a valid module handle.

8-466 PM Programming Reference

Returns
Success indicator:

TRUE Successful completion

FALSE An error occurred.

Possible returns from WinGetLastError

WinSetHook -
Set Hook

PMERR_INVALID_HMQ An invalid message-queue handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
Queue hooks are called before system hooks.

This function installs the hook at the head of either the system or queue chain. The most recently
installed hook is called first.

Use the WinQueryWindowULong function to obtain the queue handle associated with a window
handle.

Related Functions
• WinCallMsgFilter
• WinReleaseHook

Example Code
This example uses the WinSetHook call to intercept user-input messages from the application queue.

#define INCL_WINHOOKS
#include <OS2.H>
void RecordHook(HAB hab, PQMSG pqmsg); /*prototype of hook*/

/* procedure. */
samp()
{
HAB hab;
WinSetHook(hab,

HMQ_CURRENT,
HK JOURNALRECORD,
(PFN)RecordHook,
(HMODULE)0); /*hook is into application queue. */

WinReleaseHook(hab,
HMQ_CURRENT,
HK JOURNALRECORD,
(PFN)RecordHook,
(HMODULE)0); /* hook is into application queue, */

}
/* This hook records user-input messages. */
void RecordHook(HAB hab, PQMSG pqmsg)
{

/* . . . */
}

Chapter 8. Window Functions 8-467

WinSetKeyboardStateTable
Set Keyboard State Table

#define INCL_WININPUT I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetKeyboardStateTable (HWND hwndDeskTop, PBYTE abKeyStateTable, BOOL fSet)

This function gets or sets the keyboard state.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

abKeyStateTable (PBYTE) - input/output
Key state table.

This is a 256-byte table indexed by virtual key value.

For any virtual key, the Ox80 bit is set if the key is down, and zero if it is up. The Ox01 bit is set if
the key is toggled, (pressed an odd number of times), otherwise it is zero.

fSet (BOOL) - input
Set indicator:

TRUE The keyboard state is set from abKeyStateTable

FALSE The keyboard state is copied to abKeyStateTable.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function does not change the physical state of the keyboard, but changes the value returned by
WinGetKeyState, not WinGetPhysKeyState.

To set the state of a single key, first get the entire table, modify the individual key, and then set the
table from the modified value.

Related Functions
• WinEnablePhyslnput
• WinFocusChange
• Wi nGetKeyState
• WinGetPhysKeyState
• Wi nQueryFocus
• WinSetFocus

8-468 PM Programming Reference

Example Code

WinSetKeyboardStateTable -
Set Keyboard State Table

This example changes the value returned by the WinGetKeyState for the NEWLINE key.

#define INCL_WININPUT
#include <OS2.H>
HWND hwndDeskTop;
BYTE KeyState[257]; /*This is a 256 byte table */

/* indexed by virtual key */
/* value. *I
/* For any virtual key, the */
/* 0x80 bit is set if the key */
/* is down, and zero if it is */
/* up. The 0x01 bit is set */
/* if the key is toggled, */
/* (pressed an odd number */
/*of times), otherwise it is*/
/* zero. *I

WinSetKeyboardStateTable(HWND_DESKTOP,
/* the address of the second element is passed so that the */
/* key number corresponds to the array index */

&KeyState [1] ,
FALSE); /*get a copy of the keyboard*/

/* state. */
KeyState[VK_CAPSLOCK] I= 0x01; /* set the CAPSLOCK key to */

/* on state */
WinSetKeyboardStateTable(HWND_DESKTOP,

&KeyState[l],
TRUE); /*get a copy of the keyboard*/

/* state. *I

Chapter 8. Window Functions 8-469

WinSetLboxltemText
Set Listbox Item Text

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetLboxltemText (HWND hwndLbox, SHORT sLboxlndx, PSZ pszText)

This macro sets the text of the list box indexed item to buffer.

Parameters
hwndLbox (HWND) - input

List box handle.

sLboxlndx (SHORT) - input
Index of the list box item.

pszText (PSZ) - input
Pointer to a null terminated string.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinSetlboxltemText(hwndlbox, slboxlndx, pszText)
((BOOL)WinSendMsg(hwndlbox,

LM SETITEMTEXT,
MPFROMSHORT(slboxlndx),
MPFROMP(pszText)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• LM_SETITEMTEXT

8'."470 PM Programming Reference

Example Code

WinSetLboxltemText -
Set Listbox Item Text

This example uses the WinSetlboxltemText call to set the months in a calendar list box.

#define INCL_WINOIALOGS
#include <OS2.H>
HWNO hwndlbox;
SHORT i;
typedef char MONTH[12];
MONTH months [12] = {"January", "February", "March",

for (i=0;i<12;i++)
{

11 Apri 111
,

11 May 11
, "June", "July",

11 August 11
, "September", "October",

"November", "December" };

WinQuerySetOlgltemText(hwndlbox,
i '
months [i]);

} /* endfor */

Chapter 8. Window Functions 8-471

WinSetMenultemText
Set Menu Item Text

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetMenultemText (HWND hwndMenu, USHORT usld, PSZ pszText)

This macro sets the text for Menu indexed item to buffer.

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

pszText (PSZ) - input
Text for the menu item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This macro expands to:

#define WinSetMenultemText (hwndMenu. usld, pszText)
((BOOL)WinSendMsg(hwndMenu,

MM SETITEMTEXT,
MPFROMSHORT(id),
MPFROMP(pszText)))

This function requires the existence of a message queue.

Related Functions
• WinSendMsg

Related Messages
• MM_SETITEMTEXT

Example Code
This example sets the options text in a menu.

#define INCL_WINWINDOWMGR
#include <OS2.H>
#define IDM_OPTIONS 900
HWND hwndMenu;

WinQuerySetMenultemText(hwndMenu,
IDM OPTIONS,
"Options");

8-472 PM Programming Reference

.winSetMsglnterest -
Set Message Interest

#define INCL_WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetMsglnterest (HWND hwnd, ULONG ulMsgClass, LONG IControl)

This function sets a window's message interest.

Parameters
hwnd (HWND) - input

Window handle.

ulMsgClass (ULONG) - input
Message class to have interest level set:

msgld A single message identity (for example, WM_SHOW)

SMIM_ALL All messages (except for WM_QUIT if /Control is SMl_AUTODISPATCH or
SMl_NOINTEREST).

IControl (LONG) - input
Interest-identifier for the message class:

SMl_RESET Revert to interest specified for the window class.

SMl_INTEREST Interested in the messages.

SMt_NOINTEREST Not interested in the messages.

SMl_AUTODISPATCH Interested in the message or messages, but they are to be automatically
dispatched to the window procedure.

Returns
Interest-changed indicator:

TRUE Interest successfully changed

FALSE Interest not successfully changed.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function has no effect unless the MsgCtlHook hook, which is invoked by this function, has been
set. The interest for WM_:OUIT cannot be set to SMl_AUTODISPATCH using SMIM_ALL, because
WM_QUIT is the normal means of terminating an application. It can be set specifically, if required.

Chapter 8. Window Functions 8-473

WinSetMsglnterest -
Set Message Interest

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsgMode
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example uses the WinSetMsglnterest call to set the message interest of a window to only
WM_SHOW messages.

#define INCL_WINMESSAGEMGR
#define INCL_WINHOOKS
#include <OS2.H>
HWND hwnd;
HAB hab;
BOOL fSuccess;

/* Hook Procedure Prototype */

BOOL MsgCtlHook(HAB hab,LONG idContext, /* this hook can */

main()
{

HWND hwnd, PSZ pszClassname, /* be given any */
ULONG ulMsgclass, /* name. */
LONG idControl, PBOOL fSuccess);

/* This function passes the hook procedure address to the system. */

WinSetHook(hab,
(HMQ)0,

/*

MCHK CLASSMSGINTEREST,
(PFN)MsgCtlHook,
(HMODULE)0); /*hook is into application queue. */

This function sets the message interest of a window class.
*/

WinSetMsginterest(hab,
WM SHOW,
SMI AUTODISPATCH); /* interested in the */

/* messages, but they are to */
/* be automatically dispatched */

8-474 PM Programming Reference

}

WinSetMsglnterest -
Set Message Interest

/* to the window procedure. */

BOOL MsgCtlHook(HAB hab,LONG idContext, /* this hook can */

{
/* ••. */
}

HWND hwnd, PSZ pszClassname, /* be given any */
ULONG ulMsgclass, /* name. */
LONG idControl, PBOOL fSuccess)

Chapter 8. Window Functions 8-475

WinSetMsgMode
Set Message Mode

#define INCL"'"WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WinSetMsgMode (HAB hab, PSZ pszClassName, LONG IControl)

This function indicates the mode for the generation and processing of messages for the private
window class of an application.

Parameters
hab (HAB) - input

Anchor block handle.

pszClassName (PSZ) - input
Window class name.

IControl (LONG) - input
Message mode identifier.

SMD_DELAYED The generation of messages may be delayed

SMD_IMMEDIATE The generation of messages will not be delayed.

Returns
Message delay indicator:

TRUE Message mode successfully set

FALSE Message mode not successfully set.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function has no effect unless the MsgCtlHook hook, which is invoked by this function, has been
set.

8~476 PM Programming Reference

WinSetMsgMode
Set Message Mode

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetSynchroMode
• WinWaitMsg

Example Code
This example uses the WinSetMsgMode call to set the a delayed message processing mode for
private window class "Generic".

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#include <OS2.H>
HWND hwnd;
HAB hab;
PFNWP GenericWndProc;
CHAR szClassName[] = 11 Generic 11

; /*window class name */

if (!WinRegisterClass(hab,
szClassName,
GenericWndProc,
0L,
0));

return (FALSE);

WinSetMsgMode(hab,
11 Generic 11

,

SMD_DELAYED);

/* anchor-block handle */
/* class name */
/* window procedure */
/* window style */
/* amount of reserved memory */

Chapter 8. Window Functions 8-477

WinSetMultWindowPos -
Set Multiple Window Positions

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSelMullWlndowPos (HAB hab, PSWP aSwp, ULONG cCounl)

This function performs the WinSetWindowPos function for cCount windows, using aSwp, an array of
structures whose elements correspond to the input parameters of WinSetWindowPos.

Parameters
hab (HAB) - input

Anchor-block handle.

aSwp (PSWP) - input
Array.

An array of set window position (SWP) structures. The elements of each correspond to the input
parameters of WinSetWindowPos.

cCounl (ULONG) - input
Window count.

Returns
Positioning success indicator:

TRUE Positioning succeeded

FALSE Positioning failed.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

All windows being positioned must have the same parent.

It is more efficient to use this function than to issue multiple WinSetWindowPos functions, as it
causes less screen updating. If hwnd specifies a frame window, this function recalculates the sizes
and positions of the frame controls. If the new window rectangle for any frame control is to be
empty, instead of resizing or repositioning that control, it is hidden by (SWP _HIDE) instead. This
eliminates needless processing of windows that are not visible. The window rectangle of the control
in question is left in its original state. For example, if WinSetWindowPos is issued to change the size
of a standard frame window to an empty rectangle, and WinQueryWindowRect is issued against the
client window, the rectangle returned is not an empty rectangle, but the original client rectangle
before WinSetWindowPos was issued.

Related Functions
• WinGetMinPosition
• WinQueryActiveWindow
• WinQueryWindowPos
• WinSaveWindowPos
• WinSetActiveWindow
• WinSetWindowPos

8-478 PM Programming Reference

WinSetMultWindowPos -
Set Multiple Window Positions

Related Messages
• WM_ACTIVATE
• WM_ADJUSTWINDOWPOS
• WM_CALCVAUDRECTS
• WM_MOVE
• WM_SHOW
• WM_SIZE

Example Code
This example uses the WinSetMultWindowPos to cascade up to 16 main windows.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND ahwnd[16]; /*array of window handles. */
SWP aSwp[16]; /*array of SWP structures. */
HAB hab;
SWP swp;
LONG xcoord,ycoord;
LONG i=l;

/* get reconmended window position */

WinQueryTaskSizePos(hab,
e,
&swp);

xcoord = swp.x; ycoord = swp.y;

/* initialize array of SWP structures where each is displaced */
/*by (10,10). */

for (i=0;i<16 ;i++) {
aSwp[i]=swp;
aSwp[i].x=xcoord;
aSwp[i].y=ycoord;
xcoord += 10;
ycoord += 10;

} /* endfor */

/*get a list of all the main windows into the ahwnd array. */

i=0
henum=WinBeginEnumWindows

(HWND_DESKTOP);
do
{
ahwnd[i] = WinGetNextWindow

(henum);
}
while((ahwnd[i++]f=NULL) && i < 16);

WinEndEnumWindows(henum);

WinSetMultWindowPos(hab,aSwp,i-1);

Chapter 8. Window Functions 8-479

WinSetObjectData
Set Object Data

#define INCL WINWORKPLACE

BOOL WlnSetObjectData (HOBJECT object, PSZ pszSetupStrlng)

The WinSetObjectData function is called to set data on a workplace object.

Parameters
object (HOBJECT) - input

Handle to a workplace object.

pszSetupStrlng (PSZ) - input

A pointer to a zero-terminated string which contains the object-specific parameters to the new
object.

The pszSetupString string is extracted when the wpSetup method is called.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The WinSetObjectData function will change settings on an object that was created with the
WinCreateObject function.

Related Functions
• WinCreateObject
• WinDestroyObject

8-480 PM Programming Reference

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WinSetOwner (HWND hwnd, HWND hwndNewOwner)

This function changes the owner window of a specified window.

Parameters
hwnd (HWND) - input

Window handle whose owner window is to be changed.

hwndNewOwner (HWND) - input
Handle of the new owner:

NULLHANDLE The window becomes "disowned"

Other Handle of the new owner window.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

WinSetOwner -
Set Owner

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
The old owner window is not locked by this function.

The WinQueryWindow function can be used to get the handle of the owner window.

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• WinSetParent

Example Code
This example uses the WinSetOwner call to "disown" a window.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd; /* window handles. */
WinSetOwner(hwnd,(HWND)0);

Chapter 8. Window Functions 8-481

WinSetParent
Set Parent

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetParent (HWND hwnd, HWND hwndNewParent, BOOL fRedraw)

This function sets the parent for hwnd to hwndNewParent.

Parameters
hwnd (HWND) - input

Window handle.

hwndNewParent (HWND) - input
New parent window handle.

This cannot be a descendant of hwnd.

If this parameter is a desktop window handle or HWND_DESKTOP, hwnd becomes a main

window.

If this parameter is not equal to HWND_OBJECT, it must be a descendant of the same desktop

window as hwnd.

If this parameter is HWND_OBJECT or a window handle returned by the WinQueryObjectWindow

function, hwnd becomes an object window.

fRedraw (BOOL) - input
Redraw indicator:

TRUE If hwnd is visible, any necessary redrawing of both the old parent and the new parent

windows is performed.

FALSE No redrawing of the old and new parent windows is performed. This avoids an extra

device update when subsequent calls cause the windows to be redrawn.

Returns
Parent-changed indicator:

TRUE Parent successfully changed

FALSE Parent not successfully changed.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Related Functions
• WinBeginEnumWindows
• WinEndEnumWindows
• WinEnumDlgltem
• WinGetNextWindow
• WinlsChild
• WinMultWindowFromlDs
• WinQueryWindow
• Wi nSetOwner

8-482 PM Programming Reference

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants

defined by PM for options, and do not set any reserved
bits.

Related Messages
• WM_ERASEWINDOW
• WM_PAINT

Example Code

WinSetParent -
Set Parent

This example uses the WinSetParent call to change a window to a main window.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd; /* window handles. */
WinSetParent(hwnd,

HWND DESKTOP.
TRUE); /*do any necessary redrawing*/

Chapter 8. Window Functions 8-483

WinSetPointer
Set Pointer

#define INCL_WINPOINTERS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetPolnter (HWND hwndDeskTop, ff POINTER hptrNewPolnter)

This call sets the desktop-pointer handle.

Parameters
hwndDeskTop {HWNO) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

hptrNewPolnter {HPOINTER) - input
New pointer handle:

NULL Remove pointer from the screen.

Other Pointer handle associated with hwndDeskTop. Handles for application-defined pointers
are returned by the WinloadPointer and WinCreatePointer calls.

Returns
Pointer-updated indicator:

TRUE Pointer successfully updated

FALSE Pointer not successfully updated.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

PMERR_INVALID _HPTR

PMERR_INV _ CURSOR_BITMAP

Remarks

An invalid window handle was specified.

An invalid pointer handle was specified.

An invalid pointer was referenced with WinSetPointer

This call is very efficient if hptrNewPointer is the same as the current pointer handle.

Related Functions
• WinCreatePointer
• WinCreatePointerlndi rect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointerPos
• WinShowPointer

8-484 PM Programming Reference

Example Code

WinSetPointer -
Set Pointer

This example calls WinloadPointer to load an application-defined pointer. When processing the

WM_MOUSEMOVE message, the loaded pointer is displayed by calling WinSetPointer.

#define INCL_WININPUT
#define INCL_WINPOINTERS
#include <OS2.H>
#define IDP_CROSSHAIR 900
HPOINTER hptrCrossHair;
USHORT msg;
switch(msg)
{

case WM CREATE:
hptrCrossHair = WinloadPointer(HWND_DESKTOP.
(ULONG)0, /* load from .exe file */

IDP_CROSSHAIR); /* identifies the pointer*/

case WM MOUSEMOVE:
WinSetPointer(HWND_DESKTOP, hptrCrossHair);

}

Chapter 8. Window Functions 8-485

WinSetPointerPos -
Set Pointer Position

#define INCL_WINPOINTERS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetPolnterPos (HWND hwndDeskTop, LONG Ix, LONG ly)

This function sets the pointer position.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

Ix (LONG) - input
x-position of pointer in screen coordinates.

ly (LONG) - input
y-position of pointer in screen coordinates.

Returns
Pointer position updated indicator:

TRUE Pointer position successfully updated

FALSE Pointer position not successfully updated.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinLoadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinShowPointer

Example Code
This example calls WinSetPointer to set the pointer at 50, 50 in Screen coordinates.
#define INCL_WINPOINTERS
#include <OS2.H>

WinSetPointerPos(HWND DESKTOP,
(LONG)50,
(LONG)50);

8-486 PM Programming Reference

WinSetPresParam
Set Presentation Parameter

#define INCL_WINSYS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetPresParam (HWND hwnd, ULONG idAttrType, ULONG cbAttrValueLen,
PVOID pAttrValue)

This function sets a presentation parameter for a window.

Parameters
hwnd (HWND) - input

Window handle.

idAttrType (ULONG) - input
Attribute type identity.

This is either one of the system-defined presentation parameter attribute types (see the id

parameter of the PARAM data type), or an application-defined type.

cbAttrValueLen (ULONG) - input
Byte count of the data passed in the pAttrVa/ue parameter.

pAttrValue (PVOID) - input
Attribute value.

See the abab[1] parameter of the PARAM data type for the values of system-defined attributes.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
This function associates the presentation parameter attribute identified by idAttrType with the

window hwnd. If the attribute already exists for the window, its value is changed to the new value

specified by pAttrValue. If the attribute does not exist, it is added to the window's presentation

parameters, with the specified value. (See also WinQueryPresParam and WinRemovePresParam).

When a presentation parameter is set, a WM_PRESPARAMCHANGED message is sent to all windows

owned by the window calling the WinSetPresParam function.

Related Functions
• WinDrawBitmap
• WinDrawBorder
• WinDrawPointer
• WinDrawText
• WinFillRect
• WinGetSysBitmap
• WinlnvertRect
• WinQueryPresParam
• WinRemovePresParam
• WinScrollWindow

Chapter 8. Window Functions 8-487

WinSetPresParam -
Set Presentation Parameter

Example Code
This example changes the border color to blue.

#define INCL_WINSYS
#define INCL_GPIBITMAPS /* for RGB structure definition. */
#include <OS2.H>
HWND hwnd;
RGB rgb; /* red, green, and blue color index. */
rgb.bBlue = 2ee;
rgb.bGreen = 10;
rgb.bRed = 5;

WinSetPresParam(hwnd,
PP BORDERCOLOR,

(ULONG)sizeof(RGB),
(PVOID)&rgb);

8-488 PM Programming Reference

WinSetRect -
Set Rectangle

#define INCL_WINRECTANGLES I* Or use lNCL_WIN or INCL_PM */

BOOL WlnSetRect (HAB hab, PRECTL prclrect, LONG ILeft, LONG IBoHom, LONG IRlght,
LONG ITop)

This function sets rectangle coordinates.

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - input/output
Rectangle to be updated.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

ILeft (LONG) - input
Left edge of rectangle.

IBottom (LONG) - input
Bottom edge of rectangle.

IRight (LONG) - input
Right edge of rectangle.

ITop (LONG) - input
Top edge of rectangle.

Returns
Success indicator:

TRUE Successful completion

-FALSE Error occurred.

Remarks
This function is equivalent to assigning the left, top, right, and bottom arguments to the appropriate
fields of RECTL.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRectEmpty
• WinSubtractRect
• WinUnionRect

Chapter 8. Window Functions 8-489

WinSetRect -
Set Rectangle

Example Code
This example calls WinQueryWindowRect to get the dimensions of the window, and then calls
WinSetRect to downsize it.

#define INCL_WINRECTANGLES
#include <OS2.H>
HAB hab;
RECTL rel;
HWND hwnd;

WinQueryWindowRect(hwnd, &rel);
WinSetRect(hab,&rcl,

rcl.xleft - 10,
rcl.yBottom -10,
rcl.xRight - 10,
rcl.yTop - 10);

8-490 PM Programming Reference

/* get window dimensions */

WinSetRectEmpty -
Set Rectangle Empty

#define INCL_WINRECTANGLES /*Or use INCL_WIN or INCL_PM */

BOOL WlnSetRectEmpty (HAB hab, PRECTL prclrect)

This function sets a rectangle empty.

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - input/output
Rectangle to be set empty.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function is equivalent to a WinSetRect (hab, prclrect, 0, 0, 0, 0) call.

Related Functions
• Wi nCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSubtractRect
• WinUnionRect

Example Code
This example calls WinSetRectEmpty to empty the rectangle structure.

#define INCL_WINRECTANGLES
#include <OS2.H>
HAB hab;
RECTL rel;

WinSetRectEmpty{hab,&rcl);

Chapter 8. Window Functions 8-491

WinSetSynchroMode
Set Synchronization Mode

#define INCL WINMESSAGEMGR /*Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnSetSynchroMode (HAB hab, LONG IMode)

This function is intended for use in a distributed application.

Parameters
hab (HAB) - input

Anchor-block handle.

IMode (LONG) - input
Synchronization mode:

SSM_SYNCHRONOUS Synchronous mode

SSM_ASYNCHRONOUS Asynchronous mode

SSM_MIXED Mixed mode.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function allows an application whose message queue is distributed, to synchronize the
processing of those messages. This is achieved by the use of the MsgCtlHook hook which is invoked
by this function.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinWaitMsg

8-492 PM Programming Reference

Example Code

WinSetSynchroMode -
Set Synchronization Mode

This function is intended for use in an application with a distributed queue.

#define INCL_WINMESSAGEMGR
#include <OS2.H>
HAB hab;
WinSetSynchroMode(hab,

SSM_SYNCHRONOUS); /*synchronous mode. */

Chapter 8. Window Functions 8-493

WinSetSysColors -
Set System Colors

#define INCL_WINSYS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetSysColors (HWND hwndDeskTop, ULONG flOptlons, ULONG ulFormat,
LONG IStart, ULONG ulTablen, PLONG alTable)

This function sets system color values.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other Specified desktop-window handle.

llOptlons (ULONG) - input
Options:

LCOL_RESET
The system colors are all to be reset to default before processing the remainder of the data
in this function.

LCOL_PURECOLOR
Color-dithering should not be used to create colors not available in the physical palette. If
this option is set, only pure colors are used and no dithering is done.

ulFormat (ULONG) - input
Format of entries in the table, as follows:

LCOLF _INDRGB
Array of (index,RGB) values. Each pair of entries is 8-bytes long, comprising 4 bytes for the
index, and 4 bytes for the color value. For system color indexes, see /Start.

LCOLF _ CONSECRGB
Array of (RGB) values, corresponding to color indexes /Start upwards. Each entry is 4-bytes
long.

IStart (LONG) - input
Starting system color index.

This parameter is applicable only if the u/Format parameter is set to LCOLF _CONSECRGB.

The number of system colors (as defined below) is given by SYSCLR_CSYSCOLORS.

The following system color indexes are defined (each successive index is one larger than its
predecessor):

SYSCLR_ENTRYFIELD
Entry field and list box background color.

SYSCLR_MENUDISABLEDTEXT
Entry field background color.

SYSCLR_MENUHILITE
Selected menu item text.

SYSCLR_MENUHILITEBGND
Selected menu item background.

SYSCLR_PAGEBACKGROUND
Notebook page background.

8-494 PM Programming Reference

SYSCLR_FIELDBACKGROUND
Inactive scroll bar and default control background color.

SYSCLR_BUTTONLIGHT
Light pushbutton (3D effect).

SYSCLR_BUTTONMIDDLE
Middle pushbutton (3D effect).

SYSCLR_BUTTONDARK
Dark pushbutton (3D effect).

SYSCLR_BUTTONDEFAULT
Pushbutton.

SYSCLR_ TITLEBOTTOM
Line drawn under title bar.

SYSCLR_SHADOW
Drop shadow for menus and dialogs.

SYSCLR_ICONTEXT
Text written under icons on the desktop.

SYSCLR_DIALOGBACKGROUND
Pop up dialog box background.

SYSCLR_HILITEFOREGROUND
Selection foreground.

SYSCLR_HILITEBACKGROUND
Selection background.

SYSCLR_INACTIVETITLETEXTBKGD
Background of inactive title text.

SYSCLR_ACTIVETITLETEXTBKGD
Background of active title text.

SYSCLR_INACTIVETITLETEXT
Inactive title text.

SYSCLR_ACTIVETITLETEXT
Active title text.

SYSCLR_OUTPUTTEXT
Output text.

SYSCLR_ WINDOWSTATICTEXT
Static (nonselectable) text.

SYSCLR_SCROLLBAR
Active scroll bar background area.

SYSCLR_BACKGROUND
Desktop background.

SYSCLR_ACTIVETITLE
Active window title.

SYSCLR_INACTIVETITLE
Inactive window title.

SYSCLR_MENU
Menu background.

SYSCLR_ WINDOW
Window background.

WinSetSysColors -
Set System Colors

Chapter 8. Window Functions 8-495

WinSetSysColors -
Set System Colors

SYSCLR_WINDOWFRAME
Window frame {border line).

SYSCLR_MENUTEXT
Normal menu item text.

SYSCLR_WINDOWTEXT
Window text.

SYSCLR_ TITLETEXT
Text in title bar, size box, scroll bar arrow box.

SYSCLR_ACTIVEBORDER
Border fill of active window.

SYSCLR_INACTIVEBORDER
Border fill of inactive window.

SYSCLR_APPWORKSPACE
Background of specific main windows.

SYSCLR_HELPBACKGROUND
Background of help panels.

SYSCLR_HELPTEXT
Help text.

SYSCLR_HELPHILITE
Highlighted help text.

SYSCLR_SHADOWHILITEBGND
Shadows of workplace object background highlight color.

SYSCLR_SHADOWHILITEFGND
Shadows of workplace object foreground highlight color.

SYSCLR_SHADOWTEXT
Shadows of workplace object text color.

ulTablen (ULONG) - input
Number of elements.

Number of elements supplied in a/Table. This may be 0 if, for example, the color table is merely
to be reset to the default. For LCOLF _INDRGB it must be an even number.

alTable (PLONG) - input
Table.

Start address of the application data area, containing the color-table definition data. The format
depends on the value of ulFormat.

Each color value is a 4-byte integer, with a value of

(R * 65536) + (G * 256) + B

where:

R is red intensity value
G is green intensity value
a is blue intensity value.

There are 8 bits for each primary; the maximum intensity for each primary is 255.

8-496 PM Programming Reference

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

WinSetSysColors -
Set System Colors

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_INVALID_FLAG An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
This function sends all main windows in the system a WM_SYSCOLORCHANGE message to indicate
that the colors have changed. When this message is received, applications that depend on the
system colors can query the new color values with the WinQuerySysColor function.

After the WM_SYSCOLORCHANGE messages are sent, all windows in the system are invalidated so
that they are redrawn with the new system colors.

This function does not write any system color changes to the initialization file. See Appendix G.

The following table gives the default RGB values for each color index:

System Color Index Default Color Default RGB Values

SYSCLR_ACTIVEBORDER Pale yellow 255 255 128

SYSCLR_ACTIVETITLE Teal 64 128 128

SYSCLR_ACTIVETITLETEXT White 255 255 255

SYSCLR_ACTIVETITLETEXTBGND Teal 64 128 128

SYSCLR_APPWORKSPACE Off-white 255 255 224

SYSCLR_BACKGROUND light gray 204 204 204

SYSCLR_BUTTONDARK Dark gray 128 128 128

SYSCLR_BUTTONDEFAULT Black 0 0 0

SYSCLR_BUTTONLIGHT White 255 255 255

SYSCLR_BUTTONMIDDLE light gray 204 204 204

SYSCLR_DIALOGBACKGROUND light gray 204 204 204

SYSCLR_ENTRYFIELD Pale yellow 255 255 204

SYSCLR_FIELDBACKGROUND light gray 204 204 204

SYSCLR_HELPBACKGROUND White 255 255 255

SYSCLR_HELPHILITE Blue green 0 128 128

SYSCLR_HELPTEXT Dark blue 0 0 128

SYSCLR_HILITEBACKGROUND Dark gray 128 128 128

SYSCLR_HILITEFOREGROUND White 255 255 255

SYSCLR_ICONTEXT Black 0 0 0

Chapter 8. Window Functions 8-497

WinSetSysColors -
Set System Colors

System Color Index

SYSCLR_INACTIVEBORDER

SYSCLR_INACTIVETITLE

SYSCLR_INACTIVETITLETEXT

SYSCLR_INACTIVETITLETEXTBGND

SYSCLR_MENU

SYSCLR_MENUDISABLEDTEXT

SYSCLR_MENUHILITE

SYSCLR_MENUHILITEBGND

SYSCLR_MENUTEXT

SYSCLR_OUTPUTTEXT

SYSCLR_PAGEBACKGROUND

SYSCLR_SCROLLBAR

SYSCLR_SHADOW

SYSCLR_SHADOWHILITEBGND

SYSCLR_SHADOWHILITEFGND

SYSCLR_SHADOWTEXT

SYSCLR_ TITLEBOTTOM

SYSCLR_ TITLETEXT

SYSCLR_WINDOW

SYSCLR_WINDOWFRAME

SYSCLR_WINDOWSTATICTEXT

SYSCLR_WINDOWTEXT

Related Functions
• WinQuerySysColor

Related Messages
• WM_SYSCOLORCHANGE

8-498 PM Programming Reference

Default Color

Light gray

Light gray

Dark gray

Light gray

Light gray

Dark gray

Black

Light grey

Black

Black

White

Pale gray

Dark gray

Dark gray

White

Dark gray

Dark gray

White

White

Dark gray

Blue

Black

Default RGB Values

204 204 204

204 204 204

128 128 128

204 204 204

204 204 204

128 128 128

0 0 0

204 204 204

0 0 0

0 0 0

255 255 255

192 192 192

128 128 128

128 128 128

255 255 255

128 128 128

128 128 128

255 255 255

255 255 255

128 128 128

0 0 128

0 0 0

Example Code

WinSetSysColors -
Set System Colors

This example changes the desktop background to blue and the output text to green.

#define INCL_WINSYS
#define INCL_GPILOGCOLORTABLE
#include <OS2.H>

typedef struct {
LONG index;
LONG color;

} ENTRY;
LONG R, G ,B;

ENTRY a1Table[2]; /* array of two color/index entries. */

R = SL; G = SL; B = 200L;
a1Table[0].index = (R * 65S36L) + (G * 256L) + B;
R = 5; G = 200; B = 5;
alTable[l].index = (R * 65536L) + (G * 256L) + B;
a1Table[0].color = SYSCLR_OUTPUTTEXT; /*output text. */
alTable[l].color = SYSCLR_BACKGROUND; /*desktop background. */

WinSetSysColors (HWND_DESKTOP,
LCOL_RESET,

LCOLF_INDRGB,

/* reset system colors before */
/* processing remainder of this */
/* call. */
/* Array of (index,RGB) */

0L,

/* values. Each pair of */
/* entries is 8 bytes */
/* long, comprising 4 */
/* bytes for the index, */
/* and 4 bytes for the */
/* color value. For */
/* system color indexes,*/
/* see lStart. */
/* not applicable.

(ULONG)4,
(PLONG)&a1Table[0].index);

*/

Chapter 8. Window Functions 8-499

WinSetSysModalWindow
Set System Modal Window

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetSysModalWlndow (HWND hwndDesktop, HWND hwnd)

This function makes a window become the system-modal window, or ends the system-modal state.

Parameters
hwndDesktop (HWND) - input

Desktop-window handle, or HWND_DESKTOP.

hwnd (HWND) - input
Handle of window to become system-modal window.

If NULLHANDLE, system-modal state is ended, and input processing returns to its normal state.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
Input processing can enter a "system modal" state. In this state, all pointing device and keyboard
input is directed to a special window, known as the system-modal window, or to one of its child
windows (or a window owned by one of them). An "owned" window is a window that refers to its
owner window set by using either the hwndOwner parameter of the WinCreateWindow function or the
hwndNewOwner parameter of the WinSetOwner function. All other main windows behave as though
they are disabled and no interaction is possible with them.

Note: The disabled windows are not actually disabled, but made noninteractive. No messages are
sent to these windows when the system-modal state is entered or left, and their WS_DISABLE
style bits are not changed.

Where a system-modal window exists and another window is explicitly made the active window, the
newly activated window becomes the system-modal window. This replaces the old one, which
becomes a noninteractive window. When the system-modal window is destroyed, the system-modal
state is ended, and input processing returns to its normal state.

This function should only be called while processing pointing device or keyboard input.

The new system-modal window is not locked during the processing of this function.

A.elated Functions
• WinQuerySysModalWindow

8-500 PM Programming Reference

Example Code

WinSetSysModalWindow -
Set System Modal Window

This example uses the WinSetModalWindow to set a system modal window.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwndSysModal;

/* Input processing can enter a "system modal" state. In */
/* this state, all pointing device and keyboard input */
/* is directed to a special window, known as the */
/* system-modal window. Typically, this will be a dialog */
/* window requiring input. */

WinSetSysModalWindow(HWND_DESKTOP,hwndSysModal);

Chapter 8. Window Functions 8-501

WinSetSysValue
Set System Value

#define INCL_WINSYS I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetSysValue (HWND hwndDeskTop, LONG IValueld, LONG IValue)

This function sets a system value.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP Set the system values for the desktop-window handle

Other Set the system values for the specified desktop-window handle.

IValueld (LONG) - input
System-value identity.

This must be a valid SV _*value (see WinQuerySysValue). The following values can be set:

SV _ CXSIZEBORDER
Width of the sizing border

SV _ CYSIZEBORDER
Height of the sizing border

SV _SWAPBUTTON
TRUE when the mouse buttons are set for left-handed use

SV_CURSORRATE
Cursor blink rate, in milliseconds

SV _DBLCLKTIME
Mouse double-click time, in milliseconds

SV _ CXDBLCLK
Width of the mouse double-click sensitive area

SV _ CYDBLCLK
Height of the mouse double-click sensitive area

SV_ALARM
TRUE enables the alarm sound generated by WinAlarm; FALSE disables the alarm sound

SV _ WARNINGFREQ
Frequency for warning alarms generated by WinAlarm

SV _ WARNINGDURATION
Duration of warning alarms generated by WinAlarm

SV _NOTEFREQ
Frequency for note alarms generated by WinAlarm

SV_NOTEDURATION
Duration for note alarms generated by WinAlarm

SV _ERRORFREQ
Frequency for error alarms generated by WinAlarm

SV_ERRORDURATION
Duration for error alarms generated by WinAlarm

SV _FIRSTSCROLLRATE
Delay (in milliseconds) before autoscrolling starts, when using a scroll bar

8-502 PM Programming Reference

WinSetSysValue
Set System Value

SV _SCROLLRATE
Delay (in milliseconds) between scroll operations, when using a scroll bar

SV _SETLIGHTS
When TRUE, the appropriate light is set when the keyboard state table is set.

SV _INSERTMODE
When TRUE, the system is in insert mode.

SV _MENUROLLDOWNDELAY
Delay in milliseconds before displaying a pulldown referred to from a submenu item, when the
button is already down as the pointer moves onto the submenu item.

SV_MENUROLLUPDELAY
Delay in milliseconds before hiding a pulldown referred to from a submenu item, when the
button is already down as the pointer moves off the submenu item.

SV _PRINTSCREEN
TRUE when the Print Screen function is enabled; FALSE when the Print Screen function is
disabled.

IValue (LONG) - input
The system value.

Dimensions are in pels and times are in milliseconds.

Returns
Value-set indicator:

TRUE System value set

FALSE An error occurred.

Possible returns from WinGetLastError

PMERRJNVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF _RANGE The value of a parameter was not within the defined valid
range for that parameter.

Related Functions
• WinQuerySysValue

Example Code
This example uses the WinSetSysValue call change the sizing border dimensions.

#define INCL_WINSYS
#include <OS2.H>
LONG vlXBorder, vlYBorder;

vlXBorder = WinSetSysValue(HWND_DESKTOP,
SV CXSIZEBORDER,
20l:);

vlYBorder = WinSetSysValue(HWND_DESKTOP,
SV CYSIZEBORDER,
20l:);

Chapter 8. Window Functions 8-503

WinSetWindowBits -
Set Window Word Bits

#define INCL WINWINOOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetWlndowBlts (HWND hwnd, LONG lb, ULONG flData, ULONG flMask)

This function sets a number of bits into the memory of the reserved window words.

Parameters
hwnd (HWNO) - input

Window handle.

lb (LONG) - input
Zero-based index of the value to be set.

The units of bare bytes. Valid values are zero through (usExtra -4), where usExtra is the
parameter in WinRegisterClass that specifies the number of bytes available for
application-defined storage. Any of the QWL_ * values specified for the WinQueryWindowULong
function can also be used.

flData (ULONG) - input
Bit data to store in the window words.

This is done under the control of the f/Mask parameter.

flMask (ULONG) - input
Bits to be written indicator.

A "1" bit indicates that the corresponding bit of the f/Data parameter is to be stored into the
window word. A "O" bit indicates that the corresponding bit of the f/Data parameter is to be
ignored in the storing operation; the value of that bit position in the window word is unaltered.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The bits are set in a single operation.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowULong
• WinQueryWindowUShort
• WinSetWindowPtr
• WinSetWindowULong
• WinSetWindowUShort

8-504 PM Programming Reference

Example Code

WinSetWindowBits -
Set Window Word Bits

This example uses the WinSetWindowBits call to change the attributes of a list box so that only one
item can be be selected. This is done by turning off the multiple-select bit.

#define INCL_WINSYS
#include <OS2.H>
HWND hwndMessageLB;
WinSetWindowBits(hwndMessageLB,

QWL_STYLE, /* change style bit. */
el, /* set to e. */
LS_MULTIPLESEL); /*multiple select bit. */

Chapter 8. Window Functions 8-505

WinSetWindowPos -
Set Window Position

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetWlndowPos (HWND hwnd, HWND hwndBehlnd, LONG Ix, LONG ly, LONG lex,
LONG Icy, ULONG flOptlons)

This function allows the general positioning of a window.

Parameters
hwnd (HWND) - input

Window handle.

hwndBehlnd (HWND) - input
Relative window-placement order.

Ignored if SWP _ZORDER is not selected. Values that can be specified are:

HWND_TOP Place hwnd on top of all siblings

HWND_BOTTOM Place hwnd behind all siblings

Other Identifies the sibling window behind which hwnd is to be placed.

Ix (LONG) - input
Window position, x-coordinate.

This is the x-coordinate of hwnd. It is in window coordinates relative to the bottom left corner of
its parent, but is ignored if SWP _MOVE is not selected.

ly (LONG) - input
Window position, y-coordinate.

This is the y-coordinate of hwnd. It is in window coordinates relative to the bottom left corner of
its parent, but is ignored if SWP _MOVE is not selected.

lex (LONG) - input
Window size.

This specifies the width of hwnd in device units, but is ignored if SWP _SIZE is not selected.

Icy (LONG) - input
Window size.

This specifies the depth of hwnd in device units, but is ignored if SWP _SIZE is not selected.

flOptlons (ULONG) - input
Window-positioning options.

One or more of these options can be specified:

SWP _SIZE Change the window size.

SWP_MOVE Change the window x,y position.

SWP _ZORDER Change the relative window placement.

SWP_SHOW Show the window.

SWP_HIDE Hide the window.

SWP _NOREDRAW Changes are not redrawn.

SWP _NOADJUST Do not send a WM_ADJUSTWINDOWPOS message before moving or
sizing.

8-506 PM Programming Reference

SWP_ACTIVATE

WinSetWindowPos
Set Window Position

Activate the hwnd window if it is a frame window. This indicator has no
effect on other windows.

The frame window is made the topmost window, unless SWP_ZORDER is
specified also in which instance the hwndBehind window is used.

SWP_DEACTIVATE Deactivate the hwnd window if it is a frame window. This indicator has no
effect on other windows.

SWP _MINIMIZE

SWP _MAXIMIZE

SWP _RESTORE

Returns

The frame window is made the bottommost window, unless SWP_ZORDER
is specified, in which instance the hwndBehind window is used.

Minimize the window. This indicator has no effect if the window is in a
minimized state, and is also mutually exclusive with SWP _MAXIMIZE and
SWP _RESTORE.

Maximize the window. This indicator has no effect if the window is in a
maximized state, and is also mutually exclusive with SWP _MINIMIZE and
SWP _RESTORE.

Restore the window. This indicator has no effect if the window is in its
normal state, and is also mutually exclusive with SWP _MINIMIZE and
SWP _MAXIMIZE.

The position and size of the window in its normal state is remembered in
its window words when it is first maximized or minimized, although these
values can be altered by use of the WinSetWindowUShort function.

The window is restored to the position and size remembered in its window
words, unless the SWP _MOVE or SWP _SIZE indicators are set. These
indicators cause the position and size values specified in this function to
be used.

Repositioning indicator:

TRUE Window successfully repositioned

FALSE Window not successfully repositioned.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

Note: Messages may be received from other processes or threads during the processing of this
function.

If a window created with the CS_SAVEBITS style is reduced, the screen image saved is used to
redraw the area uncovered when the window size changes, if those bits are still valid.

If the CS_SIZEREDRAW style is present, the entire window area is assumed invalid if sized.
Otherwise, WM_CALCVALIDRECTS is sent to the window to inform the window manager which bits it
may be possible to preserve.

Messages sent from WinSetWindowPos and WinSetMultWindowPos have specific orderings within
the window-positioning process. The process begins with redundancy checks and precalculations on
every window for each requested operation. For example, if SWP _SHOW is present but the window
is already visible, SWP _SHOW is turned off. If SWP _SIZE is present, and the new size is equal to the
old size, SWP _SIZE is turned off.

Chapter 8. Window Functions 8-507

WinSetWindowPos -
Set Window Position

If the operations create new results, the information is calculated and stored (for instance, when
sizing or moving, the new window rectangle is stored for later use). It is at this point that the
WM_ADJUSTWINDOWPOS message is sent to any window that is sizing or moving. It is also at this
point that the WM_CALCVALIDRECTS message is sent to any window that is sizing and does not
have the CS_SIZEREDRAW window style.

When all the new window states are calculated, the window-management process begins. Window
areas that can be preserved are moved from the old to the new positions, window areas that are
invalidated by these operations are calculated and distributed as update regions. When this is
fini_shed, and before any synchronous-paint windows are repainted, the WM_ SIZE message is sent to
any windows that have changed size. Next, all the synchronous-paint windows that can be are
repainted, and the process is complete.

If a synchronous-paint parent window has a size-sensitive area displayed that includes
synchronous-paint child windows, the parent needs to reposition those windows when it receives the
WM_SIZE message. Their invalid regions are added to the parent's invalid region, resulting in one
update after the parent's WM_SIZE message, rather than many independent (and later, duplicated)
updates.

Note: Some windows will not be positioned precisely to the parameters of this function, but
according to the behavior of their window procedure. For example, frame windows without a
style creation flag of FCF _NOBYTEALIGN will not position to any specific screen coordinate.
Similarly, frame windows with zero size and position are created by the WinCreateStdWindow
function and therefore these values are treated as a special case by the frame window
procedure.

Messages sent by this function are:

WM_CALCVALIDRECTS Sent to determine the area of a window that may be possible to preserve
as the window is sized.

WM_SIZE Sent if the size of the window has changed, after the change has been
made.

WM_MOVE Sent when a window with CS_MOVENOTIFY class style moves its
absolute position.

WM_ACTIVATE Sent if a different window becomes the active window. See also
WinSetActiveWindow.

WM_ADJUSTWINDOWPOS Not sent if SWP _NOADJUST is specified. The message contains an SWP
structure that has been filled in by this function with the proposed
move/size data. The window can adjust this new position by changing
the contents of the SWP structure. If hwnd specifies a frame window,
this function recalculates the sizes and positions of the frame controls.

Related Functions
• WinGetMinPosition

If the new window rectangle for any frame control is empty, instead of
resizing or repositioning that control, it is hidden if SWP _HIDE is
specified. This eliminates needless processing of windows that are not
visible. The window rectangle of the control in question is left in its
original state. For example, if WinSetWindowPos is issued to change the
size of a standard-frame window to an empty rectangle, and
WinQueryWindowRect is issued against the client window, the rectangle
returned is not an empty rectangle, but the original client rectangle
before WinSetWindowPos was issued.

• WinQueryActiveWindow
• WinQueryWindowPos
• WinSaveWindowPos
• WinSetActiveWindow
• WinSetMultWindowPos

8-508 PM Programming Reference

Related Messages
• WM_ACTIVATE
• WM_ADJUSTWINDOWPOS
• WM_CALCVALIDRECTS
• WM_ERASEBACKGROUND
• WM_MOVE
• WM_SIZE

Example Code

WinSetWindowPos -
Set Window Position

This example uses the recommended size, position and status from the WinQueryTaskSize call to
position the first window of a newly-started application (typically the main window).

#define INCL_WINSWITCHLIST
#define INCL_WINFRAMEMGR
#include <OS2.H>
HAB hab;
SWP winpos;
HWND hwndFrame;

WinQueryTaskSizePos(hab,
a,
&winpos);

WinSetWindowPos(hwndFrame, HWND_TOP,
winpos.x,
winpos.y,
winpos.cx,

/* x pos */
/* y pos */
/* x size */
/* y size */ winpos.cy,

SWP _ACTIVATE SWP_MOVE SWP_SIZE I SWP_SHOW); /* flags*/

Chapter 8. Window Functions 8-509

WinSetWindowPtr -
Set Window Words Pointer

#define INCL WINWINOOWMGR /*Or use INCL_WIN or INCL_PM */

BOOL WlnSetWlndowPtr (HWND hwnd, LONG lb, PVOID pp)

This function sets a pointer value into the memory of the reserved window words.

Parameters
hwnd (HWNO) - input

Window handle.

lb (LONG) - input
Zero-based index into the window words.

The units of bare bytes. Valid values are zero through (usExtra -4), where usExtra is the
parameter in WinRegisterClass that specifies the number of bytes available for
application-defined storage.

The value QWP _P.FNWP can be used as the index for the address of the window procedure for
the window.

pp (PVOIO) - input
Pointer value to store in the window words.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowULong
• WinQueryWindowUShort
• WinSetWindowBits
• WinSetWindowULong
• WinSetWindowUShort

8-510 PM Programming Reference

WinSetWindowPtr -
Set Window Words Pointer

Example Code
This function retrieves a pointer value from the memory of the reserved window word.

MyWindowProc(HWND hwnds ULONG msgs MPARAM mpls MPARAM mp2)
{
MYINSTANCEDATA *lnstanceData; /*application defined structure*/

switch (msg) {
case WM CREATE:

DosAllocMem(&InstanceDatas sizeof(MYINSTANCEDATA)s fALLOC);
/* WindowProcedure initializes instance data for this window*/

/* set pointer to instance in window words */
WinSetWindowPtr(hwnds 0s InstanceData);
break;

case WM_USER + 1: /*application defined message*/
/* Window procedure retrieves instance data to */
/* process this message *I

InstanceData = WinQueryWindowPtr(hwnds 0);

break;

Chapter 8. Window Functions 8-511

WinSetWindowText
Set Window Text

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetWlndowText (HWND hwnd, PSZ pszStrlng)

This function sets the window text for a specified window.

Parameters
hwnd (HWND) - input

Window handle.

pszString (PSZ) - input
Window text.

Returns
Success indicator:

TRUE Text updated

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

Remarks

An invalid window handle was specified.

This function sends a WM_SETWINDOWPARAMS message to the window identified by hwnd.

If this function references the window of another process, pszString must be in memory that is
shared by both processes; otherwise, a memory error may occur.

If hwnd has a style of WS_FRAME, the title-bar window text is set.

Some window classes interpret the pszString in a special way. The tilde character(-) indicates that
the following character is a mnemonic; for details, see Chapter 13, "Button Control Window
Processing" on page 13-1 and Chapter 17, "Menu Control Window Processing" on page 17-1.

Related Functions
• WinQueryDlgltemShort
• WinQueryDlgltemText
• WinQueryDlgltemTextlength
• WinQueryWindowText
• WinQueryWindowTextlength
• WinSetDlgltemShort
• WinSetDlgltemText

Related Messages
• WM_SETWINDOWPARAMS

8-512 PM Programming Reference

Example Code

WinSetWindowText -
Set Window Text

This example calls WinQuerySessionTitle to retrieve the application's title, and then sets the title bar

of the frame window to that title with WinSetWindowText.

#define INCL_WINMESSAGEMGR
#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
HWND hwndFrame, hwndClient;
CHAR szTitle[MAXNAMEL + 1];

WinQuerySessionTitle(hab,
e. szTitle.
sizeof(szTitle));

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT); /* get handle of parent, */

/* which is frame window. */
WinSetWindowText(hwndFrame, szTitle);

Chapter 8. Window Functions 8-513

WinSetWindowThunkProc -
Set Window Pointer-Conversion Procedure

#define INCL WINTHUNKAPI /*Or use INCL_WIN or INCL_PM */

BOOL WlnSelWlndowThunkProc (HWND hwnd, PFN plhunkpr)

This function associates a pointer-conversion procedure with a window.

Parameters
hwnd (HWND) - input

Window handle.

plhunkpr (PFN) - input
Pointer-conversion procedure identifier:

NULL Any existing pointer-conversion procedure is dissociated from this window.
Other The pointer-conversion procedure to be associated with this window.

Returns
Success indicator:

TRUE Successful completion

FALSE An error occurred.

Related Functions
• WinQueryClassThunkProc
• WinQueryWindowModel
• WinQueryWindowThunkProc
• WinSetClassThunkProc

Example Code
In this example, any thunking procedure is dissociated from the window.
#define INCL_WINTHUNKAPI
#include <052.H>
HWND hwnd;

WinSetWindowThunkProc(hwnd, NULL);

8-514 PM Programming Reference

WinSetWindowULong
Set Window Word Long

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetWindowULong (HWND hwnd, LONG lb, ULONG ulData)

This function sets an unsigned, long integer value into the memory of the reserved window words.

Parameters
hwnd (HWND) - input

Window handle.

lb (LONG) - input
Zero-based index of the value to be set.

The units of lb are bytes. Valid values are zero through (usExtra -4), where usExtra is the
parameter in WinRegisterClass that specifies the number of bytes available for
application-defined storage. So too are any of the QWL_ * values, as specified for the
Wi nQueryWindowULong function.

aws_ * values cannot be used.

ulData (ULONG) - input
Unsigned, long integer value to store in the window words.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
The specified lb is valid only if all of the bytes referenced are within the reserved memory.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowULong
• WinQueryWindowUShort
• WinSetWindowBits
• WinSetWindowPtr
• WinSetWindowUShort

Chapter 8. Window Functions 8-515

WinSetWindowULong -
Set Window Word Long

Example Code
This example transfers a pointer from the application-defined data area of a dialog window to the
application-defined data area (window word) of a main window. The pointer is then retrieved.

#define INCL~WINWINDOWMGR
#include <052.H>
HWND hwndClient;
ULONG msg;
MPARAM pPannt mplt mp2;

/* inside dialog procedure. *I
switch(msg)
{

case WM_INITDLG:

pPann = (MPARAM)mp2; /* This points to the data */
/* area and is passed by */
/* the WinloadDlgt */
/* WinCreateDlgt and */
/* WinDlgBox calls in their */
/* pCreateParams *I
/* parameter. */

WinSetWindowULong(hwndClientt /*place pointer in window*/

}

QWL USERt /* word area. */
(ULONG) pPann);

case WM COMMAND:
switch (SHORTlFROMMP(mpl))
{

}

case DlD_OK:

/* retrieve pointer from */
/* window word area. */

pPann = (MPARAM)WinQueryWindowULong(hwndClientt
QWL_USER);

8-516 PM Programming Reference

WinSetWindowUShort -
Set Window Word Short

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnSetWindowUShort {HWND hwnd, LONG lb, USHORT usData)

This function sets an unsigned, short integer value into the memory of the reserved window words.

Parameters
hwnd (HWND) - input

Window handle.

lb (LONG) - input
Zero-based index of the value to be set.

The units of lb are bytes. Valid values are zero through (usExtra -2), where usExtra is the
parameter in WinRegisterClass that specifies the number of bytes available for
application-defined storage. So too are any of the QWS_ * values, as specified for the
WinQueryWindowUShort function.

QWL_ * values cannot be used.

usData (USHORT) - input
Unsigned, short integer value to store in the window words.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Related Functions
• WinQueryWindowPtr
• WinQueryWindowULong
• WinQueryWindowUShort
• WinSetWindowBits
• WinSetWindowPtr
• WinSetWindowULong

Example Code
This example changes the height to which a window is restored to 100 by changing the value of a

system defined window word.

#define INCL_WINWINDOWMGR
#include <052.H>
HWND hwnd;
WinSetWindowUShort(hwnd,

QWS_CYRESTORE, /* The height to which */
/* the window is */
/* restored. */

(USHORT)100);

Chapter 8. Window Functions 8-517

WinShowCursor
Show Cursor

#define INCL_WINCURSORS I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnShowCursor (HWND hwnd, BOOL fShow)

This function shows or hides the cursor that is associated with a specified window.

Parameters
hwnd (HWND) - input

Handle of window to which the cursor belongs.

fShow (BOOL) - input
Show indicator:

TRUE Make cursor visible

FALSE Make cursor invisible.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred, or an attempt was made to show the cursor when it was already
visible.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function must be called by the same thread that created the cursor that is affected.

A cursor show-level count is maintained. It is incremented by a hide operation and decremented by
a show operation. The cursor is actually visible if the cursor show-level count is zero, otherwise it is
invisible. When decrementing, the cursor show-level count is fixed at zero so as not to show the
cursor too many times, but it is possible to hide the cursor a number of times in succession.

Related Functions
• WinCreateCursor
• WinDestroyCursor
• WinQueryCursorlnfo

8-518 PM Programming Reference

Example Code

WinShowCursor -
Show Cursor

This example shows the cursor if it is successfully created.

#define INCL_WINCURSORS
#include <OS2.H>
HWND hwnd; /* handle of window that has pointer captured */
RECTL rel;

WinQueryWindowRect(hwnd, &rel);

if (WinCreateCursor(hwnd, /* This must be the handle */
/* of a window for which */

WinShowCursor(hwnd,
TRUE);

/* the application can */
/* receive input. */

100, /* x,y position of cursor. */
100,
5, /* cursor width. *I
5, /* cursor height. */
CURSOR FLASH,
&rel))-/* region where the cursor*/

/* is visible. */

/* make cursor visible. */

Chapter 8. Window Functions 8-519

WinShowPointer
Show Pointer

#define INCL_WINPOINTERS /*Or use INCL_WIN or INCL_PM */

BOOL WlnShowPolnter (HWND hwndDeskTop, BOOL fShow)

This function adjusts the pointer display level to show or hide a pointer.

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle:

HWND_DESKTOP The desktop-window handle

Other The specified desktop-window handle.

fShow (BOOL) - input
Level-update indicator:

TRUE Decrement pointer display level by one. (The pointer level is not decremented to a
negative value.)

FALSE Increment pointer display level by one.

Returns
Display-level-updated indicator:

TRUE Pointer display level not successfully updated.

FALSE Pointer display level successfully updated

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The pointer display level determines whether the pointer is shown. If it is zero, the pointer is visible,
but if it is greater than zero, the pointer is not visible. The initial setting of the pointer display level is
dependent on the capabilities of the device. If a pointing device exists, the initial setting of the
pointer display level is zero, otherwise it is one. The existing pointer display level can be obtained
by using the WinQuerySysValue function with /Valueid set to SV _POINTERLEVEL.

Related Functions
• WinCreatePointer
• WinCreatePointerlndirect
• WinDestroyPointer
• WinDrawPointer
• WinloadPointer
• WinQueryPointer
• WinQueryPointerlnfo
• WinQueryPointerPos
• WinQuerySysPointer
• WinSetPointer
• WinSetPointerPos

8-520 PM Programming Reference

Example Code

WinShowPointer -
Show Pointer

This example obtains the pointer handle from the desktop window handle and hides the pointer.

#define INCL_WINPOINTERS
#define INCL_WINDESKTOP
#include <OS2.H>
HPOINTER hpointer;
HWND hwnd;

hpointer = WinQueryPointer(HWND_DESKTOP);

WinShowPointer(hwnd,FALSE);

Chapter 8. Window Functions · 8-521

WinShowTrackRect -
Show Tracking Rectangle

#define INCL WINTRACKRECT I* Or use INCL_WIN or INCL_PM */

BOOL WlnShowTrackRect (HWND hwnd, BOOL fShow)

This function hides or shows the tracking rectangle.

Parameters
hwnd (HWND) - input

Window handle.

Passed to the WinTrackRect function.

fShow (BOOL) - input
Show indicator:

TRUE Show the tracking rectangle

FALSE Hide the tracking rectangle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

This function maintains a show count. When a hide request is made, this count is decremented;
when a show request is made, the count is incremented., When the count makes a transition from 0
to -1, the rectangle is hidden; when the count makes a transition from -1to0, the rectangle is
shown.

When a rectangle is tracking, the application must call this function to hide the rectangle if there is a
possibility of corrupting the tracking rectangle while drawing. The rectangle is shown afterwards.
Because the re/Track structure-is-updated continuously, the application can examine the coordinates
of the current tracking rectangle to determine whether temporary hiding is necessary.

The only case where an application needs to use this function is during asynchronous drawing. If an
application is drawing on one thread, and issuing WinTrackRect on another, unwanted areas of
tracking rectangle may be left behind. The drawing thread is therefore responsible for calling this
function whenever tracking ls in progress. The application,mustprovide for communication between
the two threads to ensure that if one thread is tracking, the drawing thread issues this 1unction. This
can be done with a semaphore.

Related Functions
• WinTrackRect

8-522 PM Programming Reference

WinShowWindow -
Show Window

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

BOOL WlnShowWlndow (HWND hwnd, BOOL fNewVlslblllly}

This function sets the visibility state of a window.

Parameters
hwnd (HWND) - input

Window handle.

fNewVlslblllly (BOOL) - input
New visibility state:

TRUE Set window state visible

FALSE Set window state invisible.

Returns
Visibility changed indicator:

TRUE Window visibility successfully changed

FALSE Window visibility not successfully changed.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
A window possesses a visibility state indicated by the WS_VISIBLE style bit. When the WS_VISIBLE
style bit is set, the window is shown and subsequent drawing into the window is presented, unless
that window is obscured by some other window, or at least one of the windows upward in the parent
chain from hwnd does not have the WS_VISIBLE style.

When the WS_VISIBLE style bit is not set, the window is not shown ("hidden") and subsequent
drawing into the window is not presented, even if that window is not obscured by another window.

If the value of the WS_VISIBLE style bit has been changed, the WM_SHOW message is sent to the
window of hwnd before the function returns.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion

Chapter 8. Window Functions 8-523

WinShowWindow
Show Window

• WinRealizePalette
• WinReleasePS
• WinUpdateWindow
• WinValidateRect
• WinValidateRegion

Related Messages
• WM_SHOW

Example Code
This example uses the WinShowWindow call to make a modeless dialog window visible.

#define INCL_WINWINDOWMGR
#define INCL_WINDIALOGS
#include <OS2.H>
#define DLG_MODELESS 900

/* dialog procedure declaration. */
MRESULT EXPENTRY DlgProc(HWND hwndDlg, ULONG msg, MPARAM mpl, MPARAM mp2);
HWND hwnd;

/*

hwnd = WinloadDlg(HWND_DESKTOP,
HWND OBJECT,
(PFNWP)DlgProc,
(HMODULE)NULL,
DLG MODELESS,
NULL);

DlgProc(HWND hwndDlg, ULONG msg, MPARAM mpl,
MPARAM mp2)

{
CASE USER_DEFINED:

*/
WinShowWindow(hwnd,

TRUE); /*show window. */
WinSetFocus(HWND_DESKTOP, hwnd);

}

8-524 PM Programming Reference

#define INCL_WINWORKPLACE

BOOL WlnShutdownSystem (HAB hab, HMQ hmq)

WinShutdownSystem -
Shutdown System

The WinShutdownSystem function will close down the system.

Parameters
hab (HAB) - input

Anchor-block handle.

hmq (HMO) - input

Message-queue handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The WinShutdownSystem function will close all running applications and will then call DosShutdown.

Presentation Manager applications will receive a WM_SAVEAPPLICATION message prior to a
WM_QUIT message.

When the system is restarted, all applications that were running when WinShutdownSystem was last
called will be restarted.

Chapter 8. Window Functions 8-525

WinStartApp -
Window Start Application

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HAPP WlnStartApp (HWND hwndNotlfy, PPROGDETAILS pDetalls, PSZ pszParams,
PVOID pReserved, ULONG ulOptlons)

This function starts an application.

Parameters
hwndNotlfy (HWND) - input

Notification-window handle.

A WM_APPTERMINATENOTIFY message is posted to this window, when the started application
terminates.

NULLHANDLE Do not post the notification message

Other Post the notification message to this window.

pDetalls (PPROGDETAILS) - input
Program list structure.

pszParams (PSZ) - input
Input parameters for the application to be started.

This specifies the command line parameters to be passed to this application when it starts.

NULL There are no parameters to be passed to the application

Other The parameters to be passed to the application.

pReserved (PVOID) - input
Start data.

Reserved, must be NULL.

ulOptlons (ULONG) - input
Option indicators.

If more than one option is selected, the values can be ORed together.

O No options selected.

SAF_INSTALLEDCMDLINE The command line parameters installed in the program starter list
are used; the pszParams parameter is ignored.

SAF _STARTCHILDAPP The specified application is started as a child session of the
session from which WinStartApp is issued. The calling application
may terminate the called application with a WinTerminateApp
function.

8-526 PM Programming Reference

Returns
Application handle.

NULL Application not started

Other Application handle.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

PMERR_INVALID _APPL

PMERR_INVALID_WINDOW

PMERR_ STARTED _IN_BACKGROUND

PMERR_DOS_ERROR

Remarks

WinStartApp -
Window Start Application

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Attempted to start an application whose type is not
recognized by OS/2.

The window specified with a Window List function is not a
valid frame window.

The application started a new session in the background.

A DOS call returned an error.

Starts the application identified in PROGDETAILS.

If the application is successfully started, the return value is a handle to the application. If
SAF_STARTCHILDAPP is specified, this can be used to stop the application (see the
WinTerminateApp function).

When the program specified by the application handle terminates, the window specified by the
hwndNotify parameter (if the window still exists and is valid) has a WM_APPTERMINATENOTIFY
message posted to it to notify it of the application termination.

This function requires the existence of a message queue.

Related Functions
• WinTerminateApp

Related Messages
• WM_APPTERMINATENOTIFY

Chapter 8. Window Functions 8-527

WinStartApp -
Window Start Application

Example Code
This example calls WinStartApp in a typical termination sequence.

#define INCl_DOSSESMGR
#include <os2.h>
HWND hwndNotify;
PPROGDETAILS pDetails;
HAPP happ;

pDetails->Length = sizeof(PROGDETAILS);
pDetails->progt.progc = PROG_WINDOWABLEVIO;
pDetails->progt.fbVisible = SHE_VISIBLE;
pDetai 1 s->pszTi tl e = 11 TEXT 11

;

pDetails->pszExecutable = "TEXT.EXE";
pDetails->pszParameters = NULL;
pDetails->pszStartupDir = 1111

;

pDetails->pszICON = 11T.IC0 11
;

pDetails->pszEnvironment = "WORKPLACE\0\0";
pDetails->swpinitial.fl = SWP_ACTIVATE; /*window positioning*/
pDetails->swpinitial.cy = 0; /*width of window*/
pOetails->swpinitial.cx = 0; /*height of window*/
pDetails->swpinitial.y = 0; /*lower edge of window*/
pDetails->swpinitial.x = 0; /*left edge of window*/
pDetails->swpinitial.hwndinsertBehind = HWND_TOP;
pDetails->swpinitial.hwnd = hwndNotify;
pDetails->swpinitial.ulReservedl = 0;
pDetails->swpinitial.ulReserved2 = 0;

happ = WinStartApp(hwndNotify,pDetails,NULL,NULL,SAF_STARTCHILDAPP);

WinTerminateApp(happ);

8-528 PM Programming Reference

#define INCL_WINTIMER I* Or use INCL_WIN or INCL_PM */

WinStartTimer
Start Timer

ULONG WinStartTlmer (HAB hab, HWND hwnd, ULONG ldTimer, ULONG ulTlmeout)

This function starts a timer.

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle that is part of the timer identification.

NULLHANDLE The idTimer parameter is ignored, and this function returns a unique, nonzero,
identity which represents that timer. The timer message is posted in the queue
associated with the current thread, with the hwnd parameter of the QMSG
structure set to NULLHANDLE.

Other Window handle.

ldTimer (ULONG) - input
Timer identifier.

The value of an application-timer identifier must be below TID_USERMAX to avoid clashes with
timers used by the system.

A timer identification, TID_SCROLL, is created by a scroll bar control. An application does not
normally see the associated WM_ TIMER, but passes it to the scroll-bar control.

A timer identification, TID_CURSOR, is created when the cursor is flashing. An application must
ensure that the associated WM_ TIMER is passed on to the default window procedure.

ulTimeout (ULONG) - input
Delay time in milliseconds.

Returns
Return code.

When hwnd is set to NULLHANDLE:

0 Error occurred

Other Timer identity.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

Remarks

An invalid window handle was specified.

This function creates a timer identified by hwnd and idTimer, set to time out every u/Timeout
milliseconds. When a timer times out, a WM_ TIMER message is posted.

Au/Timeout value of zero causes the timer to timeout as fast as possible; generally, this is about
1/18 second.

A second call to this function, for a timer that already exists, resets that timer.

Chapter 8. Window Functions 8-529

WinStartTimer
Start Timer

Related Functions
• WinGetCurrentTime
• WinQueryMsgTime
• WinStopTimer

Related Messages
• WM_TIMER

Example Code
This example uses the WinStartTimer call to add up elapsed seconds.

#define INCL_WINTIMER
#include <052.H>
HAB hab; /* anchor-block handle. */
ULONG seconds;
ULONG msg;
WinStartTimer(hab,

(HWND)0,

switch(msg)
{

}

case WM_TIMER:
seconds += 1;

break;

0, /* ignored because previous parameter */
/*is null. */

1000UL);

8-530 PM Programming Reference

#define INCL_WINTIMER I* Or use INCL_WIN or INCL_PM ~/

WinStopTimer -
Stop Timer

BOOL WinStopTlmer (HAB hab, HWND hwnd, ULONG ulTimer)

This function stops a timer.

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle.

ulTlmer (ULONG) - input
Timer identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred, or timer did not exist.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
When this function is called, no further messages are received from the stopped timer, even if it has
timed out since the last call to WinGetMsg.

Related Functions
• WinGetCurrentTime
• WinQueryMsgTime
• WinStartTimer

Chapter 8. Window Functions 8-531

WinStopTimer
Stop Timer

Example Code
This example uses the WinStopTimer call to stop a clock after one minute.

#define INCL_WINTIMER
#include <OS2.H>
HAB hab; /* anchor-block handle. */
ULONG ulTimerld;
HWND hwnd;
ulTimerld = WinStartTimer(hab,

(HWND)0,
0, /* ignored because previous parameter */

/*is null. */
1000UL);

BOOL WndProc(•...) {
static ULONG seconds;

}

switch(msg)
{
case WM TIMER:

if (seconds) {
seconds ++ ;
if (seconds == 60) WinStopTimer(hab, hwnd, ulTimerld);

}
break;

case WM_CREATE:
seconds = 0;

8-532 PM Programming "Reference

#define INCL_WINWORKPLACE

WinStoreWindowPos -
Store Window Position

BOOL WlnStoreWlndowPos (PSZ pszAppName, PSZ pszKeyName, HWND hwnd)

The WinStoreWindowPos function will save the current size and position of the window specified by
hwnd.

Parameters
pszAppName (PSZ) - input

A pointer to a zero-terminated string which contains the application name.

pszKeyName (PSZ) - input

A pointer to a zero-terminated string which contains the key name.

hwnd (HWND) - input

Window handle for the window to be stored.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This function will also save the presentation parameters.

Related Functions
• WinRestoreWindowPos

Chapter 8'. Window Functions 8-533

WinSubclassWindow
Subclass Window

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

PFNWP WlnSubclassWlndow (HWND hwnd, PFNWP pNewWlndowProc)

This function subclasses the indicated window by replacing its window procedure with another
window procedure, specified by pNewWindowProc.

Parameters
hwnd (HWND) - input

Handle of window that is being subclassed.

pNewWlndowProc (PFNWP) - input
New window procedure.

Window procedure used to subclass hwnd.

Returns
Old window procedure.

Previous window procedure belonging to hwnd.

If this function fails, OL is returned.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
To subclass a window effectively, the new window procedure calls the old window procedure rather
than WinDefWindowProc, for those messages it does not process itself.

To reverse the effect of subclassing, call this function again using the old window procedure address.

Note: It is not possible to subclass a window created by another process.

Related Functions
• WinCalcFrameRect
• WinCreateFrameControls
• WinCreateStdWindow
• WinCreateWindow
• WinDefWindowProc
• WinDestroyWindow
• WinQueryClasslnfo
• WinQueryClassName
• WinRegisterClass

8-534 PM Programming Reference

Example Code

WinSubclassWindow -
Subclass Window

This example uses the WinSubclassWindow call to subclass the frame window procedure, so that
frame-sizing restrictions can be implemented.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
PFNWP FrameWndProc, OldpFrame;
HWND hwndFrame;

OldpFrame = WinSubclassWindow(hwndFrame,
(PFNWP)FrameWndProc);

MRESULT EXPENTRY FrameWndProc(hwnd, msg, mpl, mp2)
{

}

}

switch(msg) {

case .

default:
OldpFrame(hwnd, msg, mpl, mp2);

Chapter 8. Window Functions 8-535

WinSubstituteStrings
Substitute Strings

#define INCL WINDIALOGS I* Or use INCL_WIN or INCL_PM */

LONG WlnSubstltuteStrlngs (HWND hwnd, PSZ pszSrc, LONG IDestMax, PSZ pszDest)

This function performs a substitution process on a text string, replacing specific marker characters
with text supplied by the application.

Parameters
hwnd (HWND) - input

Handle of window that processes the call.

pszSrc (PSZ) - input
Source string.

This is the text string that is to have substitution performed.

IDestMax (LONG) - input
Maximum number of characters returnable.

This is the maximum number of characters that can be returned in pszDest.

pszDest (PSZ) - output
Resultant string.

This is the text string produced by the substitution process.

The string is truncated if it would otherwise contain more than IDestMax characters. When
truncation occurs, the last character of the truncated string is always the null-termination
character.

Returns
Actual number of characters returned.

This is the actual number returned in pszDest, excluding the null-termination character. The
maximum value is (/DestMax-1). It is zero if an error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
When a string of the form "%n" (where n is in the range 0 through 9) occurs in the source string, a
WM_SUBSTITUTESTRING message is sent to the specified window. This message returns a text
string to use as a substitution for "%n" in the destination string, which is otherwise an exact copy of
the source string.

If "% % " occurs in the source, "%" is copied to the destination, but no other substitution occurs. If
"%x" occurs in the source, where xis not a digit or"%," the source is copied unchanged to the
destination. The source and destination strings must not overlap in memory.

This function is particularly useful for displaying variable information in dialogs, menus, and other
user-interface calls. Variable information can include such things as file names, which cannot be
statically declared within resource files.

This function is called by the system while creating child windows in a dialog box. It allows the child
windows to perform textual substitutions in their window text.

8-536 PM Programming Reference

Related Functions
• WinCompareStrings
• WinloadString
• WinNextChar
• WinPrevChar
• WinUpper
• WinUpperChar

Related Messages
• WM_SUBSTITUTESTRING

Example Code

WinSubstituteStrings -
Substitute Strings

This example shows how the substitution process works when the WinSubstituteStrings call is made.

#define INCL_WINDIALOGS
#include <OS2.H>
static MRESULT ClientWindowProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2);
test()
{
HWND hwnd;
char source[] = 11 this is the source string: %1 11

;

char result[22];
MPARAM mpl;
ULONG msg;

/*
This function performs a substitution process on a text string,
replacing specific marker characters with text supplied by the
application.

}

*/

WinSubstituteStrings(hwnd,
source,
sizeof(source),
result);

/* WM_SUBSTITUTESTRING message is sent to the window defined by */
/* hwnd. */

static MRESULT ClientWindowProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{
switch(msg)
{
case WM_SUBSTITUTESTRING:

switch((ULONG)mpl)
{

}

case 1:
rett1rn(MRFROMP(11A11

));

break;

break;
}
}

Chapter 8. Window Functions 8-537

WinSubtractRect -
Subtract Rectangle

#define INCL WINRECTANGLES /*Or use INCL_WIN or INCL_PM */

BOOL WlnSubtractRect (HAB hab, PRECTL prclDest, PRECTL prc1Src1, PRECTL prc1Src2)

This function subtracts one rectangle from another.

Parameters
hab (HAB) - input

Anchor-block handle.

prclDest (PRECTL) - output
Result.

The result of the subtraction of prc/Src2 from prc/Src1.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

prc1Src1 (PRECTL) - input
First source rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

prc1Src2 (PRECTL) - input
Second source rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

Returns
Not-empty indicator:

TRUE Rectangle is not empty

FALSE Rectangle is empty or an error occurred.

Remarks
Subtracts prc/Src2 from prc/Src1. prc/Src1, prc/Sre2, and pre/Dest must be distinct RECTL
structures.

Subtracting one rectangle from another does not always result in a rectangular area. When this
occurs, this function returns prc/Sre1 in pre/Dest. For this reason, this function provides only an
approximation of subtraction. However, the area described by pre/Dest is always greater than, or
equal to, the true result of the subtraction.

The GpiCombineRegion function can be used to calculate the true result of the subtraction of two
rectangular areas. The WinSubtractRect function is much faster.

8-538 PM Programming Reference

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinUnionRect

Example Code

WinSubtractRect -
Subtract Rectangle

This example uses the WinSubstractRect call to subtract two rectangles.

#define INCL_WINRECTANGLES
#include <OS2.H>
HAB hab;
RECTL resultrcl; /*result. */
RECTL rclminuend={25, /* x coordinate of left-hand edge of */

/* rectangle. */
25. /* y coordinate of bottom edge of */

/* rectangle. */
425,/* x coordinate of right-hand edge of */

/* rectangle. */
425};/* y coordinate of top edge of rectangle. */

RECTL rclsubtrahend={15. /* x coordinate of left-hand edge of */
/* rectangle. */

15, /* y coordinate of bottom edge of */
/* rectangle. */

125,/* x coordinate of right-hand edge of */
/* rectangle. */

125};/* y coordinate of top edge of rectangle.*/

WinSubtractRect(hab.
&resultrcl,
&rclminuend,
&rclsubtrahend);

Chapter 8. Window Functions 8-539

WinSwitchToProgram
Switch To Program

#define INCL WINSWITCHLIST /*Or use INCL_WIN or INCL_PM */

ULONG WlnSwltchToProgram (HSWITCH hswltchSwHandle)

This function makes a specific program the active program.

Parameters
hswltchSwHandle (HSWITCH) - input

Window List entry handle of program to be activated.

Returns
Return code.

0 Successful. completion.

INV_SWITCH_LIST_ENTRY_HANDLE Invalid Window List entry handle of the program to be
activated.

NOT_PERMITIED_TO_CAUSE_SWITCH Requesting program is not the current foreground
process.

Possible returns from WinGetlastError

PMERR_INVALID _SWITCH_HANDLE An invalid Window List entry handle was specified.

Remarks
Use of this function causes another window (and its related windows) of a PM session to appear on
the front of the screen, or a switch to another session in the case of a non-PM program. In either
case, the keyboard (and mouse for the non-PM case) input is directed to the new program.

A program can only be made the foreground process by the application which is the current
foreground process. This function is ignored if the issuer is not the current foreground process.

A foreground process is defined as being any process within the active non-PM session, or the
window with the input focus for a PM session.

Related Functions
• WinAddSwitchEntry
• WinChangeSwitchEntry
• WinCreateSwitchEntry
• WinQuerySessionTitle
• WinQuerySwitchEntry
• WinQuerySwitchHandle
• WinQuerySwitchlist
• WinQueryTaskSizePos
• WinQueryTaskTitle
• WinRemoveSwitchEntry

8-540 PM Programming Reference

Example Code

WinSwitchToProgram -
Switch To Program

This example calls WinSwitchToProgram to make a window the foreground process.

#define INCL_WINSWITCHLIST
#include <OS2.H>
HAB hab;
HWND hwndFrame;
HSWITCH hswitch;

hswitch = WinQuerySwitchHandle(hwndFrame, 0);

WinSwitchToProgram(hswitch); /*will switch to window defined*/
/* by hwndFrame. */

Chapter 8. Window Functions 8-541

Win Terminate
Terminate

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM. Also in COMMON section*/

I BOOL WlnTermlnate (HAB hab)

This function terminates an application thread's use of the Presentation Manager and releases all of
its associated resources.

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
Termination indicator:

TRUE Application usage of Presentation Manager successfully terminated

FALSE Application usage of Presentation Manager not successfully terminated, or
Winlnitialize has not been issued on this thread.

Remarks
It is good practice to issue this function before terminating an application thread. Before issuing this
function, the application must destroy all windows and message queues that have been created by
the thread, and return any cached presentation spaces to the cache. If it does not do so, the results,
and the return value from this and subsequent calls are indeterminate.

Related Functions
• WinCancelShutdown
• WinCreateMsgQueue
• Winlnitialize

8-542 PM Programming Reference

Example Code
This example calls WinTerminate in a typical termination sequence.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HAB hab;
HWND hwndFrame;
QMSG qmsg;
HMQ hmq;

while(WinGetMsg(hab, &qmsg, NULL, 0, 0))

WinTerminate -
Terminate

WinDispatchMsg(hab, /* PM anchor block handle */
&qmsg); /*pointer to message */

/* Destroy the standard windows if they were created. */

if (hwndFrame != NULL)
WinDestroyWindow(hwndFrame); /* frame window handle */

/* Destroy the message queue and release the anchor block. */

if (hmq != NULL)
WinDestroyMsgQueue(hmq);

if (hab != NULL)
WinTerminate(hab);

Chapter 8. Window Functions 8-543

WinTerminateApp -
Terminate Application

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I BOOL WlnTermlnateApp (HAPP happ)

This function terminates an application previously started with the WinStartApp function.

Parameters
happ (HAPP) - input

Anchor-block handle.

Identifies the application to terminate.

Returns
Termination indicator:

TRUE Application successfully terminated

NULL Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HAPP

PMERR_CANNOT _STOP

Remarks

The application handle passed to WinTerminateApp does
not correspond to a valid session.

The session cannot be stopped.

The application to terminate must have been started using the WinStartApp function with the
SAF_STARTCHILDAPP option specified.

If the specified application does not stop, this function returns TRUE. To ensure that the application
has terminated, the application calling WinTerminateApp must wait for the appropriate message to
be posted to the window specified in the WinStartApp function.

The WinTerminateApp function must be called from the same process as the WinStartApp function.

This function requires the existence of a message queue.

Related Functions
• WinStartApp

8-544 PM Programming Reference

Example Code

WinTerminateApp -
Terminate Application

This example calls WinTerminate in a typical termination sequence.

#define INCl_DOSSESMGR
#include <os2.h>
HWND hwndNotify;
PPROGDETAILS pDetails;
HAPP happ;

pDetails->Length = sizeof(PROGDETAILS);
pDetails->progt.progc = PROG_WINDOWABLEVIO;
pDetails->progt.fbVisible = SHE_VISIBLE;
pDetails->pszTitle = "TEXT";
pDetails->pszExecutable = "TEXT.EXE";
pDetails->pszParameters = NULL;
pDetails->pszStartupDir = "";
pDetails->pszICON = "T.ICO";
pDetails->pszEnvironment = "WORKPLACE\0\0";
pDetails->swpinitial.fl = SWP_ACTIVATE; /*window positioning*/
pDetails->swpinitial .cy = 0; /* width of window */
pDetails->swpinitial.cx = 0; /*height of window*/
pDetails->swpinitial.y = 0; /*lower edge of window*/
pDetails->swpinitial .x = 0; /* left edge of window */
pDetails->swpinitial.hwndinsertBehind = HWND_TOP;
pDetails->swpinitial.hwnd = hwndNotify;
pDetails->swpinitial.ulReservedl = 0;
pDetails->swpinitial .u1Reserved2 = 0;

happ = WinStartApp(hwndNotify,pDetails,NULL,NULL,SAF_STARTCHILDAPP);

WinTerminateApp(happ);

Chapter 8. Window Functions 8-545

WinTrackRect
Draw Tracking Rectangle

#define INCL_WINTRACKRECT /*Or use INCL_WIN or INCL_PM */

BOOL WlnTrackRect (HWND hwnd, HPS hps, PTRACKINFO ptlTracklnfo)

This function draws a tracking rectangle.

Parameters
hwnd (HWND) - input

Window handle where tracking is to take place.

It is assumed that the style of this window is not WS_CLIPCHILDREN.

HWND_DESKTOP Track over the entire screen

Other Track over specified window only.

hps (HPS) - input
Presentation-space handle.

Used for drawing the clipping rectangle:

NULLHANDLE The hwnd parameter is used to calculate a presentation space for tracking. It is
assumed that tracking takes place within hwnd and that the style of this window
is not WS_CLIPCHILDREN. Thus, when the drag rectangle appears, it is not
clipped by any children within the window. If the window style is
WS_CLIPCHILDREN and the application causes the drag rectangle to be
clipped, it must explicitly pass an appropriate presentation space.

Other Specified presentation-space handle.

ptlTracklnfo (PTRACKINFO) - input/output
Track information.

Returns
Success indicator:

TRUE Tracking successful.

FALSE Tracking canceled, or the pointing device was already captured when this function was
called.

Only one tracking rectangle can be in use at one time.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
The WinTrackRect call provides general-purpose pointing-device tracking. It draws a rectangle and
enables the user to position the entire rectangle, or size a specific side or corner, as required. The

resulting rectangle is then returned to the application, which can use this new information for size
and position data. The window manager interface for moving and sizing windows by means of the

wide sizing borders uses this function, for example.

This function enables the caller to control such limiting values as:

• A maximum and minimum tracking size
• Absolute tracking-position limits
• The tracking rectangle side widths
• A restriction of tracking rectangle movements to a predefined positional grid.

8-546 PM Programming Reference

WinTrackRect
Draw Tracking Rectangle

It automatically calls WinlockWindowUpdate to prevent output in the window hwnd and its
descendants while tracking. When tracking has been completed, output is enabled before this
function returns. It also determines which button of the pointing device is depressed at the start of
the operation, and only completes the tracking operation when the same button is released.

If the fs parameter of the TRACKINFO structure specified by the TF _SETPOINTERPOS value is
included, the pointing device pointer is positioned at the center of the tracking rectangle. Otherwise,
the pointing device pointer is not moved from its current position and delta is established between
the pointing device position and the part of the tracking rectangle that it moves (the delta is kept
constant).

While moving or sizing with the keyboard interface, the pointing device pointer is repositioned with
the tracking rectangle's new size or position.

While tracking, these keys are active:

Enter

Left cursor

Up cursor

Accepts the new position or size.

Moves the pointing device pointer and tracking rectangle left.

If the pointing device pointer is on the upper or lower edge of the tracking rectangle,
the pointer is moved to the top-left or bottom-left corner respectively.

Moves the pointing device pointer and tracking rectangle up.

If the pointing device pointer is on the left or right edge of the tracking rectangle, the
pointer is moved to the top-left or top-right corner respectively.

Right cursor Moves the pointing device pointer and tracking rectangle right.

If the pointing device pointer is on the upper or lower edge of the tracking rectangle,
the pointer is moved to the top-right or bottom-right corner respectively.

Down cursor Moves the pointing device pointer and tracking rectangle down.

Esc

If the pointing device pointer is on the left or right edge of the tracking rectangle, the
pointer is moved to the bottom-left or bottom-right corner respectively.

Cancels the current tracking operation. The value of the tracking rectangle is
undefined on exit.

The pointing device and the keyboard interface can be intermixed. The caller need not include the
TF _SETPOINTERPOS value to use the keyboard interface, as this value simply initializes the position
of the pointing device pointer.

If TF _GRID is specified in the TRACKINFO structure, ~he interior of the tracking rectangle is restricted
to multiples of the values of the cxGrid and cyGrid pa ameters. The default values for these are the
system font character width and half the system font haracter height, respectively.

Tracking movements using the keyboard arrow keys depend on whether or not TF_GRID is specified
in the TRACKINFO structure, If not specified, the increments are the values of cxKeyboard and
cyKeyboard. If specified the increments are the largest multiples of cxGrid and cyGrid that do not
exceed cxKeyboard and cyKeyboard, respectively. If cxGrid exceeds cxKeyboard, or cyGrid
exceeds cyKeyboard, the keyboard arrow keys do not cause tracking.

The tracking rectangle is usually logically "on top" of objects it tracks, so that the user can see the
old size and position while tracking the new. Thus, it is possible for a window "below" the tracking
rectangle to be updated while part of the tracking rectangle is "above" it.

Because the tracking rectangle is drawn in exclusive-OR mode, no window can draw below the
tracking rectangle (and thereby obliterate it) without first notifying the tracking code, because
unwanted areas of the tracking rectangle can be left behind. If the window doing the drawing is
clipped out from the window in which the tracking is occurring, this problem does not arise.

Chapter 8. Window Functions 8-547

WinTrackRect
Draw Tracking Rectangle

To prevent a window that is currently processing a WM_PAINT message drawing over the tracking
rectangle, the tracking rectangle is considered as a system-wide resource, only one of which can be
in use at any time. If there is a risk of the currently-updating window drawing on the tracking
rectangle, the tracking rectangle is removed while that window and its child windows update, and it
is then replaced. This is done during the WinBeginPaint and WinEndPaint functions. If the tracking
rectangle overlaps, it is removed in the WinBeginPaint function. In the WinEndPaint function, all the
child windows are updated by means of the WinUpdateWindow function before the tracking rectangle
is redrawn.

WinTrackRect has a modal loop within it. The loop has a HK_MSGFIL TEA hook and a MSGF _TRACK
hook code.

Note: The rectangle tracked by this function stays within the specified tracking bounds and
dimensions. If the rectangle passed is out of these bounds, or it is too large or too small, it is
modified to a rectangle that meets these limits.

Related Functions
• WinShowTrackRect

Related Messages
• WM_PAINT

8-548 PM Programming Reference

WinTrackRect -
Draw Tracking Rectangle

Example Code
This example shows how WinTrackRect can be used to allow a user size a rectangle on the screen.

#define INCL_WINTRACKRECT

#include <os2.h>

BOOL MyTrackRoutine(HAB hab, HPS hps, PRECTL rel)
{

}

TRACKINFO track;

track.cxBorder = 4;
track.cyBorder = 4; /* 4 pel wide lines used for rectangle */
track.cxGrid = 1;
track.cyGrid = 1; /* smooth tracking with mouse */
track.cxKeyboard = 8;
track.cyKeyboard = 8; /* faster tracking using cursor keys */

WinCopyRect(hab, &track.rclTrack, rel); /*starting point*/

WinSetRect(hab, &track.rclBoundary, 0, 0, 640, 480); /*bounding rectangle*/

track.ptlMinTrackSize.x = 10;
track.ptlMinTrackSize.y = 10; /* set smallest allowed size of rectangle */
track.ptlMaxTrackSize.x = 200;
track.ptlMaxTrackSize.y = 200; /* set largest allowed size of rectangle */

track.fs = TF_MOVE;

if (WinTrackRect(HWND_DESKTOP, hps, &track))
{

}

/* if successful copy final position back */
WinCopyRect(hab, rel, &track.rclTrack);
return(TRUE);

else
{

return(FALSE);
}

Chapter 8. Window Functions 8-549

WinTranslateAccel
Translate Accelerator

#define INCL WINACCELERATORS I* Or use INCL_WIN or INCL_PM */

BOOL WlnTranslaleAccel (HAB hab, HWND hwnd, HACCEL haccelAccel, PQMSG pQmsg)

This function translates a WM_CHAR message.

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Destination window.

haccelAccel (HACCEL) - input
Accelerator-table handle.

pQmsg (PQMSG) - input/output
Message to be translated.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_INVALID _HACCEL

Remarks

An invalid window handle was specified.

An invalid accelerator-table handle was specified.

This function translates pQmsg if it is a WM_ CHAR message in the accelerator table hacce/Accel.
The message is translated into a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message, with
hwnd identifying the destination window. Normally, this parameter is a frame-window handle. This
function does not highlight menu items.

If hacce/Accel equals NULL, the current accelerator table is assumed.

WinTranslateAccel returns TRUE if the message matches an accelerator in the table. pQmsg is
modified by WinTranslateAccel if a match is found.

If a menu item exists that matches the accelerator-command value, and that item is disabled, pQmsg
is translated to a WM_NULL message, rather than a WM_COMMAND, WM_SYSCOMMAND, or
WM_HELP message. If the command is WM_SYSCOMMAND or WM_HELP (and if a
WM_SYSCOMMAND or FID_SYSMENU child window is searched) the menu child window of hwnd that
has the FID_MENU identifier is searched.

It is possible to have accelerators that do not correspond to items in a menu. If the command value
does not match any items in the menu, the message is still translated.

Generally, applications do not have to call this function; it is usually called automatically by
WinGetMsg and WinPeekMsg, when a WM_CHAR message is received with the window handle of the
active window as the first parameter. The standard frame window procedure always passes
WM_ COMMAND messages to the FID_CLIENT window. Because the message is physically changed

8-550 PM Programming Reference

WinTranslateAccel
Translate Accelerator

by WinTranslateAccel, applications do not see the WM_ CHAR messages that result in
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP messages.

Related Functions
• WinCopyAccelTable
• WinCreateAccelTable
• WinDestroyAccelTable
• WinLoadAccelTable
• WinQueryAccelTable
• WinSetAccelTable

Related Messages
• WM_CHAR
• WM_COMMAND
• WM_HELP
• WM_NULL
• WM_SYSCOMMAND

Example Code
This example uses the WinTranslateAccel API to translate WM_CHAR messages destined for the
frame window.

#define INCL_WINWINDOWMGR
#define INCL_WINACCELERATORS
#include <052.H>

HACCEL haccel;
HWND hwndFrame, hwndClient; /*window handles. */
HAB hab; /* anchor block. */
QMSG qmsg;

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT); /*get handle of parent, */

/* which is frame window. */

/* Now get the accel table for the frame window */
haccel = WinQueryAccelTable(hab,

WinTranslateAccel(hab.
hwndFrame,
haccel,
&qmsg);

switch(qmsg.msg)
{

}

case WM_COMMAND:

case WM_SYSCOMMAND:

case WM_HELP:
break;

hwndFrame);

Chapter 8. Window Functions 8-551

WinUnionRect -
Union Redangle

#define INCL_WINRECTANGLES /*Or use INCL_WIN or INCL_PM */

BOOL WlnUnlonRect (HAB hab, PRECTL prclDest, PRECTL prc1Src1, PRECTL prc1Src2)

This function calculates a rectangle that bounds the two source rectangles.

Parameters
hab (HAB) - input

Anchor-block handle.

prclDest (PRECTL) - output
Bounding rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

prc1Src1 (PRECTL) - input
First source rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

prc1Src2 (PRECTL) - input
Second source rectangle.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

Returns
Nonempty indicator:

TRUE pre/Dest is a nonempty rectangle

FALSE Error, or pre/Dest is an empty rectangle.

Remarks
pre/Sre1 and pre1Sre2 must not be NULL pointers, although the rectangles they point to can be empty
(see the WinlsRectEmpty function).

If one of the source rectangles is empty, the other is returned.

Related Functions
• WinCopyRect
• WinEqualRect
• WinFillRect
• WinlnflateRect
• WinlntersectRect
• WinlsRectEmpty
• WinOffsetRect
• WinPtlnRect
• WinSetRect
• WinSetRectEmpty
• WinSubtractRect

8-552 PM Programming Reference

Example Code

WinUnionRect -
Union Rectangle

This example uses the WinUnionRect call to find a rectangle that bounds two source rectangles.

#define INCL_WINRECTANGLES
#include <052.H>
HAB hab;

/* result. *I RECTL resultrcl;
RECTL rcla={25, /* x coordinate of left-hand edge of */

25,
/* rectangle. */
/* y coordinate of bottom edge of
/* rectangle. */

*/

125, /* x coordinate of right-hand edge of */
/* rectangle. */

125}; /* y coordinate of top edge of rectangle.
*/

RECTL rclb = {15, /* x coordinate of left-hand edge of */
/* rectangle. *I

15, /* y coordinate of bottom edge of */
/* rectangle. */

125, /* x coordinate of right-hand edge of */
/* rectangle. */

125};

WinUnionRect(hab,
&resultrcl,
&rcla,
&rclb);

Chapter 8. Window Functions 8-S53

WinUpdateWindow
Update Window

#define INCL WINWINDOWMGR /*Or use INCL_WIN or INCL_PM */

I BOOL WlnUpdateWln- (HWND hwnd)

This function forces the update of a window and its associated child windows.

Parameters
hwnd (HWND) - input

Window handle.

Returns
Window-updated indicator:

TRUE Window successfully updated

FALSE Window not successfully updated.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
If hwnd is an asynchronous window, only it and its asynchronous children are updated. They are
sent WM_PAINT messages from this function.

If hwnd is a synchronous window, only it and its synchronous children are updated. They are sent
WM_PAINT messages from this function. If the window is owned by a different thread from the thread
issuing the call, the message is sent asynchronously and not synchronously.

If hwnd is a child of a nonclip-children parent, the update region of hwnd is subtracted from the
update region of the parent, if the parent has one. This is so that any parent-window drawing after
hwnd does not draw over whatever is drawn by hwnd.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinValidateRect
• WinValidateRegion

8-554 PM Programming Reference

Related Messages
• WM_PAINT

Example Code

WinUpdateWindow -
Update Window

This example uses the WinUpdateWindow call to send a WM_PAINT message to a window procedure.

#define INCL_WINWINDOWMGR
#include <OS2.H>
#define WM USERDEF WM USER + 1
main() - -
{

}
static MRESULT ClientWindowProc(HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

}

switch(msg)
{
case WM_PAINT:
break;
case WM USERDEF:
WinUpdateWindow(hwnd);

}

Chapter 8. Window Functions 8-555

WinUpper -
Uppercase String

#define INCL_WINCOUNTRY /*Or use INCL_WIN or INCL_PM */

ULONG WlnUpper (HAB hab, ULONG ulCodepage, ULONG ulCountry, PSZ pszStrlng)

This function converts a string to uppercase.

Parameters
hab (HAB) - input

Anchor-block handle.

ulCodepage (ULONG) - input
Code page:

O Use the current-process code page

Other Use the specified code page.

ulCountry (ULONG) - input
Country code:

O Use the default country code specified in CONFIG.SYS

Other Use the specified country code.

pszStrlng (PSZ) - input/output
String to be converted to uppercase.

Returns
Length of converted string.

Possible returns from WinGetLastError

PMERR_INVALID _STRING_PARM The specified string parameter is invalid.

Related Functions
• WinCompareStrings
• WinloadString
• WinNextChar
• WinPrevChar
• WinSubstituteStrings
• WinUpperChar

8-556 PM Programming Reference

Example Code

WinUpper -
Uppercase String

This example shows how the WinUpper call can be used to convert a strings in NLS languages to
uppercase.

#define INCL_WINCOUNTRY
#include <OS2.H>
#include <stdio.h>
main()
{
HAB hab;
char szString[] = "lhablas espaftol?";
hab = Winlnitialize(G);
WinUpper(hab,

850,
34,
szString);

WinTerminate(hab);
}

Chapter 8. Window Functions 8-557

WinUpperChar -
Uppercase Character

#define INCL WINCOUNTRY I* Or use INCL_WIN or INCL_PM */

ULONG WlnUpperChar (HAB hab, ULONG ulCodepage, ULONG ulCountry, ULONG ullnchar)

This function translates a character to uppercase.

Parameters
hab (HAB) - input

Anchor-block handle.

ulCodepage (ULONG) - input
Code page:

0 Use the current-process code page

Other Use the specified code page.

ulCountry (ULONG) - input
Country code:

O Use the default country code specified in CONFIG.SYS

Other Use the specified country code.

ullnchar (ULONG) - input
Character to be translated to uppercase.

Returns
Translated character:

0 Error occurred

Other The translated character.

Possible returns from WinGetlastError

PMERR_INVALID _STRING_PARM The specified string parameter is invalid.

Remarks
The case-mapping used is the same as provided by the OS/2 DosCaseMap call.

Related Functions
• WinCompareStrings
• WinloadString
• WinNextChar
• WinPrevChar
• WinSubstituteStrings
• WinUpper

8-558 PM Programming Reference

Example Code

WinUpperChar -
Uppercase Character

This example shows how the WinUpperChar call can be used to convert a characters in NLS
languages to uppercase.

#define INCL_WINCOUNTRY
#include <052.H>
#include <stdio.h>
main()
{
HAB hab;
char szString[] = "~";
hab = Winlnitialize(e);
WinUpper(hab,

850,
49,
szString);

WinTerminate(hab);
}

Chapter 8. Window Functions 8-559

WinValidateRect -
Validate Rectangle

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnValldateRect (HWND hwnd, PRECTL prclRect, BOOL flncludeCllppedChlldren)

This function subtracts a rectangle from the update region of an asynchronous paint window,
marking that part of the window as visually valid.

Parameters
hwnd (HWND) - input

Handle of window whose update region is changed.

If this parameter is HWND_DESKTOP or a desktop-window handle, the function applies to the
whole screen (or desktop).

prclRect (PRECTL) - input
Rectangle to be subtracted from the window's update region.

Note: The value of each field in this structure must be in the range -32 768 through 32 767. The
data type WRECT may also be used, if supported by the language.

flncludeCllppedChildren (BOOL) - input
Validation-scope indicator:

TRUE Include descendants of hwnd in the valid rectangle

FALSE Include descendants of hwnd in the valid rectangle, only if parent is not
WS_CLIPCHILDREN.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_HWND

PMERR_INVALID _FLAG

Remarks

An invalid window handle was specified.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The call is not used for CS_SYNCPAINT windows.

This function has no effect on the window if any part of the window has been made invalid since the
last call to WinBeginPaint, WinQueryUpdateRect, or WinQueryUpdateRegion.

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect

8-560 PM Programming Reference

• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinlockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRegion

Example Code

WinValidateRect -
Validate Rectangle

The window needs painting. This is done asynchronously on the drawing thread. The window update
region is copied into a local region and passed to the drawing thread. The window must be validated
now (to prevent further unnecessary paint messages).

#define INCL_WINWINOOWMGR
#include <052.H>
HRGN hrgnUpdate;
HPS hps;
HWNO hwnd;
/* Window needs paint */

case WM_PAINT:

/* assume we stop any asynchronous drawing. */
/* by posting a message to the asynchronous */
/* drawing thread. */

hrgnUpdate=(HRGN)GpiCreateRegion(hps. /* Create empty region */
0L,
(PRECTL)NULL);

WinQueryUpdateRegion(hwnd,
hrgnUpdate);

WinValidateRect(hwnd.
(PRECTL)NULL,

TRUE);

/* Save the window update */
/* region . *I

/* Validate window now to */
/* stop more paint msgs */

/* assume a message is posted to the drawing thread, passing */
/* the update region: (MPARAM)hgrnUpdate. */

mr = (MRESULT) 0L;
break;

/* Message processed *I
/* End window painting */

Chapter 8. Window Functions 8-561

WinValidateRegion
Validate Region

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnValldateReglon (HWND hwnd, HRGN hrgn, BOOL flncludeCllppedChlldren)

This function subtracts a region from the update region of an asynchronous paint window, marking
that part of the window as visually valid.

Parameters
hwnd (HWND) - input

Handle of window whose update region is changed.

If this parameter is HWND_DESKTOP or a desktop window handle, the function applies to the
whole screen (or desktop).

hrgn (HRGN) - input
Handle of subtracted region.

This is the region that is subtracted from the window's update region.

flncludeCllppedChlldren (BOOL) - input
Validation-scope indicator:

TRUE Include descendants of hwnd in the valid region

FALSE Include descendants of hwnd in the valid region, only if parent is not
WS_CLIPCHILDREN.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _HWND

PMERR_HRGN_BUSY

PMERR_INVALID_FLAG

Remarks

An invalid window handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

An invalid bit was set for a parameter. Use constants
defined by PM for options, and do not set any reserved
bits.

The call is not used for CS_SYNCPAINT windows.

The call has no effect on the window if any part of the window has been made invalid since the last
call to WinBeginPaint, WinQueryUpdateRect, or WinQueryUpdateRegion.

8-562 PM Programming Reference

Related Functions
• WinBeginPaint
• WinEnableWindowUpdate
• WinEndPaint
• WinExcludeUpdateRegion
• WinGetClipPS
• WinGetPS
• WinGetScreenPS
• WinlnvalidateRect
• WinlnvalidateRegion
• WinlsWindowShowing
• WinlsWindowVisible
• WinLockVisRegions
• WinOpenWindowDC
• WinQueryUpdateRect
• WinQueryUpdateRegion
• WinRealizePalette
• WinReleasePS
• WinShowWindow
• WinUpdateWindow
• WinValidateRect

WinValidateRegion
Validate Region

Chapter 8. Window Functions 8-563

WinValidateRegion
Validate Region

Example Code
This example shows how an application can incrementally repaint an asynchronous-paint window
one area at a time. While a window is invalid (has a non-null update region), WM_PAINT messages
are returned by WinGetMsg. The application uses WinQueryUpdateRegion to obtain a region that
requires repainting, and WinValidateRegion to validate the region (reset the update region to null).

#define INCL_WINWINDOWMGR
#define INCL_GPIREGIONS
#include <052.H>
HRGN hrgnUpdt, sRgnType;
HPS hpsPaint;
HWND hwnd;
/* Window needs paint */

case WM_PAINT:

/* assume we stop any asynchronous drawing. */
/* by posting a message to the asynchronous */
/* drawing thread. *I

hrgnUpdt = (HRGN)GpiCreateRegion(hpsPaint,
(ULONG)0,
(PRECTL)NULL);

sRgnType = (HRGN)WinQueryUpdateRegion(hwnd,
hrgnUpdt);

/* if the region is not null and the call is not in error, */
/*validate the region. */

if ((sRgnType != NULL) &&
(sRgnType I= RGN_ERROR)) {
WinValidateRegion(hwnd, hrgnUpdt, FALSE);

/*
here we would send the update region handle to an
asynchronous drawing thread. We have already validated the
region, so no more WM_PAINT messages will be sent due to this
region.
*/

} else { GpiDestroyRegion(hpsPaint, hrgnUpdt);}

8-564 PM Programming Reference

#define INCL_ WINMESSAGEMGR

ULONG WlnWaltEventSem (HEY hev, ULONG ulTlmeout)

WinWaitEventSem
Wait Event Semaphore

WinWaitEventSem waits for an event semaphore to be posted or for a Presentation Manager
message.

Parameters
hev (HEV) - input

The handle of the event semaphore to wait for.

ulTlmeout (ULONG) - input

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the
thread to be blocked.

This parameter can also have the following values:

Definition Value

0 (SEM_IMMEDIATE_RETURN) WinWaitEventSem returns without blocking the calling
thread.

-1 (SEM_INDEFINITE_WAIT) WinWaitEventSem blocks the calling thread indefinitely.

Returns
Return Code.

WinWaitEventSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
8 ERROR_NOT _ENOUGH_MEMORY
95 ERROR_INTERRUPT
640 ERROR_ TIMEOUT

Remarks
WinWaitEventSem is similar to DosWaitEventSem and enables a thread to wait for an event
semaphore to be posted or for a window message sent by the WinSendMsg function from another
thread to be received.

This function can be called by any thread in the process that created the semaphore. Threads in
other processes can also call this function, but they must first gain access to the semaphore by
calling DosOpenEventSem.

Since the processing of a window message may take longer than the value specified by the Timeout
parameter, this function may not return within the time specified by that value.

Related Functions
• WinSendMsg
• WinPostMsg

Chapter 8. Window Functions 8-565

WinWaitEventSem -
Wait Event Semaphore

Example Code
This example causes the calling thread to wait until the specified event semaphore is posted.
Assume that the handle of the semaphore has been placed into hev already.

u/Timeout is the number of milliseconds that the calling thread will wait for the event semaphore to
be posted. If the specified event semaphore is not posted during this time interval, the request times
out.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#define INCL_WINMESSAGEMGR
#include <os2.h>
#include <stdio.h>

#ifndef ERROR_TIMEOUT
#define ERROR_TIMEOUT 640
#define ERROR_INTERRUPT 95

#endif

HEV
ULONG
UL ONG

hev;
ulTimeout;
re;

/* Event semaphore handle */
/* Number of milliseconds to wait */
/* Return code */

ulTimeout = 60000; /* Wait for a maximum of 1 minute */

re= WinWaitEventSem(hev, ulTimeout);

if (re == ERROR TIMEOUT)
{ -

}

printf("WinWaitEventSem call timed out");
return;

if (re == ERROR INTERRUPT)
{ -

}

pri ntf ("Wi nWai tEventSem ca 11 was i nterrupted 11
);

return;

if (re ! = 0)
{

}

printf(11 WinWaitEventSem error: return code= %ld 11
, re);

return;

8-566 PM Programming Reference

#define INCL WINMESSAGEMGR I* Or use INCL_WIN or INCL_PM */

BOOL WlnWaitMsg (HAB hab, ULONG ulFirst, ULONG ullast)

This function waits for a filtered message.

Parameters
hab (HAB) - input

Anchor-block handle.

ulFlrst (ULONG) - input
First message identity.

ullast (ULONG) - input
Last message identity.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks

WinWaitMsg
Wait Message

This function causes the current thread to wait for a message to arrive on the message queue
associated with hab. This must be the next message since the queue was last inspected by a
fSuccess return from WinGetMsg or WinPeekMsg. It must also conform to the filtering criteria
specified by u/First and u/Last.

For details of the filtering performed by u/First and u/Last, see the WinGetMsg function.

Related Functions
• WinBroadcastMsg
• WinCreateMsgQueue
• WinDestroyMsgQueue
• WinDispatchMsg
• WinGetDlgMsg
• WinGetMsg
• WinlnSendMsg
• WinPeekMsg
• WinPostMsg
• WinPostQueueMsg
• WinQueryMsgPos
• WinQueryMsgTime
• WinQueryQueuelnfo
• WinQueryQueueStatus
• WinRegisterUserDatatype
• WinRegisterUserMsg
• WinSendDlgltemMsg
• WinSendMsg
• WinSetClassMsglnterest
• WinSetMsglnterest
• WinSetMsgMode
• WinSetSynchroMode

Chapter 8. Window Functions 8-567

WinWaitMsg -
Wait Message

Example Code
In this example the pointer is kept hidden until mouse activity is detected. The WinWaitMsg call is
used to wait for any mouse message.

#define INCL_WINWINDOWMGR
#define INCL_WINPOINTERS
#define INCL_WINDESKTOP
#define INCL_WININPUT
#include <052.H>
HWND hwnd;
HPOINTER hpointer;
HAB hab;

hpointer = WinQueryPointer(HWND_DESKTOP); /*get the pointer*/
/* handle. */

WinShowPointer(hwnd,FALSE); /*hide the mouse. */

WinWaitMsg(hab,
WM MOUSEFIRST, /*all the mouse messages from*/

WM_BUTTON3DBLCLK); /* WM_MOUSEFIRST to */

WinShowPointer(hwnd,TRUE);

8-568 PM Programming Reference

/* WM_BUTTON3DBLCLK inclusive. */

/* If there has been any mouse */
/* activity, show the mouse. */

WinWaitMuxWaitSem
Wait MuxWait Semaphore or Message

#define INCL_ WINMESSAGEMGR

ULONG WinWaltMuxWaltSem (HMUX hmux, ULONG ulTimeout, PULONG pUser)

WinWaitMuxWaitSem waits for a muxwait semaphore to clear or for a Presentation Manager
message.

Parameters
hmux (HMUX) - input

The handle of the muxwait semaphore to wait for.

ulTlmeout (ULONG) - input

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the
thread to be blocked.

This parameter can also have the following values:

Definition Value

0 (SEM_IMMEDIATE_RETURN) WinWaitMuxWaitSem returns without blocking the
calling thread.

-1 (SEM_INDEFINITE_WAIT) WinWaitMuxWaitSem blocks the calling thread
indefinitely.

pUser (PULONG) - output

A pointer to receive the user field (from the muxwait semaphore data structure) of the
semaphore that was posted or released.

If DCMW_WAIT_ANY was specified in the f/Attr parameter when the muxwait semaphore was
created, this will be the user field of the semaphore that was posted or released. If the muxwait
semaphore consists of mutex semaphores, any mutex semaphore that is released is owned by
the caller.

If DCMW_WAIT_ALL was specified in the f/Attr parameter when the muxwait semaphore was
created, this will be the user field of the last semaphore that was posted or released. (If the
thread did not block, the last semaphore that was posted or released will also be the last
semaphore in the muxwait-semaphore list.) If the muxwait semaphore consists of mutex
semaphores, all of the mutex semaphores that are released are owned by the caller.

Returns
Return Code.

WinWaitMuxWaitSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
8 ERROR_NOT_ENOUGH_MEMORY
87 ERROR_INVAUD.-PARAMETER
95 ERROR_INTERRUPT
103 ERROR_TOO_MANY_SEM_REQUESTS
105 ERROR~SEM _ _;OWNER_DJED
286 ERROR_EMPTY_MUXWAIT
287 ERROR_MUTEX_OWNED
292 ERROR_WRONG_TYPE
640 ERROR_ TIMEOUT

Chapter 8. Window Functions 8-569

WinWaitMuxWaitSem
Wait MuxWait Semaphore or Message

Remarks
WinWaitMuxWaitSem is similar to DosWaitMuxWaitSem and enables a thread to wait for a muxwait
semaphore to clear or for a window message sent by the WinSendMsg function from another thread
to be received.

This function can be issued by any thread in the process that created the semaphore. Threads in
other processes can also issue this function, but they must first gain access to the semaphore by
issuing DosOpenMuxWaitSem.

Since the processing of a window message may take longer than the value specified by the
u/Timeout parameter, this function may not return within the time specified by that value.

Related Functions
• WinSendMsg
• WinPostMsg

Example Code
This example waits for a muxwait semaphore to clear. Assume that the handle of the semaphore has
been placed into hmux already.

u/Timeout is the number of milliseconds that the calling thread will wait for the muxwait semaphore
to clear. If the specified muxwait semaphore is not cleared during this time interval, the request
times out.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#define INCL_WINMESSAGEMGR
#include <os2.h>
#include <stdio.h>

#ifndef ERROR_TIMEOUT
#define ERROR_TIMEOUT 640
#define ERROR_INTERRUPT 95

#endif

HMUX
ULONG
ULONG

ULONG

hmux;
ulTimeout;
ulUser;

re;

/* Muxwait semaphore handle */
/* Number of milliseconds to wait */
/* User field for the semaphore that was

posted or released (returned) */
/* Return code */

ulTimeout = 60000; /* Wait for a maximum of 1 minute */

re = WinWaitMuxWaitSem(hmux, ulTimeout, &ulUser);
/* On successful return, the ulUser */
/* variable contains the user */
/* identifier of the semaphore */
/* that caused the wait to */
/* tenninate. If the caller had */
/* to wait for all the semaphores */
/* within the muxwait semaphore to */
/* clear, then the value corresponds */
/* to the last semaphore within the */
/* muxwait semaphore to clear. If */
/* the caller had to wait for any */
/* semaphore with the muxwait */
/* semaphore to clear, then the */
/* value corresponds to that */
/* semaphore. */

if (re == ERROR_TIMEOUT)

8-570 PM Programming Reference

{

}

WinWaitMuxWaitSem -
Wait MuxWait Semaphore or Message

printf(11 WinWaitMuxWaitSem call timed out");
return;

if (re == ERROR INTERRUPT)
{ -

}

printf(11 WinWaitMuxWaitSem call was interrupted");
return;

if (re != 0)
{

}

printf(11 WinWaitMuxWaitSem error: return code= %ld 11
, re);

return;

Chapter 8. Window Functions 8-571

WinWindowFromDC -
Query Window Handle From Device Context

#define INCL_WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

I HWND WlnWlndowFromDC (HDC hdc)

This function returns the handle of the window corresponding to a particular device context.

Parameters
hdc (HOC) - input

Device-context handle.

The device context must first be opened by the WinOpenWindowDC function.

Returns
Window handle:

NULLHANDLE Error occurred. For example, the device context has not been opened by the
WinOpenWindowDC function.

Other Window handle.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_INV _HDC

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromlD
• WinWindowFromPoint

8-572 PM-Programming Reference

An invalid presentation-space handle was specified.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

WinWindowFromDC -
Query Window Handle From Device Context

Example Code
If a device context handle is specified, this example determines which window is associated with that
device context.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwnd;
HDC hdc;

/* Assume the device context for a window has been opened in */
/* some other window procedure. We would like to get */
/* a handle to that window. */

/* This function is called in some other window: */
/* hdc = WinOpenWindowDC(hwnd); */

hwnd = WinWindowFromDC(hdc);

Chapter 8. Window Functions 8-573

WinWindowFromlD -
Query Window Handle From Identifier

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WinWlndowFromlD (HWND hwndParent, ULONG ulldentltler)

This function returns the handle of the child window with the specified identity.

Parameters
hwndParent (HWND) - input

Parent-window handle.

ulldentlfler (ULONG) - input
Identity of the child window.

Returns
Window handle:

NULLHANDLE No child window of the specified identity exists

Other Child-window handle.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

Remarks
To obtain the window handle for an item within a dialog box, set hwndParent to the dialog-box
window's handle, and set u/identifier to the identity of the item in the dialog template.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromPoint

8-57 4 PM Programming Reference

WinWindowFromlD -
Query Window Handle From Identifier

Example Code
This example calls WinWindowFromlD to get the window handle of the system menu and calls
WinSendMsg to send a message to disable the Close menu item.

#define INCL_WINFRAMEMGR /* for FID_ definitions. */
#define INCL_WINMENUS /* for MIA_ definitions. */
#define INCL_WINWINDOWMGR
#include <OS2.H>

HWND hwndSysMenu, hwndDlg;

hwndSysMenu = WinWindowFromIO(hwndOlg, FID_SYSMENU);
WinSendMsg(hwndSysMenu, MM SETITEMATTR,

MPFROM2SHORT(SC CLOSE,-TRUE),
MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED));

Chapter 8. Window Functions 8-575

WinWindowFromPoint
Window From Point

#define INCL WINWINDOWMGR I* Or use INCL_WIN or INCL_PM */

HWND WlnWlndowFromPolnt (HWND hwndParent, PPOINTL pptlPolnt, BOOL IEnumChlldren)

This function finds the window below a specified point, that is a descendant of a specified window.

Parameters
hwndParent (HWND) - input

Window handle whose child windows are to be tested:

HWND_DESKTOP The desktop-window handle, implying that all main windows are tested. In
this instance, ppt/Point must be relative to the bottom left corner of the
screen.

Other Parent-window handle.

pptlPolnt (PPOINTL) - input
The point to be tested.

Specified in window coordinates relative to the window specified by the hwndParent parameter.

IEnumChlldren (BOOL) - input
Test control:

TRUE Test all the descendant windows, including child windows of child windows

FALSE Test only the immediate child windows.

Returns
Window handle beneath ppt/Point:

NULLHANDLE ppt/Point is outside hwndParent

Parent ppt/Point is not inside any of the children of hwndParent

Other Window handle is beneath ppt/Point.

Possible returns from WinGetlastError

PMERR_INVALID _HWND An invalid window handle was specified.

Remarks
This function checks only the descendants of the specified window.

Related Functions
• WinEnableWindow
• WinlsThreadActive
• WinlsWindow
• WinlsWindowEnabled
• WinQueryDesktopWindow
• WinQueryObjectWindow
• WinQueryWindowDC
• WinQueryWindowProcess
• WinQueryWindowRect
• WinWindowFromDC
• WinWindowFromlD

8-576 PM Programming Reference

Example Code

WinWindowFromPoint -
Window From Point

This example calls WinWindowFromPoint to find out if any main windows are beneath point 100, 100.

#define INCL_WINWINDOWMGR
#include <OS2.H>
HWND hwndunderneath;
POINTL point = { 100L, 100L};
hwndunderneath = WinWindowFromPoint(HWND_DESKTOP,

&point,
FALSE); /*do not test the*/

/* descendents of */
/* the main */
/* windows. */

Chapter 8. Window Functions 8-577

8-578 PM Programming Reference

Chapter 9. Workplace Classes, Instance Methods, and
Class Methods

The following sections contain Workplace classes, instance methods, and class methods. Each
section is in alphabetical order.

These sections contain technical reference information. See the workplace chapter in the
Application Design Guide for workplace guide information. For information on the System Object
Model (SOM), see System Object Model Guide and Reference.

The following is some terminology used in these sections:

class

class method

inheritance

instance

instance method
in-use emphasis

In-use llst
metaclass

method

object

object definition
object instance
subclass
superclass

A way of categorizing objects based on their behavior and shape. A class
is, in effect, a definition of a generic object. In SOM, a class is a special
kind of object that can manufacture other objects that all have a common
shape and exhibit similar behavior (more precisely, all of the objects
manufactured by a class have the same memory layout and share a
common set of methods). New classes can be defined in terms of existing
classes through a technique known as inheritance.
A class method of class < X > is a method provided by the metaclass of
class < X > . Class methods are executed without requiring any instances of
class < X > to exist, and are frequently used to create instances.
The technique of specifying the shape and behavior of one class (called a
subclass) as incremental differences from another class (called the parent
class or superclass). The subclass inherits the superclass's state
representation and methods, and can provide additional data elements and
methods. The subclass also can provide new functions with the same
method names used by the superclass. Such a subclass method is said to
override the superclass method, and will be selected automatically by
method resolution on subclass instances. An overriding method can elect to
call upon the superclass's method as part of its own implementation.
(Or object instance). A specific object, as distinguished from the abstract
definition of an object referred to as its class.
A method valid for a particular object.
A visual queue around an object's icon to indicate that one or more view
windows are currently open.
A linked list of items representing resources allocated on an object's behalf.
A class whose instances are all classes. In SOM, any class descended from
SOMClass is a metaclass. The methods of a metaclass are sometimes
called "class" methods.
One of the units that makes up the behavior of an object. A method is a
combination of a function and a name, such that many different functions
can have the same name. Which function the name refers to at any point in
time depends on the object that is to execute the method and is the subject
of method resolution.
The elements of data and function that programs create, manipulate, pass
as arguments, and so forth. An object is a way of associating specific data
values with a specific set of named functions (called methods) for a period
of time (referred to as the lifetime of the object). The data values of an
object are referred to as its state. In SOM, objects are created by other
objects called classes. The specification of what comprises the set of
functions and data elements that make up an object is referred to as the
definition of a class.

SOM objects offer a high degree of encapsulation. This property permits
many aspects of the implementation of an object to change without affecting
client programs that depend on the object's behavior.
See class.
See instance.
A class that inherits from another class. See inheritance.
A class from which another class inherits. See inheritance.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-1

Workplace object classes
Workptace objects are icons representative of physical objects which users deal with in the
workplace. A Workplace object is implemented as an instance of a Workplace object class.
Workplace object classes are System Object Model (SOM) object classes which are descendants of
the predefined Workplace object class, WPObJect. For more information about SOM object classes,
see System Object Model Guide and Reference.

All Workplace objects are descendants of a Workplace object storage class. Workplace storage
object classes are responsible primarily for storing and retrieving object class data for instances of
objects which are descendants (subclasses) of that storage class.

The three predefined Workplace object storage classes are:

"WPAbstract" on page 9-4 Storage class for objects stored in the user profile (OS2.INI)
"WPFlleSystem" on page 9-14 Storage class for objects stored as files in the file system
"WPTranslent" on page 9-50 Storage class for non-persistent objects.

Workplace Object Class Hierarchy
The following diagram lists the predefined Workplace object classes in a hierarchical order. Each
branch in the tree represents an immediate descendant (subclass) of a Workplace object class. The
predefined SOM object class, SOMObJect, is the root class for all SOM object classes, including all
Workplace object classes.

CLASS NAME CLASS DEFINITION FILE

SOMObject r SOMClass L SOMClassMgr
"WPObject" on page 9-24

"WPAbstract" on page 9-4
"WPClock" on page 9-5
"WPCountry" on page 9-8
"WPD1sk" on page 9-11
"WPKeyboard" on page 9-22
"WPMouse" on page 9-23
"WPPalette" on page 9-27 r "WPColorPalette" on page 9-6 L "WPFontPalette" on page 9-19

"WPSchemePalette" on page 9-48
"WPPrinter" on page 9-31
11WPProgra1111 on page 9-34
"WPShadow" on page 9-41
"WPShredder" on page 9-43
"WPSound" on page 9-44
"WPSpec1a1Needs" on page 9-45
"WPSpooler" on page 9-46
"WPSystem" on page 9-48

"WPF11eSystem" on page 9-14
"WPDataF11e" on page 9-9
"WPFolder" on page 9-16

~
"WPDesktop" on page 9-18
"WPDrhes" on page 9-13
"WPStartup" on page 9-47
"WPTemplateFolder" on page 9-49

''WPPrograntF11e" on page 9-37
"WPTransient" on page 9-58

~
"WPJob" on page 9-21
"WPPort" on page 9-38
"WPPr1nterDr1ver" on page 9-33
"WPQueueDriver" on page 9-51

Figure 9-1. Class Hierarchy for Predefined Workplace Objects

9-2 PM Programming Reference

somobj.sc
somcls.sc
somcm.sc
wpobject.sc
wpabs.sc
wpclock.sc
wpctry.sc
wpdisk.sc
wpkeybd.sc
wpmouse.sc
wppalet.sc
wpclrpal.sc
wpfntpal.sc
wpscheme.sc
wpprint.sc
wppgm.sc
wpshadow.sc
wpshred.sc
wpsound.sc
wpspneed.sc
wpspool.sc
wpsystem.sc
wpfsys.sc
wpdataf .sc
wpfolder.sc
wpdesk.sc
wpdrives.sc
wpstart.sc
wptemps.sc
wppgmf .sc
wptrans.sc
wpjob.sc
wpport.sc
wppdr.sc
wpqdr.sc

Instances of some Workplace object classes cannot be created as a Workplace object. These
classes are provided as base classes which provide support for descendant classes that can have
instances created. Other classes are SOM classes and are described in better detail in the System
Object Model Guide and Reference.

These classes include:

SOM Object

SOM Class

SOMClassMgr

This is the SOM root class, all SOM classes must be descended from
SOMObJect. A Workplace object of this class cannot be created.
This is the SOM metaclass, that is, the instances of this class are class
objects. A Workplace object of this class cannot be created.
This is the SOM class manager class. A Workplace object of this class
cannot be created.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-3

WPAbstract

Class definition file:wpabs.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

Description
This is the abstract object storage class. The storage medium for objects that are descendants of the
WPAbstract class is the INI file. In other words, any object class derived from WPAbstract will have
persistent storage for its instance variables in the INI file. Note that an abstract object does not have
a file name, just a numeric handle that can be used to identify it. An instance of this class can be
created as a Workplace object. There are no instances of this class initially created by the system.

Instance methods
There are currently no methods defined for the WPAbstract Workplace object class.

WPObject instance methods
The following list shows all the methods overridden by the WPAbstract class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpCopyObject - WPObject instance method" on page 9-105
• "wpCreateFromTemplate - WPObject instance method" on page 9-106
• "wpSavelmmediate - WPObject instance method" on page 9-198
• "wpSaveState - WPObject instance method" on page 9-200
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpQuerylconData - WPObject instance method" on page 9-170
• "wpSetlconData - WPObject instance method" on page 9-218
• "wpSetTitle - WPObject instance method" on page 9-227

Class methods
The following shows the class methods overridden by the WPAbstract class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-4 PM Programming Reference

WPClock

Class definition file:wpclock.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPClock

Description
This is the system clock object class. An instance of this class can be created as a Workplace object.

An instance of this class is created initially by the system. It has the title, "System Clock" and

resides in the "System Setup" folder.

Instance methods
The following list shows all the WPClock instance methods.

• "wpAddClockAlarmPage - WPClock instance method" on page 9-53

• "wpAddClockDateTimePage - WPClock instance method" on page 9-54

• "wpAddClockView1 Page WPClock instance method" on page 9-55

• "wpAddClockView2Page - WPClock instance method" on page 9-56

WPObject instance methods
The following list shows all the methods overridden by the WPClock class. These methods are

overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89

• "wpFilterPopupMenu - WPObject instance method" on page 9-123

• "wpQueryDefaultView - WPObject instance method" on page 9-160

• "wpOpen - WPObject instance method" on page 9-142
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138

• "wpMenultemSelected - WPObject instance method" on page 9-139

• "wpSaveState - WPObject instance method" on page 9-200

• "wpRestoreState - WPObject instance method" on page 9-194

Class methods
The following list shows all the class methods overridden by the WPClock class. These methods are

overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultView - WPObject class method" on page 9-252

• "wpclsQuerylconData - WPObject class method" on page 9-261

• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-5

WPColorPalette

Class definition file:wpclrpal.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WP Palette
WPColorPalette

Description
This is the color palette object class. An instance of this class can be created as a Workplace object.
An instance of this class is created initially by the system. It has the title, "Color Palette" and
resides in the "System Setup" folder.

Instance methods
There are currently no methods defined for the WPColorPalette Workplace object class.

WPObject instance methods
The following list shows all the methods overridden by the WPColorPalette class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpSetup - WPObject instance method" on page 9-229

These are the keyname - value pairs added by WPColorPalette class.

KEYNAME VALUE Description

COLORS RGB values These are the initial color values of each cell in
the color palette. The values for each cell are
separated by commas. This is equivalent to
calling the wpSetupCell method. The RGB value
must be presented as a 6- digit hex value in the
format OxRRGGBB where RR,GG, and BB are the
red, green and blue, respectively, values ranging
between 00 and FF (0 - 255).

Example

pszSetupString= 11 COLORS=C:lxC:lC:lC:lC:lC:lC:l,C:lxFFFFFF,C:lxFF2384
C:lx5C:l5C:l5C:l,C:lxC:lC:lFFFF,C:lxAC:lAC:lAC:l 11

WPPalette methods
• "wpDragCell - WPPalette instance method" on page 9-115
• "wpEditCell - WPPalette instance method" on page 9-121
• "wpPaintCell - WPPalette instance method" on page 9-143
• "wpQueryPaletteHelp - WPPalette instance method" on page 9-173

9-6 PM Programming Reference

Class methods
The following list shows all the class methods overridden by the WPColorPalette class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

WPPalette class methods
• "wpclsQueryEditString - WPPalette class method" on page 9-257

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-7

WPCountry

Class definition file:wpctry .sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPCountry

Description
This is the country object class. An instance of this class can be created as a Workplace object. An
instance of this class is created initially by the system. It has the title, "Country" and resides in the
"System Setup" folder.

Instance methods
The following list shows all of the WPCountry instance methods.

• "wpAddCountryDatePage - WPCountry instance method" on page 9-57
• "wpAddCountryNumbersPage - WPCountry instance method" on page 9-58
• "wpAddCountryPage - WPCountry instance method" on page 9-59
• "wpAddCountryTimePage - WPCountry instance method" on page 9-60

WPObJect instance methods
The following list shows all of the methods overridden by the WPCountry class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitData - WPObject instance method" on page 9-133
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpQueryDefaultView - WPObject instance method" on page 9-160

Class methods
The following list shows all the class methods overridden by the WPCountry class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-8 PM Programming Reference

WP Datafile

Class definition file:wpdataf.sc

Class hierarchy
SOM Object

WPObject
WPFileSystem

WP Data Fiie

Description
This is the data file object class. An instance of this class can be created as a Workplace object and
is created initially by the system in its template form. It has the title, "Data file" and resides in the
"Templates" folder.

Instance methods
The following shows all the WPDataFlle methods.

• "wpAddFileTypePage - WPDataFile instance method" on page 9-66
• "wpPrintMetaFile - WPDataFile instance method" on page 9-146
• "wpPrintPifFile - WPDataFile instance method" on page 9-148
• "wpPrintPlainTextFile - WPFileSystem instance method" on page 9-149
• "wpPrintPrinterSpecificFile - WPDataFile instance method" on page 9-150
• "wpPrintUnknownFile - WPDataFile instance method" on page 9-151

WPObject instance methods
The following list shows all the methods overridden by the WPDataFlle class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFormatDragltem - WPObject instance method" on page 9-126
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpPrintObject - WPObject instance method" on page 9-147
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPDataFlle class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-9

WP Desktop

Class definition file:wpdesk.sc

Class hierarchy
SOM Object

WPObject
WPFileSystem

WPFolder
WP Desktop

Description
This is the Workplace desktop object class. An instance of this class can be created as a Workplace
object. An instance of this class is created initially by the system. It has the title, "OS/2 Desktop"
and resides in the root directory of the drive containing the user profile.

Instance methods
The following table shows all the WPDesklop methods.

• "wpAddDesktoplockup1 Page WPDesktop instance method" on page 9-61
• "wpAddDesktoplockup2Page - WPDesktop instance method" on page 9-62
• "wpAddDesktoplockup3Page - WPDesktop instance method" on page 9-63
• "wplsCurrentDesktop - WPDesktop instance method" on page 9-137

WPObject instance methods
The following list shows all the methods overridden by the WPDesklop class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpMenultemSelected WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140

Class methods
The following list shows all the class methods overridden by the WPDesklop class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-10 PM Programming Reference

WP Disk

Class definition file:wpdisk.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WP Disk

Description
This is the file system device object class. It is used to represent all types of file system devices
including:

• CD ROM drives
• Fixed disk drives
• Floppy diskette drives
• Magnetic tape drives
• Network drives
• Ram drives

An instance of this class can be created as a Workplace object. Shadow instances of this class are
created initially by the system for each file system device available. Each instance has a title
corresponding to a file system device and resides in the Drives folder. If a primary local removable
media file system device such as a floppy drive exists, an instance of this class will also be created
on the desktop, which will represent this drive. These instances actually appear as WPShadow
objects which are shadows of WPDlsk objects.

Instance methods
The following shows the WPDlsk methods.

• "wpAddDiskDetailsPage - WPDisk instance method" on page 9-64
• "wpQuerylogicalDrive - WPDisk instance method" on page 9-171
• "wpQueryRootFolder - WPDisk instance method" on page 9-179

WPObject instance methods
The following list shows all the methods overridden by the WPDlsk class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetTitle - WPObject instance method" on page 9-227

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-11

Class methods
The following list shows all the class methods overridden by the WPDlsk class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267

9-12 PM Programming Reference

WP Drives

Class definition file:wpdrives.sc

Class hierarchy
SOMObject

WPObject
WPFileSystem

WPFolder
WP Drives

Description
This is the file system device folder object class. An instance of this class can be created as a
Workplace object. An instance of this class is created initially by the system. It has the title,
"Drives" and resides in the "OS/2 System" folder.

Methods
There are currently no methods defined for the WPDrlves Workplace object class.

WPObject methods
The following list shows all the methods overridden by the WPDrives class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpPopulate - WPFolder instance method" on page 9-144

Class methods
The following list shows all the class methods overridden by the WPDrives class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-13

WPFileSystem

Class definition file:wpfsys~.sc

Class hierarchy
SOMObject

WPObject
WPFlleSystem

Description
This is the file system object storage class. WPFlleSystem is the storage class that represents all file
system objects including directory (folder), data file, executable file, and root directory (drive)
objects. This class also provides persistent storage of instance variables for all classes derived
from it. A Workplace object of this class cannot be created.

Instance methods
The following list shows all the WPFlleSystem class methods.

• "wpAddFileMenuPage - WPFileSystem instance method" on page 9-65
• "wpAddFile1 Page WPFileSystem instance method" on page 9-67
• "wpAddFile2Page - WPFileSystem instance method" on page 9-68
• "wpAddFile3Page - WPFileSystem instance method" on page 9-69
• "wpQueryHandle - WPObject instance method" on page 9-168
• "wpQueryRealName - WPFileSystem instance method" on page 9-178
• "wpQueryType - WPFileSystem instance method" on page 9-183
• "wpSetRealName - WPFileSystem instance method" on page 9-224
• "wpSetType - WPFileSystem instance method" on page 9-228

WPObJect instance methods
The following list shows all the methods overridden by the WPFlleSystem class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpCopyObject - WPObject instance method" on page 9-105
• "wpCreateFromTemplate - WPObject instance method" on page 9-106
• "wpDoesObjectMatch - WPObject instance method" on page 9-114
• "wpDraggedOverObject - WPObject instance method" on page 9-116
• "wpDroppedOnObject - WPObject instance method" on page 9-120
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpFormatDragltem - WPObject instance method" on page 9-126
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpOpen - WPObject instance method" on page 9-142
• "wpQueryDetailsData - WPObject instance method" on page 9-161
• "wpQuerylconData - WPObject instance method" on page 9-170
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSavelmmediate - WPObject instance method" on page 9-198
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetlconData - WPObject instance method" on page 9-218
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

9-14 PM Programming Reference

Class methods
The following list shows the wpFlleSystem class methods.

• "wpclsQuerylnstanceFilter - WPFileSystem class method" on page 9-262
• "wpclsQuerylnstanceType - WPFileSystem class method" on page 9-263

WPObJect class methods
The following list shows all the class methods overridden by the WPFlleSystem class. These
methods are overridden to modify the behavior defined by an ancestor class.

• "wpclslnitData - WPObject class method" on page 9-246
• "wpclsQueryDetailslnfo - WPObject class method" on page 9-254
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-15

WPFolder

Class definition file:wpfolder .sc

Class hierarchy
SOM Object

WPObject
WPFileSystem

WPFolder

Description
This is the folder object class. An instance of this class can be created as a Workplace object. An
instance of this class is created initially by the system in its template form. It has the title "Folder"
and resides in the "Templates" folder.

Instance methods
The following list shows how all the WPFolder methods are related within functional areas.

Settings notebook methods
• "wpAddFolderBackgroundPage - WPFolder instance method" on page 9-70
• "wpAddFolderlncludePage - WPFolder instance method" on page 9-71
• "wpAddFolderSortPage - WPFolder instance method" on page 9-72
• "wpAddFolderView1 Page - WPFolder instance method" on page 9-73
• "wpAddFolderView2Page - WPFolder instance method" on page 9-74
• "wpAddFolderView3Page - WPFolder instance method" on page 9-75

Object position methods
• "wpQueryNextlconPos - WPFolder instance method" on page 9-172
• "wpSetNextlconPos - WPFolder instance method" on page 9-219

Folder attributes methods
• "wpQueryFldrAttr - WPFolder instance method" on page 9-164
• "wpQueryFldrDetailsClass - WPFolder instance method" on page 9-165
• "wpQueryFldrFlags - WPFolder instance method" on page 9-166
• "wpQueryFldrFont - WPFolder instance method" on page 9-167
• "wpSetFldrAttr - WPFolder instance method" on page 9-213
• "wpSetFldrDetailsClass - WPFolder instance method" on page 9-214
• "wpSetFldrFlags - WPFolder instance method" on page 9-215
• "wpSetFldrFont - WPFolder instance method" on page 9-216

Folder state methods
• "wpHideFldrRunObjs - WPFolder instance method" on page 9-130

Folder content methods
• "wpDeleteContents - WPFolder instance method" on page 9-110
• "wpPopulate - WPFolder instance method" on page 9-144
• "wpQueryContent - WPFolder instance method" on page 9-158
• "wpRefresh - WPFileSystem instance method" on page 9-185

9-16 PM Programming Reference

WPObject instance methods
The following list shows all the methods overridden by the WPFolder class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddFile2Page - WPFileSystem instance method" on page 9-68
• "wpAddFile3Page - WPFileSystem instance method" on page 9-69
• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpConfirmDelete - WPObject instance method" on page 9-103
• "wpDelete - WPObject instance method" on page 9-108
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpFormatDragltem - WPObject instance method" on page 9-126
• "wpFree - WPObject instance method" on page 9-127
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpOpen - WPObject instance method" on page 9-142
• "wpRender - WPObject instance method" on page 9-189
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetup - WPObject instance method" on page 9-229
• "wpUnlnitData - WPObject instance method" on page 9-238

The following table shows the keyname-value pairs supported by the WPObject class.

KEYNAME VALUE Description

OPEN ICON Open icon view when object is
created or when WinSetObjectData
is called.

TREE Open tree view when object is
created or when WinSetObjectData
is called.

DETAILS Open details view when object is
created or when WinSetObjectData
is called.

ICONVIEW s1 [,s2, ... sn] Set icon view to the specified styles.

TREEVIEW s1 [,s2, ... sn] Set tree view to the specified styles.

DETAILSVIEW s1[,s2, ... sn] Set details view to the specified
styles.

view styles FLOWED flowed list items.

NONFLOWED non-flowed list items.

NONGRID non-gridded icon view.

NORMAL normal size icons.

MINI small icons.

INVISIBLE no icons.

LINES lines in tree view.

NOLIN ES no lines in tree view.

BACKGROUND filename This sets the folder background.
filename is the name of a file in the
\OS2\BITMAP directory of the boot
drive.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-17

Class methods
The following list shows all the WPFolder class methods.

• "wpclsQueryOpenFolders - WPFolder class method" on page 9-265

WPObject class methods
The following list shows all the class methods overridden by the WPFolder class. These methods are
overridden to modify the behavior defined by an ancestor class.

• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpctsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-18 PM Programming Reference

WPFontPalette

Class definition file:wpfntpal.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WP Palette
WPFontPalette

Description
This is the font palette object class. An instance of this class can be created as a Workplace object.
An instance of this class is created initially by the system. It has the title, "Font Palette" and resides
in the "System Setup" folder.

Instance methods
There are currently no methods defined for the WPFontPalette Workplace object class.

WPObject instance methods
The following list shows all the methods overridden by the WPFontPalette class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpSetup - WPObject instance method" on page 9-229

The following are the keyname - value pairs added by the WPFontPalette class.

KEYNAME VALUE Description

FONTS fonttype These are the initial fonts for each cell in the font
palette. The values for each cell are separated
by commas. This is equivalent to calling the
wpSetupCell method. The fonttype value is
presented as the point size followed by a period
which is then followed by the face name.

Example

pszSetupString= 11 FONTS=10.Helvetica,8.Helvetica,le.courier,
12.Courier,24.Courier,10.System"

WPPalette instance methods
• "wpDragCell - WPPalette instance method" on page 9-115
• "wpEditCell - WPPalette instance method" on page 9-121
• "wpPaintCell - WPPalette instance method" on page 9-143
• "wpQueryPaletteHelp - WPPalette instance method" on page 9-173
• "wpSetupCell - WPPalette instance method" on page 9-233

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-19

Class methods
The following list shows all the class methods overridden by the WPFontPalette class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

WPPalette class methods
• "wpclsQueryEditString - WPPalette class method" on page 9-257

9-20 PM Programming Reference

WP Job

Class definition file:wpjob.sc

Class hierarchy

SOM Object
WPObject

WPTransient
WP Job

Description
This is the job object class. An instance of this class is created by the print object in its icon or detail
view.

Instance methods
The following table shows all the WPJob methods.

• "wpDeleteJob - WPJob instance method" on page 9-112
• "wpHoldJob - WPJob instance method" on page 9-131
• "wpPrintJobNext - WPJob instance method" on page 9-145
• "wpReleaseJob - WPJob instance method" on page 9-187
• "wpStartJobAgain - WPJob instance method" on page 9-235

WPObject instance methods
The following list shows all the methods overridden by the WPJob class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpCopyObject - WPObject instance method" on page 9-105
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpFree - WPObject instance method" on page 9-127
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPJob class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQueryDetails - WPObject class method" on page 9-253
• "wpclsQueryDetailslnfo - WPObject class method" on page 9-254
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-21

WPKeyboard

Class definition file:wpkeybd.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WP Keyboard

Description
This is the keyboard object class. An instance of this class can be created as a Workplace object.
An instance of this class is created initially by the system. It has the title, "Keyboard" and resides in
the "System Setup" folder.

Instance methods
The following list shows all the WPKeyboard methods.

• "wpAddKeyboardMappingsPage - WPKeyboard instance method" on page 9-76
• "wpAddKeyboardSpecialNeedsPage - WPKeyboard instance method" on page 9-77
• "wpAddKeyboardTimingPage - WPKeyboard instance method" on page 9-78

WPObject instance methods
The following list shows all the methods overridden by the WPKeyboard class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123

Class methods
The following list shows all the class methods overridden by the WPKeyboard class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-22 PM Programming Reference

WP Mouse

Class definition file:wpmouse.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPMouse

Description
This is the mouse object class. An instance of this class can be created as a Workplace object. An
instance of this class is created initially by the system. lt has the title, "Mouse" and resides in the
"System Setup" folder.

Instance methods
The following table shows all the WPMouse methods.

• "wpAddMouseMappingsPage - WPMouse instance method" on page 9-79
• "wpAddMouseTimingPage - WPMouse instance method" on page 9-80
• "wpAddMouseTypePage - WPMouse instance method" on page 9-81

WPObject instance methods
The following list shows all the methods overridden by the WPMouse class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123

Class methods
The following list shows all the class methods overridden by the WPMouse class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-23

WPObject

Class definition file:wpobject.sc

Class hierarchy
SOMObject

WPOb)ect

Description
This is the root Workplace object class. This is the fundamental class from which all workplace
objects are derived, irrespective of where they are actually stored. Immediate descendant classes of
WPObject are called storage classes, since they take responsibility for storing the object information,
typically in a persistent form. Predefined workplace object storage classes are:

• "WPAbstract" on page 9-4
• "WPFileSystem" on page 9-14
• "WPTransient" on page 9-50

A Workplace object of this class cannot be created.

Instance methods
The following lists show how all the WPObJect instance methods are related within functional areas.

Settings notebook methods
• "wpAddObjectGeneralPage - WPObject instance method" on page 9-82
• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wplnsertSettingsPage - WPObject instance method" on page 9-136

Save/restore state methods
• "wpRestoreData - WPObject instance method" on page 9-192
• "wpRestorelong - WPObject instance method" on page 9-193
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpRestoreString - WPObject instance method" on page 9-195
• "wpSaveData - WPObject instance method" on page 9-196
• "wpSavelmmediate - WPObject instance method" on page 9-198
• "wpSavelong - WPObject instance method" on page 9-199
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSaveString - WPObject instance method" on page 9-201

Object usage methods
• "wpAddToObjUselist - WPObject instance method" on page 9-95
• "wpDeleteFromObjUselist - WPObject instance method" on page 9-111
• "wpFindUseltem - WPObject instance method" on page 9-125
• "wpUnlockObject - WPObject instance method" on page 9-237

9-24 PM Programming Reference

Popup menu methods
• "wpClose - WPObject instance method" on page 9-98
• "wpCopyObject - WPObject instance method" on page 9-105
• "wpCreateFromTemplate - WPObject instance method" on page 9-106
• "wpCreateShadowObject - WPObject instance method" on page 9-107
• "wpDelete - WPObject instance method" on page 9-108
• "wpDisplayHelp - WPObject instance method" on page 9-113
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpHide - WPObject instance method" on page 9-129
• "wplnsertPopupMenultems - WPObject instance method" on page 9-134
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpOpen - WPObject instance method" on page 9-142
• "wpPrintObject - WPObject instance method" on page 9-147
• "wpRestore - WPObject instance method" on page 9-191

Query and Set object information methods
• "wpQueryConfirmations - WPObject instance method" on page 9-157
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpQueryDefaultView - WPObject instance method" on page 9-160
• "wpQueryDetailsData - WPObject instance method" on page 9-161
• "wpQuerylcon - WPObject instance method" on page 9-169
• "wpQuerylconData - WPObject instance method" on page 9-170
• "wpQueryStyle - WPObject instance method" on page 9-181
• "wpQueryTitle - WPObject instance method" on page 9-182
• "wpSetDefaultHelp - WPObject instance method" on page 9-209
• "wpSetDefaultView - WPObject instance method" on page 9-211
• "wpSetlcon - WPObject instance method" on page 9-217
• "wpSetlconData - WPObject instance method" on page 9-218
• "wpSetStyle - WPObject instance method" on page 9-226
• "wpSetTitle - WPObject instance method" on page 9-227

Error handling methods
• "wpQueryError - WPObject instance method" on page 9-163
• "wpSetError - WPObject instance method" on page 9-212

Memory management methods
• "wpAllocMem - WPObject instance method" on page 9-97
• "wpFreeMem - WPObject instance method" on page 9-128

Setup/cleanup methods
• "wpFree - WPObject instance method" on page 9-127
• "wplnitData - WPObject instance method" on page 9-133
• "wpScanSetupString - WPObject instance method" on page 9-202
• "wpSetup - WPObject instance method" on page 9-229
• "wpUnlnitData - WPObject instance method" on page 9-238

Direct manipulation methods
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDraggedOverObject - WPObject instance method" on page 9-116
• "wpDrop - WPObject instance method" on page 9-119
• "wpDroppedOnObject - WPObject instance method" on page 9-120
• "wpEndConversation - WPObject instance method" on page 9-122
• "wpFormatDragltem - WPObject instance method" on page 9-126
• "wpRender - WPObject instance method" on page 9-189
• "wpRenderComplete - WPObject instance method" on page 9-190

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-25

Miscellaneous methods
• "wpCnrlnsertObject - WPObject instance method" on page 9-99
• "wpCnrRemoveObject - WPObject instance method" on page 9-101
• "wpCnrSetEmphasis - WPObject instance method" on page 9-102
• "wpConfirmDelete - WPObject instance method" on page 9-103
• "wpCopiedFromTemplate - WPObject instance method" on page 9-104
• "wpDoesObjectMatch - WPObject instance method" on page 9-114
• "wpRegisterView - WPObject instance method" on page 9-186
• "wpSwitchTo - WPObject instance method" on page 9-236

SOMObject methods
The following lists show all the instance methods overridden by the WPOb)ect class. These instance
methods are overridden in order to modify the behavior defined by an ancestor class.

• somFree
• somlnit
• somUninit

Class Methods
The following list shows all the WPObject class methods.

• "wpclsCreateDefaultTemplates - WPObject class method" on page 9-240
• "wpclsFindObjectEnd - WPObject class method" on page 9-241
• "wpclsFindObjectFirst - WPObject class method" on page 9-242
• "wpclsFindObjectNext - WPObject class method" on page 9-244
• "wpclslnitData - WPObject class method" on page 9-246
• "wpclsMakeAwake - WPObject class method" on page 9-247
• "wpclsNew - WPObject class method" on page 9-249
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQueryDetails - WPObject class method" on page 9-253
• "wpclsQueryDetailslnfo - WPObject class method" on page 9-254
• "wpclsQueryError - WPObject class method" on page 9-258
• "wpclsQueryFolder - WPObject class method" on page 9-259
• "wpclsQuerylcon - WPObject class method" on page 9-260
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryObject - WPObject class method" on page 9-264
• "wpclsSetError - WPObject class method" on page 9-269
• "wpclsQuerySettingsPageSize - WPObject class method" on page 9-266
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle WPObject class method" on page 9-268
• "wpclsUnlnitData - WPObject class method" on page 9-270

SOMObject methods
The following lists show all the class methods overridden by the WPOb)ect class. These methods are
overridden in order to modify the behavior defined by ancestor class.

• somUnlnit

SOMClass methods
• somlnitClass
• somNew
• somRenew

9-26 PM Programming Reference

WP Palette

Class definition file:wppalet.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPPalette

Description
This is the palette object class. There are no instances of this class initially created by the system.

Instance methods
The following list shows all the WPPalette instance methods.

• "wpDragCell - WPPalette instance method" on page 9-115
• "wpEditCell - WPPalette instance method" on page 9-121
• "wpPaintCell - WPPalette instance method" on page 9-143
• "wpQueryPaletteHelp - WPPalette instance method" on page 9-173
• "wpQueryPalettelnfo - WPPalette instance method" on page 9-174
• "wpRedrawCell - WPPalette instance method" on page 9-184
• "wpSetupCell - WPPalette instance method" on page 9-233
• "wpSetPalettelnfo - WPPalette instance method" on page 9-220

WPObject instance methods
The following list shows all the methods overridden by the WPPalette class. These methods are
overridden to modify the behavior defined by an ancestor class.

• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetup - WPObject instance method" on page 9-229
• "wpUnlnitData - WPObject instance method" on page 9-238

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-27

wpSetup override by WPPalette

The following are the keyname - value pairs added by the WPFontPalette class.

KEYNAME VALUE Description

XCELLCOUNT columns Number of columns of cells.

YCELLCOUNT rows Number of rows of cells.

XCELLWIDTH width Width in dialog units of each cell.

XCELLHEIGHT height Height in dialog units of each cell.

XCELLGAP gap X separation in dialog units between
each cell.

YCELLGAP gap Y separation in dialog units between
each cell.

9-28 PM Programming Reference

Example

pszSetupString="XCELLCOUNT=3,YCELLCOUNT=4"

Class methods
The following list shows all the class methods overridden by the WPPalette class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

WPPalette class methods
• "wpclsQueryEditString - WPPalette class method" on page 9-257

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-29

WPPort

Class definition file:wpport.sc

Class hierarchy
SOM Object

WPObject
WPTransient

WPPort

Description
This is the port object class. An instance of this class is created by the print object in its settings
view.

Instance methods
The following list shows all the methods overridden by the WPPort class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

WPObject instance methods
• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPPort class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-30 PM Programming Reference

WPPrinter

Class definition file:wpprint.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPPrlnter

Description
This is the print object class. An instance of this class can be created as a Workplace object. An
instance of this class is created initially by the system in its template form. It has the title, "Create
print destination" and resides in the "Templates" folder. Instances of this class are also created
initially by the system for each print configured. Each instance will have a title corresponding to the
description of the configured queue and printer and will reside on the desktop.

Instance methods
The following list shows all the WPPrlnter methods.

• "wpDeleteAllJobs - WPPrinter instance method" on page 9-109
• "wpHoldPrinter - WPPrinter instance method" on page 9-132
• "wpQueryComputerName - WPPrinter instance method" on page 9-156
• "wpQueryPrinterName - WPPrinter instance method" on page 9-175
• "wpReleasePrinter - WPPrinter instance method" on page 9-188
• "wpSetComputerName - WPPrinter instance method" on page 9-208
• "wpSetDefaultPrinter - WPPrinter instance method" on page 9-210
• "wpSetPrinterName - WPPrinter instance method" on page 9-221

WPObject instance methods
The following list shows all the methods overridden by the WPPrinter class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpCopiedFromTemplate - WPObject instance method" on page 9-104
• "wpCopyObject - WPObject instance method" on page 9-105
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpFree - WPObject instance method" on page 9-127
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpQueryDefaultView - WPObject instance method" on page 9-160
• "wpQuerylcon - WPObject instance method" on page 9-169
• "wpQueryStyle - WPObject instance method" on page 9-181
• "wpQueryTitle - WPObject instance method" on page 9-182
• "wpHestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-31

Class methods
The following list shows all the class methods overridden by the WPPrlnter class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-32 PM Programming Reference

WPPrinterDriver

Class definition file:wppdr .sc

Class hierarchy
SOM Object

WPObject
WPTransient

WPPrlnterDrlver

Description
This is the printer driver object class. An instance of this class is created by the print object in its
settings view.

Instance methods
The following list shows all the methods overridden by the WPPrlnterDriver class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

WPObJect instance methods
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitoata - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPPrlnterDrlve class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-33

WPProgram

Class definition file:wppgm.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPProgram

Description
This is the program object class. This class provides an object that points at executable programs,
and allows the user to run that program by simply double-clicking on the program object. The
program can also contain a variety of useful additional parameters, such as the environment for the
program and the parameters that are passed to it. An instance of this class can be created as a
Workplace object and is created initially by the system in its template form. It has the title
"Program" and resides in the "Templates" folder.

Other instances of this class initially created by the system include:

• "DOS Full Screen" in the "Command Prompts" folder
• "DOS Window" in the "Command Prompts" folder
• "OS/2 Full Screen" in the "Command Prompts" folder
• "OS/2 Window" in the "Command Prompts" folder
• Every object in the "Games" folder
• Some objects in the "Information" folder
• Every object in the "Productivity" folder

Instance methods
The following list shows all the WPProgram methods.

• "wpAddProgramAssociationPage - WPProgram instance method" on page 9-84
• "wpAddProgramPage - WPProgram instance method" on page 9-85
• "wpAddProgramSessionPage - WPProgram instance method" on page 9-87
• "wpQueryAssociationFilter - WPProgram instance method" on page 9-152
• "wpQueryAssociationType - WPProgram instance method" on page 9-154
• "wpQueryProgDetails - WPProgram instance method" on page 9-176
• "wpSetAssociationFilter - WPProgram instance method" on page 9-204
• "wpSetAssociationType - WPProgram instance method" on page 9-206
• "wpSetProgDetails - WPProgram instance method" on page 9-222

WPObject instance methods
The foflowing list shows aH the methods overridden by the WPProgram ctass. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpCopiedFromTemplate - WPObject instance method" on page 9-104
• "wpCopyObject - WPObject instance method" on page 9-105
,. "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpOpen - WPObject instance method" on page 9-142
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpQuerylcon - WPObject instance method" on page 9-169
• "wpQuerylconData - WPObject instance method" on page 9-170
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSetTitle - WPObject instance method" on page 9-227

9-34 PM Programming Reference

• "wpSetup - WPObject instance method" on page 9-229
• "wpSaveState - WPObject instance method" on page 9-200
• "wpUnlnitData - WPObject instance method" on page 9-238

wpSetup override by WPProgram

The following table shows the keyname - value pairs added by the WPProgram class.

KEYNAME VALUE Description

ASSOCFIL TER filters Sets the filename filter for files .
associated to this program. Multiple
filters are separated by commas.

ASSOCTYPE type Sets the type of files associated to
this program. Multiple filters are
separated by commas.

EXENAME filename Sets the name of the program.

PARAMETERS pa rams Sets the parameters I ist, which may
include substitution characters.

PROGTYPE FULLSCREEN Sets the session type to OS/2 full
screen

PM Sets the session type to PM.

SEPARATEWIN Sets the session type to WIN-OS2
window running in a separate VDM.

VDM Sets the session type to DOS full
screen.

WIN Sets the session type to WIN-OS2 full
screen.

WINDOWABLEVIO Sets the session type to OS/2
windowed.

WINDOWEDVDM Sets the session type to DOS
windowed.

WINDOWEDWIN Sets the session type to WIN-OS2
window.

NOAUTOCLOSE YES Leaves the window open upon
program termination.

NO Closes the window when the
program terminates.

STARTUPDIR pathname Sets the working directory.

VIEWBUTTON not supported This keyname is not supported by
this class.

WINDOWPOS not supported This keyname is not supported by
this class.

pszSetupString="PROGTYPE=VDM;EXENAME=C=\EDIT.EXE;
ASSOCFILTER=*.DOC,*.TXT;ASSOCTYPE=Plain Text"

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-35

Class methods
The following list shows all the class methods overridden by the WPProgram class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryTitle - WPObject class method" on page 9-268
• "wpclsQueryStyle - WPObject class method" on page 9-267

9-36 PM Programming Reference

WPProgramFile

Class definition file:wppgmt.sc

Class hierarchy
SOMObject

WPObject
WPFileSystem

WPProgramfile

Description
This is the program file object class. All executable files are of this class. From the settings
notebook pages for objects of this class, it is possible to set up associations to various data file types
(files with .TYPE EAs or file extensions). It is also possible to set up a default working directory and
specify parameters to the executable to be used when it is opened from the shell. An instance of this
class can be created as a Workplace object. Instances of this class are created initially by the
system for each program file in the system. Each instance has a title corresponding to the file name
of the program file it represents and resides in a folder corresponding to the physical directory in
which the program file resides.

Instance methods
The following list shows all the WPProgramfile methods.

• "wpAddProgramAssociationPage - WPProgramFile instance method" on page 9-83
• "wpAddProgramPage - WPProgramFile instance method" on page 9-86
• "wpAddProgramSessionPage - WPProgramFile instance method" on page 9-88
• "wpQueryAssociationFilter - WPProgramFile instance method" on page 9-153
• "wpQueryAssociationType - WPProgramFile instance method" on page 9-155
• "wpQueryProgDetails - WPProgramFile instance method" on page 9-177
• "wpSetAssociationFilter - WPProgramFile instance method" on page 9-205
• "wpSetAssociationType - WPProgramFile instance method" on page 9-207
• "wpSetProgDetails - WPProgramFile instance method" on page 9-223

WPObject instance methods
The following list shows all the methods overridden by the WPProgramfile class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpCopyObject - WPObject instance method" on page 9-105
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpMoveObject - WPObject instance method" on page 9-141
• "wpOpen - WPObject instance method" on page 9-142
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-37

wpSetup override by WPProgramFlle

The following table shows the keyname-value pairs added by the WPProgramFlle class.

KEYNAME VALUE Description

ASSOCFIL TEA filters Sets the filename filter for files
associated to this program. Multiple
filters are separated by commas.

ASSOCTYPE type Sets the type of files associated to
this program. Multiple filters are
separated by commas.

EXE NAME filename Sets the name of the program.

PARAMETERS pa rams Sets the parameters list, which may
include substitution characters.

PROGTYPE FULLSCREEN Sets the session type to OS/2 full
screen

PM Sets the session type to PM.

SEPARATEWIN Sets the session type to WIN-052
window running in a separate VDM.

VDM Sets the session type to DOS full
screen.

WIN Sets the session type to WIN-052 full
screen.

WINDOWABLEVIO Sets the session type to OS/2
windowed.

WINDOWEDVDM Sets the session type to DOS
windowed.

WINDOWEDWIN Sets the session type to WIN-OS2
window.

NOAUTOCLOSE YES Leaves the window open upon
program termination.

NO Closes the window when the
program terminates.

STARTUPDIR pathname Sets the working directory.

VIEW BUTTON not supported This keyname is not supported by
this class.

WINDOWPOS not supported This keyname is not supported by
this class.

pszSetupString= 11 PROGTYPE=VDM;EXENAME=C=\EDIT.EXE;
ASSOCFILTER=*.DOC,*.TXT;ASSOCTYPE=Plain Text"

9-38 PM Programming Reference

Class methods
The following list shows all the class methods overridden by the WPProgramflle class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9 ... 257
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-39

WPSchemePalette

Class definition file:wpscheme.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WP Palette
WPSchemePalette

Description
This is the scheme palette object class. An instance of this class can be created as a Workplace
object. An instance of this class is created initially by the system. It has the title, "Window
Schemes" and resides in the "System Setup" folder. There are currently no methods defined for the
WPSchemePalette workplace object class.

Instance methods
The following list shows all the methods overridden by the WPSchemePalette class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

WPObJect instance methods
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpSetup - WPObject instance method" on page 9-229

WPPalette methods
• "wpDragCell - WPPalette instance method" on page 9-115
• "wpEditCell - WPPalette instance method" on page 9-121
• "wpPaintCell - WPPalette instance method" on page 9-143
• "wpQueryPaletteHelp - WPPalette instance method" on page 9-173
• "wpSetupCell - WPPalette instance method" on page 9-233

Class methods
The following list shows all the class methods overridden by the WPSchemePalette class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryTitle - WPObject class method" on page 9-268

WPPalette class methods
• "wpclsQueryEditString - WPPalette class method" on page 9-257
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267

9-40 PM Programming Reference

WPShadow

Class definition file:wpshadow .sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPShadow

Description
This is the shadow object class. This class provides a persistent link or reference to any other object
class. This is achieved by storing away the location and identity of the object that it is linked to and
then rerouting all requests for help, context menus, and open views on to the object that it is linked
to. Delete, Copy, and Move are the only action requests that are handled by the WPShadow object
and are not rerouted to the linked object. An instance of this class can be created as a Workplace
object. There are no instances of this class initially created by the system.

Instance methods
The following list shows all the WPShadow methods.

• "wpQueryShadowedObject - WPShadow instance method" on page 9-180
• "wpSetShadowTitle - WPShadow instance method" on page 9-225

WPObject instance methods
The following list shows all the methods overridden by the WPShadow class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpConfirmDelete - WPObject instance method" on page 9-103
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDraggedOverObject - WPObject instance method" on page 9-116
• "wpDrop - WPObject instance method" on page 9-119
• "wpDroppedOnObject - WPObject instance method" on page 9-120
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpFormatDragltem - WPObject instance method" on page 9-126
• "wplnitData - WPObject instance method" on page 9-133
• "wplnsertPopupMenultems - WPObject instance method" on page 9-134
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpPrintObject - WPObject instance method" on page 9-147
• "wpQueryDefaultHelp - WPObject instance method" on page 9-159
• "wpQueryStyle - WPObject instance method" on page 9-181
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

These are the keyname-value pairs supported by the WPObJect class.

KEYNAME VALUE Description

SHADOWID <name> or This specifies the object for which
filename this object is a shadow of. The value

for this keyname is an object's id
(OBJECTID) or a fully qualified
pathname of a directory, program
file, or data file.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-41

Class methods
The following list shows all the class methods overridden by the WPShadow class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-42 PM Programming Reference

WPShredder

Class definition file:wpshred.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPShredder

Description
This is the shredder device object class. An instance of this class can be created as a Workplace
object. An instance of this class is created initially by the system. It has the title "shredder" and
resides on the desktop. There are currently no methods defined for the WPShredder Workplace
object class.

Instance methods
The following list shows all the methods overridden by the WPShredder class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

WPObject instance methods
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142

Class methods
The following list shows all the class methods overridden by the WPShredder class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-43

WPSound

Class definition file:wpsound.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPSound

Description
This is the sound object class. An instance of this class can be created as a Workplace object. An
instance of this class is created initially by the system. It has the title "Sound" and resides in the
"System Setup" folder.

Instance methods
The following list shows all the WPSound methods.

• "wpAddSoundWarningBeepPage - WPSound instance method" on page 9-90

WPObJect instance methods
The following list shows all the methods overridden by the WPSound class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123

Class methods
The following list shows all the class methods overridden by the WPSound class. These methods are
overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-44 PM Programming Reference

WPSpecialNeeds

Class definition file:wpspneed.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPSpeclalNeeds

Description
This is the special needs object class. An instance of this class can be created as a Workplace
object. An instance of this class is created initially by the system when the keyboard special needs
mode is activated via the keyboard object settings. It has the title, "Special Needs" and resides on
the desktop.

Instance methods
There are currently no methods defined for the WPSpecialNeeds Workplace object class.

WPObject instance methods
The following list shows all the methods overridden by the WPSpeclalNeeds class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

• "wpFilterPopupMenu - WPObject instance method" on page 9-123

Class methods
The following list shows all the class methods overridden by the WPSpeclalNeeds class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-45

WPSpooler

Class definition file:wpspool.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPSpooler

Description
This is the spooler object class. An instance of this class is created initially by the system. It has the
title, "Spooler" and resides in the "System Configuration" folder.

Instance methods
The following list shows all the methods overridden by the WPSpooler class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

WPObject instance methods
• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPSpooler class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-46 PM Programming Reference

WPStartup

Class definition file:wpstart.sc

Class hierarchy
SOM Object

WPObject
WPFileSystem

WPFolder
WPStartup

Description
This is the startup folder object class. Any object in the startup folder will be automatically opened
every time the system is restarted. Any object in the system that is open at shutdown time will be
automatically reopened when the system is restarted. The startup folder is used to automatically
open {start) objects that are not necessarily open {running) when the system is shutdown. This
usually includes things such as a batch file that initializes the network and then terminates. An
instance of this class can be created as a Workplace object and is created initially by the system. It
has the title "Startup" and resides in the "OS/2 System" folder.

Instance methods
There are currently no methods defined for the WPStartup Workplace object class.

WPObJect instance methods
The following list shows all the methods overridden by the WPStartup class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpFree - WPObject instance method" on page 9-127
• "wpSetup - WPObject instance method" on page 9-229

Class methods
The following list shows all the class methods overridden by the WPStartup class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-47

WPSystem

Class definition file:wpsystem.sc

Class hierarchy
SOM Object

WPObject
WPAbstract

WPSystem

Description
This is the system object class. An instance of this class can be created as a Workplace object and
is created initially by the system. It has the title, "System" and resides in the "System Setup" folder.

Instance methods
The following list shows all the WPSystem class methods.

• "wpAddSystemConfirmationPage - WPSystem instance method" on page 9-91
• "wpAddSystemLogoPage - WPSystem instance method" on page 9-92
• "wpAddSystemPrintScreenPage - WPSystem instance method" on page 9-93
• "wpAddSystemWindowPage - WPSystem instance method" on page 9-94

WPOb)ect instance methods
The following list shows all the methods overridden by the WPSystem class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpAddSettingsPages - WPObject instance method" on page 9-89
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wpRestoreState - WPObject instance method" on page 9-194
• "wpSaveState - WPObject instance method" on page 9-200

Class methods
The following list shows all the class methods overridden by the WPSystem class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObJect class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-48 PM Programming Reference

WPTemplateFolder

Class definition file:wptplfdr .sc

Class hierarchy
SOM Object

WPObject
WPFileSystem

WPFolder
WPTemplateFolder

Description
This is the template folder object class. This class of folder is guaranteed to always contain a
template instance of every class of object that the user can create that supports the "Create another"
action.

A WPTemplateFolder object is a normal folder in all respects other than:

• It always contains a template for every class that supports them.
• The last template for each object class can not be deleted from the folder.

An instance of this class can be created as a Workplace object and is created initially by the system.
It has the title, "Templates" and resides on the desktop. A template instance is also created for each
data type defined in an application's ASSOCTABLE resource.

Instance methods
There are currently no methods defined for the WPTemplateFolder Workplace object class.

WPObject instance methods
The following list shows all the methods overridden by the WPTemplateFolder class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

• "wpPopulate - WPFolder instance method" on page 9-144

Class methods
The following shows the class methods overridden by the WPTemplateFolder class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-49

WPTransient

Class definition file:wptrans.sc

Class hierarchy
SOM Object

WPObject
WPTranslent

Description
This is the non-persistent object storage class. The WPTranslent class is a storage class with no
storage medium. That means that instances of object classes derived from WPTranslent do not
persist across reboots. This class is available for applications which need to utilize a large amount of
workplace functionality (such as context menus and settings notebooks) in their object class without
having to be a file, directory or a record in the INI file. An instance of this class can be created as a
Workplace object. There are no instances of this class initially created by the system.

Instance methods
There are currently no methods defined for the WPTranslent Workplace object class.

WPOb)ect instance methods
The following list shows all the methods overridden by the WPTranslent class. These methods are
overridden in order to modify the behavior defined by an ancestor class.

• "wpCopyObject - WPObject instance method" on page 9-105

Class methods
The following list shows all the class methods overridden by the WPTranslent class. These methods
are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

9-50 PM Programming Reference

WPQueueDriver

Class definition file:wpqdr .sc

Class hierarchy
SOM Object

WPObject
WPTransient

WPQueueDrlver

Description
This is the queue driver object class. An instance of this class is created by the print object in its
settings view.

Instance methods
The following list shows all the methods overridden by the WPQueueDrlver class. These methods
are overridden in order to modify the behavior defined by an ancestor class.

WPObject instance methods
• "wpDragOver - WPObject instance method" on page 9-118
• "wpDrop - WPObject instance method" on page 9-119
• "wpFilterPopupMenu - WPObject instance method" on page 9-123
• "wplnitData - WPObject instance method" on page 9-133
• "wpMenultemHelpSelected - WPObject instance method" on page 9-138
• "wpMenultemSelected - WPObject instance method" on page 9-139
• "wpModifyPopupMenu - WPObject instance method" on page 9-140
• "wpOpen - WPObject instance method" on page 9-142
• "wpSetTitle - WPObject instance method" on page 9-227
• "wpUnlnitData - WPObject instance method" on page 9-238

Class methods
The following list shows all the class methods overridden by the WPQueueDriver class. These
methods are overridden to modify the behavior defined by an ancestor class.

WPObject class methods
• "wpclsQueryDefaultHelp - WPObject class method" on page 9-251
• "wpclsQueryDefaultView - WPObject class method" on page 9-252
• "wpclsQuerylconData - WPObject class method" on page 9-261
• "wpclsQueryStyle - WPObject class method" on page 9-267
• "wpclsQueryTitle - WPObject class method" on page 9-268

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-51

Workplace Instance Methods
The following pages contain an alphabetical listing of the Workplace Instance methods.

9-52 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddClockAlarmPage
WPClock instance method

ULONG wpAddClockAlarmPage (WPClock * self, HWND hwndNotebook)

The wpAddClockAlarmPage instance method is called to allow the object to add the Alarm page to its

settings notebook.

Parameters
self (WPClock *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Alarm page from the
object's settings notebook.

To remove the page from the settings notebook, the override method should return
SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page with another
page, the override method should call the wplnsertSettingsPage method without calling the parent
method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-53

wpAddClockDateTimePage
WPClock instance method

#define INCL_WINWORKPLACE

ULONG wpAddClockDateTlmePage (WPClock * self, HWND hwndNotebook)

The wpAddClockDateTimePage instance method is called to allow the object to add the Date/Time
page to its settings notebook.

Parameters
self (WPClock *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

O Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Date/Time page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-54 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddClockView1 Page
WPClock instance method

ULONG wpAddClockVlew1 Page (WPClock * self, HWND hwndNotebook)

The wpAddClockView1Page instance method is called to allow the object to add the View 1 page to
its settings notebook.

Parameters
self (WPClock *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the View 1 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-55

wpAddClockView2Page -
WPClock instance method

#define INCL WINWORKPLACE

ULONG wpAddClockVlew2Page (WPClock * self, HWND hwndNotebook)

The wpAddClockView2Page instance method is called to allow the object to add the View 2 page to
its settings notebook.

Parameters
self (WPClock *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the View 2 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-56 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddCountryDatePage
WPCountry instance method

ULONG wpAddCountryDatePage (WPCountry * self, HWND hwndNotebook)

The wpAddCountryDatePage instance method is called to allow the object to add the Date page to its
settings notebook.

Parameters
sell (WPCountry *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Date page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-57

wpAddCountryNumbersPage
WPCountry instance method

#define INCL_WINWORKPLACE

ULONG wpAddCountryNumbersPage (WPCountry * sell, HWND hwndNotebook)

The wpAddCountryNumbersPage instance method is called to allow the object to add the Numbers
page to its settings notebook.

Parameters
sell (WPCountry *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Numbers page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-58 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddCountryPage
WPCountry instance method

ULONG wpAddCountryPage (WPCountry * self, HWND hwndNotebook)

The wpAddCountryPage instance method is called to allow the object to add the Country page to its
settings notebook.

Parameters
self (WPCountry *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Country page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-59

wpAddCountryTimePage -
WPCountry instance method

#define INCL_WINWORKPLACE

ULONG wpAddCountryTlmePage (WPCountry * self, HWND hwndNotebook)

The wpAddCountryTimePage instance method is called to allow the object to add the Time page to
its settings notebook.

Parameters
self (WPCountry *) - input

The pointer to this object.

hwndNotebook (HWND) - input

Settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Time page from the
object's settings notebook.

To remove the page from the settings notebook, the override method should return
SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page with another
page, the override method should call the wplnsertSettingsPage method without calling the parent
method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSetti ngsPages
• wplnsertSettingsPage

9-60 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddDesktopLockup1Page
WPDesktop instance method

ULONG wpAddDesktopLockup1 Page {WPDesktop * self, HWND hwndNotebook)

The wpAddDesktoplockup1 Page instance method is called to allow the object to add the Lockup 1
page to its settings notebook.

Parameters
self {WPDesktop *) - input

The pointer to this object.

hwndNotebook {HWND) - input

Settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Lockup 1 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-61

wpAddDesktopLockup2Page
WPDesktop instance method

#define INCL_WINWORKPLACE

ULONG wpAddDesktopLockup2Page (WPDesktop * self, HWND hwndNotebook)

The wpAddDesktoplockup2Page instance method is called to allow the object to add the Lockup 2
page to its settings notebook.

Parameters
self (WPDesktop *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

O Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Lockup 2 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-62 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddDesktopLockup3Page -
WPDesktop instance method

ULONG wpAddDesktopLockup3Page (WPDesktop * self, HWND hwndNotebook)

The wpAddDesktoplockup3Page instance method is called to allow the object to add the Lockup 3
page to its settings notebook.

Parameters
self (WPDesktop *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Lockup 3 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-63

wpAddDiskDetailsPage -
WPDisk instance method

#define INCL_ WINWOR,KPLACE

ULONG wpAddDlskDetallsPage (WPDlsk * sell, HWND hwndNotebook)

The wpAddDiskDetailsPage instance method is called to allow the object to add the Details page to
its settings notebook.

Parameters
sell (WPDisk *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Details page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSetti ngsPages
• wplnsertSettingsPage

9-64 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddFileMenuPage -
WPFileSystem instance method

ULONG wpAddflleMenuPage (WPFlleSystem * self, HWND hwndNotebook)

The wpAddFileMenuPage instance method is called to allow the object to add the Menu page to its
settings notebook.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

Settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
Method should always be overridden in order to replace or remove the Menu page from the object's
settings notebook.

To remove the page from the settings notebook, the override method should return
SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page with another
page, the override method should call the wplnsertSettingsPage method without calling the parent
method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-65

wpAddFileTypePage -
WPDataFile instance method

#define INCL_WINWORKPLACE

ULONG wpAddFlleTypePage (WPDataFlle * self, HWND hwndNotebook)

The wpAddFileTypePage instance method is called to allow the object to add the Type page to its
settings notebook.

Parameters
self (WPDataFile *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

O Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Type page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wpQueryType
• wpSetTitle

9-66 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddFile1 Page -
WPFileSystem instance method

ULONG wpAddflle1 Page (WPFlleSystem * self, HWND hwndNotebook)

The wpAddFile1 Page instance method is called to allow the object to add the File 1 page to its
settings notebook.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the File 1 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-67

wpAddFile2Page -
WPFileSystem instance method

#define INCL_WINWORKPLACE

ULONG wpAddFlle2Page (WPFlleSystem * sell, HWND hwndNotebook)

The wpAddFile2Page instance method is called to allow the object to add the File 2 page to its

settings notebook.

Parameters
sell (WPFileSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the File 2 page from the

object's settings notebook. To remove the page from the settings notebook, the override method

should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page

with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-68 PM Programming Reference

#define INCL_ WINWORKPLACE

wpAddFile3Page
WPFileSystem instance method

ULONG wpAddFile3Page (WPFlleSystem * self, HWND hwndNotebook)

The wpAddFile3Page instance method is called to allow the object to add the File 3 page to its

settings notebook.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the File 3 page from the

object's settings notebook. To remove the page from the settings notebook, the override method

should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page

with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-69

wpAddFolderBackgroundPage
WPFolder instance method

#define INCL WINWORKPLACE

ULONG wpAddFolderBackgroundPage (WPFolder * self, HWND hwndNotebook)

The wpAddFolderBackgroundPage instance method is called to allow the object to add the
Background page to its settings notebook.

Parameters
self (WPFolder *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Background page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-70 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddFolderlncludePage
WPFolder instance method

ULONG wpAddFolderlncludePage (WPFolder * self, HWND hwndNotebook)

The wpAddFolderlncludePage instance method is called to allow the object to add the Include page
to its settings notebook.

Parameters
self (WPFolder *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Include page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• · wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-71

wpAddFolderSortPage -
WPFolder instance method

#define INCL WINWORKPLACE

ULONG wpAddFolderSortPage {WPFolder * self, HWND hwndNotebook)

The wpAddFolderSortPage instance method is called to allow the object to add the Sort page to its
settings notebook.

Parameters
self {WPFolder *) - input

The pointer to this object.

hwndNotebook {HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Sort page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-72 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddFolderView1 Page -

WPFolder instance method

ULONG wpAddFolderVlew1 Page (WPFolder * self, HWND hwndNotebook)

The wpAddFolderView1 Page instance method is called to allow the object to add the View 1 page to

its settings notebook.

Parameters
self (WPFolder *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the View 1 page from the

object's settings notebook. To remove the page from the settings notebook, the override method

should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page

with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-73

wpAddFolderView2Page -
WPFolder instance method

#define INCL WINWORKPLACE

ULONG wpAddFolderVlew2Page (WPFolder * self, HWND hwndNotebook)

The wpAddFolderView2Page instance method is called to allow the object to add the View 2 page to
its settings notebook.

Parameters
self (WPFolder *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the View 2 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-74 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddFolderView3Page
WPFolder instance method

ULONG wpAddFolderView3Page (WPFolder * self, HWND hwndNotebook)

The wpAddFolderView3Page instance method is called to allow the object to add the View 3 page to
its settings notebook.

Parameters
self (WPFolder *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the View 3 page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-75

wpAddKeyboardMappingsPage
WPKeyboard instance method

#define INCL WINWORKPLACE

ULONG wpAddKeyboardMapplngsPage {WPKeyboard * self, HWND hwndNotebook)

The wpAddKeyboardMappingsPage instance method is called to allow the object to add the
Mappings page to its settings notebook.

Parameters
self {WPKeyboard *) - input

The pointer to this object.

hwndNotebook {HWND) - input

The settings notebook handle.

Returns
Page identifier:

O Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Mappings page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-76 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddKeyboardSpecialNeedsPage -
WPKeyboard instance method

ULONG wpAddKeyboardSpeclalNeedsPage (WPKeyboard * self, HWND hwndNotebook)

The wpAddKeyboardSpecialNeedsPage instance method is called to allow the object to add the
Special Needs page to its settings notebook.

Parameters
self (WPKeyboard *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Special Needs page
from the object's settings notebook. To remove the page from the settings notebook, the override
method should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the
page with another page, the override method should call the wplnsertSettingsPage method without
calling the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-77

wpAddKeyboardTimingPage -
WPKeyboard instance method

#define INCL WINWORKPLACE

ULONG wpAddKeyboardTlmlngPage (WPKeyboard * self, HWND hwndNotebook)

The wpAddKeyboardTimingPage instance method is called to allow the object to add the Timing
page to its settings notebook.

Parameters
self (WPKeyboard *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Timing page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSetti ngsPages
• wplnsertSettingsPage

9-78 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddMouseMappingsPage
WPMouse instance method

ULONG wpAddMouseMapplngsPage (WPMouse * self, HWND hwndNotebook)

The wpAddMouseMappingsPage instance method is called to allow the object to add the Mappings
page to its settings notebook.

Parameters
self (WPMouse *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
The method should always be overridden in order to replace or remove the Mappings page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-79

wpAddMouseTimingPage -
WPMouse instance method

#define INCL_ WINWORKPLACE

ULONG wpAddMouseTlmlngPage (WPMouse * self, HWND hwndNotebook)

The wpAddMouseTimingPage instance method is called to allow the object to add the Timing page
to its settings notebook.

Parameters
self (WPMouse *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Timing page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-80 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddMouseTypePage -
WPMouse instance method

ULONG .wpAddMouseTypePage (WPMouse * self, HWND hwndNolebook)

The wpAddMouseTypePage instance method is called to allow the object to add the Type page to its
settings notebook.

Parameters
self (WPMouse *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Type page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-81

wpAddObjectGeneralPage
WPObject instance method

#define INCL_WINWORKPLACE

ULONG wpAddObJectGeneralPage (WPObJect * self, HWND hwndNotebook)

The wpAddObjectGeneralPage instance method is called to allow the object to add the General page
to its settings notebook.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the General page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-82 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddProgramAssociationPage -
WPProgramFile instance method

ULONG wpAddProgramAssociatlonPage (WPProgramflle * self, HWND hwndNotebook)

The wpAddProgramAssociationPage instance method is called to allow the object to add the
Association page to its settings notebook.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Association page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-83

wpAddProgramAssociationPage
WPProgram instance method

#define INCL_WINWORKPLACE

ULONG wpAddProgramAssoclatlonPage (WPProgramFlle * self, HWND hwndNotebook)

The wpAddProgramAssociationPage instance method is called to allow the object to add the
Association page to its settings notebook.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

O Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Association page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-84 PM Programming Reference

#define INCL_ WINWORKPLACE

wpAddProgramPage
WPProgram instance method

ULONG wpAddProgramPage (WPProgram * self, HWND hwndNotebook)

The wpAddProgramPage instance method is called to allow the object to add the Program page to its

settings notebook.

Parameters
self (WPProgram *) - input

The pointer to this object.

hwndNotebook (HWND) - input

Settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Program page from the

object's settings notebook. To remove the page from the settings notebook, the override method

should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page

with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-85

wpAddProgramPage
WPProgramFile instance method

#define INCL_WINWORKPLACE

ULONG wpAddProgramPage (WPProgramflle * self, HWND hwndNotebook)

The wpAddProgramPage instance method is called to allow the object to add the Program page to its
settings notebook.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

hwndNotebook (HWND) - input

Settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Program page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-86 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddProgramSessionPage
WPProgram instance method

ULONG wpAddProgramSesslonPage (WPProgram * self, HWND hwndNotebook}

The wpAddProgramSessionPage instance method is called to allow the object to add the Session
page to its settings notebook.

Parameters
self (WPProgram *} - input

The pointer to this object.

hwndNotebook (HWND} - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Session page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-87

wpAddProgramSessionPage -
WPProgramFile instance method

#define INCL WINWORKPLACE

ULONG wpAddProgramSesslonPage (WPProgramFlle * self, HWND hwndNotebook)

The wpAddProgramSessionPage instance method is called to allow the object to add the Session
page to its settings notebook.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Session page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSetti ngsPages
• wplnsertSettingsPage

9-88 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddSettingsPages -
WPObject instance method

BOOL wpAddSettlngsPages (WPObJect * self, HWND hwndNotebook)

The wpAddSettingsPages instance method is called to allow the object to add all of its settings pages
to its settings notebook.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Usage
This method is generally only called by the system.

How to Override
This method should always be overridden in order to add pages to the settings notebook or to
remove them. To add a page to the settings notebook, a call to the wplnsertSettingsPage method is
required. To remove a page from the settings notebook, the method that adds the page to the
settings notebook should be overridden and return SETTINGS_PAGE_REMOVED without calling its
parent method.

In most cases, the parent method should be called first. Calling the parent method first will put
pages added by this method at the top of the settings notebook, above the pages added by ancestor
classes. Calling the parent last will put pages added by this class at the bottom of the settings
notebook, below the pages added by ancestor classes.

Related Methods
See Notebook Control Window Messages for related messages.

• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-89

wpAddSoundWarningBeepPage
WPSound instance method

#define INCL WINWORKPLACE

ULONG wpAddSoundWarnlngBeepPage (WPSound * self, HWND hwndNotebook)

The wpAddSoundWarningBeepPage instance method is called to allow the object to add the Warning
Beep page to its settings notebook.

Parameters
sell (WPSound *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Warning Beep page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSetti ngsPages
• wplnsertSettingsPage

9-90 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddSystemConfirmationPage -
WPSystem instance method

ULONG wpAddSystemConflrmatlonPage (WPSystem * self, HWND hwndNotebook)

The wpAddSystemConfirmationPage instance method is called to allow the object to add the
Confirmation page to its settings notebook.

Parameters
self (WPSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Confirmation page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-91

wpAddSystemLogoPage -
WPSystem instance method

#define INCL_ WINWORKPLACE

ULONG wpAddSystemlogoPage (WPSystem * self, HWND hwndNotebook)

The wpAddSystemlogoPage instance method is called to allow the object to add the Logo page to its
settings notebook.

Parameters
sell (WPSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Logo page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-92 PM Programming Reference

#define INCL_WINWORKPLACE

wpAddSystemPrintScreenPage
WPSystem instance method

ULONG wpAddSyslemPrlntScreenPage (WPSystem * self, HWND hwndNolebook)

The wpAddSystemPrintScreenPage instance method is called to allow the object to add the Print
Screen page to its settings notebook.

Parameters
self (WPSystem *) - input

The pointer to the object.

hwndNolebook (HWND) - input

The settings notebook handle.

Returns
Page identifier.

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Print Screen page from
the object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling
the parent method.

Related Methods
• wpAddSettingsPages
• wplnsertSettingsPage

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-93

wpAddSystemWindowPage
WPSystem instance method

#define INCL_WINWORKPLACE

ULONG wpAddSystemWlndowPage (WPSystem * self, HWND hwndNotebook)

The wpAddSystemWindowPage instance method is called to allow the object to add the Window
page to its settings notebook.

Parameters
self (WPSystem *) - input

The pointer to this object.

hwndNotebook (HWND) - input

The settings notebook handle.

Returns
Page identifier:

0 Error occurred.

Pageld Identifier for the inserted page.

Usage
This method must only be called from within an override of the wpAddSettingsPages method.

How to Override
This method should always be overridden in order to replace or remove the Window page from the
object's settings notebook. To remove the page from the settings notebook, the override method
should return SETTINGS_PAGE_REMOVED without calling the parent method. To replace the page
with another page, the override method should call the wplnsertSettingsPage method without calling

the parent method.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages
• wplnsertSettingsPage

9-94 PM Programming Reference

wpAddToObjUseList -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpAddToObjUseLlst (WPObject * self, PUSEITEM pUseltem)

The wpAddToObjUselist instance method is called to add a item type to an object's in-use list.

Parameters
self (WPObject *) - input

The pointer to this object.

pUseltem (PUSEITEM) - input

A pointer to a USEITEM structure.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
This method will add a specified item type to an object's in-use (USEITEM) list. Every workplace
object in the system has an in-use list. The in-use list is a linked list of USEITEM structures which
provide the object with important information such as the number of container (WC_CONTAINER)
windows it has been inserted into. It also provides the number of open views (contents, help, and
settings) of itself that already exist and how much memory it has allocated. The USEITEM structure
consists of an item type, a pointer to the next USEITEM structure, and is immediately followed by an
item type-specific structure.

Usage
The following types of items can be added to the use list:

USAGE_MEMORY

USAGE_OPENVIEW

USAGE_RECORD

This item specifies a block of memory allocated for this object through the
use of the wpAllocMem method. Items of this type add a MEMORYITEM
structure to the end of the USEITEM structure.

When a view of an object is opened, one of these items is added to the
in-use list. If multiple concurrent views are not enabled for this object, the
USAGE_OPENVIEW items are used by the system to automatically switch to
the open view when the user chooses to open the same view again. This
behavior is controlled by the application by calling the wpOpen or the
wpSwitchTo method. This item is also used by the system to update the title
bar text and switch-entry text when the user changes the object title. If this
type is specified, the in-use emphasis bit will be turned on for all inserted
records for this object. Items of this type concatenate a VIEWITEM structure
to the end of the USEITEM structure.

For every view (WC_CONTAINER) window that the object is inserted into,
there is one of these items on its in-use list. This enables an object to
refresh its appearance in all views at the same time. Items of this type add
a RECORDITEM structure to the end of the USEITEM structure.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-95

wpAddToObjUseList -
WPObject instance method

How to Override
This method is generally not overridden.

Related Methods
• wpDeleteFromObjUselist
• wpFindUseltem
• wpAllocMem
• wpClose

9-96 PM Programming Reference

#define INCL_WINWORKPLACE

wpAllocMem
WPObject instance method

PBYTE wpAllocMem (WPObject * self, ULONG cbBytes, BOOL fReportError)

The wpAllocMem instance method is called to allocate memory for use by an object.

Parameters
self (WPObject *) - input

The pointer to this object.

cbBytes (ULONG) - input

Specifies the size of memory required.

fReportError (BOOL) - input
Report error indicator:

TRUE If an error occurs, the system will display an appropriate message.

FALSE The system will not display an error message.

Returns
Success indicator:

NULL Not enough memory available.

Other A pointer to the newly allocated memory.

Remarks
Memory allocated by the wpAllocMem method should be deallocated when it is no longer needed by
calling the wpFreeMem method. Allocated memory not cleaned up by an object is deallocated
automatically when the object is no longer in use.

Usage
This method can be called at any time to allocate memory to be used for this object only.

How to Override
This method should be overridden if a substitute memory allocation facility is to be used. Object
classes overriding this method should also override the wpFreeMem method.

Related Methods
• wpFreeMem

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-97

wpClose -
WPObject ·instance method

#define INCL_WINWORKPLACE

I BOOL wpClose (WPOblect • salt)

The wpClose instance method is called to close all open views of an object.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
This method will cycle through the object's in-use list that was created by calls to the
wpAddToObjUselist method. All open windows specified by USAGE_OPENVIEW items will be sent a
WM_CLOSE message. Running executables specified by USAGE_OPENVIEW items will be
terminated.

Usage
This method should be called to close all open views of the object and to free all allocated resources.

How to Override
If this function is overridden, it should call the parent last to ensure that allocated resources are
properly deallocated.

Related Methods
• wpAddToObjUselist
• wpDeleteFromObjUselist
• wpFindUseltem
• wpOpen

g.,.ga PM Programming Reference

#define INCL WINWORKPLACE

wpCnrlnsertObject
WPObject instance method

PMINIRECORDCORE wpCnrlnsertObject (WPObject * self, HWND hwndCnr, PPOINTL plcon,
PMINIRECORDCORE pParent,
PRECORDINSERT pReclnsert)

The wpCnrlnsertObject instance method is called to insert a record into a container control window.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndCnr (HWND) - input

The handle of container control window.

plcon (PPOINTL) - input

The initial icon position in the container control window.

pParent (PMINIRECORDCORE) - input

A pointer to the parent record. pParent specifies the record of the immediate parent of the
record specified by plcon. This parameter should be set to NULL if the record has no parent or if
tree view is not supported.

pReclnsert (PRECORDINSERT) - input
Record position:

NULL Insert the record into the next available position.

Other Insert the record into this position specified by pReclnsert.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to the inserted record.

Remarks
This method will put an object into a container control window (WC_CONTAINER). These container
windows can be application created or can be created by the system such as those in folders and
settings notebooks.

The OBJECT_FROM_PREC (prec) macro can be used to determine the pointer to the object
(WPObject *)that is associated with a given MINIRECORDCORE,prec, that was inserted using the
wpCnrlnsertObject method. "'

The USER_FROM_PREC(prec) macro can be used to access the application definable 32-bit field
within the MINIRECORDCORE structure that is created when an object is put into a list control using
the wpCnrlnsertObject method.

A record inserted by this method will be added to the in-use list. See wpAddToObjUselist for more
information on an object's in-use list. wpCnrRemoveObject should be called to remove each record
before the container window is destroyed.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-99

wpCnrlnsertObject -
WPObject instance method

Usage
This method is used to give workplace object behavior (such as context menu support) to records
inserted directly into a WC_CONTAINER container control window. To remove the record from the
container, a call to the wpCnrRemoveObject method should be made.

How to Override
This method is generally not overridden.

Related Methods
• wpAddToObj Use list
• wpCnrRemoveObject

9-100 PM Programming Reference

#define INCL_WINWORKPLACE

wpCnrRemoveObject -
WPObject instance method

BOOL wpCnrRemoveObject (WPObject '* self, HWND hwndCnr, PMINIRECORDCORE pRecord)

The wpCnrRemoveObject instance method is called to remove a record from a container control

window.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndCnr (HWND) - input

The handle of the container control (WC_CONTAINER) window.

pRecord (PMINIRECORDCORE) - input

The pointer to the record to be removed.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
This method causes the item to be removed from the in-use list.

Usage
This method should be called to remove records inserted by a call to the wpCnrlnsertObject method.

How to Override
This method is generally not overridden.

Related Methods
• wpCnrlnsertObject
• wpDeleteFromObjUselist

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-101

wpCnrSetEmphasis -
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpCnrSetEmphasls (WPObject * sell, ULONG ulEmphaslsAUr, BOOL ITurnOn)

The wpCnrSetEmphasis instance method is called to allow the object to change its visual emphasis.

Parameters
sell (WPObject *) - input

The pointer to this object.

ulEmphaslsAHr (ULONG) - input

The CAA_* flags. For a detailed list, see RECORDCORE on page A-110.

ITurnOn (BOOL) - input

TRUE Set the specified attribute.

FALSE Reset the specified attribute.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method changes all visual references to this object to show it with the specified emphasis
attributes. This method is called automatically to set and reset CRA_INUSE emphasis state during
the processing of the wpAddToObjUselist and wpDeleteFromObjUselist methods, respectively. This
method is only valid for objects inserted into a container control using the wpCnrlnsertObject
method.

Usage
This method can be called at any time in order to set the emphasis for an object in an open folder.
Some restrictions apply as to which CRA_* can be used. See RECORDCORE on page A-110. for
more information.

How to Override
This method is generally not overridden.

Related Methods
• wpAddToObjUselist
• wpCnrlnsertObject
• wpOpen

9-102 PM Programming Reference

#define INCL_WINWORKPLACE

wpConfirmDelete -
WPObject instance method

ULONG wpConflrmDelete (WPObject * self, ULONG fConflrmalions)

The wpConfirmDelete instance method is called to allow the object to prompt the user to confirm the
deletion of this object.

Parameters
self (WPObject *) - input

The pointer to this object.

fConflrmatlons (ULONG) - input
The confirmation flags.

CONFIRM_DELETE Confirm for delete of all objects.
CONFIRM_DELETEFOLDER Confirm for delete of folder objects only.

Returns
User-response value.

The default processing will return one of the following.

OK_DELETE
NO_DELETE
CANCEL_DELETE

Remarks

Delete of this object is confirmed.
Delete of this object only is cancelled.
Deletion process from that point on is cancelled.

This method is called during the processing of the wpDelete method only if the system confirm on
delete flag is set.

Usage
This method is generally only called by the system.

How to Override
This method should be overridden in order to remove or replace the user prompt to confirm the
delete operation.

Related Methods
• wpDelete
• wpFree

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-103

wpCopiedFromTemplate -
WPObject instance method

#define INCL_WINWORKPLACE

VOID wpCopledFromTemplate (WPObJect * sell)

The wpCopiedFromTemplate instance method is called to allow an object to perform class specific
processing when a new object is created from a template.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
The return value is VOID.

Remarks
This method is called immediately after a new object is created from a template. The system does
not do any default processing for this method. This method is typically overridden to perform class
specific initialization on a created object. For example, a customer order form class would prefill the
date, time, and order number in an instance of itself that was created from a template.

Usage
This method is generally only called by the system.

How to Override
This method should be overridden by object classes which need to initialize the new object after it is
created from a template.

9-104 PM Programming Reference

#define INCL_WINWORKPLACE

wpCopyObject -
WPObject instance method

WPObject * wpCopyObject (WPObjecl * self, WPFolder * Folder, BOOL flock)

The wpCopyObject instance method is called to create a new copy of the object.

Parameters
self (WPObject *) - input

The pointer to this object.

Folder (WPFolder *) - input

A pointer to a Folder object in which to place this new object. This pointer can be determined by
issuing a call to the wpclsQueryFolder method.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new object will remain active until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to the new object created.

Remarks
Copies of an object can always be deleted and moved by default, even if the original has the
OBJSTYLE_NODELETE or OBJSTYLE_NOMOVE style set.

Usage
This method can be called any time in order to create a copy of an existing object.

How to Override
This method can be overridden by classes which need to keep track of where instances are.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-105

wpCreateFromTemplate -
WPObject instance method

#define INCL_WINWORKPLACE

WPObject * wpCreateFromTemplate (WPObJect * self, WPFolder * Folder, BOOL flock)

The wpCreateFromTemplate instance method is called to create an object from a template.

Parameters
self (WPObject *) - input

The pointer to this object.

Folder (WPFolder *) - input

A pointer to a folder object in which to place the new object. This pointer can be determined by
issuing a call to the wpclsQueryFolder method.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new flag will remain active until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator:

NULL Error occurred.

Other Pointer to the new object.

Remarks
The new object will be an identical copy of the template object with the exception that the
OBJSTYLE_TEMPLATE object style will be taken out. wpCopiedFromTemplate instance method will
be called on the new object.

Usage
This method can be called at any time in order to create a new object from a template object.

How to Override
This method is generally not overridden.

Related Methods
• wpCopyObject
• wpclsNew

9-106 PM Programming Reference

#define INCL WINWORKPLACE

wpCreateShadowObject -
WPObject instance method

WPObject * wpCreateShadowObject (WPObject * self, WPFolder * Folder, BOOL flock)

The wpCreateShadowObject instance method is called to create a shadow of an object.

Parameters
self (WPObject *) - input

The pointer to this object.

Folder (WPFolder *) - input

A pointer to a folder object in which to place the new shadow object. This pointer can be
determined by issuing a call to the wpclsQueryFolder method.

flock (BOOL) - input
Lock object flag.

If this flag is false, the new shadow object will be made dormant whenever the object and the
folder containing the object are closed.

If this flag is true, the new object will remain awake until the caller issues the wpUnlockObject
method on it.

Returns
Success indicator:

NULL Error occurred.

OTHER Pointer to the new shadow object.

Remarks
The new object is created as an instance of class WPShadow.

Usage
This method can be called at any time in order to create a shadow object for this object.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-107

wpDelete -
WPObject instance method

#define INCL_WINWORKPLACE

ULONG wpDelete (WPObject * self, ULONG ulConflrmatlons)

The wpDelete instance method is called to delete an object and prompt for confirmation if necessary.

Parameters
self (WPObject *) - input

The pointer to the object.

ulConfirmations (ULONG) - input

The confirmation flags:

CONFIRM_DELETE
CONFIRM_DELETEFOLDER
NULL

Returns
Success indicator:

Prompt for confirmation for all objects.
Prompt for confirmation for just folder objects.
No confirmations.

NO_DELETE Error occurred.

CANCEL_DELETE User canceled operation.

OK_DELETE Object was deleted.

Remarks
The confirmation flags are passed to the wpConfirmDelete method. If wpConfirmDelete returns
OK_DELETE, the wpFree method is called on the object.

Usage
This method can be called at any time in order to delete an object.

How to Override
This method is generally not overridden.

Related Methods
• wpFree
• wpConfirmDelete
• wpQueryConfirmations

9-108 PM Programming Reference

#define INCL WINWORKPLACE

BOOL wpDeleteAllJobs (WPPrlnter * self)

wpDeleteAllJobs -
WPPrinter instance method

The wpDeleteAllJobs instance method is called to delete all jobs in a printer (print destination)

object.

Parameters
self (WPPrinter *) - input

The pointer to the object to delete all jobs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpDeleteJob

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-109

wpDeleteContents -
WPFolder instance method

#define INCL_WINWORKPLACE

ULONG wpDeleteContents (WPFolder * sell, ULONG ulConflrmatlons)

The wpDeleteContents instance method is called to delete the contents of a folder.

Parameters
sell (WPFolder *) - input

The pointer to the object.

ulConflrmatlons (ULONG) - input
The confirmation flags:

CONFIRM_DELETE Prompt for confirmation for all objects.

CONFIRM_DELETEFOLDER Prompt for confirmation for just folder objects.

NULL No confirmations.

Returns
Success indicator.

OK_DELETE All objects were deleted.

NO_DELETE Error occurred. At least one object was not deleted.

CANCEL_DELETE User canceled operation.

Remarks
wpDelete and wpFree will automatically call this instance method for folder objects.

Usage
This method can be called at any time to delete the contents of a folder.

How to Override
This method is generally not overridden.

Related Methods
• wpFree
• wpDelete

9-110 PM Programming Reference

#define INCL_WINWORKPLACE

wpDeleteFromObjUseList -
WPObject instance method

BOOL wpDeletefromObJUsellst (WPObJect * self, PUSEITEM pUseltem)

The wpDeleteFromObjUselist instance method is called to remove an item type from an object's
in-use list.

Parameters
self (WPObject *) - input

The pointer to this object.

pUseltem (PUSEITEM) - input

A pointer to a USEITEM structure.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
This method will remove a specified item type from an object's in-use (USEITEM) list.

If the usage item being removed is of type USAGE_OPENVIEW, the in-use emphasis bit will be turned
off for all inserted records for this object.

Usage
A call to this method should be made when a particular usage item, added to the in-use list via the
wpAddToObjUselist method, is no longer needed.

This method must be called before the USEITEM memory is freed.

How to Override
This method is generally not overridden.

Related Methods
• wpAddToObjUselist
• wpFindUseltem

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-111

wpDeleteJob -
WPJob instance method

#define INCL WINWORKPLACE

I BOOL wpDeleleJob (WPJob • sett)

The wpDeleteJob instance method is called to delete a job object.

Parameters
self (WPJob *) - input

The pointer to the object to be deleted.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpDeleteAllJobs

9-112 PM Programming Reference

#define INCL_WINWORKPLACE

wpDisplayHelp -
WPObject instance method

BOOL wpDlsplayHelp (WPOb)ect * self, ULONG ulHelpPanelld, PSZ pszHelpllbrary)

The wpDisplayHelp instance method is called to allow the object to display a help panel.

Parameters
self (WPObject *) - input

The pointer to this object.

ulHelpPanelld (ULONG) - input

The object's help panel id.

pszHelpLlbrary (PSZ) - input

A pointer to a zero terminated string which contains the name of the help library.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method allows each object class to display a help panel in response to a users request for help.
The help panel will be displayed by the shell on a help instance managed by the shell.

Usage
This method can be called at any time in order to display a help panel.

How to Override
This method is generally not overridden.

Related Methods
• wpMenultemHelpSelected
• wpQueryDefaultHelp
• wpSetDefaultHelp
• wpclsQueryDefaultHelp

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-113

wpDoesObjectMatch -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpDoesObJectMatch (WPObJect * object, PVOID pExtendedCrlterla)

The wpDoesObjectMatch instance method is called to allow the object to determine if it matches the
specified criteria.

Parameters
object (WPObject *) - input

The pointer to the object to be examined.

pExtendedCrlterla (PVOID) - input

A pointer to a buffer that contains the class-specific extended search criteria.

Returns
Success indicator:

TRUE The object matches the specified criteria.

FALSE The object does not match the specified criteria.

Remarks
If the object class has extended search criteria, this method gets called to determine if the object
found, matches the extended search criteria.

Usage
This method can be called at any time in order to determine if an object matches some extended
search criteria.

How to Override
This method should be overridden by classes which introduce extended search criteria for use by the
Find and Include facilities.

9-114 PM Programming Reference

#define INCL_WINWORKPLACE

wpDragCell -
WPPalette instance method

BOOL wpDragCell (WPPalette * self, PCELL pCell, HWND hwndPal, PPOINTL pptlDrag)

The wpDragCell instance method is called to drag-apply a value in a cell.

Parameters
self (WPPalette *) - input

The pointer to the object.

pCell (PCELL) - input

A pointer to the CELL structure to be dragged.

hwndPal (HWND) - input

The palette window handle.

pptlDrag (PPOINTL) - input

The point in hwndPal coordinates from which drag was initiated.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The default processing for this method by the WPPalette class is to do nothing other than return
FALSE.

Usage
This method is generally called only by the palette window after it receives the WM_BEGINDRAG
message.

How to Override
This method should be overridden to handle the drag-apply action.

Override processing should include capturing the mouse and, waiting for and processing the
WM_ENDDRAG message

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-115

wpDraggedOverObject -
WPObject instance method

#define INCL_WINWORKPLACE

MRESUL T wpDraggedOverObject (WPOb)ect * somSelf, WPObject * DraggedOverObject)

The wpDraggedOverObject instance method may be called on an object that is currently being
dragged with the mouse to tell it what the current target object is. The return code from this method
lets the system know whether the object being dragged can be dropped on the specified target.

Parameters
somSelf (WPObject *) - input

The pointer to an object being dragged.

DraggedOverObJect (WPObject *) - input

Pointer to the object that the drag cursor is over, the current target object for the drag operation.

Returns
LowWord Droplndicator (USHORT).

This code is one of the DOR_ constants, such as DOR_DROP or DOR_NODROP
which indicate whether a drop is allowed on the current target.

HlghWord DropOperation (USHORT).

Remarks

The current drag operation code. Examples are DO_COPY, DO_MOVE or DO_LINK
to indicate that the drag action over this target should be a copy, move or a link.

When a target object is dragged over by the mouse, it will always receive a wpDragOver instance
method call. Many target objects will choose to decide the current drag operation and whether a
drop is possible based upon their own rules. For instance, the WPShredder object will return
DO_DROP,DO_MOVE if it decides that all the source objects can be deleted. However, some targets
require the source or sources to participate in the decision over whether they can accept the drop.
The way that a target allows a source object to have a say in what the drop action will be is by
calling the wpDraggedOverObject on each source object. The wpDraggedOverObject instance
method may be invoked on an object that is being dragged (source object) at any time, to see if it can
support a drop on the current target. If the object that is being dragged responds favorably to this
method, it may later receive a wpDroppedOnObject instance method call so that it can process the
drop action.

As an example, consider the case where a program object is dragged onto a data file object. The
program would respond DO _DROP to the wpDraggedOverObject instance method, so that the data
file would be a valid drop target. If the user chose to allow the drop, then the program will receive a
wpDroppedOnObject instance method at which time it would be able to open itself as a viewer of the
data file object.

This method is called as a result of a DM_DRAGOVER message being sent, and for further
documentation of the possible return values, see "DM_DRAGOVER" on page 29-4.

9-116 PM Programming Reference

Usage

wpDraggedOverObject -
WPObject instance method

This method is typically called by objects that require participation from the source object when a

drop occurs. The method can be called at any time, however the method would normally only be

called by a target object on one of the source objects during a drag or drop operation.

How to Override
Override this method if your object class wishes to allow itself to be used as a source object that can

perform a drop operation. A favorable return code from this method may lead to a

wpDroppedOnObject instance method being invoked on the source object which would be overridden

to actually do the drop operation.

Related Methods
• wpDragOver
• wpDrop
• wpDroppedOnObject
• wpFormatDragltem

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-117

wpDragOver -
WPObject instance method

#define INCL WINWORKPLACE

MRESUL T wpDragOver (WPObject * self, HWND hwndCnr, PDRAGINFO pDraglnfo)

The wpDragOver instance method is called to inform the object that other objects are being dragged
over it.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndCnr (HWND) - input

The handle to the container control window.

pDraglnfo (PDRAGINFO) - input

A pointer to drag information.

Returns

See "DM_DRAGOVER" on page 29-4 for description of the return value.

Remarks
The wpDragOver method is sent for each DM_DRAGOVER message received by the object. See
"DM_DRAGOVER" on page 29-4 for more information.

Usage
This method is generally only called by the system as the folder containing the object processes the
DM_DRAGOVER message.

How to Override
This method should be overridden to determine if the object or objects being dragged can be
dropped on this object.

Related Methods
• wpDrop
• wpFormatDragltem

9-118 PM Programming Reference

#define INCL WINWORKPLACE

wpDrop -
WPObject instance method

MRESULT wpDrop (WPObjecl * self, HWND hwndCnr, PDRAGINFO pDraglnfo,
PDRAGITEM pDragllem)

The wpDrop instance method is called to inform an object that another object has been dropped on it.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndCnr (HWND) - input

The handle to the container control window.

pDraglnfo (PDRAGINFO) - input

A pointer to a PDRAGINFO structure.

pDragllem (PDRAGITEM) - input

A pointer to a PDRAGITEM structure.

Returns

See "DM_DROP" on page 29-6 for description of the return value.

Remarks
The wpDrop method is called when a DM_OROP message is received by the object. See
"DM_DROP" on page 29.;5 for more information.

Usage
This method is generally only called by the system as a folder containing the object processed the
DM_DROP message.

How to Override
This method should be overridden to process the action of the dragged object or objects being
dropped on it.

Related Methods
• wpDragOver
• wpFormatDragltem

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-119

wpDroppedOnObject -
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpDroppedOnObJect (WPObJect * somSelf, WPObJect * DroppedOnObJect)

The wpDroppedOnObject instance method is called on an object that has just been dragged (a
source object) when the target object that it was dropped on does not know what action to perform.
This instance method is only called on a source object when that source object has previously
responded favorably to a wpDraggedOverObject instance method call.

Parameters
somSelf (WPObject *) - input

The pointer to an object being dragged.

DroppedOnObject (WPObject *) - input

Pointer to the object that was dropped on. The current target object for the drag operation.

Returns
TRUE The drop action was successful.

FALSE An error occurred.

Remarks
When you drop on an a target object and the source object has said it knows how to handle the drop
operation, this method will be invoked on the source object. For example, the program object class
supports being dropped on certain other classes of object where the drop action will be taken by the
program itself. The drop action provided in WPProgram's override of the wpDroppedOnObject
method would be to execute itself as a viewer of the target object. This method is called as a result
of a DM_DROP message being sent.

Usage
Target objects that do not know how to handle the current drop operation can call this method on the
source object that was dropped on it. This method would not normally be called outside the scope of
a drag or drop operation.

How to Override
Object classes that override the wpDraggedOverObject instance method would normally be expected
to also override this method.

Related Methods
• wpDragOver
• wpDraggedOverObject
• wpDrop
• wpFormatDragltem

9-120 PM Programming Reference

#define INCL_WINWORKPLACE

wpEditCell
WPPalette instance method

BOOL wpEdltCell (WPPalette * self, PCELL pCell, HWND hwndPal)

The wpEditCell instance method is called to edit a value in a cell.

Parameters
self (WPPalette *) - input

The pointer to the object.

pCell (PCELL) - input

A pointer to the CELL structure to be edited.

hwndPal (HWND) - input

The palette window handle.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The default processing for this method by the WPPalette class is to do nothing other than return
FALSE.

Usage
This method is generally called only by the palette window when the user requests to edit the value
in the cell. This request is made by selecting a cell and pressing the Enter key or the edit
pushbutton, or by double-clicking on the cell.

How to Override
This method should be overridden to handle the edit action.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-121

wpEndConversation
WPObject instance method

#define INCL WINWORKPLACE

MRESUL T wpEndConversation (WPObJect * self, ULONG ulltemld, ULONG ulResult)

The wpEndConversation instance method is called to notify the object that the drag or drop operation
is complete.

Parameters
self (WPObject *) - input

The pointer to the object.

ulllemld (ULONG) - input

This is the ulltemlD from the DRAGITEM that was contained within the DRAGINFO structure
when the object was dropped.

ulResult (ULONG) - input

Flag indicating whether the operation was performed successfully. See
"DM_ENDCONVERSATION" on page 29-8 for more information about this parameter.

Returns
Refer to the DM_ENDCONVERSATION message for a description of the return value.

Remarks
The wpEndConversation method is called when the object receives a DM_ENDCONVERSATION
message. Refer to the DM_ENDCONVERSATION message for more information.

Usage
This method is generally called only by the system as the folder containing the object processed by
the DM_ENDCONVERSATION message.

How to Override
This method should be overridden, if the object needs to do any actions once the drag or drop
operation is complete.

Related Methods
• wpDragOver
• wpDrop
• wpFormatDragltem
• wpRender
• wpRenderComplete

9-122 PM Programming Reference

#define INCL_WINWORKPLACE

wpFilterPopupMenu -
WPObject instance method

ULONG wpFllterPopupMenu (WPObject * sell, ULONG ulFlags, HWND hwndcnr,
BOOL fMultiSelect)

The wpFilterPopupMenu instance method is called to allow the object to modify its context menu.

Parameters
self (WPObject *) - input

The pointer to this object.

ulFlags (ULONG) - input

If the flag is set, the corresponding pop-up menu item will be available. These flags are ored
together with the flags already defined by ancestor classes, to specify the standard pop-up menu
items which apply to this object.

CTXT_NEW
CTXT_OPEN
CTXT _SWITCHTO
CTXT_CLOSE
CTXT _SETTINGS
CTXT_PRINT
CTXT_HELP
CTXT _DELETE
CTXT_COPY
CTXT_MOVE
CTXT_LINK
CTXT _WINDOW

hwndcnr (HWND) - input

Create another
Open
Switch to
Close
Open settings
Print
Help
Delete
Copy
Move
Create shadow
Window

The handle to container control window.

fMultlSelect (BOOL) - input

The multiple menu items flag.

Returns
New pop-up menu flags for this object.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-123

wpFilterPopupMenu -
WPObject instance method

Usage
This method is generally only called by the system when a request is made to display the object's
pop-up window.

How to Override
This method should be overridden to remove undesired pop-up menu actions that were added by
ancestor classes. The parent method should be called prior to any override processing.

Related Methods
• wpMenultemSelected
• wpMenultemHelpSelected
• wpModifyPopupMenu
• wplnsertPopupMenultems

9-124 PM Programming Reference

#define INCL_WINWORKPLACE

wpFindUseltem
WPObject instance method

PUSEITEM wpFlndUseltem (WPObject * self, ULONG ullype, PUSEITEM pCurrentUsellem)

The wpFindUseltem instance method is called to retrieve an item type from the object's in-use list.

Parameters
self (WPObject *) - input

The pointer to this object.

ultype (ULONG) - input

Specify the usage type of the item to be located.

pCurrentUseltem (PUSEITEM) - input
A pointer to a USEITEM structure:

NULL Retrieve the first item in the in-use list that has a usage type of ultype.

Other Retrieve the next item in the in-use list, following the item specified by
pCurrentUseltem, that has a usage type of ultype.

Returns
Success indicator:

NULL No items matching the specified find criteria were found in the in-use list for this object.

Other A pointer to a USEITEM structure that matches the specified find criteria.

Remarks
This method will search the object's in-use list for all items that were added by previous calls to the
wpAddToObjUselist method.

Usage
This method should be called to determine how the object is currently being used, for example,
which views are currently open and what container window it is inserted into.

How to Override
This method is generally not overridden.

Related Methods
• wpAddToObjUselist
• wpDeleteFromObjUselist

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-125

wpFormatDragltem -
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpFormatDragltem (WPObjecl * self, PDRAGITEM pDragltem)

The wpFormatDragltem instance method is called to allow the object to format its drag information

when the user starts to drag it.

Parameters
self (WPObject *) - input

The pointer to this object.

pDragltem (PDRAGITEM) - input

The address of the drag item.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method will enable the direct manipulation of this object by initializing the DRAGITEM structure.

Usage
This method is generally only called by the system when the user first starts to drag the object.

How to Override
This method is generally overridden by classes which require special processing to initiate a drag or

drop operation.

Related Methods
• wpDragOver
• wpDrop

9-126 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpFree (WPObject • self)

wpFree
WPObject instance method

The wpFree instance method is called to destroy the object and deallocate its associated resources.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method destroys the persistent form of the object and then frees the memory that represented
that object. If confirmations are on, wpDelete will prompt the user before calling wpFree.

Usage
General destruction of an object should be done with the wpDelete method. This method is generally
only called by the system.

How to Override
This method is generally overridden by storage classes which permanently remove this object and
its associated data, or any objects that need to do special processing before deletion.

Related Methods
• wpDelete
• wpUnlnitData

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-127

wpFreeMem -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpFreeMem (WPObject * sell, PBYTE pbMemory)

The wpFreeMem instance method is called to deallocate memory allocated by a call to the
wpAllocMem method.

Parameters
sell (WPObject *) - input

The pointer to this object.

pbMemory (PBYTE) - input

The pointer to the memory to be deallocated.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method deallocates memory for an object. wpFreeMem should always be called when the
memory allocated by wpAllocMem is no longer needed.

Usage
This method should be called when the memory allocated by a call to the wpAllocMem method is no
longer needed.

How to Override
This method should only be overriden to provide the deallocation of memory allocated by an
override method of wpAllocMem.

Related Methods
• wpAllocMem

9-128 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpHkla (WPObjact • self)

wpHide -
WPObject instance method

The wpHide instance method is called to hide or minimize open views of this object.

Parameters
self (WPObject *} - input

The pointer to this object.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method will turn all windows owned by this object invisible or if the system setting is set to
provide minimized windows instead of hidden windows, wpHide will minimize all windows owned by
this object.

Usage
This method can be called to hide an object's window.

How to Override
This method is not generally overridden.

Related Methods
• wpRestore

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-129

wpHideFldrRunObjs -
WPFolder instance method

#define INCL_WINWORKPLACE

BOOL wpHldeFldrAunObjs (WPFolder * self, BOOL fHlde)

The wpHidefldrRunObjs instance method is called to allow the folder to hide or minimize its open
objects.

Parameters
self (WPFolder *) - input

The pointer to this object.

fHlde (BOOL) - input
Flag to indicate hide or show of open objects.

True Hide all objects opened from this folder.

False Unhide aH objects opened from this folder.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
Open objects in this folder will either be hidden or minimized, depending on the current system
setting. This method is called automatically on folders with the work area flag, F01_WORKAREA, set
when it is hidden or minimized.

Usage
This method can be called at any time in order to hide or minimize all objects in this folder which are
currently open.

How to Override
This method is generally not overridden.

9-130 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpHoldJob (WPJob • self)

wpHoldJob -
WPJob instance method

The wpHoldJob instance method is called to hold a job object.

Parameters
self (WPJob *) - input

The pointer to the object to be held.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpReleaseJob

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-131

wpHoldPrinter -
WPPrinter instance method

#define INCL_WINWORKPLACE

I BOOL wpHoldPrlnter (WPPrlnter • self)

The wpHoldPrinter instance method is called to hold a print object.

Parameters
self (WPPrinter *) - input

The pointer to the object to be held.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpReleasePrinter

9-132 PM Programming Reference

#define INCL_WINWORKPLACE

I VOID wplnllData (WPObjact • self)

wplnitData
WPObject instance method

The wplnitData instance method is called to allow the object to initialize its instance data.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
The return value is VOID.

Remarks
This routine is called when the object is created or when it is awakened from the dormant state so

that it can initialize all of its instance variables to a known state. Note that this method is called

before the object's state is known, so it is very important that the object does not try to process any

other method while processing this method. Should an object require extra initialization that

requires it to invoke other methods, this should be done from the wpRestoreState instance method.

When the object is first created, the wpSetup instance method should be overridden to perform

initialization that is only required once.

Usage
This method is generally only called by the system when the object is awake.

How to Override
Any class that has instance variables should override this method so that those variables are all

initially in a known state. It is essential to pass this method onto the parent class. If this method is

overridden, the wpUnlnitData method should also be overridden in order to deallocate resources that

were allocated by the override processing of wplnitData.

Related Methods
• wpSetup
• wpUnlnitData

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-133

wplnsertPopupMenultems -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wplnsertPopupMenultems (WPObJect * self, HWND hwndMenu, ULONG ulPostlllon,
HMODULE hmod, ULONG ulMenulD, ULONG ulSubMenuld)

The wplnsertPopupMenultems instance method is called to allow an object to insert items into its
popup menu.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndMenu (HWND) - input

A handle to the popup menu.

ulPostlllon (ULONG) - input

Position at which to start inserting items.

hmod (HMODULE) - input

Module handle where ulMenulD can be found.

ulMenulD (ULONG) - input

Id of menu to put into popup menu.

ulSubMenuld (ULONG) - input

Id of submenu to put into popup menu.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This instance method will insert all menu items in u/MenulD into the pop-up menu.

Menu item ids in open cascade must match corresponding openview.

Class specific menu IDs should be above WPMENUID_USER.

9-134 PM Programming Reference

Usage

wplnsertPopupMenultems -
WPObject instance method

This method can be called only during the processing of wpModifyPopupMenu.

How to Override
This method is generally not overridden.

Related Methods
• wpMenultemSelected
• wpMenultemHelpSelected
• wpModifyPopupMenu
• wpFilterPopupMenu

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-135

wplnsertSettingsPage -
WPObject instance method

#define INCL_WINWORKPLACE

ULONG wplnsertSeHlngsPage (WPObject * self, HWND hwndNotebook, PPAGEINFO ppagelnfo)

The wplnsertSettingsPage instance method is called to insert a page into the object's settings
notebook.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndNotebook (HWND) - input

A handle to the setting notebook.

ppagelnfo (PPAGEINFO) - input

A pointer to the notebook page information.

Returns
Page identifier:

0 Error occurred.

Pageld Pageld identifier for the inserted page.

Usage
This method can be called only during the processing of the wpAddSettingsPages method.

How to Override
This method is generally not overridden.

Related Methods
See Notebook Control Window Messages for related messages.

• wpAddSettingsPages

9-136 PM Programming Reference

#define INCL_WINWORKPLACE

BOOL wplsCurrentDesktop (WPDesktop * self)

wplsCurrentDesktop
WPDesktop instance method

The wplsCurrentDesktop instance method allows the desktop to specify whether it is the active

desktop folder on the system.

Parameters
self (WPDesktop *) - input

The pointer to this object.

Returns
Active desktop indicator:

True This object is the active desktop.

False This object is not the active desktop and should behave as a normal folder.

Remarks
The active desktop is set by the system every time the user profile is reset by a call to the PrfReset

function. Since there can only be one desktop and objects cannot change their class, desktop objects

and descendants must call wplsCurrentDesktop to determine if it is the current desktop. Desktop

folders which are not active take on the behavior of standard folder objects.

Usage
This method is called at the beginning of every overridden method. If the return is false, the override

method should call its parent without doing any override processing. If the return is true, override

processing can be made.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-137

wpMenultemHelpSelected
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpMenultemHelpSelected (WPObject * self, ULONG ulMenuld)

The wpMenultemHelpSelected instance method is called to allow the object to display the requested
help panel.

Parameters
self (WPObject *) - input

The pointer to this object.

ulMenuld (ULONG) - input

An unsigned short containing the object's menu id.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The default WPObject class doesn't process this method at all other than to return false.

Usage
This method is generally only called by the system when help on a popup menu item is requested.

How to Override
This method should be overridden in order to display an appropriate help panel for the specified
menu item. This is typically accomplished by issuing a call to the wpDisplayHelp method.

Related Methods
• wpDisplayHelp
• wpQueryDefaultHelp
• wpSetDefaultHelp
• wpclsQueryDefaultHelp
• wpMenultemSelected
• wpModifyPopupMenu
• wpFilterPopupMenu
• wplnsertPopupMenultems

9-138 PM Programming Reference

#define INCL WINWORKPLACE

wpMenultemSelected -
WPObject instance method

BOOL wpMenultemSelected (WPObject * self, HWND hwndFrame, ULONG ulMenuld)

The wpMenultemSelected instance method is called to allow an object to process a pop-up menu
selection.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndFrame (HWND) - input

Handle to the frame window.

ulMenuld (ULONG) - input

ID of selected pop-up menu selected.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Class specific Menu Ids should be above WPMENUID_USER.

Usage
This method is generally only called by the system when a new pop-up menu on all item is selected.

How to Override
This method should be overridden to process class-specific menu item actions or to modify the
behavior of a menu item action provided by an ancestor class.

Related Methods
• wpMenultemHelpSelected
• wpModifyPopupMenu
• wpFilterPopupMenu
• wplnsertPopupMenultems

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-139

wpModifyPopupMenu
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpModlfyPopupMenu (WPObJecl * self, HWND hwndMenu, HWND hwndCnr,
ULONG ulPosillon)

The wpModifyPopupMenu instance method is called to allow an object to add additional items to its
pop-up menu.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndMenu (HWND) - input

The menu handle.

hwndCnr (HWND) - input

The handle to container control window.

ulPosltlon (ULONG) - input

The position to insert menu items.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Class specific Menu Ids should be above WPMENUID_USER. This method will only be called if the
current pop-up menu applies to objects of the same class.

Usage
This method is generally called by the system when a request to display the object's pop-up menu is

made. This method is called following a call to the wpFilterPopupMenu method.

How to Override
This method should be overridden in order to add class-specific actions to the object's pop-up menu.

Descendent classes can remove these actions by processing the wpFilterPopupMenu method.

Related Methods
• wpMenultemSelected
• wpMenultemHelpSelected
• wpFilterPopupMenu
• wplnsertPopupMenultems

9-140 PM Programming Reference

#define INCL_WINWORKPLACE

wpMoveObject -
WPObject instance method

BOOL wpMoveObject (WPObject * self, WPFolder * Folder)

The wpMoveObject instance method is called to move the object to a different location.

Parameters
self (WPObject *) - input

The pointer to this object.

Folder (WPFolder *) - input

A pointer to a folder object in which to move this object into. This pointer can be determined by
issuing a call to wpclsQueryFolder method.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to move an object to a new location.

How to Override
This method is generally not overridden except by storage classes. The parent should be called last
unless special actions need to take place when an object is moved.

Related Methods
• wpCopyObject
• wpCreateShadowObject

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-141

wpOpen
WPObject instance method

#define INCL_WINWORKPLACE

HWND wpOpen (WPObJect * sell, HWND hwndCnr, ULONG ulVlew, ULONG ulparam)

The wpOpen instance method is called to open a view to the object.

Parameters
sell (WPObject *) - input

The pointer to this object.

hwndCnr (HWND) - input

Handle of the container window which the object is opened from. This value may be set to
NULLHANDLE.

ulVlew (ULONG) - input

Specifies which view to open.

OPEN_ CONTENTS
OPEN_DEFAUL T
OPEN_DETAILS
OPEN_HELP
OPEN_RUNNING
OPEN_SETTINGS
OPEN_TREE
OPEN_USER

ulparam (ULONG) - input
Open view parameter.

Open content view.
Open default view {same as double-click).
Open details view.
Display HelpPanel.
Execute object.
Open settings notebook.
Open tree view.
Class specific views have a greater value than this.

This value is {reserved= NULL) for views supported by the WPObject class.

Returns
Success indicator:

NULLHANDLE Error occurred.

Other Handle to either window created or program executed.

Usage
This method can be called at any time in order to open a view of an object.

How to Override
This method should be overridden in order to process class-specific open views. This method can
also be overridden in order to modify the behavior defined an ancestor class.

Related Methods
• wpClose

9-142 PM Programming Reference

#define INCL_WINWORKPLACE

wpPaintCell
WPPalette instance method

BOOL wpPalntCell (WPPalette * self, PCELL pCell, HPS hps, PRECTL pprcl, BOOL fHlllte)

The wpPaintCell instance method is called to paint a cell.

Parameters
self (WPPalette *) - input

The pointer to the object.

pCell (PCELL) - input

A pointer to the CELL structure to be painted.

hps (HPS) - input

A presentation space handle for the cell.

pprcl (PRECTL) - input

A pointer to the RECTL structure for the area to be painted.

fHlllte (BOOL) - input

A flag to indicate selected state.

TRUE

FALSE

Returns

Cell is currently selected.

Cell is not currently selected.

Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The default processing for this method by the WPPalette class is to paint a SYSCLR_WINDOW
background. If the cell is highlighted, a SYSCLR_HIGHLITEBACKGROUND background is painted.

Usage
This method is can be called at any time in order to paint a cell.

How to Override
This method should be overriden by all subclasses that want to display visual information in the cell
window. It is recommended that the parent method be called first.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-143

wpPopulate -
WPFolder instance method

#define INCL_WINWORKPLACE

BOOL wpPopulate (WPFolder * sell, ULONG ulReserved, WPFolder * Folder,
BOOL fFoldersOnly)

The wpPopulate instance method is called to allow the folder to populate itself.

Parameters
sell (WPFolder *) - input

The pointer to this object.

ulReserved (ULONG) - input

Reserved value must be 0.

Folder (WPFolder *) - input

The real name of the folder to populate.

fFoldersOnly (BOOL) - input

The ored flag indicating type of contents with which to populate folder:

TRUE Populate with folder objects only.

FALSE Populate with entire contents of folder.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The wpPopulate method sets the folder flags depending upon the value of fFoldersOnly.

The folder flags indicate what the current population state of the folder is:

FOl_POPULATEDWITHALL
FOl_POPULATEDWITHFOLDERS

folder is completely populated.
folder is populated only with subfolders.

If the folder is re-populated when it has already been populated {as determined by inspecting the
folder flags), no action is taken on this message apart from sending the notification message back.

Usage
This method is generally called only by the system when the folder is opened.

How to Override
This method can be overridden to alter the contents of a folder. To filter contents added by ancestor
classes, it is important to call the parent method first.

9-144 PM Programming Reference

#define INCL WINWORKPLACE

I BOOL wpPrlntJobNext (WPJob • sell)

wpPrintJobNext -
WPJob instance method

The wpPrintJobNext instance method is called to print a job next.

Parameters
self (WPJob *) - input

The pointer to the object to be printed next.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-145

wpPrintMetaFile -
WPDataFile instance method

#define INCL_WINWORKPLACE

BOOL wpPrlntMetaFlle (WPDataFlle * self, PPRINTDEST pPrlntDest)

The wpPrintMetaFile instance method is called to print an object of type "MetaFile."

Parameters
self (WPDataFile *) - input

The pointer to this object.

pPrlntDest (PPRINTDEST) - input
The pointer to the print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function
calls.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method can be overridden by any object class that wants to replace the system supplied
MetaFile print method.

Related Methods
• wpPrintObject

9-146 PM Programming Reference

#define INCL_WINWORKPLACE

wpPrintObject -
WPObject instance method

BOOL wpPrlntObject (WPObject * self, PPRINTDEST pPrlntDest, ULONG ulReserved)

The wpPrintObject instance method is called to print a view of the object.

Parameters
self (WPObject *) - input

The pointer to this object.

pPrlntDest (PPRINTDEST) - input
The pointer to print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function
calls.

ulReserved (ULONG) - input

Reserved value must be 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to print a view of an object.

How to Override
This method should be overridden in order to modify the print behavior supported by an ancestor
class.

Related Methods
• wpPrintMetaFile
• wpPrintPifFile
• wpPrintPlainTextFile
• wpPrintPrinterSpecificFile
• wpPrintUnknownFile

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-147

wpPrintPifFile -
WPDataFile instance method

#define INCL_WINWORKPLACE

BOOL wpPrintPllFlle (WPDataFlle * sell, PPRINTDEST pPrlntDest)

The wpPrintPifFile instance method is called to print an object of type "Pif."

Parameters
sell (WPDataFile *) - input

The pointer to this object.

pPrlntDest (PPRINTDEST) - input
The pointer to the print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function
calls.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method can be overridden by any object class that wants to replace the system supplied Pif file
print method.

Related Methods
• wpPrintObject

9-148 PM Programming Reference

#define INCL_ WINWORKPLACE

wpPrintPlainTextFile -
WPFileSystem instance method

BOOL wpPrlntPlalnTextFile (WPFlleSystem * self, PPRINTDEST pPrlntDest)

The wpPrintPlainTextFile instance method is called to print an object of type "Plain Text."

Parameters
self (WPFileSystem *) - input

The pointer to this object.

pPrintDest (PPRINTDESn - input
The pointer to the print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function

calls.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method can be overridden by any object class that wants to replace the system supplied Plain

Text File print method.

Related Methods
• wpPrintObject

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-149

wpPrintPrinterSpecificFile -
WPDataFile instance method

#define INCL_WINWORKPLACE

BOOL wpPrlntPrlnterSpeclflcFlle (WPDataFlle * self, PPRINTDEST pPrlntDest)

The wpPrintPrinterSpecificFile instance method is called to print an object of type "Printer-specific
Data."

Parameters
self (WPDataFile *) - input

The pointer to this object.

pPrlntDest (PPRINTDEST) - input
The pointer to the print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function
calls.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method can be overridden by any object class that wants to replace the system supplied
Printer-specific File print method.

Related Methods
• wpPrintObject

9-150 PM Programming Reference

#define INCL_WINWORKPLACE

wpPrintUnknownFile -
WPDataFile instance method

BOOL wpPrlntUnknownFlle (WPDataFlle * self, PPRINTDEST pPrlntDest)

The wpPrintUnknownFUe instance method is called to print an object of "unknown" type.

Parameters
sell (WPDataFi1e *) - input

The pointer to this object.

pPrlntDest(PPRINTDEST) - input
The pointer to the print data.

It contains all the parameters required to issue a DevPostDeviceModes and DevOpenDC function
calls.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method can be overridden by any object class that wants to replace the system supplied
Unknown File print method.

Related Methods
• wpPrintObject

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-151

wpQuery Association Filter -
WPProgram instance method

#define INCL_ WINWORKPLACE

PSZ wpQueryAssoclatlonFllter (WPProgram * self)

The wpQueryAssociationFilter instance method is called to determine which file title filters are used
to associate data file objects to this program object.

Parameters
self (WPProgram *) - input

The pointer to the object.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to a string containing file title filter(s). This string can contain several file title
filters separated by a comma.

Example: "*.TXT, *.DOC"

Remarks
The association filter is used to designate this program as an available open view for data file
objects which have a title that matches one of the association filters which are set. If a data file
object matches a filter in a program object or program file object, the title of the program object or
program file object will appear in the data file object's Open cascade of its pop-up menu. The
wpQueryAssociationFilter method will return the filter string set by the last call to the
wpSetAssociationFilter method. The wpQueryAssociationType method can be called to determine
which file types are used to associate data file objects to this program object.

Usage
This method can be called at any time in order to determine which file title filters are used to
associate data file objects to this program object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationFilter
• wpSetAssociationType

9-152 PM Programming Reference

#define INCL_WINWORKPLACE

wpQuery Association Filter -
WPProgramFile instance method

PSZ wpQueryAssoclationFllter (WPProgramFlle * self}

The wpQueryAssociationFilter instance method is called to determine which file title filters are used
to associate data file objects to this program object.

Parameters
self (WPProgramFile *) - input

The pointer to the object.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to a string containing file title filters. This string can contain several file title
filters separated by a comma.

Example: "*.TXT, *.DOC"

Remarks
The association filter is used to designate this program as an available open view for data file
objects which have a title that matches one of the association filters which are set. If a data file
object matches a filter in a program object or program file object, the title of the program object or
program file object will appear in the data file object's Open cascade of its pop-up menu. The
wpQueryAssociationFilter method will return the filter string set by the last call to the
wpSetAssociationFilter method. The wpQueryAssociationType method can be called to determine
which file types are used to associate data file objects to this program object.

Usage
This method can be called at any time in order to determine which file title filters are used to
associate data file objects to this program object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationFilter
• wpSetAssociationType

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-153

wpQuery Association Type
WPProgram instance method

#define INCL_WINWORKPLACE

PSZ wpQueryAssoclatlonType (WPProgram * self)

The wpQueryAssociationType instance method is called to determine which file types are used to
associate data file objects to this program object.

Parameters
self (WPProgram *) - input

The pointer to the object.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to a string containing file type(s). This string can contain several file title
filters separated by a comma.

Example: "Plain Text,C Code"

Remarks
The association type is used to designate this program as an available open view for data file objects
which have a type that matches one of the association types which are set. If a data file object
matches a type in a program object or program file object, the title of the program object or program
file object will appear in the data file object's Open cascade of its popup menu.

The wpQueryAssociationType method will return the type string set by the last call to the
wpSetAssociationType method.

The wpQueryAssociationFilter method can be called to determine which file title filters are used to
associate data file objects to this program object.

Usage
This method can be called at any time in order to determine which file types are used to associate
data file objects to this program object.

How to Override
This method is generally not overridden.

Related Methods
• wpSetAssociationType
• wpSetType
• wpQueryType

9-154 PM Programming Reference

#define INCL_WINWORKPLACE

wpQuery Association Type
WPProgramFile instance method

PSZ wpQueryAssoclatlonType (WPProgramflle * self)

The wpQueryAssociationType instance method is called to determine which file types are used to
associate data file objects to this program object.

Parameters
self (WPProgramFile *) - input

The pointer to the object.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to a string containing file types. This string can contain several file title filters
separated by a comma.

Example: "Plain Text,C Code"

Remarks
The association type is used to designate this program as an available open view for data file objects
which have a type that matches one of the association types which are set. If a data file object
matches a type in a program object or program file object, the title of the program object or program
file object will appear in the data file object's Open cascade of its pop-up menu. The
wpQueryAssociationType method will return the type string set by the last call to the
wpSetAssociationType method. The wpQueryAssociationFilter method can be called to determine
which file title filters are used to associate data file objects to this program object.

Usage
This method can be called at any time in order to determine which file types are used to associate
data file objects to this program object.

How to Override
This method is generally not overridden.

Related Methods
• wpSetAssociationType
• wpSetType
• wpQueryType

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-155

wpQueryComputerName -
WPPrinter instance method

#define INCL_WINWORKPLACE

ULONG wpQueryComputerName (WPPrlnter * self, PSZ pszComputerName)

The wpQueryComputerName instance method is called to query the name of the computer that the
print object exists on.

Parameters
self (WPPrinter *) - input

The pointer to the object to be queried.

pszComputerName (PSZ) - output

The returned computer name of the object queried.

Returns
O An error occurred.

1 Successful - ComputerName is local {NULL).

2 Successful - ComputerName is on network. See pszComputerName for value.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryPrinterName
• wpSetComputerName

9-156 PM Programming Reference

#define INCL_WINWORKPLACE

ULONG wpQueryConflrmatlons (WPObJect * self)

wpQueryConfirmations -
WPObject instance method

The wpQueryConfirmations instance method is called to determine which confirmations are set on
this object.

Parameters
self (WPObject *) - input

The pointer to the object.

Returns
Confirmation flags.

NULL No confirmations set.

CONFIRM_DELETE Prompt for confirmation for all objects.

CONFIRM_DELETEFOLDER Prompt for confirmation for just folder objects.

Usage
This method can be called at any time in order to determine the confirmations set on an object.

How to Override
This method is generally not overridden.

Related Methods
• wpDelete
• wpFree
• wpConfirmDelete

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-157

wpQueryContent -
WPFolder instance method

#define INCL WINWORKPLACE

WPOb)ect * wpQueryContent (WPFolder * sell, WPOb)ect * object, ULONG ulOptlon)

The wpQueryContent instance method is called to allow the folder to specify its contents.

Parameters
sell (WPFolder *) - input

The pointer to this object.

object (WPObject *) - input

A pointer to a workplace object. This field is ignored unless QC_NEXT is specified in ulOption.

ulOptlon (ULONG) - input

A flag indicating the object to query (QC_FIRST, QC_NEXT,QC_LAST).

Returns
A pointer to the correct item in the folder's content list.

Remarks
This method allows the user to query the folder's content in various ways using the ulOption flag.
QC_FIRST returns the first item in the content list, QC_LAST returns the last and QC_NEXT will return
the next item after "Object" in the list.

Usage
This method is generally called to look for a specific object or to query the contents in a specific
folder.

How to Override
This method is generally not overridden.

9-158 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryDefaultHelp -
WPObject instance method

BOOL wpQueryDefaultHelp (WPObjecl * self, PULONG pHelpPanelld, PSZ pszHelpllbrary)

The wpQueryDefaultHelp instance method is called to allow the object to specify its default help
panel.

Parameters
self (WPObject *) - input

The pointer to the object.

pHelpPanelld (PULONG) - output

The pointer to the help panel id.

pszHelpllbrary (PSZ) - output

The pointer to a buffer in which to place the name of help library. This buffer should be the
length of CCHMAXPATH bytes.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The default help panel for this class can be determined by calling the wpclsQueryDefaultHelp
method.

Usage
This method can be called at any time in order to determine the default panel for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpDisplayHelp
• wpMenultemHelpSetected
• wpSetDefaultHelp
• wpclsQueryDefaultHelp

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-159

wpQueryDefaultView -
WPObject instance method

#define INCL_WINWORKPLACE

ULONG wpQueryDefaultVlew (WPOb)ect * self)

The wpQueryDefaultView instance method is called to allow the object to query its current default
open view.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
A flag indicating the default open view.

OPEN_CONTENTS
OPEN_DEFAUL T
OPEN_DETAILS
OPEN_HELP
OPEN_RUNNING
OPEN_SETTINGS
OPEN_ TREE
OPEN_UNKNOWN
OPEN_USER

Remarks

Open content view.
Open default view (same as double-click).
Open details view.
Display HelpPanel.
Execute object.
Open settings notebook.
Open tree view.
Unknown view.
Class specific views have a greater value than this.

This method returns the default open view for this instance. The default open view is displayed when
a user double-clicks on the object or when the user selects Open without selecting an item in the
open cascade.

Usage
This method can be called at any time in order to determine its default open view.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQueryDefaultView
• wpSetDefaultView

9-160 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryDetailsData
WPObject instance method

BOOL wpQueryDetallsData (WPObJect * self, PVOID *ppDetallsData, PULONG pep)

The wpQueryDetailsData instance method is called to allow the object to query its current details
data.

Parameters
self (WPObject *) - input

The pointer to this object.

*ppDetallsData (PVOID) - output

A pointer to detail data information.

pep (PULONG) - input/output

The length of *ppDetailsData buffer. If ppDetailsData is set to NULL, the actual size of
ppDetailsData is returned in pcb.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
All objects which have information to display in details view must override this method.
*ppDetailsData is a pointer to the beginning of the buffer into which details data should be written.
The override should write whatever data it is responsible for and then increment the pointer to the
beginning of the area of the next class in the hierarchy (1 byte past the last field for which it is
responsible). Note that *ppDetailsData must be modified so that the subclasses write in the
appropriate place.

The details data returned by a class must match the information returned in wpclsQueryDetailslnfo.

Usage
This method can be called at any time in order to determine the current object details.

How to Override
All objects which have information to display in details view must override this method.

Note that the parent method must always be called before writing the data and adjusting the pointer.

Related Methods
• wpclsQueryDetai Is
• wpclsQueryDetailslnfo

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-161

wpQueryDetailsData -
WPObject instance method

Example Code
For example, if writing the following structure:

typedef struct _SAMPLE_DETAIL_DATA {
COATE cdate;
CTIME ctime;
PSZ psz;

} SAMPLE_OETAIL_DATA;

the pointer would be modified as follows.

((PBYTE) (*ppOetail sData)) += sizeof(SAMPLE_DETAIL_DATA);

9-162 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryError -
WPObject instance method

I ULONG wpQueryError (WPOblect • sell)

The wpQueryError instance method is called to retrieve the error identity of the last error condition.

Parameters
self (WPObject *) - input

The pointer to the object.

Returns
Error identities:

WPERR_PROTECTED _CLASS
WPERR_INVALID _CLASS
WPERR_INVALID _SUPERCLASS
WPERR_NO_MEMORY
WPERR_SEMAPHORE_ERROR
WPERR_BUFFER_ TOO _SMALL
WPERR_CLSLOADMOD_FAILED
WPERR_ CLSPROCADDR_FAILED
WPERR_ OBJWORD _LOCATION
WPERR_INVALID _OBJECT
WPERR_MEMORY _CLEANUP
WPERR_INVALID _MODULE
WPERR_NO_ERROR
WPERR_USER

Class is protected.
Class is invalid.
Superclass is invalid.
Out of memory.
Semaphore error.
Buffer too small.
Unable to load class library module.
Unable to find class entry point.
Bad object word location.
Object pointer is invalid.
Cannot free memory.
Invalid class library module.
No error conditions have been set.
Application-defined errors are above this value.

This value can also include any of the base (ERROR_*) error codes.

Remarks
The wpQueryError method will retrieve the error identity that was set on this object by the last call to
the wpSetError method.

Usage
This method can be called at any time in order to determine the identity of the last error that
occurred. This method is typically called after calling a method that returned a failure.

How to Override
This method is generally not overridden.

Related Methods
• wpSetError

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-163

wpQueryFldrAttr -
WPFolder instance method

#define INCL_WINWORKPLACE

ULONG wpQueryFldrAttr (WPFolder * self, ULONG ulVlew)

The wpQueryFldrAttr instance method is called to allow the folder to query its current view attributes
for the WC_CONTAINER window used in each view window.

Parameters
self (WPFolder *) - input

The pointer to this object.

ulVlew (ULONG) - input

A flag indicating the view to query.

OPEN_ CONTENTS
OPEN_DETAILS
OPEN_HELP
OPEN_ TREE

Returns

Open content view.
Open details view.
Display HelpPanel.
Open tree view.

Flag containing current folder view attribute.

These are the CV_* attributes defined by the Container Control Window. See CNRINFO on
page A-15 for a detailed description.

Usage
This method can be called at any time in order to determine the view attributes currently set.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryFldrFlags
• wpQueryFldrFont
• wpSetFldrAttr
• wpSetFldrFlags
• wpSetFldrFont

9-164 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryFldrDetailsClass -
WPFolder instance method

M_WPOb)ect * wpQueryFldrDetallsClass (WPFolder * self)

The wpQueryFldrDetailsClass instance method is called to determine which class of details are set

for a folder.

Parameters
self (WPFolder *) - input

The pointer to the object.

Returns
Success indicator:

NULL Error occurred.

Other Pointer to the class object for which details are to be displayed.

Remarks
Since folders can contain objects of different classes which can have different details, it is often

necessary for the user to specify which class of details to be displayed. The value set by this method

is not used until a details view of the folder is opened. The wpSetFldrDetailsClass method can be

called to set the current class of details to be displayed.

Usage
This method can be called at any time in order to determine the current class of details to be

displayed.

How to Override
This method is generally not overridden.

Related Methods
• wpSetFldrDetailsClass

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-165

wpQueryFldrFlags -
WPFolder instance method

#define INCL_WINWORKPLACE

ULONG wpQueryFldrFlags (WPFolder * self)

The wpQueryFldrFlags instance method is called to allow the folder to query its current flags.

Parameters
self (WPFolder *) - input

The pointer to this object.

Returns
Flag indicating the current folder state.

FOl_POPULATEDWITHALL This flag is set if the folder was populated with all its
contents.

FOl_POPULATEDWITHFOLDERS This flag is set if the folder was populated only with folders
that it contains.

FOl_WORKAREA This flag is set if the user sets the workarea property.

Usage
This method is called at any time in order to determine a folder's flag state.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryFldrAttr
• wpQueryFldrFont
• wpSetFldrAttr
• wpSetFldrFlags
• wpSetFldrFont

9-166 PM Programming Reference

#define INCL_ WINWORKPLACE

wpQueryFldrFont -
WPFolder instance method

PSZ wpQueryFldrFont (WPFolder * self, ULONG ulVlew)

The wpQueryFldrFont instance method is called to allow the folder to query its current font.

Parameters
self (WPFolder *) - input

The pointer to this object.

ulVlew (ULONG) - input

A flag indicating the view to query.

OPEN_ CONTENTS
OPEN_ DETAILS
OPEN_TREE

Returns

Open content view.
Open details view.
Open tree view.

A pointer to the font string for the specified open view. The font string is in the format of point
size followed by a period which is followed by the face name.

For example, "10.Helvetica." (a presentation parameter string).

Remarks
There is only one font for each view. Concurrent views will all have the same font.

Usage
This method can be called at any time in order to determine the current font for a view.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryF!drAttr
• wpQueryFldrFlags
• wpSetFldrAttr
• wpSetFldrFlags
• wpSetFldrFont

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-167

wpQueryHandle
WPObject instance method

#define INCL_WINWORKPLACE

HOBJECT wpQueryHandle (WPObJect * somSelf)

The wpQueryHandle instance method returns a persistent object handle for the given object
instance.

Parameters
somSelf (WPObject *) - input

The pointer to the instance object.

Returns
The persistent handle for this object.

Remarks
The object handle returned from this method is the same handle that can be used from the
WinCreateObject, WinSetObjectData, or WinDestroyObject function calls. The handle is unique on a
given machine so the returned object handle can be passed to other processes, or stored for later
use (even across IPLs of the system). It is recommended that the wpQueryHandle instance method
be used sparingly on file based object classes, since the operating system keeps track of the current
location of every single file object that has been allocated an object handle. Performance may be
adversely affected if object handles were obtained to every single file system object that was ever
awakened.

Usage
This method can be called at any time to get a handle that is both persistent across IPLs and
completely unique on the given machine.

How to Override
This method should not be overridden

Related Methods
• wpclsQueryObject

9-168 PM Programming Reference

#define INCL_WINWORKPLACE

HPOINTER wpQuerylcon (WPObJect * self)

wpQuerylcon -
WPObject instance method

The wpQuerylcon instance method is called to allow the object to query its current icon.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

NULLHANDLE Error occurred.

Other Handle to an icon.

Usage
This method can be called at any time in order to get the handle to the current icon for this object.

How to Override
This method is generally not overridden. The default icon for a class is typically set from an override
of wpclsQuerylcon and the instance's icon may be altered with wpSetlcon.

Related Methods
• wpclsQuerylcon
• wpQuerylconData
• wpSetlcon
• wpSetlconData

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-169

wpQuerylconData -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpQuerylconData (WPObject * self, PICONINFO pplconlnfo)

The wpQuerylconData instance method is called to allow the object to query the data to be used for
its current icon.

Parameters
self (WPObject *) - input

The pointer to this object.

pplconlnfo (PICONINFO) - output

A pointer to an ICONINFO structure containing an icon specification.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
If pbBuffer is NULL, the size of the icon data is returned in cbBufferSize.

Usage
This method is called at any time in order to query the data for the current icon for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpAddObjectGeneralPage
• wpclsQuerylcon
• wpQuerylcon
• wpSetlcon
• wpSetlconData

9-170 PM Programming Reference

#define INCL_WINWORKPLACE

ULONG wpQueryloglcalDrlve (WPDlsk * somSelf}

wpQueryLogicalDrive -
WPDisk instance method

The wpQuerylogicalDrive instance method returns the logical drive number that is represented by
this disk object.

Parameters
somSelf (WPDisk *) - input

The pointer to the instance object.

Returns
The logical drive identifier.

Remarks
Every instance of the WPDisk class that is created in the system must represent a logical drive
partition. There should never be more than one disk object per logical drive.

Usage
This method can be called at any time.

How to Override
This method should not be overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-171

wpQueryNextlconPos -
WPFolder instance method

#define INCL_WINWORKPLACE

PPOINTL wpQueryNextlconPos (WPFolder * self)

The wpQueryNextlconPos instance method is called to allow the folder to query the next icon
position.

Parameters
self (WPFolder *) - input

The pointer to this object.

Returns
A pointer to the next position at which icons will be inserted.

Remarks
The next icon is the next available parking space within the folder's client area.

Usage
This method can be called at any time in order to determine the next position which objects will be
inserted in the file.

How to Override
This method is generally not overridden.

Related Methods
• wpSetNextlconPos

9-172 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryPaletteHelp -
WPPalette instance method

ULONG wpQueryPaleHeHelp (WPPaleHe * somSelf)

The wpQueryPaletteHelp instance method returns the help panel ID that is displayed when the help

pushbutton is used from an open palette view.

Parameters
somSelf (WPPalette *) - input

The pointer to the instance object.

Returns
The help panel ID within this class's help module as specified by the wpQueryDefaultHelp

method for this object instance.

Remarks
This method returns the help panel ID that is visible from the open palette view. That panel should

describe what the palette cells represent, how to edit them, and how to apply the cell values to other

windows or objects. The palette object can specify class default and instance specific helps for the

object in addition to this specialized help which only applies to the palette view.

Usage
This method may be called at any time.

How to Override
All subclasses of WPPalette need to override this method to provide help about their open palette

view window.

Related Methods
• wpQueryDefaultHelp
• wpclsQueryDefaultHelp
• wpSetDefaultHelp

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-173

wpQueryPalettelnfo -
WPPalette instance method

#define INCL_WINWORKPLACE

BOOL wpQueryPalettelnfo (WPPalette * self, PPALINFO pPallnfo)

The wpQueryPalettelnfo instance method is called to determine current information about the palette.

Parameters
self (WPPalette *) - input

The pointer to the object.

pPallnfo (PPALINFO) - input

A pointer to a PALINFO structure.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The palette information can be set by issuing a call to the wpSetPalettelnfo method.

Usage
This method can be called at any time in order to get current information about the palette.

How to Override
This method is generally not overridden.

Related Methods
• wpSetPalettelnfo

9-174 PM Programming Reference

#define INCL WINWORKPLACE

wpQueryPrinterName -
WPPrinter instance method

BOOL wpQueryPrinterName (WPPrlnter * self, PSZ pszPrinterName)

The wpQueryPrinterName instance method is called to query the name of the printer.

Parameters
self (WPPrinter *) - input

The pointer to the object to be queried.

pszPrlnterName (PSZ) - output

The returned printer name of the object queried.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryComputerName
• wpSetPrinterName

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-175

wpQueryProgDetails -
WPProgram instance method

#define INCL_WINWORKPLACE

BOOL wpQueryProgDetalls (WPProgram * self, PPROGDETAILS pProgDetalls, PULONG pSlze)

The wpQueryProgDetails instance method is called to allow the object to query its program details.

Parameters
self (WPProgram *) - input

The pointer to this object.

pProgDetalls (PPROGDETAILS) - input

A pointer to the program details.

pSlze (PULONG) - input/output

The size of pProgDetails buffer. If NULL Is specified for pProgDetalls then the size of the current
pProgDetails will be returned in Size.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to determine the details on this object.

How to Override
This method is generally not overridden.

Related Methods
• wpSetProgDetails

9-176 PM Programming Reference

#define INCL_WINWORKPLACE

wpQueryProgDetails -
WPProgramFile instance method

BOOL wpQueryProgDetalls (WPProgramflle * self, PPROGDETAILS pProgDetalls,
PULONG pSlze)

The wpQueryProgDetails instance method is called to allow the object to query its program details.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

pProgDetalls (PPROGDETAILS) - input

A pointer to the program details.

pSlze (PULONG) - input/output

The size of pProgDetails buffer. If NULL is specified for pProgDetails then the size of the current
pProgDetails will be returned in Size.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to determine the details on this object.

How to Override
This method is generally not overridden.

Related Methods
• wpSetProgDetails

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-177

wpQueryRealName -
WPFileSystem instance method

#define INCL WINWORKPLACE

BOOL wpQueryRealName (WPFlleSystem * seH, PSZ pszFllename, PULONG pcb,
BOOL fQuallfled)

The wpQueryRealName instance method is called to allow the object to query its physical file name.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

pszFllename (PSZ) - output

The pointer to the buffer in which to place the real file name of the object.

pcb (PULONG) - input/output

The size of the file name buffer. If pszFileName is set to NULL, the actual length of the file is
returned.

fQuallfled (BOOL) - input
Success indicator:

TRUE Return the fully qualified file name.

FALSE Return the unqualified file name.

Returns
Success indicator:

TRUE Successful completion.

FALSE An error occurred.

Remarks
This method returns the fully qualified pathname for this object. Generatly, the object's real name
and an object's title are the same. For file systems which don't support the features of a title, for
example, characters, mixed case, and spaces, the title is stored in the .LONGNAME extended
attribute and then the title and real name may differ. The real name of the file object can be used
with any of the DOSXXX functions which act on file names.

Usage
This method can be called at any time in order to determine the physical file name for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryType
• wpSetRealName
• wpSetTit~e

9-178 PM Programming Reference

#define INCL WINWORKPLACE

wpQueryRootFolder -
WPDisk instance method

WPRootfolder * wpQueryRootfolder (WPDlsk * somSelf)

The wpQueryRootFolder instance method returns the root folder object for the logical drive that is
represented by the WPDisk object.

Parameters
somSelf (WPDisk *) - input

The pointer to the instance object.

Returns
The root folder object. Null if an error occurred.

Remarks
Every instance of the WPDisk class that is created in the system points to a root folder, the root
directory of the logical device that the disk object represents.

Usage
This method can be called at any time.

How to Override
This method should not be overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-179

wpQueryShadowedObject -
WPShadow instance method

#define INCL_ WINWORKPLACE

WPObJect * wpQueryShadowedObJect (WPShadow * self, BOOL flock)

The wpQueryShadowedObject instance method is called to allow the shadow object to query the
object with which it is currently linked.

Parameters
self (WPShadow *) - input

The pointer to this object.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new flag will remain awake until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to the object with which this shadow is linked.

Usage
This method is called at any time in order to determine the object with which this shadow is currently
linked.

How to Override
This method is generally not overridden.

Related Methods
• wpCreateShadowObject

9-180 PM Programming Reference

#define INCL WINWORKPLACE

I ULONG wpQueryStyle (WPOblect • self)

wpQueryStyle -
WPObject instance method

The wpQueryStyle instance method allows the object to query its current class style.

Parameters
self (WPObject *} - input

The pointer to this object.

Returns
The flags which are ored together to indicate the object's style.

OBJSTYLE_NOCOPY

OBJSTYLE_NODELETE

OBJSTYLE_NODRAG

OBJSTYLE_NOSHADOW

OBJSTYLE_NOMOVE

OBJSTYLE_NOPRINT

OBJSTYLE_NOTDEFAULTICON

OBJSTYLE_ TEMPLATE

OBJSTYLE_NOTVISIBLE

OBJSTYLE_NORENAME

Usage

Cannot be copied.
Cannot be deleted.
Cannot be dragged.
Cannot have shadow created.

Cannot move.
Cannot be printed.
Destroy icon when object goes dormant

This object is a template.
The object is hidden.
Cannot be renamed.

This method can be called at any time in order to determine the current style for an object class. To

determine the default style for an object class, the wpclsQueryStyle method should be called.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQueryStyle
• wpSetStyle

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-181

wpQueryTitle -
WPObject instance method

#define INCL WINWORKPLACE

I PSZ wpQueryTHle (WPObject • sell)

The wpQueryTitle instance method is called to allow the object to query its current title.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
A pointer to the object's title.

Remarks
The object's title may get altered by the user at any time. Objects should always use this method to
access the current title and never store the string pointer that is returned.

Usage
This method can be called at any time in order to determine the current title of an object. To
determine the default title for an object's class, the wpclsQueryTitle method should be called.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQueryTitle
• wpSetTitle

9-182 PM Programming Reference

#define INCL_WINWORKPLACE

I PSZ wpQueryType (WPFlleSystem • seH)

wpQueryType -
WPFileSystem instance method

The wpQueryType instance method is called to allow the object to query the type of its file.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

Returns
The pointer to a buffer containing file type. This string can contain a list of types delineated by a

line feed character. For example, "Plain Text\nC Code."

Remarks
This method returns the type of a file-system-based object. The type of a file is designated by its

.TYPE extended attribute value.

Usage
This method can be called at any time in order to determine the type of the file object.

How to Override
This method is generally not overridden.

Related Methods
• wpAddFileTypePage
• wpSetTitle

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-183

wpRedrawCell
WPPalette instance method

#define INCL WINWORKPLACE

BOOL wpRedrawCell (WPPalette * somSelf, PCELL pCell)

The wpRedrawCell instance method forces a palette object to repaint the specified cell area.

Parameters
somSelf (WPPalette *) - input

The pointer to the instance object.

pCell (PCELL) - input

The pointer to the cell within the palette that needs repainting.

Returns
TRUE The method call was successful.

FALSE The method call was unsuccessful.

Remarks
This method is used as cell values within the palette are altered. For example, when the color
selector dialog is changing the color of a palette cell in the color palette this method is invoked to
refresh the color back in the open views of the color palette object.

Usage
This method may be called at any time to force the palette object to repaint the specified cell in all of
its currently open views.

How to Override
Overriding this method is not recommended

Related Methods
• wpPaintCell

9-184 PM Programming Reference

#define INCL WINWORKPLACE

wpRefresh
WPFileSystem instance method

BOOL wpRefresh (WPFlleSystem * self, ULONG ulVlew, PVOID pReserved)

The wpRefresh instance method is called to refresh the contents of a folder.

Parameters
self (WPFileSystem *) - input '~

The pointer to the object.

ulVlew (ULONG) - input
A flag indicating which view to refresh.

OPEN_CONTENT Refresh content (icon) view.

OPEN_DETAILS Refresh details view.

pReserved (PVOID) - input

Reserved value must be 0.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Usage
This method can be called at any time to refresh the contents of a folder.

How to Override
This method is generally not overridden.

Related Methods
• wpPopulate

Chapter 9. Workplace Classes, Instance Methods, and Class Methods . 9-185

wpRegisterView -
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpReglslerVlew (WPObJecl * self, HWND hwndFrame, PSZ pszVlewTllle)

The wpRegisterView instance method is called to allow the object to register a new open view.

Parameters
self (WPObject *) - input

The pointer to this object.

hwndFrame (HWND) - input

A handle to the frame window containing the new view.

pszVlewTllle (PSZ) - input

The pointer to a string containing name of view.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
Registering a view will set the object title as the title of the frame window and add a view title as the
current view in window list and title bar. In-use emphasis is managed by the wpAddToObjectUseList
method.

Usage
This method is generally called during the processing of the wpOpen method in order to register a
new view with the object.

How to Override
This method is generally not overridden.

Related Methods
• wpAddToObjUselist

9-186 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpReleasaJob (WPJob • sell)

wpReleaseJob -
WPJob instance method

The wpReleaseJob instance method is called to release a job object.

Parameters
self (WPJob *) - input

The pointer to the object to be released.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpHoldJob

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-187

wpReleasePrinter -
WPPrinter instance method

#define INCL_WINWORKPLACE

BOOL wpReleasePrlnler (WPPrlnter * self)

The wpReleasePrinter instance method is called to release a print object.

Parameters
self (WPPrinter *) - input

The pointer to the object to be released.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpHoldPrinter

9-188 PM Programming Reference

#define INCL_WINWORKPLACE

wpRender -
WPObject instance method

MRESUL T wpRender (WPObject * self, PDRAGTRANSFER ppdxfer)

The wpRender instance method is called to request a drag or drop rendering format from the object.

Parameters
self (WPObject *) - input

The pointer to the object.

ppdxfer (PDRAGTRANSFER) - input

A pointer to a DRAGTRANSFER structure.

Returns
Refer to the "DM_RENDER" on page 29-10 message for a description of the return value.

Remarks
The wpRender method is called when the object receives a DM_RENDER message. Refer to the
DM_RENDER message for more information.

Usage
This method is generally called only by the system as the folder containing the object processed by
the DM_RENDER message.

How to Override
This method should be overridden to return a class-specific rendering mechanism and format.

Related Methods
• wpDragOver
• wpDrop
• wpFormatDragltem
• wpRenderComplete
• wpEndConversation

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-189

wpRenderComplete -
WPObject instance method

#define INCL_WINWORKPLACE

MRESULT wpRenderComplete (WPOb)ect * self, PDRAGTRANSFER ppdxfer, ULONG ulResult)

The wpRenderComplete instance method is called to notify the object that the drag or drop rendering
request is complete.

Parameters
self (WPObject *) - input

The pointer to the object.

ppdxfer (PDRAGTRANSFER) - input

A pointer to a DRAGTRANSFER structure.

ulResult (ULONG) - input

The flag indicating whether the operation was performed successfully. Refer to
"DM_RENDERCOMPLETE" on page 29-11 for more information about this parameter.

Returns
Refer to the DM_RENDERCOMPLETE message for a description of the return value.

Remarks
The wpRenderComplete method is called when the object receives a DM_RENDERCOMPLETE
message. Refer to the DM_RENDERCOMPLETE message for more information.

Usage
This method is generally called only by the system as the folder containing the object processed by
the DM_RENDERCOMPLETE message.

How to Override
This method should be overridden if the class has a special rendering mechanism and format.

Related Methods
• wpDragOver
• wpDrop
• wpFormatDragltem
• wpRender
• wpEndConversation

9-190 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpRestore (WPObJecl • sell)

wpRestore -
WPObject instance method

The wpRestore instance method is called to allow the object to restore its views from the hidden or
minimized states.

Parameters
sell (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method is the inverse of the wpHide method.

Usage
This method can be called at any time in order to restore all views of this object from the hidden or
minimized state.

How to Override
This method is generally not overridden.

Related Methods
• wpHide

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-191

wpRestoreData -
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpRestoreData (WPOb)ect * self, PSZ pszClass, ULONG ulKey, PBYTE pbValue,
PULONG cbValue)

The wpRestoreData instance method is called to allow the object to restore its binary instance data.

Parameters
self (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKey (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

pbValue (PBYTE) - input/output

The address of the data to be restored.

cbValue (PULONG) - input/output

The size of the data block to be restored. If pbValue is NULL, the actual size will be returned in
cbValue.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method restores data that was saved by a call to wpSaveData.

Usage
This method can be called only during the processing of the wpRestoreState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreLong
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSaveLong
• wpSaveState
• wpSaveString

9-192 PM Programming Reference

#define INCL_WINWORKPLACE

wpRestoreLong
WPObject instance method

BOOL wpRestoreLong (WPObject * self, PSZ pszClass, ULONG ulKey, PULONG pValue)

The wpRestorelong instance method is called to allow the object to restore a 32-bit instance data
value.

Parameters
sell (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKey (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

pValue (PULONG) - output

The address of the long value.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method restores a 32-bit data value that was saved by a call to wpSavelong.

Usage
This method can be called only during the processing of the wpRestoreState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSavelong
• wpSaveState
• wpSaveString

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-193

wpRestoreState
WPObject instance method

#define INCL_ WINWORKPLACE

BOOL wpRestoreState (WPObJect * self, ULONG ulReserved)

This method restores the state of the object which was saved during the processing of the
wpSaveState method.

Parameters
self (WPObject *) - input

The pointer to this object.

ulReserved (ULONG) - input

The reserved value must be 0.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method restores the state of the object which was saved during the processing of the
wpSaveState method.

Usage
This method is generally called only by the system while it is processing the wplnitData method.

How to Override
This method should be overridden by all classes which provide settings that can be saved. An
override of the wpSaveState method is a prerequisite if persistent instance data is desired.

Override processing of this method typically includes a series of calls to any combination of the
restore state methods:

• wpRestoreData
• wpRestorelong
• wpRestoreString

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSavelong
• wpSaveState
• wpSaveString

9-194 PM Programming Reference

#define INCL_WINWORKPLACE

wpRestoreString
WPObject instance method

BOOL wpRestoreStrlng (WPOb)ect * self, PSZ pszClass, ULONG ulKey, PSZ pszValue,
PULONG pulValue)

The wpRestoreString instance method is called to allow the object to restore an ASCllZ instance data
string.

Parameters
self (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKey (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

pszValue (PSZ) - input/output

The address of the string to be restored.

pulValue (PULONG) - input/output

The size of the string to be restored. If pszValue is NULL, the actual size will be returned in
pulValue.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This method restores an ASCllZ string that was saved by a call to wpSaveString.

Usage
This method can be called only during the processing of the wpRestoreState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestoreLong
• wpRestoreState
• wpSaveData
• wpSavelmmediate
• wpSaveLong
• wpSaveState
• wpSaveString

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-195

wpSaveData
WPObject instance method

#define INCL WINWORKPLACE

BOOL wpSaveData (WPObJect * self, PSZ pszClass, ULONG ulKey, PBYTE pbValue,
ULONG ulValue)

The wpSaveData instance method is called to allow an object to save its binary instance data.

Parameters
self (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKey (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

pbValue (PBYTE) - input

The address of the block of data to be stored.

ulValue (ULONG) - input

The size of the block of data to be stored.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The saved data can be restored by issuing a call to wpRestoreData.

Usage
This method can be called only during the processing of the wpSaveState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreState
• wpRestoreString
• wpSavelmmediate
• wpSavelong
• wpSaveState
• wpSaveString

9-196 PM Programming Reference

#define INCL_WINWORKPLACE

BOOL wpSaveDeferred (WPPalette * somSelf)

wpSaveDeferred
WPObject instance method

The wpSaveDeferred instance method tells the system to make the object to save itself

asynchronously.

Parameters
somSelf (WPPalette *) - input

The pointer to the instance object.

Returns
TRUE The save request was accepted.

FALSE The save request was not accepted.

Remarks
The system maintains a list of objects that currently need to be saved and will periodically ask those

objects to save their state data to persistent storage using the wpSavelmmediate method. The

wpSaveDeferred method should always be used in preference to the wpSave/mmediate method

because of performance. The only exception is if the state data was changed in some critical way.

For example, if the object wanted to save a new password, it would use wpSavelmmediate instead of

wpSaveDeferred to guarantee that the password has been saved before continuing.

Usage
This method should be called by all object classes whenever state data is altered. The workplace

classes invoke this method each time a wpSetXXX method is used.

How to Override
This method should not be overridden

Related Methods
• wpSavelmmediate

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-197

wpSavelmmediate -
WPObjed instance method

#define INCL WINWORKPLACE

I BOOL wpSavelmmedlate (WPOblecl • self)

The wpSavelmmediate instance method is called to allow the object to save its current state.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method will cause the wpSaveState method to be called.

Usage
This method is called"automatically for all objects when they are made dormant or when the system
is shut down. However, an object can call this method on itself at any time when a critical instance
variable is changed.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelong
• wpSaveState
• wpSaveString

9-198 PM Programming Reference

#define INCL_WINWORKPLACE

wpSaveLong
WPObject instance method

BOOL wpSaveLong (WPObJect * self, PSZ pszClass, ULONG ulKeyle, ULONG ulValue)

The wpSavelong instance method is called to allow the object to save a 32-bit instance data value.

Parameters
self (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKeyle (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

ulValue (ULONG) - input

The value (ULONG) to be stored.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The saved 32-bit data value can be restored by issuing a call to wpRestorelong.

Usage
This method can be called only during the processing of the wpSaveState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSaveState
• wpSaveString

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-199

wpSaveState -
WPObject instance method

#define INCL_WINWORKPLACE

I BOOL wpSav,._ (WPObject • self)

The wpSaveState instance method is called to allow the object to save its state.

Parameters
self (WPObject *) - input

The pointer to this object.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The saved state of the object is restored during the processing of the wpRestoreState method.

Usage
This method is generally called by the system while it is processing either the wpClose or
wpSavelmmediate methods. If an immediate save is required, the wpSavelmmediate method can be
called.

How to Override
This method should be overridden by all classes which provide savable settings. An override of the
wpRestoreState method is a prerequisite.

Override processing of this method typically includes a series of calls to any combination of the save
state methods:

• wpSaveData
• wpSavelong
• wpSaveString

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSavelong
• wpSaveString

9-200 PM Programming Reference

#define INCL_WINWORKPLACE

wpSaveString
WPObject instance method

BOOL wpSaveStrlng (WPObject * self, PSZ pszClass, ULONG ulKey, PSZ pszValue)

The wpSaveString instance method is called to allow the object to save an ASCllZ instance data
string.

Parameters
self (WPObject *) - input

The pointer to this object.

pszClass (PSZ) - input

A pointer to a zero terminated string which contains any unique string. The class name is
recommended but not enforced.

ulKey (ULONG) - input

A class defined identifier that correlates to a particular instance data variable.

pszValue (PSZ) - input

String to be stored.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The saved ASCllZ string can be restored by issuing a call to wpRestoreString.

Usage
This method can be called only during the processing of the wpSaveState method.

How to Override
This method is generally not overridden.

Related Methods
• wpRestoreData
• wpRestorelong
• wpRestoreState
• wpRestoreString
• wpSaveData
• wpSavelmmediate
• wpSavelong
• wpSaveState

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-201

wpScanSetupString -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpScanSetupStrlng (WPObject * self, PSZ pszSetupStrlng, PSZ pszKey, PSZ pszVatue,
PULONG pcbVatue)

The wpScanSetupString instance method is called to allow an object to parse the setup string that is
passed when the object is created.

Parameters
self (WPObject *) - input

The pointer to this object.

pszSetupStrlng (PSZ) - input

The class specific setup parameters for an object.

pszKey (PSZ) - input

The key to scan for.

pszValue (PSZ) - input

The buffer for the value.

pcbValue (PULONG) - input/output

If pszValue is null, the length of the string plus one is returned in pcbValue.

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
If a comma or semicolon is needed in the setup string, the escape character "can be used.

Usage
This method is generalty called from within an override of the wpSetup method.

How to Override
This method- is generally not overridden.

Related Methods
• wpclsNew
• wpSetup
• WinCreateObject

9-202 PM'Programming Reference

Example Code

wpScanSetupString -
WPObject instance method

If NOMOVE = YES is in the setup string, make the object non-moveable.

UCHAR szValue[255];
ULONG cbValue = 255;

if (wpScanSetupString (self, pszSetup,
"NOMOVP,
szValue,
&cbValue)) {

}

if (! strcmpi (szVal ue, "YES")) {
_wpSetStyle (self, _wpQueryStyle (self) I OBJSTYLE_NOMOVE);

}

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-203

wpSetAssociationFilter -
WPProgram instance method

#define INCL WINWORKPLACE

BOOL wpSetAssoclatlonfllter (WPProgram * self, PSZ pszfllter)

The wpSetAssociationFilter instance method is called to set an association of the program object to a
data file object based on a file title filter.

Parameters
self (WPProgram *) - input

The pointer to the object.

pszfllter (PSZ) - input

A pointer to a string containing file title filters to associate. This string can contain several file
title filters separated by a comma. Example: pszFilter = "*.TXT, *.DOC"

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The association filter is used to designate this program as an available open view for data file
objects which have a title that matches one of the association filters which are set. If a data file
object matches a filter in a program object or program file object, the title of the program object or
program file object will appear in the data file object's Open cascade of its pop-up menu. A call to
the wpSetAssociationFilter method will cause the existing association filters for this object to be
replaced. To determine the existing association filters that are set on this object, a call to the
wpQueryAssociationFilter method can be made. The wpSetAssociationType method can be called to
set an association based on the type of data file object.

Usage
This method can be called at any time in order to set an association of the program object to a data
file object based on a file title filter.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationFilter
• wpSetAssociationType

9-204 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetAssociationFilter -
WPProgramFile instance method

BOOL wpSetAssociationFilter (WPProgramFile * self, PSZ pszFllter)

The wpSetAssociationFilter instance method is called to set an association of the program object to a
data file object based on a file title filter.

Parameters
self (WPProgramFile *) - input

The pointer to the object.

pszFllter (PSZ) - input

A pointer to a string containing file title filters to associate. This string can contain several file
title filters separated by a comma.

Example: pszFilter = "*.TXT, *.DOC"

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The association filter is used to designate this program as an available open view for data file
objects which have a title that matches one of the association filters which are set. If a data file
object matches a filter in a program object or program file object, the title of the program object or
program file object will appear in the data file object's Open cascade of its pop-up menu. A call to
the wpSetAssociationFilter method will cause the existing association filters for this object to be
replaced. To determine the existing association filters that are set on this object, a call to the
wpQueryAssociationFilter method can be made. The wpSetAssociationType method can be called to
set an association based on the type of data file object.

Usage
This method can be called at any time in order to set an association of the program object to a data
file object based on a file title filter.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationType

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-205

wpSetAssociationType -
WPProgram instance method

#define INCL WINWORKPLACE

BOOL wpSetAssoclatlonType (WPProgram * self, PSZ pszType)

The wpSetAssociationType instance method is called to set an association of the program object to a
data file object based on a file type.

Parameters
self (WPProgram *) - input

The pointer to the object.

pszType (PSZ) - input

A pointer to a string containing file types to associate. This string can contain several file types
separated by a comma. Example: pszType = "in Text,C Code"

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The association type is used to designate this program as an available open view for data file objects
which have a type that matches one of the association types which are set. If a data file object
matches a type in a program object or program file object, the title of the program object or program
file object will appear in the data file object's Open cascade of its popup menu. A call to the
wpSetAssociationType method will cause the existing association types for this object to be
replaced. To determine the existing association type(s) that are set on this object, a call to the
wpQueryAssociationType method can be made. The wpSetAssociationFilter method can be called to
set an association based on the title of data file object.

Usage
This method can be called at any time in order to set an association of the program object to a data
file object based on a file type.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationFilter
• wpSetAssociationType

9-206 PM Programming Reference

#define INCL WINWORKPLACE

wpSetAssociationType
WPProgramFile instance method

BOOL wpSetAssoclatlonType (WPProgramflle * self, PSZ pszType)

The wpSetAssociationType instance method is called to set an association of the program object to a
data file object based on a file type.

Parameters
self (WPProgramFite *) - input

The pointer to the object.

pszType (PSZ) - input

A pointer to a string containing file types to associate. This string can contain several file types
separated by a comma.

Example: pszType = "Plain Text,C Code"

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The association type is used to designate this program as an available open view for data file objects
which have a type that matches one of the association types whtch are set. If a data file object
matches a type in a program object or program file object, the title of the program object or program
file object will appear in the data file object's Open cascade of its popup menu. A call to the
wpSetAssociationType method wilf cause the existing association types for this object to be
replaced. To determine the existing association types that are set on this object, a call to the
wpQueryAssociationType method can be made. The wpSetAssociationFilter method can be called to
set an association based on the title of data file object.

Usage
This method can be called at any time in order to set an association of the program object to a data
file object based on a file type.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryAssociationType
• wpSetAssociationFilter

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-207

wpSetComputerName -
WPPrinter instance method

#define INCL_WINWORKPLACE

BOOL wpSetComputerName (WPPrlnter * self, PSZ pszComputerName)

The wpSetComputerName instance method is called to set the name of the computer that the printer
exists on.

Parameters
self (WPPrinter *) - input

The pointer to the object to set the computer name.

pszComputerName (PSZ) - input

The computer name to be set.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryComputerName
• wpSetPrinterName

9-208 PM Programming Reference

#define INCL WINWORKPLACE

wpSetDefaultHelp -
WPObject instance method

BOOL wpSetDelaultHelp (WPObJect * sell, ULONG ulPanellD, PSZ pszHelpLlbrary)

The wpSetDefaultHelp instance method is called to set the default help panel for the object.

Parameters
sell (WPObject *) - input

The pointer to the object.

ulPanellD (ULONG) - input

The help panel identity.

pszHelpLlbrary (PSZ) - input

The pointer to name of Help Library. A NULL value implies the default should be used.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The default help panel for this class can be determined by calling the wpclsQueryDefaultHelp
method.

Usage
This method can be called at any time in order to set the default help panel for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpDisplayHelp
• wpMenultemHelpSelected
• wpQueryDefaultHelp
• wpclsQueryDefaultHelp

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-209

wpSetDefaultPrinter -
WPPrinter instance method

#define INCL_WINWORKPLACE

BOOL wpSetDefaullPrlnter (WPPrlnter * self)

The wpSetDefaultPrinter instance method is called to set a default print object.

Parameters
self (WPPrinter *) - input

The pointer to the object to be the default.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

9-210 PM Programming Reference

#define INCL WINWORKPLACE

wpSetDefaultView -
WPObject instance method

BOOL wpSetDefaultVlew (WPObJect * self, ULONG ulVlew)

The wpSetDefaultView instance method is called to allow an object to change its current default open
view.

Parameters
self (WPObject *) - input

The pointer to this object.

ulVlew (ULONG) - input

Specifies which view to open.

OPEN_ CONTENTS
OPEN_DEFAULT
OPEN_DETAILS
OPEN_HELP
OPEN_RUNNING
OPEN_SETTINGS
OPEN_TREE
OPEN_USER

Returns
Success indicator:

Open content view.
Open default view (same as double-click}.
Open details view.
Display HelpPanel.
Execute object.
Open settings notebook.
Open tree view.
Class specific views have a greater value than this.

True Successful completion

False Error occurred.

Remarks
The default open view for this class can be determined by calling the wpclsQueryDefaultView
method.

Usage
This method can be called at any time in order to set the default open view for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryDefaultView
• wpclsQueryDefaultView

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-211

wpSetError -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpSetError {WPObject * self, ULONG ulErrorlD)

The wpSetError instance method is called to identify an error condition.

Parameters
self {WPObject *) - input

The pointer to the object.

ulErrorlD {ULONG) - input

An error identity. Refer to the wpQueryError method for information about this value.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The wpSetError method will set the last error on an object. The error identity is retrievable by
issuing a call to the wpQueryError method.

Usage
This method can be called at any time in order to identify an error condition. This method is typically
called prior to returning unsuccessfully from a method.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryError

9-212 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetFldrAttr -
WPFolder instance method

BOOL wpSetFldrAttr (WPFolder * seH, ULONG ulAttr, ULONG ulVlew)

The wpSetFldrAttr instance method is called to allow the folder to change its current view attributes.

Parameters
self (WPFolder *) - input

The pointer to this object.

ulAttr (ULONG) - input

A flag indicating the object's attributes. These are the CV_* attributes defined by the Container

Control Window. See CNRINFO on page A-15 for detailed description.

ulVlew (ULONG) - input

A flag indicating an object's open view.

OPEN_ CONTENTS
OPEN_DETAILS
OPEN_TREE

Returns
Success indicator:

Open content view.
Open details view.
Open tree view.

TRUE Successful completion

FALSE Error occurred.

Remarks
The flags should be valid for the specified view. For example, CV_TREE should not be specified for

details view.

Usage
This method can be called at any time in order to set the view attributes.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryFldrAttr
• wpQueryFldrFlags
• wpQueryFldrFont
• wpSetFldrFlags
• wpSetFldrFont

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-213

wpSetFldrDetailsClass -
WPFolder instance method

#define INCL_WINWORKPLACE

BOOL wpSetfldrDetallsClass (WPFolder * self, M_WPObJect * Class)

The wpSetFldrDetailsClass instance method is called to set the class for which details in the folder
will be displayed.

Parameters
self (WPFolder *) - input

The pointer to the object.

Class (M_WPObject *) - input

The pointer to the class object for which details are to be displayed.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
Since folders can contain objects of different classes which can have different details, it is often
necessary for the user to specify which class of details to be displayed. The value set by this method
is not used until a details view of the folder is opened. The wpQueryFldrDetailsClass method can be
called to determine the class of details currently set. All column visibility states are reset by this
method.

Usage
This method can be called at any time in order to set the current class of details to be displayed.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryFldrDetailsClass

9-214 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetFldrFlags -
WPFolder instance method

BOOL wpSetfldrflags (WPFolder * self, ULONG ulflags)

The wpSetFldrFlags instance method is called to allow the folder to change its current flags.

Parameters
self (WPFolder *) - input

The pointer to this object.

ulflags (ULONG) - input
The folder flags to be set

FOl_POPULATEDWITHALL This flag is set if the folder was populated with all its
contents.

FOl_POPULATEDWITHFOLDERS This flag is set if the folder was populated only with folders
that it contains.

FOl_WORKAREA This flag is set if the user sets the workarea property.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to set a folder's ftag.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryFldrAttr
• wpQueryFldrFlags
• wpQueryFldrFont
• wpSetfldrAttr
• wpSetFldrFont

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-215

wpSetFldrFont -
WPFolder instance method

#define INCL_WINWORKPLACE

BOOL wpSetFldrFont (WPFolder * self, PSZ pszFont, ULONG ulVlew)

The wpSetFldrFont instance method is called to allow the folder to change its current font.

Parameters
self (WPFolder *) - input

The pointer to this object.

pszFont (PSZ) - input

A pointer to a buffer containing the font name.

If pszFont is NULL, the font presentation parameter will be set back to the default font. If a
pointer to a NULL string is passed, the font presentation parameter will be set to the currently
defined font.

ulVlew (ULONG) - input

A flag indicating an object's open view.

OPEN_CONTENTS
OPEN_DETAILS
OPEN_ TREE

Returns
Success indicator:

Open content view.
Open details view.
Open tree view.

TRUE Successful completion

FALSE Error occurred.

Remarks
The font name should be a valid presentation parameter string.

Usage
This method can be called at any time in order to change the current font for a view.

How to Override
This method Is generally not overridden.

9-216 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetlcon
WPObject instance method

BOOL wpSetlcon (WPObject * self, HPOINTER hptrNewlcon)

The wpSetlcon instance method is called to allow the object to set its current icon.

Parameters
self (WPObject *) - input

The pointer to this object.

hptrNewlcon (HPOINTER) - input

A pointer to the object handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
If the OBJSTYLE_NOTDEFAUL TICON style is currently set for the object, the object's icon will be
destroyed if the object is destroyed or made dormant.

Usage
This method can be called at any time in order to change the visible icon for this object. To
permanently change the icon, the wpSetlconData method should be called.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQuerylcon
• wpQuerylcon
• wpQuerylconData
• wpSetlconData

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-217

wpSetlconData -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpSetlconData (WPObJect * self, PICONINFO pplconlnfo)

The wpSetlconData instance method is called to allow the object to permanently set its current icon.

Parameters
self (WPObject *) - input

The pointer to this object.

pplconlnfo (PICONINFO) - input

A pointer to an ICONINFO structure containing an icon specification.

Returns
Success indicator:

True Successful completion

False Error occurred.

Usage
This method can be called at any time in order to permanently change the icon for this object. To
temporarily change or refresh the icon for this object, the wpSetlcon method should be called.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQuerylcon
• wpQuerylcon
• wpQuerylconData
• wpSetlcon

9-218 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetNextlconPos -
WPFolder instance method

BOOL wpSelNexllconPos (WPFolder * self, PPOINTL ppll)

The wpSetNextlconPos instance method is called to allow the folder to change the next icon position.

Parameters
self (WPFolder *) - input

The pointer to this object.

ppll (PPOINTL) - input

The position within the folder.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
The next icon position is typically set during a drag or drop operation in order to ensure that the
items dropped into a folder are located where the user wanted them.

Usage
This method can be called at any time in order to set the next icon position at which objects will be
inserted in the folder. If this method is used, the previous next position should be queried and
restored afterwards.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryNextlconPos

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-219

wpSetPalettelnfo -
WPPalette instance method

#define INCL_WINWORKPLACE

BOOL wpSetPalettelnlo (WPPalette * sell, PPALINFO pPallnlo)

The wpSetPalettelnfo instance method is called to set palette information.

Parameters
sell (WPPalette *) - input

The pointer to the object.

pPallnlo (PPALINFO) - input

A pointer to a PALINFO structure.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
The palette information can be retrieved by issuing a call to wpQueryPalettelnfo.

Usage
This method can be called at any time in order to set the palette information.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryPalettelnfo

9-220 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetPrinterName -
WPPrinter instance method

BOOL wpSetPrlnterName (WPPrinter * self, PSZ pszPrinterName)

The wpSetPrinterName instance method is called to set the name of the printer.

Parameters
self (WPPrinter *) - input

The pointer to the object to set the printer name.

pszPrinterName (PSZ) - input

The printer name to be set.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryPrinterName
• wpSetComputerName

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-221

wpSetProgDetails -
WPProgram instance method

#define INCL WINWORKPLACE

BOOL wpSetProgDetalls (WPProgram * self, PPROGDETAILS pProgDetalls}

The wpSetProgDetails instance method is called to allow the object to change its program details.

Parameters
self (WPProgram *} - input

The pointer to this object.

pProgDetalls (PPROGDETAILS} - input

The pointer to the program details.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to set the details for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryProgDetails

9-222 PM Programming Reference

#define INCL WINWORKPLACE

wpSetProgDetails -
WPProgramFile instance method

BOOL wpSetProgDetalls (WPProgramFlle * self, PPROGDETAILS pProgDetalls)

The wpSetProgDetaHs instance method is called to allow the object to change its program details.

Parameters
self (WPProgramFile *) - input

The pointer to this object.

pProgDetalls (PPROGDETAILS) - input

The pointer to the program details.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage
This method can be called at any time in order to set the details for this object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryProgDetails

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-223

wpSetRealName -
WPFileSystem instance method

#define INCL_WINWORKPLACE

BOOL wpSetRealName (WPObJect * sell, PSZ pszFllename)

The wpSetRealName instance method will set the physical name of a file system object.

Parameters
sell (WPObject *) - input

The pointer to the object.

pszFllename (PSZ) - input

A pointer to a new filename. This file can not be fully qualified.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
In most cases, the file system object's real name and title are identical. When a title is set that the
file system containing the object cannot handle, the real name is different. In this situation, real
name is set to be a truncated title. In the case where the real name and the title are different, the
title is stored in the file's ".LONGNAME" extended attribute.

Usage
This method can be called at any time in order to set the physical name for a file system object.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryRealName

9-224 PM Programming Reference

#define INCL WINWORKPLACE

wpSetShadowTitle -
WPShadow instance method

BOOL wpSetShadowTltle (WPShadow * self, PSZ pszTltle)

The wpSetShadowTitle instance method is called to set the title on the shadow without affecting the
title on the object it is shadowing.

Parameters
self (WPShadow *) - input

The pointer to the object.

pszTltle (PSZ) - input

A pointer to a title.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Usage
This method can be called at any time in order to set a title on a shadow object without affecting the
title on the object it is shadowing.

How to Override
This method is generally not overridden.

Related Methods
• wpSetTitle

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-225

wpSetStyle -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpSetStyle (WPOb)ect * self, ULONG ulNewStyle)

The wpSetStyle instance method is called to allow an object to set its current object style.

Parameters
self (WPObject *) - input

The pointer to this object.

ulNewStyle (ULONG) - input

OBJSTYLE_NOCOPY
OBJSTYLE_NODELETE
OBJSTYLE_NODRAG
OBJSTYLE_NOSHADOW
OBJSTYLE_NOMOVE
OBJSTYLE_NOPRINT
OBJSTYLE_NOTDEFAUL TICON
OBJSTYLE_ TEMPLATE
OBJSTYLE_NOTVISIBLE
OBJSTYLE_NORENAME

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Usage

Cannot be copied.
Cannot be deleted.
Cannot be dragged.
Cannot have shadow created.
Cannot move.
Cannot be printed.
Destroy icon when object goes dormant
This object is a template.
This object is not visible.
Cannot be renamed.

This method can be called at any time in order to change an object's styie.

How to Override
This method is generally not overridden.

Related Methods
• wpclsQueryStyle
• wpQueryStyle

9-226 PM Programming Reference

#define INCL_WINWORKPLACE

wpSetTitle -
WPObject instance method

BOOL wpSetTltle (WPObJect * self, PSZ pszNewTltle)

The wpSetTitle instance method is called to allow the object to set its current title.

Parameters
self (WPObject *) - input

The pointer to this object.

pszNewTltle (PSZ) - input

A pointer to a zero terminated string which contains the title of the object.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
Valid titles must be less than CCHMAXPATHCOMP characters in length - currently defined as 256.

Usage
This method can be called at any time in order to set an object's title.

How to Override
This method is generally not overridden.

Related Methods
• wpQueryTitle
• wpclsQueryTitle

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-227

wpSetType -
WPFileSystem instance method

#define INCL_WINWORKPLACE

BOOL wpSetType (WPFlleSystem * self, PSZ pszTypes)

The wpSetType instance method is called to allow the object to change the type of its file.

Parameters
self (WPFileSystem *) - input

The pointer to this object.

pszTypes (PSZ) - input

Pointer to a buffer containing type to set. This string can contain a list of types delineated by a
line feed character. For example, psztypes="Plain Text\nC code".

Returns
Success indicator:

True Successful completion

False Error occurred.

Remarks
This method will cause the file's .TYPE extended attribute to be set.

Usage
This method can be called at any time in order to set the type on the file object.

How to Override
This method is generally not overridden.

9-228 PM Programming Reference

#define INCL WINWORKPLACE

wpSetup
WPObject instance method

BOOL wpSetup {WPOb)ect * sell, PSZ pszSetupStrlng)

The wpSetup instance method is called to allow the newly created object to initialize itself.

Parameters
sell {WPObject *) - input

The pointer to this object.

pszSetupString {PSZ) - input

The pointer to setup string.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
If wpSetup returns FALSE, the creation of the object is terminated. The pszSetupString contains a
series of "keyname=value" pairs separated by semicolons, that change the behavior of the object.

Each object class defines the keynames and the parameters it expects to see immediately following.
Note that all parameters have safe defaults, so it is never required to pass parameters to an object.
If a comma or semicolon is needed in the setup string, the escape character A can be used.

The following table shows the keyname-value pairs supported by the WPObject class.

KEYNAME VALUE Description

TITLE Title This sets the object's title. This is
equivalent to calling the wpSetTitle
method.

ICON FILE filename This sets the object's icon. This is
equivalent to calling the
wpSetlconData method.

HELPPANEL id This sets the object's default help
panel. This is equivalent to calling
the wpSetDefaultHelp method.

HELPLIBRARY filename This sets the help library.

TEMPLATE YES This sets the object's template
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_TEMPLATE.

NO This resets the object's template
property.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-229

wpSetup -
WPObject instance method

KEYNAME VALUE Description

NO DELETE YES This sets the object's no delete
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NODELETE.

NO This resets the object's no delete
property.

NOCOPY YES This sets the object's no copy
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NOCOPY.

NO This resets the object's no copy
style.

NO MOVE YES This sets the object's no move
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NOMOVE.

NO This resets the object's no move
property.

NOSHADOW YES This sets the object's no link
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NOSHADOW.

NO This resets the object's no link
property.

NOTVISIBLE YES This sets the object's not visible
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NOTVISIBLE.

NO This resets the object's not visible
property.

NOPRINT YES This sets the object's no print
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NOPRINT.

NO This resets the object's no print
property.

ICON RESOURCE id,module This sets the object's icon. This is
equivalent to calling the
wpSetlconData method. 'id' is the
identity of an icon resource in the
'module' dynamic link library (DLL).

ICONPOS x,y This sets the object's initial icon
position. The x and y values
represent the position in the object's
folder in percentage coordinates.

9-230 PM Programming Reference

KEYNAME

OBJECTID

NO RENAME

NODRAG

VIEWBUTTON

MINWIN

CONCURRENTVIEW

OPEN

VALUE

<name>

YES

NO

YES

NO

HIDE

MINIMIZE

HIDE

VIEWER

DESKTOP

YES

NO

SETTINGS

DEFAULT

wpSetup
WPObject instance method

Description

This sets the object's identity. The
object id wilJ stay with the object
even if it is moved or renamed. The
object pointer or handle can be
retrieved via the wpclsQueryObject
method or the WinQueryObject
function, respectively. An object id
is any unique string preceded with a
'<'and terminated with a'>'.

This sets the object's no rename
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NORENAME.

This resets the object's no rename
property

This sets the object's no drag
property. This is equivalent to
calling the wpSetStyle method with a
style of OBJSTYLE_NODRAG.

This resets the object's no drag
property.

Views of this object will have a hide
button as opposed to a minimize
button.

Views of this object will have a
minimize button as opposed to a
hide button.

Views of this object will hide when
their minimize button is selected.

Views of this object will minimize to
the minimized window viewer when
their minimize button is selected.

Views of this object will minimize to
the Desktop when their minimize
button is selected.

New views of this object will be
created every time the user selects
open.

Open views of this object will
resurface when the user selects
open.

Open settings view when object is
created or when WinSetObjectData
is called.

Open default view when object is
created or when WinSetObjectData
is called.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-231

wpSetup -
WPObject instance method

Usage
This method is generally only called by the system during the processing of wpclsNew,
WinCreateObject, and WinSetObjectData.

How to Override
This method is overridden by classes which introduce their own KEYNAMES.

Related Methods
• WinCreateObject
• wpclsNew
• WinSetObjectData
• wpScanSetupString

Example Code
pszSetupString= 11TITLE=MYObject,ICONFILE=myobj.ico,HELPPANEL=l32,

TEMPLATE=YES,NODELETE=N0 11

obj = wpclsNew (_WPDataFile,
"My new fil e11

•

pszSetupString,
myfolder,
FALSE);

9-232 PM Programming Reference

#define INCL WINWORKPLACE

wpSetupCell -
WPPalette instance method

BOOL wpSetupCell (WPPalette * self, PVOID pCellData, ULONG ulcb, ULONG ulx,
ULONG uly)

The wpSetupCell instance method is called to initialize a cell.

Parameters
self (WPPalette *) - input

The pointer to the object.

pCellData (PVOID) - input

A pointer to the data to be stored.

ulcb (ULONG) - input

The size of the data to be stored ..

ulx (ULONG) - input

X-coordinate of the cell to be setup.

uly (ULONG) - input

Y-coordinate of the cell to be setup.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Usage
This method can be called at any time in order to initialize a cell.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-233

wpShowPalettePointer -
WPPalette instance method

#define INCL_WINWORKPLACE

BOOL wpShowPalettePolnter (WPPalette * somSelf)

The wpShowPalettePointer instance method displays the applicator pointer for the palette.

Parameters
somSelf (WPPalette *) - input

The pointer to the instance object.

Returns
TRUE The pointer was successfully changed to the applicator symbol for this palette.

FALSE The pointer was not successfully changed to the applicator symbol for this palette.

Remarks
To provide the user with a visual clue to the purpose of a palette window, the mouse cursor is always
changed to the applicator symbol when it is within the bounds of an open palette view window. For
example, when the cursor is within the color palette window it displays a paintbrush. Note that this
method should cause just the applicator to be displayed. When the wpDragCell method is invoked,
the applicator plus the attribute should be shown if possible. For example, the paintbrush used in the
color palette appears to have been dipped in the color that is being applied.

Usage
This method may be called at any time, however it is unlikely to be useful.

How to Override
All subclasses of wpPalette need to override this method to ensure that the cursor changes to an
applicator while it is within the palette window.

Related Methods
• wpDragCell

9-234 PM Programming Reference

#define INCL WINWORKPLACE

I BOOL wpStartJobAgaln (WPJob • sell)

wpStartJobAgain -
WPJob instance method

The wpStartJobAgain instance method is called to start printing a job object again.

Parameters
self (WPJob *) - input

The pointer to the object to be re-started.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-235

wpSwitchTo -
WPObject instance method

#define INCL_WINWORKPLACE

BOOL wpSwltchTo (WPObject * self, ULONG ulVlew)

The wpSwitchTo instance method is called to allow the object to give focus to the specified open
view.

Parameters
self (WPObject *) - input

The pointer to this object.

ulVlew (ULONG) - input

A flag indicating open view to which focus is to be given.

OPEN_ CONTENTS
OPEN_DEFAUL T
OPEN_DETAILS
OPEN_HELP
OPEN_RUNNING
OPEN_SETIINGS
OPEN_ TREE
OPEN_USER

Returns
Success indicator:

Open content view.
Open default view (same as double-click).
Open details view.
Display HelpPanel.
Execute object.
Open settings notebook.
Open tree view.
Class specific views have a greater value than this.

TRUE Successful completion

FALSE Error occurred.

Remarks
The focus is given to the specified open view of the object if it exists. This is done by scanning the
in-use list.

Usage
This method can be called at any time in order to switch to an existing view of this object.

How to Override
This method is generally not overridden.

Related Methods
• wpOpen

9-236 PM Programming Reference

#define INCL_WINWORKPLACE

I BOOL wpUnlackObject (WPObjact • self)

wpUnlockObject -
WPObject instance method

The wpUnlockObject instance method is called to allow an object to go into the dormant state.

Parameters
self (WPObject *) - input

The pointer to the object.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Remarks
The wpUnlockObject method will unlock the specified object. When an object is unlocked, it will
automatically go into the dormant state when it no longer has open views and the container it is in is
no longer open.

Usage
This method can be called at any time in order to allow the object to go into the dormant state.

This method is used in conjunction with other methods which create new instances of objects. If
these methods are called with the flock flag set to TRUE, the new object will be locked into the
awake state until the wpUnlockObject method is called.

How to Override
This method is generally not overridden.

Related Methods
• wpclsCreateDefaultTemplates
• wpQueryContent
• wpCopyObject
• wpclsNew

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-237

wpUnlnitData -
WPObject instance method

#define INCL_WINWORKPLACE

I VOID wpUnlnllData (WPObject • sell)

The wpUnlnitData instance method is called to allow the object to free allocated resources.

Parameters
self (WPObject *) - input

The pointer to this object.·

Returns
The return value is VOID.

Usage
This method is generally only called by the system when the object is made dormant. The object is
made dormant when it is destroyed or when there are no open views and the object and the folder
containing the object is not open.

How to Override
This method is overridden to deallocate resources allocated during the processing of wplnitData.

Related Methods
• wplnitData

9-238 PM Programming Reference

Workplace Class Methods
The following pages contain an alphabetical listing of the Workplace Class methods.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-239

wpclsCreateDefaultTemplates
WPObject class method

#define INCL_WINWORKPLACE

ULONG wpclsCreateDefaultlemplates (M_WPObJect * self, WPFolder * Folder)

The wpclsCreateDefaultTemplates method is called to allow the specified class to create default
template instances of its class.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Folder (WPFolder *) - input

A pointer to the folder in which to create the templates.

Returns
Number of templates created.

Usage
This method is generally only called by the system when the class is registered. A class is
registered by a call to the WinRegisterObjectClass function.

When the system calls this method, "Folder" is a pointer to the Templates folder.

How to Override
This method should be overridden by classes which need to create default template instances of
their class.

9-240 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsFindObjectEnd -
WPObject class method

BOOL wpclsFlndObjectEnd (M_ WPObject * self, HFIND hflndflnd)

The wpclsFindObjectEnd method is called to end the find operation started by a call to the
wpclsFindObjectFirst method.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

hflndflnd (HFIND) - input

The handle associated with a previous wpclsFindObjectFirst or wpclsFindObjectNext method
call.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Usage
This method should be called to terminate a find operation that was started by a previous call to the
wpclsFindObjectFirst method.

How to Override
This method is generally not overridden.

Related Methods
• wpclsFindObjectFirst
• wpclsFindObjectNext

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-241

wpclsFindObjectFirst -
WPObject class method

#define INCL_WINWORKPLACE

BOOL wpclsFlndObJectFlrst (M_WPObJect * sell, PHFIND pllnd, PSZ pszTltle,
WPFolder * Folder, BOOL fSubfolders, PVOID pExtendedCrlterla,
POBJECTS pBuf, PULONG pCount)

The wpclsFindObjectFirst method is called to find workplace objects.

Parameters
sell (M_WPObject *) - input

The pointer to the class object.

pflnd (PHF1ND) - output

The address of the handle associated with this wpclsFindObjectFirst method. This handle is
used with subsequent calls to wpclsFindObjectNext and wpclsFindObjectEnd.

pszTltle (PSZ) - input

The pointer to the title specification for objects to be searched.

This title may include the wildcard characters "*" and "?."

Folder (WPFolder *) - input

A pointer to the folder in which to find objects.

This pointer can be determined by issuing a call to the wpclsQueryFolder method.

fSubfolders (BOOL) - input
Scope indicator.

FALSE

TRUE

Search only the folder specified by Folder.

Search Folder and all folders in its tree.

pExtendedCriterla (PVOID) - input

A pointer to a buffer that contains the class-specific extended search criteria.

pBuf (POBJECTS) - output

A pointer to a buffer that contains an array of object pointers.

The size of this buffer must be large enough to hold the number of requested entries specified by
put Count.

pCount (PULONG) - input/output

The address of the number of matching entries requested in pobjectsBuf. On return, this field
contains the number of entries placed into pobjectsBuf.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

FALSE can indicate:

WPERR_ OBJECT _NOT _FOUND

WPERR_BUFFER_ OVERFLOW

9-242 PM Programming Reference

Remarks

wpclsFindObjectFirst -
WPObject class method

wpclsFindObjectFirst returns object pointers (up to the number requested in pulCount) for as many
objects which match the specifications, and which fits in pobjectsBuf. On output, pulCount contains
the actual number of object pointers returned.

wpclsFindObjectNext uses the find object handle associated with wpclsFindObjectFirst to continue
the search started by the wpclsFindObjectFirst request.

If wpclsFindObjectFirst returns FALSE, the wpQueryError method can be called to retrieve the error
code. Error codes include:

WPERR_OBJECT_NOT_FOUND No objects matching the specified criteria were found.
WPERR_BUFFER_OVERFLOW The pobjectsBuf buffer was not large enough to fit all objects matching

the specified criteria. The wpclsFindObjectNext method should be
called to retrieve the rest of the objects matching the specified
criteria.

The wpclsFindObjectEnd method should be called to terminate the find operation.

Usage
This method can be called at any time in order to find objects.

How to Override
This method is generally not overridden.

Related Methods
• wpclsFindObjectNext
• wpclsFindObjectEnd

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-243

wpclsFindObjectNext -
WPObject class method

#define INCL_WINWORKPLACE

BOOL wpclsFlndOb)ectNext (M_WPOb)ect * self, HFIND hflndflnd, POBJECTS pBuf,
PULONG pCount)

The wpclsFindObjectNext method is called to find the next set of matching objects.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

hflndflnd (HFIND) - input

The handle associated with a previous wpclsFindObjectFirst or wpclsFindObjectNext method
call.

pBuf (POBJECTS) - output

A pointer to a buffer that contains an array of object pointers.

The size of this buffer must be large enough to hold the number of requested entries specified by
pulCount.

pCount (PULONG) - input/output

Address of the number of matching entries requested in pobjectsBuf. On return, this field
contains the number of entries placed into pobjectsBuf.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks

FALSE can indicate:

WPERR_OBJECT _NOT _FOUND

WPERR_BUFFER_ OVERFLOW

wpclsFindObjectNext returns object pointers (up to the number requested in pulCount) for as many
objects which match the specifications, and which fits in pobjectsBuf. On output, pulCount contains
the actual number of object pointers returned.

wpclsFindObjectNext uses the find object handle associated with wpclsFindObjectFirst to continue
the search started by the wpclsfindObjectFirst request.

If wpclsFindObjectNext returns FALSE, the wpQueryError method can be called to retrieve the error
code. Error codes include:

WPERR_OBJECT_NOT_FOUND No objects matching the specified criteria were found.
WPERR_BUFFER_OVERFLOW The pobjectsBuf buffer was not large enough to fit all objects matching

the specified criteria. The wpclsFindObjectNext method should be
called to retrieve the rest of the objects matching the specified
criteria.

The wpclsFindObjectEnd method should be called to terminate the find operation.

9-244 PM Programming Reference

Usage

wpclsFindObjectNext -
WPObject class method

This method can be called at any time in order to find the next set of matching objects. This method
should only be called after a previous call to the wpclsFindObjectFirst method returned an error of
WPERR_BUFFER_ OVERFLOW.

How to Override
This method is generally not overridden.

Related Methods
• wpclsFindObjectFirst
• wpclsFindObjectEnd

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-245

wpclslnitData
WPObject class method

#define INCL_WINWORKPLACE

I VOID wpclalnHDala (M_WPObject • self)

The wpclslnitData method is called to allow the class object to initialize its instance data.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
The return value is VOID.

Remarks
This method will be called immediately after the class object is first awakened. When the class
object is made dormant, the wpclsUnlnitData method is called to give the class object the opportunity
to deallocate resources allocated during the processing of wpclslnitData.

Usage
This method is generally only called by the system when the class object is awakened. The class
object is awakened when the first instance of this class is either awakened or newly created. It is
made dormant again when the last instance of this class is made dormant.

How to Override
Any class that has metaclass instance variables should override this method so that those variables
are all initially in a known state. It is essential to pass this method onto the parent class object
before performing any override processing.

Related Methods
• wpclsUnlnitData

9-246 PM Programming Reference

#define INCL_ WINWORKPLACE

wpclsMakeAwake
WPObject class method

WPObject * wpclsMakeAwake (M_WPObJect * self, PSZ pszTltle, ULONG ulStyle,
HPOINTER hptrlcon, POBJDATA pObJData, WPFolder * Folder,
ULONG ulUser)

The wpclsMakeAwake method is called to allow the specified class to awaken an object.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

pszTltle (PSZ) - input

A pointer to a string containing a title to set on the object. If this value is NULL, the class default
value will be used.

ulStyle (ULONG) - input

The object style flags to set on the object. If this value is NULL, the current or default value will
be used.

Predefined object style bits are as follows:

OBJSTYLE_NOCOPY
OBJSTYLE_NODELETE
OBJSTYLE_NODDRAG
OBJSTYLE_NOLINK
OBJSTYLE_NOMOVE
OBJSTYLE_NOPRINT
OBJSTYLE_NOTDEFAUL TICON
OBJSTYLE_NOTVISIBLE
OBJSTYLE_ TEMPLATE

hptrlcon (HPOINTER) - input

Do not allow copy on the object.
Do not allow delete on the object.
Do not allow drag of this object.
Do not allow link on the object.
Do not allow move on the object.
Do not allow print of this object.
Destroy icon when object goes to sleep.
Make this object hidden.
This object is a template.

The icon to set on the object. If this value is NULL, the class default value will be used.

pObJData (POBJDATA) - input

A pointer to the object data. If this value is NULL, the class default value will be used.

Folder (WPFolder *) - input

A pointer to a folder object which contains the new object. This pointer can be determined by
issuing a call to the wpclsQueryFolder method.

ulUser (ULONG) - input

This value is defined by the user and used by the base storage class.

Returns
Success indicator:

NULL Error occurred.

Other Pointer to the awakened object.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-247

wpclsMakeAwake -
WPObject class method

Remarks
An object is made awake when it is created in an open folder or when a folder containing the object
is opened. An object awakened by the wpclsMakeAwake class method is automatically locked. The
wpUnlockObject method can be called to allow the object to return to its dormant state.

Usage
This method is generally called only by base storage classes in order to awaken an object from the
dormant state.

How to Override
This method is generally not overridden.

Related Methods
• wpclsNew
• wplnitData
• wpUnlockObject

9-248 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsNew
WPObject class method

WPObject * wpclsNew (M_WPObject * self, PSZ pszTltle, PSZ pszSetupEnv,
WPFolder * Folder, BOOL flock)

The wpclsNew method is called to make an new instance of this class of object.

Parameters
self (M_WPObject *) - input

The pointer to the class in which a new instance is to be created.

pszTltle (PSZ) - input

A pointer to a zero-terminated string which contains the initial title of the object as it is to appear
when displayed on the user interface underneath an icon or on the title bar of an open object.

pszSetupEnv (PSZ) - input

A pointer to a zero terminated string which contains the object-specific parameters to the new
object. Refer to wpSetup for the description of this field for the class of object being created.
The pszSetupEnv string is extracted when the wpSetup method is called.

Folder (WPFolder *) - input

A pointer to a Folder object in which to place this new object. This pointer can be determined by
issuing a call to the wpclsQueryFolder method.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new flag will remain awake until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator:

NULL Error occurred.

Other A pointer to the new object created.

Remarks
This method is a modified version of somNew that takes arguments. These arguments provide a way
to create a new object with a defined state.

Usage
This method can be called at any time in order to create a new workplace object The created object
is a persistent instance of the class specified by WPClass.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-249

wpclsNew -
WPObject class method

Related Methods
• wpFree
• wpclsQueryFolder
• wpUnlockObject
• wpSetup

9-250 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsQueryDefaultHelp -
WPObject class method

ULONG wpclsQueryDefaullHelp (M_WPObject * self, PULONG pHelpPanelld,
PSZ pszHelpLlbrary)

The wpclsQueryDefaultHelp method is called to allow the class object to specify its default help
panel for its instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

pHelpPanelld (PULONG) - output

The pointer to the help panel id.

pszHelpLlbrary (PSZ) - output

The pointer to the buffer in which to place the name of help library. This buffer should be at
least the length of CCHMAXPATH bytes.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Remarks
This class method is called during the default processing of wpQueryDefaultHelp.

Usage
This method can be called at any time in order to determine the default help panel for this object
class.

How to Override
The default WPObject class does not process this method other than returning FALSE.

Related Methods
• wpDisplayHelp
• wpMenultemHelpSelected
• wpQueryDefaultHelp
• wpSetDefaultHelp

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-251

wpclsQueryDefaultView
WPObject class method

#define INCL_WINWORKPLACE

ULONG wpclsQueryDefaultVlew (M_WPObJect * self)

The wpclsQueryDefaultView method is called to allow the class object to specify the default open
view for its instance.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
Default open view.

OPEN_ CONTENTS
OPEN_DEFAULT
OPEN_DETAILS
OPEN_HELP
OPEN_RUNNING
OPEN_SETTINGS
OPEN_TREE
OPEN_UNKNOWN
OPEN_USER

Usage

Open content view.
Open default view (same as double-click).
Open details view.
Display HelpPanel.
Execute object.
Open settings notebook.
Open tree view.
Unknown view.
Class specific views have a greater value than this.

This method can be called at any time in order to query the default open view for instances of this
class.

How to Ov.erride
All classes should override this method, so that new objects in their class will always have a
sensible default view (device objects typically have a default view of OPEN_SETTINGS). The default
view is used for both the conditional Open cascade menu and double-clicking on the object.

Related Methods
• wpQueryDefaultView
• wpSetDefaultView

9-252 PM Programming Reference

#define INCL_WINWORKPLACE

PCLASSDETAILS wpclsQueryDetalls (M_WPObJect * self)

wpclsQueryDetails -
WPObject class method

The wpclsQueryDetails method is called to allow the class object to specify the default details view
items for its instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
Success indicator:

NULL Error occurred.

Other Pointer to details information.

Related Methods
• wpQueryDetailsData
• wpclsQueryDetailslnfo

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-253

wpclsQueryDetailslnfo -
WPObject class method

#define INCL WINWORKPLACE

ULONG wpclsQueryDetallslnfo (M_WPObject * self, PCLASSFIELDINFO pClassFleldlnfo,
PULONG pSlze)

The wpclsQueryDetailslnfo method is called to allow the class object to specify its details to be used
for its instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

pClassFleldlnfo (PCLASSFIELDINFO) - input/output

A pointer to details information.

pSlze (PULONG) - input/output

The total number of bytes of details data. This total includes the details added by this class and
ancestor classes.

Returns
The sum of the number of detail columns for the object. This sum includes details added by this
class and ancestor classes.

Remarks
All objects, which have information to display in details view, must override this method.

The two possible queries are:

Query 1: A request for the CLASSFIELDINFO linked list segment associated with an object. This
information is needed just prior to changing the view of container a control to details.

If ppClassFieldlnfo is NON-NULL, *ppClassFieldlnfo points to the head of a linked list of
CLASSFIELDINFO structures to which a linked list of CLASSFIELDINFO structures describing the
details fields of objects of this subclass should be appended. (*ppClassFieldlnfo may be NULL if no
subclasses have appended details data).

For example:

on input *ppClassFieldlnfo:

~CLASSFIELDINFO_l_grandparent_

~cLASSFIELDINF0_2_grandparent~

CLASSFIELDINFO_l_parent

on output *ppClassFieldlnfo:

~CLASSFIELDINFO_l_grandparent_

~CLASSFIELDINF0_2_grandparent~

CLASSFIELDINFO_l_parent
~cLASSFIELDINFO_l_self

The correct way to handle this request is to:

9-254 PM Programming Reference

wpclsQueryDetailslnfo
WPObject class method

• Call the parent method. The parent method returns the number of columns the ancestors have
contributed.

• Walk the chain of CLASSFIELDINFO structures to the end and append the chain of
CLASSFIELDINFO structures for the current class (using the pNextFieldlnfo element).

• If *ppClassFieldlnfo is zero (indicating no parent columns), assign *ppClassFieldlnfo = beginning
of CLASSFIELDINFO chain for this subclass.

• Return the sum of the details columns of the parent and the current subclass.

Note the following differences between the CLASSFIELDINFO and FIELDINFO structures:

• The offFieldData and usLenFieldData fields are required so that appropriate offsets for the data
may be computed. The application is responsible for providing offFieldData and usLenFieldData
fields.

• The ulReserved field should be left NULL.

• Owner draw, comparison, and sort functions may be specified for the field.

For example if an object has three fields:

typedef struct _SAMPLE_DETAIL_DATA {
COATE cdate;
CTIME ctime;
PSZ psz;

} SAMPLE_DETAIL_DATA;

classfieldinfo[0].offFieldData = FIELDOFFSET(SAMPLE,cdate);
classfieldinfo[0].u1LenFieldData = FIELDOFFSET(SAMPLE,ctime)

FIELDOFFSET(SAMPLE,cdate);

classfieldinfo[l].offFieldData = FIELDOFFSET(SAMPLE,ctime);
classfieldinfo[l].ullenFieldData = FIELDOFFSET(SAMPLE,psz) -

FIELDOFFSET(SAMPLE,ctime);

classfieldinfo[2].offFieldData = FIELDOFFSET(SAMPLE,psz);
classfieldinfo[2].ullenFieldData = sizeof(SAMPLE) -

FIELDOFFSET(SAMPLE,psz);

Note that *ppClassFieldlnfo must be modified to point to the beginning of the CLASSFIELDINFO linked
list only if *ppClassFieldlnfo is 0.

The application must return the sum of the details columns of the parent and itself:

return(n_cols-+ n_parent_cols);

Note also that the fields MUST be set up sequentially. classfieldinfo[O] must point to data at an offset
of 0. classfieldinfo[n] must point to data adjacent and directly following that described by
classfieldinfo[-1].

Query 2: The number of bytes of details data associated with an object. This information is needed
prior to allocating memory for a container control insert record.

If pSize is NON-NULL, the override should adjust *pSize by the number of bytes which must be added
to the end of a MINIRECORDCORE structure to hold the details information for objects of this class.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-255

wpclsQueryDetailslnfo -
WPObject class method

Example:

*pSize += bytes_of_details_data;

In the case of the above example,

*pSi ze += si zeof (SAMPLE_DETAIL_DATA);

NOTE: All class field pointers returned should be pointers to static data areas.

Usage
This method is generally only called by the system.

How to Override
This method should be overridden by classes which introduce class-specific details to be displayed
in details view.

Related Methods
• wpQueryDetailsData
• wpclsQueryDetails

9-256 PM Programming Reference

#define INCL_WINWORKPLACE

PSZ wpclsQueryEdltString (M_ WPPalette * self)

wpclsQueryEditString -
WPPalette class method

The wpclsQueryEditString method is called to allow the class object to specify the text to be used in
the edit pushbutton of the palette object's open view.

Parameters
self (M_WPPalette *) - input

The pointer to the class object.

Returns
A pointer to the edit pushbutton string.

Usage
This method can be called at any time in order to determine the text of the edit pushbutton.

How to Override
This method should be overridden in order to specify class-specific edit pushbutton text. The parent
method is generally not called.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-257

wpclsQueryError -
WPObject class method

#define INCL_WINWORKPLACE

ULONG wpclsQueryError (M_WPObJect * somSelf)

The wpclsQueryError class method queries the current error code held within a class object.

Parameters
somSelf (M_WPObject *) - input

The pointer to the class object.

Returns
The last error that occurred when using this class object.

Remarks
When an error occurs within a class method and that method subsequently fails, the calling
procedure can retrieve the error code for that failed method call by using the wpclsQueryError
method. Note that the error code is always that of the last method that failed. A successful method
does not modify the error code held within a class object. This function is analogous to the
WinGetErrorlnfo and the WinGetLastError function calls that are used by Presentation Manager
applications to diagnose the reason for the previous failing call to a Presentation Manager function
call.

The system provided class methods will return error codes as defined in the header file PMERR.H.
For example: the wpclsQueryObject method will normally log an error of
WPERR_OBJECT_NOT_FOUND if it is unable to return an object pointer.

Usage
This method should be called immediately after a class method has failed, in order to diagnose why
the failure occurred.

How to Override
Never override this class method

Related Methods
• wpclsSetError

9-258 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsQueryFolder -
WPObject class method

WPFolder * wpclsQueryfolder (M_WPObJect * self, PSZ pszLocallon, BOOL flock)

The wpclsQueryFolder method is called to get a pointer to a folder object that corresponds to a given
file system location.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

pszLocation (PSZ) - input
Folder location.

This value can be in any of the following formats:

• Predefined object ids of system folders.

"<WP _NOWHERE>"
"<WP _DESKTOP>"
"<WP _OS2SYS>"
"<WP _TEMPS>"
"<WP _CONFIG>"
"<WP _START>"
"<WP _INFO>"
"<WP _DRIVES>"

The hidden folder.
The Desktop.
The System folder.
The Templates folder.
The System Setup folder.
The Startup folder.
The Information folder.
The Drives folder.

• Real name specified as a fully qualified path name.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new flag will remain active until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator:

NULL Error occurred.

Other Pointer to a folder object.

Remarks
To obtain a real name from an object pointer, the wpQueryRealName method should be called.

Usage
This method can be called at any time in order to determine the object pointer for a folder.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-259

wpclsQuerylcon -
WPObject class method

#define INCL_WINWORKPLACE

HPOINTER wpclsQuerylcon (M_WPObjecl * sell}

The wpclsQuerylcon method is called to allow the class object to specify the default icon to be used
for its instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
Success indicator:

NULL Error occurred.

Other Handle to an icon.

Remarks
The class default icon can be loaded on wpclslnitData and freed on wpclsUnlnitData.

Usage
This method can be called at any time in order to determine the default icon for instances of this
class.

How to Override
This method is overridden in order to change the default icon for an instance of the class.

Related Methods
• wpQuerylcon
• wpQuerylconData
• wpSetlcon
• wpSetlconData
• wpclsQuerylconData

9-260 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsQuerylconData
WPObject class method

ULONG wpclsQuerylconData (M_WPObJect * somSelf, PICONINFO plconlnfo)

The wpclsQuerylconData class method allows the system to build the class default icon for a given
class.

Parameters
somSelf (M_WPObject *) - input

The pointer to a class object.

plconlnfo (PICONINFO) - input/output

A handle to the container control window. If this parameter is NULLHANDLE, the size should still
be returned correctly.

Returns
The size of the buffer needed to accommodate the /CONOINFO buffer that is returned by this
particular class object.

Remarks
If NULLHANDLE is passed for the plconlnfo parameter, the caller is asking for the size of the
ICONINFO buffer needed for this class usually for memory allocation purposes. Otherwise, the
plconlnfo parameter can always be assumed to be large enough to accommodate the ICONINFO for
this class.

Note that the ICONINFO structure allows you to specify the default icon in three different ways:

• An icon filename
• A module name and resource identifier
• A block of binary data

However, only one mechanism need be supported any given class. For example, a caller cannot
request one of the three formats by prefilling the ICONINFO structure.

Usage
This method may be called at any time. Typically, it would not be useful for another object class to
make calls to this method.

How to Override
Workplace classes that wish to have a unique class default icon must override this method and fill
out the appropriate fields within the ICONINFO structure. In addition, the correct size for the
ICONINFO must always be returned.

Related Methods
• wpQuerylcon
• wpQuerylconData
• wpSetlcon
• wpSetlconData

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-261

wpclsQuerylnstanceFilter -
WPFileSystem class method

#define INCL_WINWORKPLACE

PSZ wpclsQuerylnstanceFllter (M_WPFlleSystem * self)

The wpclsQuerylnstanceFilter method is called to allow the class object to specify the file title filters
for instances of its class.

Parameters
self (M_WPFileSystem *) - input

The pointer to the class object.

Returns
Success indicator.

NULL Error occurred.

Other A pointer to a string containing file title filters. This string can contain several file title
filters separated by a comma.

Example: "*.TXT, *.DOC"

Remarks
It is important that the values returned by this class method are restricted to class specific filters.
For example, returning a filter of"*.*" could effectively make the system unstable.

Usage
This method can be called at any time in order to determine which file title filters are used to
determine instances of this class.

How to Override
This method should be overridden in order to automatically designate file objects as instances of this
class. The value returned by the override method will replace the current title filter string which is
used to designate instances. If the parent method is called, it should be called first.

Related Methods
• wpclsQuerylnstanceType

9-262 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsQuerylnstanceType
WPFileSystem class method

PSZ wpclsQuerylnstanceType (M_WPFlleSystem * self}

The wpclsQuerylnstanceType method is called to allow the class object to specify the file types for

instances of its class.

Parameters
self (M_WPFileSystem *) - input

The pointer to the class object.

Returns
Success indicator.

NULL Error occurred.

Other A pointer to a string containing file types. This string can contain several file types
separated by a comma.

Example: "Plain Text,C Code"

Remarks
It is recommended that object classes should define their own special type strings.

Usage
This method can be called at any time in order to determine which file types are used to determine

instances of this class.

How to Override
This method should be overridden in order to automatically designate file objects as instances of this

class. The value returned by the override method will replace the current type string which is used

to designate instances. If the parent method is called, it should be called first.

Related Methods
• wpclsQuerylnstanceFilter

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-263

wpclsQueryObject -
WPObject class method

#define INCL_WINWORKPLACE

WPObJect * wpclsQueryObJect (M_WPObJect * somSelf, HOBJECT hObJect)

The wpclsQueryObject class method returns the object pointer for a given persistent object handle.

Parameters
somSelf (M_WPObject *) - input

The pointer to the class object.

hOb)ect (HOBJECT) - input

The handle for a given object instance.

Returns
The pointer to the object that corresponds to the given object handle or NULLHANDLE if that
object no longer exists.

Remarks
All workplace objects can be uniquely identified by a persistent object handle within a given
machine. Once an object handle is obtained for an object (using the wpQueryHandle instance
method), the handle can be used at any subsequent time even if the system was powered off in the
meantime, provided that the object instance has not been destroyed. This method is intended for use
by objects that wish to communicate with other objects using method calls. At any point in time, an
object can reestablish contact with another object by using this method. For example, a WPShadow
object will use this method to get the object pointer to the object it is currently shadowing when it is
made awake. Note that the returned object is locked, so that the called object can access the
returned pointer without the risk of the object being made dormant. When the object pointer is no
longer needed, the wpUnlockObject method should be invoked to permit the system to make that
object dormant when all other locks on it have been released.

Usage
This class method is callable at any time.

How to Override
This class method should not be overridden.

Related Methods
• wpQueryHandle

9-264 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsQueryOpenFolders -
WPFolder class method

WPFolder * wpclsQueryOpenFolders (M_WPFolder * self, WPFolder * Folder,
UlONG ulOptlon, BOOl flock)

The wpclsQueryOpenFolders method is called to allow the specified class to enumerate all open
folders.

Parameters
self (M_WPFolder *) - input

The pointer to the class object.

Folder (WPFolder *) - input

The pointer to a folder object.

This field is ignored unless QC_NEXT is specified in u/Option

ulOptlon (ULONG) - input

A flag indicating the folder to query:

QC_FIRST Return the first open folder

QC_lAST Return the last open folder

QC_NEXT Return the next open folder after Folder.

flock (BOOL) - input
The lock object flag.

If this flag is false, the newly created object will be made dormant whenever the object and the
folder containing the object are closed. If this flag is true, the new flag will remain active until
the caller issues the wpUnlockObject method on it.

Returns
Success indicator.

NULL Error occurred or QC_NEXT was requested on last folder.

Other A pointer to the specified folder object.

Usage
This method can be called at any time in order to determine the open folders.

How to Override
This method is generally not overridden.

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-265

wpclsQuerySettingsPageSize
WPObject class method

#define INCL WINWORKPLACE

BOOL wpclsQuerySettlngsPageSlze (M_WPObject * somSelf, PSIZEL pSlzl)

The wpclsQuerySettingsPageSize class method returns the default size of a settings page in dialog
units for instances of this object class.

Parameters
somSelf (M_WPObject *) - input

The pointer to the class object.

pSlzl (PSIZEL) - input/output

A pointer to the size structure containing the ex and ey dimensions of the default settings page
for this class.

Returns
TRUE The method class call was successful.

FALSE The method class call was unsuccessful.

Remarks
An object class that has abnormally shaped settings pages (for example the pages may be very
wide) can use this method to ensure that when a settings notebook is initially displayed for an
instance of the object class, that settings notebook will be of a suitable size to view the whole
settings page without clipping it. The size specified by this method is only used the very first time
that a settings notebook is displayed, thereafter the settings notebook size and position will be saved
by the system on a per object basis.

Usage
This function is callable, but unlikely to be useful.

How to Override
Object classes with unusual size requirements for their settings pages must override this class
method and change the ex and ey values as necessary to accommodate their settings page sizes.

Related Methods
• wpOpen

9-266 PM Programming Reference

#define INCL_WINWORKPLACE

I ULONG wpclsQuerySl)'la (M_WPObject • self)

wpclsQueryStyle -
WPObject class method

The wpclsQueryStyle method is called to allow the class object to specify the default object class
style for its instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
Class style for this object:

CLSSTYLE_NEVERMOVE Do not allow move of this object.

CLSSTYLE_NEVERSHADOW Do not allow create shadow of this object.

CLSSTYLE_NEVERCOPY Do not allow copy of this object.

CLSSTYLE_NEVERTEMPLATE Do not allow create template for this object.

CLSSTYLE_NEVERDELETE Do not allow delete of this object.

CLSSTYLE_NEVERPRINT Do not allow print of this object.

CLSSTYLE_NEVERDRAG Do not allow drag of this object.

CLSSTYLE_NEVERVISIBLE Make instances alway_s invisible.

CLSSTYLE_NEVERRENAME Do not allow the renaming of this object.

Remarks
When an instance is initially created, it has the same object style (OBJSTYLE_xxx) flags as its class
style (CLSSTYLE_xxx).

Usage
This method can be called at any time in order to determine the default style for instances of this
class.

How to Override
This method should be overridden in order to modify the default object style for instances of this
class.

Related Methods
• wpQueryStyle
• wpSetStyle

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-267

wpclsQueryTitle -
WPObject class method

#define INCL_WINWORKPLACE

I PSZ wpclsQueryTRle (M_WPOb)ect • self)

The wpclsQueryTitle method is called to allow the class object to specify the default title for its
instances.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
Pointer to default title for objects of this class.

Remarks
The title is used as the default for new instances. In addition, the title is used to describe the class in
facilities such as Find, Include, Details, and Sort. The title can be loaded on wpclslnitData and freed
on wpclsUnlnitData.

Usage
This method can be called at any time in order to determine the default title for instances of this
class.

How to Override
All classes should override this method, so that new objects and their classes always have a
sensible default title.

Related Methods
• wpQueryTitle
• wpSetTitle

9-268 PM Programming Reference

#define INCL_WINWORKPLACE

wpclsSetError -
WPObject class method

BOOL wpclsSetError (M_WPObJect * somSelf, ULONG ulErrorld)

The wpclsSetError class method sets the current error code within a class object.

Parameters
somSelf (M_WPObject *) - input

The pointer to the class object.

ulErrorld (ULONG) - input

The error code.

Returns
TRUE The error was successfully stored.

FALSE The error was not successfully stored.

Remarks
This method can be used when writing class methods for workplace objects that return boolean
values. When a given class method fails, the class method can log its error code in the class object
so that the caller can later retrieve it using the wpclsQueryError class method. The function is
analogous to the WinSetErrorlnfo function call that is used by Presentation Manager functions to log
their error return codes.

Usage
It is recommended that this method should only be called by all class methods when they do not
execute successfully, and nowhere else.

How to Override
Never override this class method

Related Methods
• wpclsQueryError

Chapter 9. Workplace Classes, Instance Methods, and Class Methods 9-269

wpclsUnlnitData -
WPObject class method

#define INCL_WINWORKPLACE

I VOID wpclsUnlnllDala (M_WPOblecl • self)

The wpclsUnlnitData method is called to allow the class object to free allocated resources.

Parameters
self (M_WPObject *) - input

The pointer to the class object.

Returns
The return value is VOID.

Usage
This method is generally only called by the system when the class object is made dormant. The
class object is made dormant when the last instance of this class is made dormant.

How to Override
Any class that overrides the wpclslnitData method to allocate resources for its metaclass instance
variables should override this method to deallocate those resources. It is essential to pass this
method onto the parent class object after performing override processing.

Related Methods
• wpclslnitData

9-270 PM Programming Reference

Glossary

A
accelerator. A single key stroke that invokes an
application-defined function.

accelerator table. Used to define which key strokes are
treated as accelerators and the commands they are
translated into.

access permission. All access rights that a user has
regarding an object.

action. One of a set of defined tasks that a computer
performs. Users request the application to perform an
action in several ways, such as typing a command,
pressing a function key, or selecting the action name
from an action bar or menu.

action bar. The area at the top of a window that contains
the choices currently available in the application
program.

action point. The current position on the screen at
which the pointer is pointing. (Contrast with hot spot and
input focus.)

active program. A program currently running on the
computer. See also interactive program, noninteractive
program, and foreground program.

active window. The window with which the user is
currently interacting.

address space. (1) The range of addresses available to
a program. (2) The area of virtual storage available for a
particular job.

alphanumeric video output. Output to the logical video
buffer when the video adapter is in text mode and the
logical video buffer is addressed by an application as a
rectangular array of character cells.

anchor block. An area of Presentation Manager-internal
resources allocated to a process or thread that calls
Win Initialize.

anchor point. A point in a window used by a program
designer or by a window manager to position a
subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface. The
formally-defined programming language that is between
an IBM application program and the user of the program.
See also GP/.

area. In computer graphics, a filled shape such as a
solid rectangle.

ASCII. American National Standard Code for
Information Interchange. A coded character set

consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communications systems,
and associated equipment.

ASCllZ. A string of ASCII characters that is terminated
with a byte containing the value 0.

aspect ratio. In computer graphics, the width-to-height
ratio of an area, symbol, or shape.

asynchronous. (1) Without regular time relationship. (2)
Unexpected or unpredictable with respect to the
execution of a program's instructions. See also
synchronous.

atom. A constant that represents a string. Once a string
has been defined as an atom, the atom can be used in
place of the string to save space. Strings are associated
with their respective atoms in an atom table. See also
integer atom.

atom table. Used to relate atoms with the strings that
they represent. Also in the table is the mechanism by
which the presence of a string can be checked.

attributes. Characteristics or properties that can be
controlled, usually to obtain a required appearance; for
example, the color of a line. See also graphics attributes
and segment attributes.

AVIO. Advanced Video Input/Output.

B
background color. The color in which the background of
a graphic primitive is drawn.

background mix. An attribute that determines how the
background of a graphic primitive is combined with the
existing color of the graphics presentation space.
Contrast with mix.

background program. In multiprogramming, a program
that executes with a low priority. Contrast with
foreground program.

Bezier curves. A mathematical technique of specifying
smooth continuous lines and surfaces, which require a
starting point and a finishing point with several
intermediate points that influence or control the path of
the linking curve. Named after Dr. P. Bezier.

bit map. A representation in memory of the data
displayed on an APA device, usually the screen.

block. (1) A string of data elements recorded or
transmitted as a unit. The elements may be characters,
words, or logical records. (2) To combine two or more
data elements in one block.

border. A visual indication (for example, a separator
line or a background color) of the boundaries of a
window.

Glossary X-1

breakpoint. (1) An instruction in a program for halting
execution. Breakpoints are usually established at
positions in a program where halts, caused by external
intervention, are convenient for restarting. (2) A place in
a program, specified by a command or a condition,
where the system halts execution and gives control to
the workstation user or to a specified program.

bucket. One or more fields in which the result of an
operation is kept.

buffer. (1) A portion of storage used to hold input or
output data temporarily. (2) To allocate and schedule the
use of buffers.

button. A mechanism on a pointing device, such as a
mouse, used to request or initiate an action. Contrast
with pushbutton and radio button.

c
cache. A high-speed buffer storage that contains
frequently accessed instructions and data; it is used to
reduce access time.

cached micro presentation space. A presentation space
from a Presentation Manager-owned store of micro
presentation spaces. It can be used for drawing to a
window only, and must be returned to the store when the
task is complete.

call. (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point. (2) To
transfer control to a procedure, program, routine, or
subroutine.

calling order. A sequence of instructions together with
any associated data necessary to perform a call. Also
known as calling sequence.

cancel. An action that removes the current window or
menu without processing it, and returns the previous
window.

CASE statement. In C, provides the body of a window
procedure. There is one CASE statement for each
message type written to take specific actions.

cell. See character cell.

CGA. Color graphics adapter.

chained llst. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonym for linked list.

character. A letter, digit, or other symbol.

character box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single character from a character
set. See also character mode. Contrast with character
cell.

character cell. The physical, rectangular space in which
any single character is displayed on a screen or printer
device. Position is addressed by row and column
coordinates. Contrast with character box.

X-2 PM Programming Reference

character code. The means of addressing a character in
a character set, sometimes called code point.

character mode. The character mode, in conjunction
with the font type, determines the extent to which
graphics characters are affected by the character box,
shear, and angle attributes.

check box. A control window, shaped like a square
button on the screen, that can be in a checked or
unchecked state. It is used to select one or more items
from a list. Contrast with radio button.

check mark. The symbol that is used to indicate a
selected item on a pull-down.

chlld process. A process that is loaded and started by
another process. Contrast with parent process.

chlld window. A window that is positioned relative to
another window (either a main window or another child
window). Contrast with parent window.

choice. An option that can be selected. The choice can
be presented as text, as a symbol (number or letter), or
as an icon (a pictorial symbol).

class. See window class.

class style. The set of properties that apply to every
window in a window class.

client area. The area in the center of a window that
contains the main information of the window.

clipboard. An area of main storage that can hold data
being passed from one PM application to another.
Various data formats can be stored.

clipplng. In computer graphics, removing those parts of
a display image that lie outside a given boundary.

clip limlts. The area of the paper that can be reached by
a printer or plotter.

clipplng path. A clipping boundary in world-coordinate
space.

CLOCK$. Character-device name reserved for the
system clock.

code page. An assignment of graphic characters and
control-function meanings to all code points.

code point. Synonym for character code.

code segment. An executable section of programming
code within a load module.

color dithering. See dithering.

command. The name and parameters associated with
an action that a program can perform.

command area. An area composed of a command field
prompt and a command entry field.

command entry fleld. An entry field in which users type
commands.

command line. On a display screen, a display line
usually at the bottom of the screen, in which only
commands can be entered.

command prompt. A field prompt showing the location
of the command entry field in a panel.

Common Programming Interface (CPI). A consistent set
of specifications for languages, commands, and calls to
enable applications to be developed across all SAA
environments. See also Systems Application
Architecture.

Common User Access (CUA). A set of rules that define
the way information is presented on the screen, and the
techniques for the user to interact with the information.

compile. To translate a program written in a
higher-level programming language into a machine
language program.

COM1, COM2, COM3. Character-device names reserved
for serial ports 1 through 3.

CON. Character-device name reserved for the console
keyboard and screen.

contiguous. Touching or joining at a common edge or
boundary, for example, an unbroken consecutive series
of storage locations.

control. The means by which an operator gives input to
an application. A choice corresponds to a control.

Control Panel. In PM, a program used to set up user
preferences that act globally across the system.

Control Program. The basic function of OS/2, including
DOS emulation and the support for keyboard, mouse,
and video input/output.

control window. A class of window used to handle a
specific kind of user interaction. Radio buttons and
check boxes are examples.

correlation. The action of determining which element or
object within a picture is at a given position on the
display. This follows a pick operation.

CPI. Common Programming Interface.

critical extended attribute. An extended attribute that is
necessary for the correct operation of the system or a
particular application.

CUA. Common User Access.

current position. The point from which the next primitive
will be drawn.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor indicates
where input from the device will be placed. Types of
cursors include text cursors, graphics cursors, and
selection cursors. Contrast with pointer and input focus.

D
data structure. (ISO) The syntactic structure of symbolic
expressions and their storage-allocation characteristics.

DBCS. See double-byte character set.

deadlock. (1) Unresolved contention for the use of a
resource. (2) An error condition in which processing
cannot continue because each of two elements of the
process is waiting for an action by, or a response from,
the other. (3) An impasse that occurs when multiple
processes are waiting for the availability of a resource
that will not become available because it is being held by
another process that is in a similar wait state.

debug. To detect, diagnose, and eliminate errors in
programs.

decipolnt. In printing, one tenth of a point. There are 72
points in an inch.

default procedure. Function provided by the
Presentation Interface that may be used to process
standard messages from dialogs or windows.

default value. A value used when no value is explicitly
specified by the user. For example, in the graphics
programming interface, the default line-type is 'solid'.

descendant. A process or session that is loaded and
started by a parent process or parent session.

Desktop Manager. In PM, a window that displays a list
of groups of programs, each of which can be started or
stopped.

desktop window. The window, corresponding to the
physical device, against which all other types of windows
are established.

device context. A logical description of a data
destination such as memory, metafile, display, printer, or
plotter. See also direct device context, information
device context, memory device context, metafi/e device
context, queued device context, and screen device
context.

device driver. A file that contains the code needed to
attach and use a device such as a display, printer, or
plotter.

device space. Coordinate space in which graphics are
assembled after all GPI transformations have been
applied. Device space is defined in device-specific units.

dlalog. The interchange of information between a
computer and its user through a sequence of requests by
the user and the presentation of responses by the
computer.

dialog box. A type of window that contains one or more
controls for the formatted display and entry of data. Also
known as a pop-up window. A modal dialog box is used
to implement a pop-up window.

Dlalog Box Editor. A WYSIWYG editor that creates
dialog boxes for communicating with the application
user.

Glossary X-3

dialog Item. A component (for example, a menu or a
button) of a dialog box. Dialog items are also used when
creating dialog templates.

dialog tag language. A markup language used by the
DTL compiler to create dialog objects.

dialog template. The definition of a dialog box, which
contains details of its position, appearance, and window
ID, and the window ID of each of its child windows.

direct device context. A logical description of a data
destination that is a device other than the screen (for
example, a printer or plotter), and where the output is
not to go through the spooler. Its purpose is to satisfy
queries. See also device context.

direct manlpulatlon. The action of using the mouse to
move objects around the screen. For example, moving
files and directories around in the File Manager.

direct memory access (OMA). The transfer of data
between main storage and input/output devices without
intervention by the processor.

directory. A type of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pal.

dithering. The process used in color displays whereby
every other pel is set to one color, and the intermediate
pels are set to another. Together they produce the effect
of a third color at normal viewing distances. This
process can only be used on solid areas of color; it does
not work on narrow lines, for example.

OMA. Direct memory access.

double-byte character set (DBCS). A set of characters in
which each character is represented by two bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more characters than can be represented
by 256 code points, require double-byte character sets.
Since each character requires two bytes, the entering,
displaying, and printing of DBCS characters requires
hardware and software that can support DBCS.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit.

dragging. In computer graphics, moving an object on
the display screen as if it were attached to the pointer.

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the pointing
device.

DTL. See dialog tag language.

dual .. boot function. A feature of OS/2 that allows the
user to start DOS from within OS/2, or OS/2 from within
DOS.

duplex. Pertaining to communication in which data can
be sent and received at the same time. Synonymous
with full duplex.

X-4 PM Programming Reference

dynamic linklng. The process of resolving external
references in a program module at load time or run time
rather than during linking.

dynamic-link library. A collection of executable
programming code and data that is bound to an
application at load time or run time, rather than during
linking. The programming code and data in a dynamic
link library can be shared by several applications
simultaneously.

dynamic-link module. A module that is linked at load
time or run time.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved from
one screen position to another without affecting the rest
of the displayed picture.

dynamic storage. (1) A device that stores data in a
manner that permits the data to move or vary with time
such that the specified data is not always available for
recovery. (2) A storage in which the cells require
repetitive application of control signals in order to retain
stored data. Such repetitive application of the control
signals is called a refresh operation. A dynamic storage
may use static addressing or sensing circuits. (3) See
also static storage.

E
EBCDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters (9 bits including parity check), used for
information interchange among data processing
systems, data communications systems, and associated
equipment.

EGA. Extended graphics adapter.

8.3 flle-name format. A file-naming convention in which
file names are limited to eight characters before and
three characters after a single dot. Usually pronounced
"eight-dot-three." See also non-8.3 file-name format.

element. An entry in a graphics segment that comprises
one or more graphics orders and that is addressed by
the element pointer.

entry fleld. An area on the screen, usually highlighted in
some manner, in which users type information.

entry-fleld control. The means by which the application
receives data entered by the user in an entry field.
When it has the input focus, it displays a flashing pointer
at the position where the next typed character will go.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts, and explanatory text.

exception. An abnormal condition such as an 110 error
encountered in processing a data set or a file.

exclusive system semaphore. A system semaphore that
can be modified only by threads within the same
process.

exit. The action that terminates the current function and
returns the user to a higher level function. Repeated exit
requests return the user to the point from which all
functions provided to the system are accessible.
Contrast with cancel.

extended attribute. An additional piece of information
about a file object, such as its data format or category. It
consists of a name and a value. A file object may have
more than one extended attribute associated with it.

extended-choice selection. A mode that allows the user
to select more than one item from a window. Not all
windows allow extended choice selection. Contrast with
multiple-choice selection.

extended help. A facility that provides users with
information about an entire application panel rather than
a particular item on the panel.

extent. Continuous space on a disk or diskette that is
occupied by or reserved for a particular data set, data
space, or file.

F
family-mode application. An application program that
can run in the OS/2 environment and in the DOS
environment. However, it cannot take advantage of
many of the OS/2-mode facilities, such as multitasking,
interprocess communication, and dynamic linking.

FAT. File allocation table.

FEA. Full extended attribute.

field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used; the information is
dependent upon the context within the work session.

file. A named set of records stored or processed as a
unit.

file allocation table (FAT). In IBM personal computers, a
table used by the operating system to allocate space on
a disk for a file, and to locate and chain together parts of
the file that may be scattered on different sectors so that
the file can be used in a random or sequential manner.

file attribute. Any of the attributes that describe the
characteristics of a file.

File Manager. In PM, a program that displays
directories and files, and allows various actions on them.

file specification. The full identifier for a file, which
includes its drive designation, path, file name, and
extension.

file system driver (FSD). A program that manages file
1/0 and controls the format of information on the storage
media.

fillet. A curve that is tangential to the end points of two
adjoining lines. See also polyfi/let.

flag. (1) An indicator or parameter that shows the
setting of a switch. (2) A character that signals the
occurrence of some condition, such as the end of a word.

focus. See input focus.

font. A particular size and style of typeface that contains
definitions of character sets, marker sets, and pattern
sets.

foreground program. The program with which the user
is currently interacting. Also known as interactive
program. Contrast with background program.

frame. The part of a window that can contain several
different visual elements specified by the application, but
drawn and controlled by PM. The frame encloses the
client area.

frame styles. Different standard window layouts
provided by PM.

FSD. File system driver.

full duplex. Synonym for duplex.

full-screen application. An application program that
occupies the whole screen.

function. (1) In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a call. (2) A set of related control
statements that cause one or more programs to be
performed.

function key. A key that causes a specified sequence of
operations to be performed when it is pressed, for
example, F1 and Alt-K.

function key area. The area at the bottom of a window
that contains function key assignments such as
F1=Help.

G
GOT. Global Descriptor Table.

general protection fault. An exception condition that
occurs when a process attempts to use storage or a
module that has some level of protection assigned to it,
such as 1/0 privilege level. See also IOPL code segment.

Global Descriptor Table (GOT). Defines code and data
segments available to all tasks in an application.

global dynamic-link module. A dynamic-link module that
can be shared by all processes in the system that refer
to the module name.

global file-name character. A special character used to
refer to a set of file objects with a common base name.
The asterisk (*) and question mark (?) are used as global
file-name characters. For example, *.EXE can be used to
refer to a set of files with the extension EXE.

glyph. A graphic symbol whose appearance conveys
information.

GPI. Graphics programming interface. The
formally-defined programming language that is between
an IBM graphics program and the user of the program.
See also AP/.

Glossary X-5

graphics. A picture defined in terms of graphic
primitives and graphics attributes.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type, and
shading-pattern definition. See also segment attributes.

graphics fleld. The clipping boundary that defines the
visible part of the presentation-page contents.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any model
transforms have been applied. Also known as model
space.

graphic primitive. A single item of drawn graphics, such
as a line, arc, or graphics text string. See also graphics
segment.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a pull-down is
unavailable.

group. A collection of logically-connected controls. For
example, the buttons controlling paper size for a printer.
See also program group.

H
handle. An identifier that represents an object, such as
a device or window, to the Presentation Interface.

hard error. An error condition on a network that
requires either that the system be reconfigured, or that
the source of the error be removed before the system
can resume reliable operation.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message that
contains control information for the message, such as
one or more destination fields, name of the originating
station, input sequence number, character string
indicating the type of message, and priority level for the
message.

help. A function that provides information about a
specific field, an application panel, or information about
the help facility.

help index. A facility that allows the user to select topics
for which help is available.

help panel. A panel with information to assist users that
is displayed in response to a help request from the user.

help window. A Common User Access-defined
secondary window that displays information when the
user requests help.

heap. An area of free storage available for dynamic
allocation by an application. Its size varies according to
the storage requirements of the application.

hit testing. The means of identifying which window is
associated with which input device event.

hook. A mechanism by which procedures are called
when certain events occur in the system. For example,

X-6 PM Programming Reference

the filtering of mouse and keyboard input before it is
received by an application program.

hook chain. A sequence of hook procedures that are
"chained" together so that each event is passed, in turn,
to each procedure in the chain.

hot spot. The part of the pointer that must touch an
object before it can be selected. This is usually the tip of
the pointer. Contrast with action point.

I
icon. A pictorial representation of an item the user can
select. Icons can represent items (such as a document
file) that the user wants to work on, and actions that the
user wants to perform. In PM, icons are used for data
objects, system actions, and minimized programs.

icon area. In PM, the area at the bottom of the screen
that is normally used to display the icons for minimized
programs.

Icon Editor. The Presentation Manager-provided tool for
creating icons.

image font. A set of symbols, each of which is described
in a rectangular array of pels. Some of the pels in the
array are set to produce the image of the symbol.
Contrast with outline font.

Information device context. A logical description of a
data destination other than the screen (for example, a
printer or plotter), but where no output will occur. Its
purpose is to satisfy queries. See also device context.

information panel. A defined panel type characterized
by a body containing only protected information.

input focus. The area of the screen that will receive
input from an input device (typically the keyboard).

Input router. An internal OS/2 process that removes
messages from the system queue.

integer atom. A special kind of atom that represents a
predefined system constant and carries no storage
overhead. For example, names of window classes
provided by PM are expressed as integer atoms.

interactive graphics. Graphics that can be moved or
manipulated by a user at a terminal.

Interactive program. A program that is running (active)
and is ready to receive (or is receiving) input from the
user. Compare with active program and contrast with
noninteractive program.

Also known as a foreground program.

interchange file. Data that can be sent from one
Presentation Interface application to another.

interval timer. (1) A timer that provides program
interruptions on a program-controlled basis. (2) An
electronic counter that counts intervals of time under
program control.

IOCtl. A device-specific command that requests a
function of a device driver through the DosDevlOCtl
function.

110 operation. An input operation to, or output operation
from a device attached to a computer.

IOPL. Input/output privilege level.

IOPL code segment. An IOPL executable section of
programming code that enables an application to directly
manipulate hardware interrupts and ports without
replacing the device driver. See also privilege level.

J
journal. A special-purpose file that is used to record
changes made in the system.

K
Kanji. A graphic character set used in Japanese
ideographic alphabets.

KBD$. Character-device name reserved for the
keyboard.

kernel. The part of an operating system that performs
basic functions, such as allocating hardware resources.

kerning. The design of graphics characters so that their
character boxes overlap. Used to space text
proportionally.

keys help. A facility that gives users a listing of all the
key assignments for the current application.

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the segment.

language support procedure. Function provided by the
Presentation Interface for applications that do not, or
cannot (as in the case of COBOL and FORTRAN
programs), provide their own dialog or window
procedures.

LDT. Local Descriptor Table.

LIFO stack. A data stack from which data is retrieved in
last-in, first-out order.

linked list. Synonym for chained list.

list box. A control window containing a vertical list of
selectable descriptions.

list panel. A defined panel type that displays a list of
items from which users can select one or more choices
and then specify one or more actions to work on those
choices.

load-on-call. A function of a linkage editor that allows
selected segments of the module to be disk resident
while other segments are executing. Disk resident
segments are loaded for execution and given control
when any entry point that they contain is called.

load time. The point in time at which a program module
is loaded into main storage for execution.

local area network (LAN). A data network located on the
user's premises in which serial transmission is used for
direct data communication among data stations.

Local Descriptor Table (LDT). Defines code and data
segments specific to a single task.

lock. A serialization mechanism by means of which a
resource is restricted for use by the holder of the lock.

LPT1, LPT2, LPT3. Character-device names reserved for
parallel printers 1 through 3.

M
main window. The window that is positioned relative to
the desktop window.

map. (1) A set of values having a defined
correspondence with the quantities or values of another
set. (2) To establish a set of values having a defined
correspondence with the quantities or values of another
set.

marker box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single marker from a marker set.

marker symbol. A symbol centered on a point. Graphs
and charts can use marker symbols to indicate the
plotted points.

maximize. A window-sizing action that makes the
window the largest size possible.

media window. The part of the physical device (display,
printer, or plotter) on which a picture is presented.

memory device context. A logical description of a data
destination that is a memory bit map. See also device
context.

memory management. A feature of the operating
system for allocating, sharing, and freeing main storage.

menu. A type of panel that consists of one or more
selection fields. Also called a menu panel.

message. (1) In PM, a packet of data used for
communication between the Presentation Interface and
windowed applications. (2) In a user interface,
information not requested by users but presented to
users by the computer in response to a user action or
internal process.

message fiber. The means of selecting which messages
from a specific window will be handled by the
application.

message queue. A sequenced collection of messages to
be read by the application.

metafile. The generic name for the definition of the
contents of a picture. Metafiles are used to allow
pictures to be used by other applications.

metafile device context. A logical description of a data
destination that is a metafile, which is used for graphics
interchange. See also device context.

Glossary X-7

metalanguage. A language used to specify another
language. For example, data types can be described
using a metalanguage so as to make the descriptions
independent of any one computer language.

mickey. A unit of measurement for physical mouse
motion whose value depends on the mouse device driver
currently loaded.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function calls is
available.

minimize. A window-sizing action that makes the
window the smallest size possible. In PM, minimized
windows are represented by icons.

mix. An attribute that determines how the foreground of
a graphic primitive is combined with the existing color of
graphics output. Also known as foreground mix.
Contrast with background mix.

mixed character string. A string containing a mixture of
one-byte and Kanji or Hangeul (two-byte) characters.

mnemonic. A method of selecting an item on a
pull-down by means of typing the highlighted letter in the
menu item.

modal dialog box. The type of control that allows the
operator to perform input operations on only the current
dialog box or one of its child windows. Also known as a
serial dialog box. Contrast with parallel dialog box.

modeless dialog box. The type of control that allows the
operator to perform input operations on any of the
application's windows. Also known as a parallel dialog
box. Contrast with modal dialog box.

model space. See graphics model space.

module definition file. A file that describes the code
segments within a load module. For example, it
indicates whether a code segment is loadable before
module execution begins (preload), or loadable only
when referred to at run time (load-on-call).

mouse. A hand-held device that is moved around to
position the pointer on the screen.

MOUSES. Character-device name reserved for a mouse.

multiple-choice selection. A mode that allows users to
select any number of choices, including none at all. See
also check box. Contrast with extended-choice
selection.

multitasking. The concurrent processing of applications
or parts of applications. A running application and its
data are protected from other concurrently running
applications.

N
named pipe. A named buffer that provides
client-to-server, server-to-client, or full duplex
communication between unrelated processes. Contrast
with unnamed pipe.

noncritical extended attribute. An extended attribute
that is not necessary for the function of an application.

X-8 PM Programming Reference

nondestructive read. A read process that does not
erase the data in the source location.

non-8.3 file-name format. A file-naming convention in
which path names can consist of up to 255 characters.
See also 8.3 file-name format.

nonlnteractlve program. A program that is running
(active) but is not ready to receive input from the user.
Compare with active program, and contrast with
interactive program.

nonretalned graphics. Graphic primitives that are not
remembered by the Presentation Interface once they
have been drawn. Contrast with retained graphics.

NUL. Character-device name reserved for a nonexistent
(dummy) device.

null-terminated string. A string of (n + 1) characters
where the (n + 1)th character is the 'null' character
(X'OO'), and is used to represent an n-character string
with implicit length. Also known as 'zero-terminated'
string and 'ASCllZ' string.

0
object window. A window that does not have a parent,
but which may have child windows. An object window
cannot be presented on a device.

open. To start working with a file, directory, or other
object.

outline font. A set of symbols, each of which is created
as a series of lines and curves. Synonymous with vector
font. Contrast with image font.

output area. The area of the output device within which
the picture is to be displayed, printed, or plotted.

owner window. A window into which specific events that
occur in another (owned) window are reported.

owning process. The process that owns the resources
that may be shared with other processes.

p
page. A 4KB segment of contiguous physical memory.

page vlewport. A boundary in device coordinates that
defines the area of the output device in which graphics
are to be displayed. The presentation-page contents are
transformed automatically to the page viewport in device
space.

paint. The action of drawing or redrawing the contents
of a window.

panel. A particular arrangement of information grouped
together for presentation to the user in a window.

panel area. An area within a panel that contains related
information. The three major Common User
Access-defined panel areas are the action bar, the
function key area, and the panel body.

panel body. The portion of a panel not occupied by the
action bar, function key area, title or scroll bars. The
panel body may contain protected information, selection
fields, and entry fields. The layout and content of the
panel body determine the panel type.

panel body area. The part of a window not occupied by
the action bar or function key area. The panel body area
may contain information, selection fields, and entry
fields. Also known as client area.

panel body area separator. A line or color boundary
that provides users with a visual distinction between two
adjacent areas of a panel.

panel definition. A description of the contents and
characteristics of a panel. A panel definition is the
application developer's mechanism for predefining the
format to be presented to users in a window.

panel ID. A panel element located in the upper left-hand
corner of a panel body that identifies that particular
panel within the application.

panel tltle. A panel element that identifies the
information in the panel.

paper size. The size of paper, defined in either standard
U.S. or European names (for example, A, B, A4), and
measured in inches or millimeters respectively.

parallel dialog box. See modeless dialog box.

parent process. A process that loads and starts other
processes. Contrast with child process.

parent window. The window relative to which one or
more child windows are positioned. Contrast with child
window.

partition. (1) A fixed-size division of storage. (2) On an
IBM personal computer fixed disk, one of four possible
storage areas of variable size; one may be accessed by
DOS, and each of the others may be assigned to another
operating system.

path. The part of a file specification that lists a series of
directory names. Each directory name is separated by
the backslash character. In the file specification
C:\MYFILES\MISC\GLOSSARY.SCR, the path consists of
MYFILES\MISC\.

pel. The smallest area of a display screen capable of
being addressed and switched between visible and
invisible states. Synonym for display point, pixel, and
picture element.

pick. To select part of a displayed object using the
pointer.

picture chain. See segment chain.

picture element. Synonym for pel.

PID. Process identification.

pipe. A named or unnamed buffer used to pass data
between processes. A process reads from or writes to a
pipe as if the pipe were a standard-input or

standard-output file. See also named pipe and unnamed
pipe.

plxel. Synonym for pel.

plotter. An output device that uses pens to draw its
output on paper or on transparency foils.

PM. Presentation Manager.

pointer. (1) The symbol displayed on the screen that is
moved by a pointing device, such as a mouse. The
pointer is used to point at items that users can select.
Contrast with cursor. (2) A data element that indicates
the location of another data element.

POINTER$. Character-device name reserved for a
pointer device (mouse screen support).

pointing device. A device (such as a mouse) used to
move a pointer on the screen.

polntlngs. Pairs of x-y coordinates produced by an
operator defining positions on a screen with a pointing
device, such as a mouse.

polyflllet. A curve based on a sequence of lines. It is
tangential to the end points of the first and last lines, and
tangential also to the midpoints of all other lines. See
also fillet.

polyline. A sequence of adjoining lines.

pop. To retrieve an item from a last-in-first-out stack of
items. Contrast with push.

pop-up window. A window that appears on top of
another window in a dialog. Each pop-up window must
be completed before returning to the underlying window.

Presentation Manager (PM). The visual component of
OS/2 that presents, in windows, a graphics-based
interface to applications and files installed and running
in OS/2.

presentation page. The coordinate space in which a
picture is assembled for display.

presentation space (PS). Contains the
device-independent definition of a picture.

primary window. The window in which the main dialog
between the user and the application takes place. In a
multiprogramming environment, each application starts
in its own primary window. The primary window remains
for the duration of the application, although the panel
displayed will change as the user's dialog moves
forward. See also secondary window.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print job. The result of sending a document or picture to
be printed.

Print Manager. In PM, the part of the spooler that
manages the spooling process. It also allows users to
view print queues and to manipulate print jobs.

Glossary X-9

prlvllege level. A protection level imposed by the
hardware architecture of the IBM personal computer.
There are four privilege levels (number O through 3).
Only certain types of programs are allowed to execute at
each privilege level. See also IOPL code segment.

procedure call. In programming languages, a language
construct for invoking execution of a procedure.

process. An instance of an executing application and
the resources it is using.

program detalls. Information about a program that is
specified in the Program Manager window and is used
when the program is started.

program group. In PM, several programs that can be
acted upon as a single entity.

program name. The full file specification of a program.
Contrast with program title.

program tltle. The name of a program as it is listed in
the Program Manager window. Contrast with program
name.

prompt. A displayed symbol or message that requests
input from the user or gives operational information.
The user must respond to the prompt in order to
proceed.

protocol. A set of semantic and syntactic rules that
determines the behavior o functional units in achieving
communication.

pseudocode. An artificial language used to describe
computer program algorithms without using the syntax of
any particular programming language.

pull-down. An action bar extension that displays a list of
choices available for a selected action bar choice. After
users select an action bar choice, the pull-down appears
with the list of choices. Additional pop-up windows may
appear from pull-down choices to further extend the
actions available to users.

push. To add an item to a last-in-first-out stack <;>f items.
Contrast with pop.

pushbutton. A control window, shaped like a
round-cornered rectangle and containing text, that
invokes an immediate action, such as 'enter' or 'cancel'.

Q
queue. A linked list of elements waiting to be
processed. For example, a queue may be a list of print
jobs waiting to be printed.

queued device context. A logical description of a data
destination (for example, a printer or plotter) where the
output is to go through the spooler. See also device
context.

X-10 PM Programming Reference

R
radio button. A control window, shaped like a round
button on the screen, that can be in a checked or
unchecked state. It is used to select a single item from
list. Contrast with check box.

RAS. Reliability, availability, and serviceability.

raster. (1) In computer graphics, a predetermined
pattern of lines that provides uniform coverage of a
display space. (2) The coordinate grid that divides the
display area of a display device.

read-only flle. A file that may be read from but not
written to.

realize. To cause the system to ensure, wherever
possible, that the physical color table of a device is set to
the closest possible match in the logical color table.

recursive routine. A routine that can call itself or be
called by another routine called by the recursive routine.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. A word or phrase that is emphasized
in a device-dependent manner to inform the user that
additional information for the word or phrase is
available.

reference phrase help. Provides help information for a
selectable word or phrase.

refresh. To update a window, with changed information,
to its current status.

region. A clipping boundary in device space.

register. A storage device having a specified storage
capacity such as a bit, byte, or computer word, and
usually intended for a special purpose.

remote flle system. A file-system driver that gains
access to a remote system without a block device driver.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators, and
mnemonics; the definitions are held in a resource file.

resource flle. A file containing information used in the
definition of a window. Definitions can be of fonts,
templates, accelerators, and mnemonics.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Interface after they
have been drawn. Contrast with nonretained graphics.

return code. (1) A code used to influence the execution
of succeeding instructions. (2) A value returned to a
program to indicate the results of an operation
requested by that program.

reverse video. A form of alphanumeric highlighting for a
character, field, or cursor, in which its color is

exchanged with that of its background. For example,
changing a red character on a black background to a
black character on a red background.

RGB. Red-green-blue. For example, "RGB display".

roman. Relating to a type style with upright characters.

root segment. In a hierarchical database, the highest
segment in the tree structure.

run time. (1) Any instant at which a program is being
executed. (2) The time during which an instruction in an
instruction register is decoded and performed.

s
SAA. Systems Application Architecture.

scheduler. A computer program designed to perform
functions such as scheduling, initiation, and termination
of jobs.

screen. The physical surface of a work station or
terminal upon which information is presented to users.

screen device context. A logical description of a data
destination that is a particular window on the screen.
See also device context.

SCREENS. Character-device name reserved for the
display screen.

scroll bar. A control window, horizontally or vertically
aligned, that allows the user to scroll additional data into
an associated panel area.

scrollable entry field. An entry field larger than the
visible field.

scrollable selection field. A selection field that contains
more choices than are visible.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears at
one edge, as existing data disappears at the opposite
edge.

secondary window. A type of window associated with
the primary window in a dialog. A secondary window
begins a secondary and parallel dialog that runs at the
same time as the primary dialog.

sector. An addressable subdivision of a track used to
record one block of program code or data on a disk or
diskette.

segment. See graphics segment.

segment attributes. Attributes that apply to the segment
as an entity, as opposed to the individual primitives
within the segment. For example, the visibility or
detectability of a segment.

segment chain. All segments in a graphics presentation
space that are defined with the 'chained' attribute.
Synonym for picture chain.

segment priority. The order in which segments are
drawn.

segment store. An area in a normal graphics
presentation space where retained graphics segments
are stored.

select. To mark or choose an item. Note that select
means to mark or type in a choice on the screen; enter
means to send all selected choices to the computer for
processing.

select button. The button on a pointing device, such as
a mouse, that is pressed to select a menu choice. Also
known as button 1.

selectlon cursor. A type of cursor used to indicate the
choice or entry field users want to interact with. It is
represented by highlighting the item that it is currently
positioned on.

selection field. A field containing a list of choices from
which the user can select one or more.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources.

separator. See panel body area separator.

serial dialog box. See modal dialog box.

serialization. The consecutive ordering of items.

serialize. To ensure that one or more events occur in a
specified sequence.

serially reusable resource (SRR). A logical resource or
object that can be accessed by only one task at a time.

session. A routing mechanism for user interaction via
the console; a complete environment that determines
how an application runs and how users interact with the
application. OS/2 can manage more than one session at
a time, and more than one process can run in a session.
Each session has its own set of environment variables
that determine where OS/2 looks for dynamic-link
libraries and other important files.

shadow box. The area on the screen that follows mouse
movements and shows what shape the window will take
if the mouse button is released.

shared data. Data that is used by two or more
programs.

shared memory. Memory that is used by two or more
programs.

shear. The tilt of graphics text when each character
leans to the left or right while retaining a horizontal
baseline.

shell. (1) A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and touch-sensitive
screens, and communicate them to the operating system.
(2) Software that allows a kernel program to run under
different operating-system environments.

Shutdown. The procedure required before the computer
is switched off to ensure that data is not lost.

Glossary X-11

sibling processes. Child processes that have the same
parent process.

sibling windows. Child windows that have the same
parent window.

slider box. An area on the scroll bar that indicates the
size and position of the visible information in a panel
area in relation to the information available. Also known
as thumb mark.

source Ille. A file that contains source statements for
items such as high-level language programs and data
description specifications.

source statement. A statement written in a
programming language.

specific dynamic-link module. A dynamic-link module
created for the exclusive use of an application.

spllne. A sequence of one or more Bezier curves.

spooler. A program that intercepts the data going to
printer devices and writes it to disk. The data is printed
or plotted when it is complete, and the required device is
available. The spooler prevents output from different
sources from being intermixed.

stack. A list constructed and maintained so that the next
data element to be retrieved is the most recently stored.
This method is characterized as last-in-first-out (LIFO).

standard window. A collection of window elements that
form a panel. The standard window can include one or
more of the following window elements: sizing borders,
system menu icon, title bar, maximize/minimize/restore
icons, action bar and pull-downs, scroll bars, and client
area.

static control. The means by which the application
presents descriptive information (for example, headings
and descriptors) to the user. The user cannot change
this information.

static storage. (1) A read/write storage unit in which
data is retained in the absence of control signals. Static
storage may use dynamic addressing or sensing circuits.
(2) Storage other thar= dynamic storage.

style. See window style.

suballocation. The allocation of a part of one extent for
occupancy by elements of a component other than the
one occupying the remainder of the extent.

subdirectory. In an IBM personal computer, a file
referred to in a root directory that contains the names of
other files stored on the diskette or fixed disk.

swapping. (1) A process that interchanges the contents
of an area of real storage with the contents of an area in
auxiliary storage. (2) In a system with virtual storage, a
paging technique that writes the active pages of a job to
auxiliary storage and reads pages of another job from
auxiliary storage into real storage. (3) The process of
temporarily removing an active job from main storage,
saving it on disk, and processing another job in the area
of main storage formerly occupied by the first job.

switch. (1) An action that moves the input focus from
one area to another. This can be within the same

X-12 PM Prog.ramming Reference

window or from one window to another. (2) In a
computer program, a conditional instruction and an
indicator to be interrogated by that instruction. (3) A
device or programming technique for making a selection,
for example, a toggle, a conditional jump.

switch list. See Task List.

symbolic Identifier. A text string that equates to an
integer value in an include file, that is used to identify a
programming object.

synchronous. Pertaining to events or operations that
are predictable or occur at the same time. See also
asynchronous.

System Menu. In PM, the pull-down in the top left corner
of a window that allows it to be moved and sized with the
keyboard.

system queue. This is the master queue for all pointer
device or keyboard events.

Systems Application Architecture (SAA). A formal set of
rules that enables applications to be run without
modification in different computer environments.

T
tag. One or more characters attached to a set of data
that defines the formatting or other characteristics of the
set, including its definition.

Task List. In PM, the list of programs that are active.
The list can be used to switch to a program and to stop
programs.

template. An ASCII-text definition of an action bar and
pull-down menu, held in a resource file, or as a data
structure in program memory.

text. Characters or symbols.

text cursor. A symbol displayed in an entry field that
indicates where typed input will appear.

text window. Also known as the VIO window.

text-windowed application. The environment in which
the operating system performs advanced&hyphn.video
input and output operations.

thread. A unit of execution within a process. It uses the
resources of the process.

thumb mark. The portion of the scroll bar that describes
the range and properties of the data that is currently
visible in a window. Also known as a slider box.

tilde. A mark used to denote the character that is to be
used as a mnemonic when selecting text items within a
menu.

time slice. (1) An interval of time on the processing unit
allocated for use in performing a task. After the interval
has.expired, processing-unit time is allocated to another
task, so a task cannot monopolize processing-unit time
beyond a fixed limit. (2) In systems with time sharing, a
segment of time allocated to a terminal job.

title bar. The area at the top of a window that contains
the window title. The title bar is highlighted when that
window has the input focus. Contrast with panel title.

transaction. An exchange between a workstation and
another device that accomplishes a particular action or
result.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating, or translating. (2)
The object that performs or defines such a modification;
also referred to as a transformation.

Tree. In PM, the window in the File Manager that shows
the organization of drives and directories.

truncate. (1) To end a computational process in
accordance with some rule. (2) To remove the beginning
or ending elements of a string. (3) To drop data that
cannot be printed or displayed in the line width specified
or available. (4) To shorten a field or statement to a
specified length.

u
unnamed pipe. A circular buffer, created in memory,
used by related processes to communicate with one
another. Contrast with named pipe.

update region. A system-provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window, that are
visually invalid or incorrect, and therefore in need of
repainting.

user Interface. Hardware, software, or both that allows
a user to interact with and perform operations on a
system, program, or device.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user to
manage applications and files installed and running
under OS/2.

utlllty program. (1) A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.
(2) A program designed to perform an everyday task
such as copying data from one storage device to
another.

v
vector font. A set of symbols, each of which is created
as a series of lines and curves. Synonymous with
outline font. Contrast with image font.

VGA. Video graphics array.

viewing plpellne. The series of transformations applied
to a graphic object to map the object to the device on
which it is to be presented.

viewing window. Clipping boundary that defines the
visible part of model space.

VIO. Video Input/Output.

vlrtual memory (VM). Addressable space that is
apparent to the user as the processor storage space, but
not having a fixed physical location.

vlrtual storage. Synonymous with virtual memory.

vlslble region. A window's presentation space, clipped
to the boundary of the window and the boundaries of any
overlying window.

volume. (1) A file-system driver that uses a block device
driver for input and output operations to a local or
remote device. (2) A portion of data, together with its
data carrier, that can be handled conveniently as a unit.

w
wlld-card character. The global file-name characters
asterisk (*) and question mark (?).

window. A rectangular area of the screen with visible
boundaries within which information is displayed. A
window can be smaller than or the same size as the
screen. Windows can appear to overlap on the screen.

window class. The grouping of windows whose
processing needs conform to the services provided by
one window procedure.

window coordinates. The means by which a window
position or size is defined; measured in device units, or
pe/s.

window procedure. Code that is activated in response
to a message. The procedure controls the appearance
and behavior of its associated windows.

window rectangle. The means by which the size and
position of a window is described in relation to the
desktop window.

window style. The set of properties that influence how
events related to a particular window will be processed.

workstation. A display screen together with attachments
such as a keyboard, a local copy device, or a tablet.

world coordinates. Application-convenient coordinates
used for drawing graphics.

world-coordinate space. Coordinate space in which
graphics are defined before transformations are applied.

WYSIWYG. What You See Is What You Get. A capability
that enables text to be displayed on a screen in the same
way it will be formatted on a printer.

z
z-order. The order in which sibling windows are
presented. The topmost sibling window obscures any
portion of the siblings that it overlaps; the same effect
occurs down through the order of lower sibling windows.

zooming. In graphics applications, the process of
increasing or decreasing the size of picture.

Glossary X-13

X-14 PM Programming Reference

Index

A
ABB_* values 5-405, 5-463
ACCEL A-1
accelerator table

copy 8-37
create 8-44
destroy 8-98
load 8-234
query 8-291
set 8-439
translate 8-550

ACCEL TABLE A-1
ACCEL TABLE statement 32-9
Access a DRAGINFO Structure 3-26
Access Drag Information 3-4
Add Atom 8-7
Add Switch Entry 8-9
Add Text to DDF Buffer 4-39
additional metrics F-9
addressing elements in arrays 1-5
alarm sound 8-11
Allocate DRAGINFO Structure 3-7
Allocate DRAGTRANSFER Structures 3-9
AM_* values 5-228, 5-401
Animate Palette 5-8
application-supplied functions 10-1
Applications

Windowed PM 34-1
Arabic text 5-435
arc

create 5-199
full 5-148, 5-189
partial. 5-188
query parameters 5-226
set current parameters 5-398
set default parameters 5-460

Arc at a Given Position 33-3
Arc at Current Position 33-3
ARCPARAMS A-2
AREABUNDLE A-2
areas

begin construction 5-13
construction of interior 5-15
end construction 5-128

arrays
addressing elements in 1-5
convert 5-53, 5-55

ASCII 8-321, 8-459, 34-23
ASCII MIXED code pages 34-23
Associate 5-11
Associate Help Instance 8-13
ASSOCTABLE statement 32-10
ATOM A-2
attribute primitive type 5-404
attribute primitive types 5-462
attribute values

character 5-404, 5-462
image 5-405, 5-463
line 5-404, 5-462
marker 5-405, 5-463
pattern (area) 5-405, 5-463

attributes
character-set 5-443
color 5-453
cosmetic line width 5-498
foreground color mix 5-511
geometric line width 5-500
line type 5-495
line width 5-498
marker box 5-504
marker set 5-506
marker symbol 5-503
pattern 5-522
pattern set 5-526
query mode 5-228
restore saved 5-217
segment 5-539
set 5-404
set default 5-462
set line-end 5-491
set line-join 5-493
specify mode 5-401

ATTA_* values 5-304, 5-351, 5-488, 5-538

B
background

query color 5-231, 5-232
query color-mixing mode 5-232
query mix 5-232

BANDRECT A-2
BA_* values 5-13
BBO_* values 5-24, 5-113, 5-568
BOS_* values 13-3
Begin Area 5-13, 33-3
Begin Definition List 4-2
Begin Dragging Files 3-16
Begin Element 5-17, 33-4
Begin Image at Current Position 33-5
Begin Image at Given Position 33-5
Begin Paint 8-18
Begin Path 5-19, 33-5
Begin Window Enumeration 8-16
Bezier Curve at Current Poition 33-6
Bezier Curve at Given Position 33-6
Bezier splines, create 5-215
Bit Bit 5-23
bit maps

color 5-25, 5-114, 5-569
copy rectangle of image data 5-23, 5-567
create 5-71
data D-1
delete 5-90
draw 8-118
example 0-1
file format D-2
get system 8-194
information tables D-1
load 5-161
monochrome 5-25, 5-114, 5-569
query bits 5-233
query device formats 5-280
query dimension 5-236

Index X-15

bit maps (continued)
query handle 5-239
query info-header 5-237
query number of local identifiers 5-329
query parameters 5-240
query set identifiers 5-359
set as currently selected 5-418
set bits 5-420
set identifier 5-425
standard formats D-1
transfer data from application storage 5-420

bit-map tag
delete 5-106

Bitblt 33-7
BITMAPINFO A-3
BITMAPINFOHEADER A-6
BITMAPINFOHEADER2 A-6
BITMAPINF02 A-3
bits

draw 5-112
BKM_CALCPAGERECT 25-4
BKM_DELETEPAGE 25-5
BKM_INSERTPAGE 25-6
BKM_INVALIDATETABS 25-7
BKM_QUERYPAGECOUNT 25-7
BKM_QUERYPAGEDATA 25-8
BKM_QUERYPAGEID 25-9
BKM_ QUERYPAGESTYLE 25-10
BKM_QUERYPAGEWINDOWHWND 25-10
BKM_ QUERYSTATUSLINETEXT 25-11
BKM_QUERYTABBITMAP 25-12
BKM_QUERYTABTEXT 25-12
BKM_SETDIMENSIONS 25-13
BKM_SETNOTEBOOKCOLORS 25-14
BKM_SETPAGEDATA 25-14
BKM_SETPAGEWINDOWHWND 25-15
BKM_SETSTATUSLINETEXT 25-16
BKM_SETTABBITMAP 25-16
BKM_SETTABTEXT 25-17
BKM_TURNTOPAGE 25-18
BKS_* values 25-1
BMSG_* values 8-20
BM_CLICK 13-5
BM_QUERYCHECK 13-6
BM_QUERYCHECKINDEX 13-6
BM_QUERYHILITE 13-7
BM_SETCHECK 13-7
BM_SETDEFAUL T 13-8
BM_SETHILITE 13-9
BM_* values 5-232, 5-415
BN_ * values 13-3
BOOKTEXT A-9
BOOKTEXT data structure A-9
BOOL A-9
Box 5-28

draw 5-28
Box at Current Position 33-8
Box at Given Position 33-8
Broadcast Message 8-20
BS_*Values 13-1
BTNCDATA A-9
button control data 13-2
button control styles 13-1
button control window processing 13-1
button filtering constants 8-183
BYTE A-10

X-16 PM Programming Reference

c
C language 1-1
Calculate Frame Rectangle 8-22
Call Message Filter 8-24
Call Segment 33-9
Call Segment Matrix 5-31
Cancel Shutdown 8-26
CAPS_• values 2-15
CATCHBUF A-10
CA_* values A-17

column headings A-19
drawing and painting A-18
icons or bit maps A-17
ordered target emphasis A-18
title attributes A-18
title position A-18
titles A-18

CBB_* values 5-404, 5-462
CBM_HILITE 19-5
CBM_ISLISTSHOWING 19-5
CBM_SHOWLIST 19-6
CBM_* values 5-71
CBN_ * values 19-3
CBS_• values 19-1
CCS_* values

selection types 24-3
styles 24-2

COATE A-10
CELL A-10
CFA_ * values A-39

column attributes A-40
data types A-39
horizontal column heading position A-41
horizontal data position A-40
icon or bit map data A-40
prevention of direct editing of a column

heading A-40
vertical column heading position A-40
vertical data position A-40

CFI_* flags 8-310
CFI_ * values 8-449
CF_* values 8-449, 28-4
chain

draw 5-117
chained attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Change Focus Window 8-160
Change Switch Entry 8-28
CHAR A-10
character

convert to uppercase 8-558
query angle 5-244
query box 5-246
query break extra 5-248
query direction 5-249
query extra 5-250
query mode 5-251
query set 5-252
query shear 5-253
query string positions 5-255
query string positions at 5-257
set angle 5-427
set box 5-430
set break extra 5-433
set direction 5-435
set extra 5-438

character (continued)
set mode 5-440
set set 5-443
set shear 5-445

character attribute values 5-404, 5-462
character definitions

font F-3
character direction

Arabic text 5-435
Chinese text 5-435
Roman text 5-435

character set 1-6
Character String 5-34

draw at current position 5-34
draw at current position, with controls 5-39
draw at specified position 5-36
draw string at specified position, with controls 5-42

Character String At 5-36
Character String at Current Position 33-9
Character String at Given Position 33-9
Character String Extended at Current Position 33-10
Character String Extended at Given Position 33-10
Character String Move at Current Position 33-11
Character String Move at Given Position 33-11
Character String Position 5-39
Character String Position At 5-42
CHARBUNDLE A-11
CHDIRN_* values 5-249, 5-435
check box 13-1
Check Menu Item 8-32
Check Message Filter Hook 10-5
CheckMsgFilterHook 10-5
Chinese text 5-435
CHS_* values 5-39, 5-42, 5-255, 5-257
class 9-1
CLASSDETAILS A-12
CLASSINFO A-11
clipboard 28-1

messages 28-1
query format information 8-310
query viewer window 8-313
set data 8-449

clipboard messages 28-1
clipping 5-528, G-1

segment chains 5-122
set path 5-448
set region 5-451

clipping boundary 5-486
clipping region 8-150
Close Clipboard 8-34
Close Device Context 2-2
Close Figure 5-45, 33-12
Close Profile 6-2
Close Segment 5-47
closed figure 5-20
CLR_* values 5-76, 5-231, 5-262, 5-338, 5-412, 5-453
CMDSRC_* values 11-3, 12-27, 12-36, 12-63, 15-21
CM_ALLOCDET AILFIELDINFO 24-22
CM_ALLOCRECORD 24-23
CM_ARRANGE 24-24
CM_CLOSEEDIT 24-24
CM_ COLLAPSETREE 24-25
CM_ERASERECORD 24-26
CM_EXPANDTREE 24-26
CM_FIL TER 24-27
CM_FREEDET AfLFIELDINFO 24-28
CM.:,_FREERECORD 24-29

CM_HORZSCROLLSPLITWINDOW 24-30
CM_INSERTDETAILFIELDINFO 24-30
CM_INSERTRECORD 24-31
CM_INVALIDATEDET AILFIELDINFO 24-33
CM_INVALIDATERECORD 24-33
CM_OPENEDIT 24-35
CM_PAINTBACKGROUND 24-35
CM_QUERYCNRINFO 24-36
CM_ QUERYDETAILFIELDINFO 24-37
CM_QUERYDRAGIMAGE 24-38
CM_QUERYRECORD 24-39
CM_ QUERYRECORDEMPHASIS 24-40
CM_ QUERYRECORDFROMRECT 24-41
CM_QUERYRECORDINFO 24-42
CM_ QUERYRECORDRECT 24-43
CM_ QUERYVIEWPORTRECT 24-43
CM_REMOVEDETAILFIELDINFO 24-44
CM""'"REMOVERECORD 24-45
CM_SCROLLWINDOW 24-47
CM_SEARCHSTRING 24-48
CM_SETCNRINFO 24-49
CM_SETRECORDEMPHASIS 24-50
CM_SORTRECORD 24-51
CM_* values 5-251, 5-427, 5-440
CNRDRAGINFO A-12
CNRDRAGINIT A-12
CNRDRAWITEMINFO A-13
CNREDITDATA A-14
CNREDITDATA data structure A-13
CNRINFO A-15
CN;,_BEGINEDIT 24-8
CN_ COLLAPSETREE 24-9
CN_CONTEXTMENU 24-9
CN_DRAGAFTER 24-10
CN_DRAGLEAVE 24-11
CN_DRAGOVER 24-12
CN_DROP 24-13
CN_DROPHELP 24-14
CN_EMPHASIS 24-15
CN_ENDEDIT 24-15
CN_ENTER 24-16
CN_EXPANDTREE 24-17
CN_HELP 24-17
CN_INITDRAG 24-18
CN_KILLFOCUS 24-19
CN_QUERYDELTA 24-19
CN_REALLOCPSZ 24-20
CN_SCROLL 24-21
CN_SETFOCUS 24-21
CN_* values

described 24-8
code page

query 8-314
set 8-456

Code Page Change. Hook 10-7
Code pages 34-1

ASCII 34-11
EBCDIC 34-16
Font support 34-4
OS/2 options for PM 34-3
OS/2 support for multiple 34-4

CodePageChangeHook 10-7
COLOR A-20
color palette 8-362
color table G-1

create 5-74
color table default values 5-76

Index X-17

colors
on monochrome devices 5-76
query 5-262
query data 5-264
query foreground mix mode 5-324
query index 5-266
query nearest 5-327
query real 5-343
query RGB 5-349
query system 8-362
set 5-453
set background 5-412
set system values 8-494

Combine Region 5-49
combo box control data 19-1
combo box control window processing 19-1
Comment 5-51, 33-12
Compare Strings 8-35
constant names 1-1
constants

button filtering 8-183
container control window processing

data structures 24-3
icon size, how determined A-17
mini-icon size, how determined A-17
notification codes 24-8
notification messages 24-4
purpose 24-1
styles and selection types 24-2
window messages 24-22
window words 24-1

container views A-16
contents and format of dialog template 32-19
control classes 11-2
control codes

Shift In (SI) 34-23
Shift Out (SO) 34-23

control data 32-22
Control Formatting 4-35
control statements

predefined 32-24
control window processing 11-2
CONVCONTEXT A-20
conventions
Convert 5-53
Convert with Matrix 5-55
coordinates

dialog 32-19
coordinates for dialogs 32-19
Copy Accelerator Table 8-37
Copy Metafile 5-57
Copy Rectangle 8-39
Correlate Chain 5-59
Correlate From 5-63
Correlate Segment 5-67
cosmetic line width

query 5-311
Counts Number of Items in Listbox 8-330
CPTEXT A-21
Create a Paragraph in DDF Buffer 4-24
Create Accelerator Table 8-44
Create Atom Table 8-46
Create Bit Map 5-71
Create Cursor 8-48
Create Dialog 8-50
Create Frame Controls 8-52
Create Help Instance 8-54

X-18 PM Programming Reference

Create Help Table 8-56
Create Logical Color Table 5-74
Create Logical Font 5-78
Create Menu 8-58
Create Message Queue 8-60
Create Palette 5-81
Create Pointer 8-64
Create Pointer Indirect 8-66
Create Presentation Space 5-84
Create Region 5-88
Create Standard Window 8-68
Create String Handle 3-5
Create Switch Entry 8-72
Create Window 8-74
Create Workplace Object 8-62
CREATESTRUCT A-21
CREA_* values 5-195
CRGN_ * values 5-49
cs_* values

window class styles 12-1
CTAB_* values 5-195
CTIME A-22
current position

move 5-173
query 5-269
set to specified point 5-458

cursor
create 8-48
destroy 8-101
hide 8-518
query information 8-316
show 8-518

CURSORINFO A-22
CURSOR_* values 8-48
CVR_* values 12-23
CVTC_* values 5-53
CV_* values

D

CNRINFO structure A-16
SEARCHSTRING structure A-115
view styles A-17

data
bit map D-1
get 5-150
put 5-223

data area in a dialog template 32-22
data format

image F-7
outline F-8

data types A-1
graphics orders 33-1
implicit pointer 1-5
storage mapping 1-6

DBCS 8-285
DBCS support 34-23

character-encoding schemes 34-23
DBM_* values 8-118
DB_* values 8-121
DCTL_ *values 5-282, 5-474
DC_* values A-32
DDEF _*values 5-195
DDEINIT A-23
DDESTRUCT A-23
ODE_* values 30-1, 30-2, 30-3, A-23
DdfBeginlist 4-2

DdfBitmap 4-5
DdfEndlist 4-8
DdfHyperText 4-10
Ddflnform 4-13
Ddflnitialize 4-15
Ddflistltem 4-18
DdfMetafile 4-21
Ddf Para 4-24
DdfSetColor 4-26
DdfSetFont 4-29
DdfSetFontStyle 4-32
DdfSetFormat 4-35
DdfSetTextAlign 4-37
DdfT ext 4-39
default colors 13-2, 14-2, 15-3, 16-1, 17-3, 19-2, 20-2,

22-2, 23-1
Default Dialog Procedure 8-85
default dialog processing 12-70
default graphics character box

query 5-275
default message processing 12-1
default view matrix

query 5-273
Default Window Procedure 8-89
default window processing 11-1
DEFAULTICON keyword 32-11
Define Hypertext Link 4-10
Define Inform Link 4-13
Define Text Alignment 4-37
Delete Atom 8-91
Delete Bit Map 5-90
Delete DRAGINFO String Handles 3-10
Delete Element 5-92
Delete Element Range 5-94
Delete Elements Between Labels 5-96
Delete Library 8-95
Delete Listbox Item 8-93
Delete Metafile 5-98
Delete Palette 5-100
Delete Procedure 8-96
Delete Segment 5-102
Delete Segments 5-104
Delete Set Identifier 5-106
Delete String Handle 3-11
DELETENOTIFY A-24
Deregister Workplace Object Class 8-97
DESKTOP A-24
Destroy Accelerator Table 8-98
Destroy Atom Table 8-99
Destroy Cursor 8-101
Destroy Help Instance 8-102
Destroy Message Queue 8-104
Destroy Pointer 8-107
Destroy Presentation Space 5-108
Destroy Region 5-110
Destroy Window 8-109
Destroy Window Hook 10-8
Destroy Workplace Object 8-106
DestroyWindowHook 10-8
detectability attribute for segments

modify (GpiSetSegmentAttrs) 5-539
DevCloseDC 2-2
DevEscape 2-4
DEVESC_* values 2-4, 2-5
device characteristics

query 2-15
device context

device context (continued)
clear output display 5-136
close 2-2
create 2-9
open 2-9
open for a window 8-273
screen 8-128

DevOpenDC 2-9
DEVOPENSTRUC A-25
DevPostDeviceModes 2-12
DevQueryCaps 2-15
DevQueryDeviceNames 2-21
DevQueryHardcopyCaps 2-24
DEV_* values 2-2, 2-10
DFORM_ *values 5-150, 5-223
dialog

create 8-50
default procedure 8-85
dismiss 8-111
enumerate item 8-145
load 8-236
process modal 8-287
query item short 8-321
send message to item 8-435
set item short 8-459

dialog item
query text 8-323
query text length 8-325
set text 8-461

dialog points
map 8-259

Dialog Procedure 10-2
dialog processing 12-70

default 12-70
language support 12-83

dialog template
data-area information 32-22
format and contents 32-19
header information 32-20
item information 32-21

dialog window
destroy modal 8-111
hide modeless 8-111

DialogProc 10-2
dialogs

define procedure 10-2
Direct Manipulation for Files 3-2
direct manipulation messages 29-1
directives 32-4
Dismiss Dialog 8-111
Dispatch Message 8-113
dithered colors 5-327
dithering 5-327, 8-494
DLGC_* values 12-72
DLGTEMPLATE A-27
DLGTEMPLATE statement 32-16
DLGTITEM A-27
DM_DISCARDOBJECT 29-1
DM_DRAGERROR 29-2
DM_DRAGFILECOMPLETE 29-2
DM_DRAGLEAVE 29-3
DM_DRAGOVER 29-4
DM_DRAGOVERNOTIFY 29-5
DM_DROP 29-6
DM_DROPHELP 29-7
DM_EMPHASIZETARGET 29-7
DM_ENDCONVERSATION 29-8

Index X-19

DM_FILERENDERED 29-9
DM_PRINTOBJECT 29-9
DM_RENDER 29-10
DM_RENDERCOMPLETE 29-11
DM_RENDERFILE ·29-12
DM_RENDERPREPARE 29-13
OM_* values 5-284, 5-477
double-byte character set 1-6
double-byte character sets 34-23
Down cursor key 8-547
DO_* values

DRAGINFO data structure A..:29
DRAGITEM data structure A-32

DPC errors 5-2
DPDM_* values 2-13
DP_* values 8-124
Drag 3-12
drag information

access 3-4
drag ~essages 29-1
DRAGIMAGE A-28
DRAGINFO A-29
DRAGITEM A-30
DRAGTRANSFER A-32
Draw Bit Map 8-118
Draw Bits 5-112
Draw Border 8-121
Draw Chain 5-117
Draw Dynamics 5-119
Draw From 5-121
draw mode 5-47
Draw Pointer 8-124
Draw Polygons 5-207
Draw Segment 5-123
Draw Text 8-126
Draw Tracking Rectangle 8-546
draw-and-retain mode 5-47
drawing mode

draw 5-126, 5-474, 5-478, 5-558
draw-and-retain 5-126, 5-287, 5-474, 5-478, 5-558
query 5-284
retain 5-126, 5-252, 5-287, 5-478, 5-558
set 5-477

drawing orders 33-1
drawing process check errors 5-2
ORF_* values A-31
DrgAcceptDroppedFiles 3-2
DrgAccessDraginfo 3-4
DrgAddStrHandle 3-5
DrgAUocDraginfo 3-7
DrgAllocDragtransfer 3-9
DrgOeleteDraginfoStrHandles 3-10
OrgDeleteStrHandle 3-11
DrgDrag 3-12
DrgDragFiles 3-16
DrgFreeDraginfo 3-19
DrgFreeDragtransfer 3-21
DrgGetPS 3-22
DrgPostTransferMsg 3-24
DrgPushDraginfo 3-26
DrgQueryDragitem 3-28
DrgQueryDragitemCount 3-30
DrgQueryDragitemPtr 3-31
DrgQueryNativeRMF 3-32
DrgQueryNativeRMFLen 3-34
DrgQueryStrName 3-36
DrgQueryStrNamelen 3-38

X-20 PM Programming Reference

DrgQueryTrueType 3-40
DrgQueryTrueTypelen 3-42
DrgReleasePS 3-44
DrgSendTransferMsg 3-45
DrgSetDraglmage 3-48
DrgSetDragitem 3-50
DrgSetDragPointer 3-53
DrgVerifyNativeRMF 3-55
DrgVerifyRMF. 3-57
DrgVerifyTrueType 3-59
DrgVerifyType 3-61
DrgVerifyTypeSet 3-63
DRG_ * values A-29
ORIVDATA A-33
DRIVPROPS A-34
ORM_* values A-31
ORO_* values 5-28, 5-148
ORT_* values A-30
DTYP _ * values 8-408
OT_* values 8-127, 22-1
Dynamic Data Exchange Initiate (NLS} 8-78
dynamic data exchange messages 30-1
Dynamic Data Exchange Post Message (NLS} 8-80
Dynamic Data Exchange Respond (NLS} 8-83

E
EBCDIC MIXED code pages 34-23
edit mode

query 5-285
set 5-480

EDI_* values 8-145
EGA 2-19
Element 5-125

end 5-130
query 5-286

elements
delete 5-92
delete between labels 5-96
delete between range 5-94
offset pointer 5-177
query pointer 5-288
query type 5-290
set pointer at label 5-484

Empty Clipboard 8-130
EM_CLEAR 14-4
EM_COPY 14-4
EM_CUT 14-5
EM_PASTE 14-5
EM_QUERYCHANGED 14-6
EM_QUERYFIRSTCHAR 14-7
EM_QUERYREADONLY 14-7
EM_QUERYSEL 14-8
EM_SETFIRSTCHAR 14-8
EM_SETINSERTMODE 14-9
EM_:SETREADONL Y 14-10
EM_SETSEL 14-10
EM_SETTEXTLIMIT 14-11
Enable Control of Button Id 8-131
Enable Menu Item 8-132
Enable Physical Input 8-134
Enable Window Update 8-137
encapsulation 9-1
End Area S-:128, 33-13
End Definition List 4-8
End Element 5-130, 33-13
End Image 33-13

End of Symbol Definition 33-14
End Paint 8-141
End Path 5-132, 33-14
End Prolog 33-14
End Window Enumeration 8-139
ENDFONT structure F-1
Enter key 8-547
entry field control data 14-2
entry field control window processing 14-1
ENTRYFDAT A A-34
Enumerate Clipboard Formats 8-143
Enumerate Dialog Item 8-145
Enumerate Object Classes 8-147
EN_* values 14-3, 18-3
EQRGN_* values 5-134
Equal Rectangle 8-148
Equal Region 5-134
Erase 5-136
ERRINFO A-35
Error Segment Data 5-138
error severities 1-2
error state

get last one 8-178
error-information block 8-165
ERRORID A-35
errors

codes B-1
drawing process check 5-2
explanations C-1
get information 8-175
severities of 1-2

Esc key 8-547
Escape 2-4, 33-15
ESCSETMODE A-35
ES_* dbcsvals 14-2
ES_* values 14-1
Exclude Clip Rectangle 5-140
Exclude Update Region 8-150
Extended Escape 33-15

F
FACENAMEDESC A-35
FATTRS A-36
FATTR_FONTUSE_* values A-38
FATTR_SEL_* values A-37
FATTR_TYPE_* values A-38
FCF _ * frame styles 8-424
FCF _*values 15-1
FC_* values 8-160
FDATE A-38
FDM_ERROR 12-73
FDM_FIL TER 12-74
FDM_VALIDATE 12-74
FDS_* values A-42
FFDESCS A-39
FFDESCS2 A-39
FF_* indicators 8-400
FF_* values 5-144
FID_* values 15-1, 23-1
FIELDINFO A-39
FIELDINFOINSERT A-41
FIELDINFOINSERT data structure A-41
file dialog 12-73
file format
file formats

bit maps D-2

file formats (continued)
icon file D-2
pointer D-2

FILEDLG A-42
FILEFINDBUF4 A-46
Fill Path 5-142, 33-16
Fill Rectangle 8-154
Fillet at Current Position 33-16
Fillet at Given Position 33-16
Find Atom 8-156
Find Word Hook 10-9
FindWordHook 10-9
FIXED A-46
Fl_* values 15-18
Flash Window 8-158
flashing

start 8-158
stop 8-158

flipping bits 8-211
Flood Fill 5-144
FM_* values 5-324, 5-510
FNTF _ * values A-49
FNTM_FACENAMECHANGED 12-76
FNTM_FIL TERLIST 12-77
FNTM_POINTSIZECHANGED 12-78
FNTM_STYLECHANGED 12-78
FNTM_UPDATEPREVIEW 12-79
FNTS_* values A-48
FOCAMETRICS structure F-2
focus

change window 8-160
query 8-327
set window 8-464

FOLDERDAT A A-46
font character definitions F-3
font definition header F-4
font dialog 12-75
font directory F-11
font metrics F-1
font-file format F-1
FONTDEFINITIONHEADER structure F-4
FONTDLG A-47
FONTMETRICS A-52
fonts

create logical definition 5-78
definition of terms F-12
Japanese 34-23
load 5-163
load public 5-167
outline 5-427, 5-430, 5-433, 5-438, 5-445
query 5-299
query action 5-294
query face string 5-292
query logical 5-315
query metrics 5-297
query number of local identifiers 5-329
query set identifiers 5-359
query width table 5-372
raster 5-427, 5-430, 5-433, 5-438, 5-445, 5-522
unload 5-563
unload public 5-565

fonts supplied with OS/2 E-1
FONTSIGNATURE structure F-1
FONT_* values 5-78
format

font-file F-1
format and contents of dialog template 32-19

Index X-21

FPATH_* values 5-142, 5-191
frame control data 15-3
frame control window processing 15-1
Frame Region 5-146
FRAMECDATA A-60
Free DRAGINFO Structure 3-19
Free DRAGTRANSFER Storage 3-21
Free Error Information 8-165
Free File Icon 8-168
Free Standard File Dialog File List 8-166
FS_ *values 15-3
FTIME A-61
Full Arc 5-148

create 5-148
Full Arc at Current Position 33-17
Full Arc at Given Position 33-17
function descriptions

conventions used 1-1
functions

supplied by applications 10-1

G
GARC 33-3
GBAR 33-3
GBBLT 33-7
GBEL 33-4
GBEZ 33-6
GBIMG 33-5
GBIT1 33-1
GBIT16 33-1
GBIT2 33-1
GBIT32 33-1
GBIT4 33-1
GBIT5 33-1
GBIT6 33-1
GBIT7 33-1
GBIT8 33-1
GBOX 33-8
GBPTH 33-5
GCALLS 33-9
GCARC 33-3
GCBEZ 33-6
GCBIMG 33-5
GCBOX 33-8
GCCHST 33-9
GCCHSTE 33-10
GCCHSTM 33-11
GCFARC 33-17
GCFLT 33-16
GCHAR 33-1
GCHST 33-9
GCHSTE 33-10
GCHSTM 33-11
GCLFIG 33-12
GCLINE 33-18
GCMRK 33-18
GCOMT 33-12
GCPARC 33-20
GCRLINE 33-22
GCSFL T 33-50
GDELPOINT 33-1
GEAR 33-13
GEEL 33-13
GEESCP 33-15
GEIMG 33-13
general window styles 12-1

X-22 PM Programming Reference

geometric line width 5-312
GEPROL 33-14
GEPTH 33-14
GESCP 33-15
GESD 33-14
Get Clipped Presentation Space 8-169
Get Current Time 8-171
Get Data 5-150
Get Dialog Message 8-172
Get Drag Presentation Space 3-22
Get Dragged Object Count 3-30
Get DRAGITEM Structure 3-28
Get Error Information 8-175
Get Format of a Dragged Object 3-32
Get Key State 8-176
Get Last Error 8-178
Get Maximum Position 8-179
Get Message 8-183
Get Minimum Position 8-181
Get Multiple Windows From Identities 8-266
Get Next Window 8-186
Get Physical Key State 8-188
Get Pointer to DRAGITEM Structure 3-31
Get Presentation Space 8-190
Get Screen Presentation Space 8-192
Get String Contents 3-36
Get String Length 3-38
Get String Length for Native AMF of Dragged

Object 3-34
Get String Length for True Type of Dragged Object 3-42
Get System Bit Map 8-194
Get True Type of Dragged Object 3-40
GFARC 33-17
GFIXED 33-2
GFIXEDS 33-2
GFLT 33-16
GFPTH 33-16
GHBITMAP 33-2
GIMD 33-17
GINDATT 33-2
GINDEX3 33-2
GLBL 33-18
GLENGTH1 33-2
GLENGTH2 33-2
GLINE 33-18
GLONG 33-2
GMPTH 33-19
GMRK 33-18
GNOP1 33-19
GOPTH 33-19
GPARC 33-20
GpiAnimatePalette 5-8
GpiAssociate 5-11
GpiBeginArea 5-13
GpiBeginElement 5-17
GpiBeginPath 5-19
GpiBitBlt 5-23
GpiBox 5-28
GpiCallSegmentMatrix 5-31
GpiCharString 5-34
GpiCharStringAt 5-36
GpiCharStringPos 5-39
GpiCharStringPosAt 5-42
GpiCloseFigure 5-45
GpiCloseSegment 5-47
GpiCombineRegion 5-49
GpiComment 5-51

GpiConvert 5-53
GpiConvertWithMatrix 5-55
GpiCopyMetaFile 5-57
GpiCorrelateChain 5-59
GpiCorrelateFrom 5-63
GpiCorrelateSegment 5-67
GpiCreateBitmap 5-71
GpiCreatelogColorTable 5-74
GpiCreatelogFont 5-78
GpiCreatePalette 5-81
GpiCreatePS 5-84
GpiCreateRegion 5-88
GpiDeleteBitmap 5-90
GpiDeleteElement 5-92
GpiDeleteElementRange 5-94
GpiDeleteElementsBetweenlabels 5-96
GpiDeleteMetaFile 5-98
GpiDeletePalette 5-100
GpiDeleteSegment 5-102
GpiDeleteSegments 5-104
GpiDeleteSetld 5-106
GpiDestroyPS 5-108
GpiDestroyRegion 5-110
GpiDrawBits 5-112
GpiDrawChain 5-117
GpiDrawDynamics 5-119
GpiDrawFrom 5-121
GpiDrawSegment 5-123
GpiElement 5-125
GpiEndArea 5-128
GpiEndElement 5-130
GpiEndPath 5-132
GpiEqualRegion 5-134
GpiErase 5-136
GpiErrorSegmentData 5-138
GpiExcludeClipRectangle 5-140
GPIE_* values 5-138
GpiFillPath 5-142
GpiFloodFill 5-144
GpiFrameRegion 5-146
GpiFullArc 5-148
GPIF _ * values 5-533
GpiGetData 5-150
Gpilmage 5-153
GpilntersectClipRectangle 5-155
Gpilabel 5-157
Gpiline 5-159
GpiloadBitmap 5-161
GpiloadFonts 5-163
GpiloadMetaFile 5-165
GpiloadPublicFonts 5-167
GpiMarker 5-168
GpiModifyPath 5-170
GpiMove 5-173
GpiOffsetClipRegion 5-175
GpiOffsetElementPointer 5-177
GpiOffsetRegion 5-179
GpiOpenSegment 5-181
GpiOutlinePath 5-184
GpiPaintRegion 5-186
GpiPartialArc 5-188
GpiPathToRegion 5-191
GpiPlayMetaFile 5-193
GpiPointArc 5-199
GpiPolyFillet 5-201
GpiPolyFilletSharp 5-204
GpiPolygons 5-207

GpiPolyline 5-209
GpiPolylineDisjoint 5-211
GpiPolyMarker 5-213
GpiPolySpline 5-215
GpiPop 5-217
GpiPtlnRegion 5-219
GpiPtVisible 5-221
GpiPutData 5-223
GpiQueryArcParams 5-226
GpiQueryAttrMode 5-228
GpiQueryAttrs 5-229
GpiQueryBackColor 5-231
GpiQueryBackMix 5-232
GpiQueryBitmapBits 5-233
GpiQueryBitmapDimension 5-236
GpiQueryBitmapHandle 5-239
GpiQueryBitmaplnfoHeader 5-237
G piQueryBitmapParameters 5-240
GpiQueryBoundaryData 5-242
GpiQueryCharAngle 5-244
GpiQueryCharBox 5-246
GpiQueryCharBreakExtra 5-248
GpiQueryCharDirection 5-249
GpiQueryCharExtra 5-250
GpiQueryCharMode 5-251
GpiQueryCharSet 5-252
GpiQueryCharShear 5-253
GpiQueryCharStringPos 5-255
GpiQueryCharStringPosAt 5-257
GpiQueryClipBox 5-259
GpiQueryClipRegion 5-261
GpiQueryColor 5-262
GpiQueryColorData 5-264
GpiQueryColorlndex 5-266
GpiQueryCp 5-268
GpiQueryCurrentPosition 5-269
GpiQueryDefArcParams 5-270
GpiQueryDefAttrs 5-271
GpiQueryDefaultViewMatrix 5-273
GpiQueryDefCharBox 5-275
GpiQueryDefTag 5-277
GpiQueryDefViewinglimits 5-278
GpiQueryDevice 5-279
GpiQueryDeviceBitmapFormats 5-280
GpiQueryDrawControl 5-282
GpiQueryDrawingMode 5-284
GpiQueryEditMode 5-285
GpiQueryElement 5-286
GpiQueryElementPointer 5-288
GpiQueryElementType 5-290
GpiQueryFaceString 5-292
GpiQueryFontAction 5-294
GpiQueryFontFileDescriptions 5-295
GpiQueryFontMetrics 5-297
GpiQueryFonts 5-299
GpiQueryFullFontFileDescriptions 5-301
GpiQueryGraphicsField 5-303
GpiQuerylnitialSegmentAttrs 5-304
GpiQueryKerningPairs 5-306
GpiQuerylineEnd 5-308
GpiQuerylineJoin 5-309
GpiQuerylineType 5-310
GpiQuerylineWidth 5-311
GpiQuerylineWidthGeom 5-312
GpiQuerylogColorTable 5-313
GpiQuerylogicalFont 5-315
GpiQueryMarker 5-317

Index X-23

GpiQueryMarkerBox 5-318
GpiQueryMarkerSet 5-320
GpiQueryMetaFileBits 5-321
GpiQueryMetaFilelength 5-323
GpiQueryMix 5-324
GpiQueryModelTransformMatrix 5-325
GpiQueryNearestColor 5-327
GpiQueryNumberSetlds 5-329
GpiQueryPageViewport 5-330
GpiQueryPalette 5-332
GpiQueryPalettelnfo 5-333
GpiQueryPattern 5-335
GpiQueryPatternRefPoint 5-336
GpiQueryPatternSet 5-337
GpiQueryPel 5-338
GpiQueryPickAperturePosition 5-340
GpiQueryPickApertureSize 5-341
GpiQueryPS 5-342
GpiQueryRealColors 5-343
GpiQueryRegionBox 5-345
GpiQueryRegionRects 5-347
GpiQueryRGBColor 5-349
GpiQuerySegmentAttrs 5-351
GpiQuerySegmentNames 5-353
GpiQuerySegmentPriority 5-355
GpiQuerySegmentTransformMatrix 5-357
GpiQuerySetlds 5-359
GpiQueryStopOraw 5-362
GpiQueryTag 5-363
GpiQueryTextAlignment 5-364
GpiQueryTextBox 5-365
GpiQueryViewinglimits 5-368
GpiQueryViewingTransformMatrix 5-370
GpiQueryWidthTable 5-372
GpiRectlnRegion 5-374
GpiRectVisible 5-376
GpiRemoveDynamics 5-378
GpiResetBoundaryData 5-381
GpiResetPS 5-382
GpiRestorePS 5-384
GpiRotate 5-386
GpiSaveMetaFile 5-389
GpiSavePS 5-391
GpiScale 5-393
GpiSelectPalette 5-396
GpiSetArcParams 5-398
GpiSetAttrMode 5-401
GpiSetAttrs 5-404
GpiSetBackColor 5-412
GpiSetBackMix 5-415
GpiSetBitmap 5-418
GpiSetBitmapBits 5-420
GpiSetBitmapDimension 5-423
GpiSetBitmapld 5-425
GpiSetCharAngle 5-427
GpiSetCharBox 5-430
GpiSetCharBreakExtra 5-433
GpiSetCharDirection 5-435
GpiSetCharExtra 5-438
GpiSetCharMode 5-440
GpiSetCharSet 5-443
GpiSetCharShear 5-445
GpiSetClipPath 5-448
GpiSetClipRegion 5-451
GpiSetColor 5-453
GpiSetCp 5-456
GpiSetCurrentPosition 5-458

X-24 PM Programming Reference

GpiSetDefArcParams 5-460
GpiSetDef Attrs 5-462
GpiSetDefaultViewMatrix 5-467
GpiSetDefTag 5-470
GpiSetDefViewinglimits 5-472
GpiSetDrawControl 5-47 4
GpiSetDrawingMode 5-477
GpiSetEditMode 5-480
GpiSetElementPointer 5-482
GpiSetElementPointerAtlabel 5-484
GpiSetGraphicsField 5-486
GpiSetlnitialSegmentAttrs 5-488
GpiSetlineEnd 5-491
GpiSetlineJoin 5-493
GpiSetlineType 5-495
GpiSetlineWidth 5-498
GpiSetlineWidthGeom 5-500
GpiSetMarker 5-502
GpiSetMarkerBox 5-504
GpiSetMarkerSet 5-506
GpiSetMetaFileBits 5-508
GpiSetMix 5-510
GpiSetModelTransformMatrix 5-513
GpiSetPageViewport 5-516
GpiSetPaletteEntries 5-518
GpiSetPattern 5-521
GpiSetPatternRef Point 5-524
GpiSetPatternSet 5-526
GpiSetPel 5-528
GpiSetPickAperturePosition 5-530
GpiSetPickApertureSize 5-531
GpiSetPS 5-533
GpiSetRegion 5-536
GpiSetSegmentAttrs 5-538
GpiSetSegmentPriority 5-541
GpiSetSegmentTransformMatrix 5-543
GpiSetStopDraw 5-546
GpiSetTag 5-548
GpiSetTextAlignment 5-550
GpiSetViewinglimits 5-553
GpiSetViewingTransformMatrix 5-555
GpiStrokePath 5-558
GpiTranslate 5-560
GpiUnloadFonts 5-563
GpiUnloadPublicFonts 5-565
GpiWCBitBlt 5-567
GPI_* values 5-196
GPOINT 33-2
GPOINTB 33-2
GPOL VS 33-2, 33-20
GPOP 33-21
GPSAP 33-23
GPSBCOL 33-23
GPSBICOL 33-24
GPSBMX 33-25
GPSCA 33-26
GPSCBE 33-26
GPSCC 33-27
GPSCO 33-28
GPSCE 33-28
GPSCH 33-30
GPSCOL 33-31
GPSCP 33-32
GPSCR 33-29
GPSCS 33-30
GPSECOL 33-32
GPSFLW 33-33

GPSIA 33-35
GPSICOL 33-34
GPSLE 33-36
GPSLJ 33-36
GPSLT 33-37
GPSLW 33-38
GPSMC 33-39
GPSMP 33-40
GPSMS 33-40
GPSMT 33-41
GPSMX 33-41
GPSPIK 33-45
GPSPRP 33-43
GPSPS 33-44
GPSPT 33-44
GPSSLW 33-46
GPSTA 33-47
GPSTM 33-42
GPSVW 33-48
GRADIENTL A-61
graphics

orders 33-1
query field 5-303
set field 5-486

graphics orders
data types 33-1

GREAL 33-2
GRES_* values 5-382
GRUNE 33-22
GROF 33-2
GROFUFS 33-2
GROL 33-2
GROSOL 33-2
GROUFS 33-2
GROUL 33-2
GSAP 33-23
GSBCOL 33-23
GSBICOL 33-24
GSBMX 33-25
GSCA 33-26
GSCBE 33-26
GSCC 33-27
GSCD 33-28
GSCE 33-28
GSCH 33-30
GSCOL 33-31
GSCP 33-32
GSCPTH 33-31
GSCR 33-29
GSCS 33-30
GSECOL 33-32
GSFLT 33-50
GSFLW 33-33
GSGCH 33"".22
GSHORT 33-2
GSHORT370 33-2
GSIA 33-35
GSICOL 33-34
GSLE 33-36
GSLJ 33-36
GSLT 33-37
GSLW 33-38
GSMC 33-39
GSMP 33-40
GSMS 33-40
GSMT 33-41
GSMX 33-41

GSPIK 33-45
GSPRP 33-43
GSPS 33-44
GSPT 33-44
GSSB 33-45
GSSLW 33-46
GSTA 33-47
GSTM 33-42
GSTR 33-2
GSTV 33-48
GSVW 33-48
GUCHAR 33-2
GUFIXEDS 33-3
GULONG 33-3
GULONG370 33-3
GUNDF 33-3
GUNDF1 33-3
GUSHORT 33-3
GUSHORT370 33-3

H
HAB A-61
HACCEL A-61
HAPP A-61
HATOMTBL A-61
HBITMAP A-61
HCAPS_* values A-62
HCINFO A-61
HOC A-62
HOOF A-62
header 32-20
header files 1-3
Help Hook 10-10
help manager messages 31-1
helper macros 1-3
HelpHook 10-10
HELPINIT A-62
HELPTABLE A-63
HENUM A-64
HEV A-64
HFILE A-64
HFIND A-64
HFM_ *values 10-10
HIGHER_* values 5-355, 5-541
highlight attribute for segments

modify (GpiSetSegmentAttrs) 5-539
HINI A-64
HK_* values 8-466
HLIB A-64
HM ERR_* error constants 31-4
HMF A-64
HMODULE A-64
HMO A-64
HMO_* values 8-418
HMTX A-64
HMUX A-64
HM_ACTIONBAR_COMMAND 31-1
HM_CONIBOL 31-1
HM_CREATE_HELP_TABLE 31-2
HM_DISMlSS_WINDOW 31-2
HM_DISPLAY_HELP 31-3
HM_ERROR 31-4
HM_EXT_HELP 31-5
HM_EXT_HELP_UNDEFINED 31-6
HM_GENERAL_HELP 31-6
HM_GENERAL_HELP _UNDEFINED 31-7

Index X-25

HM_HELPSUBITEM_NOT _FOUND 31-8
HM_HELP _CONTENTS 31-7
HM_HELP _INDEX 31-8
HM_INFORM 31-9
HM_INVALIDATE_DDF _DATA 31-10
HM_KEYS_HELP 31-10
HM_LOAD_HELP_TABLE 31-11
HM_NOTIFY 31-12
HM_QUERY 31-13
HM_QUERY_DDF_DATA 31-14
HM_QUERY _KEYS_HELP 31-14
HM_REPLACE_HELP _FOR_HELP 31-15
HM_REPLACE_USING_HELP 31-15
HM_SET_ACTIVE_WINDOW 31-16
HM_SET_COVERPAGE_SIZE 31-17
HM_SET_HELP_LIBRARY_NAME 31-17
HM_SET_HELP _WINDOW_TITLE 31-18
HM_SET_OBJCOM_WINDOW 31-18
HM_SET_SHOW_PANEL_ID 31-19
HM_SET_USERDATA 31-19
HM_TUTORIAL 31-20
HM_UPDATE_OBJCOM_WINDOW_CHAIN 31-21
HOBJECT A-64
hook

change code page 10-7
find word 10-9
help requests 10-10
input 10-8, 10-13
message filter 10-20
release 8-418
send message 10-23
set 8-466

hooks 10-1
HPAL A-64
HPOINTER A-64
HPROC A-64
HPROGARRAY A-64
HPROGRAM A-65
HPS A-65
HRGN A-65
HRGN_ * values 5-451
HSEM A-65
HSPL A-65
HSTR A-65
HSVWP A-65
HSWITCH A-65
HT_* values 12-37
HWND A-65
HWND_* values 8-11, 8-50, 8-52, 8-58, 8-115, 8-236,

8-244,8-260,8-362,8-506

I
IBB_ *values 5-405, 5-463
icon

destroy 8-107
icon file format D-2
icon size, how determined A-17
ICONINFO A-65
lconPos A-66
Image 5-153

draw 5-153
image attribute values 5-405, 5-463
Image Data 33-17
IMAGEBUNDLE A-66
Implicit Pointer 1-1
implicit pointer data types 1-5

X-26 PM Programming Reference

In Send Message 8-201
Inflate Rectangle 8-197
information tables

bit map D-1
inheritance 9-1
initialization file H-1
Initialize. 8-199
Initialize DDF Area 4-15
initialize Presentation Interface 8-199
Input Hook 10-13
lnputHook 10-13
Insert List Item 4-18
Insert Listbox Item 8-203
interchange file format G-1
Intersect Clip Rectangle 5-155
Intersect Rectangle 8-205
Invalidate Rectangle 8-207
Invalidate Region 8-209
Invert Rectangle 8-211
IPT A-66
Is Child 8-213
Is Control Enabled 8-214
Is Menu Item Checked 8-216
Is Menu Item Enabled 8-218
Is Menu Item Valid 8-220
Is Physical Input Enabled 8-222
Is Rectangle Empty 8-223
Is Thread Active 8-224
Is Window 8-226
items in a dialog template 32-21

J
Japanese fonts 34-23
Journal Playback Hook 10-14
Journal Record Hook 10-15
JournalPlaybackHook 10-14
JournalRecordHook 10-15
JRN_ *values 12-39

K
kanji 34-23
KC_* values 12-24
kerning A-60

device support 2-18
enable A-38
number of pairs A-60
query pairs 5-306

kerning pair table F-8
KERNINGPAIRS A-66
KERNINGPAIRS data structure A-66
Keyboard control codes 12-24
keyboard resources 32-18
keyboard statements

keyboard 32-18
KS_* values 8-176, 8-188

L
Label 5-157, 33-18

generate element for 5-157
language support dialog processing 12-83
language support window processing 12-80
LBB _ * values 5-404, 5-462
LCIDT _ * values 5-359

LCID_* values 5-252, 5-320, 5-337, 5-443, 5-506, 5-526
LCOLF _ * values 5-7 4, 5-264, 8-494
LCOLOPT _ * 5-349
LCOLOPT_* values 5-313, 5-333, 5-343
LCOL_ * options 8-494
LCOL_* values 5-74, 5-264
LC_* values 5-194
Left cursor key 8-547
LHANDLE A-66
Line 5-159

draw 5-159
query cosmetic width 5-311
query end 5-308
query geometric width 5-312
query join 5-309
query type 5-310
query width 5-311
set cosmetic width 5-498
set end 5-491
set geometric width 5-500
set join 5-493
set type 5-495
set width 5-498

Line at Current Position 33-18
Line at Given Position 33-18
line attribute values 5-404, 5-462
LINEBUNDLE A-66
LINEEND_ *values 5-308, 5-491
LINEJOIN_ * values 5-309, 5-493
LINETYPE_ *values 5-310, 5-495
LINEWIDTHGEOM_ *values 5-312
LINEWIDTH_ * values 5-311, 5-498
list box control data 16-1
list box control styles 16-1
list box control window processing 16-1
LIT_* values 16-6
LM_DELETEALL 16-5
LM_DELETEITEM 16-5
LM_INSERTITEM 16-6
LM_QUERYITEMCOUNT 16-7
LM_QUERYITEMHANDLE 16-7
LM_QUERYITEMTEXT 16-8
LM_QUERYITEMTEXTLENGTH 16-9
LM_QUERYSELECTION 16-9
LM_QUERYTOPINDEX 16-10
LM_SEARCHSTRING 16-11
LM_SELECTITEM 16-12
LM_SETITEMHANDLE 16-12
LM_SETITEMHEIGHT 16-13
LM_SETITEMTEXT 16-14
LM_SETTOPINDEX 16-14
LN_ *values 16-2
Load Accelerator Table 8-234
Load and Process Modal Dialog 8-115
Load Bit Map 5-161
Load Dialog 8-236
Load File Icon 8-239
Load Fonts 5-163
Load Help Table 8-241
Load Library 8-243
Load Menu 8-244
Load Message 8-246
Load Metafile 5-165
Load Pointer 8-248
Load Procedure 8-250
Load Public Fonts 5-167
Load String 8-251

load type options 5-193
Loader Hook 10-16
LoaderHook 10-16
LOADOPTION 32-2
local identifier options 5-193
Lock Visible Regions 8-253
Lock Window Update 8-255
logical color table

create 5-74
logical font

delete 5-106
LONG A-67
LOWER_* values 5-355, 5-541
LSS_* values 16-11
LS_* values 16-1
LT_* values 5-193

M
Make Points 8-257
Make Rectangle 8-258
Map Dialog Points 8-259
Map Window Points 8-260
Marker 5-168

draw a series of 5-213
draw with center at specified position 5-168
query 5-317
query box 5-318
query set 5-320
query symbol 5-317
set 5-502
set box 5-504
set set 5-506

Marker at Current Position 33-18
Marker at Given Position 33-18
marker attribute values 5-405, 5-463
MARKERBUNDLE A-67
MARKSYM_ *values 5-317, 5-502
MATRIXLF A-68
MBB_* values 5-463
MBID_* values 8-264
MB_* values 8-262, 8-263
MEMOPTION 32-2
memory

release 8-165
MEMORYITEM A-68
menu control styles 17-1
menu control window processing 17-1
menu item attributes 17-2
menu item styles 17-2
MENU statement 32-11
MENUITEM A-68
menus

create 8-58
create window 8-58
load 8-244
pull-down 32-14
templates 32-15

message
broadcast 8-20
dispatch 8-113

Message Box 8-262
Message Control Hook 10-18
Message Filter Hook 10-20
message processing

introduction 11-1
notation conventions 11-3

Index X-27

message processing (continued)
types 11-1

message queues 1-2
message types 11-1
messages

create queue 8-60
destroy queue 8-104
get one 8-183
peek 8-275
post 8-281
post queue 8-283
queues 1-2
send 8-437
wait for 8-567

metaclass 9-1
Metafile data format G-2
metafile restrictions G-1
meta files

create new 5-57
delete 5-98
general rules G-1
load 5-165
play 5-193
query bits 5-321
query length 5-323
SAA-conforming 5-460, 5-465, 5-470, 5-472
save 5-389

MIA_* values 17-2
micro-presentation space, 5-391, 5-474
mini-icon size, how determined A-17
MINIRECORDCORE A-69
MIS_* values 17-2, 32-15
MIT_* values 17-9, 17-12, 17-18
mix

query 5-324
set 5-510
set background 5-415
set foreground 5-510

MIXED strings 34-23
MLECTLDATA A-69
MLEMARGSTRUCT A-70
MLEOVERFLOW A-71
MLE_SEARCHDATA A-71
MLM_CHARFROMb.INE 18-8
MLM_CLEAR 18-7
MLM_COPY 18-7
MLM_CUT 18-8
MLM_DELETE 18-9
MLM_DISABLEREFRESH 18-9
MLM_ENABLEREFRESH 18-10
MLM_EXPORT 18-11
MLM_FORMAT 18-11
MLM_IMPORT 18-12
MLM.:..JNSERT 18-13
MLM_LINEFROMCHAR 18-13
MLM_PASTE 18-14
MLM_QUERYBACKCOLOR 18-14
MLM_QUERYCHANGED 18-15
MLM_QUERYFIRSTCHAR 18-16
MLM_QUERYFONT 18-16
MLM.:.... QUERYFORMATLINELENGTH 18-17
MLM_QUERYFORMATRECT 18-18
MLM_QUERYFORMATTEXTLENGTH 18-17
MLM_ QUERYIMPORTEXPORT 18-18
MLM_QUERYLINECOUNT 18-19
MLM_QUERYLINELENGTH 18-19
MLM_QUERYREADONLY 18-20

X-28 PM Programming Reference

MLM_QUERYSEL 18-20
MLM_QUERYSELTEXT 18-21
MLM_QUERYTABSTOP 18-22
MLM_QUERYTEXTCOLOR 18-22
MLM_QUERYTEXTLENGTH 18-23
MLM_QUERYTEXTLIMIT 18-23
MLM_QUERYUNDO 18-24
MLM_QUERYWRAP 18-24
MLM_RESETUNDO 18-25
MLM_SEARCH 18-26
MLM_SETBACKCOLOR 18-27
MLM_SETCHANGED 18-28
MLM.:....SETFIRSTCHAR 18-28
MLM_SETFONT 18-29
MLM_SETFORMATRECT 18-30
MLM_SETIMPORTEXPORT 18-31
MLM_SETREADONL Y 18-32
MLM_SETSEL 18-31
MLM_SETTABSTOP 18-33
MLM_SETTEXTCOLOR 18-32
MLM_SETTEXTLIMIT 18-33
MLM_SETWRAP 18-34
MLM_UNDO 18-35
MLS_ *values 18-2
MM_DELETEITEM 17-8
MM_ENDMENUMODE 17-9
MM_INSERTITEM 17-9
MM_ISITEMVALID 17-10
MM_ITEMIDFROMPOSITION 17-11
MM_ITEMPOSJTIONFROMID 17-11
MM_QUERYITEM 17-12
MM_QUERYITEMATTR 17-13
MM_QUERYITEMCOUNT 17-13
MM_QUERYITEMRECT 17-14
MM_QUERYITEMTEXT 17-15
MM_QUERYITEMTEXTLENGTH 17-15
MM_QUERYSELITEMID 17-16
MM_REMOVEITEM 17-17
MM_SELECTITEM 17-18
MM_SETITEM 17-19
MM_SETITEMATTR 17-20
MM_SETITEMHANDLE 17-20
MM_SETITEMTEXT 17-21
MM_STARTMENUMODE 17-22
modal dialog

load and process 8-115
Modify Path 5-170, 33-19
monochrome devices 5-327
Move 5-173
Move to Next Character 8-268
Move to Previous Character 8-285
MPARAM A-72
MPATH_* values 5-170
MQINFO A-72
MRESUL T A-72
MsgCtlHook 10-18
MsgFilterHook 10-20
MSGF _ * values 10-20
MS_* values 12-5, 17-1
MTI A-72
multi-line entry field control data 18-2
multi-line entry field control window processing 18-1
multiple-line statements 32-7

ACCEL TABLE 32-9
ASSOCTABLE 32-10
DLGTEMPLATE 32-16
MENU 32-11

multiple-line statements (continued)
STRINGTABLE 32-7
WINDOWTEMPLATE 32-16

M_WPFileSystem * A-67
M_WPFolder * A-67
M_WPObject * A-67
M_WPPalette * A-67

N
No-Operation 33-19
nonstore attribute for segments

modify (GpiSetSegmentAttrs) 5-539
notation conventions

messages 11-3
notebook control window processing

notification messages 25-3
purpose 25-1
styles 25-1
window messages 25-4

NOTIFYDEL TA A-73
NOTIFYDELTA data structure A-73
NOTIFYRECORDEMPHASIS A-73
NOTIFYRECORDEMPHASIS data structure A-73
NOTIFYRECORDENTER A-74
NOTIFYRECORDENTER data structure A-74
NOTIFYSCROLL A-74
NOTIFYSCROLL data structure A-74
NULL 1-1
NULLHANDLE 1-1

0
OBJCLASS A-75
OBJDATA A-75
Object classes 9-2
Offset Clip Region 5-175
Offset Element Pointer 5-177
Offset Rectangle 8-270
Offset Region 5-179
Open Clipboard 8-272
Open Device Context 2-9
open figure 5-20
Open Profile 6-3
Open Segment 5-181
Open Window Device Context 8-273
outline fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Outline Path 5-184, 33-19
owner-notification messages 11-3
OWNERBACKGROUND A-75
OWNERBACKGROUND data structure A-75
OWNERITEM A-76
OWNERITEM data structure 12-75

p

owneritem parameter 12-75, 24-6
WM_DRAWITEM for container control 24-6
WM_DRAWITEM for font dialog 12-75

PACCEL A-76
PACCELTABLE A-76
page viewport

query 5-330
set 5-516

PAGEINFO A-76
PAGESELECTNOTIFY A-78

paint
begin 8-18
end 8-141

Paint Region 5-186
palette

animate 5-8
create 5-81
delete 5-100
query 5-332
query information 5-333
realize 8-403
select 5-396
set entries 5-518

PALINFO A-78
PANOSE A-78, F-9
PAPSZ A-82
PARAM A-82
PARCPARAMS A-84
PAREABUNDLE A-84
parent/child/owner relationship 32-23
Partial Arc 5-188
Partial Arc at Current Position 33-20
Partial Arc at Given Position 33-20
path

begin 5-19
convert to region 5-191
draw interior 5-142
draw outline 5-184
end 5-132
fill 5-142
modify 5-170

Path to Region 5-191
PATSYM_ *values 5-335, 5-521
pattern

query 5-335
pattern attribute (area) values 5-405, 5-463
patterns

query reference point 5-336
query set 5-337
set 5-521
set reference point 5-524
set set 5-526

PBANDRECT A-84
PBITMAPINFO A-84
PBITMAPINFOHEADER A-84
PBITMAPINFOHEADER2 A-84
PBITMAPINF02 A-84
PBOOKTEXT A-84
PBOOL A-84
PBUFFER A-84
PBUNDLE A-84
PBYTE A-84
PCVKEY 1-1
PCATCHBUF A-85
PCDATE A-85
PCELL A-85
PCH A-85
PCHAR A-85
PCHARBUNDLE A-85
PCLASSDET AILS A-85
PCLASSFIELDINFO A-85
PCLASSINFO A-85
PCNRDRAGINFO A-85
PCNRDRAGINIT A-85
PCNRDRAWITEMINFO A-85
PCNREDITDATA A-85
PCNRINFO A-85

Index X-29

PCOLOR A-85
PCONVCONTEXT A-85
PCPTEXT A-85
PCREATEPARAMS A-85
PCREATESTRUCT A-85
PCTIME A-85
PCURSORINFO A-85
PDDEINIT A-85
PDDESTRUCT A-86
PDELETENOTIFY A-86
PDESKTOP A-86
PDEVOPENDATA A-86
PDEVOPENSTRUC A-86
PDLGTEMPLATE A-86
PDLGTITEM A-86
PDRAGIMAGE A-86
PDRAGINFO A-86
PDRAGITEM A-86
PDRAGTRANSFER A-86
PDRIVDATA A-86
PDRIVPROPS A-86
Peek Message 8-275
pel

query 5-338
set 5-528

PENTRYFDAT A A-86
PERRINFO A-86
PERRORID A-86
PESCMODE A-86
PFACENAMEDESC A-86
PFA TTRS A-86
PFFDESCS A-87
PFIELDINFO A-87
PFIELDINFOINSERT A-87
PFILEDLG A-87
PFILEFINDBUF4 A-87
PFIXED A-87
PFN A-87
PFNWP A-87
PFOCAMETRICS type F-2
PFONTDLG A-87
PFONTMETRICS A-87
PGRADIENTL A-87
PHAB A-87
PHBITMAP A-87
PHCINFO A-87
PHDC A-87
PHELPINIT A-87
PHELPSUBTABLE A-87
PHELPTABLE A-87
PHFIND A-87
PHMF A-87
PHMODULE A-87
PHPAL A-87
PHPROGARRAY A-88
PHPROGRAM A-88
PHPS A-88
PHRGN A-88
PHSEM A-88
PHSWITCH A-88
PHWND A-88
PIBSTRUCT A-88
pick aperture

query size 5-341
set size 5-531

PICKAP _* values 5-531
PICKSEL_ * values 5-59, 5-63, 5-67

X-30 PM Programming Reference

PICONINFO A-89
PICONPOS A-89
PIO A-89
pie

segment 5-189
PIMAGEBUNDLE A-89
PIPT A-89
PIX A-89
PKERNINGPAIRS A-89
Place Bitmap Reference 4-5
Place Metafile Reference 4-21
Play Metafile 5-193
PLINEBUNDLE A-89
PLONG A-89
PL_AL TERED 12-3
PMARGSTRUCT A-89
PMARKERBUNDLE A-89
PMATRIXLF A-89
PMENUITEM A-89
PMF _*values 5-193
PMINIRECORDCORE A-89
PMLE_ SEARCHDATA A-89
PMPARAM A-89
PMQINFO A-89
PMRESUL T A-89
PM_Q_* values A-26
PM_* flags 8-275
PM_* names H-1
PM_* values 10-5, 10-13
PNOTIFYDEL TA A-90
PNOTIFYRECORDEMPHASIS A-90
PNOTIFYRECORDENTER A-90
PNOTIFYSCROLL A-90
POBJCLASS A-90
POBJDATA A-90
POBJECTS A-89
Point Arc 5-199
Point In Rectangle 8-289
Point In Region 5-219
Point Visible 5-221
pointer

create 8-64
create indirect 8-66
destroy 8-107
draw 8-124
hide 8-520
implicit 1-1
load 8-248
query handle 8-342
query information 8-343
query position 8-345
set 8-484
set element 5-482
set position 8-486
show 8-520

pointer file format D-2
Pointer-Conversion Procedure 10-3
POINTERINFO A-90
pointing device

capture messages 8-442
POINTL A-90
points A-90

check whether visible 5-221
check whether within region 5-219

Polyfillet 5-201
draw 5-201
sharp 5-204

Polyfillet Sharp 5-204
POLYGON A-91
polygons 33-20

draw a set of 5-207
Polyline 5-209

disjoint 5-211
draw 5-209

Polyline Disjoint 5-211
Polymarker 5-213
Polyspline 5-215
Pop 5-217, 33-21
Pop-up Menu 8-277
Post Device Modes 2-12
Post Drag Message 3-24
Post Message 8-281
Post Queue Message 8-283
POVERFLOW A-91
POWNERBACKGROUND A-91
POWNERITEM A-91
PPAGEINFO A-91
PPAGESELECTNOTIFY A-91
PPALINFO A-89
PPIBSTRUCT A-91
PPID A-89
PPOINTL A-91
PPOINTS A-91
PPOL YGON A-91
PPRDINF03 A-91
PPRDRIVINFO A-91
PPRESPARAMS A-91
PPRINTDEST A-91
PPRINTERINFO A-91
PPRJINF02 A-91
PPRJINF03 A-91
PPROGCATEGORY A-91
PPROGDETAILS A-91
PPROGRAMENTRY A-92
PPROGTITLE A-92
PPROGTYPE A-92
PPRPORTINFO A-92
PPRPORTINF01 A-92
PPRQINF03 A-92
PPRQINF06 A-92
PPRQPROCINFO A-92
PPSZ A-92
PPVOID A-92
PQMOPENDATA A-92
PQMSG A-92
PQUERYRECFROMRECT A-92
PQUERYRECORDRECT A-92
PRDINF03 A-92
PRDRIVINFO A-93
PRECORDCORE A-93
PRECORDINSERT A-93
PRECTL A-94
predefined control statements 32-24
predefined window classes 32-23
PRENDERFILE A-94
Presentation Interface

initialize 8-199
Presentation Manager

query environment 8-381
query revision level 8-381
query version 8-381

presentation parameters 32-22
presentation space

cache 8-18

presentation space (continued)
cached 15-11
create 5-84
destroy 5-108
get a cache 8-190
micro 5-86, 8-119, 8-123, 8-128, 8-190
normal 8-119, 8-123, 8-128
options 5-84, 5-533
query 5-342
release cache 8-420
reset 5-382
restore 5-384
save 5-391

presentation space options 5-84, 5-533
PRESPARAMS A-94
PrfCloseProfile 6-2
PrfOpenProfile 6-3
PRFPROFILE A-94
PrfQueryProfile 6-5
PrfQueryProfileData 6-7
PrfQueryProfilelnt 6-10
PrfQueryProfileSize 6-12
PrfQueryProfileString 6-14
PrfReset 6-17
PrfWriteProfileData 6-19
PrfWriteProfileString 6-21
PRGB2 A-94
PRGNRECT A-94
PRGN_ * values 5-219
primitives

set attributes for 5-404
PRIM_* values 5-229, 5-271, 5-404, 5-462
PRINTDEST A-94
PRINTERINFO A-95
PRJINF02 A-96
PRJINF03 A-97
procedures 10-1

dialog 10-2
window 10-4

Process Modal Dialog 8-287
profile

query string 6-14
PROGCATEGORY A-99
PROGDETAILS A-99
PROGRAMENTRY A-100
PROGTITLE A-100
PROGTYPE A-100
PROG_ * values A-100
prompted entry field control window processing 19-1
PRPORTINFO A-101
PRPORTINF01 A-101
PRQINF03 A-101
PRQINF06 A-103
PRQPROCINFO A-105
PSBCDATA A-105
PSEARCHSTRING A-105
PSFACTORS A-105
PSF_* values 8-169
PSHORT A-105
PSIZEF A-105
PSIZEL A-105
PSLDCDATA A-105
PSTRL A-105
PSTR16 A-105
PSTR32 A-105
PSTR64 A-105
PSTR8 A-105

Index X-31

PSTYLECHANGE A-105
PSWBLOCK A-106
PSWCNTRL A-106
PSWENTRY A-106
PSWP A-106
PSZ A-106
PS_* values 5-84, 5-342, 5-533
PTID A-106
PTRACKINFO A-106
PTREEITEMDESC A-106
PUCHAR A-106
pull-down menus 32-14
PULONG A-106
PUSEITEM A-106
PUSERBUTTON A-106
Push and Set Arc Parameters 33-23
Push and Set Background Color 33-23
Push and Set Background Indexed Color 33-24
Push and Set Background Mix 33-25
Push and Set Character Angle 33-26
Push and Set Character Break Extra 33-26
Push and Set Character Cell 33-27
Push and Set Character Direction 33-28
Push and Set Character Extra 33-28
Push and Set Character Precision 33-29
Push and Set Character Set 33-30
Push and Set Character Shear 33-30
Push and Set Color 33-31
Push and Set Current Position 33-32
Push and Set Extended Color 33-32
Push and Set Fractional Line Width 33-33
Push and Set Indexed Color 33-34
Push and Set Individual Attribute 33-35
Push and Set Line End 33-36
Push and Set Line Join 33-36
Push and Set Line Type 33-37
Push and Set Line Width 33-38
Push and Set Marker Cell 33-39
Push and Set Marker Precision 33-40
Push and Set Marker Set 33-40
Push and Set Marker Symbol 33-41
Push and Set Mix 33-41
Push and Set Model Transform 33-42
Push and Set Pattern Reference Point 33-43
Push and Set Pattern Set 33-44
Push and Set Pattern Symbol 33-44
Push and Set Pick Identifier 33-45
Push and Set Stroke Line Width 33-46
Push and Set Text Alignment 33-47
Push and Set Viewing Window 33-48
PUSHORT A-106
Put Data 5-223
PU_* values 5-84, 5-533
PVIOFONTCELLSIZE A-106
PVIOSIZECOUNT A-106
PVIS_* values 5-221
PVOID A-106
PVSCDATA A-106
PVSDRAGINFO A-106
PVSDRAGINIT A-106
PVSTEXT A-106
PWNDPARAMS A-106
PWPOINT A-106

X-32 PM Programming Reference

Q
QCD _LCT _ * values 5-264
QFC_* values 15-16
OF_* values 5-299
QLCT_* values 5-313
QMOPENSTRUC A-107
QMSG 11-1, A-108
as_* values 8-352
Query Accelerator Table 8-291
Query Active Window 8-293
Query Anchor Block 8-294
Query Arc Parameters 5-226
Query Atom Length 8-295
Query Atom Name 8-297
Query Atom Usage 8-299
Query Attribute Mode 5-228
Query Attributes 5-229
Query Background Color 5-231
Query Background Mix 5-232
Query Bit-Map Bits 5-233
Query Bit-Map Dimension 5-236
Query Bit-Map Handle 5-239
Query Bit-Map Info Header 5-237
Query Bit-Map Parameters 5-240
Query Boundary Data 5-242
Query Capture 8-302
Query Character Angle 5-244
Query Character Box 5-246
Query Character Break Extra 5-248
Query Character Direction 5-249
Query Character Extra 5-250
Query Character Mode 5-251
Query Character Set 5-252
Query Character Shear 5-253
Query Character String Positions 5-255
Query Character String Positions At 5-257
Query Checkstate of Button 8-300
Query Class Information 8-303
Query Class Name 8-305
Query Class Pointer-Conversion Procedure 8-307
Query Clip Box 5-259
Query Clip Region 5-261
Query Clipboard Data 8-308
Query Clipboard Format Information 8-310
Query Clipboard Owner 8-312
Query Clipboard Viewer 8-313
Query Code Page 5-268, 8-314
Query Code Page List 8-315
Query Color 5-262
Query Color Data 5-264
Query Color Index 5-266
Query Current Position 5-269
Query Cursor Information 8-316
Query Default Arc Parameters 5-270
Query Default Attributes 5-271
Query Default Graphics Character Box 5-275
Query Default Tag 5-277
Query Default View Matrix 5-273
Query Default Viewing Limits 5-278
Query Desktop Background 8-317
Query Desktop Window 8-319
Query Device 5-279
Query Device Bit-Map Formats 5-280
Query Device Capabilities 2-15
Query Device Names 2-21
Query Dialog Item Short 8-321

Query Dialog Item Text 8-323
Query Dialog Item Text Length 8-325
Query Draw Control 5-282
Query Drawing Mode 5-284
Query Edit Mode 5-285
Query Element 5-286
Query Element Pointer 5-288
Query Element Type 5-290
Query Face String 5-292
Query Focus 8-327
Query Font Action 5-294
Query Font File Descriptions 5-295
Query Font Metrics 5-297
Query Font Width Table 5-372
Query Fonts 5-299
Query Full Font File Descriptions 5-301
Query Graphics Field 5-303
Query Hardcopy Caps 2-24
Query Help Instance 8-328
Query Initial Segment Attributes 5-304
Query Kerning Pairs 5-306
Query Line End 5-308
Query Line Join 5-309
Query Line Type 5-310
Query Line Width 5-311
Query Line Width Geom 5-312
Query Listbox Item Text 8-331
Query Listbox Item Text Length 8-333
Query Logical Color Table 5-313
Query Logical Font 5-315
Query Marker 5-317
Query Marker Box 5-318
Query Marker Set 5-320
Query Message Position 8-336
Query Message Time 8-338
Query Metafile Bits 5-321
Query Metafile Length 5-323
Query Mix 5-324
Query Model Transform Matrix 5-325
Query Nearest Color 5-327
Query Number Set Identifiers 5-329
Query Object Window 8-340
Query Page Viewport 5-330
Query Palette 5-332
Query Palette Info 5-333
Query Pattern 5-335
Query Pattern Reference Point 5-336
Query Pattern Set 5-337
Query Pel 5-338
Query Pick Aperture Position 5-340
Query Pick Aperture Size 5-341
Query Pointer 8-342
Query Pointer Information 8-343
Query Pointer Position 8-345
Query Presentation Parameter 8-347
Query Presentation Space 5-342
Query Profile 6-5
Query Profile Data 6-7
Query Profile Integer 6-10
Query Profile Size 6-12
Query Profile String 6-14
Query Queue Information 8-350
Query Queue Status 8-352
Query Real Colors 5-343
Query Region Box 5-345
Query Region Rectangles 5-347
Query RGB Color 5-349

Query Segment Attributes 5-351
Query Segment Names 5-353
Query Segment Priority 5-355
Query Segment Transform Matrix 5-357
Query Session Title 8-355
Query Set Identifiers 5-359
Query Stop Draw 5-362
Query Switch Entry 8-357
Query Switch Handle 8-358
Query Switch List 8-360
Query System Atom Table 8-372
Query System Color 8-362
Query System Modal Window 8-364
Query System Pointer 8-365
Query System Value 8-368
Query Tag 5-363
Query Task Title 8-375
Query Task Window Size and Position 8-373
Query Text Alignment 5-364
Query Text Box 5-365
Query the Selected Item in Listbox 8-335
Query Update Rectangle 8-377
Query Update Region 8-379
Query Version 8-381
Query Viewing Limits 5-368
Query Viewing Transform Matrix 5-370
Query Window 8-382
Query Window Device Context 8-384
Query Window Enabled State 8-228
Query Window Handle From Device Context 8-572
Query Window Handle From Identifier 8-574
Query Window Long 8-398
Query Window Model 8-385
Query Window Pointer 8-390
Query Window Pointer-Conversion Procedure 8-397
Query Window Position 8-386
Query Window Process 8-388
Query Window Rectangle 8-392
Query Window Short 8-400
Query Window Showing 8-230
Query Window Text 8-394
Query Window Text Length 8-396
Query Window Visibility 8-232
Query Workplace Object Handle 8-402
QUERYRECFROMRECT A-108
QUERYRECFROMRECT data structure A-108
QUERYRECORDRECT A-109
QUERYRECORDRECT data structure A-109
queue

query information 8-350
query status 8-352

QV _ * values 8-381
QWL_USER in containers 24-1
QWL_ *values 8-398
QWS _ * values 8-400
QW _*Values 8-382

R·
radio button 13-1
raster fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Realize Palette 8-403
RECORDCORE A-110
RECORDINSERT A-111
RECORDINSERT data structure A-111
RECORDITEM A-111
rectangle

Index X-33

rectangle (continued)
calculate frame 8-22
check whether visible 5-376
check whether within region 5-374
compare for equality 8-148
convert to graphic 8-258
copy 8-39
draw border 8-121
draw interior 8-121
exclude from clipping region 5-140
fill 8-154
inflate 8-197
intersect 8-205
intersect clip 5-155
invalidate 8-207
invert 8-211
query if point within 8-289
query update 8-377
set coordinates 8-489
set empty 8-491
subtract 8-538
validate 8-560

Rectangle In Region 5-374
Rectangle Visible 5-376
RECTDIR_* values A-114
RECTL A-112
region

query box 5-345
query rectangles 5-347

regions
check if identical 5-134
check whether point within 5-219
check whether rectangle within 5-374
combine 5-49
create 5-88
destroy 5-110
frame 5-146
invalidate 8-209
move 5-179
offset 5-179
paint 5-186
set 5-536
validate 8-562

Register User Data Type 8-408
Register User Message 8-415
Register User Message Hook 10-21
Register Window Class 8-405
Register Workplace Object Class 8-407
RegisterUserMsg 10-21
Relative Line at Current Position 33-22
Relative Line at Given Position 33-22
Release Hook 8-418
Release Presentation Space 3-44, 8-420
Remove Dynamics 5-378
Remove Presentation Parameter 8-422
Remove Switch Entry 8-424
RENDERFILE A-112
Replace Workplace Object Class 8-426
Request Mutex Semaphore 8-427
reserved messages 12-1
Reset Boundary Data 5-381
reset options 5-194
Reset Presentation Manager 6-17
Reset Presentation Space 5-382
resource

load string from 8-251
resource definitions 32-2

X-34 PM Programming Reference

resource file specification 32-27
resource files

definitions 32-2
introduction 32-1
source file specification 32-27
syntax definitions 32-1

resource script file
specification 32-2

resource script file specification
keyboard resources 32-18
user-defined resources 32-3

resource statements
ACCEL TABLE 32-9
ASSOCTABLE 32-10
dialog template 32-16
directives 32-4
DLGTEMPLATE 32-16
MENU item definition 32-13
MENU statement 32-11
multiple-line 32-7
single line 32-2
STRINGTABLE 32-7
user-defined 32-3
window template 32-16
WINDOWTEMPLATE 32-16

Restore Presentation Space 5-384
Restore Window Position 8-429
RES_* values 5-194
RGB 5-77, A-113
RGB (red-green-blue) 5-264, 5-343, 5-453, 8-362

query color 5-349
RGB2 A-113
RGNRECT A-114
RGN_* values 5-140, 5-155, 5-345, 5-451, 8-379
Right cursor key 8-547
Roman text 5-435
ROP _*values 5-24, 5-112, 5-567
Rotate Transform 5-386
RRGN_* values 5-374
RT_* values 32-27
RUM_* values 8-415
RVIS_ * values 5-376

s
SAA-conforming metafiles 5-475
Save Metafile 5-389
Save Presentation Space 5-391
Save Window Position 8-430
SBCDATA A-114
SBCS 34-23
SBMP _*values 8-194
SBM_QUERYPOS 20-4
SBM_QUERYRANGE 20-4
SBM_SETPOS 20-5
SBM_SETSCROLLBAR 20-6
SBM_SETTHUMBSIZE 20-7
SBS_* values 20-1
SB_* values 12-38, 12-68, 28-2, 28-5
Scale Matrix 5-393
SCP_* values 5-448
scroll bar control data 20-1
scroll bar control window processing 20-1
scroll bar styles 20-1
Scroll Window 8-432
SC_* values 15-21
sow_* values 5-362, 5-546

SEARCHSTRING A-115
SEARCHSTRING data structure A-115
SEGEM_ * values 5-285, 5-480
segment attributes

chained 5-539
detectability 5-539
highlight 5-539
nonstore 5-539
store 5-539
transformability 5-539
visibility 5-539

Segment Characteristics 33-22
segments

add comment 5-51
call matrix 5-31
close current 5-47
correlate 5-67
correlate chain 5-59
correlate section of chain 5-63
delete all 5-104
delete retained 5-102
draw 5-123
draw chain 5-117
draw section of chain 5-121
get graphic data from 5-150
open 5-181
query attributes 5-351
query initial attributes 5-304
query names 5-353
query priority 5-355
query transform matrix 5-357
return last error during drawing 5-138
set attributes 5-538
set initial attributes 5-488
set priority 5-541
set transform matrix 5-543

Select Palette 5-396
Send Drag Message 3-45
Send Message 8-437
Send Message Hook 10-23
Send Message to Dialog Item 8-435
SendMsgHook 10-23
SEPARATOR menu item 32-15
session title

query 8-355
Set Accelerator Table 8-439
Set Active Window 8-441
Set Arc Parameters 5-398, 33-23
Set Attribute Mode 5-401
Set Attributes 5-404
Set Background Color 5-412, 33-23
Set Background Indexed Color 33-24
Set Background Mix 5-415, 33-25
Set Bit Map 5-418
Set Bit-Map Bits 5-420
Set Bit-Map Dimension 5-423
Set Bit-Map Identifier 5-425
Set Capture 8-442
Set Character Angle 5-427, 33-26
Set Character Box 5-430
Set Character Break Extra 5-433, 33-26
Set Character Cell 33-27
Set Character Direction 5-435, 33-28
Set Character Extra 5-438, 33-28
Set Character Mode 5-440
Set Character Precision 33-29
Set Character Set 5-443, 33-30

Set Character Shear 5-445, 33-30
Set Checkstate of Button 8-30
Set Class Message Interest 8-444
Set Class Pointer-Conversion Procedure 8-447
Set Clip Path 5-448, 33-31
Set Clip Region 5-451
Set Clipboard Data 8-449
Set Clipboard Owner 8-452
Set Clipboard Viewer 8-454
Set Code Page 5-456, 8-456
Set Color 5-453, 33-31
Set Color of Text 4-26
Set Current Position 5-458, 33-32
Set Default Arc Parameters 5-460
Set Default Attributes 5-462
Set Default Tag 5-470
Set Default View Matrix 5-467
Set Default Viewing Limits 5-472
Set Desktop Background 8-457
Set Dialog Item Short 8-459
Set Dialog Item Text 8-461
Set Drag Image 3-48
Set Draw Control 5-47 4
Set Drawing Mode 5-477
Set Edit Mode 5-480
Set Element Pointer 5-482
Set Element Pointer At Label 5-484
Set Extended Color 33-32
Set File Icon 8-463
Set Focus 8-464
Set Fractional Line Width 33-33
Set Graphics Field 5-486
Set Hook 8-466
set identifier

delete 5-106
Set Indexed Color 33-34
Set Individual Attribute 33-35
Set Initial Segment Attributes 5-488
Set Keyboard State Table 8-468
Set Line End 5-491, 33-36
Set Line Join 5-493, 33-36
Set Line Type 5-495, 33-37
Set Line Width 5-498, 33-38
Set Line Width Geom 5-500
Set Listbox Item Text 8-470
Set Marker 5-502
Set Marker Box 5-504
Set Marker Cell 33-39
Set Marker Precision 33-40
Set Marker Set 5-506, 33-40
Set Marker Symbol 33-41
Set Menu Item Text 8-472
Set Message Interest 8-473
Set Message Mode 8-476
Set Metafile Bits 5-508
Set Mix 5-510, 33-41
Set Model Transform 33-42
Set Model Transform Matrix 5-513
Set Multiple Window Positions 8-478
Set Object Data 8-480
Set Owner 8-481
Set Page Viewport 5-516
Set Palette Entries 5-518
Set Parent 8-482
Set Pattern 5-521
Set Pattern Reference Point 5-524, 33-43
Set Pattern Set 5-526, 33-44

Index X-35

Set Pattern Symbol 33-44
Set Pel 5-528
Set Pick Identifier 33-45
Set Pick-Aperture Position 5-530
Set Pick-Aperture Size 5-531
Set Pointer 8-484
Set Pointer Position 8-486
Set Pointing Device Pointer 3-53
Set Presentation Parameter 8-487
Set Presentation Space 5-533
Set Rectangle 8-489
Set Rectangle Empty 8-491
Set Region 5-536
Set Segment Attributes . 5-538
Set Segment Boundary 33-45
Set Segment Priority 5-541
Set Segment Transform Matrix 5-543
Set Stop Draw 5-546
Set Stroke Line Width 33-46
Set Synchronization Mode 8-492
Set System Colors 8-494
Set System Modal Window 8-500
Set System Value 8-502
Set Tag 5-548
Set Text Alignment 5-550, 33-47
Set Values in DRAGITEM 3-50
Set Viewing Limits 5-553
Set Viewing Transform 33-48
Set Viewing Transform Matrix 5-555
Set Viewing Window 33-48
Set Window Enabled State 8-135
Set Window Pointer-Conversion Procedure 8-514
Set Window Position 8-506
Set Window Text 8-512
Set Window Word Bits 8-504
Set Window Word Long 8-515
Set Window Word Short 8-517
Set Window Words Pointer 8-510
SFACTORS A-115
$HANDLE A-116
Sharp Fillet at Current Position 33-50
Sharp Fillet at Given Position 33-50
SHE_* values A-101
SHORT A-116
Show Cursor 8-518
Show Pointer 8-520
Show Tracking Rectangle 8-522
Show Window 8-523
Shutdown System 8-525
single-byte character set 1-6
single-byte character sets 34-23
SIZEF A-116
SIZEL A-116
SLDCDATA A-116
SLDCDATA data structure A-116
slider control window processing

data structures 26-3
notification messages 26-4
purpose 26-1
styles 26-1
window messages 26-7

SLM_ADDDETENT 26-7
SLM_ QUERYDETENTPOS 26-7
SLM_QUERYSCALETEXT 26-8
SLM_QUERYSLIDERINFO 26-9
SLM_QUERYTICKPOS 26-11
SLM_ QUERYTICKSIZE 26-11

X-36 PM Programming Reference

SLM_REMOVEDETENT 26-12
SLM_SETSCALETEXT 26-13
SLM_SETSLIDERINFO 26-13
SLM_SETTICKSIZE 26-15
SLS_* values 26-1
SMHSTRUCT A-117
SMIM_ * values 8-444, 8-473
SMI_ * values 8-444, 8-473
SM_QUERYHANDLE 22-3
SM_SETHANDLE 22-4
Sound Alarm 8-11
source resource file 32-27
SPBM_OVERRIDESETLIMITS 21-3
SPBM_QUERYLIMITS 21-4
SPBM_QUERYVALUE 21-4
SPBM_SETARRAY 21-6
SPBM_SETCURRENTV ALUE 21-6
SPBM_SETLIMITS 21-7
SPBM_SETMASTER 21-8
SPBM_SETTEXTLIMIT 21-9
SPBM_SPINDOWN 21-9
SPBM_SPINUP 21-10
Specify Text Font 4-29
Specify Text Font Style 4-32
spin button control window processing 21-1

notification message 21-2
purpose 21-1
styles 21-1

SplControlDevice 7-2
SplCopyJob 7-5
SplCreateDevice 7-7
SplCreateQueue 7-10
SplDeleteDevice 7-14
SplDeleteJob 7-16
SplDeleteQueue 7-18
SplEnumDevice 7-20
SplEnumDriver 7-23
SplEnumJob 7-26
SplEnumPort 7-29
SplEnumPrinter 7-32
SplEnumQueue 7-35
SplEnumQueueProcessor 7-39
SPLERR A-117
SplHoldJob 7-42
SplHoldQueue 7-44
SplPurgeQueue 7-46
SplQmAbort 7-48
SplQmAbortDoc 7-49
SplQmClose 7-50
SplQmEndDoc 7-51
SplQmOpen 7-53
SplQmStartDoc 7-55
SplQmWrite 7-57
SplQueryDevice 7-59
SplQueryJob 7-62
SplQueryQueue 7-66
SplReleaseJob 7-70
SplReleaseQueue 7-72
SplSetDevice 7-74
SplSetJob 7-77
SplSetQueue 7-81
SPL_* values 7-51, 7-53
Spool File Close 7-50
spooler

control device 7-2
copy job 7-5
create device 7-7

spooler (continued)
create queue 7-10
delete device 7-14
delete job 7-16
delete queue 7-18
enumerate device 7-20
enumerate driver 7-23, 7-29
enumerate job 7-26
enumerate printer 7-32
enumerate queue 7-35
enumerate queue processor 7-39
hold job 7-42
hold queue 7-44
purge queue 7-46
query device 7-59
query job 7-62
query queue 7-66
queue manager abort 7-48
queue manager abort document 7-49
queue manager close 7-50
queue manager end document 7-51
queue manager open 7-53
queue manager start document 7-55
queue manager write 7-57
release job 7-70
release queue 7-72
set device 7-74
set job information 7-77
set queue 7-81

Spooler Control Device 7-2
Spooler Copy Job 7-5
Spooler Create Device 7-7
Spooler Create Queue 7-10
Spooler Delete Device 7-14
Spooler Delete Job 7-16
Spooler Delete Queue 7-18
Spooler Enumerate Device 7-20
Spooler Enumerate Driver 7-23
Spooler Enumerate Job 7-26
Spooler Enumerate Port 7-29
Spooler Enumerate Print Destinations 7-32
Spooler Enumerate Queue 7-35
Spooler Enumerate Queue Processor 7-39
Spooler File Abort 7-48
Spooler File Abort Document 7-49
Spooler File End Document 7-51
Spooler File Open 7-53
Spooler File Start Document 7-55
Spooler File Write 7-57
Spooler Hold Job 7-42
Spooler Hold Queue 7-44
Spooler Purge Queue 7-46
Spooler Query Device 7-59
Spooler Query Job 7-62
Spooler Query Queue 7-66
Spooler Release Job 7-70
Spooler Release Queue 7-72
Spooler Set Device 7-74
Spooler Set Job 7-77
Spooler Set Queue 7-81
SPTR_ * values 8-365
SS_* values 22-1
standard bit-map formats D-1
Standard File Dialog 8-152
Standard File Dialog Default Procedure 8-87
Standard Font Dialog 8-163
Standard Font Dialog Default Procedure 8-88

Start Timer 8-529
static control data 22-2
static control styles 22-1
static control window processing 22-1
Stop Timer 8-531
storage mapping of data types 1-6
store attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Store Window Position 8-533
string

convert to uppercase 8-556
string handle

create 3-5
delete 3-10, 3-11

strings
load from resource 8-251
substitute 8-536

STRINGTABLE statement 32-7
Stroke Path 5-558
STRUCT A-117
structures A-1
STR16 A-117
STR32 A-117
STR64 A-117
STR8 A-117
STYLECHANGE A-117
Subclass Window 8-534
submenus 32-14
Substitute Strings 8-536
Subtract Rectangle 8-538
suppression options 5-194
SUP_* values 5-194
sv_* values

effect on container icon size A-17
effect on container mini-icon size A-17

SWBLOCK A-118
SWCNTRL A-118
SWENTRY A-119
Switch To Program 8-540
SWL_* values A-119
SWP A-119
SWP _*values 8-386, 8-506, 12-69, A-120
SW_* options 8-432
SYSCLR_ * indexes 8-494
SYSINF _ * values 8-381
system color

query 8-362
set 8-494

system pointer
query 8-365

system value
query 8-368
set 8-502

T
tag

query 5-363
query default 5-277
set 5-548

TA_* values 5-550, 5-551
TBM_QUERYHILITE 23-3
TBM_SETHILITE 23-3
templates

dialog 32-19
format 32-15
menus 32-15

Index X-37

Terminate 8-542
Terminate Application 8-544
text

draw 8-126
query alignment 5-364
query box 5-365
set alignment 5-550

TF_* values A-121
ThunkProc 10-3
TIO A-120
timer

start 8-529
title bar

control data 23-1
control window processing 23-1
style 23-1

TRACKINFO A-120
tracking rectangle

hide 8-522
show 8-522

transform matrix
query model 5-325
rotate 5-386
scale 5-393
set model 5-513
translate 5-560

transformability attribute for segments
modify (GpiSetSegmentAttrs) 5-539

transforms
set viewing 5-555

TRANSFORM_* values 5-31, 5-386, 5-393, 5-467, 5-513,
5-543,5-555,5-560

Translate Accelerator 8-550
Translate Character with Code Page 8-40
Translate Matrix 5-560
Translate String with Code Page 8-42
TREEITEMDESC A-122
triplets G-2
TXTBOX_* values 5-366

u
UCHAR A-122
ULONG A-122
Union Rectangle 8-552
Unload Fonts 5-563
Unload Public Fonts 5-565
Up cursor key 8-547
update region

exclude 8-150
query 8-379

Update Window 8-554
Uppercase Character 8-558
Uppercase String 8-556
USEITEM A-122
user-defined resources 32-3
USERBUTTON A-122
USHORT A-123

v
Validate Rectangle 8-560
Validate Region 8-562
value set control window processing

data structures 27-4
notification messages 27-5
purpose 27-1

X-38 PM Programming Reference

value set control window processing (continued)
styles 27-1
window messages 27-8

Verify Given Rendering Mechanism and Format 3-57
Verify Native Rendering Mechanism and Format 3-55
Verity True Type of Dragged Object 3-59
Verify Type of Dragged Object 3-61
Verify Types 3-63
VGA 2-19
VIA_* values

querying item attributes 27-9
setting item attributes 27-15

view matrix
query default 5-273

viewing limits
query 5-368
query default 5-278
set 5-553

viewing transform
set default 5-467

viewing transforms
query 5-370

VIEWITEM A-123
viewports

query page 5-330
VIOFONTCELLSIZE A-123
VIOSIZECOUNT A-123
virtual key definitions 1-1
visibility attribute for segments

modify (GpiSetSegmentAttrs) 5-539
VK_* values 8-176, A-1
VM_QUERYITEM 27-8
VM_QUERYITEMATTR 27-9
VM_QUERYMETRICS 27-11
VM_ QUERYSELECTEDITEM 27-12
VM_SELECTITEM 27-12
VM_SETITEM 27-13
VM_SETITEMATTR 27-14
VM_SETMETRICS 27-16
VOID A-123
VSCDATA A-123
VSCDATA data structure A-123
VSDRAGINFO A-123
VSDRAGINFO data structure A-123
VSDRAGINIT A-124
VSTEXT A-124
vs_* values 27-1

w
Wait Event Semaphore 8-565
Wait Message 8-567
Wait MuxWait Semaphore or Message 8-569
WA_* values 8-11
wcs_ * values 8-35
we_* classes 8-398
WC_* values 11-2, 23-1
WinAddAtom 8-7
WinAddSwitchEntry 8-9
WinAlarm 8-11
WinAssociateHelplnstance 8-13
WinBeginEnumWindows 8-16
WinBeginPaint 8-18
WinBroadcastMsg 8-20
WinCalcFrameRect 8-22
WinCallMsgFilter 8-24
WinCancelShutdown 8-26

WinChangeSwitchEntry 8-28
WinCheckButton 8-30
WinCheckMenultem 8-32
WinCloseClipbrd 8-34
WinCompareStrings 8-35
WinCopyAccelTable 8-37
WinCopyRect 8-39
WinCpTranslateChar 8-40
WinCpTranslateString 8-42
WinCreateAccelTable 8-44
WinCreateAtomTable 8-46
WinCreateCursor 8-48
WinCreateDlg 8-50
WinCreateFrameControls 8-52
WinCreateHelplnstance 8-54
WinCreateHelpTable 8-56
WinCreateMenu 8-58
WinCreateMsgQueue 8-60
WinCreateObject 8-62
WinCreatePointer 8-64
WinCreatePointerlndirect 8-66
WinCreateStdWindow 8-68
WinCreateSwitchEntry 8-72
WinCreateWindow 8-74
WinDdelnitiate 8-78
WinDdePostMsg 8-80
WinDdeRespond 8-83
WinDefDlgProc 8-85
WinDefFileDlgProc 8-87
WinDefFontDlgProc 8-88
WinDefWindowProc 8-89
WinDeleteAtom 8-91
WinDeletelboxltem 8-93
WinDeletelibrary 8-95
WinDeleteProcedure 8-96
WinDeregisterObjectClass 8-97
WinDestroyAccelTable 8-98
WinDestroyAtomTable 8-99
WinDestroyCursor 8-101
WinDestroyHelplnstance 8-102
Win DestroyMsgQueue 8-104
WinDestroyObject 8-106
WinDestroyPointer 8-107
WinDestroyWindow 8-109
WinDismissDlg 8-111
WinDispatchMsg 8-113
WinDlgBox 8-115
window

create 8-74
destroy 8-109
query 8-382
query active 8-293
query class name 8-305
query desktop 8-319
query device context for 8-384
query handle from device context 8-572
query pointer 8-390
query position 8-386
query size 8-386
query text 8-394
query text length 8-396
query unsigned long integer value of 8-398
query unsigned short integer value of 8-400
register class of 8-405
scroll 8-432
set message interest 8-473
set multiple positions 8-478

window (continued)
set owner 8-481
set position 8-506
set to system modal 8-500
update 8-554

window class
set message interest 8-444

window class styles 12-1
Window From Point 8-576
window list

remove entry 8-424
Window List title

query 8-375
Window Procedure 10-4
window processing

button control 13-1
combo box control 19-1
container control 24-1
control 11-2
default 11-1, 12-1
entry field control 14-1
frame control 15-1
language support 12-80
I ist box control 16-1
menu control 17-1
multi-line entry field control 18-1
notebook control 25-1
prompted entry field control 19-1
scroll bar control 20-1
slider control 26-1
spin button control 21-1
static control 22-1
value set control 27-1

Window Start Application 8-526
windows

create standard 8-68
create standard frame controls 8-52
define procedure 10-4
enable update 8-137
find descendant 8-576
get maximum position 8-179
get minimum position 8-181
get multiples from identities 8-266
invoke default procedure 8-89
is handle valid 8-226
map points 8-260
open device context 8-273
process message box 8-262
query class information 8-303
query descendancy 8-213
query enabled state 8-228
query handle from identifier 8-574
query is child 8-213
query object 8-340
query rectangle 8-392
query system modal 8-364
query visibility 8-232
set active 8-441
set enabled state 8-135
set parent 8-482
set text 8-512
set visibility state 8-137, 8-523
show 8-523
start flashing 8-158
stop flashing 8-158

WINDOWTEMPLATE statement 32-16
WinDrawBitmap 8-118

Index X-39

WinDrawBorder 8-121
WinDrawPointer 8-124
WinDrawText 8-126
WinEmptyClipbrd 8-130
WinEnableControl 8-131
WinEnableMenultem 8-132
WinEnablePhyslnput 8-134
WinEnableWindow 8-135
WinEnableWindowUpdate 8-137
WinEndEnumWindows 8-139
WinEndPaint 8-141
WinEnumClipbrdFmts 8-143
WinEnumDlgltem 8-145
WinEnumObjectClasses 8-147
WinEqualRect 8-148
WinExcludeUpdateRegion 8-150
WinFileDlg 8-152
WinFillRect 8-154
WinFindAtom 8-156
WinFlashWindow 8-158
WinFocusChange 8-160
WinFontDlg 8-163
WinFreeErrorlnfo 8-165
WinFreeFileDlglist 8-166
WinFreeFilelcon 8-168
WinGetClipPS 8-169
WinGetCurrentTime 8-171
WinGetDlgMsg 8-172
WinGetErrorlnfo 8-175
WinGetKeyState 8-176
WinGetlastError 8-178
WinGetMaxPosition 8-179
WinGetMinPosition 8-181
WinGetMsg 8-183
WinGetNextWindow 8-186
WinGetPhysKeyState 8-188
WinGetPS 8-190
WinGetScreenPS 8-192
WinGetSysBitmap 8-194
WinlnflateRect 8-197
Winlnitialize 8-199
WinlnSendMsg 8-201
Winlnsertlboxltem 8-203
WinlntersectRect 8-205
WinlnvalidateRect 8-207
WinlnvalidateRegion 8-209
WinlnvertRect 8-211
WinlsChild 8-213
WinlsControlEnabled 8-214
WinlsMenultemChecked 8-216
WinlsMenultemEnabled 8-218
WinlsMenultemValid 8-220
WinlsPhyslnputEnabled 8-222
WinlsRectEmpty 8-223
WinlsThreadActive 8-224
WinlsWindow 8-226
WinlsWindowEnabled 8-228
WinlsWindowShowing 8-230
WinlsWindowVisible 8-232
WinloadAccelTable 8-234
WinloadDlg 8-236
WinloadFilelcon 8-239
WinloadHelpTable 8-241
Winloadlibrary 8-243
WinloadMenu 8-244
WinloadMessage 8-246
WinloadPointer 8-248

X-40 PM Programming Reference

WinloadProcedure 8-250
WinloadString 8-251
WinlockVisRegions 8-253
WinlockWindowUpdate 8-255
WinMakePoints 8-257
WinMakeRect 8-258
WinMapDlgPoints 8-259
WinMapWindowPoints 8-260
WinMessageBox 8-262
WinMultWindowFromlDs 8-266
WinNextChar 8-268
WinOffsetRect 8-270
WinOpenClipbrd 8-272
WinOpenWindowDC 8-273
WinPeekMsg 8-275
WinPopupMenu 8-277
WinPostMsg 8-281
WinPostQueueMsg 8-283
WinPrevChar 8-285
WinProcessDlg 8-287
WinPtlnRect 8-289
WinQueryAccelTable 8-291
WinQueryActiveWindow 8-293
WinQueryAnchorBlock 8-294
WinQueryAtomlength 8-295
WinQueryAtomName 8-297
WinQueryAtomUsage 8-299
WinQueryButtonCheckstate 8-300
WinQueryCapture 8-302
WinQueryClasslnfo 8-303
WinQueryClassName 8-305
WinQueryClassThunkProc 8-307
WinQueryClipbrdData 8-308
WinQueryClipbrdFmtlnfo 8-310
WinQueryClipbrdOwner 8-312
WinQueryClipbrdViewer 8-313
WinQueryCp 8-314
WinQueryCplist 8-315
WinQueryCursorlnfo 8-316
WinQueryDesktopBkgnd 8-317
WinQueryDesktopWindow 8-319
WinQueryDlgltemShort 8-321
WinQueryDlgltemText 8-323
WinQueryDlgltemTextlength 8-325
WinQueryFocus 8-327
WinQueryHelplnstance 8-328
WinQuerylboxCount 8-330
WinQuerylboxltemText 8-331
WinQueryLboxltemTextlength 8-333
WinQueryLboxSelectedltem 8-335
WinQueryMsgPos 8-336
WinQueryMsgTime 8-338
WinQueryObject 8-402
WinQueryObjectWindow 8-340
WinQueryPointer 8-342
WinQueryPointerlnfo 8-343
WinQueryPointerPos 8-345
WinQueryPresParam 8-347
WinQueryQueuelnfo 8-350
WinQueryQueueStatus 8-352
WinQuerySession Title 8-355
WinQuerySwitchEntry 8-357
WinQuerySwitchHandle 8-358
WinQuerySwitchlist 8-360
WinQuerySysColor 8-362
WinQuerySysModalWindow 8-364
WinQuerySysPointer 8-365

WinQuerySystemAtomTable 8-372
WinQuerySysValue 8-368
WinQueryTaskSizePos 8-373
WinQueryTaskTitle 8-375
WinQueryUpdateRect 8-377
WinQueryUpdateReg ion 8-379
WinQueryVersion 8-381
WinQueryWindow 8-382
WinQueryWindowDC 8-384
WinQueryWindowModel 8-385
WinQueryWindowPos 8-386
WinQueryWindowProcess 8-388
WinQueryWindowPtr 8-390
WinQueryWindowRect 8-392
WinQueryWindowText 8-394
WinQueryWindowTextLength 8-396
WinQueryWindowThunkProc 8-397
WinQueryWindowULong 8-398
WinQueryWindowUShort 8-400
WinRealizePalette 8-403
WinRegisterClass 8-405
WinRegisterObjectClass 8-407
WinRegisterUserDatatype 8-408
WinRegisterUserMsg 8-415
WinReleaseHook 8-418
WinReleasePS 8-420
WinRemovePresParam 8-422
WinRemoveSwitchEntry 8-424
WinReplaceObjectClass 8-426
WinRequestMutexSem 8-427
WinRestoreWindowPos 8-429
WinSaveWindowPos 8-430
WinScrollWindow 8-432
WinSendDlgltemMsg 8-435
WinSendMsg 8-437
WinSetAccelTable 8-439
WinSetActiveWindow 8-441
WinSetCapture 8-442
WinSetClassMsglnterest 8-444
WinSetClassThunkProc 8-447
WinSetClipbrdData 8-449
WinSetClipbrdOwner 8-452
WinSetClipbrdViewer 8-454
WinSetCp 8-456
WinSetDesktopBkgnd 8-457
WinSetDlgltemShort 8-459
WinSetDlgltemText 8-461
WinSetFilelcon 8-463
WinSetFocus 8-464
WinSetHook 8-466
WinSetKeyboardStateTable 8-468
WinSetLboxltemText 8-470
WinSetMenultemText 8-472
WinSetMsglnterest 8-473
WinSetMsgMode 8-476
WinSetMultWindowPos 8-478
WinSetObjectData 8-480
WinSetOwner 8-481
WinSetParent 8-482
WinSetPointer 8-484
WinSetPointerPos 8-486
WinSetPresParam 8-487
WinSetRect 8-489
WinSetRectEmpty 8-491
WinSetSynchroMode 8-492
WinSetSysColors 8-494
WinSetSysModalWindow 8-500

WinSetSysValue 8-502
WinSetWindowBits 8-504
WinSetWindowPos 8-506
WinSetWindowPtr 8-510
WinSetWindowText 8-512
WinSetWindowThunkProc 8-514
WinSetWindowULong 8-515
WinSetWindowUShort 8-517
WinShowCursor 8-518
WinShowPointer 8-520
WinShowTrackRect 8-522
WinShowWindow 8-523
WinShutdownSystem 8-525
WinStartApp 8-526
WinStartTimer 8-529
WinStopTimer 8-531
WinStoreWindowPos 8-533
WinSubclassWindow 8-534
WinSubstituteStrings 8-536
WinSubtractRect 8-538
WinSwitchToProgram 8-540
WinTerminate 8-542
WinTerminateApp 8-544
WinTrackRect 8-546
WinTranslateAccel 8-550
WinUnionRect 8-552
WinUpdateWindow 8-554
WinUpper 8-556
WinUpperChar 8-558
WinValidateRect 8-560
WinValidateRegion 8-562
WinWaitEventSem 8-565
WinWaitMsg 8-567
WinWaitMuxWaitSem 8-569
WinWindowFromDC 8-572
WinWindowFromlD 8-574
WinWindowFromPoint 8-576
WM_ACTIVATE 8-109, 8-508, 12-3
WM_ACTIVATE (in Frame Controls) 15-6
WM_ACTIVATE (Language Support Dialog) 12-83
WM_ACTIVATE (Language Support Window) 12-80
WM_ADJUSTFRAMEPOS 15-6
WM_ADJUSTWINDOWPOS 8-508, 12-5
WM_APPTERMINATENOTIFY 12-4
WM_BEGINDRAG 12-6
WM_BEGINSELECT 12-7
WM_BUTTON1CLICK 12-7
WM_BUTTON1DBLCLK 12-10
WM_BUTTON1DBLCLK (in Frame Controls) 15-7
WM_BUTTON1DBLCLK (in Multiline Entry Fields) 18-36
WM_BUTTON1DOWN 12-13
WM_BUTTON1DOWN (in Frame Controls) 15-8
WM_BUTTON1DOWN (in Multiline Entry Fields) 18-36
WM_BUTTON1MOTIONEND 12-14
WM_BUTTON1MOTIONSTART 12-14
WM_BUTTON1UP 12-19
WM_BUTTON1UP (in Frame Controls) 15-8
WM_BUTTON1UP (in Multiline Entry Fields) 18-37
WM_BUTTON2CLICK 12-8
WM_BUTTON2DBLCLK 12-11
WM_BUTTON2DBLCLK (in Frame Controls) 15-7
WM_BUTTON2DOWN 12-15
WM_BUTTON2DOWN (in Frame Controls) 15-8
WM_BUTTON2MOTIONEND 12-16
WM_BUTTON2MOTIONSTART 12-16
WM_BUTTON2UP 12-20
WM_BUTTON2UP (in Frame Controls) 15-9

Index X-41

WM_BUTTON3CLICK 12-9
WM_BUTTON3DBLCLK 12-12
WM_BUTTON3DOWN 12-17
WM_BUTTON3MOTIONEND 12-18
WM_BUTTON3MOTIONSTR 12-18
WM_BUTTON3UP 12-21
WM_CALCFRAMERECT 12-22
WM_CALCFRAMERECT (in Frame Controls) 15-9
WM_CALCVALIDRECTS 12-22
WM_CHAR 12-24
WM_CHAR (Default Dialogs) 12-70
WM_CHAR (in Entry Fields) 14-12
WM_CHAR (in Frame Controls) 15-9
WM_CHAR (in List Boxes) 16-15
WM_CHAR (in Multiline Entry Fields) 18-37
WM_CHAR (in Notebook Controls) 25-18
WM_CHAR (in Slider Controls) 26-16
WM_CHAR (in Value Set Controls) 27-17
WM_CHORD 12-25
WM_CLOSE 12-26
WM_CLOSE (Default Dialogs) 12-71
WM_CLOSE (in Frame Controls) 15-10
WM_COMMAND 11-3, 12-27, 15-10
WM_COMMAND (Default Dialogs) 12-71
WM_COMMAND (in Button Controls) 13-3
WM_COMMAND (in Menu Controls) 17-4
WM_CONTEXTMENU 12-28
WM_CONTROL 11-3, 12-28
WM_CONTROL (in Button Controls) 13-3
WM_CONTROL (in Combination Boxes) 19-3
WM_CONTROL (in Container Controls) 24-4
WM_CONTROL (in Entry Fields) 14-3
WM_CONTROL (in List Boxes) 16-2
WM_CONTROL (in Multiline Entry Fields) 18-3
WM_ CONTROL (in Notebook Controls) 25-3
WM_CONTROL (in Slider Controls) 26-4
WM_CONTROL (in Spin Button Controls) 21-2
WM_CONTROL (in Value Set Controls) 27-5
WM_CONTROL (Language Support Dialog) 12-83
WM_ CONTROL (Language Support Window) 12-80
WM_CONTROLPOINTER 12-29
WM_CONTROLPOINTER (in Container Controls) 24-5
WM_CONTROLPOINTER (in Notebook Controls) 25-19
WM_CONTROLPOINTER (in Slider Controls) 26-4
WM_CONTROLPOINTER (in Value Set Controls) 27-6
WM_CREATE 12-29
WM_DDE_ACK 30-1
WM_DDE_ADVISE 30-2
WM_DDE_DATA 30-3
WM_DDE_EXECUTE 30•3
WM_DDE_INITIATE 30-5
WM_DDE_INITIATEACK 30-5
WM_DDE_POKE 30-6
WM_DDE_REQUEST 30-7
WM_DDE_TERMINATE 30-8
WM_DDE_UNADVISE 30-9
WM_DESTROY 8-109, 12-30
WM_DESTROYCLIPBOARD 28-1
WM_DRAWCLIPBOARD 28-2
WM_DRAWITEM 12-31
WM_DRAWITEM (in Container Controls) 24-6
WM_DRAWITEM (in Font Dialog) 12-75
WM_DRAWITEM (in Frame Controls) 15-10
WM_DRAWITEM (in List Boxes) 16-3
WM_DRAWITEM (in Menu Controls) 17-4
WM_DRAWITEM (in Notebook Controls) 25-20

X-42 PM Programming Reference

WM_DRAWITEM (in Slider Controls) 26-5
WM_DRAWITEM (in Value Set Controls) 27-6
WM_ENABLE 12-31
WM_ENABLE (in Button Controls) 13-10
WM_ENABLE (in Multiline Entry Fields) 18-40
WM_ENDDRAG 12-32
WM_ENDSELECT 12-33
WM_ERASEBACKGROUND 15-10
WM_ERASEWINDOW 12-33
WM_ERROR 12-34
WM_FLASHWINDOW 15-11
WM_FOCUSCHANGE 12-34
WM_FOCUSCHANGE (in Frame Controls) 15-12
WM_FORMATFRAME 12-35
WM_FORMATFRAME (in Frame Controls) 15-12
WM_HELP 11-3, 12-36
WM_HELP (in Button Controls) 13-4
WM_HELP (in Menu Controls) 17-5
WM_HITTEST 12-37
WM_HSCROLL 12-38
WM_HSCROLL (in Horizontal Scroll Bars) 20-3
WM_HSCROLLCLIPBOARD 28-2
WM_INITDLG 12-38
WM_INITDLG (Default Dialogs) 12-71
WM_INITMENU 12-39
WM_INITMENU (in Frame Controls) 15-13
WM_INITMENU (in Menu Controls) 17-5
WM_JOURNALNOTIFY 12-39
WM_MATCHMNEMONIC 12-40
WM_MATCHMNEMONIC (Default Dialogs) 12-71
WM_MATCHMNEMONIC (in Button Controls) 13-10
WM_MATCHMNEMONIC (in Static Controls) 22-4
WM_MEASUREITEM 12-41
WM_MEASUREITEM (in Frame Controls) 15-13
WM_MEASUREITEM (in List Boxes) 16-4
WM_MEASUREITEM (in Menu Controls) 17-5
WM_MENUEND 12-41
WM_MENUEND (in Menu Controls) 17-6
WM_MENUSELECT 12-42
WM_MENUSELECT (in Frame Controls) 15-13
WM_MENUSELECT (in Menu Controls) 17-6
WM_MINMAXFRAME 12-42
WM_MINMAXFRAME (in Frame Controls) 15-4
WM_MOUSEMOVE 12-43
WM_MOUSEMOVE (in Multiline Entry Fields) 18-40
WM_MOVE 8-508, 12-44
WM_NEXTMENU 12-44
WM_NEXTMENU (in Frame Controls) 15-14
WM_NEXTMENU (in Menu Controls) 17-7
WM_NULL 12-45
WM_OPEN 12-45
WM_OWNERPOSCHANGE 15-14
WM_PACTIVATE 12-46
WM_PAINT 12-47
WM_PAINT (in Frame Controls) 15-15
WM_PAINT (Langauge Support Window) 12-80
WM_PAINT (Language Support Dialog) 12-83
WM_PAINTCLIPBOARD 28-3
WM_PCONTROL 12-47
WM_PPAINT 12-48
WM_PPAINT (Language Support Dialog) 12-84
WM_PPAINT (Language Support Window) 12-81
WM_PRESPARAMCHANGED 12-48
WM_PRESPARAMCHANGED (in Container

Controls) 24-52
WM_PRESPARAMCHANGED (in Notebook

Controls) 25-21

WM_PRESPARAMCHANGED (in Slider Controls) 26-17
slider control 26-17
value set control 27-18

WM_PRESPARAMCHANGED (in Value Set
Controls) 27-18

WM_PSETFOCUS 12-49
WM_PSIZE 12-49
WM_PSYSCOLORCHANGE 12-50
WM_ QUERY ACCEL TABLE 12-50
WM_QUERYBORDERSIZE 15-15
WM_QUERYCONVERTPOS 12-51
WM_QUERYCONVERTPOS (in Button Controls) 13-10
WM_QUERYCONVERTPOS (in Entry Fields) 14-13
WM_QUERYCONVERTPOS (in Frame Controls) 15-16
WM_QUERYCONVERTPOS (in List Boxes) 16-15
WM_QUERYCONVERTPOS (in Menu Controls) 17-23
WM_QUERYCONVERTPOS (in Scroll Bars) 20-8
WM_QUERYCONVERTPOS (in Static Controls) 22-5
WM_QUERYCONVERTPOS (in Title Bar Controls) 23-4
WM_QUERYDLGCODE 12-72
WM_QUERYFOCUSCHAIN 15-16
WM_QUERYFRAMECTLCOUNT 15-17
WM_QUERYFRAMEINFO 15-18
WM_ QUERYHELPINFO 12-52
WM_QUERYICON 15-18
WM_ QUERYTRACKINFO 12-52
WM_QUERYWINDOWPARAMS 12-53
WM_QUERYWINDOWPARAMS (in Button

Controls) 13-11
WM_QUERYWINDOWPARAMS (in Entry Fields) 14-13
WM_QUERYWINDOWPARAMS (in Frame

Controls) 15-19
WM_QUERYWINDOWPARAMS (in List Boxes) 16-16
WM_QUERYWINDOWPARAMS (in Menu Controls) 17-23
WM_QUERYWINDOWPARAMS (in Multiline Entry

Fields) 18-41
WM_QUERYWINDOWPARAMS (in Scroll Bars) 20-8
WM_QUERYWINDOWPARAMS (in Slider Controls) 26-18

slider control 26-18
value set control 27-19

WM_QUERYWINDOWPARAMS (in Static Controls) 22-5
WM_QUERYWINDOWPARAMS (in Title Bars) 23-4
WM_QUERYWINDOWPARAMS (in Value Set

Controls) 27-19
WM_QUIT 12-53
WM_REALIZEPALETTE 12-54
WM_RENDERALLFMTS 8-109, 28-4
WM_RENDERFMT 28-4
WM_SAVEAPPLICATION 12-55
WM_SEM1 12-55
WM_SEM2 12-56
WM_SEM3 12-56
WM_SEM4 12-57
WM_SETACCELTABLE 12-57
WM_SETBORDERSIZE 15-19
WM_SETFOCUS 12-58
WM_SETFOCUS (Language Support Dialog) 12-84
WM_SETFOCUS (Language Support Window) 12-81
WM_SETHELPINFO 12-58
WM_SETICON 15-20
WM_SETSELECTION 12-59
WM_SETWINDOWPARAMS 12-60
WM_SETWINDOWPARAMS (in Button Controls) 13-11
WM_SETWINDOWPARAMS (in Entry Fields) 14-13
WM_SETWINDOWPARAMS (in Frame Controls) 15-20
WM_SETWINDOWPARAMS (in List Boxes) 16-16
WM_SETWINDOWPARAMS (in Menu Controls) 17-23

WM_SETWINDOWPARAMS (in Multiline Entry
Fields) 18-42

WM_SETWINDOWPARAMS (in Scroll Bars) 20-8
WM_SETWINDOWPARAMS (in Slider Controls) 26-19

slider control 26-19
value set control 27-20

WM_SETWINDOWPARAMS (in Static Controls) 22-5
WM_SETWINDOWPARAMS (in Title Bar Controls) 23-4
WM_SETWINDOWPARAMS (in Value Set Controls) 27-20
WM_SHOW 12-60
WM_SINGLESELECT 12-61
WM_SIZE 8-508, 12-61
WM_SIZE (in Frame ControJs) 15-20
WM_SIZE (in Notebook Controls) 25-22
WM_SIZE (in Value Set Controls) 27-20
WM_SIZE (Language Support Dialog) 12-84
WM_ SIZE (Language Support Window) 12-81
WM_SIZECLIPBOARD 28-5
WM_ SUBSTITUTESTRING 12-62
WM_SYSCOLORCHANGE 12-63
WM_SYSCOLORCHANGE (Language Support

Dialog) 12-85
WM_SYSCOLORCHANGE (Language Support

Window) 12-82
WM_SYSCOMMAND 12-63, 13-4, 15-21, 17-7
WM_SYSCOMMAND (in Title Bar Controls) 23-2
WM_SYSVALUECHANGED 12-64
WM_TEXTEDIT 12-65
WM_TIMER 12-65
WM_TRACKFRAME 12-66
WM_ TRACKFRAME (in Frame Controls) 15-22
WM_TRACKFRAME (in Title Bar Controls 23-2
WM_ TRANSLATEACCEL 12-67
WM_TRANSLATEACCEL (in Frame Controls) 15-23
WM_TRANSLATEMNEMONIC 12-67
WM_TRANSLATEMNEMONIC (in Frame Controls) 15-23
WM_UPDATEFRAME 12-68
WM_UPDATEFRAME (in Frame Controls) 15-23
WM_ VSCROLL 12-68
WM_VSCROLL (in Vertical Scroll Bars) 20-3
WM_ VSCROLLCLIPBOARD 28-5
WM_WINDOWPOSCHANGED 12-69
WM_* messages 8-352
WNDPARAMS A-125
WndProc 10-4
World Coordinates Bit Bit 5-567
wpAddClockAlarmPage 9-53
wpAddClockDateTimePage 9-54
wpAddClockView1 Page 9-55
wpAddClockView2Page 9-56
wpAddCountryDatePage 9-57
wpAddCountryNumbersPage 9-58
wpAddCountryPage 9-59
wpAddCountryTimePage 9-60
wpAddDesktopLockup1Page 9-61
wpAddDesktopLockup2Page 9-62
wpAddDesktopLockup3Page 9-63
wpAddDiskDetailsPage 9-64
wpAddFileMenuPage 9-65
wpAddFileTypePage 9-66
wpAddFile1Page 9-67
wpAddFile2Page 9-68
wpAddFile3Page 9-69
wpAddFolderBackgroundPage 9-70
wpAddFolderlncludePage 9-71
wpAddFolderSortPage 9-72
wpAddFolderView1Page 9-73

Index X-43

wpAddFolderView2Page 9-74
wpAddFolderView3Page 9-75
wpAddKeyboardMappingsPage 9-76
wpAddKeyboardSpecialNeedsPage 9-77
wpAddKeyboardTimingPage 9-78
wpAddMouseMappingsPage 9-79
wpAddMouseTimingPage 9-80
wpAddMouseTypePage 9-81
wpAddObjectGeneralPage 9-82
wpAddProgramAssociationPage 9-83, 9-84
wpAddProgramPage 9-85, 9-86
wpAddProgramSessionPage 9-87, 9-88
wpAddSettingsPages 9-89
wpAddSoundWarningBeepPage 9-90
wpAddSystemConfirmationPage 9-91
wpAddSystemlogoPage 9-92
wpAddSystemPrintScreenPage 9-93
wpAddSystemWindowPage 9-94
wpAddToObjUselist 9-95
wpAllocMem 9-97
WPClock * A-125
wpClose 9-98
wpclsCreateDefaultTemplates 9-240
wpclsFindObjectEnd 9-241
wpclsFindObjectFirst 9-242
wpclsFindObjectNext 9-244
wpclslnitData 9-246
wpclsMakeAwake 9-247
wpclsNew 9-249
wpclsQueryDefaultHelp 9-251
wpclsQueryDefaultView 9-252
wpclsQueryDetails 9-253
wpclsQueryDetailslnfo 9-254
wpclsQueryEditString 9-257
wpclsQueryError 9-258
wpclsQueryFolder 9-259
wpclsQuerylcon 9-260
wpclsQuerylconData 9-261
wpclsQuerylnstanceFilter 9-262
wpclsQuerylnstanceType 9-263
wpclsQueryObject 9-264
wpclsQueryOpenFolders 9-265
wpclsQuerySettingsPageSize 9-266
wpclsQueryStyle 9-267
wpclsQueryTitle 9-268
wpclsSetError 9-269
wpclsUnlnitData 9-270
wpCnrlnsertObject 9-99
wpCnrRemoveObject 9-101
wpCnrSetEmphasis 9-102
wpConfirmDelete 9-103
wpCopiedFromTemplate 9-104
wpCopyObject 9-105
WPCountry * A-125
wpCreateFromTemplate 9-106
wpCreateShadowObject 9-107
WPDataFile * A-125
wpDelete 9-108
wpDeleteAllJobs 9-109
wpDeleteContents 9-110
wpDeleteFromObjUselist 9-111
wpDeleteJob 9-112
WPDesktop * A-125
WPDisk * A-125
wpDisplayHelp 9-113
wpDoesObjectMatch 9-114
wpDragCell 9-115

X-44 PM Programming Reference

wpDraggedOverObject 9-116
wpDragOver 9-118
wpDrop 9-119
wpDroppedOnObject 9-120
wpEditCell 9-121
wpEndConversation 9-122
WPFileSystem * A-125
wpFilterPopupMenu 9-123
wpFindUseltem 9-125
WPFolder * A-125
wpFormatDragltem 9-126
wpFree 9-127
wpFreeMem 9-128
wpHide 9-129
wpHideFldrRunObjs 9-130
wpHoldJob 9-131
wpHoldPrinter 9-132
wplnitData 9-133
wplnsertPopupMenultems 9-134
wplnsertSettingsPage 9-136
wplsCurrentDesktop 9-137
WPJob * A-126
WPKeyboard * A-126
wpMenultemHelpSelected 9-138
wpMenultemSelected 9-139
wpModifyPopupMenu 9-140
WPMouse * A-126
wpMoveObject 9-141
WPM_* values A-125
WPObject * A-126
WPOINT A-126
wpOpen 9-142
wpPaintCell 9-143
WPPalette * A-126
wpPopulate 9-144
WPPrinter * A-126
wpPrintJobNext 9-145
wpPrintMetaFile 9-146
wpPrintObject 9-147
wpPrintPifFile 9-148
wpPrintPlainTextFile 9-149
wpPrintPrinterSpecificFile 9-150
wpPrintUnknownFile 9-151
WPProgramFile * A-126
WPProgramGroup * A-126
WPProgram * A-126
wpQueryAssociationFilter 9-152, 9-153
wpQueryAssociationType 9-154, 9-155
wpQueryComputerName 9-156
wpQueryConfirmations 9-157
wpQueryContent 9-158
wpQueryDefaultHelp 9-159
wpQueryDefaultView 9-160
wpQueryDetailsData 9-161
wpQueryError 9-163
wpQueryfldrAttr 9-164
wpQueryFldrDetailsClass 9-165
wpQueryFldrFlags 9-166
wpQueryFldrFont 9-167
wpQueryHandle 9-168
wpQuerylcon 9-169
wpQuerylconData 9-170
wpQuerylogicalDrive 9-171
wpQueryNextlconPos 9-172
wpQueryPaletteHelp 9-173
wpQueryPalettelnfo 9-17 4
wpQueryPrinterName 9-175

wpQueryProgDetails 9-176, 9-177
wpQueryRealName 9-178
wpQueryRootFolder 9-179
wpQueryShadowedObject 9-180
wpQueryStyle 9-181
wpQueryTitle 9-182
wpQueryType 9-183
wpRedrawCell 9-184
wpRefresh 9-185
wpRegisterView 9-186
wpReleaseJob 9-187
wpReleasePrinter 9-188
wpRender 9-189
wpRenderComplete 9-190
wpRestore 9-191
wpRestoreData 9-192
wpRestorelong 9-193
wpRestoreState 9-194
wpRestoreString 9-195
WPRootFolder * A-126
wpSaveData 9-196
wpSaveDeferred 9-197
wpSavelmmediate 9-198
wpSavelong 9-199
wpSaveState 9-200
wpSaveString 9-201
wpScanSetupString 9-202
wpSetAssociationFilter 9-204, 9-205
wpSetAssociationType 9-206, 9-207
wpSetComputerName 9-208
wpSetDefaultHelp 9-209
wpSetDefaultPrinter 9-210
wpSetDefaultView 9-211
wpSetError 9-212
wpSetFldrAttr 9-213
wpSetFldrDetailsClass 9-214
wpSetFldrFlags 9-215
wpSetFldrFont 9-216
wpSetlcon 9-217
wpSetlconData 9-218
wpSetNextlconPos 9-219
wpSetPalettelnfo 9-220
wpSetPrinterName 9-221
wpSetProgDetails 9-222, 9-223
wpSetRealName 9-224
wpSetShadowTitle 9-225
wpSetStyle 9-226
wpSetTitle 9-227
wpSetType 9-228
wpSetup 9-229
wpSetupCell 9-233
WPShadow * A-126
wpShowPalettePointer 9-234
WPSound * A-126
WPSpooler * A-126
WPSRCLASSBLOCK* A-126
wpStartJobAgain 9-235
wpSwitchTo 9-236
WPSystem * A-127
wpUnlnitData 9-238
wpUnlockObject 9-237
WRECT A-127
Write Profile Data 6-19
Write Profile String 6-21
ws_ *values 8-190, 12-2

x
XYF _*values A-128
XYWINSIZE A-127

Index X-45

®IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

----------- -- ---- ---- - ---- - - ------- --____ ,®

©IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6265

Sl©G-6265-00

111111111111111111
Pl0G6265

