

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page vii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are Inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

ii PM Programming Reference

/
/

About this Book

The Presentation Manager Programming Reference is a detailed technical reference, in three
volumes, for application programmers creating programs using the Presentation Manager interface.

Chapter 1 contains important information. You should read it before using this book.

This reference does not give guidance on how to use the functions, nor does it contain information
about how the functions are related to each other. It is intended to be used in conjunction with the
Programming Guide Volumes II and Ill.

Prerequisite Knowledge
The OS/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which OS/2 programs can be written. The information in the
Technical Library assumes that you are new to programming with OS/2 and the Presentation
Manager. You should understand the OS/2 services available to users.

Related Publications
The Application Design Guide and the Programming Guide Volumes I, II, and Ill introduce the
programming concepts that you should understand before you begin developing applications to run
on the OS/2 operating system. Getting Started describes the online programming books, tools,
programming aids, and sample programs that make up the IBM Developer's Toolkit for OS/2 2.0.

Organization of this Book
This book is in three volumes. The contents of each volume are as follows:

Volume I (Functions)
Chapter 1, "Introduction" on page 1-1

You should read this chapter before using this book.

Chapter 2, "Device Functions" on page 2-1

Chapter 3!t "Direct Manipulation Functions" on page 3-1

Chapter 4, "Dynamic Data Formatting Functions" on page 4-1

Chapter 5, "Graphics Functions" on page 5-1

Chapter 6, "Proflle Functions" on page 6-1

Chapter 7, "Spooler Functions" on page 7-1

Volume II (Functions and Workplace)
Chapter 8, "Window Functions" on page 8-1

Chapter 9, "Workplace Classes, Instance Methods, and Class Methods" on page 9-1

About this Book iii

Volume Ill (Related Information and Data Types)
Chapter 10, "Functions Supplied by Applications" on page 10-1

Chapter 11, "Introduction to Message Processing" on page 11-1

Chapter 12, "Default Window Procedure Message Processing" on page 12-1

Chapter 13, "Button Control Window Processing" on page 13-1

Chapter 14, "Entry Field Control Window Processing" on page 14-1

Chapter 15, "Frame Control Window Processing" on page 15-1

Chapter 16, "List Box Control Window Processing" on page 16-1

Chapter 17, "Menu Control Window Processing" on page 17-1

Chapter 18, "Multi-Line Entry Field Control Window Processing" on page 18-1

Chapter 19, "Prompted Entry Field Control Window Processing" on page 19-1

Chapter 20, "Scroll Bar Control Window Processing" on page 20-1

Chapter 21, "Spin Button Control Window Processing" on page 21-1

Chapter 22, "Static Control Window Processing" on page 22-1

Chapter 23, "Title Bar Control Window Processing" on page 23-1

Chapter 24, "Container Control Window Processing" on page 24-1

Chapter 25, "Notebook Control Window Processing" on page 25-1

Chapter 26, "Slider Control Window Processing" on page 26-1

Chapter 27, "Value Set Control Window Processing" on page 27-1

Chapter 28, "Clipboard Messages" on page 28-1

Chapter 29, "Direct Manipulation (Drag) Messages" on page 29-1

Chapter 30, "Dynamic Data Exchange Messages" on page 30-1

Chapter 31, "Help Manager Messages" on page 31-1

Chapter 32, "Resource Files" on page 32-1

Chapter 33, "Graphics Orders" on page 33-1

iv PM Programming Reference

Chapter 34, "Code Pages" on page 34-1

Appendix A, "Data Types" on page A-1
)

Appendix B, "Error Codes" on page B-1

Appendix C, "Error Explanations" on page C-1

Appendix D, "Standard Bit-Map Formats" on page D-1

Appendix E, "Fonts Supplied with OS/2" on page E-1

Appendix F, "The Font-Fiie Format" on page F-1

Appendix G, "Format of Interchange Flies" on page G-1

Appendix H, "lnltiallzation File Information" on page H-1

Appendix I, "Virtual Key Definitions" on page 1-1

About this Book v

i~

vi PM Programming Reference

\
)

,;

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM product,

program or service is not intended to state or imply that only IBM's product, program, or service may

be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights or other legally protectible rights may be used instead of the IBM product,

program, or service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY

10577.

The following terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM

Corporation in the United States and/or other countries:

IBM
Common User Access
CUA
Operating System/2
OS/2
Presentation Manager
SAA
System Application Architecture

The following terms, denoted by a double asterisk(**) in this publication, are trademarks of other

companies as follows:

Adobe
Helvetica
LaserJet
Intel
Microsoft
Postscript
Times New Roman
Windows

Adobe Systems Incorporated
Linotype AG
Hewlett-Packard Company
Intel Corporation
Microsoft Corporation
Adobe Systems Incorporated
Monotype Corporation
Microsoft Corporation

Notices vii

viii PM Programming Reference

)

Functions

Chapter 1. Introduction . 1-1

Notation Conventions ... 1-1

Conventions used in Function Descriptions 1-1

Error Severities . 1-2

Header Files .. 1-3

Helper Macros ... 1-3

Addressing Elements in Arrays . 1-5

Implicit Pointer Data Types ... 1-5

Storage Mapping of Data Types .. 1-6

Double-Byte Character Set {DBCS) 1-6

Chapter 2. Device Functions . 2-1

DevCloseDC - Close Device Context . 2-2

DevEscape - Escape . 2-4

DevOpenDC - Open Device Context 2-9

DevPostDeviceModes - Post Device Modes . 2-12

DevQueryCaps - Query Device Capabilities . 2-15

DevQueryDeviceNames - Query Device Names . 2-21

DevQueryHardcopyCaps - Query Hardcopy Caps . 2-24

Chapter 3. Direct Manlpulatlon Functions . 3-1

DrgAcceptDroppedFiles - Direct Manipulation for Files . 3-2

DrgAccessDraginfo - Access Drag Information 3-4

DrgAddStrHandle - Create String Handle 3-5

DrgAllocDraginfo - Allocate DRAGINFO Structure . 3-7

DrgAllocDragtransfer - Allocate DRAGTRANSFER Structures 3-9

DrgDeleteDraginfoStrHandles - Delete DRAGINFO String Handles 3-10

DrgDeleteStrHandle - Delete String Handle . 3-11

DrgDrag - Drag . 3-12

DrgDragFiles - Begin Dragging Files . 3-16

DrgFreeDraginfo - Free DRAGINFO Structure . 3-19

DrgFreeDragtransfer - Free DRAGTRANSFER Storage . 3-21

DrgGetPS - Get Drag Presentation Space . 3-22

DrgPostTransferMsg - Post Drag Message . 3-24

DrgPushDraginfo - Access a DRAGINFO Structure . 3-26

DrgQueryDragitem - Get DRAGITEM Structure . 3-28

DrgQueryDragitemCount - Get Dragged Object Count . 3-30

DrgQueryDragitemPtr - Get Pointer to DRAGITEM Structure . 3-31

DrgQueryNativeRMF - Get Format of a Dragged Object . 3-32

DrgQueryNativeRMFLen - Get String Length for Native RMF of Dragged Object 3-34

DrgQueryStrName - Get String Contents . 3-36

DrgQueryStrNameLen - Get String Length . 3-38

DrgQueryTrueType - Get True Type of Dragged Object . 3-40

DrgQueryTrueTypeLen - Get String Length for True Type of Dragged Object 3-42

DrgReleasePS - Release Presentation Space . 3-44

DrgSendTransferMsg - . Send Drag Message . 3-45

DrgSetDraglmage - Set Drag Image . 3-48

DrgSetDragitem - Set Values in DRAGITEM . 3-50

DrgSetDragPointer - Set Pointing Device Pointer . 3-53

DrgVerifyNativeRMF - Verify Native Rendering Mechanism and Format 3-55

DrgVerifyRMF - Verify Given Rendering Mechanism and Format 3-57

DrgVerifyTrueType - Verify True Type of Dragged Object . 3-59

DrgVerifyType - Verify Type of Dragged Object . 3-61

DrgVerifyTypeSet - Verify Types . 3-63

Chapter 4. Dynamic Data Formatting Functions . 4-1

DdfBeginlist - Begin Definition List . 4-2

DdfBitmap - Place Bitmap Reference . 4-5

DdfEndlist - End Definition List 4-8

Functions

DdfHyperText - Define Hypertext link . 4-10
Ddflnform - Define Inform link . 4-13
Ddflnitialize - Initialize DDF Area . 4-15
Ddflistltem - Insert list Item . 4-18
DdfMetafile - Place Metafile Reference . 4-21
DdfPara - Create a Paragraph in DDF Buffer . 4-24
DdfSetColor - Set Color of Text . 4-26
DdfSetFont - Specify Text Font . 4-29
DdfSetFontStyle - Specify Text Font Style . 4-32
DdfSetFormat - Control Formatting . 4-35
DdfSetTextAlign - Define Text Alignment . 4-37
DdfText - Add Text to DDF Buffer . 4-39

Chapter 5. Graphics Functions . 5-1
Coordinates . 5-1
Matrix Parameter Values .. 5-1
Rounding Errors .. 5-1
GPI Functions by Functional Area . 5-2
GpiAnimatePalette - Animate Palette 5-8
GpiAssociate - Associate . 5-11
GpiBeginArea - Begin Area .. 5-13
GpiBeginElement - Begin Element . 5-17
GpiBeginPath - Begin Path . 5-19
GpiBitBlt - Bit Bit . 5-23
Gpi Box - Box . 5-28
GpiCallSegmentMatrix - Call Segment Matrix . 5-31
GpiCharString - Character String . 5-34
GpiCharStringAt - Character String At . 5-36
GpiCharStringPos - Character String Position . 5-39
GpiCharStringPosAt - Character String Position At . 5-42
GpiCloseFigure - Close Figure . 5-45
GpiCloseSegment - Close Segment . 5-47
GpiCombineRegion - Combine Region . 5-49
GpiComment - Comment . 5-51
GpiConvert - Convert . 5-53
GpiConvertWithMatrix - Convert with Matrix . 5-55
GpiCopyMetaFile - Copy Metafile . 5-57
GpiCorrelateChain - Correlate Chain . 5-59
GpiCorrelateFrom - Correlate From . 5-63
GpiCorrelateSegment - Correlate Segment . 5-67
GpiCreateBitmap - Create Bit Map . 5-71
GpiCreateLogColorTable - Create Logical Color Table . 5-74
GpiCreateLogFont - Create Logical Font . 5-78
GpiCreatePalette - Create Palette . 5-81
GpiCreatePS - Create Presentation Space . 5-84
GpiCreateRegion - Create Region . 5-88
Gpi Delete Bitmap - Delete Bit Map . 5-90
GpiDeleteElement - Delete Element . 5-92
GpiDeleteElementRange - Delete Element Range 5-94
GpiDeleteElementsBetweenLabels - Delete Elements Between Labels 5-96
GpiDeleteMetaFile - Delete Metafile . 5-98
GpiDeletePalette - Delete Palette . 5-100
GpiDeleteSegment - Delete Segment . 5-102
GpiDeleteSegments - Delete Segments . 5-104
GpiDeleteSetld - Delete Set Identifier . 5-106
GpiDestroyPS - Destroy Presentation Space . 5-108
GpiDestroyRegion - Destroy Region . 5-110
GpiDrawBits - Draw Bits . 5-112
GpiDrawChain - Draw Chain . 5-117
GpiDrawDynamics - Draw Dynamics . 5-119
GpiDrawFrom - Draw From . 5-121
GpiDrawSegment - Draw Segment . 5-123
GpiElement - Element . 5-125

PM Programming Reference

GpiEndArea - End Area . 5-128
GpiEndElement - End Element . 5-130
GpiEndPath - End Path . 5-132
GpiEqualRegion - Equal Region . 5-134
GpiErase - Erase . 5-136
GpiErrorSegmentData - Error Segment Data . 5-138
GpiExcludeClipRectangle - Exclude Clip Rectangle . 5-140
GpiFillPath - Fill Path . 5-142
GpiFloodFill - Flood Fill . 5-144
GpiFrameRegion - Frame Region . 5-146
GpiFullArc - Full Arc . 5-148
GpiGetData - Get Data . 5-150
Gpilmage - Image . 5-153
GpilntersectClipRectangle - Intersect Clip Rectangle . 5-155
GpiLabel - Label . 5-157
Gpiline - Line . 5-159
GpiLoadBitmap - Load Bit Map . 5-161
GpiLoadFonts - Load Fonts . 5-163
GpiLoadMetaFile - Load Metafile . 5-165
GpiLoadPublicFonts - Load Public Fonts . 5-167
GpiMarker - Marker . 5-168
GpiModifyPath - Modify Path . 5-170
GpiMove - Move . 5-173
GpiOffsetClipRegion - Offset Clip Region . 5-175
GpiOffsetElementPointer - Offset Element Pointer . 5-177
GpiOffsetRegion - Offset Region . 5-179
GpiOpenSegment - Open Segment . 5-181
GpiOutlinePath - Outline Path . 5-184
GpiPaintRegion - Paint Region . 5-186
GpiPartialArc - Partial Arc . 5-188
GpiPathToRegion - Path to Region . 5-191
GpiPlayMetafile - Play Metafile . 5-193
GpiPointArc - Point Arc . 5-199
GpiPolyFillet - Polyfillet . 5-201
GpiPolyFilletSharp - Polyfillet Sharp . 5-204
GpiPolygons - Draw Polygons . 5-207
GpiPolyline - Polyline . 5-209
GpiPolylineDisjoint - Polyline Disjoint . 5-211
GpiPolyMarker - Polymarker . 5-213
GpiPolySpline - Polyspline . 5-215
GpiPop - Pop . 5-217
GpiPtlnRegion - Point In Region . 5-219
GpiPtVisible - Point Visible . 5-221
GpiPutData - Put Data . 5-223
GpiQueryArcParams - Query Arc Parameters . 5-226
GpiQueryAttrMode - Query Attribute Mode . 5-228
GpiQueryAttrs - Query Attributes -. 5-229
GpiQueryBackColor - Query Background Color . 5-231
GpiQueryBackMix - Query Background Mix . 5-232
GpiQueryBitmapBits - Query Bit-Map Bits . 5-233
GpiQueryBitmapDimension - Query Bit-Map Dimension . 5-236
GpiQueryBitmaplnfoHeader - Query Bit-Map Info Header . 5-237
GpiQueryBitmapHandle - Query Bit-Map Handle . 5-239
GpiQueryBitmapParameters - Query Bit-Map Parameters . 5-240
Gp~QueryBoundaryData - Query Boundary Data . 5.,.242
GpiQueryCharAngle - Query Character Angle . 5-244
GpiQueryCharBox - Query Character Box . 5-246
GpiQueryCharBreakExtra - Query Character Break Extra . 5-248
GpiQu.eryCharDirection - Query Character Direction . 5-249
GpiQueryCharExtra - Query Character Extra . 5-250
GpiQueryCharMode - Query Character Mode . 5-251
GpiQueryCharSet - Query Character Set . 5-252
GpiQueryCharShear - Query Character Shear . 5-253

Functions

GpiQueryCharStringPos - Query Character String Positions
GpiQueryCharStringPosAt - Query Character String Positions At
GpiQueryClipBox - Query Clip Box .
GpiQueryClipRegion - Query Clip Region
GpiQueryColor - Query Color .
GpiQueryColorData - Query Color Data .
GpiQueryColorlndex - Query Color Index .
GpiQueryCp - Query Code Page .
GpiQueryCurrentPosition - Query Current Position .
GpiQueryDef ArcParams - Query Default Arc Parameters .
GpiQueryDefAttrs - Query Default Attributes .
GpiQueryDefaultViewMatrix - Query Default View Matrix .
GpiQueryDefCharBox - Query Default Graphics Character Box
GpiQueryDefTag - Query Default Tag
GpiQueryDeNiewinglimits - Query Default Viewing Limits
GpiQueryDevice - Query Device .
GpiQueryDeviceBitmapFormats - Query Device Bit-Map Formats
GpiQueryDrawControl - Query Draw Control .
GpiQueryDrawingMode - Query Drawing Mode
GpiQueryEditMode - Query Edit Mode .
GpiQueryElement - Query Element .
GpiQueryElementPointer - Query Element Pointer .
GpiQueryElementType - Query Element Type .
GpiQueryFaceString - Query Face String .
GpiQueryFontAction - Query Font Action .
GpiQueryFontFileDescriptions - Query Font File Descriptions
GpiQueryFontMetrics - Query Font Metrics .
GpiQueryFonts - Query Fonts .
GpiQueryFullFontFileDescriptions - Query Full Font File Descriptions
GpiQueryGraphicsField - Query Graphics Field .
GpiQuerylnitialSegmentAttrs - Query Initial Segment Attributes
GpiQueryKerningPairs - Query Kerning Pairs
GpiQuerylineEnd - Query Line End
GpiQuerylineJoin - Query Line Join
GpiQuerylineType - Query Line Type
GpiQuerylineWidth - Query Line Width .
GpiQuerylineWidthGeom - Query Line Width Geom .
GpiQueryLogColorTable - Query Logical Color Table
GpiQueryLogicalFont - Query Logical Font .
GpiQueryMarker - Query Marker .
GpiQueryMarkerBox - Query Marker Box .
GpiQueryMarkerSet - Query Marker Set .
GpiQueryMetaFileBits - Query Metafile Bits .
GpiQueryMetaFileLength - Query Metafile Length
GpiQueryMix - Query Mix
GpiQueryModelTransformMatrix - Query Model Transform Matrix
GpiQueryNearestColor - Query Nearest Color .
GpiQueryNumberSetlds - Query Number Set Identifiers .
GpiQueryPageViewport - Query Page Viewport .
GpiQueryPalette - Query Palette .
GpiQueryPalettelnfo - Query Palette Info .
GpiQueryPattern - Query Pattern .
GpiQueryPatternRefPoint - Query Pattern Reference Point .
GpiQueryPatternSet - Query Pattern Set .
GpiQueryPel - Query Pel .
GpiQueryPickAperturePosition - Query Pick Aperture Position
GpiQueryPickApertureSize - Query Pick Aperture Size .
GpiQueryPS - Query Presentation Space ..
GpiQueryRealColors - Query Real Colors ..
GpiQueryRegionBox - Query Region Box .
GpiQueryRegionRects - Query Region Rectangles .
GpiQueryRGBColor - Query RGB Color .
GpiQuerySegmentAttrs - Query Segment Attributes .

PM Programming Reference

5-255
5-257
5-259

~ 5-261
5-262
5-264
5-266
5-268
5-269
5-270
5-271
5-273
5-275
5-277
5-278
5-279
5-280
5-282
5-284
5-285
5-286
5-288
5-290
5-292
5-294
5-295
5-297
5-299
5-301
5-303
5-304
5-306
5-308
5-309
5-310
5-311
5-312
5-313
5-315
5-317
5-318
5-320
5-321
5-323
5-324
5-325
5-327
5-329
5-330
5-332
5-333
5-335
5-336
5-337
5-338
5-340
5-341
5-342
5-343
5-345
5-347
5-349
5-351

'\
)

GpiQuerySegmentNames - Query Segment Names .
GpiQuerySegmentPriority - Query Segment Priority .
GpiQuerySegmentTransformMatrix - Query Segment Transform Matrix

GpiQuerySetlds - Query Set Identifiers .
GpiQueryStopDraw - Query Stop Draw .
GpiQueryTag - Query Tag
GpiQueryTextAlignment - Query Text Alignment
GpiQueryTextBox - Query Text Box

GpiQueryViewinglimits - Query Viewing Limits
GpiQueryViewingTransformMatrix - Query Viewing Transform Matrix

GpiQueryWidthTable - Query Font Width Table
GpiRectlnRegion - Rectangle In Region
GpiRectVisible - Rectangle Visible

GpiRemoveDynamics - Remove Dynamics
GpiResetBoundaryData - Reset Boundary Data
GpiResetPS - Reset Presentation Space
Gpi RestorePS - Restore Presentation Space .
GpiRotate - Rotate Transform

GpiSaveMetaFile - Save Metafile
GpiSavePS - Save Presentation Space .
GpiScale - Scale Matrix .
GpiSelectPalette - Select Palette .
GpiSetArcParams - Set Arc Parameters .

GpiSetAttrMode - Set Attribute Mode .

GpiSetAttrs - Set Attributes
GpiSetBackColor - Set Background Color .
GpiSetBackMix - Set Background Mix
GpiSetBitmap - Set Bit Map .

GpiSetBitmapBits - Set Bit-Map Bits .

GpiSetBitmapDimension - Set Bit-Map Dimension
GpiSetBitmapld - Set Bit-Map Identifier .
GpiSetCharAngle - Set Character Angle

GpiSetCharBox - Set Character Box .
GpiSetCharBreakExtra - Set Character Break Extra .

GpiSetCharDirection - Set Character Direction
GpiSetCharExtra - Set Character Extra .
GpiSetCharMode - Set Character Mode .

GpiSetCharSet - Set Character Set .
GpiSetCharShear - Set Character Shear .
GpiSetClipPath - Set Clip Path

GpiSetClipRegion - Set Clip Region
GpiSetColor - Set Color .
GpiSetCp - Set Code Page .
GpiSetCurrentPosition - Set Current Position .

GpiSetDefArcParams - Set Default Arc Parameters .
GpiSetDefAttrs - Set Default Attributes .
GpiSetDefaultViewMatrix - Set Default View Matrix .
GpiSetDefTag - Set Default Tag
GpiSetDefViewinglimits - Set Default Viewing Limits
GpiSetDrawControl - Set Draw Control .

GpiSetDrawingMode - Set Drawing Mode
GpiSetEditMode - Set Edit Mode .
GpiSetElementPointer - Set Element Pointer .
GpiSetElementPointerAtlabel - Set Element Pointer At Label
GpiSetGraphicsField - Set Graphics Field .
GpiSetlnitialSegmentAttrs - Set Initial Segment Attributes
GpiSetlineEnd - Set Line End
GpiSetlineJoin - Set Line Join

GpiSetlineType - Set Line Type
GpiSetlineWidth - Set Line Width
GpiSetlineWidthGeom - Set Line Width Geom
GpiSetMarker - Set Marker .
GpiSetMarkerBox - Set Marker Box .

5-353
5-355
5-357
5-359
5-362
5-363
5-364
5-365
5-368
5-370
5-372
5-374
5-376
5-378
5-381
5-382
5-384
5-386
5-389
5-391
5-393
5-396
5-398
5-401
5-404
5-412
5-415
5-418
5-420
5-423
5-425
5-427
5-430
5-433
5-435
5-438
5-440
5-443
5-445
5-448
5-451
5-453
5-456
5-458
5-460
5-462
5-467
5-470
5-472
5-474
5-477
5-480
5-482
5-484
5-486
5-488
5-491
5-493
5-495
5-498
5-500
5-502
5-504

Functions

GpiSetMarkerSet - Set Marker Set . 5-506
GpiSetMetaFileBits - Set Metafile Bits . 5-508
GpiSetMix - Set Mix . 5-510
GpiSetModelTransformMatrix - Set Model Transform Matrix 5-513
GpiSetPageViewport - Set Page Viewport . 5-516
GpiSetPaletteEntries - Set Palette Entries . 5-518
GpiSetPattern - Set Pattern . 5-521
GpiSetPatternRef Point - Set Pattern Reference Point . 5,..524
GpiSetPatternSet - Set Pattern Set . 5-526
GpiSetPel - Set Pel . 5-528
GpiSetPickAperturePosition - Set Pick-Aperture Position . 5-530
GpiSetPickApertureSize - Set Pick-Aperture Size . 5-531
GpiSetPS - Set Presentation Space . 5-533
GpiSetRegion - Set Region . 5-536
GpiSetSegmentAttrs - Set Segment Attributes . 5-538
GpiSetSegmentPriority - Set Segment Priority . 5-541
GpiSetSegmentTransformMatrix - Set SegmentTransform Matrix 5-543
GpiSetStopDraw - Set Stop Draw . 5-546
GpiSetTag - Set Tag . 5-548
GpiSetTextAlignment - Set Text Alignment . 5-550
GpiSetViewinglimits - Set Viewing Limits . 5-553
GpiSetViewingTransformMatrix - Set Viewing Transform Matrix 5-555
GpiStrokePath - Stroke Path . 5-558
GpiTranslate - Translate Matrix . 5-560
GpiUnloadFonts - Unload Fonts . 5-563
GpiUnloadPublicFonts - Unload Public Fonts . 5-565
GpiWCBitBlt - World Coordinates Bit Bit . 5-567

Chapter 6. Profile Functions . 6-1
PrfCloseProfile - Close Profile . 6-2
PrfOpenProfile - Open Profile .. 6-3
PrfQueryProfile - Query Profile . 6-5
PrfQueryProfileData - Query Profile Data . 6-7
PrfQueryProfilelnt - Query Profile Integer . 6-10
PrfQueryProfileSize - Query Profile Size 6-12
PrfQueryProfileString - Query Profile String . 6-14
PrfReset - Reset Presentation Manager . 6-17
PrfWriteProfileData - Write Profile Data . 6-19
PrfWriteProfileString - Write Profile String . 6-21

Chapter 7. Spooler Functions . 7-1
SplControlDevice - Spooler Control Device 7-2
SplCopyJob - Spooler Copy Job . 7-5
SplCreateDevice - Spooler Create Device 7-7
SplCreateQueue - Spooler Create Queue . 7-10
SplDeleteDevice - Spooler Delete Device . 7-14
SplDeleteJob - Spooler Delete Job . 7-16
SplDeleteQueue - Spooler Delete Queue . 7-18
SplEnumDevice - Spooler Enumerate Device . 7-20
SplEnumDriver - Spooler Enumerate Driver . 7-23
SplEnumJob - Spooler Enumerate Job . 7-26
SplEnumPort - Spooler Enumerate Port . 7-29
SplEnumPrinter - Spooler Enumerate Print Destinations . 7-32
SplEnumQueue - Spo.oler Enumerate Queue . 7-35
SplEnumQueueProcessor - Spooler Enumerate Queue Processor 7-39
SplHoldJob - Spooler Hold Job . 7-42
SplHoldQueue - Spooler Hold Queue . 7-44
SplPurgeQueue - Spooler Purge Queue . 7-46
SplQmAbort - Spooler File Abort . 7-48
SplQmAbortDoc - Spooler File Abort Document . 7-49
SplQmClose - Spool File Close . 7-50
SplQmEndDoc - Spooler File End Document . 7-51
SplQmOpen - Spooler File Open 7-53

PM Programming Reference

\
I

)

SplQmStartDoc - Spooler File Start Document . 7-55

SplQmWrite - Spooler File Write . 7-57

SplQueryDevice - Spooler Query Device . 7-59

SplQueryJob - Spooler Query Job . 7-62

SplQueryQueue - Spooler Query Queue . 7-66

SplReleaseJob - Spooler Release Job . 7-70

SplReleaseQueue - Spooler Release Queue 7-72

SplSetDevice - Spooler Set Device . 7-74

SplSetJob - Spooler Set Job . 7-77

SplSetQueue - Spooler Set Queue . 7-81

Functions

PM Programming Reference

Chapter 1. Introduction

This chapter contains important information. Read it before using this book.

The purpose of this reference is to give important information about functions, messages, constants,
error codes, and data types. It provides language-dependent information about the functions which
enables the user to generate call statements in C Language.

The following information is provided:

• The parameter list for each function.
• The syntax of each data type and structure

Notation Conventions
The following notation conventions are used in this reference:

NULL

NULLHANDLE

lmpllclt Pointer

Constant Names

The term NULL applied to a parameter is used to indicate the presence of the
pointer parameter, but with no value.

The term NULLHANDLE applied to a parameter is used to indicate the presence
of the handle parameter, but with no value.

If no entry for a data type "Pxxxxxxx" is found in Appendix A, "Data Types" on
page A-1, then it is implicitly a pointer to the data type "xxxxxxx." See "Implicit
Pointer Data Types" on page 1-5.

All constants are written in uppercase. Where applicable, constant names have
a prefix derived from the name of a function, message, or idea associated with
the constant. For example:

WM_CREATE
SV_CXICON
CF_TEXT

Window message
System value
Clipboard format.

In this reference, a set of constants with the same prefix is written as in these
examples:

Window message WM_*
System value SV _ *

Conventions used in Function Descriptions
The documentation of each function contains these sections:

Function name

Parameters

The function name, listed in alphabetic order of C (long) name together with the
English name. This is at the top of each page followed by the name of the define
that calls the correct header files to be included, the function prototype, and a
brief description of the function.

Each parameter is listed with its data type and a brief description.

There are four kinds of parameters:

Input

Output

Specified by the programmer.

Returned by the Presentation Manager* (PM) interface.

lnpuUOutput Specified by the programmer and modified by PM.

* Trademark of IBM Corporation

Chapter 1. Introduction 1-1

Return The return values are shown, together with possible errors, or
TRUE/FALSE indicators if a Boolean function.

A list of possible errors (where appropriate) is included in this
section. Some functions do not have error messages.

Note: Data types are given in C.

Remarks Additional information about the function, where required.

Related Functions Functions that can be used with the described function.

Example Code Example of how the function can be used.

Note: The functions in this book are named in mixed-case for readability, but are known to the
system as uppercase character strings. For example, the function "GpiBeginArea" is actually
the external name "GPIBEGINAREA."

If you are using a compiler that generates a mixed-case external name, you should code the
OS/2* functions in uppercase.

Message Queues
For some functions, the Remarks section of the function description includes a statement that the
function requires a message queue. This means that, before issuing the call, WinCreateMsgQueue
must be issued by the same thread. For other functions, no previous WinCreateMsgQueue is
required, and it is only necessary to issue Winlnitialize from the same thread.

Error Severities
Each of the error conditions given in the list of errors for each call falls into one of these areas:

Warning The function detected a problem, but took some remedial action that enabled
the function to complete successfully. The return code in this case indicates
that the function completed successfully.

Error The function detected a problem for which it could not take any sensible
remedial action. The system has recovered from the problem, and the state
of the system with respect to the application remains the same as at the time
when the function was requested. The system has not even partially
executed the function (other than reporting the error).

Severe Error The function detected a problem from which the system could not reestablish
its state, with respect to the application, at the time when that function was
requested; that is, the system partially executed the function. This, therefore,
necessitates the application performing some corrective activity to restore
the system to some known state.

Unrecoverable Error The function detected some problem from which the system could not
re-establish its state, with respect to the application, at the time when that
call was issued. It is possible that the application cannot perform some
corrective action to restore the system to some known state.

The WinGetlastError and WinGetErrorlnfo functions can be used to find out more about an error (or
warning) that occurs as a result of executing a call.

• Trademark of IBM Corporation

1-2 PM Programming Reference

/

Header Files
All functions require an "include" for the system header file 052.H:

#include <OS2.H>

Also, most functions require a "define" to select an appropriate (conditional) section of the header
file, and hence, the required entry point. Where this is necessary, it is shown at the head of the
function definition in the form:

#define INCL_name

Note: These "#defines" must precede the "#include <052.H> ."

Helper Macros
A series of macros is defined for packing data into, and extracting data from, variables of MPARAM
and MRE5UL T data types. They are used in conjunction with the Win5endMsg and the other
message functions, and also inside window and dialog procedures.

These macros always cast their arguments to the specified type, so values of any of the types
specified for each macro may be passed without additional casting. NULL may be used to pass
unused parameter data.

Macros for packing data into a MPARAM variable:

/* Used to pass any pointer type: */
#define MPFROMP(p) ((MPARAM)(VOID *)(p))

/* Used to pass a window handle: */
#define MPFROMHWND(hwnd) ((MPARAM)(HWND)(hwnd))

/* Used to pass a CHAR, UCHAR, or BYTE: */
#define MPFROMCHAR(ch) ((MPARAM)(USHORT)(ch))

/*Used to pass a SHORT, USHORT, or BOOL: */
#define MPFROMSHORT(s) ((MPARAM)(USHORT)(s))

/* Used to pass two SHORTs or USHORTs: */
#define MPFROM2SHORT(sl, s2) ((MPARAM)MAKELONG(sl, s2))

/* Used to pass a SHORT and 2 UCHARs: (WM_CHAR msg)*/
#define MPFROMSH2CH(s, uchl, uch2)

((MPARAM)MAKELONG(s, MAKESHORT(uchl, uch2)))

/* Used to pass a LONG or ULONG: */
#define MPFROMLONG(l) ((MPARAM)(ULONG)(l))

Chapter 1. Introduction 1-3

Macros for extracting data from a MPARAM variable:

/* Used to get any pointer type: */
#define PVOIDFROMMP(mp) ((VOID *)(mp))

/* Used to get a window handle: */
#define HWNDFROMMP(mp) ((HWND)(mp))

/* Used to get CHAR, UCHAR, or BYTE: */
#define CHARlFROMMP(mp) ((UCHAR)(mp))
#define CHAR2FROMMP(mp) ((UCHAR)((ULONG)mp >> 8))
#define CHAR3FROMMP(mp) ((UCHAR)((ULONG)mp >> 16))
#define CHAR4FROMMP(mp) ((UCHAR)((ULONG)mp >> 24))

/* Used to get a SHORT, USHORT, or BOOL: */
#define SHORTlFROMMP(mp) ((USHORT)(ULONG)(mp))
#define SHORT2FROMMP(mp) ((USHORT)((ULONG)mp >> 16))

/* Used to get a LONG or ULONG: */
#define LONGFROMMP(mp) ((ULONG)(mp))

Macros for packing data into a MRESUL T variable:

/* Used to pass any pointer type: */
#define MRFROMP(p) ((MRESULT)(VOID *)(p))

/* Used to pass a SHORT, USHORT, or BOOL: */
#define MRFROMSHORT(s) ((MRESULT)(USHORT)(s))

/* Used to pass two SHORTs or USHORTs: */
#define MRFROM2SHORT(sl, s2) ((MRESULT)MAKELONG(sl, s2))

/* Used to pass a LONG or ULONG: */
#define MRFROMLONG(l) ((MRESULT)(ULONG)(l))

Macros for extracting data from a MRESUL T variable:

/* Used to get any pointer type: */
#define PVOIDFROMMR(mr) ((VOID *)(mr))

/*Used to get a SHORT, USHORT, or BOOL: */
#define SHORTlFROMMR(mr) ((USHORT)((ULONG)mr))
#define SHORT2FROMMR(mr) ((USHORT)((ULONG)mr >> 16))

/* Used to get a LONG or ULONG: */
#define LONGFROMMR(mr) ((ULONG)(mr))

1-4 PM Programming Reference

\
)

The following macros are for use with DDESTRUCT and DDEINIT structures:

/* Used to return a PSZ pointing to the DOE item name: */
#define DDES_PSZITEMNAME(pddes) \

{{{PSZ)pddes) + {(PDDESTRUCT)pddes)->offszltemName)

/* Used to return a PBYTE pointing to the DOE data: */
#define DDES_PABDATA{pddes) \

{{(PBYTE)pddes) + ({PDDESTRUCT)pddes)->offabData)

/* Used to convert a selector to a PDDESTRUCT: */
#define SELTOPDDES(sel) ({PDDESTRUCT)MAKEP{sel, 0))

/* Used to PDDESTRUCT to a selector for freeing / reallocating: */
#define PDDESTOSEL(pddes) (SELECTOROF(pddes))

/* Used to PDDEINIT to a selector for freeing: */
#define PDDEITOSEL(pddei) (SELECTOROF{pddei))

Addressing Elements in Arrays
Constants defining array elements are given values that are zero-based in C; that is, the numbering
of the array elements starts at zero, not one.

For example, in the DevQueryCaps function, the sixth element of the a/Array parameter is
CAPS_HEIGHT, which is equated to 5.

Count parameters related to such arrays always mean the actual number of elements available.
Therefore, again using the DevQueryCaps function as an example, if all elements up to and including
CAPS_HEIGHT are provided for, /Count could be set to (CAPS_HEIGHT + 1).

In functions for which the starting array element can be specified, this is always zero-based, and so
the C element number constants can be used directly. For example, to start with the CAPS_HEIGHT
element, the /Start parameter can be set to CAPS_HEIGHT.

Implicit Pointer Data Types
A data type name beginning with "P" (for example, PERRORCODE) is likely to be a pointer to another
data type (in this instance, ERRORCODE).

In the data type summary, Appendix A, "Data Types" on page A-1, no explicit "typedefs" are shown
for pointers. Therefore, if no data type definition can be found in the summary for a data type name
"Pxxxxxx," it becomes a pointer to the data type "xxxxxx," for which a definition should be found in
the summary.

The implicit type definition needed for such a pointer "Pxxxxxx" is:

typedef xxxxxx *Pxxxxxx;

Such definitions are provided by means of the system header file 082.H.

Chapter 1. Introduction 1-5

Storage Mapping of Data Types
The storage mapping of the data types is dependent on the machine architecture. To be portable,
applications must access the data types using the definitions supplied for that environment.

Double-Byte Character Set (DBCS)
Throughout this publication, you will see references to specific values for character strings. The
values are for single-byte character set (SBCS). If you use the double-byte character set (DBCS),
note that one DBCS character equals two SBCS characters.

1-6 PM Programming Reference

\
./

;;

Chapter 2. Device Functions

The following table shows all the Device (Dev) functions in alphabetic order.

CName

DevCloseDC

DevEscape

DevOpenDC

DevPostDeviceModes

DevQueryCaps

DevQueryDeviceNames

DevQueryHardcopyCaps

Chapter 2. Device Functions 2-1

DevCloseDC -
Close Device Context

#define INCL DEV /*Or use INCL_PM. Also in COMMON section*/

I HMF DevCloaeDC (HDC hdc)

This function closes a device context.

Parameters
hdc (HOC) - Input

Device-context handle.

Returns
Error Indicator metaflle handle (for a metafile device context)

DEV _ERROR Error occurred.

DEV_OK Device closed, but not a metafile device context.

Other Device closed, a metaflle device context whose metafile handle is returned.

Possible returns from WinGetlastError

PMERR_NOT_CREATED_BY_DEVOPENDC An attempt has been made to destroy a device context
using DevCloseDC that was not created using
DevOpenDC.

PMERR_DC_IS_ASSOCIATED

PMERR_INV _HDC

Remarks

An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

If the device context is currently associated with a presentation space, or if it is created with the
WinOpenWindowDC call (that is, it is a screen device context), an error is raised, and the device
context is not closed.

If the device context being closed is a memory device context that has a bit map currently selected
into it (see the GpiSetBitmap function), the bit map is automatically deselected before the device
context is closed.

Any clip region currently in use for this device context is deleted.

Related Functions
Prerequisite Functions

• DevOpenDC

Other Related Functions

• WinOpenWindowDC

2-2 PM Programming Reference

·~
I

f Example Code

DevCloseDC -
Close Device Context

This example calls DevCloseDC to close a device context based on the handle returned from

DevOpenDC.

#define INCL_DEV
#include <os2.h>

HOC hdc;
HMF hmf;

/* Device-context handle */
/* error code (or metafile handle if

metafile device context) */

/* close the device context associated with handle hdc */
hmf = DevCloseDC(hdc);

Chapter 2. Device Functions 2-3

DevEscape
Escape

#define INCL_DEV /*Or use INCL_PM */

LONG DevEscape (HDC hdc, LONG ICode, LONG llnCount, PBYTE pblnData,
PLONG plOutCount, PBYTE pbOutData)

This function allows applications to access facilities of a device not otherwise available through the
API. Escapes are, in general, sent to the presentation driver and must be understood by it.

Parameters
hdc (HOC) - input

Device-context handle.

ICode (LONG) - input
Escape code.

If the device context is of type OD_QUEUED with a PM_Q_STD spool file, some escapes are sent
to the presentation driver and others are recorded in the spool file (depending on the escape
code). If the device context is of type OD_METAFILE, all escapes are metafiled. If the device
context is of any type other than OD_QUEUED (with a PM_Q_STD spool file) or OD_METAFILE, all
escapes are sent to the presentation driver.

The description for each standard escape specifies which of these categories the escape falls
into.

Devices can define additional escape functions using user /Code values, that have the following
ranges:

32 768 through 40 959 Not metafiled and not recorded (sent to presentation driver for
PM_Q_STD)

40 960 through 49 151 Metafiled only (sent to presentation driver for PM_Q_STD)
49 152 through 57 343 Metafiled and recorded (not sent to presentation driver) for PM_Q_STD
57 344 through 65 535 Recorded only (not sent to presentation driver for PM_Q_STD).

The following escapes are defined:

DEVESC_QUERYESCSUPPORT
DEVESC _ GETSCALINGFACTOR
DEVESC_STARTDOC
DEVESC_ENDDOC
DEVESC_ABORTDOC
DEVESC_NEWFRAME
DEVESC_RAWDATA
DEVESC_ QUERYVIOCELLSIZES
DEVESC _SETMODE

llnCount (LONG) - input
Input data count.

Number of bytes of data in the pblnData buffer.

pblnData (PBYTE) - input
The input data required for this escape.

plOutCount (PLONG) - input/output
Output data count.

p/OutCount is the number of bytes of data in the pbOutData buffer.

If data is returned in pbOutData, p/OutCount is updated to the number of bytes of data returned.

2-4 PM Programming Reference

\
)

/ pbOutData (PBYTE) - output
Output data.

DevEscape
Escape

pbOutData is a buffer that receives the output from this escape. If p/OutCount is null, no data is

returned.

Returns
Implementation error indicator:

DEVESC_ERROR
DEVESC_NOTIMPLEMENTED
DEV_OK

Error
Escape not implemented for specified code
OK.

Possible returns from WinGetlastError

PMERRJNV _ESCAPE_CODE

PMERR .. JNV_HDC

An invalid code parameter was specified with DevEscape.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

PMERRJNV _LENGTH_OR_COUNT

PMERR_ESC_CODE_NOT_SUPPORTED

An invalid length or count parameter was specified.

The code specified with DevEscape is not supported by
the target device driver.

PMERR_INV_;ESCAPE_DATA An invalid data parameter was specmed with DevEscape.

Remarks
The data fields for standard escapes are:

DEVESC_QUERYESCSUPPORT

DEVESC_ GETSCALINGFACTOR

DEVESC_STARTDOC

Queries whether a particular escape is implemented by the
presentation driver. The return value gives the result.

This escape is not metafiled or recorded.

llnCount Number of bytes pointed to by pblnData.
pblnData The buffer contains an escape code value

specifying the escape function to be checked.
p/OutCount Not used; can be set to 0.
pbOutData Not used; can be set to null.

Returns the scaling factors for the x and y axes of a printing
device. For each scaling factor, an exponent of two is put in
pbOutData. Thus, the value 3 is used if the scaling factor is 8.

Scaling factors are used by devices that cannot support
graphics at the same resolution as the device resolution.

This escape is not metafiled or recorded.

llnCount Not used; can be set to 0.
pblnData Not used; can be set to null.
p/OutCount The number of bytes of data pointed to by

pbOutData. On return, this is updated to the
number of bytes returned.

pbOutData The address of a SFACTORS structure, which on
return contains the scaling factors for the x and y
axes.

Indicates that a new print job is starting. All subsequent output
to the device context is spooled under the same job identifier
until a DEVESC_ENDDOC occurs.

A GpiAssociate function must be issued to associate the
presentation space with the device context before issuing this
escape.

Chapter 2. Device Functions 2-5

DevEscape
Escape

DEVESC_ENDDOC

DEVESC_ABORTDOC

DEVESC_NEWFRAME

DEVESC_RAWDATA

2-6 PM Programming Reference

This escape is metafiled but not recorded.

llnCount Number of bytes pointed to by pblnData.
pblnData The buffer contains a null-terminated string,

specifying the name of the document.
p/OutCount Not used; can be set to O.
pbOutData Not used; can be set to null.

Ends a print job started by DEVESC_STARTDOC.

This escape is metafiled but not recorded.

llnCount Not used; can be set to O.
pblnData Not used; can be set to null.
p/OutCount Set equal to 2.
pbOutData The buffer contains a USHORT specifying the job

identifier if a spooler print job is created.

Aborts the current job, erasing everything the application has
written to the device since the last DEVESC_STARTDOC,
including the DEVESC_STARTDOC.

This escape is metafiled but not recorded.

llnCount Not used; can be set to 0
pblnData Not used; can be set to null
p/OutCount Not used; can be set to 0
pbOutData Not used; can be set to null.

Signals when an application has finished writing to a page and
wants to start a new page. It is similar to GpiErase processing
for a screen device context, and causes a reset of the attributes.
This escape is used with a printer device to advance to a new
page.

This escape is metafiled and recorded.

llnCount Not used; can be set to 0
pblnData Not used; can be set to null
p/OutCount Not used; can be set to O
pbOutData Not used; can be set to null.

Allows an application to send data directly to a presentation
driver. For example, in the case of a printer driver, this could
be a printer data stream.

If DEVESC_RAWDATA is mixed with other data (such as GPI
data) being sent to the same page of a device context, the
results are unpredictable and depend upon the action taken by
the presentation driver. For example, a presentation driver
might ignore GPI data if DEVESC_RAWDATA is mixed with it on
the same page. In general, DEVESC_RAWDATA should be sent
either to a separate page (using the DEVESC_NEWFRAME
escape to obtain a new page) or to a separate document (using
the DEVESC_STARTDOC and DEVESC_ENDDOC escapes to
create a new document).

This escape is metafiled and recorded.

llnCount Number of bytes pointed to by pblnData
pblnData Pointer to the raw data
p/OutCount Not used; can be set to 0
pbOutData Not used; can be set to null.

DEVESC _ QUERYVIOCELLSIZES

DEVESC _SETMODE

Related Functions
Prerequisite Functions

• DevOpenDC

Other Related Functions

DevEscape
Escape

Returns the VIO cell sizes supported by the presentation driver.

This escape is not metafiled or recorded.

llnCount Not used; can be set to O
pblnData Not used; can be set to null.
p/OutCount The number of bytes of data pointed to by

pbOutData. It must be an even multiple of the size
in bytes of the LONG data type. On return, this is
updated to the number of bytes returned.

pbOutData The address of a buffer, which on return contains a
VIOSIZECOUNT structure, immediately followed by
count copies of a VIOFONTCELLSIZE structure.

If p/OutCount is less than the size of a LONG data
type, p/OutCount is updated to zero, and nothing is
returned in the buffer pointed to by pbOutData.

If p/OutCount is equal to the size of a LONG data
type, pbOutData returns the number of VIO cell
sizes that can be returned by this escape. The
buffer pointed to by pbOutData is updated so that
maxcount is the number of VIO cell sizes that can
be returned.

If plOutCount is greater than the size of a LONG
data type, pbOutData returns the VIO cell sizes that
are supported. The buffer pointed to by pbOutData
is updated so that:

• maxcount is the number of VIO cell sizes that
can be returned

• count is the number of VIO cell sizes returned
(may be zero if p/OutCount is equal to twice the
size of a LONG data type)

• count copies of a VIOFONTCELLSIZE structure
are returned.

Sets the printer into a particular mode. It is optional for printer
drivers to support this escape, but those that do support it need
to be aware of the code page of any built-in fonts. For example,
if only code page 437 is built in, it is used if 437 is requested by
DEVESC_SETMODE. However, if code page 865 is requested, a
suitable code page/font could be downloaded.

This escape is metafiled and recorded.

llnCount Number of bytes pointed to by pblnData
pblnData Buffer contains an ESCSETMODE structure
p/OutCount Not used; can be set to O
pbOutData Not used; can be set to null.

• GpiAssociate(for DEVESC _ST ARTDOC)
• GpiErase(for DEVESC_NEWFRAME)

Chapter 2. Device Functions 2-7

DevEscape
Escape

Graphic Elements and Orders
DevEscape functions generate orders only when metafiling.

Order: Extended Escape

Example Code
This example uses DevEscape to access facilities of a device that would otherwise be unavailable

through the normal Device API set. Here, a new page in a print job is started.

ldef;ne INCL_DEV
#include <os2.h>

LONG lResult;

HDC hdc;
LONG plOutCount;

PBYTE pbOutData;

/* Dev;ce Funct;on def;n;t;ons */

/* Error code or not ;mplemented
warn;ng code

/* Dev;ce-context handle
/* length of output buffer(foput),

number of bytes returned(output)
/* output buff er

/* for the NEWFRAME, ;nput and output buffers are not used,
so set the buffer lengths to zero(0) and set the buffers to
NULL */

plOutCount = 0;
pbOutData = NULL;

lResult = DevEscape(hdc, DEVESC_NEWFRAME, 0L, NULL, &plOutCount,
pbOutData);

2-8 PM Programming Reference

*/
*/

*/
*/

DevOpenDC
Open Device Context

#define INCL_DEV I* Or use INCL_PM. Also in COMMON section*/

HOC DevOpenOC (HAB hab, LONG IType, PSZ pszToken, LONG ICount,
POEVOPENOATA pdopOata, HOC hdcComp)

This function creates a device context.

Parameters
hab (HAB) - input

Anchor-block handle.

IType (LONG) - input
Type of device context:

OO_QUEUEO

OO_OIRECT

OO_INFO

OO_METAFILE

A device, such as a printer or plotter, for which output is to be
queued.

Certain restrictions apply for this device type; see "Metafile
Restrictions" on page G-1.

A device, such as a printer or plotter, for which output is not to be
queued.

A device, such as a printer or plotter, but the device cont~xt is used
only to retrieve information (for example, font metrics). Drawing
can be performed to a presentation space associated with such a
device context, but no output medium is updated.

The device context is used to write a metafile. The presentation
page defines the area of interest within the picture in the metafile.
See OD_METAFILE_NOQUERY.

Certain restrictions apply for this device type; see "Metafile
Restrictions" on page G-1.

OO_METAFILE_NOQUERY The device context is used to write a metafile.

OO_MEMORY

pszToken (PSZ) - input
Device-information token.

Functionally, this device type is the same as OD_METAFILE, except
that querying of attributes is not allowed with a presentation space
while it is associated with an OD_METAFILE_NOQUERY device
context. If querying of attributes is not required,
OD_METAFILE_NOQUERY should be used in preference to
OD_METAFILE, since it gives improved performance.

Certain restrictions apply for this device type; see "Metafile
Restrictions" on page G-1.

A device context that is used to contain a bit map. The hdcComp
parameter identifies a device with which the memory device
context is to be compatible.

This identifies the device information, held in the initialization file. This information is the same
as that which may be pointed to by pdopData; any information that is obtained from pdopData

overrides the information obtained by using this parameter.

If pszToken is specified as"*", no device information is taken from the initialization file.

OS/2 behaves as if"*" is specified, but it allows any string.

Chapter 2. Device Functions 2-9

DevOpenDC
Open Device Context

ICount (LONG) - input
Number of items.

This is the number of items present in the pdopData parameter. This can be less than the full list
if omitted items are irrelevant, or are supplied from pszToken or elsewhere.

pdopData (PDEVOPENDATA) - input
Open-device-context data area.

hdcComp (HOC) - input
Compatible-device-context handle.

When /Type is OD_MEMORY, this parameter is a handle to a device context compatible with bit
maps that are to be used with this device context.

If hdcComp is NULLHANDLE, compatibility with the screen is assumed.

Returns
Device-context handle:

DEV_ERROR Error

¢0 Device-context handle.

Possible returns from WinGetlastError

PMERR_INV_DC_TYPE

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV_DC_DATA

PMERR_INV _HDC

PMERR_INV _DRIVER_NAME

PMERR_INV _LOGICAL_ADDRESS

Remarks

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

An invalid length or count parameter was specified.

An invalid data parameter was specified with
DevOpenDC.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

A driver name was specified which has not been
installed.

An invalid device logical address was specified.

A device context is a means of writing to a particular device. Before using GPI functions to cause
output to be directed to the device context, the GpiAssociate function call must be issued (or the
GPIA_ASSOC option specified on GpiCreatePS).

DevOpenDC cannot be used to open a device context for a screen window; use WinOpenWindowDC
instead.

The device context is owned by the process from which DevOpenDC is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system. When using a device context type of OD_METAFILE_NOQUERY the querying
of attributes is not allowed. To improve performance of this type of metafile no error checking is
performed to ensure that such API calls are not attempted. Query calls are accepted but the results
returned are undefined.

This function requires the existence of a message queue.

2-10 PM Programming Reference

\
)

Related Functions
Prerequisite Functions

• Winlnitialize

Other Related Functions

• DevCloseDC
• GpiAssociate(for the output of GPI data)
• PrfQueryProfileString
• WinOpenWindowDC
• WinQueryWindow

Example Code

DevOpenDC -
Open Device Context

This example calls DevOpenDC to create a memory device context with screen compatibility and
then associates that context with a newly created presentation space.

#define INCL_DEV
#define INCL_GPICONTROL
#include <os2.h>

/* Device Function definitions */
/* GPI control Functions */

HOC hdc; /* Device-context handle */
HAB hab; /* Anchor-block handle */
/* context data structure */

DEVOPENSTRUC dop = {NULL, "DISPLAY", NULL, NULL, NULL, NULL,
NULL, NULL, NULL};

HPS hps; /* presentation-space handle */
SIZEL sizl={e, 0}; /* use same page size as device */

/* create memory device context */
hdc = DevOpenDC(hab, OD_MEMORY, 11 *11

, 5L, (PDEVOPENDATA)&dop, NULLHANDLE);

/* create a presentation space associated with the context */
hps = GpiCreatePS(hab, hdc, &sizl, GPIA_ASSOC I PU_PELS);

Chapter 2. Device Functions 2-11

DevPostDeviceModes
Post Device Modes

#define INCL_DEV /*Or use INCL_PM */

LONG DevPostDevlceModes (HAB hab, PDRIVDATA pdrlvDrlverData, PSZ pszDrlverName,
PSZ pszDeviceName, PSZ pszName, ULONG flOptlons)

This function returns, and optionally sets job properties.

Parameters
hab (HAB) - input

Anchor-block handle.

pdrlvDrlverData (PDRIVDATA) - input/output
Driver data.

A data area that, on return, contains device data defined by the presentation driver. If the
pointer to the area is NULL, this function returns the required size of the data area.

The format of the data is the same as that which occurs within the DEVOPENSTRUC structure,
passed on the pdopData parameter of DevOpenDC.

pszDrlverName (PSZ) - input
Device-driver name. A string containing the name of the presentation driver; for example,
"LASERJET."

pszDevlceName (PSZ) - input
Device-type name.

Null-terminated string in a 32-byte field, identifying the device type; for example, "HP LaserJet
llD" (model number). Valid names are defined by device drivers.

Note: This parameter always overrides the data in the szDeviceName[32] field of the
DRIVDATA structure, passed in the pdrivDriverData parameter.

pszName (PSZ) - input
Device name.

A name that identifies the device; for example, "PRINTER1." If DPDM_POSTJOBPROP is
specified in the f/Options parameter, the pszName parameter can be NULL.

flOptlons (ULONG) - input
Dialog options.

Options that control whether a dialog is displayed.

DPDM_POSTJOBPROP
This function allows the user to set properties for the print job by displaying a dialog
and returning the updated job properties. Examples of job properties are paper
size, paper orientation, and single-sided or duplex.

The printer is configured in the shell using a dialog provided by the presentation
driver. The configuration describes the actual printer setup such as number of paper
bins, available paper sizes, and any installed hardware fonts.

Before the job properties dialog is displayed the presentation driver merges any
changes in the printer configuration with the data passed in the pdrivDriverData
parameter. This allows, for example new paper sizes to be added into the job
properties dialog. The parameter pszName can be specified as NULL although this
is not recommended because the presentation driver cannot easily find the printer
configuration to merge.

2-12 PM Programming Reference

DevPostDeviceModes
Post Device Modes

It is the responsibility of the application to retrieve and store job properties. An
application can choose to store job properties either on a per document or per
application basis. The job properties can then be passed into DevOpenDC. Initial
(default) job properties can be retrieved using DPDM_QUERYJOBPROP option.

The application cannot tell if the user modified the job properties or just cancelled
the dialog. Hence the job properties returned in the pdrivDriverData parameter must
always be stored.

The shell allows users to specify default job properties for a printer. The spooler
API SplQueryQueue. can be used to retrieve these defaults. The spooler
automatically adds the default job properties for a printer to any jobs that are
submitted without job properties.

DPDM_QUERYJOBPROP

Returns

Do not display a dialog. Return the default job properties. These defaults are
derived from the defaults for the chosen device; for example, "HP Laserjet llD" and
the printer setup specified via the shell printer driver configuration dialog.

Size/error indicator.

Value depends on what was passed as the pointer to pdrivDriverData:

NULL

DPDM_ERROR Error
DPDM_NONE No settable options
>0 Size in bytes required for pdrivDriverData.

Other

DPDM_ERROR Error
DPDM_NONE No settable options
DEV_OK OK.

Possible returns from WinGetLastError

PMERR_INV _DRIVER_DATA

PMERR_DRIVER_NOT _FOUND

PMERR_INV _DEVICE_NAME

PMERR_INV _LOGICAL_ADDRESS

Remarks

Invalid driver data was specified.

The device driver specified with DevPostDeviceModes
was not found.

An invalid devicename parameter was specified with
DevPostDeviceModes.

An invalid device logical address was specified.

An application can first call this function with a NULL data pointer to find out how much storage is
needed for the data area. Having allocated the storage, the application can then make the call a
second time for the data to be entered. The returned data can then be passed in DevOpenDC as
pdrivDriverData within the pdopData parameter.

Calling this function requires the existence of a message queue.

Use SplEnumDevice or SplEnumPrinter with f/Type set to SPL_PR_DIRECT _DEVICE or
SPL_PR_QUEUED_DEVICE to get a list of all the devices.

To get information about a specific device use SplQueryDevice.

Chapter 2. Device Functions 2-13

DevPostDeviceModes
Post Device Modes

Related Functions
• DevOpenDC

Example Code
This example shows how to call DevPostDeviceModes and allocate a new buffer, if necessary, for the
larger job properties (DRIVDATA structure).

#define INCL_DEV
#define INCL_DOS
#include <os2.h>
#include <memory.h>

{
ULONG devrc=FALSE;
HAB hab;
PSZ pszPrinter;
HOC hdc=NULL;
PDRIVDATA pOldDrivData;
PDRIVDATA pNewDrivData=NULL;
PDEVOPENSTRUC dops;
LONG buflen;

/* check size of buffer required for job properties */
buflen = DevPostDeviceModes(hab,

NULL,
dops->pszDriverName,
dops->pdriv->szDeviceName,
pszPrinter,
DPDM POSTJOBPROP

); -

/* return error to caller */
if (bufl en<=0)

return(buflen);

/* allocate some memory for larger job properties and */
/* return error to caller */

if (buflen != dops->pdriv->cb)
{

}

if (DosAllocMem((PPVOID)&pNewDrivData,buflen,fALLOC))
return(DPDM_ERROR);

/* copy over old data so driver can use old job */
/* properties as base for job properties dialog */

pOldDrivData = dops->pdriv;
dops->pdriv = pNewDrivData;
memcpy((PSZ)pNewDrivData, (PSZ)pOldDrivData, pOldDrivData->cb);

/* display job properties dialog and get updated */
/* job properties from driver */

devrc = DevPostDeviceModes(hab,

return(devrc);
}

2-14 PM Programming Reference

dops->pdriv,
dops->pszDriverName,
dops->pdriv->szDeviceName,
pszPrinter,
DPDM POSTJOBPROP

); -

)

DevQueryCaps -
Query Device Capabilities

#define INCL_DEV /*Or use INCL_PM. Also in COMMON section*/

BOOL DevQueryCaps (HDC hdc, LONG IStart, LONG ICount, PLONG alArray)

This function queries the device characteristics.

Parameters
hdc (HOC) - input

Device-context handle.

IStart (LONG) - input
First item of information.

The number of the first item of information to be returned in a/Array, counting from zero.

ICount (LONG) - input
Count of items of information.

This is the count to be returned in a/Array. It must be greater than zero.

alArray (PLONG) - output
Device capabilities.

Array of /Count elements, starting with /Start. The array elements are numbered consecutively,
starting with CAPS_FAMIL Y. The element number constants start with 0. See the appropriate
bindings reference.

If /Start+ /Count-1 exceeds the current highest-defined element number, elements beyond the
highest are returned as 0.

CAPS_FAMILY

CAPS_IO _CAPS

CAPS_ TECHNOLOGY

Device type (values as for /Type in DevOpenDC).

Device input/output capability:

CAPS_IO_DUMMY
Dummy device

CAPS_SUPPORTS_ OP
Device supports output

CAPS_SUPPORTS_IP
Device supports input

CAPS_SUPPORTS_IO
Device supports output and input.

Technology:

CAPS_TECH_UNKNOWN
Unknown

CAPS_TECH_VECTOR_PLOTTER
Vector plotter

CAPS_ TECH_RASTER_DISPLAY
Raster display

CAPS_ TECH_RASTER_PRINTER
Raster printer

CAPS_TECH_RASTER_CAMERA
Raster camera

CAPS_ TECH_POSTSCRIPT
Postscript device.

Chapter 2. Device Functions 2-15

DevQueryCaps
Query Device Capabilities

CAPS_DRIVER_ VERSION

CAPS_WIDTH

CAPS_HEIGHT

CAPS_ WIDTH_IN_ CHARS

CAPS_HEIGHT _IN_ CHARS

CAPS_HORIZONTAL_RESOLUTION

CAPS_ VERTICAL_RESOLUTION

CAPS_CHAR_WIDTH

CAPS_ CHAR_HEIGHT

CAPS_SMALL_CHAR_ WIDTH

CAPS_SMALL_ CHAR_HEIGHT

CAPS_COLORS

CAPS_ COLOR_PLANES

CAPS_COLOR_BITCOUNT

CAPS_ COLOR_ TABLE_ SUPPORT

CAPS_MOUSE_BUTTONS

2-16 PM Programming Reference

Version identifier of the presentation driver.

The high order word of the version identifier is 0. The
low order word identifies the release, for example
Ox0120 is release 1.2.

Media width (for a full screen, maximized window for
displays) in pets.

Media depth (for a full screen, maximized window for
displays) in pets. (For a plotter, a pet is defined as the
smallest possible displacement of the pen and can be
smaller than a pen width.)

Media width (for a full screen, maximized window for
displays) in default character columns.

Media depth (for a full screen, maximized window for
displays) in default character rows.

Horizontal resolution of device in pels per meter.

Vertical resolution of device in pels per meter.

Default character-box width in pets for VIO.

Default character-box height in pets for VIO.

Default small-character box width in pets for VIO~ This
is 0 if there is only one character-box size.

Default small-character box height in pets for VIO. This
is 0 if there is only one character-box size.

Number of distinct colors supported at the same time,
including reset (gray scales count as distinct colors). If
loadable color tables are supported, this is the number
of entries in the device color table. For plotters, the
value returned is the number of pens plus one (for the
background).

Number of color planes.

Number of adjacent color bits for each pet (within one
plane).

Loadable color table support:

CAPS_COLTABL_RGB_B
1 if RGB color table can be loaded, with a
minimum support of 8 bits each for red,
green, and blue.

CAPS_COLTABL_RGB_B_PLUS
1 if color table with other than 8 bits for
each primary color can be loaded.

CAPS_ COLTABL_ TRUE_MIX
1 if true mixing occurs when the logical
color table has been realized, providing that
the size of the logical color table is not
greater than the number of distinct colors
supported (see element CAPS_COLORS).

CAPS_ COL TABL_REALIZE
1 if a loaded color table can be realized.

The number of pointing device buttons that are
available. A returned value of 0 indicates that there are
no pointing device buttons available.

DevQueryCaps
Query Device Capabilities

CAPS_FOREGROUND_MIX_SUPPORT Foreground mix support:

CAPS_FM_OR
Logical OR.

CAPS_FM_ OVERPAINT
Overpaint.

CAPS_FM_XOR
Logical XOR.

CAPS_FM_LEAVEALONE
Leave alone.

CAPS_FM_AND
Logical AND.

CAPS_FM_ GENERAL_BOOLEAN
All other mix modes; see GpiSetMix.

The value returned is the sum of the values appropriate
to the mixes supported. A device capable of supporting
OR must, as a minimum, return CAPS_FM_OR +
CAPS_FM_OVERPAINT + CAPS_FM_LEAVEALONE,
signifying support for the mandatory mixes OR,
overpaint, and leave-alone.

Note that these numbers correspond to the decimal
representation of a bit string that is six bits long, with
each bit set to 1 if the appropriate mode is supported.

Those mixes returned as supported are guaranteed for
all primitive types. For more information, see
GpiSetMix.

CAPS_BACKGROUND_MIX_SUPPORT Background mix support:

CAPS_ VIO _LOADABLE_FONTS

CAPS_BM_OR
Logical OR.

CAPS_BM_ OVERPAINT
Overpaint.

CAPS_BM_XOR
Logical XOR.

CAPS_BM_LEAVEALONE
Leave alone.

CAPS_BM_AND
Logical AND.

CAPS_BM_ GENERAL_BOOLEAN
All other mix modes; see GpiSetBackMix.

The value returned is the sum of the values appropriate
to the mixes supported. A device must, as a minimum,
return CAPS_BM_OVERPAINT +
CAPS_BM_LEAVEALONE, signifying support for the
mandatory background mixes overpaint, and
leave-alone.

Note that these numbers correspond to the decimal
representation of a bit string that is four bits long, with
each bit set to 1 if the appropriate mode is supported.

Those mixes returned as supported are guaranteed for
all primitive types. For more information, see
GpiSetBackM ix.

Number of fonts that can be loaded for VIO.

Chapter 2. Device Functions 2-17

DevQueryCaps -
Query Device Capabilities

CAPS_WINDOW_BYTE_ALIGNMENT

CAPS_BITMAP _FORMATS

CAPS_RASTER_CAPS

Whether or not the client area of VIO windows should be
byte-aligned:

CAPS_BYTE_ALIGN_REQUIRED
Must be byte-aligned.

CAPS_BYTE_ALIGN_RECOMMENDED
More efficient if byte-aligned, but not
required.

CAPS_BYTE_ALIGN_NOT_REQUIRED
Does not matter whether byte-aligned.

Number of bit-map formats supported by device.

Capability for device raster operations:

CAPS_RASTER_BITBL T
1 if GpiBitBlt and GpiWCBitBlt supported

CAPS_RASTER_BANDING
1 if banding is supported

CAPS_RASTER_BITBLT _SCALING
1 if GpiBitBlt and GpiWCBitBlt with scaling
supported.

CAPS_RASTER_SET_PEL
1 if GpiSetPel supported.

CAPS_RASTER_FONTS
1 if this device can draw raster fonts.

CAPS_RASTER_FLOOD _FILL
1 if GpiFloodFill is supported.

CAPS_MARKER_HEIGHT Default marker-box height in pels.

CAPS_MARKER_WIDTH Default marker-box width in pals.

CAPS_DEVICE_FONTS Number of device-specific fonts.

CAPS_GRAPHICS_SUBSET Graphics drawing subset supported. (3 indicates GOCA
DR/3)

CAPS_GRAPHICS_VERSION Graphics architecture version number supported. (1
indicates Version 1)

CAPS_GRAPHICS_VECTOR_SUBSET Graphics vector drawing subset supported. (2 indicates
GOCA VS/2)

CAPS_DEVICE_WINDOWING Device windowing support:

CAPS_ADDITIONAL_ GRAPHICS

2-18 PM Programming Reference

CAPS_DEV _ WINDOWING_SUPPORT
1 if device supports windowing.

Other bits are reserved 0.

Additional graphics support:

CAPS_ GRAPHICS_KERNING_SUPPORT
1 if device supports kerning.

CAPS_FONT _ OUTLINE_DEFAUL T
1 if device has a default outline font.

CAPS_FONT _IMAGE_ DEFAULT
1 if device has a default image font.

CAPS_SCALED _DEFAULT _MARKERS
1 if default markers are to be scaled by the
marker-box attribute.

CAPS_ COLOR_ CURSOR_SUPPORT
1 if device supports colored cursors.

CAPS_PALETTE_MANAGER
1 if device supports palette functions (see
GpiCreatePalette).

~
)

CAPS_PHYS_COLORS

CAPS_ COLOR_INDEX

CAPS_ GRAPHICS_ CHAR_ WIDTH

CAPS_ GRAPHICS_ CHAR_HEIGHT

CAPS_HORIZONTAL_FONT _RES

CAPS_ VERTICAL_FONT _RES

CAPS_DEVICE_FONT_SIM

CAPS_LINEWIDTH_ THICK

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HDC

PMERR_INV _QUERY _ELEMENT _NO

PMERR_INV_LENGTH_OR_COUNT

DevQueryCaps -
Query Device Capabilities

CAPS_ COSMETIC_ WIDELINE_SUPPORT
1 if device supports cosmetic thick lines
(see GpiSetlineWidth).

CAPS_ENHANCED _TEXT
1 if device supports full font file description
and text alignment.

Other bits are reserved 0.

Maximum number of distinct colors available on the

device.

Maximum logical color-table index supported for this

device. For the EGA and VGA drivers, the value is 63.

Default graphics character-box width, in pels.

Default graphics character-box height, in pels.

Effective horizontal device resolution in pels per inch,

for the purpose of selecting fonts.

For printers, this is the actual device resolution, but for

displays it may differ from the actual resolution for

reasons of legibility.

Effective vertical device resolution in pels per inch, for

the purpose of selecting fonts.

Identifies which simulations are valid on device fonts.

Valid flags are:

CAPS_DEVICE_FONT_SIM_BOLD
CAPS_DEVICE_FONT _SIM_ITALIC
CAPS_DEVICE_FONT _SIM_ UNDERSCORE

CAPS_DEVICE_FONT _SIM_STRIKEOUT

Cosmetic thickness of lines and arcs on this device,

when fxLineWidth is LINEWIDTH_ THICK (see

GpiSetlineWidth). The units are pels. A value of 0 is

interpreted as 2 pels.

An invalid device-context handle or (micro presentation

space) presentation-space handle was specified.

An invalid start parameter was specified with
DevQueryCaps.

An invalid length or count parameter was specified.

Chapter 2. Device Functions 2-19

DevQueryCaps -
Query Device Capabilities

Remarks
GpiQueryDevice can be used to find the handle of the currently associated device context.

Related Functions
Prerequisite Functions

• DevOpenDC(for CAPS_FAMIL Y)

Other Related Functions

• DevQueryDeviceNames
• DevQueryHardcopyCaps
• GpiQueryDevice
• GpiSetMix(for CAPS_FOREGROUND_MIX_SUPPORT)
• GpiSetBackMix(for CAPS_BACKGROUND_MIX_SUPPORT)

Example Code
In this example the driver is queried to see if it supports input, output, or both. Note that a valid
device context handle must be passed. This example assumes a DevOpenDC call has been made to
obtain the device context handle.

#define INCL_DEV
#include <OS2.H>

HOC hdc;
LONG lStart;
LONG lCount;
BOOL fl return;
LONG alArray[CAPS_TECHNOLOGY];
lCount = CAPS_TECHNOLOGY;
lStart = CAPS_FAMILY;

flreturn = DevQueryCaps(hdc,
lStart,
lCount,
al Array);

switch(alArray[CAPS_IO_CAPS])

{

}

case CAPS_IO_SUPPORTS_OP:

break;
case CAPS_IO_SUPPORTS_IP:

break;
case CAPS_IO_SUPPORTS_IO:

break;
default:
break;

2-20 PM Programming Reference

/* device context handle */
/* number of first item */
/* count of items */
/* array of longs which */
/* will contain the return */
/* information. */

/* we test the CAPS_IO_CAPS */
/* element of the array to */
/* find out which options */
/* are supported. */

/* device supports output.*/

/* device supports input. */

/* device supports both */
/* input and output. */

)
#define INCL_DEV /*Or use INCL_PM */

DevQueryDeviceNames
Query Device Names

BOOL DevQueryDeviceNames (HAB hab, PSZ pszDrlverName, PLONG pldn,
PSTR32 aDevlceName, PSTR64 aDeviceDesc, PLONG pldt,
PSTR16 aDataType)

This function causes a presentation driver to return the names, descriptions, and data types of the

devices it supports.

Parameters
hab (HAB) - input

Anchor-block handle.

pszDrlverName (PSZ) - input
Fully-qualified name of the file containing the presentation driver.

The file-name extension is ORV.

pldn (PLONG) - input/output
Maximum number of device names and descriptions that can be returned.

pldn can have the following values:

Zero The number of device names and descriptions supported is returned; aDeviceName

and aDeviceDesc are not updated.

Nonzero pldn is updated to the number returned in aDeviceName and aDeviceDesc;

aDeviceName and aDeviceDesc are updated.

aDevlceName {PSTR32) - output
Device-name array.

An array of null-terminated strings, each element of which identifies a particular device. Valid

names are defined by presentation drivers.

aDeviceDesc (PSTR64) - output
Device-description array.

An array of null-terminated strings, each element of which is a description of a particular device.

Valid descriptions are defined by presentation drivers.

pldt (PLONG) - input/output
Maximum number of data types that can be returned.

pldt can have the following values:

Zero The number of data types supported is returned, and aDataType is not updated.

Nonzero pldt is updated to the number returned, and aDataType is updated.

aDataType (PSTR16) - output
Data type array.

An array of null-terminated strings, each element of which identifies a data type. Valid data

types are defined by presentation drivers.

Chapter 2. Device Functions 2-21

DevQueryDeviceNames
Query Device Names

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _LENGTH_ OR_ COUNT

Remarks

An invalid length or count parameter was specified.

An application can first call this function with pldn and pldt set to 0 to find how much storage is
needed for the data areas. Having allocated the storage, the application calls the function a second
time for the data to be entered.

'HP LaserJet•• II' is an example of a device name, 'HP LaserJet II' is an example of a device
description, and 'PM_Q_STD' is an example of a data type.

Related Functions
• DevQueryCaps
• DevQueryHardcopyCaps

•• Trademark of Hewlett-Packard Company

2-22 PM Programming Reference

I..
\

) Example Code

DevQueryDeviceNames -
Query Device Names

This example uses DevQueryDeviceNames to return the names, descriptions, and data types of
supported devices for a presentation driver. The first call to DevQueryDeviceNames determines the
number of names, description, and data types available; after allocating the arrays, the second call
actually returns the information in the arrays.

#define INCL_DEV
#define INCL_DOSMEMMGR
#include <os2.h>

BOOL fSuccess;
HAB hab;
LONG pldn = 0L;
LONG pldt = 0L;
PSTR32 aDeviceName;
PSTR64 aDeviceDesc;
PSTR16 aDataType;

/* Device Function definitions */
/* DOS Memory Manager Functions */

/* success i ndi ca tor *I
/* Anchor-block handle */
/* number of device names/descriptions */
/* number of data types */
/* array of device names */
/* array of device descriptions */
/* array of data types *I

/* query number of supported names/descriptions/data types
(pldn & pldt both 0) */

fSuccess = DevQueryDeviceNames(hab, 11 IBM4201.DRV 11
, &pldn,

aDeviceName, aDeviceDesc, &pldt,
aDataType);

if (fSuccess)
{
/* allocate arrays */
DosAllocMem((VOID *)aDeviceName, (ULONG)pldn*sizeof(STR32),

PAG COMMIT I PAG WRITE);
DosAllocMem((VOID *)aDeviceDesc, (ULONG)pldn*sizeof(STR64),

PAG COMMIT I PAG WRITE);
DosAllocMem((VOID *)aDataType, (ULONG)pldt*sizeof(STR16),

PAG_COMMIT I PAG_WRITE);

/* query supported device information */
fSuccess = DevQueryDeviceNames(hab, 11 IBM4201.DRV 11

, &pldn,
aDeviceName, aDeviceDesc, &pldt,
aDataType);

}

Chapter 2. Device Functions 2-23

DevQueryHardcopyCaps
Query Hardcopy Caps

#define INCL_DEV I* Or use INCL_PM */

LONG DevQueryHardcopyCaps (HDC hdc, LONG IStartForm, LONG IForms,
PHCINFO phclHclnfo)

This function queries the hard-copy capabilities of a device.

Parameters
hdc (HOC) - input

Device-context handle.

IStartForm (LONG) - input
Start-forms code.

Forms-code number from which the query is to start. The first forms code has the value 0.
/StartForm is used with /Forms.

IForms (LONG) - input
Number of forms to query.

If 0, the number of forms codes defined is returned. If greater than zero, this function returns the
number of forms codes for which information is returned.

For example, if there are five forms codes defined, and IStartForm = 2 and /Forms = 3, a query
is performed for forms codes 2, 3, and 4. The result is returned in the buffer pointed to by
phciHclnfo.

phclHclnfo (PHCINFO) - output
Hard-copy capabilities information.

A buffer containing the results of the query. The result consists of /Forms copies of the HCINFO
structure.

At least one of the defined forms codes must have the HCAPS_CURRENT bit set. There might be
more than one with either the HCAPS_CURRENT or the HCAPS_SELECTABLE bits set.

For a job to be selected by the spooler for printing, each one of the forms specified in the FORM
spooler parameter (see pszSpoolerParams in DEVOPENSTRUC) must be either
HCAPS_CURRENT or HCAPS_SELECTABLE. The following are possibilities:

• All forms specified are HCAPS_SELECTABLE.
• The single form specified is HCAPS_CURRENT.
• One of the forms is HCAPS_CURRENT, and all of the others are HCAPS_SELECTABLE.

Returns
Details of forms:

Error. DQHC_ERROR

~o If /Forms equals 0, number of forms available.
If /Forms does not equal 0, number of forms returned.

Possible returns from WinGetLastError

PMERR_INV _HDC

PMERR_INV _FORMS_ CODE

PMERR_INV _LENGTH_ OR_ COUNT

2-24 PM Programming Reference

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An invalid forms code parameter was specified with
DevQueryHardcopyCaps.

An invalid length or count parameter was specified.

)
Related Functions

Prerequisite Functions

• DevOpenDC

Other Related Functions

• DevQueryDeviceNames
• DevQueryCaps

Example Code

DevQueryHardcopyCaps -
Query Hardcopy Caps

The height and width of the capability of the output device is queried for each form code available.

Note that a valid device context handle must be passed. This example assumes a DevOpenDC call

has been made to obtain the device context handle of a printer.

#define INCL_DEV
#include <OS2.H>

HOC hdc;
LONG lStartFonn; /* Fonn code number from which the query */

/* is to start */
LONG lFonns; /* number of forms to query */
/* array of structures containing return information. */
HCINFO ahciHclnfo[5];
LONG lreturn;
int i;
HCINFO height[5];
HCINFO width[5];

l StartFonn = 0L;
lFonns = 0L; /* the actual number of forms codes is */

/* returned. There will be lreturn */
/* copies of the HINFO structure. */

lreturn = DevQueryHardcopyCaps(hdc,

if (1 return > 5)
{

l Start Form,
l Fonns,
ahciHclnfo);

l return = SL;
}

/* we only want the first five form codes */
/* if there are more than five */

for(i = 0; i < lreturn; i++)
{
width[lreturn].cx = ahciHclnfo[lreturn].cx;
height[lreturn].cy = ahciHclnfo[lreturn].cy;

}

Chapter 2. Device Functions 2-25

2-26 PM Programming Reference

\
I

/

Chapter 3. Direct Manipulation Functions

This section describes functions that an application would use to initiate or participate in a direct
manipulation operation. The following table shows all the direct manipulation (Drg) functions in
alphabetic order.

CName CName

DrgAcceptDroppedFi les DrgQueryNativeRMF

DrgAccessDragi nfo DrgQueryNativeRM FLen

DrgAddStrHandle DrgQueryStrName

DrgAI locDragi nfo DrgQueryStrNameLen

DrgAI locOragtransfer DrgQueryTrueType

DrgDeleteDraginfoStrHandles DrgQueryTrue Typelen

DrgDeleteStrHandle DrgReleasePS

DrgDrag DrgSendTransferMsg

DrgDragFiles DrgSetDraglmage

DrgFreeOragi nfo DrgSetDragitem

DrgFreeDragtransfer DrgSetDragPointer

DrgGetPS DrgVerifyNativeRMF

DrgPostTransferMsg DrgVerifyRMF

DrgPushDraginfo DrgVerifyTrue Type

DrgQueryDragitem DrgVerifyType

DrgQueryDragitemCount DrgVerifyTypeSet

DrgQueryDragitemPtr

Chapter 3. Direct Manipulation Functions 3-1

DrgAcceptDroppedFiles -
Direct Manipulation for Files

#define INCL WINSTDDRAG

BOOL DrgAcceptDroppedFlles (HWND Hwnd, PSZ pszPath, PSZ pszTypes,
ULONG ulDefaultOp, ULONG ulReserved)

This function handles the file direct manipulation protocol for a given window.

Parameters
Hwnd (HWND) - input

Window handle.

Handle of calling window.

pszPath (PSZ) - input
Directory.

Directory in which to place the dropped files. If NULL, the files are placed in the current
directory.

pszTypes (PSZ) - input
List of types.

A list of types that are acceptable to the drop. This string is of the form: TYPE[.TYPE. ..].

When this pointer is NULL, any type of file will be accepted.

ulDefaultOp (ULONG) - input
Default drag operation.

Default drag operation for this window. The operation is either DO_MOVE or DO_COPY.

ulReserved (ULONG) - input
Reserved.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
This function handles the file direct manipulation protocol for a given window. The window responds
(DOR_DROP, usDefaultOp) to DM_DRAGOVER messages for items with a type matching the
acceptable type string and with a rendering mechanism and format of <DRM_OS2FILE,DRF_UNKNOWN>.
Not all dragged objects must match this criteria for the drop to be acceptable.

After the drop occurs, this function handles the conversation required to complete the direct
manipulation operation for all acceptable objects. A DM_ENDCONVERSATION (DMFL_TARGETFAIL)
message is sent to the source when an object is unacceptable.

When an error occurs during a move or copy, the caller is sent a DM_DRAGERROR message. The
caller can take corrective action.

As the move or copy operation is successfully completed for each file, a DM_DRAGFILECOMPLETE
message is sent to the caller. No message is sent when the operation fails.

The function returns TRUE if the operation is successful and FALSE if an error occurs.

3-2 PM Programming Reference

\
) Related Functions

• DrgDragFiles

Example Code

DrgAcceptDroppedFiles -
Direct Manipulation for Files

This example uses the DrgAcceptDroppedFiles function to define the direct manipulation protocol of
the given window, accept all file types, and use the current directory as the drop directory.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess;
HWND Hwnd;
PSZ pszPath;

PSZ pszTypes;
ULONG ulOefaultOp;

/* Indicate success or failure */
/* Handle of calling window */
/* Directory in which to place the */
/* dropped f i Tes *I
/*A list of types that are acceptable */
/* Default drag opera ti on *I

pszPath = NULL; /* Drop file in current directory */
pszTypes = NULL; /* Accept any file type */
ulDefaultOp = DO_MOVE; /* Default drag operation is move */

fSuccess = DrgAcceptOroppedFiles(Hwnd, pszPath, pszTypes,
ulDefaultOp, 0);

Chapter 3. Direct Manipulation Functions 3-3

DrgAccessDraginfo -
Access Drag Information

#define INCL_WINSTDDRAG

BOOL DrgAccessDraglnlo (PDRAGINFO pDraglnlo)

This function accesses a DRAGINFO structure.

Parameters
pDraglnlo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_ACCESS_DENIED The memory block was not allocated properly.

Remarks
This function is used by the target of a drag operation to access a DRAGINFO structure. The address
of the structure is passed in a drag message (DM_DRAGOVER, DM_DROP, or DM_DROPHELP).

To release the structure, use the DrgFreeDraginfo function.

Related Functions
• DrgAllocDraginfo
• DrgDrag
• DrgFreeDraginfo
• DrgPushDraginfo

Example Code
This example uses the DrgAccessDraginfo function to make an existing drag information structure
(created by the DrgAllocDraginfo function) available.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess;
DRAGINFO Draginfo;

/* Indicate success or failure
/* Drag-information structure

fSuccess = DrgAccessDraginfo(&Draginfo);

3-4 PM Programming Reference

*/
*/

#define INCL_WINSTDDRAG

DrgAddStrHandle -
Create String Handle

HSTR DrgAddStrHandle (PSZ pszStrlng)

This function creates a handle to a string.

Parameters
pszStrlng (PSZ) - input

String.

String for which a handle is to be created.

Returns
String handle.

NULLHANDLE Error occurred.

Other String handle created.

Possible returns from WinGetLastError

PMERR_INVALID _PARAMETERS

PMERR_RESOURCE_DEPLETION

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

An internal resource depletion error has occurred.

The handle can be used by any application to reference the input string.

This function must be called by the source of a drag whenever a string is to be passed in a
DRAGINFO structure.

Related Functions
• DrgDeleteStrHandle
• DrgQueryStrName

Chapter 3. Direct Manipulation Functions 3-5

DrgAddStrHandle -
Create String Handle

Examp:le Code
This example calls the DrgAddStrHandle function to create handles for strings that are used in a
DRAGITEM structure.

#define lNCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

USHORT ID_ITEM = 1;
HWND hwnd;
DRAGITEM·ditem;

/* Drag item identifier
/* Window handle
/* DRAGITEM structure

*/
*/
*/

/* Initialize the DRAGITEM structure */
ditem.hwndltem = hwnd; /* Conversation partner */
ditem.ulltemID = ID_ITEM; /* Identifies item being dragged*/
ditem.hstrType = DrgAddStrHandle(11 DRT_TEXT 11

); /* Item is text*/
ditem.hstrRMF = DrgAddStrHandle(11 <DRM_OS2FILE,DRF_TEXT> 11

);

ditem.hstrContainerName = DrgAddStrHandle(11 C:\\ 11
);

ditem.hstrSourceName = DrgAddStrHandle(11 C:\\CONFIG.SYS 11
);

ditem.hstrTargetName = DrgAddStrHandle(11C:\\OS2\\CONFIG.SYS 11
);

ditem.cxOffset = 0; /* X-offset of the origin of the */
/* image from the pointer hotspot*/

ditem.cyOffs.et = 0; /* Y-offs.et of the origin of the */
/* image from the pointer hotspot*/

ditem.fsControl = 0; /* Source item control flags */
/* object is open */

ditem.fsSupportedOps = 0;

3-6 PM Programming Reference

#define INCL_WINSTDDRAG

DrgAllocDraginfo -
Allocate DRAGINFO Structure

PDRAGINFO DrgAllocDraglnfo (ULONG cDitem)

This function allocates a DRAGINFO structure.

Parameters
cDltem (ULONG) - input

Number of objects.

Number of objects being dragged. This number must be greater than 0.

Returns
Pointer.

Pointer to the DRAGINFO structure.

NULL Error occurred.

Other The DRAGINFO structure.

Possible returns from WinGetlastError

PMERR_INSUFFICIENT _MEMORY

PMERR_INVALID _PARAMETERS

Remarks

The operation terminated through insufficient memory.

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function must be called before the DrgDrag function is called.

The caller can define a default operation for the objects represented by the DRAGINFO structure by
modifying the usOperation field. If the usOperation field is modified, the new value will be sent to the

target as the operation whenever a DO_DEFAULT operation would normally be sent. The caller
should not modify any other part of the DRAGINFO structure. The DRAGITEM structures associated
with the DRAGINFO structure should only be altered with DrgSetDragitem or by using a pointer
obtained with DrgQueryDragitemPtr.

Related Functions
• DrgAccessDraginfo
• DrgDrag
• DrgFreeDraginfo
• DrgPushDraginfo

Chapter 3. Direct Manipulation Functions 3-7

DrgAllocDraginfo -
Allocate DRAGINFO Structure

Example Code
This example calls the DrgAllocDraginfo function to create a Drag structure for a single object and
uses the new structure to set the DRAGITEM (DrgSetDragitem) structure.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGINFO pdinfo; /* Pointer to DRAGINFO structure */
HWND hwnd; /* Handle of calling (source) window */
BOOL fl Result; /* Result indicator */
DRAGITEM ditem; /* DRAGITEM structure */

pdinfo = DrgAllocDraginfo(l); /*Create the DRAGINFO structure */
/* Set the drag item */

flResult= DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem), 0);

3-8 PM Programming Reference

'\
)

)I

#define INCL_WINSTDDRAG

DrgAllocDragtransfer

Allocate DRAGTRANSFER Structures

PDRAGTRANSFER DrgAllocDragtransler (ULONG cdxler)

This function allocates a specified number of DRAGTRANSFER structures from a single segment.

Parameters
cdxler (ULONG) - input

Number of structures.

Number of DRAGTRANSFER structures to be allocated. This number must be greater than 0.

Returns
Pointer.

Pointer to an array of DRAGTRANSFER structures.

NULL Error occurred.

Other The array of DRAGTRANSFER structures.

Possible returns from WinGetlastError

PMERR_MEMORY_ALLOCATION_ERR An error occurred during memory management.

PMERRJNSUFFICIENT_MEMORY The operation terminated through insufficient memory.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid

range for that parameter.

Remarks
This function must be called before sending a DM_RENDER message.

Related Functions
• DrgFreeDragtransfer
• DrgSendTransferMsg

Example Code
This example calls the DrgAllocDragtransfer function to allocate a single DRAGTRANSFER structure

and adds a pointer to a DRAGITEM structure for an object that will be transferred.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions*/
#include <os2.h>

PDRAGTRANSFER pResult; /* Pointer to DRAGTRANSFER structure */
PDRAGITEM pDragitem; /* Pointer to DRAGITEM structure */

pResult = DrgAllocDragtransfer(l);

if (pResult != NULL) /* Indicate DRAGITEM to be transferred */
pResult->pditem = pDragitem;

Chapter 3. Direct Manipulation Functions 3-9

DrgDeleteDraginfoStrHandles -
Delete DRAGINFO String Handles

#define INCL_WINSTDDRAG

BOOL DrgDeleteDraglnfoStrHandles (PDRAGINFO pDraglnfo)

This function deletes each unique string handle in a DRAGINFO structure.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure that contains string handles to delete.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Using this function is equivalent to calling the DrgDeleteStrHandle function for each unique string in
a DRAGINFO structure.

This function must be called by the target of a direct manipulation operation either:
• After processing a DM_DROPHELP message

or
• After completing the direct manipulation operation begun as a result of a DM_DROP message.

Related Functions
• DrgDeleteStrHandle

Example Code
This example calls the DrgDeleteDraginfoStrHandles function to delete all unique string handles
associated with the specified DRAGINFO structure {previously allocated by the DrgAllocDraginfo
function).

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess;
DRAGINFO Draginfo;

/* Indicate success or failure */
/* DRAGINFO structure containing string */
/* handles to delete */

fSuccess = DrgDeleteDraginfoStrHandles (&Draginfo);

3-10 PM Programming Reference

\
)

#define INCL WINSTDDRAG

I BOOL DrgDeleleStrHandle (HSTR Hstr)

This function deletes a string handle.

Parameters
Hstr (HSTR) - input

String handle.

The string handle to delete.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID:PARAMETERS

Remarks

DrgDeleteStrHandle -

Delete String Hand.le

An application parameter value is invalid for its converted

PM type. For example: a 4-byte value outside the range

-32,768 to +32,767 cannot be converted to a SHORT, and

a negative number c.annot be converted to a ULONG or

USHORT.

This function must be used to delete a string handle created by the DrgAddStrHandle function.

~ Related Functions
• DrgAddStrHandle
• DrgDeleteDraginfoStrHandles

Example Code
This example calls the DrgDeleteStrHandle function to delete an existing string handle (returned by a

previous call to the DrgAddStrHandle function).

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess;
HSTR Hstr;

/* Indicate success or failure
/* String handle

fSuccess = DrgDeleteStrHandle (Hstr);

*/
*/

Chapter 3. DirectManipulation Functions 3-11

DrgDrag
Drag

#define INCL WINSTDDRAG

HWND DrgDrag (HWND hwndSource, PDRAGINFO pDraglnfo, PDRAGIMAGE pdlmg,
ULONG cdlmg, LONG vkTermlnate, PVOID pReserved)

This function performs a drag operation.

Parameters
hwndSource (HWND) - input

Window handle.

Handle of the window calling DrgDrag. This window is the source of the drag.

pDraglnfo (PDRAGINFO) - input/output
Pointer.

Pointer to the DRAGINFO structure.

pdlmg (PDRAGIMAGE) - input
Pointer.

Pointer to an array of DRAGIMAGE structures. These structures describe the images that are to
be drawn under the pointing device pointer during the drag.

cdlmg (ULONG) - input
Array size.

Size of the pdimg array.

vkTermlnate (LONG) - input
Pointing device button.

Pointing device button that ends the drag operation.

VK_BUTTON1 Release of button 1 ends the drag.

VK_BUTTON2 Release of button 2 ends the drag.

VK_BUTTON3 Release of button 3 ends the drag.

VK_ENDDRAG Release of the system-defined direct manipulation button ends the drag. This is
the recommended value if the DrgDrag function call is invoked in response to a
WM_BEGINDRAG message.

pReserved (PVOID) - input
Reserved.

Must be set to NULL by the caller.

Returns
Window handle.

Handle of window on which the dragged objects were dropped.

NULL Error occurred.

Other Window handle.

Possible returns from WinGetlastError

PMERR_INVALID_HWND An invalid window handle was specified.

3-12 PM Programming Reference

)

DrgDrag
Drag

PMERR_INVALID _PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

PMERR_INSUFFICIENT _MEMORY The operation terminated through insufficient memory.

Remarks
This function:

• Initiates a direct manipulation operation
• Uses the input image to provide visual feedback to the user
• Notifies other windows as the dragged object passes over
• Notifies the destination if the object is dropped.

DrgDrag is called when the system-defined direct-manipulation button is pressed while the pointer is

over a window and a pointing device movement follows. As the pointer moves over a potential

target, a DM_DRAGOVER message is sent to the target. When the pointer moves from one target

window to another, a DM_DRAGLEAVE message is sent to the former target.

If the pointer is over a valid target when the direct-manipulation button is released, a DM_DROP

message is sent to the target.

Before the DM_DROP message is sent, the cxOffset and cyOffset fields are copied from the

DRAGIMAGE structures to the corresponding fields in the DRAGITEM structures. The values from

the first DRAGIMAGE are copied to the first DRAGITEM, from the second DRAGIMAGE to the second

DRAGITEM, and so on. The target can use this information to place the images in the same spatial

relationship after the drop. If there are more DRAGITEM structures than there are DRAGIMAGE

structures, the cxOffset and cyOffset from the final DRAGIMAGE are placed in each of the remaining

DRAGITEM structures.

The caller can define a default operation for the objects represented by the DRAGINFO structure by

modifying the usOperation field. If the usOperation field is modified, the new value will be sent to the

target as the operation whenever a DO_DEFAULT operation would normally be sent. The caller

should not modify any other part of the DRAGINFO structure. The DRAGITEM structures associated

with the DRAGINFO structure should only be altered with DrgSetDragitem or by using a pointer

obtained with DrgQueryDragitemPtr.

The following keys are active during the drag operation:

Esc The drag operation is canceled.
F1 A DM_DROPHELP message is posted to the target so that it can provide context help for

the drag operation. The drag operation is canceled.

Before invoking DrgDrag, the caller is responsible for:

• Obtaining a DRAGINFO structure using DrgAllocDraginfo
• Initializing the DRAGITEM structures using DrgSetDragitem.

On return from DrgDrag, the caller must free the structure using DrgFreeDraginfo.

If the dragged objects are not dropped, NULL is returned.

Chapter 3. Direct Manipulation Functions 3-13

DrgDrag
Drag

Related Functions
PrerequlsJle Functions

• DrgAllocDraginfo

Other Related Functions

• DrgFreeDraginfo
• DrgSetDragitem

Example Code
This example uses the DrgDrag function to drag a single object in response to the
direct-manipulation button being pressed while the pointer is over a drag object. The example
shows the initialization of the DRAGITEM, DRAGtNFO, and DRAGIMAGE structures used by the
DrgDrag function.

#define lNCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_WININPUT /* Window Input Functions */
#include <os2.h>

PDRAGINFO pdinfo;
HWND hwnd;
BOOL fl Result;
DRAGITEM ditem;
DRAGIMAGE dimg;
HBITMAP hbm;
HWND hwndDrop;

case WM_BEGINDRAG:

/* Pointer to DRAGINFO structure
/* Handle of calling (source) window
/* Result indicator
/* DRAGITEM structure
/* DRAGIMAGE structure
/* Bit-map handle
/* Handle of drop (target) window

*/
*/
*l
*/
*/
*/
*/

/***/
/* Initialize the DRAGITEM structure */
/***/
ditem.hwndltem = hwnd; /* Conversation partner */
ditem.ulltemID = ID ITEM; /* Identifies item being dragged*/
ditem.hstrType = DrgAddStrHandle(11 DRT_TEXT 11

); /*Text item */
ditem.hstrRMF = DrgAddStrHandle(11<0RM_OS2FILE,DRF_TEXT>");
ditem.hstrContainerName = DrgAddStrHandle("C:\\ 11

);

ditem.hstrSourceName = DrgAddStrHandle("C:\\CONFIG.SYS");
ditem.hstrTargetName = DrgAddStrHandle(11 C:\\OS2\\CONFIG.SYS 11

);

ditem.cxOffset = 0; /* X-offset of the origin of */
/* the image from the pointer */
/* hotspot *I

ditem.cyOffset = 0; /* Y-offset of the origin of */
/* the image from- the pointer */
/* hotspot *I

di:tem.fsControl = 0; /*Source item control flags */
/* object is open *I

ditem.fsSupportedOps = 0;

/***/
/* Create the DRAG INFO structure * /
/***-**********I
pd info = DrgA 11 ocDragi nfo (1) ;
if (lpdinfo) return (FALSE); /*If allocation fails, */

/* return FALSE *I

/*************************·******************'*******'***********I
/* Initialize the DRAGIMAGE structure */
/***/
dimg.cb =- sizeof(DRAGIMAGE); /*Size control block */
dimg.cptl = 0;
dimg.hlmage = hbm; /* Image handle pass-ed to */

3-14 PM Programming Reference

\

v
dimg.sizlStretch.cx = 20L;
dimg.sizlStretch.cy = 20L;
dimg.fl = DRG_BITMAP I

DRG_STRETCH;

dimg.cxOffset = 0;
dimg.cyOffset = 0;

/* DrgDrag *I
/* Size to stretch ico or bmp to*/

/* Flags passed to DrgDrag */
/* Stretch to size specified */
/* in sizlStretch */
/* Offset of the origin of */
/* the image from the pointer */
/* hotspot *I

/***/
/* Set the drag item */
/***/
flResult= DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem),

0);

/***/
/* Perform the drag operation: */
/* - Give the user a visual cue by changing the pointer to a */
/* bit map */
/* - Send DM_DRAGOVER messages to the target window (in this */
/* case it is also the source) */
/***/
hwndDrop = DrgDrag(hwnd. /* Source of the drag */

pdinfo, /* Pointer to DRAGINFO structure */
(PDRAGIMAGE)&dimg, /* Drag image */
1, /* Si~e of the pdimg array */
VK_ENDDRAG, /* Release of direct-manipulation */

/* button ends the drag */
NULL) ; /* Reserved *I

DrgDrag
Drag

Chapter 3. Direct Manipulation Functions 3-15

DrgDragFiles -
Begin Dragging Files

#define INCL_WINSTDDRAG

BOOL DrgDragFlles (HWND Hwnd, PAPSZ pFlles, PAPSZ pTypes, PAPSZ pTargets,
ULONG cFlles, ff POINTER hptrDrag, ULONG vkTermlnate,
BOOL fSourceRender, ULONG ulReserved)

This function begins a direct manipulation operation for one or more files.

Parameters
Hwnd (HWND) - input

Window handle.

Handle of calling window.

pFlles (PAPSZ) - input
File names.

The names of the files to be dragged.

pTypes (PAPSZ) - input
File types.

The file types of the files to be dragged.

pTargets (PAPSZ) - input
Target file names.

cFlles (ULONG) - input
Number of files.

Number of files to be dragged.

hptrDrag (HPOINTER) - input
Icon.

Icon to display during the drag.

vkTerminate (ULONG) - input
Button.

Button that ends the drag.

fSourceRender (BOOL) - input
Flag.

Flag to indicate whether the source must perform the move or copy.

TRUE The caller will receive a DM_RENDERFILE message for each file.

FALSE All file manipulation is performed by DrgDragFiles.

ulReserved (ULONG) - input
Reserved.

Returns
Success indicator.

TRUE The drag operation was initiated successfully.

FALSE An error occurred.

3-16 PM Programming Reference

\
) Remarks

DrgDragFiles
Begin Dragging Files

This function begins a direct manipulation operation for one or more files. DRAGINFO and

DRAGITEM structures are allocated and initialized, and are then used as input to DrgDrag. All of the

post-drag conversation required to complete the direct manipulation operation is handled by an

object window created by this function.

The caller should set fSourceRender to TRUE if it must perform the file manipulation for any of these

files. When fSourceRender is TRUE, the caller receives a DM_RENDERFILE message as the

drag-object window receives a DM_RENDER message. The caller should move or copy the file after

receiving the DM_RENDERFILE message. The caller should then send a DM_FILERENDERED

message to the drag-object window, and the drag-object window should send a

DM_RENDERCOMPLETE message to the target.

When pTypes is NULL, the .TYPE EA is interrogated to determine the type for each file in pFiles.

When pTypes is not NULL, the size of the array is expected to be the same as the size of pFiles.

When any individual pointer in the array is NULL, the .TYPE EA for the corresponding file is read.

When .TYPE EA does not exist for any file for which it is needed, a type of DRT_UNKNOWN is used.

When pTargets is NULL, the target name for a file will be the same as the source file name with the

path information removed. If pTargets is not NULL, the size of the array is expected to be the same

as the size of pFiles. If any individual pointer in the array is NULL, the target name for the

corresponding file will match the source name minus the path information.

The rendering mechanism and format for each file is: <DRM_OS2FILE,DRF_UNKNOWN>.

When an error occurs during the move or copy, the caller is sent a DM_DRAGERROR message. The

caller can take corrective action.

As the operation is complete for each file in the list, a DM_DRAGFILECOMPLETE message is sent to

the caller of DrgDragFiles. The caller is thus notified that resources can be freed for a particular file.

This function returns TRUE if the drag operation was initiated successfully and FALSE if an error

occurred.

Related Functions
• DrgAcceptDroppedFiles

Chapter 3. Direct Manipulation Functions 3-17

DrgDragFiles -
Begin Dragging Files

Example Code
This example calls the DrgDragFiles function to begin direct manipulation for a single file object,
using the same source and target name, and determining the file type based on the file's type EA.
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_WININPUT /* Window Input Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
HWND Hwnd; /*Handle of calling window */
PSZ pFiles[l]; /*The names of the files to be dragged */
PSZ pTypes[l]; /* The file types of the files to be */

/* dragged */
PSZ pTargets[l]; /* The target file names */
HPOINTER hptrDrag; /* Icon to display during drag */

pFiles[0] = "FILENAME.EXT"; /*Copy file name to string array */
pTargets[0] = NULL; /* Use source name as target name */
pTypes[0] = NULL; /* Query type EA to detennine file type */

fSuccess = DrgDragFiles(Hwnd, pFiles, pTypes, pTargets, 1,
hptrDrag, VK_BUTTON2, FALSE, 0L);

3-18 PM Programming Reference

#define INCL_WINSTDDRAG

BOOL DrgFreeDraglnfo (PDRAGINFO pDraglnfo)

DrgFreeDraginfo -
Free DRAGINFO Structure

This function frees a DRAGINFO structure allocated by DrgAllocDraginfo.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR:....MEMORY_DEALLOCATION_ERR An error occurred during memory management.

PMERR_SOURCE_SAME_AS_TARGET The direct manipulation source and target process are
the same.

Remarks
DrgFreeDraginfo fails with an error of PMERR_SOURCE_SAME_AS_TARGET if it is caHed by the
process that called DrgDrag before DrgDrag returns. When a process is performing a drag operation
between two of its own windows, this prevents the source window from freeing the DRAGINFO
structure before the target window finishes processing.

Related Functions
Prerequisite Functions

• DrgAllocDraginfo

Other Related Functions

• DrgDrag
• DrgAccessDraginfo
• DrgPushDraginfo

Chapter 3. Direct Manipulation Functions 3-19

DrgFreeDraginfo -
Free DRAGINFO Structure

Example Code
This example calls the DrgFreeDraginfo function to free an existing DRAGINFO structure allocated by
the DrgAllocDraginfo function after a drag operation has completed.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL
PDRAGINFO
HWND
DRAG IMAGE
HWND

fSuccess;
pdinfo;
hwnd;
dimg;
hwndDrop;

/* Indicate success or failure
/* Pointer to DRAGINFO structure
/* Handle of calling (source) window
/* DRAGIMAGE structure
/* Handle of drop (target) window

*/
*/
*/
*/
*/

/**/
/* Perform the drag operation: */
/* - Give the user a visual cue by changing the pointer to a */
/* bit map */
/* - Send DM_DRAGOVER messages to the target window (in this */
/* case it is also the source) */
/**/
hwndDrop = DrgDrag(hwnd, /* Source of the drag */

pdinfo, /* Pointer to DRAGINFO structure */
(PDRAGIMAGE)&dimg, /* Drag image */
1, /* Size of the pdimg array */
VK_ENDDRAG, /* Release of drag button */

/* Terminates the drag */
NULL) ; /* Reserved * /

fSuccess = DrgFreeDraginfo(&pdinfo);

3-20 PM Programming Reference

#define INCL WINSTDDRAG

DrgFreeDragtransfer -
Free DRAGTRANSFER Storage

BOOL DrgFreeDragtransfer (PDRAGTRANSFER pdxfer)

This function frees the storage associated with a DRAGTRANSFER structure.

Parameters
pdxfer (PDRAGTRANSFER) - input

Pointer.

Pointer to the DRAGTRANSFER structures to be freed.

Returns
Return code.

0 The structure was freed.

Other Deallocation failed.

Possible returns from WinGetLastError

PMERR_MEMORY_DEALLOCATION_ERR An error occurred during memory management.

Remarks
This function frees the DRAGTRANSFER structures allocated by calls to DrgAllocDragtransfer. When
all of the DRAGTRANSFER structures have been freed, the memory block containing the
DRAGTRANSFER array is deallocated.

Related Functions
• DrgAllocDragtransfer

Example Code
This example calls the DrgFreeDragtransfer function to free an existing DRAGTRANSFER structure
allocated by the DrgAllocDragtransfer function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGTRANSFER dxfer; /* Pointer to DRAGTRANSFER structure */

fSuccess = DrgFreeDragtransfer(&dxfer);

Chapter 3. Direct Manipulation Functions 3-21

DrgGetPS
Get Drag Presentation Space

#define INCL_WINSTDDRAG

I HPS DrgGelPS (HWND Hwncl)

This function gets a presentation space that is used to provide target feedback to the user during a
drag operation.

Parameters
Hwnd (HWND) - input

Window handle.

Handle of the window for which presentation space is required.

Returns
Presentation-space handle.

Presentation-space handle used for drawing in the window.

NULLHANDLE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID_;HWND

PMERR_NOT _DRAGGING

Remarks

An invalid window handle was specified.

A drag operation is not in progress at this time.

This function returns a handle to a presentation space that can be used for drawing while a direct
manipulation operation is in progress.

DrgGetPS is called only during a direct manipulation operation. This function is called only after a
DM_DRAGOVER, DM_DRAGLEAVE, or DM_DROP message has been received.

In order to draw target emphasis, an application must use DrgGetPS and DrgReleasePS to unlock its
window.

The presentation space created with DrgGetPS must be freed with DrgReleasePS.

Related Functions
• DrgReleasePS

3-22 PM Programming Reference

'~

/ Example Code

DrgGetPS -
Get Drag Presentation Space

This example uses the DrgGetPS function to get a presentation space handle which is used during
drag operations such as loading a drag bit map. When finished with the presentation space, release
it with the DrgReleasePS function.

#define INCL_WINSTDDRAG /* Direct Manipulation {Drag) Functions */
#include <os2.h>

HPS hps;
HWND hwnd;

case OM DRAGOVER:

/* Presentation space handle
/* Handle of the window for which
/* presentation space is required

hps-= DrgGetPS{hwnd);

DrawTargetEmphasis{hps. hwnd);
DrgReleasePS{hps);

*/
*/
*/

Chapter 3. Direct Manipulation Functions 3-23

DrgPostTransferMsg
Post Drag Message

#define INCL_WINSTDDRAG

BOOL DrgPostTranslerMsg (HWND hwndTo, ULONG ulMsgld, PDRAGTRANSFER pdxler,
ULONG Is, ULONG ulReserved, BOOL IRetry)

This function posts a message to the other application involved in the direct manipulation operation.

Parameters
hwndTo (HWND) - input

Window handle.

Window handle to which the message is to be posted:

Target hwndltem in the DRAGITEM structure.

Source hwndClient in the DRAGTRANSFER structure.

ulMsgld (ULONG) - input
Message identifier.

Identifier of the message to be posted. DM_RENDERCOMPLETE is the only valid message.

pdxler (PDRAGTRANSFER) - input
Pointer.

Pointer to the DRAGTRANSFER structure.

Is (ULONG) - input
Flags.

The flags to be passed in the param2 parameter of the message.

ulReserved (ULONG) - input
Reserved.

This must be 0.

IRetry (BOOL) - input
Retry indicator.

TRUE If the destination queue is full, the message posting is retried at 1-second intervals
until the message is posted successfully.

In this case, DrgPostTransferMsg dispatches any messages in the queue by calling
WinPeekMsg and WinDispatchMsg in a loop. The application can receive messages
sent by other applications while it is trying to post drag transfer messages.

FALSE The call returns FALSE without retrying.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

3-24 PM Programming Reference

)
Remarks

DrgPostTransferMsg
Post Drag Message

The usReply field in the DRAGTRANSFER structure is set to 0 before the message is posted. If the

posting fails for any reason, FALSE is returned.

Related Functions
• DrgSendTransferMsg

Example Code
This example calls the DrgPostTransferMsg function to respond to a DM_RENDER message from the

target. The response consists of a DM_RENDERCOMPLETE message, plus a flag indicating whether

the render was successful (DMFL_RENDEROK) or not (DMFL_RENDERFAIL).

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

MPARAM mpl; /* Message parameter 1 *I
BOOL fSuccess; /* Indicate success or failure */
BOOL Rendered; /* Success of render operation */
PDRAGTRANSFER pdxfer; /* Pointer to DRAGTRANSFER structure */

case OM RENDER:
pdxfer = (PDRAGTRANSFER)PVOIDFROMMP(mpl); /*Get DRAGTRANSFER */

/* structure */

/**/
/*Attempt to render file */
/**/

if (Rendered)
{
fSuccess = DrgPostTransferMsg(pdxfer->pditem,

DM_RENDERCOMPLETE,
pdxfer,

return (MRESULT)TRUE;
}

else
{

DMFL RENDEROK,
0,FALSE);

fSuccess = OrgPostTransferMsg(pdxfer->pditem,
DM_RENDERCOMPLETE,
pdxfer,

return (MRESULT)FALSE;
}

DMFL RENDERFAIL,
0,FALSE);

Chapter 3. Direct Manipulation Functions 3-25

DrgPushDraginfo -
Access a DRAGINFO Structure

#define INCL_ WINSTDDRAG

BOOL DrgPushDraglnfo (PDRAGINFO pDraglnto, HWND hwndDest)

This function gives a process access to a DRAGINFO structure.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure.

hwndDest (HWND) - input
Window handle.

Handle of the window whose process is to be given access to a DRAGINFO structure.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_ACCESS _DENIED

PMERR_INSUFFICIENT _MEMORY

Remarks
The receiving process is responsible for:

The memory block was not allocated properly.

The operation terminated through insufficient memory.

1. Deleting the string handles in the DRAGINFO structure with DrgDeleteDraginfoStrHandles
2. Freeing the DRAGINFO structure using DrgFreeDraginfo.

Related Functions
• DrgAllocDraginfo
• DrgDrag
• DrgAccessDraginfo
• DrgFreeDraginfo

3-26 PM Programming Reference

\
\

I Example Code

DrgPushDraginfo -
Access a DRAGINFO Structure

This example calls the DrgPushDraginfo function to grant access to a DRAGINFO structure to the

process owning the specified window handle. The DRAGINFO structure was previously allocated

using the DrgAllocDraginfo function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess;
DRAGINFO Draginfo;
HWND hwndDest;

/* Indicate success or failure */
/* Pointer to DRAGINFO structure */
/* Handle of window whose process will */
/*will be given access to the DRAGINFO */
/* structure */

fSuccess = DrgPushDraginfo(&Draginfo,hwndDest);

Chapter 3. Direct Manipulation Functions 3-27

DrgQueryDragitem -
Get DRAGITEM Structure

#define INCL_WINSTDDRAG

BOOL DrgQueryDragltem (PDRAGINFO pDraglnfo, ULONG cbBuffer, PDRAGITEM pDragltem,
ULONG lltem)

This function returns a DRAGITEM structure used in the direct manipulation operation.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained.

cbBuffer (ULONG) - input
Number of bytes.

Maximum number of bytes to copy.

pDragltem (PDRAGITEM) - output
Pointer.

Pointer to the buffer into which the DRAGITEM structure is copied.

lltem (ULONG) - input
DRAGITEM index.

Zero-based index of the DRAGITEM to be returned.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
This function returns the DRAGITEM structure identified by iltem.

Related Functions
• DrgSetDragitem
• DrgQueryDragitemPtr

3-28 PM Programming Reference

Example Code

DrgQueryDragitem -
Get DRAGITEM Structure

This example calls the DrgQueryDragitem function to return the entirety of the first DRAGITEM
structure in the given DRAGINFO structure, after which it obtains the source window handle.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAG INFO Draginfo; /* DRAGINFO structure from which the */

/* DRAGITEM structure is obtained */
ULONG cbBuffer; /* Maximum number of bytes to copy */
DRAG ITEM Dragitem; /* Buffer into which the DRAGITEM */

/* structure is copied */
ULONG iltem; /* Zero-based index of the DRAGITEM */

/* to be returned */
HWND hwndSource; /* Source window handle for the drag */

cbBuffer = sizeof(DRAGITEM); /*Copy entire DRAGITEM structure */
iltem = 0; /* Return first DRAGITEM */

fSuccess = DrgQueryDragitem(&Draginfo,cbBuffer,&Dragitem,iltem);

hwndSource = Dragitem.hwndltem; /* Obtain source window handle */

Chapter 3. Direct Manipulation Functions 3-29

DrgQueryDragitemCount -
Get Dragged Object Count

#define INCL_WINSTDDRAG

ULONG DrgQueryDragltemCount (PDRAGINFO pDraglnfo)

This function returns the number of objects being dragged during the current direct manipulation
operation.

Parameters
pDraglnlo (PDRAGJNFO) - input

Pointer.

Pointer to the DRAGJNFO structure for which the number of dragged objects is requested.

Returns
Number of objects.

Number of objects being dragged.

Example Code
This example calls the DrgQueryDragitemCount function to return the number of DRAGITEM
structures in the corresponding DRAGINFO structure, which maps to the number of objects being
dragged.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

ULONG cOitem;
DRAGINFO Oraginfo;

/* Number of objects being dragged */
/* DRAGINFO structure queried for the */
/* number of drag objects */

cDitem = DrgQueryOragitemCount(&Draginfo);

3-30 PM Programming Reference

\
)

)

DrgQueryDragitemPtr -
Get Pointer to DRAGITEM Structure

#define INCL_WINSTDDRAG

PDRAGITEM DrgQueryDragitemPtr (PDRAGINFO pDraginfo, ULONG ullndex)

This function returns a pointer to the DRAGITEM structure used in the direct manipulation operation.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained.

ullndex (ULONG) - input
DRAGITEM index.

Zero-based index of the DRAGITEM structure for which the pointer is to be returned.

Returns
Pointer.

Pointer to the DRAGITEM structure.

Remarks
This function returns a pointer to ulltem/D in the DRAGITEM structure used in the direct manipulation
operation.

Related Functions
• DrgQueryDragitem

Example Code
This example calls the DrgQueryDragitemPtr function to return a pointer to first DRAGITEM structure

in the given DRAGINFO structure, after which it obtains the source window handle.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGITEM pDragitem; /* DRAGITEM structure pointer */
DRAG INFO Draginfo; /* DRAGINFO structure from which the */

/* DRAGITEM structure is obtained */
ULONG ullndex; /* Zero-based index of the DRAGITEM */

/* structure pointer to be returned */
HWND hwndSource; /* Source window handle for the drag */

USHORT usn = a; /* Return pointer to first DRAGITEM */

pDragitem = DrgQueryDragitemPtr(&Draginfo,usn);

hwndSource = pDragitem->hwndltem; /* Obtain source window handle */

Chapter 3. Direct Manipulation Functions 3-31

DrgQueryNativeRMF -
Get Format of a Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgQueryNatlveRMF (PDRAGITEM pDragltem, ULONG cbBuflen, PCHAR ppBuffer)

This function obtains the ordered pair that represents the native rendering mechanism and format of
the dragged object.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be
obtained.

cbBuflen (ULONG) - input
Number of bytes.

Maximum number of bytes to copy to the buffer.

ppBuffer (PCHAR) - output
Pointer.

Pointer to the buffer in which the null-terminated string is to be returned.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

If the rendering mechanism and format string for the object are NULL, FALSE is returned. If TRUE is
returned, the format of the string is: <MECHANISM.FORMAT>.

The native rendering mechanism and format are the first ordered pair, or the first ordered pair
produced by a cross product, in the string associated with hstrRMF in the DRAGITEM structure.

DrgQueryNativeRMFLen can be used to determine the size of the buffer required to hold the string
returned by this function.

Related Functions
Prerequisite Functions

• DrgQueryNativeRMFLen

Other Related Functions

• DrgVerifyNativeRMF

3-32 PM Programming Reference

)
Example Code

DrgQueryNativeRMF -
Get Format of a Dragged Object

This example shows how to obtain the window handle of the source of a drag item.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

/* DosSubAlloc */
#include <OS2.H>

DRAGITEM ditem;
PVOID pMem;
PSZ pszBuffer;
ULONG cb;
BOOL re, fResult;

cb = DrgQueryNativeRMFLen(&ditem) + 1;

re = DosSubAlloc(pMem, (PVOID *) pszBuffer, cb);

if (!re)

{

}
fResult = DrgQueryNativeRMF(&ditem, cb, pszBuffer);

Chapter 3. Direct Manipulation Functions 3-33

DrgQueryNativeRMFLen -
Get String Length for Native RMF of Dragged Object

#define INCL_WINSTDDRAG

ULONG DrgQueryNatlveRMFLen (PDRAGITEM pDragltem)

This function obtains the length of the string representing the native rendering mechanism and
format of the dragged object.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format string length
are to be obtained.

Returns
String length.

String length of the ordered pair:

0 Error occurred.

Other String length of the ordered pair, excluding the null-terminating byte.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function is used to determine the size of the buffer that contains the string representing the
native rendering mechanism and format of the dragged object.

If the input string handle is NULLHANDLE or not valid, a length of 0 is returned.

Related Functions
• DrgQueryNativeRMF

3-34 PM Programming Reference

DrgQueryNativeRMFLen -
Get String Length for Native RMF of Dragged Object

Example Code
This example shows how to obtain the window handle of the source of a drag item.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

/* DosSubA 11 oc *I
#include <052.H>

DRAGITEM ditem;
PVOID pMem;
PSZ pszBuffer;
ULONG cb;
BOOL re, fResult;

cb = DrgQueryNativeRMFLen(&ditem) + 1;

re = DosSubAlloc(pMem, (PVOID *} pszBuffer, cb);

if (!re)

{

}
fResult = DrgQueryNativeRMF(&ditem, cb, pszBuffer);

Chapter 3. Direct Manipulation Functions 3-35

DrgQueryStrName
Get String Contents

#define INCL_WINSTDDRAG

ULONG DrgQueryStrName (HSTR Hstr, ULONG cbBuflen, PSZ pszBuffer)

This function gets the contents of a string associated with a string handle.

Parameters
Hstr (HSTR) - input

String handle.

The handle must have been created with DrgAddStrHandle.

cbBuflen (ULONG) - input
Number of bytes.

Maximum number of bytes to copy.

pszBuffer (PSZ) - output
Buffer.

Buffer where the null-terminated string is returned.

Returns
Number of bytes.

Number of bytes written to pszBuffer.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function should be called whenever the contents of a string referenced by a drag string handle
are required. If the input string handle is NULLHANDLE or not valid, a null string is returned.

Related Functions
Prerequisite Functions

• DrgQueryStrNamelen

Other Related Functions

• DrgAddStrHandle

3-36 PM Programming Reference

DrgQueryStrName
Get String Contents

Example Code
This example shows how to obtain the contents of a string given that the string handle is known. The
string handle must have been originally created with the DrgAddStrHandle function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

#include <OS2.H>

HSTR hstr;

PSZ pBuffer;

ULONG ulStrlen;
ULONG ulBytesRead;
ULONG re;

/* DosAllocMem */

/* Handle to a string. The handle must */
/* have been created with */
/* DrgAddStrHandle. */
/* Buffer where the null-terminated */
/* string is returned */
/* String 1 ength *I
/* Number of bytes read *I
/* Return code *I

ulStrlen = DrgQueryStrNamelen(hstr) + 1;

re = DosAllocMem((PVOID *) pBuffer,
(LONG)ulStrlen,
f PERM I
PAG_COMMIT) ;

/***/
/* The ulBytesRead parameter contains the number of bytes */
/* actually written to the memory pointed to by pBuffer */
/***/
ulBytesRead = DrgQueryStrName(hstr,

ulStrlen, /* Number of bytes to copy */
pBuffer);

Chapter 3. Direct Manipulation Functions 3-37

DrgQueryStrNameLen
Get String Length

#define INCL WINSTDDRAG

I ULONG DrgQueryStrNameLen (HSTR Hair)

This function gets the tength of a string associated with a string handle.

Parameters
Hstr (HSTR) - input

String handle.

The handle must be created with DrgAddStrHandle.

Returns
String length.

"O The string handle is NULLHANDLE or is not valid.

Other The length of the string associated with the string handle, excluding the null terminating
byte.

Possible returns from WjnGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function should be called before calling the DrgQueryStrName function. It is used to determine
and allocate the buffer size for the string associated with the string handle. If the input string handle
is NULLHANDLE or not valid, a length of 0 is returned.

Related Functions
• DrgQueryStrName

3-38 PM Programming Reference

')
v

)

DrgQueryStrNameLen
Get String Length

Example Code
This example shows how to obtain the length of a string given that the string handle is known. The

string handle must have been originally created with the DrgAddStrHandle function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

#include <OS2.H>

HSTR hstr;

PSZ pBuffer;

ULONG ulStrlen;
ULONG ulBytesRead;
ULONG re;

/* DosAllocMem */

/* Handle to a string. The handle must */
/* have been created with */
/* DrgAddStrHandle. */
/* Buffer where the null-terminated */
/* string is returned *I
/* String length */
/* Number of bytes read *I
/* Return code */

ulStrlen = DrgQueryStrNamelen(hstr) + 1;

re = DosAllocMem((PVOID *) pBuffer,
(LONG)ulStrlen,
f PERM I
PAG_COMMIT);

/***/
/* The ulBytesRead parameter contains the number of bytes */
/* actually written to the memory pointed to by pBuffer */
/***/
ulBytesRead = DrgQueryStrName(hstr,

ulStrlen, /* Number of bytes to copy */
pBuffer);

Chapter 3. Direct Manipulation Functions 3-39

DrgQueryTrueType -
Get True Type of Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgQueryTrueType (PDRAGITEM pDragltem, ULONG cbBuflen, PSZ pszBuffer)

This function obtains the true type of a dragged object.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose true type is to be obtained.

cbBuflen (ULONG) - input
Number of bytes.

Maximum number of bytes to copy to the buffer.

pszBuffer (PSZ) - output
Buffer.

Buffer in which the null-terminated string is to be returned.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

The true type of an object is the first type in the string referenced by hstrType in the DRAGITEM
structure.

This function can be called after calling the DrgQueryTrueTypelen function. If the type string for the
object is NULLHANDLE, FALSE is returned.

Related Functions
Prerequisite Functions

• DrgQueryTrueTypelen

Other Related Functions

• DrgVerifyTrueType

3-40 PM Programming Reference

Example Code

DrgQueryTrueType -

Get True Type of Dragged Object

This example shows how to obtain the true type of an object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>

BOOL fSuccess;
DRAGITEM Dragitem;

char szBuffer[32];

/* Return va 1 ue *I
/* DRAGITEM structure whose true type */
/* is to be obtained *I

/* Buffer in which the null-terminated */
/* string is to be returned */

fSuccess = DrgQueryTrueType(&Dragitem,
sizeof(szBuffer),
szBuffer);

Chapter 3. Direct Manipulation Functions 3-41

DrgQueryTrueTypeLen -
Get String Length for True Type of Dragged Object

#define INCL_WINSTDDRAG

ULONG DrgQueryTrueTypelen (PDRAGITEM pDragltem)

This function obtains the length of the string that represents the true type of a dragged object.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose true type length is to be obtained.

Returns
String length.

0 Error occurred.

Other The length of the first element of the character string associated with hstrType,
excluding the null-terminating byte.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function can be used to determine the buffer size to allocate for the string representing the true
type of a dragged object. The true type of an object is the first type in the type string referenced by
hstrType in the DRAGITEM structure.

This function can be called before calling the DrgQueryTrueType function.

If the input string handle is NULLHANDLE or not valid, a length of O is returned.

Related Functions
• DrgQueryTrueType

3-42 PM Programming Reference

DrgQueryTrueTypeLen -

Get String Length for True Type of Dragged Object

Example Code
This example shows how to obtain the length of the true type string with the DrgQueryTrueTypelen

function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

#include <OS2.H>

PSZ pszBuffer;

BOOL fSuccess;
DRAGITEM Dragitem;

ULONG re;
ULONG ullength;

/* DosAllocMem */

/* Buffer in which the DRAGITEM */
/* structure is stored */
/* Return value *I
/* DRAGITEM structure whose true type */
/* length is to be obtained */
/* Return code */
/* String length of dragged object */

ullength = DrgQueryTrueTypelen(&Dragitem) + 1;

re= DosAllocMem((PVOID *) pszBuffer, ullength, fPERM);

fSuccess = DrgQueryTrueType(&Dragitem, ullength, pszBuffer);

Chapter 3. Direct Manipulation Functions 3-43

DrgReleasePS
Release Presentation Space

#define INCL WINSTDDRAG

I BOOL DrgReleasePS (HPS Hpe)

This function releases a presentation space obtained by using the DrgGetPS function.

Parameters
Hps (HPS) - input

Presentation-space handle.

Handle of the presentation space to release.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_NOT _DRAGGING

Remarks

An invalid presentation-space handle was specified.

A drag operation is not in progress at this time.

Only presentation spaces created with DrgGetPS can be released using this function.

The presentation-space handle should not be used after this function.

Related Functions
Prerequisite Functions

• DrgGetPS

Example Code
In this example the presentation space handle is retrieved, a bit map is loaded, and the presentation
space is released with the DrgReleasePS function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>
#define ID_BITMAP 255
HPS hps;
HWND hwnd;

case OM DRAGOVER:
hps-= DrgGetPS(hwnd);

DrawTargetEmphasis{hps, hwnd);
DrgReleasePS(hps);

3-44 PM Programming Reference

#define INCL_WINSTDDRAG

DrgSendTransferMsg
Send Drag Message

MRESUL T DrgSendTransferMsg (HWND hwndTo, ULONG ulMsgld, MPARAM mpParam1,
MPARAM mpParam2)

This function sends a message to the other application involved in the direct manipulation operation.

Parameters
hwndTo (HWND) - input

Window handle.

Window handle to which the message is to be sent:

Target hwndltem in the DRAGITEM structure.

Source hwndC/ient in the DRAGTRANSFER structure.

ulMsgld (ULONG) - input
Message identifier.

Identifier of the message to be sent. Valid messages are:

DM_ENDCONVERSATION
DM_RENDER
DM_RENDERPREPARE

mpParam1 (MPARAM) - input
mp1 for the message.

mpParam2 (MPARAM) - input
mp2 for the message.

Returns
Message-return data.

Remarks
If the message to be sent is DM_RENDER or DM_RENDERCOMPLETE, the usRep/y field in
DRAGTRANSFER is set to 0 before the message is sent. If the message cannot be sent, FALSE is
returned.

When the message to be sent is DM_RENDER, DosGiveSeg is called. DosGiveSeg gives access to
the DRAGTRANSFER structure to the process that owns the window indicated by hwndTo. The use
count for the segment in which the DRAGTRANSFER structure exists is incremented.

The process to which the message is being sent must call DrgFreeDragtransfer for the
DRAGTRANSFER structure before the segment can be freed.

Related Functions
• DrgPostTransferMsg

Chapter 3. Direct Manipulation Functions 3-45

DrgSendTransferMsg
Send Drag Message

Example· Code
This function is used to send a message from one window to another when a direct manipulation is in
progress. In this example, the function is used to inform the target that the operation is complete and
successful.

#define INCL WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGINFO pdinfo;
MPARAM mpl~
TIO tid;

case DM DROP:
pdinfo = (PDRAGINFO) mpl;

/***/
/* If this is a copy operation, spawn a thread to do the copy */
/***/
if (pdinfo->usOperation == DO_COPY)
{

DosCreateThread (&tid, CopyThread, pdinfo, FALSE, 4096);
}
break;

void Copy Thread (PDRAGINFO pdinfo)
{

PDRAGITEM pditem;
USHORT i;
ULONG fl Result;
HAB hab;
HMQ hmq;
char szSource[CCH_MAXPATH];
char szTarget[CCH_MACPATH];

/***/
/* DrgSendTransferMsg needs a message queue, so create one for */
/* this thread */
/***/
hab = Wininitialize (0);
hmq = WinCreateMsgQueue (hab, 0);

/***/
/* Try to copy each i tern that was dragged *I
/***/
for (i = 0; i < pdi nfo->cdi tern; i ++)
{

/***/
/* Get a pointer to the DRAGITEM */
/***/
pditem = DrgQueryDragitemPtr (pdinfo, i);

/***/
/*If we could query the-source and target names, and the */
/*copy was successful, return success */
/***/
if (DrgQueryStrName (pditem->hstrSourceName, sizeof (szSource),

szSource)

{

}

DrgQueryStrName (pditem~>hstrTargetName, sizeof (szTarget),
szTarget)

!DosCopy (szSource, szTarget, 0))

flResult = DMFL_TARGETSUCCESSFUL;

3~46 PM Programming Reference

}

}

DrgSendTransferMsg
Send Drag Message

/***/
/* Otherwise, return failure */
/***/
else
{

f1Result DMFL_TARGETFAIL;
}

/***/
/* Let the source know we're done with this item */
/***/
DrgSendTransferMsg (pditem->hwndltem, DM_ENDCONVERSATION,

(MPARAM) pditem->ulltemlD,
(MPARAM) flResult);

WinDestroyMsgQueue (hmq);
WinTerminate (hab);

Chapter 3. Direct Manipulation Functions 3-47

DrgSetDraglmage
Set Drag Image

#define INCL_WINSTDDRAG

BOOL DrgSetDraglmage (PDRAGINFO pDraglnfo, PDRAGIMAGE pdlmg, ULONG cdlmg,
PVOID pReserved)

This function sets the image that is being dragged.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure representing the drag operation for which the pointer is to be

set.

pdimg (PDRAGIMAGE) - input
Pointer.

Pointer to an array of DRAGIMAGE structures. These structures describe the images to be
drawn under the pointer during the drag.

cdimg (ULONG) - input
Array size.

Size of the pdimg array.

pReserved (PVOID) - input
Reserved.

Must be set to NULL by the caller.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_ACCESS _DENIED

PMERR_INVALID _PARAMETERS

PMERR_INSUFFICIENT _MEMORY

Remarks

The memory block was not allocated properly.

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

The operation terminated through insufficient memory.

The image that is set with DrgSetDraglmage is used only while the pointer is over the target that

made the call. If the pointer leaves the original target, the new target can specify an image by
calling DrgSetDraglmage.

If the new target does not call DrgSetDraglmage, the original image that was supplied on the call to
DrgDrag is used.

3-48 PM Programming Reference

DrgSetDraglmage
Set Drag Image

Related Functions
• DrgSetDragPointer

Example Code
This example sets the icon image that is displayed during a direct manipulation operation.

#define INCL_GPIBITMAPS /* GPI Bit Map Functions */
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>
#define ID_BITMAP 257
HPS hps;

/* .re file: "bitmap 257 drgimage.bmp 11 */
/* Presentation space handle */

BOOL fl Result;
HAB hab;
PDRAGINFO pdinfo;
DRAGIMAGE dimg;
HBITMAP hbm; /* Bit-map handle */
HWND hwnd;

/***/
/* Load a bit map for use as a drag image */
/***/

case WM CREATE:
hps-= WinGetPS(hwnd);

hbm = GpiLoadBitmap(hps,0L,ID_BITMAP,20L,20L);
WinReleasePS(hps);
break;

case DM_DRAGOVER:

/***/
/* Initialize the DRAGIMAGE structure' */
/***/

dimg.cb = sizeof(DRAGIMAGE); /*Size control block */
dimg.cptl = 0;
dimg.himage = hbm;

dimg.sizlStretch.cx = 20L;
dimg.sizlStretch.cy = 20L;
dimg.fl = DRG_BITMAP I

DRG_STRETCH;
dimg.cxOffset = 0;
dimg.cyOffset = 0;

/* Image handle passed to
/* DrgDrag
/* Size to stretch ico or
/* bmp to

*/
*/
*/
*/

/* Stretch to size specified */
/* Offset of the origin of */
/* the image from the pointer*/
/* hotspot */

/***/
/* Set the drag image */
/***/

flResult= DrgSetDragimage(pdinfo,&dimg,(ULONG)sizeof(dimg), NULL);

Chapter 3. Direct Manipulation Functions 3-49

DrgSetDragitem -
Set Values in DRAGITEM

#define INCL_WINSTDDRAG

BOOL DrgSetDragltem (PDRAGINFO pDraglnfo, PDRAGITEM pDragltem, ULONG cbBuffer,
ULONG lltem)

This function sets the values in a DRAGITEM structure.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure in which to place the DRAGITEM.

pDragltem (PDRAGITEM) - input
Pointer.

Pointer to the DRAGITEM structure to place in DRAGINFO.

cbBuffer (ULONG) - input
DRAGITEM size.

Size of the DRAGITEM addressed by pDragitem.

iltem (ULONG) - input
DRAGITEM index.

Zero-based index of the DRAGITEM to be set.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
This function is used to initialize the DRAGINFO structure before calling DrgDrag.

This function is used only by the source of the drag, not by the target.

Related Functions
• DrgQueryDragitem

Example Code
This example shows a direct manipulation operation between two windows. The actual operation,
copying the CONFIG.SYS file to C:\OS2\CONFIG.SYS, is visually represented by a drag and drop of
an icon.

#define INCL_GPIBITMAPS
#define INCL_WINSTDDRAG
#define INCL_DOSFILEMGR
#define INCL_WININPUT
#include <os2.h>
#include <string.h>
#define ID_WINDOW 255
#define ID_ITEM 256
#define ID_BITMAP 257
HPS hps;

/* GPI Bit Map Functions */
/* Direct Manipulation (Drag) Functions */
/* File Management Functions */
/* Window Input Functions */

/* .re file: "bitmap 257 drgimage.bmp" */
/* Presentation space handle */

3-50 PM Programming Reference

DrgSetDragitem
Set Values in DRAGITEM

BOOL fl Result;
HAB hab;
PDRAGINFO pdinfo;
DRAG ITEM di tern;
DRAGIMAGE dimg;
PDRAGITEM pd;tem;
HBITMAP hbm;
HPOINTER hptr;

/* Bit-map handle */
/ / Pointer bit-map handle

HWND hwndDrop;
HWND hwnd;
MPARAM mpl;
char szBuffer[32]; /* Buffer where intersection string

/* is returned
*/
*/

char szSource[32];
char szTarget[32];

/***/
/* Inside ClientWindowProc of Source Window */
/***/

case WM_BEGINDRAG:

/***/
/* Initialize the DRAGITEM structure */
/***/

ditem.hwndltem = hwnd; /* Conversation partner */
dHem.ulltemID = ID_ITEM; /* Identifies Hem being dragged */
dHem.hstrType = DrgAddStrHandle(11 DRT_TEXT 11

); /*Text item*/
ditem.hstrRMF = DrgAddStrHandle(11 <DRM_OS2FILE,DRF_TEXT> 11

);

dHem.hstrContainerName = DrgAddStrHandle(11 C:\\ 11
);

ditem.hstrSourceName = DrgAddStrHandle(11 C:\\CONFIG.SYS 11
);

ditem.hstrTargetName = DrgAddStrHandle(11 C:\\OS2\\CONFIG.SYS 11
);

ditem.cxOffset = 0; ditem.cyOffset = 0;
ditem.fsControl = 0; ditem.fsSupportedOps = 0;

/***/
/* Create the DRAGINFO structure */
/***/

pdinfo = DrgAl locDraginfo(l);

/***/
/* Initialize the DRAGIMAGE structure */
/***/

dimg.cb = sizeof(DRAGIMAGE); /*Size control block */
dimg.cptl = 0;
dimg.hlmage = hbm;

dimg.sizlStretch.cx = 20L;
dimg.sizlStretch.cy = 20t;
dimg.fl = DRG_BITMAP I

DRG_STRETCH;
dimg.cxOffset 0;
dimg.cyOffset = 0;

/* Image handle passed to
/* DrgDrag
/* Size to stretch ico or
/* bmp to

*/
*/
*/
*/

/* Stretch to size specified */
/* Offset of the origin of the */
/* image from the pointer */
/* hotspot *I

flResult= DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem), 0);

/***********************************·******************************I
/* Perform the drag operation: */
/***/

Chapter 3. Direct Manipulation Functions 3-51

DrgSetDragitem
Set Values in DRAGITEM

hwndDrop DrgDrag(hwnd, /* Source of the drag */
pdinfo, /* Pointer to DRAGINFO structure */

(PDRAGIMAGE)&dimg, /* Drag image */
1, /* Size of the pdimg array */
VK_ENGDRAG, /* Release of drag button */

/* tenninates the drag */
NULL) ; /* Reserved *I

/***/
/* Inside ClientWindowProc of Target Window */
/***/

case DM_DRAGOVER:

pdinfo = MPFROMP(mpl);
pditem = DrgQueryDragitemPtr(pdinfo,e);

fl Result = DrgVeri fyTrueType(pdi tern, 11 DRF _TEXT 11
);

if (I fl Result)

/***/
/* Infonn the application that you will accept the drop */
/***/

return(MRFROM2SHORT(DOR_DROP,DO_COPY));

case OM DROP:
pdinfo = MPFROMP(mpl);
pditem = DrgQueryDragitemPtr(pdinfo,e);

/***/
/* Perfonn the operation represented by the direct manipulation */
/***/

DrgQueryStrName(pditem->hstrSourceName,sizeof(szSource),szSource);
DrgQueryStrName(pditem->hstrTargetName,sizeof(szTarget),szTarget);
flResult = DosCopy(szSource,szTarget,eL);

/***/
/*If operation is successful, return DMFL_TARGETSUCCESSFUL */
/***/

if(!flResult)
{

DrgSendTransferMsg(pditem->hwnditem,

}

OM ENDCONVERSATION,
MPFROMLONG(pditem->ulitemID),
MPFROMLONG(DMFL_TARGETSUCCESSFUL));

/***/
/* Otherwise, return DMFL_TARGETFAIL */
/***/

else
{

}

DrgSendTransferMsg(pditem->hwnditem,
OM ENDCONVERSATION,
MPFROMLONG(pditem->ulitemID),
MPFROMLONG(DMFL_TARGETFAIL));

3-52 PM Programming Reference

#define INCL_WINSTDDRAG

DrgSetDragPointer -
Set Pointing Device Pointer

BOOL DrgSetDragPolnter (PDRAGINFO pDraglnfo, HPOINTER hptrHandle)

This function sets the pointer to be used while over the current target.

Parameters
pDraglnfo (PDRAGINFO) - input

Pointer.

Pointer to the DRAGINFO structure to be used for this drag.

hptrHandle (HPOINTER) - input
Pointer handle.

Handle to the pointer to use.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _HPTR An invalid pointer handle was specified.

Remarks
This function sets the pointer to be used to indicate the hot spot while dragging over the current
target.

The pointer that is set with DrgSetDragPointer is used only while it is over the current target. The
pointer is reset to the default when a new target is dragged over.

This function can be used by an application to provide meaningful augmentation emphasis for an
operation that is unknown to the system (for example, swap).

When the drag pointer is successfully set, TRUE is returned.

Related Functions
• DrgSetDraglmage

Chapter 3. Direct Manipulation Functions 3-53

DrgSetDragPointer -
Set Pointing Device Pointer

Example Code
This example uses the DrgSetDragPointer function to set the image used for the pointer while the
pointer is over the target during a direct manipulation operation.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>
BOOL fl Result;
PDRAGITEM pditem;
HPOINTER hptrCrossHair;
MPARAM mpl;
char szBuffer[32];

case DM DRAGOVER:
DrgSetDragPointer ((PDRAGINFO) mpl. hptrCrossHair);

3-54 PM Programming R-eference

DrgVerifyNativeRMF -

Verify Native Rendering Mechanism and Format

#define INCL_WINSTDDRAG

BOOL DrgVerifyNatlveRMF (PDRAGITEM pDragltem, PSZ pszRMF)

This function determines if the native rendering mechanism and format of an object match any

supplied by the application.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be

verified.

pszRMF (PSZ) - input
String.

A string specifying the rendering mechanism and format. The string is of the form:

MECHFMT[,MECHFMT,MECHFMT, ...], where MECHFMT can be in either of these formats:

• <mechanism(1),format(1)>
• (mechanism(1)[, mechanism(n) ...]) (format(1)[,format(n) ...])

Returns
Validity indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
This function determines if the native rendering mechanism and format of a dragged object are

understood by the target.

If TRUE is returned, the target may be able to carry out the action indicated by the direct

manipulation itself, or it can select the native rendering mechanism and format as those to be used

for the data exchange.

Related Functions
• DrgQueryNativeRMF

Chapter 3. Direct Manipulation Functions 3-55

DrgVerifyNativeRMF -
Verify Native Rendering Mechanism and Format

Example Code
This example determines if the native rendering mechanism and format of an object match any
supplied by the application.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>

DRAGITEM Dragitem;

char pszRMF[25];

/* DRAGITEM structure whose native */
/* rendering mechanism and fonnat are */
/* to be verified */

/*A string specifying the rendering */
/*mechanism and fonnat. The string is */
/* of the fonn: *I
/* */
/* mechfmt[,mechfmt,mechfmt, .•.], */
/* */
/*where 'mechfmt' can be in either of */
/* these fonnats: *I
/* */
/* o <mechanism(l),fonnat(l)> */
/* o (mechanism(!)[, mechanism(n) .•.]) */
/* (fonnat(l)[,fonnat(n) ...]) */

strcpy(pszRMF, 11 (DRM_OS2FILE,DRF _TEXT) 11
);

/* Mechanism is an OS/2 file and fonnat */
/* is a null-tenninated string. See */
/* the DRAGITEM structure for valid */
/* fonnats. *I

if(DrgVerifyNativeRMF(&Dragitem, pszRMF))
{

/* Code block */
}

3-56 PM Programming Reference

DrgVerifyRMF -
Verify Given Rendering Mechanism and Format

#define INCL_ WINSTDDRAG

BOOL DrgVerlfyRMF (PDRAGITEM pDragllem, PSZ pszMech, PSZ pszFormal}

This function determines if a given rendering mechanism and format are supported for a dragged

object.

Parameters
pDragilem (PDRAGITEM} - input

Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be
validated.

pszMech (PSZ} - input
Mechanism string.

A string specifying the rendering mechanism to search for. NULL will match any mechanism.

pszFormat (PSZ} - input
Format string.

A string specifying the rendering format to search for. NULL will match any format.

Returns
Validity indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
This function determines if a given rendering mechanism and format ordered pair are represented in

the set of valid pairs specified by hstrRMF for the dragged object.

Related Functions
• DrgVerifyNativeRMF

Chapter 3. Direct Manipulation Functions 3-57

DrgVerifyRMF -
Verify Given Rendering Mechanism and Format

Example Code
This example determines if a given rendering mechanism and format are supported for a dragged
object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>

DRAGITEM Dragitem; /* DRAGITEM structure whose native */
/* rendering mechanism and fonnat are */
/* to be validated */

char pszMech [] = 11 DRM_OS2FI LE";
/* A string specifying the rendering */
/* mechanism to search for */

char pszFonnat[] = 11 DRF _TEXT 11
;

/* A string specifying the rendering */
/* fonnat to search for *I

if(DrgVerifyRMF(&Dragitem, pszMech, pszFormat))

{

}

/* Mechanism is an OS/2 file and fonnat */
/* is a null-tenninated string */

/* Code block */

3-58 PM Programming Reference

)
#define INCL_WINSTDDRAG

DrgVerifyTrueType -
Verify True Type of Dragged Object

BOOL DrgVerlfyTrueType (PDRAGITEM pDragltem, PSZ pszType)

This function determines if the true type of a dragged object matches an application-supplied type

string.

Parameters
pDragitem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose true type is to be verified.

pszType (PSZ) - input
Type string.

A string specifying a type. This string is in the format: TYPE[.TYPE ...].

Returns
Validity indicator.

T-RUE Successful completion.

FALSE Error occurred.

Remarks
If an item in the string pointed to by pszType matches the first type in the string associated with

hstrType in the DRAGITEM structure, TRUE is returned.

A target application uses this function to determine if it supports the true type of a dragged object. tf

the application does not support the true type, it can either disallow a drop or change its default

operation. If the default operation is a move, the drop should be disallowed, or the operation

changed to a copy to prevent any loss of data for the object.

Related Functions
• DrgQueryTrueType
• DrgVerifyType
• DrgVerifyTypeSet

Chapter 3. Direct Manipulation Functions 3-59

DrgVerifyTrueType -
Verify True Type of Dragged Object

Example Code
This example verifies whether a given type is present in the list of types defined for a drag object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>

BOOL fValid;
DRAGITEM Dragitem;

char pszType[S];

/* DRAGITEM structure whose hstrType is */
/* to be verified *I

/* A string specifying the types to
/* search for

*/
*/

strcpy(pszType, 11 DRT_EXE"); /* Executable file type. See the */
/* DRAGINFO structure for valid */
/* types. */

fValid = DrgVerifyTrueType(&Dragitem, pszType);

3-60 PM Programming Reference

#define INCL_WINSTDDRAG

DrgVerifyType -
Verify Type of Dragged Object

BOOL DrgVerlfyType (PDRAGITEM pDragltem, PSZ pszType)

This function verifies whether a given type is present in the list of types defined for a drag object.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose hstrType is to be verified.

pszType (PSZ) - input
Type string.

A string specifying the types to search for. This string is in the format: TYPE[,TYPE. .. J.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INVALID _PARAMETERS

PMERR_INSUFFICIENT _MEMORY

Remarks

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32, 768 to +32, 767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

The operation terminated through insufficient memory.

If at least one of the types specified by pszType is present in hstrType in the DRAGITEM structure,

TRUE is returned.

Related Functions
• DrgVerifyTrueType
• DrgVerifyTypeSet

Chapter 3. Direct Manipulation Functions 3-61

DrgVerifyType -
Verify Type of Dragged Object

Example Code
This example verifies whether a given type is present in the list of types defined for a drag object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>

BOOL fValid;
DRAGITEM Dragitem; /* DRAGITEM structure whose hstrType is */

/* to be verified */
char pszType[] = 11 DRT_EXE11

;

/* A string specifying the types to */
/* search for */

fValid = DrgVerifyType(&Dragitem, pszType);

3-62 PM Programming Reference

~
)

#define INCL_WINSTDDRAG

DrgVerifyTypeSet -
Verify Types

BOOL DrgVerifyTypeSet (PDRAGITEM pDragltem, PSZ pszType, ULONG cbBuflen,
PSZ pszBuffer)

This function returns the intersection of the contents of the string associated with the type-string
handle for an object and an application-specified type string.

Parameters
pDragltem (PDRAGITEM) - input

Pointer.

Pointer to the DRAGITEM structure whose hstrType is to be verified.

pszType (PSZ) - input
Type string.

A string specifying the types to search for. This string is in the format: TYPE[.TYPE ... J.

cbBuflen (ULONG) - input
Buffer size.

Size of the return buffer. The buffer should be at least one byte longer than the length of the
string pointed to by pszType.

pszBuffer (PSZ) - output
Buffer.

Buffer where the intersection string is returned.

Returns
Match indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
If at least one of the types specified by pszType is present in hstrType in the DRAGITEM structure,
TRUE is returned.

Related Functions
• DrgVerifyType
• DrgVerifyTrueType

Chapter 3. Direct Manipulation Functions 3-63

DrgVerifyTypeSet
Verify Types

Example Code
In this example, the DrgVerifyTypeSet function is used to determine whether ORT_ TEXT is among

the types associated with the object. If it is, the drop is accepted.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <OS2.H>
#include <stdio.h>
BOOL fl Result;
DRAGITEM pditem;
char szBuffer[32];

case DM_DRAGOVER:

flResult = DrgVerifyTypeSet(&pditem,
"DRT TEXT"
sizeof(szB~ffer),
szBuffer);

fl Result = strcmp(szBuffer, 11DRT_TEXT 11
);

/**/
/* See if the object is an OS/2 file as well as being of text */
/* format. AND result flag with previous result flag to get */
/* the "effective" return code. */
/**/

fl Result = DrgVeri fyRMF(&pditem, 11 DRM_OS2FILE 11 , 11 DRF _TEXT 11);

/**/
/* See if DRT_TEXT is the true type of the object */
/**/

fl Result = DrgVerifyTrueType(&pditem, 11 DRF_TEXT 11);

if(!flResult)

/**/
/* Inform the application that you will accept the drop */
/**/

return(MRFROM2SHORT(DOR_DROP, DO_COPY));
break;

3-64 PM Programming Reference

\
)

Chapter 4. Dynamic Data Formatting Functions

The following table shows all the dynamic data formatting (Ddf) functions in alphabetic order.

CName

DdfBeginlist

DdfBitmap

DdfEndlist

DdfHyperText

Ddflnform

Ddflnitialize

Ddflistltem

DdfMetafile

DdfPara

DdfSetColor

DdfSetFont

DdfSetFontStyle

DdfSetFormat

DdfSetT extAI ign

DdfText

Chapter 4. Dynamic Data Formatting Functions 4-1

DdfBeginList -
. Begin Definition List

#define INCL_OOF

BOOL DdfBeglnllst (HDDF hddf, ULONG ulWldthDT, ULONG fBreakType, ULONG fSpaclng)

This function begins a definition list in the OOF buffer; it corresponds to the :di. (definition list) tag.

Parameters
hddf (HOOF) - input

Handle to OOF returned by Odflnitialize.

ulWldthDT (ULONG) - input

Width of the definition term.

fBreakType (ULONG) - input

Only the following constants may be specified:

HMBT_ALL

HMBT_FIT

HMBT_NONE

fSpaclng (ULONG) - input

Start all definition descriptions on the next line, regardless of the actual
lengths of definition terms.
Start definition description on the next line only when the definition term
is longer than the width specified.
Do not start the definition description on the next line, even when the
definition term is longer than the width specified.

Only the following constants may be specified:

HMLS_SINGLELINE Do not insert a blank line between each definition description and the
next definition term.

HMLS_DOUBLELINE Insert a blank line between each definition description and the next
definition term.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

HMERR_DDF _LIST_UNCLOSED

HMERR_DDF _LIST _BREAKTYPE

HMERR_DDF _LIST_SPACING

Remarks

Not enough memory is available.

An attempt was made to nest a list.

The value of BreakType is not valid.

The value for Spacing is not valid.

Once this function has been called, use of any OOF function other than Odflistltem, OdfSetColor, and
OdfEndlist may produce unpredictable results.

4-2 PM Programming Reference

)

DdfBeginList -
Begin Definition List

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddftnform
• DdfHyperText
• DdfEndlist
• DdfBitmap

Example Code

After initializing a DDF buffer with Ddflnitialize, the example uses DdfBeginlist to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF di tag). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

struct LISTITEM
{ -

/*definition list

PSZ Term;
PSZ Desc;

} Definition[2] = {{ 11 MVS 11
, "Multiple Virtual

System"},
{

11 VM 11
, "Virtual Machine"}};

*/
*/
*/

*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HDDF hDdf;
SHORT i;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* DDF handle
/* loop index

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE); NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndinstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment * /
) ;

Chapter 4. Dynamic Data Formatting Functions 4-3

DdfBeginList -
Begin Definition List

}
}

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/*begin definition list */

/* Check return code

if (!DdfBeginlist(hOdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

/* insert 2 entries into definition list */
for (i=e; i < 2; i++)
{

}

if (!Ddflistitem(hDdf, Oefinition[i].Tenn,
Definition[i].Oesc))

{

}
return (MRESULT)FALSE;

/* tenninate definition list */
if (!OdfEndlist(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

4-4 PM Programming Reference

*/

#define INCL_DDF

DdfBitmap -
Place Bitmap Reference

BOOL DdfBltmap (HDDF hddf, HBITMAP hbm, ULONG fAllgn)

This function places a reference to a bit map in the DDF buffer.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitlalize.

hbm (HBITMAP) - input

Standard Presentation Manager bit map handle.

fAllgn (ULONG) - input

Any of the following values can be specified:

Left-justify the bit map.
Right-justify the bit map.
Center the bit map.

ART_LEFT
ART_RIGHT
ART_CENTER
ART_RUNIN Allow the bit map to be reflowed with text.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

HMERR_DDF _ALIGN_TYPE

Remarks

Not enough memory is available.

The alignment type is not valid.

The handle to the presentation space in which the bit map was created cannot be freed by the
application while the panel is displayed.

Note: There is a (3-byte +size of HBITMAP structure) ESC code overhead in the DDF internal buffer
for this function. There is a 1-byte ESC code overhead required for the Align flag.

Related Functions
• DdfText
• DdfSetTextAlign ·
• · DdfSetFormat
• · DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem

Chapter 4. Dynamic Data Formatting Functions 4-5

DdfBitmap -
Place Bitmap Reference

• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBeginlist

Example Code
After initializing a DDF buffer with Ddflnitialize, the example obtains a device context (DevOpenDC),
creates a presentation space (GpiCreatePS), and loads a bit map (GpiloadBitmap). It then uses
DdfBitmap to place a reference to the bit map in the DDF buffer. For a more detailed example and
discussion of Jnitializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPICONTROL /* Basic PS control */
#define INCL_GPIBITMAPS /* Bit maps and Pel Operations */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

#define ACVP_HAB 12
#define BM~HPS 16
#define BM_HDC 29
#define BM_HWNO 24
#define ID_LEFT 255

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent; /* parent window
HWND hwndlnstance; /* help instance window
HOOF hDdf; /* DDF handle
HOC hdc; /* device context handle
HPS hps; /* presentation space handle
HAB hab; /* anchor block handle
SIZEL sizel = {0L,9L};/* size of new PS
HBITMAP hBitmap; /* bit map handle
HMODULE hModule; /* module handle

switch(ulMsg)
{
case HM QUERY DDF DATA:

hwndParent = WinQueryWindow(hwnd, QW_PARENT) ;
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/
*/
*/
*/
*/
*/
*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndinstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /Jk Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code
{

return (MRESUL T) FALSE;
}

/* get module handle for bit map */
DosGetModHandle(11 bitmap 11

, &hModule);
if (hModule == NULLHANDLE)
{

4-6 PM Programming Reference

*/

')

return (MRESULT)FALSE;
}

/* get hab for this window */

DdfBitmap -
Place Bitmap Reference

if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* create a device context */
if ((hdc = DevOpenDC(hab, OD_MEMORY, 11 *11

, 0L,

{

}

(PDEVOPENDATA)NULL, (HDC)NULL)) == NULLHANDLE)

return (MRESULT)FALSE;

/* save hdc in reserved word */
WinSetWindowULong(hwnd, BM_HDC, (ULONG)hdc);

/* create a noncached micro presentation space */
/* and associate it with the window */
if ((hps = GpiCreatePS(hab, hdc, &sizel, PU_PELS I

GPIF_DEFAULT

}

{

}

I GPIT_MICRO I GPIA_ASSOC)) == NULLHANDLE)

return (MRESULT)FALSE;

/* save hps in reserved word */
WinSetWindowULong(hwnd, BM_HPS, (ULONG)hps);

/* Load the Bit map to display */
if ((hBitmap = GpiLoadBitmap(hps, hModule, ID_LEFT, 300L,

300L)) == NULLHANDLE)
{

}
return (MRESULT)FALSE;

/* save bit map hwnd in reserved word */
WinSetWindowULong(hwnd, BM_HWND, (ULONG)hBitmap);

/* Display the bit map align left */
if (IDdfBitmap(hDdf, hBitmap, (ULONG)TA_LEFT))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

case WM_CLOSE:

}

/* release PS, DC, and bit map */
GpiDestroyPS((HPS)WinQueryWindowULong(hwnd, BM_HPS));
DevCloseDC((HDC)WinQueryWindowULong(hwnd, BM_HDC));
GpiDeleteBitmap((HBITMAP)WinQueryWindowULong(hwnd, BM_HWND));
WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));
return (MRESULT)TRUE;

Chapter 4. Dynamic Data Formatting Functions 4-7

DdfEndList -
End Definition List

#define INCL_DDF

I BOOL DdlEndllsl (HOOF hddf)

This function terminates the definition list initialized by DdfBeginlist.

Parameters
hddl (HDDF) - input

Handle to DDF returned by Ddflnitialize.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _LIST_ UNINITIALIZED No definition list has been initialized by DdfBeginlist.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfBitmap
• DdfBeginlist

Example Code

After initializing a DDF buffer with Ddflnitialize, the example uses DdfBeginlist to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF di tag). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample;

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/*Dynamic Data Facility

struct _LISTITEM
{

/*definition list

PSZ Term;

4-8 PM Programming Reference

*/
*/
*/

*/

) PSZ Desc;
} Definition[2] = {{"MVS", "Multiple Virtual
System"},

{"VM", "Virtual Machine"}};

DdfEndList -

End Definition List

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

}

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
SHORT i;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* DDF handle
/* loop index

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

}

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
GL /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

/* Check return code

return (MRESULT)FALSE;
}

/* begin definition list */
if (!DdfBeginList(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

/* insert 2 entries into definition list */
for (i=G; i < 2; i++)
{

}

if (!DdfListltem(hDdf, Definition[i].Term,
Definition[i].Desc))

{

}
return (MRESULT)FALSE;

/* terminate definition list */
if (!DdfEndList(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

*/

Chapter 4. Dynamic Data Formatting Functions 4-9

DdfHyperText -
Define Hypertext Link

#define INCL DDF

BOOL DdfHyperText (HDDF hddf, PSZ pszText, PSZ pszReference, ULONG fReferenceType)

This function defines a hypertext link to another panel.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

pszText (PSZ) - input

Hypertext phrase.

pszReference (PSZ) - input

The value of this parameter depends on the value of ReferenceType:

- If ReferenceType is REFERENCE_BY _RES, this parameter must contain a pointer to a
numeric string containing the res number; otherwise it will default to a res number of zero.
Valid values are 1 - 64000; all other values are reserved.
- If Reference Type is REFERENCE_BY _ID, this parameter contains a pointer to a string
containing the alphanumeric identifier of the destination panel.

fReferenceType (ULONG) - input

This parameter specifies whether you are linking via a resource identifier (res number) or via an
alphanumeric identifier.

REFERENCE_BY_RES To link via a resource identifier.
REFERENCE_BY_ID To link via an alphanumeric identifier.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

HMERR_DDF _REFTYPE

Remarks

Not enough memory is available.

The reference type is not valid.

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each word in the text
buffer. There is a 1-byte ESC code overhead for each blank and for each newline character.
If ReferenceType is REFERENCE_BY _ID, then there is a (3-byte + Reference length) ESC code
overhead. For a ReferenceType of REFERENCE_BY _RES, the overhead is 5 bytes. Finally,
there is a 3-byte ESC code overhead that is required for ending the hypertext link.

4-10 PM Programming Reference

DdfHyperText -

Define Hypertext Link

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Example Code

After initializing a DDF buffer with Ddflnitialize, the example uses DdfHyperText to create a hypertext

link with another resource. For a more detailed example and discussion of initializing DDF, see the

Ddflnitialize sample.

#define lNCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

PSZ Text= "This text is a HYPERTEXT message.\n 11
; /* hypertext

string */
PSZ Res ID = 11 1"; /* Resource identifier * /

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HDDF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM_QUERY,

*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

Chapter 4. Dynamic Data Formatting Functions 4-11

DdfHyperText -
Define Hypertext Link

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANOLE)
{

/* Check return code

return (MRESULT)FALSE;
}

/* create hypertext link with resource 1 */

*/

if (IDdfHyperText(hDdf, (PSZ)Text, ResID, REFERENCE_BY_RES))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;
}

}

4-12 PM Programming Reference

#define INCL DDF

Ddflnform
Define Inform Link

BOOL Ddflnform (HDDF hddf, PSZ pszText, ULONG reslnformNumber)

This function defines a hypertext inform link; it corresponds to the link tag with reftype =inform.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

pszText (PSZ) - input

Hypertext phrase.

reslnformNumber (ULONG) - input

Res number associated with this hypertext field. Possible values are 1to64000; all other values
are reserved.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY Not enough memory is available.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses Ddflnform to create a hypertext
inform link with another resource (corresponds to the IPF :link. tag with reftype =inform). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /*Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

Chapter 4. Dynamic Data Formatting Functions 4-13

Ddflnform -
Define Inform Link

PSZ Text = "This text is a HYPERTEXT message.\n 11
; /*hypertext

string */
MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* DDF handle

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndinstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

}
}

/* Allocate lK Buffer (default) */
hDdf = Ddfinitialize(

hwndinstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create hypertext infonn link with resource 1 */
if (!Ddfinfonn{hDdf, {PSZ)Text, ll))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

*/

4-14 PM Programming Reference

)
#define INCL_DDF

Ddflnitialize
Initialize DDF Area

HDDF Ddflnltlallze (HWND hwndHelplnstance, ULONG cbBuffer, ULONG ullncrement)

This function initializes the IPF internal structures for dynamic data formatting and returns a DDF

handle. The application uses this handle to refer to a particular DDF panel.

Parameters
hwndHelplnstance (HWND) - input

Handle of a help instance.

cbBuffer (ULONG) - input

Initial length of internal buffer where DDF information is to be stored. If this field is NULL, a

default value of 1K is defined. The maximum value is 60KB.

ullncrement (ULONG) - input

Amount by which to increment the buffer size, if necessary. If this field is NULL, a default value

of 256 bytes is defined. The maximum value is 60KB.

Returns
A handle to DDF (HOOF) is returned if initialization was successful. Otherwise, the value

returned is:

NULL An error has occurred because of insufficient memory or incorrect instance.

Remarks
At initialization, the default for dynamic data display is that text aligned on the left, and formatting is

turned on.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Example Code
This example shows how to initialize and use the Dynamic Data Facility for displaying an online

document. Two functions are defined: the first, SampleObj, creates a window that will display the

online information and specifies the second function, SampleWindowProc, as the corresponding

window procedure. These two functions are compiled into a DLL and exported, so that IPF can

invoke them when it encounters the :ddf and :acviewport tags during execution. The :acviewport tag

will specify the DLL name and the SampleObj function; when IPF calls SampleObj, it initializes an

Chapter 4. Dynamic Data Formatting Functions 4-15

Ddflnitialize -
Initialize DDF Area

application-controlled window with SampleWindowProc as the window procedure and returns the
window handle. Later, when IPF encounters the :ddf tag, it will send SampleWindowProc an
HM_QUERY_DDF_DATA message. At this point, before calling any of the DDF API, Ddflnitialize must
first be called to initiate a DDF buffer, after which the other DDF API can be called to display the
online information.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_WINDIALOGS
#define INCL_DDF

/* General window management
/* Message management
/* Dialog boxes
/* Dynamic Data Facility

*/
*/
*/
*/

#define INCL_32
#include <os2.h>
#include <pmhelp.h>

#define COM_HWND 4
#define PAGE_HWND 8
#define ACVP_HAB 12

/* window word offsets */

USHORT DdfClass = FALSE;

MRESULT EXPENTRY SampleWindowProc{HWND hWnd, ULONG Message,
MPARAM lParaml, MPARAM 1Param2);

USHORT APIENTRY SampleObj{PACVP pACVP, PCH Parameter)
{
HWND DdfHwnd; /*Client window handle */
HWND DdfCHwnd;
HWND PreviousHwnd;

/* Child window handle *I
/* Handle for setting comm window active */

/* register DDF Base class if not registered already */
if {!DdfClass)
{

}

{

}

if {!WinRegisterClass{
pACVP->hAB, /* Anchor block handle */
11 CLASS_Ddf", /*Application window class name*/

/* Address of window procedure */
SampleWindowProc,

/* Window class style */
CS SYNCPAINT I CS SIZEREDRAW I CS MOVENOTIFY,
20)) /* Extra storage - *I

return TRUE;

DdfClass = TRUE;

/* create standard window */
if {!{DdfHwnd = WinCreateStdWindow{

pACVP->hWndParent,
eL,

{

}
return FALSE;

NULL,
"CLASS_Ddf11

,

NULL,
0L,
0L,
e,
&DdfCHwnd)))

/* ACVP is parent */
/* No class style */
/* Frame control flag */
/* Window class name */
/* No title bar */
/* No special style */
/* Resource in .EXE */
/* No window identifier */
/* Client window handle */

/* store the frame window handle in ACVP data structure */
pACVP->hWndACVP = DdfHwnd;

4-16 PM Programming Reference

' l

Ddflnitialize -
Initialize DDF Area

/* set this window as active conmunication window */
PreviousHwnd = (HWND)WinSendMsg(pACVP->hWndParent,

HM SET OBJCOM WINDOW,
MPFROMHWND(DdfHwnd), NULL);

/* save returned conmunication hwnd in reserved word */
WinSetWindowULong(DdfCHwnd, COM_HWND, (ULONG)PreviousHwnd);

/* save anchor block handle in reserved word */
WinSetWindowULong (DdfCHwnd, ACVP_HAB, (ULONG)pACVP->hAB);

return FALSE;
} /* SampleObj */

MRESULT EXPENTRY SampleWindowProc(HWND hWnd, ULONG Message,
MPARAM lParaml, MPARAM 1Param2)

{
HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
ULONG DdflD;

switch (Message)
{

/* parent window
/* help instance window
/* DDF handle
/* DDF resource id

case HM QUERY DDF DATA:
WinSetWindowULong(hWnd, PAGE_HWND, LONGFROMMP(lParaml));
DdfID = LONGFROMMP(1Param2);
hwndParent = WinQueryWindow(hWnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
eL /* Default increment *I
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

/* Check return code */

default:
return (WinDefWindowProc(hWnd, Message, lParaml, 1Param2));

}
} /* SampleWindowProc */

*/
*/
*/
*/

Chapter 4. Dynamic Data Formatting Functions 4-17

Ddflistltem
Insert List Item

#define INCL DDF

BOOL DdfLlstltem (HDDF hddf, PSZ pszTerm, PSZ pszDescrlptlon)

This function inserts a definition list entry in the DDF buffer; it corresponds to a combination of the
:dt. {definition term) and :dd. (definition define) tags.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

pszTerm (PSZ) - input

Term portion of the definition list entry.

pszDescrlptlon (PSZ) - input

Description portion of the definition list entry.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

HMERR_DDF _LIST _UNINITIALIZED

Remarks

Not enough memory is available.

No definition list has been initialized by DdfBeginlist.

The handle to the presentation space in which the bit map was created cannot be freed by the
application while the panel is displayed.

Note: There is a (3-byte +size of HBITMAP structure) ESC code overhead in the DDF internal buffer
for this function. There is a 1-byte ESC code overhead required for the Align flag.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

4-18 PM Programming Reference

Example Code

DdfListltem
Insert List Item

After initializing a DDF buffer with Ddflnitialize, the example uses DdfBeginlist to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF di tag). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

struct LISTITEM
{ -

/*definition list

PSZ Tenn;
PSZ Desc;

} Definition[2] = {{"MVS", "Multiple Virtual
System"},

{"VM", "Virtual Machine"}};

*/
*/
*/

*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
SHORT i;

switch{ ulMsg)
{
case HM_QUERY_DDF_DATA:

/* DDF handle
/* loop index

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow{ hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize{

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

/* Check return code

return (MRESULT)FALSE;
}

/* begin definition list */
if { !DdfBegi nli st {hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

*/

Chapter 4. Dynamic Data Formatting Functions 4-19

Ddflistltem -
Insert List Item

}
}

/* insert 2 entries into definition list */
for (i=0; i < 2; i++)
{

}

if (!Ddflistltem(hDdf, Definition[i].Term,
Definition[i].Desc))

{

}
return (MRESULT)FALSE;

/* terminate definition list */
if (IDdfEndlist(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

4-20 PM Programming Reference

)
/

#define INCL DDF

DdfMetafile
Place Metafile Reference

BOOL DdfMetaflle (HDDF hddf, HMF hmf, PRECTL prclRect)

This function places a reference to a metafile into the DDF buffer.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitiallze.

hmf (HMF) - input

The handle of the metafile to display.

prclRect (PRECTL) - input

If not NULL, contains the size of the rectangle in which the metafile will be displayed. The
aspect ratio of the metafile is adjusted to fit this rectangle.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF _MEMORY Not enough memory is available.

Remarks
Note: There is a 3-byte ESC code overhead in the DDF internal buffer for this function. There is also

a (MetaFilename length) overhead. Finally, the Rect variable requires an additional 16 bytes
of overhead in the DDF internal buffer.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Chapter 4. Dynamic Data Formatting Functions 4-21

DdfMetafile
Place Metafile Reference

Example Code

After initializing a DDF buffer with Ddflnitialize and loading a metafile with GpiloadMetaFile, the
example uses DdfMetafile to plac.e a reference to the metafile in the DDF buffer. For a more detailed
example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define lNCL_DDF /* Dynamic Data Facility * /
#define INCL_GPIMETAFILES /* MetaFiles */
#include <os2.h>
#include <pmhelp.h>

#define MF_HWND 0
#define ACVP_HAB 4

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HAB hab;
HWND hwndlnstance;
HOOF hDdf;
HMF hwndMetaFile;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle
/* metafile handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
OL, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* get hab for this window */

/* Check return code */

if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Load the Metafile to display */
if ((hwndMetaFi le = Gpi LoadMetaFi le (hab, 11 SAMP. MET")) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

4-22 PM Programming Reference

}

DdfMetafile -
Place Metafile Reference

/* Save MetaFile hwnd in reserved word */
WinSetWindowULong(hwnd, MF_HWND, hwndMetaFile);

if (lDdfMetafile(hDdf, hwndMetaFile, NULL))
{

return (MRESULT)FALSE;
}

return (hDdf);

case WM CLOSE:

}

GpiOeleteMetaFile((HMF)WinQueryWindowULong(hwnd, MF_HWND));
WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));

return (MRESULT)TRUE;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-23

DdfPara -
Create a Paragraph in DDF Buffer

#define INCL OOF

I BOOL DdfPara (HDDF hddl)

This function creates a paragraph within the OOF buffer. It corresponds to the :p. tag. This function
places a reference to a bit map in the OOF buffer.

Parameters
hddf (HOOF) - input

Handle to OOF returned by Odflnitialize.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF _MEMORY Not enough memory is available.

Remarks
Note: There is a 1-byte ESC code overhead in the OOF internal buffer for this function.

Related Functions
• OdfText
• OdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• OdfSetFont
• OdfSetColor
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Odflnform
• DdfHyperText
• DdfEndlist
• OdfBitmap
• DdfBeginlist

Example Code
After initializing a DDF buffer with Odflnitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DOF, see the Odflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

4-24 PM Programming Reference

DdfPara -

Create a Paragraph in DDF Buffer

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

}

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

}

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD))
{

return (MRESULT)FALSE;
}

*/

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR PALEGRAY, CLR BLUE))
{ - -

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-25

DdfSetColor -
Set Color of Text

#define INCL_OOF

BOOL DdfSetColor (HDDF hddf, COLOR BackColor, COLOR ForColor)

This function sets the background and foreground colors of the displayed text.

Parameters
hddf (HOOF) - input

Handle to OOF returned by Odflnitialize.

BackColor (COLOR) - input

Specifies the desired background color.

ForColor (COLOR) - input

Specifies the desired foreground color.

The following color value constants may be used for the foreground and background colors:

CLR_OEFAUL T - used to set IPF default text color
CLR_BLACK
CLR_BLUE
CLR_REO
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_BROWN
CLR_OARKGRAY
CLR_OARKBLUE
CLR_OARKREO
CLR_OARKPINK
CLR_OARKGREEN
CLR_OARKCY AN
CLR_PALEGRAY
CLR_ UNCHANGEO

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

HMERR_DDF _BACKCOLOR

HMERR_DDF _FORCOLOR

4-26 PM Programming Reference

Not enough memory is available.

The background color is not valid.

The foreground color is not valid.

Remarks

DdfSetColor -
Set Color of Text

Note: There is a 4-byte ESC code overhead in the DDF internal buffer for the foreground color, and a

4-byte overhead for the background color, with this function.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,

DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor

to change the text color, and DdfText to place text in the buffer. For a more detailed example and

discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
eL, /* Default buffer size *I
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

/* Check return code

return (MRESULT)FALSE;
}

*/

Chapter 4. Dynamjc Data Formatting Functions 4-27

DdfSetColor -
Set Color of Text

}

}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf. FM_SEL_BOLD))
{

return (MRESULT)FALSE;
}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer*/
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-28 PM Programming Reference

)

#define INCL_DDF

DdfSetFont -
Specify Text Font

BOOL DdfSetFont (HDDF hddf, PSZ pszFaceName, ULONG ulWldth, ULONG ulHelght)

This function specifies a text font in the DDF buffer.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

pszFaceName (PSZ) - input

This parameter can be specified in two ways:

An ASCllZ string specifying the font name.
"NULL" or "DEFAULT" to specify the default font.

ulWldth (ULONG) - input

Font width in in points. A point is approximately 1/72 of an inch

ulHelght (ULONG) - input

Font height in points.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF _MEMORY Not enough memory is available.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Chapter 4. Dynamic Data Formatting Functions 4-29

DdfSetFont -
Specify Text Font

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINOOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndinstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_OATA:

/* help instance window
/* ODF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndinstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hOdf = Ddflnitialize(

hwndinstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code
{

return (MRESULT)FALSE;
}

/* create paragraph in DOF buffer */
if (!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if (! DdfSetFont(hOdf, 11 Couri er11

, 100L, 100L))
{

return (MRESUL T) FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD))
{

return (MRESULT)FALSE;
}

4-30 PM Programming Reference

*/

\
)

}

}

DdfSetFont -
Specify Text Font

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, 11 Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-31

DdfSetFontStyle -
Specify Text Font Style

#define INCL_OOF

BOOL DdfSetFontStyle (HDDF hddf, ULONG fFontStyle)

This function specifies a text font style in the OOF buffer.

Parameters
hddf (HOOF) - input

Handle to OOF returned by Odflnitialize.

fFontStyle (ULONG) - input

A NULL value for this parameter will set the font-style back to the default. Any of the following
values can be specified:

FM_SEL_ITALIC
FM_SEL_BOLO
FM_SEL_ UNDERSCORE

These values can be "ORed" together to combine different font styles.

Note: There is a 4-byte ESC code overhead in the OOF internal buffer for FontStyle.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF _MEMORY

HMERR_DDF _FONTSTYLE

Related Functions
• OdfText
• OdfSetTextAlign
• OdfSetFormat
• OdfSetFont
• OdfSetColor
• DdfPara
• OdfMetafile
• Odflistltem
• Odflnitialize
• Odflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

4-32 PM Programming Reference

Not enough memory is available.

The font style is not valid.

)

DdfSetFontStyle -
Specify Text Font Style

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/*Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

/* Check return code

return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, 11 Courier11

, 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD))
{

return (MRESULT)FALSE;
}

*/

Chapter 4. Dynamic Data Formatting Functions 4-33

DdfSetFontStyle -
Specify Text Font Style

}

}

/* make the text display as BLUE on a PALE GRAY background */
if(IDdfSetColor(hDdf, CLR PALEGRAY, CLR BLUE))
{ - -

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-34 PM Programming Reference

)
#define INCL_DDF

BOOL DdfSetFormat (HDDF hddf, ULONG fFormatType)

DdfSetFormat -
Control Formatting

This function is used to turn formatting off or on. It corresponds to the :lines. tag.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

fFormatType (ULONG) - input

Only the following constants may be used in this parameter:

TRUE
FALSE

Returns

Turn formatting on.
Turn formatting off.

Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DDF _MEMORY

Remarks

Not enough memory is available.

Note: If formatting is ON, there is a 3-byte ESC code overhead in the DDF internal buffer for this
function. Otherwise, there is a 4-byte ESC code overhead.

Related Functions
• DdfText
• DdfSetTextAlign
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Chapter 4. Dynamic Data Formatting Functions 4-35

DdfSetFormat -
Control Formatting

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfSetTextAlign to specify left
justified test in the DDF buffer when formatting is OFF. The example then uses DdfSetFormat to turn
off formatting for text in the DDF buffer (corresponds to the IPF lines tag). For a more detailed
example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code
{

return (MRESULT)FALSE;
}

/* left justify text when formatting is OFF */
if (!DdfSetTextAlign(hDdf, TA_LEFT))
{

return (MRESULT)FALSE;
}

/* turn formatting OFF */
if (!DdfSetFormat(hDdf, FALSE))
{

return (MRESULT)FALSE;
}

if (!DdfText(hDdf,

*/

"Format OFF: This text should be Left Aligned!\n 11
))

}

}

{

}
return (MRESULT)FALSE;

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-36 PM Programming Reference

#define INCL_DDF

DdfSetTextAlign
Define Text Alignment

BOOL OdfSetTexlAllgn (HOOF hddf, ULONG fAllgn)

This function defines whether left, center, or right text justification is to be used when text formatting
is off.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

IAllgn (ULONG) - input

Only the following constants may be used:

TA_LEFT
TA_ RIGHT
TA_CENTER

Returns
Success indicator.

Left-justify text.
Right-justify text.
Center text.

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

HMERR_DOF _ALIGN_ TYPE The alignment type is not valid.

Remarks
It should be called before DdfSetFormat is called to turn off text formatting, and should not be called
again until formatting is turned back on. Note that leading and trailing spaces are not stripped from
the text as a result of this alignment.

Related Functions
• DdfText
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Chapter 4. Dynamic Data Formatting Functions 4-37

DdfSetTextAlign -
Define Text Alignment

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfSetTextAlign to specify left
justified test in the DDF buffer when formatting is OFF. The example then uses DdfSetFormat to turn
off formatting for text in the DDF buffer (corresponds to the IPF lines tag). For a more detailed
example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndinstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndinstance = (HWND)WinSendMsg(hwndParent~ HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddfinitialize(

hwndinstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* left justify text when formatting is OFF */
if (!DdfSetTextAlign(hDdf, TA_LEFT))
{

return (MRESULT)FALSE;
}

/* turn formatting OFF */
if (!DdfSetFormat(hDdf, FALSE))
{

return (MRESUL T) FALSE;
}

if (!DdfText(hDdf,

*/

"Format OFF: This text should be Left Aligned!\n 11
))

}

}

{

}
return (MRESUL T) FALSE;

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-38 PM Programming Reference

#define INCL_DDF

I BOOL DclfTeld (HDDF hddl, PSZ pszText)

This function adds text to the DDF buffer.

Parameters
hddf (HOOF) - input

Handle to DDF returned by Ddflnitialize.

pszText (PSZ) - input

Pointer to the text buffer to be formatted.

DdfText -
Add Text to DDF Buffer

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each word in the text
buffer. There is a 1-byte ESC code overhead for each blank and for each newline
character.

Returns
Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Related Functions
• DdfSetTextAlign
• DdfSetFormat
• DdfSetFontStyle
• DdfSetFont
• DdfSetColor
• DdfPara
• DdfMetafile
• Ddflistltem
• Ddflnitialize
• Ddflnform
• DdfHyperText
• DdfEndlist
• DdfBitmap
• DdfBeginlist

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,

DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */
#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

Chapter 4. Dynamic Data Formatting Functions 4-39

DdfText -
Add Text to DDF Buffer

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{
case HM_QUERY_DDF_DATA:

/* help instance window
/* DDF handle

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

}

}

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
eL, /* Default buffer size */
eL /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code
{

return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (lee x 1ee dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 1eeL, 1eeL))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD)
{

return (MRESULT)FALSE;
}

*/

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2 };

4-40 PM Programming Reference

Chapter 5. Graphics Functions

Coordinates
GPI coordinate values that are in world or model space are passed in variables of data type LONG.

For a presentation space of format GPIF _LONG (see GpiCreatePS), the signed value must be
contained within the low-order 28 bits.

For a presentation space with a format of GPIF _SHORT, the signed value must be contained within
the low-order 16 bits. Coordinates that exceed this limit are truncated without error, when stored in

a segment. As a consequence, a large positive number may appear as a negative number.

In both instances, after transformation to media space (that is, device space, possibly including a

translation for the window origin), coordinate values must be in the range -32 768 through +32 767.

The PMERR_COORDINATE_OVERFLOW error condition occurs if a coordinate is too large to be

handled.

Region coordinates must be within the range -32 767 through +32 765.

Matrix Parameter Values
These GPI functions define transforms:

• GpiSetSegmentTransformMatrix
• GpiSetModelTransform Matrix
• GpiCallSegmentMatrix
• GpiSetViewingTransformMatrix
• GpiSetDefaultViewMatrix
• GpiCreatePS
• GpiSetPageViewport.

Note: The last two functions define the device transform; the page viewport may be defaulted.

Concatenation of transform matrixes can occur as the transform is specified, for example, if
TRANSFORM_ADD is specified. Concatenation also occurs during drawing, between the various

transforms in the viewing pipeline.

During the process of concatenation, it is possible for the matrix parameter overflow error,
PMERR_INV_MATRIX_ELEMENT, to occur. This error is raised if either of the following conditions

occurs for any intermediate value during the concatenation arithmetic (see, for example,
GpiSetSegmentTransformMatrix for an explanation of matrix element numbers):

• Any of the matrix elements 1, 2, 4, or 5 is greater than 32 767 or less than -32 768 (±1 for a

GPIF _SHORT format presentation space), or

• Either of elements 7 or 8 is greater than 134 217 727 (227 -1) or less than -134 217 728 (-227)

(greater than 32 767 or less than -32 768 for a GPIF _SHORT format presentation space).

Rounding Errors
In general for graphics coordinates, when non-unity transforms (apart from simple translation) are
involved, rounding errors occur. For example, adding the coordinates of one point to a delta value,
to produce the coordinates of a second point (all in world coordinates) does not always map to the

same device pel as if the computation had been done in device coordinates. Such errors can be
avoided if calculations are done in device coordinates, or if there are no scaling (or rotational, or

shear) elements in the transforms. Alternatively, the problems can be reduced, though not
eliminated, by defining very fine world coordinates.

Chapter 5. Graphics Functions 5-1

Drawing Process Check Errors
Some GPI functions involve processing buffers of graphics orders or retained graphics segments (the
data for which consists of graphics orders). These functions can give rise to Drawing Process Check
(DPC) errors if an order is found that either is not valid in its context or that contains invalid data. If
this happens, processing of the function stops and the error is recorded. Note that orders up to the
one found to be in error are processed by the function, and output occurs if drawing is being
performed.

Each function that can return these errors has Drawing Process Check errors in its error condition
list. The full list of DPC errors is:

PMERR_INV _IN_AREA
PMERR_INV _IN_ PATH
PMERR_INV _IN_ ELEMENT
PM ERR_ ALREADY _IN_ELEMENT
PMERR_STOP _DRAW_OCCURRED (warning)
PMERR_PATH_INCOMPLETE
PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV _ ORDER_LENGTH
PM ERR_ NOT _IN_IMAGE
PM ERR_ NOT _IN_ AREA
PMERR_NOT _IN_ ELEMENT
PMERR_NOT _IN_PATH
PMERR_INSUFFICIENT _MEMORY
PMERR_SEG_CALL_STACK_EMPTY
PMERR_ SEG_ CALL_STACK_FULL
PMERR_ TRUNCATED_ ORDER
PMERR_ CALLED _SEG_NOT _FOUND
PMERR_DYNAMIC _ SEG_SEQ_ERROR
PMERR_PROLOG_ERROR
PMERR_INV _IN_ VECTOR_ SYMBOL

GPI Functions by Fundional Area
The following table shows how all of the Graphics Programming Interface (GPI) functions are related
within functional areas.

CName CName

Curve Functions

Attribute Setting Functions

GpiQuery ArcParams GpiSetArcParams

G piQueryDef ArcParams GpiSetDef ArcParams

Primitive Functions

GpiFullArc Gpi PolyFillet

GpiPartialArc GpiPolyFi I letSharp

GpiPointArc GpiPolySpline

Area Functions

Attribute Setting Functions

GpiQueryPattern GpiSetPattern

GpiQueryPatternRef Point GpiSetPatternRefPoint

GpiQueryPatternSet GpiSetPatternSet

5-2 PM Programming Reference

CName CName

Primitive Functions

GpiBeginArea GpiEndArea

Bit-Map Support

Creation and Selection Functions

GpiCreateBitmap GpiQueryBitmapDimension

GpiDeleteBitmap GpiSetBitmap

GpiloadBitmap GpiSetBitmapDimension

Operations on Raw Bit Maps

GpiQueryBitmapBits GpiQueryDeviceBitmapFormats

GpiQueryBitmaplnfoHeader GpiSetBitmapBits

GpiQueryBitmapParameters

Operations through Presentation Spaces

GpiBitBlt GpiSetPel

GpiDrawBits GpiWCBitBlt

GpiQueryPel

Resources and Defaults Functions

GpiQueryBitmapHandle GpiSetBitmapld

Character Functions

Attribute Setting Functions

GpiQueryChar Angle GpiSetCharAngle

GpiQueryCharBox GpiSetCharBox

GpiQueryCharBreakExtra GpiSetCharBreakExtra

GpiQueryCharDi rection GpiSetCharDirection

GpiQueryCharExtra GpiSetCharExtra

GpiQueryCharMode GpiSetCharMode

GpiQueryCharSet GpiSetCharSet

GpiQueryCharShear GpiSetCharShear

GpiQueryTextAlignment GpiSetTextAlignment

Primitive Functions

GpiCharString GpiCharStringPosAt

GpiCharStringAt GpiQueryCharStringPos

GpiCharStri ngPos GpiQueryCharStringPosAt

Resources and Defaults Functions

GpiCreateLogFont GpiQueryKerningPairs

Gpi DeleteSetld GpiQueryLogicalFont

GpiLoadFonts GpiQueryNumberSetlds

GpiloadPublicFonts GpiQuerySetlds

GpiQueryCp GpiQueryTextBox

GpiQueryDefCharBox GpiQueryWidth Table

GpiQueryFaceString GpiSetCp

Chapter 5. Graphics Functions 5-3

CName CName

GpiQueryFontMetrics GpiUnloadFonts

GpiQueryFonts GpiUnloadPublicFonts

GpiQueryFullFontFileDescriptions GpiQueryFontAction

Color and Mix Functions

Attribute Setting Functions

GpiQueryBackColor GpiSetBackColor

GpiQueryBackMix GpiSetBackMix

GpiQueryColor GpiSetColor

GpiQueryMix GpiSetMix

Resources and Default Functions

GpiCreatelogColorTable GpiQueryNearestColor

GpiQueryColorData GpiQueryRealColors

GpiQueryColorlndex GpiQueryRGBColor

GpiQuerylogColorTable

Palette Manager Functions

GpiAnimatePalette GpiQueryPalettelnfo

GpiCreatePalette GpiSelectPalette

Gpi DeletePalette GpiSetPaletteEntries

GpiQueryPalette

Control Functions

GpiAssociate GpiQueryPS

GpiCreatePS GpiResetPS

Gpi Destroy PS GpiRestorePS

GpiErrorSegmentData GpiSavePS

GpiQueryDevice GpiSetPS

Correlation and Boundary Determination Functions

Bounds Data Functions

GpiQueryBoundaryData Gpi ResetBoundaryData

Correlation Data Functions

GpiCorrelateChain GpiCorrelateSegment

GpiCorrelateFrom

Pick Aperture and Tag Functions

GpiQueryDefTag GpiSetDefTag

GpiQueryPickAperturePosition GpiSetPickAperturePosition

GpiQueryPickApertureSize GpiSetPickApertureSize

GpiQueryTag GpiSetTag

Drawing Functions

GpiDrawChain GpiQueryDrawControl

GpiDrawDynamics GpiQueryDrawingMode

GpiDrawFrom GpiQueryStopDraw

5-4 PM Programming Reference

CName CName

GpiDrawSegment GpiRemoveDynamics

GpiErase GpiSetDrawControl

GpiFloodFill GpiSetDrawingMode

GpiGetData GpiSetStopDraw

GpiPutData GpiPolygons

General Attribute Functions

Attribute Mode Functions

GpiPop GpiSetAttrMode

GpiQuery AttrMode GpiSetDefAttrs

GpiQueryDef Attrs

Attribute Strip Setting Functions

GpiQuery Attrs GpiSetAttrs

Image Functions

Primitive Functions

Gpilmage

Line Functions

Attribute Setting Functions

GpiQuerylineEnd GpiSetlineEnd

GpiQuerylineJoin GpiSetlineJoin

GpiQuerylineType GpiSetlineType

GpiQuerylineWidth GpiSetlineWidth

GpiQuerylineWidthGeom GpiSetli neWidthGeom

Primitive Functions

GpiBox GpiPolyline

Gpiline GpiQueryCurrentPosition

GpiMove GpiSetCurrentPosition

GpiPolylineDisjoint

Visibility Functions

GpiPtVisible GpiRectVisible

Marker Functions

Attribute Setting Functions

GpiQueryMarker GpiSetMarker

GpiQueryMarkerBox GpiSetMarkerBox

GpiQueryMarkerSet GpiSetMarkerSet

Primitive Functions

GpiMarker GpiPolyMarker

Metafile Support

GpiCopyMetaFile GpiQueryMetaFi le Bits

Gpi DeleteMetaFi le GpiQueryMetaFi lelength

GpiLoadMetaFile GpiSaveMetaFi le

Chapter 5. Graphics Functions 5-5

CName CName

GpiPlayMetaFile GpiSetMetaFi leBits

Miscellaneous Functions

GpiComment

Path Functions

Path Clipping Functions

GpiSetCI i pPath

Path Definition and Deletion Functions

GpiBeginPath GpiEndPath

GpiCloseFigure

Path Drawing Functions

GpiFillPath GpiStrokePath

GpiOutl i nePath

Path Manipulation Functions

GpiModifyPath

Region Support

Clipping Region Functions

GpiExcludeCI ipRectangle GpiQueryClipBox

Gpi lntersectCI ipRectangle GpiQueryClipRegion

GpiOffsetCI i pRegion GpiSetClipRegion

Drawing Functions

GpiFrameRegion GpiPaintRegion

Region Functions

GpiCombineRegion GpiPtlnRegion

GpiCreateRegion GpiQueryRegionBox

GpiDestroyRegion GpiQueryRegionRects

GpiEqual Region Gpi RectlnRegion

GpiOffsetRegion GpiSet Region

GpiPathToRegion

Segment Manipulation Functions

Segment Content Manipulation Functions

GpiBeginElement GpiQueryEditMode

GpiDeleteElement GpiQueryElement

Gpi DeleteElementRange GpiQueryElementPointer

GpiDeleteElementsBetweenLabels GpiQueryElementType

GpiElement GpiSetEditMode

GpiEndElement GpiSetElementPointer

Gpilabel GpiSetElementPoi nter Atlabel

GpiOffsetElementPointer

Whole Segment Functions

GpiCloseSegment GpiQuerySegmentNames

5-6 PM Programming Reference

CName CName

Gpi DeleteSegment GpiQuerySegmentPriority

Gpi DeleteSegments GpiSetlnitialSegmentAttrs

GpiOpenSegment GpiSetSegmentAttrs

GpiQuerylnitialSegmentAttrs GpiSetSegmentPriority

GpiQuerySegmentAttrs

Transform Functions

Clipping

GpiQueryDefViewinglimits GpiSetDefViewing Limits

GpiQueryGraphicsField GpiSetGraphicsField

GpiQueryViewinglimits GpiSetviewinglimits

Conversion Functions

GpiConvert GpiConvertWithMatrix

Device Transforms

GpiQueryPageViewport GpiSetPageViewport

Helper Functions

GpiRotate GpiTranslate

GpiScale

Modelling Transform Functions

GpiCal ISegmentMatrix GpiSetModelTransformMatrix

GpiQueryModelTransformMatrix GpiSetSegmentTransformMatrix

GpiQuerySegmentTransformMatrix

Viewing Transform Functions

GpiQueryDefaultViewMatrix GpiSetDefaultViewMatrix

GpiQueryViewingTransformMatrix GpiSetViewingTransformMatrix

Chapter 5. Graphics Functions 5-7

GpiAnimatePalette
Animate Palette

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

LONG GplAnimatePalette (HPAL hpal, ULONG ulformat, ULONG ulStart, ULONG ulCount,
PULONG aulTable)

This function changes the color values of animating indexes in a palette.

Parameters
hpal (HPAL) - input

Palette handle.

ulformat (ULONG) - input
Format of entries in the table:

LCOLF_CONSECRGB Array of RGB values, corresponding to color indexes ulStart upwards.

ulStart (ULONG) - input
Starting index.

Each entry is 4 bytes long.

This is relevant only for LCOLF _CONSECRGB.

ulCount (ULONG) - input
Count of elements in au/Table.

This must be greater than or equal to 0.

aulTable (PULONG) - input
Start of the application data area.

This contains the palette definition data. The format depends on the value of u/Format.

Each color value is a 4-byte integer, with a value of

(F * 16777216) + (R * 65536) + (G * 256) + B

where:

F is a flag byte, which can take the following values (these can be ORed together if required):
PC_RESERVED This index is an animating index. This means that the application might

frequently change the RGB value, so the system should not map the logical
index of the palette of another application to the entry in the physical
palette used for this color.

PC_EXPLICIT The low-order word of the logical color table entry designates a physical
palette entry. This allows an application to show the contents of the device
palette as realized for other logical palettes. This does not prevent the
color in the entry from being changed for any reason.

R is red intensity value
G is green intensity value
B is blue intensity value.

The maximum intensity for each primary is 255.

5-8 PM Programming Reference

\
)

Returns
Number of remapped colors.

PAL_ERROR Error occurred

GpiAnimatePalette
Animate Palette

Other Number of colors remapped (that is, having entries in the physical color table).
These are all animating indexes: they have the PC_RESERVED flag set on this
function. If the palette is selected into more than one presentation space, the
number returned is the maximum number of indexes that have entries in any of
the relevant devices.

Note that by the time an application receives this information, other applications
using the palette may have caused the number to be changed.

Possible returns from WinGetlastError

PMERR_INV_HPAL

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _ COLOR_DATA

PMERR_INV _COLOR_FORMAT

PMERR_INV _ COLOR_START _INDEX

PMERR_INSUFFICIENT _MEMORY

PMERR_PALETTE_BUSY

PMERR_INV _IN_AREA

Remarks

An invalid color palette handle was specified.

An invalid length or count parameter was specified.

Invalid color table definition data was specified with
GpiCreateLogColorTable.

An invalid format parameter was specified with
GpiCreateLogColorTable.

An invalid starting index parameter was specified with a
logical color table or color query function.

The operation terminated through insufficient memory.

An attempt has been made to reset the owner of a palette
when it was busy.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

The animating indexes are those that have the PC_RESERVED flag set in the palette and also in the
corresponding element of the au/Table array in this function.

If an animating index already has an entry in the physical hardware palette (allocated from a
previous call to WinRealizePalette), both that entry and the entry in the logical palette are changed.
If there is not an entry in the physical palette, or the device does not support palette functions, the
logical palette color is changed. This function does not allocate a new entry in the physical palette.

This function ignores those elements in au/Table corresponding to non-animating indexes (those that
do not have the PC_RESERVED flag set). Their colors are not changed.

All presentation spaces that have this palette selected into them (see GpiSelectPalette) are updated
with the effects of this function. It is not necessary to issue a WinRealizePalette function before the
effects become visible.

If a palette is selected into a presentation space that is associated with a device context of type
OD_METAFILE or OD_METAFILE_NOQUERY, only the final col~r values are recorded in the metafile.

It is an error if a palette is selected into a presentation space that is within an area or path definition
when this function is issued.

Chapter 5. Graphics Functions 5-9

GpiAnimatePalette
Animate Palette

Related Functions
• GpiCreatePalette
• GpiDeletePalette
• GpiQueryPalette
• GpiQueryPalettelnfo
• GpiSelectPalette
• GpiSetPaletteEntries
• WinRealizePalette

Example Code
This example uses GpiAnimatePalette to change the color values of the first four animating indexes
in a palette.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG lremapColors;
HPAL hpal;

/* number of remapped colors
/* palette handle

*/
*/

/***
* assume 4 entries in palette. *
* The RGB values are calculated with the following formula: *
* (F * 16777216) + (R * 65536) + (G * 256) + B *
* where F = flag, PC_RESERVED or PC_EXPLICIT *
* R = red intensity value *
* G = green intensity value *
* B = blue intensity value *
* Thus, in the following table, red and green intensities are 0 *
* while the blue intensity increases from 1 to 4. *
***/

ULONG au1Table[4]=
{(PC RESERVED*16777216) + (0*65536) + (0*256) + l,

(PC-RESERVED*l6777216) + (0*65536) + (0*256) + 2,
(PC-RESERVED*16777216) + (0*65536) + (0*256) + 3,
(PC=RESERVED*16777216) + (0*65536) + (0*256) + 4};

lremapColors = GpiAnimatePalette(hpal, LCOLF_CONSECRGB, OL, 4L,
aulTable);

5-10 PM Programming Reference

GpiAssociate
Associate

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I BOOL GplAssoclate (HPS hps, HDC hclc)

This function associates a graphics presentation space with, or dissociates it from, a device context.

Parameters
hps (HPS) - input

Presentation-space handle.

hdc (HOC) - input
Device-context handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_PS_IS_ASSOCIATED

PMERR_DC_IS_ASSOCIATED

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _HDC

PMERR_REALIZE_NOT _SUPPORTED

PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to destroy a presentation or
associate a presentation space that is still associated
with a device context.

An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An attempt was made to create a realizable logical color
table on a device driver that does not support this
function.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

• A segment has been opened, closed, or drawn.
• GpiAssociate was issued while an area bracket was

open.
• A drawn segment has opened an area bracket and

ended without closing it.

Chapter 5. Graphics Functions 5-11

GpiAssociate
Associate

Remarks
Any type of device context may be used.

Subsequent drawing functions direct output to the associated device context.

If a null handle is supplied for the device context, the presentation space is dissociated from its
currently-associated device context. An associated presentation space cannot be associated with
another device context, and an associated device context cannot be associated with another
presentation space.

An error occurs if you try to draw to a presentation space associated with a memory device context
that has no bit map selected into it (see GpiSetBitmap).

The processing described for GRES_ATTRS (see GpiResetPS) is performed on the presentation
space. Also, bounds data is destroyed, the page viewport is reset to its default value (see
GpiCreatePS), and any clip region and path definition are lost. The save/restore presentation-space
stack (see GpiSavePS) is purged.

Any palette selected into the presentation space remains selected.

Any dynamic segments left drawn on the device are not subsequently removed by
GpiRemoveDynamics.

Related Functions
• GpiCreatePS
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• GpiResetPS
• GpiRestorePS
• GpiSavePS
• GpiSetPS
• GpiSetMarkerSet
• GpiSetPatternSet

Example Code
This example releases the current device context and associates a new device context with the
presentation space.

#define INCL_GPICONTROL
#include <os2.h>

HPS hps;
HOC hdcPrinter;

/* GPI control Functions

/* presentation space handle
/* device context handle

/* release the current device context */
GpiAssociate(hps, NULLHANDLE);
/* associate a printer device context */
GpiAssociate(hps, hdcPrinter);

5-12 PM Programming Reference

*/

*/
*/

GpiBeginArea
Begin Area

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI o-r INCL_PM. Also in COMMON section*/

BOOL GplBeglnArea (HPS hps, ULONG flOptlons)

This function begins the construction of an area.

Parameters
hps (HPS) - input

Presentation-space handle.

flOptlons (ULONG) - input
Area options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can be ORed together to determine whether to draw boundary
lines as well as the area interior:

BA_NOBOUNDARY Do not draw boundary lines.

BA_BOUNDARY Draw boundary lines (the default).

Construction of the area interior:

BA_ALTERNATE

BA_WINDING

Construct interior in alternate mode (the default)

Construct interior in winding mode.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _AREA_ CONTROL

PMERR_INV _IN_PATH

PMERR_ALREADY _IN_AREA

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with
Gpi Begi nArea.

An attempt was made to issue a function invalid inside a
path bracket.

An attempt was made to begin a new area while an
existing area bracket was already open.

The construction is terminated by the GpiEndArea function.

You can use the following list of functions to define an area. They are used between the
GpiBeginArea and GpiEndArea functions.

• GpiBeginElement
• GpiBox (with the /Control parameter set to DRO_OUTLINE)
• GpiCallSegmentMatrix
• GpiComment
• GpiElement (containing a valid call)

Chapter 5. Graphics Functions 5-13

GpiBeginArea
Begin Area

• GpiEndElement
• GpiFullArc (with the /Control parameter set to ORO_ OUTLINE)
• Gpilabel
• Gpiline
• GpiMove
• GpiPartialArc
• GpiPointArc
• GpiPolyFillet
• GpiPolyFilletSharp
• GpiPolyline
• GpiPolySpline
• GpiPop (that pops a valid call)
• GpiSetArcParams
• GpiSetAttrMode
• GpiSetAttrs (setting valid line attributes only, or foreground color/mix (only) for other primitive

types)
• GpiSetColor
• GpiSetCurrentPosition
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetMix
• GpiSetModelTransformMatrix

GpiBox and GpiFullArc are valid only in an area bracket (that is, between the GpiBeginArea and
GpiEndArea functions with the /Control parameter set to ORO_ OUTLINE. Other values of this
parameter on these functions cause an implicit area bracket around the function.

Shading of the area is performed using the current pattern, as set by the GpiSetPattern function. The
color and color-mixing modes that are current at the time GpiBeginArea is issued define the
attributes to be applied to the pattern. The pattern reference point is also subjected to all of the
transformations (including the model transformation) in force at the time of GpiBeginArea.

The area boundary consists of one or more closed figures, each constructed by:

• GpiBox
• GpiFullArc
• GpiPointArc
• Gpiline
• GpiPartialArc
• GpiPolyFilletSharp
• GpiPolyline
• GpiPolySpline
• GpiPolyFillet

The GpiSetColor and GpiSetMix functions can be used to control how the area boundary is to be
colored. The GpiSetlineEnd, GpiSetlineJoin, GpiSetlineType, and GpiSetlineWidth functions can be
used to control line attributes as required. GpiSetAttrs can be used as an alternative way of setting
these attributes. GpiSetArcParams can be used to control the shape of arcs produced by GpiFullArc,
GpiPointArc, and GpiPartialArc.

The start of a new figure is indicated by:

• GpiCallSegmentMatrix
• GpiFullArc
• GpiMove
• GpiPop (or end of called segment), which pops current position or a model transform
• GpiSetCurrentPosition
• GpiSetModelTransformMatrix

Note: GpiCloseFigure must not be issued within an area.

5-14 PM Programming Reference

GpiBeginArea
Begin Area

A GpiBox or GpiFullArc function called within an area definition generates a complete closed figure.
These functions must not be used within another figure definition.

The starting point of each closed figure is the current position when this function is made, or the
point specified by the function starting the figure. Figure construction continues until either a new
figu,~e is started, or GpiEndArea is called.

Each figure should be closed, that is, the start and end points should be identical. If these points are
not identical, they are joined by a straight line to arbitrarily close the figure.

The area interior is constructed either in alternate mode or in winding mode. In alternate mode,
whether any point is within the interior is determined by drawing an imaginary line from that point to
infinity; if there is an odd number of boundary crossings, the point is inside the area, if there is an
even number of crossings, it is not.

In winding mode, the direction of the boundary lines is taken into account. Using the same imaginary
line, the number of crossings is counted, as in alternate mode, but boundary lines going in one
direction score plus one, and boundary lines going in the other direction score minus one. The point
is in the interior if the final score is not zero.

In either mode, all of the boundaries of the area are considered to be part of the interior.

If the flOptions parameter of this function is BA_NOBOUNDARY, the boundary lines are not drawn,
but the shading ends at the boundaries. If the flOptions parameter specifies BA_BOUNDARY, the
boundary lines and any lines added to close the figures are drawn. The lines are drawn using the
current line attributes (which can be changed during construction) and shading occurs within the
boundaries.

The current position is not changed by this function, but it can be changed by the moves, arcs, fillets,
and lines between this function and the GpiEndArea function, including any used to close figures.

Area definitions cannot be nested. This function and the GpiEndArea function for one area must be
within the same segment.

You can have no more than 1 450 straight-line vertices that describe the area.

During correlation in nonretained mode, a hit on any function within an area returns GPl_HITS in the
GpiEndArea function. GPl_HITS is not returned on any of the primitives that occur within the area
definition.

Related Functions
• GpiBeginPath
• GpiEndArea
• GpiSetPattern
• GpiSetPatternRefPoint
• GpiSetPatternSet
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Chapter 5. Graphics Functions 5-15

GpiBeginArea
Begin Area

Graphic Elements and Orders
Element Type: OCODE_GBAR

Order: Begin Area

Example Code
This example uses the GpiBeginArea function to draw an area. The area, an isosceles triangle, is
drawn with boundary lines and filled using the alternate filling mode.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { a, a }; /* first vertex */
POINTL ptlTriangle[] = { 1ae, 1aa. 2aa. a, a. a }; /* vertices */

GpiMove(hps, &ptlStart); /*move to starting point (0, a) */
GpiBeginArea(hps, /* start the area bracket */

BA BOUNDARY I /* draw boundary lines */
BA=ALTERNATE); /*fill interior with alternate mode*/

GpiPolyline(hps, 3L, ptlTriangle); /*draw the triangle */
GpiEndArea(hps); /*end the area bracket*/

5-16 PM Programming Reference

GpiBeginElement -
Begin Element

#define INCL_GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

BOOL GplBeglnElement {HPS hps, LONG !Type, PSZ pszDesc)

This function defines the start of an element within a segment.

Parameters
hps (HPS) - input

Presentation-space handle.

!Type (LONG) - input
Type to be associated with the element.

Application-defined elements should have type values in the range X '81xxxxxx 1 through

X 1 FFxxxxxx 1 to avoid conflict with system-generated elements.

pszDesc (PSZ) - input
Description.

Variable-length character string, recorded with the type.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_ALREADY_IN_ELEMENT

PMERR_DESC_STRING_TRUNCATED

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An attempt was made to begin a new element while an

existing element bracket was already open.

An attempt was made to supply a description string with

GpiBeginElement that was greater then the permitted

maximum length (251 characters). The string was

truncated.

This function starts an element, stored in the current segment, in retain or draw-and-retain mode

(see GpiSetDrawingMode). The element is drawn in draw or draw-and-retain mode.

The drawing functions that form the contents of the element are passed on subsequent GPI functions

(only those functions that can generate orders are logically part of the element). The element

extends up to the next GpiEndElement function (or GpiCloseSegment, which causes an implicit

GpiEndElement to be generated).

Grouping drawing functions together into an element is useful if the set of functions is to be changed

or replaced together at a later time. Drawing functions that are not explicitly grouped together in an

element bracket (GpiBeginElement-GpiEndElement pair) generate a single element for each GPI

function.

Chapter 5. Graphics Functions 5-17

GpiBeginElement
Begin Element

The GpiElement function, that itself generates a complete element, is not allowed within an element
bracket. The Gpilabel function is also not allowed within an element bracket. Elements must not be
nested within one segment.

Related Functions
• GpiCloseSegment
• GpiDeleteElement
• GpiDeleteElementRange
• GpiDeleteElementsBetweenlabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPointerAtlabel

Graphic Elements and Orders
The element type is defined by the /Type parameter.

Order: Begin Element

Example Code
This example uses the GpiBeginElement function to create an element in a segment. The element

type is 1 and the element description is "Triangle". The application can use these later to identify the
element.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps;
POINTL ptlStart = { e, e }; /* first vertex */
POINTL ptlTriangle[] = { 100, lee, 2ee, e, e, e }; /* vertices */

GpiBeginElement(hps,
lL,
"Triangle");

GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndElement(hps);

5-18 PM Programming Reference

/* start element bracket */
/* element type is 1 */
/* element description */
/* move to start point (e, e) */
/* draw triangle */
/* end element bracket */

GpiBeginPath
Begin Path

#define INCL_GPIPATHS I* Or use INCL_GPI or INCL_PM */

BOOL GplBeglnPath (HPS hps, LONG IPath)

This function specifies the start of a path.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Path identifier.

This must be 1.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PATH_ID

PMERR_ALREADY_IN_PATH

PMERR_INV _IN_AREA

Remarks
Paths can be used for these purposes:

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An attempt was made to begin a new path while an
existing path bracket was already open.

An attempt was made to issue a function invalid inside an

area bracket. This can be detected while the actual

drawing mode is draw or draw-and-retain or during

segment drawing or correlation functions.

• To generate lines and curves that have a geometric width (that is, a width that is subject to

transformations); see GpiModifyPath and GpiStrokePath.

• To generate lines and curves that have cosmetic width; see GpiOutlinePath. In particular, if the

lines and curves are defined by characters drawn with an outline font, hollow characters are

produced. Hollow characters can also be drawn outside paths, using the FATTR_SEL_OUTLINE

FATTRS option with the GpiCreateLogFont function.

• To generate nonrectangular shapes to be used for clipping; see GpiSetClipPath.

• To generate shapes to be filled; see GpiFillPath.

Note: Areas can also be used for filling; see GpiBeginArea.

• To generate shapes to be converted to regions on which the region-combination function,

GpiCombineRegion, can be used; see GpiPathToRegion.

Chapter 5. Graphics Functions 5-19

GpiBeginPath
Begin Path

There are two stages in the process of describing a path:

1. Path specification
2. Path definition.

Path Specification
A path is specified by a number of figures, within a GpiBeginPath-GpiEndPath pair. Each figure is
specified by line functions, or curve functions, or both, and is separated from other figures by one of
these functions:

• GpiCallSegmentMatrix
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiFullArc
• GpiMarker
• GpiMove
• GpiPolyMarker
• GpiPop (which restores the current position)
• GpiSetCurrentPosition
• GpiSetModelTransformMatrix

A figure that is terminated by one of the functions in this list is said to be an open figure. A figure
can also be terminated by a GpiCloseFigure function. This is said to be a closed figure.

A GpiBox or GpiFullArc function within a path specifies a complete closed figure. These functions
must not be used within another figure specification.

GpiBeginPath initializes the path to be empty.

Path specification functions are terminated by GpiEndPath. If there are no primitives between the
GpiBeginPath and GpiEndPath functions, a null path is specified. The GpiEndPath that terminates
this path specification must occur within the same segment as the GpiBeginPath function.

Path specification functions can occur within a segment bracket.

Path Definition
The process of path definition causes a description of the path to be built in the currently associated
device context. This description is used during any subsequent operation on the path. If the
definition occurred by the drawing of a retained segment containing specification functions, these
may subsequently be edited, with no effect on the path definition, until the segment is drawn again.

If the drawing mode (see GpiSetDrawingMode) is set to draw or draw-and-retain, the path is defined
as it is specified. If drawing mode is retain, path definition does not occur until the segment
containing the path specification is drawn.

When a path has been defined, the definition cannot be reopened. An attempt to redefine the path
results in the definition being replaced.

As the path definition is kept in the device context, association of the presentation space with a new
device context means that the definition is lost.

When it has been defined, a path can be used only in a single GpiFillPath, GpiStrokePath,
GpiOutlinePath, GpiPathToRegion, or GpiSetClipPath function. Alternatively, a path can be modified
once only with a GpiModifyPath function, and then used in a single GpiFillPath, GpiPathToRegion, or
GpiSetClipPath function. If a path is required to be reused in a normal (not a micro) presentation
space, it can be created in a retained segment (for example, using draw-and-retain mode [see
GpiSetDrawingMode]). This segment must be drawn whenever the definition has to be recreated.
This may be done even if the application is otherwise nonretained. Otherwise, the application must

5-20 PM Programming Reference

GpiBeginPath
Begin Path

reissue all the individual functions to reconstruct the path whenever the definition has to be
recreated.

A path definition is bound in device coordinates at the time the path is defined. If any transforms
(other than the final windowing transform) are subsequently changed, they have no effect on the path
itself. However, they affect the thickness if the path is to be stroked using GpiModifyPath, and they
affect the pattern reference point if the path is to be filled with GpiFillPath. The transforms affect both
the thickness and the pattern reference point if GpiStrokePath is used.

Other Remarks
Line type and line width have no effect on a path. Geometric line width takes effect if the path is
stroked with GpiModifyPath or GpiStrokePath.

These functions can be used inside the path bracket (that is, between the GpiBeginPath function and
the following GpiEndPath function) to define the path:

• GpiBeginElement (containing valid calls • GpiPolyline
only) • GpiPolySpline

• GpiBox (must specify DRO_OUTLINE option) • GpiPop (if only a valid call is popped)
• GpiCallSegmentMatrix • GpiSetArcParams
• GpiCharString • GpiSetAttrMode
• GpiCharStringAt • GpiSetAttrs
• GpiCharStringPos • GpiSetCharAngle
• GpiCharStringPosAt • GpiSetCharBox
• GpiCloseFigure • GpiSetCharDirection
• GpiComment • GpiSetCharMode
• GpiElement (containing a valid call) • GpiSetCharSet
• GpiEndElement • GpiSetCharShear
• GpiFullArc (must specify DRO_OUTLINE • GpiSetColor

option) • GpiSetCurrentPosition
• Gpilabel • GpiSetlineEnd
• Gpiline • GpiSetlineJoin
• GpiMarker • GpiSetlineType
• GpiMove • GpiSetlineWidth
• GpiPartialArc • GpiSetMarker
• GpiPointArc • GpiSetMarkerBox
• GpiPolyFillet • GpiSetMarkerSet
• GpiPolyFilletSharp • GpiSetMix
• GpiPolyMarker • GpiSetModelTransformMatrix

The GpiCharString ... functions, GpiQueryCharStringPos, GpiQueryCharStringPosAt, and
GpiQueryTextBox are allowed only if the current font is an outline font.

You can have no more than 1 450 straight line vertices that describe the path. Curves are
decomposed into straight lines internally, and the number of resulting vertices are also subject to
this limit. The same applies to outline font character strings. If solid-filled outline characters are to
be drawn, it is better to do this outside a path definition. GpiModifyPath and GpiStrokePath increase
the number of lines in the path, and will cause a path initially containing more than 297 straight lines
to exceed the limit of 1 450.

It is not valid for this function to occur within an area definition.

Chapter 5. Graphics Functions 5-21

GpiBeginPath
Begin Path

Related Functions
• GpiBeginArea
• GpiCloseFigure
• GpiEndPath
• GpiFillPath
• GpiModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiSetClipPath
• GpiStrokePath
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GBPTH

Order: Begin Path

Example Code
This example uses the GpiBeginPath function to create a path. The path, an isosceles triangle, is
given path identifier 1. After the path bracket is ended using GpiEndPath, a subsequent call to the
GpiFillPath function draws and fills the path.

#define INCL_GPIPATHS
#include <os2.h>

/* GPI Path functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { e. 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100. 100. 200. 0. 0. 0 }; /* vertices */

GpiBeginPath(hps. ll);
GpiMove(hps. &ptlStart);
GpiPolyline(hps. 2L. ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);
GpiFillPath(hps. lL. FPATH_ALTERNATE);

5-22 PM Programming Reference

/* start the path bracket */
/* move to starting point */
/* draw two sides */
/* close the triangle */
/* end the path bracket */
/* draw and fill the path */

~\
)

GpiBitBlt -
Bit Bit

#define INCL_GPIBITMAPS /*Or use INCL_GPI or INCL_PM. Also in COMMON section *I

LONG GpiBitBlt (HPS hpsTarget, HPS hpsSource, LONG ICount, PPOINTL aptlPoints,

LONG IRop, ULONG flOptions)

This function copies a rectangle of bit-map image data.

Parameters
hpsTarget (HPS) - input

Target presentation-space handle.

hpsSource (HPS) - input
Source presentation-space handle.

ICount (LONG) - input
Point count.

Number of points specified in apt/Points.

If this is 3, a source rectangle of the same size as the target rectangle is used. If it is 4,
stretching or compression is performed as necessary. If compression is performed, the
f/Options parameter determines how eliminated rows or columns are handled.

aptlPoints (PPOINTL) - input
Point array.

Array of /Count points, in the order Tx1, Ty1, Tx2, Ty2, Sx1, Sy1, Sx2, Sy2, where:

Tx1,Ty1 Specify the lower-left corner of the target rectangle in target device coordinates.

Tx2,Ty2 Specify the upper-right corner of the target rectangle in target device coordinates.

Sx1 ,Sy1 Specify the lower-left corner of the source rectangle in source device coordinates.

Sx2,Sy2 Specify the upper-right corner of the source rectangle in source device coordinates
(not required if neither stretching nor compression is to be performed).

IRop (LONG) - input
Mixing function required.

The value of /Rop required to achieve any given result can be determined from the following

table. The final value of each bit in every pel depends on the values of the corresponding bits in
the pattern (P), source (S), and the original target value (T initial). Each row of the table shows
one of the 8 possible combinations of these values. For each combination, mark the desired
final target value in the last column. The 8 bits in this column then show the value of the least

significant byte of /Rop required to achieve this mixing function. For example, if the required
mixing function is to copy the source to the target, then the T (final) column will be the same as
the S column, and so /Rop will have the binary value 11001100, or the hexadecimal value OOCC.

p s T (initial) T (final)

0 0 0 Bit 0 (least significant)

0 0 1 Bit 1
0 1 0 Bit 2
0 1 1 Bit3
1 0 0 Bit4
1 0 1 Bit 5
1 1 0 Bit 6

1 Bit 7 (most significant)

Mnemonic names are available for commonly used mixes:

Chapter 5. Graphics Functions 5-23

GpiBitBlt
Bit Bit

ROP_SRCCOPY
ROP_SRCPAINT
ROP_SRCAND
ROP_SRCINVERT
ROP_SRCERASE
ROP_NOTSRCCOPY
ROP_NOTSRCERASE
ROP_MERGECOPY
ROP_MERGEPAINT
ROP_PATCOPY
ROP_PATPAINT
ROP_PATINVERT
ROP _DSTINVERT
ROP_ZERO
ROP_ONE

/* SRC */
/* SRC OR DST */
/* SRC AND DST */
/* SRC XOR DST */
/* SRC AND NOT(DST) */
/* NOT(SRC) */
/* NOT(SRC) AND NOT(DST) */
/* SRC AND PAT */
/* NOT(SRC) OR DST */
/* PAT */
/* NOT(SRC) OR PAT OR DST */
/* DST XOR PAT */
/* NOT(DST) */
/* 0 */
/* 1 */

flOptlons (ULONG) - input
Options.

The options define how eliminated lines or columns are treated If a compression is performed.

Bits 15 through 31 off/Options may be used for privately supported modes for particular devices.

BBO_OR The default. If compression is necessary, logical-OR the eliminated rows or
columns. This is useful for white on black.

BBO_AND If compression is necessary, logical-AND the eliminated rows or columns. This
is useful for black on white.

BBO_IGNORE If compression is necessary, ignore the eliminated rows or columns. This is
useful for color.

Returns
Correlation and error indicators:

GPl_OK Successful completion

GPl_HITS Correlate hits

GPl_ERROR Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _BITBLT _MIX

PMERR_INV _BITBLT _STYLE

PMERR_BITMAP _NOT _FOUND

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_NO_BITMAP _SELECTED

PMERR_INCORRECT _DC_ TYPE

. 5-24 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid /Rop parameter was specified with a GpiBitBlt
or GpiWCBitBlt function.

An invalid options parameter was specified with a
GpiBitBlt or GpiWCBitBlt function.

A attempt was made to perform a bit-map operation on a
bit map that did not exist.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt has been made to operate on a memory
device context that has no bit map selected.

An attempt was made to perform a bit-map operation on a
presentation space associated with a device context of a
type that is unable to support bit-map operations .

)

GpiBitBlt
Bit Bit

PMERR_INCOMPATIBLE_BITMAP An attempt was made to select a bit map or perform a
BitBlt operation on a device context that was
incompatible with the format of the bit map.

Remarks
A rectangle of bit-map image data is copied from a bit map selected into a device context associated
with the source presentation space, to a bit map selected into a device context associated with the
target presentation space. Alternatively, either presentation space may be associated with a device

context that specifies a suitable raster device, for example, the screen.

Note: In either case, both source and target device contexts must apply to the same physical device.
It is an error if this device does not support raster operations.

Unless the device is a banded printer, both source and target may refer to the same presentation
space. If so, the copy is nondestructive when source and target rectangles overlap.

A rectangle can be specified in device coordinates, for both source and target. These rectangles are
noninclusive; that is, they include the left and lower boundaries in device space, but not the right and
upper boundaries. Thus, if the lower-left maps to the same device pel as the upper-right, that
rectangle is considered to be empty.

If the upper-right source point is specified, and the source and target rectangles are of different
sizes, stretching, or compressing, or both, of the data occurs. f/Options specifies how eliminated
rows or columns of bits are to be treated if compression occurs. Note that the pattern data is never
stretched or compressed.

The following current attributes of the target presentation space are used (other than for converting
between monochrome and color, as described below):

Area color
Area background color
Pattern set
Pattern symbol.

The color values are used in conversion between monochrome and color data. This is the only
format conversion performed by this function. The conversions are:

• Output of a monochrome pattern to a color device.

In this instance, the pattern is converted first to a color pattern using the current area colors:

- source 1s-+ area foreground color
- source Os-+ area background color.

• Copying from a monochrome bit map to a color bit map (or device).

The source bits are converted as follows:

- source 1s-+ image foreground color
- source Os-+ image background color.

• Copying from a color bit map to a monochrome bit map (or device).

- source pels that are the source image background color-+ image background color.
- all other pels -+ image foreground color.

Note: In all of the above instances (except where the source image background color is used) it is
the attributes of the target presentation space that are used.

If the mix (/Rop) does not call for a pattern, the pattern set and pattern symbol are not used. If it does
not require a source (this is not valid when f/Options is in the range 1 through 3), hpsSource is not
required and must be null. Sx1,Sy1 is also ignored in this instance.

Chapter 5. Graphics Functions 5-25

GpiBitBlt
Bit Bit

Neither the source nor the pattern is required when a bit map, or part of a bit map, is to be cleared to
a particular color.

If the mix does require both source and pattern, a three-way operation is performed.

If a pattern is required, dithering may be performed for solid patterns in a color that is not available
on the device; see GpiSetPattern.

If any of the source data is not available (when, for example, the source presentation space is
connected to a screen window, and the source rectangle is not totally visible), the contents of the
unavailable parts are undefined. This can be checked with GpiRectVisible before calling this
function.

This function is independent of drawing mode (see GpiSetDrawingMode); the effect always occurs
immediately, and it is not retained even if the drawing mode is draw-and-retain or retain. Its effect,
however, is recorded in a metafile, but note that this is successful only if the metafile is replayed on
a similar device, with draw drawing mode.

The current position in both source and target presentation spaces is unchanged by this function.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Related Functions
• DevQueryCaps
• DevOpenDC
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

5-26 PM Programming Reference

\.\
I

/ Example Code

GpiBitBlt -
Bit Bit

This example uses GpiBitBlt to copy a bit map from one presentation space to another. Two
presentation spaces are created: one associated with a memory context, and the other associated
with a screen context. The function copies the memory context bit map that is 100 pels wide and 100
pels high into a 50-by-50-pel rectangle at the location (300,400) on the screen, thereby causing the bit
map to be visible in the window. Since the raster operation is ROP_SRCCOPY, GpiBitBlt replaces the
image previously in the target rectangle. The function compresses the bit map to fit the new
rectangle by discarding extra rows and columns as specified by the BBO_IGNORE option.

#define INCL_GPIBITMAPS
#define INCL_DEV
#define INCL_GPICONTROL
#define INCL_WINWINDOWMGR
#include <os2.h>

/* Bit map functions */
/* Device Function definitions */
/* GPI control Functions */
/* Window Manager Functions */

HAB hab; /* anchor-block handle */
HPS hpsMemory; /* presentation-space handle */
HPS hpsScreen; /* presentation-space handle */
HDC hdcScreen; /* Device-context handle */
HDC hdcMemory; /* Device-context handle */
SIZEL sizl={0, 0}; /* use same page size as device */
/* context data structure */
DEVOPENSTRUC dop = {0L, "DISPLAY", NULL, 0L, 0L, 0L, 0L, 0L, 0L};
POINTL aptl[4] = {

300, 400, /* lower-left corner of target */
350, 450, /* upper-right corner of target */
0, 0, /* lower-left corner of source */
100, 100 }; /* upper-right corner of source */

HWND hwnd;

/* create memory device context and presentation space, associating
DC with the PS */

hdcMemory = DevOpenDC(hab, OD_MEMORY, 11 *11
, SL, (PDEVOPENDATA)&dop,

NULLHANDLE);
hpsMemory = GpiCreatePS(hab, hdcMemory, &sizl, GPIA_ASSOC

I PU_PELS);

/* create window device context and presentation space, associating
DC with the PS */

hdcScreen = WinOpenWindowDC(hwnd); /*Open window device context*/
hpsScreen = GpiCreatePS(hab, hdcScreen, &sizl, PU_PELS I GPIF_LONG

/*

I GPIA_ASSOC);

. get bit map, associate bit map with memory device context,
draw into bit map

*/

/* display the bit map on the screen by copying it from the memory
device context into the screen device context */

GpiBitBlt(hpsScreen, hpsMemory, 4L, aptl, ROP_SRCCOPY, BBO_IGNORE);

Chapter 5. Graphics Functions 5-27

GpiBox
Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplBox (HPS hps, LONG IControl, PPOINTL pptlPolnt, LONG IHRound, LONG IVRound)

This function draws a rectangular box with the current position and a specified position at diagonally
opposite corners.

Parameters
hps (HPS) - input

Presentation-space handle.

IControl (LONG) - input
Outline and fill control.

Specifies if the interior of the box is to be filled, and if the outline is to be drawn:

DRO_FILL Fill interior

DRO_OUTLINE Draw outline

DRO_OUTLINEFILL Draw outline and fill interior.

pptlPolnt (PPOINTL) - input
Corner point.

The coordinates of the corner that is diagonally opposite to the current position.

IHRound (LONG) - input
Corner-rounding control.

Horizontal length of the full axis of the ellipse that is used for rounding at each corner.

IVRound (LONG) - input
Corner-rounding control.

Vertical length of the full axis of the ellipse that is used for rounding at each corner.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _BOX_CONTROL

PMERR_INV _COORDINATE

PMERR_INV _BOX_ROUNDING_PARM

5-28 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid control parameter was specified with GpiBox.

An invalid coordinate value was specified.

An invalid corner rounding control parameter was
specified with GpiBox.

GpiBox
Box

Remarks
The sides of the box are parallel to the world coordinate x- and y-axes.

The four corners of the box can be rounded with a quarter ellipse. The size of this ellipse is specified
by IHRound and IVRound. If IHRound equals IVRound, the corners of the box are rounded with a
quarter circle.

If either IHRound or IVRound is zero, no rounding occurs.

If the current position is {xO,yO) and ppt/Point is set to (x1,y1), the box is drawn from {xO,yO) to {x1,y0)
to {x1,y1) to {x0,y1) to {xO,yO). The direction of drawing is significant in area winding mode; see
GpiBeginArea.

The current position is unchanged by this function.

Either the outline of the box, or its interior, or both, can be drawn.

If this function occurs within an area or path definition, it generates a complete closed figure
{DRO_OUTLINE must be specified). It must not occur within any other figure definition.

If correlation is in force, a hit always results if the pick aperture intersects the box boundary.
However, if the pick aperture lies wholly within the box, a hit only occurs if the interior is being
drawn {DRO_FILL or DRO_OUTLINEFILL).

Related Functions
• GpiBox
• GpiQueryCurrentPosition
• GpiSetCurrentPosition
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_ GCBOX

Order: Box at Current Position

Chapter 5. Graphics Functions 5-29

GpiBox
Box

Example Code
This example calls GpiBox to draw a series of rounded boxes, one inside another.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps; /* presentation space handle
POINTL ptl = { 100, 100 };
SHORT i;

for (i = 0; i < 5; i++)
GpiBox(hps,

DRO_OUTLINE,
&ptl,
i * 10L,
i * 10L);

/* handle to a presentation space
/*draw the box outline */
/* address of the corner */
/* horizontal corner radius */
/* vertical corner radius */

5-30 PM Programming Reference

*/

*/

*/

1
)

GpiCallSegmentMatrix
Call Segment Matrix

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

LONG GplCallSegmentMatrlx (HPS hps, LONG ISegment, LONG ICount,
PMATRIXLF pmatlfArray, LONG !Options)

This function calls a segment and applies an instance transform to it.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegment (LONG) - input
Identifier of segment to be called.

This must be greater than 0.

The segment must not be a chained segment.

ICount (LONG) - input
Number of elements.

The number of elements of pmatlfArray to be examined, starting from the beginning of the
structure. If /Count is less than 9, the remaining elements default to the corresponding elements
of the identity matrix. If /Count = 0, the identity matrix is used.

pmatlfArray (PMA TRIXLF) - input
Instance transform matrix.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

IOptlons (LONG) - input
Transformation options.

Specify how the transform defined by the pmatlfArray parameter should be used to modify the
existing current model transform for the duration of the function. The existing transform is the
concatenation, in the current function context, of the instance, segment, and model transforms,
from the root segment downwards.

TRANSFORM_REPLACE The previous model transform is discarded and replaced by the
specified transform.

TRANSFORM_ADD The specified transform is combined with the existing model
transform. The existing transform precedes the new transform. This
option is most useful for incremental updates to transforms.

TRANSFORM_PREEMPT The specified transform is combined with the existing model
transform. The new transform precedes the existing transform.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS An invalid presentation-space handle was specified.

Chapter 5. Graphics Functions 5-31

GpiCallSegmentMatrix
Call Segment Matrix

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_COUNT

PMERR_INV _MATRIX_ELEMENT

PMERR_INV _TRANSFORM_ TYPE

PMERR_CALLED_SEG_NOT_FOUND

PMERR_ CALLED _SEG_IS_ CHAINED

PMERR_CALLED_SEG_IS_CURRENT

PMERR_SEG_CALL_STACK_EMPTY

Remarks

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

An invalid transformation matrix element was specified.

An invalid options parameter was specified with a
transform matrix function.

An attempt was made to call a segment that did not exist.

An attempt was made to call a segment that has a
chained attribute set.

An attempt was made to call a segment that is currently
open.

A call stack empty condition was detected when
attempting a pop function during GpiPop or segment
drawing.

The instance transform specified is a model transform that is used to modify the current model
transform, in a way that depends upon the value of the /Options parameter, before calling the
segment. This new transform applies only to the called segment. On return, it is reset to the model
transform in operation before the function was called.

The transform is specified as a one-dimensional array of elements, being the first /Count elements of
a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

(a,b,0,c,d,0,e,f,l)

A point with coordinates {x,y) is transformed to the point

(a*x + c*y + e, b*x + d*y + f)

The called segment must have a unity transform for the viewing transform {see
GpiSetViewi ngTransform Matrix).

If scaling values greater than unity are given (which only applies if the presentation space coordinate
format as set by the GpiCreatePS function is GPIF _LONG), it is possible for the combined effect of
this and any other relevant transforms to exceed fixed-point implementation limits. This causes an
error.

Related Functions
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData

5-32 PM Programming Reference

GpiCallSegmentMatrix -
Call Segment Matrix

• GpiOpenSegment
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority
• GpiSetSegmentTransformMatrix

Graphic Elements and Orders
Element Tyce: OCODE_GCALLS

Order: Push and Set Model Transform

Order: Call Segment

Order: Pop

Example Code
This example calls the GpiCallSegmentMatrix function to draw a segment three times. Each time

the segment is drawn, the instance transformation doubles in size. The result is three triangles with

the last triangle twice the size of the second, and the second twice the size of the first.

#define INCL_GPITRANSFORMS
#define INCL_GPISEGMENTS
#define INCL_GPIPRIMITIVES
#include <os2.h>

HPS hps;
USHORT i;

/* GPI Transform functions
/* Segment functions
/* GPI primitive functions

*/
*/
*/

POINTL ptlStart = { 0, e }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, e, e, e }; /* vertices */
MATRIXLF matlflnstance = { MAKEFIXED(l, 0), MAKEFIXED(G, 0), e,

MAKEFIXED(e, e), MAKEFIXED(l, e), e,
e, e, 1 };

GpiOpenSegment(hps, lL);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

for (i = e; i < 3; i ++)
{
/*

/* opens segment */
/* moves to start point (e, e) */
/* draws triangle */
/* closes segment */

* Draw the segment after adding the matrix to the model
* transformation.
*/

GpiCallSegmentMatrix(hps, lL, 9, &matlflnstance, TRANSFORM_ADD);
matlflnstance.fxMll *= 2;
matlflnstance.fxM22 *= 2;
}

Chapter 5. Graphics Functions 5-33

/
GpiCharString
Character String

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplCharStrlng (HPS hps, LONG ICount, PCH pchStrlng)

This function draws a character string starting at the current position.

Parameters
hps (HPS) - input

Presentation-space handle.

ICounl (LONG) - input
Number of bytes in the string.

The maximum number is 512.

pchString (PCH) - input
Characters to be drawn.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERRJNV _HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERRJNV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
Each character in the string is positioned so that its character reference point is at the current
position. The current position is advanced after each character is drawn to give the position for the
next character.

The characters in the character string are selected from the current character set. The font from
which the characters are selected depends on the current character mode. For a description of
which fonts are used for each of the possible modes, see GpiSetCharMode.

The degree to which approximation of the position and size of characters is allowed, and also the
area used during correlation of the character string, is controlled by the character-mode attribute.

After the string has been drawn, the current position is set to the end of the character string. This is
the point at which the next character would have been drawn, had it existed.

5-34 PM Programming Reference

Related Functions
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiQueryDefCharBox
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDi rection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCCHSTM

Order: Character String Move at Current Position

Example Code

GpiCharString -
Character String

This example uses the GpiCharString function to draw the string 'Hello'. The GpiMove function

moves the current position to (100, 100) so that the string starts there.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps;
POINTL ptlStart;

ptlStart.x = 100L;
ptlStart.y = 100L;

/* presentation space handle
/* beginning of string

/*Start string at (100, 100). */

GpiMove(hps, &ptlStart);

/* Draw the 5-character string. */

GpiCharString(hps, SL, "Hello");

*/

*/
*/

Chapter 5. Graphics Functions 5-35

GpiCharStringAt -
Character String At

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplCharStrlngAt (HPS hps, PPOINTL pptlPolnt, LONG ICount, PCH pchStrlng)

This function draws a character string starting at a specified position.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL} - input
Starting position.

Defines, in world coordinates, the position at which the first character in the string is to be
placed.

ICount (LONG) - input
Number of bytes in the string.

The maximum number is 512.

pchStrlng (PCH) - input
Characters to be drawn.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
The function GpiCharStringAt (hps, point, count, string) is equivalent to:

GpiMove (hps, point)
GpiCharString (hps, count, string)

Each character in the string is positioned so that its character reference point is at the current
position. The current position is advanced after each character is drawn to give the position for the
next character.

5-36 PM Programming Reference

\
)

/

GpiCharStringAt -
Character String At

The font from which the characters in the character string are selected depends on the current
character mode. For a description of which fonts are used for each of the possible modes, see
GpiSetCharMode.

The degree to which approximation of the position and size is allowed, and also the area used during

correlation of the character string, is controlled by the character-mode attribute.

After the string has been drawn, the current position is set to the end of the character string. This is
the point at which the next character would have been drawn, had it existed.

Related Functions
• GpiCharString
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiQueryDefCharBox
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCHSTM

Order: Character Siring Move at Given Position

Chapter 5. Graphics Functions 5-37

GpiCharStringAt -
Character String At

Example Code
This example uses the GpiCharStringAt function to draw the string "Hello" starting at the position
(100, 100). It then uses the GpiMove and GpiCharString functions to draw the same string at exactly
the same position.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps; /* presentation space handle
POINTL ptlStart;

ptlStart.x = teeL;
ptlStart.y = teeL;

/* Draw the string "Hello" at (tee, tee). */

GpiCharStringAt(hps, &ptlStart, 5, "Hello");

/* These two calls are identical to the one above. */

GpiMove(hps, &ptlStart);
GpiCharString{hps, SL, "Hello");

5-38 PM Programming Reference

*/

*/

\
j

GpiCharStringPos -
Character String Position

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplCharSlringPos (HPS hps, PRECTL prclRecl, ULONG flOpllons, LONG ICounl,
PCH pchSlrlng, PLONG alAdx)

This function draws a character string starting at the current position, with formatting options.

Parameters
hps (HPS) - input

Presentation-space handle.

prclRecl (PRECTL) - input
Rectangle structure.

Defines, in world coordinates, the two corners of the rectangle that defines the background of the

characters. It is ignored unless CHS_ OPAQUE or CHS_ CLIP is specified.

flOpllons (ULONG) - input
Formatting options.

Option flags that can be used in combination:

CHS_OPAQUE Background of characters is defined by the rectangle specified by
prc/Rect. The rectangle is to be shaded (with background color and

overpaint) before drawing.

CHS_VECTOR Increments vector (a/Adx) is supplied. If zero, a/Adx is ignored.

CHS_LEAVEPOS Leave the current position at the start of the string. If not set, the current

position is moved to the position at which the next character would have
been drawn, had there been one.

CHS_CLIP Clip the string to the rectangle.

CHS_UNDERSCORE Underscore the characters. See FATTR_SEL_UNDERSCORE on
page A-37 in the FATTRS on page A-36 datatype.

CHS_STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT in the FATTRS
datatype.

Other bits are reserved and must be zero.

ICounl (LONG) - input
Number of bytes in the string.

The maximum number is 512.

pchStrlng (PCH) - input
Characters to be drawn.

alAdx (PLONG) - input
Increment values.

Vector of increment values, in world coordinates. Any negative values are treated as if they

were zero.

Chapter 5. Graphics Functions 5-39

GpiCharStringPos -
Character String Position

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_CHAR_POS_OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

PMERR_INV _LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_RECT An invalid rectangle parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
A vector of increments can be specified, allowing control over the positioning of each character after
the first. This vector consists of distances measured in world coordinates (along the baseline for
left-to-right and right-to-left character directions, and along the shearline for top-to-bottom and
bottom-to-top character directions). Increment i is the distance of the reference point of character
i+ 1 from the reference point of character i. The last increment may be needed to update the current
position.

These increments, when specified, set the widths of each character.

A further option allows a rectangle to be specified that can be used as the background of the string
instead of the normal background. This rectangle is painted using the current character background
color and an overpaint mix (unless this is in a dynamic segment, when leave-alone is used). Both
corners of the rectangle are specified, so that the rectangle is positioned independently of the
current position. Points on the borders of the rectangle are considered to be included within the
rectangle.

Clipping of the string to the rectangle is also allowed. This is independent of whether the rectangle
is actually drawn.

The current position can be updated to the point at which the next character would have been drawn,
had there been one, or it can be left at the start of the string.

Related Functions
• GpiCharString
• GpiCharStringAt
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiQueryDefCharBox
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode

5-40 PM Programming Reference

• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: ETYPE_GCCHSTE

Order: Character String Extended at Current Position

Example Code

GpiCharStringPos -
Character String Position

This example uses GpiCharStringPos to display '13 Characters', starting at position 10,10 and
clipped to a 100x100 rectangle in the lower left corner.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI Primitive functions */

LONG lHits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */
POINTL pptlStart = {10L,10L};

/* Starting position */
RECTL prclRect = {0L,0L,100L,100L};

/* Rectangle structure *I
ULONG flOptions; /* Fonnatting options */
LONG lCount; /* Number of bytes in the string */
char pchString[25]; /*Characters to be drawn */

GpiMove(hps, &pptlStart);

flOptions = CHS_CLIP; /* clip text to rectangle */
lCount = 13;
strcpy(pchString,"13 characters");

/* draw the string */
lHits = GpiCharStringPos(hps, &prclRect, flOptions, lCount,

pchString, NULL);

Chapter 5. Graphics Functions 5-41

GpiCharStringPosAt -
Character String Position At

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GpiCharStrlngPosAt (HPS hps, PPOINTL pptlStart, PRECTL prclRect, ULONG flOptlons,
LONG ICount, PCH pchStrlng, PLONG alAdx)

This function draws a character string starting at a specified position, with formatting options.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlStart (PPOINTL) - input
Starting position.

prclRecl (PRECTL) - input
Rectangle structure.

Defines, in world coordinates, the two corners of the rectangle that defines the background of the
characters. It is ignored unless CHS_OPAQUE or CHS_CLIP is selected.

flOpllons (ULONG) - input
Formatting options.

Option flags that can be used in combination:

CHS_ OPAQUE Background of characters is defined by the rectangle specified by
prc/Rect. The rectangle is to be shaded (with background color and
overpaint) before drawing.

CHS_ VECTOR Increments vector (a/Adx) is supplied. If 0, a/Adx is ignored.

CHS_LEAVEPOS If set, current position is unchanged by this function. If not set, current
position is moved to the position at which the next character would have
been drawn, had there been one.

CHS_CLIP Clip the string to the rectangle.

CHS_UNDERSCORE Underscore the characters. See FATTR_SEL_UNDERSCORE in the
FA TTRS datatype.

CHS_STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT in the FATTRS
datatype.

Other bits are reserved and must be zero.

ICount (LONG) - input
Number of bytes in the string.

The maximum number is 512.

pchStrlng (PCH) - input
Character string.

alAdx (PLONG) - input
Increment values.

Vector of increment values, in world coordinates. Any negative values are treated as if they
were zero.

5-42 PM Programming Reference

Returns
Correlation and error indicators:

GPl_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

GpiCharStringPosAt
Character String Position At

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_CHAR_POS_OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_RECT An invalid rectangle parameter was specified.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
A vector of increments can be specified, allowing control over the position of each character after the
first. This vector consists of distances measured in world coordinates (along the baseline for
left-to-right and right-to-left character directions, and along the shearline for top-to-bottom and
bottom-to-top character directions). Increment i is the distance of the reference point (for example,
lower left corner) of character i+ 1 from the reference point of character i. The last increment may be
needed to update the current position.

These increments, if specified, set the widths of each character.

A further option allows a rectangle to be specified that can be used as the background of the string
instead of the normal background. This rectangle is painted using the current character background
color and an overpaint mix (unless this is in a dynamic segment, when leave-alone is used). Both
corners of the rectangle are specified, so that the rectangle is positioned independently of current
position. Points on the borders of the rectangle are considered to beincluded within the rectangle.

Clipping of the string to the rectangle is also allowed. This is independent of whether the rectangle
is actually drawn.

Current position can be updated to the point at which the next character would have been drawn, had
there been one, or it can be left at the start of the string.

Chapter 5. Graphics Functions 5-43

GpiCharStringPosAt -
Character String Position At

Related Functions
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiQueryDefCharBox
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackM ix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Tyoe: ETYPE_GCHSTE

Order: Character Siring Extended al Given Position

Example Code
This example uses GpiCharStringPosAt to display '13 Characters', starting at position 10, 10 and
clipped to a 100x100 rectangle in the lower left corner.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI Primitive functions */

LONG lHits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */
POINTL pptlStart = {10L,10L};

/* Starting position */
RECTL rclRect = {0L,0L,100L,100L};

/* Rectangle structure */
ULONG flOptions; /* Formatting options */
LONG lCount; /* Number of bytes in the string */
char pchString[14]; /*Characters to be drawn */

flOptions = CHS_CLIP; /* clip text to rectangle */
lCount = 13;
strcpy{pchString,"13 characters");

lHits = GpiCharStringPosAt{hps, &pptlStart, &rclRect, flOptions,
lCount, pchString, NULL);

5-44 PM Programming Reference

GpiCloseFigure
Close Figure

#define INCL GPIPATHS I* Or use INCL_GPI or INCL_PM */

I BOOL GplC-lgure (HPS bps)

This function closes a figure within a path specification.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The current figure is closed by a line drawn to the start point of the figure.

This function need not be used if the path is to be filled (see GpiFillPath), or used as a clip path (see
GpiSetClipPath), as any figures in the path that have not been closed are automatically closed at that
time. It should be used, however, for any closed figures within paths that are subsequently to be
stroked by GpiModifyPath or GpiStrokePath.

This function must not be used outside a path specification. In particular, it must not be used within
an area.

Related Functions
Prerequisite Functions

• GpiBeginPath

Other Related Functions

• GpiEndPath
• GpiModifyPath
• GpiStrokePath

Graphic Elements and Orders
Element Tyoe: OCODE_GCFIG

Order: Close Figure

Chapter 5. Graphics Functions 5-45

GpiCloseFigure
Close Figure

Example Code
This example uses the GpiCloseFigure function to close a triangle drawn in a path bracket. The

triangle starts at (0,0), and as the current position just before the GpiCloseFigure is (200,0), the
function closes the triangle by drawing a line from (200,0) to (0,0).

#define INCL_GPIPATHS
#include <os2.h>

/* GPI Path functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 };
POINTL ptlPoints[] = { 100, 100, 200, 0 };

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 2L, ptlPoints);
GpiCloseFigure(hps);
GpiEndPath(hps);

5-46 PM Programming Reference

/* start the path bracket */
/* move to starting point */
/* draw two sides */
/* close the triangle */
/* end the path bracket */

GpiCloseSegment
Close Segment

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

I BOOL GplCloseSagmant (HPS hps)

This function closes the current segment.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_NOT_IN_SEG

PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in

a micro presentation space.

An attempt was made to end a segment using
GpiCloseSegment while not in a segment bracket.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

• A segment has been opened, closed, or drawn.
• GpiAssociate was issued while an area bracket was

open.
• A drawn segment has opened an area bracket and

ended without closing it.

Closing a segment does not delete the segment or affect the graphics primitives that are drawn.

Any attributes that have been preserved (see the AM_PRESERVE option of GpiSetAttrMode) are

popped (restored) when the GpiCloseSegment function is issued in draw or draw-and-retain modes,

and at the end of the segment when the segment is subsequently drawn in draw-and-retain or retain

modes (see GpiSetDrawingMode).

If an area or path is open when a segment is closed, the area or path is terminated. When the

drawing mode is draw or draw-and-retain, a warning is given, but the close processing continues.

No warning is given for retain mode. If a retained segment with an open area or path is drawn, an

error occurs.

If an element bracket is open when a segment is closed, the element bracket is first closed

automatically.

Chapter 5. Graphics Functions 5-47

GpiCloseSegment
Close Segment

If this function is followed by primitives or attributes, without first opening a segment, the following
may or may not have been reset to their default values:

• Current attribute values and arc parameters
• Current tag
• Current model transform
• Current position
• Current clip path and viewing limits.

Any such quantity can be assumed to contain its default value only if it is known either that it has not
been changed from the default, or that last time it was changed, it was set to its default value. An
application should not be written to depend on the values of these quantities immediately after
GpiCloseSegment.

Subsequent primitives, not preceded by an GpiOpenSegment function, are not retained, irrespective
of the current drawing mode.

The current viewing transform, however, is guaranteed to be reset to unity for primitives outside
segments.

Related Functions
Prerequisite Functions

• GpiOpenSegment

Other Related Functions

• GpiCallSegmentMatrix
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority

Example Code
This example uses the GpiCloseSegment function to close a segment. The GpiOpenSegment opens

the segment; GpiMove and GpiPolyline draw a triangle.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment(hps, ll); /*open the segment */
GpiMove(hps, &ptlStart); /*move to start point (0,0) */
GpiPolyline(hps, 3L, ptlTriangle); /*draw triangle */
GpiCloseSegment(hps); /*close the segment */

5-48 PM Programming Reference

GpiCombineRegion
Combine Region

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

LONG GpiCombineReglon (HPS hps, HRGN hrgnDest, HRGN hrgnSrc1, HRGN hrgnSrc2,
LONG IMode)

This function combines two regions.

Parameters
hps (HPS) - input

Presentation-space handle.

The regions must be owned by the device identified by the currently associated device context.

hrgnDest (HRGN) - input
Handle of destination.

hrgnSrc1 (HRGN) - input
Handle of first source region.

hrgnSrc2 (HRGN) - input
Handle of second source region.

IMode (LONG) - input
Method of combination:

CRGN_OR Union of hrgnSrc1 and hrgnSrc2

CRGN_COPY hrgnSrc1 only (hrgnSrc2 ignored)

CRGN_XOR Symmetric difference of hrgnSrc1 and hrgnSrc2

CRGN_AND Intersection of hrgnSrc1 and hrgnSrc2

CRGN_DIFF hrgnSrc1 and not (hrgnSrc2).

Returns
Complexity of resulting region and error indicators:

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS _BUSY

PMERR_INV _HRGN

PMERR_REGION_IS _CLIP _REGION

PMERR_INV_REGION_MIX_MODE

PMERR_HRGN_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An invalid mode parameter was specified with
GpiCombineRegion.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Chapter 5. Graphics Functions 5-49

GpiCombineRegion
Combine Region

Remarks
Source and destination regions must all be of the same device class. The destination region can be
one of the source regions.

An error is raised if any of the specified regions are currently selected as the clip region (by
GpiSetClipRegion).

Related Functions
• GpiCreateRegion
• GpiDestroyRegion
• GpiEquatRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion

Example Code
This example uses the GpiCombineRegion function to create a complex region consisting of

everything in two rectangles except where they overlap.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions

HPS hps; /* presentation space handle
HRGN hrgnl, hrgn2, hrgn3;
RECTL rclRectl = { 0, 0, 100, 100 };
RECTL rc1Rect2 = { 50, 50, 200, 200 };

/* create first region */
hrgnl = GpiCreateRegion(hps, lL, &rclRectl);
/* create second region */
hrgn2 = GpiCreateRegion(hps, lL, &rc1Rect2);
/* create empty region */
hrgn3 = GpiCreateRegion(hps, 0L, NULL);

*/

*/

/* Combine first and second regions, replacing the empty region. */

GpiCombineRegion(hps, hrgn3, hrgnl, hrgn2, CRGN_XOR);

5-50 PM Programming Reference

~

)

GpiComment -
Comment

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplComment (HPS hps, LONG ILength, PBYTE pbData)

This function adds a comment to the current segment.

Parameters
hps (HPS) - input

Presentation-space handle.

ILength (LONG) - input
Data length.

The length of pbData in bytes. /Length must not be greater than 255.

pbData (PBYTE) - input
Comment string.

No conversion of any kind is performed on the data.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_COUNT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An invalid length or count parameter was specified.

An application can use this function to store some data of its own in the segment if the drawing mode

(see GpiSetDrawingMode) is set to retain or draw-and-retain. It has no effect on drawing. The data

can subsequently be retrieved by the application using GpiQueryElement or GpiGetData.

Graphic Elements and Orders
Element Type: OCODE_GCOMT

Order: Comment

Chapter 5. Graphics Functions 5..;51

GpiComment
Comment

Example Code
This example uses the GpiComment function to comment the contents of a segment.

#define INCL_GPIPRIMITIVES
#define INCL_GPISEGMENTS
#include <os2.h>

/* GPI primitive functions
/* Segment functions

*/
*/

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptllriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment(hps, 0L); /*open the segment */
GpiConment(hps, 18L, "Start point (0, 0) 11

);

GpiMove(hps, &ptlStart);
GpiConment(hps, 13L, "Draw triangle");
GpiPolyline(hps, 3L, ptlTriangle);
GpiCloseSegment(hps); /*close the segment*/

5-52 PM Programming Reference

\
I

v

GpiConvert -
Convert

#define INCL GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplConvert (HPS hps, LONG ISrc, LONG ITarg, LONG ICounl, PPOINTL apllPolnls)

This function converts an array of coordinate pairs from one coordinate space to another.

Parameters
hps (HPS) - input

Presentation-space handle.

ISrc (LONG) - input
Source coordinate space.

ITarg (LONG) - input
Target coordinate space.

ICount (LONG) - input
Number of coordinate pairs in apt/Points.

aptlPolnts (PPOINTL) - input/output
Array of coordinate pair structures.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _ COORD _SPACE

PMERR_COORDINATE_OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid length or count parameter was specified.

An invalid source or target coordinate space parameter

was specified with GpiConvert.

An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or

both) are invalid or too large.

This function replaces each coordinate pair in apt/Points with the converted values.

Valid values for the /Src and /Targ parameters are:

CVTC_WORLD World coordinates
CVTC_MODEL Model space
CVTC_DEFAULTPAGE Page space before default viewing transform

CVTC_PAGE Page space after default viewing transform

CVTC_DEVICE Device space.

Conversions involving either world coordinates or model space should not be performed if the

drawing mode (see GpiSetDrawingMode) is retain.

Chapter 5. Graphics Functions 5-53

GpiConvert
Convert

Related Functions
• GpiCreatePS
• GpiSetDefaultViewMatrix
• GpiSetModelTransformMatrix
• GpiSetPageViewport
• GpiSetSegmentTransformMatrix
• GpiSetViewingTransformMatrix

Example Code
This example uses the GpiConvert function to convert the coordinates of the mouse pointer to the

corresponding coordinates in world space. The system passes mouse coordinates to a window
procedure in the WM_MOUSEMOVE message. The coordinates are device coordinates. After the
coordinates are converted, the GpiMove uses them to move to a new location in world space.

#define INCL_GPITRANSFORMS
#define INCL_GPIPRIMITIVES
#include <os2.h>

MPARAM mpl;
HPS hps;
POINTL ptl;

case WM MOUSEMOVE:

/* GPI Transfonn functions
/* GPI primitive functions

ptl:x = (LONG) SHORTlFROMMP(mpl);
ptl.y =(LONG) SHORT2FROMMP(mpl);
GpiConvert(hps, CVTC_OEVICE, CVTC_WORLO, IL, &ptl);
GpiMove(hps, &ptl);

5-54 PM Programming Reference

*/
*/

GpiConvertWithMatrix
Convert with Matrix

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplConverlWllhMalrlx (HPS hps, LONG ICounl, PPOINTL apllPolnls, LONG ICounl,
PMATRIXLF pmallfArray)

This function converts an array of (x,y) coordinate pairs from one coordinate space to another, using
the supplied transform matrix.

Parameters
hps (HPS) - input

Presentation-space handle.

ICounl (LONG) - input
Point count.

Number of coordinate pairs in apt/Points.

apllPolnls (PPOINTL) - input/output
Array of (x,y) coordinate pair structures.

ICounl (LONG) - input
Number of elements.

The number of elements of pmatlfArray to be examined, starting from the beginning of the
structure. If /Count is less than 9, remaining elements default to the corresponding elements of
the identity matrix. If /Count = 0, the identity matrix is used.

pmalllArray (PMATRIXLF) - input
Instance transform matrix.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_COORDINATE_ OVERFLOW

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Chapter 5. Graphics Functions 5-55

GpiConvertWithMatrix
Convert with Matrix

Remarks
The array contains x1, y1, x2, y2, The input coordinates are replaced by the converted
coordinates.

Only the supplied transform matrix is used, all other current transforms are ignored by this function.

The transform is specified as a one-dimensional array of elements, being the first /Count elements of
a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

(a,b,0,c,d,0,e,f,l)

A point with coordinates (x,y) is transformed to the point

(a*x + c*y + e, b*x + d*y + f)

Example Code
This example uses GpiConvertWithMatrix to convert two coordinate pairs to another coordinate

space defined by the supplied matrix, which has only the first transform element defined.

#define INCL_GPITRANSFORMS
#include <os2.h>

/* GPI Transfonn functions

BOOL fSuccess;
HPS hps;
LONG lCountp;
POINTL apt1Points[2]

LONG lCount;
MATRIXLF pmatlfArray;

/* success indicator
/* Presentation-space handle
/* Point count

= {{0L,0L},{1L,1L}};
/* Array of (x,y) coordinate pair

structures
/* Number of elements
/* Instance transfonn matrix

lCount = 1; /* examine only first element of transfonn matrix */

*/

*/
*/
*/

*/
*/
*/

pmatlfArray.fxMll = 2; /* set first element of transfonn matrix*/

fSuccess = GpiConvertWithMatrix(hps, lCountp, aptlPoints,
lCount, &pmatlfArray);

5-56 PM Programming Reference

~.
I

/

GpiCopyMetaFile
Copy Metafile

#define INCL_GPIMETAFILES /*Or use INCL_GPI or INCL_PM */

I HMF GplCopyMetaFlle (HMF hmf)

This function creates a new metafile and copies the contents of an existing loaded metafile into it.

Parameters
hmf (HMF) - input

Source metafile handle.

Returns
New metafile handle and error indicators:

:;60 New metafile handle

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HMF

PMERR_METAFILE_IN_USE

An invalid metafile handle was specified.

An attempt has been made to access a metafile that is in
use by another thread.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given
process was exceeded.

Remarks
The source metafile must already be loaded or generated. It is identified by a metafile handle. The
new metafile is identified by a handle that is returned by this function, so it may be used, for
example, by GpiPlayMetaFile.

The new metafile is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Related Functions
• GpiDeleteMetaFile
• GpiLoadMetaFile
• GpiPlayMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFilelength
• GpiSaveMetaFile
• GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-57

GpiCopyMetaFile
Copy Metafile

Example Code
This example uses the GpiCopyMetaFile function to make a copy of the metafile loaded using the
GpiloadMetaFile function.

#define INCL_GPIMETAFILES
#include <os2.h>

/* Metafile functions

HAB hab;
HMF hmf, hmf2;

/* anchor block handle
/* metafile handle

/* loads metafile from disk */
hmf = GpiloadMetaFile(hab, "sample.met");

hmf2 = GpiCopyMetaFile(hmf); /* copy the metafile

5-58 PM Programming Reference

*/

*/
*/

*/

\
/

GpiCorrelateChain
Correlate Chain

#define INCL GPICORRELATION I* Or use INCL_GPI or INCL_PM */

LONG GplCorrelateChaln (HPS hps, LONG IType, PPOINTL pptlPlck, LONG IMaxHlts,
LONG IMaxDepth, PLONG alSegTag)

This function performs a correlate operation on the retained segment chain. It returns data for each
tagged primitive that intersects the current aperture, as set by GpiSetPickApertureSize.

Parameters
hps (HPS) - input

Presentation-space handle.

IType (LONG) - input
Segment type.

Type of segment on which correlation is to be performed:

PICKSEL_VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptlPlck (PPOINTL) - input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHlts (LONG) - input
Maximum hits.

Maximum number of hits that can be returned in the a/SegTag parameter.

IMaxDepth (LONG) - input
Number of pairs.

Number of segment and tag pairs to be returned by each hit.

alSegTag (PLONG) - output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,
a set of /MaxDepth segment identifiers and tag pairs is returned.

Returns
Number of hits and error indicators:

~O Number of hits that occurred

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _MAX_HITS

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

Chapter 5. Graphics Functions 5-59

GpiCorrelateChain
Correlate Chain

PMERR_INV _CORRELATE_DEPTH

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _CORRELATE_ TYPE

Remarks

An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

The data returned for each "hit" (or correlation) consists of a set of segment and tag pairs, starting
with the correlated one and followed by the one that called that segment. This is repeated until
either the root segment is reached or /MaxDepth segment and tag pairs are returned.

Only primitives with a nonzero tag in segments with a nonzero identifier are correlated using this
function. Primitives in segments called (to any depth in the hierarchy) from an unnamed segment
are not eligible for correlation.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the root segment is reached before /MaxDepth values, the remaining values are set to zero. If more
than /MaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in INumHits.

A "hit" is an instance of a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the a/SegTag parameter returned. The /NumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in the reverse order of their occurrence.

a/SegTag is set to the hits that are found, up to the maximum defined in the /MaxHits parameter.
Corresponding pairs of elements form the "hit" pairs. The number returned by the function therefore
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the a/SegTag parameter is twice the number
returned by the function (subject to a maximum of IMaxHits) multiplied by the /MaxDepth.

If the /NumHits value returned by the function is greater than that specified in /MaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this function.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the chain. This can be done by either ensuring
that the first segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiCorrelateChain. The latter
method also resets the clip path to no clipping.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment.

5-60 PM Programming Reference

) Examples

Start segment 1
Tag HI
Call 2

End segment 1

Start segment 2
Tag 20
Call 3
Tag 21

Pick Aperture

-----+--1Hi t 1

End segment 2

Start segment 3
Tag 30

------1--1Hi t 2

End segment 3

For IMaxHits = 1 at /MaxDepth = 2:

segment tag
2 21
1 10

Returned /NumHits = 2.

For /MaxHits = 2 at IMaxDepth = 4:

segment
2
1
0
0
3
2
1
0

tag
21
10
0
0
30
20
10
0

Returned INumHits = 2.

Related Functions
• GpiCorrelateFrom
• GpiCorrelateSegment
• GpiSetDrawControl

hi tl.1
hitl.2
hitl.3
hitl.4
hit2.l
hit2.2
hit2.3
hit2.4

• GpiSetPickAperturePosition
• GpiSetPickApertureSize

GpiCorrelateChain -
Correlate Chain

Chapter 5. Graphics Functions 5-61

GpiCorrelateChain
Correlate Chain

Example Code
This example uses GpiCorrelateChain to correlate, using an aperture of default size and centered at
(200,200), on visible and detectable segments and requests one intersection (or hit) and one
segment/tag pair for that hit to be returned. The segments will have been previously defined and
created using GpiSetlnitialSegmentAttrs and GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION
#include <os2.h>

/* GPI Correlation functions

BOOL
SIZEL
LONG
HPS
PO INTL

LONG
LONG
LONG

fSuccess; /* success indicator
psiz1Size={0L,0L}; /* size of pick aperture
lNumHits; /* number of hits or error
hps; /* Presentation-space handle
pptlPick = {200L,200L};

lMaxHits;
lMaxDepth;
alSegTag;

/* Pick (center of aperture) position
/* Maximum hits to be returned
/* Number of pairs to be returned
/* Segment identifiers and tags

fSuccess = GpiSetPickAperturePosition(hps, &pptlPick);

/* set aperture size (use default) */

*/

*/
*/
*/
*/

*/
*/
*/
*/

fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psizlSize);

/* return only one hit */
lMaxHits = ll;

/* return only one segment/tag pair per hit */
lMaxDepth = ll;

/* correlate on visible, detectable segment chains */
lNumHits = GpiCorrelateChain(hps, PICKSEL_VISIBLE, &pptlPick, lMaxHits,

lMaxDepth, &alSegTag);

5-62 PM Programming Reference

)
)

GpiCorrelateFrom
Correlate From

#define INCL GPICORRELATION /*Or use INCL_GPI or INCL_PM */

LONG GplCorrelateFrom (HPS hps, LONG IFlrstSegment, LONG ILastSegment, LONG IType,
PPOINTL pptlPlck, LONG IMaxHits, LONG IMaxDepth,
PLONG alSegTag)

This function performs a correlate operation on a section of the retained segment chain.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstSegment (LONG) - input
Specifies the first segment to be correlated.

It must be greater than 0.

ILastSegment (LONG) - input
Specifies the last segment to be correlated.

It must be greater than 0.

IType (LONG) - input
Type of segments on which correlation is to be performed:

PICKSEL_ VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptlPlck (PPOINTL) - input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHits (LONG) - input
Maximum hits.

Maximum number of hits that can be returned in the a/SegTag parameter.

IMaxDepth (LONG) - input
Number of pairs.

Number of segment and tag pairs to be returned by each hit.

alSegTag (PLONG) - output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,

a set of IMaxDepth segment identifiers and tag pairs is returned.

Chapter 5. Graphics Functions 5-63

GpiCorrelateFrom
Correlate From

Returns
Number of hits and error indicators:

~O Number of hits that occurred

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _CORRELATE_ TYPE

PMERR_INV _COORDINATE

PMERR_INV _MAX_HITS

PMERR_INV_CORRELATE_DEPTH

PMERR_INV_MICROPS_FUNCTION

PMERR_SEG_NOT_FOUND

PMERR_SEG_NOT _CHAINED

PMERR_INV _ SEG_NAME

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An invalid coordinate value was specified.

An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The specified segment identifier did not exist

An attempt was made to issue GpiDrawFrom,
GpiCorrelateFrom or GpiQuerySegmentPriority for a
segment that was not chained.

An invalid segment identifier was specified.

The correlation operation starts at the segment identified by /FirstSegment and includes chained and
called segments up to, and including, the segment identified by /LastSegment.

Data is returned for each tagged primitive that intersects the pick aperture. The data returned for
each "hit" (or correlation) consists of a set of segment and tag pairs, starting with the correlated one
and followed by the one that called the segment. This is repeated until the root segment is reached
or /MaxDepth values are returned.

Only primitives with a nonzero tag (see GpiSetTag) in segments with a nonzero identifier are
correlated using this function. Primitives in segments called (to any depth in the hierarchy) from a
segment O are not eligible for correlation.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the root segment is reached before /MaxDepth values, the remaining values are set to zero. If more
than /MaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in /NumHits.

A "hit" is an instance of a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the a/SegTag parameter returned. The INumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in reverse order of their occurrence.

5-64 PM Programming Reference

GpiCorrelateFrom
Correlate From

alSegTag is set to the hits that are found, up to the maximum defined in the IMaxHits parameter.
Corresponding pairs of elements form the hit pairs. The number returned by the call therefore
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the alSegTag parameter is twice the number
returned by the function (subject to a maximum of IMaxHits) multiplied by the IMaxDepth.

If the INumHits value returned by the function is greater than that specified in IMaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this call.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segments. This can be done either ensuring
that the first segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiCorrelateFrom. The latter
method also resets the clip path to no clipping.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment.

If IFirstSegment does not exist, or is not in the segment chain, an error is raised. If ILastSegment
does not exist, or is not in the chain, or is chained before IFirstSegment, no error is raised and
processing continues to the end of the chain.

Related Functions
• GpiCorrelateChain
• GpiCorrelateSegment
• GpiSetDrawControl
• GpiSetPickAperturePosition
• GpiSetPickApertureSize

Chapter 5. Graphics Functions 5-65

GpiCorrelateFrom
Correlate From

Example Code
This example uses GpiCorrelateFrom to correlate, using an aperture of default size and centered at
(200,200), on visible and detectable segments within the given chain of 2 segments. It requests one
intersection (or hit) and one segment/tag pair for that hit to be returned. The segments will have
been previously defined and created using GpiSetlnitialSegmentAttrs and
GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION
#include <os2.h>

/* GPI Correlation functions

BOOL fSuccess; /* success indicator
SIZEL psizlSize; /* size of pick aperture
LONG lNumHits; /* number of hits or error
HPS hps; /* Presentation-space handle
LONG lFirstSegment; /* Specifies the first segment to be

correlated
LONG lLastSegment; /* Specifies the last segment to be

correlated
PO INTL pptlPick = {200L,200L};

/* Pick (center of aperture) position
LONG lMaxHits; /* Maximum hits to be returned
LONG lMaxDepth; /* Number of pairs to be returned
LONG alSegTag; /* Segment identifiers and tags

fSuccess = GpiSetPickAperturePosition(hps, &pptlPick);

/* set aperture size (use default) */

*/

*/
*/
*/
*/

*/

*/

*/
*/
*/
*/

fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psizlSize);

/* define chain of two segments (1 and 2) */
lFirstSegment = 1;
lLastSegment = 2;

/* return only one hit */
lMaxHits = lL;

/* return only one segment/tag pair per hit */
lMaxDepth = lL;

/* correlate on visible, detectable segments */
lNumHits = GpiCorrelateFrom(hps, lFirstSegment, lLastSegment,

PICKSEL_VISIBLE, &pptlPick, lMaxHits,
lMaxDepth, &alSegTag);

5-66 PM Programming Reference

GpiCorrelateSegment
Correlate Segment

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

LONG GpiCorrelateSegment (HPS hps, LONG ISegment, LONG IType, PPOINTL pptlPick,
LONG IMaxHlts, LONG IMaxDepth, PLONG alSegTag)

This function performs a correlate operation on a specified segment.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegment (LONG) - input
Identifier of the segment to be correlated.

It must be greater than 0.

IType (LONG) - input
Type of segments on which correlation is to be performed:

PICKSEL_ VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptlPlck (PPOINTL) - input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHits (LONG) - input
Maximum hits.

The maximum number of hits that can be returned in the a/SegTag parameter.

IMaxDepth (LONG) - input
Number of pairs.

Number of segment/tag pairs to be returned by each hit.

alSegTag (PLONG) - output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,
a set of /MaxDepth segment identifiers and tag pairs is returned.

Returns
Number of hits and error indicators:

;?:0 Number of hits that occurred

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_CORRELATE_TYPE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

Chapter 5. Graphics Functions 5-67

GpiCorrelateSegment
Correlate Segment

PMERR_INV _COORDINATE

PMERR_INV _MAX_HITS

PMERR_INV_CORRELATE_DEPTH

PMERR_INV _MICROPS_FUNCTION

PMERR_SEG_NOT _FOUND

PMERR_INV _SEG_NAME

Remarks

An invalid coordinate value was specified.

An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The specified segment identifier did not exist

An invalid segment identifier was specified.

Data is returned for each tagged primitive that intersects the pick aperture. The data returned for
each "hit" (or correlation) consists of a set of segment and tag pairs, starting with the correlated one
and followed by the one that called that segment. This is repeated until the specified segment (which
was not called by another segment) is reached, or /MaxDepth values are returned.

The specified segment identifier must be nonzero. Only primitives with a nonzero tag (see
GpiSetTag) are correlated using this function.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the specified segment is reached before /MaxDepth values, the remaining values are set to zero. If
more than IMaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in INumHits.

A "hit" is an instance of a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the a/SegTag parameter returned. The /NumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in reverse order of their occurrence.

a/SegTag is set to the hits that are found, up to the maximum defined in the /MaxHits parameter.
Corresponding pairs of elements form the hit pairs. The number returned by the function, therefore,
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the a/SegTag parameter is twice the number
returned by the function (subject to a maximum of /MaxHits) multiplied by the /MaxDepth.

If the /NumHits value returned by the function is greater than that specified in IMaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this function. This function differs from
the other GpiCorrelate ... functions because the segment to be correlated need not be a chained
segment.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values before processing the segment. This can be done either by ensuring
that the segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetlnitialSegmentAttrs) or by issuing GpiResetPS before the GpiCorrelateSegment. The latter
method also resets the clip path to no clipping.

If this function is followed by primitives or attributes without first opening a segment, the processing
is as described for GpiCloseSegment.

5-68 PM Programming Reference

Related Functions
• GpiCorrelateChain
• GpiCorrelateFrom
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiOpenSegment
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetDrawControl
• GpiSetlnitialSegmentAttrs
• GpiSetPickAperturePosition
• GpiSetPickApertureSize
• GpiSetSegmentAttrs
• GpiSetSegmentPriority

GpiCorrelateSegment -
Correlate Segment

Chapter 5. Graphics Functions 5-69

GpiCorrelateSegment
Correlate Segment

Example Code
This example uses GpiCorrelateSegment to correlate, using an aperture of default size and centered
at (200,200), on a visible and detectable segment and requests one intersection (or hit) and one
segment/tag pair for that hit to be returned. The segment will have been previously defined and
created using GpiSetlnitialSegmentAttrs and GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION
#include <os2.h>

/* GPI Correlation functions

BOOL fSuccess; /* success indicator
SIZEL psizlSize; /* size of pick aperture
LONG lNumHits; /* number of hits or error
HPS hps; /*Presentation-space handle
LONG lSegment; /* segment to be correlated
LONG 1 LastSegment; /* Specifies the last segment to be

correlated
PO INTL pptlPick = {200L,200L};

/* Pick (center of aperture) position
LONG lMaxHits; /* Maximum hits to be returned
LONG lMaxDepth; /* Number of pairs to be returned
LONG alSegTag; /* Segment identifiers and tags

fSuccess = GpiSetPickAperturePosition(hps, &pptlPick);

/* set aperture size (use default) */

*/

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psizlSize);

/* define segment */
lSegment = 1;

/* return only one hit */
lMaxHits = lL;

/* return only one segment/tag pair per hit */
lMaxDepth = IL;

/* correlate on visible, detectable segments */
lNumHits = GpiCorrelateSegment(hps, lSegment, PICKSEL_VISIBLE,

&pptlPick, lMaxHits, lMaxDepth,
&alSegTag);

5-70 PM Programming Reference

GpiCreateBitmap
Create Bit Map

#define INCL GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

HBITMAP GplCreateBltmap (HPS hps, PBITMAPINFOHEADER2 pbmp2New, ULONG flOptions,
PBYTE pblnitData, PBITMAPINF02 pbmi21nfoTable)

This function creates a bit map and returns the bit-map handle.

Parameters
hps (HPS) - input

Presentation-space handle.

The associated device should, if possible, hold the bit map in its own memory. Where this is not
possible, main memory is used and the bit map is held in a format compatible with the device.

pbmp2New (PBITMAPINFOHEADER2) - input
Bit-map information header.

This structure defines the format of the bit map to be created.

flOptions (ULONG) - input
Options:

CBM_INIT Initialize the bit map with pblnitData

If the bit map is stored on a device, the f/Options parameter is passed to the device.
Bits 16 through 31 can be used for special features known to be supported by the
particular device driver.

pblnltData (PBYTE) - input
Buffer address.

The address in application storage from which initialization data is to be copied, if CBM_INIT is
set.

pbml21nfoTable (PBITMAPINF02) - input
Bit-map information table.

This defines the format of the data in pblnitData. It is ignored if CBM_INIT is not set.

Returns
Bit-map handle and error indicators:

¢0 New bit-map handle

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _INFO_ TABLE

PMERR_INV _USAGE_PARM

An invalid pres~ntation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid bit-map info table was specified with a bit-map
operation.

An invalid options parameter was specified with
GpiCreateBitmap.

Chapter 5. Graphics Functions 5-71

GpiCreateBitmap
Create Bit Map

Remarks
On some devices it is possible to create the bit map in device memory. Even when this is not
possible, a bit map always belongs to a particular device. The device is specified through the device
context associated with the specified presentation space. The device context can be any device
context that describes the physical device (such as any window device context for the screen).

There are a number of standard bit-map formats that should normally be adhered to. Other formats
can be used if supported by the device.

A newly created bit map can be filled with data supplied by the application. This is useful where the
bit map always contains, or always starts with, the same image, captured in the application. A
bit-map information structure is also passed, which defines the format and color usage of the
initialization data. It is assumed that enough data is passed to initialize the entire bit map.

Some bit-map functions, including those that draw into the bit map, require the bit map to be selected
into a memory device context, using GpiSetBitmap. This is true whether device or main memory is
used to hold the bit map.

The bit map is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Some restrictions apply when using this function. Refer to Appendix G, "Format of Interchange
Files" on page G-1 for additional details.

Related Functions
• GpiBitBlt
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

5-72 PM Programming Reference

Example Code

GpiCreateBitmap -
Create Bit Map

The following example loads a bit map resource from memory and uses the GpiCreateBitmap
function to create the bit map. This is similar to using the GpiloadBitmap function, except it gives
the application the chance to modify the bit map image data before creating the bit map.

#define INCL_GPIBITMAPS
#define INCL_DOSRESOURCES
#include <os2.h>

/* GPI bit map functions
/* Dos Resource functions

HPS hps; /* presentation space handle

*/
*/

*/
/* address of bit map image data in

resource
BITMAPINFOHEADER2 bmih; /* bit map info structure
HBITMAP hbm; /* bit map handle

memset (&bmih,0, sizeof(BITMAPINFOHEADER2));
bmih.cbFix = sizeof(BITMAPINFOHEADER2);
bmih.cx = ex;
bmih.cy = cy;
bmih.cPlanes = 1;
bmih.cBitCount = cBitCount;
(hbm = GpiCreateBitmap(hps, &bmih, OL, NULL, NULL);

*/
*/

*/

Chapter 5. Graphics Functions 5-73

GpiCreateLogColorTable
Create Logical Color Table

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

BOOL GpiCrealeLogColorTable (HPS hps, ULONG flOptlons, LONG lformal, LONG ISlarl,
LONG ICounl, PLONG alTable)

This function defines the entries of the logical color table.

Parameters
hps (HPS) - input

Presentation-space handle.

flOptlons (ULONG) - input
Options:

LCOL_RESET The color table is reset to its default values before processing the
remainder of the data in this function.

This value is assumed if the color table is currently in RGB mode and is
being changed to index mode; that is, LCOLF _INDRGB or
LCOLF _CONSECRGB is specified.

The /Format parameter must be LCOLF _INDRGB or LCOLF _CONSECRGB.

LCOL_PURECOLOR When this option is set only colors for solid patterns (see GpiSetPattern)
available in the physical palette will be used. Only pure colors are used
and no dithering is done.

Other flags are reserved and must be 0.

lformal (LONG) - input
Format of entries in the table:

LCOLF _INDRGB Array of index/RGB pairs. Each pair is 8 bytes long: 4 bytes (local
format) for the index, and 4 bytes for the color value.

This sets the color table into index mode (and forces LCOL_RESET) if it
is in RGB mode.

The maximum index that can be loaded is returned in the
CAPS_COLOR_INDEX parameter of the DevQueryCaps function.

Each index specified must be greater than or equal to O.

LCOLF _CONSECRGB Array of RGB values, corresponding to color indexes /Start upwards.

LCOLF_RGB

ISlarl (LONG) - input
Starting index.

Each entry is 4 bytes long.

This sets the color table into index mode (and forces LCOL_RESET) if it
is in RGB mode.

The maximum index that can be loaded is returned in the
CAPS_COLOR_INDEX parameter of the DevQueryCaps function.

Color index = RGB.

This sets the color table into RGB mode.

This is relevant only for LCOLF _CONSECRGB.

The starting index must be greater than or equal to 0.

5-74 PM Programming Reference

ICount (LONG) - input
Count of elements in a/Table.

GpiCreateLogColorTable
Create Logical Color Table

This must be greater than or equal to 0. If 0 is specified, LCOLF _INDRGB and
LCOLF _CONSECRGB have the same effect.

For LCOLF _INDRGB, a/Table must contain an even number of elements. /Count must be an even
number.

alTable (PLONG) - input
Start of the application data area.

This contains the color table definition data. The format depends on the value of /Format.

Each color value is a 4-byte integer, with a value of

(R * 65536) + (G * 256) + B

where:

R is red intensity value
G is green intensity value
B is blue intensity value.

The maximum intensity for each primary is 255.

The high order byte must be 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COLOR_ OPTIONS

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _ COLOR_DATA

PMERR_INV _ COLOR_FORMAT

PMERR_INV _ COLOR_START _INDEX

PMERR_REALIZE_NOT_SUPPORTED

PMERR_PALETTE_SELECTED

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with a logical
color table or color query function.

An invalid length or count parameter was specified.

Invalid color table definition data was specified with
GpiCreatelogColorTable.

An invalid format parameter was specified with
GpiCreateLogColorTable.

An invalid starting index parameter was specified with a
logical color table or color query function.

An attempt was made to create a realizable logical color
table on a device driver that does not support this
function.

Color palette operations cannot be performed on a
presentation space while a palette is selected.

Chapter 5. Graphics Functions 5-75

GpiCreateLogColorTable
Create Logical Color Table

Remarks
This function can cause the color table to be reset to the default values. These are:

CLR_BACKGROUND

CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_NEUTRAL

CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARKRED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_BROWN
CLR_PALEGRAY

Reset color, used by GpiErase. This is the natural background color for the
device. For a display, it is the default window color
(SYSCLR_WINDOWTEXT; see WinSetSysColors). For a printer, it is the
paper color.

The background color for the display can be changed by setting new system
colors from the Control Panel. The background color for a printer can be
changed by selecting a new paper color {if allowed by the presentation
driver).
Blue.
Red.
Pink {magenta).
Green.
Cyan {turquoise).
Yellow.
A device-dependent color that provides a contrasting color to
CLR_BACKGROUND. For a display, it is the default window text color
(SYSCLR_WINDOWTEXT; see WinSetSysColors). For a printer, it is a color
that contrasts with the paper color.

The neutral color for the display can be changed by setting new system
colors from the Control Panel. The neutral color for a printer can be
changed by selecting a new paper color (if allowed by the presentation
driver).
Dark gray.
Dark blue.
Dark red.
Dark pink.
Dark green.
Dark cyan.
Brown.
Pale gray.

GpiErase clears the output of a device to the color defined by CLR_BACKGROUND.

By default, presentation spaces have a logical color table consisting of the 16 default values given
above. In index mode, these entries are always considered as part of the color table, unless they are
explicitly overwritten. Color indexes outside this range, which have not been loaded, are not
considered as part of the color table; it is an error to use such colors if the color table is in index
mode.

The system performs a mapping from the colors in the logical color table to those in the standard
physical color table for that device. This mapping is used for all drawing and bit maps. Mixing is not
predictable.

The standard physical color table always includes the standard 16 colors, where this is physically
possible. On devices that support more than 16 colors, there may be additional colors available to
which the requested colors may be mapped. However, it cannot be ensured that these additional
colors are the same on different devices. Applications that depend upon precise colors beyond the
first 16 should use a palette {see GpiCreatePalette) on devices for which this is supported.
DevQueryCaps can be used to determine whether the function is supported by the device; see
CAPS_PALETIE_MANAGER.

For. a monochrome device (whether it is a display, bit map, printer, or some other type), a reset color
is defined as follows:

1. Start with the appropriate item below:

• The paper color, for a printer with no loaded color table

5-76 PM Programming Reference

\
/

GpiCreateLogColorTable
Create Logical Color Table

• SYSCLR_WINDOW, for a monochrome display with no loaded color table
• Color 0, for any device if a color table has been loaded.

2. If this color is white or a light color, the reset color is set to white; otherwise, the reset color is
set to black.

The reset color is used for:

• The color that GpiErase clears the output to
• CLR_BACKGROUND (color 0), unless an RGB color table is in use
• CLR_DEFAULT for GpiSetBackColor
• Any color that has exactly the same RGB value as the reset color.

Any other color becomes black if the reset color is white, and the converse.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• DevQueryCaps
• GpiCreatePalette
• GpiQueryColorData
• GpiQueryColorlndex
• GplQueryLogColorTable
• GpiQueryNearestColor
• GpiQueryRealColors
• GpiQueryRGBColor
• WinSetSysColors

Example Code
This example uses the GpiCreatelogColorTable function to create a logical color table, using data
from the previous logical color table.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

HPS hps;
LONG a1Table[16];

/* presentation space handle
/* assume 16 entries

*/
*/

/* retrieve the current table */

GpiQuerylogColorTable(hps, 0L, 0L, 16L, alTable);

alTable[l] = 0x000080; /* change the second entry to light blue */

GpiCreateLogColorTable(hps,
0L,
LCOLF_CONSECRGB,
0L,
16,
alTable);

/* presentation space */
/* no special options */
/* consecutive RGB values */
/* start with color index 0 */
/* 16 entries */
/* RGB color values */

Chapter 5. Graphics Functions 5-77

GpiCreateLogFont -
Create Logical Font

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

LONG GplCreateLogFont (HPS hps, PSTR8 pName, LONG ILcld, PFATTRS pAHrs)

This function provides a logical definition of a font.

Parameters
hps (HPS) - input

Presentation-space handle.

pName (PSTR8) - input
Logical font name.

An 8-character name that can be used to describe the logical font. Its principal use is in
interchange files, where it can help to identify the required font. For example, it can reference a
file name that contains the font for a remote system.

ILcld (LONG) - input
Local identifier.

The local identifier that the application uses to refer to this font. It must be in the range 0
through 254. If O is specified, the properties of the default font are changed. The original default
font can be restored by calling GpiDeleteSetld, with an /Leid parameter of LCID_DEFAULT or
LCID_ALL.

If the /Leid parameter specifies a local identifier that is already being used to refer to a logical
font, but is not the current pattern-set or marker-set local identifier, then the new definition
replaces the old one. If /Leid specifies a local identifier that is already being used to refer to a
logical font, and is the current pattern-set or marker-set local identifier, an error occurs. An
error also occurs if the local identifier is currently used to refer to a bit map.

pAHrs (PFATTRS) - input
Attributes required of the font.

Returns
Match indicators:

FONT_MATCH Font requirements matched successfully

FONT_DEFAULT Font requirements not matched; a default font is used

GPl_ERROR Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SETID

PMERR_INV _FONT _A TTRS

PMERR_FONT _NOT _LOADED

PMERR_SETID_IN_USE

5-78 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.

An invalid attrs parameter was specified with
GpiCreateLogFont.

An attempt was made to create a font that was not loaded.

An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

PMERR_KERNING_NOT _SUPPORTED

Remarks

GpiCreateLogFont
Create Logical Font

Kerning was requested on GpiCreateLogFont call to a
presentation space associated with a device context that
does not support kerning.

The system uses the available physical font that most closely matches the requirements. Physical

fonts can be:

• Loaded at initialization time
• Built into particular devices or device drivers
• Private ones for this process, loaded by GpiLoadFonts.

An application can force selection of a particular physical font by quoting the /Match value in FATTRS

to be returned for the desired font by GpiQueryFonts. However, this method is only valid for a

particular device/device driver combination on a single machine. This method should be avoided as

a method for selecting fonts.

Whichever method is used, the choice of physical font, which is made when this function is issued, is

never subsequently changed for a particular logical font.

The local identifier (/Leid) that the application decides to use to reference this logical font for later

drawing operations is also specified; see GpiSetCharSet.

If the face name is provided, GpiCreateLogFont tries to select the font with that face name. If the face

name is empty, GpiCreateLogFont selects a default font.

When a match number is provided, GpiCreateLogFont tries to find a font with the same match

number and face name. If there is a mismatch at this point, GpiCreateLogFont acts as though the

match number is O and starts the search again.

When the match number is 0 and the calling program requests a bit-map font

(FATTR_FONTUSE_OUTLINE not set), GpiCreateLogFont searches for a bit-map font with the required

average character width (AveCharWidth) and maximum baseline extent (MaxBaselineExt), consistent

with the usage flags. If this search fails, GpiCreateLogFont searches for an outline font with the

required face name.

When the match number is zero and the calling program requests an outline font

(FATTR_FONTUSE_OUTLINE is set), GpiCreateLogFont searches for an outline font with the required

selection flags. If that search fails, a default outline font is selected. If the match number is set to a

positive number, a Presentation Manager font is selected. If the match number is negative, a font

,y belonging to a physical device is selected.

It is advisable to set the values of all the elements in the pAttrs structure. This is particularly

important where printing, plotting, or interchange are concerned, as the target machine may need to

substitute an existing device font for the requested font.

To anticipate possible substitution by a vector font, values should be set for character angle,

character shear and character box (using GpiSetCharAngle, GpiSetCharShear, and GpiSetCharBox

respectively) before drawing any character strings. The GpiQueryFontMetrics function can be used

to get the values of the character box height and width for a font. These are held in the fields

IEmHeight and IEmlnc in the FONTMETRICS structure.

Outline font characters are normally drawn filled. However, hollow characters are produced if the

FATTR_SEL_OUTLINE flag is set in the pAttrs parameter. For small characters, outlining in this way

can give a similar visual appearance to filled characters, with improved performance.

There are restrictions on the use of non-installed fonts with certain device types. See GpiLoadFonts

for more details.

Chapter 5. Graphics Functions 5-79

GpiCreateLogFont -
Create Logical Font

If this function occurs within a path definition when the drawing mode (see GpiSetDrawingMode) is
retain or draw-and-retain, its effect is not stored with the definition.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• GpiDeleteSetld
• GpiloadFonts
• GpiQueryFontMetrics
• GpiQueryFonts
• GpiQueryKerningPairs
• GpiQueryNumberSetlds
• GpiQuerySetlds
• GpiQueryWidthTable
• GpiSetCharSet
• GpiSetCharMode
• GpiSetMarkerSet
• GpiSetPatternSet
• GpiUnloadFonts

Example Code
This example uses the GpiCreateLogFont function to create a logical font with the local identifier 1.

The logical font has the face name "Courier" and requested width and height of 12 pels. Once the
font is created, the example sets the font using the local identifier and displays a string in the font at
the point (100, 100).

#define INCL_GPILCIDS
#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Font functions
/* GPI primitive functions

*/
*/

HPS hps; /* presentation space handle */
POINTL ptl = { 1ee, 1ee };
FATTRS fat;

fat.usRecordLength = sizeof(FATTRS); /*sets size of structure */
fat.fsSelection = e; /*uses default selection */
fat.lMatch = 0L; /*does not force match */
fat.idRegistry = 0; /*uses default registry */
fat.usCodePage = 850; /* code-page 850 */
fat.lMaxBaselineExt = 12L; /*requested font height is 12 pels */
fat.lAveCharWidth = 12L; /*requested font width is 12 pels */
fat.fsType = e; /*uses default type */
fat.fsFontUse = FATTR_FONTUSE_NOMIX;/* doesn't mix with graphics */

/* Copy Courier to szFacename field */

strcpy(fat.szFacename ,"Courier");

GpiCreateLogFont(hps,
NULL,
lL,
&fat);

/* presentation space */
/* does not use logical font name */
/* local identifier */
/* structure with font attributes */

GpiSetCharSet(hps, lL); /*sets font for presentation space*/
GpiCharStringAt(hps, &ptl, SL, "Hello");/* displays a string */

5-80 PM Programming Reference

\

GpiCreatePalette
Create Palette

#define INCL_GPILOGCOLORTABLE /*Or use INCL_GPI or INCL_PM */

HPAL GplCreatePalette (HAB hab, ULONG flOptlons, LONG IFormat, LONG ICount,

PLONG alTable)

This function creates and initializes a color palette.

Parameters
hab (HAB) - input

Anchor-block handle.

flOptions (ULONG) - input
Options:

LCOL_PURECOLOR The application does not want color dithering to create

colors not available in the physical palette for solid

patterns (see GpiSetPattern). If this option is set, only

pure colors are used and no dithering is done.

LCOL_OVERRIDE_DEFAULT_COLORS Override option for applications that need the full
hardware palette. The system does not guarantee a

consistent look to the user interface when this option is

used. The override is only in effect while the overriding

palette is in the foreground

IFormat (LONG) - input
Format of entries in the table:

To combine these two options, OR the values together.

Other flags are reserved and must be B'O'.

LCOLF _CONSECRGB Array of (RGB) values. Each entry is 4 bytes long. This is currently the

only supported value for this parameter.

ICount (LONG) - input
Count of elements in a/Table.

This must be greater than zero.

alTable (PLONG) - input
Start of the application data area.

This contains the palette definition data.

Each color value is a 4-byte integer, with a value of

(F * 16777216) + (R * 65536) + (G * 256) + B

where:

F is a flag byte, which can take the following values (these can be ORed together if required):

PC_RESERVED This index is an animating index. This means that the application might

frequently change the RGB value and so the system should not map the

logical index of another application's palette to the entry in the physical

palette used for this color.
PC_EXPLICIT The low-order word of the logical color table entry designates a physical

palette slot from which the color definition is to be taken. This allows an

application to show the actual contents of the device palette as realized for

other logical palettes. This does not prevent the color in the slot from being

changed for any reason.

Chapter 5. Graphics Functions 5-81

GpiCreatePalette
Create Palette

R is red intensity value
G is green intensity value
B is blue intensity value.

Each intensity value must be in the range 0 through 255.

Returns
Palette handle:

¢0 Palette handle

GPl_ERROR Error occurred.

Possible returns from WinGetLastError

PMERR_INV _COLOR_ OPTIONS

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV_COLOR_DATA

PMERR_INV _ COLOR_FORMAT

PMERR_INV _ COLOR_START _INDEX

PMERR_INSUFFICIENT _MEMORY

Remarks

An invalid options parameter was specified with a logical
color table or color query function.

An invalid length or count parameter was specified.

Invalid color table definition data was specified with
GpiCreatelogColorTable.

An invalid format parameter was specified with
GpiCreateLogColorTable.

An invalid starting index parameter was specified with a
logical color table or color query function.

The operation terminated through insufficient memory.

The new palette contains only the entries set in the a/Table parameter. All color indices outside this
range are not considered part of the palette; it is an error to use such colors when this palette is
selected.

When a palette is realized (see WinRealizePalette), the lowest indices are considered first. The
palette should therefore be ordered so that the most important colors have the lowest indices.
Animating indices, which on realization can have their own individual slots in the physical palette,
should be used only when necessary.

Palettes should be created with only those color indices that the application requires and not
unnecessarily create a large palette. The maximum index for a palette is not limited to
CAPS_COLOR_INDEX.

The palette can be selected into a presentation space using GpiSelectPalette.

Related Functions
• DevQueryCaps
• GpiAnimatePalette
• GpiDeletePalette
• GpiQueryPalette
• GpiQueryPalettelnfo
• GpiSelectPalette
• GpiSetPaletteEntries
• WinRealizePalette
• GpiCreateLogColorTable

5-82 PM Programming Reference

.,
\

/

GpiCreatePalette
Create Palette

Example Code
The uses GpiCreatePalette to create and initialize a palette of 4 pure (no dithering) colors.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

HAB hab;
HPAL hpal;
LONG lFonnat;

/* anchor block handle
/* palette handle
/* table entry fonnat

*/
*/
*/

/***
* assume 4 entries in palette. *
* The RGB values are calculated with the following fonnula: *
* (F * 16777216) + (R * 65536) + (G * 256) + B *
* where F = flag, PC_RESERVED or PC_EXPLICIT *
* R = red intensity value *
* G = green intensity value *
* B = blue intensity value *
* Thus, in the following table, red and green intensities are 0 *
* while the blue intensity increases from 1 to 4. *
***/

ULONG au1Table[4]=
{(PC_RESERVED*16777216) + (0*65536) + (0*256) + l,

(PC_RESERVED*16777216) + (0*65536) + (0*256) + 2,
(PC RESERVED*16777216) + (0*65536) + (0*256) + 3,
(PC=RESERVED*16777216) + (0*65536) + (0*256) + 4};

hpal = GpiCreatePalette(hab, 0L, LCOLF_CONSECRGB, 4L, aulTable);

Chapter 5. Graphics Functions 5-83

GpiCreatePS
Create Presentation Space

#define INCL_GPICONTROL /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

HPS GplCreatePS (HAB hab, HDC hdc, PSIZEL pslzlSlze, ULONG flOptlons)

This function creates a presentation space.

Parameters
hab (HAB) - input

Anchor-block handle.

hdc (HOC) - input
Device-context handle.

The handle of a device context with which the presentation space is to be associated, if
GPIA_ASSOC is specified. This is mandatory for a micrq presentation space (type GPIT_MICRO).

pslzlSlze (PSIZEL) - input
Presentation-page size.

The size of the presentation page defines a rectangle in presentation page space, with the
bottom-left corner at the origin. This rectangle is used for these purposes:

• Together with the page viewport, it defines the device transform. Whenever the
presentation space is associated with a device context, a default page viewport is
constructed, based on the presentation page size.

• It defines the "area of interest" of the picture. This is recorded in a metafile, if one is
generated from this presentation space. Note, however, that depending upon the device
transform, information drawn outside it may sometimes be visible; it is not a clipping
boundary.

• If PU_ARBITRARY is specified, the page viewport is constructed such that the origin of the
page rectangle maps to the origin of the default device rectangle (maximized window size,
paper size, and so on), and either the right or top edges map, keeping the picture within the
default device rectangle, and preserving its aspect ratio.

If O is specified as either the width or the height, GPIA_ASSOC must also be specified, and a
presentation page of default dimension for the device (see above) is assumed. For
PU_ARBITRARY the pel dimensions are used.

flOptlons (ULONG) - input
Options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can then be ORed together to generate the parameter.

PS_UNITS
Presentation-page size units.

In each instance, the origin is at the bottom left.

One of these values must be specified:

PU _ARBITRARY Application-convenient units

PU PELS Pel coordinates

h;;U~LOMETRIC Units of 0.1 mm

~
PU_HIMETRIC Units of 0.01 mm

PU_LOENGLISH Units of 0.01 inch

"'PU_HIENGLISH Units of 0.001 inch

5-84 PM Programming Reference

GpiCreatePS
Create Presentation Space

PU_TWIPS

PS_FORMAT

Units of 1/1440 inch.

Coordinate format.

Indicates options to be used when storing coordinate values internally in the segment store.

For most calls, the format is not directly visible to an application. However, it is visible
during editing (for example, GpiQueryElement). The format also has an effect on the
amount of storage required for segment store. If a metafile is generated from this
presentation space, the format also controls the format of the orders in the metafile.

Note: If GPIF _SHORT is selected, it is the responsibility of the application to ensure that the
values passed for graphics coordinates are in the range -32 768 through +32 767,
when the drawing mode is retain or draw-and-retain (see GpiSetDrawingMode), or if
a metafile is being created. If in doubt, default or specify GPIF _LONG.

Do not specify GPIF _SHORT if a metafile of unknown format is to be played into this
presentation space with GpiPlayMetaFile.

One of these can be selected, for a GPIT _NORMAL presentation space (for a GPIT _MICRO
presentation space, only GPIF _DEFAULT is allowed):

GPIF _DEFAULT Default local format (same as GPIF _LONG)

GPIF _SHORT 2-byte integers

GPIF_LONG 4-byte integers.

PS_TYPE
Presentation space.

GPIT_NORMAL Normal presentation space; this is the default

GPIT_MICRO Micro presentation space.

Note: GPIA_ASSOC must also be set if GPIT _MICRO is set.

PS_MODE
Mode. Reserved, must be 0 (default).

PS_ASSOCIATE
Association indicator.

Indicates whether the new presentation space is to be associated with the specified device
context:

GPIA_NOASSOC No association is required. This is the default.

GPIA_ASSOC Association with hdc required.

Note: GPIA_ASSOC must be set if GPIT_MICRO is set.

Returns
Presentation-space handle:

~O Presentation-space handle

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_OR_INCOMPAT_OPTIONS

PMERR_DC_IS_ASSOCIATED

An invalid or incompatible (with micro presentation
space) options parameter was specified with
GpiCreatePS or GpiSetPS.

An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

Chapter 5. Graphics Functions 5-85

GpiCreatePS
Create Presentation Space

PMERR_INV_HDC

PMERR_INV_PS_SIZE

Remarks

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An invalid size parameter was specified with
GpiCreatePS or GpiSetPS.

There are two types of presentation spaces:

• Micro presentation space
• Normal presentation space.

Only a restricted subset of calls is allowed to a micro presentation space; the main difference is that
graphic segments (primitives, attributes, and so on) can be retained by the system, for subsequent
redraw or editing, in a normal presentation space, but not in a micro presentation space. However,
the storage and execution overheads are lower for a micro presentation space.

An initial association of the new presentation space with a device context may be performed (this is
mandatory for a micro presentation space), by specifying GPIA_ASSOC.

When a presentation space is associated with a device context, either using this function with
GPIA_ASSOC, or explicitly with GpiAssociate, a page viewport in device space is automatically
constructed, to which the page is mapped to form the device transform. The value of PS_UNITS and
the psiz/Size parameter, are taken into account.

In general, the size parameter can be safely set to zeroes except when using PU_ARBITRARY units.
In that case, use a size in device coordinates obtained from DevQueryCaps. For units other than
PU_PELS, a non-zero size can cause a transform to be in effect for the resulting PS.

Related Functions
• GpiAssociate
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• GpiResetPS
• GpiRestorePS
• GpiSavePS
• GpiSetPageViewport
• GpiSetPS
• WinGetPS
• WinGetScreenPS

5-86 PM Programming Reference

)

GpiCreatePS
Create Presentation Space

Example Code
This example uses the GpiCreatePS function to create a micro presentation space for a memory

device context. The function associates the presentation space with the device context and sets the

page units to pels. By default, the presentation space is a normal presentation space that uses local

storage format.

#define INCL_GPICONTROL
#include <os2.h>

/* GPI control Functions */

HAB hab; /* anchor block handle */
HOC hdc; /* device context handle */
HPS hps; /* presentation space handle */
SIZEL sizl = { e. 0 }; /* use same page size as device */
/**************************
* context data structure *
**************************/

DEVOPENSTRUC dop = {el. "DISPLAY". NULL. eL. eL. 0L, eL. 0L. 0L};

/* create memory device context */
hdc = DevOpenDC(hab, OD_MEMORY, 11 * 11

, SL, (PDEVOPENDATA)&dop, NULLHANDLE);

/* Create the presentation and associate the memory device
context. */

hps = GpiCreatePS(hab, hdc, &sizl, PU_PELS I
GPIT_MICRO I GPIA_ASSOC);

Chapter 5. Graphics Functions 5-87

GpiCreateRegion
Create Region

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

HRGN GplCreateReglon (HPS hps, LONG ICount, PRECTL arclRectangles)

This function creates a region, for a particular class of device, using a series of rectangles.

Parameters
hps (HPS) - input

Presentation-space handle.

A region suitable for use with the currently associated device is created.

ICount (LONG) - input
The number of rectangles.

The number specified in arc/Rectangles. If /Count is 0, an empty region is created, and
arc/Rectangles is ignored.

arclRectangles (PRECTL) - input
An array of rectangles.

The rectangles are specified in device coordinates.

For each rectangle in the array, the value of xright must be greater than (or equal to) xleft, and
ytop must be greater than (or equal to) ybottom.

Returns
Region handle:

¢0 Region handle

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _COORDINATE

PMERR_INV_RECT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

The new region is defined by the logical-OR of all of the rectangles specified. Points on the
right-hand and top boundaries are not included in the region. Points on the left-hand and bottom
boundaries, that are not also on the right-hand or top boundaries (that is, the top-left and bottom-right
corner points), are included.

The region is owned by the process from which this function is issued. It cannot be accessed directly
from any other process. If it still exists when the process terminates, it is automatically deleted by
the system.

5-88 PM Programming Reference

Related Functions
• GpiCombineRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox

GpiCreateRegion
Create Region

• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion

Example Code
This example uses the GpiCreateRegion function to create a region consisting of the union of three
rectangles.

#define INCL_GPIREGIONS
#include <os2.h>

HPS hps;
HRGN hrgn;

/* Region functions */

/* presentation space handle */
/* handle for region */

RECTL arcl[3] = { 100, 100, 200, 200, /* 1st rectangle */
150, 150, 250, 250,
200, 200, 300, 300 };

/* 2nd rectangle */
/* 3rd rectangle */

hrgn = GpiCreateRegion(hps, /* presentation space */
3L, /* three rectangles */
arcl); /*address of array of rectangles*/

Chapter 5. Graphics Functions 5-89

GpiDeleteBitmap
Delete Bit Map

#define INCL GPIBITMAPS /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I BOOL GplDalataBlbnap (HBITMAP hbm)

This function deletes a bit map.

Parameters
hbm (HBITMAP) - input

Handle of the bit map to be deleted.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HBITMAP

PMERR_BITMAP _IS_SELECTED

PMERR_HBITMAP _BUSY

Remarks

An invalid bit-map handle was specified.

An attempt was made to delete a bit map while it was
selected into a device context.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

There are restrictions on the use of this function while generating a metafile or a PM_Q_STD print
file; see "Metafile Restrictions" on page G-1.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

5-90 PM Programming Reference

\
Example Code

GpiDeleteBitmap -
Delete Bit Map

This example uses the GpiDeleteBitmap function to delete a bit map. The GpiSetBitmap function
releases the bit map from the presentation space before deleting it. This is needed only if the bit
map is set in the presentation space.

#define INCL GPIBITMAPS
#include <os2.h>

/* GPI Bit map functions

HPS hps; /* presentation space handle
HBITMAP hbm, hbmPrevious;

*/

*/

hbm = GpiloadBitmap(hps, 0L, 1, 0L, 0L); /*load the bit map */
hbmPrevious = GpiSetBitmap(hps, hbm); /*set bit map for PS*/

/* bit map displayed with GpiBitBlt */

GpiSetBitmap(hps, hbmPrevious);
GpiDeleteBitmap(hbm);

/* release bit map from PS */
/* delete the bit map */

Chapter 5. Graphics Functions 5-91

GpiDeleteElement
Delete Element

#define INCL_GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

I BOOL GplDeleteElement (HPS hps)

This function deletes the element indicated by the element pointer.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NOT _IN_RETAIN_MODE

PMERR_NO_CURRENT_SEG

PMERR_INV _IN_ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

The element pointer is set to the element immediately preceding the deleted element.

If the element pointer has a value of 0 (points that are logically before the first element), nothing is
deleted and the element pointer is not changed.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is invalid within an element
bracket.

5-92 PM Programming Reference

\
\

,/ Related Functions
• GpiBeginElement
• GpiDeleteElementRange

GpiDeleteElement -
Delete Element

• GpiDeleteElementsBetweenlabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPoi nter Atlabel

Example Code
This example uses the GpiDeleteElement function to delete the third element from the previously

created segment 2.

#define INCL_GPISEGEDITING
#include <os2.h>

HPS hps;

GpiOpenSegment(hps. 2L);
GpiSetElementPointer(hps. 3L);
GpiDeleteElement(hps);
GpiCloseSegment(hps);

/* GPI Segment Edit functions */

/* open segment #2 */
/* move to third element */
/* delete element */
/* close the segment */

Chapter 5. Graphics Functions 5-93

GpiDeleteElementRange
Delete Element Range

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

BOOL GplDeleteElementRange (HPS hps, LONG IFlrstElement, LONG ILastElement)

This function deletes all elements between, and including, the elements indicated by the specified
element numbers.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstElement (LONG) - input
Number of the first element to be deleted.

ILastElement (LONG) - input
Number of the last element to be deleted.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS _FUNCTION

PMERR_NOT _IN_RETAIN_MODE

PMERR_NO _CURRENT _SEG

PMERR_INV _IN_ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

If either element number is outside the range of the current segment, it is set to the nearest valid
value.

When this function has finished, the element pointer is set to the element immediately preceding the
deleted element or elements.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid within an element
bracket.

5-94 PM Programming Reference

Related Functions
• GpiBeginElement
• GpiDeleteElement

GpiDeleteElementRange -
Delete Element Range

• Gpi DeleteElementsBetweenLabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPointerAtlabel

Example Code
This example uses the GpiDeleteElementRange function to delete the second through fifth elements
in the previously created segment 2.

#define INCL_GPISEGEDITING
#include <os2.h>

HPS hps;

/* GPI Segment Edit functions */

GpiOpenSegment(hps, 2L); /*open segment# 2 */
GpiDeleteElementRange(hps, 2L, SL);/* delete elements 2 thru 5 */
GpiCloseSegment(hps); /*close the segment */

Chapter 5. Graphics Functions 5-95

GpiDeleteElementsBetweenLabels
Delete Elements Between Labels

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

BOOL GplDeleteElementsBetweenLabels (HPS hps, LONG IFlrstLabel, LONG ILastLabel)

This function deletes all elements between, but not including, the elements found to contain the
indicated labels.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstLabel (LONG) - input
Label marking the start of the elements to be deleted.

ILastLabel (LONG) - input
Label marking the end of the elements to be deleted.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS _FUNCTION

PMERR_NOT _IN_RETAIN_MODE

PMERR_NO_CURRENT_SEG

PMERR_INV _IN_ ELEMENT

PMERR_LABEL_NOT _FOUND

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

The specified element label did not exist.

The search for IFirstLabel and ILastLabel is performed separately, and starts from the element
pointed to by the current element pointer.

See also:

• GpiSetElementPointer
• GpiSetElementPointerAtlabel.

If either label cannot be found between the current element pointer location and the end of the
segment, an error is generated and no deletion occurs.

5-96 PM Programming Reference

GpiDeleteElementsBetweenLabels -
Delete Elements Between Labels

On completion, the element pointer is set to the element immediately preceding the deleted
elements.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid within an element
bracket.

Related Functions
• GpiBeginElement
• GpiDeleteElement
• GpiDeleteElementRange
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPointerAtlabel

Example Code
This example uses the GpiDeleteElementsBetweenlabels function to delete the elements between,
but not including, the elements having the labels 1 and 2.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps;

GpiOpenSegment(hps. 2L); /* open segment #2 */

/* delete elements between 1 and 2 */

GpiDeleteElementsBetweenlabels(hps, ll, 2L);
GpiCloseSegment(hps); /*close the segment*/

Chapter 5. Graphics Functions 5-97

GpiDeleteMetaFile
Delete Metafile

#define INCL_GPIMETAFILES I* Or use INCL_GPI or INCL_PM */

I BOOL GplDeleteMetaFlle (HMF hml)

This function deletes a metafile.

Parameters
hmf (HMF) - input

Metafile handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HMF

PMERR_METAFILE_IN_USE

An invalid metafile handle was specified.

An attempt has been made to access a metafile that is in
use by another thread.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given
process was exceeded.

Remarks
This function deletes access to the specified memory metafile and makes the metafile handle invalid.

Related Functions
• GpiCopyMetaFile
• GpiloadMetaFile
• GpiPlayMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFilelength
• GpiSaveMetaFile
• GpiSetMetaFileBits

5-98 PM Programming Reference

Example Code

GpiDeleteMetaFile -
Delete Metafile

This example uses GpiDeleteMetaFile to delete a metafile previously loaded with GpiloadMetaFile.

#define INCL_GPIMETAFILES
#include <os2.h>

/* Metafile functions

BOOL fSuccess;
HMF hmf;

/* success indicator
/* metafile handle

HAB hab; /* anchor block handle

/* loads metafile from disk */
hmf = Gpi LoadMetaFil e(hab, 11 sampl e.met 11

);

fSuccess = GpiDeleteMetaFile(hmf);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-99

GpiDeletePalette
Delete Palette

#define INCL_GPILOGCOLORTABLE /*Or use INCL_GPI or INCL_PM */

I BOOL GplDelelePalette (HPAL hpal)

This function deletes a color palette.

Parameters
hpal (HPAL) - input

Palette handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPAL

PMERR_PALETTE_SELECTED

PMERR_PALETTE_BUSY

Remarks

An invalid color palette handle was specified.

Color palette operations cannot be performed on a
presentation space while a palette is selected.

An attempt has been made to reset the owner of a palette
when it was busy.

The palette must not be currently selected into a presentation space (see GpiSelectPalette).

Related Functions
• GpiAnimatePalette
• GpiCreatePalette
• GpiQueryPalette
• GpiQueryPalettelnfo
• GpiSelectPalette
• GpiSetPaletteEntries
• WinRealizePalette

5-100 PM Programming Reference

Example Code

GpiDeletePalette -
Delete Palette

This example uses GpiDeletePalette to delete the color palette currently associated with the
presentation space, which is determined using GpiQueryPalette.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

BOOL
HPAL
HPS

fSuccess;
hpal;
hps;

/* success indicator
/* palette handle
/* Presentation-space handle

/* get handle of currently associated palette */
hpal = GpiQueryPalette(hps);

/* delete palette */
fSuccess = GpiDeletePalette(hpal);

*/
*/
*/

Chapter 5. Graphics Functions 5-101

GpiDeleteSegment
Delete Segment

#define INCL_ GPISEGMENTS /* Or use INCL_ GPI or INCL_PM *I

BOOL GplDeleteSegment (HPS hps, LONG ISegld)

This function deletes a retained segment.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegid (LONG) - input
Segment identifier.

The identifier of the segment to be deleted; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

If the segment is open when it is deleted, there is no open segment after this function. In this
instance, processing as described for GpiCloseSegment is performed.

If the segment is in the segment chain, it is removed from the chain.

This function deletes only a retained segment.

Note: In draw drawing mode (see GpiSetDrawingMode), the identifier of the current segment is not
remembered, so it is not recognized if specified as the /Segid parameter.

5-102 PM Programming Reference

J Related Functions
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiOpenSegment
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority

Example Code

GpiDeleteSegment -
Delete Segment

This example uses the GpiDeleteSegment function to delete segment 4, previously created by

GpiOpenSegment.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, e }; /* vertices */

GpiOpenSegment(hps, 4L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

GpiDeleteSegment(hps, 4L);

/* open the segment */
/* move to start point (e, e) */
/* draw triangle */
/* close the segment */

/* delete segment #4 */

Chapter 5. Graphics Functions 5-103

GpiDeleteSegments
Delete Segments

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplDeleteSegments {HPS hps, LONG IFlrstSegment, LONG ILastSegment)

This function deletes all segments in the given identifier range.

Parameters
hps {HPS) - input

Presentation-space handle.

IFlrstSegment {LONG) - input
First identifier in the range; it must be greater than 0.

ILastSegment {LONG) - input
Last identifier in the range; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

IFirstSegment and ILastSegment can have the same value, in which instance, only this segment is
deleted. If IFirstSegment is greater than ILastSegment only the segment with identifier IFirstSegment
is deleted.

If one of the segments deleted is the currently open segment, there is no open segment after this
function. In this instance, processing as described for GpiCloseSegment is performed. If any of the
segments are in the segment chain, they are removed from the chain.

This function only deletes retained segments.

Note: In draw drawing mode (see GpiSetDrawingMode), the identifier of the current segment is not
remembered, so it is not recognized if it occurs within the range of specified identifiers.

5-104 PM Programming Reference

Related Functions
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDrawSegment
• GpiErrorSegmentData
• GpiOpenSegment
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority

Example Code

GpiDeleteSegments -
Delete Segments

This example uses the GpiDeleteSegments function to delete segments 4 through 6, created by
GpiOpenSegment.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */

GpiOpenSegment(hps, 4L); /* open segment 4 */

GpiCloseSegment(hps); /* close the segment */
GpiOpenSegment(hps, SL); /* open segment 5 */

GpiCloseSegment(hps); /* close the segment */
GpiOpenSegment(hps, 6L); /* open segment 6 */

GpiCloseSegment(hps); /* close the segment */

GpiDeleteSegments(hps, 4L, 6L); /*delete segments 4 through 6 */

Chapter 5. Graphics Functions 5-105

GpiDeleteSetld
Delete Set Identifier

#define INCL_GPILCIDS /*Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteSetld (HPS hps, LONG ILcid)

This function d_eletes a logical font or bit-map tag.

Parameters
hps (HPS) - input

Presentation-space handle.

ILcid (LONG) - input
Local identifier.

The local identifier (lcid) for the object.

If LCID_ALL is specified, all logical fonts are deleted, and all bit-map tagging is removed. If
LCID_DEFAULT or LCID_ALL is specified, the original default font is restored if it has been
changed (see GpiCreateLogFont).

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV ... HPS

PMERR_PS_BUSY

PMERR_INV_SETID

PMERR_SETID _NOT _FOUND

PMERR_SETID _IN_USE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.

An attempt was made to delete a setid that did not exist.

An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

If the object is a logical font, it is deleted, and is no longer available for use. If the object is a bit
map, it is no longer tagged with the local identifier; the bit map is not deleted and its handle remains
valid.

In either instance, the /Leid is released and is now available for reuse, unless the object is currently
selected (as the current character, pattern, or marker set), in which instance an error is raised.

If this function occurs within a path definition when the drawing mode (see GpiSetDrawingMode) is
retain or draw-and-retain, its effect is not stored with the definition.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

5-106 PM Programming Reference

Related Functions
• GpiCreateLogFont
• GpiLoadFonts
• GpiQueryFontMetrics
• GpiQueryFonts
• GpiQueryKerningPairs
• GpiQueryNumberSetlds
• GpiQuerySetlds
• GpiQueryWidthTable
• GpiUnloadFonts
• GpiSetBitmapld
• GpiSetCharSet

Example Code

GpiDeleteSetld
Delete Set Identifier

This example uses the GpiDeleteSetld function to delete a logical font. The GpiSetCharSet function
is required only if the logical font is the current font for the presentation space.

/* Font functions #define INCL_GPILCIDS
#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions
*/
*/

HPS hps;
FATTRS fat;

/* presentation space handle

/* create and set the font */

GpiCreateLogFont(hps, NULL, lL, &fat);
GpiSetCharSet(hps, lL);

*/

GpiSetCharSet(hps, BL);
GpiDeleteSetld(hps, lL);

/* release the font before deleting */
/* delete the logical font */

Chapter 5. Graphics Functions 5-107

GpiDestroyPS
Destroy Presentation Space

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I BOOL GplDastroyPS (HPS hps)

This function destroys the presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_PS_IS_ASSOCIATED

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to destroy a presentation or
associate a presentation space that is still associated
with a device context.

All resources owned by the presentation space are released, and any subsequent calls that use the
value of the presentation space handle are rejected.

Related Functions
• GpiAssociate
• GpiCreatePS
• GpiQueryDevice
• GpiQueryPS
• GpiResetPS
• GpiRestorePS
• GpiSavePS
• GpiSetPS

5-108 PM Programming Reference

) Example Code

GpiDestroyPS
Destroy Presentation Space

This example uses the GpiDestroyPS function to destroy the presentation space associated with a
memory device context.

#define INCL_GPICONTROL
#define INCL_DEV
#include <os2.h>

/* GPI control Functions */
/* Device Function definitions */

HAB hab;
HPS hps;
HOC hdc;
DEVOPENSTRUC dop;
SIZEL page = { e, e };

/* Anchor-block handle
/* Target presentation-space handle
/* Device-context handle
/* context data structure
/* page size (use same as device)

/* Create the memory device context and presentation space. */

*/
*/
*/
*/
*/

hdc = DevOpenDC(hab, OD_MEMORY, "*", SL, (PDEVOPENDATA)&dop, NULLHANDLE);
hps = GpiCreatePS(hab, hdc, &page, PU_PELSIGPIT_MICROIGPIA_ASSOC);

GpiAssociate(hps, NULLHANDLE); /*disassociate device context*/
GpiDestroyPS(hps); /*destroys presentation space*/
DevCloseDC(hdc); /*closes device context */

Chapter 5. Graphics Functions 5-109

GpiDestroyRegion
Destroy Region

#define INCL GPIREGIONS I* Or use INCL_GPI or INCL_PM */

BOOL GpiDestroyReglon (HPS hps, HRGN hrgn)

This function destroys a region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Handle of region to be destroyed.

If this is NULLHANDLE, the call takes no action, and completes without error.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_REGION_IS_ CLIP _REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

This function cannot be used to destroy the clip region; the clip region must first be deselected with
GpiSetClipRegion.

5-110 PM Programming Reference

~
/

GpiDestroyRegion
Destroy Region

Related Functions
Prerequisite Functions

• GpiSetClipRegion(if the region to be destroyed is a clip region)

Other Related Functions

• GpiCombineRegion
• GpiCreateRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion

Example Code
This example uses the GpiDestroyRegion function to destroy a region after drawing a complex

figure.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

HPS hps; /* presentation space handle */
HRGN hrgn;
RECTL arcl[3] = { 1e,1e,2e,2a,1s,1s,2s,2s,2e,2e,3e,3e };

hrgn = GpiCreateRegion(hps, 3L, arcl); /*use 3 rectangles */
GpiPaintRegion(hps, hrgn); /*paint the region */
GpiDestroyRegion(hps, hrgn); /*destroy the region*/

Chapter 5. Graphics Functions 5-111

GpiDrawBits
Draw Bits

#define INCL_GPIBITMAPS I* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GplDrawBlts (HPS hpsTarget, PVOID pBlts, PBITMAPINF02 pbml21nfoTable,
LONG ICount, PPOINTL aptlPolnts, LONG IRop, ULONG flOptlons)

This function draws a rectangle of bits.

Parameters
hpsTarget (HPS) - input

Target presentation-space handle.

pBlts (PVOID) - input
Source bits.

The source bits must be in one of the standard bit-map formats.

pbmi21nfoTable (PBITMAPINF02) - input
Bit-map information table.

This describes the format of the source bits.

ICount (LONG) - input
Point count.

This count must be equal to 4.

aptlPolnts (PPOINTL) - input
Point array

Array of /Count points, in the order Tx1, Ty1, Tx2, Ty2, Sx1, Sy1, Sx2, Sy2. These are:

Tx1,Ty1 Specify the bottom left corner of the target rectangle in target world coordinates.

Tx2,Ty2 Specify the top right corner of the target rectangle in target world coordinates.

An error occurs if the left coordinate of the target rectangle is greater than the right,
or if the bottom coordinate is greater than the top.

Sx1 ,Sy1 Specify the bottom left corner of the source rectangle in source device coordinates.

Sx2,Sy2 Specify the top right corner of the source rectangle in source device coordinates.

IRop (LONG) - input

p

0

0
0
0
1

5-112

Mixing function required.

Each plane of the target can be considered to be processed separately. For any pel in a target
plane, three bits together with the /Rop values are used to determine the final value. These are
the value of that pel in the Pattern (P) and Source (S) data and the initial value of that pel in the
Target (T) data. For any combination of P, S, and T pel values, the final target value for the pel is
determined by the appropriate IRop bit value as shown below:

s T(lnltlal) T(flnal)

0 0 Index bit 0 (least
significant)

0 1 Index bit 1
0 Index bit 2

1 1 Index bit 3
0 0 Index bit 4
0 1 Index bit 5

0 Index bit 6
1 Index bit 7 (most

significant)

PM Programming Reference

GpiDrawBits -
Draw Bits

The index formed as described above determines the mixing required. Mnemonic names are

available for commonly used mixes:

ROP_SRCCOPY
ROP_SRCPAINT
ROP_SRCAND
ROP_SRCINVERT
ROP_SRCERASE
ROP_NOTSRCCOPY
ROP_NOTSRCERASE
ROP_MERGECOPY
ROP_MERGEPAINT
ROP_PATCOPY
ROP_PATPAINT
ROP _PATINVERT
ROP _DSTINVERT
ROP_ZERO
ROP_ONE

/* SRC */
/* SRC OR DST */
/* SRC AND DST */
/* SRC XOR DST */
/* SRC AND NOT(DST) */
/* NOT(SRC) */
/* NOT{SRC) AND NOT(DST) */
/* SRC AND PAT */
/* NOT(SRC) OR DST */
/* PAT */
/* NOT{SRC) OR PAT OR DST */
/* DST XOR PAT */
/* NOT(DST) */
/* e */
/* 1 */

flOptlons (ULONG) - input
Options.

How eliminated lines or columns are treated if a compression is performed.

Flags 15 through 31 off/Options can be used for privately supported modes for particular

devices.

BBO_OR The default value; if compression is necessary, logical-OR eliminated rows or

columns. This is useful for white on black.

BBO_AND If compression is necessary, logical-AND eliminated rows or columns. This is

useful for black on white.

BBO_IGNORE If compression is necessary, ignore eliminated rows or columns. This is useful

for color.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV_BITBLT_MIX

PMERR_INV _BITBLT _STYLE

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_INCORRECT _DC_ TYPE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid /Rop parameter was specified with a GpiBitBlt

or GpiWCBitBlt function.

An invalid options parameter was specified with a

GpiBitBlt or GpiWCBitBlt function.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt was made to perform a bit-map operation on a

presentation space associated with a device context of a

type that is unable to support bit-map operations.

Chapter 5. Graphics Functions 5-113

GpiDrawBits
Draw Bits

Remarks
A rectangle of bit-map image data is copied from storage to a bit map selected into a device context
associated with the target presentation space. Alternatively, the target presentation space can be
associated with a device context that specifies a suitable raster device, for example, the screen. An
error occurs if this device does not support raster operations.

The source bits must be in one of the standard bit-map formats.

A rectangle is specified in device coordinates for the source bits, and one in world coordinates for
the target presentation space. The source rectangle is noninclusive; the left and lower boundaries in
device space are included, but not the right and upper boundaries. Thus if the bottom left is equal to
the top right, the rectangle is deemed to be empty. The target rectangle is "inclusive-inclusive"; that
is, all boundaries are included in the rectangle.

If the target rectangle, after transformation to device coordinates and adjustment for inclusivity, is
not the same size as the source rectangle, then stretching or compressing of the data occurs.
flOptions specifies how eliminated rows or columns of bits are to be treated if compression occurs.
Note that the pattern data is never stretched or compressed.

These current attributes of the target presentation space are used (other than for converting between
monochrome and color, as described below):

• Area color
• Area background color
• Pattern set
• Pattern symbol.

The color values are used in conversion between monochrome and color data. This is the only
format conversion performed by this function. The conversions are:

• Output of a monochrome pattern to a color device

In this instance the pattern is converted first to a color pattern, using the current area colors:

- source 1s--+ area foreground color
source Os --+ area background color.

• Copying from a monochrome bit map to a color bit map (or device)

The source bits are converted as follows:

- source 1s--+ image foreground color
- source Os--+ image background color.

• Copying from a color bit map to a monochrome bit map (or device)

The source bits are converted as follows:

source nonzeros --+ image foreground color
- source Os --+ image background color.

If the mix (/Rop) does not call for a pattern, the pattern set and pattern symbol are not used.

Neither the source nor the pattern is required when a bit map, or part of a bit map, is to be cleared to
a particular color.

If the mix does require both source and pattern, a three-way operation is performed.

If a pattern is required, dithering may be performed for solid patterns in a color that is not available
on the device. See GpiSetPattern.

5-114 PM Programming Reference

~
'1

GpiDrawBits
Draw Bits

This function can cause immediate drawing, or be retained in segment store, or both of these,

depending upon the drawing mode (see GpiSetDrawingMode). If the function is retained in segment

store, the storage identified by the pBits and pbmi2/nfoTable parameters must not be changed or

freed by the application while the segment con1aining the function can still be drawn. However, if a

metafile is generated and no further drawing is needed, this does not apply, as the information is

encaptured in the metafile.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;

see "Metafile Restrictions" on page G-1.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

Graphic Elements and Orders
Element Type: OCODE_GBBLT

Order: Bitblt

Chapter 5. Graphics Functions 5-115

GpiDrawBits
Draw Bits

Example Code
This example uses GpiDrawBits to draw a rectangle of bits. The bit map was previously placed in

application memory using GpiQueryBitmapBits; when the stored image is displayed, it will be a
compressed copy (ROP _SRCCOPY) of the source bit map (note the difference between the target and
source rectangle sizes), with eliminated rows/columns ignored (BBO_IGNORE) when compression
takes place.

#define INCL_GPIBITMAPS
#include <os2.h>

/* Bit map functions */

HPS hps; /* presentation-space handle */
PBYTE pb; /* bit-map image data */
BITMAPINF02 pbmi; /*bit-map information table */
LONG lHits; /* correlation/error indicator */
LONG lScan; /* number of lines scanned */
/* target and source rectangles */
POINTL apt1Points[4]={ 300, 400, 350, 450, 0, 0, 100, 100 };

/* scan and transfer bit map to application storage */
pbmi.cbFix = 16L;
pbmi.cPlanes = 1;
pbmi.cBitCount = 4;
lScan = GpiQueryBitmapBits(hps, el, 100L, pb, &pbmi);

/* draw stored rectangle bit map */
lHits = GpiDrawBits(hps, (VOID *)pb, &pbmi, 4L,

aptlPoints, ROP_SRCCOPY, BBO_IGNORE);

5-116 PM Programming Reference

GpiDrawChain
Draw Chain

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

I BOOL GplDrawChaln (HPS hps)

This function draws the segments that are in the segment chain.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The segments drawn are all of the retained segments that have the ATTR_CHAINED segment
attribute (see GpiSetlnitialSegmentAttrs), together with all of the unchained segments that are called
from them.

The drawing operation is controlled by the calls set by the draw controls (see GpiSetDrawControl),
except for the correlate control. If there is not a segment open at the time of the draw, and this
function is followed by primitives or attributes, without first opening a segment, the processing is as
described for GpiCloseSegment.

If a segment is already open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is abandoned with an error). In
this instance, if the open segment is the last one drawn (and no dynamic segments had to be drawn),

attributes and other parameters are in the correct state to continue drawing in any drawing mode.

Dynamic segments are not drawn if they are found while processing the segment chain. However,
depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), they may be removed before,
and drawn after, the operation.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the chain. This can be done by ensuring that the

first segment to be drawn does not have the ATTR_FASTCHAIN attribute (see
GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawChain. The latter method
also resets the clip path to no clipping, which may also be necessary.

Chapter 5. Graphics Functions 5-117

GpiDrawChain
Draw Chain

It is an error to issue this function while any of these brackets are open:

• Area bracket
• Path bracket
• Element bracket.

Related Functions
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiErase
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetDrawControl
• GpiSetDrawingMode
• GpiSetStopDraw

Example Code
This function uses GpiDrawChain to draw the two chained segments.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions

BOOL
HPS

fSuccess;
hps;

/* success indicator
/* presentation-space handle

/* The chaining attribute is switched on */
GpiSetlnitialSegmentAttrs(hps, ATTR_CHAINED, ATTR_ON);

/* two chained segments are defined */
GpiOpenSegment(hps, ll);

.
GpiCloseSegment(hps);

GpiOpenSegment(hps, 2L);

GpiCloseSegment(hps);

/* draw the segment chain */
fSuccess = GpiDrawChain(hps);

5-118 PM Programming Reference

*/

*/
*/

GpiDrawDynamics
Draw Dynamics

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

I BOOL GplDrawDynamlcs (HPS hps)

This function redraws the dynamic segments in, or called from, the segment chain.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_INV_FOR_THIS_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt has been made to issue GpiRemoveDynamics
or GpiDrawDynamics to a presentation space associated
with a metafile device context.

Dynamic segments are those segments in the segment chain that have the ATTR_DYNAMIC segment
attribute (see GpiSetlnitialSegmentAttrs). It is preferable to position dynamic segments at the start of
the segment chain.

Dynamic segments can either be drawn with this function, or by setting the DCTL_DYNAMIC draw
control (see GpiSetDrawControl), and issuing one of the other GpiDraw ... calls.

If there is no range set by a previous GpiRemoveDynamics, all dynamic segments are redrawn by
GpiDrawDynamics). However, if GpiRemoveDynamics specified a range in the segment chain, the
redraw is restricted to the dynamic segments that are in, or called from, the selected range. (See
GpiRemoveDynamics).

Note: The redraw is controlled by the calls set by previous calls to GpiSetDrawControl.

The "stop draw" condition can be set (from another thread) while GpiDrawDynamics is in
progress. This is useful in responding to a new position by setting this condition, and then
clearing it and redrawing at the new position.

If "Erase before draw" is set ON (see GpiSetDrawControl), the presentation space is erased before
the redraw.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segments. This can be done either by
ensuring that the first dynamic segment to be drawn does not have the ATTR_FASTCHAIN attribute

Chapter 5. Graphics Functions 5-119

GpiDrawDynamics
Draw Dynamics

(see GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawDynamics. The latter
method also resets the clip path to no clipping, which may also be necessary.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment. In particular, note that during GpiDrawDynamics, the system
forces the foreground mix to FM_XOR and the background mix to BM_LEAVEALONE. It may be
necessary to set one or both of these before starting to draw.

Related Functions
• GpiDrawChain
• GpiDrawFrom
• GpiDrawSegment
• GpiErase
• GpiGetData
• GpiPutData
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetDrawControl
• GpiSetDrawingMode
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetStopDraw

Example Code
This example uses GpiDrawDynamics to redraw the two previously defined dynamic chained
segments.

#define INCL_GPISEGMENTS
#include <os2.h>

BOOL
HPS

fSuccess;
hps;

/* Segment functions

/* success indicator
/* presentation-space handle

/* The chaining attribute is switched on */
GpiSetlnitialSegmentAttrs(hps, ATTR_CHAINED I ATTR_OYNAMIC,

ATTR_ON);

/* two dynamic chained segments are defined */
GpiOpenSegment(hps, IL);

GpiCloseSegment(hps);

GpiOpenSegment(hps, 2L);

GpiCloseSegment(hps);

/* draw the dynamic segment chain */
fSuccess = GpiDrawOynamics(hps);

5-120 PM Programming Reference

*/

*/
*/

/

GpiDrawFrom
Draw From

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplDrawFrom (HPS hps, LONG IFlrstSegment, LONG ILastSegment)

This function draws a section of the segment chain.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstSegment (LONG) - input
First segment to be drawn; it must be greater than 0.

ILastSegment (LONG) - input
Last segment to be drawn; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_SEG_NOT _FOUND

PMERR_SEG_NOT _CHAINED

PMERR_INV _SEG_NAME

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The specified segment identifier did not exist

An attempt was made to issue GpiDrawFrom,
GpiCorrelateFrom or GpiQuerySegmentPriority for a
segment that was not chained.

An invalid segment identifier was specified.

Drawing starts at the segment identified by /FirstSegment and includes all chained segments (those
with the ATTR_CHAINED segment attribute, see GpiSetlnitialSegmentAttrs), and the segments called
from them, up to, and including, the segment identified by /LastSegment.

The drawing operation is controlled by the calls set by the draw controls (see GpiSetDrawControl),
except for the correlate control.

If there is not a segment open at the time of the draw, and this function is followed by primitives or
attributes, without first opening a segment, the processing is as described for GpiCloseSegment.

If a segment is already open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is terminated with an error). In
this instance, if the open segment is the last one drawn (and no dynamic segments had to be drawn),
attributes and other parameters are in the correct state to continue drawing in any drawing mode.

Chapter 5. Graphics Functions 5-121

GpiDrawFrom
Draw From

Dynamic segments are not drawn if they are found while processing the segment chain. However,
depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), they may be removed before,
and drawn after, the operation. If this happens, then all dynamic segments are involved, whether
they occur within the range specified or not.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segments. This can be done either by
ensuring that the first segment to be drawn does not have the ATTR_FASTCHAIN attribute (see
GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawFrom. The latter method
also resets the clip path to no clipping, which may also be necessary.

It is an error to issue this function while any of these brackets are open:

• Area bracket
• Path bracket
• Element bracket.

If /FirstSegment does not exist, or is not in the segment chain, an error is raised. If the ILastSegment
does not exist, or is not in the chain, or is chained before the /FirstSegment, no error is raised, and
processing continues to the end of the chain.

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• Gpi DrawSegment
• GpiErase
• GpiGetData
• GpiPutData
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetDrawControl
• GpiSetDrawingMode
• GpiSetStopDraw

Example Code
This example uses the GpiDrawFrom function to draw all segments in the picture chain between and
including the segments 1 and 4.

#define INCL~GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */

GpiDrawFrom(hps. lL. 4L);

5-122 PM Programming Reference

GpiDrawSegment
Draw Segment

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplDrawSegment (HPS hps, LONG ISegment)

This function draws the specified segment.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegment (LONG) - input
Segment to be drawn; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_SEG_NOT _FOUND

PMERR_INV _SEG_NAME

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The specified segment identifier did not exist

An invalid segment identifier was specified.

The drawing operation is controlled by the calls set by the draw controls (see GpiSetDrawControl),
except for the correlate control.

If there is not a segment open at the time of the draw, and this function is followed by primitives or
attributes, without first opening a segment, the processing is as described for GpiCloseSegment.

If a segment is already open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is abandoned with an error). In
this instance, if the open segment is the segment specified in /Segment, and no dynamic segments
had to be drawn, then attributes and other parameters are in the correct state to continue drawing in
any drawing mode.

Depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), all of the dynamic segments
in the chain may be removed before, and drawn after, the specified segment is drawn. (Note that if
the specified segment is itself dynamic, it is only drawn in this way.)

This function differs from the other GpiDraw ... calls, in that the segment to be drawn need not be a
chained segment.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segment. This can be done either by
ensuring that the segment does not have the ATTR_FASTCHAIN attribute (see

Chapter 5. Graphics Functions 5-123

GpiDrawSegment
Draw Segment

GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawSegment. The latter
method also resets the clip path to no clipping, which may also be necessary.

It is an error to issue this function while any of these brackets are open:

• Area bracket
• Path bracket
• Element bracket.

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiErase
• GpiErrorSegmentData
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetDrawControl
• GpiSetDrawingMode
• GpiSetStopDraw

Example Code
This example uses the GpiDrawSegment function to draw segment 4.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment(hps, 4L); /*open the segment */
GpiMove(hps, &ptlStart); /*move to start point (0, 0) */
GpiPolyline(hps. 3L, ptlTriangle); /*draw triangle */
GpiCloseSegment(hps); /*close the segment */

GpiDrawSegment(hps, 4l); /* draw segment 14 */

5-124 PM Programming Reference

GpiElement -
Element

#define INCL GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

LONG GplElement (HPS hps, LONG IType, PSZ pszDesc, LONG ILength, PBYTE pbData)

This function adds a single element to the current segment.-

Parameters
hps (HPS) - input

Presentation-space handle.

IType (LONG) - input
Type to be associated with the element.

Application-defined elements should have type values in the range X'81xxxxxx' through
X 1FFxxxxxx 1 so as to avoid conflict with system-generated elements.

pszDesc (PSZ) - input
Element description.

This is a variable length character string that is recorded with the element.

ILength (LONG) - input
Length of content data for the element.

This must not be greater than 63KB.

pbData (PBYTE) - input
Buffer pointer.

Element content data.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_DATA_TOO_LONG

PMERR_ALREADY _IN_ELEMENT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

An attempt was made to begin a new element while an
existing element bracket was already open.

Chapter 5. Graphics Functions 5-125

GpiElement
Element

Remarks
The element is stored in the current segment if the drawing mode (see GpiSetDrawingMode) is retain
or draw-and-retain. It is drawn if the drawing mode is draw or draw-and-retain.

It is an error if the element data contains any begin or end element orders. Similarly, this function is
not valid within an element bracket.

Note: No coordinate conversion is performed by this function. The application must ensure that the
coordinates within the element are in the correct format for the presentation space (see
GpiCreatePS).

Related Functions
• GpiBeginElement
• GpiDeleteElement
• GpiDeleteElementRange
• GpiDeleteElementsBetweenlabels
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPointerAtlabel

5-126 PM Programming Reference

\

Example Code

GpiElement -
Element

This example uses GpiElement to add a single element to the current segment: an arc starting at the
current position, passing through (10, 10), and ending at (5,5).

#define INCL_GPISEGEDITING
#define INCL_GPISEGMENTS
#define INCL_ORDERS
#include <os2.h>

/* GPI Segment Edit functions */
/* Segment functions */
/* Graphical Order Formats */

LONG lHits; /* correlation/error indicator */
HPS hps; /* presentation-space handle */
LONG l Type; /* element type * /
char psz0esc[4]; /*element description */
LONG lLength; /* length of element data */
LORDER pbData; /* pointer to element data */
ORDERL_GCARC lArcPts = {10L,10L,5L,5L}; /* arc points structure */

GpiOpenSegment(hps, 3L); /*opens segment to receive element */

/* type is order code for arc at current position (GARC) */
lType = OCODE_GCARC;

/* call the element 'Arc' */
strcpy(pszDesc, 11Arc 11

);

/* length of element data */
lLength = sizeof(LORDER);

/* fill element data structure */
pbData.idCode = OCODE_GCARC; /*order code: arc at current

position */
pbData.uchLength = sizeof(ORDERL_GCARC);
/* order data contains arc points structure */
memcpy(pbData.uchData, lArcPts, sizeof(ORDERL_GCARC));

/* add element */
lHits = GpiElement(hps, lType, pszDesc, lLength, (BYTE *)&pbData);

GpiCloseSegment(hps); /* closes segment that received data */

Chapter 5. Graphics Functions 5-127

GpiEndArea
End Area

#define INCL GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I LONG GplEnclArea (HPS hps)

This function ends the construction of a shaded area.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_NOT _IN_AREA

PMERR_COORDINATE_ OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to end an area using GpiEndArea
or during segment drawing while not in an area bracket.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

The construction is started by the GpiBeginArea function. If necessary, a final line is constructed (to
the starting point of the last figure) to close the area.

The current position is not changed, unless a closure line has to be drawn, in which case the current
position is moved to the end point of the line.

5-128 PM Programming Reference

Related Functions
Prerequisite Functions

• GpiBeginArea

Other Related Functions

• GpiSetPattern
• GpiSetPatternRefPoint
• GpiSetPatternSet
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GEAR

Order: End Area

Example Code

GpiEndArea -
End Area

This example uses the GpiEndArea function to end an area bracket. The function draws the area (a

triangle) by filling the outline with the current fill pattern.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginArea(hps, BA_NOBOUNDARY I BA_ALTERNATE);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 3L, ptlTriangle);
GpiEndArea(hps);

Chapter 5. Graphics Functions 5-129

GpiEndElement
End Element

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

I BOOL GplEndElement (HPS hps)

This function terminates an element started by GpiBeginElement.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_NOT _IN_ELEMENT

Related Functions
Prerequisite Functions

• GpiBeginElement

Other Related Functions

• GpiDeleteElement
• GpiDeleteElementRange
• GpiDeleteElementsBetweenlabels
• GpiElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPoi nter Atlabel

5-130 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to end an element using
GpiEndElement or during segment drawing while not in
an element bracket.

Example Code

GpiEndElement -
End Element

This example uses the GpiEndElement function to end an element bracket.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps; /* presentation space handle * /
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

/* begin the element bracket */
GpiBeginElement(hps, lL, "Triangle");
GpiMove(hps, &ptlStart); /*move to start point
GpiPolyline(hps, 3L, ptlTriangle); /*draw triangle
GpiEndElement(hps); /*end element bracket

(0, 0) */
*/
*/

Chapter 5. Graphics Functions 5-131

GpiEndPath
End Path

#define INCL_GPIPATHS /*Or use INCL_GPI or INCL_PM */

I BOOL GplEndPath (HPS hps)

This function ends the specification of a path started by GpiBeginPath.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERRJNV _HPS

PMERR_PS_BUSY

PMERR_NOT JN_PATH

Related Functions
Prerequisite Functions

• GpiBeginPath

Other Related Functions

• GpiFillPath
• GpiModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiSetClipPath
• GpiStrokePath
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

5-132 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to end a path using GpiEndPath or
during segment drawing while not in a path bracket.

Graphic Elements and Orders
Element Tyoe: OCODE_GEPTH

Order: End Path

Example Code

GpiEndPath -
End Path

This example uses the GpiEndPath function to end a path bracket. When the path bracket is ended, a

subsequent call to the GpiFillPath function draws and fills the path.

#define INCL_GPIPATHS
#include <os2.h>

/* GPI Path functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 2L, ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);
GpiFillPath(hps, ll, FPATH_ALTERNATE);

/* start the path bracket */
/* move to starting point */
/* draw the three sides */
/* close the triangle */
/* end the path bracket */
/* draw and fill the path */

Chapter 5. Graphics Functions 5-133

GpiEqualRegion
Equal Region

#define INCL_GPIREGIONS /*Or use INCL_GPI or INCL_PM */

LONG GplEqualReglon (HPS hps, HRGN hrgnSrc1, HRGN hrgnSrc2)

This function checks whether two regions are identical.

Parameters
hps (HPS) - input

Presentation-space handle.

The regions must be owned by the device identified by the currently associated device context.

hrgnSrc1 (HRGN) - input
Handle of first region.

hrgnSrc2 (HRGN) - input
Handle of second region.

Returns
Equality and error indicators:

EQRGN_NOTEQUAL Not equal

EQRGN_EQUAL Equal

EQRGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_REGION_IS_CLIP _REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Both regions must be of the same device class. It is invalid if the specified region is currently
selected as the clip region (by GpiSetClipRegion).

5-134 PM Programming Reference

Related Functions
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion
• WinEqualRect

Example Code

GpiEqualRegion -
Equal Region

This example uses GpiEqualRegion to create two regions (each consisting of three rectangles), and
then compares them for equality.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

LONG lEquality; /* equality/error indicator */
HPS hps; /* presentation-space handle */
HRGN hrgnSrcl; /* handle for first region */
HRGN hrgnSrc2; /* handle for second region */
RECTL arcl[3] = { 100, 100, 200, 200, /*1st rectangle */

150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */

/* create two identical regions comprising three rectangles each*/
hrgnSrcl = GpiCreateRegion(hps, 3L, arcl);
hrgnSrc2 = GpiCreateRegion(hps, 3L, arcl);

lEquality = GpiEqualRegion(hps, hrgnSrcl, hrgnSrc2);

Chapter 5. Graphics Functions 5-135

GpiErase
Erase

#define INCL GPICONTROL I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I BOOL GplErase (HPS hps)

This function clears the output display of the device context associated with the specified
presentation space, to the reset color (CLR_BACKGROUND; see GpiSetColor).

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

This operation is independent of the draw controls; see GpiSetDrawControl.

The call is subject to all clipping currently in force; that is, clip path, viewing limits, graphics field,
clip region, and visible region.

This function does not perform any bounds collection, or correlation.

Note: This function must not be used when creating metafiles conforming to SAA* guidelines; see
"Metafile Restrictions" on page G-1.

Related Functions
• GpiCreatelogColorTable
• GpiSetColor
• GpiSetDrawControl

• Trademark of IBM Corporation

5-136 PM Programming Reference

Example Code
This example uses the GpiErase function to clear the display before drawing.

#define INCL_GPICONTROL
#include <os2.h>

/* GPI control Functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* start point */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiErase(hps);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 3L, ptlTriangle);

/* clear the display */
/* draw a triangle */

GpiErase -
Erase

Chapter 5. Graphics Functions 5-137

GpiErrorSegmentData
Error Segment Data

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM */

LONG GpiErrorSegmentData {HPS hps, PLONG plSegment, PLONG plContext)

This function returns information about the last error that occurred during a segment drawing
operation.

Parameters
hps {HPS) - input

Presentation-space handle.

plSegment {PLONG) - output
Segment in which the error occurred.

plContext (PLONG) - output
Context of the error:

GPIE_SEGMENT The error occurred while processing the contents of a retained segment.

GPIE_ELEMENT The error occurred while processing the contents of a GpiElement function.

GPIE_DATA The error occurred while processing the contents of a GpiPutData function.

Returns
Position.

This is either the byte offset or the element number, depending on p/Context:

~o Position

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Remarks
The information returned is:

• The segment name
• The context

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

• The byte offset or element number (depending on the context).

The byte offset is returned for these contexts:

• The error occurred within the data of a GpiElement function
• The error occurred within the data of a GpiPutData function.

The element number is returned for the segment context.

5-138 PM Programming Reference

Related Functions
• GpiElement
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiGetData
• GpiPutData
• GpiRemoveDynamics

Example Code

GpiErrorSegmentData -
Error Segment Data

This example uses GpiErrorSegmentData to query the error context and assigns a variable to the
returned element number if the context is an element error.

#define INCL~GPICONTROL
#include <os2.h>

LONG
HPS
LONG
LONG
LONG

lOff;
hps;
pl Segment;
pl Context;
lElement;

/* Control functions */

/* error or offset/element number */
/* presentation-space handle */
/* Segment in which the error occurred */
/* Context of the error */
/* element number causing error */

lOff = GpiErrorSegmentData{hps, &plSegment, &plContext);

if {plContext == GPIE_ELEMENT)
lElement = lOff;

Chapter 5. Graphics Functions 5-139

GpiExcludeClipRectangle
Exclude Clip Rectangle

#define INCL GPIREGIONS I* Or use INCL_ GPI or INCL_PM *I

LONG GplExcludeCllpRectangle (HPS hps, PRECTL prclRectangle)

This function excludes a rectangle from the clipping region.

Parameters
hps (HPS) - input

Presentation-space handle.

prclRectangle (PRECTL) - input
Rectangle to be excluded.

The coordinates are world coordinates.

Returns
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:

• Clip path
• Viewing limits
• Graphics field
• Clip region
• Visible region (windowing considerations).

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _RECT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

The boundaries of the rectangle are considered to be part of the interior, so that a point on the
rectangle boundary is clipped (removed).

This function creates a clip region if one does not currently exist. The application is responsible for
freeing this (with GpiDestroyRegion) if it subsequently selects another clip region (see
GpiSetClipRegion). Any clip region still selected when the device context is closed is automatically
freed.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

5-140 PM Programming Reference

Related Functions
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipRegion
• WinExcludeUpdateRegion

Example Code

GpiExcludeClipRectangle -
Exclude Clip Rectangle

This example uses GpiExcludeClipRectangle to exclude a 100x100 rectangle, anchored at (100, 100),
from the clipping region.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

LONG lComplexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle */
RECTL prclRectangle = {lee, 1ee, 2ee, 2ee};/* exclude rectangle */

lComplexity = GpiExcludeClipRectangle(hps, &prclRectangle);

Chapter 5. Graphics Functions 5-141

GpiFillPath
Fill Path

#define INCL_GPIPATHS I* Or use INCL_GPI or INCL_PM */

LONG GplFHIPath (HPS hps, LONG IPath, LONG IOptlons)

This function draws the interior of a path using the area attributes.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Identifier of path whose interior is to be drawn; it must be 1.

IOptlons (LONG) - input
Fill option:

FPATH_ALTERNATE Fills the path using the alternate rule; see GpiBeginArea.

FPATH_WINDING Fills the path using the winding rule; see GpiBeginArea. This value must
be selected if the path has been modified using GpiModifyPath.

The default is FPATH_ALTERNATE.

Returns
Error indicator:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible re1urns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_JNV _:PATH_ID

PMERR_JNV_FILL_PATH_OPTIONS

PMERR_PATH_UNKNOWN

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid options parameter was specified with
GpiFillPath.

An attempt was made to perform a path function on a path
that did not exist.

Any open figures within the path are closed.

The path is deleted when the interior has been drawn.

The boundaries of the area, as defined by the path, are considered to be part of the interior and are
included in the fill.

If the current drawing mode (see GpiSetDrawingMode) is draw or draw-and-retain, the interior is
drawn on the currently associated device. 1f the drawing mode is retain, this function is stored in the
current segment, and output occurs when the segment is subsequently drawn in the usual way.

5-142 PM Programming Reference

Related Functions
Prerequisite Functions

• GpiBeginPath

Other Related Functions

• GpiEndPath
• GpiModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetClipPath
• GpiStrokePath
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiSetPattern
• GpiSetPatternRef Point
• GpiSetPatternSet
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GFPTH
Note that GpiStrokePath also generates this element type.

Order: Fill Path

Example Code

GpiFillPath -
Fill Path

This example uses the GpiFillPath function to draw the interior of the given path. The path, an
isosceles triangle, is not closed when it is created, so the GpiFillPath function closes it before filling.

#define INCL_GPIPATHS
#include <os2.h>

/* GPI Path functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 188, 188, 288, 8, 8, 8 }; /* vertices */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 3L, ptlTriangle);
GpiEndPath(hps);

/* create a path */

GpiFillPath(hps, ll, FPATH_ALTERNATE); /*fill the path*/

Chapter 5. Graphics Functions 5-143

GpiFloodFill
Flood Fill

#define INCL_GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

LONG GpiFloodFlll (HPS hps, LONG IOptlons, LONG IColor)

This function fills an area bounded by a given color, or while on a given color.

Parameters
hps (HPS) - input

Presentation-space handle.

IOptions (LONG) - input
Flood fill options:

FF_BOUNDARY Fills up to the specified color

FF _SURFACE Fills while on the specified color.

IColor (LONG) - input
Color.

The boundary or surface color, depending on the value of /Options.

This is either a logical color index, or an RGB value, depending on the state of the color table.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_FUNCTION_NOT_SUPPORTED

PMERR_INV _FLOOD _FILL_ OPTIONS

PMERR_INV _IN_AREA

PMERR_INV _IN_PATH

PMERR_INV _ COLOR_A TTR

PMERR_INSUFFICIENT _MEMORY

PMERR_START _POINT_ CLIPPED

5-144 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The function is not supported.

Invalid flood fill parameters were specified.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

An attempt was made to issue a function invalid inside a
path bracket.

An invalid color attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

The operation terminated through insufficient memory.

The starting point specified for flood fill is outside the
current clipping path or region.

GpiFloodFill
Flood Fill

PMERR_NO _FILL No flood fill occured because either the starting point

color was the same as the input color when a boundary

fill was requested, or the starting point color was not the

same as the input color when a surface fill was

requested.

Remarks
The seed point is current position, which is unchanged by this function.

The area attributes define the fill.

DevQueryCaps (CAPS_RASTER_FLOOD_FILL) indicates whether GpiFloodFill is supported on any

particular device.

The results produced by this function are highly device-dependent.

When the drawing mode is draw, if

If the presentation space is partially obscured by an overlying window an incorrect fill can result.

When filling over a pattern or a dithered color, the individual color of each pel is taken into account.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile

Restrictions" on page G-1.

Related Functions
Prerequisite Functions

• GpiBeginArea
• GpiBeginPath
• GpiFillPath
• GpiSetPel

Example Code
This function uses GpiFloodFill to fill an area bounded by a given color, or while on a given color.

The example assumes the color table is in index mode; it fills up to the boundary where the color

represented by index 1 appears.

#define INCL_GPIBITMAPS
#include <os2.h>

LONG lHits;
HPS hps;
LONG lOptions;
LONG lColor;

/* Bit map functions

/* correlation/error indicator
/* Presentation-space handle
/* flood fill options
/* color

/* fill up to the boundaries of the color */
lOptions = FF_BOUNDARY;

/* use color corresponding to index 1 */
lColor = 1;

lHits = GpiFloodFill{hps, lOptions, lColor);

*/

*/
*/
*/
*/

Chapter 5. Graphics Functions 5-145

GpiFrameRegion
Frame Region

#define INCL_GPIREGIONS f* Or use INCL_GPI or INCL_PM */

LONG GplframeReglon (HPS hps, HRGN hrgn, PSIZEL pslzlThlckness)

This function draws a frame inside a region using the current pattern attributes.

Parameters
hps (HPS) - input

Presentation-space handle.

hrgn (HRGN) - input
Region handle.

psizlThickness (PSIZEL) - input
Thickness of frame.

The width and height of the rectangle, in device coordinates, used to trace the frame. Both the
width and height fields must be greater than or equal to zero.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS _BUSY

PMERR_REGION_IS_CLIP _REGION

PMERR_INV _HRGN

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An invalid region handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

The frame is drawn by tracing around the inner boundary of the region with a rectangle of size given
by the psiz/Thickness parameter. The edge of the frame includes the pels on the left and bottom
boundaries of the region, unless those pels are also on the top and right boundaries, in which case
they are excluded.

No part of the frame is drawn outside the region.

The region is assumed to be defined in device coordinates.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

5-146 PM Programming Reference

Example Code

GpiFrameRegion -
Frame Region

This example uses GpiFrameRegion to draw a frame of width 5 around an existing region.

#define INCL_GPlREGIONS
#include <os2.h>

/* Region functions */

LONG lHits; /* correlation/error indicator */
HPS hps; /* presentation-space handle */
HRGN hrgn; /* handle for region *I
SIZEL psizlThickness = {5L,5L};

/* Thickness of frame *I
RECTL arcl[3] = { 100, 100, 200, 200, /*1st rectangle */

150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */

/* create a region comprising three rectangles */
hrgn = GpiCreateRegion(hps, 3L, arcl);

lHits = GpiFrameRegion(hps, hrgn, &psizlThickness);

Chapter 5. Graphics Functions 5-147

GpiFullArc
Full Arc

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplFullArc (HPS hps, LONG IControl, FIXED fxMultlpller)

This function creates a full arc with its center at the current position.

Parameters
hps (HPS) - input

Presentation-space handle.

IControl (LONG) - input
Interior and outline control.

Specifies whether the interior of the full arc should be filled, and whether the outline should be
drawn:

DRO_FILL Fill interior

DRO_OUTLINE Draw outline

DRO_OUTLINEFILL Draw outline and fill interior.

fxMultlpller (FIXED) - input
Multiplier.

This determines the size of the arc, in relation to an arc with the current arc parameters. The
implementation limit of the multiplier is 255.

The value must not be negative.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _ARC_ CONTROL

PMERR_INV _MULTIPLIER

Remarks
The current position is not changed.

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid control parameter was specified with
GpiFullArc.

An invalid multiplier parameter was specified with
GpiPartialArc or GpiFullArc.

The arc parameters determine whether the full arc is drawn clockwise or counterclockwise.

Either the outline of the full arc, or its interior, or both, can be drawn.

If this function appears within an area or path definition, it generates a complete closed figure
(DRO_OUTLINE must be specified). It must not occur within any other figure definition.

5-148 PM~Programming Reference

GpiFullArc -
Full Arc

If correlation is in force, a hit always results if the pick aperture intersects the full arc boundary.

However, if the pick aperture lies wholly within the figure, a hit only occurs if the interior is being

drawn (DRO_FILL or DRO_OUTLINEFILL).

Related Functions
• GpiPartialArc
• GpiPointArc
• GpiSetCurrentPosition
• GpiSetArcParams
• GpiSetDef ArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCFARC

Order: Begin Area
This order is generated only if /Control is DRO_FILL or DRO_OUTLINEFILL.

Order: Full Arc at Current Position

Order: End Area
This order is generated only if /Control is DRO_FILL or DRO_OUTLINEFILL.

Example Code
This example uses GpiFullArc to draw five concentric circles. The arc parameters are set before

drawing the arc. Only the outline is drawn for the arc.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
SHORT i; /* loop variable */
ARCPARAMS arcp = { 1, 1, 0, 0 }; /* arc parameters structure */

GpiSetArcParams(hps, &arcp);

for (i = 5; i > 0; i--)
GpiFullArc(hps,

ORO OUTLINE,
MAKEFIXED(i, 0));

/* presentation-space handle */
/* out l i ne *I
/* converts integer to fixed point */

Chapter 5. Graphics Functions 5-149

GpiGetData
Get Data

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

LONG GplGelDala (HPS hps, LONG ISegld, PLONG plOffsel, LONG IFormal, LONG ILenglh,
PBYTE pbDala)

This function retrieves a buffer of graphic data from the specified segment into the supplied buffer.
The data is a list of drawing orders. For details of these, see Chapter 33, "Graphics Orders."

Parameters
hps (HPS) - input

Presentation-space handle.

ISegld (LONG) - input
Segment identifier.

plOffsel (PLONG) - input/output
Segment offset.

A value used to indicate the position in the segment from which data is to be retrieved. It must
be set to 0 the first time GpiGetData is called. This indicates that data is to be obtained from the
start of the segment. On return, it contains a value that can be used on a subsequent call to
continue data retrieval.

The only possible values that can be specified are 0 or the value returned from a previous
function.

IFormal (LONG) - input
Coordinate type required:

DFORM_NOCONV No coordinate conversion performed.

ILenglh (LONG) - input
Length of data buffer.

pbDala (PBYTE) - output
Data buffer.

For order formats, see Chapter 33, "Graphics Orders" on page 33-1.

Returns
Length of returned data.

~O Number of bytes actually returned in pbData

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV _SEG_NAME

PMERR_INV _SEG_ OFFSET

PMERR_INV_GETDATA_CONTROL

PMERR_INV _LENGTH_ OR_ COUNT

5-150 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid offset parameter was specified with
GpiPutData.

An invalid format parameter was specified with
GpiGetData.

An invalid length or count parameter was specified.

\
/ PMERR_INV_MICROPS_FUNCTION

PMERR_SEG_NOT _FOUND

PMERR_SEG_IS_CURRENT

PMERR_DATA_ TOO _LONG

Remarks

GpiGetData
Get Data

An attempt was made to issue a function that is invalid in
a micro presentation space.

The specified segment identifier did not exist

An attempt was made to issue GpiGetData to a segment
that was currently open.

An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

If the buffer is large enough to contain the data requested, the data is returned and /Count is set to
show its length.

If the buffer is not large enough, the buffer is filled and /Count is set to the length of the buffer. This
may mean that there is an incomplete order at the end of the buffer; even so, it is possible to use
GpiPutData subsequently, without having to scan the orders in the buffer.

The application can detect when it has been given all the data by checking the /Count value. If this is

less than the value of /Length specified, there is no more data to be returned. If it is equal, there is

more data, except in the case where the data just fits in the buffer, which is detected if another
GpiGetData function is issued, and a /Count of O is returned.

No conversion of coordinates is performed for the DFORM_NOCONV value of the control parameter.

The coordinates are in the presentation space format.

This function can be issued while there is a segment open, unless the open segment is the segment

referenced by this function. If the segment referenced by this function is open, an error occurs.

The segment transform and viewing transform are not returned by this call.

Related Functions
• GpiPutData

Chapter 5. Graphics Functions 5-151

GpiGetData
Get Data

Example Code
This example uses the GpiGetData function to copy data from one segment to another.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
LONG fFonnat = DFORM_NOCONV;
LONG offSegment = 0L;

/* does not convert coordinates */
/* offset in segment */

LONG offNextElement = 0L; /* offset in segment to next element */
LONG cb = 0L; /* bytes retrieved */
BYTE abBuffer[512]; /* data buffer */

GpiOpenSegment(hps, 3L); /*opens segment to receive data */
do {

offSegment += cb;
offNextElement = offSegment;
cb = GpiGetData(hps, 2L, &offNextElement. fFonnat, 512L,

abBuffer);

/* Put data in other segment. */

if (cb > 0L) GpiPutData(hps, /* presentation-space handle */
fFonnat, /* fonnat of coordinates */
&cb, /* number of bytes in buffer */
abBuffer); /*buffer with graphics-order data*/

} while (cb > 0);
GpiCloseSegment(hps); /* closes segment that received data */

5-152 PM Programming Reference

\
/

Gpilmage
Image

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG Gpllmage (HPS hps, LONG lformat, PSIZEL pslzllmageSlze, LONG ILength,
PBYTE pbData)

This function draws a rectangular image, with the top-left corner at the current position.

Parameters
hps (HPS) - input

Presentation-space handle.

lformat (LONG) - input
Format of image data.

This is a reserved field; must be set to 0.

psizllmageSlze (PSIZEL) - input
Size of image area (in pels).

The maximum width allowed is 2 040.

ILength (LONG) - input
Length in bytes of image data.

pbData (PBYTE) - input
Image data.

Returns
Correlation and error indicators:

GPl_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _IMAGE_FORMAT

PMERR_INV_IMAGE_DATA_LENGTH

PMERR_INV _IMAGE_DIMENSION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid /Format parameter was specified with
Gpilmage.

An invalid /Length parameter was specified with
Gpilmage. There is a mismatch between the image size
and the data length.

An invalid psizllmageSize parameter was specified with
Gpilmage.

All images are a rectangular array of pels (display points), each pel being represented by one bit.

psizllmageSize, which defines the width and height of the image, determines how many pels there
are in the horizontal and vertical directions.

Chapter 5. Graphics Functions 5-153

Gpilmage
Image

pbData determines which of the pels are visible; a 1 bit sets the associated pel, using the image

foreground color and mix, and a 0 bit sets the pet using the image background color and mix.

The top left-hand corner of the image is placed at the current position, and the data supplied is drawn

row by row, starting at the top. Each row is drawn from left to right and must be padded out to an

integral number of bytes if the image width specified is not a multiple of 8. For example, if the image

width specified is 12, each row of data must be padded out to a length of 16 so that the data in the

row occupies exactly 2 bytes.

Within each byte the high-order bit is drawn on the left.

The length of image data specified must include the padding of each row of data. The length must be

given in bytes, and an error message is issued if it is wrong.

If the image is being stored in a metafile, then (((pels_per_row + 9) I 8) * pels_per_column) + 10,

must be less than 32768.

Because of the different sizes of pets for different devices, the relationship of the image with respect

to other graphics primitives is device-dependent.

The current position remains unchanged after the image has been drawn.

Related Functions
• GpiSetAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCBIMG

Order: Begin Image at Current Position

Order: Image Data
One order for each pet row of the image.

Order: End Image

Example Code
This example uses Gpilmage to draw an 8-by-8 image. The image data is specified as an array of

bytes.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
SIZEL sizl = { 8, 8 }; /* image is 8 pels wide by 8 pels high */
BYTE ablmage[] = { 0x00, 0xl8, 0x3c, 0x7e, 0xff,

0xff, 0x7e, 0x3c, 0xl8, exee }; /* image data */

Gpilmage(hps, 0L, &sizl, SL, ablmage); /* draws the image */

5-154 PM Programming Reference

GpilntersectCli.pRectangle
Intersect Clip Rectangle

#define INCL GPIREGIONS I* Or use INCL_GPI or INCL_PM */

LONG GpllntersectCllpRectangle (HPS hps, PRECTL prclRectangle)

This function sets the new clip region to the intersection of the current clip region and the specified
rectangle.

Parameters
hps (HPS) - input

Presentation-space handle.

prclRectangle (PRECTL) - input
pre/Rectangle, the coordinates of which are world coordinates.

Returns
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:

• Clip path
• Viewing limits
• Graphics field
• Clip region
• Visible region (windowing considerations).

RGN_NULL Nult region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_COORDINATE

PMERR_INV_RECT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

The boundaries of the rectangle are considered to be part of the interior, so that a point on the
rectangle boundary is not clipped {removed) if it was previously within the clip region.

This function creates a clip region. if one does not currently exist. The apptication is responsible for
freeing this (with GpiDestroyRegion), if it subsequently selects another clip region (see
GpiSetClipRegion). Any clip region still selected when the device context is closed is automatically
freed.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Chapter 5. Graphics Functions 5-155

GpilntersectClipRectangle
Intersect Clip Rectangle

Related Functions
• GpiExcludeClipRectangle
• GpiOffsetClipRegion
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipRegion

Example Code
This example uses GpilntersectClipRectangle to create a new clipping region, consisting of the
intersection of the old clipping region and a 100x100 rectangle, anchored at (100, 100).

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

LONG lComplexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle */
RECTL prclRectangle = {100.100.200.200}; /* intersect rectangle */

lComplexity = GpilntersectClipRectangle(hps. &prclRectangle);

5-156 PM Programming Reference

Gpilabel
Label

#define INCL GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

I BOOL Gpllabel (HPS hps, LONG llabel)

This function generates an element containing the specified label.

Parameters
hps (HPS) - input

Presentation-space handle.

ILabel (LONG) - input
Required label.

No check is made on the value of this parameter.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _IN_ ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a function invalid inside an
element bracket.

This function has no effect unless a retained segment is being constructed. It is invalid within an
element bracket. Duplicate labels within a segment are allowed.

Related Functions
• GpiSetElementPointerAtLabel
• GpiSetTag

Graphic Elements and Orders
Element Type: OCODE_ GLABL

Order: Label

Chapter 5. Graphics Functions 5-157

Gpilabel
Label

Example Code
This example uses the Gpilabel function to create label elements in a segment. If the segment is
subsequently edited, the label elements can still be used to locate the elements near it.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

6piOpenSegment(hps, 4L);
Gpilabel(hps, SL);
Gpilabel(hps, 10L);
GpiMove(hps, &ptlStart);
GpiCloseSegment(hps);
GpiPolyline(hps, 3L, ptlTriangle);

5-158 PM Programming Reference

/* creates a segment */
/* creates label 5 */
/* creates label 10 */

Gpiline
Line

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplLlne (HPS hps, PPOINTL pptlEndPolnl)

This function draws a straight line from the current position to the specified end point.

Parameters
hps (HPS) - input

Presentation-space handle.

ppllEndPolnl (PPOINTL) - input
End point of the line.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

The current position is set to the end point of the line.

The line is drawn using the current values of the line color, line mix, line width, and line type

attributes.

Chapter 5. Graphics Functions 5-159

Gpiline
Line

Related Functions
• GpiBox
• GpiMove
• GpiPolyline
• GpiQueryCurrentPosition
• GpiSetCurrentPosition
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCLINE
Note that GpiPolyline also generates this element type.

Order: Line at Current Position

Example Code
This example uses Gpiline to draw an X.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps; /* presentation space handle
/* point array */
POINTL ptl[4] = { 0, 0, 100, 100, 0, 100, 100, 0 };

GpiMove(hps, &ptl[0]);
Gpiline(hps, &ptl[l]);
GpiMove(hps, &ptl[2]);
Gpiline(hps, &ptl[3]);

5-160 PM Programming Reference

*/

*/

GpiLoadBitmap
Load Bit Map

#define INCL GPIBITMAPS I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

HBITMAP GplLoadBltmap (HPS hps, HMODULE Resource, ULONG ldBltmap, LONG IWidth,

LONG IHelght)

This function creates and loads a bit map from a resource, and returns the bit-map handle.

Parameters
hps (HPS) - input

Presentation-space handle.

The associated device should, if possible, hold the bit map in its own memory. Where this is not

possible, main memory is used and the bit map is held in a format compatible with the device.

Resource (HMODULE) - input
Resource identity containing the bit map:

NULLHANDLE Use the .EXE file of the application.

Other Module handle returned from the OS/2 DosLoadModule function.

idBitmap (ULONG) - input
ID of the bit map within the resource file.

IWidth (LONG) - input
Width of the bit map in pels.

IHelght (LONG) - input
Height of the bit map in pels.

Returns
Bit-map handle:

:¢0 Bit-map handle

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_BITMAP _NOT_FOUND

PMERR_INV _BITMAP _DIMENSION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

A attempt was made to perform a bit-map operation on a

bit map that did not exist.

An invalid dimension was specified with a load bit-map

function.

Some bit-map functions, including drawing into the bit map, require it to be selected into a memory

device context, using GpiSetBitmap. This is true whether device or main memory is used to hold the

bit map.

The bit map is stretched to the specified /Width and /Height. If /Width or /Height is 0, the bit map is

not stretched in that direction; when, for example, /Width= 0, the bit map is not stretched

horizontally, when /Height= 0, it is not stretched vertically.

The bit map may have been created by the icon editor in bit-map mode.

Chapter 5. Graphics Functions 5-161

GpiLoadBitmap
Load Bit Map

There are a number of standard bit-map formats that should normally be adhered to. Other formats
can be used if supported by the device.

The bit map is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

Example Code
This example uses the GpiloadBitmap function to load a bit map from the .EXE file into application
memory. The bit map is then selected, displayed, and finally, deleted from memory.

#define INCL_GPIBITMAPS
#include <os2.h>

/* GPI bit map functions

HPS hps; /* presentation space handle
HBITMAP hbm, hbmPrevious;
#define BITMAP_ID 1

/* load the bit map from the EXE */

*/

*/

hbm = GpiloadBitmap(hps, NULLHANDLE, BITMAP_ID, 100L, 100L);
hbmPrevious = GpiSetBitmap(hps, hbm); /*select bit map for PS*/

/* bit map displayed with GpiBitBlt */

GpiSetBitmap(hps, hbmPrevious);
GpiDeleteBitmap(hbm);

5-162 PM Programming Reference

/* release bit map from PS */
/* delete the bit map */

GpiLoadFonts
Load Fonts

#define INCL GPILCIDS /*Or use INCL_GPI or INCL_PM */

BOOL GpiLoadFonts (HAB hab, PSZ pszfllename)

This function loads one or more fonts from the specified resource file.

Parameters
hab (HAB) - input

Anchor-block handle.

pszfllename (PSZ) - input
Filename.

This is the fully-qualified name of the font resource. The file-name extension is ".FON."

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_FONT_FILE_DATA

Remarks

The font file specified with GpiloadFonts,
GpiloadPubl icFonts,

All of the fonts in the file become available for any presentation space (GPI or VIO) created by the
same process. They are not available for any other process.

The format of the font definitions in the resource file is defined in Appendix F, "The Font-File
Format" on page F-1.

When no longer required, the fonts may be unloaded with GpiUnloadFonts.

Note: Fonts loaded with GpiloadFonts are not available for use for spooled printing, that is if a
device type of OD_QUEUED is specified in DevOpenDC; in this case GpiCreatelogFont will
never return FONT_MATCH for these fonts. To avoid this, install the fonts as public fonts
using the Font Palette object located in the System Setup folder, on both the generating and
the receiving workstations if these are different.

Related Functions
• GpiCreatelogFont
• Gpi DeleteSetld
• GpiQueryFontMetrics
• GpiQueryFonts
• GpiQueryKerningPairs
• GpiQueryNumberSetlds
• GpiQuerySetlds
• GpiQueryWidthTable
• GpiUnloadFonts
• GpiSetCharSet

Chapter 5. Graphics Functions 5-163

GpiLoadFonts
Load Fonts

Example Code
This example uses the GpiloadFonts function to load all fonts from the font resource file HELV.FON.

The GpiQueryFonts function retrieves the number of fonts loaded.

#define INCL_GPILCIDS
#include <os2.h>

HPS hps;
HAB hab;
LONG cFonts = 0L;
LONG remFonts;

/* Font functions

/* presentation space handle
/* anchor-block handle
/* font count
/* fonts not returned

GpiLoadfonts(hab, 11 helv 11
);

*/

*/
*/
*/
*/

remFonts = GpiQueryFonts(hps, QF_PRIVATE, NULL, &cFonts, 0L, NULL);

5-164 PM Programming Reference

\

GpiLoadMetaFile
Load Metafile

#define INCL_GPIMETAFILES /*Or use INCL_GPI or INCL_PM */

HMF GplLoadMetaFlle (HAB hab, PSZ pszFllename)

This function loads data from a file into a metafile.

Parameters
hab (HAB) - input

Anchor-block handle.

pszFllename (PSZ) - input
Filename.

The name of the file that is to be loaded into a metafile.

Returns
Metafile handle or error:

9'0 Metafile handle

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_DOSOPEN_FAILURE

PMERR_DOSREAD _FAILURE

Remarks

A DosOpen call made during GpiLoadMetaFile or
GpiSaveMetaFile gave a good return code but the file was
not opened successfully.

A DosRead call made during GpiLoadMetaFile gave a
good return code. However, it failed to read any more
bytes although the file length indicated that there were
more to be read.

A metafile is created, into which the data from the file is loaded. The handle of the metafile created
is returned in hmf; it can be used on subsequent GpiPlayMetaFile or GpiDeleteMetaFile functions.

Related Functions
• GpiCopyMetaFile
• GpiDeleteMetaFile
• GpiPlayMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFileLength
• GpiSaveMetaFile
• GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-165

GpiLoadMetaFile
Load Metafile

Example Code
This example uses the GpiloadMetaFile function to load a metafile with data from the file

sample.met. Later, the metafile is deleted by using the GpiDeleteMetaFile function.

#define INCL_GPIMETAFILES
#include <os2.h>

/* Metafile functions

HAB hab;
HMF hmf;

/* anchor block handle
/* metafile handle

/* loads metafile from disk */
hmf = GpiloadMetaFile(hab, "sample.met");

GpiDeleteMetaFile(hmf); /* deletes metafile

5-166 PM Programming Reference

*/

*/
*/

*/

#define INCL_GPILCIDS /*Or use INCL_GPI or INCL_PM */

GpiLoadPublicFonts -
Load Public Fonts

BOOL GplLoadPubllcfonts (HAB hab, PSZ pszfllename)

This function loads one or more fonts from the specified resource file, to be available for all

applications.

Parameters
hab (HAB) - input

Anchor-block handle.

pszfllename (PSZ) - input
Filename.

This is the fully-qualified name of the font resource. The file-name extension is" .FON."

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INSUFFICIENT _MEMORY

PMERR_INV_FONT_FILE_DATA

The operation terminated through insufficient memory.

The font file specified with GpiloadFonts,
GpiloadPubl icFonts,

Remarks
All of the fonts in the file become available for any presentation space (GPI or VIO) created by any

process.

The format of the font definitions in the resource file is defined in Appendix F, "The Font-File

Format" on page F-1.

Note: Problems can occur when applications load and unload public fonts. See

GpiUnloadPublicFonts.

Example Code
This example use GpiloadPublicFonts to load and make available fonts from a file 'TEST.FON',

which is assumed to exist and contain valid fonts.

#define INCL_GPILCIDS
#include <os2.h>

BOOL fSuccess;
HAB hab;
char pszFilename[13];

/* Font functions

/* success indicator
/* anchor-block handle
/* Name of fond resource file

/* resource file is named 'TEST.FON' */
strcpy(pszFilename. 11 TEST.FON 11

);

fSuccess = GpiloadPublicFonts(hab. pszFilename);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-167

GpiMarker
Marker

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplMarker (HPS hps, PPOINTL pptlPolnt)

This function draws a marker with its center at a specified position.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - input
Position of the marker.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An Invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

The current position is moved to the specified position. The marker symbol is selected by the
current values of the marker set and marker symbol attributes.

Related Functions
• GpiPolyMarker
• GpiSetMarker
• GpiSetMarkerBox
• GpiSetMarkerSet
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

5-168 PM Programming Reference

Graphic Elements and Orders
Element Type: OCODE_GMRK
Note that GpiPolyMarker also generates this element type.

Order: Marker at Given Position

Example Code

GpiMarker -
Marker

This example uses the GpiMarker function to draw a marker at the point (10,10).

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle
POINTL ptl = { 10, 10 }; /* marker point

GpiMarker(hps, &ptl);

*/
*/

Chapter 5. Graphics Functions 5-169

GpiModifyPath
Modify Path

#define INCL_GPIPATHS /*Or use INCL_GPI or INCL_PM */

BOOL GplModlfyPath (HPS hps, LONG IPath, LONG IMode)

This function modifies the specified path.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Path identifier.

Identifier of the path to be modified; it must be 1.

IMode (LONG) - input
Modification required.

This must be:

MPATH_STROKE Convert the path to one describing the envelope of a wide line.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_PATH_ID

PMERR_INV _MODIFY _PATH_MODE

PMERR_PATH_UNKNOWN

PM ERR_ COORDINATE_ OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid mode parameter was specified with
GpiModifyPath.

An attempt was made to perform a path function on a path
that did not exist.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

This function converts the path to one describing the envelope of a wide line stroked using the
current geometric wide-line attribute (see GpiSetlineWidthGeom). Note that this and GpiStrokePath
are the only calls that can cause geometric wide lines to be constructed.

The envelope includes the effects of line joins, and line ends, according to the current values of these
attributes (see GpiSetlineJoin and GpiSetlineEnd). Note these points:

• A line may be joined to an arc, for example. The common point is handled according to the
line-join attribute, rather than applying line ends at each end.

• Any open figures within the path are not closed automatically.

5-170 PM Programming Reference

GpiModifyPath
Modify Path

• If a figure is closed using GpiCloseFigure, the joining rules are followed, rather than the ending
rules, at the start and end point.

• The envelope takes account of any crossings, so that a character such as a stroked "X" does not
have a hole in the middle when subsequently drawn in exclusive-OR mode.

After this function, the only calls that can be performed on the path are GpiFillPath, specifying the
FPATH_WINDING option, or GpiSetClipPath, specifying the SCP _WINDING option.

Related Functions
• GpiBeginPath
• GpiEndPath
• GpiFillPath
• GpiOutlinePath
• GpiPathToRegion
• GpiSetClipPath
• GpiSetPattern
• GpiSetPatternRef Point
• GpiSetPatternSet
• GpiStrokePath
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GMPTH

Order: Modify Path

Chapter 5. Graphics Functions 5-171

GpiModifyPath
Modify Path

Example Code
This example uses the GpiModifyPath function to modify the given path. The GpiFillPath function

then draws the path.

#define INCL_GPIPATHS
#include <os2.h>

/* GPI Path functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 3L, ptlTriangle);
GpiEndPath(hps);

GpiModifyPath(hps,
ll,

/* creates path */

MPATH_STROKE); /*modifies path for wide line*/
GpiFillPath(hps, ll, FPATH_ALTERNATE); /*draws the wide line*/

5-172 PM Programming Reference

GpiMove
Move

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

BOOL GplMove (HPS hps, PPOINTL pptlPolnt)

This function moves the current position to the specified point.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPoint (PPOINTL) - input
Position to which to move.

This position is in world coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

This function also has the effect of resetting position within a line-type sequence, and, if within an
area, of starting a new closed figure and causing any previous one to be closed automatically if
necessary.

This function is equivalent to the GpiSetCurrentPosition call, except that, if the current attribute mode
is AM_PRESERVE (see GpiSetAttrMode), the current position is not saved before being set to a new
value by the GpiMove function, and hence cannot be restored using the GpiPop call.

Related Functions
• GpiQueryCurrentPosition
• GpiSetCurrentPosition

Graphic Elements and Orders
Element Type: OCODE_GSCP
Note that GpiSetCurrentPosition also generates this element type.

Order: Set Current Position

Chapter 5. Graphics Functions 5-173

GpiMove
Move

Example Code
This example uses the GpiMove function to draw an X. The function moves the current position to

the starting point of each leg of the character.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps; /* presentation space handle
/* point array */
POINTL ptl[4] = {a. a. 100. 100. e. 100. 100. e };

GpiMove(hps. &ptl[0]);
GpiLine(hps. &ptl[l]);
GpiMove(hps. &ptl[2]);
GpiLine(hps. &ptl[3]);

/* move to (a.a) */

/* move to (0.100) */

5-174 PM Programming Reference

*/

*/

\
)

GpiOffsetClipRegion
Offset Clip Region

#define INCL_GPIREGIONS /*Or use INCL_GPI or INCL_PM */

LONG GplOffsetCllpReglon (HPS hps, PPOINTL pptlPolnt)

This function moves the clipping region by the specified displacement.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - input
Displacement.

The displacement by which the clipping region is to be moved, expressed as an offset in world
coordinates.

Returns
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:

• Clip path
• Viewing limits
• Graphics field
• Clip region
• Visible region (windowing considerations).

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_ COORDINATE_OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Related Functions
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipRegion
• WinExcludeUpdateRegion

Chapter 5. Graphics Functions 5-175

GpiOffsetClipRegion
Offset Clip Region

Example Code
This example uses GpiOffsetClipRegion to move the clipping region right by 3 and up by 3.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

LONG lComplexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle */
POINTL pptlPoint = {3,3}; /* displacement */

lComplexity = GpiOffsetClipRegion(hps, &pptlPoint);

5-176 PM Programming Reference

GpiOffsetElementPointer
Offset Element Pointer

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

BOOL GpiOlfsetElementPolnter (HPS hps, LONG loflset)

This function sets the element pointer, within the current segment, to the current value plus the
specified offset.

Parameters
hps (HPS) - input

Presentation-space handle.

lolfset (LONG) - input
Offset to be added to the element pointer.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO _CURRENT _SEG

PMERR_INV _IN_ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

If the resulting value is negative, the element pointer is set to 0. If the resulting value is greater than
the number of elements in the segment, it is set to the last element.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress.

This function is invalid within an element bracket.

Chapter 5. Graphics Functions 5-177

GpiOffsetElementPointer
Offset Element Pointer

Related Functions
• GpiBeginElement
• GpiDeleteElement
• GpiDeleteElementRange
• GpiDeleteElementsBetweenlabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer
• GpiSetElementPointerAtLabel

Example Code
This example uses the GpiOffsetElementPointer function to move to the element associated with a
label element. Combining the GpiSetE!ementPointerAtlabel and GpiOffsetElementPointer functions
is a convenient way to locate elements in segments that have been edited.

#define INCL_GPISEGEDITING
#define INCL_GPISEGMENTS
#include <os2.h>

/* GPI Segment Edit functions */
/* Segment functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment(hps, 4L); /*creates a segment with labels */
Gpilabel(hps, SL); GpiMove(hps, &ptlStart);
Gpilabel(hps, lGL); GpiPolyline(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

GpiOpenSegment(hps, 4L);
GpiSetElementPointerAtlabel(hps, 10L);/* move to label 10 */
GpiOffsetElementPointer(hps, ll); /*move to polyline element*/

5-178 PM Programming Reference

\
;

GpiOffsetRegion
Offset Region

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

BOOL GplOffsetRegion (HPS hps, HRGN Hrgn, PPOINTL pptlOffset)

This function moves a region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

Hrgn (HRGN) - input
Handle of the region to be moved.

pptlOffset (PPOINTL) - input
Offset to be added to the region boundary.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_HRGN

PMERR_REGION_IS_CLIP _REGION

PMERR_INV _COORDINATE

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is .selected as a clip region.

An invalid c.oordinate value was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

This function moves the region to a new position. The new position is .obtained by adding the value

ofppt/Offset to all the points that define the region boundary.

An error is raised if the specified region is currently selected as the clip region (by
GpiSetClipRegion).

Chapter 5. Graphics Functions 5-179

GpiOffsetRegion
Offset Region

Related Functions
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion

Example Code
This example uses GpiOffsetRegion to move a region right by 3 and up by 3.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions

BOOL fSuccess; /* success indicator
HPS hps; /* Presentation-space handle
HRGN Hrgn; /* handle for region
POINTL pptlOffset = {3,3}; /* displacement

fSuccess = GpiOffsetRegion(hps, Hrgn, &pptlOffset);

5-180 PM Programming Reference

*/

*/
*/
*/
*/

GpiOpenSegment -
Open Segment

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplOpenSegment (HPS hps, LONG ISegment)

This function opens a segment with the specified identification number.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegment (LONG) - input
Segment identifier.

Must be zero or a positive number.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _MICROPS_FUNCTION

PMERR_ALREADY _IN_SEG

PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to open a new segment while an
existing segment bracket was already open.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

• A segment has been opened, closed, or drawn.
• GpiAssociate was issued while an area bracket was

open.
• A drawn segment has opened an area bracket and

ended without closing it.

PMERR_INV_MODE_FOR_REOPEN_SEG An attempt was made to reopen an existing segment
while the drawing mode was set to DM_DRAW or
DM_DRAWANDRETAIN.

PMERR_DYNAMIC_SEG_ZERO_INV An attempt was been made to open a dynamic segment
with a segment identifier of zero.

PMERR_INV_MODE_FOR_OPEN_DYN An attempt was made to open a segment with the
ATTR_DYNAMIC segment set, while the drawing mode
was set to DM_DRAW or DM_DRAWANDRETAIN.

Chapter 5. Graphics Functions 5-181

GpiOpenSegment
Open Segment

PMERR_UNCHAINED _SEG_ZERO _INV

Remarks

An attempt was made to open segment with segment
identifier zero and the A TIA_ CHAINED segment attribute
not specified.

A segment is a way of grouping graphics primitives.

If the current drawing mode is retain or draw-and-retain (see GpiSetDrawingMode), the following
occurs:

• If a nonzero identifier is given, and if a segment with the specified identifier does not already
exist, a new retained segment is created. If one does already exist, it is reopened in retain
mode (with the element pointer set to 0), but is an error in draw-and-retain mode.

• If an identifier of 0 is given, a new retained segment is created, regardless of whether one with a
0 identifier already exists. There can be more than one segment with an identifier of 0, but such
segments can never subsequently be referenced by identifier. When they have been created,
they continue to exist until all segments are deleted. Zero segments must be chained and
cannot be defined as dynamic.

If the current drawing mode is draw, a new nonretained segment is started. No check is made
against any possible retained segment identifiers. The current attributes are set to default values
(subject to the ATTR_FASTCHAIN segment attribute; see below).

The initial attributes of the segment are as set by GpiSetlnitialSegmentAttrs. The attributes may
subsequently be changed with GpiSetSegmentAttrs (except for a segment with an identifier of O). It is
an error to try to open a new segment with a drawing mode of draw or draw-and-retain, with the
ATTR_DYNAMIC segment attribute.

This function causes a segment bracket to be started. While the bracket is in effect, any primitive
and attribute functions are considered to be part of the segment, and are stored in it if the drawing
mode is retain or draw-and-retain. The bracket is terminated by a GpiCloseSegment. It is an error if
GpiOpenSegment is issued when a segment is already open.

The following actions occur when drawing of a chained segment is started (either as it is passed
across the API in draw or draw-and-retain, or as it is found during a draw operation):

• Current attributes and arc parameters are reset to default values.
• The current tag is reset to its default value.
• Current model transform is reset to unity.
• Current position is set to (0,0).
• The current clip path is set so as to cause no clipping.
• The current viewing limits are reset to their default values.
• The current viewing transform is set either to the value last set by

GpiSetViewingTransformMatrix, or to the default value if no GpiSetViewingTransformMatrix
function has been issued.

If the segment has the ATTR_FASTCHAIN attribute, the application should not depend upon whether
or not these operations are performed. This avoids complications when interchanging picture data
with other implementations.

Note: The current clip region is not changed by this function.

If any primitive/attribute calls are issued immediately before this function (that is, outside a segment
bracket), then any currently open area, path, or element brackets are terminated, as described for
GpiCloseSegment, before the new segment is opened.

If the segment being defined is to be called from another segment (see GpiCallSegmentMatrix),
ensure that the viewing transform (see GpiSetViewingTransformMatrix) is unity before first opening
the segment.

5-182 PM Programming Reference

GpiOpenSegment -
Open Segment

The maximum number of retained segments allowed for a given presentation space at any time is

16378.

Related Functions
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiQuerylnitialSegmentAttrs
• GpiQuerySegmentAttrs
• GpiQuerySegmentNames
• GpiQuerySegmentPriority
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority
• GpiSetViewingTransformMatrix

Example Code
This example uses the GpiOpenSegment to create a new segment. The segment is subsequently

drawn by using the GpiDrawSegment function.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment(hps, ll); /*opens the segment */
GpiMove(hps, &ptlStart); /*moves to starting point (0,0} */
GpiPolyline(hps, 3L, ptlTriangle);/* draws triangle */
GpiCloseSegment(hps}; /*closes the segment */

GpiDrawSegment(hps, ll);

Chapter 5. Graphics Functions 5-183

GpiOutlinePath
Outline Path

#define INCL GPIPATHS I* Or use INCL_GPI or INCL_PM */

LONG GplOutllnePath (HPS hps, LONG IPath, LONG IOptlons)

This function draws the outline of a path.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Identifier of path to be outlined; it must be 1.

IOptlons (LONG) - input
Options:

Reserved; must be 0.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_Ps'_eusv

PMERR_INV _PATH_ID

PMERR_INV _RESERVED _FIELD

PMERR_PATH_UNKNOWN

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid reserved field was specified.

An attempt was made to perform a path function on a path
that did not exist.

The outline of the path is drawn, using the line attributes, including cosmetic line width (see
GpiSetlineWidth) but not geometric line width (see GpiSetlineWidthGeom). This normally has the
same effect as if the lines, curves, and so on, which comprise the path, had been drawn without
defining them as being within a path. However, if character strings (referencing outline fonts) are
contained within the path, the outlines of the characters, without the interior fill, are drawn by
GpiOutlinePath, giving the appearance of hollow characters.

Open figures within the path are not closed automatically.

When the outline of the path has been drawn, the path is deleted.

5-184 PM Programming Reference

Related Functions
• GpiBeginPath
• GpiEndPath
• GpiFillPath
• GpiModifyPath
• GpiPathToRegion
• GpiSetClipPath
• GpiStrokePath
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GOPTH

Order: Outline Path

Example Code

GpiOutlinePath -
Outline Path

This example uses GpiOutlinePath to draw the outline of a path (in this case a triangle).

#define INCL_GPIPATHS
#include <os2.h>

/* Path functions */

LONG lHits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 2L, ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);

lHits = GpiOutlinePath(hps, ll, 0L);

/* start the path bracket */
/* move to starting point */
/* draw the three sides */
/* close the triangle */
/* end the path bracket */

Chapter 5. Graphics Functions 5-185

GpiPaintRegion
Paint Region

#define INCL GPIREGIONS I* Or use INCL_GPI or INCL_PM */

LONG GplPalntReglon (HPS hps, HRGN hrgn)

This function paints a region into a presentation space, using the current pattern attributes.

Parameters
hps (HPS) - input

Presentation-space handle.

hrgn (HRGN) - input
Region handle.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_REGION_IS_CLIP _REGION

PMERR_INV _HRGN

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An invalid region handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

The current GPI area foreground and background colors are used. Mixing is controlled by the area
foreground mix only.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

The region is assumed to be defined in device coordinates.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

5-186 PM Programming Reference

Related Functions
• GpiBeginArea
• GpiBeginPath
• GpiFillPath
• WinFillRect
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiSetPattern
• GpiSetPatternRef Point
• GpiSetPatternSet

Example Code

GpiPaintRegion
Paint Region

This example uses the GpiPaintRegion function to fill a complex region consisting of three,
intersecting rectangles. The region is filled with a red, diagonal pattern.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

HPS hps; /* presentation space handle */
HRGN hrgn; /* handle for region */
RECTL arcl[3] = { 1ee. 1ee. 2ee. 2ee. /*1st rectangle */

150. 150. 250. 250. /* 2nd rec tang 1 e *I
200. 200. 300, 300 }; /* 3rd rectangle */

hrgn = GpiCreateRegion(hps, 3L, arcl);
GpiSetColor(hps. CLR_RED);
GpiSetPattern(hps, PATSYM_DIAGl);
GpiPaintRegion(hps. hrgn);

Chapter 5. Graphics Functions 5-187

GpiPartialArc
Partial Arc

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplPartlalArc (HPS hps, PPOINTL pptlCenter, FIXED fxMultlpller, FIXED fxStartAngle,
FIXED fxSweepAngle)

This function draws a straight line, followed by an arc.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlCenter (PPOINTL) - input
Center point.

Center of the arc.

fxMultlpller (FIXED) - input
Multiplier.

This determines the size of the arc in relation to an arc with the current arc parameters.

The implementation limit for the multiplier is 255.

The value must not be negative.

fxStarlAngle (FIXED) - input
Start angle in degrees.

The value must be positive.

fxSweepAngle (FIXED) - input
Sweep angle in degrees.

The value must be positive.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MULTIPLIER

PMERR_INV _COORDINATE

PMERR_INV _ANGLE_PARM

PMERR_INV _NESTED _FIGURES

5-188 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid multiplier parameter was specified with
GpiPartialArc or GpiFullArc.

An invalid coordinate value was specified.

An invalid angle parameter was specified with
GpiPartialArc.

Nested figures have been detected within a path
definition.

"' \
Remarks

This function draws two figures:

GpiPartialArc
Partial Arc

• A straight line, from the current position to the starting point of an arc
• An arc, with its center at the specified point.

The full arc, of which the arc is a part, is identical to that defined by GpiFullArc. The part of the arc
drawn by this primitive is defined by the parameters fxStartAngle and fxSweepAngle, that are the
start and sweep angles, subtended from the center, if the current arc parameters specify a circular
form. If they do not, these angles are skewed to the same degree that the ellipse is a skewed circle.
fxStartAngle is measured counterclockwise from the x axis of the circle before application of the arc
parameters. Both angles must be positive; whether the arc is drawn clockwise or counterclockwise
is determined by the arc parameters.

Current position is updated to the final point on the arc.

Note: This differs from GpiFullArc, where current position remains at the center of the figure. A
primitive (such as Gpiline) following GpiPartialArc draws from the end point of the arc.

A segment of a pie can be drawn by the following calling sequence:

1. GpiMove, to center of pie
2. GpiPartialArc, drawing one spoke and the arc
3. Gpiline, back to center.

The third step can be performed implicitly by autoclosure if an area is being drawn.

A closed figure bounded by a chord and an arc can be drawn by the following calling sequence:

1. GpiSetlineType to invisible
2. GpiPartialArc, with fxStartAngle = angle2, and fxSweepAngle = 0, to define one end of the chord
3. GpiSetlineType to visible
4. GpiPartialArc, with fxStartAngle = angle1, and fxSweepAngle = angle2- angle1.

(In the second example, angle2 is greater than angle1. If the interior of the chord is to be shaded, the
area must start after step 2 or 3.)

A sweep angle of greater than 360 degrees is valid, and means that after the initial line a full arc is
drawn, followed by a partial arc with a sweep angle of (fxSweepAngle MOD 360) degrees.

Related Functions
• GpiFullArc
• GpiPointArc
• GpiSetArcParams
• GpiSetDef ArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Chapter 5. Graphics Functions 5-189

GpiPartialArc
Partial Arc

Graphic Elements and Orders
Element Type: OCODE_ GCPARC

Order: Partial Arc at Current Position

Example Code
This example uses the GpiPartialArc function to draw a chord {an arc whose end points are

connected by a straight line).

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptl = { 100, 100 }; /* center point for arc */

GpiSetlineType(hps, LINETYPE_INVISIBLE);
GpiPartialArc(hps, &ptl, MAKEFIXED(50, 0), MAKEFIXED(0, 0),

MAKEFIXED(180, 0));
GpiSetlineType(hps, LINETYPE_SOLID);
GpiPartialArc(hps, &ptl, MAKEFIXED(50, 0), MAKEFIXED(0, 0),

MAKEFIXED(180, 0));

5-190 PM Programming Reference

'
J

#define INCL_GPIPATHS I* Or use INCL_GPI or INCL_PM */

GpiPathToRegion
Path to Region

HRGN GplPathToReglon (HPS hps, LONG IPath, ULONG flOptlons)

This function converts a path to a region.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Identifier of path to be converted; it must be 1.

flOptlons (ULONG) - input
Fill options:

FPATH_ALTERNATE Fills the path using the alternate rule; see GpiBeginArea.

FPATH_WINDING Fills the path using the winding rule; see GpiBeginArea. This value must

be selected if the path has been modified using GpiModifyPath.

The default is FPATH_ALTERNATE.

Returns
Region handle:

¢0 Region handle

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERRJNV _HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_PATH_ID An invalid path identifier parameter was specified.

PMERR_INV_PATH_CONVERT_OPTIONS An invalid options parameter was specified with
GpiOutl inePath.

PMERR_PATH_UNKNOWN An attempt was made to perform a path function on a path
that did not exist.

Remarks
This function converts a path (originally defined by a series of GPI drawing calls) to a region. The

new region can be operated on by the GPI region calls; in particular GpiCombineRegion can be used

to combine it with another region.

Any open figures within the path are closed automatically.

The boundaries of the area defined by the path are considered to be part of the interior, so that a

point on the boundary is included in the new region.

After a path is converted to a region, it no longer exists as a path. The path cannot be reused for any

other purpose.

Chapter 5. Graphics Functions 5-191

GpiPathToRegion
Path to Region

Related Functions
• GpiBeginPath
• GpiCombineRegion
• GpiEndPath
• GpiFillPath
• GpiModifyPath
• GpiOutlinePath
• GpiSetClipPath
• GpiStrokePath

Example Code
This example uses GpiPathToRegion to convert a path (a triangle) to a region using the winding rule

to fill the region.

#define INCL_GPIPATHS
#include <os2.h>

/* Path functions */

HRGN hrgn; /* handle for region */
HPS hps; /* Presentation-space handle */
POINTL ptlStart = { a, a }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 2L, ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);

/* start the path bracket */
/* move to starting point */
/* draw the three sides */
/* close the triangle */
/* end the path bracket */

hrgn = GpiPathToRegion(hps, ll, FPATH_WINDING);

5-192 PM Programming Reference

GpiPlayMetaFile
Play Metafile

#define INCL_GPIMETAFILES /*Or use INCL_GPI or INCL_PM */

LONG GplPlayMetaFlle (HPS hps, HMF hmf, LONG 1Count1, PLONG alOptarray,

PLONG plSegCount, LONG 1Count2, PSZ pszDesc)

This function plays a metafile into a presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

hmf (HMF) - input
Metafile handle.

Handle of the metafile containing the data.

1Count1 (LONG) - input
Count of elements in a/Optarray.

alOptarray (PLONG) - input
Array of options for playing.

The values of the elements in this array determine what action is to be taken when the metafile

is played into the specified presentation space. The elements in the array are numbered

consecutively, starting with PMF _SEGBASE. The element number constants start with 0. (Refer

to the appropriate bindings reference.) Any elements in the array that are not set to one of the

values defined below must be set to 0.

Optarray.[PMF _SEGBASE]

Optarray.[PMF _LOADTYPE]

Optarray. [PMF _RESOLVE]

Optarray.[PMF _LCIDS]

Reserved; must be 0.

Specifies what transformations should be performed on

the imported picture. The options are:

LT _DEFAULT The default; same as LT _NOMODIFY

LT_NOMODIFY The graphics are restored using the
current viewing transform (see
GpiSetViewingTransformMatrix), rather than the ones

that were in use when the data was created. This is

the default action.

Any change to the graphics field or default viewing
transform during the course of the picture will be
ignored if this option is specified (or defaulted).

LT_ORIGINALVIEW The graphics are restored using the

viewing transforms that are in the metafile.

The default viewing transform of the presentation
space is not altered (unless RES_RESET is specified).

However, any changes to the default viewing
transform that occur during the course of the picture

(and also any graphics field clipping) cause changes

to the values in the presentation space.

Reserved; must be 0.

Specifies the action to be taken for any logical font
definitions, or bit maps referenced by local identifiers

for use as shading patterns that are held in the metafile.

The options are:

Chapter 5. Graphics Functions 5-193

GpiPlayMetaFile
Play Metafile

Optarray. [PMF _RESET]

Optarray.[PMF _SUPPRESS]

5-194 PM Programming Reference

LC_DEFAULT Default; same as LC_NOLOAD.

LC_NOLOAD Do not load such objects. This is the
default, and is used where the application expects the
correct objects to be already loaded.

LC_LOADDISC Load all objects referenced in the
metafile, first deleting any already existing in the
presentation space, for which the referenced local
identifier is already in use.

Specifies whether the presentation space should be
reset before playing the metafile, with the page units
and size being set as defined in the metafile.

The options are:

RES_DEFAULT Default; same as RES_NORESET.

RES_NORESET Do not perform a reset.

RES_RESET Reset the presentation space, before
loading any logical fonts, color tables, segments, and
so on, as follows:

1. Reset the page units and page size to the values
contained in the metafile.

2. Set up default transformations, based on the
page units and size, as if the presentation space
had just been created with these values.

3. Further modify the device transform to ensure
that the physical size of the metafile picture is
preserved. (Only performed if the page units in
the metafile are not PU_ARBITRARY or
PU_PELS.)

4. Perform the equivalent of GpiResetPS (option
GRES_ALL).

5. Set the default viewing transform to the value
specified in the metafile.

This option should normally be used with a
PMF_LOADTYPE option of LT_ORIGINALVIEW and
LC_LOADDISC, but this is not enforced.

Specifies whether the playing of this metafile actually
occurs. This is provided to allow an application to use
the PMF _RESET option, and then to regain control to
perform further presentation-space modifications if
necessary, before playing the remainder of the metafile.

The options are:

SUP _DEFAULT Default; same as SUP _NOSUPPRESS.

SUP _NOSUPPRESS Do not suppress the remainder of
the metafile.

SUP _SUPPRESS Suppress the remainder of the
metafile.

If this option is selected, only processing as
determined by the PMF _RESET option is performed.
The remainder of the metafile, and all other options,
are ignored.

Optarray.[PMF _ COLORTABLES]

GpiPlayMetaFile
Play Metafile

Specifies the action to be taken with respect to any color
table or palette implied or present within the metafile.

The options are:

CTAB_DEFAULT Default; same as CTAB_NOMODIFY.

CTAB_NOMODIFY Ignore. The default or loaded color
table or selected palette in the presentation space is
unchanged, as are the references to color attributes
in the new data. This is the default; it is suitable
where it is known that the currently loaded color table
or selected palette (if any) is suitable for the use of
color in the imported picture.

CTAB_REPLACE Overwrite the currently-loaded color
table (if any), with a color table as implied or present
in the metafile. This can be used where there is no
existing picture.

CTAB_REPLACEPALETIE Overwrite the
currently-selected palette (if any), with a palette as
implied or present in the metafile. This can be used
where there is no existing picture.

Note: If the metafile specifies a color table in RGB
mode, the currently-selected palette (if any) is
overwritten with a color table in RGB mode,
and a warning is issued.

Optarray.[PMF_COLORREALIZABLE] Specifies whether the color table data contained in the
metafile should be loaded with the LCOL_REALIZABLE
option or not (see GpiCreateLogColorTable).

Optarray.[PMF _DEFAULTS]

plSegCount (PLONG) - output
Reserved.

The value 0 is always returned.

1Count2 (LONG) - input
Count of bytes in pszDesc.

The options are:

CREA_DEFAULT Default; same as CREA_NOREALIZE

CREA_DOREALIZE Load the color table with the
realizable option set, and realize the color table.

CREA_NOREALIZE Load the color table with the
realizable option off. This is the default.

Specifies how the drawing defaults contained in the
meta file should be used (see GpiSetDef Attrs,
GpiSetDefViewinglimits, GpiSetDefTag, and
GpiSetDef ArcParams).

The options are:

DDEF _DEFAULT Default; same as DDEF _IGNORE

DDEF_IGNORE Ignore any drawing default values in the
metafile.

DDEF _LOADDISC Change any drawing default values in
the presentation space that are specified in the
metafile, to the values contained in the metafile.

Chapter 5. Graphics Functions 5-195

GpiPlayMetaFile
Play Metafile

pszDesc (PSZ) - output
Descriptive record.

pszDesc is a buffer that, on return, contains the descriptive record, of up to 253 bytes, that is
saved when the metafile is created (see DevOpenDC). This is null-terminated, even if it has to
be truncated.

Returns
Correlation and error indicators:

GPl_OK Successful
GPl_HITS Correlate hits
GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_HMF An invalid metafile handle was specified.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_PLAY_METAFILE_OPTION An invalid option parameter was specified with
GpiPlayMetaFile.

PMERR_INCOMPATIBLE_METAFILE An attempt was made to associate a presentation space
and a metafile device context with incompatible page
units, size or coordinate format; or to play a metafile
using the RES_RESET option (to reset the presentation
space) to a presentation space that is itself associated
with a metafile device context.

PMERR_INV_METAFILE An invalid metafile was specified with GpiPlayMetaFile.

PMERR_INV_MICROPS_ORDER An attempt was made to play a metafile containing orders
that are invalid in a micro presentation space.

PMERR_STOP_DRAW_OCCURRED Segment drawing or GpiPlayMetaFile was stopped
prematurely in response to a GpiSetStopDraw request.

PMERR_INV_OUTSIDE_DRAW_MODE An attempt was made to issue a GpiSavePS or
GpiRestorePS function, or an output only function (for
example, GpiPaintRegion) from GpiPlayMetaFile without
the drawing mode set to DM_DRAW.

PMERR_INV_ELEMENT_POINTER An attempt was made to issue GpiPutData with the
element pointer not pointing at the last element.

PMERR_INV_IN_CURRENT_EDIT_MODE An attempt was made to issue a function invalid inside
the current editing mode.

PMERR_PROLOG_ERROR A prolog error was detected during drawing. Segment
prologs are used internally within retained segments and
also appear in metafiles. This error can also arise from
an End Prolog order that is outside a prolog.

PMERR_DUP _SEG During GpiPlayMetaFile, while the actual drawing mode
was draw-and-retain or retain, a metafile segment to be
stored in the presentation space was found to have the
same segment identifier as an existing segment.

5-196 PM Programming Reference

Remarks

GpiPlayMetaFile
Play Metafile

This function executes the contents of a metafile. This process is known as "playing" the metafile.
Whether the graphics are drawn, or retained in segment store, or both, depends upon the current
drawing mode (see GpiSetDrawingMode) in the presentation space, for the chained and unchained
segment contexts, as appropriate. If chained segments are retained, they are added to the end of
any existing segment chain. An error is raised if a segment is to be retained, and it has the same
(nonzero) identifier as a currently existing segment.

A segment must not be open when this function is issued. At the completion of the call, there is no
open segment.

The application may need to reset the presentation space by GpiResetPS, before issuing this
function. Alternatively, the PMF _RESET option on this function may be suitable.

Segments retain the segment attributes that they originally possessed.

Related Functions
• GpiCopyMetaFile
• GpiDeleteMetaFile
• GpiloadMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFilelength
• GpiSaveMetaFile
• GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-197

GpiPlayMetaFile
Play Metafile

Example Code
This example uses the GpiPlayMetaFile function to play {execute) the metafile loaded by

GpiloadMetaFile into a presentation space associated with a window. GpiPlayMetaFile is called
twice: the first call resets the presentation space (by combining the RES_RESET and SUP _SUPPRESS
flags), while the second call actually executes the metafile.

#define INCL_GPIMETAFILES
#define INCL_GPICONTROL
#include <os2.h>

/* Metafile functions
/* GPI control Functions

*/
*/

HAB hab; /* anchor-block handle */
HPS hps; /* presentation space handle */
HMF hmf; /* metafi 1 e handle *I
HOC hdc; /* Device-context handle */
HWND hwnd; /* window handle *I
SIZEL sizl={e,e}; /* use same page size as device */
CHAR szBuffer[88]; /*descriptive record buffer */
LONG lHits; /* correlation/error indicator */
/* play metafile options array */
LONG optArray[PMF_DEFAULTS+l] =

{0,LT_DEFAULT,8,LC_DEFAULT,RES_RESET,
SUP SUPPRESS,CTAB DEFAULT,CREA DEFAULT,
DDEF_DEFAULT}; - -

hmf = GpiLoadMetaFile(hab, "sample.met");

/* create window device context and presentation space,
associating DC with the PS */

hdc = WinOpenWindowDC(hwnd);
hps = GpiCreatePS(hab, hdc, &sizl, PU_PELS I GPIA_ASSOC);

/* reset presentation space */
lHits = GpiPlayMetaFile(hps, hmf, 9L, optArray, (LONG *)0, 80L,

szBuffer);

/* display metafile in window (reset and
suppress flags must be changed) */

optArray[PMF_SUPPRESS]=SUP_DEFAULT;
optArray[PMF_RESET]=RES_DEFAULT;
lHits = GpiPlayMetaFile(hps, hmf, 9L, optArray, (LONG *)0, 80L,

szBuffer);

5-198 PM Programming Reference

GpiPointArc
Point Arc

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

LONG GpiPointArc (HPS hps, PPOINTL aptlPolnts)

This function creates an arc, using the current arc parameters, through three points, starting at the
current position.

Parameters
hps (HPS) - input

Presentation-space handle.

aptlPolnts (PPOINTL} - input
Intermediate and end points.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified ..

Nested figures have been detected within a path
definition.

The first element of the apt/Points array defines an intermediate point along the arc, and the second

element identifies the end point of the arc. Upon completion, current position is set to the end point
of the arc.

Related Functions
• GpiFullArc
• GpiPartialArc
• GpiSetArcParams
• GpiSetDef ArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Chapter 5. Graphics Functions 5-199

GpiPointArc
Point Arc

Graphic Elements and Orders
Element Type: OCODE_GCARC

Order: Arc at Current Position

Example Code
This example uses the GpiPointArc function to draw an arc through the three points of a triangle.

The GpiPolyline function then draws the triangle.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps; /* presentation space handle
POINTL ptlTriangle[] = { 0, 0, 100, 100, 200, 0 };

GpiMove(hps, &pt1Triangle[0]); /*moves to start point
GpiPointArc(hps, &ptlTriangle[l]);/* draws the arc
GpiMove(hps, &pt1Triangle[0]); /*moves to start point
/* draws the triangle */
GpiPolyline(hps, 3L, &ptlTriangle[l]);

5-200 PM Programming Reference

*/

*/

(0, 0)*/
*/

(0, 0)*/

GpiPolyFillet -
Polyfillet

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

LONG GplPolyflllet (HPS hps, LONG ICount, PPOINTL aptlPolnts)

This function draws a curve starting at the current position and defined by the points supplied.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of points.

Must not be negative. Zero is valid but causes no output.

aptlPolnts (PPOINTL) - input
Array of points.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

If two points are supplied, an imaginary straight line is drawn from the current position to the first
point and a second straight line from the first point to the second. A curve is then constructed,
starting at the current position and tangential to the first straight line. The curve is drawn such that it
reaches the last point at a tangent to the second straight line. Figure 5-1 on page 5-202 shows the
curve constructed, given current position A and the two points B and C.

If more than two points are supplied, a series of imaginary straight lines is constructed through them
(as in the GpiPolyLine function). All of the straight lines except the first and last are then divided in
two at their mid-points. A series of curved fillets is then drawn, each starting at the end point of the
last, at one of the mid-points. Figure 5-2 on page 5-202 shows the curve constructed, given current
position A and three points B, C, and D.

The current position is set to the last point.

Each individual fillet always lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

Chapter 5. Graphics Functions 5-201

GpiPolyFillet
Polyfillet

The maximum number of fillets allowed in the polyfillet is more than 4 000.

,, ..

,,""
,."

,."
,, .. "' ,, ..

A

B /// A= Current position
/ B and C = Points specified

c

Figure 5-1. GpiPolyFillet Example A

A

where:

A= Current position
B,C, D = Points specified

Curves to midpoint of BC

\,
C •---------------- D

Figure 5-2. GpiPolyFillet Example B

Related Functions
• GpiPointArc
• GpiPolyFilletSharp
• GpiPolySpline
• GpiSetArcParams
• GpiSetDef ArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

5-202 PM Programming Reference

Graphic Elements and Orders
Element Type: OCODE_GCFLT

Order: Fiiiet at Current Position

GpiPolyFillet -
Polyfillet

As many of these orders are generated as is necessary to hold the specified fillets.

Example Code
This example uses the GpiPolyFillet function to draw a curve with a loop. The four points are the

four points of a rectangle. The curve is drawn from the lower-left corner, through the midpoint of the
top edge, and back to the lower-right corner.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* start point */
POINTL aptl[3] = { 200, 100, e, 100, 200, 0 }; /*curve points */

GpiMove(hps, &ptlStart);
GpiPolyFillet(hps, 3L, aptl);

/*move to the lower-left corner */
/* draw the curve */

Chapter 5. Graphics Functions 5-203

GpiPolyFilletSharp
Polyfillet Sharp

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

LONG GplPolyFllletSharp (HPS hps, LONG ICount, PPOINTL apllPolnts, PFIXED afxSharpness)

This function creates a fillet on a series of connected lines, with the first line starting at the current
position. Subsequent points identify the end points of the lines.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Count of points.

This is the number of points specified in apt/Points. It must be 2*f, where f is the number of
fillets; the value must be a positive even number. Zero is valid but causes no output.

apllPolnts (PPOINTL) - input
An array of points.

These points are set as follows:

cl, el, c2, e2, c3, e3, ••. cf, ef

where:

cf is the control point for the f'th fillet
ef is the end point of the f'th fillet.

afxSharpness (PFIXED) - input
Array of sharpness values.

These give the sharpness of successive fillets.

Returns
Correlation and error indicators:

GPI_ OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _COORDINATE

PMERR_INV_SHARPNESS_PARM

PMERR_INV _NESTED _FIGURES

5-204 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

An invalid sharpness parameter was specified with
GpiPolyFil letSharp.

Nested figures have been detected within a path
definition.

/ Remarks

GpiPolyFilletSharp
Polyfillet Sharp

The first fillet is drawn using the two imaginary lines, one from current position to its control point
(the first point specified in apt/Points), and one from this point to the second point specified in
apt/Points. The fillet starts from current position, and ends at this second point. It is tangential to the
first line at current position, and to the second line at the second point of apt/Points. The sharpness
of this fillet is given by the first element of the afxSharpness array.

Each subsequent fillet is drawn starting from the end point of the previous fillet, and uses the next
two lines in the sequence, in a similar way. Therefore two points and one sharpness value are
required for each fillet.

The differences from GpiPolyFillet are:

• The sharpness of each fillet is explicitly specified.

• Both the control and the end point of each fillet are explicitly specified.

• Adjacent fillets, generally, have a discontinuity in gradient, unless the points are chosen so that
this is not the case.

The sharpness of each fillet is defined as follows. Let A and C be the start and end points,
respectively, of the fillet, and let B be the control point. (See Figure 5-3.) Let W be the mid-point of
AC. Let D be the point where the fillet intersects WB.

sharpness = WO/DB

so that

> 1.0 means a hyperbola is drawn
= 1.0 means a parabola is drawn
< 1.0 means an ellipse is drawn.

A

Figure 5-3. GpiPolyFilletSharp Example

On completion, the current position is the end point of the last line in the series. Each individual fillet
always lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

The maximum number of fillets allowed is more than 2 000.

Chapter 5. Graphics Functions 5-205

GpiPolyFilletSharp
Polyfillet Sharp

Related Functions
• GpiPointArc
• GpiPolyFillet
• GpiPolySpline
• GpiSetArcParams
• GpiSetDefArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCSFLT

Order: Sharp Fillet at Current Position
As many of these orders are generated as is necessary to hold the specified fillets.

Example Code
This example uses the GpiPolyFilletSharp function to draw a curve with a loop. The curve is drawn

within a rectangle. The sharpness values are chosen to draw the curve close to the control points.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* start of curve */
POINTL aptl[4]={ 100, 100, 200, 100, 0, 100, 200, 0};/* points */
FIXED afx[2] ={MAKEFIXED(4, 0). MAKEFIXED(4, 0)} ;/* sharpness * /

GpiMove(hps, &ptlStart);
GpiPolyFilletSharp(hps,

4L,
aptl,
afx);

/* move to first starting point */
/* presentation-space handle */
/* 4 points in the array */
/* address of array of points */
/* address of array of sharpness values */

5-206 PM Programming Reference

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

GpiPolygons -
Draw Polygons

LONG GplPolygons (HPS hps, LONG ICount, PPOLYGON alPolygons, LONG IOptlohs,
LONG lmodel)

This function draws a set of closed polygons.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of polygons.

Equal to the number of polygons in the polygons array. May be zero or positive, zero causes no

output.

alPolygons (PPOL YGON) - input
Array of polygons.

An array of POLYGON structures.

IOptlons (LONG) - input
Drawing options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can be ORed together to determine whether to draw boundary
lines as well as the area interior:

POLYGON_NOBOUNDARY Do not draw boundary lines

POLYGON_BOUNDARY Draw boundary lines (the default).

Construction of the area interior:

POLYGON_ALTERNATE

POLYGON_ WINDING

lmodel (LONG) - input

Drawing model.

Construct interior in alternate mode (the default)

Construct interior in winding mode.

POLYGON_INCL The fill is inclusive of bottom right. This is the default.

POL YGON_EXCL The fill is exclusive of bottom right. This is provided to aid migration from
other graphics models.

Chapter 5. Graphics Functions 5-207

GpiPolygons -
Draw Polygons

Returns
Correlation/error indicator:

GPI_ OK Successfu I

GPl_HITS Correlate hits.

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _AREA_ CONTROL

PMERR_INV _IN_PATH

PMERR_ALREADY _IN_AREA

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with
GpiBeginArea.

An attempt was made to issue a function invalid inside a
path bracket.

An attempt was made to begin a new area while an
existing area bracket was already open.

The polygons are filled using the current AREABUNDLE structure values. For the first polygon, the
current position is the first point. For all subsequent polygons all points which define the polygon are
given explicitly. The polygons are automatically closed, if necessary, by drawing a line from the last
vertex to the first.

The polygons may overlap, but that is not necessary.

GpiPolygons is not valid inside of an area.

Graphic Elements and Orders
Element Type: OCODE_GPOLYS

Order: Polygons

5-208 PM Programming Reference

GpiPolyLine
Polyline

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplPolyLine (HPS hps, LONG ICount, PPOINTL aptlPoints)

This function draws a series of straight lines starting at the current position and connecting the

points specified.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of points

Must not be negative. Zero is valid but causes no output.

aptlPolnts (PPOINTL) - input
Array of points.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

On completion, current position is set to the last point.

The maximum number of lines allowed in a polyline is device dependent, but is always greater than

3 500 for GPIF _LONG format spaces and always greater than 7 200 for GPIF _SHORT format spaces

(see the PS_FORMAT of GpiCreatePS for the meaning of this format).

Chapter 5. Graphics Functions 5-209

GpiPolyLine
Polyline

Related Functions
• GpiBox
• Gpiline
• GpiPolylineDisjoint
• GpiMove
• GpiSetCurrentPosition
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCLINE
Note that Gpiline also generates this element type.

Order: Line at Current Position
As many of these orders are generated as is necessary to hold the specified points.

Example Code
This example uses the GpiPolyline function to draw a triangle.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiMove(hps, &pt1Triangle[2]); /*moves to end point (0, 0)*/
GpiPolyline(hps, 3L, &ptlTriangle[l]);/* draws triangle */

5-210 PM Programming Reference

GpiPolyLineDisjoint -
Polyline Disjoint

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplPolyLlneDlsJoint (HPS hps, LONG ICount, PPOINTL aptlPolnts)

This function draws a series of disjoint straight lines using the end-point pairs specified.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of points

Must be even and not negative. Zero is valid, but it causes no output. The maximum number of

points allowed is system-dependent, but it is at least 7 000.

aptlPolnts (PPOINTL) - input
Array of points.

Returns
Correlation/error indicator:

GPl_OK Successful

GPl_HITS Correlate hit(s)

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

The effect of this function is the same as the following sequence of calls:

GpiMove (hps, Points[0]);
Gpiline (hps, Points[l]);
GpiMove (hps, Potnts[2]);
Gpiline (hps, Points[3]);

GpiMove (hps, Points[Count-2]);
Gpiline (hps, Points[Count-1]);

On completion, current position is set to the last point.

Chapter 5. Graphics Functions 5-211

GpiPolyLineDisjoint
Polyline Disjoint

Related Functions
• GpiBox
• Gpiline
• GpiPolyline
• GpiMove
• GpiSetCurrentPosition
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Example Code
This example uses the GpiPolylineDisjoint function to draw two lines.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptllines[] = { 100, 100, 100, 200, /* line 1 */

200, 100, 200, 200 }; /* line 2 */

GpiPolylineDisjoint(hps, 4L, &ptllines[l]);/* draw lines*/

5-212 PM Programming Reference

GpiPolyMarker -
Polymarker

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplPolyMarker (HPS hps, LONG ICounl, PPOINTL apllPolnls}

This function draws markers with their centers at each of a series of specified positions.

Parameters
hps (HPS) - input

Presentation-space handle.

ICounl (LONG) - input
Number of points.

Must not be negative. Zero is valid but causes no output.

apllPolnts (PPOINTL) - input
Array of points.

A marker is drawn at each of these points.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

On completion, the current position is set to the position of the last marker in the series. The marker
symbol is selected by the current values of the marker set and marker symbol attributes.

Related Functions
• GpiMarker
• GpiSetMarker
• GpiSetMarkerBox
• GpiSetMarkerSet
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Chapter 5. Graphics Functions 5-213

GpiPolyMarker
Polymarker

Graphic Elements and Orders
Element Type: OCODE_GMRK
Note that GpiMarker also generates this element type.

Order: Marker at Given Position
As many of these orders are generated as is necessary to hold the specified positions.

Example Code
This example uses the GpiPolyMarker function to draw a series of markers. It then uses the
GpiPolyline function to connect to markers with lines.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* start point */
POINTL aptl[5]={10, 8, 20, 17, 30, 28, 40, 51, 50, 46};/* points*/

GpiPolyMarker(hps, 51, aptl);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 5L, aptl);

5-214 PM Programming Reference

GpiPolySpline
Polyspline

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplPolySpllne (HPS hps, LONG ICount, PPOINTL aptlPoints)

This function creates a succession of Bezier splines.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Count of points.

This is the number of points specified in apt/Points. It must be three times the number of
splines. The value must not be negative, and it must be divisible by 3. Zero is valid but causes

no output.

aptlPoints (PPOINTL) - input
An array of points.

The points are given in this order:

ell, cl2, el, c21, c22, e2, ... csl, cs2, es

where:

cs1 is the first control point of spline s
cs2 is the second control point of spline s
es is the end point of spline s.

Returns
Correlation and error indicators:

GPI_ OK Successfu I

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

PMERR_INV _NESTED _FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

The first Bezier spline starts from the current position and goes to the third specified point, with the
first and second points used as control points. Subsequent splines start from the ending point of the
previous spline, and end at the next specified point but two, with the intervening points their first and

second control points. It is the responsibility of the application to ensure that the gradient is

continuous at each end and start point, if this is required.

Chapter 5. Graphics Functions 5-215

GpiPolySpline
Polyspline

On completion, the current position is set to the last specified point. Each ind~vidual spline always
lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

The maximum number of splines allowed is more than 2 500.

Related Functions
• GpiPointArc
• GpiPolyFillet
• GpiPolyFilletSharp
• GpiSetArcParams
• GpiSetDef ArcParams
• GpiSetlineType
• GpiSetlineWidth
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix

Graphic Elements and Orders
Element Tyoe: OCODE_GCBEZ

Order: Bezler Spline al Current Position
As many of these orders are generated as is necessary to hold the specified splines.

Example Code
This example uses the GpiPolySpline function to draw a curve. The curve is drawn within a skewed
rectangle, with the bottom corners being the start and end points and the top corners being the
control points.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* start point */
POINTL aptl[3] = { 0, 100, 200, 150, 200, 50 }; /*point array */

GpiMove(hps, &ptlStart);
GpiPolySpline(hps,

3L,
aptl);

'5-216 PM Programming Reference

/* moves to start point */
/* presentation-space handle */
/* 3 points in the array */
/* address of array of points */

GpiPop
Pop

#define INCL GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

I BOOL GplPop (HPS hps, LONG !Count)

This function restores the primitive attributes that have been saved on the stack.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of attributes to be restored.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_SEG_CALL_STACK_EMPTY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

A call stack empty condition was detected when
attempting a pop function during GpiPop or segment
drawing.

Each time a primitive attribute call (such as color, or line type) is issued and the attribute mode is set
to AM_PRESERVE, the values are put into a "Last in, First out" stack.

This function can reset the current attribute values (starting with the last one set) to the previous
value; this is known as "popping." This allows a called segment to change the values of the
attributes, and allows them to be restored on return to the caller (an implicit GpiPop function is
performed for each preserved attribute when returning from a called segment).

When inside an area or path definition, this function is only valid if the attribute being popped is valid
inside an area or path definition.

Note: It is not possible to check whether the attribute to be popped is valid before issuing this
function.

Chapter 5. Graphics Functions 5-217

/

GpiPop
Pop

Related Functions
• GpiQueryAttrMode
• GpiQueryAttrs
• GpiQueryDefAttrs
• GpiRestorePS
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiRestorePS

Graphic Elements and Orders
Element Type: OCODE_GPOP

Order: Pop
/Count of these orders are generated.

Example Code
This example uses the GpiPop function to restore the fill pattern and color attribute after painting a
region.

#define INCL_GPIPRIMITIVES
#define INCL_GPIREGIONS
#include <os2.h>

/* GPI primitive functions
/* GPI region functions

HPS hps;
HRGN hrgn;

/* presentation space handle
/* region handle

/* preserves attributes on stack */
GpiSetAttrMode(hps, AM_PRESERVE);

*/
*/

*/
*/

GpiSetColor(hps, CLR_RED); /*sets color to red */
GpiSetPattern(hps, PATSYM_DIAGl); /* sets pattern to a diagonal */
GpiPaintRegion(hps, hrgn);
GpiPop(hps, 2L); /*restores values of last two attributes set*/

5-218 PM Programming Reference

GpiPtlnRegion
Point In Region

#define INCL GPIREGIONS I* Or use INCL_GPI or INCL_PM */

LONG GplPllnReglon (HPS hps, HRGN hrgn, PPOINTL pptlPolnt)

This function checks whether a point lies within a region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Region handle.

ppllPolnl (PPOINTL) - input
Point to be checked.

The point is in device coordinates.

Returns
Inside and error indicators:

PRGN_OUTSIDE Not in region

PRGN_INSIDE In region

PRGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_INV _COORDINATE

PMERR_REGION_IS_CLIP _REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An invalid coordinate value was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Chapter 5. Graphics Functions 5-219

GpiPtlnRegion -
Point In Region

Related Functions
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion
• GpiSetRegion

Example Code
This example uses GpiPtlnRegion to determine if the point (150, 150) lies within a region.

#define INCL_GPIREGIONS
#include <os2.h>

/* Region functions */

LONG llnside; /* inside/error indicator */
HPS hps; /* Presentation-space handle */
HRGN hrgn; /* handle for region * /
POINTL pptlPoint = {150L,150L};/* point to be checked */
RECTL arcl[3] = { 100, 100, 200, 200, /*1st rectangle */

150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */

/* create a region comprising three rectangles */
hrgn = GpiCreateRegion(hps, 3L, arcl);

llnside = GpiPtlnRegion(hps, hrgn, &pptlPoint);

5-220 PM Programming Reference

GpiPtVisible
Point Visible

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

LONG GplPtVlslble (HPS hps, PPOINTL pptlPolnt)

This function checks whether a point is visible within the clipping region of the device associated
with the specified presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - input
Point to be checked.

The point is given in world coordinates.

Returns
Visibility indicator:

PVIS_INVISIBLE Not visible

PVIS_VISIBLE Visible

PVIS_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

For the purposes of this function, the clipping region is defined as the intersection between the
application clipping region, and any other clipping, including windowing.

Related Functions
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiQueryPel
• GpiRectVisible
• GpiSetClipRegion
• GpiSetGraphicsField
• WinExcludeUpdateRegion

Chapter 5. Graphics Functions 5-221

GpiPIVisible
Point Visible

Example Code
This example uses GpiPtVisible to check whether (150, 150) is visible within the clipping region of the

device associated with the presentation space.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lVisibility; /* visibility indicator
HPS hps; /* Presentation-space handle
POINTL pptlPoint = {150L,150L};/* point to be checked

lVisibility = GpiPtVisible(hps, &pptlPoint);

5-222 PM Programming Reference

*/

*/
*/
*/

\
)

GpiPutData
Put Data

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

LONG GplPutData (HPS hps, LONG IFormat, PLONG plLength, PBYTE pbData)

This function passes a buffer of graphics orders to the current segment, or draws the orders, or both
of these. For details of the orders, see Chapter 33, "Graphics Orders."

Parameters
hps (HPS) - input

Presentation-space handle.

IFormat (LONG) - input
Coordinate type used:

DFORM_NOCONV No coordinate conversion performed

DFORM_S370SHORT S/370 format short (2-byte) integers

DFORM_PCSHORT PC format short (2-byte) integers

DFORM_PCLONG PC format long (4-byte) integers.

plLength (PLONG) - input/output
Length of graphic data.

Set by the application to the length of order data in pbData. If an incomplete order occurred, it is
updated, on return, to the offset of the start of the incomplete order.

p/Length must not be greater than 63 KB.

pbData (PBYTE) - input
Orders to be copied.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_PUTDATA_FORMAT

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _MICROPS_FUNCTION

PMERR_DATA_TOO_LONG

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid format parameter was specified with
GpiPutData.

An invalid length or count parameter was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

Chapter 5. Graphics Functions 5-223

GpiPutData
Put Data

PMERR_INV _ELEMENT _POINTER

PMERR_INV _REPLACE_MODE_FUNC

PM ERR_ ORDER_ TOO _BIG

Remarks

An attempt was made to issue GpiPutData with the
element pointer not pointing at the last element.

An attempt was made to issue GpiPutData with the editing
mode set to SEGEM_REPLACE.

An internal size limit was exceeded while converting
orders from short to long format during GpiPutData
processing. An order was too long to convert.

The orders passed may be added to the current segment, drawn immediately, or both, depending on
the current drawing mode (see GpiSetDrawingMode), and whether the primitives are within a
segment.

If there is an incomplete order at the end of the buffer, p/Length is updated to point to the start of the
incomplete order. The application can then concatenate this partial order in front of the next buffer.

The orders End Prolog and Set Viewing Transform are not allowed.

This function is valid within an element bracket (see GpiBeginElement). It can contain
GpiBeginElement and GpiEndElement orders, while these are in the correct sequence with respect to
the currently opened segment in segment store.

The data in the buffer is converted, if necessary, to the presentation space format (defined when the
presentation space is first created; see GpiCreatePS).

This function is invalid if the editing mode (see GpiSetEditMode) is set to SEGEM_REPLACE, and also
in SEGEM_INSERT mode if the element pointer is not pointing to the last element.

Related Functions
• GpiBeginElement
• GpiEndElement
• GpiGetData

5-224 PM Programming Reference

GpiPutData
Put Data

Example Code
This example uses the GpiPutData function to copy graphics orders from one segment to another.

#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment functions */

HPS hps; /* presentation space handle */
LONG fformat = DFORM_NOCONV;/* do not convert coordinates */
LONG offSegment = 0L; /* offset in segment */
LONG offNextElement = 0;/* offset in segment to next element */
LONG cb = 0L; /* bytes retrieved */
BYTE ab8uffer[512]; /* data buffer * /

GpiOpenSegment(hps. 3L); /*open segment to receive the data */
do {

offSegment += cb;
offNextElement = offSegment;
cb = GpiGetData(hps, 2L, &offNextElement, fformat. 512L, abBuffer);

/* Put data in other segment. */

if (cb > 0L) GpiPutData(hps. /* presentation-space handle */
fformat, /* format of coordinates */
&cb, /* number of bytes in buffer *I
abBuffer); /*buffer with graphics-order data*/

} while (cb > 0L);
GpiCloseSegment(hps); /* close segment that received data */

Chapter 5. Graphics Functions 5-225

GpiQueryArcParams -
Query Arc Parameters

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryArcParams {HPS hps, PARCPARAMS parcpArcParams)

This function returns the current arc parameters used to draw full, partial, and 3-point arcs.

Parameters
hps {HPS) - input

Presentation-space handle.

parcpArcParams {PARCPARAMS) - output
Arc parameters.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Arc parameters are set by GpiSetArcParams.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetArcParams

5-226 PM Programming Reference

j Example Code

GpiQueryArcParams -
Query Arc Parameters

This example uses GpiQueryArcParams to return the current arc parameters used to draw full,

partial, and 3-point arcs. The example queries the arc parameters and assigns a variable to the P

coefficient if the query succeeds.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions */

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
ARCPARAMS parcpArcParams; /* Arc parameters */
LONG lPcoefficient; /* p coefficient of arc definition */

fSuccess = GpiQueryArcParams(hps. &parcpArcParams);

/*if successful. assign value of P coefficient*/
if (fSuccess == TRUE)

lPcoefficient = parcpArcParams.lP;

Chapter 5. Graphics Functions 5-227

GpiQueryAttrMode -
Query Attribute Mode

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryAttrMocle (HPS hps)

This function returns the current value of the attribute mode, as set by GpiSetAttrMode.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Current attribute mode:

~O Current attribute mode

AM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Related Functions
• GpiQueryAttrs
• GpiSetAttrMode

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

This example uses GpiQueryAttrMode to return the current value of the attribute mode and sets a
new mode using GpiSetAttrMode; after the application has finished using the new mode, the original
attribute mode is restored.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lMode;
HPS hps;

/* current attribute mode (or error)
/* Presentation-space handle

/* query current attribute mode */
lMode = GpiQueryAttrMode(hps);

/* set new mode */
GpiSetAttrMode(hps, AM_PRESERVE);

/* restore original mode */
GpiSetAttrMode(hps, lMode);

5-228 PM Programming Reference

*/

*/
*/

\
,I

l

GpiQuery Attrs
Query Attributes

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplQueryAttrs (HPS hps, LONG IPrlmType, ULONG flAttrMask, PBUNDLE ppbunAttrs)

This function returns current attributes for the specified primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IPrlmType (LONG) - input
Primitive type.

This is the type of primitive for which attributes are to be queried, as follows:

PRIM_LINE Line and arc primitives

PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAttrMask (ULONG) - input
Attributes mask.

Each flag that is set indicates that the corresponding flag in IDefMask is to be updated, and that if
the corresponding attribute is not currently set to default, its value is to be returned in the
ppbunAttrs buffer.

If all flags in f/AttrMask are zero, the ppbunAttrs buffer address is not used.

ppbunAttrs (PBUNDLE) - output
Attributes.

ppbunAttrs is a buffer in which is returned the value of each non-default attribute for which the
flAttrMask flag is set, in the order specified in GpiSetAttrs for the particular primitive type.

Only data for attributes for which the appropriate flag in f/AttrMask is set is updated, so
ppbunAttrs need only be large enough for the highest offset attribute to be returned (see
GpiSetAttrs).

The data returned in ppbunAttrs for any attribute for which the f/AttrMask flag is set, but which is
currently set to default, is undefined.

Returns
Defaults mask.

As f/DefMask in GpiSetAttrs:

GPl_AL TERROR Error occurred

Positive Defaults mask, numeric value can be greater than or equal to 0.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-229

GpiQueryAttrs -
Query Attributes

PMERR_INV _PRIMITIVE_ TYPE

PMERR_UNSUPPORTED _ATTR

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.

An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain. This
function returns a mask, similar in meaning to flDefMask in GpiSetAttrs. Each flag in the returned
mask is updated if the corresponding flag in flAttrMask is set. It is set if the attribute is set to the
default, otherwise it is reset. Other flags are undefined.

The parameters returned by this function may be used to reinstate exactly the same attributes as are
queried, using GpiSetAttrs.

Related Functions
• GpiSetAttrs

Example Code
This example uses the GpiQueryAttrs function to retrieve the current attributes for the line primitive.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions

HPS hps;
LINEBUNDLE lbnd;
LONG fl DefMas k;

/* presentation space handle

flDefMask = GpiQueryAttrs(hps,
PRIM LINE,
LBB CoLOR I
LBB-MIX MODE I
LBB)IDTH I
LBB GEOM WIDTH
LBB)YPE-1
LBB_END I
LBB JOIN,
&lbnd);

if (flDefMask & LBB_COLOR)
{

/* presentation-space handle */
/* line primitive */
/* line color */
/* color-mix mode */
/* line width */
/* geometric-line width */
/* line style */
/* Tine-end style */
/* line-join style */
/* buffer for attributes */

/* The line color has the default value. */
}

5-230 PM Programming Reference

*/

*/

GpiQueryBackColor -
Query Background Color

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryBackColor (HPS hps)

This function returns the current value of the (character) background color attribute, as set by the

GpiSetBackColor function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Background color:

CLR_ERROR Error

CLR_DEFAUL T Default

Otherwise Background color index.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetBackColor

Example Code
This example uses GpiQueryBackColor to return the current value of the (character) background

color attribute, as set by the GpiSetBackColor call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions */

LONG lColor;
HPS hps;

/* current background color (or error) */
/* Presentation-space handle */

lColor = GpiQueryBackColor(hps);

Chapter 5. Graphics Functions 5-231

GpiQueryBackMix -
Query Background Mix

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryBackMlx (HPS hps)

This function returns the current value of the (character) background color-mixing mode, as set by
the GpiSetBackMix function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Background mix:

BM_DEFAULT Default

>0 Background mix mode

BM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetBackMix

Example Code
This example uses GpiQueryBackMix to return the current value of the (character) background
color-mixing mode, as set by the GpiSetBackMix call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lMixMode;
HPS hps;

/* current background mix (or error)
/* Presentation-space handle

lMixMode = GpiQueryBackMix(hps);

5-232 PM Programming Reference

*/

*/
*/

\
)

GpiQueryBitmapBits
Query Bit-Map Bits

#define INCL_GPIBITMAPS I* Or use INCL_GPI or INCL_PM */

LONG GplQueryBltmapBlts (HPS hps, LONG IScanStart, LONG IScans, PBYTE pbBuffer,
PBITMAPINF02 pbmi21nfoTable)

This function transfers data from a bit map to application storage.

Parameters
hps (HPS) - input

Presentation-space handle.

IScanStart (LONG) - input
Starting line number.

Scan-line number at which the data transfer is to start, counting from zero as the bottom line.

IScans (LONG) - input
Number of scan lines to be returned.

pbBuffer (PBYTE) - output
Data area.

Data area into which the bit-map data is copied.

pbmi21nfoTable (PBITMAPINF02) - input/output
Bit-map information table.

Storage must be provided for the associated color table.

Returns
Number of scan lines actually returned:

~O Number of scan lines actually returned

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _INFO_ TABLE

PMERR_NO_BITMAP _SELECTED

PMERR_INV _SCAN_START

PMERR_INCORRECT _DC_ TYPE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid bit-map info table was specified with a bit-map
operation.

An attempt has been made to operate on a memory
device context that has no bit map selected.

An invalid scanstart parameter was specified with a
bitmap function.

An attempt was made to perform a bit-map operation on a
presentation space associated with a device context of a
type that is unable to support bit-map operations.

Chapter 5. Graphics Functions 5-233

GpiQueryBitmapBits
Query Bit-Map Bits

Remarks
The presentation space must be currently associated with a memory device context, which has a bit
map currently selected.

The pbmi2/nfoTable must be initialized by the application with the values of cbFix, and also cP/anes
and cBitCount, set to the format required. The standard bit-map formats are supported, plus any
known to be supported by the device (see GpiQueryDeviceBitmapFormats). Each of the following
fields must also be set by the application before issuing the call (unless the BITMAPINF02 structure
is truncated and the field is not present):

• u/Compression
• usReserved
• usRecording
• usRendering
• u/ColorEncoding

This function returns the values of ex, cy (plus any other information, apart from that set by the
application, for which space is available in the BITMAPINF02 structure), and the color table array
filled in by the system.

The bit-map data is converted where necessary.

pbBuffer must point to a storage area large enough to contain data for the requested number of scan
lines. The amount of storage required for one scan line can be determined by
GpiQueryBitmapParameters. It is

((bitcount*bitmapwidth +- 31)/32)*planes*4 bytes

The storage required for the entire bit map is this value multiplied by bltmaphelght.

Related Functions
• GpiSetBitmapBits

5-234 PM Programming Reference

\
)

Example Code

GpiQueryBitmapBits -
Query Bit-Map Bits

This example uses GpiQueryBitmapBits to copy the image data of a bit map from a presentation
space associated with a memory device context.

#define INCL_GPIBITMAPS
#define INCL_DOSMEMMGR
#include <os2.h>

/* GPI Bit-map functions */
/* DOS Memory Manager Functions */

HPS hps; /* presentation space handle */
BITMAPINFOHEADER2 bmp = { 16, 640, 350, 1, 1 }; /* info struct */
ULONG cbBuffer, cbBitmapinfo; /* buffer lengths */
PBYTE pbBuffer; /* bit-map data buffer */
PBITMAPINF02 pbmi ; /* info structure *I

/*
*Compute the size of the image-data bufferand the bit map
* infonnation structure.
*/

cbBuffer = (((bmp.cBitCount * bmp.cx) + 31) / 32)
* 4 * bmp.cy * bmp.cPlanes;

cbBitmapinfo = sizeof(BITMAPINF02) +
(sizeof(RGB) * (1 << bmp.cBitCount));

/*
* Allocate memory for the image data-buffer and the bit map
* infonnation structure.
*/

DosAllocMem((VOID *)pbBuffer,cbBuffer,
PAG COMMIT I PAG READ I PAG WRITE);

DosAll ocMem((VOio *)pbmi ,cbBi tmapinfo, -
PAG_COMMIT I PAG_READ I PAG_WRITE);

/* Copy the image data. */
pbmi->cbFix = 16L;
pbmi->cPlanes = 1;
pbmi->cBitCount = 1;
GpiQueryBitmapBits(hps, 0L, (LONG) bmp.cy, pbBuffer, pbmi);

Chapter 5. Graphics Functions 5-235 ·

GpiQueryBitmapDimension
Query Bit-Map Dimension

#define INCL GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryBltmapDlmenslon (HBITMAP hbm, PSIZEL pslzlBltmapDlmenslon)

This function returns the width and height of a bit map, as specified on a previous
GpiSetBitmapDimension function.

Parameters
hbm (HBITMAP) - input

Bit-map handle.

pslzlBltmapDlmenslon (PSIZEL) - output
Size of bit map.

The width and height of the bit map in 0.1 millimeter units.

If not set by GpiSetBitmapDimension, zeros are returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HBITMAP

PMERR_HBITMAP _BUSY

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

Related Functions
• GpiSetBitmapDimension

Example Code
This example uses GpiQueryBitmapDimension to return the width and height of a bit map, as

specified on a previous GpiSetBitmapDimension call; if successful, it assigns the width to a variable.

#define INCL_GPIBITMAPS
#include <os2.h>

/* Bit-map functions

BOOL · fSuccess; /* success i ndi ca tor
HBITMAP hbm; /* bit-map handle
SIZEL psizlBitmapDimension; /* size of bit map
LONG lWidth; /* width of bit map

fSuccess = GpiQueryBitmapDimension(hbm, &psizlBitmapDimension);

/*if successful, assign value of bit-map width*/
if (fSuccess == TRUE)

lWidth = psizlBitmapDimension.cx;

5-236 PM Programming Reference

*/

*/
*/
*/
*/

'\
;/

GpiQueryBitmaplnfoHeader -
Query Bit-Map Info Header

#define INCL GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryBltmaplnfoHeader (HBITMAP hbm, PBITMAPINFOHEADER2 pbmp2Data)

This function returns information about a bit map identified by the bit-map handle.

Parameters
hbm (HBITMAP) - input

Bit-map handle.

pbmp2Data (PBITMAPINFOHEADER2) - input/output
Bit-map information header.

This is a structure, that on return, is filled with data for the specified bit map.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HBITMAP

PMERR_HBITMAP _BUSY

Remarks

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

The cbFix field of the BITMAPINFOHEADER2 structure must be set by the application before
performing this function.

Note: This function should be used in preference to the GpiQueryBitmapParameters function.

Chapter 5. Graphics Functions 5-237

GpiQueryBitmaplnfoHeader
Query Bit-Map Info Header

Example Code
This example uses GpiQueryBitmaplnfoHeader to return information about a bit map identified by

the bit-map handle; if successful, it uses this information to create a new bit map via
GpiCreateBitmap.

#define INCL_GPIBITMAPS
#include <os2.h>

/* Bit-map functions

HPS hps;
BOOL fSuccess;
HB ITMAP hbm;
HBITMAP hbmNew;
BITMAPINFOHEADER2
PBYTE pb;

/* presentation-space handle
/* success indicator
/* bit-map handle
/* bit-map handle

pbmp2Data; /* Bit-map information header
/* address of bit-map image data in

resource

/* set size of info structure */
pbmp2Data.cbFix = 16L;

fSuccess = GpiQueryBitmaplnfoHeader(hbm. &pbmp2Data);

/* use information to create bit map */

*/

*/
*/
*/
*/
*/

*/

hbmNew = GpiCreateBitmap(hps. /* presentation space */
&pbmp2Data. /* bit-map information header */
CBM_lNIT, /*initialize the bit map */
pb, /* bit-map data */
(PBITMAPINF02)&pbmp2Data);

/* bit-map information table */

5-238 PM Programming Reference

GpiQueryBitmapHandle -
Query Bit-Map Handle

#define INCL_GPIBITMAPS I* Or use INCL_GPI or INCL_PM */

HBITMAP GplQueryBltmapHandle (HPS hps, LONG ILcld)

This function returns the handle of the bit map currently tagged with the specified local identifier
(lcid).

Parameters
hps (HPS) - input

Presentation-space handle.

ILcid (LONG) - input
Local identifier.

Returns
Bit-map handle:

¢0 Bit-map handle

GPl_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SETID

PMERR_ID _HAS_NO _BITMAP

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.

No bit map was tagged with the setid specified on a
GpiQueryBitmapHandle cal I.

An error is raised if a bit map is not currently tagged with the specified lcid.

Related Functions
• GpiSetBitmapld

Example Code
This example uses GpiQueryBitmapHandle to return the handle of the bit map currently tagged with

the specified local identifier (lcid) set by GpiSetBitmapld.

#define INCL_GPIBITMAPS
#include <os2.h>

HBITMAP hbm;
HPS hps;
LONG 1 Leid;

/* Bit-map functions

/* bit-map handle
/* presentation-space handle
/* local identifier

hbm = GpiQueryBitmapHandle(hps, lLcid);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-239

GpiQueryBitmapParameters
Query Bit-Map Parameters

#define INCL GPIBITMAPS I* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryBltmapParameters (HBITMAP hbm, PBITMAPINFOHEADER pbmpData)

This function returns information about a bit map identified by the bit-map handle.

Parameters
hbm (HBITMAP) - input

Bit-map handle.

pbmpData (PBITMAPINFOHEADER) - input/output
Bit-map information header.

This is a structure, that on return, is filled with data for the specified bit map. The structure
includes the elements (width, height, planes, bitcount) of a bit-map information table.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HBITMAP

PMERR_HBITMAP _BUSY

Remarks

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

The cbFix field of the BITMAPINFOHEADER structure must be set by the application before
performing this function.

Related Functions
• GpiCreateBitmap

5-240 PM Programming Reference

GpiQueryBitmapParameters -
Query Bit-Map Parameters

Example Code
This example uses GpiQueryBitmapParameters to return information about a bit map identified by

the bit-map handle; if successful, it assigns the width field to a variable.

#define INCL_GPIBITMAPS
#include <os2.h>

/* Bit-map functions */

BOOL fSuccess; /* success indicator */
HBITMAP hbm; /* bit-map handle *I
BITMAPINFOHEADER pbmpData; /* bit-map information header */
USHORT usWi dth; /* width of bit map * /

/* set size of info structure */
pbmpData.cbFix = sizeof(BITMAPINFOHEADER);

fSuccess = GpiQueryBitmapParameters(hbm, &pbmpData);

/*if successful, assign value of bit-map width*/
if (fSuccess == TRUE)

usWidth = pbmpData.cx;

Chapter 5. Graphics Functions 5-241

GpiQueryBoundaryData
Query Boundary Data

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryBoundaryData {HPS hps, PRECTL prclBoundary)

This function returns the boundary data.

Parameters
hps {HPS) - input

Presentation-space handle.

prclBoundary {PRECTL) - output
Boundary data.

A rectangle structure in which the boundary data is returned, containing the following fields:

xmln Lowest x value found

ymin Lowest y value found

xmax Highest x value found

ymax Highest y value found.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_COORDINATE_OVERFLOW

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function returns the boundary data set upon completion of the last boundary calculation.
Boundary data is returned as the coordinates in model space.

Boundary data is inclusive. A null boundary is indicated if xmin is greater than xmax, or if ymin is
greater than ymax. After GpiResetBoundaryData, xmin and ymin are the maximum positive
numbers, and xmax and ymax are the maximum negative numbers.

5-242 PM Programming Reference

GpiQueryBoundaryData -
Query Boundary Data

Related Functions
• GpiResetBoundaryData
• GpiSetDrawControl

Example Code
This example uses the GpiQueryBoundaryData function to retrieve the rectangle enclosing the
output. The boundary data is then used to draw a border around the output.

#define INCL_GPICORRELATION
#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* GPI primitive functions
/* GPI control Functions

*/
*/

HPS hps; /* presentation space handle */
POINTL ptlStart = { 0, 0 }; /* first vertex */
PO INTL ptlTri angle[] = { 100, 100, 200, 0, 0, 0 } ; /* vertices *I
RECTL rel; /*rectangle */

GpiSetDrawControl(hps,
DCTL_BOUNDARY, DCTL_ON); /* accumulate boundary data */

GpiMove(hps, &ptlStart); /*produce output */
GpiPolyline(hps, 3L, ptlTriangle);

GpiQueryBoundaryData(hps, &rel); /* copy boundary data to rel */
if (rcl.xleft < rcl.xRight) { /*verify output exists*/

ptlStart.x = rcl.xleft; ptlStart.y = rcl.yBottom;
GpiMove(hps, &ptlStart); /*move to lower-right corner*/
ptlStart.x = rcl.xRight; ptlStart.y = rcl.yTop;
GpiBox(hps, DRO_OUTLINE, &ptlStart, 0L, 0L); /*draw border*/

}

Chapter 5. Graphics Functions 5-243

GpiQueryCharAngle -
Query Character Angle

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharAngle (HPS hps, PGRADIENTL pgradlAngle)

This function returns the current value of the character baseline angle.

Parameters
hps (HPS) - input

Presentation-space handle.

pgradlAngle (PGRADIENTL) - output
Baseline angle.

A point, relative to (0,0), that defines the character baseline angle vector.

If the character angle is currently set to the default value, (0,0) is returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQuery Attrs
• GpiSetCharAngle

5-244 PM Programming Reference

Example Code

GpiQueryCharAngle -
Query Character Angle

This example uses GpiQueryCharAngle to return the current value of the character baseline angle; if
successful, it places the x component in a variable.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions */

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG lxComponent; /* x component of baseline angle */
GRADIENTL pgradlAngle; /*Baseline angle */

fSuccess = GpiQueryCharAngle(hps, &pgradlAngle};

if (fSuccess == TRUE}
lxComponent = pgradlAngle.x;

Chapter 5. Graphics Functions 5-245

GpiQueryCharBox -
Query Character Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharBox (HPS hps, PSIZEF pslzfxSlze)

This function returns the current value of the character box attribute, as set by the GpiSetCharBox
function.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzlxSlze (PSIZEF) - output
Character-box size.

If the character box is currently set to the default, the default size is returned. This is the size
returned by DevQueryCaps (CAPS_GRAPHICS_CHAR_WIDTH and
CAPS_GRAPHICS_CHAR_HEIGHT), converted to presentation page space.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

In general this function does not return the same box as GpiQueryTextBox for an average-sized
character. For outline fonts the character-box attribute is mapped to a particular font dimension
related to the point size, for raster fonts it does not correspond to any font metric. (See
GpiSetCharMode).

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• DevQueryCaps
• GpiQuery Attrs
• GpiSetCharBox

5-246 PM Programming Reference

\
j Example Code

GpiQueryCharBox -
Query Character Box

This example uses GpiQueryCharBox to return the current value of the character box attribute, as
set by the GpiSetCharBox call; if successful, places the box width in a variable.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

BOOL fSuccess;
HPS hps;
SIZEF psizfxSize;
FIXED lWidth;

/* success indicator
/* Presentation-space handle
/* Character-box size
/* character box width

fSuccess = GpiQueryCharBox(hps, &psizfxSize);

if (fSuccess == TRUE)
lWidth = psizfxSize.cx;

*/

*/
*/
*/
*/

Chapter 5. Graphics Functions 5-247

GpiQueryCharBreakExtra -
Query Character Break Extra

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharBreakExtra (HPS hps, PFIXED pfxBreakExtra)

This function returns the current value of the character-break-extra attribute, as set by the
GpiSetCharBreakExtra function.

Parameters
hps (HPS) - input

Presentation-space handle.

pfxBreakExtra (PFIXED) - output
Character-break-extra attribute value.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryCharBreakExtra to return the current value of the character-break-extra
attribute, as set by the GpiSetCharBreakExtra call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions */

BOOL fSuccess; /* success i ndi ca tor *I
HPS hps; /* Presentation-space handle */
FIXED pfxBreakExtra; /* Character-break-extra attribute value*/

fSuccess = GpiQueryCharBreakExtra(hps, &pfxBreakExtra);

5-248 PM Programming Reference

GpiQueryCharDirection
Query Character Direction

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryCharDlrectlon (HPS hps)

This call returns the current value of the character direction attribute, as set by the
GpiSetCharDirection function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Character direction:

CHDIRN_DEFAUL T Default

>0 Character direction

CHDIRN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function {for example, /
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This call is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetCharDirection

Example Code
This example uses GpiQueryCharDirection to return the current value of the character direction
attribute, as set by the GpiSetCharDirection call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lDirection;
HPS hps;

/* character direction (or error)
/* Presentation-space handle

lDirection = GpiQueryCharDirection(hps);

*/

*/
*/

Chapter 5. Graphics Functions 5-249

GpiQueryCharExtra -
Query Character Extra

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharExtra (HPS hps, PFIXED plxExtra)

This function returns the current value of the character-extra attribute, as set by the GpiSetCharExtra
function.

Parameters
hps (HPS) - input

Presentation-space handle.

plxExtra (PFIXED) - output
Character-extra attribute value.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

Remarks

An invalid presentation-space hand!e was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryCharExtra to return the current value of the character-extra attribute,
as set by the GpiSetCharExtra call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

BOOL fSuccess; /* success indicator
HPS hps; /* Presentation-space handle
FIXED pfxExtra; /* Character-extra attribute value

fSuccess = GpiQueryCharExtra(hps, &pfxExtra);

5-250 PM Programming Reference

*/

*/
*/
*/

GpiQueryCharMode
Query Character Mode

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryCharMocle (HPS hps)

This function returns the current value of the character-mode attribute, as set by the
GpiSetCharMode function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Character mode:

CM_DEFAUL T Default

>0 Character mode

CM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode {see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetCharMode

Example Code
This example uses GpiQueryCharMode to return the current value of the character mode attribute,
as set by the Gp~SetCharMode call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lMode;
HPS hps;

/* character mode attribute
/* Presentation-space handle

lMode = GpiQue.ryCharMode(hps);

*/

*/
*/

Chapter 5. Graphics Functions 5-251

GpiQueryCharSet -
Query Character Set

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryCharSel (HPS hpa)

This function returns the character-set local identifier (lcid), as set by the GpiSetCharSet function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Character-set local identifier:

LCID_DEFAULT Default

>0 Local identifier

LCID_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain. ·

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetCharSet

Example Code
This example uses GpiQueryCharSet to return the character-set local identifier (lcid), as set by the

GpiSetCharSet call.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

LONG lLcid;
HPS hps;

/* character set lcid (or error)
/* Presentation-space handle

lLcid = GpiQueryCharSet(hps);

5-252 PM Programming Reference

*/

*/
*/

GpiQueryCharShear -
Query Character Shear

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharShear (HPS hps, PPOINTL pptlShear)

This function returns the value of the current character-shear angle, as set by the GpiSetCharShear
function.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlShear (PPOINTL) - output
Character shear.

A point, relative to (0,0), that defines the character shear vector.

If the character shear is currently set to the default, (0, 1) is returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiQueryAttrs
• GpiSetCharShear

Chapter 5. Graphics Functions 5-253

GpiQueryCharShear -
Query Character Shear

Example Code
This example uses GpiQueryCharShear to return the value of the current character-shear angle, as

set by the GpiSetCharShear call; if successful, it assigns the x coordinate of the returned vector to a
variable.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

BOOL fSuccess;
HPS hps;
POINTL pptlShear;
LONG lxCoord;

/* success indicator
/* Presentation-space handle
/* character shear
/* shear angle vector x coordinate

fSuccess = GpiQueryCharShear(hps. &pptlShear);

if (fSuccess == TRUE)
lxCoord = pptlShear.x;

5-254 PM Programming Reference

*/

*/
*/
*/
*/

J

GpiQueryCharStringPos
Query Character String Positions

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharStrlngPos (HPS hps, ULONG flOpllons, LONG ICount, PCH pchString,
PLONG alXlncrements, PPOINTL aptlPosltlons)

This function processes a string as if it is being drawn under the current character attributes using
GpiCharStringPos, and returns the positions in the string at which each character would be drawn.

Parameters
hps (HPS) - input

Presentation-space handle.

flOptlons (ULONG) - input
Option flag:

CHS_ VECTOR Increments vector supplied (a/Xincrements). If 0, a/Xincrements is ignored.

ICount (LONG) - input
Length of the string.

pchStrlng (PCH) - input
Character string to be examined.

alXlncrements (PLONG) - input
Vector of x increment values.

These are signed values in world coordinates. Any negative values are treated as if they were
0. This parameter is ignored if CHS_ VECTOR is not set.

aptlPosltlons (PPOINTL) - output
Array of points.

The positions of each character in world coordinates. The first point returned is the initial
current position, and the last point is the new current position if the string has been drawn.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _ CHAR_POS_ OPTIONS

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COORDINATE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

Chapter 5. Graphics Functions 5-255

GpiQueryCharStringPos -
Query Character String Positions

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

PMERR_INV _DC_ TYPE

Remarks

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

A vector of increments can be specified, allowing control over the positioning of each character after
the first. These are distances measured in world coordinates (along the baseline for left-to-right and
right-to-left character directions, and along the shearline for top-to-bottom and bottom-to-top). The
i'th increment is the distance of the reference point of the (i + 1)'th character from the reference point
of the i'th. The last increment may be needed to update current position.

These increments, if specified, set the widths of each character.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPosAt
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear

Example Code
This example calls the GpiQueryCharStringPos function to determine the location of each character
in the string. Vector increments are not used.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
CHAR szString[] "Sample string";
POINTL aptl[sizeof(szString) + 1];

GpiQueryCharStringPos(hps,
0L,
sizeof(szString),
szString,
NULL,
aptl);

5-256 PM Programming Reference

/* presentation-space handle */
/* does not use vector increments */
/* number of characters in string */
/* character string */
/* no vector increments */
/* array of structures for points */

\
I
I

GpiQueryCharStringPosAt -
Query Character String Positions At

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharStrlngPosAt (HPS hps, PPOINTL pptlStart, ULONG flOptlons,
LONG ICount, PCH pchString, PLONG alXincrements,
PPOINTL aptlPosltlons)

This function processes a string as if it is being drawn under the current character attributes using

GpiCharStringPosAt, and returns the positions in the string at which each character would be drawn.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlStart (PPOINTL) - input
Starting position.

flOptlons (ULONG) - input
Option flags:

CHS_ VECTOR Increments vector supplied (a/Xincrements). If 0, a/Xincrements is ignored.

ICount (LONG) - input
Length of the string.

pchString (PCH) - input
Character string to be examined.

alXlncrements (PLONG) - input
Vector of x increment values.

These are signed values in world coordinates. Any negative values are treated as if they were
0. This parameter is ignored if CHS_ VECTOR is not set.

aptlPosltions (PPOINTL) - output
Array of points, in which the positions of each character in world coordinates are returned.

The first point returned is the initial current position, and the last point is the new current
position if the string has been drawn.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS _BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _ CHAR_POS_ OPTIONS

PMERR_INV_LENGTH_OR_COUNT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

An invalid length or count parameter was specified.

Chapter 5. Graphics Functions 5-257

GpiQueryCharStringPosAt -
Query Character String Positions At

PMERR_INV _COORDINATE

PMERR_COORDINATE_ OVERFLOW

An invalid coordinate value was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

PMERR_INV _DC_ TYPE

Remarks

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

A vector of increments can be specified, allowing control over the positioning of each character after
the first. These are distances measured in world coordinates (along the baseline for left-to-right and
right-to-left character directions, and along the shearline for top-to-bottom and bottom-to-top). The
i'th increment is the distance of the reference point of the (i + 1)'th character from the reference point
of the i'th. The last increment may be needed to update current position.

These increments, if specified, set the widths of each character.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiSetCharAngle
• GpiSetCharBox
• " GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear

Example Code
This example uses the GpiQueryCharStringPosAt function to determine the location of each

character in the string. Vector increments are not used.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* GPI primitive functions */

HPS hps; /* presentation space handle */
POINTL ptlStart = { 100, 100 };
POINTL aptl[12];

GpiQueryCharStringPosAt(hps,
&ptlStart,
0L,
UL,
"This string",
NULL,
aptl);

5-258 PM Programming Reference

/* presentation-space handle */
/* starting point for string */
/* do not use vector increments */
/* 11 characters in string */
/* character string */
/* no vector increments */
/* array of structures for points */

GpiQueryClipBox
Query Clip Box

#define INCL_GPIREGIONS /*Or use INCL_GPI or INCL_PM */

LONG GplQueryCllpBox (HPS hps, PRECTL prclBound)

This function returns the dimensions of the tightest rectangle which completely encloses the

intersection of a// the clipping definitions.

Parameters
hps (HPS) - input

Presentation-space handle.

pref Bound (PRECTL} - output
Bounding rectangle.

The coordinates of the bounding rectangle, in world coordinates.

Returns
Complexity and error indicators:

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PM ERR_ COORDINATE_ OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

The clipping definitions include the combined effects of:

• Clip path
• Viewing limits
• Graphics field
• Clip region
• Visible region (windowing considerations).

Points on the borders of the rectangle returned are considered to be included within the rectangle. If

the intersection is null, the rectangle returned has the right boundary less than the left, and the top

boundary less than the bottom.

Chapter 5. Graphics Functions 5-259

GpiQueryClipBox
Query Clip Box

Example Code
This example uses GpiQueryClipBox to return the dimensions of the tightest rectangle which
completely encloses the intersection of all the clipping definitions. The example queries the clip box
and, if a rectangular region is returned, assigns the x coordinate of the lower left hand corner of the
clip box region to a variable.

#define INCL_GPIREGIONS
#include <os2.h>

LONG lComplexity;
HPS hps;
RECTL prclBound;
LONG lLwrLftxCoord;

/* Region functions */

/* complexity/error indicator */
/* Presentation-space handle */
/* bounding rectangle *I
/*lower left x coordinate of clip box */

lComplexity = GpiQueryClipBox(hps, &prclBound);

/* if returned region is a rectangle, assign lower left x coordinate */
if (lComplexity == RGN_RECT)

lLwrLftxCoord = prclBound.xLeft;

5-260 PM Programming Reference

I
)

GpiQueryClipRegion
Query Clip Region

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

I HRGN GplQuel')'CllpReglon (HPS hpa)

This function returns the handle of the currently selected clip region.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Clip-region handle (if any):

NULLHANDLE Null handle (no region is selected)

HRGN_ERROR Error

Otherwise Clip region handle.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
If there is no currently selected clip region, a null handle is returned.

Example Code
This example uses GpiQueryClipRegion to return the handle of the currently selected clip region.

#define INCL_GPIREGIONS
#include <os2.h>

HPS hps;
HRGN hrgn;

/* Region functions

/* Presentation-space handle
/* clip region handle

hrgn = GpiQueryClipRegion(hps);

*/

*/
*/

Chapter 5. Graphics Functions 5-261

GpiQueryColor
Query Color

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I LONG GplQueryColor (HPS hps)

This function returns the current value of the (character) color attribute, as set by the GpiSetColor
call.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Color attribute:

CLR_ERROR Error

CLR_DEFAULT Default

Otherwise Color index.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD _MET AFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

5-262 PM Programming Reference

\

Example Code

GpiQueryColor -
Query Color

This example uses GpiQueryColor to return the current value of the (character) color attribute, then

sets the color to red by calling GpiSetColor. When finished with red, the color is set back to its

original value.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions */

LONG lColor;
HPS hps;

/* current character color (or error) */
/* Presentation-space handle */

HPS GEhps;

/* query current color */
lColor = GpiQueryColor(hps);

/* set color to red */
GpiSetColor(GEhps, CLR_RED);

/* restore to original color */
GpiSetColor(GEhps, lColor);

Chapter 5. Graphics Functions 5-263

GpiQueryColorData
Query Color Data

#define INCL GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryColorDala (HPS hps, LONG ICounl, PLONG alArray)

Information about the current logical color table or the selected palette is returned by this function.

Parameters
hps (HPS) - input

Presentation-space handle.

ICounl (LONG) - input
Number of elements.

Number of elements supplied in a/Array.

alArray (PLONG) - output
Array.

On return this array contains:

Array[QCD_LCT_FORMAT] Format of loaded color table if any. One of the following values is
returned:

LCOLF_DEFAULT Default color table is in force.
LCOLF _INDRGB Color table loaded which provides translation

from index to RGB.
LCOLF _RGB Color index = RGB.
LCOLF _PALETTE Palette is selected.

Array[QCD_LCT_LOINDEX] Smallest color index in the color table or palette; always zero for
color tables.

Array[QCD_LCT_HllNDEX] Largest color index in the color table or palette; never less than
15 for color tables.

Array[QCD_LCT_OPTIONS] Color table or palette option. Zero or more of the following are
returned:

5-264 PM Programming Reference

LCOL_PURECOLOR No color dithering (color table or selected
palette).

LCOL_ OVERRIDE_DEFAUL T _COLORS Override for applications
that need the full hardware palette (selected
palette only)

The array elements are numbered consecutively, starting with
Array[QCD_LCT_FORMAT]. The element number constants start
with 0. (See the appropriate Bindings Reference.)

Information is returned only for the number of elements supplied.
Any extra elements supplied, beyond those described above, are
set to zero by the system.

\

Returns
Success indicator:

TRUE S~uccessful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

Example Code

GpiQueryColorData
Query Color Data

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

This example uses the GpiQueryColorData function to retrieve the smallest color-table index. The
GpiQuerylogColorTable function is then used to retrieve the RGB color value for this index.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

HPS hps;
LONG a1Data[3];
LONG alColor[l];

/* presentation space handle
/* infonnation array
/* infonnation array

GpiQueryColorData(hps, 3L, alData);
GpiQueryLogColorTable(hps, 0L, alData[QCD_LCT_LOINDEX],

lL, alColor);

*/
*/
*/

Chapter 5. Graphics Functions 5-265

GpiQueryColorlndex
Query Color Index

#define INCL GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

LONG GplQueryColorlndex (HPS hps, ULONG ulOptions, LONG IRgbColor)

This function returns the color index of the device color that is closest to the specified RGB color
representation for the device connected to the specified presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

ulOptions (ULONG) - input
Options:

Reserved, and must be zero.

IRgbColor (LONG) - input
Specifies a color in RGB terms.

Returns
Color index providing closest match to the specified color:

~O Color index

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSV

PMERR_INV _COLOR_ OPTIONS

PMERR_INV _RGBCOLOR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with a logical
color table or color query function.

An invalid rgb color parameter was specified with
GpiQueryNearestColor or GpiQueryColor

If an RGB logical color table has been loaded, this call returns the same RGB color that is passed to
it.

5-266 PM Programming Reference

/ Example Code

GpiQueryColorlndex -
Query Color Index

This example uses GpiQueryColorlndex to return the color index of the device color that is closest to
the specified RGB color representation for the device connected to the specified presentation space.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG llndex;
HPS hps;
ULONG ulOptions;
LONG lRgbColor;

/* reserved; set to 0 */
ulOptions = 0L;

/* closest match color index
/* Presentation-space handle
/* options
/* color in RGB terms

/* color to find index for */

*/
*/
*/
*/

lRgbColor = (PC_RESERVED*16777216) + (0*65536) + (0*256) + 1;

llndex = GpiQueryColorindex(hps, ulOptions, lRgbColor);

Chapter 5. Graphics Functions 5-267

GpiQueryCp -
Query Code Page

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

I ULONG GplQueryCp (HPS hps)

This function returns the currently selected graphics code page.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Code page:

GPl_ERROR Error

Otherwise Code page.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
The code page identity returned is the one that is set by GpiSetCp (or defaulted when the
presentation space is first created). This is the code page of the default font, not the
currently-selected font, found from GpiQueryFontMetrics.

Example Code
This example uses GpiQueryCp to return the currently selected graphics code page.

#define INCL_GPILCIDS
#include <os2.h>

ULONG ulCodePage;
HPS hps;

/* Font functions

/* code page {or error)
/* Presentation-space handle

ulCodePage = GpiQueryCp{hps);

5-268 PM Programming Reference

*/

*/
*/

GpiQueryCurrentPosition
Query Current Position

#define INCL GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryCurrentPosltlon (HPS hps, PPOINTL pptlPolnt)

This function returns the value of current position.

Parameters
hps {HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - output
Current position.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryCurrentPosition to return the value of the current position and assigns

the x coordinate to a variable.

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

BOOL fSuccess; /* success indicator
HPS hps;
POINTL pptlPoint;
LONG lxCoord;

/* Presentation-space handle
/* current position
/* current position x coordinate

fSuccess = GpiQueryCurrentPosition(hps, &pptlPoint);

if (fSuccess == TRUE)
lxCoord = pptlPoint.x;

*/

*/
*/
*/
*/

Chapter 5. Graphics Functions 5-269

GpiQueryDefArcParams -
Query Default Arc Parameters

#define INCL_GPIDEFAULTS I* Or use INCL_GPI or INCL_PM *I

BOOL GplQueryDelArcParams (HPS hps, PARCPARAMS parcpArcParams)

This function returns the default values of the arc parameters, as set by the GpiSetDefArcParams
function.

Parameters
hps (HPS) - input

Presentation-space handle.

parcpArcParams (PARCPARAMS) - output
Default arc parameters.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Example Code
This example uses GpiQueryDefArcParams to return the default values of the arc parameters, as set
by the GpiSetDefArcParams call, and assign a variable to the P coefficient if the query succeeds.

#define INCL_GPIDEFAULTS
#include <os2.h>

/* Default functions */

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
ARCPARAMS parcpArcParams; /* Arc parameters *I
LONG lPcoefficient; /* p coefficient of arc definition */

fSuccess = GpiQueryDefArcParams(hps. &parcpArcParams);

/*if successful, assign value of P coefficient*/
if (fSuccess == TRUE)

1 Pcoeffi ci ent = parcpArcParams .1 P;

5-270 PM Programming Reference

GpiQueryDefAttrs
Query Default Attributes

#define INCL_GPIDEFAULTS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryDefAHrs (HPS hps, LONG IPrlmType, ULONG flAHrMask,
PBUNDLE ppbunAHrs)

This function returns default attribute values for the specified primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IPrlmType (LONG) - input
Primitive type.

This is the type of primitive for which default attribute values are to be queried, as follows:

PRIM_LINE Line and arc primitives

PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAHrMask (ULONG) - input
Attributes mask.

Each flag that is set indicates that the default value of the corresponding attribute is to be
returned in the ppbunAttrs buffer.

If all flags in f/AttrMask are 0, the ppbunAttrs buffer address is not used.

ppbunAHrs (PBUNDLE) - output
Attributes.

ppbunAttrs is a buffer in which is returned the default value of each attribute for which the
f/AttrMask flag is set, in the order specified in GpiSetAttrs for the particular primitive type.

Only data for attributes for which the appropriate flag in f/AttrMask is set is updated, so
ppbunAttrs need only be large enough for the highest offset attribute to be returned (see
GpiSetAttrs).

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PRIMITIVE_ TYPE

PMERR_UNSUPPORTED_ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.

An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.

Chapter 5. Graphics Functions 5-271

GpiQueryDefAttrs -
Query Default Attributes

Remarks
The parameters returned by this function may be used to reinstate exactly the same default attribute
values as are queried, using GpiSetDefAttrs.

Example Code
This example uses GpiQueryDefAttrs to return the default color and mix attribute values for the
primitive line and arc types and, if successful, uses the values to reinstate the default attributes via
the DosSetDefAttrs API.

#define INCL_GPIDEFAULTS
#include <os2.h>

BOOL fSuccess;
HPS hps;
LONG lPrimType;
ULONG flAttrMask;
LINEBUNDLE ppbunAttrs;

/* Default functions

/* success indicator
/* Presentation-space handle
/* primitive type
/* attributes mask
/* Attributes

/* request line/arc primitive values */
lPrimType = PRIM_LINE;

/* request values for color, mix attributes */
flAttrMask = LBB_COLOR I LBB_MIX_MODE;

fSuccess = GpiQueryDefAttrs(hps, lPrimType, flAttrMask,
&ppbunAttrs);

/*if successful, reinstate default color and mix attributes */
if (fSuccess == TRUE)

fSuccess = GpiSetDefAttrs(hps, lPrimType, flAttrMask,
&ppbunAttrs);

5-272 PM Programming Reference

*/

*/
*/
*/
*/
*/

GpiQueryDefaultViewMatrix -
Query Default View Matrix

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDefaultViewMatrix (HPS hps, LONG ICount, PMATRIXLF pmatlfArray)

This function returns the current default viewing transform; see GpiSetDefaultViewMatrix.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements.

The number of elements to be returned in pmatlfArray; must be in the range 0 through 9. If 0 is

specified, no matrix elements are returned.

pmatlfArray (PMATRIXLF) - output
Transform matrix.

An array into which the elements of the default viewing transform matrix are returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_COUNT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An invalid length or count parameter was specified.

Chapter 5. Graphics Functions 5-273

GpiQueryDefaultViewMatrix
Query Default View Matrix

Example Code
This example uses GpiQueryDefaultViewMatrix to return the default viewing transform and, if

successful, defines - via DosSetDefaultViewMatrix - the returned value as the new default transform.

#define INCL_GPITRANSFORMS
#include <os2.h>

/* Transform functions

BOOL fSuccess;
HPS hps;
LONG lCount;
MATRIXLF pmatlfArray;
LONG 1 Options;

/* success indicator
/* Presentation-space handle
/* number of elements
/* transform matrix
/* set default options

lCount = 1; /* examine only first element of transform matrix */

fSuccess = GpiQueryDefaultViewMatrix(hps, lCount, &pmatlfArray);

/* set default to returned transform */
if (fSuccess == TRUE)

{
lOptions = TRANSFORM_REPLACE;
fSuccess = GpiSetDefaultViewMatrix(hps, lCount, &pmatlfArray,

lOptions);
}

5-274 PM Programming Reference

*/

*/
*/
*/
*/
*/

GpiQueryDefCharBox -
Query Default Graphics Character Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryDefCharBox (HPS hps, PSIZEL pslzlSize)

This function returns the size of the default graphics character box in world coordinates.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzlSlze (PSIZEL) - output
Default character-box size.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

The values returned are the same as the initial default value of the character-box attribute. See

GpiSetCharBox for further information.

Chapter 5. Graphics Functions 5-275

GpiQueryDefCharBox -
Query Default Graphics Character Box

Example Code
This example uses GpiQueryDefCharBox to query the initial size of the default graphics character
box in world coordinates and, if the query succeeds, resets the current size back to this initial default
value via GpiSetCharBox (note the required transformation from LONG to FIXED using the
MAKEFIXED macro).

#define INCL_GPIPRIMITIVES
#include <os2.h>

/* Primitive functions

BOOL fSuccess;
HPS hps;
SIZEL psizlSize;
SIZEF psizfxSize;

/* success indicator
/* Presentation-space handle
/* default character-box size
/* new character-box size

fSuccess = GpiQueryDefCharBox(hps, &psizlSize);

*/

*/
*/
*/
*/

/*if successful, set current box size to initial default value*/
if (fSuccess == TRUE)

{
psizfxSize.cx = MAKEFIXED(psizlSize.cx,exeeee);
psizfxSize.cy = MAKEFIXED(psizlSize.cy,exeeee);
GpiSetCharBox(hps, &psizfxSize);
}

5-276 PM Programming Reference

\
)

GpiQueryDefTag
Query Default Tag

#define INCL_GPIDEFAULTS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryDetTag (HPS hps, PLONG plTag)

This function returns the default value of the tag identifier, as set by the GpiSetDefTag function.

Parameters
hps (HPS) - input

Presentation-space handle.

plTag (PLONG) - output
Default tag identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This example uses GpiQueryDefTag to return the default value of the tag identifier, as set by the

GpiSetDefTag call.

#define INCL_GPIDEFAULTS
#include <os2.h>

BOOL fSuccess;
HPS hps;
LONG plTag;

/* Default functions

/* success indicator
/* Presentation-space handle
/* default tag identifier

fSuccess = GpiQueryDefTag{hps. &plTag);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-277

GpiQueryDefViewingLimits -
Query Default Viewing Limits

#define INCL_GPIDEFAUL TS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryDetvlewlngLlmits (HPS hps, PRECTL prclLlmlts)

This function returns the default value of the viewing limits, as set by the GpiSetDefViewinglimits
function.

Parameters
hps (HPS) - input

Presentation-space handle.

prclLlmlts (PRECTL) - output
Default viewing limits.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Example Code
This example uses GpiQueryDefViewingLimits to return the default value of the viewing limits, as set
by the GpiSetDefViewinglimits and, if the query succeeds, assigns a variable to the x coordinate of
the lower left hand corner of the viewing limits rectangle.

#define INCL GPIDEFAULTS
#include <os2.h>

BOOL fSuccess;
HPS hps;
RECTL prclLimits;
LONG lLwrlftxCoord;

/* Default functions

/* success indicator
/* Presentation-space handle
/*default viewing limits
/* lower left x coordinate of limit

fSuccess = GpiQueryDefViewinglimi ts (hps, &prcl Limits);

*/

*/
*/
*/
*/

/*if success.fol, assign lower left x coordinate of viewing limit*/
if (fSuccess == TRUE)

lLwrLftxCoord = prcllimits.xLeft;

5-278 PM Programming Reference

GpiQueryDevice
Query Device

#define INCL_GPICONTROL /*Or use INCL_GPI or INCL_PM. Also in COMMON section */

I HDC GplQueryDevlce (HPS hps)

This function returns the handle of the currently associated device context.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Device-context handle:

HDC_ERROR Error

NULLHANDLE No device context is currently associated

Otherwise Device context handle.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_INV _HDC

An invalid presentation-space handle was specified.

Example Code

An invalid device-context handle or (micro presentation

space) presentation-space handle was specified.

This example uses the GpiQueryDevice function to retrieve a device-context handle for the

presentation space of the desktop window. The handle is used in the DevQueryCaps function to

determine the width and height of the Presentation Manager screen.

#define INCL_GPICONTROL
#define INCL_WINWINDOWMGR
#define INCL_DEV

/* GPI control Functions */
/* Window Manager Functions */
/* Device Function definitions */

#include <os2.h>

HPS hps;
HOC hdc;
LONG lWidth, lHeight;

/* presentation space handle
/* device context handle

hps = WinGetScreenPS(HWND_DESKTOP);
hdc = GpiQueryDevice(hps);
DevQueryCaps(hdc, CAPS_WIDTH, lL, &lWidth);
DevQueryCaps(hdc, CAPS_HEIGHT, lL, &lHeight);

*/
*/

Chapter 5. Graphics Functions 5-279

GpiQueryDeviceBitmapFormats
Query Device Bit-Map Formats

#define INCL_GPIBITMAPS I* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDevlceBitmapFormats (HPS hps, LONG ICount, PLONG alArray)

This function returns the formats of bit maps supported internally by the device driver.

Parameters
hps (HPS) - input

Presentation-space handle.

The associated device context defines the class of device for which formats are required. This
must be either a memory device context or a device context for a device that supports raster
operations.

ICount (LONG) - input
Number of elements.

Number of elements in a/Array (must be an even number). For the complete set of formats
returned, the value of this parameter must be at least double the number of device formats
returned by DevQueryCaps.

alArray (PLONG) - output
Data array.

Array of elements that, on return, is set to pairs of (cPlanes, cBitCount)elements (see
BITMAPINFOHEADER) for each supported format in turn. Any unused elements are set to 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An application can create, set, and query bit maps using any of the standard formats. Internally,
however, these are converted by the device driver into one of the device internal formats if
necessary. This is normally a smaller set than the standard set of bit-map formats.

The number of device bit-map formats can be found with DevQueryCaps (CAPS_BITMAP _FORMATS).

The first pair of (cPlanes, cBitCount) elements returned most closely matches the device.

This function must not be issued when there is no device context associated with the presentation
space.

5-280 PM Programming Reference

GpiQueryDeviceBitmapFormats -
Query Device Bit-Map Formats

Example Code
This example uses the GpiQueryDeviceBitmapFormats function to retrieve bit-map formats for the
screen and creates a screen-compatible bit map with GpiCreateBitmap.

#define INCL_GPIBITMAPS
#include <os2.h>

/* GPI Bit-map functions

HPS hps; /* Target presentation-space handle
LONG
HBITMAP
PBYTE
BITMAPINF02

1Formats[24];/* Formats supported by the device
hbm; /* Bit-map handle
pb; /* Bit-map image data
pbmlnfo; /* Bit-map information table

/* Get screen supportable formats */
GpiQueryDeviceBitmapFormats(hps, 24L, lFormats);

/****************************
* set bitmapinfo structure *
****************************/

pbmlnfo.cbFix = 16L;
pbmlnfo.cx = 100L;
pbmlnfo.cy = 100L;
pbmlnfo.cPlanes = (USHORT) 1Formats[0] ;
pbmlnfo.cBitCount = (USHORT) lFormats[l];

/* create bit map and return handle */
hbm = GpiCreateBitmap(hps, /* presentation space

(PBITMAPINFOHEADER2)&pbmlnfo,

*/

*/
*/
*/
*/
*/

*/

/* bit-map information header */
CBM_INIT,
pb,
&pbmlnfo);

/* initialize the bit map */
/* bit-map data */
/* bit-map information table */

Chapter 5. Graphics Functions 5-281

GpiQueryDrawControl
Query Draw Control

#define INCL_GPICONTROL /*Or use INCL_GPI or INCL_PM */

LONG GplQueryDrawControl (HPS hps, LONG IControl)

This function returns a drawing control as set by GpiSetDrawControl.

Parameters
hps {HPS) - input

Presentation-space handle.

IControl (LONG) - input
Control whose value is to be returned:

DCTL_ERASE Erase before draw

DCTL_DISPLAY Display

DCTL_BOUNDARY Accumulate boundary data

DCTL_DYNAMIC Draw dynamic segments

DCTL_CORRELATE Correlate.

Returns
Value of the control.

(See GpiSetDrawControl for details):

DCTL_ OFF Off

DCTL_ON On

DCTL_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _DRAW_ CONTROL

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid control parameter was specified with
GpiSetDrawControl or GpiQueryDrawControl.

PMERR_INV_MICROPS_DRAW_CONTROL A draw control parameter was specified with
GpiSetDrawControl that is invalid in a micro presentation
space.

5-282 PM Programming Reference

\

GpiQueryDrawControl -
Query Draw Control

Example Code
This example uses GpiQueryDrawControl to return the value for the Display drawing control as set
by GpiSetDrawControl.

#define INCL_GPICONTROL
#include <os2.h>

LONG lValue;
HPS hps;
LONG lControl;

/* Control functions

/* value of the control
/* Presentation-space handle
/* control value to be queried

/* ask for Display control value */
lControl = DCTL_DISPLAY;

lValue = GpiQueryDrawControl{hps, lControl);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-283

GpiQueryDrawingMode
Query Drawing Mode

#define INCL GPICONTROL /*Or use INCL_GPI or INCL_PM */

I LONG GplQuaryDrawlngModa (HPS hpa)

This function returns the current drawing mode, as set by GpiSetDrawingMode.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Drawing mode.

(See GpiSetDrawingMode for details):

>0 Drawing mode

DM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This example uses GpiQueryDrawingMode to return the current drawing mode, as set by
GpiSetDrawingMode.

#define INCL_GPICONTROL
#include <os2.h>

LONG lMode;
HPS hps;

/* Control functions

/* drawing mode
/* Presentation-space handle

lMode = GpiQueryDrawingMode(hps);

5-284 PM Programming Reference

*/

*/
*/

~
\

)

GpiQueryEditMode -
Query Edit Mode

#define INCL_GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryEdUMocla (HPS hps)

This function returns the current editing mode, as set by GpiSetEditMode.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Current editing mode:

SEGEM_INSERT Insert mode

SEGEM_REPLACE Replace mode

SEGEM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function can be issued in any drawing mode.

Example Code
This example uses GpiQueryEditMode to return the current editing mode, as set by GpiSetEditMode.

#define INCL_GPISEGEDITING
#include <os2.h>

/* Segment Editing functions */

LONG lMode; /* editing mode
HPS hps; /* Presentation-space handle

lMode = GpiQueryEditMode(hps);

*/
*/

Chapter 5. Graphics Functions 5-285

GpiQueryElement
Query Element

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

LONG GplQueryElement (HPS hps, LONG IOff, LONG IMaxLength, PBYTE pbData)

This function returns element content data.

Parameters
hps (HPS) - input

Presentation-space handle.

IOff (LONG) - input
Starting byte offset within the element.

IMaxLength (LONG) - input
Maximum length of data that can be returned.

pbData (PBYTE) - output
Element content data.

An area of IMaxLength bytes in which the element content data is to be returned.

Returns
Number of bytes returned:

~O Actual number of bytes returned

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_NO _CURRENT _ELEMENT

PMERR_NOT _IN_RETAIN_MODE

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _IN_ELEMENT

PMERR_INV _ELEMENT_ OFFSET

PMERR_NO _CURRENT _SEG

5-286 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open element.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An invalid length or count parameter was specified.

An attempt was made to issue a function invalid inside an
element bracket.

An invalid off (offset) parameter was specified with
GpiQueryElement.

An attempt has been made to issue
GpiQueryElementType or GpiQueryEfement while there is
no currently open segment.

GpiQueryElement -
Query Element

Remarks
Returns the element content (or part of the element content) for the element to which the element

pointer currently points.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not

draw-and-retain), and a segment bracket is currently in progress.

This function is not valid within an element bracket.

Example Code
This example uses the GpiQueryElement function to retrieve the graphics-order data for an element.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps;
BYTE abElement[512];

/* presentation space handle
/* element data buffer

/* Move pointer to first element in segment. */

GpiSetElementPointer(hps, ll);
GpiQueryElement(hps, /* presentation space */

0L, /* start with first byte in element */
512L, /* copy no more than 512 bytes */
abElement); /*buffer to receive data */

*/
*/

Chapter 5. Graphics Functions 5-287

GpiQueryElementPointer
Query Element Pointer

#define INCL GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

LONG GplQueryElementPolnter (HPS hps)

This function returns the current element pointer.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Current element pointer:

~O Current element pointer

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO _CURRENT _SEG

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress.

5-288 PM Programming Reference

GpiQueryElementPointer -
Query Element Pointer

Example Code
This example uses GpiQueryElementPointer to return the current element pointer after setting the
Draw mode to retain and beginning a graphics segment named 1.

#define INCL_GPISEGEDITING
#define INCL_GPICONTROL
#define INCL_GPISEGMENTS
#include <os2.h>

/* Segment Editing functions
/* Control functions
/* Segment functions

LONG lElement;
HPS hps;

/* current element pointer
/* Presentation-space handle

/* set the draw mode to retain and open the segment */
if (GpiSetDrawingMode(hps. DM_RETAIN) == TRUE &&

GpiOpenSegment(hps. ll) == TRUE)
{
lElement = GpiQueryElementPointer{hps);
GpiCloseSegment{hps); /* close the segment*/
}

*/
*/
*/

*/
*/

Chapter 5. Graphics Functions 5-289

GpiQueryElementType
Query Element Type

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

LONG GplQueryElementType (HPS hps, PLONG plType, LONG ILength, PSZ pszData)

This function returns Information about the element to which the element pointer currently points.

Parameters
hps (HPS) - input

Presentation-space handle.

plType (PLONG) - output
Element type.

The element type can be system-defined or application-defined; see GpiElement and
GpiBeginElement.

ILength (LONG) - input
Data length.

Length of the description data buffer.

pszData (PSZ) - output
Description of data buffer.

The description may be system-defined or application-defined; see GpiElement and
GpiBeginElement. The string is null-terminated, even if it has to be truncated.

Returns
Size of the data required to hold the element content.

This can be used for a subsequent GpiQueryElement function.

~o Size of data

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS __ BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NO _CURRENT _ELEMENT

PMERR_NOT_IN_RETAIN_MODE

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _IN_ELEMENT

PMERR_NO _CURRENT _SEG

5-290 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open element.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An invalid length or count parameter was specified.

An attempt was made to issue a function invalid inside an
element bracket.

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

Remarks

GpiQueryElementType -
Query Element Type

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid in an element
bracket.

Example Code
This example uses the GpiQueryElementType function to retrieve the size of the current element.

The size is used to retrieve the graphics-order data in the element.

#define INCL_GPISEGEDITING
#include <os2.h>

/* GPI Segment Edit functions */

HPS hps;
BYTE abElement[512];
LONG cbElement;
LONG Hype;

/* presentation space handle

/* move pointer to first element in segment */

GpiSetElementPointer(hps, lL);
cbElement = GpiQueryElementType(

hps, /* presentation space */
&lType, /* variable to receive type */
0L, /* copy zero bytes of description */
NULL); /*no buffer for description */

GpiQueryElement(hps, 0L, cbElement, abElement);

*/

Chapter 5. Graphics Functions 5-291

GpiQueryFaceString
Query Face String

#define INCL GPILCIDS I* Or use INCL_GPI or INCL_PM */

ULONG GplQueryfaceStrlng (HPS hps, PSZ pszfamllyName,
PFACENAMEDESC pfndfaceAttrs, LONG ILenglh,
PSZ pszCompoundfaceName)

This function generates a compound face name for a font.

Parameters
hps (HPS) - input

Presentation-space handle.

pszfamllyName (PSZ) - input
Family name.

The family name of the font (for example, "Courier").

pfndFaceAttrs (PFACENAMEDESC) - input
Face-name description.

A structure that provides the characteristics of the required font. These characteristics are used
to generate the compound face name.

ILenglh (LONG) - input
Length of pszCompoundFaceName buffer.

The maximum length of the compound face name returned (including the trailing zero of the
string).

Specify zero to find out how large the pszCompoundFaceName buffer needs to be.

pszCompoundfaceName (PSZ) - output
Compound face name.

The compound face name of the font.

Returns
Length of the compound face name:

GPl_ERROR Error occurred

> 0 Length of the compound face-name string (including the trailing zero). This is the
length of the complete string; if it is greater than /Length, the string returned in
pszCompoundFaceName is truncated.

Possible returns from WinGetlastError

PMERR_FONT _NOT _LOADED

PMERR_INV _FACENAME

PMERR_INV _FACENAMEDESC

PMERR_INV _HPS

PMERR_PS_BUSY

5-292 PM Programming Reference

An attempt was made to create a font that was not loaded.

An invalid font family name was passed to
GpiQueryFaceString.

The font facename description is invalid.

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

l
)

GpiQueryFaceString
Query Face String

Remarks
This function generates a compound face name (for example, "Courier Bold Italic") from a family
name (for example, "Courier").

The compound face name can be used on a GpiCreatelogFont function.

Example Code
This example uses GpiQueryFaceString to generates a compound face name of 'Courier Light Italic'
from the family name 'Courier.'

#define INCL_GPILCIOS
#include <os2.h>

/* Font functions */

ULONG cbRetLength; /* length of compound face name */
HPS hps; /* Presentation-space handle */
char pszFamilyName[13];/* Family name */
FACENAMEDESC pfndFaceAttrs; /* Face-name description */
LONG 1 Length; /* 1 ength of buff er * /
char *pszCompoundFaceName;/* Compound face name */

/* family name is 'Courier' */
strcpy(pszFamilyName, 11 Courier11

);

/* let the function detennine the buffer length and return it */
1 Length = 0L;

/* initialize face name description structure for Light weight
class. nonnal width, and italics */

pfndFaceAttrs.usSize = sizeof(FACENAMEDESC);
/* Length of structure */

pfndFaceAttrs.usWeightClass = FWEIGHT_LIGHT; /* Weight class */
pfndFaceAttrs.usWidthClass = FWIDTH_NORMAL; /* Width class */
pfndFaceAttrs.usReserved = 0; /* Reserved */
pfndFaceAttrs.flOptions = FTYPE_ITALIC;

/* Other characteristics of the font */

cbRetLength = GpiQueryFaceString(hps. pszFamilyName,
&pfndFaceAttrs, llength,
pszCompoundFaceName);

Chapter 5. Graphics Functions 5-293

GpiQueryFontAction
Query Font Action

#define INCL GPILCIDS /*Or use INCL_GPI or INCL_PM */

ULONG GplQueryFonlActlon (HAB hab, ULONG flOptlons)

This function determines whether available fonts have been affected since the last time the function
was called.

Parameters
hab (HAB) - input

Anchor-block handle.

flOptlons (ULONG) - input
Options

The following may be OR'ed together if required:

QFA_PUBLIC Interested in any change of public fonts.

QFA_PRIVATE Interested in any change of private fonts for the current process.

Returns
Actions indicator:

If no error occurs, QFA_PUBLIC and QFA_PRIVATE may be OR'ed together.

QFA_PUBLIC A change of public fonts has occurred.

QFA_PRIVATE A change of private fonts affecting the current process has occurred.

QFA_ERROR Error occurred.

Possible returns from WinGetlastError

PMERR_INV _ OR_INCOMPAT _OPTIONS

Remarks

An invalid or incompatible (with micro presentation
space) options parameter was specified with
GpiCreatePS or GpiSetPS.

This function can be used by a font selection dialog to find out whether its database of font
information is still valid.

The function returns that both public and private font changes have taken place the first time it is
called on a given process.

5-294 PM Programming Reference

\
)

GpiQueryFontFileDescriptions
Query Font File Descriptions

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

LONG GplQueryFontFileDescrlptlons (HAB hab, PSZ pszFllename, PLONG plCount,
PFFDESCS affdescsNames)

This function determines whether a given file is a font resource file, and if so, returns the family and
face names of the fonts that it contains.

Parameters
hab (HAB) - input

Anchor-block handle.

pszFllename (PSZ) - input
Fully qualified filename.

This is the name of the font resource. The filename extension is .FON.

plCount (PLONG) - input/output
Maximum number of family and face name pairs to be returned.

The number of pairs of descriptions that are actually returned in affdescsNames is returned in
this variable.

afldescsNames (PFFDESCS) - output
Array of font file descriptors.

An array of 2*p/Count consecutive 32-byte fields, in which the family and face names of each
font, in turn, are returned alternately. For each pair, the family name is returned first.

Returns
Returns:

;:?:0 Number of fonts for which details were not returned

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV_FONT_FILE_DATA

PMERR_INV_LENGTH_OR_COUNT

Remarks

The font file specified with GpiloadFonts,
GpiloadPublicFonts,

An invalid length or count parameter was specified.

Details are returned for as many fonts as can be held in affdescsNames.

By inspecting the returned data, the application can tell whether a particular font resource file
contains the fonts it requires, before loading it.

By specifying p/Count as 0, and then looking at the value returned in IRemFonts, an application can
determine how many fonts there are in the file, and then allocate the correct amount of buffer space
for a subsequent call to obtain all of the names.

Chapter 5. Graphics Functions 5-295

GpiQueryFontFileDescriptions
Query Font File Descriptions

Example Code
This example uses the GpiQueryFontFileDescriptions to retrieve the typeface family and names for

the fonts in the helv.dll file. The function is called twice, once to determine the actual number of
fonts in the file, and again to retrieve the descriptions.

#define INCL_GPILCIDS
#define INCL_DOSMEMMGR
#include <os2.h>

HPS hps;
HAB hab;
PFFDESCS pffdescs;
LONG cFonts = 0;

/* Font functions */
/* DOS Memory Manager Functions */

/* presentation space handle */
/* anchor-b 1 ock handle *I
/* array of font file descriptors */
/* number of descriptions not returned */

/* Retrieve a count of all fonts in the file. */

cFonts = GpiQueryFontFileDescriptions(hab, 11 helv 11
, &cFonts, NULL);

/* Allocate space for the descriptions. */

DosAllocMem((VOID *)pffdescs,(ULONG)(cFonts*sizeof(FFDESCS)),
PAG_COMMIT I PAG_READ I PAG_WRITE);

/* Retrieve the descriptions. */

GpiQueryFontFileDescriptions(hab, 11 helv 11
, &cFonts, pffdescs);

5-296 PM Programming Reference

GpiQueryFontMetrics -
Query Font Metrics

#define INCL GPILCIDS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryFontMetrlcs (HPS hps, LONG IMetrlcsLength, PFONTMETRICS pfmMetrlcs)

This function returns a record providing details of the font metrics for the logical font that is currently
selected.

Parameters
hps (HPS) - input

Presentation-space handle.

IMetrlcsLength (LONG) - input
Length of metrics.

pfmMetrlcs (PFONTMETRICS) - output
Metrics of font.

In this buffer are returned the font metrics of the logical font, identified by the current value of
the character set attribute.

No more data than IMetricsLength is returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_COORDINATE_ OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

All sizes are returned in world coordinates.

An application can determine if the font szFacename[FACESIZE] (as returned in pfmMetrics) has
been truncated by checking the usType field in pfmMetrics for the FM_TYPE_FACETRUNC indicator.
If the face name has been truncated, this bit will be set, and the application can issue a
WinQueryAtomName function, passing in the FaceNameAtom (as returned in pfmMetrics) to retrieve
the full face name from the System Atom table.

Chapter 5. Graphics Functions 5-297

GpiQueryFontMetrics
Query Font Metrics

Example Code
This example uses the GpiQueryFontMetrics function to retrieve the font metrics for the current font.

#define INCL_GPILCIDS /* Font functions
#include <os2.h>

HPS hps; /* presentation space handle
FONTMETRICS fm; /* metrics structure

GpiQueryFontMetrics(hps, sizeof(FONTMETRICS), &fm);

5-298 PM Programming Reference

*/

*/
*/

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

GpiQueryFonts
Query Fonts

LONG GplQueryFonts (HPS hps, ULONG flOptlons, PSZ pszFacename, PLONG plReqFonts,
LONG IMetricsLength, PFONTMETRICS afmMetrics)

This function returns a record providing details of the fonts that match the specified pszfacename.

Parameters
hps (HPS) - input

Presentation-space handle.

flOptlons (ULONG) - input
Enumeration options.

This controls which fonts are to be enumerated. If both the following options are required, the
values should be ORed together:

OF _PUBLIC Enumerate public fonts.

QF_PRIVATE Enumerate private fonts.

QF _NO _DEVICE Device fonts are not reported.

QF_NO_GENERIC Generic fonts are not reported.

pszFacename (PSZ) - input
Face name of fonts.

If the pointer to pszfacename is NULL, all available fonts are queried, regardless of their face
names.

plReqFonts (PLONG) - input/output
Count of fonts.

The number of fonts for which the application requires the metrics. This variable returns the
number of fonts returned.

IMetrlcsLength (LONG) - input
Length of metrics.

The length of each metrics record to be returned. The afmMetrics data area must be p/Reqfonts
multiplied by /MetricsLength long.

afmMetrlcs (PFONTMETRICS) - output
Metrics of font.

In this structure are returned the font metrics of up to p/Reqfonts matching fonts. The format for
each record is as defined for GpiQueryFontMetrics, except that the usCodePage field has no
meaning in this context, and is indeterminate. For each font, no more data than IMetricsLength
is returned.

Returns
Count of fonts not returned:

~O Count of fonts not returned

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

Chapter 5. Graphics Functions 5-299

GpiQueryFonts
Query Fonts

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_COORDINATE_OVERFLOW

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Remarks
Font metrics are returned for as many matching fonts as can be held in afmMetrics.

By inspecting the returned data, the application can choose which of the available fonts is most
appropriate for its requirements. If necessary, it can force selection of a particular font, by
specifying its match (as returned in afmMetrics) in the pAttrs structure for GpiCreatelogFont,
however, this is only valid for a particular device/device driver combination on a single machine.
This method should be avoided as a method for selecting a font.

An application can determine if the font szFacename[FACESIZE] (as returned in afmMetrics) has
been truncated by checking the usType field in afmMetrics for the FM_TYPE_FACETRUNC indicator.
If the face name has been truncated, this bit will be set, and the application can issue a
WinQueryAtomName function, passing in the FaceNameAtom (as returned in afmMetrics) to retrieve
the full face name from the System Atom table.

By specifying p/ReqFonts as 0, and then looking at the value returned in /RemFonts, an application
can determine how many fonts there are that match the pszFacename.

All sizes are returned in world coordinates.

Example Code
This example uses the GpiQueryFonts function to retrieve the font metrics for all private fonts having

the "Helv" typeface name. The function is called twice, first to determine the number of fonts
available, and then again to retrieve the font metrics for all the fonts.

#define INCL_GPILCIDS
#define INCL_DOSMEMMGR
#include <os2.h>

/* Font functions */
/* DOS Memory Manager Functions */

HPS hps;
LONG cFonts;
LONG lTemp = 0L;
PFONTMETRICS pfm;

/* presentation space handle
/* fonts not returned
/* font count
/* metrics structure

/* Determine the number of fonts. */

cFonts = GpiQueryFonts(hps, QF_PRIVATE, 11 Helv 11
, &lTemp,

(LONG) sizeof(FONTMETRICS), NULL);

/*Allocate space for the font metrics. */

DosAllocMem((VOID *)pfm,(ULONG)(cFonts*sizeof(FONTMETRICS)),
PAG_COMMIT I PAG_READ I PAG_WRITE);

/* Retrieve the font metrics. */

cFonts = GpiQueryFonts(hps. QF_PRIVATE, "Helv". &cFonts.
(LONG) sizeof(FONTMETRICS), pfm);

5-300 PM Programming Reference

*/
*/
*/
*/

GpiQueryFullFontFileDescriptions -
Query Full Font File Descriptions

#define INCL GPILCIDS /* Or use INCL_ GPI or INCL_PM *I

LONG GplQueryFullFonlFlleDescrlpllons (HAB hab, PSZ pszFllename, PLONG plCount,
PVOID pNames, PLONG plNamesBuffLenglh)

This function determines whether a given file is a font resource file, and if so, returns the family and
face names of the fonts that it contains.

Parameters
hab (HAB) - input

Anchor-block handle.

pszFllename (PSZ) - input
Fully qualified filename.

This is the name of the font resource.

plCounl (PLONG) - input/output
Maximum number of family and face name pairs to be returned.

The number of pairs of descriptions that are actually returned in pNames is returned in this
variable.

pNames (PVOID) - output
Font file descriptors.

A buffer in which the font file family and face name pairs are returned. They are each returned
in a FFDESCS2 structure, with successive structures packed end to end.

plNamesBuffLenglh (PLONG) - input/output
Length, in bytes, of the pNames data buffer.

On return, this is set to the actual length needed to hold all of the family names and face names
in the file.

Returns
Returns:

~O Number of fonts for which details were not returned

GPl_AL TERROR Error.

Possible returns from WinGetLastError

PMERR_INV_FONT_FILE_DATA

PMERR_INV_LENGTH_OR_COUNT

Remarks

The font file specified with GpiLoadFonts,
Gpi Load Pu bl icFonts,

An invalid length or count parameter was specified.

Details are returned for as many fonts as can be held in pNames.

By inspecting the returned data, the application can tell whether a particular font resource file
contains the fonts it requires, before loading it.

By specifying pNames as NULL, and then looking at the value returned in p/NamesBuffLength, an
application can determine the length of the buffer needed to hold all of the font names.

Support for this .function is device dependent.

Chapter 5. Graphics Functions 5-301

GpiQueryFullFontFileDescriptions
Query Full Font File Descriptions

Example Code
/* This example uses the GpiQueryFullFontFileDescriptions to */
/* retrieve the typeface family and names for the fonts in the */
/* helv.dll file. The function is called twice, once to */
/* determine the actual number of fonts in the file, and again */
/* to retrieve the descriptions. */

PFFDESCS pffdescs;
SEL sel;
LONG cFonts = 0;
LONG lBuflen = 0;

/* Retrieve a count of all fonts in the file. */

cFonts = GpiQueryFontFileDescriptions(hab, 11 helv 11
,

&cFonts, NULL, &lBuflen)

/* Allocate space for the descriptions. */

DosAl 1 ocSeg ((USHORT) lBufl en, &se 1 , SEG_NONSHARED) ;
pffdescs = MAKEP(sel, 0);

/* Retrieve the descriptions. */

GpiQueryFullFontFileDescriptions(hab, 11 helv 11
, &cFonts,

pffdescs, &lBuflen);

5-302 PM Programming Reference

)

GpiQueryGraphicsField
Query Graphics Field

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryGraphicsField (HPS hps, PRECTL prclField)

This function returns the bottom-left and top-right corners of the graphics field in presentation page
units, as set by the GpiSetGraphicsField function.

Parameters
hps (HPS) - input

Presentation-space handle.

prclField (PRECTL) - output
Graphics field.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Example Code
This example uses GpiQueryGraphicsField to return the bottom-left and top-right corners of the
graphics field in presentation page units, as set by the GpiSetGraphicsField call, and then assigns
the x coordinate of the lower left hand field corner to a variable.

#define INCL_GPITRANSFORMS
#include <os2.h>

/* Transfonn functions

BOOL fSuccess;
HPS hps;
RECTL prclField;

/* success indicator
/* Presentation-space handle
/* graphics field

*/

LONG llwrlftxCoord; /* lower left x coordinate of field

*/
*/
*/
*/

fSuccess = GpiQueryGraphicsField(hps, &prclField);

/*if successful, assign lower left x coordinate of graphics field*/
if (fSuccess == TRUE)

llwrlftxCoord = prclField.xleft;

Chapter 5. Graphics Functions 5-303

\
GpiQuerylnitialSegmentAttrs -
Query Initial Segment Attributes

#define INCL GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

LONG GplQuerylnltialSegmentAttrs (HPS hps, LONG IAttrlbule)

This function returns the current value of a particular initial segment attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

IAHribule (LONG) - input
Attribute to be queried.

Identifies the attribute to be returned by this function:

ATTR_DETECTABLE Detectability

ATTR_VISIBLE Visibility

ATTR_CHAINED Chained

ATTR_DYNAMIC Dynamic

ATTR_FASTCHAIN Fast chaining

ATTR_PROP _DETECTABLE Propagate detectability

ATTR_PROP_VISIBLE Propagate visibility.

Returns
Current initial attribute value:

ATTR_ON On/yes

ATTR_OFF Off/no

ATTR_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_ATTR

PMERR_INV _MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid attribute parameter was specified with
GpiSetSegmentAttrs, GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

An attempt was made to issue a function that is invalid in
a micro presentation space.

Initial segment attributes are modal settings used to determine the initial attributes of new segments
as those new segments are created; see GpiSetlnitialSegmentAttrs.

5-304 PM Programming Reference

GpiQuerylnitialSegmentAttrs -

Query Initial Segment Attributes

Example Code
This example uses GpiQuerylnitialSegmentAttrs to queries the current state of the dynamic segment

attribute.

#define INCL_GPISEGMENTS
#include <os2.h>

LONG l Val ue;
HPS hps;
LONG lAttribute;

/* Segment functions

/* current element pointer
/* Presentation-space handle
/* attribute to query

/* query the dynamic attribute */
lAttribute = ATTR_DYNAMIC;

lValue = GpiQueryinitialSegmentAttrs(hps, lAttribute);

*/

*/
*/
*/

Chapter 5. Graphics Functions 5-305

GpiQueryKerningPairs
Query Kerning Pairs

#define INCL GPILCIDS /*Or use INCL_GPI or INCL_PM */

LONG GplQueryKerningPairs (HPS hps, LONG ICount, PKERNINGPAIRS akrnprData)

This function returns kerning pair information for the logical font identified by the current value of the
character set attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements in akrnprData.

akrnprDala (PKERNINGPAIRS) - output
Kerning pairs.

An array of /Count kerning pairs in which information is returned. No more than /Count records
are returned.

Returns
Number returned and error indicators:

~O Number of kerning pairs returned

GPl_AL TERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_COORDINATE_OVERFLOW

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

The number of kerned pairs is a field in the font metrics.

5-306 PM Programming Reference

Example Code

GpiQueryKerningPairs -
Query Kerning Pairs

This example uses the GpiQueryKerningPairs function to retrieve the kerning information for the

current font.

#define INCL~GPILCIDS
#define INCL_DOSMEMMGR
#include <os2.h>

/* Font functions */
/* DOS Memory Manager Functions */

HPS hps;
FONTMETRICS fm;
PKERNINGPAIRS akrnpr;

/* presentation space handle
/* metrics structure
/* kerning pairs array

GpiQueryFontMetrics(hps, (LONG) sizeof(FONTMETRICS), &fm);

DosAllocMem((VOID *)akrnpr,
(ULONG)(fm.sKerningPairs * sizeof(KERNINGPAIRS)),
PAG_COMMIT I PAG_READ I PAG_WRITE);

GpiQueryKerningPairs(hps. (LONG) fm.sKerningPairs, akrnpr);

*/
*/
*/

Chapter 5. Graphics Functions 5-307

GpiQueryLineEnd
Query Line End

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryLlneEnd (HPS hps)

This function returns the current line-end attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Line end:

LINEEND_DEFAULT Default

>0 Line end

LINEEND_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQuerylineEnd to return the current line-end attribute after setting the draw
mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG llineEnd;

/* Presentation-space handle
/* Line end

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
llineEnd = GpiQueryLineEnd(hps);

5-308 PM Programming Reference

*/
*/

*/
*/

GpiQueryLineJoin
Query Line Join

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryLlnaJoln (HPS hps)

This function returns the current line-join attribute, as set by the GpiSetlineJoin function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Line join:

LINEJOIN_DEFAUL T Default

>0 Line join

LINEJOIN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQuerylineJoin to return the current line-join attribute after setting the draw
mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG 1 Li neJoi n;

/* Presentation-space handle
/* Line join

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
llineJoin = GpiQuerylineJoin(hps);

*/
*/

*/
*/

Chapter 5. Graphics Functions 5-309

GpiQueryLineType
Query Line Type

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryLlneType (HPS hps)

This function returns the current cosmetic line-type attribute, as set by the GpiSetLineType function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Line type:

LINETYPE_DEFAULT Default

>0 line type

LINETYPE_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryLineType to return the current cosmetic line-type attribute after setting

the draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG 1 LineType;

/* Presentation-space handle
/* Line type

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
lLineType = GpiQueryLineType(hps).;

5-310 PM Programming Reference

*/
*/

*/
*/

\
I v

GpiQueryLineWidth
Query Line Width

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I AXED GplQuaryLlneWldth (HPS hps)

This function returns the current value of the cosmetic line-width attribute, as set by the
GpiSetlineWidth function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Line width:

LINEWIDTH_DEFAUL T Default

>0 Line width

LINEWIDTH_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQuerylineWidth to return the current cosmetic line-width attribute after

setting the draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
FIXED fxlineWidth;

/* Presentation-space handle
/* Line width

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
fxlineWidth = GpiQuerylineWidth(hps);

*/
*/

*/
*/

Chapter 5. Graphics Functions 5-311

GpiQueryLineWidthGeom
Query Line Width Geom

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQuaryLlnaWldlhGeom (HPS hps)

This function returns the current geometric line-width attribute, as set by the GpiSetlineWidthGeom
function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Geometric line width:

If the geometric line width is currently set to the default, zero is returned.

~O Geometric line width

LINEWIDTHGEOM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQuerylineWidthGeom to return the current geometric line-width attribute
after setting the draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG llineWidth;

/* Presentation-space handle
/*geometric line width

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
llineWidth = GpiQuerylineWidthGeom(hps);

5-312 PM Programming Reference

*/
*/

*/
*/

GpiQueryLogColorTable
Query Logical Color Table

#define INCL_GPILOGCOLORTABLE /*Or use INCL_GPI or INCL_PM */

LONG GplQueryLogColorTable (HPS hps, ULONG flOptlons, LONG IStart, LONG ICount,
PLONG alArray)

This function returns the logical color table.

Parameters
hps (HPS) - input

Presentation-space handle.

llOpllons (ULONG) - input
Specifies options:

LCOLOPT _INDEX

8'1' The index is to be returned for each RGB value

Other flags are reserved and must be B'O'.

IStart (LONG) - input
Starting index for which data is to be returned. This must be greater than or equal to zero.

ICount (LONG) - input
Count of elements.

Number of elements available in a/Array.

alArray (PLONG) - output
Array in which the information is returned.

If the LCOLOPT _INDEX flag is B'O', it is an array of RGB values (each value is as defined for
GpiCreateLogColorTable), starting with the specified index, and ending either when there are no
further loaded entries in the table, or when a/Array has been exhausted. If the logical color
table is not loaded with a contiguous set of indexes, QLCT _NOTLOADED is returned as the RGB
value for any index values, outside the default range, that have not been explicitly loaded.

If the LCOLOPT _INDEX flag is 8'1 ', it is an array of alternating color indexes and RGB values, in
the order index1, RGB value1, index2, RGB value2,... An even number of elements is always
returned. If the logical color table is not loaded with a contiguous set of indexes, any index
values that are not loaded are skipped.

Returns
Number of elements returned and error indicators:

QLCT _RGB Table in RGB mode, no elements returned

>0 Number of elements returned

QLCT_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _COLOR_ OPTIONS

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid options parameter was specified with a logical
color table or color query function.

Chapter 5. Graphics Functions 5-313

GpiQueryLogColorTable -
Query Logical Color Table

PMERR_INV _ COLOR_START _INDEX An invalid starting index parameter was specified with a
logical color table or color query function.

PMERR_PALETTE_SELECTED

Example Code

Color palette operations cannot be performed on a
presentation space while a palette is selected.

This example uses the GpiQuerylogColorTable function to retrieve all the entries in the current
logical color table.

#define INCL_GPILOGCOLORTABLE
#define INCL_DOSMEMMGR
#define INCL_DEV

/* Color Table functions */
/* DOS Memory Manager Functions */
/* Device Function definitions */

#include <os2.h>

HPS hps;
LONG cColors;
PLONG alColor;

/* presentation space handle
/* number of colors
/* color table array

/* Find out how many colors are in the color table. */

DevQueryCaps(GpiQueryDevice(hps), CAPS_COLORS, lL, &cColors);

/*Allocate space for the color values and indexes. */

DosAllocMem((VOID *)alColor,(ULONG)cColors*2,
PAG_COMMIT I PAG_READ I PAG_WRITE);

/* Retrieve the values. */

*/
*/
*/

GpiQuerylogColorTable(hps,
LCOLOPT_INDEX,

/* presentation space */
/* retrieve indexes and RGB values */

0L,
cColors * 2,
al Color);

/* start with first entry */
/* copy 2 values for each entry */
/* array to receive values */

5-314 PM Programming Reference

GpiQueryLogicalFont -
Query Logical Font

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryLoglcalFont (HPS hps, LONG ILcld, PSTR8 pName, PFATTRS pfatAttrs,
LONG IAttrsLength)

This function returns the description of a logical font. See GpiCreatelogFont.

Parameters
hps (HPS) - input

Presentation-space handle.

ILcld (LONG) - input
Local identifier.

Logical font local identifier, in the range 0 through 254. Specify 0 to query the default font.

pName (PSTRB) - output
Logical font name.

An a-character name for the logical font.

ptatAttrs (PFA TTRS) - output
Attributes of font.

IAttrsLength (LONG) - input
Length of pfatAttrs buffer.

The maximum length of font attribute data to be returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_SETID

PMERR_SETID_IN_USE

PMERR_INV_LENGTH_OR_COUNT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.

An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

An invalid length or count parameter was specified.

If the specified local identifier is in use to tag a bit map (see GpiSetBitmapld), an error is raised.

Chapter 5. Graphics Functions 5-315

GpiQueryLogicalFont
Query Logical Font

Example Code
This example uses GpiQuerylogicalFont to return the description of the default logical font and if the
query succeeds, assigns the font code page to a variable.

#define INCL_GPILCIDS
#include <os2.h>

BOOL fSuccess;
HPS hps;
LONG l Leid;
PSTR8 pName;
PFATTRS pfatAttrs;
LONG lAttrsLength;
USHORT usFontCodePage;

/* Font functions

/* success indicator
/* Presentation-space handle
/* local identifier
/* 8 character logical font name
/* Attributes of font
/* length of buffer
/* font code page

/* query the default font */
l Leid = 0L;

/* return all information */
lAttrsLength = sizeof(FATTRS);

fSuccess = GpiQueryLogicalFont(hps, lLcid, pName, pfatAttrs,
lAttrsLength);

/*if successful, assign value of font code page*/
if (fSuccess == TRUE)

usFontCodePage = pf atAttrs->usCodePage;

5-316 PM Programming Reference

*/

*/
*/
*/
*/
*/
*/
*/

GpiQueryMarker -
Query Marker

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryMarker (HPS hps)

This function returns the current value of the marker symbol attribute, as set by the GpiSetMarker

function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Marker symbol:

MARKSYM_DEFAUL T Default

>0 Marker symbol

MARKSYM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryMarker to return the current marker symbol attribute after setting the

draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG lSymbol;

/* Presentation-space handle
/* marker symbol

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
lSymbol = GpiQueryMarker(hps);

*/
*/

*/
*/

Chapter 5. Graphics Functions 5-317

GpiQueryMarkerBox
Query Marker Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryMarkerBox (HPS hps, PSIZEF pslzfxSlze)

This function returns the current value of the marker-box attribute, as set by the GpiSetMarkerBox
function.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzfxSlze (PSIZEF) - output
Size of marker box.

The size of the marker box is in world coordinates.

1.f the marker box is currently set to the default, the default size is returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation..;space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

5-318 PM Programming Reference

Example Code

GpiQueryMarkerBox -
Query Marker Box

This example uses GpiQueryMarkerBox to return the current marker-box attribute after setting the

draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

BOOL fSuccess;
HPS hps;
SIZEF psizfxSize;
FIXED l Width;

/* success indicator
/* Presentation-space handle
/* size of marker-box
/* marker-box width

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
fSuccess = GpiQueryMarkerBox(hps, &psizfxSize);

/*if successful, assign value of marker-box width*/
if (fSuccess == TRUE)

lWidth = psizfxSize.cx;

*/
*/

*/
*/
*/
*/

Chapter 5. Graphics Functions 5-319

GpiQueryMarkerSet
Query Marker Set

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryMartcerSet (HPS hps)

This function returns the current value of the marker-set attribute, as set by the GpiSetMarkerSet
function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Marker-set local identifier:

LCID_DEFAULT Default

>0 Marker-set local identifier

LCID_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERRJNV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryMarkerSet to return the current marker-set attribute after setting the

draw mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG lSet;

/* Presentation-space handle
/* marker-set local identifier

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
lSet = GpiQueryMarkerSet(hps);

5-320 PM Programming Reference

*/
*/

*/
*/

GpiQueryMetaFileBits
Query Metafile Bits

#define INCL_GPIMETAFILES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryMetaFileBlts (HMF hmf, LONG IOffset, LONG ILength, PBYTE pbData)

This function transfers a metafile to application storage.

Parameters
hmf (HMF) - input

Memory-metafile handle.

IOffset (LONG) - input
Byte offset.

Offset into the metafile data from which the transfer must start. This is useful in instances where

the metafile data is too long to fit into a single application buffer.

ILength (LONG) - input
Length in bytes of the metafile data to copy.

pbData (PBYTE) - output
Metafile data.

Address in application storage into which the metafile data is copied.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HMF

PMERR_INV_METAFILE_LENGTH

PMERR_INV_METAFILE_OFFSET

PMERR_METAFILE_IN_USE

An invalid metafile handle was specified.

An invalid length parameter was specified with

GpiSetMetaFileBits or GpiQueryMetaFileBits.

An invalid length parameter was specified with
GpiSetMetaFileBits or GpiQueryMetaFileBits.

An attempt has been made to access a metafile that is in

use by another thread.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given

process was exceeded.

Remarks
The total length of a metafile can be found from the data returned by GpiQueryMetaFileLength. This

function allows an application to retrieve the data in units of a manageable size.

Chapter 5. Graphics Functions 5-321

GpiQueryMetaFileBits
Query Metafile Bits

Example Code
This example uses the GpiQueryMetaFileBits function to retrieve the graphics-order data from the

specified metafile. The GpiQueryMetaFilelength function returns the length of the metafile.

#define INCL_GPIMETAFILES
#define INCL_DOSMEMMGR
#include <os2.h>

/* Metafile functions */
/* DOS Memory Manager Functions */

HPS hps;
HMF hmf;
LONG cBytes;
LONG off;
PBYTE pbBuffer;

/* presentation space handle
/* metafile handle
/* metafile length
/* metafile byte offset
/* metafile data buffer

hmf = GpiLoadMetaFile(hps, "sample.met");

*/
*/
*/
*/
*/

cBytes = GpiQueryMetaFileLength(hmf); /*gets length of metafile */

/*Allocate the buffer for the metafile data. */

DosAllocMem((VOID *)pbBuffer, (ULONG)cBytes,
PAG_COMMIT I PAG_READ I PAG_WRITE);

GpiQueryMetaFileBits(
hmf, /* handle of metafile */
off, /* offset of next byte to retrieve */
cBytes, /* length of data * /
pbBuffer); /*buffer to receive metafile data*/

5-322 PM Programming Reference

/

GpiQueryMetaFileLength -
Query Metafile Length

#define INCL_GPIMETAFILES /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryMetaFllel.anglll (HMF hml)

This function returns the total length of a memory metafile, in bytes.

Parameters
hmf (HMF) - input

Memory-metafile handle.

Returns
Total length of the metafile:

~O Total length of the metafile

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HMF An invalid metafile handle was specified.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given
process was exceeded.

Remarks
This function is normally used before GpiQueryMetaFileBits.

Example Code
This example uses GpiQueryMetaFilelength to query the byte length of a memory metafile.

#define INCL_GPIMETAFILES
#include <os2.h>

/* Meta File functions

HMF hlnf;
LONG llength;

/* memory-metafile handle
/* length of metafile

llength = GpiQueryMetaFilelength(hmf);

*/

*/
*/

Chapter 5. Graphics Functions 5-323

GpiQueryMix
Query Mix

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryMlx (HPS hps)

This function returns the current value of the (character) foreground color-mixing mode, as set by the
GpiSetMix function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Mix mode:

FM_DEFAUL T Default

>0 Mix mode

FM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryMix to return the current foreground-mixing mode after setting the draw
mode to DRAW.

#define INCL_GPIPRIMITIVES
#define INCL_GPICONTROL
#include <os2.h>

/* Primitive functions
/* Control functions

HPS hps;
LONG lMixMode;

/* Presentation-space handle
/* mix mode

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
lMixMode = GpiQueryMix(hps);

5-324 PM Programming Reference

*/
*/

*/
*/

GpiQueryModelTransformMatrix -
Query Model Transform Matrix

#define INCL GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryModelTranslormMatrlx (HPS hps, LONG ICount, PMATRIXLF pmatllArray)

This function returns the current model transform; see GpiSetModelTransformMatrix.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements.

The number of elements to be returned in pmatlf Array; must be in the range 0 through 9. If 0 is

specified, no matrix elements are returned.

pmatllArray (PMATRIXLF) - output
Transform matrix.

A structure in which the elements of the model transform matrix are returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query} that is invalid when the actual drawing mode is not

draw or draw-and-retain.

An invalid length or count parameter was specified.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a

OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Chapter 5. Graphics Functions 5-325

GpiQueryModelTransformMatrix
Query M'odel Transform Matrix

Example Code
This example uses GpiQueryModelTransformMatrix to query the first element of the current model

transform after setting the draw mode to DRAW.

#define INCL_GPITRANSFORMS
#define INCL_GPICONTROL
#include <os2.h>

/* Transfonn functions
/* Control functions

BOOL fSuccess;
HPS hps;
LONG lCount;
MATRIXLF pmatlfArray;

/* success indicator
/* Presentation-space handle
/* number of elements
/* transfonn matrix

lCount = 1; /* examine only first element of transfonn matrix */

if (GpiSetDrawingMode(hps, DM_DRAW) == TRUE)
fSuccess = GpiQueryModelTransfonnMatrix(hps, lCount,

&pmatlfArray);

5-326 PM Programming Reference

*/
*/

*/
*/
*/
*/

GpiQueryNearestColor
Query Nearest Color

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

LONG GplQueryNearestColor (HPS hps, ULONG ulOplions, LONG IRgbln)

This function returns the nearest color available to the color specified on the currently associated

device. Both colors are specified in RGB terms.

Parameters
hps (HPS) - input

Presentation-space handle.

ulOplions (ULONG) - input
Options:

Reserved, must be zero.

IRgbln (LONG) - input
Required color.

Returns
Nearest available color to the one specified:

:2!::0 Nearest available color

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COLOR_ OPTIONS

PMERR_INV _RGBCOLOR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with a logical
color table or color query function.

An invalid rgb color parameter was specified with
GpiQueryNearestColor or GpiQueryColor

The nearest color returned is one that is available in the physical palette on the device. This might

not actually be available with the currently loaded logical color table.

The color returned is a pure color, that is, one that can be used for drawing lines, text, and so on. It

does not take into account the possibility of dithered colors being used for filled areas. With

dithering, it is likely that the color used for filling areas is different from that used for lines, and text,

when the same color index is selected.

For a monochrome device, if /Rgbln is the reset color, then /RgbOut is also the reset color;

otherwise, it is black if the reset color is white, and the converse.

Chapter 5. Graphics Functions 5-327

GpiQueryNearestColor
Query Nearest Color

Example Code
This example uses GpiQueryNearestColor to return the nearest color available to the one specified,

on the currently associated device.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG lRgbOut;
HPS hps;
ULONG ulOptions;
LONG lRgbln;

/* reserved; set toe */
ulOptions = 0L;

/* nearest color
/* Presentation-space handle
/* options
/* color to match

/* color to find index for */
lRgbln = (PC_RESERVED*16777216) + (0*65536) + (0*256) + l;

lRgbOut = GpiQueryNearestColor(hps, ulOptions, lRgbln);

5-328 PM Programming Reference

*/
*/
*/

. */

GpiQueryNumberSetlds -
Query Number Set Identifiers

#define INCL_GPILCIDS /*Or use INCL_GPI or INCL_PM */

I LONG GplQueryNumberSe- (HPS hpa)

This function returns the number of local identifiers (lcids) currently in use, referring to fonts or bit
maps.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Number of lcids:

~O Number of lcids in use

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
LCID_DEFAULT is included if the default font has been changed (see GpiCreatelogFont).

The information returned by this call can be used to perform a subsequent GpiQuerySetlds request.

Example Code
This example uses GpiQueryNumberSetlds to return the number of local identifiers in use (font and
bit map).

#define INCL_GPILCIDS
#include <os2.h>

LONG lCount;
HPS hps;

/* Font functions

/* number of lcid's
/* Presentation-space handle

lCount = GpiQueryNumberSetids(hps);

*/

*/
*/

Chapter 5. Graphics Functions 5-329

GpiQueryPageViewport
Query Page Viewport

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryPageVlewport (HPS hps, PRECTL prclVlewport)

This function returns the page viewport; see GpiSetPageViewport.

Parameters
hps (HPS) - input

Presentation-space handle.

prclVlewport (PRECTL) - output
Page viewport.

The size and position of the page viewport in device units.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function must not be issued when there is no device context associated with the presentation
space.

5-330 PM Programming Reference

GpiQueryPageViewport -
Query Page Viewport

Example Code
This example uses GpiQueryPageViewport to query the page viewport, after associating a device

context to the presentation space; if successful, it assigns the x coordinate of the viewport to a
variable.

#define INCL_GPITRANSFORMS
#include <os2.h>

/* Transfonn functions

BOOL fSuccess;
HPS hps;
RECTL prclViewport;
LONG llwrlftxCoord;
HOC hdc;

/* success indicator
/* Presentation-space handle
/* page viewport
/* lower left x coordinate of field
/* device context handle

/* associate device context */
if (GpiAssociate(hps. hdc) == TRUE)

{
fSuccess = GpiQueryPageViewport(hps. &prclViewport);

*/

*/
*/
*/
*/
*/

/*if successful. assign lower left x coordinate of viewport */
if (fSuccess == TRUE)

llwrlftxCoord = prclViewport.xleft;
}

Chapter 5. Graphics Functions 5-331

GpiQueryPalette
Query Palette

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

I HPAL GplQueryPalelte (HPS hps)

This function returns the handle of the palette currently selected into a presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Palette handle.

NULLHANDLE Null handle (no palette is selected)

PAL_ERROR Error occurred

Otherwise Handle of the palette currently selected into this presentation space.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
It is possible for a palette to be selected into more than one presentation space at any one time. See
GpiSelectPalette.

Example Code
This example uses GpiQueryPalette to return the handle of the palette currently selected into a
presentation space and then calls GpiDeletePalette to delete the palette.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

HPAL hpal;
HPS hps;
BOOL fSuccess;

/* palette handle
/* Presentation-space handle
/* success indicator

/* get handle of currently associated palette */
hpal = GpiQueryPalette(hps);

/* delete palette */
fSuccess = GpiDeletePalette(hpal);

5-332 PM Programming Reference

*/
*/
*/

GpiQueryPalettelnfo
Query Palette Info

#define INCL GPILOGCOLORTABLE /*Or use INCL_GPI or INCL_PM */

LONG GplQueryPalettelnfo (HPAL hpal, HPS hps, ULONG flOptlons, LONG IStart,
LONG ICount, PLONG alArray)

This function passes back the information for a palette.

Parameters
hpal (HPAL) - input

Palette handle.

hps (HPS) - input
Presentation-space handle.

flOptlons (ULONG) - input
Specifies options:

LCOLOPT_INDEX If this is set, the index is to be returned for each RGB value in the a/Array
parameter.

Other flags are reserved and must be 0.

IStart (LONG) - input
The starting index for which data is to be returned.

ICount (LONG) - input
Count of elements.

Number of elements available in a/Array.

If O is specified, the number of elements required to return the palette information in a/Array is
returned.

alArray (PLONG) - output
An array in which the palette information is returned.

If LCOLOPT _INDEX is not specified, this is an array of RGB values (each value is as defined for
GpiCreatePalette), starting with the specified index, and ending either when there are no further
entries in the palette, or when a/Array has been exhausted. If the palette is not loaded with a
contiguous set of indices, QLCT_NOTLOADED is returned as the RGB value for any index values,
outside the default range, that have not been explicitly loaded.

If LCOLOPT _INDEX is specified, this is an array of alternating color indices and RGB values, in
the order index1, RGB value1, index2, RGB value2, An even number of elements is always
returned. If the palette is not loaded with a contiguous set of indices, any index values that are
not present are skipped.

Returns
Number of elements:

PAL_ERROR Error occurred

Otherwise The number of elements of palette information passed back in the a/Array
parameter, unless /Count parameter is 0, in which case this is the total number of
elements that are needed to hold the palette information.

Zero is returned if no palette is selected.

Possible returns from WinGetlastError

PMERR_INV _HPS An invalid presentation-space handle was specified.

Chapter 5. Graphics Functions 5-333

GpiQueryPalettelnfo
Query Palette Info

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV _HPAL

PMERR_INV _COLOR_ OPTIONS

An invalid color palette handle was specified.

An invalid options parameter was specified with a logical
color table or color query function.

PMERR_INV _COLOR_START_INDEX An invalid starting index parameter was specified with a
logical color table or color query function.

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_PALETTE_BUSY

An invalid length or count parameter was specified.

An attempt has been made to reset the owner of a palette
when it was busy.

Remarks
The information passed back is in the same format as that required to create a palette (see
GpiCreatePalette).

If a non-NULL palette handle is passed in the hpal parameter, the information is returned for that
palette, and the hps parameter is ignored. Otherwise, hps identifies a presentation space for which
the default colors are returned as a palette.

Note: In this case the default colors are returned, even if a logical color table is currently loaded
into the presentation space.

Example Code
This example uses GpiQueryPalettelnfo to query the palette information and, if any values are
returned, assigns the palette's first color value to a variable.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG lRetCount;
HPAL hpal;
ULONG flOptions;
ULONG ulStart;
ULONG ulCount;
ULONG *aulArray;
ULONG ulFirstColor;

/* specify no options */
flOptions = 0L;

/* start at index e */
ulStart = 0L;

/* number of elements
/* palette handle
/* options
/* starting index
/* count of elements in array
/* palette infonnation array
/* first color in palette

/* tell function to determine element count */
ulCount = 0L;

lRetCount = GpiQueryPalettelnfo(hpal. NULLHANDLE. flOptions.
ulStart, ulCount.
aulArray);

/* if palette info returned, assign value of first color */
ulFirstColor = au1Array[0];

5-334 PM Programming Reference

*/
*/
*/
*/
*/
*/
*/

GpiQueryPattern
Query Pattern

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I LONG GplQueryPattem (HPS hps)

This function returns the current value of the shading-pattern symbol, as set by the GpiSetPattern
function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Pattern symbol:

PATSYM_DEFAULT Default

>0 Pattern symbol

PATSYM_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERct_PS _BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function {for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode {see GpiSetDrawingMode) is set to retain.

Example Code
In this example we query the current value of the shading-pattern symbol, as set by the
GpiSetPattern call.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

LONG lResult; /* pattern symbol if> 0 */
HPS hps; /* Presentation space handle. */
if(PATSYM_SOLID == GpiQueryPattern(hps))
{
/* . */
/* . */
}

Chapter 5. Graphics Functions 5-335

GpiQueryPatternRef Point -
Query Pattern Reference Point

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryPatternRef Point (HPS hps, PPOINTL pptlRef Point)

This function returns the current pattern reference point, as set by the GpiSetPatternRefPoint
function.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlRefPoint (PPOINTL) - output
Pattern reference point.

If the pattern reference point is currently set to the default, (0,0) is returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
In this example we query the pattern reference point, which is set by the GpiSetPatternRefPoint.

#define INCL_GPIPRIMITIVES
#include <OS2.H>
BOOL flResult;
HPS hps;
POINTL ptlRefPoint;
LONG xcoord, ycoord;

/* Presentation space handle. */
/* pattern reference point */

flResult = GpiQueryPatternRefPoint(hps,
&ptlRefPoint);

xcoord = ptlRefPoint.x; ycoord = ptlRefPoint.y;

5-336 PM Programming Reference

)

GpiQueryPatternSet -
Query Pattern Set

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryPallernSel (HPS hpa)

This function returns the current value of the pattern-set identifier, as set by the GpiSetPatternSet

function.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Pattern-set local identifier:

LCID_DEFAULT Default

>0 Pattern set

LCID_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not

draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a

OD_METAFILE_NOQUERY device context.

This function is not valid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
In this example we query the pattern set identifier, which is set by the GpiSetPatternSet.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

LONG lpatternset;
HPS hps; /* Presentation space handle. */

lpatternset = GpiQueryPatternSet(hps};

Chapter 5. Graphics Functions 5-337

GpiQueryPel
Query Pel

#define INCL_ GPIBITMAPS I* Or use INCL_ GPI or INCL_PM *I

LONG GplQueryPel (HPS hps, PPOINTL pptlPoint)

This function returns the color of a pet at a position specified in world coordinates.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - input
Position in world coordinates.

It is an error if the specified point is outside any of the current clipping objects (that is, clip path,
viewing limits, clip region, or visible region).

Returns
Color index of the pel:

~o Color of the pel

CLR_NOINDEX No valid index (color is not in logical color table)

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_PEL_IS_CLIPPED

PMERR_PEL_NOT_AVAILABLE

PMERR_NO _BITMAP_ SELECTED

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An attempt was made to query a pel that had been
clipped using GpiQueryPel.

An attempt was made to query a pel that did not exist in
GpiQueryPel (for example, a memory device context with
no selected bit map).

An attempt has been made to operate on a memory
device context that has no bit map selected.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

The color returned is a color index or RGB value, according to the logical color table in force (see
GpiCreatelogColorTable).

5-338 PM Programming Reference

Example Code

GpiQueryPel
Query Pel

In this example we query the color of a pel at a position specified in world coordinates.

#define INCL_GPIBITMAPS
#include <OS2.H>

LONG lcolorindex; /*color index of pel. */
HPS hps; /* Presentation space handle. */
POINTL ptlPoint; /* position in world coordinates. */
LONG xcoord, ycoord;
GpiQueryPel(hps, &ptlPoint);
xcoord = ptlPoint.x; ycoord = ptlPoint.y;

Chapter 5. Graphics Functions 5-339

GpiQueryPickAperturePosition
Query Pick Aperture Position

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryPlckAperturePosltlon (HPS hps, PPOINTL pptlPolnt)

This function returns the position of the center of the pick aperture.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - output
Pick-aperture position.

Position of the center of the pick aperture, in presentation-page coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

P,MERR_INV _DC_ TYPE

Related Functions
• GpiQueryPickAperturePosition
• GpiSetPickAperturePosition
• GpiQueryPickApertureSize

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

In this example we query the position of the center of the pick aperture.

#define INCL_GPICORELATION
#include <052.H>

BOOL fl Result;
HPS hps; /* Presentation space handle. */
POINTL ptlRefPoint; /* Pick-aperture position. */
LONG xcoord, ycoord;
flResult = GpiPickAperturePosition(hps, &ptlRefPoint);
xcoord = ptlRefPoint.x; ycoord = ptlRefPoint.y;

5-340 PM Programming Reference

GpiQueryPickApertureSize
Query Pick Aperture Size

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryPlckApertureSlze (HPS hps, PSIZEL pslzlSlze)

This function returns the value of the pick-aperture size, as set by the GpiSetPickApertureSize

function.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzlSlze (PSIZEL) - output
Pick-aperture size.

Size of the pick aperture, in presentation-page coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _DC_ TYPE

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a

OD_METAFILE_NOQUERY device context.

In this example we query the pick-aperture size, as set by the GpiSetPickApertureSize call.

#define INCL_GPICORRELATION
#include <052.H>

BOOL fl Result;
HPS hps;
SIZEL sizel;

/* Presentation space handle. */
/* Pick-aperture position. */

LONG xcoord, ycoord;
flResult = GpiQueryPickApertureSize(hps,
xcoord = sizel.cx; ycoord = sizel.cy;

&sizel);

Chapter 5. Graphics Functions 5-341

GpiQueryPS
Query Presentation Space

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM */

LONG GplQueryPS (HPS hps, PSIZEL pslzlSlze)

This function returns page parameters for the presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzlSize (PSIZEL) - output
Presentation-page size.

Returns
Presentation-space options.

For details, see the GpiCreatePS function.

The individual fields of the presentation-space options can be extracted by ANDing the returned
value with the appropriate constant.

The PS_ASSOCIATE field off/Options (see GpiCreatePS) should not be used on this function.
The value of this field is not necessarily the same value that is specified when the presentation
space is created.

PS_UNITS Presentation-space size units

PS_FORMAT Presentation-space coordinate format

PS_TYPE Presentation-space type

PS_MODE Presentation-space mode.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

In this example we query the presentation space that corresponds to handle hps.

#define INCL_GPICONTROL
#include <OS2.H>
HPS hps;
SIZEL sizel;

GpiQueryPS(hps, &sizel);

5-342 PM Programming Reference

GpiQueryRealColors
Query Real Colors

#define INCL_GPILOGCOLORTABLE /*Or use INCL_GPI or INCL_PM */

LONG GpiQueryRealColors (HPS hps, ULONG ulOptlons, LONG IStart, LONG ICount,
PLONG alColors)

This function returns the RGB values of the distinct colors available on the currently associated
device.

Parameters
hps (HPS) - input

Presentation-space handle.

ulOptions (ULONG) - input
Options:

LCOLOPT_INDEX If this is specified, the index is to be returned for each RGB value.

If this flag is set when RGB mode is in force (LCOLF _RGB is set on
GpiCreateLogColorTable), the RGB value is returned as the index.

Any color not available with the current logical color table is given a special
index value of CLR_NOINDEX.

If it is not specified (flag is not set) index values are not returned.

Other Other bits are reserved, and must be 0.

IStart (LONG) - input
Ordinal number of the first color required.

To start the sequence, this parameter is set to 0.

Note: This parameter is not the color index, and the order in which the colors are returned is
not defined.

ICount (LONG) - input
Maximum number of elements.

Number of elements available in a/Colors.

alColors (PLONG) - output
Array in which the information is returned.

Contents depend on the setting of the LCOLOPT _INDEX flag:

O An array of color values (each value is as defined for GpiCreateLogColorTable).
1 An array of alternating color indexes and values, in the order index1, value1, index2, value2,. ..

indexn, valuen. An even number of elements is always returned in this case.

Returns
Number of elements returned:

~O Number of elements returned

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-343

GpiQueryRealColors
Query Real Colors

An invalid length or count parameter was specified. PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _ COLOR_OPTIONS An invalid options parameter was specified with a logical
color table or color query function.

PMERR_INV _ COLOR_START _INDEX An invalid starting index parameter was specified with a
logical color table or color query function.

Remarks
Subject to space in the a/Colors parameter, all colors that are physically available on the device are
returned.

Use of the palette manager by other applications can effect the the physical colors available on the
device. The available colors can change as a result of palette management, when this occurs a
WM_REALIZEPALETTE message is sent to all applications.

Example Code
In this example we obtain the RGB values of the distinct colors available on the currently associated
device.

#define INCL_GPILOGCOLORTABLE
#include <OS2.H>

LONG lResult;
HPS hps;
ULONG flOptions;
LONG lStart;
LONG lCount;
LONG a1Colors[5];

/* number of elements returned */
/* Presentation space handle. */
/* options *I
/* ordinal number of first color */
/* maximum number of elements */

/* array containing return infonnation */

flOptions = LCOLOPT_INDEX; /* return index for each RGB value. */
lStart = SL; /* start sequence at 8. */
lCount = SL; /* maximum of 5 elements. */

lResult = GpiQueryRealColors(hps,

5-344 PM Programming Reference

fl Options,
lStart,
lCount,
al Colors);

GpiQueryRegionBox
Query Region Box

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

LONG GplQueryReglonBox (HPS hps, HRGN hrgn, PRECTL prclBound)

This function returns the dimensions of the smallest rectangle able to bound the region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Region handle.

prclBound (PRECTL) - output
Bounding rectangle.

Returns
Complexity of region and error indicators:

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_REGION_IS_ CLIP _REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

If the region is null, the rectangle returned has the left boundary equal to the right, and the top
boundary equal to the bottom.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Chapter 5. Graphics Functions 5-345

GpiQueryRegionBox
Query Region Box

Example Code
In this example we determine the dimensions of the smallest rectangle able to bound the region.

#define INCL_GPIPREGIONS
#include <OS2.H>

LONG lResult; /* number of elements returned */
HPS hps; /* Presentation space handle. */
HRGN hrgn; /* region handle */
RECTL rclBound; /* bounding rectangle */

lResult = GpiQueryRegionBox(hps,
(VOID *)hrgn,
(PRECTL)&rclBound);

5-346 PM Programming Reference

)

GpiQueryRegionRects
Query Region Rectangles

#define INCL_GPIREGIONS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryReglonRects (HPS hps, HRGN hrgn, PRECTL prclBound,
PRGNRECT prgnrcControl, PRECTL arclRects)

This function returns the rectangles that, when ORed together, define the specified region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Region handle.

prclBound (PRECTL) - input
Bounding rectangle.

NULL Return all the rectangles in the region.

Other Return only rectangles that intersect with the bounding rectangle. Each rectangle
returned is the intersection of the bounding rectangle with a rectangle in the region.

prgnrcControl (PRGNRECT) - input/output
Processing-control structure.

arclRects (PRECTL) - output
Array of rectangle structures, in which the rectangles are returned.

The maximum number of rectangles that can be returned is specified by the ere parameter of the
RGNRECT structure identified by the prgnreControl parameter.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_INV _REGION_ CONTROL

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_REGION_IS_CLIP _REGION

PMERR_HRGN_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An invalid control parameter was specified with
GpiQueryRegionRects.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Chapter 5. Graphics Functions 5-347

GpiQueryRegionRects -
Query Region Rectangles

Remarks
Points on the right-hand and top boundaries are not included in the region. Points on the left-hand
and bottom boundaries, that are not also on the right-hand or top boundaries (that is, the top-left and
bottom-right corner points), are included.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Example Code
In this example we determine the rectangles that can be OR'ed together to determine the specified
region.

#define INCL_GPIREGIONS
#include <OS2.H>
#define maxrects 12

BOOL flResult; /* success indicator. */
HPS hps; /* presentation space handle. */
HRGN hrgn; /* region handle. */
RECTL rclBound; /* bounding rectangle */
RGNRECT rgnrcControl; /*processing control */
RECTL arclRect[maxrects]; /*array of rectangle structures*/

/* in which the rectangles are */
/* returned. *I

rgnrcControl.ircStart = l; /*start numbering rectangles*/
/* from 1. */

rgnrcControl.crc = maxrects; /*maximum number of rectangles*/
/* that can be returned. */

rgnrcControl.usOirection = RECTDIR_LFRT_TOPBOT;
/* order rectangles left-to-right */
/* and top-to-bottom. */

flResult = GpiQueryRegionRects(hps,
hrgn,
&rclBound, /* output */
&rgnrcControl,

/* prgnrcControl.crcReturned is the number*/
/* of rectangles returned. */

&arcl Rect [e]);

5-348 PM Programming Reference

'~
\

j

GpiQueryRGBColor -
Query RGB Color

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

LONG GplQueryRGBColor (HPS hps, ULONG flOptlons, LONG IColorlndex)

This function returns the actual RGB color that results from a particular index on the
currently-associated device.

Parameters
hps (HPS) - input

Presentation-space handle.

flOptlons (ULONG) - input
Options:

LCOLOPT _REALIZED
If this is specified, the information is required for when the logical color table is realized.

If it is not specified (flag is not set) the information is required for when the logical color table
(if any) is not realized.

Other bits are reserved, and must be 0.

IColorlndex (LONG) - input
Color index.

This can be any normally valid color index value (see GpiSetColor) except CLR_DEFAUL T.

Returns
RGB color providing closest match to the specified color index:

~O RGB color providing closest match

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COLOR_ OPTIONS

PMERR_INV _ COLOR_INDEX

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with a logical
color table or color query function.

An invalid color index parameter was specified with
GpiQueryRGBColor.

If an RGB logical color table has been loaded, this function returns the nearest RGB color. This
function is then equivalent to GpiQueryNearestColor.

Chapter 5. Graphics Functions 5-349

GpiQueryRGBColor
Query RGB Color

Example Code
This example uses the GpiQueryRGBColor call to determine if the color white is available.

#define INCL_GPILOGCOLORTABLE
#include <OS2.H>

LONG lResult; /* closest match to the specified index */
HPS hps; /* Presentation space handle. */
ULONG fl Options; /* options *I
LONG lColorlndex; /* color index */
lColorlndex = CLR_WHITE;
flOptions = LCOLOPT_REALIZED;

/* information is required for when the */
/* logical color table is realized. */

lResult = GpiQueryRGBColor(hps,
fl Options,
lColorlndex);

5-350 PM Programming Reference

~\

/

GpiQuerySegmentAttrs -
Query Segment Attributes

#define INCL_GPISEGMENTS /*Or use INCL_GPI or INCL_PM */

LONG GplQuerySegmentAttrs (HPS hps, LONG ISegid, LONG IAttribute)

This function returns the current value of the specified attribute as set by the GpiSetSegmentAttrs
function.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegld (LONG) - input
Segment identifier; must be greater than 0.

The name of the segment for which attribute information is to be returned.

IAttribute (LONG) - input
Attribute to be queried.

For details of the following attributes, see the GpiSetlnitialSegmentAttrs function.

Identifies the attribute of the segment to be returned by this function:

ATTR_DETECTABLE Detectability

ATTR_VISIBLE Visibility

ATTR_CHAINED Chained

ATTR_DYNAMIC Dynamic

ATTR_FASTCHAIN Fast chaining

ATTR_PROP _DETECTABLE Propagate detectability

ATTR_PROP_VISIBLE Propagate visibility.

Returns
Current attribute value:

ATTR_ON On/yes

ATTR_OFF Off/no

ATTR_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _SEG_ATTR

PMERR_SEG_NOT _FOUND

PMERR_INV_MICROPS_FUNCTION

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid attribute parameter was specified with
GpiSetSegmentAttrs, GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

The specified segment identifier did not exist

An attempt was made to issue a function that is invalid in
a micro presentation space.

Chapter 5. Graphics Functions 5-351

GpiQuerySegmentAttrs -
Query Segment Attributes

Remarks
The segment can be any retained segment, including the currently open one if this is retained.

Example Code
This function is used to query the current value of the specified attribute.

#define INCL_GPISEGMENTS
#include <OS2.H>

LONG lSegid; /* Segment identifier must */
LONG lValue; /* be greater than 0. */
LONG lattribute; /* attribute to be queried */
HPS hps; /* Presentation-space */

/* handle. *I

lattribute = ATTR_VISIBLE;

lValue = GpiQuerySegmentAttrs(hps,

5-352 PM Programming Reference

lSegid,
lattribute);

i
!'

GpiQuerySegmentNames
Query Segment Names

#define INCL GPISEGMENTS /* Or use INCL_ GPI or INCL_PM *I

LONG GplQuerySegmentNames (HPS hps, LONG IFirstSegld, LONG ILastSegld, LONG IMax,
PLONG alSeglds)

This function returns the identifiers of all segments that exist with identifiers in a specified range.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstSegld (LONG) - input
First segment in the range (must be greater than 0).

ILastSegid (LONG) - input
Last segment in the range (must be greater than 0).

IMax (LONG) - input
Maximum number.

This is the maximum number of segment identifiers to be returned in a/Segids.

alSeglds (PLONG) - output
Array in which the required identifiers are returned.

Returns
Number of identifiers returned:

~O Number of identifiers returned

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _MICROPS _FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid length or count parameter was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

Nonretained segment identifiers are not returned. If IFirstSegid is the same as, or greater than
/LastSegid, the search terminates after querying only the segment with IFirstSegid.

Chapter 5. Graphics Functions 5-353

GpiQuerySegmentNames
Query Segment Names

Example Code
This function returns the identifiers of all segments that gxist within a specified range.

#define INCL_GPISEGMENTS
#include <OS2.H>
#define Maxsegs 5

LONG lRetCount;
HPS hps; /* Presentation-space */

/* handle. */
LONG lFirstSegid; /* First segment in the */

/* range (must be greater */
/* than e) . *I

LONG lLastSegid; /* Last segment in the */
/* range (must be greater */
/* thane). */

LONG lMax; /*
/*
/*
/*

LONG alSegids[Maxsegs];

lFirstSegid = 1;
lLastSegid = Maxsegs;
lMax = Maxsegs;

This is the maximum */
number of segment */
identifiers to be returned */
in alSegids. */

/* Array in which the
/* required identifiers are
/* returned.

lRetCount = GpiQuerySegmentNames(hps.
lFirstSegid,
1 LastSegi d.
lMax,
alSegids);

5-354 PM Programming Reference

*/
*/
*/

GpiQuerySegmentPriority
Query Segment Priority

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

LONG GplQuerySegmentPrlorlly (HPS hps, LONG IRelSegld, LONG IOrder)

This function returns the identifier of the named segment that is chained immediately before or after

a specified reference segment.

Parameters
hps (HPS) - input

Presentation-space handle.

IRelSegld (LONG) - input
Reference-segment identifier.

IOrder (LONG) - input
Segment higher or lower.

Shows whether a segment identifier of a higher or lower priority than identified in the /RefSegid

parameter is to be returned. Possible values are:

LOWER_PRI Return the next segment with a lower priority than /RefSegid. If IRefSegid=O,

query the identifier of the segment with the lowest priority.

HIGHER_PRI Return the next segment with a higher priority than /RefSegid. If /RefSegid= 0,

query the identifier of the segment with the highest priority.

Returns
Segment identifier.

The identifier of the segment that is immediately before or after that specified in the /RefSegid

parameter:

>0 Segment identifier.

0 The segment specified in the /RefSegid parameter is either the lowest-priority

segment (when /Order = LOWER_PRI) or the highest-priority segment (when

/Order = HIGHER_PRI).

GPl_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _ ORDERING_PARM

PMERR_SEG_NOT_CHAINED

PMERR_SEG_NOT _FOUND

PMERR_INV _MICROPS_FUNCTION

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid order parameter was specified with
GpiSetSegmentPriority.

An attempt was made to issue GpiDrawFrom,
GpiCorrelateFrom or GpiQuerySegmentPriority for a
segment that was not chained.

The specified segment identifier did not exist

An attempt was made to issue a function that is invalid in
a micro presentation space.

Chapter 5. Graphics Functions 5-355

GpiQuerySegmentPriority
Query Segment Priority

Remarks
The segment that is chained before the specified segment, is considered to have a lower priority
than the specified segment; similarly, the segment that is chained after the specified segment, is
considered to have a higher priority than the specified segment.

Unnamed segments (with an identifier of zero) are ignored.

Example Code
This function returns the identifier of the named segment that is chained immediately before or after
a specified reference segment.

#define INCL_GPISEGMENTS
#include <OS2.H>

HPS hps;

LONG lSegid;
LONG lRefSegid;

LONG lOrder;

/* Presentation-space */
/* handle. */
/* Segment identifier */
/* Reference-segment */
/* identifier. */
/* Shows whether a */
/* segment identifier of a */
/* higher or lower priority */
/* than identified in the */
/* lRefSegid parameter is */
/* to be returned. */

lOrder = HIGHER_PRI; /* Return the next */
/* segment with a higher */
/* priority than */
/* lRefSegid. If */
/* 1RefSegid=0, query */
/* the identifier of the */
/* segment with the */
/* highest priority. */

lRefSegid = 0; /* find the segment with the highest */
/* priority. */

lSegid = GpiQuerySegmentPriority(hps,
lRefSegid,
lOrder);

5-356 PM Programming Reference

GpiQuerySegmentTransformMatrix -
Query Segment Transform Matrix

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GplQuerySegmentTransformMatrlx (HPS hps, LONG ISegld, LONG ICount,
PMATRIXLF pmatlfArray)

This function returns the elements of the transform of the identified segment (see
GpiSetSegmentTransformMatrix).

Parameters
hps (HPS) - input

Presentation-space handle.

ISegld (LONG) - input
Segment identifier.

ICount (LONG) - input
Number of elements.

The number of elements that are to be set in the pmatlfArray parameter. /Count must be in the
range 0 through 9.

pmatlfArray (PMATRIXLF) - output
Transform matrix.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_SEG_NOT_FOUND

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

The specified segment identifier did not exist

Chapter 5. Graphics Functions 5-357

GpiQuerySegmentTranstormMatrix
Query Segment Transform Matrix

Example Code
This function returns the elements of the transform of the identified segment {see

GpiSetSegmentTransformMatrix).

#define INCL_GPITRANSFORMS /* Or use INCL_GPI or INCL_PM */
#include<OS2.H>
#define COUNT 9

HPS hps; /* Presentation-space */
/* handle. */

LONG lSegid; /* Segment identifier. */
LONG lCount; /* The number of elements */

/* that are to be set in the */
/* pmatlfArray parameter. */
/* lCount must be in the */
/* range e through 9. */

MATRIXLF pmatlfArray[COUNT]; /*array of Transfonn matrix */
/* structures. This is an */
/* output parameter. */

BOOL fSuccess; /*returns true if successful. */

fSuccess = GpiQuerySegmentTransformMatrix(hps,

5-358 PM Programming Reference

lSegid,
lCount,
pmatlfArray);

GpiQuerySetlds
Query Set Identifiers

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

BOOL GplQuerySetlds (HPS hps, LONG ICount, PLONG alTypes, PSTR8 aNames,
PLONG allcids)

This function returns information about all the fonts that have been created by GpiCreateLogFont,
and tagged bit maps (see GpiSetBitmapld).

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
The number of objects to be queried.

The number of local identifiers (lcids) currently in use, and therefore the maximum number of
objects for which information can be returned, can be found with GpiQueryNumberSetlds.

alTypes (PLONG) - output
Object types.

Elements indicate whether the corresponding allcids element refers to a logical font or a tagged
bit map.

LCIDT_FONT Font object

LCIDT_BITMAP Bit map.

aNames (PSTR8) - output
Font names.

An array of /Count consecutive 8-byte fields, in which the a-character names associated with the
logical fonts are returned. For bit maps, the whole field is set to zeros.

allcids (PLONG) - output
Local identifiers.

An array in which the local identifier (lcid) values are returned.

LCID_DEFAULT is included if the default font has been changed (see GpiCreateLogFont).

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

Chapter 5. Graphics Functions 5-359

GpiQuerySetlds -
Query Set Identifiers

Remarks
Each of the output parameters is an array with /Count elements. Information about the first /Count
objects is returned; if there are fewer than /Count, the a/Types and allcids elements for the
remainder are cleared to 0.

Example Code
This example uses the GpiQuerySetlds function to retrieve the local identifier for all logical fonts. It
then uses the identifiers to delete the logical fonts.

#define INCL_DOSMEMMGR
#define INCL_GPILCIDS
#include <OS2.H>
#define TOTALMEM 200

HPS hps;

LONG lCount;

PLONG alTypes;
ULONG re;
PSTR8 aNames;
PLONG a 11 ci ds;
PLONG pBase;
USHORT i;

/* Presentation-space */
/* handle. */
/* The number of objects to
/* be queried.
/* Object types.
/* Return code.
/* font names.
/* local identifiers.

*/
*/
*/

*/
*/
*/

re = DosAllocMem((PPVOID)pBase.
(ULONG)TOTALMEM*sizeof(LONG),

/* space is needed for an array of */
/* lCount longs. */

PAG READ I
PAG-WRITE I
PA(COMMIT);

lCount = GpiQueryNumberSetids(hps);
/* The number of local */
/* identifiers (lcids) */
/* currently in use. and */
/* therefore the maximum */
/* number of objects for */
/* which information can be */
/* returned. *I

re = DosSubAllocMem((PVOID)pBase.
(PPVOID)aNames,
(ULONG)(1Count*(ULONG)sizeof(STR8)));

/* space is needed for an array of */
/* lCount longs. */

re = DosSubAllocMem((PVOID)pBase,
(PPVOID)allcids,
(ULONG)lCount*sizeof(LONG));

/* space is needed for an array of */
/* lCount longs. */

re = DosSubAllocMem((PVOID)pBase,
(PPVOID)alTypes,
(ULONG)lCount*sizeof(LONG));

/* space is needed for an array of */
/* lCount longs. */

GpiQuerySetlds(hps.
lCount,
al Types.
aNames. /* An array of 1Count */

5-360 PM Programming Reference

/* consecutive 8-byte fields, */
/* in which the 8-character */

GpiQuerySetlds -
Query Set Identifiers

/* names associated with */
/* the logical fonts are */
/* returned. For bit maps, */
/* the whole field is set to */
/* zeros. */

allcids);/* An array in which the */

for (i = 1; i < lCount; i++)
{
if (allcids[i] == LCIDT_FONT)
GpiDeleteSetid(hps,allcids[i]);

}

/* local identifier (lcid) */
/* values are returned. */
/* LCID_DEFAULT is */
/* included if the default */
/* font has been changed */
/* (see GpiCreatelogFont). */

Chapter 5. Graphics Functions 5-361

GpiQueryStopDraw
Query Stop Draw

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM */

I LONG GplQueryStopDraw (HPS hps)

This function indicates whether the "stop draw" condition currently exists.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Stop draw condition indicator:

SDW_OFF No "stop draw" condition currently exists

SDW_ON The "stop draw" condition currently exists

SDW_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_INV _MICROPS_FUNCTION

Remarks
See GpiSetStopDraw for details.

Example Code

An invalid presentation-space handle was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function indicates whether the "stop draw" condition currently exists.

#define INCL_GPICONTROL
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */
LONG lValue;

if(GpiQueryStopOraw(hps) == SDW_OFF)
{

}

/* drawing may proceed; no stop draw */
/* condition exists. */

5-362 PM Programming Reference

GpiQueryTag
Query Tag

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryTag (HPS hps, PLONG plTag)

This function returns the current value of the tag identifier, as set by the GpiSetTag function.

Parameters
hps (HPS) - input

Presentation-space handle.

plTag (PLONG) - output
Tag identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This function returns the current value of the tag identifier, as set by the GpiSetTag call.

#define INCL_GPICORRELATION
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

LONG lTag; /* Tag identifier.

GpiQueryTag(hps,
&lTag);

*/

Chapter 5. Graphics Functions 5-363

GpiQueryTextAlignment
Query Text Alignment

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryTextAllgnment (HPS hps, PLONG plHorlzontal, PLONG plVertlcal)

This function returns the current value of the text alignment attribute, as set by the
GpiSetTextAlignment function.

Parameters
hps (HPS) - input

Presentation-space handle.

plHorlzontal (PLONG) - output
Horizontal alignment: The horizontal alignment determines character positioning in a text string.
The value returned will be one of those described under the GpiSetTextAlignment function.

plVertlcal (PLONG) - output
Vertical alignment: The vertical alignment determines character positioning in a text string. The
value returned will be one of those described under the GpiSetTextAlignment function.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Support for this function is device dependent.

Related Functions
• GpiQueryAttrs
• GpiSetTextAlignment

5-364 PM Programming Reference

GpiQueryTextBox
Query Text Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryTextBox (HPS hps, LONG 1Count1, PCH pchStrlng, LONG 1Count2,
PPOINTL aptlPoints)

This function returns the relative coordinates of the four corners of a text box.

Parameters
hps (HPS) - input

Presentation-space handle.

1Count1 (LONG) - input
Number of characters.

pchStrlng (PCH) - input
The character string.

1Count2 (LONG) - input
Number of points.

Contains the number of points to be returned in the apt/Points array. Specify TXTBOX_COUNT to
get the maximum information.

aptlPolnts (PPOINTL) - output
List of points.

The list of points contains the relative coordinates of the text box in world coordinates. The
array elements are numbered consecutively, starting with TXTBOX_ TOPLEFT. The element
number constants start with 0. Refer to the appropriate bindings reference. A /Count2 value of
TXTBOX_COUNT will cause all of the defined array elements to be returned.

The terms 'top-left', 'bottom-right', and so on, are well defined when the character angle is such
that the baseline is parallel to the x axis and running left to right, and there is no character
shear. If the character string is rotated or sheared, the term top-left applies to the corner of the
box that appears in the top-left position when no rotation or shear is applied.

This is an example:

Set character angle = -1,1
String = ABCDE

Coordinates returned are as shown:

top right

Figure 5-4. Box Enclosing Characters

bottom left

· Chapter 5. Graphics Functions 5-365

GpiQueryTextBox
Query Text Box

TXTBOX_TOPLEFT Top-left corner

TXTBOX_BOTTOMLEFT Bottom-left corner

TXTBOX_TOPRIGHT Top-right corner

TXTBOX_BOTTOMRIGHT Bottom-right corner

TXTBOX_CONCAT Concatenation point.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _LENGTH_ OR_ COUNT

PM ERR_ COORDINATE_ OVERFLOW

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

The text box is defined as the parallelogram that encloses the specified character string when
displayed on the device. Also returned are the relative coordinates of the concatenation point; that
is, the value of current position after an equivalent GpiCharStringAt function. All coordinates are
relative to the start point. (See GpiSetCharDirection function.) These coordinates can be used to box
or underline the string, or to change the attributes in the middle of a longer string.

Note: The height of the string is based on the maximum height of the font (including space for
descenders, accents, and so on), not the maximum height of the actual characters in the
string. The dimensions of the box do not correspond directly to those of the character box
(see GpiSetCharBox).

Character attributes are taken into account as if the string is to be drawn, but no output actually
occurs. However, if the character mode (see GpiSetCharMode) is CM_MODE2 this function should
only be used if the character angle (see GpiSetCharAngle), character direction (see
GpiSetCharDirection) and character shear (see GpiSetCharShear) attributes are set to their default
values.

This function is not valid when the drawing mode (see GpiSetDrawingMode) is set to retain.

5-366 PM Programming Reference

Example Code

GpiQueryTextBox -
Query Text Box

This example uses the GpiQueryTextBox function to draw a line under the string. The GpiCharString

function draws the string at the point (100, 100). Since the points retrieved by GpiQueryTextBox are

relative to the start of the string, the starting point needs to be added to the points that are used to

draw the underline.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps;
POINTL aptl[TXTBOX_COUNT];
POINTL ptl ~= { 100, 100 };

GpiQueryTextBox(hps,
lll,
"This string",
TXTBOX COUNT, /* return maximum information */
aptl);- /*array of coordinates points */

/* in world coordinates. */
aptl[l].x += ptl.x;
aptl[l].y += ptl.y;
GpiMove(hps, &aptl[l]);
aptl[3].x += ptl.x;
aptl[3].y += ptl.y;
Gpiline(hps, &aptl[3]);
GpiMove(hps, &ptl);
GpiCharString(hps, lll, 11 This string 11

);

Chapter 5. Graphics Functions 5-367

GpiQueryViewingLimits
Query Viewing Limits

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GplQueryVlewlngLlmlts (HPS hps, PRECTL prclLlmlts)

This function returns the current value of the viewing limits, as set by the GpiSetViewinglimits
function.

Parameters
hps (HPS) - input

Presentation-space handle.

prclLlmlts (PRECTL) - output
Viewing limits.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _IN_RETAIN_MODE

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

5-368 PM Programming Reference

Example Code

GpiQueryViewingLimits -

Query Viewing Limits

In this example the model space clipping region width is reduced to 100 if it is greater.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. *I

RECTL rclLimits; /* viewing limits. */
BOOL fSuccess;

fSuccess = GpiQueryViewingLimits(hps.
&rclLimits);

if ((rclLimits.xRight - rclLimits.xLeft) > 100)
{
rclLimits.xRight = 100;
rclLimits.xLeft = 200;

}

fSuccess = GpiSetViewingLimits(hps,
&rclLimits};

Chapter 5. Graphics Functions 5-369

GpiQueryViewingTransformMatrix
Query Viewing Transform Matrix

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryVlewingTransformMatrlx (HPS hps, LONG ICount, PMATRIXLF pmatlfArray)

This function returns the current viewing transform (see GpiSetViewingTransformMatrix) ..

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements.

The number of elements to be returned in pmatlfArray (must be in the range 0 through 9). If 0 is
specified, no matrix elements are returned.

pmatlfArray (PMATRIXLF) - output
Transform matrix.

A structure in which the elements of the viewing transform matrix are returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_ COUNT

5-370 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

GpiQueryViewingTransformMatrix -

Query Viewing Transform Matrix

Example Code
This example uses the GpiQueryViewingTransformMatrix function to see if the width and the height

of drawing are already doubled. If this is not the case, the GpiSetViewingTransformMatrix is used to

replace the existing viewing transformation. The new transformation will then double the width and

height of drawing.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps; /* Presentation space handle. */
LONG lCount; /* maximum number of elements */
MATRIXLF matlf = { MAKEFIXED(2,0), /*scale x coordinates by a*/

/* factor of 2. */
0, 0, e, /* no rotation. */
MAKEFIXED(2,0), /* scale y coordinates by a*/

/* factor of 2. */
0, 0, 0, 1}; /* no rotation. */

/* number of e 1 ements. *I lCount = 9L;
GpiQueryViewingTransformMatrix(hps,

lCount,
&matlf);

if (matlf.fxM12 == MAKEFIXED(2, 0))
{
GpiSetViewingTransformMatrix(hps,

}

lCount,
&matlf,
TRANSFORM_REPLACE);

Chapter 5. Graphics Functions 5-371

GpiQueryWidthTable
Query Font Width Table

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

BOOL GplQueryWldthTable (HPS hps, LONG IFlrstChar, LONG ICount, PLONG alData)

This function returns width table information for the logical font identified by the value of the
character-set attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

IFlrstChar (LONG) - input
Codepoint of first character.

The codepoint of the initial character, for which width-table information is required.

ICount (LONG) - input
Count of elements in a/Data.

The number that should be allowed for, so as to retrieve the full width table. Data for this font
can be found by GpiQueryFontMetrics.

alData (PLONG) - output
Array of width values.

An array of /Count elements, in which width-table information is returned. No more than /Count
elements are returned.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _FIRST _CHAR

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_COORDINATE_ OVERFLOW

5-372 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid firstchar parameter was specified with
GpiQueryWidthTable.

An invalid length or count parameter was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Example Code

GpiQueryWidthTable -
Query Font Width Table

In this example the widths of the first 50 characters of the current font are obtained.

#define INCL_GPILCIDS
#include <OS2.H>
#define COUNT 50

HPS hps; /* Presentation-space */
/* handle. */

LONG alData[COUNT]; /*array of width values. */

GpiQueryWidthTable(hps,
0,
COUNT,
al Data};

Chapter 5. Graphics Functions 5-373

GpiRectlnRegion
Rectangle In Region

#define INCL GPIREGIONS /*Or use INCL_GPI or INCL_PM */

LONG GplRectlnRegion (HPS hps, HRGN hrgn, PRECTL prclRect)

This function checks whether any part of a rectangle lies within the specified region.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Region handle.

prclRect (PRECTL) - input
Test rectangle.

The rectangle is specified in device coordinates.

Returns
Inside and error indicators:

RRGN_OUTSIDE Not in region

RRGN_PARTIAL Some in region

RRGN_INSIDE All in region

RRGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_HRGN

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_REGION_IS_CLIP _REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attemptto access it
from another tfiread.

It is invalid i-f the specified region is currently selected as the clip region (by GpiSetClipRegion).

5-37 4 PM Programming Reference

Related Functions
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiSetRegion

Example Code

GpiRectlnRegion -
Rectangle In Region

In this example we check to see if a a rectangle is inside a region before we destroy the region.

#define INCL_GPIREGIONS
#include <OS2.H>
HPS hps; /* presentation-space handle. */
HRGN hrgn; /* region handle. */
PRECTL prclRect; /* test rectangle. */
LONG llnside; /* result. */
llnside = GpiRectlnRegion(hps.

hrgn.
prclRect);

if (llnside == RRGN OUTSIDE)
{ -
GpiDestroyRegion(hps. hrgn);
}

Chapter 5. Graphics Functions 5-375

GpiRectVisible
Rectangle Visible

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

LONG GplRectVlsible (HPS hps, PRECTL prclRectangle)

This function checks whether any part of a rectangle lies within the clipping region of the device
associated with the specified presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

prclRectangle (PRECTL) - input
Test rectangle, in world coordinates.

Points on the borders of the rectangle are considered to be included within the rectangle.

Returns
Visibility indicator:

RVIS_INVISIBLE Not visible

RVIS_PARTIAL Some of the rectangle is visible

RVIS_VISIBLE All of the rectangle is visible

RVIS_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

PMERR_INV _RECT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

For the purposes of this function, the clipping region is defined as the intersection between the
application clipping region and any other clipping, including windowing.

Related Functions
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiPtVisible
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipRegion
• WinExcludeUpdateRegion

5-376 PM Programming Reference

Example Code

GpiRectVisible -
Rectangle Visible

In this example the GpiRectVisible call is used to determine if all of the rectangle is visible.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps;
LONG lVisibility;
PRECTL prclRectangle;

/* presentation-space handle. */
/* visibility indicator */
/* test rectangle in world */
/* coordinates. */

lVisibility = GpiRectVisible(hps,
prclRectangle);

if (lVisibility == RVIS_INVISIBLE) /* rectangle is not */
{ /* visible. */
/* code block */

)

Chapter 5. Graphics Functions 5-377

GpiRemoveDynamics
Remove Dynamics

#define INCL_GPISEGMENTS /*Or use INCL_GPI or INCL_PM */

BOOL GplRemoveDynamlcs (HPS hps, LONG IFlrstSegid, LONG ILastSegld)

This function removes those parts of the displayed image that are drawn from the dynamic segments
in a section of the segment chain. This includes any parts that are drawn by calls from these
dynamic segments.

Parameters
hps (HPS) - input

Presentation-space handle.

IFirstSegid (LONG) - input
First segment in the section.

It must be greater than 0.

ILastSegid (LONG) - input
Last segment in the section.

It must be greater than 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _SEG_NAME

PMERR_INV_FOR_THIS_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid segment identifier was specified.

An attempt has been made to issue GpiRemoveDynamics
or GpiDrawDynamics to a presentation space associated
with a metafile device context.

This function usually indicates that a dynamic segment is about to be updated; and that, having
completed the update, GpiDrawDynamics is called to redraw the dynamic segments.

If there is more than one dynamic segment, only those that are being updated need be removed. The
section of the segment chain is identified by the first and last segments in the section. If IFirstSegid
and ILastSegid have the same value, this call erases only the parts drawn from the segment, and by
calls from that segment.

Specifying the range of segment identifiers that are to be removed usually has a performance
advantage, in that searching of the chain stops after ILastSegid has been processed. It can also be
used to operate on less than the maximum number of dynamic segments, as in one of the following
examples:

5-378 PM Programming Reference

GpiRemoveDynamics
Remove Dynamics

• Several dynamic segments are currently drawn, but only one is to be updated. Identifying this
segment with both /FirstSegid and ILastSegid means that only this one is removed. It can then be
updated, and replaced with GpiDrawDynamics.

• A new dynamic segment can be created, while the rest remain drawn. GpiRemoveDynamics is
issued before the segment has been created (or while it is unchained, if it already exists),
identifying it with both /FirstSegid and /LastSegid. It is then created with this identifier (or
chained, if it already exists), and GpiDrawDynamics is issued, causing it to be drawn.

In these examples, the other dynamic segments remain drawn throughout.

In all cases, after GpiDrawChain, GpiDrawDynamics, GpiDrawFrom, or GpiDrawSegment, where the
DCTL_DYNAMIC draw control is set (see GpiSetorawControl), all dynamic segments must be drawn.
The /FirstSegid and /LastSegid parameters of GpiRemoveDynamics, cannot be used to cause a
subset of dynamic segments to be drawn after the following GpiDrawDynamics. If this is required, it
can be done by unchaining the unwanted dynamic segments after first removing them.

Dynamic segments that are currently drawn must never be updated in the segment store, nor must
any drawing in mix modes (other than exclusive-OR or leave-alone) be done to a presentation space
while dynamic segments are drawn in it.

If a temporary re-association is to be done, this function must be issued to remove the dynamic
segments from the display before the first dissociation.

It is necessary to ensure that attributes, model transform, current position, and viewing limits are
reset to their default values, before processing the segments. This can either be done by ensuring
that the first dynamic segment in the removed section does not have the ATTR_FASTCHAIN attribute
(see GpiSetlnitialSegmentAttrs), or by issuing GpiResetPS before the GpiRemoveDynamics. The
latter method also resets the clip path to cause no clipping, which may also be necessary.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment. In particular, note that during GpiRemoveDynamics, the
system forces the foreground mix to FM_XOR and the background mix to BM_LEAVEALONE. It may
be necessary to set one or both of these before starting to draw.

If /FirstSegid does not exist, or is not in the segment chain, no removal or drawing occurs. However,
the segment identifier range is still established for a subsequent GpiDrawDynamics function.

If /LastSegid does not exist, or is not in the chain, or is chained before /FirstSegid, no error is raised,
and processing continues to the end of the chain.

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiErase
• GpiGetoata
• GpiPutoata
• GpiSetorawControl
• GpiSetDrawingMode
• GpiSetStopDraw

Chapter 5. Graphics Functions 5-379

GpiRemoveDynamics
Remove Dynamics

Example Code
This example uses the GpiRemoveDynamics function to remove the image drawn by the dynamic
segment whose segment identifier is 4. It then edits the segment and redraws it, using the
GpiDrawDynamics function.

#define INCL_GPISEGMENTS
#define INCL_GPICONTROL
#include <052.H>

POINTL ptl = {30. 40};
HPS hps; /* presentation space handle */

/* Remove the image for dynamic segment #4. */

GpiRemoveDynamics(hps. 4L. 4L);

/* Edit the segment. */

GpiSetDrawingMode(hps.DM_RETAIN);
GpiOpenSegment(hps. 4L);
GpiSetElementPointer(hps, ll);
GpiMove(hps. &ptl);
GpiCloseSegment(hps);

GpiDrawDynamics(hps); /* redraws the edited segment */

5-380 PM Programming Reference

GpiResetBoundaryData
Reset Boundary Data

#define INCL_GPICORRELATION /*Or use INCL_GPI or INCL_PM */

I BOOL GplR-undaryData (HPS hpa)

This function resets the boundary data to null.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

This function is only necessary for draw mode (see GpiSetDrawingMode) boundary determination.
Boundary data is automatically reset before any retained drawing call.

After drawing, boundary data can be found by issuing GpiQueryBoundaryData.

Note: Boundary data is not reset at the start of a segment.

Related Functions
• GpiQueryBoundaryData
• GpiSetDrawControl

Example Code
This function is used to reset the boundary data to null. It is only necessary for draw mode boundary
determination.

#define INCL_GPICORRELATION
#include <OS2.H>

HPS hps; /* presentation space handle */

GpiResetBoundaryData(hps);

Chapter 5. Graphics Functions 5-381

GpiResetPS
Reset Presentation Space

#define INCL GPICONTROL I* Or use INCL_GPI or INCL_PM */

BOOL GplResetPS (HPS hps, ULONG flOptlons)

This function resets the presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

llOptlons (ULONG) - input
Reset option:

GRES_ATIRS
This has the following effects:

• All current attributes and arc parameters are reset to their default values
• The current tag is reset to its default value
• The current model transform is reset to unity
• The current position is set to (0,0)
• Any open path or area is aborted
• Any open element bracket is closed
• Any open segment is closed
• The current clip path is set so as to cause no clipping
• The current viewing limits are reset to their default values.

GRES_SEGMENTS
This has all the effects of GRES_ATTRS plus:

• Any retained segments are deleted
• Initial segment attributes are reset to their default values
• The default viewing transform and the graphics field are reset to their default values
• The viewing transform is set to unity
• Drawing mode, draw controls, edit mode and attribute mode are reset to default values
• Boundary data is reset
• The currently selected clip region, if any, is deselected, and destroyed
• The default values of primitive attributes, arc parameters, viewing limits and primitive

tag are reset to their initial values.

GRES_ALL
This has all the effects of GRES_ATTRS and GRES_SEGMENTS plus:

• Any logical fonts and local identifiers for bit maps are deleted (the default character set
is restored if it has been changed).

• Any loaded logical color table is reset to default.
• Any palette selected into the presentation space (see GpiSelectPalette) is deseiected.
• The pick aperture size and position are reset to default.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

5-382 PM Programming Reference

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _RESET_ OPTIONS

Remarks

GpiResetPS
Reset Presentation Space

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with
GpiResetPS.

Three levels of reset are provided. These are, in increasing order of power:

• As if a new (root) segment is being processed
• As if the presentation space is being created without deleting resources
• As if the presentation space is being created with resources deleted.

More details are provided under the description off/Options above.

None of these options cause any drawing or erasing to take place on the device (GpiErase can be
used to do the latter), nor is any association between the specified presentation space and a device
context affected. The page viewport is also unaffected.

After restoring a presentation space that has a palette selected into it, WinRealizePalette must be
issued before any drawing calls or calls to query colors.

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Related Functions
• GpiAssociate
• GpiCreatePS
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• GpiRestorePS
• GpiSavePS
• GpiSetPS

Example Code
This function is used to reset the presentation space.

#define INCL_GPICONTROL
#include <OS2.H>

HPS hps; /* presentation space handle */
ULONG flOptions; /* reset options */

flOptions = GRES_ALL; /* reset all options. */

GpiResetPS(hps, flOptions);

Chapter 5. Graphics Functions 5-383

GpiRestorePS
Restore Presentation Space

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

BOOL GplRestorePS (HPS hps, LONG IPSld)

This function restores the state of the presentation space to the one that exists when the
corresponding GpiSavePS is issued.

Parameters
hps (HPS) - input

Presentation-space handle.

IPSld (LONG) - input
Identifier of the saved presentation space that is to be restored:

If an error is returned, the stack is unchanged, as is the current presentation space.

>0 /PSid must be the identifier of a saved presentation space on the stack. It is an error if it
does not exist.

0 Is an error. (This might have resulted from an invalid use of GpiSavePS).

<0 The absolute value of /PSid indicates how many saved presentation spaces on the stack
are required. Thus -1 means that the most recently saved one is to be restored. It is an
error if the absolute value is larger than the number of entries on the stack.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_NOT _IN_DRAW _MODE

PMERR_INV_ID

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue GpiSavePS or
GpiRestorePS while the drawing mode was not set to
DM_DRAW.

An invalid IPSid parameter was specified with
Gpi RestorePS.

The most recently saved presentation space need not be the one that is restored. In this case, any
that are skipped over on the stack are discarded.

Any clip regions selected into discarded presentation spaces are automatically destroyed.

This function is valid in an open element bracket and in an open segment bracket if the drawing
mode (see GpiSetDrawingMode) is set to draw and within an open element bracket. If it occurs
within an open area or path bracket, the corresponding GpiSavePS must have taken place earlier in
the same bracket.

5-384 PM Programming Reference

Related Functions
• GpiAssociate
• GpiCreatePS
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• Gpi ResetPS
• GpiSavePS
• GpiSetPS
• GpiPop

Example Code

GpiRestorePS -
Restore Presentation Space

This example restores the state of the presentation space to the one that exists when the

corresponding GpiSavePS is issued.

#define INCL_GPICONTROL
#include <OS2.H>
HPS hps; /* presentation space handle */
LONG lPSid; /* the identifier of a saved presentation */

/* space on the stack. *I
GpiRestorePS(hps, lPSid);

Chapter 5. Graphics Functions 5-385

GpiRotate
Rotate Transform

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplRotate (HPS hps, PMATRIXLF pmatlfArray, LONG IOptlons, FIXED fxAngle,
PPOINTL pptlCenter)

This function applies a rotation to a transform matrix.

Parameters
hps (HPS) - input

Presentation-space handle.

pmatlfArray (PMATRIXLF) - input/output
Transform matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of
type FIXED, and have an assumed binary point between the second and third bytes. Thus a
value of 1.0 is represented by 65 536. Other elements are normal signed integers.

The third, sixth, and ninth elements must be 0, 0, and 1, respectively.

IOptlons (LONG) - input
Transform options.

Specifies how the transform defined by the specified rotation should be used to modify the
previous transform specified by the pmatlfArray parameter. Possible values are:

TRANSFORM_REPLACE The previous transform is discarded and replaced by the transform
describing the specified rotation.

TRANSFORM_ADD The previous transform is combined with a transform representing
the specified rotation in the order (1) previous transform, (2)
rotational transform. This option is most useful for incremental
updates to transforms.

fxAngle (FIXED) - input
Rotation angle.

The angle describing the rotation, measured counterclockwise from the x-axis in degrees.

pptlCenter (PPOINTL) - input
Center of rotation.

The point about which the rotation occurs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _TRANSFORM_ TYPE

5-386 PM Programming Reference

An invalid options parameter was specified with a
transform matrix function.

'\
)

Remarks

GpiRotate
Rotate Transform

This function is a helper function that either applies a specified rotational component to an existing

transform matrix, or replaces the matrix with one that represents the specified rotation alone.

The transform is specified as a one-dimensional array of 9 elements that are the elements of a 3-row

by 3-column matrix ordered by rows. The order of the elements is as follows:

Matrix Array

(a,b,0,c,d,0,e,f,l)

Transforms act on the coordinates of primitives, so that a point with coordinates (x,y) is transformed

to the point:

(a*x + c*y + e, b*x + d*y + f)

The transform can be used in any call following:

• GpiSetModelTransformMatrix
• GpiSetSegmentTransformMatrix
• GpiSetViewingTransformMatrix
• GpiSetDefaultViewMatrix.

Other similar helper functions are:

• GpiTranslate to apply a translation component
• GpiScale to apply a scaling component.

Related Functions
• GpiScale
• GpiTranslate
• GpiSetModelTransformMatrix
• GpiSetSegmentTransformMatrix
• GpiSetDefaultViewMatrix
• GpiSetViewingTransformMatrix

Chapter 5. Graphics Functions 5-387

GpiRotate -
Rotate Transform

Example Code
In this example, the viewing transform matrix is rotated 10 degrees counterclockwise from the x-axis.
Hence, everything will appear rotated.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps;
MATRIXLF matlf;
POINTL ptlCenter;

/* presentation space handle */
/* transfonn matrix. */
/* center of rotation. */

GpiQueryViewingTransfonnMatrix(hps,

ptlCenter.x = 50L;
ptlCenter.y = 50L;

GpiRotate(hps,
&rnatlf,

ll,
&rnatlf);

TRANSFORM REPLACE,
MAKEFIXED(le,e), /* rotate 10 degrees left. the angle */

/* must be passed in fixed fonnat. */
/*see the pmgpi.h file for a */
/* description of the MAKEFIXED macro. */

&ptlCenter);

5-388 PM Programming Reference

GpiSaveMetaFile
Save Metafile

#define INCL_GPIMETAFILES I* Or use INCL_GPI or INCL_PM */

BOOL GplSaveMetaFlle (HMF hmf, PSZ pszFllename)

This function saves a metafile in a disk file.

Parameters
hmf (HMF) - input

Metafile handle.

pszFllename (PSZ) - input
File name.

The name of the file to which the metafile is to be saved. This name must be a valid external

name.

It is an error if a file of this name exists already.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HMF

PMERR_DOSOPEN_FAILURE

PMERR_INSUFFICIENT _DISK_SPACE

PMERR_METAFILE_IN_USE

An invalid metafile handle was specified.

A DosOpen call made during GpiloadMetaFile or
GpiSaveMetaFile gave a good return code but the file was
not opened successfully.

The operation terminated through insufficient disk space.

An attempt has been made to access a metafile that is in
use by another thread.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given
process was exceeded.

Remarks
The metafile is deleted from storage; this means that the metafile handle is no longer valid.

The metafile may be reaccessed by GpiloadMetaFile.

Related Functions
• GpiCopyMetaFile
• GpiDeleteMetaFile
• GpiloadMetaFile
• GpiPlayMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFilelength
• GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-389

GpiSaveMetaFile
Save Metafile

Example Code
This function saves a metafile in a disk file.

#define INCL_GPIMETAFILES
#include <052.H>

HMF hmf; /* metafile handle. */
GpiSaveMetafile(hmf, "file.met");

5-390 PM Programming Reference

GpiSavePS
Save Presentation Space

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

I LONG GplSavaPS (HPS hps)

This function saves information about the presentation space on a LIFO (last in, first out) stack.

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
Identifier of saved presentation space.

This may be used on a subsequent GpiRestorePS call. The identifier is equal to the depth of the

saved presentation space on the save/restore stack, with 1 representing the base level:

~1 Identifier of saved presentation space

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_NOT _IN_DRAW _MODE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue GpiSavePS or
GpiRestorePS while the drawing mode was not set to
DM_DRAW.

The stack is different from the one used to save attribute values (see GpiSetAttrMode) in a normal

presentation space.

This function, and GpiRestorePS, can be used with a micro presentation space, as well as a normal

presentation space (in draw drawing mode only).

The presentation space itself is unchanged.

The following are saved:

• Current attributes
• Current transforms, viewing limits, and clip path
• Current position
• Reference to selected clip region
• Any loaded logical color table
• References to any loaded logical fonts
• References to the regions created on the associated device context.

The following are not saved:

• Draw controls
• Drawing mode
• Edit mode and attribute mode
• The visible region.

Chapter 5. Graphics Functions 5-391

GpiSavePS
Save Presentation Space

Note: Only references to resources, rather than the actual resources (such as clip region, logical
fonts, and regions) are copied by this function, so the actual resources must not be changed.

This function is valid in an open segment bracket, but only if the drawing mode (see
GpiSetDrawingMode) is set to draw. This function can occur within an open element bracket. When
it occurs within an open area or path bracket, GpiRestorePS must be called before the bracket is
closed.

If this function occurs during the generation of a metafile, the drawing mode must be set to draw
when the metafile is replayed.

Related Functions
• GpiAssociate
• GpiCreatePS
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• GpiResetPS
• GpiRestorePS
• GpiSetPS

Example Code
This example uses the GpiSavePS function to save the state of the presentation space. The identifier
returned by the function is used in the call to the GpiRestorePS function to restore the saved state.

#define INCL GPICONTROL
#include <OS2.H>

HPS hps; /* presentation-space handle. */
LONG idPS;

idPS = GpiSavePS(hps); /*saves the presentation-space state*/

/* restores the presentation-space state */
GpiRestorePS(hps, idPS);

5-392 PM Programming Reference

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

GpiScale
Scale Matrix

BOOL GplScale (HPS hps, PMATRIXLF pmatlfArray, LONG IOptlons, PFIXED afxScale,
PPOINTL pptlCenter)

This function applies a scaling component to a transform matrix.

Parameters
hps (HPS) - input

Presentation-space handle.

pmatlfArray (PMATRIXLF) - input/output
Transform matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of
type FIXED, and have an assumed binary point between the second and third bytes. Thus a
value of 1.0 is represented by 65 536. Other elements are normal signed integers.

The third, sixth, and ninth elements must be 0, 0, and 1, respectively.

!Options (LONG) - input
Transform options.

Specifies how the transform defined by the specified scaling should be used to modify the
previous transform specified by the pmatlfArray parameter. Possible values are:

TRANSFORM_REPLACE The previous transform is discarded and replaced by the transform
describing the specified scaling.

TRANSFORM_ADD The previous transform is combined with a transform representing
the specified scaling in the order (1) previous transform, (2) scaling
transform. This option is most useful for incremental updates to
transforms.

afxScale (PFIXED) - input
Scale factors.

The first element of the array is the x scale factor, and the second is they scale factor.

Scaling values outside the range -1 through + 1 are not valid for subsequent use with
presentation spaces that have a coordinate format (as set by the GpiCreatePS function) of
GPIF _SHORT.

pptlCenter (PPOINTL) - input
Center of scale.

The point about which the scale occurs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _TRANSFORM_ TYPE An invalid options parameter was specified with a
transform matrix function.

Chapter 5. Graphics Functions 5-393

GpiScale
Scale Matrix

Remarks
This function is a helper function which either applies a specified scaling component to an existing
transform matrix, or replaces the matrix with one that represents the specified scaling alone.

The transform is specified as a one-dimensional array of 9 elements that are the elements of a 3-row
by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

(a,b,0,c,d,0,e,f,l)

Transforms act on the coordinates of primitives, so that a point with coordinates (x,y) is transformed
to the point:

(a*x + c*y + e, b*x + d*y + f)

The transform can be used in any call following:

• GpiSetModelTransform Matrix
• GpiSetSegmentTransformMatrix
• GpiSetViewingTransformMatrix
• GpiSetDefaultViewMatrix.

Other similar helper functions are:

• GpiTranslate to apply a translation component
• GpiRotate to apply a rotation component.

Related Functions
• GpiRotate
• GpiTranslate
• GpiSetModelTransformMatrix
• GpiSetSegmentTransformMatrix
• GpiSetDefaultViewMatrix
• GpiSetViewingTransformMatrix

5-394 PM Programming Reference

Example Code
In this example, the viewing transform matrix is scaled by a factor of 2.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps;
MATRIXLF matlf;
POINTL ptlCenter;

/* presentation space handle */
/* transfonn matrix. */
/* center of rotation. */

GpiQueryViewingTransformMatrix(hps,

ptlCenter.x = 50L;
ptlCenter.y = 50L;

GpiRotate(hps,
&matlf,

ll,
&matlf);

TRANSFORM REPLACE,
MAKEFIXED(2,0), /*rotate 10 degrees left. the angle */

/* must be passed in fixed format. */
/*see the pmgpi.h file for a */
/* description of the MAKEFIXED macro. */

&ptlCenter);

GpiScale -
Scale Matrix

Chapter 5. Graphics Functions 5-395

GpiSelectPalette
Select Palette

#define INCL_GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

HPAL GplSelectPalette (HPS hps, HPAL hpal)

This function selects a palette into a presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

hpal (HPAL) - input
Palette handle.

NULLHANDLE Set the color table for the presentation space to the default table (see
GpiCreateLogColorTable).

Other Palette handle.

Returns
Old palette handle:

NULLHANDLE Successful comple!ion, default (or loaded) color table was in effect

PAL_ERROR Error occurred

Otherwise Old palette handle.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HPAL

PMERR_INSUFFICIENT _MEMORY

PMERR_PALETTE_BUSY

PMERR_INV _IN_AREA

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid color palette handle was specified.

The operation terminated through insufficient memory.

An attempt has been made to reset the owner of a palette
when it was busy.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

This function overrides any color table previously loaded (see GpiCreateLogColorTable), or palette
previously selected into this presentation space.

If hpal is specified as NULLHANDLE, then the color table for this presentation space is set to the
default color table.

Palettes can be selected into more than one presentation space at a time, but only one palette can be
selected into a given presentation space at any time.

If a palette is selected into a presentation space that is associated with a device context of type
OD_MEMORY (see DevOpenDC), irreversible changes take place to any bit map selected into the
device context.

5-396 PM Programming Reference

\
/

GpiSelectPalette -
Select Palette

If a palette is selected into a presentation space that is associated with a device context of type
OD_METAFILE or OD_METAFILE_NOQUERY, the palette must apply to the entire picture, and must
still be selected at the {last) time the metafile device context is dissociated from the presentation
space.

Related Functions
• GpiAnimatePalette
• GpiCreatePalette
• GpiCreatelogColorTable
• GpiDeletePalette
• GpiQueryPalette
• GpiQueryPalettelnfo
• GpiSetPaletteEntries
• WinRealizePalette

Example Code
This function selects a palette into a presentation space.

#define INCL_GPILOGCOLORTABLE
#include <OS2.H>

HPS hps; /* presentation-space handle. */
HPAL hpalOld, hpal; /*old palette handle. */
hpalOld = GpiSelectPalette(hps, hpal);

Chapter 5. Graphics Functions 5-397

GpiSelArcParams
Set Arc Parameters

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetArcParams (HPS hps, PARCPARAMS parcpArcParams)

This function sets the current arc parameters.

Parameters
hps (HPS) - input

Presentation-space handle.

parcpArcParams (PARCPARAMS) - input
Arc parameters.

This structure has four elements p, q, r, and s.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

The arc parameters p, q, r, ands, define the shape and orientation of a ellipse that is used for
subsequent GpiPointArc, GpiFullArc, and GpiPartialArc functions. For GpiFullArc and GpiPartialArc,
they also determine the direction of drawing, as follows:

• If P*Q > r*s the direction is counterclockwise
• If p*q < r*s the direction is clockwise
• If p*q = r*s a straight line is drawn.

(p. s)

Figure 5-5. GpiSetArcParams Coordinate Points

For GpiFullArc and GpiPartialArc, these parameters also define the nominal size of the ellipse; this
may be changed by using the multiplier.

5-398 PM Programming Reference

)

GpiSetArcParams
Set Arc Parameters

For GpiPointArc, the size of the ellipse is determined by the three points specified on GpiPointArc.

The arc parameters define a transformation that maps the unit circle to the required ellipse, placed
at the origin (0,0):

x' = P*X + r*Y
y' = S*X + Q*Y

With reference to Figure 5-5 on page 5-398, if p*r + S*q = 0, the transform is termed orthogonal, and
the line from the origin (0,0) to the point (p,s) is either the radius of the circle, or half the major axis
of the ellipse. The line from the origin to the point (r,q) is either the radius of the circle, or half of the
minor axis of the ellipse.

For maximum accuracy, orthogonal transforms must be used. The matrix must not be singular.

The initial default values of arc parameters (unless changed with GpiSetDefArcParams) are:

p=l r=O
s = e q = 1

producing a unit circle. (See Figure 5-6).

(0, 1)

(0, 0) (1, 0)

Figure 5-6. GpiSetArcParams Default Coordinates

Arc parameter transformation takes place in world coordinates. Any other non-square·
transformations in force change the shape of the figure accordingly.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the arc
parameters is preserved.

Related Functions
• GpiQueryArcParams
• GpiSetDef ArcParams
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiSetlineType
• GpiSetlineWidth
• GpiFullArc
• GpiPartialArc
• GpiPointArc

Chapter 5. Graphics ·Functions 5-399

GpiSetArcParams -
Set Arc Parameters

Graphic Elements and Orders
Element Tyoe: OCODE_GSAP
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Arc Parameters

Element Type: OCODE_GPSAP
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Arc Parameters

Example Code
This example uses the GpiSetArcParams function to draw an ellipse. The semimajor axis of the
ellipse is 100, and the semiminor axis is 50. These values are in world coordinates, computed using
the IP and IQ values of the arc parameters and the multiplier provided with the GpiFullArc function.

#define INCL_GPIPRIMITIVES
#include <052.H>

HPS hps; /* Presentation-space */
/* handle. */

ARCPARAMS arcp = { 4, 2, 0, 0 }; /* Arc parameters. */

POINTL ptl = {100, 100};
GpiSetArcParams(hps, &arcp);
GpiMove(hps, &ptl);

/* This structure has four */
/* elements p, q, r, and s. */

GpiFullArc(hps, DRO_OUTLINE, MAKEFIXED(25, 0));

5-400 PM Programming Reference

\
)

GpiSetAttrMode
Set Attribute Mode

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetAttrMode (HPS hps, LONG IMode)

This function specifies the current attribute mode.

Parameters
hps (HPS) - input

Presentation-space handle.

IMode (LONG) - input
Attribute mode:

AM_PRESERVE Preserve attributes

AM_NOPRESERVE Do not preserve attributes.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _A TTR_MODE

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _DC_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid mode parameter was specified with
GpiSetAttrMode.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

The attribute mode is used to specify whether a primitive attribute is to be preserved when set to a
new value by a subsequent attribute setting call. The preserved value of an attribute can be restored
using the GpiPop function. Any attributes that have been preserved in a called segment are
automatically restored on return to the caller. The values of any attributes preserved in a chained
segment, however, that are not restored using GpiPop by the end of the segment, are lost.

The following are affected:

• GpiSetArcParams
• GpiSetBackColor (applies individually by primitive type if GpiSetAttrs is used)
• GpiSetBackMix (applies individually by primitive type if GpiSetAttrs is used)
e GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear

Chapter 5. Graphics Functions 5-401

GpiSetAttrMode
Set Attribute Mode

• GpiSetColor (applies individually by primitive type if GpiSetAttrs is used)
• GpiSetCurrentPosition
• GpiSetMix (applies individually by primitive type if GpiSetAttrs is used)
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom
• GpiSetMarkerBox
• GpiSetMarkerSet
• GpiSetMarker
• GpiSetModelTransformMatrix
• GpiSetPattern
• GpiSetPatternRefPoint
• GpiSetPatternSet
• GpiSetTag.

The initial value of the attribute mode, that is, its value before this function is issued, is
AM_NOPRESERVE.

Attribute mode applies to attributes passed across the API using GpiSet. .. calls. What mode to use
for a particular GpiSet... call is decided by the attribute mode current at the time the GpiSet... call is
passed across the API. The mode may be changed at any time, and does not affect any attribute
setting calls that have already been retained in the segment store.

Attribute mode only applies to individual GpiSet. .. calls (including GpiSetAttrs and calls such as
GpiSetColor). It does not apply to any attribute setting calls passed across in bulk, such as
GpiPutData, GpiElement, and GpiPlayMetaFile; these already indicate individually whether they
should cause the attribute to be preserved.

Attribute mode cannot be set for GPIT_MICRO type presentation spaces, or for presentation spaces
associated with OD_METAFILE_NOQUERY type device contexts (see GpiCreatePS and DevOpenDC).
In these cases the presentation space behaves as if AM_NOPRESERVE is in operation.

Related Functions
• GpiPop
• GpiQueryAttrMode
• GpiResetPS
• GpiQueryAttrs
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetPS

5-402 PM Programming Reference

Example Code

GpiSetAttrMode -
Set Attribute Mode

This example uses the GpiSetAttrMode function to set the attribute mode to preserve.

#define INCL_GPIPRIMITIVES
#include <052.H>

HPS hps; /* Presentation-space */
/* handle. */

POINTL ptl[2] = { 50, 50, 100, 100, };

GpiSetColor(hps, CLR_BLUE);
GpiSetAttrMode(hps. AM_PRESERVE);/* sets attribute mode to*/

GpiSetColor(hps, CLR_GREEN);

Gpiline(hps, &ptl[0]);
GpiPop(hps. ll);

Gpiline(hps. &ptl[l]);

/* preserve. *I
/* changes color and saves old */
/* color. */
/* draws green line */
/* pops old attribute from */
/* stack. *I
/* draws blue line */

Chapter 5. Graphics Functions 5-403

GpiSetAttrs -
Set Attributes

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetAttrs (HPS hps, LONG IPrlmType, ULONG flAttrMask, ULONG flDefMask,
PBUNDLE ppbunAttrs)

This function sets attributes for the specified primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IPrlmType (LONG) - input
Primitive type.

The primitive type for which attributes are to be set:

PRIM_LINE Line and arc primitives

PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAttrMask (ULONG) - input
Attributes mask.

Each flag set indicates that either the corresponding flag in f/DefMask is set, or the ppbunAttrs
buffer contains data for the corresponding attribute. If all of the flags in f/AttrMask are 0, the
ppbunAttrs buffer address is not used.

Line attributes:

LBB_COLOR

LBB_MIX_MODE

LBB_WIDTH

LBB_GEOM_WIDTH

LBB_TYPE

LBB_END

LBB_JOIN

Character attributes:

Line color

Line mix

Line width

Geometric line width

Line type

Line end

Line join.

CBB_COLOR Character color

CBB_BACK_COLOR Character background color

CBB_MIX_MODE Character mix

CBB_BACK_MIX_MODE Character background mix

CBB_SET Character set

CBB_MODE Character mode

CBB_BOX Character box

CBB_ANGLE Character angle

5-404 PM Programming Reference

CBB_SHEAR

CBB_DIRECTION

Marker attributes:

Character shear

Character direction

MBB_COLOR Marker color

MBB_BACK_COLOR Marker background color

MBB_MIX_MODE Marker mix

MBB_BACK_MIX_MODE Marker background mix

MBB_SET Marker set

MBB_SYMBOL Marker symbol

MBB_BOX Marker box.

Pattern attributes (areas):

ABB_COLOR Area color

ABB_BACK_COLOR Area background color

ABB_MIX_MODE Area mix

ABB_BACK_MIX_MODE Area background mix

ABB_ SET Pattern set

ABB_SYMBOL Pattern symbol

ABB_REF _POINT Pattern reference point.

Image attributes:

IBB_COLOR Image color

IBB_BACK_COLOR Image background color

IBB_MIX_MODE Image mix

IBB_BACK_MIX_MODE Image background mix.

flDefMask (ULONG) - input
Defaults mask.

GpiSetAttrs -
Set Attributes

Each flag set (and for which f/AttrMask is also set) causes the corresponding attribute to be set
to its default value.

ppbunAttrs (PBUNDLE) - input
Attributes.

This is a structure containing the attribute value of each attribute for which the f/AttrMask flag is
set (and which is not to be set to its default value), at the correct offset as specified below for the
particular primitive type.

Primitive type:
Line attributes
Character attributes
Marker attributes
Pattern attributes (areas)
Image attributes

Structure:
LINEBUNDLE
CHARBUNDLE
MARKER BUNDLE
AREABUNDLE
IMAGEBUNDLE.

Chapter 5. Graphics Functions 5-405

GpiSetAttrs
Set Attributes

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_PRIMITIVE_TYPE An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.

PMERR_UNSUPPORTED_ATTR An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.

PMERR_INV_COLOR_ATTR An Invalid color attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_BACKGROUND_COL_ATTR An invalid background color attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_MIX_ATTR An invalid mix attribute value was specified or the default
value was explicitly specified with GpiSetAttrs instead of
using the defaults mask.

PMERR_INV_LINE_WIDTH_ATTR An invalid line width attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_GEOM_LINE_WIDTH_ATTR An invalid geometric line width attribute value was
specified.

PMERR_INV_LINE_TYPE_ATTR An invalid line type attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_LINE_END_ATTR An invalid line end attribute value was specified.

PMERR_INV_LINE_JOIN_ATTR An invalid line join attribute value was specified.

PMERR_INV_CHAR_SET_ATTR An invalid character setid attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_CHAR_MODE_ATTR An invalid character mode attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV~CHAR_DIRECTION_ATTR An invalid character direction attribute value was
specified or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_CHAR_SHEAR_ATTR An invalid character shear attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_CHAR_ANGLE_ATTR The default character angle attribute value was explicitly
specified with GpiSetAttrs instead of using the defaults
mask.

5-406 PM Programming Reference

PMERR_INV _MARKER_SET _ATTR

PMERR_INV _MARKER_SYMBOL_ATTR

PMERR_INV _PATTERN_SET _A TTR

PMERR_INV_PATTERN_ATTR

PMERR_INV _COORDINATE

PM ERR_ UNSUPPORTED _A TTR_ VALUE

PMERR_INV _PATTERN_SET_FONT

GpiSetAttrs
Set Attributes

An invalid marker set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An invalid marker symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An invalid pattern set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An invalid pattern symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An invalid coordinate value was specified.

An attribute value was specified with GpiSetAttrs that is
not supported.

An attempt was made to use an unsuitable font as a
pattern set.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using GpiSetCharSet,

Remarks

GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs to
select a font that is larger than the maximum size (64Kb)
supported by the target device driver.

Any attribute (for the specified primitive type) for which the appropriate flag is set in the f/AttrMask
has its value updated:

• If the corresponding flag in f/DefMask is also set, the attribute is set to default.
• If the corresponding flag in f/DefMask is not set, the attribute is set to the value specified in the

ppbunAttrs structure.

Any attribute for which the appropriate flag in f/AttrMask is not set is unchanged, regardless of the
setting of the corresponding flag in f/DefMask.

The f/DefMask and f/AttrMask parameters each contain flags: each attribute of the primitive type in
question is represented by one flag.

The data in the ppbunAttrs buffer consists of a structure of attribute data. The layout of the structure
is fixed for each primitive type. Only data for attributes for which the flag is set in f/AttrMask (but not
in f/DefMask) is inspected; any other data is ignored.

Note: The buffer need be no longer than is necessary to contain the data for the highest offset
attribute referenced.

If default values of attributes are required, they must be requested using the f/DefMask. The system
does not recognize attribute values whose meaning would normally be "use default" in the
ppbunAttrs buffer.

Where possible, invalid color values are detected by this call and cause an error
(PMERR_INV_COLOR_ATTR or PMERR_INV_BACKGROUND_COL_ATTR) to be logged. Some invalid
color values cannot be detected until draw time at which point the implementation optionally defaults
them, or causes the above error to be logged. If an attempt to set an invalid value by this function is
detected, none of the specified attributes is changed. Note, however, that some invalid attribute
values (for example, colors and mixes) may not be detected until the attribute is used.

Chapter 5. Graphics Functions 5-407

GpiSetAttrs -
Set Attributes

If this function occurs within a path bracket, it must only set:

• Line attributes, other than the geometric line width
• Character attributes, other than foreground or background colors or mixes
• Marker attributes, other than foreground or background colors or mixes.

The default values of attributes can be changed with GpiSetDefAttrs.

The attribute mode (see GpiSetAttrMode) determines whether the current values of the attributes are
preserved. If they are, one "push" call is generated for each affected attribute, in the order in which
the attributes are specified, in the appropriate xxxBUNDLE structure.

Related Functions
• GpiPop
• GpiQueryAttrs
• GpiSetAttrMode
• GpiSetDef Attrs

Graphic Elements and Orders
The element type depends on the /Prim Type parameter.

For each element, the "Set" orders are generated, if the attribute mode (see GpiSetAttrMode) is set
to AM_NOPRESERVE, and the "Push and Set" orders if it is AM_PRESERVE. In either instance, a
particular order is generated only if the corresponding attribute is being set with this function, as
specified on the ppbunAttrs parameter.

Element Type: ETYPE_LINEBUNDLE
Generated if /PrimType is PRIM_LINE.

Order: Set Individual Attribute
One of these for each of LBB_COLOR, and LBB_MIX_MODE, as required.

Order: Set Fractional Line Width
LBB_WIDTH, as required.

Order: Set Stroke Line Width
LBB_GEOM_WIDTH, as required.

Order: Set Line Type
LBB_TYPE, as required.

Order: Set Line End
LBB_END, as required.

Order: Set Line Join
LBB_JOIN, as required.

5-408 PM Programming Reference

GpiSetAttrs -
Set Attributes

As many as required of the following are generated if the attribute mode is AM_PRESERVE:

Order: Push and Set Individual Attribute
One of these for each of LBB_COLOR, and LBB_MIX_MODE, as required.

Order: Push and Set Fractional Line Width
LBB_WIDTH, as required.

Order: Push and Set Stroke Line Width
LBB_GEOM_WIDTH, as required.

Order: Push and Set Line Type
LBB_ TYPE, as required.

Order: Push and Set Line End
LBB_END, as required.

Order: Push and Set Line Join
LBB_JOIN, as required.

Element Type: ETYPE_CHARBUNDLE
Generated if /PrimType is PRIM_CHAR.

Order: Set Individual Attribute
One of these for each of CBB_COLOR, CBB_BACK_COLOR, CBB_MIX_MODE, and
CBB_BACK_MIX_MODE, as required.

Order: Set Character Set
CBB_SET

Order: Set Character Precision
CBB_MODE

Order: Set Character Cell
CBB_BOX

Order: Set Character Angle
CBB_ANGLE

Order: Set Character Shear
CBB_SHEAR

Order: Set Character Direction
CBB_DIRECTION

As many as required of the following are generated if the attribute mode is AM_PRESERVE:

Order: Push and Set Individual Attribute
One of these for each of CBB_COLOR, CBB_BACK_COLOR, CBB_MIX_MODE, and
CBB_BACK_MIX_MODE, as required.

Order: Push and Set Character Set
CBB_SET

Order: Push and Set Character Precision
CBB_MODE

Order: Push and Set Character Cell
CBB_BOX

Order: Push and Set Character Angle
CBB_ANGLE

Order: Push and Set Character Shear
CBB_SHEAR

Order: Push and Set Character Direction
CBB_DIRECTION

Chapter 5. Graphics Functions 5-409

GpiSetAttrs -
Set Attributes

Element Tyoe: ETYPE_MARKERBUNDLE
Generated if IPrimType is PRIM_MARKER.

Order: Set Individual Attribute
One of these for each of MBB_COLOR, MBB_BACK_COLOR, MBB_MIX_MODE, and
MBB_BACK_MIX_MODE, as required.

Order: Set Marker Set
MBB_SET

Order: Set Marker Symbol
MBB_SYMBOL

Order: Set Marker Cell
MBB_BOX

As many as required of the following are generated if the attribute mode is AM_PRESERVE:

Order: Push and Set Individual Attribute
One of these for each of MBB_COLOR, MBB_BACK_COLOR, MBB_MIX_MODE, and
MBB_BACK_MIX_MODE, as required.

Order: Push and Set Marker Set
MBB_SET

Order: Push and Set Marker Symbol
MBB_SYMBOL

Order: Push and Set Marker Cell
MBB_BOX

Element Tyoe: ETYPE_AREABUNDLE
Generated if IPrimType is PRIM_AREA.

Order: Set Individual Attribute
One of these for each of ABB_ COLOR, ABB_BACK_COLOR, ABB_MIX_MODE, and
ABB_BACK_MIX_MODE, as required.

Order: Set Pattern Set
ABB_SET

Order: Set Pattern Symbol
ABB_SYMBOL

Order: Set Pattern Reference Point
ABB_REF _POINT

As many as required of the following are generated if the attribute mode is AM_PRESERVE:

Order: Push and Set Individual Attribute
One of these for each of ABB_ COLOR, ABB_BACK_COLOR, ABB_MIX_MODE, and
ABB_BACK_MIX_MODE, as required.

Order: Push and Set Pattern Set
ABB_SET

Order: Push and Set Pattern Symbol
ABB_SYMBOL

Order: Push and Set Pattern Reference Point
ABB_REF _POINT

Element Type: ETYPE_IMAGEBUNDLE
Generated if IPrimType is PRIM_IMAGE.

Order: Set Individual Attribute
One of these for each of IBB_COLOR, IBB_BACK_COLOR, IBB_MIX_MODE, and
IBB_BACK_MIX_MODE, as required.

5-410 PM Programming Reference

\
:)

GpiSetAttrs -
Set Attributes

As many as required of the following are generated if the attribute mode is AM_PRESERVE:

Order: Push and Set lndlvldual Attribute
One of these for each of IBB_COLOR, IBB_BACK_COLOR, IBB_MIX_MODE, and
IBB_BACK_MIX_MODE, as required.

Example Code
This example uses the GpiSetAttrs function to set the line color to red and the line width to its default
value.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps;

LINEBUNDLE lbnd;
lbnd.lColor = CLR_RED;

GpiSetAttrs(hps,
PRIM LINE,
LBB_COLOR I LBB_WIDTH,
LBB WIDTH,
&lbnd);

/* Presentation-space */
/* handle. */

/* presentation-space handle */
/* line primitive. */
/*sets line color and width. */
/* sets line width to default */
/* buffer for attributes. */

I

Chapter 5. Graphics Functions 5-411

GpiSetBackColor -
Set Background Color

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetBackColor (HPS hps, LONG IColor)

This function sets the current background color index attribute, for each individual primitive type, to
the specified value.

Parameters
hps (HPS) - input

Presentation-space handle.

IColor (LONG) - input
Background color:

For a loadable color table, values 0 through n correspond to the color index (or RGB) values.

CLR_FALSE All color planes are zeros.

CLR_TRUE All color planes are ones.

CLR_DEFAULT Set to default value. This is the natural background color for the device.
For a display, it is the default window color (SYSCLR_WINDOW: see
WinSetSysColors). For a printer, it is the paper color. The default can be
changed by setting new system colors from the control panel for the
display, or by selecting a paper color for a printer (if allowed by the
device driver), or set explicitly with GpiSetDefAttrs.

CLR_WHITE White (default color table, or index=RGB loaded color table). For a
loaded, realized, color table, it is the nearest available color to white.

CLR_BLACK Black (default color table, or index=RGB loaded color table). For a
loaded, realized, color table, it is the nearest available color to black.

CLR_BACKGROUND Reset color, used by GpiErase. This is the natural background color for
the device. For a display, it is the default window color
(SYSCLR_WINDOW: see WinSetSysColors) for the default color table. For
a printer, it is the paper color. For a loaded color table, it is color index
0. For an RGB color table, it is color 000000 (black).

CLR_BLUE Blue (default color table).

CLR_RED Red (default color table).

CLR_PINK Pink (default color table).

CLR_GREEN Green (default color table).

CLR_CYAN Cyan (default color table).

CLR_YELLOW Yellow (default color table).

CLR_NEUTRAL Neutral (default color table). A device-dependent color, that for the
default color table provides a contrasting color to CLR_BACKGROUND.
For a display, it is the default window text color (SYSCLR_WINDOWTEXT:
see WinSetSysColors). For a printer, it is a color that contrasts with the
paper color. For a loaded color table, it is color index 7; in RGB mode it
is interpreted as color 000007.

CLR_DARKGRAY Dark gray (default color table).

CLR_DARKBLUE Dark blue (default color table).

CLR_DARKRED Dark red (default color table).

5-412 PM Programming Reference

\
) CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCYAN

CLR_BROWN

CLR_PALEGRAY

Dark pink (default color table).

Dark green (default color table).

Dark cyan (default color table).

Brown (default color table).

Pale gray (default color table).

GpiSetBackColor -
Set Background Color

For a loadable color table, values 0 through n correspond to the color
index (or RGB) values.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_BACKGROUND_COL_ATTR An invalid background color attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

Remarks
Note that if the background mix is BM_LEAVEALONE (the default setting), the background color is not
seen.

An attempt to set a negative color value, other than one for which a constant is defined, causes the
error PMERR_INV_COLOR_ATTR to be logged. Other color values are allowed, although an error is
generated when the color value is needed for drawing if it is invalid for the color table in use at that
time (see GpiCreateLogColorTable).

For details of how colors are handled on monochrome devices, also see GpiCreatelogColorTable.

The attribute mode determines whether the current value of the background color attribute is
preserved. If it is, the values of the background color attribute, for each primitive type, are
preserved, and a single GpiPop function restores them.

This function must not be used within a path or area bracket.

Related Functions
• GpiQueryBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Chapter 5. Graphics Functions 5-413

GpiSetBackColor -
Set Background Color

• GpiBox
• GpiMarker
• GpiPolyMarker
• GpiFullArc
• GpiPartialArc
• GpiPointArc
• GpiPolyFillet
• GpiPolyFilletSharp
• GpiPolySpline
• GpiBeginArea
• GpiEndArea

Graphic Elements and Orders
Element Tyoe: OCODE_GSBICOL
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Background Indexed Color

Element Tyoe: OCODE_ GPSBICOL
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Background Indexed Color

Example Code
This is an example of a function used to repaint the window when a WM_PAINT message is issued.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

void ClientPaint(HWND hwnd)
{

pt; PO INTL
HPS
RECTL
long

hps;
rel;
clrText;

/* Presentation space handle */
/* Window rectangle */

/* Obtain a cache PS and set color
and background mix attributes */

hps = WinBeginPaint(hwnd, (HPS)NULLHANDLE, (PRECTL)&rcl);
GpiSetColor(hps, clrText);
GpiSetBackColor(hps, CLR_BACKGROUND); /*set background

GpiSetBackMix(hps, BM_OVERPAINT);
}

5-414 PM Programming Reference

to white. */

GpiSetBackMix
Set Background Mix

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GpiSetBackMix (HPS hps, LONG IMlxMode)

This function sets the current background mix attribute for each individual primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IMixMode (LONG) - input
Background-mix mode.

Background mixes marked with an asterisk(*) are mandatory for all devices.

The currently associated device supports any of the mixes specified as supported in
DevQueryCaps (CAPS_BACKGROUND_MIX_SUPPORT). Any other valid mixes can be supported
for some primitive types but otherwise result in BM_LEAVEALONE. An error is raised only if the
value specified is not one of those listed.

For more information on mixing, see GpiSetMix.

BM_DEFAULT The default value (BM_LEAVEALONE unless changed with GpiSetDefAttrs).

BM_OR Logical-OR.

BM_OVERPAINT The background of the primitive takes precedence over whatever is
underneath. (*)

BM_XOR Exclusive-OR.

BM_LEAVEALONE The background of the primitive has no effect on what is underneath. (*)

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_BACKGROUND_COL_ATIR An invalid background color attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

Remarks
The background mix attribute controls the way that the background color of a primitive is combined
with the color of any primitive that it overlaps.

These primitives are affected by the background mix attribute:

Areas The background of an area is defined to be every pel within the area that is not set by the
shading pattern.

Text The background of a character is the complete character box.
Images For an image, the background is every pel within the image that is not set.

Chapter 5. Graphics Functions 5-415

GpiSetBackMix
Set Background Mix

Markers The background of a marker is the complete marker box.

Note: When the background mix is BM_LEAVEALONE (initial default) the background color is not
seen.

The attribute mode determines whether the current value of the background mix attribute is
preserved. If it is, the values of the background mix attribute for each primitive type are preserved,
and a single GpiPop function restores them.

This function should not be used within a path or area bracket.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• GpiQueryBackMix
• GpiSetBackColor
• GpiSetColor
• GpiSetMix
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiBox
• GpiMarker
• GpiPolyMarker
• GpiFullArc
• GpiBeginArea
• GpiEndArea

Graphic Elements and Orders
Element Type: OCODE_GSBMX
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Background Mix

Element Tyoe: OCODE_GPSBMX
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Background Mix

5-416 PM Programming Reference

GpiSetBackMix -
Set Background Mix

Example Code
This is an example of a function used to repaint the window when a WM_PAINT message is issued.

VOID cdecl ClientPaint(HWND hwnd)
{

}

POINTL pt;
HPS hps; /* Presentation space handle */
RECTL rel; /*Window rectangle */

/* Obtain a cache PS and set color
and background mix attributes */

hps = WinBeginPaint(hwnd, (HPS)NULLHANDLE, (PRECTL)&rcl);
GpiSetColor(hps, clrText);
GpiSetBackColor(hps, CLR_BACKGROUND); /*set background

to white. */
GpiSetBackMix(hps, BM_OVERPAINT);

/* the background of the primitive takes
over whatever is underneath. */

Chapter 5. Graphics Functions 5-417

GpiSetBitmap
Set Bit Map

#define INCL GPIBITMAPS I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

HBITMAP GplSetBltmap (HPS hps, HBITMAP hbm)

This function sets a bit map as the currently selected bit map in a memory device context.

Parameters
hps (HPS) - input

Presentation-space handle.

hbm (HBITMAP) - input
Handle of the bit map to be set.

A null handle causes the currently selected bit map, in the associated device, to be freed.

It is an error if the bit map is currently tagged for area shading (see GpiSetBitmapld).

Returns
Old bit-map handle:

NULLHANDLE Correct (null handle)

HBM_ERROR Error

Otherwise Old bit-map handle.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV _HBITMAP

PMERR_BITMAP _IN_USE

PMERR_INCOMPATIBLE_BITMAP

PMERR_HBITMAP _BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid bit-map handle was specified.

An attempt was made either to set a bit map into a device
context using GpiSetBitmap while it was already selected
into an existing device context, or to tag a bit map with a
local pattern set identifier (setid) using GpiSetBitmapld
while it was already tagged with an existing setid.

An attempt was made to select a bit map or perform a
BitBlt operation on a device context that was
incompatible with the format of the bit map.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

The specified presentation space must be currently associated with a memory device context. The
device context can represent a different physical device from the one that the bit map originally
loaded or created, providing its format is convertible to one supported on the new device. This is
ensured when one of the standard formats is being used.

If a bit map is already current in the device context, the handle of this bit map is returned, before the
new bit map is selected.

It is an error if the new bit map is already selected as the current bit map in any device context.

5-418 PM Programming Reference

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiOueryBitmapBits
• GpiOueryBitmapDimension
• GpiQueryBitmapHandle
• GpiOueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

Example Code

GpiSetBitmap -
Set Bit Map

This example uses the GpiSetBitmap function to set a newly created bit map in the device context for

the associated presentation space. Once set, the example initializes the bit map image by drawing

in the presentation space.

#define INCL_GPIBITMAPS
#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
BITMAPINFOHEADER2 bmp = {12, 64, 64, l, 1};/* 64x64 mono bit map */
HBITMAP hbm, hbmOld;
POINTL ptlStart = { e, e };
POINTL apt1Triangle[3] = { 32, 32, 63, 63, e, e };
POINTL ptl = { 63, 63 };

hbm = GpiCreateBitmap(hps,
&bmp,
eL,
NULL,
NULL);

/* Set the bit map and draw in it. */

/* sets bit map in device context */
hbmOld = GpiSetBitmap(hps, hbm);
GptMove(hps, &ptlStart);
GpiBox(hps, DRO_FILL, &ptl, el, el);
GpiPolyltne(hps,

ll,
aptlTriangle);

GpiSetBitmap(hps, hbmOld);

/* fills in the bit map */
/* draws a triangle */

/* restores the old bit map */

Chapter 5. Graphics Functions 5-419

GpiSetBitmapBits
Set Bit-Map Bits

#define INCL GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

LONG GplSetBltmapBlts (HPS hps, LONG IScanStart, LONG IScans, PBYTE pbBuffer,
PBITMAPINF02 pbml21nfoTable)

This function transfers bit-map data from application storage to a bit map.

Parameters
hps (HPS) - input

Presentation-space handle.

IScanStart (LONG) - input
Line number

Scan-line number at which the data transfer is to start, counting from Oas the bottom line.

IScans (LONG) - input
Number of scan lines to be transmitted.

pbBuffer (PBYTE} - input
Bit-map data buffer.

Address in application storage from which the bit-map data is to be copied.

pbml21nfoTable (PBITMAPINF02) - input
Bit-map information table.

Returns
Number of scan lines actually set:

;?:0 Number of scan lines actually set

GPl_ALTERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _INFO_ TABLE

PMERR_NO_BITMAP _SELECTED

PMERR_INV _SCAN_START

PMERR_INCORRECT _DC_ TYPE

5-420 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid bit-map info table was specified with a bit-map
operation.

An attempt has been made to operate on a memory
device context that has no bit map selected.

An invalid scanstart parameter was specified with a
bitmap function.

An attempt was made to perform a bit-map operation on a
presentation space associated with a device context of a
type that i~ unable to support bit-map operations.

GpiSetBitmapBits
Set Bit-Map Bits

Remarks
The presentation space must be currently associated with a memory device context that has a bit
map currently selected.

Note: This function does not set bits directly to any other kind of device.

If the format of the supplied bit map does not match that of the device, it is converted, using the
supplied bit-map information table. The standard bit-map formats are supported, plus any known to
be supported by the device; see GpiQueryDeviceBitmapFormats.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapDimension
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

Chapter 5. Graphics Functions 5-421

GpiSetBitmapBits
Set Bit-Map Bits

Example Code
This example uses the GpiSetBitmapBits function to copy image data to a bit map in a presentation
space associated with a memory device context.

#define INCL_GPIPRIMITIVES
#define INCL_GPIBITMAPS
#define INCL_DOSMEMMGR
#define INCL_WINDIALOGS
#include <052.H>

HPS hps; /* Presentation space handle */
BITMAPINFOHEADER2 bmp = { 12, 32, 16, 1, 1 };
SEL sel;
PBITMAPINFOHEADER2 pbmi;
BYTE pbBuffer[16]; /*buffer for image data*/
ULONG cbBitmapinfo;
HBITMAP hbm, hbmOld;
BOOL f;
/*Allocate space for the bit-map infonnation table. */

cbBitmapinfo = sizeof(BITMAPINFO) + sizeof(RGB);
f = (BOOL)DosAllocMem((PPVOID)pbmi,

(ULONG)cbBitmapinfo.

if (f) {

}

PAG READ I
PAG-WRITE I
PA(COMMIT));

WinMessageBox(HWND_DESKTOP, HWND_DESKTOP,
11 Sorry, Not enough memory 11

,

NULL,
e,
MB_OK);

return;

/* Initialize the bit-map infonnation table. */

pbmi->cbFix = 12;
pbmi->cx = 32;
pbmi ->cy = 16;
pbmi->cPlanes = 1;
pbmi ->cBitCount = 1;

/* Create the bit map, set to the device.
and copy the image data. */

hbm = GpiCreateBitmap(hps.
pbmi,
0L,
NULL,
NULL);

hbmOld = GpiSetBitmap(hps. hbm);
GpiSetBitmapBits(hps,

et,
(LONG)bmp.cy,
pbBuffer,
pbmi);

GpiSetBitmap(hps, hbmOld);

5-422 PM Programming Reference

GpiSetBitmapDimension
Set Bit-Map Dimension

#define INCL_GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

BOOL GpiSetBitmapDimenslon (HBITMAP hbm, PSIZEL pslzlBitmapDimension)

This function associates a width and height with a bit map, in units of 0.1 millimeter.

Parameters
hbm (HBITMAP) - input

Bit-map handle.

psizlBitmapDimenslon (PSIZEL) - input
Width and height of bit map.

The width and height, respectively, of the bit map in units of 0.1 millimeter.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HBITMAP

PMERR_HBITMAP _BUSY

Remarks

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

The values set are not used internally by the system, but are retained with the bit map and can be
retrieved with GpiQueryBitmapDimension.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapld
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap

Chapter 5. Graphics Functions 5-423

GpiSetBitmapDimension
Set Bit-Map Dimension

Example Code
This example uses the GpiSetBitmap and GpiSetBitmapDimension function to set a newly created bit
map in the device context for the associated presentation space. Once set, the example initializes
the bit-map image by drawing in the presentation space.

#define INCL_GPIBITMAPS
#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
BOOL fSuccess; /* Success indicator */
BITMAPINFOHEADER2 bmp = {12, 64, 64, 1, 1};/* 64x64 mono bit map */
HBITMAP hbm, hbmOld;
POINTL ptlStart = { e, e };
POINTL apt1Triangle[3] = { 32, 32, 63, 63, 0, G };
POINTL ptl = { 63, 63 };

SIZEL sizlBitmapDimension = {100, 100};
/* The width and height, */
/* respectively, of the bit */
/* map in units of e.1 */
/*millimeter. */

hbm = GpiCreateBitmap(hps,
&bmp,
eL,
NULL,
NULL);

/* Set the bit map and draw in it. */

fSuccess = GpiSetBitmapDimension(hbm,
&sizlBitmapDimension);

hbmOld = GpiSetBitmap(hps, hbm); /*sets bit map
in device context */

GpiMove(hps, &ptlStart);
GpiBox(hps, DRO_FILL, &ptl, 0L, 0L); /*fills in the bit map*/
GpiPolyline(hps, /* draws a triangle */

ll,
aptlTriangle);

GpiSetBitmap(hps, hbmOld); /* restores the old bit map*/

5-424 PM Programming Reference

GpiSetBitmapld
Set Bit-Map Identifier

#define INCL_GPIBITMAPS /*Or use INCL_GPI or INCL_PM */

BOOL GplSetBltmapld (HPS hps, HBITMAP hbm, LONG ILcld)

This function tags a bit map with a local identifier, so that it can be used as a pattern set, containing a
single member.

Parameters
hps (HPS) - input

Presentation-space handle.

hbm (HBITMAP) - input
Bit-map handle.

The bit map must not be currently selected into a device context (see GpiSetBitmap).

ILcid (LONG) - input
Local identifier with which the bit map is to be tagged.

Valid values are in the range 1 through 254.

It is an error if the local identifier is already used to refer to a font or bit map.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HBITMAP

PMERR_INV_SETID

PMERR_SETID_IN_USE

PMERR_BITMAP _IN_USE

PMERR_HBITMAP _BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid bit-map handle was specified.

An invalid setid parameter was specified.

An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

An attempt was made either to set a bit map into a device
context using GpiSetBitmap while it was already selected
into an existing device context, or to tag a bit map with a
local pattern set identifier (setid) using GpiSetBitmapld
while it was already tagged with an existing setid.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

Chapter 5. Graphics Functions 5-425

GpiSetBitmapld
Set Bit-Map Identifier

Remarks
To use the bit map for area shading (or as the pattern in a GpiBitBlt or GpiWCBitBlt operation), a
GpiSetPatternSet must be issued with the specified local identifier.

Any bit map of a format supported by the device can be specified. However, it may be simplified
before use (see GpiSetPatternSet).

GpiDeleteSetld can subsequently be used to release the tag.

Related Functions
• GpiBitBlt
• GpiCreateBitmap
• Gpi DeleteBitmap
• Gpi DrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle
• GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiWCBitBlt
• WinDrawBitmap
• WinGetSysBitmap
• GpiDeleteSetld
• GpiSetPatternSet

Example Code
This function tags a bit map with a local identifier, so that it can be used as a pattern set, containing a
single member.

#define INCL_GPIBITMAPS
#include <OS2.H>

HPS hps; /* Presentation space handle */
HBITMAP hbm; /* bit-map handle. */
LONG lid = 23; /* local identifier. */

GpiSetBitmapid(hps,
hbm,
lid);

5-426 PM Programming Reference

GpiSetCharAngle
Set Character Angle

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetCharAngle (HPS hps, PGRADIENTL pgradlAngle)

This function specifies the angle of the baseline for the characters in a string, as a relative vector.

Parameters
hps (HPS) - input

Presentation-space handle.

pgradlAngle (PGRADIENTL) - input
Baseline angle.

The baseline angle is defined in terms of the relative coordinates of the point pgrad/Angle (x, y).

If both x and y are 0, the character angle is reset to the default value. This default value is (1,0),
unless changed with GpiSetDef Attrs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The coordinates of the point pgrad/Angle specify integer values for the coordinates of the end of a
line starting at the origin (0,0); the base line for subsequent character strings is parallel to this line.

The effect of the baseline angle attribute depends on the value of the character mode attribute (see
GpiSetCharMode), and whether the current font is an outline or a raster font, as described below.

When the character mode is set to CM_MODE1, and the current font is a raster font, the character
angle can be ignored.

When the character mode is set to CM_MODE2, and the current font is a raster font, the angle is used
to determine the position of each character, but the orientations of characters within the character
box may not be affected by changes in character angle. If this is so, the characters are positioned so
that the lower left-hand corners of the character definitions are placed at the lower left-hand corners
of the character boxes after all transforms have been applied. This is illustrated in Figure 5-7 on
page 5-428.

Chapter 5. Graphics Functions 5-427

GpiSetCharAngle
Set Character Angle

For illustrative purposes, the figure shows all character reference points at their bottom left-hand
corner.

ax= 2
ay = 1

Figure 5-7. Character Angle and Mode-2 Text Positioning

When the character mode is set to CM_MODE3, or when the current font is an outline font, the angle
is observed accurately, and the character boxes are rotated to be normal (perpendicular) to the
character baseline. If the world coordinate system is such that one x-axis unit is not physically equal
to one y-axis unit, a rotated character string appears to be sheared.

This function must not be issued in an area bracket.

The attribute mode determines whether the current value of the baseline angle attribute is
preserved.

Related Functions
• GpiQueryCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

5-428 PM Programming Reference

Graphic Elements and Orders
Element Type: OCODE_GSCA

GpiSetCharAngle -
Set Character Angle

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Angle

Element Type: OCODE_GPSCA
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Angle

Example Code
This function resets the angle of the baseline for the characters in a string, as a relative vector.

#define INCL_GPIPRIMITIVES
#include <052.H>

HPS hps;
GRADIENTL gradlAngle = {0L, 0L};
GpiSetCharAngle(hps,

&gradlAngle);

Chapter 5. Graphics Functions 5-429

GpiSetCharBox
Set Character Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetCharBox (HPS hps, PSIZEF pslzfxBox)

This function sets the current character-box attribute to the specified value.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzfxBox (PSIZEF) - input
Character-box size in world coordinates.

The width determines the spacing of consecutive characters along the bas.eline.

Both width and height can be positive, negative, or zero.

When either parameter is negative, the spacing occurs in the opposite direction to normal and
each character is drawn reflected in character-mode 3. Thus, for example, a negative height in
the standard direction in mode 3 means that the characters are drawn upside down, and the
string drawn below the baseline (assuming no other transformations cause inversion).

A zero character width or height is also valid; here, the string of characters becomes a line. If
both are zero, the string is drawn as a single point.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The parameter psizfxBox specifies values for the width and height of a character box in world
coordinates.

Whether these values are used when character strings are drawn depends on the type of font being
used (raster or outline), and on the value of the character mode attribute (see the GpiSetCharMode
function).

For raster fonts, where the character box is used only for positioning in character mode CM_MODE2,
the character box width corresponds to the /Emlnc font metric (see FONTMETRICS). For
proportionally-spaced raster fonts, the effective spacing for a given character is the character box
width, scaled by the ratio of that character's width to /Emlnc.

For outline fonts, characters are defined in font definition space. The sXDeviceRes and sYDeviceRes
fields (see FONTMETRICS) define a rectangle in font definition space that is mapped to the character
box rectangle (modified by the character angle and shear attributes) in world coordinates.
sYDeviceRes corresponds to the font point size in font definition space, and therefore the character
box height corresponds to the font point size in world coordinates. This is typically less than the
/MaxBaselineExt.

5-430 PM Programming Reference

GpiSetCharBox
Set Character Box

The effective width of each character from an outline font is the character box width, scaled by the
ratio of the width of the character to sXDeviceRes. The /AveCharWidth (for a proportionally-spaced
font) will therefore typically be smaller than the character box width. Indeed, because of differences
in font design, /AveCharWidth and /MaxBaselineExt vary between different fonts, even when the
character box dimensions are the same.

/Emlnc and /EmHeight are always equal to the character box width _and height, respectively.

To cause characters of a given point-size to be generated using an outline font, establish a world
coordinate space with specific metrics (for example, specify PU_ TWIPS on GpiCreatePS), and set the
character box height to the required point size. Because sXDeviceRes and sYDeviceRes are
normally equal, the character box width should also be set equal to ·the height, if characters are
required with the same aspect ratio as defined in the font (assuming that world coordinate space is
isotropic).

The initial default value of the character box is the device-coordinates value returned by
DevQueryCaps (CAPS_ GRAPHICS_ CHAR_ WIDTH and CAPS_GRAPHICS_CHAR_HEIGHT), for the
currently associated device, converted to page coordinates.

Note: In general the initial default value is rectangular, and to avoid character distortion, the
character box should normally be set explicitly to be square if an outline font might be used
(assuming that world coordinate space is isotropjc).

The default value can be changed with GpiSetDefAttrs.

GpiSetCharBox must not be issued in an area bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the character-box
size attribute is preserved.

Related Functions
• GpiQueryCharBox
• GpiSetCharAngle
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop·
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Chapter 5. Graphics Functions 5-431

GpiSetCharBox -
Set Character Box

Graphic Elements and Orders
Element Type: OCODE_GSCC
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE. Note that GpiCreatelogFont can also generate this element type.

Order: Set Character Cell

Element Tyoe: OCODE_GPSCC
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Cell

Example Code
This function sets the current character-box attribute to the specified value.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
SIZEF sizfCharBox; /* Character-box size in */

/* world coordinates. */

sizfCharBox.cx = 8L<<16;
sizfCharBox.cy = 20L<<16;
GpiSetCharBox(hps,

/* values are shifted to the */
/* to make them fixed. */

&sizfCharBox);

5-432 PM Programming Reference

GpiSetCharBreakExtra
Set Character Break Extra

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetCharBreakExtra (HPS hps, FIXED fxBreakExtra)

This function specifies an extra increment to be used for spacing break characters in a string.

Parameters
hps (HPS) - input

Presentation-space handle.

fxBreakExtra (FIXED) - input
Character-break-extra value.

The value can be negative, 0, or positive:

• A negative value reduces the effective width of break characters.

• A value of O results in normal spacing.
• A positive value increases the effective width of break characters.

The value is in world coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The character-break-extra attribute provides a spacing value that increases or decreases the

spacing for break characters in a string. The break character is defined by the font, and can be found

by calling GpiQueryFonts (sBreakChar field in the FONTMETRICS structure).

The break-extra spacing is additional to the spacing generated for other reasons, for example:

• The spacing determined by the font, including proportional spacing and kerning, if applicable

• The vector of increment values, see GpiCharStringPos, GpiCharStringPosAt,

GpiQueryCharStringPos and GpiQueryCharStringPosAt

• Extra spacing, see GpiSetCharExtra.

Break-extra spacing applies to character strings either within or outside a path definition (see

GpiBeginPath). The effect of the character-break-extra attribute applies whatever the value of the

character-mode attribute (see GpiSetCharMode), and for both outline and raster fonts.

This function must not be issued in an area bracket.

The initial default value of the character-break-extra attribute is 0, which gives normal spacing. This

default value can be changed with GpiSetDefAttrs.

Chapter 5. Graphics Functions 5-433

GpiSetCharBreakExtra -
Set Character Break Extra

The attribute mode (see GpiSetAttrMode) determines whether the current value of the
character-break-extra attribute is preserved.

Graphic Elements and Orders
Element Type: OCODE_GSCBE
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Break Extra

Element Type: OCODE_GPSCBE
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Break Extra

Example Code
This function specifies an extra increment to be used for spacing break characters in a string.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
FIXED fxBreak; /* Character-break-extra value. */

/*world coordinates. */

fxBreak = 8L<<16; /* values are shifted to the */
/* to make them fixed. */

GpiSetCharBreakExtra(hps,
fxBreak);

5-434 PM Programming Reference

GpiSetCharDirection
Set Character Direction

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetCharDlrectlon (HPS hps, LONG IDlrectlon)

This function determines the direction in which the characters in a string are drawn relative to the

baseline.

Parameters
hps (HPS) - input

Presentation-space handle.

IDlrectlon (LONG) - input
Character direction:

CHDIRN_DEFAUL T The default; the same as CHDIRN_LEFTRIGHT (unless changed with

GpiSetDefAttrs)

CHDIRN_LEFTRIGHT Character boxes are arranged parallel to, and in the same direction as,

the baseline. This is the usual convention for Roman text.

CHDIRN_TOPBOTTOM Character boxes are arranged in columns directed 90 degrees clockwise

from the baseline. This is the usual convention for Chinese characters.

This option can be used for drawing Roman text vertically (a y-axis title

on a graph, for example). The reference point within the character

definition is at the center of the character, along the x-direction, in this

case.

CHDIRN_RIGHTLEFT Character boxes are arranged parallel to, but in the reverse of, the

baseline direction. This is the usual convention for Arabic text.

CHDIRN_BOTTOMTOP Character boxes are arranged in columns directed 90 degrees

counterclockwise from the baseline. The reference point within the

character definition is at the center of the character, along the

x-direction, in this case.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV_CHAR_DIRECTION_ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid character direction attribute value was
specified or the default value was explicitly specified with

GpiSetAttrs instead of using the defaults mask.

Chapter 5. Graphics Functions 5-435

GpiSetCharDirection
Set Character Direction

Remarks
This function must not be issued in an area bracket. The attribute mode determines whether the
current value of the character direction attribute is preserved. This diagram shows how the origin of
characters changes when the direction changes:

t t t t
start end end start

CHDIRN_LEFTRIGHT CHDIRN_RIGHTLEFT

start end • •
A c

B B

c A

t t
end start

CHDIRN_TOPBOTTOM CHDIRN_BOTTOMTOP

Figure 5-8. Character Drawing Directions and Character Box Origins

Related Functions
• GpiQueryCharDirection
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Graphic Elements and Orders
Element Type: OCODE_GSCD
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Direction

5-436 PM Programming Reference

Element Tyoe: OCODE_GPSCD

GpiSetCharDirection -
Set Character Direction

This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set ·character Direction

Example Code
This function determines the direction in which the characters in a string are drawn relative to the

baseline. In this example, the direction is reset to the default, or left-to-right.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle

GpiSetCharDirection(hps,
CHDIRN_DEFAUL T);

*/

Chapter 5. Graphics Functions 5-437

GpiSetCharExtra
Set Character Extra

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetCharExtra (HPS hps, FIXED fxExtra)

This function specifies an extra increment to be used for spacing characters in a string.

Parameters
hps (HPS) - input

Presentation-space handle.

fxExtra (FIXED) - input
Character-extra value.

The value can be negative, 0, or positive:

• A negative value forces the characters closer together.
• A value of 0 results in normal spacing.
• A positive value forces the characters further apart.

The value is in world coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The character-extra attribute provides a spacing value that increases or decreases the spacing
between characters in a string. It applies to all characters in a font, including the break character and
is additional to the spacing generated for other reasons, for example:

• The spacing determined by the font, including proportional spacing and kerning, if applicable

• The vector of increment values, see GpiCharStringPos, GpiCharStringPosAt,
GpiQueryCharStringPos and GpiQueryCharStringPosAt

• Break-extra spacing, see GpiSetCharBreakExtra.

Extra spacing applies to character strings either within or outside a path definition (see
GpiBeginPath). The effect of the character-extra attribute applies whatever the value of the
character-mode attribute (see GpiSetCharMode), and for both outline and raster fonts.

This function must not be issued in an area bracket.

The initial default value of the character-extra attribute is 0, which gives normal spacing. This default
value can be changed with GpiSetDefAttrs.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the
character-extra attribute is preserved.

5-438 PM Programming Reference

Graphic Elements and Orders
Element Type: OCODE_GSCE

GpiSetCharExtra -
Set Character Extra

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Extra

Element Type: OCODE_ GPSCE
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Extra

Example Code
This function specifies an extra increment to be used for spacing characters in a string.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
FIXED fxExtra; /* extra character.

fxExtra = MAKEFIXED(0,0) /* normal spacing. */
GpiSetCharExtra(hps,fxExtra);

Chapter 5. Graphics Functions 5-439

GpiSetCharMode
Set Character Mode

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetCharMode (HPS hps, LONG IMode)

This function controls the character mode used when drawing a character string.

Parameters
hps (HPS) - input

Presentation-space handle.

I Mode (LONG) - input
Character mode:

CM_DEFAULT The default; the same as CM_MODE1 (unless changed with GpiSetDefAttrs).

CM_MODE1 The font selected by means of GpiSetCharSet can be either a raster font or an
outline font.

CM_MODE2

CM_MODE3

Returns

If it is a raster font, the position of characters after the first character is
determined by the font metrics information, and by the character direction,
character extra, and character break extra attributes. If it is an outline font, the
behavior is as if the character mode is CM_MODE3.

The font selected by means of GpiSetCharSet can be either a raster font or an
outline font.

If it is a raster font, the position of characters after the first character is
determined by the font metrics information, and some character attributes,
namely, GpiSetCharAngle, GpiSetCharBox, GpiSetCharDirection,
GpiSetCharExtra, GpiSetCharBreakExtra, and GpiSetCharShear (the latter is
relevant only for character directions of CHDIRN_TOPBOTTOM and
CHDIRN_BOTTOMTOP). If it is an outline font, the behavior is as if the
character mode is CM_MODE3.

All character attributes are used for positioning (together with the positioning
information in the font), and for scaling, rotating, and shearing the characters.

The font selected by means of GpiSetCharSet must be an outline font; an error
is raised if an attempt is made to draw a character string in CM_MODE3, and
the selected font is a raster font.

Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _CHAR_MODE_ATTR

5-440 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid character mode attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

GpiSetCharMode
Set Character Mode

Remarks
The value of the /Mode parameter controls whether the character attributes affect the positioning of
characters, as follows:

Table 5-1. Use of Character Attributes in each Character Mode

Character Font Type Character Attributes (Angle, Shear, and Box)
Mode

Mode 1 Raster Ignored

Outline Used

Mode2 Raster Attribute information is used to position characters; characters are not sheared,
rotated, or scaled.

Outline Used

Mode3 Raster An error is raised when an attempt is made to draw a character string.

Outline Used

This function must not be issued in an area bracket.

The attribute mode {see GpiSetAttrMode) determines whether the current value of the
character-mode attribute is preserved.

Related Functions
• GpiQueryCharMode
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Graphic Elements and Orders
Element Type: OCODE_GSCR
This element type is generated if the attribute mode {see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Precision

Element Type: OCODE_GPSCR
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Precision

Chapter 5. Graphics Functions 5-441

GpiSetCharMode -
Set Character Mode

Example Code
In this example the GpiSetCharMode call is used to set the character mode to raster or outline when
drawing a string.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */

GpiSetCharMode(hps,
CM_MODE3); /*The font selected by */

/* means of */
/* GpiSetCharSet can be */
/* either a raster font or */
/* an outline font. */

5-442 PM Programming Reference

GpiSetCharSet
Set Character Set

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GpiSelCharSel (HPS hps, LONG Held)

This function sets the current value of the character-set attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

Heid (LONG) - input
Character-set local identifier:

LCID_DEFAULT Default (can be set explicitly with GpiSetDefAttrs).

1 -254 Identifies a logical font.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _ CHAR_SET _ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid character setid attribute value was specified or .
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using GpiSetCharSet,
GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs to
select a font that is larger than the maximum size {64Kb)
supported by the target device driver.

Remarks
This function must not be issued in an area bracket.

The attribute mode {see GpiSetAttrMode) determines whether the current value of the character-set
attribute is preserved.

Chapter 5. Graphics Functions 5-443

GpiSetCharSet -
Set Character Set

Related Functions
• GpiCreateLogFont
• GpiQueryCharSet
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Graphic Elements and Orders
Element Tyoe: OCODE_ GSCS
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Set

Element Type: OCODE_GPSCS
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Set

Example Code
This function sets the current value of the character-set attribute.

#define INCL_GPIPRIMITIVES
#include <052.H>

HPS hps; /* Presentation space handle */
LONG llcid = 32L;

GpiSetCharSet(hps, llcid);

5-444 PM Programming Reference

GpiSetCharShear -
Set Character Shear

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetCharShear (HPS hps, PPOINTL pptlAngle)

This function sets the character-shear attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlAngle (PPOINTL) - input
Character shear vector.

With reference to Figure 5-9 on page 5-446, the shear angle is defined in terms of the relative
coordinates of the point ppt/Angle (x, y).

If xis O and y is 1 (initial default), "upright" characters result. If x and y are both positive or both
negative, the characters slope from bottom-left to top-right. If x and y are of opposite signs, the
characters slope from top-left to bottom-right. No character inversion ever takes place as a
result of a shear alone.

Usually, it is an error to specify 0 for y, because this implies an "infinite" shear. However, if
both x and y are 0, the attribute is set to the default value. This can be changed from the initial
default with GpiSetDefAttrs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _ CHAR_SHEAR_ATTR

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid character shear attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

An invalid coordinate value was specified.

The coordinates of the point ppt/Angle (x, y), specify integer values that identify the end coordinates
of a line originating at (0,0) (see Figure 5-9 on page 5-446). The vertical strokes in subsequent
character strings are drawn parallel to the defined line. The top of the character box remains
parallel to the character baseline (which may itself be rotated).

Whether this attribute is used when character strings are drawn depends on the type of font being
used (raster or outline), and on the value of the character mode attribute (see GpiSetCharMode). If it
is used, then with character directions of CHDIRN_ TOPBOTTOM and CHDIRN_BOTTOMTOP (see
GpiSetCharDirection) the whole string is tilted by the shear angle, in addition to the individual
characters being sheared if the current font is an outline font.

This function must not be issued in an area bracket.

Chapter 5. Graphics Functions 5-445

GpiSetCharShear -
Set Character Shear

The attribute mode (see GpiSetAttrMode) determines whether the current value of the character
shear attribute is preserved.

ax
• <O

/
/

/

/

/
/

/

.r·----- ------;11-------------•
/ ,' ,,,· ,' . ,

./ ,'
/ , ,,,· ,

Shear ./ ,/ ay
angle// //

/

/
/

/
,'

,' ,
/

, ,

Character baseline

Figure 5-9. Character Shear

Related Functions
• GpiQueryCharShear
• GpiSetCharAngle
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Graphic Elements and Orders
Element Type: OCODE_ GSCH

E

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Character Shear

Element Tyoe: OCODE_GPSCH
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Character Shear

5-446 PM Programming Reference

I.,

:o
; Example Code

GpiSetCharShear -
Set Character Shear

This function sets the character-shear attribute.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
POINTL ptlAngle = {50L, 70L}; /* character shear vector. */

GpiSetCharShear(hps,
&ptlAngle); /* the shear */

/* angle is defined in terms */
/* of the relative */
/* coordinates of the point */
/* pptlAngle. This can be */
/* changed from the initial */
/* default with */
/* GpiSetDefAttrs. */

Chapter 5. Graphics Functions 5-447

GpiSetClipPath
Set Clip Path

#define INCL_GPIPATHS /*Or use INCL_GPI or INCL_PM */

BOOL GplSetCllpPath (HPS hps, LONG IPath, LONG IOptlons)

This function selects a path as the current clip path.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Path control flag.

0 The current clip path stops being the current clip path; the current clip path is to be reset to
an infinite one (that is, no clipping).

1 The path that has been defined is to be intersected with the current clip path.

IOptions (LONG) - input
Options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can then be ORed together to generate the parameter.

How to construct the path interior (see also GpiBeginArea):

SCP _ALTERNATE Construct interior in alternate mode.

SCP _WINDING Construct interior in winding mode. This value must be selected if the path
has been modified using GpiModifyPath.

The default is SCP _AL TERNA TE.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PATH_ID

PMERR_INV_CLIP _PATH_OPTIONS

PMERR_PATH_UNKNOWN

5-448 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid options parameter was specified with
GpiSetClipPath.

An attempt was made to perform a path function on a path
that did not exist.

GpiSetClipPath
Set Clip Path

Remarks
The clip path (bound in device coordinates when the path is defined) is used for all subsequent

drawing.

Any open figures within the path are closed automatically.

The boundaries of the area defined by the path are considered to be part of the interior, so that a

point on the boundary is not clipped.

The clip path is reset to no clipping (no path selected) at the start of a root segment (subject to the

fast chaining segment attribute), or when a GpiResetPS function is issued.

After a path is selected as the clip path, it cannot be reused for any other purpose. When it is

superseded as the clip path, it is discarded.

Related Functions
• GpiBeginPath
• GpiEndPath
• GpiFillPath
• GpiModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiStrokePath
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipPath
• GpiSetClipRegion

Graphic Elements and Orders
Element Type: OCODE_GSCPTH

Order: Select Cllp Path

Chapter 5. Graphics Functions 5-449

GpiSetClipPath
Set Clip Path

Example Code
This function selects a path as the current clip path.

#define INCL_GPIPATHS
#include <OS2.H>

HPS hps; /* Presentation space handle */

GpiSetClipPath(hps,
0L, /* The current clip path */

/* stops being the */
/* current clip path; the */
/*current clip path is to */
/* be reset to an infinite */
/* one (that is, no */
/* clipping) */

SCP_ALTERNATE);
/* Construct interior in */
/* alternate mode. */

5-450 PM Programming Reference

)

GpiSetClipRegion
Set Clip Region

#define INCL GPIREGIONS /*Or use INCL_GPI or INCL_PM */

LONG GplSetClipReglon (HPS hps, HRGN hrgn, PHRGN phrgnOld)

This function defines the region to be used for clipping, when any drawing takes place through the
specified presentation space.

Parameters
hps (HPS) - input

Presentation-space handle.

The presentation space must be currently associated with a device context of the correct device
class (defined when the region is first created).

hrgn (HRGN) - input
Region handle.

If hrgn is null, the clipping region is set to no clipping (its initial state).

phrgnOld (PHRGN) - output
Old region handle (if any):

HRGN_ERROR Error

NULLHANDLE Null handle (no region selected)

Otherwise Old region handle.

Returns
Complexity of clipping and error indicators:

The clipping complexity information includes the combined effects of:

• Clip path
• Viewing limits
• Graphics field
• Clip region
• Visible region (windowing considerations).

RGN_NULL Null region

RGN_RECT Rectangular region

RGN_COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HRGN

PMERR_HRGN_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Chapter 5. Graphics Functions 5-451

GpiSetClipRegion
Set Clip Region

Remarks
While a region is in use as a clip region, the calls GpiOffsetClipRegion, GpiExcludeClipRectangle and
GpilntersectClipRectangle cause it to be changed. These changes persist after the region has been
deselected. The clip region cannot, however, be used for any other region operations, nor can it be
selected into any other presentation space as a clipping region, until it is deselected.

The coordinates of the region are taken to be device coordinates within the device context.

The previous clip region, if any, is converted to a region, and a handle to it is returned. This can be
used in a subsequent GpiSetClipRegion to reinstate the same clipping as before. If no clip region
exists, a null handle is returned. It is the responsibility of the application to free the previous clip
region {if any) with GpiDestroyRegion, even if this region was not originally created explicitly by the
application.

Nole: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Related Functions
• GpiCreateRegion
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiPtVisible
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiRectVisible
• WinExcludeUpdateRegion

5-452 PM Programming Reference

\
I

GpiSetColor -
Set Color

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM. Also in COMMON section*/

BOOL GplSetColor (HPS hps, LONG IColor)

This function sets the current value of the color attribute for each of the individual primitive types.

Parameters
hps (HPS) - input

Presentation-space handle.

IColor (LONG) - input
Color:

CLR_FALSE All color planes are Os.

CLR_TRUE All color planes are 1s.

CLR_DEFAUL T Set to default value. This is a device-dependent color which, for the
default color table, provides a contrasting color to CLR_BACKGROUND
For a display, it is the default window text color (SYSCLR_WINDOWTEXT:
see WinSetSysColors). For a printer, it is a color that contrasts with the
paper color. The default can be changed by setting new system colors
from the control panel for the display, or by selecting a paper color for a
printer, if allowed by the device driver. It can also be set explicitly, using
GpiSetoefAttrs.

CLR_WHITE White (default color table, or index=RGB loaded color table). For a
loaded, realized, color table it is the nearest available color to white.

CLR_BLACK Black (default color table, or index=RGB loaded color table). For a
loaded, realized, color table, it is the nearest available color to black.

CLR_BACKGROUND Reset color, used by GpiErase. This is the natural background color for
the device. For a display, it is the default window color
(SYSCLR_WINDOW: see WinSetSysColors) for the default color table. For
a printer, it is the paper color. For a loaded color table, it is color index
0. For an RGB color table, it is color 000000 (black).

CLR_BLUE Blue (default color table).

CLR_RED Red (default color table).

CLR_PINK Pink (default color table).

CLR_GREEN Green (default color table).

CLR_CYAN Cyan (default color table).

CLR_YELLOW Yellow (default color table).

CLR_NEUTRAL Neutral (default color table). A device-dependent color, that for the
default color table provides a contrasting color to CLR_BACKGROUND.
For a display, it is the default window text color (SYSCLR_WINDOWTEXT:
see WinSetSysColors). For a printer, it is a color that contrasts with the
paper color. For a loaded color table, it is color index 7; in RGB mode it
is interpreted as color 000007.

CLR_DARKGRAY Dark gray (default coior table).

CLR_DARKBLUE Dark blue (default color table).

CLR_DARKRED Dark red (default color table).

Chapter 5. Graphics Functions 5-453

GpiSetColor
Set Color

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCYAN

CLR_BROWN

CLR_PALEGRAY

Returns
Success indicator:

Dark pink (default color table).

Dark green (default color table).

Dark cyan (default color table).

Brown (default color table).

Pale gray (default color table).

For a loadable color table, values 0 through n correspond to the color
index (or RGB) values.

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_COLOR_ATTR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid color attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

The current values for each primitive type are updated. The attribute mode (see GpiSetAttrMode)
determines whether the current values of the individual color attributes are preserved. If so, they
are restored by a single GpiPop function.

An attempt to set a negative color value, other than one for which a constant is defined, causes the
error PMERR_INV_COLOR_ATTR to be logged. Other color values are allowed, although an error is
generated when the color value is needed for drawing if it is not valid for the color table in use at that
time (see GpiCreatelogColorTable).

For details of how colors are handled on monochrome devices, see GpiCreatelogColorTable.

Related Functions
• GpiQueryColor
• GpiSetBackColor
• GpiSetBackMix
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetMix
• WinSetSysColors

5-454 PM Programming Reference

~

)

GpiSetColor -
Set Color

Graphic Elements and Orders
Element Type: OCODE_GSICOL
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Indexed Color

Element Type: OCODE_GPSICOL
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Indexed Color

Example Code
This example draws a blue line.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */
POINTL ptll, ptl2;

GpiSetColor(hps, CLR_BLUE);
GpiMove(hps, &ptll);
GpiLine(hps, &ptl2);

/* Move to start point
/* Draw new line

*/
*/

Chapter 5. Graphics Functions 5-455

GpiSetCp
Set Code Page

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetCp (HPS hps, ULONG ulCodePage)

This function sets the default graphics code page.

Parameters
hps (HPS) - input

Presentation-space handle.

ulCodePage (ULONG) - input
Code-page identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _CODEPAGE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid code-page parameter was specified with
GpiSetCp.

The default graphics code page is used for the default font (unless it is overridden by
GpiCreatelogFont). It is also used for other fonts for which the usCodePage field in the FATTRS
structure for GpiCreatelogFont is specified as 0. This includes existing fonts that are defined in this
way.

Any code page that is defined in the CONFIG.SYS file, or is a supported EBCDIC code page, can be
selected.

The list of available code pages is returned by WinQueryCplist.

When a GPI presentation space is first created, the code page in force is that defined by the process
code page.

If this function occurs within a path definition when the drawing mode (see GpiSetDrawingMode) is
retain or draw-and-retain, its effect is not stored with the definition.

Nole: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

5-456 PM Programming Reference

Related Functions

GpiSetCp -
Set Code Page

The DOS calls DosGetCp, DosSetCp, and DosSetProcCp are related to GpiSetCP, but they are not a
part of the Presentation Manager, for more information on the mentioned DOS calls refer to the
Control Program Reference.

• GpiQueryCurrentPosition
• GpiQueryCurrentPosition
• GpiCreateLogFont
• WinCpTranslateChar
• WinCpTranslateString
• WinQueryCp
• WinQueryCpList
• WinSetCp

Example Code
This example sets the code page to 850.

#define INCL_GPILCIDS
#include <OS2.H>

HPS hps; /* Presentation space handle */
ULONG ulCodePage = 859;

GpiSetCp(hps, ulCodePage);

Chapter 5. Graphics Functions 5-457

GpiSetCurrentPosition
Set Current Position

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetCurrentPosltlon (HPS hps, PPOINTL pptlPoint)

This function sets the current position to the specified point.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPolnt (PPOINTL) - input
New value of current position.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

This function also has the effect of resetting the position within a line-type sequence, and, if within an
area, of starting a new closed figure and causing any previous one to be closed if necessary.

This function is equivalent to the GpiMove function except that, if the current attribute mode is
AM_PRESERVE (see GpiSetAttrMode), the current position is saved before being set to the new
value, so that it can be restored using the GpiPop function.

Related Functions
• GpiMove
• GpiQueryCurrentPosition
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs

Graphic Elements and Orders
Element Type: OCODE_GSCP
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Current Position

Element Type: OCODE_ GPSCP
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Current Position

5-458 PM Programming Reference

\
')

Example Code

GpiSetCurrentPosition -
Set Current Position

The position of the top-left corner of the window rectangle is recorded and selected as the current
position before the image is drawn.

#define INCL_GPIPRIMITIVES
#include <OS2.H>
HPS hps; /* Presentation space handle */
HWND hwndClient; /* client window handle. */
RECTL rel;
POINTL vptlSave;

WinQueryWindowRect(hwndClient, &rel);
vptlSave.x = rcl.xleft;
vptlSave.y = rcl.yTop;
GpiSetCurrentPosition(hps, &vptlSave);

Chapter 5. Graphics Functions 5-459

GpiSetDefArcParams -
Set Default Arc Parameters

#define INCL GPIDEFAULTS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetDefArcParams (HPS hps, PARCPARAMS parcpArcParams)

This function specifies the default values of the arc parameters (see GpiSetArcParams).

Parameters
hps (HPS) - input

Presentation-space handle.

parcpArcParams (PARCPARAMS) - input
Default arc parameters.

This structure has four elements p, q, r, and s.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

The arc parameters are reset to their default values at the following times:

• When the presentation space is associated with a device context (see GpiAssociate).

• When GpiResetPS is issued.

• When drawing of a chained segment begins or ends (see GpiOpenSegment and
GpiCloseSegment for more details).

The initial default values of the arc parameters, when the presentation space is first created, are:

p = 1 r = a
s = a q = 1

The default values can be changed by GpiSetDefArcParams. Changing the default values has an
immediate effect on the current arc parameters, if these are currently set to the default value.

See "GpiSetArcParams - Set Arc Parameters" on page 5-398 for a description of the arc
parameters.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

5-460 PM Programming Reference

\
I

y' Related Functions
• GpiFullArc
• GpiPartialArc
• GpiPointArc
• GpiQueryDef ArcParams
• GpiSetArcParams
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs

Example Code

GpiSetDefArcParams -
Set Default Arc Parameters

This function specifies the default values of the arc parameters (see GpiSetArcParams).

#define INCL_GPIDEFAULTS
#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle

ARCPARAMS ArcParams = {19L, /* p */
29L, /* q */
19L, /* r */
39L}; /* 1 */

*/

/* This structure has four */
/* elements p, q, r, and s. */

GpiSetDefArcParams(hps, &ArcParams);

Chapter 5. Graphics Functions 5-461

GpiSetDefAttrs -
Set Default Attributes

#define INCL_GPIDEFAULTS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetDefAttrs (HPS hps, LONG IPrlmType, ULONG flAttrMask, PBUNDLE ppbunAttrs)

This function sets the default values of attributes for the specified primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IPrlmType (LONG) - input
Primitive type.

The primitive type for which default attributes are to be set:

PRIM_LINE Line and arc primitives

PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAttrMask (ULONG) - input
Attributes mask.

Each flag that is set indicates that the ppbunAttrs buffer contains data for the corresponding
attribute. If all the flags in f/AttrMask are 0, the ppbunAttrs buffer address is not used.

Line attributes:

LBB_COLOR

LBB_MIX_MODE

LBB_WIDTH

LBB_ GEOM_ WIDTH

LBB_TYPE

LBB_END

LBB_JOIN

Character attributes:

Line color

Line mix

Line width

Geometric line width

Line type

Line end

Line join.

CBB_COLOR Character color

CBB_BACK_COLOR Character background color

CBB..:.MIX_MODE Character mix

CBB_BACK_MIX..:_MODE Character background mix

CBB_SET Character set

CBB_MODE Character mode

CBB_BOX Character box

CBB_ANGLE Character angle

CBB_SHEAR Character shear

CBB_DIRECTION Character direction

5-462 PM Programming Reference

) CBB_EXTRA

CBB _BREAK_EXTRA

Marker attributes:

Character extra

Character extra

MBB_COLOR Marker color

MBB_BACK_COLOR Marker background color

MBB_MIX_MODE Marker mix

MBB_BACK_MIX_MODE Marker background mix

MBB_SET Marker set

MBB_SYMBOL Marker symbol

MBB_BOX Marker box.

Pattern attributes (areas):

ABB_ COLOR Area color

ABB_BACK_COLOR Area background color

ABB_MIX_MODE Area mix

ABB_BACK_MIX_MODE Area background mix

ABB_SET Pattern set

ABB_SYMBOL Pattern symbol

ABB_REF _POINT Pattern reference point.

Image attributes:

IBB_COLOR Image color

IBB_BACK_COLOR Image background color

IBB_MIX_MODE Image mix

IBB_BACK_MIX_MODE Image background mix.

ppbunAttrs (PBUNDLE) - input
Default attribute values.

GpiSetDefAttrs
Set Default Attributes

This is a structure containing default attribute values for each attribute for which the f/AttrMask
flag is set, at the correct offset as specified below for the particular primitive type.

Line attributes: ppbunAttrs consists of a LINEBUNDLE structure.

Character attributes: ppbunAttrs consists of a CHARBUNDLE structure.

Marker attributes: ppbunAttrs consists of a MARKERBUNDLE structure.

Pattern attributes (areas): ppbunAttrs consists of an AREABUNDLE structure.

Image attributes: ppbunAttrs consists of an IMAGEBUNDLE structure.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR.JNV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-463

GpiSetDefAttrs
Set Default Attributes

PMERR_INV _PRIMITIVE_ TYPE An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.

PMERR_UNSUPPORTED_ATTR An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.

PMERR_INV_COLOR_ATTR An invalid color attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_BACKGROUND_COL_ATTR An invalid background color attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_MIX_ATTR An invalid mix attribute value was specified or the default
value was explicitly specified with GpiSetAttrs instead of
using the defaults mask.

PMERR_INV_LINE_WIDTH_ATIR An invalid line width attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_GEOM_LINE_WIDTH_ATTR An invalid geometric line width attribute value was
specified.

PMERR_INV_LINE_TYPE_ATTR An invalid line type attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_LINE_END_ATTR An invalid line end attribute value was specified.

PMERR_INV_LINE_JOIN_ATTR An invalid line join attribute value was specified.

PMERR_INV_CHAR_SET_ATTR An invalid character setid attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_CHAR_MODE_ATTR An invalid character mode attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_CHAR_DIRECTION_ATTR An invalid character direction attribute value was
specified or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_CHAR_SHEAR_ATTR An invalid character shear attribute value was specified
or the default value was explicitly specified with
GpiSetAttrs instead of using the defaults mask.

PMERR_INV_CHAR_ANGLE_ATTR The default character angle attribute value was explicitly
specified with GpiSetAttrs instead of using the defaults
mask.

PMERR_INV_MARKER_SET_ATTR An invalid marker set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_MARKER_SYMBOL_ATTR An invalid marker symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_PATTERN_SET_ATTR An invalid pattern set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_INV_PATTERN_ATTR An invalid pattern symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

5-464 PM Programming Reference

PMERR_INV_COORDINATE

PMERR_ UNSUPPORTED _A TTR_ VALUE

PMERR_INV _PA TTERN_SET _FONT

GpiSetDefAttrs
Set Default Attributes

An invalid coordinate value was specified.

An attribute value was specified with GpiSetAttrs that is
not supported.

An attempt was made to use an unsuitable font as a
pattern set.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using GpiSetCharSet,

Remarks

GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs to
select a font that is larger than the maximum size (64Kb)
supported by the target device driver.

Attributes are reset to their default values at the following times:

• When the presentation space is associated with a device context (see GpiAssociate).

• When GpiResetPS is issued.

• When drawing of a chained segment begins or ends (see GpiOpenSegment and

GpiCloseSegment for more details).

• When an attribute-setting function (for example, GpiSetAttrs) that sets an attribute to its default

value is issued, or interpreted in a retained segment during a drawing operation.

Each attribute has an initial default value, established when the presentation space is first created.

The value of this is given under the appropriate GpiSet. .. call. The default value can be changed by

GpiSetDefAttrs. Changing the default value takes effect immediately for the current value, if this is

set to default at the time.

Each attribute of the primitive type in question is represented by one flag in the f/AttrMask

parameter. Any attribute for which the appropriate flag is set has its default value updated to the

value specified in the ppbunAttrs structure. If the attribute is currently set to take the default value, it

is immediately assigned the new default value. The default value of any attribute for which the

appropriate flag in f/AttrMask is not set is unchanged.

The data in the ppbunAttrs buffer consists of a structure of attribute data. The layout of the structure

is fixed for each primitive type. Only data for attributes for which the flag is set in f/AttrMask is

inspected; any other data is ignored.

Note: The buffer need be no longer than is necessary to contain the data for the highest offset

attribute referenced.

If an attempt is made to set an invalid default value by this function, none of the specified default

attribute values is changed. Note, however, that some invalid default attribute values (for example,

certain color and mix values) may not be detected until the attribute is set to default and used, at

which point the implementation optionally defaults them, or causes an error to be logged.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;

see "Metafile Restrictions" on page G-1. Also, in a metafile, the default line width (see

GpiSetlineWidth) is always rounded to an integer value, as is the default character box (see

GpiSetCharBox) for GPIF _SHORT format presentation spaces (see GpiCreatePS).

Chapter 5. Graphics Functions 5-465

GpiSetDefAttrs -
Set Default Attributes

Example Code
This function sets the default color of line and arc primitives to blue.

#define INCL_GPIDEFAULTS
#define INCL_GPIPRIMITIVES /* for parameter definitions */
#include <OS2.H>
HPS hps; /* Presentation space handle */
LINEBUNDLE bunAttrs; /* Infonnation for color */

bunAttrs.lColor = CLR_BLUE;

GpiSetDefAttrs(hps,
PRIM_LINE,
LBB_COLOR,

&bunAttrs);

/* line and arc primitives. */
/* color infonnation, which is */
/* contained in bunAttrs */

5-466 PM Programming Reference

GpiSetDefaultViewMatrix
Set Default View Matrix

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetDelaultViewMatrix (HPS hps, LONG ICount, PMATRIXLF pmatllarray,
LONG IOptions)

This function sets the default viewing transform that is to apply to the whole picture.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements.

The number of elements supplied in pmatlfarray, that are to be examined, starting from the

beginning of the structure. If /Count is less than 9, remaining elements default to the

corresponding elements of the identity matrix. Specifying /Count = 0 means that the identity

matrix is used.

pmatllarray (PMATRIXLF) - input
Transformation matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of

type FIXED, and have an assumed binary point between the second and third bytes. Thus a

value of 1.0 is represented by 65 536. Other elements are normal signed integers. If the

presentation-space coordinate format is GPIF _SHORT (see GpiCreatePS), these elements must

be within the range -1 through +1.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

IOptions (LONG) - input
Transform options.

Specifies how the transform defined by the pmatlfarray parameter should be used to modify the

existing default viewing transform.

Possible values are:

TRANSFORM_REPLACE The previous default viewing transform is discarded and replaced by
the specified transform.

TRANSFORM_ADD The specified transform is combined with the existing default viewing
transform, in the order (1) existing transform, (2) new transform. This

option is most useful for incremental updates to transforms.

TRANSFORM_PREEMPT The specified transform is combined with the existing default viewing

transform, in the order (1) new transform, (2) existing transform.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-467

GpiSetDefaultViewMatrix
Set Default View Matrix

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV_ TRANSFORM_ TYPE

PMERR_INV _MATRIX_ELEMENT

Remarks

An invalid length or count parameter was specified.

An invalid options parameter was specified with a
transform matrix function.

An invalid transformation matrix element was specified.

The transform matrix specified is used to update any previous default viewing transform, depending
upon the value of /Options.

The transform is specified as a one-dimensional array of /Count elements, being the first n elements
of a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

[~ ~ ~J (a,b,0,c,d,0,e,f,1)
e f 1

The transform acts on the coordinates of the primitives in a segment, so that a point with coordinates
(x,y) is transformed to the point:

(a*x + c*y + e, b*x + d*y + f)

The initial value of the default viewing transform is the identity matrix, as shown below:

Matrix Array

[~ ~ ~J (1,0,e,e,1,e,e,e,1)
(:) (:) 1

If scaling values greater than unity are given (which only applies if the presentation space coordinate
format, as set by the GpiCreatePS function, is GPIF _LONG), it is possible for the combined effect of
this and any other relevant transforms to exceed fixed-point implementation limits. This causes an
error.

This function must not be issued in a path or area bracket.

·Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• GpiQueryDefaultViewMatrix
• GpiSetViewi ngTransformMatrix

5-468 PM Programming Reference

GpiSetDefaultViewMatrix -
Set Default View Matrix

Example Code
This example uses the GpiSetDefaultViewMatrix function to replace the existing default viewing

transformation. The new transformation translates drawing to the right by 100 units.

#define INCL_GPITRANSFORMS
#include <os2.h>

/* Transform functions

BOOL fSuccess; /* success indicator
HPS hps; /* Presentation-space handle
/* transform matrix */

*/

*/
*/

MATRIXLF matlf = {MAKEFIXED(l,e), e, e, 0, MAKEFIXED(l,0), 0, 100};

fSuccess = GpiSetDefaultViewMatrix(hps, 7L, &matlf,
TRANSFORM_REPLACE);

Chapter 5. Graphics Functions 5-469

GpiSetDefTag
Set Default Tag

#define INCL GPIDEFAULTS /*Or use INCL_GPI or INCL_PM */

I BOOL GplSetDelTag (HPS hps, LONG ITag)

This function specifies the default value of the primitive tag (see GpiSetTag).

Parameters
hps (HPS) - input

Presentation-space handle.

ITag (LONG) - input
Default tag identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

The primitive tag is reset to its default value at the following times:

• When the presentation space is associated with a device context (see GpiAssociate).

• When GpiResetPS is issued.

• When drawing of a chained segment begins or ends (see GpiOpenSegment and
GpiCloseSegment for more details).

The initial default value of the primitive tag, when the presentation space is first created, is 0. The
default value can be changed by GpiSetDefTag. Changing the default value has an immediate effect
on the current primitive tag, if this is currently set to the default value.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• GpiQueryDef Attrs
• GpiQueryTag
• GpiSetTag

5-470 PM Programming Reference

Example Code

GpiSetDefTag -
Set Default Tag

· This function specifies the default value of the primitive tag (see GpiSetTag).

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation space handle */

GpiSetDefTag{hps, ll);

Chapter 5. Graphics Functions 5-471

GpiSetDefViewingLimits
Set Default Viewing Limits

#define INCL_GPIDEFAULTS I* Or use INCL_GPI or INCL_PM */

BOOL GplSelDetvlewlngLlmlls (HPS hps, PRECTL prclLlmlts)

This function specifies the default value of the viewing limits (see GpiSetViewingLimits).

Parameters
hps (HPS) - input

Presentation-space handle.

prclLlmlls (PRECTL) - input
Default viewing limits.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

The viewing limits are reset to their default value at the following times:

• When the presentation space is associated with a device context (see GpiAssociate).

• When GpiResetPS is issued.

• When drawing of a chained segment begins or ends (see GpiOpenSegment and
GpiCloseSegment for more details).

The initial default value of the viewing limits, when the presentation space is first created, is no
clipping. The default value can be changed by GpiSetDefViewingLimits. Changing the default values
has an immediate effect on the current viewing limits, if these are currently set to the default value.

Nole: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• GpiQueryDefViewingLimits
• GpiQueryGraphicsField
• GpiQueryViewingLimits
• GpiSetGraphicsField
• GpiSetViewingLimits

5-472 PM Programming Reference

)
Example Code

GpiSetDefViewingLimits -
Set Default Viewing Limits

In this example the default model space clipping region width is set to 100.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

RECTL rcllimits; /*viewing limits. */

rcllimits.xRight = 100;
rcllimits.xleft = 100;

GpiSetDefViewinglimits(hps,
&re 1 Li mi ts) ;

Chapter 5. Graphics Functions 5-473

GpiSetDrawControl
Set Draw Control

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM */

BOOL GplSetDrawControl (HPS hps, LONG IControl, LONG IValue)

This function sets options for subsequent drawing operations.

Parameters
hps (HPS) - input

Presentation-space handle.

IControl (LONG) - input
Drawing control.

Note: Controls identified by an asterisk(*) are the only ones relevant to a micro-presentation
space. Any other control settings are ignored for a micro-presentation space.

DCTL_ERASE Erase before draw. Perform an implicit GpiErase operation before
GpiDrawChain, GpiDrawFrom, or GpiDrawSegment. The output
display area of the Device Context associated with the specified
presentation space is cleared before drawing.

DCTL_DISPLAY (*) Enable drawing to occur on the output medium. If this control is set to
off, then except for GpiErase, no output operations appear on the
output medium. This includes raster operations, such as drawing
primitives, and GpiDraw ... operations.

DCTL_BOUNDARY (*) Accumulate boundary data. During any output operations except
GpiErase, accumulate the bounding rectangle of the drawing.

DCTL_DYNAMIC Draw dynamic segments. Perform an implicit GpiRemoveDynamics
before GpiDrawChain, GpiDrawFrom, or GpiDrawSegment, and an
implicit GpiDrawDynamics afterwards.

Note that, to either remove or draw dynamic segments, the system
forces the foreground mix to FM_XOR, and the background mix to
BM_LEAVEALONE. If the first nondynamic segment being drawn
(immediately after the dynamic segments have been removed) has the
ATIR_FASTCHAIN attribute (see GpiSetlnitialSegmentAttrs), it may be
necessary for it to set the mix modes itself before drawing. Similar
considerations might apply for any subsequent drawing after the
dynamic segments have been replaced.

DCTL_CORRELATE (*) If this control is set, any GpiPutData, GpiElement, GpiPlayMetaFile, or
individual drawing primitives which are passed across the API outside
a segment bracket cause a correlation operation to be performed, and
a return code to be set if a hit occurs. (Correlation inside segments,
both retained and nonretained, is controlled by the segment attribute
A TIR_DETECTABLE).

IValue (LONG) - input

This control has an effect only in draw or draw-and-retain modes (see
GpiSetDrawingMode).

Required value of the drawing control:

DCTL_ OFF Set control off

DCTL_ON Set control on.

5-474 PM Programming Reference

)
Returns

Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _DRAW _CONTROL

PMERR_INV _DRAW_ VALUE

PMERR_INV_IN_SEG

PMERR_INV _IN_AREA

PMERR_INV_IN_PATH

PMERR_INV _IN_ELEMENT

GpiSetDrawControl
Set Draw Control

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid control parameter was specified with
GpiSetDrawControl or GpiQueryDrawControl.

An invalid value parameter was specified with
GpiSetDrawControl.

An attempt was made to issue a function invalid inside a
segment bracket.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

An attempt was made to issue a function invalid inside a
path bracket.

An attempt was made to issue a function invalid inside an
element bracket.

PMERR_INV_MICROPS_DRAW_CONTROL A draw control parameter was specified with
GpiSetDrawControl that is invalid in a micro presentation
space.

Remarks
The default value is DCTL_OFF for all controls except DCTL_DISPLAY (*). Its default value is
DCTL_ON.

This function must not be issued in any of these cases:

• Inside an open segment
• Outside an open segment, but inside one of:

Area bracket
- Element bracket
- Path bracket.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Chapter 5. Graphics Functions 5-475

GpiSetDrawControl
Set Draw Control

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiErase
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetDrawingMode
• GpiSetStopDraw

Example Code
The "display" drawing control is switched off, and the "accumulate-boundary-data" control is
switched on.

#define INCL_GPICONTROL
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiResetBoundaryData(hps);
GpiSetDrawControl(hps, DCTL_DISPLAY, DCTL_OFF);

5-476 PM Programming Reference

\

1
I

GpiSetDrawingMode
Set Drawing Mode

#define INCL GPICONTROL I* Or use INCL_GPI or INCL_PM */

BOOL GplSetDrawlngMode (HPS hps, LONG IMode)

This function sets the drawing mode to control the handling of subsequent individual drawing
primitive and attribute calls.

Parameters
hps (HPS) - input

Presentation-space handle.

IMode (LONG) - input
Mode to be used for subsequent drawing calls:

DM_DRAW Draw, unless in an unchained segment

DM_RETAIN Retain, if within a segment

DM_DRAWANDRETAIN Draw-and-retain, combination of above.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

PMERR_INV _IN_AREA

PMERR_INV _IN_PATH

PMERR_INV _IN_ELEMENT

PMERR_INV_IN_SEG

PMERR_INV _DRAWING_MODE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a function invalid inside an
area bracket. ·This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

An attempt was made to issue a function invalid inside a
path bracket.

An attempt was made to issue a function invalid inside an
element bracket.

An attempt was made to issue a function invalid inside a
segment bracket.

An invalid mode parameter was specified with
GpiSetDrawControl not draw-and-retain or draw.

Chapter 5. Graphics Functions 5-477

GpiSetDrawingMode
Set Drawing Mode

Remarks
The drawing mode affects the handling of subsequent individual drawing primitive and attribute calls,
and the GpiPutData, GpiElement, and GpiPlayMetaFile functions.

Primitives and attributes can be drawn immediately, retained, or both, in the current segment.

Note: Any primitive and attribute setting calls that occur outside a segment (that is, outside a
GpiOpenSegment - GpiCloseSegment bracket) are always treated as nonretained.
Conversely, any segments that are not chained are always retained. This table summarizes
how the actual drawing mode is arrived at:

GpiSetDrawingMode Context
Parameter

Chained Unchained Outside
Segment Segment Segment

DM_DRAWANDRETAIN draw-and-retain retain draw

DM_RETAIN retain retain draw

DM_DRAW draw retain draw

The actual drawing mode (referred to when describing other Gpi calls) therefore depends upon the
mode as set by GpiSetDrawingMode, together with the context, as in the table. It is this actual
drawing mode that determines whether a drawing call is retained (retain or draw-and-retain), and
whether it is drawn immediately (draw or draw-and-retain).

It is an error to try to set the drawing mode within a segment bracket, and also outside a segment
bracket, if in one of the following:

• Area bracket
• Element bracket
• Path bracket.

The default drawing mode is DM_DRAW.

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiErase
• GpiGetData
• GpiOpenSegment
• GpiPutData
• GpiQueryDrawControl
• GpiQueryDrawingMode
• GpiQueryStopDraw
• GpiRemoveDynamics
• GpiSetStopDraw
• GpiOpenSegment

5-478 PM Programming Reference

)
Example Code

GpiSetDrawingMode -
Set Drawing Mode

This example calls GpiSetDrawingMode to set the drawing mode to DRAW.

#define INCL_GPICONTROL
#include <os2.h>

BOOL fSuccess;
HPS hps;

/* GPI control Functions

/* success indicator
/* Presentation-space handle

fSuccess = GpiSetDrawingMode{hps, DM_DRAW);

*/

*/
*/

Chapter 5. Graphics Functions 5-479

GpiSetEditMode
Set Edit Mode

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetEdltMode (HPS hps, LONG IMode)

This function sets the current editing mode.

Parameters
hps (HPS) - input

Presentation-space handle.

IMode (LONG) - input
Edit mode:

SEGEM_INSERT Insert mode

SEGEM_REPLACE Replace mode.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_EDIT_MODE

PMERR_INV _IN_ELEMENT

PMERR_INV _MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid mode parameter was specified with
GpiSetEditMode.

An attempt was made to issue a function invalid inside an
element bracket.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function determines whether a new element is to be inserted into a segment, moving any
subsequent elements further along the segment, or whether a new element is to replace the current
element.

In SEGEM_INSERT mode, when an element is generated, it is inserted following the element
indicated by the element pointer. The element pointer is updated to point to the new element.

In SEGEM_REPLACE mode, when an element is generated, it replaces the element indicated by the
element pointer. The element pointer does not change. It is an error if a new element is generated
in SEGEM_REPLACE mode if the element pointer is 0 (as it is when a segment is opened).

The editing mode can be changed at any time, (except while within an element bracket), and is not an
attribute of a specific segment. It only applies to the storing of data within retained segments. It is
not an error to issue this function in other drawing modes; the value of the edit mode is set
irrespective of the value of the draw mode.

This function is invalid within an element bracket. The default editing mode (set by GpiCreatePS or
GpiResetPS) is SEGEM_INSERT.

5-480 PM Programming Reference

Related Functions
• GpiCreatePS
• GpiOpenSegment
• GpiQueryEditMode

Example Code
This example sets the current editing mode to insert.

#define INCL_GPISEGEDITING
#include <052.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetEditMode(hps, SEGEM_INSERT); /*insert mode. */

GpiSetEditMode -
Set Edit Mode

Chapter 5. Graphics Functions 5-481

GpiSetElementPointer
Set Element Pointer

#define INCL_GPISEGEDITING I* Or use INCL_GPI or INCL_PM */

BOOL GplSetElementPolnter (HPS hps, LONG IElement)

This function sets the element pointer, within the current segment, to the element number specified.

Parameters
hps (HPS) - input

Presentation-space handle.

IElement (LONG) - input
The element number required.

If the value specified is negative, the element pointer is set to 0.

If the value specified is greater than the number of elements in the segment, the element pointer
is set to the last element.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO_CURRENT_SEG

PMERR_INV _MICROPS _FUNCTION

PMERR_INV _IN_ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a function invalid inside an
element bracket.

The currently open segment has an element pointer that points to a particular element in the
segment; each element is placed into the segment at the place indicated by the pointer. When a
retained segment is first opened, the element pointer is set to 0 (empty segment). It is incremented
each time a call causes an element (a single API call) to be placed in the segment. When a segment
is reopened, the element pointer is reset to 0 (that is, before the first element).

The element pointer for a segment is not remembered if the segment is closed and subsequently
reopened.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is invalid within an element
bracket.

5-482 PM Programming Reference

\
) Related Functions

• GpiBeginElement
• GpiDeleteElement
• GpiDeleteElementRange
• GpiDeleteElementsBetweenlabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointerAtlabel

Example Code

GpiSetElementPointer -
Set Element Pointer

This function sets the element pointer, within the current segment, to 0.

#define INCL_GPICONTROL
#define INCL_GPISEGEDITING
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

/* This example uses the GpiSetElementPointer function to move */
/* the element pointer to an element to be edited. */

GpiSetDrawingMode(hps, DM_RETAIN);/* set DM_RETAIN drawing mode*/
GpiOpenSegment(hps, 2L); /*open segment to edit*/
GpiSetElementPointer(hps, 3L); /*move element pointer

GpiSetColor(hps,CLR_GREEN);

GpiCloseSegment(hps);

to 3rd element */
/* new element changes

color to green
/* close the segment

*/
*/

Chapter 5. Graphics Functions 5-483

GpiSetElementPointerAtLabel
Set Element Pointer At Label

#define INCL_GPISEGEDITING /*Or use INCL_GPI or INCL_PM */

BOOL GplSetElementPolnterAtLabel (HPS hps, LONG ILabel)

This function sets the element pointer, within the current segment, to the element containing the
specified label.

Parameters
hps (HPS) - input

Presentation-space handle.

ILabel (LONG) - input
Required label.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NOTJN_RETAIN_MODE

PMERR_NO _CURRENT _SEG

PMERR_INV _IN_ELEMENT

PMERR_LABEL_NOT _FOUND

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

The specified element label did not exist.

The search starts from the element pointed to by the current element pointer. If the specified label is
not found between there and the end of the segment, an error is generated and the element pointer is
left unchanged. (Also see GpiSetElementPointer.)

This function is valid only when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently open. It is not valid within an element bracket.

5-484 PM Programming Reference

GpiSetElementPointerAtLabel -
Set Element Pointer At Label

Related Functions
• GpiBeginElement
• GpiDeleteElement
• GpiDeleteElementRange
• Gpi DeleteElementsBetweenLabels
• GpiElement
• GpiEndElement
• Gpilabel
• GpiOffsetElementPointer
• GpiQueryElement
• GpiQueryElementPointer
• GpiQueryElementType
• GpiSetElementPointer

Example Code
This function sets the element pointer at label 1.

#define INCL_GPISEGEDITING
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetElementPointerAtlabel(hps, ll);

Chapter 5. Graphics Functions 5-485

GpiSetGraphicsField
Set Graphics Field

#defin~ INCL_GPITAANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GpiSetGraphlcsfleld (HPS hps, PRECTL prclfleld)

This function sets the size and position of the graphics field in presentation page units.

Parameters
hps (HPS) - input

Presentation-space handle.

prclfield (PRECTL) - input
Graphics field.

It is an error if the top coordinate is less than the bottom, or the right coordinate is less than the
left.

All values are in presentation-page units.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_GRAPHICS_FIELD

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid field parameter was specified with
GpiSetGraphicsField

An invalid coordinate value was specified.

The graphics field specifies a clipping boundary within the presentation page.

The boundaries are inclusive, so that points on them are not clipped (removed). By default, no
clipping is performed.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

5-486 PM Programming Reference

GpiSetGraphicsField
Set Graphics Field

Related Functions
• GpiQueryDeNiewinglimits
• GpiQueryGraphicsField
• GpiQueryViewinglimits
• GpiSetDeNiewinglimits
• GpiSetViewinglimits
• GpiExcludeClipRectangle
• GpilntersectClipRectangle
• GpiOffsetClipRegion
• GpiQueryClipBox
• GpiQueryClipRegion
• GpiSetClipPath
• GpiSetClipRegion

Example Code
This example sets the graphics field to 400 by 400 with the left bottom corner at 25,25.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

RECTL rclField = {25, /* x coordinate of left-hand edge of */
/* rectangle. */

25, /* y coordinate of bottom edge of */
/* rectangle. */

425,/* x coordinate of right-hand edge of */
/* rectangle. */

425};/* y coordinate of top edge of rectangle. */

GpiSetGraphicsField(hps, &rclField);

Chapter 5. Graphics Functions 5-487

GpiSetlnitialSegmentAttrs -
Set Initial Segment Attributes

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetlnltlalSegmentAttrs (HPS hps, LONG IAttrlbute, LONG IValue)

This function specifies a segment attribute that is used when a segment is subsequently created.

Parameters
hps (HPS) - input

Presentation-space handle.

IAttrlbute (LONG) - input
Segment attribute:

ATIR_DETECTABLE

ATIR_VISIBLE

ATIR_CHAINED

ATIR_DYNAMIC

ATIR_FASTCHAIN

5-488 PM Programming Reference

Detectability.

This can be used to determine whether a correlation function can
be performed on the primitives within the segment. For
correlation on retained segments see:

• GpiCorrelateChain
• GpiCorrelateFrom
• GpiCorrelateSegment.

Correlation on primitives outside segments is controlled by the
correlate flag on draw controls (see GpiSetDrawControl).

Visibility.

Controls whether a segment is to be made visible on the output
medium.

Chained.

Controls whether the segment is a root segment to be included in
the segment drawing chain. In draw or draw-and-retain modes
(see GpiSetDrawingMode) a chained segment is drawn as it
passes across the API; an unchained segment is not.

Unchained segments are usually called from another segment.
They can also be segments that are inserted into the chain later
(with GpiSetSegmentPriority or GpiSetSegmentAttrs), or segments
that are drawn individually with GpiDrawSegment.

Dynamic.

Controls whether the segment is to be dynamic; that is, drawn
using exclusive-OR, so that it can be readily erased by redrawing
it. (See GpiDrawDynamics, GpiRemoveDynamics, and the
DCTL_DYNAMIC option of GpiSetDrawControl.)

Only retained segments can be dynamic.

The dynamic segment attribute is always ignored if the segment is
not currently chained.

Fast chaining.

Controls whether, for a chained segment, the system can assume
that all primitive attributes need not be reset to default values
before execution of the segment.

GpiSetlnitialSegmentAttrs
Set Initial Segment Attributes

ATIR_PROP _DETECTABLE Propagate detectability.

ATIR_PROP _VISIBLE

IValue (LONG) - input
Attribute value:

ATIR_ON On/yes

A TIR_ OFF Off/no.

Returns
Success indicator:

Controls whether the value of the detectability attribute for a
segment should be propagated (forced) to all segments beneath it
in the hierarchy.

Propagate visibility.

Controls whether the value of the visibility attribute for a segment
should be propagated (forced) to all segments beneath it in the
hierarchy.

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS _BUSY

PMERR_INV_SEG_ATIR

PMERR_INV _SEG_ATIR_ VALUE

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid attribute parameter was specified with
GpiSetSegmentAttrs, GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

An invalid attribute value parameter was specified with
GpiSetSegmentAttrs or GpiSetlnitialSegmentAttrs.

An attempt was made to issue a function that is invalid in
a micro presentation space.

Initial segment attributes are modal settings used to determine the initial attributes of new segments
as they are created; that is, when an GpiOpenSegment function is issued, and the segment does not
already exist. The default values of initial segment attributes are:

• Not detectable
• Visible
• Chained
• Not dynamic
• Fast chaining
• Propagate detectability
• Propagate visibility.

A nonretained segment can never be given the dynamic attribute.

Primitives outside segments are not affected by GpiSetlnitialSegmentAttrs.

Chapter 5. Graphics Functions 5-489

GpiSetlnitialSegmentAttrs -
Set Initial Segment Attributes

Related Functions
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiDrawSegment
• GpiQuerylnitialSegmentAttrs
• GpiSetSegmentAttrs
• GpiSetSegmentPriority

Example Code
This function specifies a segment attribute that is used when a segment is subsequently created. In
this example, the most common attributes are selected.

#define INCL_GPISEGMENTS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetinitialSegmentAttrs (hps,
ATTR DETECTABLE
ATTR-VISIBLE I
ATTR)YNAMIC I
ATTR_PROP_DETECTABLE
ATTR PROP VISIBLE,
ATTR)N) ;-

5-490 PM Programming Reference

GpiSetLineEnd
Set Line End

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetlineEnd (HPS hps, LONG ILineEnd)

This function sets the current line-end attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ILineEnd (LONG) - input
Style of line end:

Flat Square

r-----------..----
l I

I
I
I
I

~
I
I
I
I
I ____________ ___ _

® Geometric point of line end

Outline of end shape

Round

, .. ---,,,,'' I
/ I

/ I
f I

i ~
\ I
\ I
\ I
', I
',,, I _____ ___ _

LINEEND_DEFAULT Use default, same as LINEEND_FLAT (unless changed with
GpiSetDef Attrs)

LINEEND_FLAT Flat

LINEEND_SQUARE Square

LINEEND_ROUND Round.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LINE_END_ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid line end attribute value was specified.

Chapter 5. Graphics Functions 5-491

GpiSetLineEnd
Set Line End

Remarks
The line-end attribute defines the shape of the ends of lines or arcs at the beginning and end of an
open figure. This attribute is used only in the GpiModifyPath function (with a /Mode parameter of
MPATH_STROKE) or in the GpiStrokePath function.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the line-end
attribute is preserved.

Related Functions
• Gpiline
• GpiPolyline
• GpiQuerylineEnd
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom

Graphic Elements and Orders
Element Type: OCODE_GSLE
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Line End

Element Type: OCODE_GPSLE
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Line End

Example Code
This function sets the line end to be square (as opposed to round for example).

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetlineEnd(hps,
LINEEND_SQUARE);

5-492 PM Programming Reference

GpiSetLineJoin
Set Line Join

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetllneJoln (HPS hps, LONG ILlneJoln)

This function sets the current line-join attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ILlneJoin (LONG) - input
Style of line join:

Bevel

/I
,/ I

/ I i _______ ,

I I
I I L---r-

Round

,, --,
/ I

,' I : ________ ,
I I
I I L---r-

® Geometric point of line join

Outline of join shape

Miter
,---------
~ .,---------
~ I
~ I
~ A. ___ ...,

---~ ' I \
I \

t_ ___ t-

LINEJOIN_DEFAUL T Use default, same as LINEJOIN_BEVEL (unless changed with
GpiSetDef Attrs)

LINEJOIN_BEVEL Bevel

LINEJOIN_ROUND Round

LINEJOIN_MITRE Miter.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LINE_JOIN_ATIR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid line join attribute value was specified.

Chapter 5. Graphics Functions 5-493

GpiSetLineJoin
Set Line Join

Remarks
The line-join attribute defines how individual lines and arcs within a figure are joined together. This
attribute is used only during a GpiModifyPath function (with a /Mode parameter of MPATH_STROKE)
or a GpiStrokePath function.

For LINEJOIN_MITRE, where the lines going into a join are nearly parallel (a very sharp change in
direction), a miter join could potentially extend to a distance that approaches infinity. To prevent
this, whenever the ratio of the miter length to the geometric line width exceeds 10, a bevel join is
drawn instead. (The miter length is the distance from the point at which the inner edges of the
wideline intersect, to the point at which the outer edges of the wideline intersect.)

The attribute mode (see GpiSetAttrMode) determines whether the current value of the line-join
attribute is preserved.

Related Functions
• Gpiline
• GpiPolyline
• GpiQuerylineEnd
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetlineEnd
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom

Graphic Elements and Orders
Element Type: OCODE_ GSW
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Line Join

Element Type: OCODE_GPSLJ
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Line Join

Example Code
This function sets the line-join to be round (as opposed to bevel or miter).

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. *I

GpiSetlineEnd(hps.
LINEJOIN_ROUND);

5-494 PM Programming Reference

GpiSetLineType
Set Line Type

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetLlneType (HPS hps, LONG ILlneType)

This function sets the current cosmetic line-type attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ILineType (LONG) - input
Line types available:

LINETYPE....DEFAULT

LINETYPE....DOT

LINETYPE....SHORTDASH

LINETYPE....DASHDOT

LINETYPE....DOUBLEDOT

- Solid line (the default)

- Dotted line

- Short-dashed line

- Dash-dot line

- Double-dotted line

LINETYPE...LONGDASH - Long-dashed line

LINETYPE....DASHDOUBLEDOT - Dash-double-dot line

LINETYPE....SOLID

LINETYPE.ALTERNATE

LINETYPEJNVISIBLE

Returns
Success indicator:

- Solid line

- Alternate pels on

- Invisible line

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LINE_ TYPE_ATTR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid line type attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

A nonsolid line type consists of a sequence of "on" and "off" runs of pels that gives the appearance
of a dotted or a dashed line, for example.

This attribute specifies the cosmetic line type, which is used for all line and curve drawing. It does
not depend upon transforms, so that, for example, dashes do not become longer when a "zoom in"
occurs.

Chapter 5. Graphics Functions 5-495

GpiSetLineType
Set Line Type

The standard line types are implemented on each device to give a good appearance on that device,
taking into account the pel resolution. Their definitions cannot be changed by applications, nor may
applications define additional cosmetic line types.

The system maintains position within the line-type definition so that, for example, a curve may be
implemented as a polyline. However, some functions cause position to be reset to the start of the
definition. These are:

• GpiCallSegmentMatrix
• GpiMove
• GpiPop {or end of called segment) that pops current position or a model transform
• GpiSetCurrentPosition
• GpiSetlineType
• GpiSetModelTransformMatrix
• GpiSetPageViewport
• GpiSetSegmentTransformMatrix.

The default line-type is solid. This can be changed with GpiSetDefAttrs.

The attribute mode {see GpiSetAttrMode) determines whether the current value of the line-type
attribute is preserved.

Related Functions
• GpiBox
• Gpiline
• GpiPolyline
• GpiQuerylineEnd
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineWidth
• GpiSetlineWidthGeom

Graphic Elements and Orders
Element Type: OCODE_GSLT
This element type is generated if the attribute mode {see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Line Type

Element Type: OCODE_GPSLT
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Line Type

5-496 PM Programming Reference

)
Example Code

GpiSetLineType -
Set Line Type

This function sets the line-type to be round (as opposed to bevel or miter).

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetlineType(hps,
LINETYPE_DEFAULT);

Chapter 5. Graphics Functions 5-497

GpiSetLineWidth
Set Line Width

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetLlneWidth (HPS hps, FIXED fxLineWidth)

This function sets the current cosmetic line-width attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

fxLlneWidth (FIXED) - input
Line-width multiplier

LINEWIDTH_DEFAUL T Use default; same as LINEWIDTH_NORMAL (unless changed with
GpiSetDef Attrs).

LINEWIDTH_NORMAL Normal width (1.0).

LINEWIDTH_ THICK

Returns
Success indicator:

Any other positive value is a multiplier on the "normal" line width.

Thick.

Where only two line thicknesses, "normal" and "thick," are supported,
"normal" will be used for values less than or equal to 1.0 (other than
LINEWIDTH_DEFAUL T), and "thick" otherwise.

See DevQueryCaps (CAPS_ADDITIONAL_GRAPHICS and
CAPS_LINEWIDTH_ THICK).

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LINE_ WIDTH_A nR

PMERR_UNSUPPORTED _A TTR_ VALUE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid line width attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An attribute value was specified with GpiSetAttrs that is
not supported.

The cosmetic line width specifies a multiplier on the "normal" line thickness for the device.
Cosmetic thickness does not depend upon transforms, so that, for example, lines do not become
thicker when a "zoom-in" occurs.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the line-width
attribute is preserved.

5-498 PM Programming Reference

Related Functions
• GpiBox
• Gpiline
• GpiPolyline
• GpiQuerylineEnd
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetoef Attrs
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidthGeom

Graphic Elements and Orders
Element Type: OCODE_GSFLW

GpiSetLineWidth -
Set Line Width

This element type is generated if the attribute mode {see GpiSetAttrMode) is set to

AM_NOPRESERVE.

Order: Set Fractional Line Width

Element Type: OCODE_GPSFLW
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Fractional Line Width

Example Code
This function sets the line width to the default, so that there is no multiplying factor.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetlineWidth(hps,
LINEWIDTH_NORMAL);

Chapter 5. Graphics Functions 5-499

GpiSetLineWidthGeom
Set Line Width Geom

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetLlneWldthGeom (HPS hps, LONG ILlneWldth)

This function sets the current geometric line-width attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ILlneWidth (LONG) - input
Geometric line width.

The geometric line width in world coordinates. It must not be negative.

A thickness of O results in an area of 0 width. Because filling includes the boundaries, this
results in the thinnest possible lines and arcs, regardless of what transforms are in force.

The initial default value of the geometric line width is 1. This can be changed with
GpiSetDef Attrs.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_GEOM_LINE_WIDTH_ATIR An invalid geometric line width attribute value was
specified.

Remarks
The geometric line-width attribute is used only in the GpiModifyPath function (with a /Mode of
MPATH_STROKE) or in the GpiStrokePath function. This attribute specifies the width to be used in
converting the lines and arcs, of which the path is composed, into wide lines and arcs. The resulting
shape is treated like an area, so the boundaries are considered to be part of its interior. This means
that the width of the lines and arcs is one pel wider than the geometric line width transformed to
device coordinates.

The geometric line width is specified in world-coordinate units, so that, for example, the thickness
varies on a zoom operation.

Normal line and curve drawing uses only the cosmetic line width (see GpiSetlineWidth).

This function must not be issued within an area or path bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the geometric line
width is preserved.

5-500 PM Programming Reference

I
;

Related Functions
• Gpiline
• GpiPolyline
• GpiQuerylineEnd
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiBeginPath
• GpiCloseFigure
• GpiEndPath
• GpiFillPath
• GpiModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiSetClipPath
• GpiStrokePath

Graphic Elements and Orders
Element Type: OCODE_GSSLW

GpiSetLineWidthGeom
Set Line Width Geom

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to

AM_NOPRESERVE.

Order: Set Stroke Line Width

Element Type: OCODE_GPSSLW
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Stroke Line Width

Example Code
This function sets the line width geometry to double the default of 1.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetlineWidthGeom(hps,
2L);

Chapter 5. Graphics Functions 5-501

GpiSetMarker
Set Marker

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM */

BOOL GplSetMarker (HPS hps, LONG ISymbol)

This function sets the value of the marker-symbol attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ISymbol (LONG) - input
Marker symbol.

The identity of the required marker symbol. Zero selects the default marker symbol, a value in
the range 1 through 255 identifies a symbol in the current marker set. Valid values in the default
marker set are shown below, these symbols are not necessarily available with other marker
sets:

MARKSYMJ>EFAULT

MARKSYM_CROSS

MARKSYM_PLUS

MARKSYMJ)IAMOND

The default; same as MARKSYM_CROSS
x
+
<>

MARKSYM_SQUARE 0
MARKSYM_SIXPOINTSTAR *
MARKSYMJ:IGHTPOINTSTAR *
MARKSYM_SOLIDDIAMOND •

MARKSYM_$0LIDSQUARE

MARKSYMJ>OT

MARKSYM_$MALLCIRCLE

MARKSYM_BLANK

Returns
Success indicator:

•
0
(blank)

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MARKER_SYMBOL_ATTR

5-502 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid marker symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

\
1

)
Remarks

This function must not be issued in an area bracket.

GpiSetMarker -
Set Marker

The default marker-symbol is a cross. This can be changed with GpiSetDefAttrs.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the marker
attribute is to be preserved.

Related Functions
• GpiMarker
• GpiPolyMarker
• GpiQueryMarker
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMarkerBox
• GpiSetMarkerSet
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GSMT
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Marker Symbol

Element Type: OCODE_GPSMT
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Marker Symbol

Example Code
This function changes the marker from the default (a cross) to a diamond.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetMarker(hps,
MARKSYM_DIAMOND);

Chapter 5. Graphics Functions 5-503

GpiSetMarkerBox
Set Marker Box

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetMarkerBox (HPS hps, PSIZEF pslzfxSlze)

This function sets the current marker-box attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzfxSlze (PSIZEF) - input
Size of marker box.

The size is specified in world coordinates. The fractional part of the value should be 0.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The value of the marker-box attribute affects the size of markers that are selected from a vector font
only. The size of markers that are selected from an image font is not affected by this attribute.

For default markers, this attribute only has an effect if the device supports the scaling of default
markers, that is, the CAPS_SCALED_DEFAULT_MARKERS parameter in the
CAPS_ADDITIONAL_GRAPHICS element of the device capabilities array returned by the
DevQueryCaps function is set to 1.

This function must not be issued in an area bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the marker-box
attribute is preserved.

The initial default value of the marker box is the size returned by DevQueryCaps
(CAPS_MARKER_WIDTH and CAPS_MARKER_HEIGHT), for the currently associated device,
converted to presentation page space.

The default value can be changed with GpiSetDefAttrs.

5-504 PM Programming Reference

Related Functions
• DevQueryCaps
• GpiMarker
• GpiPolyMarker
• GpiQueryMarkerBox
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetDef Attrs
• GpiSetMarker
• GpiSetMarkerSet
• GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GSMC

GpiSetMarkerBox -
Set Marker Box

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Marker Cell

Element Type: OCODE_GPSMC
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Marker Cell

Example Code
This function sets the marker box to 10 by 10.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

SIZEF fxSize = {MAKEFIXED{l0,0),
MAKEFIXED{10,0)};

/* The size is specified in */
/* world coordinates. The */
/* fractional part of the */
/* value should be zero. */

GpiSetMarkerBox{hps,
&fxSize);

Chapter 5. Graphics Functions 5-505

GpiSetMarkerSet
Set Marker Set

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetMarkerSet (HPS hps, LONG ISet)

This function sets the current marker-set attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ISet (LONG) - input
Marker-set local identifier.

The identity (lcid) of the required marker set:

LCID_DEFAULT Default (can be set explicitly with GpiSetDefAttrs)

1 - 254 Identifies a logical font.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MARKER_SET_ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid marker set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using GpiSetCharSet,
GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs to
select a font that is larger than the maximum size (64Kb)
supported by the target device driver.

Remarks
This function must not be issued in an area bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the marker-set
attribute is preserved.

If the default marker set is changed (using GpiSetDefAttrs) the initial default marker set cannot be
selected with GpiSetMarkerSet.

5-506 PM Programming Reference

)
Related Functions

• GpiMarker
• GpiPolyMarker
• GpiQueryMarkerSet
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetMarker
• GpiSetMarkerBox

Graphic Elements and Orders
Element Type: OCODE_GSMS

GpiSetMarkerSet -
Set Marker Set

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Marker Set

Element Type: OCODE_GPSMS
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Marker Set

Example Code
This function changes the marker set to one defined by the logical font with id 26.

#define INCL_GPIPRIMITIVES
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetMarkerSet(hps,
26L);

Chapter 5. Graphics Functions 5-507

GpiSetMetaFileBits
Set Metafile Bits

#define INCL GPIMETAFILES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetMetaFlleBlts (HMF hmf, LONG IOHset, LONG ILength, PBYTE pbBuffer)

This call transfers metafile data from application storage into a memory metafile.

Parameters
hmf (HMF) - input

Metafile-memory handle.

IOffset (LONG) - input
Offset.

Offset, in bytes, into the metafile data from where the transfer must start. This is used when the
metafile data is too long to fit into a single application buffer.

ILength (LONG) - input
Length of the metafile data.

pbBuffer (PBYTE) - input
Metafile data buffer.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HMF

PMERR_INV _METAFILE_LENGTH

PMERR_INV _METAFILE_ OFFSET

PMERR_METAFILE_IN_USE

Remarks

An invalid metafile handle was specified.

An invalid length parameter was specified with
GpiSetMetaFileBits or GpiQueryMetaFileBits.

An invalid length parameter was specified with
GpiSetMetaFi leBits or GpiQueryMetaFi leBits.

An attempt has been made to access a metafile that is in
use by another thread.

The application must ensure that the data is in the correct format. It should not have been changed
since it was created by GpiQueryMetaFileBits.

The length of the metafile is increased, if necessary, to accommodate the supplied data. If the
supplied data is shorter, the metafile length is not reduced. However, in this case the metafile is still
valid, if the data in it is complete and otherwise correct.

5-508 PM Programming Reference

Related Functions
• GpiCopyMetaFile
• GpiDeleteMetaFile
• GpiloadMetaFile
• GpiPlayMetaFile
• GpiQueryMetaFileBits
• GpiQueryMetaFilelength
• GpiSaveMetaFile

Example Code

GpiSetMetaFileBits -
Set Metafile Bits

This example shows how to copy a metafile into application storage to edit the contents and then
write back to the metafile using the GpiSetMetaFileBits call.

#define INCL_GPIMETAFILES
#include <OS2.H>

HPS hps;

HMF hmf;
PBYTE pbBuffer;
LONG cBytes;
LONG lOffset;

/* Presentation-space */
/* handle. */

hmf = Gpi LoadMetaFil e(hps, "sample.met");

/*Allocate the buffer for the metafile data. */

cBytes = GpiQueryMetaFileLength(hmf);/* gets length of metafile */

DosAllocMem((PPVOID)pbBuffer,
cBytes,
PAG READ I
PAG-WRITE I
PA(COMMIT);

GpiQueryMetaFileBits(
hmf, /* handle of metafile */
lOffset, /* offset of next byte to retrieve */
cBytes, /* retrieves cBytes *I
pbBuffer); /*buffer to receive metafile data*/

/* . */
/* work with the metafile */
/* . */

/* write data back to the metafile */

GpiSetMetaFileBits(hmf,
lOffset,
cBytes,
pbBuffer);

Chapter 5. Graphics Functions 5-509

GpiSetMix
Set Mix

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetMlx (HPS hps, LONG IMixMode)

This function sets the current foreground mix attribute for each individual primitive type.

Parameters
hps (HPS) - input

Presentation-space handle.

IMlxMode (LONG) - input
Mix mode.

Defines the color-mixing mode.

Mixing other than FM_LEAVEALONE or FM_OVERPAINT is done on the physical color index. In
general, this corresponds to the color index of the logical color table if an indexed color table
has been realized. In other circumstances, the color that results from such a mix cannot be
predicted. Nevertheless, if FM_XOR is supported for example, drawing the same object twice
with a foreground mix of FM_XOR and a background mix of BM_LEAVEALONE with no
intervening drawing in other mix modes, causes the object to be erased cleanly.

The currently associated device supports any of the mixes specified as supported in
DevQueryCaps {CAPS_FOREGROUND_MIX_SUPPORT). Any other valid mixes may be supported
for some primitive types, but otherwise results in FM_OVERPAINT. An error is raised only if the
value specified is not one of those listed below.

Note: Mixes marked with an asterisk(*) are mandatory for all devices, except that FM_OR is
only mandatory for devices capable of supporting it. FM_XOR is mandatory only on
displays.

FM_DEFAULT Use default, the same as FM_OVERPAINT, unless changed with
GpiSetDef Attrs

FM_OR Logical-OR(*)

FM_OVERPAINT Overpaint (*)

FM_XOR Logical-XOR {*)

FM_LEAVEALONE Leave alone (invis.ible) (*)

FM_AND Logical-AND

FM_SUBTRACT (Inverse source) AND destination

FM_MASKSRCNOT Source AND (inverse destination)

FM"""ZERO All zeros

FM_NOTMERGESRC Inverse {source OR destination)

FM_NOTXORSRC Inverse (source XOR destination)

FM_INVERT Inverse {destination)

FM_MERGESRCNOT Source OR (inverse destination)

FM_NOTCOPYSRC Inverse (source)

FM_MERGENOTSRC (Inverse source) OR destination

FM_NOTMASKSRC Inverse {source AND destination)

FM_ONE All ones.

5-510 PM Programming Reference

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MIX_ATTR

Remarks

GpiSetMix
Set Mix

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid mix attribute value was specified or the default
value was explicitly specified with GpiSetAttrs instead of
using the defaults mask.

The current values for each primitive type are updated. The attribute mode (see GpiSetAttrMode)

determines whether the current value of the mix attribute is preserved.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• DevQueryCaps
• GpiBeginArea
• GpiBox
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiEndArea
• GpiFullArc
• Gpiline
• GpiMarker
• GpiMove
• GpiPartialArc
• GpiPointArc
• GpiPolyFillet
• GpiPolyFilletSharp
• GpiPolyline
• GpiPolyMarker
• GpiPolySpline
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt
• GpiQueryMix
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetDef Attrs
• WinSetSysColors

Chapter 5. Graphics Functions 5-511

GpiSetMix
Set Mix

Graphic Elements and Orders
Element Type: OCODE_GSMX
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Mix

Element Type: OCODE_GPSMX
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Mix

Example Code
This function sets the current foreground mix attribute for each individual primitive type.

#define INCL_GPIPRIMITIVES
#include <052.H>

HPS hps; /* Presentation-space */
/* handle. */

GpiSetMix(hps,
FM_LEAVEALONE);

5-512 PM Programming Reference

GpiSetModelTransformMatrix
Set Model Transform Matrix

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GplSetModelTransformMatrlx (HPS hps, LONG !Count, PMATRIXLF pmatlfArray,

LONG !Options)

This function sets the model transform matrix for subsequent primitives.

Parameters
hps (HPS) - input

Presentation-space handle.

!Count (LONG) - input
Number of elements in matrix.

The number of elements of pmatlfArray to be examined, starting from the beginning of the

structure. If /Count is less than 9, remaining elements default to the corresponding elements of

the identity matrix. If /Count = 0, the identity matrix is used.

pmatlfArray (PMATRIXLF) - input
Transformation matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of

type FIXED, and have an assumed binary point between the second and third bytes. Thus a

value of 1.0 is represented by 65 536. Other elements are normal signed integers. If the

presentation space coordinate format is GPIF _SHORT (see GpiCreatePS), these elements must

be within the range -1 through + 1.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

!Options (LONG) - input
Transform options.

Specifies how the transform defined by the pmatlfArray should be used to modify the existing

current model transform (the existing transform is the concatenation, in the current call context,

of the instance, segment and model transforms, from the root segment downwards). Possible

values are:

TRANSFORM_REPLACE The previous model transform is discarded and replaced by the

specified transform.

TRANSFORM_ADD The specified transform is combined with the existing model

transform, in the order (1) existing transform, (2) new transform. This

option is most useful for incremental updates to transforms.

TRANSFORM_PREEMPT The specified transform is combined with the existing model

transform, in the order (1) new transform, (2) existing transform.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space

from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-513

GpiSetModelTransformMatrix
Set Model Transform Matrix

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV_MATRIX_ELEMENT

PMERR_INV _TRANSFORM_ TYPE

Remarks

An invalid length or count parameter was specified.

An invalid transformation matrix element was specified.

An invalid options parameter was specified with a
transform matrix function.

The matrix is used to update the previous current model transform, depending upon the value of
~~. .
The transform is specified as a one-dimensional array of /Count elements, being the first elements of
a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

(a,b,e,c,d,e,e,f,l)

The transform acts on the coordinates of the primitives in a segment, so that a point with coordinates
(x,y) is transformed to the point:

(a*x + c*y + e, b*x + d*y + f)

If scaling values greater than unity are given (which only applies if the presentation space coordinate
format as set by the GpiCreatePS function is GPIF _LONG) it is possible for the combined effect of
this, and any other relevant transforms, to exceed fixed-point implementation limits. This causes an
error.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the model
transform is preserved.

Model transforms can apply to primitives either inside or outside segments.

Related Functions
• GpiCallSegmentMatrix
• GpiQueryModelTransformMatrix
• GpiQuerySegmentTransformMatrix
• GpiSetSegmentTransform Matrix

Graphic Elements and Orders
Element Type: OCODE_GSTM
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Model Transform

Element Type: OCODE_GPSTM
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Model Transform

5-514 PM Programming Reference

GpiSetModelTransformMatrix -
Set Model Transform Matrix

Example Code
This function sets the model transformation matrix as one which scales everything by a factor of 2.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

MATRIXLF matlf = { MAKEFIXED(2,0), /*see pmgpi.h for a*/
/* definition of the */
/* MAKEFIXED macro. */

a. a. e,
MAKEFIXED(2,0),
e, e, e, 1};

GpiSetModelTransformMatrix(hps,
ll,
&matlf,
TRANSFORM_REPLACE);

Chapter 5. Graphics Functions 5-515

GpiSetPageViewport
Set Page Viewport

#define INCL GPITRANSFORMS I* Or use INCL_ GPI or INCL_PM *I

BOOL GplSetPageVlewport (HPS hps, PRECTL prclVlewport)

This function sets the page viewport within device space.

Parameters
hps (HPS) - input

Presentation-space handle.

prclVlewport (PRECTL) - input
Page viewport.

The page viewport is specified in device units.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PAGE_ VIEWPORT

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid viewport parameter was specified with
GpiSetPageViewport.

An invalid coordinate value was specified.

The presentation page maps to the page viewport and together they define the device transform.

When a presentation space is associated with a device context, a default page viewport is set up.

The origin in device space is mapped to the bottom-left of the output media (window or paper, for
example).

This function must not be issued when there is no device context associated with the presentation
space.

This function is ignored if issued to a presentation space that is associated with a device context of
type OD_QUEUED (with PM_Q_STD data), OD_METAFILE, or OD_METAFILE_NOQUERY.

Related Functions
• GpiCreatePS
• GpiQueryPageViewport

5-516 PM Programming Reference

\
)

Example Code

GpiSetPageViewport -
Set Page Viewport

This example sets the area of the device in which the picture is displayed to page viewport within

device space.

#define INCL_GPITRANSFORMS
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */
RECTL rclField = {25L, /* x coordinate of left-hand edge of*/

/* rectangle. */
25L, /* y coordinate of bottom edge of */

/* rectangle. */
425L, /* x coordinate of right-hand edge of */

/* rectangle. */
425L}; /* y coordinate of top edge of

/* rectangle. */

GpiSetPageViewport(hps, &rclField);

Chapter 5. Graphics Functions 5-517

GpiSetPaletteEntries
Set Palette Entries

#define INCL GPILOGCOLORTABLE I* Or use INCL_GPI or INCL_PM */

BOOL GplSetPaletteEntrles (HPAL hpal, ULONG ulFormat, ULONG ulStart, ULONG ulCount,
PULONG aTable)

This function changes the entries in a palette.

Parameters
hpal (HPAL) - input

Palette handle.

ulFormat (ULONG) - input
Format of entries in the table:

LCOLF_CONSECRGB Array of RGB values, corresponding to color indexes u/Start upwards.
Each entry is 4 bytes long.

This is currently the only valid value for this parameter.

ulStart (ULONG) - input
Starting index.

ulCount (ULONG) - input
Count of elements in aTable.

This must be greater than or equal to 0.

aTable (PULONG) - input
Start of the application data area.

This contains the palette definition data. The format depends on the value of u/Format.

Each color value is a 4-byte integer, with a value of

(F * 16777216) + (R * 65536) + (G * 256) + B

where:

F is a flag byte, which can take the following values (these can be ORed together if required):
PC_RESERVED This index is an animating index. This means that the application might

frequently change the RGB value, so the system should not map the logical
index of the palette of another application to the entry in the physical
palette used for this color.

PC_EXPLICIT The low-order word of the logrcal color table entry designates a physical
palette entry. This allows an application to show the contents of the device
palette as realized for other logical palettes. This does not prevent the
color in the entry from being changed for any reason.

R is red intensity value
G is green intensity value
B is blue intensity value.

The maximum intensity for each primary is 255.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

5-518 PM Programming Reference

Possible returns from WinGetLastError

PMERR_INV _HPAL

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV_COLOR_DATA

PMERR_INV_COLOR_FORMAT

PMERR_INV _ COLOR_START _INDEX

PMERR_INSUFFICIENT _MEMORY

PMERR_PALETTE_BUSY

PMERR_INV_IN_AREA

Remarks

GpiSetPaletteEntries
Set Palette Entries

An invalid color palette handle was specified.

An invalid length or count parameter was specified.

Invalid color table definition data was specified with
GpiCreateLogColorTable.

An invalid format parameter was specified with
GpiCreateLogColorTable.

An invalid starting index parameter was specified with a
logical color table or color query function.

The operation terminated through insufficient memory.

An attempt has been made to reset the owner of a palette
when it was busy.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

The changes made by this function do not become apparent until WinRealizePalette is called, even

for animating indices. Changes can be made more rapidly using GpiAnimatePalette with animating

indices, assuming that the hardware being used supports this.

GpiSetPaletteEntries can be called at any time to change a logical palette, and the physical palette of

the device will incorporate the changes as best it can. However, the system cannot guarantee that a

change will be realized in the hardware palette, since realization depends on whether the associated

window is in the foreground and on the number of available hardware palette entries.

All presentation spaces that have this palette selected into them (see GpiSelectPalette), are updated

with the effects of this function.

If a palette is selected into a presentation space that is associated with a device context of type

OD_METAFILE or OD_METAFILE_NOQUERY, only the final color values are recorded in the metafile.

This means that, while metafiling, this function must only be used for incremental additions to the

color table.

It is an error if a palette is selected into a presentation space that is within an area or path definition

when this function is issued.

Related Functions
• GpiAnimatePalette
• GpiCreatePalette
• GpiDeletePalette
• GpiQueryPalette
• GpiQueryPalettelnfo
• GpiSelectPalette
• WinReatizePatette

Chapter 5. Graphics Functions 5-519

GpiSetPaletteEntries
Set Palette Entries

Example Code
This example changes the entries in a palette.

#define INCL_6PIL06COLORTABLE
#include <OS2.H>

HPAL hpal; /*palette handle*/
UINT R, 6, B;
typedef struct ENTRY
{
ULON6 index;
ULON6 pal_def;
}Entry;

struct TABLE
{
Entry entryl;
Entry entry2;
Entry entry3;
}Table;
BYTE F = PC_RESERVED;

/* In our table, there are 3 8-byte entries. The first 4 bytes */
/* of each entry represent the index and the second 4 bytes of */
/* each entry represent the value of the following fonnula: */
/* */
/* (F * 16777216) + (R * 65536) + (6 * 256) + B */
/* */
/* which is the palette definition. */
/* where F is the flag PC_RESERVED and R,6,B are the red, */
/* green, and blue intensity values respectively. */

F = 10; R = 10; 6 = 10;
Table.entryl.pal_def = (F * 16777216)+(R * 65536)+(6 * 256) + B;
Table.entryl.index = 0L;

F = 25; R = 25; 6 = 25;
Table.entry2.pal_def = (F * 16777216)+(R * 65536)+(6 * 256) + B;
Table.entry2.index = ll;

F = 40; R = 40; 6 = 40;
Table.entry3.pal_def = (F * 16777216)+(R * 65536)+(6 * 256) + B;
Table.entry3.index = 2L;

GpiSetPaletteEntries(hpal,
LCOLF_CONSECR6B,

0L,
3L,

&Table.entryl.index);

5-520 PM Programming Reference

/* Array of R6B values, */
/* corresponding to color */
/* indexes lStart */
/* upwards. Each entry */
/* is 4 bytes long. */
/* start at zero. */
/* elements in table. */
/* first element in table. */

GpiSetPattern
Set Pattern

#define INCL_GPIPRIMITIVES /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

BOOL GplSetPattern (HPS hps, LONG IPatternSymbol)

This function sets the current value of the pattern-symbol attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

IPatternSymbol (LONG) - input
Pattern symbol.

Identifies the shading pattern to be used to fill areas. The pattern that appears depends on the

particular pattern set selected by the pattern-set attribute. A value of 0 selects the default

pattern and values in the range 1 through 255 select particular patterns within the set.

Possible values if the default pattern set has been selected are:

Symbolic name Description Pattern number
(see Figure 5-10)

PATSYM_DEFAULT The default; same as
PATSYM_SOLID (unless
changed with
GpiSetDef Attrs).

PATSYM_DENSE1 through Solid shading with 1through8

PATSYM_DENSE8 decreasing density

PATSYM_VERT Vertical pattern 9

PATSYM_HORIZ Horizontal pattern 10

PATSYM_DIAG1 Diagonal pattern 1, bottom 11
left to top right

PATSYM_DIAG2 Diagonal pattern 2, bottom 12
left to top right

PATSYM_DIAG3 Diagonal pattern 3, top left to 13
bottom right

PATSYM_DIAG4 Diagonal pattern 4, top left to 14
bottom right

PATSYM_NOSHADE No shading 15

PATSYM_SOLID Solid shading 16

PATSYM_HALFTONE Alternate pels set on

PATSYM_BLANK Blank (same as
PATSYM_NOSHADE)

Note: The pattern PATSYM_HALFTONE can be the same as PATSYM_DENSE4. On non

bit-mapped devices it may be mapped to another base pattern.

If the specified pattern is not valid, the default (device-dependent) pattern is used.

Chapter 5. Graphics Functions 5-521

GpiSetPattern
Set Pattern

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PA TTERN_A TTR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid pattern symbol attribute value was specified or
the default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

Any symbol from a raster font can be used as a pattern by the appropriate use of this function and
the GpiSetPatternSet function.

If the current pattern set specifies a bit map (see GpiSetBitmapld and GpiSetPatternSet), the pattern
attribute is ignored.

If /PatternSymbol is set or defaulted to PATSYM_SOLID, and the /Set parameter of GpiSetPatternSet
is LCID_DEFAULT, pattern colors that are not available may be approximated by dithering (unless
dithering has been disabled by setting the LCOL_PURECOLOR bit on the f/Options parameter of
GpiCreatelogColorTable).

This function must not be issued in an area or path bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the pattern symbol
is preserved.

• • 2 3 4 5 6

•••• 9 10 11 12 13 14

Figure 5-10. Shading patterns in the default pattern set

5-522 PM Programming Reference

········· ··········
:~:I;:~:ft

7

15

8

16

GpiSetPattern

Related Functions
• GpiBeginArea
• GpiEndArea
• GpiQueryPattern
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetDefAttrs
• GpiSetMix
• GpiSetPatternRefPoint
• GpiSetPatternSet

Graphic Elements and Orders
Element Type: OCODE_GSPT
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to

AM_NOPRESERVE.

Order: Set Pattern Symbol

Element Type: OCODE_GPSPT
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Pattern Symbol

Example Code

Set Pattern

This function sets the current value of the pattern-symbol to horizontal. This means that when areas

are filled, they are filled with a horizontal shading pattern.

#define INCL_GPIPRIMITIVES
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */

GpiSetPattern(hps,PATSYM_HORIZ);

Chapter 5. Graphics Functions 5-523

GpiSetPatternRef Point -
Set Pattern Reference Point

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetPalternRef Point (HPS hps, PPOINTL pptlRef Point)

This function sets the current pattern reference point to the specified value.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlRefPolnt (PPOINTL) - input
Pattern reference point.

The coordinates are world coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

The pattern reference point is the point to which the origin of the area filling pattern maps. The
pattern is mapped into the area to be filled by conceptually replicating the pattern definition in a
horizontal and vertical direction.

Because the pattern reference point is subject to all of the transforms, if an area is moved by
changing a transform and redrawing, the fill pattern also appears to move, so as to retain its position
relative to the area boundaries.

The pattern reference point, which is specified in world coordinates, need not be inside the actual
area to be filled. The pattern reference point is not subject to clipping.

This function must not be issued in an area or path bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the pattern
reference point is preserved.

The initial default pattern reference point is (0,0). This can be changed with GpiSetDefAttrs.

5-524 PM Programming Reference

Related Functions
• GpiBeginArea
• GpiEndArea
• GpiQueryPatternRefPoint
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetPattern
• GpiSetPatternSet

Graphic Elements and Orders
Element Type: OCODE_GSPRP

GpiSetPatternRef Point -
Set Pattern Reference Point

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Pattern Reference Point

Element Type: OCODE_GPSPRP
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Pattern Reference Point

Example Code
This function sets the current pattern reference point to the specified value.

#define INCL_GPIPRIMITIVES
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */
POINTL ptlRefPoint = {0,0};

GpiSetPatternRefPoint(hps, &ptlRefPoint);

Chapter 5. Graphics Functions 5-525

GpiSetPatternSet
Set Pattern Set

#define INCL_GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetPatternSet (HPS hps, LONG ISet)

This function sets the current pattern-set attribute to the specified value.

Parameters
hps (HPS) - input

Presentation-space handle.

ISet (LONG) - input
Pattern-set local identifier:

LCID_DEFAULT Default (can be set explicitly with GpiSetDefAttrs).

1 - 254 Identifies a logical font or a bit map.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PATIERN_SET_ATTR

PMERR_INV_PATTERN_SET_FONT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid pattern set attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

An attempt was made to use an unsuitable font as a
pattern set.

PMERR_HUGE_FONTS_NOT_SUPPORTED An attempt was made using GpiSetCharSet,

Remarks

GpiSetPatternSet, GpiSetMarkerSet, or GpiSetAttrs to
select a font that is larger than the maximum size (64Kb)
supported by the target device driver.

The bit map, or character within the font selected, is used for shading. On some devices, a simplified
form of the bit map, or character, is used. For example, only a subset such as the first 8 by 8 pels
may be used; also on a monochrome device a color bit map is converted to monochrome.

Some fonts are not suitable, and an error is returned if an attempt is made to set them as the current
pattern set. These include device fonts that cannot be used for shading, and any kind of raster font
for a plotter device.

This function must not be issued in an area or path bracket.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the pattern-set
attribute is preserved.

If the default pattern set is changed (using GpiSetDefAttrs), the initial default pattern marker set
cannot be selected with GpiSetPatternSet.

5-526 PM Programming Reference

\
) Related Functions

• GpiBeginArea
• GpiCreateLogFont
• GpiEndArea
• GpiQueryPatternSet
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetPattern
• GpiSetPatternRefPoint

Graphic Elements and Orders
Element Type: OCODE_GSPS

GpiSetPatternSet -
Set Pattern Set

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Pattern Set

Element Type: OCODE_GPSPS
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Pattern Set

Example Code
This function sets the current pattern-set attribute to the logical font with id 35.

#define INCL_GPIPRIMITIVES
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */

GpiSetPatternSet(hps, 35L);

Chapter 5. Graphics Functions 5-527

GpiSetPel
Set Pel

#define INCL GPIBITMAPS I* Or use INCL_GPI or INCL_PM */

LONG GpiSetPel (HPS hps, PPOINTL pptlPolnt)

This function sets a pel, at a position specified in world coordinates, using the current (line) color and
mix.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPoint (PPOINTL) - input
Position in world coordinates.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

This function is subject to all the usual clipping (clip path, clip region, viewing limits, graphics field,
visible region), and no error is returned if the point is subject to clipping.

This function is independent of drawing mode (see GpiSetDrawingMode); the effect always occurs
immediately, and it is not retained even if the drawing mode is draw-and-retain or retain. (Its effect
is, however, recorded in a metafile, but note that this is only successful if the metafile is replayed on
a similar device, with draw drawing mode.)

Note: This function must not be used when creating SAA-conforming metafiles; see "Metafile
Restrictions" on page G-1.

Related Functions
• DevQueryCaps
• GpiQueryPel
• GpiSetAttrs
• GpiSetBackColor
• GpiSetBackM ix
• GpiSetColor
• GpiSetDefAttrs
• GpiSetMix

5-528 PM Programming Reference

Example Code

GpiSetPel -
Set Pel

This function sets a pel, at a position specified in world coordinates, using the current (line) color and

mix.

#define INCL_GPIBITMAPS
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */

POINTL ptlPoint = {0,0};

GpiSetPel{hps, &ptlPoint);

Chapter 5. Graphics Functions 5-529

GpiSetPickAperturePosition
Set Pick-Aperture Position

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GplSetPlckAperturePosltlon (HPS hps, PPOINTL pptlPlck)

This function sets the center of the pick aperture, in presentation page space, for subsequent
nonretained correlation operations.

Parameters
hps (HPS) - input

Presentation-space handle.

pptlPlck (PPOINTL) - input
Center of the pick aperture.

The center is in presentation page coordinates.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Related Functions
• GpiQueryPickAperturePosition
• GpiQueryPickApertureSize
• GpiSetPickApertureSize

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

In this example we query the position of the center of the pick aperture.

#define INCL_GPICORELATION
#include <OS2.H>

BOOL flResult;
HPS hps; /* Presentation space handle. */
POINTL ptlPoint = {50L, 50L}; /* Pick-aperture position. */

flResult = GpiSetPickAperturePosition(hps, &ptlPoint);

5-530 PM Programming Reference

'\.\

)

GpiSetPickApertureSize
Set Pick-Aperture Size

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

BOOL GpiSetPickApertureSize (HPS hps, LONG IOptlons, PSIZEL pslzlSize)

This function sets the pick-aperture size.

Parameters
hps (HPS) - input

Presentation-space handle.

IOptions (LONG) - input
Setting option:

PICKAP _DEFAULT Use the default pick aperture. The value of psiz/Size is ignored.

PICKAP _REC Use the values specified by psiz/Size.

psizlSize (PSIZEL) - input
Pick aperture size.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _PICK_APERTURE_ OPTION

PMERR_INV_PICK_APERTURE_SIZE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid options parameter was specified with
GpiSetPickApertureSize

An invalid size parameter was specified with
GpiSetPickApertureSize

The pick aperture can be set either to the default value, or to a specified size in presentation page
space. This is used in any subsequent nonretained or retained correlation operations.

The default size is a rectangle in presentation page space that produces a square on the device, with
side equal to the default character cell height.

Related Functions
• GpiQueryPickApertureSize
• GpiSetPickAperturePosition
• GpiQueryPickAperturePosition

Chapter 5. Graphics Functions 5-531

GpiSetPickApertureSize
Set Pick-Aperture Size

Example Code
In this example we set the pick-aperture size to a 4 by 4 box in world coordinates.

#define INCL_GPICORRELATION
#include <OS2.H>

HPS hps;
SIZEL sizel;

/* Presentation space handle. */
/* Pick-aperture position. */

sizel.cx = 4L; sizel.cy = 4L;
GpiSetQueryPickApertureSize(hps, &sizel);

5-532 PM Programming Reference

1
)

I

GpiSetPS
Set Presentation Space

#define INCL_GPICONTROL I* Or use INCL_GPI or INCL_PM */

BOOL GplSetPS (HPS hps, PSIZEL pslzlslze, ULONG llOptlons)

This function sets the presentation space size, units, and format.

Parameters
hps (HPS) - input

Presentation-space handle.

pslzlslze (PSIZEL) - input
Presentation-space size.

llOptlons (ULONG) - input
Options.

This contains fields of option bits. For each field, one value should be selected (unless the

default is suitable). These values can then be ORed together to generate the parameter.

PS_UNITS
Presentation page size units.

Indicates the units for the presentation page size. In each case, the origin is at the bottom

left. Possible values are:

PU_ARBITRARY Application-convenient units

PU_PELS Pel coordinates

PU_LOMETRIC Units of 0.1 mm

PU _HIMETRIC Units of O.o1 mm

PU_LOENGLISH Units of 0.01 inch

PU_HIENGLISH Units of 0.001 inch

PU_TWIPS Units of 1/1440 inch.

PS_FORMAT
Coordinate format.

Indicates options to be used when storing coordinate values internally in the segment store.

For most calls, the format is not directly visible to an application. However, it is visible

during editing (for example, GpiQueryElement). The format also has an effect on the

amount of storage required for segment store.

One of these can be selected, for a GPIT_NORMAL presentation space (for a GPIT_MICRO

presentation space, only GPIF _DEFAULT is allowed):

GPIF _DEFAULT Default local format (same as GPIF _LONG)

GPIF _SHORT 2-byte integers

GPIF _LONG 4-byte integers.

PS_TYPE
Presentation space.

This option is ignored.

PS_MODE
Mode.

This option is ignored.

Chapter 5. Graphics Functions 5-533

GpiSetPS
Set Presentation Space

PS_ASSOCIATE
Association indicator.

This option is ignored.

PS_NORESET
Inhibit full reset indicator.

Inhibits the full reset of the presentation space. If this flag is set, a reset equivalent to
GRES_SEGMENTS is performed. If it is not set, a full reset (GRES_ALL) is performed.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _HDC

PMERR_INV_PS_SIZE

PMERR_INV _ OR_INCOMPAT _OPTIONS

PMERR_INV_FOR_THIS_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An invalid size parameter was specified with
GpiCreatePS or GpiSetPS.

An invalid or incompatible (with micro presentation
space) options parameter was specified with
GpiCreatePS or GpiSetPS.

An attempt has been made to issue GpiRemoveDynamics
or GpiDrawDynamics to a presentation space associated
with a metafile device context.

The presentation space is re-initialized to the same state that occurs as if it had been created using
the specified size and option values. However, whether the presentation space is a micro
presentation space or a normal presentation space cannot be changed, and any device context that
is already associated remains associated.

The presentation space code page is set to the current process code page.

On completion, the presentation space is reset with the equivalent of GRES_ALL (see GpiResetPS),
unless PS_NORESET is specified, in which case only the equivalent of a GRES_SEGMENTS reset is
performed.

This function cannot be used to a presentation space that is associated with a device context of type
OD_QUEUED, OD_METAFILE, or OD_METAFILE_NOQUERY.

Related Functions
• GpiAssociate
• GpiCreatePS
• GpiDestroyPS
• GpiQueryDevice
• GpiQueryPS
• GpiResetPS
• GpiRestorePS
• GpiSavePS

5-534 PM Programming Reference

Example Code
This function is used to reset the presentation space.

#include <052.H>
#define INCL_GPICONTROL

HPS hps; /* presentation space handle */
ULONG flOptions; /* reset options */

flOptions = PU_ARBITRARY I /* arbitrary units. */
GPIF_DEFAULT I /* normal ps format. */

GpiSetPS(hps, flOptions);

GpiSetPS -
Set Presentation Space

Chapter 5. Graphics Functions 5-535

GpiSetRegion
Set Region

#define INCL_GPIREGIONS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetReglon (HPS hps, HRGN hrgn, LONG lcount, PRECTL arclRectangles)

This function changes a region to be the logical-OR of a set of rectangles.

Parameters
hps (HPS) - input

Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) - input
Region handle.

lcount (LONG) - input
Count of rectangles.

This is the number of rectangles specified in arc/Rectangles. If /count= 0, the region is set to
EMPTY, and arc/Rectangles is ignored.

arclRectangles (PRECTL) - input
Array of rectangles.

The rectangles are specified in device coordinates.

For each rectangle in the array, the value of xright must be greater than (or equal to) xleft, and
ytop must be greater than (or equal to) ybottom.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

PMERR_INV _HRGN

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_REGION_IS_CLIP _REGION

PMERR_HRGN_BUSY

5-536 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid region handle was specified.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

GpiSetRegion
Set Region

Remarks
This function is similar to GpiCreateRegion, except that it changes an already existing region to be
the logical-OR of the supplied rectangles, instead of creating a new region.

The previous contents of the region are irrelevant. Points on the right-hand and top boundaries are
not included in the changed region; points on the left-hand and bottom boundaries, that are not also
on the right-hand or top boundaries, (that is, the top-left and bottom-right corner points) are included.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Related Functions
• GpiCombineRegion
• GpiCreateRegion
• GpiDestroyRegion
• GpiEqualRegion
• GpiOffsetRegion
• GpiPaintRegion
• GpiPtlnRegion
• GpiQueryRegionBox
• GpiQueryRegionRects
• GpiRectlnRegion

Example Code
In this example we change the region to be the logical-or of a set of rectangles.

#define INCL_GPIREGIONS
#include <OS2.H>
#define maxrects 2

BOOL flResult; /* success indicator. */
HPS hps; /* presentation space handle. */
HRGN hrgn; /* region handle. */
RECTL arclRect[maxrects] = {{201, 20L,

40L, 40L},
{40L, 20L,
60L, 40L}};

/* array of rectangle structures */

flResult = GpiSetRegion(hps,
hrgn,
(LONG)maxrects,

/* array of two rectangles. */
arclRect);

Chapter 5. Graphics Functions 5-537

GpiSetSegmentAttrs -
Set Segment Attributes

#define INCL GPISEGMENTS /*Or use INCL_GPI or INCL_PM */

BOOL GplSetSegmenlAttrs (HPS hps, LONG ISegld, LONG IAttrlbute, LONG IValue)

This function sets a segment attribute.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegld (LONG) - input
Segment identifier.

The identifier of the segment whose attribute is to be updated. It must be greater than zero.

IAttrlbute (LONG) - input
Segment attribute.

For details of the following attributes, see the GpiSetlnitialSegmentAttrs function.

ATTR_DETECTABLE Detectability

ATTR_VISIBLE Visibility

ATTR_CHAINED Chained

ATTR_DYNAMIC Dynamic

ATTR_FASTCHAIN Fast chaining

ATTR_PROP _DETECTABLE Propagate detectability

ATTR_PROP _VISIBLE Propagate visibility.

IValue (LONG) - input
Attribute value:

ATTR_ON On/yes

ATTR_OFF Off/no.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV _SEG_ATTR

PMERR_INV_SEG_ATTR_VALUE

5-538 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid attribute parameter was specified with
GpiSetSegmentAttrs, GpiQuerySegmentAttrs,
GpiSetlnitialSegmentAttrs, or
GpiQuerylnitialSegmentAttrs.

An invalid attribute value parameter was specified with
GpiSetSegmentAttrs or GpiSetlnitialSegmentAttrs.

'\
/ PMERR_SEG_NOT _FOUND

PMERR_INV _MICROPS_FUNCTION

Remarks

GpiSetSegmentAttrs
Set Segment Attributes

The specified segment identifier did not exist

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function sets the value of one segment attribute for the specified segment. The segment can be
any retained segment.

If the identifier is that of the currently-open segment:

• In retain mode, this is valid.
• In draw-and-retain mode, the retained segment is updated, but there is no change to the

immediate drawing.
• In draw mode, it is invalid.

(For a description of drawing mode, see GpiSetDrawingMode).

When a segment is modified from nonchained to chained, it is added to the end of the drawing chain.

Related Functions
• GpiCallSegmentMatrix
• GpiCloseSegment
• GpiCorrelateSegment
• GpiDeleteSegment
• GpiDeleteSegments
• GpiDrawSegment
• GpiErrorSegmentData
• GpiOpenSegment
• GpiQuerySegmentAttrs
• GpiSetlnitialSegmentAttrs
• GpiSetSegmentPriority

Chapter 5. Graphics Functions 5-539

GpiSetSegmentAttrs -
Set Segment Attributes

Example Code
This function is used to set the current value of the specified attribute.

#define INCL_GPISEGMENTS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

LONG lSegid; /* Segment identifier; must */
/* be greater than e. */
/* */
/* The name of the */
/* segment for which */
/* attribute information is to */
/* be returned. */

LONG lAttribute; /* attribute to be queried */
LONG lValue;
lAttribute = ATTR_VISIBLE;

lValue = GpiSetSegmentAttrs(hps,
lSegid,
lAttribute,
ATTR_ON);

5-540 PM Programming Reference

~

)

GpiSetSegmentPriority
Set Segment Priority

#define INCL_GPISEGMENTS I* Or use INCL_GPI or INCL_PM */

BOOL GplSetSegmentPrlorlty (HPS hps, LONG ISegld, LONG IRefSegld, LONG IOrder)

This function changes the position of a segment within the segment chain, or adds a segment to the
chain.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegld (LONG) - input
Segment identifier.

The identifier of the segment whose priority is to be changed; it must be greater than 0.

IRefSegld (LONG) - input
Reference segment identifier.

The segment that identifies a position in the segment chain. The segment specified in the /Segid
parameter is placed either immediately before or after this segment, depending on the value
specified in the /Order parameter. Specifying 0 for /RefSegid indicates that the position is to be
the beginning or the end of the segment chain as defined by the value in the /Order parameter.

IOrder (LONG) - input
Segment higher or lower.

Specifies whether the segment named in the /Segid parameter is to be placed before or after the
segment named in the /RefSegid parameter. Possible values are:

LOWER_PRI The segment named in the /Segid parameter is to have a lower priority than the
segment named in the /RefSegid parameter. The /Segid segment is placed
before the IRefSegid segment. If 0 is specified in the IRefSegid parameter, the
segment identified in the /Segid parameter is placed as the highest priority
segment.

HIGHER_PRI The segment named in the /Segid parameter is to have a higher priority than the
segment named in the /RefSegid parameter. The /Segid segment is placed after
the IRefSegid segment. If 0 is specified in the /RefSegid parameter, the segment
identified in the /Segid parameter is placed as the lowest priority segment.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERRJNV _HPS

PMERR_PS_BUSY

PMERRJNV_SEG_NAME

PMERRJNV _ ORDERING_PARM

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An invalid order parameter was specified with
GpiSetSegmentPriority.

Chapter 5. Graphics Functions 5-541

GpiSetSegmentPriority
Set Segment Priority

PMERR_SEG_AND_REFSEG_ARE_SAME The segid and refsegid specified with
GpiSetSegmentPriority were the same.

PMERR_SEG_NOT_FOUND The specified segment identifier did not exist

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

Remarks
The specified segment can be a segment that exists in the segment chain, or an unchained segment.
The effect of this function on an unchained segment is to add it to the segment chain in the specified
position.

The application may redraw the picture by drawing the segment chain (see GpiDrawChain). This
causes the segments in the chain to be processed from beginning to end, so that if segments
overlap, later ones are placed on top of earlier ones (assuming a default mix mode) and therefore
appear to have higher priority. Changing the position of the segment in the chain therefore has the
effect of changing its priority to the end user.

Related Functions
• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiOpenSegment
• GpiQuerySegmentPriority

Example Code
This example finds the segment with the highest priority and places a segment just before it with a
lower priority.

#define INCL_GPISEGMENTS
#include <OS2.H>

HPS hps; /* Presentation-space */
/* handle. */

LONG lRefSegid; /* Reference-segment */
/* identifier. */

LONG laddSegid = 20L;
LONG lSegid;

lSegid = GpiQuerySegmentPriority (hps.
/* find the segment with the highest */
/* priority. *I

GpiSetSegmentPriority(hps,
l RefSegid,
laddSegid,
LOWER_PRI) ;

5-542 PM Programming Reference

a.
HIGHER_PRI);

)

GpiSetSegmentTransformMatrix
Set Segment Transform Matrix

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GplSetSegmentTransformMatrlx (HPS hps, LONG ISegld, LONG ICount,
PMATRIXLF pmatlfarray, LONG IOptions)

This function sets the segment transform that normally applies to all of the primitives in the specified
segment.

Parameters
hps (HPS) - input

Presentation-space handle.

ISegid (LONG) - input
Segment identifier.

This must be greater than 0.

ICount (LONG) - input
Number of elements.

The number of elements to be used in the pmatlfarray parameter. If /Count is less than 9, the
elements omitted default to the corresponding elements of the identity matrix (see below).
Specifying /Count= 0 denotes that the identity matrix is used.

pmatlfarray (PMATRIXLF) - input
Transformation matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of
type FIXED, and have an assumed binary point between the second and third bytes. Thus, a
value of 1.0 is represented by 65 536. Other elements are normal signed integers. If the
presentation space coordinate format is GPIF _SHORT (see GpiCreatePS), these elements must
be within the range -1 through +1.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

IOptions (LONG) - input
Transform options.

Specifies how the existing segment transform is to be modified by the transform defined by the
pmatlfarray parameter. The new segment transform is computed, and the result stored back in
the segment, replacing the existing value. When the segment is drawn, the stored segment
transform is used to update the segment transform that is currently in effect, in an additive
manner. Possible values are:

TRANSFORM_REPLACE The previous default segment transform is discarded and replaced by
the specified transform.

TRANSFORM_ADD The specified transform is combined with the existing default
segment transform, in the order (1) existing transform, (2) new
transform. This option is most useful for incremental updates to
transforms.

TRANSFORM_PREEMPT The specified transform is combined with the existing default
segment transform, in the order (1) new transform, (2) existing
transform.

Chapter 5. Graphics Functions 5-543

GpiSetSegmentTransformMatrix
Set Segment Transform Matrix

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _SEG_NAME

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_COUNT

PMERR_SEG_NOT_FOUND

PMERR_INV _MATRIX_ELEMENT

PMERR_INV _TRANSFORM_ TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

The specified segment identifier did not exist

An invalid transformation matrix element was specified.

An invalid options parameter was specified with a
transform matrix function.

The matrix is used to update the segment transform of a retained segment, according to the value of
the /Options parameter.

The segment transform is actually a model transform that applies at the start of the segment. It can
be overridden later in the segment with a GpiSetModelTransformMatrix function.

This function specifies the transform as a one-dimensional array of /Count elements, being the first
/Count elements of a 3-row by 3-column matrix ordered in rows. The order of the elements is:

Matrix Array

(a,b,G,c,d,0,e,f,1)

The transform acts on the coordinates of the primitives in a segment, so that a point with coordinates
(x,y) is transformed to the point:

(a*x + c*y + e, b*x + d*y + f)

The initial value of the transform of a segment is the identity matrix, as shown below:

Matrix Array

(1,e,e,e,1,e,e,e,1)

5-544 . PM Programming Reference

\

GpiSetSegmentTransformMatrix -
Set Segment Transform Matrix

If scaling values greater than unity are given {which only applies if the presentation space coordinate

format, as set by the GpiCreatePS function, is GPIF _LONG) it is possible for the combined effect of

this and any other relevant transforms to exceed fixed-point implementation limits. This causes an

error.

Segment transforms do not apply to primitives outside segments.

Related Functions
• GpiCallSegmentMatrix
• GpiQueryModelTransform Matrix
• GpiQuerySegmentTransformMatrix
• GpiSetModelTransformMatrix

Example Code
This example sets the transformation matrix of the highest priority segment to scale everything by a

factor of 2.

#define INCL_GPISEGMENTS
#include <OS2.H>

HPS hps;

LONG lSegid;

/* Presentation-space */
/* handle. */
/* Segment identifier. */

MATRIXLF matlfArray = {MAKEFIXED(2,0),
e,e,e,MAKEFIXED(2,0),
e,e,e,1};

/* array of Transform matrix */
/* structures. */

lSegid = GpiQuerySegmentPriority(hps,
/* find the segment with the highest */
/* priority. *I

e,
HIGHER_PRI);

GpiSetSegmentTransformMatrix(hps,
lSegid,
9L,
&matlfArray);

Chapter 5. Graphics Functions 5-545

GpiSetStopDraw
Set Stop Draw

#define INCL GPICONTROL I* Or use INCL_GPI or INCL_PM */

BOOL GplSetStopDraw (HPS hps, LONG IValue)

This function sets or clears the "stop draw" condition.

Parameters
hps (HPS) - input

Presentation-space handle.

IValue (LONG) - input
Stop draw condition:

SDW_OFF Clear the "stop draw" condition

SDW_ON Set the "stop draw" condition.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_INV _STOP _DRAW_ VALUE

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An invalid value parameter was specified with
GpiSetStopDraw.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function allows an application to set up, and control, an asynchronous thread on which long
drawing operations may be performed. At the point at which the controlling thread stops a draw, it
sets the "stop draw" condition. The controlling thread clears this condition after it has received an
acknowledgment from the drawing thread.

The "stop draw" condition has no effect on any other calls.

If one of the following calls is made (or has already been initiated from another thread) to the same
presentation space, the call is terminated if the "stop draw" condition exists:

• GpiDrawChain
• GpiDrawDynamics
• GpiDrawFrom
• GpiDrawSegment
• GpiPlayMetaFile
• GpiPutData.

The call terminates with a warning.

Any call other than GpiSetStopDraw, directed at a presentation space that is currently in use, gives a
PMERR_PS_BUSY error condition.

Note: If this function is issued when an asynchronous draw to a metafile is taking place, the result is
an unusable metafile.

5-546 PM Programming Reference

)
Related Functions

• GpiDrawChain
• GpiDrawDynamics
• Gpi Draw From
• GpiDrawSegment
• GpiPlayMetaFile
• GpiPutData
• GpiQueryStopDraw

Example Code
This example shows how to stop drawing.

#define INCL_GPICONTROL
#include <052.H>
HPS hps; /* Presentation-space */

/* handle. */

GpiSetStopDraw(hps.SDW_OFF);

GpiSetStopDraw -
Set Stop Draw

Chapter 5. Graphics Functions 5-547

GpiSetTag
Set Tag

#define INCL_GPICORRELATION I* Or use INCL_GPI or INCL_PM */

I BOOL GplSetTag (HPS hps, LONG ITag)

This function specifies a tag by which the following primitives are to be known.

Parameters
hps (HPS) - input

Presentation-space handle.

ITag (LONG) - input
Tag identifier.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

When GpiCorrelateChain, GpiCorrelateFrom, or GpiCorrelateSegment is used to locate an object,
both the segment identifier and the primitive tag of the object are returned to the application
program.

If a tag of 0 is specified, the primitives have no name and are not returned by the correlate call.

Initially, the default and current tag are 0. The default tag can be changed with GpiSetoefTag.

Primitives within an unnamed segment cannot be picked or correlated, and any tag applied to them
is ignored.

This function is not allowed between GpiBeginArea and GpiEndArea calls, therefore, all primitives
within an area have the same tag.

The attribute mode (see GpiSetAttrMode) determines whether the current value of the tag is
preserved.

Related Functions
• GpiQueryDefTag
• GpiQueryTag
• GpiSetoefTag
• GpiCorrelateChain

5-548 PM Programming Reference

Graphic Elements and Orders
Element Type: OCODE_GSPIK

GpiSetTag -
Set Tag

This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Pick Identifier

Element Type: OCODE_GPSPIK
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Pick Identifier

Example Code
This example opens a segment and calls GpiSetTag so that all of the following primitives will be
associated with that tag.

#define INCL_GPICORRELATION
#include <OS2.H>
HPS hps; /* Presentation-space */

/* handle. */

GpiOpenSegment(hps, 0L);
GpiSetTag(hps, 0L);

Chapter 5. Graphics Functions 5-549

GpiSetTextAlignment
Set Text Alignment

#define INCL GPIPRIMITIVES I* Or use INCL_GPI or INCL_PM */

BOOL GplSetTextAllgnment (HPS hps, LONG IHorlzontal, LONG IVertlcal)

This function determines the alignment used to position the characters in a string.

Parameters
hps (HPS) - input

Presentation-space handle.

IHortzontat (LONG) - input
Horizontal alignment:

This parameter and the next one (/Vertical) specify the alignment of character strings
horizontally and vertically. Together they define a reference point within the string that is
positioned on the starting point specified for the string.

Note: The terms used in this definition (left, right, top and bottom) must be interpreted with
regard to the direction of the current coordinate system, as follows:

Left
Right
Top
Bottom

the side of the display corresponding to the lowest x-value.
the side of the display corresponding to the highest x-value.
the side of the display corresponding to the highest y-value.
the side of the display corresponding to the lowest y-value.

TA_NORMAL_HORIZ Normal alignment. This is the initial default. The alignment assumed
depends on the current character direction as set by
GpiSetCharDi rection:

CHDIRN_LEFTRIGHT
CHDIRN_TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_LEFT.
Same as TA_US.CENTER.
Same as TA_RIGHT.
Same as TA_CENTER.

TA_LEFT Left alignment. The string is aligned on the left edge of its leftmost
character. __,

TA_CENTER Center alignment. The string is aligned on the arithmetic mean of Left
and Right.

TA_RIGHT Right alignment. The string is aligned on the right edge of its rightmost
character.

TA_STANDARD_HORIZ Standard alignment. This is the initial default. The alignment assumed
depends on the current character direction:

CHDIRN_LEFTRIGHT
CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

5-550 PM Programming Reference

Same as TA_LEFT.
Same as TA_US.LEFT.
Same as TA_RIGHT.
Same as TA_LEFT.

\
/ IVertical (LONG) - input

Vertical alignment:

TA_NORMAL_ VERT

GpiSetTextAlignment -
Set Text Alignment

Normal alignment. This is the initial default. The alignment assumed
depends on the current character direction as set by
GpiSetCharDirection:

CHDIRN_LEFTRIGHT
CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_BASE.
Same as TA_US.TOP.
Same as TA_BASE.
Same as TA_BOTTOM.

TA_TOP Top alignment. The string is aligned on the top edge of its topmost
character.

TA_HALF Half alignment. The string ls aligned on the arithmetic mean of Bottom
and Top.

TA_BASE Base alignment. The string is aligned on the base of its bottom
character.

TA_BOTTOM Bottom alignment. The string is aligned on the bottom edge of its bottom
character.

TA_STANDARD_VERT Standard alignment. This is the initial default. The alignment assumed
depends on the current character direction:

Returns
Success indicator:

CHDIRN_LEFTRIGHT
CHDIRN_ TOPBOTTOM
CHDIRN_RIGHTLEFT
CHDIRN_BOTTOMTOP

Same as TA_BOTTOM.
Same as TA_US.TOP.
Same as TA_BOTTOM.
Same as TA_BOTTOM.

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PM ERR_ PS _BUSY

PMERR_INV _ CHAR_ALIGN_A TTR

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The text alignment attribute specified in
GpiSetTextAlignment is not valid.

This function must not be issued in an area bracket. The attribute mode determines whether the

current value of the text alignment attribute is preserved.

Support for this function is device dependent.

Chapter 5. Graphics Functions 5-551

GpiSetTextAlignment
Set Text Alignment

Related Functions
• GpiQueryTextAlignment
• GpiSetCharBox
• GpiSetCharDirection
• GpiSetCharMode
• GpiSetCharSet
• GpiSetCharShear
• GpiPop
• GpiSetAttrMode
• GpiSetAttrs
• GpiSetDef Attrs
• GpiSetBackColor
• GpiSetBackMix
• GpiSetColor
• GpiSetMix
• GpiCharString
• GpiCharStringAt
• GpiCharStringPos
• GpiCharStringPosAt
• GpiQueryCharStringPos
• GpiQueryCharStringPosAt

Graphic Elements and Orders
Element Type: OCODE_GSTA
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Text Alignment

Element Tyoe: OCODE_GPSTA
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Text Alignment

5-552 PM Programming Reference

GpiSetViewingLimits
Set Viewing Limits

#define INCL_GPITRANSFORMS /*Or use INCL_GPI or INCL_PM */

BOOL GpiSetViewlngLlmlts (HPS hps, PRECTL prclLlmlts)

This function establishes a clipping rectangle in model space.

Parameters
hps (HPS) - input

Presentation-space handle.

prclLlmits (PRECTL) - input
Viewing limits in model space.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

Viewing limits can be set within a segment, and apply to all subsequent primitives in the segment
and any segments it calls. They can be changed at any time within the segment and they are not
subject to segment or model transformations. Limits specified in called segments override those set
by the limits of the root segment.

The limits are reset to their default value at the start of each root segment, subject to the
fast-chaining attribute, like primitive attributes. The initial default value is no clipping; this can be
changed with GpiSetOeNiewinglimits.

The boundaries are inclusive, so that points on them are not clipped (removed). If either the left
boundary of pre/Limits is greater than the right, or the bottom greater than the top, a NULL rectangle
is defined. All points are clipped.

Attribute mode (see GpiSetAttrMode) has no effect on this function.

The viewing limits are converted under the current viewing and default viewing transformations to a
clipping rectangle in the page. This remains in force until changed by a subsequent
GpiSetViewinglimits function. Clipping actually takes place to the intersection of the viewing limits,
the clip path, the clip region, the graphics field, and the client area on the device.

Chapter 5. Graphics Functions 5-553

GpiSetViewingLimits
Set Viewing Limits

Related Functions
• GpiQueryViewinglimits
• GpiSetDeNiewinglimits
• GpiSetGraphicsField

Graphic Elements and Orders
Element Tyoe: OCODE_GSVW
This element type is generated if the attribute mode (see GpiSetAttrMode) is set to
AM_NOPRESERVE.

Order: Set Viewing Window

Element Tyoe: OCODE_GPSVW
This element type is generated if the attribute mode is set to AM_PRESERVE.

Order: Push and Set Viewing Window

Example Code
In this example the model space clipping region width is reduced to 400x400.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps;

BOOL fSuccess;

/* Presentation-space */
/* handle. */

RECTL rcllimits = { /*viewing limits. */
10,10,
410,410
};

fSuccess = GpiSetViewinglimits(hps,
&rcllimits);

5-554 PM Programming Reference

GpiSetViewingTransformMatrix
Set Viewing Transform Matrix

#define INCL_ GPITRANSFORMS I* Or use INCL_ GPI or INCL_PM *I

BOOL GplSetViewlngTransformMatrix (HPS hps, LONG ICount, PMATRIXLF pmatlfArray,
LONG IOptlons)

This function sets the viewing transform that is to apply to any subsequently opened segments.

Parameters
hps (HPS) - input

Presentation-space handle.

ICount (LONG) - input
Number of elements.

The number of elements supplied in pmatlfArray, that are to be examined, starting from the
beginning of the structure. If /Count is less than 9, remaining elements default to the
corresponding elements of the identity matrix. Specifying /Count= O means that the identity
matrix is used.

pmatlfArray (PMATRIXLF) - input
Transformation matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of
type FIXED, and have an assumed binary point between the second and third bytes. Thus a
value of 1.0 is represented by 65 536. Other elements are normal signed integers. If the
presentation space coordinate format is GPIF _SHORT (see GpiCreatePS), these elements must
be within the range -1 through +1.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

IOptions (LONG) - input
Transform option.

Specifies how the specified transform is to be used to modify the existing viewing transform.
This must be:

TRANSFORM_REPLACE New and replace. The previous viewing transform is discarded and
replaced by the specified transform.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _MATRIX_ELEMENT

PMERR_INV _TRANSFORM_ TYPE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

An invalid transformation matrix element was specified.

An invalid options parameter was specified with a
transform matrix function.

Chapter 5. Graphics Functions 5-555

GpiSetViewingTransformMatrix
Set Viewing Transform Matrix

PMERR_INV _IN_SEG

PMERR_NOT_IN_RETAIN_MODE

Remarks

An attempt was made to issue a function invalid inside a
segment bracket.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

This function is only valid outside segments. The viewing transform that is set applies to all
subsequently opened (new) segments (it has no effect on primitives outside segments). All graphics
primitives in a segment must have the same viewing transform. When it has been set for a particular
segment, the viewing transform for that segment cannot be changed.

The transform is specified as a one-dimensional array of /Count elements, being the first n elements
of a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

[~ ~ :]
e f 1

(a,b,0,c,d,0,e,f,1)

The transform acts on the coordinates of the primitives in a segment, so that a point with coordinates
(x,y) is transformed to the point:

(a*x + c*y + e, b*x + d*y + f)

The initial value of the viewing transform is the identity matrix, as shown below:

Matrix Array

[~ ~ ~J
0 0 1

(1,0,0,0,1,0,0,0,1)

The viewing transform must be set (or defaulted) to the unity transform, before any segment that is to
be called is first opened.

If scaling values greater than unity are given (which only applies if the presentation space coordinate
format, as set by the GpiCreatePS function, is GPIF _LONG) it is possible for the combined effect of
this and any other relevant transforms to exceed fixed-point implementation limits. This causes an
error.

This function must not be issued in a path or area bracket.

Related Functions
• GpiQueryViewingTransformMatrix
• GpiSetDefaultViewMatrix

5-556 PM Programming Reference

Example Code

GpiSetViewingTranstormMatrix -
Set Viewing Transform Matrix

In this example, the GpiSetViewingTransformMatrix is used to replace the existing viewing
transformation. The new transformation will then double the width and height of drawing.

#define INCL_GPITRANSFORMS
#include <OS2.H>

HPS hps; /* Presentation space handle. */
LONG lCount; /* maximum number of elements */
MATRIXLF matlf = { MAKEFIXED(2,0), /* scale x coordinates by a */

/* factor of 2. */
0, 0, 0, /* no rotation. */
MAKEFIXED(2,0), /*scale y coordinates by a*/

/* factor of 2. */
0, 0, 0, 1}; /* no rotation. */

GpiSetViewingTransfonnMatrix(hps,
9L, /* number of elements. */
&matlf,
TRANSFORM_REPLACE);

Chapter 5. Graphics Functions 5-557

GpiStrokePath
Stroke Path

#define INCL_GPIPATHS /*Or use INCL_GPI or INCL_PM */

LONG GplStrokePath (HPS hps, LONG IPath, ULONG flOptlons)

This function strokes a path, and then draws it.

Parameters
hps (HPS) - input

Presentation-space handle.

IPath (LONG) - input
Identifier of path to be stroked; it must be 1.

flOptlons (ULONG) - input
Stroke option:

Reserved; must be 0.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS

PMERR_PS_BUSY

PMERR_INV_PATH_ID

PMERR_INV _RESERVED _FIELD

PMERR_PATH_UNKNOWN

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid reserved field was specified.

An attempt was made to perform a path function on a path
that did not exist.

The path is first converted to one that describes the envelope of a wide line stroked using the current
geometric line-width attribute (see GpiSetlineWidthGeom).

Note: This function and GpiModifyPath are the only calls that can cause geometric wide lines to be
constructed. For more details about the way in which the envelope is constructed, see
GpiModifyPath.

The converted path is then filled, using winding mode area fill and the area attributes. The
boundaries of the wide line are included in the fill.

When it has been drawn, the path is deleted.

This function is equivalent to GpiModifyPath, followed by GpiFillPath. It is provided to enable device
drivers to optimize storage, if possible.

If the current drawing mode (see GpiSetDrawingMode) is draw or draw-and-retain, drawing occurs
on the currently associated device. If the drawing mode is retain, this function is stored in the
current segment and output occurs when the segment is subsequently drawn in the usual way.

5-558 PM Programming Reference

Related Functions
• GpiBeginArea
• GpiBeginPath
• GpiEndPath
• GpiFillPath
• Gpi ModifyPath
• GpiOutlinePath
• GpiPathToRegion
• GpiSetClipPath
• GpiSetAttrs
• GpiSetDefAttrs
• GpiSetlineEnd
• GpiSetlineJoin
• GpiSetlineType
• GpiSetlineWidth
• GpiSetlineWidthGeom

Graphic Elements and Orders
Element Type: OCODE_GFPTH
Note that GpiFillPath also generates this element type.

Order: Fill Path

Example Code

GpiStrokePath -
Stroke Path

This example uses the GpiStrokePath function to draw a wide line.

#define INCL_GPIPATHS
#include <OS2.H>

HPS hps; /* Presentation space handle. */
POINTL ptlStart = { 0. 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

/* create the path */

GpiBeginPath(hps, ll);
GpiMove(hps, &ptlStart);
GpiPolyline(hps, 3, ptlTriangle);
GpiEndPath(hps);

GpiSetlineWidthGeom(hps, 20L); /* set the line width
GpiStrokePath(hps, ll, 0L); /*draw the wide line

*/
*/

Chapter 5. Graphics Functions 5-559

GpiTranslate
Translate Matrix

#define INCL_GPITRANSFORMS I* Or use INCL_GPI or INCL_PM */

BOOL GplTranslate (HPS hps, PMATRIXLF pmatlfArray, LONG IOptlons,
PPOINTL pptlTranslatlon)

This function applies a translation to a transform matrix.

Parameters
hps (HPS) - input

Presentation-space handle.

pmatlfArray (PMATRIXLF) - input/output
Transform matrix.

The elements of the transform, in row order. The first, second, fourth, and fifth elements are of
type FIXED, and have an assumed binary point between the second and third bytes. Thus a
value of 1.0 is represented by 65 536. Other elements are normal signed integers.

The third, sixth, and ninth elements must be 0, 0, and 1, respectively.

IOptlons (LONG) - input
Transform options.

Specifies how the transform defined by the specified translation should be used to modify the
previous transform specified by the pmatlfArray parameter. Possible values are:

TRANSFORM_REPLACE The previous transform is discarded and replaced by the transform
describing the specified translation.

TRANSFORM_ADD The previous transform is combined with a transform representing
the specified translation in the order (1) previous transform, (2)
translational transform. This option is most useful for incremental
updates to transforms.

pptlTranslation (PPOINTL} - input
Translation.

The coordinates of a point, relative to the origin, which defines the required translation.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV _TRANSFORM_ TYPE

5-560 PM Programming Reference

An invalid options parameter was specified with a
transform matrix function.

\
)

Remarks

GpiTranslate
Translate Matrix

This function is a helper function which either applies a specified translational component to an
existing transform matrix, or replaces the matrix with one that represents the specified translation
alone.

The transform is specified as a one-dimensional array of 9 elements that are the elements of a 3-row
by 3-column matrix ordered by rows. The order of the elements are as follows:

Matrix Array

(a,b,0,c,d,0,e,f ,1)

Transforms act on the coordinates of primitives, so that a point with coordinates (x,y) is transformed
to the point:

(a*x + c*y + e, b*x + d*y + f)

The transform can be used in any call following:

• GpiSetModelTransformMatrix
• GpiSetSegmentTransformMatrix
• GpiSetViewingTransformMatrix
• GpiSetDefaultViewMatrix.

Other similar helper functions are:

• GpiScale to apply a scaling component
• GpiRotate to apply a rotation component.

Related Functions
• GpiRotate
• GpiScale
• GpiSetModelTransformMatrix
• GpiSetSegmentTransformMatrix
• GpiSetDefaultViewMatrix
• GpiSetViewingTransformMatrix

Chapter 5. Graphics Functions 5-561

GpiTranslate -
Translate Matrix

Example Code
This example translates the center of the picture back to the center of the page.

#define INCL_GPITRANSFORMS
#define INCL_WINSYS
#include <OS2.H>

HPS hps; /* Presentation space handle. */
MATRIXLF matlf; /* Current viewing transformation */
POINTL ptlPictCenter;

/* determine the center of the page */
ptlPictCenter.x = WinQuerySysValue(HWND_DESKTOP,

SV_CXFULLSCREEN)/2 - ptlPictCenter.x;
ptlPictCenter.y = WinQuerySysValue(HWND_DESKTOP,

SV_CYFULLSCREEN)/2 - ptlPictCenter.y;

GpiQueryViewingTransformMatrix(hps,
9L,

/* Translate the center of the picture back to the center of the */
/* page. */

GpiTranslate(hps,
&rnatlf,
TRANSFORM ADD,
&ptlPictCenter);

5-562 PM Programming Reference

&rnatlf);

\
)

GpiUnloadFonts -
Unload Fonts

#define INCL_GPILCIDS I* Or use INCL_GPI or INCL_PM */

BOOL GplUnloadFonts (HAB hab, PSZ pszFllename)

This function unloads any fonts previously loaded from the resource file by GpiloadFonts.

Parameters
hab (HAB) - input

Anchor-block handle.

pszFllename (PSZ) - input
Fully qualified file name of the font resource.

The file name extension is .FON

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_FONT _FILE_NOT _LOADED

PMERR_ OWN_SET _ID _REFS

Remarks

An attempt was made to unload a font file that was not
loaded.

An attempt to unload a font failed because the setid is still
being referenced.

Before issuing this function, the application must:

1. Issue GpiSetCharSet to a font other than one of those to be unloaded, for example, to the default

font.

2. Issue GpiDeleteSetld for each local identifier (lcid) that references one of the fonts (the

LCID_ALL option can be used if all lcids are to be deleted).

An error is returned if lcids that reference one of the fonts still exist for this application, and a

warning is logged if lcids exist for another application.

Related Functions
Prerequisite Functions

• GpiDeleteSetld
• GpiSetCharSet

Other Related Functions

• GpiCreateLogFont
• GpiloadFonts
• GpiQueryFontMetrics
• GpiQueryFonts
• GpiQueryKerningPairs
• GpiQueryNumberSetlds
• GpiQuerySetlds
• GpiQueryWidthTable

Chapter 5. Graphics Functions 5-563

GpiUnloadFonts
Unload Fonts

Example Code
This function unloads any font(s) previously loaded from the resource file by GpiloadFonts.

#define INCL_GPILCIDS
#include <052.H>

HAB hab; /* Anchor-block handle. */
char fntname[] = "HELVETICA. FON";

GpiUnloadFonts(hab, fntname);

5-564 PM Programming Reference

GpiUnloadPublicFonts
Unload Public Fonts

#define INCL GPILCIDS /*Or use INCL_GPI or INCL_PM */

BOOL GplUnloadPubllcfonts (HAB hab, PSZ pszfllename)

This function unloads one or more generally-available fonts from the specified resource file. See

GpiloadPubl icFonts.

Parameters
hab (HAB) - input

Anchor-block handle.

pszfllename (PSZ) - input
Filename.

This is the fully-qualified name of the font resource. The file-name extension is .FON

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_FONT _FILE_NOT _LOADED

PMERR_SET_ID_REFS

Remarks

An attempt was made to unload a font file that was not
loaded.

An attempt to unload a font failed because the setid is still
being referenced.

Before issuing this function, the application must:

1. Issue GpiSetCharSet to a font other than one of those to be unloaded, for example, to the default
· font.

2. Issue GpiDeleteSetld for each local identifier (lcid) that references one of the fonts (the
LCID_ALL option can be used if all lcids are to be deleted).

An error is returned if lcids that reference one of the fonts still exist for this or any other application,
and the unload fails.

Note: If another application is using the fonts when this function is issued, so that the call fails, the
fonts are likely to remain loaded until the next boot. This is true even if the other application

has issued a GpiloadPublicFonts, and will later issue a GpiUnloadPublicFonts, since the use
count is not decremented when the call fails.

It is also possible for one application to get details of the fonts with GpiQueryFonts, but then to

fail to be able to use them with GpiCreatelogFont, because another application unloaded
them with GpiUnloadPublicFonts in the time between the two calls.

Chapter 5. Graphics Functions 5-565

GpiUnloadPublicFonts
Unload Public Fonts

Example Code
This function unloads one or more generally-available fonts from the specified resource file.

#define INCL_GPILCIDS
#include <OS2.H>

HAB hab; /* Anchor-block handle. */
char fntname [] = "HELVETICA. FON";

GpiUnloadPublicFonts(hab,fntname);

5-566 PM Programming Reference

\
I

!

GpiWCBitBlt
World Coordinates Bit Bit

#define INCL_GPIBITMAPS /*Or use INCL_GPI or INCL_PM. Also in COMMON section*/

LONG GplWCBllBll (HPS hpsTarget, HBITMAP hbmSource, LONG ICount, PPOINTL aptlPolnts,
LONG IRop, ULONG flOptlons)

This function copies a rectangle of bit-map image data.

Parameters
hpsTarget (HPS) - input

Target presentation-space handle.

hbmSource (HBITMAP) - input
Source bit-map handle.

It is an error if this bit map is currently selected into a memory device con_text.

ICount (LONG) - input
Point count.

This count must be equal to 4.

aptlPolnts (PPOINTL) - input
Point array

Array of /Count points, in the order Tx1, Ty1, Tx2, Ty2, Sx1, Sy1, Sx2, Sy2. These are:

Tx1,Ty1 Specify the bottom-left corner of the target rectangle in target world coordinates.

Tx2,Ty2 Specify the top-right corner of the target rectangle in target world coordinates.

Sx1,Sy1 Specify the bottom-left corner of the source rectangle in source device coordinates.

Sx2,Sy2 Specify the top-right corner of the source rectangle in source device coordinates.

IRop (LONG) - input
Mixing function required.

Each plane of the target can be considered to be processed separately. For any pel in a target
plane, three bits together with the /Rop values are used to determine the final value. These are
the value of that pel in the Pattern (P) and Source (S) data and the initial value of that pel in the
Target (T) data. For any combination of P, S, and T pel values, the final target value for the pel is
determined by the appropriate IRop bit value as shown below:

p s T (lnltlal) T (final)

0 0 0 Index bit 0 (least significant)
0 0 1 Index bit 1
0 1 0 Index bit 2
0 1 1 Index bit 3
1 0 0 Index bit 4
1 0 1 Index bit 5
1 1 0 Index bit 6
1 1 1 Index bit 7 (most significant)

Chapter 5. Graphics Functions 5-567

GpiWCBitBlt -
World Coordinates Bit Bit

The index formed in the above way determines the mixing required. Mnemonic names are
available for commonly used mixes:

ROP_SRCCOPY
ROP_SRCPAINT
ROP_SRCAND
ROP_SRCINVERT
ROP_SRCERASE
ROP_NOTSRCCOPY
ROP_NOTSRCERASE
ROP_MERGECOPY
ROP_MERGEPAINT
ROP_PATCOPY
ROP_PATPAINT
ROP _PATINVERT
ROP_DSTINVERT
ROP_ZERO
ROP_ONE

/* SRC */
/* SRC OR DST */
/* SRC AND DST */
/* SRC XOR DST */
/* SRC AND NOT(DST) */
/* NOT(SRC) */
/* NOT(SRC) AND NOT(DST) */
/* SRC AND PAT */
/* NOT(SRC) OR DST */
/* PAT */
/* NOT(SRC) OR PAT OR DST */
/* DST XOR PAT */
/* NOT(DST) */
/* e */
/* 1 */

flOpllons (ULONG) - input
Options.

How eliminated lines or columns are treated if a compression is performed.

Flags 15 through 31 off/Options can be used for privately-supported modes for particular
devices.

BBO_OR The default. If compression is necessary, logical-OR eliminated rows or
columns. This is useful for white on black.

BBO_AND If compression is necessary, logical-AND eliminated rows or columns. This is
useful for black on white.

BBO_IGNORE If compression is necessary, ignore eliminated rows or columns. This is useful
for color.

Returns
Correlation and error indicators:

GPl_OK Successful

GPl_HITS Correlate hits

GPl_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV _HPS

PMERR_PS_BUSY

PMERR_INV _LENGTH_ OR_ COUNT

PMERR_INV _BITBLT _MIX

PMERR_INV _BITBLT _STYLE

PMERR_BITMAP _NOT _FOUND

PMERR_INV _COORDINATE

PMERR_INV _RECT

PMERR_NO _BITMAP _SELECTED

5-568 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid /Rop parameter was specified with a GpiBitBlt
or GpiWCBitBlt function.

An invalid options parameter was specified with a
GpiBitBlt or GpiWCBitBlt function.

A attempt was made to perform a bit-map operation on a
bit map that did not exist.

An invalid coordinate value was specified.

An invalid rectangle parameter was specified.

An attempt has been made to operate on a memory
device context that has no bit map selected.

PMERR_INCORRECT _DC_ TYPE

PMERR_INCOMPATIBLE_BITMAP

PMERR_INV _HBITMAP

PMERR_HBITMAP _BUSY

Remarks

GpiWCBitBlt
World Coordinates Bit Bit

An attempt was made to perform a bit-map operation on a
presentation space associated with a device context of a
type that is unable to support bit-map operations.

An attempt was made to select a bit map or perform a
BitBlt operation on a device context that was
incompatible with the format of the bit map.

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

A rectangle of bit-map image data is copied from a bit map, to a bit map selected into a device
context associated with the target presentation space. Alternatively, the target presentation space
can be associated with a device context that specifies a suitable raster device, for example, the
screen.

Note: In either case, both source and target device contexts must apply to the same physical device.
It is an error if this device does not support raster operations.

A rectangle is specified in device coordinates for the source bit map, and one in world coordinates
for the target presentation space. The source rectangle is noninclusive; the left and lower
boundaries in device space are included, but not the right and upper boundaries. Thus if the
bottom-left is equal to the top-right, the rectangle is deemed to be empty. The target rectangle is
"inclusive-inclusive"; that is, all boundaries are included in the rectangle.

If the target rectangle, after transformation to device coordinates and adjustment for inclusivity, is
not the same size as the source rectangle, then stretching or compressing of the data occurs.
f/Options specifies how eliminated rows or columns of bits are to be treated if compression occurs.
Note that the pattern data is never stretched or compressed.

If there is a rotational effect in the transforms, the copy of the bit map is rotated accordingly.

The target rectangle is transformed to device coordinates, and if any shear or rotation has occurred,
this is then converted to an upright rectangle that bounds the transformed figure. This rectangle is
used as the target of the operation. No inversion of the image takes place.

These current attributes of the target presentation space are used (other than for converting between
monochrome and color, as described below):

• Area color
• Area background color
• Pattern set
• Pattern symbol.

The color values are used in conversion between monochrome and color data. This is the only
format conversion performed by this function. The conversions are:

• Output of a monochrome pattern to a color device.

In this instance the pattern is converted first to a color pattern, using the current area colors:

- source 1s -+ area foreground color
- source Os -+ area background color.

• Copying from a monochrome bit map to a color bit map (or device).

The source bits are converted as follows:

source 1s -+ image foreground color
- source Os-+ image background color.

Chapter 5. Graphics Functions 5-569

GpiWCBitBlt -
World Coordinates Bit Bit

• Copying from a color bit map to a monochrome bit map (or device).

The source bits are converted as follows:

source nonzeros -+ image foreground color
- source Os-+ image background color.

If the mix (/Rop) does not call for a pattern, the pattern set and pattern symbol are not used.

Neither the source nor the pattern is required when a bit map, or part of a bit map, is to be cleared to
a particular color.

If the mix does require both source and pattern, a three-way operation is performed.

If a pattern is required, dithering may be performed for solid patterns in a color that is not available
on the device. See GpiSetPattern.

This function (unlike GpiBitBlt) can be drawn immediately, retained in segment store, or both of
these, depending upon the drawing mode (see GpiSetDrawingMode).

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see "Metafile Restrictions" on page G-1.

Related Functions
• DevQueryCaps
• GpiBitBlt
• GpiCreateBitmap
• GpiDeleteBitmap
• GpiDrawBits
• GpiloadBitmap
• GpiQueryBitmapBits
• GpiQueryBitmapDimension
• GpiQueryBitmapHandle

· • GpiQueryBitmapParameters
• GpiQueryDeviceBitmapFormats
• GpiSetBitmap
• GpiSetBitmapBits
• GpiSetBitmapDimension
• GpiSetBitmapld
• WinDrawBitmap
• WinGetSysBitmap

Graphic Elements and Orders
Element Tyoe: OCODE_GBBLT

Order: Bitblt

5-570 PM Programming Reference

Example Code

GpiWCBitBlt -
World Coordinates Bit Bit

This function copies a rectangle of bit-map image data. This example uses GpiWCBitBlt to copy and
compress a bit map in a presentation space. The function copies the bit map that is 100 pels wide
and 100 pels high into a 50-by-50-pel rectangle at the location (300,400). Since the raster operation is
ROP _SRCCOPY, GpiWCBitBlt replaces the image previously in the presentation-space rectangle.
The function compresses the bit map to fit the new rectangle by discarding extra rows and columns
as specified by the BBO_IGNORE option.

#define INCL_GPIBITMAPS
#include <052.H>
HPS hps;
HBITMAP hbm;
POINTL aptl[4] = {

300, 400,
350, 450,
a, a.
100, ma };

GpiWCBitBlt(hps,
hbm,
4L,
aptl,
ROP SRCCOPY,
BBO)GNORE);

/* Presentation space handle. */

/* lower-left corner of target
/* upper-right corner of target
/* lower-left corner of source
/* upper-right corner of source

*/
*/
*/
*/

/* presentation space *I
/* bit-map handle */
/* four points needed to compress */
/* points for source and target rectangles */
/* copy source replacing target */
/* discard extra rows and columns */

Chapter 5. Graphics Functions 5-571

5-572 PM Programming Reference

Chapter 6. Profile Functions
\
)

/ The following table shows all the Profile (Prf) functions in alphabetic order.

CName

PrfCloseProfi le

PrfOpenProfile

PrfQueryProfi le

PrfQueryProfi le Data

PrfQueryProfilelnt

PrfQueryProfi leSize

PrfQueryProfileString

PrfReset

PrfWriteProfileData

PrfWriteProfi leString

Chapter 6. Profile Functions 6-1

PrfCloseProfile
Close Profile

#define INCL_WINSHELLDATA /*Or use INCL_WIN or INCL_PM */

I BOOL PrlCloseProllle (HINI hlnl)

This function indicates that a profile is no longer available for use.

Parameters
hlnl (HINI) - input

lnitialization-fi le handle.

After this function, the handle is no longer valid.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INl_FILE_IS_SYS_OR_USER

PMERR_INVALID _INl_FILE_HANDLE

User or system initialization file cannot be closed.

An invalid initialization-file handle was specified.

Remarks
This function cannot be used to close the current user or system initialization files.

Related Functions
• PrfOpenProfile

Example Code
This example calls PrfCloseProfile to close a profile and makes it unavailable for use.

#define INCL_WINSHELLDATA
#include <os2.h>

/* Window Shell functions

BOOL fSuccess;
HINI hini;

/* success indicator
/* initialization-file handle

fSuccess = PrfCloseProfile(hini);

6-2 PM Programming Reference

*/

*/
*/

#define INCL_WINSHELLDATA I* Or use INCL_WIN or INCL_PM */

HINI PrfOpenProflle (HAB hab, PSZ pszFlleName)

This function indicates that a file is available for use as a profile.

Parameters
hab (HAB) - input

Anchor-block handle.

pszFlleName (PSZ) - input
User-profile file name.

PrfOpenProfile
Open Profile

This must not be the same as the current user or system initialization file name.

Returns
Initialization-file handle.

This handle is used on other calls to manipulate the profile file.

NULLHANDLE Error occurred

Other Initialization-file handle.

Possible returns from WinGetlastError

PMERR_ OPENING_INl_FILE

PMERR_MEMORY _ALLOC

PMERR_INl_FILE_IS_SYS_OR_USER

Remarks

Unable to open initialization file (due to lack of disk space
for example).

An error occurred during memory management.

User or system initialization file cannot be closed.

A user profile and a system profile are opened by the system, either at start-up time, or (in the case
of the user profile) as a result of a PrfReset function, and are always available. Their handles are
HINl_USERPROFILE and HINl_SYSTEMPROFILE. Applications do not have to open or close the user
profile or the system profile.

The handle returned is only valid for the process issuing the PrfOpenProfile function.

The PrfOpenProfile function can be used by an administrator's application that is creating or
modifying a profile for a user.

It can also be used to create a back-up profile as follows:

• Use the enumerate form of PrfQueryProfileData to obtain a list of application names in the profile
being backed up.

• Use the enumerate form of PrfQueryProfileData to obtain a list of key names for each of the
application names.

• Use PrfQueryProfileData for each application-name or key-name pair to read the appropriate
data.

• Use PrfWriteProfileData to write the data into the back-up profile.

Chapter 6. Profile Functions 6-3

PrfOpenProfile
Open Profile

Related Functions
• PrfCloseProfile
• PrfQueryProfileData

Example Code
This example uses PrfOpenProfile to open and make available a profile for the file 'PROFILE.IN!'.

#define INCL_WINSHELLDATA
#include <os2.h>

/* Window Shell functions

HINI hini;
HAB hab;

/* initialization-file handle
/* anchor-block handle

char pszFileName[13]; /* user-profile file name

strcpy(pszFileName. 11 PROFILE.INI 11
);

hini = PrfOpenProfile(hab,pszFileName);

6-4 PM Programming Reference

*/

*/
*/
*/

#define INCL_WINSHELLDATA I* Or use INCL_WIN or INCL_PM */

PrfQueryProfile
Query Profile

BOOL PrfQueryProfile (HAB hab, PPRFPROFILE pprfproProllle)

This function returns a description of the current user and system profiles.

Parameters
hab (HAB) - input

Anchor-block handle.

pprfproProllle (PRFPROFILE) - input/output
Profile names structure.

The cchUserName and the cchSysName parameters of the PRFPROFILE data structure are set to

the lengths of the respective file names, even if truncation occurs. If these fields are initialized

to Oby the application, then the pszUserName and pszSysName parameters are not inspected,

and the application can then determine the sizes of the buffers required to hold the names on a

second call. Otherwise, the pszUserName and pszSysName parameters must point to reserved

areas of memory, and the cchUserName and cchSysName parameters must indicate the sizes of

those areas.

If the pszUserName or the pszSysName parameter is NULL, then there is no defined user or

system profile, respectively.

Returns
Success indicator:

TRUE Successful completion.

FALSE Error occurred, or there was insufficient space to record the names, which have been

truncated.

Related Functions
• PrfReset

Chapter 6. Profile Functions 6-5

PrfQueryProfile
Query Profile

Example Code
This example calls PrfQueryProfile to obtain a description of the current user and system profiles, in
this case querying the lengths of the user and system profile file names and placing the values in
variables.

#define INCL_WINSHELLDATA
#include <os2.h>

/*Window Shell functions */

BOOL fSuccess; /* success indicator */
HAB hab; /* anchor-block handle */
PRFPROFILE pprfproProfile; /* Profile names structure */
ULONG ulUserNamelen; /* length of user file name */
ULONG ulSysNamelen; /* length of system file name */

/* initialize lengths so that query will return the buffer sizes*/
pprfproProfile.cchUserName = 0L;
pprfproProfile.cchSysName = 0L;

fSuccess = PrfQueryProfile(hab, &pprfproProfile);

if (fSuccess == TRUE)
{
ulUserNamelen = pprfproProfile.cchUserName;
ulSysNamelen = pprfproProfile.cchSysName;
}

6-6 PM Programming Reference

\
)

PrfQueryProfileData
Query Profile Data

#define INCL_WINSHELLDATA I* Or use INCL_WIN or INCL_PM */

BOOL PrfQueryProfileData (HINI hinl, PSZ pszApp, PSZ pszKey, PVOID pBuffer,
PULONG pulBufferMax)

This function returns a string of binary data from the specified profile.

Parameters
hlnl (HINI) - input

Initialization-file handle.

HINl_PROFILE Both the user profile and system profile are searched

HINl_USERPROFILE The user profile is searched

HINl_SYSTEMPROFILE The system profile is searched

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The name of the application for which the profile data is required. The name must match exactly
with the name stored in the profile. There is no case-independent searching.

If this parameter is NULL, this function enumerates all the application names present in the

profile and returns the names as a list in the pBuffer parameter. Each application name is
terminated with a NULL character and the last name is terminated with two successive NULL

characters. In this case, the pu/BufferMax parameter contains the total length of the list
excluding the final NULL character.

pszKey (PSZ) - input
Key name.

The name of the key for which the profile data is required. The name must match exactly with
the name stored in the profile. There is no case-independent searching.

If this parameter is NULL, and if pszApp is not equal to NULL, this call enumerates all key names

associated with the named application and returns the key names, but not their values, as a list
in the pBuffer parameter. Each key name is terminated with a NULL character and the last name
is terminated with two successive NULL characters. In this case, the pu/BufferMax parameter

contains the total length of the list excluding the final NULL character.

pBuffer (PVOID) - output
Value data.

A buffer in which the value corresponding to the key name is returned. The returned data is not
null terminated, unless the value data is explicitly null terminated within the file. This function
handles binary data.

pulBufferMax (PULONG) - input/output
Size of value data.

This is the size of the buffer specified by the pBuffer parameter. If the call is successful, this is
overwritten with the number of bytes copied into the buffer.

Chapter 6. Profile Functions 6-7

PrfQueryProfileData
Query Profile Data

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_NOT _IN_IDX

PMERR_ CAN_NOT _CALL_SPOOLER

Remarks

A parameter to the function contained invalid data.

The application name, key-name or program handle was
not found.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

This function returns a string of binary data from the profile. The call searches the file for a key
matching the name specified by the pszKey parameter, under the application heading specified by
the pszApp parameter.

Enumeration can be performed in exactly the same way as in the PrfQueryProfileString function. The
enumeration returns application or key names irrespective of whether the data concerned is written
with the PrfWriteProfileString function or the PrfWriteProfileData function.

This function returns data that is written to the file using either the PrfWriteProfileString function or
the PrfWriteProfileData function.

If the pszApp parameter is NULL, this call enumerates all application names and constructs in the
pBuffer parameter a list of application names. Each application name in the list is terminated with a
null character. The last string in the list is terminated with two null characters. This function returns
the length of the list, up to, but not including, the final null. If the enumerated application names
exceed the available buffer space, the enumerated names are truncated, the enumerated list is not
terminated with 2 bytes of zeros, and the fSuccess parameter is set to FALSE. In this case, pszKey is
ignored.

If the pszApp parameter is valid and if the pszKey is NULL, this function enumerates all key names
associated with the pszApp parameter by constructing in the pBuffer parameter a list of key names.
Each key name in the list is terminated with a null character. The last string in the list is terminated
with two null characters. This function returns the length of the list, up to, but not including, the final
null. If the enumerated key names exceed the available buffer space, the enumerated names are
truncated, the enumerated list is not terminated with 2 bytes of zeros, and the fSuccess parameter is
set to FALSE.

Related Functions
• PrfQueryProfileSize
• PrfWriteProfileData

6-8 PM Programming Reference

PrfQueryProfileData -
Query Profile Data

Example Code
This example calls PrfQueryProfileData to search the user and system profiles for the value of key

'KEY' within the application 'APP' and return the value if found.

#define INCL_WINSHELLDATA
#include <os2.h>

/* Window Shell functions

BOOL fSuccess;
HINI hini;
char pszApp[l0];
char pszKey[l0];
VOID *pBuffer;
ULONG pulBufferMax;

/* success indicator
/* initialization-file handle
/* application name
/* key name
/* Value data
/* Size of value data

/* Both the user profile and system profile are searched */
hini = HINI_PROFILE;

/* specify application and key names */
strcpy(pszApp, 11 APP 11

);

strcpy(pszKey, uKEY 11
);

fSuccess = PrfQueryProfileData(hini, pszApp, pszKey, pBuffer,
&pulBufferMax);

*/

*/
*/
*/
*/
*/
*/

Chapter 6. Profile Functions 6-9

PrfQueryProfilelnt -
Query Profile Integer

#define INCL WINSHELLDATA /*Or use INCL_WIN or INCL_PM */

LONG PrfQueryProfllelnl (HINI hlnl, PSZ pszApp, PSZ pszKey, LONG IDefaull)

This function returns an integer value from the specified profile.

Parameters
hlnl (HINI) - input

Initialization-file handle.

HINl_PROFILE Both the user profile and system profile are searched

HINl_USERPROFILE The user profile is searched

HINl_SYSTEMPROFILE The system profile is searched

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The name of the application for which the profile data is required. The name must match exactly
with the name stored in the profile. There is no case-independent searching.

pszKey (PSZ) - input
Key name.

The name of the key for which the profile data is required. The name must match exactly with
the name stored in the profile. There is no case-independent searching.

IDefaull (LONG) - input
Default value.

This value is returned in /Result, if the key defined by pszKey cannot be found in the initialization
file.

Returns
Key value specified in the initialization file.

The value of the key specified by pszKey in the initialization file.

If the value corresponding to the key is not an integer, /Result is 0.

If the key-name value is a series of digits followed by non-numeric characters, /Result contains
the value of the digits only. For example, "KeyName= 102abc" causes the value 102 to appear
in /Result.

Possible returns from WinGetlastError

PMERR_INVALID_PARM

PMERR_NOT _IN_IDX

PMERR_ CAN_NOT _ CALL_SPOOLER

6-10 PM Programming Reference

A parameter to the function contained invalid data.

The application name, key-name or program handle was
not found.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

\
) Remarks

PrfQueryProfilelnt -
Query Profile Integer

This function returns an integer value from the profile. The call searches the file for a key matching
the name specified by the pszKey parameter, under the application heading specified by the pszApp
parameter. When an integer is stored as a text string using the PrfWriteProfileString function, for
example, "123," the returned value is the number, 123. The call returns /Default if the
application-name or key-name pair cannot be found.

Note: The search is case-dependent.

Related Functions
• PrfQueryProfileData
• PrfWriteProfileString

Example Code
This example calls to search the user and system profiles for the integer value of key 'KEY' within

the application 'APP' and return the value if found; if not found, 0 is returned.

#define INCL_WINSHELLDATA
#include <os2.h>

/* Window Shell functions

LONG lResult;
HINI hini;
char pszApp[10];
char pszKey[10];
LONG lDefault;

/* key value
/* initialization-file handle
/* application name
/* key name
/* default return value

/* Both the user profile and system profile are searched */
hini = HINI_PROFILE;

/* specify application and key names */
strcpy(pszApp, 11 APP 11

);

strcpy(pszKey, 11 KEY 11
);

/* set default to 0 */
lDefault = 0;

*/

*/
*/
*/
*/
*/

lResult = PrfQueryProfilelnt(hini, pszApp, pszKey, lDefault);

Chapter 6. Profile Functions 6-11

PrfQueryProfileSize
Query Profile Size

#define INCL_WINSHELLDATA I* Or use INCL_WIN or INCL_PM */

BOOL PrfQueryProflleSlze (HINI hlnl, PSZ pszApp, PSZ pszKey, PU LONG pDataLen)

This function obtains the size in bytes of the value of a specified key for a specified application in the
profile.

Parameters
hlnl (HINI) - input

Initialization-file handle.

HINl_PROFILE Both the user profile and system profile are searched

HINl_USERPROFILE The user profile is searched

HINl_SYSTEMPROFILE The system profile is searched

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The name of the application for which the profile data is required.

If the pszApp parameter is NULL, then the pDataLen parameter returns the length of the buffer
required to hold the enumerated list of application names, as returned by the
PrfQueryProfileString function when its pszApp parameter is NULL. In this case, the pszKey
parameter is ignored.

pszKey (PSZ) - input
Key name.

The name of the key for which the size of the data is to be returned.

If the pszKey parameter is NULL, and if the pszApp parameter is not NULL, the pDataLen returns
the length of the buffer required to hold the enumerated list of key names for that application
name, as returned by the PrfQueryProfileString function when its pszKey parameter is NULL,
and its pszApp parameter is not NULL.

pDatalen (PULONG) - output
Data length.

This parameter is the length of the value data related to the pszKey parameter. If an error
occurs, this parameter is undefined.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_NOT _IN_IDX

PMERR_ CAN_NOT _ CALL_SPOOLER

6-12 PM Programming Reference

A parameter to the function contained invalid data.

The application name, key-name or program handle was
not found.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

)

PrfQueryProfileSize
Query Profile Size

Remarks
The pszApp parameter and pszKey parameter are case sensitive and must match the names stored
in the file exactly. There is no case-independent searching.

This function can be used before using the PrfQueryProfileString call or the PrfQueryProfileData call,
to allocate space for the returned data.

No distinction is made between data that is written using the PrfWriteProfileData function and the
PrfWriteProfileString function.

Related Functions
• PrfQueryProfileData
• PrfQueryProfileString

Example Code
This example calls PrfQueryProfileSize to search the user and system profiles for the value of key
'KEY' within the application 'APP' and return the byte size of the value if found.

#define INCL_WINSHELLDATA
#include <os2.h>

/*Window Shell functions

BOOL fSuccess;
HINI hini;
char pszApp[10];
char pszKey[10];
ULONG pDataLen;

/* success indicator
/* initialization-file handle
/* application name
/* key name
/* data length

/* Both the user profile and system profile are searched */
hini = HINI_PROFILE;

/* specify application and key names */
strcpy(pszApp, 11 APP 11

);

strcpy(pszKey, "KEY");

*/

*/
*/
*/
*/
*/

fSuccess = PrfQueryProfileSize(hini, pszApp, pszKey, &pDataLen);

Chapter 6. Profile Functions 6-13

PrfQueryProfileString
Query Profile String

#define INCL_WINSHELLDATA /*Or use INCL_WIN or INCL_PM */

ULONG PrfQueryProllleStrlng (HINI hini, PSZ pszApp, PSZ pszKey, PSZ pszDelault,
PSZ pszBuffer, ULONG cchBufferMax)

This function retrieves a string from the specified profile.

Parameters
hini (HINI) - input

Initialization-file handle.

HINl_PROFILE Both the user profile and system profile are searched

HINl_USERPROFILE The user profile is searched

HINl_SYSTEMPROFILE The system profile is searched

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The name of the application for which the profile data is required.

The search performed on the application name is always case-dependent. Names starting with
the characters "PM_" are reserved for system use.

If this parameter is NULL, this function enumerates all the application names present in the
profile and returns the names as a list in the pszBuffer parameter. Each application name is
terminated with a NULL character and the last name is terminated with two successive NULL
characters. In this instance, the pu/Length parameter contains the total length of the list
excluding the final NULL character.

pszKey (PSZ) - input
Key name.

The name of the key for which the profile data is returned.

The search on key name is always case-dependent.

If this parameter equals NULL, and if the pszApp parameter is not equal to NULL, this function
enumerates all key names associated with the named application and returns the key names
(not their values) as a list in the pszBuffer parameter. Each key name is terminated with a NULL
character and the last name is terminated with two successive NULL characters. In this
instance, the pu/Length parameter contains the total length of the list excluding the final NULL
character.

pszDelault (PSZ) - input
Default string.

The string that is returned in the pszBuffer parameter, if the key defined by the pszKey
parameter cannot be found in the profile.

If the pointer to this parameter is passed as NULL, then nothing is copied into the pszKey
parameter if the key cannot be found. pu/Length is returned as O in this case.

pszBuffer (PSZ) - output
Profile string.

The text string obtained from the profile for the key defined by the pszKey parameter.

6-14 PM Programming Reference

cchBufferMax (ULONG) - input
Maximum string length.

PrfQueryProfileString
Query Profile String

The maximum number of characters that can be put into the pszBuffer parameter, in bytes. If the
data from the profile is longer than this, it is truncated.

Returns
String length returned.

The actual number of characters (including the null termination character) returned in the
pszBuffer parameter, in bytes.

Possible returns from WinGetLastError

PMERR_ INVALID _PARM

PMERR_BUFFER_ TOO _SMALL

PMERR_NOT_IN_IDX

PMERR_ CAN_NOT _CALL_ SPOOLER

PMERR_ INVALID _ASCHZ

Remarks

A parameter to the function contained invalid data.

The supplied buffer was not large enough for the data to
be returned.

The application name, key-name or program handle was
not found.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

The profile string is not a valid zero-terminated string.

The call searches the profile for a key matching the name specified by the pszKey parameter under
the application heading specified by the pszApp parameter. If the key is found, the corresponding
string is copied. If the key does not exist, the default character string, specified by the pszDefault
parameter, is copied.

If the enumerated application names exceed the available buffer space, the enumerated names are
truncated, the enumerated list is not terminated with 2 bytes of zeros, and the pu/Length parameter
is set to the number of bytes copied into the pszBuffer parameter. In this instance, the pszKey
parameter is ignored.

Note: If the enumeration cannot be performed for any reason, the default character string is not
copied.

This function returns the length of the list, up to, but not including, the final null. If the enumerated
key names exceed the available buffer space, the enumerated names are truncated, the enumerated
list is not terminated with 2 bytes of zeros, and the pu/Length parameter is set to the number of bytes
copied into the pszBuffer parameter.

This function is case-dependent; thus the strings in the pszApp parameter and the pszKey parameter
must match exactly. This avoids any code-page dependency. The application storing the data must
do any case-independent matching.

The enumeration call does not distinguish between data written with the PrfWriteProfileString
function and the PrfWriteProfileData function.

Related Functions
• PrfWriteProfileString

Chapter 6. Profile Functions 6-15

PrfQueryProfileString
Query Profile String

Example Code
PrfQueryProfileString is issued twice to obtain the names of the default printer, the default
presentation driver, and the queue associated with the printer. If any of these requests fails, the
default values already defined in DEVOPENSTRUC are used.

#define INCL_WINSHELLDATA
#include <052.H>
char szTemp[80];
char szBuff[257];
PCH ptscan;

DEVOPENSTRUC dopPrinter = {"LPTlQ",
(PSZ) "IBM4201",
0L,

(PSZ)"PM_Q_STD",
0L, 0L, 0L, 0L, 0L};

if (PrfQueryProfileString(HINl_PROFILE,
(PSZ)"PM_SPOOLER",
(PSZ)"PRINTER",
NULL,

(PSZ)szTemp,
(LONG)sizeof(szTemp)
)){

szTemp[strlen(szTemp)-1] = 0;
if (PrfQueryProfileString(HINl_PROFILE,

(PSZ)"PM_SPOOLER_PRINTER",
(PSZ)szTemp,

NULL,
(PSZ)szBuff,
(LONG)sizeof(szBuff)
)){

/* char* strchr(const char*, int); */
ptscan = (PCH)strchr(szBuff, 1

;
1
);

ptscan++;

}
}

ptscan = (PCH)strchr(ptscan, (INT)';');
ptscan++;
*(ptscan + strcspn(ptscan, ".,;")) = 0;
dopPrinter.pszLogAddress = ptscan;

ptscan = (PCH)strchr(szBuff, (INT) 1
;

1
);

ptscan++;
*(ptscan + strcspn(ptscan, ".,;")) = 0;
dopPrinter.pszDriverName = ptscan;

6-16 PM Programming Reference

PrfReset -
Reset Presentation Manager

#define INCL_WINSHELLDATA /*Or use INCL_WIN or INCL_PM */

BOOL PrfReset (HAB hab, PPRFPROFILE pprfproProflle)

This function defines which files are to be used as the user and system profiles.

Parameters
hab (HAB) - input

Anchor-block handle.

pprfproProflle (PAFPAOFILE) - input
Profile-names structure.

This contains the names of the files to be used as the new Presentation Manager* (PM) profile
files. Any valid file names can be used. A name that is not already fully qualified is taken to
refer to the current directory.

If the user profile file does not exist, a new file is created.

The name of the system profile cannot be changed. It must be the name of the current system
profile as returned by PrfQueryProfile.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_ OPENING_INl_FILE

Remarks

Unable to open initialization file (due to lack of disk space
for example).

This function causes the workstation to use different profiles. When the workstation is initialized, the
names of the user and system profiles are taken from the PAOTSHELL statement specified in
CONFIG.SYS. PrfAeset allows the profiles to be changed during operation of the workstation, for
example by a logon application controlling multiple consecutive users of the system.

After the PrfAeset function completes, the system has a new set of. preferences (for example screen
colors), a new start-up list, and new spooler parameters.

The PrfAeset function broadcasts the PL_AL TEAED message, which must be processed by all
applications that read their default settings from the user or system profiles.

Note: This will only change the default system values in the ini file. It is up to the applications to
read the new default settings and reset them to their new values.

For example, consider logon applications. On receipt of a PL_AL TEAED message, they should carry
out the following:

• Read the new color settings from the new profiles, and set the new screen colors (and palettes)
which should be refreshed.

• Trademark of IBM Corporation

Chapter 6. Profile Functions 6-17

PrfReset -
Reset Presentation Manager

• Set the country information, for example the date and time format, which is read from the new
profiles.

• Other preferences, for example, those that affect the operations of the alarm and the mouse,
should also update with the new settings held in the new profiles.

This function requires the existence of a message queue.

Related Functions
• PrfQueryProfile

Related Messages
• PL_AL TEAED

Example Code
This function defines which files are to be used as the user and system profiles.

#define INCL_WINSHELLDATA
#include <OS2.H>
HAB hab;
char userpro[] = 11 profile.ini 11

;

PRFPROFILE profile;

PrfQueryProfile(hab, &profile); /* get the system profile name */
/* which cannot be changed. */

profile.pszUserName = userpro;
profile.cchSysName = sizeof(profile.pszUserName);

PrfReset (hab, &profile);

6-18 PM Programming Reference

I
I
I

/

PrfWriteProfileData
Write Profile Data

#define INCL_WINSHELLDATA I* Or use INCL_WIN or INCL_PM */

BOOL PrfWrlteProflleData (HINI hlnl, PSZ pszApp, PSZ pszKey, PVOID pData,
ULONG cchDataLen)

This function writes a string of binary data into the specified profile.

Parameters
hini (HINI) - input

Initialization-file handle.

HINl_PROFILE User profile

HINl_USERPROFILE User profile

HINl_SYSTEMPROFILE System profile

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The case-dependent name of the application for which profile data is to be written. Names
starting with the characters "PM_" are reserved for system use.

pszKey (PSZ) - input
Key name.

The case-dependent name of the key for which profile data is to be written.

This parameter can be NULL in which case all the pszKey or pData pairs associated with pszApp
are deleted.

pData (PVOID) - input
Value data.

This is the value of the pszKey or pData pair that is written to the profile. It is not
zero-terminated, and its length is given by the cchDataLen parameter.

If this parameter is NULL, the string associated with the pszKey parameter is deleted.

cchDataLen (ULONG) - input
Size of value data.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_ CAN_NOT _ CALL_SPOOLER

A parameter to the function contained invalid data.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

Chapter 6. Profile Functions 6-19

PrfWriteProfileData
Write Profile Data

Remarks
Because of the binary nature of the data, the input data is not zero-terminated. The length provided
is the only way to identify the length of the data.

Related Functions
• PrfQueryProfileSize

Example Code
This function deletes the profile data associated with application sample.axe

#define INCL_WINSHELLDATA
#include <OS2.H>
HAB hab;

PrfWriteProfileData(HINI_USERPROFILE,
"sample", /* application. */
NULL,
NULL,
0L);

6-20 PM Programming Reference

)

PrfWriteProfi leString
Write Profile String

#define INCL_WINSHELLDATA /*Or use INCL_WIN or INCL_PM */

BOOL PrfWriteProflleString (HINI hlni, PSZ pszApp, PSZ pszKey, PSZ pszData)

This function writes a string of character data into the specified profile.

Parameters
hlnl (HINI) - input

Initialization-file handle.

HINl_PROFILE User profile

HINl_USERPROFILE User profile

HINl_SYSTEMPROFILE System profile

Other Initialization-file handle.

pszApp (PSZ) - input
Application name.

The case-dependent name of the application for which profile data is to be written. Names

starting with the characters "PM_" are reserved for system use.

pszKey (PSZ) - input
Key name.

The case-dependent name of the key for which profile data is to be written.

This parameter can be NULL, in which case all the pszKey or pszData pairs associated with the

pszApp parameter are deleted.

pszData (PSZ) - input
Text string.

This is the value of the pszKey or pszData pair that is written to the profile.

If this parameter is NULL, the string associated with the pszKey is deleted (that is, the entry is

deleted).

If this parameter is not NULL, the string is used as the value of the pszKey or pszData pair, even

if the string has zero length.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_CAN_NOT_CALL_SPOOLER

A parameter to the function contained invalid data.

An error occurred attempting to call the spooler
validation routine. This error is not raised if the spooler
is not installed.

Chapter 6. Profile Functions 6-21

PrfWriteProfileString
Write Profile String

Remarks
If there is no application field in the file that matches the pszApp, a new application field is created
before the pszKey or pszData entry is made.

If the key name does not exist for the application, a new pszKey or pszData entry is created for that
application. If the pszKey already exists in the file, the existing value is overwritten.

Related Functions
• PrfQueryProfileString

Example Code
This function deletes the profile string associated with application sample.exe

#define INCL_WINSHELLDATA
#include <OS2.H>
HAB hab;

PrfWriteProfileString(HINI_USERPROFILE,
"sample", /*application. */
NULL,
NULL);

6-22 PM Programming Reference

Chapter 7. Spooler Functions

The following table shows how all of the Spooler functions are related within functional areas. The
functions are in alphabetic order within these areas.

CName CName

Control

SplControlDevice SplEnumQueueProcessor

SplCopyJob SplHoldJob

SplCreateDevice SplHoldQueue

SplCreateQueue SplPurgeQueue

SplDeleteDevice SplQueryDevice

SplDeleteJob SplQueryJob

SplDeleteQueue SplQueryQueue

SplEnumDevice SplReleaseJob

SplEnumOriver SplReleaseQueue

SplEnumJob SplSetDevice

SplEnumPort SplSetJob

SplEnumPrinter SplSetQueue

SplEnumQueue

Job Submission

SplQmAbort SplQmOpen

SplQmAbortDoc SplQmStartDoc

SplQmClose SplQmWrite

SplQmEndDoc

Chapter 7. Spooler Functions 7-1

SplControlDevice -
Spooler Control Device

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplControlDevlce (PSZ pszComputerName, PSZ pszPortName, ULONG ulControl)

This function cancels, holds, continues, or restarts a print device.

Parameters
pszComputerName (PSZ) - input

Name of computer where print device is to be controlled.

A NULL string specifies the local workstation.

pszPortName (PSZ) - input
Port name.

ulControl (ULONG) - input
Operation to perform.

PRD_DELETE Delete current print job

PAD _PAUSE Pause printing

PRD_CONT Continue paused print job

PRD_RESTART Restart print job.

Returns
NO_ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

NERR_NetNotStarted (2102) The network program is not started.

NERR_DestNotfound (2152) The print device cannot be found.

NERR_Destldle (2158) This print device is idle and cannot accept control operations.

NERR_DestlnvalldOp (2159) This print device request contains an invalid control function.

NERR_ProcNoRespond (2160) The queue processor is not responding.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
A paused print device cannot accept new print jobs.

If PRD_DELETE is attempted when there is no current print job, NERR_Destldle (2158) is returned.

To control jobs on a remote server requires administrator privilege.

7-2 PM Programming Reference

\
)

SplControlDevice
Spooler Control Device

Related Functions
• SplEnumDevice
• SplQueryDevice

Example Code
This sample code demonstrates the result of various actions that can be performed on the print
device by this function call. At the command line, a print device name is entered along with an action

code.

#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv[];

SPLERR splerr ;
ULONG u1Control=0L

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszPrintDeviceName ;

/* Input a Print Device Name and an Action Code on the co1T111and line */
if (argc != 3)
{

printf("Syntax is: qcontrol PrintDeviceName ActionCode \n");
printf("Action codes are: 0-Delete, P-Pause, C-Continue, R-Restart\n\n");
DosExit(EXIT_PROCESS , 0) ;

}
/* Get the print device name from the first input parameter.
pszPrintDeviceName = argv[l];

/* Get the action code from the second input parameter.
switch (argv[2] [0])
{

}

case 1 D1
:

ulControl = PRD_DELETE
break;

case 1 P1
:

ulControl = PRD_PAUSE
break;

case •c•:
ulControl = PRD_CONT
break;

case • R':
ulControl = PRD_RESTART
break;

default:
printf("Invalid code\n");
DosExit(EXIT_PROCESS , 0)

*/

*/

/* Call the function with the parameters obtained from the co1T111and line. */
splerr = SplControlDevice(pszComputerName, pszPrintDeviceName, ulControl);

/* If there is an error returned, print it.
if (splerr I= 0L)
{

switch (splerr)
{

*/

Chapter 7. Spooler Functions 7-3

SplControlDevice -
Spooler Control Device

}

case NERR DestNotFound :
printf(;Destination does not exist.\n");
break;

case NERR Destldle:
printf(;This print device is idle - can't do control ops. \n");
break;

default:
printf("Errorcode = %ld\n",splerr);

}
} else {

printf(11 The print job operation was performed.\n\n");
}
DosExit(EXIT PROCESS , e)
return (splerr) ;

7-4 PM Programming Reference

)
#define INCL_SPL I* Or use INCL_PM */

SplCopyJob
Spooler Copy Job

SPLERR SplCopyJob (PSZ pszSrcComputerName, PSZ pszSrcQueueName, ULONG ulSrcJob,
PSZ pszTrgComputerName, PSZ pszTrgQueueName,
PULONG pulTrgJob)

This function copies a job in a print queue.

Parameters
pszSrcComputerName (PSZ) - input

Name of computer where job is to be copied from.

A NULL string specifies the local workstation.

pszSrcQueueName (PSZ) - input
Name of queue where job is to be copied from.

ulSrcJob (ULONG) - input
Source Job identification number.

pszTrgComputerName (PSZ) - input
Name of computer where job is to be copied to.

A NULL string specifies the local workstation.

pszTrgQueueName (PSZ) - input
Name of queue where job is to be copied to.

A NULL string specifies the same queue as the original job.

pulTrgJob (PULONG) - output
Job identification number of new job.

Returns
NO _ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_JobNotFound (2151) The print job does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalidComputer (2351) The computer name is invalid.

Remarks
Currently there is a restriction that a job can only be copied onto the same queue (and computer) as
the original job.

Chapter 7. Spooler Functions 7-5

SplCopyJob -
Spooler Copy Job

Related Functions
• SplEnumJob
• SplEnumQueue
• SplQueryJob
• SplQueryQueue

Example Code
This sample code will make a duplicate copy of the jobid that is entered at the prompt. Presently,
there is a restriction that the job can only be duplicated on the same computer/queue; for example, a
local job.

#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

/* for printf function */
/* for atoi function */

INT main (argc, argv)
INT argc;

{
CHAR *argv [];

SPLERR splerr ;
ULONG ulSrcJob, ulTrgJob ;
PSZ pszSrcComputerName,pszTrgComputerName
PSZ pszSrcQueueName,pszTrgQueueName

if (argc != 2)
{

}

printf("Conmand is: copyjob JOBID\n");
DosExit(EXIT_PROCESS , 0) ;

pszSrcComputerName = (PSZ)NULL ;

/*The only valid values at present for these three parameters is NULL */
pszSrcQueueName = (PSZ)NULL;
pszTrgComputerName = (PSZ)NULL ;
pszTrgQueueName = (PSZ)NULL ;

/* Convert input parameter to a ULONG */
ulSrcJob = atoi (argv[l]);

if (splerr = SplCopyJob(pszSrcComputerName,pszSrcQueueName,ulSrcJob,
pszTrgComputerName,pszTrgQueueName,&ulTrgJob))

{
printf("Return code SplCopyJob = %d\n 11 ,splerr);

}
else
{

printf("New job ID is %d\n" ,ulTrgJob);
}
DosExit(EXIT_PROCESS , 0) ;
return (splerr);

} /* end main */

7-6 PM Programming Reference

#define INCL_SPL /*Or use INCL_PM */

SplCr_eateDevice
Spooler Create Device

SPLERR SplCreateDevlce (PSZ pszComputerName, ULONG ullevel, PVOID pBuf,
ULONG cbBuf)

This function establishes a print device on the local workstation or a remote server.

Parameters
pszComputerName (PSZ) - input

Name of computer where print device is to be added.

A NULL string specifies the local workstation.

ulLevel (ULONG) - input
Level of detail provided.

This must be 3.

pBuf (PVOID) - input
Data structure.

cbBuf (ULONG) - input
Size, in bytes, of data structure.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_NAME (123) The computer name is invalid.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_DestExlsts (2153) The print device already exists.

NERR_DestNoRoom (2157) The maximum number of print devices has been reached.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_DestlnvalidState (2162) This operation cannot be performed on the print device.

NERR_SpoolNoMemory (2165) A spooler memory allocation failure occurred.

NERR_DriverNotFound (2166) The device driver does not exist.

NERR_BadDev (2341) The device is already in use as a communications device.

NERR_lnvalldComputer (2351) The computer name is invalid.

Chapter 7. Spooler Functions 7-7

SplCreateDevice
Spooler Create Device

Remarks
The result of this function is the creation of a new print device definition.

The printer is set up to print on the logical address (port) defined by pszLogAddr in PRDINF03. If
pszLogAddr is NULL, the print device definition is created but is not connected to any logical
address. In this case no printing can occur on that print device or from any print queue connected
only to that print device. If a logical address is specified, it must already be defined in the
PM_SPOOLER_PORTS section of the initialization file.

Note: To change the connection between a print device and a port, use SplSetDevice.

The maximum length for a print device name is 32 characters. The use of a longer name results in
ERROR_INVALID_NAME (123).

All device drivers and queues specified with the print device must already be defined to the spooler.

To add a remote print device requires administrator privilege.

Related Functions
• SplDeleteDevice
• SplEnumDevice
• SplEnumDriver
• SplEnumPort

7-8 PM Programming Reference

Example Code

SplCreateDevice
Spooler Create Device

This sample code creates a PRDINF03 structure with dummy parameters. This structure is then used
to call SplCreateDevice to establish a print device on a local workstation.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <string.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

ULONG splerr
ULONG cbBuf;
ULONG ulLevel

/* for printf function */
/* for strcpy function */

PSZ pszComputerName
PSZ pszPrintDeviceName
PRDINF03 prd3

if (argc != 2)
{

}

printf("Syntax: sdcrt DeviceName \n 11
);

DosExit(EXIT_PROCESS , 0) ;

/* We are going to create a print device on the local workstation. */
pszComputerName = (PSZ)NULL ;

}

/* Get the name from the co11111and line.
pszPrintDeviceName = argv[l];

/* Level 3 is valid. We will use level 3.
ulLevel = 3;

/* Get size of buffer needed for a PRDINF03 structure.
cbBuf = sizeof(PRDINF03);

/* Set up the structure with du11111y parameters.
strcpy(prd3.pszPrinterName , pszPrintDeviceName);
prd3.pszUserName= "A. Best";
prd3.pszLogAddr= 11 LPT1Q 11

;

prd3.uJobid=0;
prd3.pszConment= "Test comment";
prd3.pszDrivers = 11 IBMNULL 11

;

prd3.usTimeOut = 777;

/*Make the call.*/
splerr = SplCreateDevice(pszComputerName, ulLevel,

&prd3, cbBuf);

/* Print out the results.
if (splerr == NO_ERROR)

printf(11 The device was successfully created.");
else

printf("SplCreateDevice Error=%ld, cbNeeded=%ld\n 11
,

splerr, cbBuf) ;

DosExit(EXIT PROCESS , 0) ;
return (splerr);

*/

*/

*/

*/

*/

Chapter 7. Spooler Functions 7-9

SplCreateQueue
Spooler Create Queue

#define INCL SPL I* Or use INCL_PM *I

SPLERR SplCreateQueue (PSZ pszComputerName, ULONG ulLevel, PVOID pbBuf,
ULONG cbBuf)

This function creates a new print queue on the local workstation or on a remote server. A remote
server setup requires the LAN Requester and Server software.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be created.

A NULL string specifies a local workstation.

ulLevel (ULONG) - input
Level of detail provided.

This must be 3 or 6.

pbBuf (PVOID) - input
Data structure.

cbBuf (ULONG) - input
Size, in bytes, of data structure.

Returns
NO_ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_NAME (123) The computer name is invalid.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

NERR_NetNotStarted (2102) The network program is not started.

NERR_RedlrectedPath (2117) The operation is invalid on a redirected resource.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_DestNotFound (2152) The printer destination cannot be found.

NERR_QExists (2154) The printer queue already exists.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_DestlnvalidState (2162) This operation cannot be performed on the print
destination in its current state.

NERR_SpoolNoMemory (2165) A spooler memory allocation failure occurred.

NERR_DriverNotFound (2166) The device driver does not exist.

NERR_DataTypelnvalid (2167) The data type is not supported by the queue processor.

NERR_ProcNotFound (2168) The queue processor is not installed.

NERR_BadDev (2341) The requested device is invalid.

NERR_CommDevlnUse (2343) This device is already in use as a communications device.

NERR_lnvalidComputer (2351) The computer name is invalid.

7-10 PM Programming Reference

Remarks

SplCreateQueue
Spooler Create Queue

To create a queue on a remote server requires administrator privilege.

Applications wanting to create print queues should use the level 3 or level 6 call with a PRQINF03 or
PRQINF06 data structure. The following fields are required in PRQINF03 or PRQINF06:

pszName
uPriority
uStartTime
uUnti/Time
pszSepFile
pszParms
pszPrinters
pszDriverName
pDriverData.

If a queue of the name specified in pszName already exists on pszComputerName, the call fails
unless the queue is marked for deletion. In this case, the queue is not deleted, and the creation

fields are used to perform a SplSetQueue function on the queue.

If pszPrinters is NULL, the queue is created but not connected to any printer.

The queue that is created has a status of PRQ3_PENDING even if the queue is not connected to a

printer.

pszDriverName can be a NULL string, in which case pDriverData is ignored. Otherwise
pszDriverName must refer to the name of a device driver that is already defined in the initialization

file (for example, "IBM4019").

Chapter 7. Spooler Functions 7-11

SplCreateQueue -
Spooler Create Queue

Related Functions
• SplDeleteQueue
• SplEnumDevice
• SplEnumDriver
• SplEnumQueueProcessor

Example Code
This sample code creates a queue on the local workstation. The queue is created with dummy
parameters. The name is entered at the command line.

#define INCL_BASE
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <string.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

ULONG splerr
ULONG cbBuf;
ULONG ullevel ;
PSZ pszComputerName
PSZ pszQueueName
PRQINF03 prq3

if (argc != 2)
{

}

printf(11 Syntax: sqcrt QueueName \n 11
);

DosExit(EXIT_PROCESS , 0)

pszComputerName = (PSZ)NULL ;
ullevel = 3L;

/* Get the queue name from the argument entered at */
/* the comnand line. */
pszQueueName = argv[l];

/* Determine the size of the needed buffer. */
cbBuf = sizeof(PRQINF03);

/* Set up the structure with some dumny parameters. */
strcpy(prq3.pszName , pszQueueName);
prq3.uPriority=7;
prq3.uStartTime=77;
prq3.uUntilTime=777;
prq3.pszSepFile="a:\\best\\example.sep";
prq3.pszParms=NULL;
prq3.pszPrinters=NULL;
prq3.pszDriverName=NULL;
prq3.pDriverData=NULL;

7-12 PM Programming Reference

}

/* Make the call with the proper parameters.
splerr = SplCreateQueue(pszComputerName, ulLevel,

&prq3, cbBuf};

SplCreateQueue -
Spooler Create Queue

*/

/* Print out the error return code and some other information. */
printf("SplCreateQueue Error=%ld, cbNeeded=%ld\n 11

,

splerr, cbBuf} ;

DosExit(EXIT_PROCESS , 0 } ;
return (splerr};

Chapter 7. Spooler Functions 7-13

SplDeleteDevice -
Spooler Delete Device

#define INCL SPL I* Or use INCL_PM */

SPLERR SplDeleteDevlce (PSZ pszComputerName, PSZ pszPrlntDevlceName)

This function deletes a print device.

Parameters
pszComputerName (PSZ) - input

Name of computer where print device is to be deleted.

A NULL string specifies the local workstation.

pszPrintDeviceName (PSZ) - input
Name of Print Device.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

NERR_NetNotStarted (2102) The network program is not started.

NERR_DestNotFound (2152) The print device cannot be found.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_DestlnvalldState (2162) This operation cannot be performed on the print device.

NERR_lnvalidComputer (2351) The computer name is invalid.

Remarks
If the print device is currently printing a job, SplDeleteDevice fails and returns
NERR_DestlnvalidState (2162).

To delete a print device on a remote server requires administrator privilege.

Related Functions
• SplCreateDevice
• SplEnumDevice

7-14 PM Programming Reference

SplDeleteDevice
Spooler Delete Device

Example Code
This sample code will delete the print device whose name is entered at the prompt.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc. argv)
INT argc;

{
CHAR *argv [];

SPLERR splerr= 0L;
PSZ pszComputerName ;
PSZ pszPrintDeviceName

/*Check that the parameters were entered at the conmand line.
if (argc != 2)
{

}

printf(11 Syntax: sddel PrintDeviceName \n 11
);

DosExit(EXIT_PROCESS , 0) ;

*/

/* Computer name of NULL indicates the local computer. */

}

pszComputerName = (PSZ)NULL ;

/* Set the PrintDeviceName to the value entered at the conmand line. */
pszPrintDeviceName = argv[l];

/* Make the call and print out the return code. */
splerr=SplDeleteDevice(pszComputerName, pszPrintDeviceName);
switch (splerr)
{

case NO ERROR:
printf(11 Print Device %s was deleted.\n 11 ,pszPrintDeviceName);
break;

case NERR DestNotFound :
printf(ioestination does not exist.\n11

);

break;
case NERR DestlnvalidState:

printf("This operation can't be perfonned on the print device.\n 11
);

break;
case NERR_SpoolerNotLoaded:

printf(11 The Spooler is not running.\n 11
);

break;
default:

printf(11 SplDeleteDevice Errorcode = %ld\n 11 ,splerr);
} /* endswitch */
DosExit(EXIT PROCESS , 0) ;
return (splerr} ;

Chapter 7. Spooler Functions 7-15

SplDeleteJob -
Spooler Delete Job

#define INCL SPL I* Or use INCL_PM */

SPLERR SplDeleteJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ulJob)

This function deletes a job from a print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where job is to be deleted.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue Name.

ulJob (ULONG) - input
Job identification number.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

NERR_NetNotStarted (2102) The network program is not started.

NERR_JobNotFound (2151) The print job does not exist.

NERR_ProcNoRespond (2160) The queue processor is not responding.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalidComputer (2351) The computer name is invalid.

Remarks
It is possible to delete a job that is currently printing.

If the print queue on which the print job is submitted is pending deletion (following a SplDeleteQueue
call), and the print job is the last in the queue, this function has the additional effect of deleting the
queue.

A user with administrator privilege can delete any job.

A job created locally can be deleted locally regardless of user privilege level, but can be deleted
remotely only by an administrator.

A remote job can be deleted by a user without administrator privilege only if the username of the
person initiating the request is the same as the username of the person who created the job.

7-16 PM Programming Reference

Related Functions
• SplCopyJob
• SplEnumJob
• SplQueryJob

Example Code

SplDeleteJob -
Spooler Delete Job

This sample code will delete the job id that is entered at the prompt.

#define INCL_BASE
#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>
#include <stdlib.h>

INT main (argc, argv}
INT argc;

{
CHAR *argv [];

SPLERR splerr ;
ULONG ulJob ;

/* for printf function */
/* for error codes */
/* for atoi function */

PSZ pszComputerName = NULL ;
PSZ pszQueueName = NULL ;

/* Get job id from the input argument. */
ulJob = atoi(argv[l]};

/* Call the function to do the delete. If an error is */

}

/* returned, print it. */
splerr = SplDeleteJob(pszComputerName, pszQueueName, ulJob};

if (splerr != NO_ERROR}
{

switch (splerr}
{
case NERR JobNotFound

printf(iJob does not exist.\n"};
break;

case NERR JobinvalidState:
printf(iiThis operation can't be performed on the print job.\n 11

};

break;

}

default:
printf("Errorcode = %ld\n 11 ,splerr);

} /* endswitch */

else
{

printf("Job %d was deleted.\n 11 ,ulJob);
} /* endif */
DosExit(EXIT PROCESS , e } ;
return (spler;};

Chapter 7. Spooler Functions 7-17

SplDeleteQueue
Spooler Delete Queue

#define INCL SPL I* Or use INCL_PM */

SPLERR SplDeleteQueue (PSZ pszComputerName, PSZ pszQueueName)

This function deletes a print queue from the spooler.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be deleted.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_QlnvalldState (2163) This operation cannot be performed on the print queue.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
If there are print jobs in the queue, SplDeleteQueue marks the queue PRQ3_PENDING. No further
jobs can then be added to the queue, which is deleted when all jobs are printed. A queue marked
PRQ3_PENDING can be held, and jobs in the queue can be held, restarted, and repeated.

If a queue is held and there are jobs on the queue, a SplDeleteQueue function fails with
NERR_QlnvalidState (2163).

To delete a queue on a remote server requires administrator privilege on the remote server.

Related Functions
• SplCreateQueue
• SplEnumQueue
• SplQueryQueue

7-18 PM Programming Reference

Example Code

SplDeleteQueue
Spooler Delete Queue

This sample code will delete the queue name that is entered at the prompt.

#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;
CHAR *argv[];

{
SPLERR splerr ;

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszQueueName ;

/* Get queue name from the input argument */
pszQueueName = argv[l];

/* Call the function to do the delete. If an error is returned, print it.
*/

}

splerr=SplDeleteQueue(pszComputerName, pszQueueName);

if (splerr != 0L)
{

switch (sp l err)
{

case NERR QNotFound :
printf(iQueue does not exist.\n");
break;

case NERR_QinvalidState:
printf("This operation can't be perfonned on the print queue.\n");
break;

}

default:
printf("Errorcode = %ld\n",splerr);

} /* endswitch */

else
{

printf("Queue %s was deleted.\n",pszQueueName);
} /* endif */
DosExit(EXIT PROCESS , 0) ;
return (splerr);

Chapter 7. Spooler Functions 7-19

SplEnumDevice
Spooler Enumerate Device

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplEnumDevlce (PSZ pszComputerName, ULONG ullevel, PVOID pBuf,
ULONG cbBuf, PULONG pcReturned, PULONG pcTotal,
PULONG pcbNeeded, PVOID pReserved)

This function lists print device on a server, optionally supplying status information.

Parameters
pszComputerName (PSZ) - input

Name of computer where print devices are to be listed.

A NULL string specifies the local workstation.

ullevel (ULONG) - input
Level of detail required.

This must be 0, 2 or 3.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

pcTotal (PULONG) - output
Number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved.

This must be NULL

Returns
NO_ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_SpoolerNotloaded (2161) The spooler is not running.

NERR_lnvalidComputer (2351) The computer name is invalid.

7-20 PM Programming Reference

\

SplEnumDevice -
Spooler Enumerate Device

Remarks
The buffer contents on return are:

u/Level
0
2
3

Buffer Contents
An array of port names of type PSZ.
An array of print device names of type PSZ.
An array of PRDINF03 structures.

If no job is printing on the print device, bits 2 -11 of fsStatus in the PRDINF03 data structure are

meaningless.

Related Functions
• SplCreateDevice
• SplDeleteDevice

Example Code
This sample code enumerates all the devices on the local workstation. It then prints out the

information.

#define INCL_BASE
#define INCL_OOSMEMMGR
#define INCL_SPL
#define INCL_SPLOOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main {)
{

ULONG cbBuf ;
ULONG cTotal;
ULONG cReturned
ULONG cbNeeded ;
ULONG ulLevel = 3L;
ULONG i ;
SPLERR splerr ;
PSZ pszComputerName
PBYTE pBuf ;
PPROINF03 pprd3 ;

pszComputerName = {PSZ)NULL ;

/*Make the call with cBuf = a so that you will get the size of the */
/* buffer needed returned in cbNeeded. */
splerr = SplEnumOevice{pszComputerName, ulLevel, pBuf, 0L, /* cbBuf */

&cReturned, &cTotal, &cbNeeded,
NULL) ;

/* Only continue if the error codes ERROR_MORE_DATA or */
/* NERR BufTooSmall are returned. */
if {splerr == ERROR_MORE_OATA I I splerr == NERR_BufTooSmall)
{

/* Allocate memory for the buffer that will hold the returning info. */
if {IDosAllocMem(&pBuf, cbNeeded,

PAG_READIPAG_WRITEIPAG_COMMIT)
{

cbBuf = cbNeeded ;

/*Make call again with the proper buffer size. */
splerr = SplEnumDevice{pszComputerName, ulLevel, pBuf, cbBuf,

Chapter 7. Spooler Functions 7-21

SplEnumDevice -
Spooler Enumerate Device

&cReturned, &cTotal,
&cbNeeded, NULL) ;

/* If no errors, print out the buffer infonnation.
if (splerr == NO_ERROR)
{

for (i=0;i < cReturned ; i++)
{

*/

/* Each time through the loop increase the pointer. */

}

}

pprd3 = (PPRDINF03)pBuf+i ;
printf(11 Device info:pszPrinterName - %s\n 11

,

pprd3->pszPrinterName) ;
printf(11 pszUserName - %s\n 11

, pprd3->pszUserName);
printf(11 pszLogAddr - %s\n 11

, pprd3->pszLogAddr);
printf(11 uJobid - %d fsStatus - %X\n 11

,

pprd3->uJobid , pprd3->fsStatus);
printf(11 pszStatus - %s\n 11

, pprd3->pszStatus);
printf(11 pszC011111ent - %s\n 11

, pprd3->pszC011111ent);
printf(" pszDrivers - %s\n 11

, pprd3->pszDrivers);
printf(11 time - %d usTimeOut - %X\n 11

,

pprd3->time , pprd3->usTimeOut);

}
DosFreeMem(pBuf)

} /* end if */
else
{

printf(11 SplEnumDevice splerr=%ld, cTotal=%ld, cReturned=%ld,
cbNeeded=%ld\n 11

,

}
DosExit(EXIT PROCESS , 0)
return(splerr};

} /* end main */

7-22 PM Programming Reference

splerr, cTotal, cReturned, cbNeeded)

#define INCL_SPL I* Or use INCL_PM */

SplEnumDriver -
Spooler Enumerate Driver

SPLERR SplEnumDrlver (PSZ pszComputerName, ULONG ullevel, PVOID pBuf, ULONG cbBuf,
PULONG pcReturned, PULONG pcTotal, PULONG pcbNeeded,
PVOID pReserved)

This function lists printer presentation drivers on the local workstation or on a remote server.

Parameters
pszComputerName (PSZ) - input

Name of computer where queues are to be listed.

A NULL string specifies the local workstation.

ullevel (ULONG) - input
Level of detail.

The level of detail required. This must be 0.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

pcTotal (PULONG) - output
Total number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved.

This must be NULL.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Chapter 7. Spooler Functions 7-23

SplEnumDriver -
Spooler Enumerate Driver

Remarks
The buffer contents on return are:

Buffer Contents u/Level
0 An array of PRDRIVINFO structures

Related Functions
• SplCreateDevice
• SplCreateQueue
• SplSetDevice
• SplSetQueue

Example Code
This sample code will enumerate all the drivers on a local computer.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main ()
{

SPLERR splerr
ULONG cbBuf ;
ULONG cTotal ;
ULONG cReturned
ULONG cbNeeded ;
ULONG i ;

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszDriverName ;
PBYTE pbuf ;

/* Call the function the first time with zero in cbBuf. The count of bytes */
/* needed for the buffer to hold all the info will be returned in cbNeeded.*/
splerr = SplEnumDriver(pszComputerName, 0L, NULL, 0L,

&cReturned, &cTotal, &cbNeeded,
NULL);

/*If the return code is ERROR_MORE_DATA or NERR_BufTooSmall, then
all the */

/* parameters were correct; and we can continue. */
if (splerr == ERROR_MORE_DATA I I splerr == NERR_BufTooSmall)
{

/*Allocate memory for the buffer to hold the returned information.
/*the count of bytes that were returned by our first call.
if (!DosAllocMem(&pbuf, cbNeeded,

PAG READIPAG WRITEIPAG COMMIT)) - { - -
/*Set count of bytes to the value returned by our first call.
cbBuf = cbNeeded ;

/* Now call the function a second time with the correct values,
/* the information will be returned in the buffer.
splerr= SplEnumDriver(pszComputerName, 0L, pbuf, cbBuf,

if (splerr == NO_ERROR)

7-24 PM Programming Reference

&cReturned ,&cTotal, &cbNeeded,
NULL) ;

Use */
*/

*/

and */
*/

\
/ {

SplEnumDriver -
Spooler Enumerate Driver

/* Set a pointer to point to the beginning of the buffer. */
pszDriverName = (PSZ)pbuf;

/* Print the names that are in the buffer. The count of the number*/
/* of names in pBuf have been returned in cReturned. */
for (i=0;i < cReturned ; i++)
{

printf("Driver name - %s\n", pszDriverName) ;
/* Increment the pointer to point to the next name.
pszDriverName += DRIV_NAME_SIZE +DRIV_DEVICENAME_SIZE

*/

+ 2;

}
}

}
}
/* Free the memory allocated for the buffer.
DosFreeMem(pbuf) ;

*/

else
{

/* If the first call to the function returned any error code other */
/*than ERROR_MORE_DATA or NERR_BufTooSmall, we print the

following. */

}

printf("SplEnumDriver error=%ld \n",splerr)
}
DosExit(EXIT_PROCESS , 0) ;
return (splerr);

Chapter 7. Spooler Functions 7-25

SplEnumJob -
Spooler Enumerate Job

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplEnumJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ullevel,
PVOID pBuf, ULONG cbBuf, PULONG pcReturned, PULONG pcTotal,
PULONG pcbNeeded, PVOID pReserved)

This function lists the jobs in a print queue, optionally supplying status information on each job.

Parameters
pszComputerName (PSZ) - input

Name of computer where jobs are to be listed.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

ulLevel (ULONG) - input
Level of detail required.

This must be 0 or 2.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

pcTotal (PULONG) - output
Number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved. This must be NULL.

Returns
NO_ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

7-26 PM Programming Reference

Remarks
The buffer contents on return are:

Buffer Conlenls

SplEnumJob -
Spooler Enumerate Job

u/Level
0 An array containing a uJobld for each of pcReturned jobs.
2 An array containing a PRJINF02 structure for each of pcReturned jobs.

Related Functions
• SplCopyJob
• SplDeleteJob
• SplQueryJob

Example Code
This sample code accepts a queue name from the command line, and then prints out all the
information associated with each job in that queue. Level 0 and 2 are valid; we have chosen to print
out level 2 information.

#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

/* for printf function */
/* for error codes */

INT main (argc, argv)
INT argc;

{
CHAR *argv[];

ULONG splerr ;
ULONG cbBuf ;
ULONG cTotal ;
ULONG cReturned
ULONG cbNeeded ;
ULONG ulLevel;
ULONG i ;
PSZ pszComputerName
PSZ pszQueueName
PVOID pBuf = NULL;
PPRJINF02 pprj2 ;

/*Check that the command line entry was two parameters. */
if (argc != 2)
{

printf("Syntax: enumjob QueueName\n");
DosExit(EXIT PROCESS , 0) ;

} -
/* Either a NULL or a pointer to a NULL specify the local workstation. */
pszComputerName = (PSZ)NULL ;

/* Set queue name equal to the value entered at the command line. */
pszQueueName = argv[l];

/* Valid level are e and2. Level 2 gives info for a PRJINF02 structure. */
ulLevel = 2L;

/* Make the call the first time with cbBuf = zero so that we can get a */
/* return of the number of bytes that are need for pBuf to hold all of */
/* the information. The bytes needed will be returned in cbNeeded. */
splerr = SplEnumJob(pszComputerName,pszQueueName, ulLevel, pBuf,0L,

&cReturned, &cTotal,
&cbNeeded, NULL) ;

Chapter 7. Spooler Functions 7-27

SplEnumJob -
Spooler Enumerate Job

/*Check that the return code is one of the two valid errors at this time. */
if (splerr == ERROR_MORE_DATA I I splerr == NERR_BufTooSmall)
{

}

/* Allocate memory for pBuf. (No error checking is done on DosAllocMem */
/* call to keep this sample code simple.) */
DosAllocMem(&pBuf, cbNeeded,

PAG_READIPAG_WRITEIPAG_COMMIT);

/*Set bytes needed for buffer to the value returned by the first call. */
cbBuf = cbNeeded ;

/*Make the call with all the valid information.
SplEnumJob(pszComputerName,pszQueueName, ullevel,

pBuf, cbBuf, &cReturned,&cTotal,
&cbNeeded,NULL);

*/

/* Set up a pointer to point to the beginning of the buffer in which we */
/* have the returned information.
pprj2=(PPRJINF02)pBuf;

/* The number of structures in the buffer(pBuf) are returned in cReturned*/
/* Implement a for loop to print out the information for each structure. */
for (i=0; i<cReturned ;i++)
{

printf("Job ID = %d\n 11
, pprj2->uJobid);

printf("Job Priority = %d\n 11
, pprj2->uPri ority);

printf("User Name = %s\n 11
, pprj2->pszUserName);

printf("Position = %d\n11
, pprj2->uPosition);

printf("Status = %d\n 11
, pprj2->fsStatus);

printf("Submitted = %ld\n 11
, pprj2->u1Submitted);

printf("Size = %ld\n 11
, pprj2->u1Size);

printf("Comment = %s\n 11
, pprj2->pszC011111ent);

printf("Document = %s\n\n",pprj2->pszDocument);

/* Increment the pointer to point to the next structure in the buffer*/
pprj2++;

} /* end for * /
/*Free the memory that we allocated to make the call. */
DosFreeMem(pBuf)

else
{
/*If any other error other than ERROR MORE DATA or NERR BufTooSmall,

then */ - - -
/* print the returned information. */

printf("SplEnumJob Error=%ld, Total Jobs=%ld, Returned Jobs=%ld, Bytes
Needed=%ld\n 11

,

}

splerr, cTotal, cReturned, cbNeeded)
}
DosExit(EXIT PROCESS , 0)
return (splerr);

7-28 PM Programming Reference

\
)

#define INCL_SPL I* Or use INCL_PM */

SplEnumPort -
Spooler Enumerate Port

SPLERR SplEnumPort (PSZ pszComputerName, ULONG ullevel, PVOID pBuf, ULONG cbBuf,
PULONG pcReturned, PULONG pcTotal, PULONG pcbNeeded,
PVOID pReserved}

This function lists printer ports on the local workstation or on a remote server.

Parameters
pszComputerName (PSZ} - input

Name of computer where queues are to be listed.

A NULL string specifies the local workstation.

ullevel (ULONG} - input
Level of detail.

The level of detail required. This must be 0 or 1.

pBul (PVOID} - output
Buffer.

cbBul (ULONG} - input
Size, in bytes, of Buffer.

pcReturned (PULONG} - output
Number of entries returned.

pcTotal (PULONG} - output
Total number of entries available.

pcbNeeded (PULONG} - output
Size in bytes of available information.

A value of O specifies that the size is not known.

pReserved (PVOID} - output
Reserved.

This must be NULL.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BulTooSmall (2123) The API return buffer is too small.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Chapter 7. Spooler Functions 7-29

SplEnumPort -
Spooler Enumerate Port

Remarks
The buffer contents on return are:

u/Level
0

Buffer Contents
An array of PRPORTINFO structures
An array of PRPORTINF01 structures 1

Related Functions
• SplCreateDevice
• SplSetDevice

Example Code
This sample code will print out all the ports an associated information. This is done at level 1, and
for the local workstation.

#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main ()
{

SPLERR splerr ;
ULONG cbBuf ;
ULONG cTotal;
ULONG cReturned
ULONG cbNeeded ;
ULONG ulLevel = 1;
ULONG i ;
PSZ pszComputerName = NULL;
PVOID pbuf ;
PPRPORTINFOl pPortl ;

splerr = SplEnumPort(pszComputerName, ulLevel, pbuf, 0L, /* cbBuf */
&cReturned, &cTotal,
&cbNeeded, NULL) ;

if (splerr == ERROR_MORE_DATA I I NERR_BufTooSmall
{

if (!DosAllocMem(&pbuf, cbNeeded,
PAG_READIPAG_WRITEIPAG_COMMIT))

{
cbBuf = cbNeeded ;
splerr = Sp1EnumPort(pszComputerName, ulLevel, pbuf, cbBuf,

&cReturned, &cTotal,
&cbNeeded, NULL) ;

if (splerr == 0L)
{

}

pPortl = (PPRPORTINFOl)pbuf ;
printf("Port names: ");
for (i=0; i < cReturned; i++)
{

printf("Port - %s, Driver - %s Path - %s\n
pPortl->pszPortName, pPortl->pszPortDriverName,
pPortl->pszPortDriverPathName)

pPortl++ ;
}
printf(11 \n 11

);

7-30 PM Programming Reference

}

DosFreeMem(pbuf)
}

}
else
{

printf(11 SplEnumPort splerr=%ld, \n 11 ,splerr)
}
DosExit(EXIT PROCESS , 0)
return (splerr);
/* end main */

SplEnumPort -

Spooler Enumerate Port

Chapter 7. Spooler Functions 7-31

SplEnumPrinter -
Spooler Enumerate Print Destinations

#define INCL_SPL I* Or use INCL_PM *I

SPLERR SplEnumPrlnter (PSZ pszComputerName, ULONG ulLevel, ULONG flType,
PVOID pBuf, ULONG cbBuf, PULONG pcReturned, PULONG pcTotal,
PULONG pcbNeeded, PVOID pReserved)

This function lists print destinations in the system.

Parameters
pszComputerName (PSZ) - input

Name of computer where queues are to be listed.

This must be NULL

ulLevel (ULONG) - input
Level of detail required.

This must be 0.

flType (ULONG) - input
Type of print destinations required.

SPL_PR_ QUEUE Return only queues

SPL_PR_DIRECT_DEVICE Return only direct print devices

SPL_PR_QUEUED_DEVICE Return only queued print devices

SPL_PR_LOCAL_ ONLY

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

Return only local print destinations

pcTotal (PULONG) - output
Number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved.

This must be NULL

Returns
NO_ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

7-32 PM Programming Reference

\
)

SplEnumPrinter -

Spooler Enumerate Print Destinations

NERR_BufTooSmall (2123)

NERR_SpoolerNotloaded (2161)

The API return buffer is too small.

The spooler is not running.

Remarks
The buffer contents on return are:

u/Level
0

Buffer Contents
An array of PRINTERINFO structures.

When the names of print destinations are returned, calls can be made to SplQueryQueue or

SplQueryDevice to find out further information about the print destination.

Related Functions
• SplQueryDevice
• SplQueryQueue

Example Code
This example code will print out all queues and printers for the local computer. It will print out both

printers that are attached to a queue, and those that are direct printers.

#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main ()
{

PVOID pBuf;
ULONG fsType
ULONG cbBuf ;
ULONG cRes ;
ULONG cTotal ;
ULONG cbNeeded ;
SPLERR splerr = 0
PPRINTERINFO pRes

/* for printf function */
/* for error codes */

/* Set fsType to use all the flags. We will print out local device/queues.*/
fsType = SPL_PR_QUEUE I SPL_PR_DIRECT_DEVICE I

SPL_PR_QUEUED_DEVICE I SPL_PR_LOCAL_ONLY;

/*Make function call with cbBuf equal to zero to get a return in cbNeeded*/
/* of the number of bytes needed for buffer to hold all the information */

splerr = SplEnumPrinter (NULL,0 ,fsType ,NULL ,NULL ,&cRes ,
&cTotal,&cbNeeded ,NULL) ;

/* The error return code will be one of the two following codes if */
/* all the parameters were correct. Otherwise it could be */
/* ERROR_INVALID_PARAMETER. */

if (splerr == ERROR_MORE_DATA I I splerr == NERR_BufTooSmall
{

/* Allocate memory for the buffer using the count of bytes that were */
/*returned in cbNeeded. For simplicity, no error checking is done. */
DosAllocMem(&pBuf, cbNeeded,

PAG_READIPAG_WRITEIPAG_COMMIT);

/* Set count of bytes in buffer to value used to allocate buffer. */
cbBuf = cbNeeded;

Chapter 7. Spooler Functions 7-33

SplEnumPrinter -
Spooler Enumerate Print Destinations

}

}

/*Call function again with the correct buffer size. */
splerr = SplEnumPrinter (NULL,0 ,fsType ,pBuf ,cbBuf ,&cRes ,

&cTotal,&cbNeeded,NULL);

/* If there are any returned structures in the buffer, then we will */
/* print out some of the information. */
if (cRes)
{

pRes = (PPRINTERINFO)pBuf ;
while (cRes--)
{

}

/* Look at the flType element in the pRes structure to determine */
/* what type of print destination the structure represents. */
switch (pRes[cRes].flType)
{

}

case SPL PR QUEUE:
printf(11 Print destination %s is a queue.\n",
pRes[cRes].pszPrintDestinationName) ;
break;

case SPL PR QUEUED DEVICE:
printf("Print destination %s is a queued printer. \n",
pRes[cRes].pszPrintDestinationName) ;
break;

case SPL PR DIRECT DEVICE:
printf("Print destination %s is a direct printer.\n",
pRes[cRes].pszPrintDestinationName)

printf("Description -
%s\n\n",pRes[cRes].pszDescription)

}
DosFreeMem(pBuf);

else
{

}

/* If we had any other return code other than ERROR_MORE_DATA or */
/* NERR_BufTooSmall, we will print out the following information. */
printf("SplEnumPrinter error= %ld \n",splerr);

DosExit(EXIT PROCESS , 0) ;
return (splerr);

7-34 PM Programming Reference

\
)

SplEnumQueue
Spooler Enumerate Queue

#define INCL SPL /* Or use INCL_PM *I

SPLERR SplEnumQueue (PSZ pszComputerName, ULONG ulLevel, PVOID pBuf,
ULONG cbBuf, PULONG pcReturned, PULONG pcTotal,
PULONG pcbNeeded, PVOID pReserved)

This function lists print queues on the local workstation or on a remote server, optionally supplying
additional information.

Parameters
pszComputerName (PSZ) - input

Name of computer where queues are to be listed.

A NULL string specifies the local workstation.

ulLevel (ULONG) - input
Level of detai I.

The level of detail required. This must be 3, 4, 5 or 6.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

pcTotal (PULONG) - output
Total number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved.

This must be NULL.

Returns
Return

NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT _SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

Chapter 7. Spooler Functions 7-35

SplEnumQueue -
Spooler Enumerate Queue

NERR_lnvalldComputer (2351)

Remarks
The buffer contents on return are:

Buffer Contents

The computer name is invalid.

u/Level
3 An array of PRQINF03 structures
4

5
6

An array of pcReturned PRQINF03 structures in which each PRQINF03 structure is
followed by an array of PRJINF02 structures, one for each of job in the queue. cJobs in
the PRQINF03 or PRQINF06 structure gives the number of jobs in the array.
A queue name of type PSZ.
An array of PRQINF06 structures

Related Functions
• SplQueryJob
• SplQueryQueue
• SplSetJob
• SplSetQueue

Example Code
This sample code enumerates all the queues and the jobs in them that are on the local workstation.

#define INCL_BASE
#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main ()
{

SPLERR splerr;
USHORT jobCount
ULONG cbBuf ;
ULONG cTotal;
ULONG cReturned ;
ULONG cbNeeded ;
ULONG ulLevel ;
ULONG i ,j ;
PSZ pszComputerName
PBYTE pBuf ;
PPRQINF03 prq ;
PPRJINF02 prj2 ;

ulLevel = 4L;
oszComouterName = (PSZ)NULL :
splerr. = SplEnumQueue(pszComputerName, ulLevel, pBuf, 0L, /* cbBuf */

&cReturned, &cTotal,
&cbNeeded, NULL)

if (splerr == ERROR_MORE_DATA II splerr == NERR_BufTooSmall
{

if (!DosAllocMem(&pBuf, cbNeeded,
PAG_READIPAG_WRITEIPAG_COMMIT)

{
cbBuf = cbNeeded ;
splerr = SplEnumQueue(pszComputerName, ulLevel, pBuf, cbBuf,

&cReturned, &cTotal,

if (splerr == NO_ERROR)
{

&cbNeeded, NULL)

7-36 PM Programming Reference

%X\n",

SplEnumQueue
Spooler Enumerate Queue

/* Set pointer to point to the beginning of the buffer.
prq = (PPRQINF03)pBuf ;

*/

/* cReturned has the count of the number of PRQINF03 structures. */
for (i=0;i < cReturned ; i++)
{

printf(11 Queue info: name - %s\n 11
, prq->pszName) ;

printf(" priority - %d starttime - %d endtime - %d fsType -

prq->uPriority , prq->uStartTime , prq->uUntilTime ,
prq->fsType)

printf(" pszSepFile - %s\n", prq->pszSepFile) ;
printf(" pszPrProc - %s\n", prq->pszPrProc) ;
printf(" pszParms - %s\n", prq->pszParms) ;
printf(" pszC011111ent - %s\n 11

, prq->pszC011111ent) ;
printf(" pszPrinters - %s\n 11

, prq->pszPrinters) ;
printf(" pszDriverName- %s\n 11

, prq->pszDriverName)
if (prq->pDriverData)
{

printf(" pDriverData->cb - %ld\n",
(ULONG)prq->pDriverData->cb);

}

}

}

printf(" pDriverData->lVersion - %ld\n",
(ULONG)prq->pDriverData->lVersion) ;

printf(" pDriverData->szDeviceName- %s\n",
prq->pDriverData->szDeviceName) ;

/* Save the count of jobs. There are this many PRJINF02 */
/* structures following the PRQINF03 structure. */
jobCount = prq->cJobs;
printf(11 Job count in this queue is %d\n\n",jobCount);

/* Increment the pointer past the PRQINF03 structure. */
prq++;

/* Set a pointer to point to the first PRJINF02 structure. */
prj2=(PPRJINF02)prq;
for (j=0;j < jobCount ; j++)
{

printf("Job ID = %d\n 11
, prj2->uJobld);

printf("Job Priority= %d\n", prj2->uPriority);
printf(11 User Name = %s\n". prj2->pszUserName);
printf(11 Position = %d\n", prj2->uPosition);
printf("Status = %d\n 11

, prj2->fsStatus);
printf("Submitted = %ld\n",prj2->u1Submitted);
printf("Size = %ld\n" ,prj2->u1Size);
printf(11 Co11111ent = %s\n", prj2->pszC011111ent);
printf("Document = %s\n\n",prj2->pszDocument);

/* Increment the pointer to point to the next structure. */
prj2++;

} /* endfor jobCount */

/* After doing all the job structures. prj2 points to the next */
/* queue structure. Set the pointer for a PRQINF03 structure. */
prq = (PPRQINF03)prj2;

}/*endfor cReturned */

DosFreeMem(pBuf) ;

} /* end if Q level given */
else
{

/* If we are here we had a bad error code. Print it and some other info.*/
printf("SplEnumQueue Error=%ld, Tota1=%ld, Returned=%ld, Needed=%ld\n",

Chapter 7. Spooler Functions 7-37

SplEnumQueue -
Spooler Enumerate Queue

splerr, cTotal, cReturned, cbNeeded)
}
DosExit(EXIT PROCESS , 0)
return(splerr);

} /* end main */

7-38 PM Programming Reference

SplEnumQueueProcessor -
Spooler Enumerate Queue Processor

#define INCL SPL I* Or use INCL_PM */

SPLERR SplEnumQueueProcessor (PSZ pszComputerName, ULONG ullevel, PVOID pBuf,
ULONG cbBuf, PULONG pcReturned, PULONG pcTotal,
PULONG pcbNeeded, PVOID pReserved)

This function lists printer queue processors on the local workstation or on a remote server.

Parameters
pszComputerName (PSZ) - input

Name of computer where queues are to be listed.

A NULL string specifies the local workstation.

ullevel (ULONG) - input
Level of detai I.

The level of detail required. This must be 0.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcReturned (PULONG) - output
Number of entries returned.

pcTotal (PULONG) - output
Total number of entries available.

pcbNeeded (PULONG) - output
Size in bytes of available information.

A value of 0 specifies that the size is not known.

pReserved (PVOID) - output
Reserved.

This must be NULL.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_SpoolerNotloaded (2161) The spooler is not running.

NERR_lnvalidComputer (2351) The computer name is invalid.

Chapter 7. Spooler Functions 7-39

SplEnumQueueProcessor -
Spooler Enumerate Queue Processor

Remarks
The buffer contents on return are:

u/Level
0

Buffer Contents
An array of PRQPROCINFO structures

Related Functions
• SplSetQueue

Example Code
This sample code enumerates and prints all the queue processors on the local computer.

#define INCL_BASE
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main ()
{

SPLERR splerr ;
ULONG cbBuf ;
ULONG cTotal ;
ULONG cReturned
ULONG cbNeeded ;
ULONG i ;

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszQProcName ;
PBYTE pBuf ;

/* Call the function the first time with zero in cbBuf. The count */
/* of bytes needed for the buffer to hold all the info will be */
/* returned in cbNeeded. */
splerr = SplEnumQueueProcessor(pszComputerName, 0L, NULL, 0L,

&cReturned, &cTotal,
&cbNeeded,NULL);

/*If the return code is ERROR_MORE_DATA or NERR_BufTooSmall,
/* then all the parameters were correct; and we can continue.
if (splerr == ERROR_MORE_DATA I I splerr == NERR_BufTooSmall)
{

*/
*/

/*Allocate memory for the buffer to hold the returned information. Use */
/*the count of bytes that were returned by our first call. */
if (lDosAllocMem(&pbuf, cbNeeded,

{
PAG_READIPAG_WRITEIPAG_COMMIT))

/*Set count of bytes to the value returned by our first call.
cbBuf = cbNeeded ;

/* Now call the function a second time with the correct values,
/* the information will be returned in the buffer.
splerr = SplEnumQueueProcessor(pszComputerName, 0L, pBuf, cbBuf,

&cReturned, &cTotal,
&cbNeeded,NULL) ;

/* If we have no errors, then print out the buffer information.
if (splerr == NO_ERROR)
{

/* Set a pointer to point to the beginning of the buffer.
pszQProcName = (PSZ)pBuf;

7-40 PM Programming Reference

*/

and */
*/

*/

*/

\
i

)

}

}
}

}

SplEnumQueueProcessor -
Spooler Enumerate Queue Processor

/* Print the names that are in the buffer. The count of the number*/
/* of names in pBuf have been returned in cReturned. */
for (i=0;i < cReturned ; i++)
{

}

printf(11 Queue Processor name - %s\n 11
• pszQProcName)

/* Increment the pointer to point to the next name.
pszQProcName += DRIV_NAME_SIZE + 1;

*/

/* Free the memory allocated for the buffer.
DosFreeMem(pBuf) ;

*/

else
{

/* If the first call to the function returned any other error code */
/*except ERROR_MORE_DATA or NERR_BufTooSmall. we print the */
/* following. */
printf(11 SplEnumQueueProcessor error=%ld\n 11 .splerr)

}
DosExit(EXIT PROCESS • 0) ;
return (splerr);

Chapter 7. Spooler Functions 7-41

SplHoldJob -
Spooler Hold Job

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplHoldJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ulJob)

This function holds a job in a print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where job is to be paused.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue Name.

ulJob (ULONG) - input
Job identification number.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

NERR_NetNotStarted (2102) The network program is not installed.

NERR_JobNotFound (2151) The print job does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_JoblnvalldState (2164) This operation cannot be performed on the print job in its
current state.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
If the job is already printing when the call is made, NERR_JoblnvalidState (2164) is returned.

A user with administrator privilege can hold any job.

A job created locally can be held locally regardless of user privilege level, but can be held remotely
only by an administrator.

A remote job can be held by a user without administrator privilege only if the username of the person
initiating the request is the same as the username of the person who created the job.

Related Functions
• SplEnumJob
• SplQueryJob
• SplReleaseJob

7-42 PM Programming Reference

Example Code

SplHoldJob -
Spooler Hold Job

This sample code will hold the queue name that is entered at the prompt.

#define INCL_BASE
#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>
#include <stdlib.h>

INT main (argc, argv)
INT argc;
CHAR *argv [];

{
SPLERR splerr ;

/* for printf function */
/* for error codes */
/* for atoi function */

PSZ pszComputerName = NULL ;
PSZ pszQueueName = NULL ;
ULONG ulJob ;

/* Get job id from the input argument. */
ulJob = atoi(argv[l]);

/* Call the function to do the hold. If an error is returned, print it. */
splerr = SplHoldJob(pszComputerName, pszQueueName, ulJob);

}

switch (splerr)
{

case NO ERROR:
printf(11 Job %d was held.\n 11 ,ulJob);
break;

case NERR JobNotFound:
printf(11 Job does not exist.\n 11

);

break;
case NERR JobinvalidState:

printf(11 This operation can't be performed on the print Job.\n 11
);

break;
default:

printf(11 Errorc6de = %ld\n 11 ,splerr);
} /* endswitch */
DosExit(EXIT_PROCESS , 0) ;
argc;
return (splerr);

Chapter 7. Spooler Functions 7-43

SplHoldQueue
Spooler Hold Queue

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplHoldQueue (PSZ pszComputerName, PSZ pszQueueName)

This function holds a print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be paused.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
This function suspends processing of all print jobs except for a job currently printing. Print jobs can
be submitted to a held queue, but no jobs will be spooled to a print destination or print processor
until the queue is released by a SplHoldQueue call.

To hold a remote queue requires administrator privilege on the remote server.

Related Functions
• SplCreateQueue
= SplEnumQueue
• SplQueryQueue
• SplReleaseQueue

7-44 PM Programming Reference

\
/ Example Code

SplHoldQueue -
Spooler Hold Queue

This sample code will hold the local queue name that is entered at the prompt.

#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;
CHAR *argv [] ;

{
SPLERR splerr ;

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL ;
PSZ pszQueueName ;

/* Get queue name from the input argument */
pszQueueName = argv[l];

/* Call the function to do the hold. If an error is returned, print it. */
splerr = SplHoldQueue(pszComputerName, pszQueueName);

}

if (splerr != 0L)
{

}

switch (splerr)
{

case NERR QNotFound:
printf("Queue does not exist.\n 11

);

break;
case NERR_SpoolerNotLoaded:

printf("The Spooler is not running.\n");
break;

default:
printf("Errorcode = %ld\n",splerr);

} /* endswitch */

else
{

printf("Queue %s was held.\n 11 ,pszQueueName);
} /* endif */

DosExit(EXIT_PROCESS , e) ;
argc; /* keep the compiler quiet */
return (splerr);

Chapter 7. Spooler Functions 7-45

SplPurgeQueue
Spooler Purge Queue

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplPurgeQueue (PSZ pszComputerName, PSZ pszQueueName)

This function removes all jobs, except any currently printing, from a print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be purged.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERRORJNVALID_PARAMETER (87) An invalid parameter was specified.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_SpoolerNotloaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
A print job that is printing is not affected by this function.

If a print queue is pending deletion when this function is made, the queue is deleted when the job that
is currently printing ends.

To purge a remote queue requires administrator privilege on the remote server.

Related Functions
• SplCreateQueue
• SplEnumQueue
• SplQueryQueue

7-46 PM Programming Reference

Example Code

SplPurgeQueue -
Spooler Purge Queue

This code will purge a local queue, whose name is entered at the prompt.

#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main {argc, argv)
INT argc;
CHAR *arg[];

{
SPLERR splerr

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszQueueName ;

/* Get queue name from the input argument. */

}

pszQueueName = arg[l];

/* Call the function to do the purge. If an error is returned, print it. */
splerr=SplPurgeQueue{pszComputerName, pszQueueName);
if {splerr != GL)
{

}

switch {splerr)
{

case NERR QNotFound:
printf(11 Queue does not exist.\n 11

);

break;
case NERR_SpoolerNotLoaded:

printf(11 The Spooler is not running.\n 11
);

break;
default:

printf{ 11 Errorcode = %ld\n 11 ,splerr);
} /* endswitch */

else
{

printf{"Queue %s was purged.\n",pszQueueName);
} /* endif */

DosExit(EXIT PROCESS , 0) ;
return {splerr);

Chapter 7. Spooler Functions 7-47

SplQmAbort -
Spooler File Abort

#define INCL_SPL I* Or use INCL_PM */

I BOOL SplOmAborl (HSPL hspl)

This function stops the generation of the spool file(s). It automatically closes the spool file (see
SplQmClose).

Parameters
hspl (HSPL) - input

Spooler handle.

Returns
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Possible returns from WinGetlastError

PMERR_SPL_ QUEUE_ERROR

PMERR_SPL_INV _HSPL

Related Functions
Prerequisite Functions

• SplQmOpen

Other Related Functions

• DevEscape

Example Code

No spooler queue supplied or found.

The spooler handle is invalid.

This function is used to stop the generation of spool files and automatically close the spool file.
#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle.*/

SplQmAbort(hspl);

7-48 PM Programming Reference

)
#define INCL_SPL I* Or use INCL_PM */

I BOOL SplQmAbortDoc (HSPL hspl)

This function aborts a print job.

Parameters
hspl (HSPL) - input

Spooler handle.

Returns
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Possible returns from WinGetlastError

PMERR_SPL_ QUEUE_ERROR

PMERR_STARTDOC_NOT_ISSUED

PMERR_SPL_INV _HSPL

Remarks

SplQmAbortDoc -
Spooler File Abort Document

No spooler queue supplied or found.

A request to write spooled output without first issuing a
STARTDOC was attempted.

The spooler handle is invalid.

Everything that has been written to the spool file for this job since the last SplQmStartDoc is erased,

including the SplQmStartDoc.

Related Functions
Prerequisite Functions

• SplQmOpen
• SplQmStartDoc

Other Related Functions

• DevEscape

Example Code
This function is used to abort a print job. Everything since the last SplQmStartDoc is deleted.

#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle. */

SplQmAbortDoc(hspl);

Chapter 7. Spooler Functions 7-49

SplQmClose -
Spool File Close

#define INCL SPL I* Or use INCL_PM */

I BOOL SplQmClose (HSPL hspl)

This function corresponds to the DevCloseDC function: it closes the spool file.

Parameters
hspl (HSPL) - input

Spooler handle.

Returns
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Possible returns from WinGetlastError

PMERR_SPL_ QUEUE_ERROR

PMERR_ENDDOC _NOT _ISSUED

PMERR_SPL_INV _HSPL

Related Functions
Prerequisite Functions

• SplQmOpen

Other Related Functions

• DevCloseDC

Example Code

No spooler queue supplied or found.

A request to close the spooled output without first issuing
an ENDDOC was attempted.

The spooler handle is invalid.

This function is used to close a spool file that was opened with SplQmOpen.

#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle. */

SplQmClose(hspl);

7-50 PM Programming Reference

~
)

#define INCL_SPL I* Or use INCL_PM */

I ULONG SplQmEndDoc (HSPL hspg

SplQmEndDoc -
Spooler File End Document

This function corresponds to the DevEscape (DEVESC_ENDDOC) call: it ends a print job, and returns

u/Job, a unique number to identify the job.

Parameters
hspl (HSPL) - input

Spooler handle.

Returns
Job identifier:

Nonzero Jobid (1 through 65 535)

SPL_ERROR Error.

Possible returns from WinGetlastError

PMERR_SPL_ QUEUE_ERROR

PMERR_SPL_NO_DATA

PMERR_SPL_INV _HSPL

Remarks

No spooler queue supplied or found.

No data supplied or found.

The spooler handle is invalid.

The print-job identifier is displayed to the user by the spooler while this job is on the queue, and

while it is being printed.

Related Functions
Prerequisite Functions

• SplQmOpen
• SplQmStartDoc

Other Related Functions

• DevEscape

Chapter 7. Spooler Functions 7-51

SplQmEndDoc -
Spooler File End Document

Example Code
This function is used to end a print job and return the job id.

#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle.*/
ULONG jobid;
CHAR szMsg[100];
HWND hwndClient;

jobid = SplQmEndDoc(hspl);

sprintf(szMsg, "ending job %d 11 ,jobid);
WinMessageBox(HWND_DESKTOP,

hwndClient,
szMsg,
"Printing Information",
0,
MB_NOICON I MB_OK);

7-52 PM Programming Reference

/* client-window handle */
/* body of the message */
/* title of the message */
/* message box id */
/* icon and button flags */

)
)

#define INCL_SPL /*Or use INCL_PM */

SplQmOpen
Spooler File Open

HSPL SplQmOpen (PSZ pszToken, LONG ICount, PQMOPENDATA pqmdopData)

This function corresponds to the DevOpenDC call: it opens a spool file for generating a print job.

Parameters
pszToken (PSZ) - input

A token (nickname) that identifies spooler information.

This information is held in the initialization file, and is the same as that in pqmdopData; any that

is obtained from pqmdopData overrides the information obtained using pszToken.

If pszToken is specified as"*", then no device information is taken from the initialization file.

Presentation Manager behaves as if "*" is specified, but it allows any string to be specified.

ICount (LONG) - input
Number of items.

This is the number of items present in the pqmdopData supplied. This can be shorter than the

full list, if omitted items are irrelevant, or supplied from pszToken or elsewhere.

pqmdopData (PQMOPENDATA) - input
Open parameters.

Returns
Spooler handle:

Nonzero Spooler handle

SPL_ERROR Error.

Possible returns from WinGetlastError

PMERR_INVALID _PARM

PMERR_SPL_INV_LENGTH_OR_COUNT

PMERR_SPL_ QUEUE_NOT _FOUND

PMERR_BASE_ERROR

Remarks
None

Related Functions
• DevOpenDC

A parameter to the function contained invalid data.

The length or count is invalid.

The spooler queue definition could not be found.

An OS/2 base error has occurred. The base error code
can be accessed using the OffBinaryData field of the
ERRINFO structure returned by WinGetErrorlnfo.

Chapter 7. Spooler Functions 7-53

SplQmOpen -
Spooler File Open

Example Code
This sample code will initialize a PDEVOPENSTRUC and use it to call the function.

#define INCL_SPL
#define INCL_SPLDOSPRINT
#define INCL_BASE
#define INCL_ERRORS

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

VOID main()
{
HSPL hspl;
PDEVOPENSTRUC pdata;
PSZ pszToken = 11 *11

;

/* Pointer to a DEVOPENSTRUC structure */
/* Spooler info identifier */

/*Allocate memory for pdata */
if (!DosAllocMem(&pdata,sizeof(DEVOPENSTRUC).

(PAG_READIPAG_WRITEIPAG_COMMIT))
{

}
}

/* Initialize elements of pdata */
pdata->pszLogAddress = 11 LPT1Ql 11

;

pdata->pszDriverName = 11 IBMNULL 11
;

pdata->pdriv = NULL;
pdata->pszDataType = 11 PM_Q_STD 11

;

pdata->pszCoDIDent = NULL;
pdata->pszQueueProcName = NULL;
pdata->pszQueueProcParams = NULL;
pdata->pszSpoolerParams = NULL;
pdata->pszNetworkParams = NULL;

hspl = SplQmOpen(pszToken 1 4L 1 (PQMOPENDATA)pdata);

if (hspl != SPL_ERROR)
{

/* Good spooler handle */

printf("SplQmOpen handle is %d\n 11 ,hspl);
}
else
{

printf(11 SplQmOpen failed.\n 11
);

}

7-54 PM Programming Reference

#define INCL_SPL I* Or use INCL_PM */

SplQmStartDoc -
Spooler File Start Document

BOOL SplQmStartDoc (HSPL hspl, PSZ pszDocName)

This function corresponds to the DevEscape (DEVESC_STARTDOC) call; it starts a print job.

Parameters
hspl (HSPL) - input

Spooler handle.

pszDocName (PSZ) - input
Document name.

This is part of the job description which is displayed to the end user by the spooler.

Returns
Success indicator:

TRUE
FALSE

Successful completion
Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_SPL_ QUEUE_ERROR

PMERR_ENDDOC_NOT _ISSUED

PMERR_SPL_INV _HSPL

Remarks

A parameter to the function contained invalid data.

No spooler queue supplied or found.

A request to close the spooled output without first issuing
an ENDDOC was attempted.

The spooler handle is invalid.

This function signifies the start of a print job. It allows the application to specify a document name to
be associated with the print job.

Multiple print jobs can be generated, within a single queue manager open, by bracketing each job
with SplQmStartDoc and SplQmEndDoc.

Related Functions
Prerequisite Functions

• SplQmOpen

Other Related Functions

• DevEscape

Chapter 7. Spooler Functions 7-55

SplQmStartDoc -
Spooler File Start Document

Example Code
This function is used to start a print job.

#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle.*/
CHAR szDocName[] = "Test Job 11

;

CHAR szMsg[100];
HWND hwndClient;

sprintf(szMsg, "Starting job named: %s 11 ,szDocName);
WinMessageBox(HWND_DESKTOP,

hwndClient, /* client-window handle */
szMsg, /* body of the message */
"Printing Information 11

, /*title of the message*/
0, /* message box id */
MB_NOICON I MB_OK); /* icon and button flags */

SplQmStartDoc(hspl,szDocName);

7-56 PM Programming Reference

I
I

#define INCL_SPL I* Or use INCL_PM */

SplQmWrite
Spooler File Write

BOOL SplQmWrlte (HSPL hspl, LONG ICount, PVOID pData)

This function writes a buffer of data to the spool file for the print job.

Parameters
hspl (HSPL) - input

Spooler handle.

ICount (LONG) - input
Length in bytes.

This is the length of pData; it must not be greater than 65 535. Data that is longer than this must
be written by two or more calls.

pData (PVOID) - input
Buffer of data to be written to the spool file.

Returns
Success indicator:

TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID _PARM

PMERR_BASE_ERROR

PMERR_SPL_INV _LENGTH_OR_ COUNT

PMERR_SPL_QUEUE_ERROR

PMERR_SPL_PRINT _ABORT

PMERR_STARTDOC _NOT _ISSUED

PMERR_SPL_CANNOT_OPEN_FILE

PMERR_SPL_INV _HSPL

PMERR_SPL_NO_DISK_SPACE

Remarks
None

Related Functions
Prerequisite Functions

• SplQmOpen
• · SplQmStartDoc

A parameter to the function contained invalid data.

An OS/2 base error has occurred. The base error code
can be accessed using the OffBinaryData field of the
ERRINFO structure returned by WinGetErrorlnfo.

The length or count is invalid.

No spooler queue supplied or.found.

The job has already been aborted.

A request to write spooled output without first issuing a
STARTDOC was attempted.

Unable to open the file.

The spooler handle is invalid.

There is not enough free disk space.

Chapter 7. Spooler Functions 7-57

SplQmWrite -
Spooler File Write

Example Code
This function writes a buffer of data to the spool file for the print job.

#define INCL_SPL
#include <OS2.H>

HSPL hspl; /*spooler handle. */

SplQmWrite(hspl,
sizeof("DATA"),
(PVOID)"DATA");

7-58 PM Programming Reference

)
#define INCL_SPL I* Or use INCL_PM */

SplQueryDevice
Spooler Query Device

SPLERR SplQueryDevlce (PSZ pszComputerName, PSZ pszPrlntDevlceName, ULONG ullevel,
PVOID pBuf, ULONG cbBuf, PULONG pcbNeeded)

This function retrieves information about a print device.

Parameters
pszComputerName (PSZ) - input

Name of computer where print device is to be queried.

A NULL string specifies the local workstation.

pszPrlntDevlceName (PSZ) - input
Name of Print Device.

This can specify a print device name or a port name. If u/Level is 0, it must be a port name. If
u/Level is 2 or 3 , it must be a print device name.

ullevel (ULONG) - input
Level of detail required.

This must be 0, 2 or 3.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcbNeeded (PULONG) - output
Size in bytes of available information.

Returns
NO _ERROR (0) No errors occurred.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNolStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_DestNotFound (2152) The print device cannot be found.

NERR_SpoolerNotloaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Chapter 7. Spooler Functions 7-59

SplQueryDevice
Spooler Query Device

Remarks
The buffer contents on return are:

u/Level
0

Buffer Contents
A port name.

2
3

A print device name. of type PSZ.
A PRDINF03 structure.

If u/Leve/ is 3, and pBuf cannot hold the entire PRDINF03 structure, SplQueryDevice returns
NERR_BufTooSmall (2123).

To obtain the size of buffer required, call SplQueryDevice with the required value of u/Level and a
NULL buffer. The number of bytes required is returned in pcbNeeded.

If no job is printing on the print device, bits 2 - 11 of fsStatus in the PRDINF03 data structure are
meaningless.

Related Functions
• SplCreateDevice
• SplDeleteDevice
• SplEnumDevice

Example Code
This sample code returns information for the device name that is entered at the command line. The
local workstation is selected. The query is done for level 3 information.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

SPLERR splerr
ULONG cbBuf;
ULONG cbNeeded ;
ULONG ullevel ;
PSZ pszComputerName ;
PSZ pszPrintDeviceName
PVOID pBuf ;
PPRDINF03 pprd3

if (argc != 2)
{

}

printf(11 Syntax: sdqry DeviceName \n"};
DosExit(EXIT_PROCESS , 0)

pszComputerName = (PSZ)NULL ;
pszPrintDeviceName = argv[l];
ullevel = 3;
splerr = SplQueryDevice(pszComputerName, pszPrintDeviceName,

ullevel, (PVOID)NULL, 0L, &cbNeeded);
if (splerr != NERR_BufTooSmall)
{

7-60 PM Programming Reference

}

}

SplQueryDevice
Spooler Query Device

printf(11 SplQueryDevice Err=%1d, cbNeeded=%ld\n 11 ,splerr, cbNeeded)
DosExit(EXIT_PROCESS , 0) ;

if (IDosAllocMem(&pBuf, cbNeeded,
PAG_READIPAG_WRITEIPAG_COMMIT)){

cbBuf = cbNeeded ;

}

splerr = SplQueryDevice(pszComputerName, pszPrintDeviceName,
ulLevel, pBuf, cbBuf, &cbNeeded) ;

printf(11 SplQueryDevice Error=%ld, Bytes Needed=%ld\n 11
, splerr,

cbNeeded) ;

pprd3=(PPRDINF03)p8uf;

printf(11 Print Device info: name - %s\n 11
, pprd3->pszPrinterName)

printf(11 User Name = %s\n 11
, pprd3->pszUserName) ;

printf(11 Logical Address= %s\n 11
, pprd3->pszLogAddr)

printf("Job ID = %d\n 11
, pprd3->uJobld) ;

printf(11 Status = %d\n 11
, pprd3->fsStatus) ;

printf(11 Status Conment = %s\n 11
, pprd3->pszStatus) ;

printf(11 Conment = %s\n 11
, pprd3->pszConment) ;

printf("Drivers = %s\n 11
, pprd3->pszDrivers) ;

printf("Time = %d\n 11
, pprd3->time) ;

pri ntf(11 Time Out = %d\n 11
, pprd3->usTimeOut) ;

DosFreeMem(pBuf)

DosExit(EXIT_PROCESS , 0) ;
return (splerr);

Chapter 7. Spooler Functions 7-61

SplQueryJob -
Spooler Query Job

#define INCL_SPL /*Or use INCL_PM */

SPLERR SplQueryJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ulJob,
ULONG ulLevel, PVOID pBuf, ULONG cbBuf, PULONG pcbNeeded)

This function retrieves information about a print job.

Parameters
pszComputerName (PSZ) - input

Name of computer where print job is to be queried.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue Name.

ulJob (ULONG) - input
Job identification number ..

ulLevel (ULONG) - input
Level of detail required.

This must be 0, 2, or 3.

pBuf (PVOID) - output
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcbNeeded (PULONG) - output
Size in bytes of available information.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_JobNotFound (2151) The print job does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

7-62 PM Programming Reference

Remarks
The buffer contents on return are:

u/Leve/
0

Buffer Contents
The job identifier

SplQueryJob -
Spooler Query Job

2
3

A PRJINF02 structure, with variable information, up to the cbBuf of pBuf

A PRJINF03 structure, with variable information, up to the cbBuf of pBuf.

Related Functions
• SplEnumJob
• SplEnumQueue
• SplQueryQueue
• SplSetJob

Example Code
The following sample code will print out the information contained in a PRJINF03 structure that is

returned from a SplQueryJob call. The parameters that are entered on the command line are the

computer name, queue name, and the job id.

#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <neterr.h>

/* for printf call */
/* for atoi call */
/* for error codes */

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

INT splerr;
ULONG cbBuf ;
ULONG cbNeeded
ULONG ullevel ;
ULONG ulJob ;
PSZ pszComputerName
PSZ pszQueueName
PVOID pBuf;
PPRJINF03 pprj3 ;

/* Input the parameters Computer Name, Queue Name.and Job ID. Check that */
/* three parameters have been entered along with the program name. */
if (argc != 4)
{

/* Print a message and exit if wrong number of parameters entered */
printf("Syntax: sjqry ComputerName QueueName JobID \n");
DosExit(EXIT_PROCESS , 0) ;

}
/* Set the parameters to the values entered on the co11111and line. */
pszComputerName = argv[l]
pszQueueName = argv[2] ;
ulJob = atoi (argv[3]);

/*Valid levels are 0,2,and 3. Level 3 returns a PRJINF03 structure. */
ullevel = 3 ;

/* Call the function with cbBuf equal to zero in order to get the number */
/* of bytes needed returned in cbNeeded. */
splerr = SplQueryJob(pszComputerName,pszQueueName,ulJob,

ullevel, (PVOID)NULL, 0L, &cbNeeded);

Chapter 7. Spooler Functions 7-63

SplQueryJob -
Spooler Query Job

/* Only continue if the error return code is one of the two following. */
if (splerr == NERR_BufTooSmall II splerr == ERROR_MORE_DATA)
{

/*Allocate memory for the buffer(pBuf). Only continue if memory is */
/* successfully allocated. */
if (DosAllocMem(&pBuf, cbNeeded,

{

PAG_READIPAG_WRITEIPAG_COMMIT)

/* Set the count of bytes needed for the buffer to the value */
/*returned in cbNeeded from the first call. */
cbBuf = cbNeeded ;

/*Make the call again with all the correct values. */
SplQueryJob(pszComputerName,pszQueueName,ulJob,

ulLevel, pBuf, cbBuf, &cbNeeded)

/* Set a pointer to point to the beginning of the buffer that holds */
/* the returned structure. */
pprj3=(PPRJINF03)pBuf;

/* Print out the information for each element in the structure. */
pri ntf("Job ID = %d\n 11

, pprj3->uJobid);
printf("Job Priority= %d\n", pprj3->uPriority);
printf(11 User Name = %s\n 11

, pprj3->pszUserName);
printf("Position = %d\n 11

, pprj3->uPosition);
printf("Status = %d\n", pprj3->fsStatus);
printf("Submitted = %ld\n",pprj3->u1Submitted);
printf("Size = %ld\n",pprj3->u1Size);
printf("Comment = %s\n 11

, pprj3->pszComment);
printf("Document = %s\n 11

, pprj3->pszDocument);
printf("Notify Name= %s\n 11

, pprj3->pszNotifyName);
printf("Data Type = %s\n 11

, pprj3->pszDataType);
printf("Parms = %s\n", pprj3->pszParms);
printf("Status = %s\n 11

, pprj3->pszStatus);
printf("Queue = %s\n 11

, pprj3->pszQueue);
printf("QProc Name = %s\n 11

, pprj3->pszQProcName);
printf("QProc Parms = %s\n", pprj3->pszQProcParms);
printf("Driver Name= %s\n", pprj3->pszDriverName);
printf("Printer Name= %s\n 11

, pprj3->pszPrinterName);

/* If pDriverData is NULL, then we can not access any data. */
if (pprj3->pDriverData)
{

printf(" pDriverData->cb - %ld\n",
(ULONG)pprj3->pDriverData->cb);

printf(" pDriverData->lVersion - %ld\n 11
,

(ULONG) pprj3->pDri verData-> l Version)
printf(" pDriverData->szDeviceName - %s\n".

pprj3->pDriverData->szDeviceName)
}
printf("/n");

7-64 PM Programming Reference

\
;

)

}

}
}
else
{

/* Free memory that we allocated.
DosFreeMem(pBuf) ;

SplQueryJob -
Spooler Query Job

*/

/* If we are here than we have an error code. Print it out. */
printf("SplQueryJob Error=%ld,Bytes Needed=%ld\n",splerr, cbNeeded);

}
DosExit(EXIT_PROCESS , 0)
return(splerr);

Chapter 7. Spooler Functions 7-65

SplQueryQueue -
Spooler Query Queue

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplQueryQueue (PSZ pszComputerName, PSZ pszQueueName, ULONG ullevel,
PVOID pBuf, ULONG cbBuf, PULONG pcbNeeded)

This function supplies information about a print queue, and, optionally, about the jobs in it.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be queried.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

ulLevel (ULONG) - input
Level of detail required.

This must be 3, 4, 5 or 6.

pBuf (PVOID) - input
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

pcbNeeded (PULONG) - output
Size in bytes of available information.

Returns
Return

NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

ERROR_MORE_DATA (234) Additional data is available.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalidComputer (2351) The computer name is invalid.

7-66 PM Programming Reference

Remarks
The buffer contents on return are:

Buffer Contents

SplQueryQueue
Spooler Query Queue

u/Level
3 A PRQINF03 structure, with associated variable information up to cbBuf.
4 A PRQINF03 structure, with associated variable information, and an array of

PRJINF02 structures, one for each job in the queue, up to cbBut.
A queue name of type PSZ. 5

& A PRQINF06 structure, with associated variable information up to cbBuf.

If u/Level is 3 or 4, and pBuf cannot hold the entire PRQINF03 structure, SplQueryQueue returns
NERR_BufTooSmall (2123). If u/Level is 6, and pBuf cannot hold the entire PRQINF06 structure,
SplQueryQueue returns NERR_BufTooSmall (2123).

If u/Level is 4, and pBuf cannot hold all the available PRJINF02 structures, SplQueryQueue returns
ERROR_MORE_DATA (234).

To obtain the size of buffer required, call SplQueryQueue with the required value of u/Level and a
NULL buffer. The number of bytes required is returned in pcbNeeded.

Related Functions
• SplEnumQueue
• SplQueryJob
• SplSetJob
• SplSetQueue

Example Code
This sample code queries the local workstation for a queue name that is entered at the command
prompt. The query is done at level 4 which returns returns in the buffer information in a PRQINF03
structure and follows this with PRJINF02 structures - one for each job in the queue.

#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc. argv)
INT argc;

{
CHAR *argv [];

ULONG splerr
ULONG cbBuf;
ULONG cbNeeded ;
ULONG ullevel ;
ULONG i ;
USHORT uJobCount •
PSZ pszComputerName
PSZ pszQueueName
PVOID pBuf;
PPRJINF02 prj2
PPRQINF03 prq3

if (argc != 2)
{

}

printf("Syntax: setqryq QueueName \n");
DosExit(EXIT_PROCESS , e)

pszComputerName = (PSZ)NULL

Chapter 7. Spooler Functions 7-67

SplQueryQueue
Spooler Query Queue

pszQueueName = argv[l];
ullevel = 4L;
splerr = SplQueryQueue(pszComputerName, pszQueueName, ullevel,

(PVOID)NULL, 0L, &cbNeeded);
if (splerr != NERR_BufTooSmall II splerr l= ERROR_MORE_DATA)
{

}

printf("SplQueryQueue Error=%ld, cbNeeded=%ld\n 11 ,splerr, cbNeeded)
DosExit(EXIT_PROCESS , 0) ;

if (!DosAllocMem(:+pBuf, cbNeeded,
PAG_READIPAG_WRITEIPAG_COMMIT)

{
cbBuf = cbNeeded
splerr = SplQueryQueue(pszComputerName, pszQueueName, ullevel,

pBuf, cbBuf, &cbNeeded) ;
prq3=(PPRQINF03)pBuf;
printf("Queue info: name- %s\n 11

, prq3->pszName) ;
printf(" priority - %d starttime - %d endtime - %d fsType - %X\n 11

,

prq3->uPriority , prq3->uStartTime , prq3->uUntilTime •
prq3->fsType)

printf(" pszSepFile - %s\n 11
, prq3->pszSepFile) ;

printf(" pszPrProc - %s\n". prq3->pszPrProc) ;
printf(" pszParms - %s\n 11

, prq3->pszParms) ;
printf(" pszComnent - %s\n 11

, prq3->pszComnent) ;
printf(" pszPrinters - %s\n 11

, prq3->pszPrinters) ;
printf(" pszDriverName - %s\n 11

, prq3->pszDriverName)
if (prq3->pDriverData)
{

}

printf(" pDriverData->cb - %ld\n 11
,

(ULONG)prq3->pDriverData->cb);
printf(" pDriverData->lVersion - %ld\n 11

,

(ULONG)prq3->pDriverData->1Version)
printf(" pDriverData->szDeviceName - %s\n 11

,

prq3->pDriverData->szDeviceName)

/* Store the job count for use later in the for loop.
uJobCount = prq3->cJobs;
printf("Job count in this queue is %d\n\n 11 ,uJobCount);

*/

/* Increment the pointer to the PRQINF03 structure so that it points to*/
/* the first structure after itself. */
prq3++;

/* Cast the prq3 pointer to point to a PRJINF02 structure, and set a */
/* pointer to point to that place. */
prj2=(PPRJINF02)prq3;
for (i=0 ; i<uJobCount ;i++) {

printf("Job ID = %d\n 11
, prj2->uJobld);

printf("Priority = %d\n 11
, prj2->uPriority);

printf("User Name = %s\n 11
, prj2->pszUserName);

printf("Position = %d\n 11
, prj2->uPosition);

printf("Status = %d\n 11
, prj2->fsStatus);

printf("Submitted = %ld\n", prj2->u1Submitted);
printf("Size = %ld\n 11

, prj2->u1Size);
printf("Comnent = %s\n", prj2->pszComment);
printf("Document = %s\n\n",prj2->pszDocument);

7-68 PM Programming Reference

)

SplQueryQueue -
Spooler Query Queue

/* Increment the pointer to point to the next structure.
prj2++;

*/

} /* endfor */
DosFreeMem(pBuf) ;

}

}

DosExit(EXIT PROCESS • e)
return (splerr);

Chapter 7. Spooler Functions 7-69

SplReleaseJob -
Spooler Release Job

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplReleaseJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ulJob)

This function releases a held print job.

Parameters
pszComputerName (PSZ) - input

Name of computer where job is to be continued.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue Name.

ulJob (ULONG) - input
Job identification number.

Returns
NO_ERROR (0)

ERROR_ACCESS_DENIED (5)

ERROR_NOT_SUPPORTED (50)

ERROR_BAD_NETPATH (53)

NERR_NetNotStarted (2102)

NERR_JobNotFound (2151)

NERR_ SpoolerNotLoaded (2161)

NERR_JoblnvalldState (2164)

NERR_lnvalldComputer (2351)

Remarks

No errors occurred.

Access is denied.

This request is not supported by the network.

The network path cannot be located.

The network program is not started.

The print job does not exist.

The spooler is not running.

This operation cannot be performed on the print job in its
current state.

The computer name is invalid.

Any job can be released by a user with administrator privilege.

A job created locally can be released locally regardless of user privilege level, but it can be released
remotely only by a user with administrator privilege.

A remote job can be released by a user without administrator privilege only if the user identification
of the person initiating the request is the same as the user identification of the person who created
the job.

Related Functions
• SplEnumJob
• SplHoldJob
• SplQueryJob

7-70 PM Programming Reference

Example Code

SplReleaseJob -
Spooler Release Job

This sample code will release the job id that is entered at the prompt.

#define INCL_BASE
#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

SPLERR splerr ;
ULONG ulJob ;

/* for printf function */
/* for atoi function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszQueueName = NULL ;

/* Get job id from the input argument */
ulJob = atoi(argv[l]);

/* Call the function to do the release. If an error is returned, print it. */
splerr=SplReleaseJob(pszComputerName, pszQueueName, ulJob);

}

switch (splerr)
{
case NO ERROR:

printf(11 Job %d was released.\n 11 ,ulJob);
break;

case NERR JobNotFound:
printf(11 Job does not exist.\n 11

);

break;
case NERR JobinvalidState:

printf(0This operation can't be performed on the print Job.\n 11
);

break;
default:

printf(11 Errorcode = %ld\n",splerr);
} /* endswitch */
DosExit(EXIT_PROCESS , 0) ;
argc;
return (splerr);

Chapter 7. Spooler Functions 7-71

SplReleaseQueue -
Spooler Release Queue

#define INCL_SPL I* Or use INCL_PM */

SPLERR SplReleaseQueue (PSZ pszComputerName, PSZ pszQueueName)

This function releases a held print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be continued.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

NERR_NetNotStarted (2102) The network program is not started.

NERR_QNotfound (2150) The printer queue does not exist.

NERR_SpoolerNotLoaded (2161) The spooler is not running.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
This function releases a queue that has been held by a SplHoldQueue function, or disabled by an
error on the queue. It does not affect an active print queue.

To release a queue on a remote server requires administrator privilege on the remote server.

Related Functions
• SplEnumQueue
• SplHoldQueue
• SplQueryQueue

7-72 PM Programming Reference

Example Code

SplReleaseQueue
Spooler Release Queue

This sample code will release the local queue that is entered at the prompt.

#define INCL_SPL
#include <os2.h>
#include <stdio.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;
CHAR *argv [] ;

{
SPLERR splerr ;

/* for printf function */
/* for error codes */

PSZ pszComputerName = NULL
PSZ pszQueueName ;

/* Get queue name from the input argument.
pszQueueName = argv[l];

*/

/* Call the function to do the release. If an error is returned, print it. */
splerr=SplReleaseQueue(pszComputerName, pszQueueName);

}

if (splerr != 0L)
{

}

switch (splerr)
{

case NERR QNotFound:
printf(11 Queue does not exist.\n");
break;

case NERR_SpoolerNotLoaded:
printf("The Spooler is not running.\n");
break;

default:
printf("Errorcode = %ld\n 11 ,splerr);

} /* endswitch */

else
{

printf("Queue %s was released.\n",pszQueueName);
} /* endif */
DosExit(EXIT PROCESS , 0) ;
return (splerr);

Chapter 7. Spooler Functions 7-73

SplSetDevice -
Spooler Set Device

#define INCL_SPL /*Or use INCL_PM */

SPLERR SplSetDevlce (PSZ pszComputerName, PSZ pszPrlntDevlceName, ULONG ulLevel,
PVOID pBuf, ULONG cbBuf, ULONG ulParmNum)

This function modifies the configuration of a print device.

Parameters
pszComputerName (PSZ) - input

Name of computer where print device is to be modified.

A NULL string specifies the local workstation.

pszPrlntDevlceName (PSZ) - input
Name of Print Device.

ulLevel (ULONG) - input
Level of detail required.

This must be 3.

pBuf (PVOID) - input
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

ulParmNum (ULONG) - input
Parameter number.

Specifies either that the entire PRDINF03 structure is to be modified, or that one specific
parameter only is to be modified. If u/ParmNum is 0, pBuf must contain a complete PRDINF03
structure. Otherwise, pBuf must contain a valid value corresponding to the parameter to be
modified:

Parameter
pszlogAddr
pszComment
pszDrivers
usTimeOut

Returns

Constant (Value)
PRD_LOGADDR_PARMNUM (3)
PRD_COMMENT_PARMNUM (7)
PRD_DRIVERS_PARMNUM (8)
PRD_TIMEOUT_PARMNUM (10)

NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

NERR_NetNotStarted (2102) The network program is not started.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_DestNotFound (2152) The print device cannot be found.

NERR_SpoolerNotloaded (2181) The spooler is not running.

NERR_DestlnvalidState (2182) This operation cannot be performed on the print device.

7-74 PM Programming Reference

)

SplSetDevice
Spooler Set Device

NERR_SpoolNoMemory (2165)

NERR _ DrlverNotFound (2166)

NERR_BadDev (2341)

NERR_lnvalldComputer (2351)

A spooler memory allocation failure occurred.

The device driver does not exist.

The requested device is invalid.

The computer name is invalid.

Remarks
This function allows modification of a print device and its connection to a logical address. To
disconnect a print device from a port, use u/Leve/=3, u/ParmNum=3, and pBuf is a NULL string.

To modify a print device on a remote server requires administrator privilege.

Related Functions
• SplEnumDevice
• SplEnumDriver
• SplEnumPort
• SplEnumPrinter
• SplQueryDevice

Example Code
This sample code first gets a device name from the command line. It then prompts the user for a
parameter number and a value associated with it.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

CHAR bufValue[2]={0};
CHAR bufinput[128]={0};
ULONG splerr ;
ULONG cbBuf ;
ULONG ulPannNum
USHORT usPann;
PSZ pszComputerName
PSZ pszPrintDeviceName
PVOID pBuf;

if (argc != 2)
{

/* for printf function */
/* for strlen function */
/* for atoi function */
/* for error code */

printf(11 Syntax: sdset DeviCeName \n 11
);

DosExit(EXIT_PROCESS , 0)
}
pszComputerName = (PSZ)NULL ;

/* Set the print device name to the value from the command line. */
pszPrintDeviceName = argv[l];

/* Get the parameter and the value. Store them in buffers. */
printf(11 Enter Parameter number to be modified\n");

Chapter 7. Spooler Functions 7-75

SplSetDevice -
Spooler Set Device

}

gets(&bufValue[0]);
printf("Enter new parameter value \n");
gets(&buflnput[0]);

/* Convert the input parmnum to a ULONG. */
ulParmNum = atoi(&bufValue[0]);

switch (ulParmNum)
{

}

case 10:
/* Determine the size of the buffer. */
cbBuf = sizeof(PUSHORT);

/*Convert the input parameter to a USHORT. */
usParm =(USHORT)atoi(&buflnput[0]);

/* Point the buffer to the value. */
pBuf = &usParm;
break;

case 3:
case 7:
case 8:

/* Determine the size of the buffer. */
cbBuf = strlen(&buflnput[0])+1;

/* Point the buffer to the value. */
pBuf = (PSZ)&buflnput;
break;

default:
printf("lnvalid number\n");
DosExit(EXIT_PROCESS , 0)
break;

/*Make the call. */
splerr = SplSetDevice(pszComputerName,pszPrintDeviceName,3L,

pBuf .cbBuf .ulParmNum) ;

/* Print out the result. */
printf("SplSetDevice Err= %ld, Parameter= %d, cbBuf= %ld .ulParmNum= %ld\n".

splerr. usParm. cbBuf, ulParmNum);

DosExit(EXIT_PROCESS • 0) ;
return (splerr);

7-76 PM Programming Reference

)
#define INCL_SPL /*Or use INCL_PM */

SplSetJob -
Spooler Set Job

SPLERR SplSetJob (PSZ pszComputerName, PSZ pszQueueName, ULONG ulJob,
ULONG ullevel, PVOID pBuf, ULONG cbBuf, ULONG ulParmNum)

This function modifies the instructions for a print job.

Parameters
pszComputerName (PSZ) - input

Name of computer where job is to be modified.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue Name.

ulJob (ULONG) - input
Job identification number.

ullevel (ULONG) - input
Level of detail required.

This must be 3.

pBuf (PVOID) - input
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

ulParmNum (ULONG) - input
Parameter number.

Specifies either that the entire PRJINF03 structure is to be modified, or that one specified
parameter only is to be modified.

If u/ParmNum is 0, pBuf must contain a complete PRJINF03 structure. Otherwise, pBuf must

contain a valid value corresponding to the parameter to be modified, as follows:

Parameter
pszNotifyName
pszData Type
pszParms
uPosition
pszComment
pszDocument
pszStatus
uPriority
pszQProcParms
pDriverData

Value
PRJ_NOTIFYNAME_PARMNUM (3)
PRJ_DATATYPE_PARMNUM (4)
PRJ_PARMS_PARMNUM (5)
PRJ_POSITION_PARMNUM (6)
PRJ_COMMENT_PARMNUM (11)
PRJ_DOCUMENT_PARMNUM (12)
PRJ_STATUSCOMMENT_PARMNUM (13)
PRJ_PRIORITY _PARMNUM (14)
PRJ_PROCPARMS_PARMNUM (16)
PRJ_DRIVERDATA_PARMNUM (18)

uPosition must be given the appropriate value, as follows:

Value
0
1
>1

Change
No change
Move to first place
Move to this position, or if the specified value is greater
than the number of jobs in the queue, move to the end of
the queue.

Chapter 7. Spooler Functions 7-77

SplSetJob
Spooler Set Job

Returns
NO_ERROR (0)

ERROR_ACCESS_DENIED (5)

ERROR_NOT _SUPPORTED (50)

ERROR_BAD~NETPATH (53)

ERROR_INVALID _PARAMETER (87)

ERROR_INVALID_LEVEL (124)

NERR_NetNotStarted (2102)

NERR_BulTooSmall (2123)

NERR_JobNotfound (2151)

NERR_SpoolerNotLoaded (2161)

NERR_JoblnvalldState (2164)

NERR_SpoolNoMemory (2165)

NERR_DrlverNotfound (2166)

NERR_ProcNotfound (2168)

NERR_lnvalldComputer (2351)

Remarks

No errors occurred.

Access is denied.

This request is not supported by the network.

The network path cannot be located.

An invalid parameter is specified.

The level parameter is invalid.

The network program is not started.

The API return buffer is too small.

The print job does not exist.

The spooler is not running.

This operation cannot be performed on the print job in its
current state.

A spooler memory allocation failure occurred.

The device driver does not exist.

The queue processor is not installed.

The computer name is invalid.

The job priority is changed, if necessary, to the priority of the next job after the new position. If the
spooler is restarted, the order in which jobs are put on the queue depends on the priority and age of
the job. This order may be different from the order following the SplSetJob call.

Users without administrator privilege can use SplSetJob only for jobs created when the same user
name was logged on. They can move jobs backwards only, and cannot increase the job priority
above the queue priority.

A job created locally has no associated user name, and any user can set information locally for the
job. Only an administrator can set information for a job on a remote server.

Related Functions
• SplEnumJob
• SplQueryJob
• SplQueryQueue

7-78 PM Programming Reference

Example Code

SplSetJob -
Spooler Set Job

This sample code first gets a queue name and a jobid from the command prompt. It then prompts the

user to enter a parameter number and a value for that number.

#define INCL_BASE
#define INCL_DOSMEMMGR
#define INCL_SPL
#define INCL_SPLDOSPRINT
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <neterr.h>

INT main (argc, argv)
INT argc;

{
CHAR *argv [] ;

CHAR bufValue[2]={0};
CHAR bufinput[128]={0};
ULONG splerr ;
ULONG cbBuf;
ULONG ulPannNum ;
ULONG ulJob ;
USHORT usPann;
PSZ pszComputerName
PSZ pszQueueName ;
PVOID pBuf;

if (argc != 3)
{

}

printf("Syntax: sjset QueueName JobID \n");
DosExit(EXIT_PROCESS , 0)

pszComputerName = (PSZ)NULL ;

/* Set values to those entered at the prompt. */
pszQueueName = argv[l] ;
ulJob = atoi (argv[2]);

/* Request a parameter and the associated value. Store them in buffers. */
printf(11 Enter Parameter number to be modified\n");
gets(&bufValue[e]);
printf(11 Enter new parameter value \n 11

);

gets(&bufinput[0]);

/* Convert the PannNum to a ULONG. */
ulPannNum = atoi(&bufValue[0]);
switch (ulPannNum)
{

case 6:
case 14:

/* Calculate size of buffer needed if this is the parameter.*/
cbBuf = sizeof(PUSHORT);

/* Convert input parameter into a USHORT. */
usPann =(USHORT)atoi(&bufinput[e]);

/* Point pBuf to the value. */
pBuf = &usPann;
break;

case 3:
case 4:
case 5:

Chapter 7. Spooler Functions 7-79

SplSetJob -
Spooler Set Job

}

}

case 11:
case 12:
case 16:

/* Calculate size of buffer needed if this is the parameter.*/
cbBuf = strlen(&buflnput[e])+l;

/* Point pBuf to the value. */
pBuf = (PSZ)&buflnput;
break;

case 18:
printf("In order to keep code simple, this is not implemented. 11

);

break;
default:

printf("Invalid number\n");

splerr = SplSetJob(pszComputerName,pszQueueName,ulJob,3L,
pBuf ,cbBuf ,ulParmNum)

if (!splerr)
printf("Parameter was set. 11

);

else
printf(11 SplSetJob Error= %ld, Parameter= %d, Buf= %ld ,ParmNum= %ld\n 11

,

splerr, usParm, cbBuf, ulParmNum);
DosExit(EXIT PROCESS , 0) ;
return (splerr) ;

7-80 PM Programming Reference

\
\

:)

#define INCL_SPL I* Or use INCL_PM */

SplSetQueue
Spooler Set Queue

SPLERR SplSetQueue (PSZ pszComputerName, PSZ pszQueueName, ULONG ullevel,
PVOID pBuf, ULONG cbBuf, ULONG IParmNum)

This function modifies the configuration of a print queue.

Parameters
pszComputerName (PSZ) - input

Name of computer where queue is to be modified.

A NULL string specifies the local workstation.

pszQueueName (PSZ) - input
Queue name.

ullevel (ULONG) - input
Level of detail required.

This must be 3 or 6.

pBuf (PVOID) - input
Buffer.

cbBuf (ULONG) - input
Size, in bytes, of Buffer.

IParmNum (ULONG) - input
Parameter number.

Specifies either that the entire PRQINF03 or PRQINF06 structure is to be modified, or that one

specified parameter only is to be modified.

If /ParmNum is 0, pBuf must contain a complete PRQINF03 or PRQINF06 structure. Otherwise,

pBuf must contain a valid value corresponding to the parameter to be modified, as follows:

Parameter Value
uPriority PRQ_PRIORITY _PARMNUM (2)
uStartTime PRQ_STARTTIME_PARMNUM (3)
uUnti/Time PRQ_UNTILTIME_PARMNUM (4)
pszSepFile PRQ_SEPARATOR_PARMNUM (5)
pszPrProc PRQ_PROCESSOR_PARMNUM (6)
pszParms PRQ_PARMS_PARMNUM (8)
pszComment PRQ_COMMENT_PARMNUM (9)
fsType PRQ_TYPE_PARMNUM {10)
pszPrinters PRQ_PRINTERS_PARMNUM (12)
pszDriverName PRQ_DRIVERNAME_PARMNUM (13)

pDriverData PRQ_DRIVERDATA_PARMNUM (14)

pszRemoteComputerName PRQ_REMOTE_ COMPUTER_PARMNUM (15)

pszRemoteQueueName PRQ_REMOTE_QUEUE_PARMNUM (16)

Chapter 7. Spooler Functions 7-81

SplSetQueue
Spooler Set Queue

Returns
NO_ERROR (0) No errors occurred.

ERROR_ACCESS_DENIED (5) Access is denied.

ERROR_NOT_SUPPORTED (50) This request is not supported by the network.

ERROR_BAD_NETPATH (53) The network path cannot be located.

ERROR_INVALID_PARAMETER (87) An invalid parameter is specified.

ERROR_INVALID_LEVEL (124) The level parameter is invalid.

NERR_NetNolSlarted (2102) The network program is not installed.

NERR_RedlrecledPath (2117) The operation is invalid on a redirected resource.

NERR_BufTooSmall (2123) The API return buffer is too small.

NERR_QNotFound (2150) The printer queue does not exist.

NERR_DestNotFound (2152) The printer destination cannot be found.

NERR_DestNoRoom (2157) The maximum number of printer destinations has been
reached.

NERR_SpoolerNolLoaded (2161) The spooler is not running.

NERR_DesllnvalldState (2162) This operation cannot be performed on the print
destination.

NERR_SpoolNoMemory (2165) A spooler memory allocation failure occurred.

NERR_DrlverNolFound (2166) The device driver does not exist.

NERR_DalaTypelnvalld (2167) The datatype is not supported by the processor.

NERR_ProcNolFound (2168) The queue processor is not installed.

NERR_BadDev (2341) The requested device is invalid.

NERR_CommDevlnUse (2343) The requested device is invalid.

NERR_lnvalldComputer (2351) The computer name is invalid.

Remarks
If the uPriority field in PRQINF03 or PRQINF06 is set to PRQ_NO_PRIORITY, the queue priority is not
changed.

Related Functions
• SplCreateQueue
• SplEnumDevice
• SplEnumDriver
• SplEnumQueue
• SplEnumQueueProcessor
• SplQueryQueue

7-82 PM Programming Reference

)
Example Code

SplSetQueue -
Spooler Set Queue

This sample code prompts the user to enter a parameter number and a value at the prompt. This

value is then put into a buffer for use by the function.

#define INCL_SPL
#define INCL_SPLDOSPRINT

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <neterr.h>

/* for printf function */
/* for atoi function */
/* for strlen function */
/* for error codes */

INT main (argc, argv)
INT argc;

{
CHAR *argv [];

CHAR bufValue[2] = {0};
CHAR bufinput[128]= {0};
ULONG splerr ;
ULONG cbBuf ;
ULONG ulParmNum ;
USHORT usParm ;
PSZ pszComputerName ;
PSZ pszQueueName
PVOID pBuf;

if (argc != 2)
{

}

printf("Syntax: setqryq QueueName \n");
DosExit(EXIT_PROCESS , 0) ;

/*This function will be for the local workstation.
pszComputerName = (PSZ)NULL ;

/* Get the parameter from the command line.
pszQueueName = argv[l];

*/

/* Prompt the user for the parameter and values. and put them in buffers. */
printf("Enter Parameter number to be modified\n");
gets(&bufValue[0]);
printf("Enter new parameter value \n");
gets(&buflnput[0]);

/* Convert the ParmNum to a ULONG.
ulParmNum = atoi(&bufValue[0]);
switch (ulParmNum){

case 2:
case 3:
case 4:
case 10:

/* Determine the size of the buffer needed.
cbBuf = sizeof(PUSHORT);

/* Convert the buffer input to a USHORT.
usParm =(USHORT)atoi(&buflnput[0]);

/* Set the pBuf pointer to point to the value obtained.
pBuf = &usParm;
break;

case 5:
case 6:
case 8:

*/

*/

*/

*/

Chapter 7. Spooler Functions 7-83

SplSetQueue -
Spooler Set Queue

case 9:
case 12:
case 13:

/* Determine the size of the buffer needed.
cbBuf = strlen(&buflnput[e])+l;

*/

/* Set the pBuf pointer to point to the value obtained from input. */
pBuf = (PSZ)&buflnput;

}

}

break;
case 14:

printf("For simplicity this is not implemented.");
break;

default:
printf("Invalid number\n");
DosExit(EXIT_PROCESS , e)
break;

/* Make the call with all the proper parameters.
splerr = SplSetQueue{pszComputerName, pszQueueName, 3L,

pBuf, cbBuf, ulParmNum) ;

/* Print the resultant error code, and the parameters entered.
printf("SplSetQueue Error= %ld, Parameter= %d, cbBuf= %ld,

ulParmNum= %ld\n",
splerr, usParm, cbBuf, ulParmNum);

DosExit(EXIT PROCESS , e)
return {splerr);

7-84 PM Programming Reference

*/

*/

)
Glossary

A
accelerator. A single key stroke that invokes an
application-defined function.

accelerator table. Used to define which key strokes are
treated as accelerators and the commands they are
translated into.

access permission. All access rights that a user has
regarding an object.

action. One of a set of defined tasks that a computer
performs. Users request the application to perform an
action in several ways, such as typing a command,
pressing a function key, or selecting the action name
from an action bar or menu.

action bar. The area at the top of a window that contains
the choices currently available in the application
program.

action point. The current position on the screen at
which the pointer is pointing. (Contrast with hot spot and
input focus.)

active program. A program currently running on the
computer. See also interactive program, noninteractive
program, and foreground program.

active window. The window with which the user is
currently interacting.

address space. (1) The range of addresses available to
a program. (2) The area of virtual storage available for a
particular job.

alphanumeric video output. Output to the logical video
buffer when the video adapter is in text mode and the
logical video buffer is addressed by an application as a
rectangular array of character cells.

anchor block. An area of Presentation Manager-internal
resources allocated to a process or thread that calls
Winlnitialize.

anchor point. A point in a window used by a program
designer or by a window manager to position a
subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface. The
formally-defined programming language that is between
an IBM application program and the user of the program.
See also GP/.

area. In computer graphics, a filled shape such as a
solid rectangle.

ASCII. American National Standard Code for
Information Interchange. A coded character set

consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communications systems,
and associated equipment.

ASCllZ. A string of ASCII characters that is terminated
with a byte containing the value o.

aspect ratio. In computer graphics, the width-to-height
ratio of an area, symbol, or shape.

asynchronous. (1) Without regular time relationship. (2)
Unexpected or unpredictable with respect to the
execution of a program's instructions. See also
synchronous.

atom. A constant that represents a string. Once a string
has been defined as an atom, the atom can be used in
place of the string to save space. Strings are associated
with their respective atoms in an atom table. See also
integer atom.

atom table. Used to relate atoms with the strings that
they represent. Also in the table is the mechanism by
which the presence of a string can be checked.

attributes. Characteristics or properties that can be
controlled, usually to obtain a required appearance; for
example, the color of a line. See also graphics attributes
and segment attributes.

AVIO. Advanced Video Input/Output.

B
background color. The color in which the background of
a graphic primitive is drawn.

background mix. An attribute that determines how the
background of a graphic primitive is combined with the
existing color of the graphics presentation space.
Contrast with mix.

background program. In multiprogramming, a program
that executes with a low priority. Contrast with
foreground program.

Bezler curves. A mathematical technique of specifying
smooth continuous lines and surfaces, which require a
starting point and a finishing point with several
intermediate points that influence or control the path of
the linking curve. Named after Dr. P. Bezier.

bit map. A representation in memory of the data
displayed on an APA device, usually the screen.

block. (1) A string of data elements recorded or
transmitted as a unit. The elements may be characters,
words, or logical records. (2) To combine two or more
data elements in one block.

border. A visual indication (for example, a separator
line or a background color) of the boundaries of a
window.

Glossary X-1

breakpoint. (1) An instruction in a program for halting
execution. Breakpoints are usually established at
positions in a program where halts, caused by external
intervention, are convenient for restarting. (2) A place in
a program, specified by a command or a condition,
where the system halts execution and gives control to
the workstation user or to a specified program.

bucket. One or more fields in which the result of an
operation is kept.

buffer. (1) A portion of storage used to hold input or
output data temporarily. (2) To allocate and schedule the
use of buffers.

button. A mechanism on a pointing device, such as a
mouse, used to request or initiate an action. Contrast
with pushbutton and radio button.

c
cache. A high-speed buffer storage that contains
frequently accessed instructions and data; it is used to
reduce access time.

cached micro presentation space. A presentation space
from a Presentation Manager-owned store of micro
presentation spaces. It can be used for drawing to a
window only, and must be returned to the store when the
task is complete.

call. (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point. (2) To
transfer control to a procedure, program, routine, or
subroutine.

calllng order. A sequence of instructions together with
any associated data necessary to perform a call. Also
known as calling sequence.

cancel. An action that removes the current window or
menu without processing it, and returns the previous
window.

CASE statement. In C, provides the body of a window
procedure. There is one CASE statement for each
message type written to take specific actions.

cell. See character cell.

CGA. Color graphics adapter.

chained Hat. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonym for linked list.

character. A letter, digit, or other symbol.

character box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single character from a character
set. See also character mode. Contrast with character
cell.

character cell. The physical, rectangular space in which
any single character is displayed on a screen or printer
device. Position is addressed by row and column
coordinates. Contrast with character box.

X-2 PM Programming Reference

character code. The means of addressing a character in
a character set, sometimes called code point.

character mode. The character mode, in conjunction
with the font type, determines the extent to which
graphics characters are affected by the character box,
shear, and angle attributes.

check box. A control window, shaped like a square
button on the screen, that can be in a checked or
unchecked state. It is used to select one or more items
from a list. Contrast with radio button.

check mark. The symbol that is used to indicate a
selected item on a pull-down.

chlld procen. A process that is loaded and started by
another process. Contrast with parent process.

child window. A window that is positioned relative to
another window (either a main window or another child
window). Contrast with parent window.

choice. An option that can be selected. The choice can
be presented as text, as a symbol (number or letter), or
as an icon (a pictorial symbol).

class. See window class.

class style. The set of properties that apply to every
window in a window class.

cllent area. The area in the center of a window that
contains the main information of the window.

cllpboard. An area of main storage that can hold data
being passed from one PM application to another.
Various data formats can be stored.

cllpplng. In computer graphics, removing those parts of
a display image that lie outside a given boundary.

cllp llmlts. The area of the paper that can be reached by
a printer or plotter.

cllpplng path. A clipping boundary in world-coordinate
space.

CLOCKS. Character-device name reserved for the
system clock.

code page. An assignment of graphic characters and
control-function meanings to all code points.

code point. Synonym for character code.

code segment. An executable section of programming
code within a load module.

color dithering. See dithering.

command. The name and parameters associated with
an action that a program can perform.

command area. An area composed of a command field
prompt and a command entry field.

command entry fleld. An entry field in which users type
commands.

command llne. On a display screen, a display line
usually at the bottom of the screen, in which only
commands can be entered.

command prompt. A field prompt showing the location
of the command entry field in a panel.

Common Programming Interface (CPI). A consistent set
of specifications for languages, commands, and calls to
enable applications to be developed across all SAA
environments. See also Systems Application
Architecture.

Common User Access (CUA). A set of rules that define
the way information is presented on the screen, and the
techniques for the user to interact with the information.

compile. To translate a program written in a
higher-level programming language into a machine
language program.

COM1, COM2, COM3. Character-device names reserved
for serial ports 1 through 3.

CON. Character-device name reserved for the console
keyboard and screen.

contiguous. Touching or joining at a common edge or
boundary, for example, an unbroken consecutive series
of storage locations.

control. The means by which an operator gives input to
an application. A choice corresponds to a control.

Control Panel. In PM, a program used to set up user
preferences that act globally across the system.

Control Program. The basic function of OS/2, including
DOS emulation and the support for keyboard, mouse,
and video input/output.

control window. A class of window used to handle a
specific kind of user interaction. Radio buttons and
check boxes are examples.

correlation. The action of determining which element or
object within a picture is at a given position on the
display. This follows a pick operation.

CPI. Common Programming Interface.

crltlcal extended attribute. An extended attribute that is
necessary for the correct operation of the system or a
particular application.

CUA. Common User Access.

current position. The point from which the next primitive
will be drawn.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor indicates
where input from the device will be placed. Types of
cursors include text cursors, graphics cursors, and
selection cursors. Contrast with pointer and input focus.

D
data structure. (ISO) The syntactic structure of symbolic
expressions and their storage-allocation characteristics.

DBCS. See double-byte character set.

deadlock. (1) Unresolved contention for the use of a
resource. (2) An error condition in which processing
cannot continue because each of two elements of the
process is waiting for an action by, or a response from,
the other. (3) An impasse that occurs when multiple
processes are waiting for the availability of a resource
that will not become available because it is being held by
another process that is in a similar wait state.

debug. To detect, diagnose, and eliminate errors in
programs.

declpolnt. In printing, one tenth of a point. There are 72
points in an inch.

defauft procedure. Function provided by the
Presentation Interface that may be used to process
standard messages from dialogs or windows.

defauft value. A value used when no value is explicitly
specified by the user. For example, in the graphics·
programming interface, the default line-type is 'solid'.

descendant. A process or session that is loaded and
started by a parent process or parent session.

Desktop Manager. In PM, a window that displays a list
of groups of programs, each of which can be started or
stopped.

desktop window. The window, corresponding to the
physical device, against which all other types of windows
are established.

device context. A logical description of a data
destination such as memory, metafile, display, printer, or
plotter. See also direct device context, information
device context, memory device context, metafile device
context, queued device context, and screen device
context.

device driver. A file that contains the code needed to
attach and use a device such as a display, printer, or
plotter.

device space. Coordinate space in which graphics are
assembled after all GPI transformations have been
applied. Device space is defined in device-specific units.

dialog. The interchange of information between a
computer and its user through a sequence of requests by
the user and the presentation of responses by the
computer.

dialog box. A type of window that contains one or more
controls for the formatted display and entry of data. Also
known as a pop-up window. A modal dialog box is used
to implement a pop-up window.

Dialog Box Editor. A WYSIWYG editor that creates
dialog boxes for communicating with the application
user.

Glossary X-3

dialog Item. A component (for example, a menu or a
button) of a dialog box. Dialog items are also used when
creating dialog templates.

dialog tag language. A markup language used by the
DTL compiler to create dialog objects.

dialog template. The definition of a dialog box, which
contains details of its position, appearance, and window
ID, and the window ID of each of its child windows.

direct device context. A logical description of a data
destination that is a device other than the screen (for
example, a printer or plotter), and where the output is
not to go through the spooler. Its purpose is to satisfy
queries. See also device context.

direct manipulation. The action of using the mouse to
move objects around the screen. For example, moving
files and directories around in the File Manager.

direct memory access (OMA). The transfer of data
between main storage and input/output devices without
intervention by the processor.

directory. A type of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pel.

dithering. The process used in color displays whereby
every other pel is set to one color, and the intermediate
pels are set to another. Together they produce the effect
of a third color at normal viewing distances. This
process can only be used on solid areas of color; it does
not work on narrow lines, for example.

OMA. Direct memory access.

double-byte character set (DBCS). A set of characters in
which each character is represented by two bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more characters than can be represented
by 256 code points, require double-byte character sets.
Since each character requires two bytes, the entering,
displaying, and printing of DBCS characters requires
hardware and software that can support DBCS.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit.

dragging. In computer graphics, moving an object on
the display screen as if it were attached to the pointer.

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the pointing
device.

DTL. See dialog tag language.

dual-boot function. A feature of OS/2 that allows the
user to start DOS from within OS/2, or OS/2 from within
DOS.

duplex. Pertaining to communication in which data can
be sent and received at the same time. Synonymous
with full duplex.

X-4 PM Programming Reference

dynamic linking. The process of resolving external
references in a program module at load time or run time
rather than during linking.

dynamic-link library. A collection of executable
programming code and data that is bound to an
application at load time or run time, rather than during
linking. The programming code and data in a dynamic
link library can be shared by several applications
simultaneously.

dynamic-link module. A module that is linked at load
time or run time.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved from
one screen position to another without affecting the rest
of the displayed picture.

dynamic storage. (1) A device that stores data in a
manner that permits the data to move or vary with time
such that the specified data is not always available for
recovery. (2) A storage in which the cells require
repetitive application of control signals in order to retain
stored data. Such repetitive application of the control
signals is called a refresh operation. A dynamic storage
may use static addressing or sensing circuits. (3) See
also static storage.

E
EBCDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters (9 bits including parity check), used for
information interchange among data processing
systems, data communications systems, and associated
equipment.

EGA. Extended graphics adapter.

8.3 flle-name format. A file-naming convention in which
file names are limited to eight characters before and
three characters after a single dot. Usually pronounced
"eight-dot-three." See also non-8.3 file-name format.

element. An entry in a graphics segment that comprises
one or more graphics orders and that is addressed by
the element pointer.

entry field. An area on the screen, usually highlighted in
some manner, in which users type information.

entry-field control. The means by which the application
receives data entered by the user in an entry field.
When it has the input focus, it displays a flashing pointer
at the position where the next typed character will go.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts, and explanatory text.

exception. An abnormal condition such as an 110 error
encountered in processing a data set or a file.

exclusive system semaphore. A system semaphore that
can be modified only by threads within the same
process.

exit. The action that terminates the current function and
returns the user to a higher level function. Repeated exit
requests return the user to the point from which all
functions provided to the system are accessible.
Contrast with cancel.

extended attribute. An additional piece of information
about a file object, such as its data format or category. It
consists of a name and a value. A file object may have
more than one extended attribute associated with it.

extended-choice selection. A mode that allows the user
to select more than one item from a window. Not all
windows allow extended choice selection. Contrast with
multiple-choice selection.

extended help. A facility that provides users with
information about an entire application panel rather than
a particular item on the panel.

extent. Continuous space on a disk or diskette that is
occupied by or reserved for a particular data set, data
space, or file.

F
famlly-mode application. An application program that
can run in the OS/2 environment and in the DOS
environment. However, it cannot take advantage of
many of the OS/2-mode facilities, such as multitasking,
interprocess communication, and dynamic linking.

FAT. File allocation table.

FEA. Full extended attribute.

field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used; the information is
dependent upon the context within the work session.

flle. A named set of records stored or processed as a
unit.

flle allocation table (FAT). In IBM personal computers, a
table used by the operating system to allocate space on
a disk for a file, and to locate and chain together parts of
the file that may be scattered on different sectors so that
the file can be used in a random or sequential manner.

file attribute. Any of the attributes that describe the
.characteristics of a file.

Fiie Manager. In PM, a program that displays
directories and files, and allows various actions on them.

file specification. The full identifier for a file, which
includes its drive designation, path, file name, C1nd
extension.

file system driver (FSD). A program that manages file
110 and controls the format of information on the storage
media.

fillet. A curve that is tangential to the end points of two
adjoining lines. See also polyfillet.

flag. (1) An indicator or parameter that shows the
setting of a switch. (2) A character that signals the
occurrence of some condition, such as the end of a word.

focus. See input focus.

font. A particular size and style of typeface that contains
definitions of character sets, marker sets, and pattern
sets.

foreground program. The program with which the user
is currently interacting. Also known as interactive
program. Contrast with background program.

frame. The part of a window that can contain several
different visual elements specified by the application, but
drawn and controlled by PM. The frame encloses the
client area.

frame styles. Different standard window layouts
provided by PM.

FSD. File system driver.

full duplex. Synonym for duplex.

full-screen application. An application program that
occupies the whole screen.

function. (1) In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a call. (2) A set of related control
statements that cause one or more programs to be
performed.

function key. A key that causes a specified sequence of
operations to be performed when it is pressed, for
example, F1 and Alt-K.

function key area. The area at the bottom of a window
that contains function key assignments such as
F1=Help.

G
GOT. Global Descriptor Table.

general protection fault. An exception condition that
occurs when a process attempts to use storage or a
module that has some level of protection assigned to it,
such as 110 privilege level. See also IOPL code segment.

Global Descriptor Table (GOT). Defines code and data
segments available to all tasks in an application.

global dynamic-link module. A dynamic-link module that
can be shared by all processes in the system that refer
to the module name.

global file-name character. A special character used to
refer to a set of file objects with a common base name.
The asterisk (*) and question mark (?) are used as global
file-name characters. For example, *.EXE can be used to
refer to a set of files with the extension EXE.

glyph. A graphic symbol whose appearance conveys
information.

GPI. Graphics programming interface. The
formally-defined programming language that is between
an IBM graphics program and the user of the program.
See also AP/.

Glossary X-5

graphics. A picture defined in terms of graphic
primitives and graphics attributes.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type, and
shading-pattern definition. See also segment attributes.

graphics field. The clipping boundary that defines the
visible part of the presentation-page contents.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any model
transforms have been applied. Also known as model
space.

graphic primitive. A single item of drawn graphics, such
as a line, arc, or graphics text string. See also graphics
segment.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a pull-down is
unavailable.

group. A collection of logically-connected controls. For
example, the buttons controlling paper size for a printer.
See also program group.

H
handle. An identifier that represents an object, such as
a device or window, to the Presentation Interface.

hard error. An error condition on a network that
requires either that the system be reconfigured, or that
the source of the error be removed before the system
can resume reliable operation.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message that
contains control information for the message, such as
one or more destination fields, name of the originating
station, input sequence number, character string
indicating the type of message, and priority level for the
message.

help. A function that provides information about a
specific field, an application panel, or information about
the help facility.

help index. A facility that allows the user to select topics
for which help is available.

help panel. A panel with information to assist users that
is displayed in response to a help request from the user.

help window. A Common User Access-defined
secondary window that displays information when the
user requests help.

heap. An area of free storage available for dynamic
allocation by an application. Its size varies according to
the storage requirements of the application.

hit testing. The means of identifying which window is
associated with which input device event.

hook. A mechanism by which procedures are called
when certain events occur in the system. For example,

X-6 PM Programming Reference

the filtering of mouse and keyboard input before it is
received by an application program.

hook chain. A sequence of hook procedures that are
"chained" together so that each event is passed, in turn,
to each procedure in the chain.

hot spot. The part of the pointer that must touch an
Object before it can be selected. This is usually the tip of
the pointer. Contrast with action point.

I
Icon. A pictorial representation of an item the user can
select. Icons can represent items (such as a document
file) that the user wants to work on, and actions that the
user wants to perform. In PM, icons are used for data
objects, system actions, and minimized programs.

icon area. In PM, the area at the bottom of the screen
that is normally used to display the icons for minimized
programs.

Icon Editor. The Presentation Manager-provided tool for
creating icons.

Image font. A set of symbols, each of which is described
in a rectangular array of pels. Some of the pels in the
array are set to produce the image of the symbol.
Contrast with outline font.

Information device context. A logical description of a
data destination other than the screen (for example, a
printer or plotter), but where no output will occur. Its
purpose is to satisfy queries. See also device context.

information panel. A defined panel type characterized
by a body containing only protected information.

input focus. The area of the screen that will receive
input from an input device (typically the keyboard).

input router. An internal OS/2 process that removes
messages from the system queue.

integer atom. A special kind of atom that represents a
predefined system constant and carries no storage
overhead. For example, names of window classes
provided by PM are expressed as integer atoms.

interactive graphics. Graphics that can be moved or
manipulated by a user at a terminal.

interactive program. A program that is running (active)
and is ready to receive (or is receiving) input from the
user. Compare with active program and contrast with
noninteractive program.

Also known as a foreground program.

interchange file. Data that can be sent from one
Presentation Interface application to another.

interval timer. (1) A timer that provides program
interruptions on a program-controlled basis. (2) An
electronic counter that counts intervals of time under
program control.

IOCtl. A device-specific command that requests a
function of a device driver through the DosDevlOCtl
function.

110 operation. An input operation to, or output operation
from a device attached to a computer.

IOPL. Input/output privilege level.

IOPL code segment. An IOPL executable section of
programming code that enables an application to directly
manipulate hardware interrupts and ports without
replacing the device driver. See also privilege level.

J
Journal. A special-purpose file that is used to record
changes made in the system.

K
KanJI. A graphic character set used in Japanese
ideographic alphabets.

KBD$. Character-device name reserved for the
keyboard.

kernel. The part of an operating system that performs
basic functions, such as allocating hardware resources.

kerning. The design of graphics characters so that their
character boxes overlap. Used to space text
proportionally.

keys help. A facility that gives users a listing of all the
key assignments for the current application.

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the segment.

language support procedure. Function provided by the
Presentation Interface for applications that do not, or
cannot (as in the case of COBOL and FORTRAN
programs), provide their own dialog or window
procedures.

LDT. Local Descriptor Table.

LIFO stack. A data stack from which data is retrieved in
last-in, first-out order.

linked list. Synonym for chained list.

list box. A control window containing a vertical list of
selectable descriptions.

list panel. A defined panel type that displays a list of
items from which users can select one or more choices
and then specify one or more actions to work on those
choices.

load-on-call. A function of a linkage editor that allows
selected segments of the module to be disk resident
while other segments are executing. Disk resident
segments are loaded for execution and given control
when any entry point that they contain is called.

load time. The point in time at which a program module
is loaded into main storage for execution.

local area network (LAN). A data network located on the
user's premises in which serial transmission is used for
direct data communication among data stations.

Local Descriptor Table (LDT). Defines code and data
segments specific to a single task.

lock. A serialization mechanism by means of which a
resource is restricted for use by the holder of the lock.

LPT1, LPT2, LPT3. ·character-device names reserved for
parallel printers 1 through 3.

M
main window. The window that is positioned relative to
the desktop window.

map. (1) A set of values having a defined
correspondence with the quantities or values of another
set. (2) To establish a set of values having a defined
correspondence with the quantities or values of another
set.

marker box. In computer graphics, the boundary that
defines, in world coordinates, the horizontal and vertical
space occupied by a single marker from a marker set.

marker symbol. A symbol centered on a point. Graphs
and charts can use marker symbols to indicate the
plotted points.

maximize. A window-sizing action that makes the
window the largest size possible.

media window. The part of the physical device (display,
printer, or plotter) on which a picture is presented.

memory device context. A logical description of a data
destination that is a memory bit map. See also device
context.

memory management. A feature of the operating
system for allocating, sharing, and freeing main storage.

menu. A type of panel that consists of one or more
selection fields. Also called a menu panel.

message. (1) In PM, a packet of data used for
communication between the Presentation Interface and
windowed applications. (2) In a user interface,
information not requested by users but presented to
users by the computer in response to a user action or
internal process.

message filter. The means of selecting which messages
from a specific window will be handled by the
application.

message queue. A sequenced collection of messages to
be read by the application.

metaflle. The generic name for the definition of the
contents of a picture. Metafiles are used to allow
pictures to be used by other applications.

metafile device context. A logical description of a data
destination th~t is a metafile, which is used for graphics
interchange. See also device context.

Glossary X-7

metalanguage. A language used to specify another
language. For example, data types can be described
using a metalanguage so as to make the descriptions
independent of any one computer language.

mickey. A unit of measurement for physical mouse
motion whose value depends on the mouse device driver
currently loaded.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function calls is
available.

minimize. A window-sizing action that makes the
window the smallest size possible. In PM, minimized
windows are represented by icons.

mix. An attribute that determines how the foreground of
a graphic primitive is combined with the existing color of
graphics output. Also known as foreground mix.
Contrast with background mix.

mixed character string. A string containing a mixture of
one-byte and Kanji or Hangeul (two-byte) characters.

mnemonic. A method of selecting an item on a
pull-down by means of typing the highlighted letter in the
menu item.

modal dialog box. The type of control that allows the
operator to perform input operations on only the current
dialog box or one of its child windows. Also known as a
serial dialog box. Contrast with parallel dialog box.

modeless dialog box. The type of control that allows the
operator to perform input operations on any of the
application's windows. Also known as a parallel dialog
box. Contrast with modal dialog box.

model space. See graphics model space.

module definition flle. A file that describes the code
segments within a load module. For example, it
indicates whether a code segment is loadable before
module execution begins (preload), or loadable only
when referred to at run time (load-on-call).

mouse. A hand-held device that is moved around to
position the pointer on the screen.

MOUSE$. Character-device name reserved for a mouse.

muftlple-cholce selection. A mode that allows users to
select any number of choices, including none at all. See
also check box. Contrast with extended-choice
selection.

muftitasking. The concurrent processing of applications
or parts of applications. A running application and its
data are protected from other concurrently running
applications.

N
named pipe. A named buffer that provides
client-to-server, server-to-client, or full duplex
communication between unrelated processes. Contrast
with unnamed pipe.

noncritical extended attribute. An extended attribute
that is not necessary for the function of an application.

X-8 PM Programming Reference

nondestructive read. A read process that does not
erase the data in the source location.

non-8.3 flle-name format. A file-naming convention in
which path names can consist of up to 255 characters.
See also 8.3 file-name format.

nonlnteractlve program. A program that is running
(active) but is not ready to receive input from the user.
Compare with active program, and contrast with
interactive program.

nonretalned graphics. Graphic primitives that are not
remembered by the Presentation Interface once they
have been drawn. Contrast with retained graphics.

NUL. Character-device name reserved for a nonexistent
(dummy) device.

null-terminated string. A string of (n + 1) characters
where the (n + 1)th character is the 'null' character
(X'OO'), and is used to represent an n-character string
with implicit length. Also known as 'zero-terminated'
string and 'ASCllZ' string.

0
object window. A window that does not have a parent,
but which may have child windows. An object window
cannot be presented on a device.

open. To start working with a file, directory, or other
object.

outline font. A set of symbols, each of which is created
as a series of lines and curves. Synonymous with vector
font. Contrast with image font.

output area. The area of the output device within which
the picture is to be displayed, printed, or plotted.

owner window. A window into which specific events that
occur in another (owned) window are reported.

owning process. The process that owns the resources
that may be shared with other processes.

p

page. A 4KB segment of contiguous physical memory.

page vlewport. A boundary in device coordinates that
defines the area of the output device in which graphics
are to be displayed. The presentation-page contents are
transformed automatically to the page viewport in device
space.

paint. The action of drawing or redrawing the contents
ofa window.

panel. A particular arrangement of information grouped
together for presentation to the user in a window.

panel area. An area within a panel that contains related
information. The three major Common User
Access-defined panel areas are the action bar, the
function key area, and the panel body.

\
)

panel body. The portion of a panel not occupied by the
action bar, function key area, title or scroll bars. The
panel body may contain protected information, selection
fields, and entry fields. The layout and content of the
panel body determine the panel type.

panel body area. The part of a window not occupied by
the action bar or function key area. The panel body area
may contain information, selection fields, and entry
fields. Also known as client area.

panel body area separator. A line or color boundary
that provides users with a visual distinction between two
adjacent areas of a panel.

panel definition. A description of the contents and
characteristics of a panel. A panel definition is the
application developer's mechanism for predefining the
format to be presented to users in a window.

panel ID. A panel element located in the upper left-hand
corner of a panel body that identifies that particular
panel within the application.

panel title. A panel element that identifies the
information in the panel.

paper size. The size of paper, defined in either standard
U.S. or European names (for example, A, B, A4), and
measured in inches or millimeters respectively.

parallel dialog box. See modeless dialog box.

parent process. A process that loads and starts other
processes. Contrast with child process.

parent window. The window relative to which one or
more child windows are positioned. Contrast with child
window.

partition. (1) A fixed-size division of storage. (2) On an
IBM personal computer fixed disk, one of four possible
storage areas of variable size; one may be accessed by
DOS, and each of the others may be assigned to another
operating system.

path. The part of a file specification that lists a series of
directory names. Each directory name is separated by
the backslash character. In the file specification
C:\MYFILES\MISC\GLOSSARY.SCR, the path consists of
MYFILES\MISC\.

pel. The smallest area of a display screen capable of
being addressed and switched between visible and
invisible states. Synonym for display point, pixel, and
picture element.

pick. To select part of a displayed object using the
pointer.

picture chain. See segment chain.

picture element. Synonym for pel.

PID. Process identification.

pipe. A named or unnamed buffer used to pass data
between processes. A process reads from or writes to a
pipe as if the pipe were a standard-input or

standard-output file. See also named pipe and unnamed
pipe.

pixel. Synonym for pel.

plotter. An output device that uses pens to draw its
output on paper or on transparency foils.

PM. Presentation Manager.

pointer. (1) The symbol displayed on the screen that is
moved by a pointing device, such as a mouse. The
pointer is used to point at items that users can select.
Contrast with cursor. (2) A data element that indicates
the location of another data element.

POINTER$. Character-device name reserved for a
pointer device (mouse screen support).

pointing device. A device (such as a mouse) used to
move a pointer on the screen.

polntings. Pairs of x-y coordinates produced by an
operator defining positions on a screen with a pointing
device, such as a mouse.

polyfillet. A curve based on a sequence of lines. It is
tangential to the end points of the first and last lines, and
tangential also to the midpoints of all other lines. See
also fillet.

polyline. A sequence of adjoining lines.

pop. To retrieve an item from a last-in-first-out stack of
items. Contrast with push.

pop-up window. A window that appears on top of
another window in a dialog. Each pop-up window must
be completed before returning to the underlying window.

Presentation Manager (PM). The visual component of
OS/2 that presents, in windows, a graphics-based
interface to applications and files installed and running
in OS/2.

presentation page. The coordinate space in which a
picture is assembled for display.

presentation space (PS). Contains the
device-independent definition of a picture.

primary window. The window in which the main dialog
between the user and the application takes place. In a
multiprogramming environment, each application starts
in its own primary window. The primary window remains
for the duration of the application, although the panel
displayed will change as the user's dialog moves
forward. See also secondary window.

primitive. See graphic primitive.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print job. The result of sending a document or picture to
be printed.

Print Manager. In PM, the part of the spooler that
manages the spooling process. It also allows users to
view print queues and to manipulate print jobs.

Glossary X-9

privilege level. A protection level imposed by the
hardware architecture of the IBM personal computer.
There are four privilege levels (number O through 3).
Only certain types of programs are allowed to execute at
each privilege level. See also IOPL code segment.

procedure call. In programming languages, a language
construct for invoking execution of a procedure.

process. An instance of an executing application and
the resources it is using.

program details. Information about a program that is
specified in the Program Manager window and is used
when the program is started.

program group. In PM, several programs that can be
acted upon as a single entity.

program name. The full file specification of a program.
Contrast with program title.

program title. The name of a program as it is listed in
the Program Manager window. Contrast with program
name.

prompt. A displayed symbol or message that requests
input from the user or gives operational information.
The user must respond to the prompt in order to
proceed.

protocol. A set of semantic and syntactic rules that
determines the behavior o functional units in achieving
communication.

pseudocode. An artificial language used to describe
computer program algorithms without using the syntax of
any particular programming language.

pull-down. An action bar extension that displays a list of
choices available for a selected action bar choice. After
users select an action bar choice, the pull-down appears
with the list of choices. Additional pop-up windows may
appear from pull-down choices to further extend the
actions available to users.

push. To add an item to a last-in-first-out stack of items.
Contrast with pop.

pushbutton. A control window, shaped like a
round-cornered rectangle and containing text, that
invokes an immediate action, such as 'enter' or 'cancel'.

Q
queue. A linked list of elements waiting to be
processed. For example, a queue may be a list of print
jobs waiting to be printed.

queued device context. A logical description of a data
destination (for example, a printer or plotter) where the
output is to go through the spooler. See also device
context.

X-10 PM Programming Reference

R
radio button. A control window, shaped like a round
button on the screen, that can be in a checked or
unchecked state. It is used to select a single item from
list. Contrast with check box.

RAS. Reliability, availability, and serviceability.

raster. (1) In computer graphics, a predetermined
pattern of lines that provides uniform coverage of a
display space. (2) The coordinate grid that divides the
display area of a display device.

read-only flle. A file that may be read from but not
written to.

realize. To cause the system to ensure, wherever
possible, that the physical color table of a device is set to
the closest possible match in the logical color table.

recursive routine. A routine that can call itself or be
called by another routine called by the recursive routine.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. A word or phrase that is emphasized
in a device-dependent manner to inform the user that
additional information for the word or phrase is
available.

reference phrase help. Provides help information for a
selectable word or phrase.

refresh. To update a window, with changed information,
to its current status.

region. A clipping boundary in device space.

register. A storage device having a specified storage
capacity such as a bit, byte, or computer word, and
usually intended for a special purpose.

remote file system. A file-system driver that gains
access to a remote system without a block device driver.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators, and
mnemonics; the definitions are held in a resource file.

resource flle. A file containing information used in the
definition of a window. Definitions can be of fonts,
templates, accelerators, and mnemonics.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Interface after they
have been drawn. Contrast with nonretained graphics.

return code. (1) A code used to influence the execution
of succeeding instructions. (2) A value returned to a
program to indicate the results of an operation
requested by that program.

reverse video. A form of alphanumeric highlighting for a
character, field, or cursor, in which its color is

exchanged with that of its background. For example,
changing a red character on a black background to a
black character on a red background.

RGB. Red-green-blue. For example, "RGB display".

roman. Relating to a type style with upright characters.

root segment. In a hierarchical database, the highest
segment in the tree structure.

run time. (1) Any instant at which a program is being
executed. (2) The time during which an instruction in an
instruction register is decoded and performed.

s
SAA. Systems Application Architecture.

scheduler. A computer program designed to perform
functions such as scheduling, initiation, and termination
of jobs.

screen. The physical surface of a work station or
terminal upon which information is presented to users.

screen device context. A logical description of a data
destination that is a particular window on the screen.
See also device context.

SCREENS. Character-device-name reserved for the
display screen.

scroll bar. A control window, horizontally or vertically
aligned, that allows the user to scroll additional data into
an associated panel area.

scrollable entry field. An entry field larger than the
visible field.

scrollable selection field. A selection field that contains
more choices than are visible.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears at
one edge, as existing data disappears at the opposite
edge.

secondary window. A type of window associated with
the primary window in a dialog. A secondary window
begins a secondary and parallel dialog that runs at the
same time as the primary dialog.

sector. An addressable subdivision of a track used to
record one block of program code or data on a disk or
diskette.

segment. See graphics segment.

segment attributes. Attributes that apply to the segment
as an entity, as opposed to the individual primitives
within the segment. For example, the visibility or
detectability of a segment.

segment chain. All segments in a graphics presentation
space that are defined with the 'chained' attribute.
Synonym for picture chain.

segment priority. The order in which segments are
drawn.

segment store. An area in a normal graphics
presentation space where retained graphics segments
are stored.

select. To mark or choose an item. Note that select
means to mark or type in a choice on the screen; enter
means to send all selected choices to the computer for
processing.

select button. The button on a pointing device, such as
a mouse, that is pressed to select a menu choice. Also
known as button 1.

selection cursor. A type of cursor used to indicate the
choice or entry field users want to interact with. It is
represented by highlighting the item that it is currently
positioned on.

selection Held. A field containing a list of choices from
which the user can select one or more.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources.

separator. See panel body area separator.

serial dialog box. See modal dialog box.

serialization. The consecutive ordering of items.

serialize. To ensure that one or more events occur in a
specified sequence.

serially reusable resource (SRR). A logical resource or
object that can be accessed by only one task at a time.

session. A routing mechanism for user interaction via
the console; a complete environment that determines
how an application runs and how users interact with the
application. OS/2 can manage more than one session at
a time, and more than one process can run in a session.
Each session has its own set of environment variables
that determine where OS/2 looks for dynamic-link
libraries and other important files.

shadow box. The area on the screen that follows mouse
movements and shows what shape the window will take
if the mouse button is released.

shared data. Data that is used by two or more
programs.

shared memory. Memory that is used by two or more
programs.

shear. The tilt of graphics text when each character
leans to the left or right while retaining a horizontal
baseline.

shell. (1) A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and touch-sensitive
screens, and communicate them to the operating system.
(2) Software that allows a kernel program to run under
different operating-system environments.

Shutdown. The procedure required before the computer
is switched off to ensure that data is not lost.

Glossary X-11

slbling processes. Child processes that have the same
parent process.

sibling windows. Child windows that have the same
parent window.

slider box. An area on the scroll bar that indicates the
size and position of the visible information in a panel
area in relation to the information available. Also known
as thumb mark.

source flle. A file that contains source statements for
items such as high-level language programs and data
description specifications.

source statement. A statement written in a
programming language.

specific dynamic-link module. A dynamic-link module
created for the exclusive use of an application.

spline. A sequence of one or more Bezier curves.

spooler. A program that intercepts the data going to
printer devices and writes it to disk. The data is printed
or plotted when it is complete, and the required device is
available. The spooler prevents output from different
sources from being intermixed.

stack. A list constructed and maintained so that the next
data element to be retrieved is the most recently stored.
This method is characterized as last-in-first-out (LIFO).

standard window. A collection of window elements that
form a panel. The standard window can include one or
more of the following window elements: sizing borders,
system menu icon, title bar, maximize/minimize/restore
icons, action bar and pull-downs, scroll bars, and client
area.

static control. The means by which the application
presents descriptive information (for example, headings
and descriptors) to the user. The user cannot change
this information.

static storage. (1) A read/write storage unit in which
data is retained in the absence of control signals. Static
storage may use dynamic addressing or sensing circuits.
(2) Storage other than dynamic storage.

style. See window style.

suballocation. The allocation of a part of one extent for
occupancy by elements of a component other than the
one occupying the remainder of the extent.

subdirectory. In an IBM personal computer, a file
referred to in a root directory that contains the names of
other files stored on the diskette or fixed disk.

swapping. (1) A process that interchanges the contents
of an area of real storage with the contents of an area in
auxiliary storage. (2) In a system with virtual storage, a
paging technique that writes the active pages of a job to
auxiliary storage and reads pages of another job from
auxiliary storage into real storage. (3) The process of
temporarily removing an active job from main storage,
saving it on disk, and processing another job in the area
of main storage formerly occupied by the first job.

switch. (1) An action that moves the input focus from
one area to another. This can be within the same

X-12 PM Programming Reference

window or from one window to another. (2) In a
computer program, a conditional instruction and an
indicator to be interrogated by that instruction. (3) A
device or programming technique for making a selection,
for example, a toggle, a conditional jump.

switch llst. See Task List.

symbolic Identifier. A text string that equates to an
integer value in an include file, that is used to identify a
programming object.

synchronous. Pertaining to events or operations that
are predictable or occur at the same time. See also
asynchronous.

System Menu. In PM, the pull-down in the top left corner
of a window that allows it to be moved and sized with the
keyboard.

system queue. This is the master queue for all pointer
device or keyboard events.

Systems Application Architecture (SAA). A formal set of
rules that enables applications to be run without
modification in different computer environments.

T
tag. One or more characters attached to a set of data
that defines the formatting or other characteristics of the
set, including its definition.

Task List. In PM, the list of programs that are active.
The list can be used to switch to a program and to stop
programs.

template. An ASCII-text definition of an action bar and
pull-down menu, held in a resource file, or as a data
structure in program memory.

text. Characters or symbols.

text cursor. A symbol displayed in an entry field that
indicates where typed input will appear.

text window. Also known as the VIO window.

text-windowed application. The environment in which
the operating system performs advanced&hyphn.video
input and output operations.

thread. A unit of execution within a process. It uses the
resources of the process.

thumb mark. The portion of the scroll bar that describes
the range and properties of the data that is currently
visible in a window. Also known as a slider box.

tilde. A mark used to denote the character that is to be
used as a mnemonic when selecting text items within a
menu.

time slice. (1) An interval of time on the processing unit
allocated for use in performing a task. After the interval
has expired, processing-unit time is allocated to another
task, so a task cannot monopolize processing-unit time
beyond a fixed limit. (2) In systems with time sharing, a
segment of time allocated to a terminal job.

\
)

title bar. The area at the top of a window that contains
the window title. The title bar is highlighted when that
window has the input focus. Contrast with pane/ title.

transaction. An exchange between a workstation and
another device that accomplishes a particular action or
result.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating, or translating. (2)
The object that performs or defines such a modification;
also referred to as a transformation.

Tree. In PM, the window in the File Manager that shows
the organization of drives and directories.

truncate. (1) To end a computational process in
accordance with some rule. (2) To remove the beginning
or ending elements of a string. (3) To drop data that
cannot be printed or displayed in the line width specified
or available. (4) To shorten a field or statement to a
specified length.

u
unnamed pipe. A circular buffer, created in memory,
used by related processes to communicate with one
another. Contrast with named pipe.

update region. A system-provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window, that are
visually invalid or incorrect, and therefore in need of
repainting.

user Interface. Hardware, software, or both that allows
a user to interact with and perform operations on a
system, program, or device.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user to
manage applications and files installed and running
under OS/2.

utlllty program. (1) A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.
(2) A program designed to perform an everyday task
such as copying data from one storage device to
another.

v
vector font. A set of symbols, each of which is created
as a series of lines and curves. Synonymous with
outline font. Contrast with image font.

VGA. Video graphics array.

viewing pipeline. The series of transformations applied
to a graphic object to map the object to the device on
which it is to be presented.

viewing window. Clipping boundary that defines the
visible part of model space.

VIO. Video Input/Output.

virtual memory (VM). Addressable space that is
apparent to the user as the processor storage space, but
not having a fixed physical location.

virtual storage. Synonymous with virtual memory.

visible region. A window's presentation space, clipped
to the boundary of the window and the boundaries of any
overlying window.

volume. (1) A file-system driver that uses a block device
driver for input and output operations to a local or
remote device. (2) A portion of data, together with its
data carrier, that can be handled conveniently as a unit.

w
wild-card character. The global file-name characters
asterisk (*) and question mark (?).

window. A rectangular area of the screen with visible
boundaries within which information is displayed. A
window can be smaller than or the same size as the
screen. Windows can appear to overlap on the screen.

window class. The grouping of windows whose
processing needs conform to the services provided by
one window procedure.

window coordinates. The means by which a window
position or size is defined; measured in device units, or
pe/s.

window procedure. Code that is activated in response
to a message. The procedure controls the appearance
and behavior of its associated windows.

window rectangle. The means by which the size and
position of a window is described in relation to the
desktop window.

window style. The set of properties that influence how
events related to a particular window will be processed.

workstation. A display screen together with attachments
such as a keyboard, a local copy device, or a tablet.

world coordinates. Application-convenient coordinates
used for drawing graphics.

world-coordinate space. Coordinate space in which
graphics are defined before transformations are applied.

WYSIWYG. What You See Is What You Get. A capability
that enables text to be displayed on a screen in the same
way it will be formatted on a printer.

z
z-order. The order in which sibling windows are
presented. The topmost sibling window obscures any
portion of the siblings that it overlaps; the same effect
occurs down through the order of lower sibling windows.

zooming. In graphics applications, the process of
increasing or decreasing the size of picture.

Glossary X-13

X-14 PM Programming Reference

Index

A
ABB_* values 5-405, 5-463
ACCEL A-1
accelerator table

copy · 8-37
create 8-44
destroy 8-98
load 8-234
query 8-291
set 8-439
translate 8-550

ACCEL TABLE A-1
ACCEL TABLE statement 32-9
Access a DRAGINFO Structure 3-26
Access Drag Information 3-4
Add Atom 8-7
Add Switch Entry 8-9
Add Text to DDF Buffer 4-39
additional metrics F-9
addressing elements in arrays 1-5
alarm sound 8-11
Allocate DRAGINFO Structure 3-7
Allocate DRAGTRANSFER Structures 3-9
AM_* values 5-228, 5-401
Animate Palette 5-8
application-supplied functions 10-1
Applications

Windowed PM 34-1
Arabic text 5-435
arc

create 5-199
full 5-148, 5-189
partial 5-188
query parameters 5-226
set current parameters 5-398
set default parameters 5-460

Arc at a Given Position 33-3
Arc at Current Position 33-3
ARCPARAMS A-2
AREABUNDLE A-2
areas

begin construction 5-13
construction of interior 5-15
end construction 5-128

arrays
addressing elements in 1-5
convert 5-53, 5-55

ASCII 8-321, 8-459, 34-23
ASCII MIXED code pages 34-23
Associate 5-11
Associate Help Instance 8-13
ASSOCTABLE statement 32-10
ATOM A-2
attribute primitive type 5-404
attribute primitive types 5-462
attribute values

character 5-404, 5-462
image 5-405, 5-463
line 5-404, 5-462
marker 5-405, 5-463
pattern (area) 5-405, 5-463

attributes
character-set 5-443
color 5-453
cosmetic line width 5-498
foreground color mix 5-511
geometric line width 5-500
line type 5-495
line width 5-498
marker box 5-504
marker set 5-506
marker symbol 5-503
pattern 5-522
pattern set 5-526
query mode 5-228
restore saved 5-217
segment 5-539
set 5-404
set default 5-462
set line-end 5-491
set line-join 5-493
specify mode 5-401

ATTR_ *values 5-304, 5-351, 5-488, 5-538

B
background

query color 5-231, 5-232
query color-mixing mode 5-232
query mix 5-232

BANDRECT A-2
BA_* values 5-13
BBO_* values 5-24, 5-113, 5-568
BOS_* values 13-3
Begin Area 5-13, 33-3
Begin Definition List 4-2
Begin Dragging Files 3-16
Begin Element 5-17, 33-4
Begin Image at Current Position 33-5
Begin Image at Given Position 33-5
Begin Paint 8-18
Begin Path 5-19, 33-5
Begin Window Enumeration 8-16
Bezier Curve at Current Poition 33-6
Bezier Curve at Given Position 33-6
Bezier splines, create 5-215
Bit Bit 5-23
bit maps

color 5-25, 5-114, 5-569
copy rectangle of image data 5-23, 5-567
create 5-71
data D-1
delete 5-90
draw 8-118
example D-1
file format D-2
get system 8-194
information tables D-1
load 5-161
monochrome 5-25, 5-114, 5-569
query bits 5-233
query device formats 5-280
query dimension 5-236

Index X-15

bit maps (continued)
query handle 5-239
query info-header 5-237
query number of local identifiers 5-329
query parameters 5-240
query set identifiers 5-359
set as currently selected 5-418
set bits 5-420
set identifier 5-425
standard formats D-1
transfer data from application storage 5-420

bit-map tag
delete 5-106

Bitblt 33-7
BITMAPINFO A-3
BITMAPINFOHEADER A-6
BITMAPINFOHEADER2 A-6
BITMAPINF02 A-3
bits

draw 5-112
BKM_CALCPAGERECT 25-4
BKM_DELETEPAGE 25-5
BKM_INSERTPAGE 25-6
BKM_INVALIDATETABS 25-7
BKM_QUERYPAGECOUNT 25-7
BKM_QUERYPAGEDATA 25-8
BKM_QUERYPAGEID 25-9
BKM_QUERYPAGESTYLE 25-10
BKM_QUERYPAGEWINDOWHWND 25-10
BKM_QUERYSTATUSLINETEXT 25-11
BKM_QUERYTABBITMAP 25-12
BKM_QUERYTABTEXT 25-12
BKM_SETDIMENSIONS 25-13
BKM_SETNOTEBOOKCOLORS 25-14
BKM_SETPAGEDATA 25-14
BKM_SETPAGEWINDOWHWND 25-15
BKM_SETSTATUSLINETEXT 25-16
BKM_SETTABBITMAP 25-16
BKM_SETTABTEXT 25-17
BKM_TURNTOPAGE 25-18
BKS_* values 25-1
BMSG_ * values 8-20
BM_CLICK 13-5
BM_QUERYCHECK 13-6
BM_QUERYCHECKINDEX 13-6
BM_QUERYHILITE 13-7
BM_SETCHECK 13-7
BM_SETDEFAUL T 13-8
BM_SETHILITE 13-9
BM_* values 5-232, 5-415
BN_ * values 13-3
BOOKTEXT A-9
BOOKTEXT data structure A-9
BOOL A-9
Box 5-28

draw 5-28
Box at Current Position 33-8
Box at Given Position 33-8
Broadcast Message 8-20
BS_* values 13-1
BTNCDATA A-9
button control data 13-2
button control styles 13-1
button control window processing 13-1
button filtering constants 8-183
BYTE A-10

X-16 PM Programming Reference

c
C language 1-1
Calculate Frame Rectangle 8-22
Call Message Filter 8-24
Call Segment 33-9
Call Segment Matrix 5-31
Cancel Shutdown 8-26
CAPS_* values 2-15
CATCHBUF A-10
CA_* values A-17

column headings A-19
drawing and painting A-18
icons or bit maps A-17
ordered target emphasis A-18
title attributes A-18
title position A-18
titles A-18

CBB_* values 5-404, 5-462
CBM_HILITE 19-5
CBM_ISLISTSHOWING 19-5
CBM_SHOWLIST 19-6
CBM_ *values 5-71
CBN_ *values 19-3
CBS_* values 19-1
CCS_* values

selection types 24-3
styles 24-2

COATE A-10
CELL A-10
CFA_ *values A-39

column attributes A-40
data types A-39
horizontal column heading position A-41
horizontal data position A-40
icon or bit map data A-40
prevention of direct editing of a column

heading A-40
vertical column heading position A-40
vertical data position A-40

CFI_* flags 8-310
CFI_ * values 8-449
CF_* values 8-449, 28-4
chain

draw 5-117
chained attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Change Focus Window 8-160
Change Switch Entry 8-28
CHAR A-10
character

convert to uppercase 8-558
query angle 5-244
query box 5-246
query break extra 5-248
query direction 5-249
query extra 5-250
query mode 5-251
query set 5-252
query shear 5-253
query string positions 5-255
query string positions at 5-257
set angle 5-427
set box 5-430
set break extra 5-433
set direction 5-435
set extra 5-438

/

character (continued)
set mode 5-440
set set 5-443
set shear 5-445

character attribute values 5-404, 5-462
character definitions

font F-3
character direction

Arabic text 5-435
Chinese text 5-435
Roman text 5-435

character set 1-6
Character String 5-34

draw at current position 5-34
draw at current position, with controls 5-39
draw at specified position 5-36
draw string at specified position, with controls 5-42

Character String At 5-36
Character String at Current Position 33-9
Character String at Given Position 33-9
Character String Extended at Current Position 33-10
Character String Extended at Given Position 33-10
Character String Move at Current Position 33-11
Character String Move at Given Position 33-11
Character String Position 5-39
Character String Position At 5-42
CHARBUNDLE A-11
CHDIRN_ *values 5-249, 5-435
check box 13-1
Check Menu Item 8-32
Check Message Filter Hook 10-5
CheckMsgFilterHook 10-5
Chinese text 5-435
CHS_* values 5-39, 5-42, 5-255, 5-257
class 9-1
CLASSDETAILS A-12
CLASSINFO A-11
clipboard 28-1

messages 28-1
query format information 8-310
query viewer window 8-313
set data 8-449

clipboard messages 28-1
clipping 5-528, G-1

segment chains 5-122
set path 5-448
set region 5-451

clipping boundary 5-486
clipping region 8-150
Close Clipboard 8-34
Close Device Context 2-2
Close Figure 5-45, 33-12
Close Profile 6-2
Close Segment 5-47
closed figure 5-20
CLR_* values 5-76, 5-231, 5-262, 5-338, 5-412, 5-453
CMDSRC_ *values 11-3, 12-27, 12-36, 12-63, 15-21
CM_ALLOCDET AILFIELDINFO 24-22
CM_ALLOCRECORD 24-23
CM_ARRANGE 24-24
CM_CLOSEEDIT 24-24
CM_COLLAPSETREE 24-25
CM_ERASERECORD 24-26
CM_EXPANDTREE 24-26
CM_FIL TER 24-27
CM_FREEDETAILFIELDINFO 24-28
CM_FREERECORD 24-29

CM_HORZSCROLLSPLITWINDOW 24-30
CM .)NSERTDETAILFIELDINFO 24-30
CM_INSERTRECORD 24-31
CM_INVALIDATEDET AILFIELDINFO 24-33
CM_INVALIDATERECORD 24-33
CM_OPENEDIT 24-35
CM_PAINTBACKGROUND 24-35
CM_QUERYCNRINFO 24-36
CM_QUERYDETAILFIELDINFO 24-37
CM_QUERYDRAGIMAGE 24-38
CM_QUERYRECORD 24-39
CM_ QUERYRECORDEMPHASIS 24-40
CM_ QUERYRECORDFROMRECT 24-41
CM_QUERYRECORDINFO 24-42
CM_ QUERYRECORDRECT 24-43
CM_QUERYVIEWPORTRECT 24-43
CM_REMOVEDETAILFIELDINFO 24-44
CM_REMOVERECORD 24-45
CM_SCROLLWINDOW 24-47
CM_SEARCHSTRING 24-48
CM_SETCNRINFO 24-49
CM_SETRECORDEMPHASIS 24-50
CM_SORTRECORD 24-51
CM_* values 5-251, 5-427, 5-440
CNRDRAGINFO A-12
CNRDRAGINIT A-12
CNRDRAWITEMINFO A-13
CNREDITDATA A-14
CNREDITDATA data structure A-13
CNRINFO A-15
CN_BEGINEDIT 24-8
CN_COLLAPSETREE 24-9
CN_CONTEXTMENU 24-9
CN_DRAGAFTER 24-10
CN_DRAGLEAVE 24-11
CN_DRAGOVER 24-12
CN_DROP 24-13
CN_DROPHELP 24-14
CN_EMPHASIS 24-15
CN_ENDEDIT 24-15
CN_ENTER 24-16
CN_EXPANDTREE 24-17
CN_HELP 24-17
CN_INITDRAG 24-18
CN_KILLFOCUS 24-19
CN_QUERYDELTA 24-19
CN_REALLOCPSZ 24-20
CN_SCROLL 24-21
CN_SETFOCUS 24-21
CN_* values

described 24-8
code page

query 8-314
set 8-456

Code Page Change Hook 10-7
Code pages 34-1

ASCII 34-11
EBCDIC 34-16
Font support 34-4
OS/2 options for PM 34-3
OS/2 support for multiple 34-4

CodePageChangeHook 10-7
COLOR A-20
color palette 8-362
color table G-1

create 5-74
color table default values 5-76

Index X-17

colors
on monochrome devices 5-76
query 5-262
query data 5-264
query foreground mix mode 5-324
query index 5-266
query nearest 5-327
query real 5-343
query RGB 5-349
query system 8-362
set 5-453
set background 5-412
set system values 8-494

Combine Region 5-49
combo box control data 19-1
combo box control window processing 19-1
Comment 5-51, 33-12
Compare Strings 8-35
constant names 1-1
constants

button filtering 8-183
container control window processing

data structures 24-3
icon size, how determined A-17
mini-icon size, how determined A-17
notification codes 24-8
notification messages 24-4
purpose 24-1
styles and selection types 24-2
window messages 24-22
window words 24-1

container views A-16
contents and format of dialog template 32-19
control classes 11-2
control codes

Shift In (SI) 34-23
Shift Out (SO) 34-23

control data 32-22
Control Formatting 4-35
control statements

predefined 32-24
control window processing 11-2
CONVCONTEXT A-20
conventions
Convert 5-53
Convert with Matrix 5-55
coordinates

dialog 32-19
coordinates for dialogs 32-19
Copy Accelerator Table 8-37
Copy Metafile 5-57
Copy Rectangle 8-39
Correlate Chain 5-59
Correlate From 5-63
Correlate Segment 5-67
cosmetic line width

query 5-311
Counts Number of Items in Listbox 8-330
CPTEXT A-21
Create a Paragraph in DDF Buffer 4-24
Create Accelerator Table 8-44
Create Atom Table 8-46
Create Bit Map 5-71
Create Cursor 8-48
Create Dialog 8-50
Create Frame Controls 8-52
Create Help Instance 8-54

X-18 PM Programming Reference

Create Help Table 8-56
Create Logical Color Table 5-74
Create Logical Font 5-78
Create Menu 8-58
Create Message Queue 8-60
Create Palette 5-81
Create Pointer 8-64
Create Pointer Indirect 8-66
Create Presentation Space 5-84
Create Region 5-88
Create Standard Window 8-68
Create String Handle 3-5
Create Switch Entry 8-72
Create Window 8-74
Create Workplace Object 8-62
CREATESTRUCT A-21
CREA_* values 5-195
CRGN_ *values 5-49
cs_* values

window class styles 12-1
CTAB_* values 5-195
CTIME A-22
current position

move 5-173
query 5-269
set to specified point 5-458

cursor
create 8-48
destroy 8-101
hide 8-518
query information 8-316
show 8-518

CURSORINFO A-22
CURSOR_* values 8-48
CVR_* values 12-23
CVTC_* values 5-53
CV_* values

D

CNRINFO structure A-16
SEARCHSTRING structure A-115
view styles A-17

data
bit map D-1
get 5-150
put 5-223

data area in a dialog template 32-22
data format

image F-7
outline F-8

data types A-1
graphics orders 33-1
implicit pointer 1-5
storage mapping 1-6

DBCS 8-285
DBCS support 34-23

character-encoding schemes 34-23
DBM_* values 8-118
DB_* values 8-121
DCTL_ *values 5-282, 5-474
DC_* values A-32
DDEF _*values 5-195
DDEINIT A-23
DDESTRUCT A-23
ODE_* values 30-1, 30-2, 30-3, A-23
DdfBeginlist 4-2

'·
)

DdfBitmap 4-5
DdfEndlist 4-8
DdfHyperText 4-10
Ddflnform 4-13
Ddflnitialize 4-15
Ddflistltem 4-18
DdfMetafile 4-21
Ddf Para 4-24
DdfSetColor 4-26
DdfSetFont 4-29
DdfSetFontStyle 4-32
DdfSetFormat 4-35
DdfSetTextAlign 4-37
Ddfrext 4-39
default colors 13-2, 14-2, 15-3, 16-1, 17-3, 19-2, 20-2,

22-2, 23-1
Default Dialog Procedure 8-85
default dialog processing 12-70
default graphics character box

query 5-275
default message processing 12-1
default view matrix

query 5-273
Default Window Procedure 8-89
default window processing 11-1
DEFAULTICON keyword 32-11
Define Hypertext Link 4-10
Define Inform Link 4-13
Define Text Alignment 4-37
Delete Atom 8-91
Delete Bit Map 5-90
Delete DRAGINFO String Handles 3-10
Delete Element 5-92
Delete Element Range 5-94
Delete Elements Between Labels 5-96
Delete Library 8-95
Delete Listbox Item 8-93
Delete Metafile 5-98
Delete Palette 5-100
Delete Procedure 8-96
Delete Segment 5-102
Delete Segments 5-104
Delete Set Identifier 5-106
Delete String Handle 3-11
DELETENOTIFY A-24
Deregister Workplace Object Class 8-97 ·
DESKTOP A-24
Destroy Accelerator Table 8-98
Destroy Atom Table 8-99
Destroy Cursor 8-101
Destroy Help Instance 8-102
Destroy Message Queue 8-104
Destroy Pointer 8-107
Destroy Presentation Space 5-108
Destroy Region 5-110
Destroy Window 8-109
Destroy Window Hook 10-8
Destroy Workplace Object 8-106
DestroyWindowHook 10-8
detectability attribute for segments

modify (GpiSetSegmentAttrs) 5-539
DevCloseDC 2-2
DevEscape 2-4
DEVESC_* values 2-4, 2-5
device characteristics

query 2-15
device context

device context (continued)
clear output display 5-136
close 2-2
create 2-9
open 2-9
open for a window 8-273
screen 8-128

DevOpenDC 2-9
DEVOPENSTRUC A-25
DevPostDeviceModes 2-12
DevQueryCaps 2-15
DevQueryDeviceNames 2-21
DevQueryHardcopyCaps 2-24
DEV_* values 2-2, 2-10
DFORM_* values 5-150, 5-223
dialog

create 8-50
default procedure 8-85
dismiss 8-111
enumerate item 8-145
load 8-236
process modal 8-287
query item short 8-321
send message to item 8-435
set item short 8-459

dialog item
query text 8-323
query text length 8-325
set text 8-461

dialog points
map 8-259

Dialog Procedure 10-2
dialog processing 12-70

default 12-70
language support 12-83

dialog template
data-area information 32-22
format and contents 32-19
header information 32-20
item information 32-21

dialog window
destroy modal 8-111
hide modeless 8-111

DialogProc 10-2
dialogs

define procedure 10-2
Direct Manipulation for Files 3-2
direct manipulation messages 29-1
directives 32-4
Dismiss Dialog 8-111
Dispatch Message 8-113
dithered colors 5-327
dithering 5-327, 8-494
DLGC_ *values 12-72
DLGTEMPLATE A-27
DLGTEMPLATE statement 32-16
DLGTITEM A-27
DM_DISCARDOBJECT 29-1
DM_DRAGERROR 29-2
DM_DRAGFILECOMPLETE 29-2
DM_DRAGLEAVE 29-3
DM_DRAGOVER 29-4
DM_DRAGOVERNOTIFY 29-5
DM _DROP 29-6
DM_DROPHELP 29-7
DM_EMPHASIZETARGET 29-7
DM_ENDCONVERSATION 29-8

Index X-19

DM_FILERENDERED 29-9
DM_PRINTOBJECT 29-9
DM_RENDER 29-10
DM_RENDERCOMPLETE 29-11
DM_RENDERFILE 29-12
DM_RENDERPREPARE 29-13
OM_* values 5-284, 5-477
double-byte character set 1-6
double-byte character sets 34-23
Down cursor key 8-547
DO_* Values

DRAGINFO data structure A-29
DRAGITEM data structure A-32

DPC errors 5-2
DPDM_ *values 2-13
DP_* values 8-124
Drag 3-12
drag information

access 3-4
drag messages 29-1
DRAGIMAGE A-28
DRAGINFO A-29
DRAGITEM A-30
DRAGTRANSFER A-32
Draw Bit Map 8-118
Draw Bits 5-112
Draw Border 8-121
Draw Chain 5-117
Draw Dynamics 5-119
Draw From 5-121
draw mode 5-47
Draw Pointer 8-124
Draw Polygons 5-207
Draw Segment 5-123
Draw Text 8-126
Draw Tracking Rectangle 8-546
draw-and-retain mode 5-47
drawing mode

draw 5-126, 5-474, 5-478, 5-558
draw-and-retain 5-126, 5-287, 5-474, 5-478, 5-558
query 5-284
retain 5-126, 5-252, 5-287, 5-478, 5-558
set 5-477

drawing orders 33-1
drawing process check errors 5-2
ORF_* vaiues A-31
DrgAcceptDroppedFiles 3-2
DrgAccessDraginfo 3-4
DrgAddStrHandle 3-5
DrgAllocDraginfo 3-7
DrgAllocDragtransfer 3-9
DrgDeleteDraginfoStrHandles 3-10
DrgDeleteStrHandle 3-11
DrgDrag 3-12
DrgDragFiles 3-16
DrgFreeDraginfo 3-19
DrgFreeDragtransfer 3-21
DrgGetPS 3-22
DrgPostTransferMsg 3-24
DrgPushDraginfo 3-26
DrgQueryDragitem 3-28
DrgQueryDragitemCount 3-30
DrgQueryDragitemPtr 3-31
DrgQueryNativeRMF 3-32
DrgQueryNativeRMFLen 3-34
DrgQueryStrName 3-36
DrgQueryStrNamelen 3-38

X-20 PM Programming Reference

DrgQueryTrueType 3-40
DrgQueryTrueTypelen 3-42
DrgReleasePS 3-44
DrgSendTransferMsg 3-45
DrgSetDraglmage 3-48
DrgSetDragitem 3-50
DrgSetDragPointer 3-53
DrgVerifyNativeRMF 3-55
DrgVerifyRMF 3-57
DrgVerifyTrueType 3-59
DrgVerifyType 3-61
DrgVerifyTypeSet 3-63 ··
DRG_ *values A-29
DRIVDATA A-33
DRIVPROPS A-34
ORM_* values A-31
ORO_* values 5-28, 5-148
ORT_* values A-30
DTYP _ * values 8-408
OT_* values 8-127, 22-1
Dynamic Data Exchange Initiate (NLS) 8-78
dynamic data exchange messages 30-1
Dynamic Data Exchange Post Message (NLS) 8-80
Dynamic Data Exchange Respond (NLS) 8-83

E
EBCDIC MIXED code pages 34-23
edit mode

query 5-285
set 5-480

EDI_* values 8-145
EGA 2-19
Element 5-125

end 5-130
query 5-286

elements
delete 5-92
delete between labels 5-96
delete between range 5-94
offset pointer 5-177
query pointer 5-288
query type 5-290
set pointer at label 5-484

Empty Clipboard 8-130
EM_CLEAR 14-4
EM_COPY 14-4
EM_CUT 14-5
EM_PASTE 14-5
EM_QUERYCHANGED 14-6
EM_QUERYFIRSTCHAR 14-7
EM_QUERYREADONLY 14-7
EM_QUERYSEL 14-8
EM_SETFIRSTCHAR 14-8
EM_SETINSERTMODE 14-9
EM_SETREADONLY 14-10
EM_SETSEL 14-10
EM_SETTEXTLIMIT 14-11
Enable Control of Button Id 8-131
Enable Menu Item 8-132
Enable Physical Input 8-134
Enable Window Update 8-137
encapsulation 9-1
End Area 5-128, 33-13
End Definition List 4-8
End Element 5-130, 33-13
End Image 33-13

End of Symbol Definition 33-14
End Paint 8-141
End Path 5-132, 33-14
End Prolog 33-14
End Window Enumeration 8-139
ENDFONT structure F-1
Enter key 8-547
entry field control data 14-2
entry field control window processing 14-1
ENTRYFDAT A A-34
Enumerate Clipboard Formats 8-143
Enumerate Dialog Item 8-145
Enumerate Object Classes 8-147
EN_* values 14-3, 18-3
EQRGN_ *values 5-134
Equal Rectangle 8-148
Equal Region 5-134
Erase 5-136
ERRINFO A-35
Error Segment Data 5-138
error severities 1-2
error state

get last one 8-178
error-information block 8-165
ERRORID A-35
errors

codes B-1
drawing process check 5-2
explanations C-1
get information 8-175
severities of 1-2

Esc key 8-547
Escape 2-4, 33-15
ESCSETMODE A-35
ES_* dbcsvals 14-2
ES_* values 14-1
Exclude Clip Rectangle 5-140
Exclude Update Region 8-150
Extended Escape 33-15

F
FACENAMEDESC A-35
FATTRS A-36
FATTR_FONTUSE_* values A-38
FATTR_SEL_* values A-37
FATTR_TYPE_* values A-38
FCF _ * frame styles 8-424
FCF_*values 15-1
FC_ *values 8-160
FDATE A-38
FDM_ERROR 12-73
FDM_FILTER 12-74
FDM_VALIDATE 12-74
FDS_* values A-42
FFDESCS A-39
FFDESCS2 A-39
FF_* indicators 8-400
FF_* values 5-144
FID_* values 15-1, 23-1
FIELDINFO A-39
FIELDINFOINS°ERT A-41
FIELDINFOINSERT data structure A-41
file dialog 12-73
file format
file formats

bit maps D-2

file formats (continued)
icon file D-2
pointer D-2

FILEDLG A-42
FILEFINDBUF4 A-46
Fill Path 5-142, 33-16
Fill Rectangle 8-154
Fillet at Current Position 33-16
Fillet at Given Position 33-16
Find Atom 8-156
Find Word Hook 10-9
FindWordHook 10-9
FIXED A-46
Fl_* values 15-18
Flash Window 8-158
flashing

start 8-158
stop 8-158

flipping bits 8-211
Flood Fill 5-144
FM_* values 5-324, 5-510
FNTF _ * values A-49
FNTM_FACENAMECHANGED 12-76
FNTM_FILTERLIST 12-77
FNTM_POINTSIZECHANGED 12-78
FNTM_STYLECHANGED 12-78
FNTM_UPDATEPREVIEW 12-79
FNTS_* values A-48
FOCAMETRICS structure F-2
focus

change window 8-160
query 8-327
set window 8-464

FOLDERDATA A-46
font character definitions F-3
font definition header F-4
font dialog 12-75
font directory F-11
font metrics F-1
font-file format F-1
FONTDEFINITIONHEADER structure F-4
FONTDLG A-47
FONTMETRICS A-52
fonts

create logical definition 5-78
definition of terms F-12
Japanese 34-23
load 5-163
load public 5-167
outline 5-427, 5-430, 5-433, 5-438, 5-445
query 5-299
query action 5-294
query face string 5-292
query logical 5-315
query metrics 5-297
query number of local identifiers 5-329
query set identifiers 5-359
query width table 5-372
raster 5-427, 5-430, 5-433, 5-438, 5-445, 5-522
unload 5-563
unload public 5-565

fonts supplied with OS/2 E-1
FONTSIGNATURE structure F-1
FONT_* values 5-78
format

font-file F-1
format and contents of dialog template 32-19

Index X-21

FPATH_* values 5-142, 5-191
frame control data 15-3
frame control window processing 15-1
Frame Region 5-146
FRAMECDATA A-60
Free DRAGINFO Structure 3-19
Free DRAGTRANSFER Storage 3-21
Free Error Information 8-165
Free File Icon 8-168
Free Standard File Dialog File List 8-166
FS_* values 15-3
FTIME A-61
Full Arc 5-148

create 5-148
Full Arc at Current Position 33-17
Full Arc at Given Position 33-17
function descriptions

conventions used 1-1
functions

supplied by applications 10-1

G
GARC 33-3
GBAR 33-3
GBBLT 33-7
GBEL 33-4
GBEZ 33-6
GBIMG 33-5
GBIT1 33-1
GBIT16 33-1
GBIT2 33-1
GBIT32 33-1
GBIT4 33-1
GBIT5 33-1
GBIT6 33-1
GBIT7 33-1
GBIT8 33-1
GBOX 33-8
GBPTH 33-5
GCALLS 33-9
GCARC 33-3
GCBEZ 33-6
GCBIMG 33-5
GCBOX 33-8
GCCHST 33-9
GCCHSTE 33-10
GCCHSTM 33-11
GCFARC 33-17
GCFLT 33-16
GCHAR 33-1
GCHST 33-9
GCHSTE 33-10
GCHSTM 33-11
GCLFIG 33-12
GCLINE 33-18
GCMRK 33-18
GCOMT 33-12
GCPARC 33-20
GCRLINE 33-22
GCSFL T 33-50
GDELPOINT 33-1
GEAR 33-13
GEEL 33-13
GEESCP 33-15
GEIMG 33-13
general window styles 12-1

X-22 PM Programming Reference

geometric line width 5-312
GEPROL 33-14
GEPTH 33-14
GESCP 33-15
GESD 33-14
Get Clipped Presentation Space 8-169
Get Current Time 8-171
Get Data 5-150
Get Dialog Message 8-172
Get Drag Presentation Space 3-22
Get Dragged Object Count 3-30
Get DRAGITEM Structure 3-28
Get Error Information 8-175
Get Format of a Dragged Object 3-32
Get Key State 8-176
Get Last Error 8-178
Get Maximum Position 8-179
Get Message 8-183
Get Minimum Position 8-181
Get Multiple Windows From Identities 8-266
Get Next Window 8-186
Get Physical Key State 8-188
Get Pointer to DRAGITEM Structure 3-31
Get Presentation Space 8-190
Get Screen Presentation Space 8-192
Get String Contents 3-36
Get String Length 3-38
Get String Length for Native RMF of Dragged

Object 3-34
Get String Length for True Type of Dragged Object 3-42
Get System Bit Map 8-194
Get True Type of Dragged Object 3-40
GFARC 33-17
GFIXED 33-2
GFIXEDS 33-2
GFLT 33-16
GFPTH 33-16
GHBITMAP 33-2
GIMD 33-17
GINDATT 33-2
GINDEX3 33-2
GLBL 33-18
GLENGTH1 33-2
GLENGTH2 33-2
GLINE 33-18
GLONG 33-2
GMPTH 33-19
GMRK 33-18
GNOP1 33-19
GOPTH 33-19
GPARC 33-20
GpiAnimatePalette 5-8
GpiAssociate 5-11
GpiBeginArea 5-13
GpiBeginElement 5-17
GpiBeginPath 5-19
GpiBitBlt 5-23
GpiBox 5-28
GpiCallSegmentMatrix 5-31
GpiCharString 5-34
GpiCharStringAt 5-36
GpiCharStringPos 5-39
GpiCharStringPosAt 5-42
GpiCloseFigure 5-45
GpiCloseSegment 5-47
GpiCombineRegion 5-49
GpiComment 5-51

\
.I
,ill

GpiConvert 5-53
GpiConvertWithMatrix 5-55
GpiCopyMetaFile 5-57
GpiCorrelateChain 5-59
GpiCorrelateFrom 5-63
GpiCorrelateSegment 5-67
GpiCreateBitmap 5-71
GpiCreatelogColorTable 5-74
GpiCreatelogFont 5-78
GpiCreatePalette 5-81
GpiCreatePS 5-84
GpiCreateRegion 5-88
GpiDeleteBitmap 5-90
GpiDeleteElement 5-92
GpiDeleteElementRange 5-94
GpiDeleteElementsBetweenlabels 5-96
GpiDeleteMetaFile 5-98
GpiDeletePalette 5-100
GpiDeleteSegment 5-102
GpiDeleteSegments 5-104
GpiDeleteSetld 5-106
GpiDestroyPS 5-108
GpiDestroyRegion 5-110
GpiDrawBits 5-112
GpiDrawChain 5-117
GpiDrawDynamics 5-119
GpiDrawFrom 5-121
GpiDrawSegment 5-123
GpiElement 5-125
GpiEndArea 5-128
GpiEndElement 5-130
GpiEndPath 5-132
GpiEqualRegion 5-134
GpiErase 5-136
GpiErrorSegmentData 5-138
GpiExcludeClipRectangle 5-140
GPIE_* values 5-138
GpiFillPath 5-142
GpiFloodFill 5-144
GpiFrameRegion 5-146
GpiFullArc 5-148
GPIF _ * values 5-533
GpiGetData 5-150
Gpilmage 5-153
GpilntersectClipRectangle 5-155
Gpilabel 5-157
Gpiline 5-159
GpiloadBitmap 5-161
GpiloadFonts 5-163
GpiloadMetaFile 5-165
GpiloadPublicFonts 5-167
GpiMarker 5-168
GpiModifyPath 5-170
GpiMove 5-173
GpiOffsetClipRegion 5-175
GpiOffsetElementPointer 5-177
GpiOffsetRegion 5-179
GpiOpenSegment 5-181
GpiOutlinePath 5-184
GpiPaintRegion 5-186
GpiPartialArc 5-188
GpiPathToRegion 5-191
GpiPlayMetaFile 5-193
GpiPointArc 5-199
GpiPolyFillet 5-201
GpiPolyFilletSharp 5-204
GpiPolygons 5-207

GpiPolyline 5-209
GpiPolylineDisjoint 5-211
GpiPolyMarker 5-213
GpiPolySpline 5-215
GpiPop 5-217
GpiPtlnRegion 5-219
GpiPtVisible 5-221
GpiPutData 5-223
GpiQueryArcParams 5-226
GpiQueryAttrMode 5-228
GpiQueryAttrs 5-229
GpiQueryBackColor 5-231
GpiQueryBackMix 5-232
GpiQueryBitmapBits 5-233
GpiQueryBitmapDimension 5-236
GpiQueryBitmapHandle 5-239
GpiQueryBitmaplnfoHeader 5-237
GpiQueryBitmapParameters 5-240
GpiQueryBoundaryData 5-242
GpiQueryCharAngle 5-244
GpiQueryCharBox 5-246
GpiQueryCharBreakExtra 5-248
GpiQueryCharDirection 5-249
GpiQueryCharExtra 5-250
GpiQueryCharMode 5-251
GpiQueryCharSet 5-252
GpiQueryCharShear 5-253
GpiQueryCharStringPos 5-255
GpiQueryCharStringPosAt 5-257
GpiQueryClipBox 5-259
GpiQueryClipRegion 5-261
GpiQueryColor 5-262
GpiQueryColorData 5-264
GpiQueryColorlndex 5-266
GpiQueryCp 5-268
GpiQueryCu rrentPosition 5-269
GpiQueryDefArcParams 5-270
GpiQueryDef Attrs 5-271
GpiQueryDefaultViewMatrix 5-273
GpiQueryDefCharBox 5-275
GpiQueryDefTag 5-277
GpiQueryDeNiewinglimits 5-278
GpiQueryDevice 5-279
GpiQueryDeviceBitmapFormats 5-280
GpiQueryDrawControl 5-282
GpiQueryDrawingMode 5-284
GpiQueryEditMode 5-285
GpiQueryElement 5-286
GpiQueryElementPointer 5-288
GpiQueryElementType 5-290
GpiQueryFaceString 5-292
GpiQueryFontAction 5-294
GpiQueryFontFileDescriptions 5-295
GpiQueryFontMetrics 5-297
GpiQueryFonts 5-299
GpiQueryFullFontFileDescriptions 5-301
GpiQueryGraphicsField 5-303
GpiQuerylnitialSegmentAttrs 5-304
GpiQueryKerningPairs 5-306
GpiQuerylineEnd 5-308
GpiQuerylineJoin 5-309
GpiQuerylineType 5-310 ·
GpiQuerylineWidth 5-311
GpiQuerylineWidthGeom 5-312
GpiQuerylogColorTable 5-313
GpiQuerylogicalFont 5-315
GpiQueryMarker 5-317

Index X-23

GpiQueryMarkerBox 5-318
GpiQueryMarkerSet' 5-320
GpiQueryMetaFileBits 5-321
GpiQueryMetaFilelength 5-323
GpiQueryMix 5-324
GpiQueryModelTransformMatrix 5-325
GpiQueryNearestColor 5-327
GpiQueryNumberSetlds 5-329
GpiQueryPageViewport 5-330
GpiQueryPalette 5-332
GpiQueryPalettelnfo 5-333
GpiQueryPattern 5-335
GpiQueryPatternRefPoint 5-336
GpiQueryPatternSet 5-337
GpiQueryPel 5-338
GpiQueryPickAperturePosition 5-340
GpiQueryPickApertureSize 5-341
GpiQueryPS 5-342
GpiQueryRealColors 5-343
GpiQueryRegionBox 5-345
GpiQueryRegionRects 5-347
GpiQueryRGBColor 5-349
GpiQuerySegmentAttrs 5-351
GpiQuerySegmentNames 5-353
GpiQuerySegmentPriority 5-355
GpiQuerySegmentTransformMatrix 5-357
GpiQuerySetlds 5-359
GpiQueryStopDraw 5-362
GpiQueryTag 5-363
GpiQueryTextAlignment 5-364
GpiQueryTextBox 5-365
GpiQueryViewinglimits 5-368
GpiQueryViewingTransformMatrix 5-370
GpiQueryWidthTable 5-372
GpiRectlnRegion 5-374
GpiRectVisible 5-376
GpiRemoveDynamics 5-378
GpiResetBoundaryData 5-381
GpiResetPS 5-382
GpiRestorePS 5-384
GpiRotate 5-386
GpiSaveMetaFile 5-389
GpiSavePS 5-391
GpiScale 5-393
GpiSelectPalette 5-396
GpiSetArcParams 5-398
GpiSetAttrMode 5-401
GpiSetAttrs 5-404
GpiSetBackColor 5-412
GpiSetBackMix 5-415
GpiSetBitmap 5-418
GpiSetBitmapBits 5-420
GpiSetBitmapDimension 5-423
GpiSetBitmapld 5-425
GpiSetCharAngle 5-427
GpiSetCharBox 5-430
GpiSetCharBreakExtra 5-433
GpiSetCharDirection 5-435
GpiSetCharExtra 5-438
GpiSetCharMode 5-440
GpiSetCharSet 5-443
GpiSetCharShear 5-445
GpiSetClipPath 5-448
GpiSetClipRegion 5-451
GpiSetColor 5-453
GpiSetCp 5-456
GpiSetCurrentPosition 5-458

X-24 PM Programming Reference

GpiSetDefArcParams 5-460
GpiSetDef Attrs 5-462
GpiSetDefaultViewMatrix 5-467
GpiSetDetTag 5-470
GpiSetDefViewinglimits 5-472
GpiSetDrawControl 5-474
GpiSetDrawingMode 5-477
GpiSetEditMode 5-480
GpiSetElementPointer 5-482
GpiSetElementPointer Atlabel 5-484
GpiSetGraphicsField 5-486
GpiSetlnitialSegmentAttrs 5-488
GpiSetlineEnd 5-491
GpiSetlineJoin 5-493
GpiSetlineType 5-495
GpiSetlineWidth 5-498
GpiSetlineWidthGeom 5-500
GpiSetMarker 5-502
GpiSetMarkerBox 5-504
GpiSetMarkerSet 5-506
GpiSetMetaFileBits 5-508
GpiSetMix 5-510
GpiSetModelTransformMatrix 5-513
GpiSetPageViewport 5-516
GpiSetPaletteEntries 5-518
GpiSetPattern 5-521
GpiSetPatternRef Point 5-524
GpiSetPatternSet 5-526
GpiSetPel 5-528
GpiSetPickAperturePosition 5-530
GpiSetPickApertureSize 5-531
GpiSetPS 5-533
GpiSetRegion 5-536
GpiSetSegmentAttrs 5-538
GpiSetSegmentPriority 5-541
GpiSetSegmentTransformMatrix 5-543
GpiSetStopDraw 5-546
GpiSetTag 5-548
GpiSetTextAlignment 5-550
GpiSetViewinglimits 5-553
GpiSetViewingTransformMatrix 5-555
GpiStrokePath 5-558
GpiTranslate 5-560
GpiUnloadFonts 5-563
GpiUnloadPublicFonts 5-565
GpiWCBitBlt 5-567
GPI_* values 5-196
GPOINT 33-2
GPOINTB 33-2
GPOL YS 33-2, 33-20
GPOP 33-21
GPSAP 33-23
GPSBCOL 33-23
GPSBICOL 33-24
GPSBMX 33-25
GPSCA 33-26
GPSCBE 33-26
GPSCC 33-27
GPSCD 33-28
GPSCE 33-28
GPSCH 33-30
GPSCOL 33-31
GPSCP 33-32
GPSCR 33-29
GPSCS 33-30
GPSECOL 33-32
GPSFLW 33-33

GPSIA 33-35
GPSICOL 33-34
GPSLE 33-36
GPSLJ 33-36
GPSLT 33-37
GPSLW 33-38
GPSMC 33-39
GPSMP 33-40
GPSMS 33-40
GPSMT 33-41
GPSMX 33-41
GPSPIK 33-45
GPSPRP 33-43
GPSPS 33-44
GPSPT 33-44
GPSSLW 33-46
GPSTA 33-47
GPSTM 33-42
GPSVW 33-48
GRADIENTL A-61
graphics

orders 33-1
query field 5-303
set field 5-486

graphics orders
data types 33-1

GREAL 33-2
GRES_* values 5-382
GRUNE 33-22
GROF 33-2
GROFUFS 33-2
GROL 33-2
GROSOL 33-2
GROUFS 33-2
GROUL 33-2
GSAP 33-23
GSBCOL 33-23
GSBICOL 33-24
GSBMX 33-25
GSCA 33-26
GSCBE 33-26
GSCC 33-27
GSCD 33-28
GSCE 33-28
GSCH 33-30
GSCOL 33-31
GSCP 33-32
GSCPTH 33-31
GSCR 33-29
GSCS 33-30
GSECOL 33-32
GSFLT 33-50
GSFLW 33-33
GSGCH 33-22
GSHORT 33-2
GSHORT370 33-2
GSIA 33-35
GSICOL 33-34
GSLE 33-36
GSLJ 33-36
GSLT 33-37
GSLW 33-38
GSMC 33-39
GSMP 33-40
GSMS 33-40
GSMT 33-41
GSMX 33-41

GSPIK 33-45
GSPRP 33-43
GSPS 33-44
GSPT 33-44
GSSB 33-45
GSSLW 33-46
GSTA 33-47
GSTM 33-42
GSTR 33-2
GSTV 33-48
GSVW 33-48
GUCHAR 33-2
GUFIXEDS 33-3
GULONG 33-3
GULONG370 33-3
GUNDF 33-3
GUNDF1 33-3
GUSHORT 33-3
GUSHORT370 33-3

H
HAB A-61
HACCEL A-61
HAPP A-61
HATOMTBL A-61
HBITMAP A-61
HCAPS_ * values A-62
HCINFO A-61
HOC A-62
HOOF A-62
header 32-20
header files 1-3
Help Hook 10-10
help manager messages 31-1
helper macros 1-3
HelpHook 10-10
HELPINIT A-62
HELPT ABLE A-63
HENUM A-64
HEV A-64
HFILE A-64
HFIND A-64
HFM_* values 10-10
HIGHER_* values 5-355, 5-541
highlight attribute for segments

modify (GpiSetSegmentAttrs) 5-539
HINI A-64
HK_* values 8-466
HLIB A-64
HMERR_ * error constants 31-4
HMF A-64
HMODULE A-64
HMQ A-64
HMQ_* values 8-418
HMTX A-64
HMUX A-64
HM_ACTIONBAR_COMMAND 31-1
HM_CONTROL 31-1
HM_CREATE_HELP_TABLE 31-2
HM_DISMISS_WINDOW 31-2
HM_DISPLAY_HELP 31-3
HM_ERROR 31-4
HM_EXT _HELP 31-5
HM_EXT_HELP _UNDEFINED 31-6
HM_GENERAL_HELP 31-6
HM_GENERAL_HELP _UNDEFINED 31-7

Index X-25

HM_HELPSUBITEM_NOT_FOUND 31-8
HM_HELP _CONTENTS 31-7
HM_HELP _INDEX 31-8
HM_INFORM 31-9
HM_INVALIDATE_DDF _DATA 31-10
HM_KEYS_HELP 31-10
HM_LOAD_HELP _TABLE 31-11
HM_NOTIFY 31-12
HM_QUERY 31-13
HM_QUERY_DDF _DATA 31-14
HM_QUERY_KEYS_HELP 31-14
HM_REPLACE_HELP _FOR_HELP 31-15
HM_REPLACE_USING_HELP 31-15
HM_SET_ACTIVE_WINDOW 31-16
HM_SET_COVERPAGE_SIZE 31-17
HM_SET _HELP _LIBRARY _NAME 31-17
HM_SET_HELP _WINDOW_TITLE 31-18
HM_SET_OBJCOM_WINDOW 31-18
HM_SET_SHOW_PANEL_ID 31-19
HM_SET_USERDATA 31-19
HM_TUTORIAL 31-20
HM_UPDATE_OBJCOM_WINDOW_CHAIN 31-21
HOBJECT A-64
hook

change code page 10-7
find word 10-9
help requests 10-10
input 10-8, 10-13
message filter 10-20
release 8-418
send message 10-23
set 8-466

hooks 10-1
HPAL A-64
HPOINTER A-64
HPROC A-64
HPROGARRAY A-64
HPROGRAM A-65
HPS A-65
HRGN A-65
HRGN_ *values 5-451
HSEM A-65
HSPL A-65
HSTR A-65
HSVWP A-65
HSWITCH A-65
HT_* values 12-37
HWND A-65
HWND_* values 8-11, 8-50, 8-52, 8-58, 8-115, 8-236,

8-244, 8-260, 8-362, 8-506

I
IBB_ * values 5-405, 5-463
icon

destroy 8-107
icon file format D-2
icon size, how determined A-17
ICONINFO A-65
lconPos A-66
Image 5-153

draw 5-153
image attribute values 5-405, 5-463
Image Data 33-17
IMAGEBUNDLE A-66
Implicit Pointer 1-1
implicit pointer data types 1-5

X-26 PM Programming Reference

In Send Message 8-201
Inflate Rectangle 8-197
information tables

bit map D-1
inheritance 9-1
initialization file H-1
Initialize 8-199
Initialize DDF Area 4-15
initialize Presentation Interface 8-199
Input Hook 10-13
lnputHook 10-13
Insert List Item 4-18
Insert Listbox Item 8-203
interchange file format G-1
Intersect Clip Rectangle 5-155
Intersect Rectangle 8-205
Invalidate Rectangle 8-207
Invalidate Region 8-209
Invert Rectangle 8-211
IPT A-66
Is Child 8-213
Is Control Enabled 8-214
Is Menu Item Checked 8-216
Is Menu Item Enabled 8-218
Is Menu Item Valid 8-220
Is Physical Input Enabled 8-222
Is Rectangle Empty 8-223
Is Thread Active 8-224
Is Window 8-226
items in a dialog template 32-21

J
Japanese fonts 34-23
Journal Playback Hook 10-14
Journal Record Hook 10-15
JournalPlaybackHook 10-14
JournalRecordHook 10-15
JRN_ *values 12-39

K
kanji 34-23
KC_* values 12-24
kerning A-60

device support 2-18
enable A-38
number of pairs A-60
query pairs 5-306

kerning pair table F-8
KERNINGPAIRS A-66
KERNINGPAIRS data structure A-66
Keyboard control codes 12-24
keyboard resources 32-18
keyboard statements

keyboard 32-18
KS_* values 8-176, 8-188

L
Label 5-157, 33-18

generate element for 5-157
language support dialog processing 12-83
language support window processing 12-80
LBB_* values 5-404, 5-462
LCIDT _ * values 5-359

\
J

LCID_ *values 5-252, 5-320, 5-337, 5-443, 5-506, 5-526
LCOLF _*values 5-74, 5-264, 8-494
LCOLOPT _ * 5-349
LCOLOPT_ *values 5-313, 5-333, 5-343
LCOL_ * options 8-494
LCOL_* values 5-74, 5-264
LC_* values 5-194
Left cursor key 8-547
LHANDLE A-66
Line 5-159

draw 5-159
query cosmetic width 5-311
query end 5-308
query geometric width 5-312
query join 5-309
query type 5-310
query width 5-311
set cosmetic width 5-498
set end 5-491
set geometric width 5-500
set join 5-493
set type 5-495
set width 5-498

Line at Current Position 33-18
Line at Given Position 33-18
line attribute values 5-404, 5-462
LINEBUNDLE A-66
LINEEND _ * values 5-308, 5-491
LINEJOIN_ * values 5-309, 5-493
LINETYPE_ *values 5-310, 5-495
LINEWIDTHGEOM_ *values 5-312
LINEWIDTH_* values 5-311, 5-498
list box control data 16-1
list box control styles 16-1
list box control window processing 16-1
LIT_* values 16-6
LM_DELETEALL 16-5
LM_DELETEITEM 16-5
LM_INSERTITEM 16-6
LM_ QUERYITEMCOUNT 16-7
LM_QUERYITEMHANDLE 16-7
LM_QUERYITEMTEXT 16-8
LM_QUERYITEMTEXTLENGTH 16-9
LM_QUERYSELECTION 16-9
LM_QUERYTOPINDEX 16-10
LM_SEARCHSTRING 16-11
LM_SELECTITEM 16-12
LM_SETITEMHANDLE 16-12
LM_SETITEMHEIGHT 16-13
LM_SETITEMTEXT 16-14
LM_SETTOPINDEX 16-14
LN_* values 16-2
Load Accelerator Table 8-234
Load and Process Modal Dialog 8-115
Load Bit Map 5-161
Load Dialog 8-236
Load File Icon 8-239
Load Fonts 5-163
Load Help Table 8-241
Load Library 8-243
Load Menu 8-244
Load Message 8-246
Load Metafile 5-165
Load Pointer 8-248
Load Procedure 8-250
Load Public Fonts 5-167
Load String 8-251

load type options 5-193
Loader Hook 10-16
LoaderHook 10-16
LOADOPTION 32-2
local identifier options 5-193
Lock Visible Regions 8-253
Lock Window Update 8-255
logical color table

create 5-74
logical font

delete 5-106
LONG A-67
LOWER_* values 5-355, 5-541
LSS_* values 16-11
LS_* values 16-1
LT_* values 5-193

M
Make Points 8-257
Make Rectangle 8-258
Map Dialog Points 8-259
Map Window Points 8-260
Marker 5-168

draw a series of 5-213
draw with center at specified position 5-168
query 5-317
query box 5-318
query set 5-320
query symbol 5-317
set 5-502
set box 5-504
set set 5-506

Marker at Current Position 33-18
Marker at Given Position 33-18
marker attribute values 5-405, 5-463
MARKERBUNDLE A-67
MARKSYM_ *values 5-317, 5-502
MATRIXLF A-68
MBB_ *values 5-463
MBID _ * values 8-264
MB_* values 8-262, 8-263
MEMOPTION 32-2
memory

release 8-165
MEMORYITEM A-68
menu control styles 17-1
menu control window processing 17-1
menu item attributes 17-2
menu item styles 17-2
MENU statement 32-11
MENUITEM A-68
menus

create 8-58
create window 8-58
load 8-244
pull-down 32-14
templates 32-15

message
broadcast 8-20
dispatch 8-113

Message Box 8-262
Message Control Hook 10-18
Message Filter Hook 10-20
message processing

introduction 11-1
notation conventions 11-3

Index X-27

message processing (continued)
types 11-1

message queues 1-2
message types 11-1
messages

create queue 8-60
destroy queue 8-104
get one 8-183
peek 8-275
post 8-281
post queue 8-283
queues 1-2
send 8-437
wait for 8-567

metaclass 9-1
Metafile data format G-2
metafile restrictions G-1
metafiles

create new 5-57
delete 5-98
general rules G-1
load 5-165
play 5-193
query bits 5-321
query length 5-323
SAA-conforming 5-460, 5-465, 5-470, 5-472
save 5-389

MIA_* values 17-2
micro-presentation space 5-391, 5-47 4
mini-icon size, how determined A-17
MINIRECORDCORE A-69
MIS_* values 17-2, 32-15
MIT_* values 17-9, 17-12, 17-18
mix

query 5-324
set 5-510
set background 5-415
set foreground 5-510

MIXED strings 34-23
MLECTLDATA A-69
MLEMARGSTRUCT A-70
MLEOVERFLOW A-71
MLE_SEARCHDATA A-71
MLM_CHARFROMLINE 18-8
MLM_CLEAR 18-7
MLM_COPY 18-7
MLM_CUT 18-8
MLM_DELETE 18-9
MLM_DISABLEREFRESH 18-9
MLM_ENABLEREFRESH 18-10
MLM_EXPORT 18-11
MLM_FORMAT 18-11
MLM_IMPORT 18-12
MLM_INSERT 18-13
MLM_LINEFROMCHAR 18-13
MLM_PASTE 18-14
MLM_QUERYBACKCOLOR 18-14
MLM_QUERYCHANGED 18-15
MLM_QUERYFIRSTCHAR 18-16
MLM_QUERYFONT 18-16
MLM_QUERYFORMATLINELENGTH 18-17
MLM_QUERYFORMATRECT 18-18
MLM_QUERYFORMATTEXTLENGTH 18-17
MLM_QUERYIMPORTEXPORT 18-18
MLM_QUERYLINECOUNT 18-19
MLM_QUERYLINELENGTH 18-19
MLM_QUERYREADONL Y 18-20

X-28 PM Programming Reference

MLM_QUERYSEL 18-20
MLM_QUERYSELTEXT 18-21
MLM_QUERYTABSTOP 18-22
MLM_QUERYTEXTCOLOR 18-22
MLM_QUERYTEXTLENGTH 18-23
MLM_QUERYTEXTLIMIT 18-23
MLM_QUERYUNDO 18-24
MLM_QUERYWRAP 18-24
MLM_RESETUNDO 18-25
MLM_SEARCH 18-26
MLM_ SETBACKCOLOR 18-27
MLM_SETCHANGED 18-28
MLM_SETFIRSTCHAR 18-28
MLM_SETFONT 18-29
MLM_SETFORMATRECT 18-30
MLM_SETIMPORTEXPORT 18-31
MLM_SETREADONL Y 18-32
MLM_SETSEL 18-31
MLM_SETTABSTOP 18-33
MLM_SETTEXTCOLOR 18-32
MLM_SETTEXTLIMIT 18-33
MLM_SETWRAP 18-34
MLM_UNDO 18-35
MLS_* values 18-2
MM_DELETEITEM 17-8
MM_ENDMENUMODE 17-9
MM_INSERTITEM 17-9
MM_ISITEMVALID 17-10
MM_ITEMIDFROMPOSITION 17-11
MM_ITEMPOSITIONFROMID 17-11
MM_QUERYITEM 17-12
MM_QUERYITEMATTR 17-13
MM_QUERYITEMCOUNT 17-13
MM_QUERYITEMRECT 17-14
MM_QUERYITEMTEXT 17-15
MM_QUERYITEMTEXTLENGTH 17-15
MM_QUERYSELITEMID 17-16
MM_REMOVEITEM 17-17
MM_SELECTITEM 17-18
MM_SETITEM 17-19
MM_SETITEMATTR 17-20
MM_SETITEMHANDLE 17-20
MM_SETITEMTEXT 17-21
MM_STARTMENUMODE 17-22
modal dialog

load and process 8-115
Modify Path 5-170, 33-19
monochrome devices 5-327
Move 5-173
Move to Next Character 8-268
Move to Previous Character 8-285
MPARAM A-72
MPATH_* values 5-170
MQINFO A-72
MRESULT A-72
MsgCtlHook 10-18
MsgFilterHook 10-20
MSGF _*values 10-20
MS_* values 12-5, 17-1
MTI A-72
multi-line entry field control data 18-2
multi-line entry field control window processing 18-1
multiple-line statements 32-7

ACCEL TABLE 32-9
ASSOCTABLE 32-10
DLGTEMPLATE 32-16
MENU 32-11

multiple-line statements (continued)
STRINGT ABLE 32-7
WINDOWTEMPLATE 32-16

M_WPFileSystem * A-67
M_WPFolder * A-67
M_WPObject * A-67
M_WPPalette * A-67

N
No-Operation 33-19
nonstore attribute for segments

modify (GpiSetSegmentAttrs) 5-539
notation conventions

messages 11-3
notebook control window processing

notification messages 25-3
purpose 25-1
styles 25-1
window messages 25-4

NOTIFYDEL TA A-73
NOTIFYDELTA data structure A-73
NOTIFYRECORDEMPHASIS A-73
NOTIFYRECORDEMPHASIS data structure A-73
NOTIFYRECORDENTER A-7 4
NOTIFYRECORDENTER data structure A-74
NOTIFYSCROLL A-74
NOTIFYSCROLL data structure A-74
NULL 1-1
NULLHANDLE 1-1

0
OBJCLASS A-75
OBJDATA A-75
Object classes 9-2
Offset Clip Region 5-175
Offset Element Pointer 5-177
Offset Rectangle 8-270
Offset Region 5-179
Open Clipboard 8-272
Open Device Context 2-9
open figure 5-20
Open Profile 6-3
Open Segment 5-181
Open Window Device Context 8-273
outline fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Outline Path 5-184, 33-19
owner-notification messages 11-3
OWNERBACKGROUND A-75
OWNERBACKGROUND data structure A-75
OWNERITEM A-76
OWNERITEM data structure 12-75

p

owneritem parameter 12-75, 24-6
WM_DRAWITEM for container control 24-6
WM_DRAWITEM for font dialog 12-75

PACCEL A-76
PACCEL TABLE A-76
page viewport

query 5-330
set 5-516

PAGEINFO A-76
PAGESELECTNOTIFY A-78

paint
begin 8-18
end 8-141

Paint Region 5-186
palette

animate 5-8
create 5-81
delete 5-100
query 5-332
query information 5-333
realize 8-403
select 5-396
set entries 5-518

PALINFO A-78
PANOSE A-78, F-9
PAPSZ A-82
PARAM A-82
PARCPARAMS A-84
PAREABUNDLE A-84
parent/child/owner relationship 32-23
Partial Arc 5-188
Partial Arc at Current Position 33-20
Partial Arc at Given Position 33-20
path

begin 5-19
convert to region 5-191
draw interior 5-142
draw outline 5-184
end 5-132
fill 5-142
modify 5-170

Path to Region 5-191
PATSYM_ *values 5-335, 5-521
pattern

query 5-335
pattern attribute (area) values 5-405, 5-463
patterns

query reference point 5-336
query set 5-337
set 5-521
set reference point 5-524
set set 5-526

PBANDRECT A-84
PBITMAPINFO A-84
PBITMAPINFOHEADER A-84
PBITMAPINFOHEADER2 A-84
PBITMAPINF02 A-84
PBOOKTEXT A-84
PBOOL A-84
PBUFFER A-84
PBUNDLE A-84
PBYTE A-84
PC VKEY 1-1
PCATCHBUF A-85
PCDATE A-85
PCELL A-85
PCH A-85
PCHAR A-85
PCHARBUNDLE A-85
PCLASSDETAILS A-85
PCLASSFIELDINFO A-85
PCLASSINFO A-85
PCNRDRAGINFO A-85
PCNRDRAGINIT A-85
PCNRDRAWITEMINFO A-85
PCNREDITDATA A-85
PCNRINFO A-85

Index X-29

PCOLOR A-85
PCONVCONTEXT A-85
PCPTEXT A-85
PCREATEPARAMS A-85
PCREATESTRUCT A-85
PCTIME A-85
PCURSORINFO A-85
PDDEINIT A-85
PDDESTRUCT A-86
PDELETENOTIFY A-86
PDESKTOP A-86
PDEVOPENDATA A-86
PDEVOPENSTRUC A-86
PDLGTEMPLATE A-86
PDLGTITEM A-86
PDRAGIMAGE A-86
PDRAGINFO A-86
PDRAGITEM A-86
PDRAGTRANSFER A-86
PDRIVDATA A-86
PDRIVPROPS A-86
Peek Message 8-275
pel

query 5-338
set 5-528

PENTRYFDATA A-86
PERRINFO A-86
PERRORID A-86
PESCMODE A-86
PFACENAMEDESC A-86
PFA TTRS A-86
PFFDESCS A-87
PFIELDINFO A-87
PFIELDINFOINSERT A-87
PFILEDLG A-87
PFILEFINDBUF4 A-87
PFIXED A-87
PFN A-87
PFNWP A-87
PFOCAMETRICS type F-2
PFONTDLG A-87
PFONTMETRICS A-87
PGRADIENTL A-87
PHAB A-87
PHBITMAP A-87
PHCINFO A-87
PHDC A-87
PHELPINIT A-87
PHELPSUBTABLE A-87
PHELPTABLE A-87
PHFIND A-87
PHMF A-87
PHMODULE A-87
PHPAL A-87
PHPROGARRAY A-88
PHPROGRAM A-88
PHPS A-88
PHRGN A-88
PHSEM A-88
PHSWITCH A-88
PHWND A-88
PIBSTRUCT A-88
pick aperture

query size 5-341
set size 5-531

PICKAP _*values 5-531
PICKSEL_ * values 5-59, 5-63, 5-67

X-30 PM Programming Reference

PICONINFO A-89
PICONPOS A-89
PIO A-89
pie

segment 5-189
PIMAGEBUNDLE A-89
PIPT A-89
PIX A-89
PKERNINGPAIRS A-89
Place Bitmap Reference 4-5
Place Metafile Reference 4-21
Play Metafile 5-193
PLINEBUNDLE A-89
PLONG A-89
PL_AL TEAED 12-3
PMARGSTRUCT A-89
PMARKERBUNDLE A-89
PMATRIXLF A-89
PMENUITEM A-89
PMF _*values 5-193
PMINIRECORDCORE A-89
PMLE_SEARCHDATA A-89
PMPARAM A-89
PMQINFO A-89
PMRESUL T A-89
PM_Q_* values A-26
PM_* flags 8-275
PM_* names H-1
PM_* values 10-5, 10-13
PNOTIFYDEL TA A-90
PNOTIFYRECORDEMPHASIS A-90
PNOTIFYRECORDENTER A-90
PNOTIFYSCROLL A-90
POBJCLASS A-90
POBJDATA A-90
POBJECTS A-89
Point Arc 5-199
Point In Rectangle 8-289
Point In Region 5-219
Point Visible 5-221
pointer

create 8-64
create indirect 8-66
destroy 8-107
draw 8-124
hide 8-520
implicit 1-1
load 8-248
query handle 8-342
query information 8-343
query position 8-345
set 8-484
set element 5-482
set position 8-486
show 8-520

pointer file format D-2
Pointer-Conversion Procedure 10-3
POINTERINFO A-90
pointing device

capture messages 8-442
POINTL A-90
points A-90

check whether visible 5-221
check whether within region 5-219

Polyfillet 5-201
draw 5-201
sharp 5-204

\
I

J

Polyfillet Sharp 5-204
POLYGON A-91
polygons 33-20

draw a set of 5-207
Polyline 5-209

disjoint 5-211
draw 5-209

Polyline Disjoint 5-211
Polymarker 5-213
Polyspline 5-215
Pop 5-217, 33-21
Pop-up Menu 8-277
Post Device Modes 2-12
Post Drag Message 3-24
Post Message 8-281
Post Queue Message 8-283
POVERFLOW A-91
POWNERBACKGROUND A-91
POWNERITEM A-91
PPAGEINFO A-91
PPAGESELECTNOTIFY A-91
PPALINFO A-89
PPIBSTRUCT A-91
PPID A-89
PPOINTL A-91
PPOINTS A-91
PPOL YGON A-91
PPRDINF03 A-91
PPRDRIVINFO A-91
PPRESPARAMS A-91
PPRINTDEST A-91
PPRINTERINFO A-91
PPRJINF02 A-91
PPRJINF03 A-91
PPROGCATEGORY A-91
PPROGDET AILS A-91
PPROGRAMENTRY A-92
PPROGTITLE A-92
PPROGTYPE A-92
PPRPORTINFO A-92
PPRPORTINF01 A-92
PPRQINF03 A-92
PPRQINF06 A-92
PPRQPROCINFO A-92
PPSZ A-92
PPVOID A-92
PQMOPENDAT A A-92
PQMSG A-92
PQUERYRECFROMRECT A-92
PQUERYRECORDRECT A-92
PRDINF03 A-92
PRDRIVINFO A-93
PRECORDCORE A-93
PRECORDINSERT A-93
PRECTL A-94
predefined control statements 32-24
predefined window classes 32-23
PRENDERFILE A-94
Presentation Interface

initialize 8-199
Presentation Manager

query environment 8-381
query revision level 8-381
query version 8-381

presentation parameters 32-22
presentation space

cache 8-18

presentation space (continued)
cached 15-11
create 5-84
destroy 5-108
get a cache 8-190
micro 5-86, 8-119, 8-123, 8-128, 8-190
normal 8-119, 8-123, 8-128
options 5-84, 5-533
query 5-342
release cache 8-420
reset 5-382
restore 5-384
save 5-391

presentation space options 5-84, 5-533
PRESPARAMS A-94
PrfCloseProfile 6-2
PrfOpenProfile 6-3
PRFPROFILE A-94
PrfQueryProfile 6-5
PrfQueryProfileData 6-7
PrfQueryProfilelnt 6-10
PrfQueryProfileSize 6-12
PrfQueryProfileString 6-14
PrfReset 6-17
PrfWriteProfileData 6-19
PrfWriteProfileString 6-21
PRGB2 A-94
PRGNRECT A-94
PRGN_ * values 5-219
primitives

set attributes for 5-404
PRIM_* values 5-229, 5-271, 5-404, 5-462
PRINTDEST A-94
PRINTERINFO A-95
PRJINF02 A-96
PRJINF03 A-97
procedures 10-1

dialog 10-2
window 10-4

Process Modal Dialog 8-287
profile

query string 6-14
PROGCATEGORY A-99
PROGDETAILS A-99
PROGRAMENTRY A-100
PROGTITLE A-100
PROGTYPE A-100
PROG_* values A-100
prompted entry field control window processing 19-1
PRPORTINFO A-101
PRPORTINF01 A-101
PRQINF03 A-101
PRQINF06 A-103
PRQPROCINFO A-105
PSBCDATA A-105
PSEARCHSTRING A-105
PSFACTORS A-105
PSF_* values 8-169
PSHORT A-105
PSIZEF A-105
PSIZEL A-105
PSLDCDATA A-105
PSTRL A-105
PSTR16 A-105
PSTR32 A-105
PSTR64 A-105
PSTR8 A-105

Index X-31

PSTYLECHANGE A-105
PSWBLOCK A-106
PSWCNTRL A-106
PSWENTRY A-106
PSWP A-106
PSZ A-106
PS_* values 5-84, 5-342, 5-533
PTID A-106
PTRACKINFO A-106
PTREEITEMDESC A-106
PUCHAR A-106
pull-down menus 32-14
PULONG A-106
PUSEITEM A-106
PUSERBUTTON A-106
Push and Set Arc Parameters 33-23
Push and Set Background Color 33-23
Push and Set Background Indexed Color 33-24
Push and Set Background Mix 33-25
Push and Set Character Angle 33-26
Push and Set Character Break Extra 33-26
Push and Set Character Cell 33-27
Push and Set Character Direction 33-28
Push and Set Character Extra 33-28
Push and Set Character Precision 33-29
Push and Set Character Set 33-30
Push and Set Character Shear 33-30
Push and Set Color 33-31
Push and Set Current Position 33-32
Push and Set Extended Color 33-32
Push and Set Fractional Line Width 33-33
Push and Set Indexed Color 33-34
Push and Set Individual Attribute 33-35
Push and Set Line End 33-36
Push and Set Line Join 33-36
Push and Set Line Type 33-37
Push and Set Line Width 33-38
Push and Set Marker Cell 33-39
Push and Set Marker Precision 33-40
Push and Set Marker Set 33-40
Push and Set Marker Symbol 33-41
Push and Set Mix 33-41
Push and Set Model Transform 33-42
Push and Set Pattern Reference Point 33-43
Push and Set Pattern Set 33-44
Push and Set Pattern Symbol 33-44
Push and Set Pick Identifier 33-45
Push and Set Stroke Line Width 33-46
Push and Set Text Alignment 33-47
Push and Set Viewing Window 33-48
PUSHORT A-106
Put Data 5-223
PU_* values 5-84, 5-533
PVIOFONTCELLSIZE A-106
PVIOSIZECOUNT A-106
PVIS_* values 5-221
PVOID A-106
PVSCDATA A-106
PVSDRAGINFO A-106
PVSDRAGINIT A-106
PVSTEXT A-106
PWNDPARAMS A-106
PWPOINT A-106

X-32 PM Programming Reference

Q
QCD_LCT_* values 5-264
QFC_* values 15-16
QF _ * values 5-299
QLCT _ * values 5-313
QMOPENSTRUC A-107
QMSG 11-1, A-108
as_* values 8-352
Query Accelerator Table 8-291
Query Active Window 8-293
Query Anchor Block 8-294
Query Arc Parameters 5-226
Query Atom Length 8-295
Query Atom Name 8-297
Query Atom Usage 8-299
Query Attribute Mode 5-228
Query Attributes 5-229
Query Background Color 5-231
Query Background Mix 5-232
Query Bit-Map Bits 5-233
Query Bit-Map Dimension 5-236
Query Bit-Map Handle 5-239
Query Bit-Map Info Header 5-237
Query Bit-Map Parameters 5-240
Query Boundary Data 5-242
Query Capture 8-302
Query Character Angle 5-244
Query Character Box 5-246
Query Character Break Extra 5-248
Query Character Direction 5-249
Query Character Extra 5-250
Query Character Mode 5-251
Query Character Set 5-252
Query Character Shear 5-253
Query Character String Positions 5-255
Query Character String Positions At 5-257
Query Checkstate of Button 8-300
Query Class Information 8-303
Query Class Name 8-305
Query Class Pointer-Conversion Procedure 8-307
Query Clip Box 5-259
Query Clip Region 5-261
Query Clipboard Data 8-308
Query Clipboard Format Information 8-310
Query Clipboard Owner 8-312
Query Clipboard Viewer 8-313
Query Code Page 5-268, 8-314
Query Code Page List 8-315
Query Color 5-262
Query Color Data 5-264
Query Color Index 5-266
Query Current Position 5-269
Query Cursor Information 8-316
Query Default Arc Parameters 5-270
Query Default Attributes 5-271
Query Default Graphics Character Box 5-275
Query Default Tag 5-277
Query Default 'View Matrix 5-273
Query Default Viewing Limits 5-278
Query Desktop Background 8-317
Query Desktop Window 8-319
Query Device 5-279
Query Device Bit-Map Formats 5-280
Query Device Capabilities 2-15
Query Device Names 2-21
Query Dialog Item Short 8-321

Query Dialog Item Text 8-323
Query Dialog Item Text Length 8-325
Query Draw Control 5-282
Query Drawing Mode 5-284
Query Edit Mode 5-285
Query Element 5-286
Query Element Pointer 5-288
Query Element Type 5-290
Query Face String 5-292
Query Focus 8-327
Query Font Action 5-294
Query Font File Descriptions 5-295
Query Font Metrics 5-297
Query Font Width Table 5-372
Query Fonts 5-299
Query Full Font File Descriptions 5-301
Query Graphics Field 5-303
Query Hardcopy Caps 2-24
Query Help Instance 8-328
Query Initial Segment Attributes 5-304
Query Kerning Pairs 5-306
Query Line End 5-308
Query Line Join 5-309
Query Line Type 5-310
Query Line Width 5-311
Query Line Width Geom 5-312
Query Listbox Item Text 8-331
Query Listbox Item Text Length 8-333
Query Logical Color Table 5-313
Query Logical Font 5-315
Query Marker 5-317
Query Marker Box 5-318
Query Marker Set 5-320
Query Message Position 8-336
Query Message Time 8-338
Query Metafile Bits 5-321
Query Metafile Length 5-323
Query Mix 5-324
Query Model Transform Matrix 5-325
Query Nearest Color 5-327
Query Number Set Identifiers 5-329
Query Object Window 8-340
Query Page Viewport 5-330
Query Palette 5-332
Query Palette Info 5-333
Query Pattern 5-335
Query Pattern Reference Point 5-336
Query Pattern Set 5-337
Query Pel 5-338
Query Pick Aperture Position 5-340
Query Pick Aperture Size 5-341
Query Pointer 8-342
Query Pointer Information 8-343
Query Pointer Position 8-345
Query Presentation Parameter 8-347
Query Presentation Space 5-342
Query Profile 6-5
Query Profile Data 6-7
Query Profile Integer 6-10
Query Profile Size 6-12
Query Profile String 6-14
Query Queue Information 8-350
Query Queue Status 8-352
Query Real Colors 5-343
Query Region Box 5-345
Query Region Rectangles 5-347
Query RGB Color 5-349

Query Segment Attributes 5-351
Query Segment Names 5-353
Query Segment Priority 5-355
Query Segment Transform Matrix 5-357
Query Session Title 8-355
Query Set Identifiers 5-359
Query Stop Draw 5-362
Query Switch Entry 8-357
Query Switch Handle 8-358
Query Switch List 8-360
Query System Atom Table 8-372
Query System Color 8-362
Query System Modal Window 8-364
Query System Pointer 8-365
Query System Value 8-368
Query Tag 5-363
Query Task Title 8-375
Query Task Window Size and Position 8-373
Query Text Alignment 5-364
Query Text Box 5-365
Query the Selected Item in Listbox 8-335
Query Update Rectangle 8-377
Query Update Region 8-379
Query Version 8-381
Query Viewing Limits 5-368
Query Viewing Transform Matrix 5-370
Query Window 8-382
Query Window Device Context 8-384
Query Window Enabled State 8-228
Query Window Handle From Device Context 8-572
Query Window Handle From Identifier 8-574
Query Window Long 8-398
Query Window Model 8-385
Query Window Pointer 8-390
Query Window Pointer-Conversion Procedure 8-397
Query Window Position 8-386
Query Window Process 8-388
Query Window Rectangle 8-392
Query Window Short 8-400
Query Window Showing 8-230
Query Window Text 8-394
Query Window Text Length 8-396
Query Window Visibility 8-232
Query Workplace Object Handle 8-402
QUERYRECFROMRECT A-108
QUERYRECFROMRECT data structure A-108
QUERYRECORDRECT A-109
QUERYRECORDRECT data structure A-109
queue

query information 8-350
query status 8-352

av_* values 8-381
QWL_USER in containers 24-1
QWL_ * values 8-398
aws_* values 8-400
QW_ *Values 8-382

R
radio button 13-1
raster fonts 5-427, 5-430, 5-433, 5-438, 5-441, 5-445
Realize Palette 8-403
RECORDCORE A-110
RECORDINSERT A-111
RECORDINSERT data structure A-111
RECORDITEM A-111
rectangle

Index X-33

rectangle (continued)
calculate frame 8-22
check whether visible 5-376
check whether within region 5-374
compare for equality 8-148
convert to graphic 8-258
copy 8-39
draw border 8-121
draw interior 8-121
exclude from clipping region 5-140
fill 8-154
inflate 8-197
intersect 8-205
intersect clip 5-155
invalidate 8-207
invert 8-211
query if point within 8-289
query update 8-377
set coordinates 8-489
set empty 8-491
subtract 8-538
validate 8-560

Rectangle In Region 5-374
Rectangle Visible 5-376
RECTDIR_* values A-114
RECTL A-112
region

query box 5-345
query rectangles 5-347

regions
check if identical 5-134
check whether point within 5-219
check whether rectangle within 5-374
combine 5-49
create 5-88
destroy 5-110
frame 5-146
invalidate 8-209
move 5-179
offset 5-179
paint 5-186
set 5-536
validate 8-562

Register User Data Type 8-408
Register User Message 8-415
Register User Message Hook 10-21
Register Window Class 8-405
Register Workplace Object Class 8-407
RegisterUserMsg 10-21
Relative Line at Current Position 33-22
Relative Line at Given Position 33-22
Release Hook 8-418
Release Presentation Space 3-44, 8-420
Remove Dynamics 5-378
Remove Presentation Parameter 8-422
Remove Switch Entry 8-424
RENDERFILE A-112
Replace Workplace Object Class 8-426
Request Mutex Semaphore 8-427
reserved messages 12-1
Reset Boundary Data 5-381
reset options 5-194
Reset Presentation Manager 6-17
Reset Presentation Space 5-382
resource

load string from 8-251
resource definitions 32-2

X-34 PM Programming Reference

resource file specification 32-27
resource files

definitions 32-2
introduction 32-1
source file specification 32-27
syntax definitions 32-1

resource script file
specification 32-2

resource script file specification
keyboard resources 32-18
user-defined resources 32-3

resource statements
ACCEL TABLE 32-9
ASSOCTABLE 32-10
dialog template 32-16
directives 32-4
DLGTEMPLATE 32-16
MENU item definition 32-13
MENU statement 32-11
multiple-line 32-7
single line 32-2
STRINGTABLE 32-7
user-defined 32-3
window template 32-16
WINDOWTEMPLATE 32-16

Restore Presentation Space 5-384
Restore Window Position 8-429
RES_* values 5-194
RGB 5-77, A-113
RGB (red-green-blue) 5-264, 5-343, 5-453, 8-362

query color 5-349
RGB2 A-113
RGNRECT A-114
RGN_* values 5-140, 5-155, 5-345, 5-451, 8-379
Right cursor key 8-547
Roman text 5-435
ROP _*values 5-24, 5-112, 5-567
Rotate Transform 5-386
RRGN_* values 5-374
RT_* values 32-27
RUM_* values 8-415
AVIS_* values 5-376

s
SAA-conforming metafiles 5-475
Save Metafile 5-389
Save Presentation Space 5-391
Save Window Position 8-430
SBCDATA A-114
secs 34-23
SBMP _*values 8-194
SBM_QUERYPOS 20-4
SBM_QUERYRANGE 20-4
SBM_SETPOS 20-5
SBM_SETSCROLLBAR 20-6
SBM_SETTHUMBSIZE 20-7
SBS_ *values 20-1
SB_* values 12-38, 12-68, 28-2, 28-5
Scale Matrix 5-393
SCP_* values 5-448
scroll bar control data 20-1
scroll bar control window processing 20-1
scroll bar styles 20-1
Scroll Window 8-432
SC_* values 15-21
sow_* values 5-362, 5-546

SEARCHSTRING A-115
SEARCHSTRING data structure A-115
SEGEM_* values 5-285, 5-480
segment attributes

chained 5-539
detectability 5-539
highlight 5-539
nonstore 5-539
store 5-539
transformability 5-539
visibility 5-539

Segment Characteristics 33-22
segments

add comment 5-51
call matrix 5-31
close current 5-47
correlate 5-67
correlate chain 5-59
correlate section of chain 5-63
delete all 5-104
delete retained 5-102
draw 5-123
draw chain 5-117
draw section of chain 5-121
get graphic data from 5-150
open 5-181
query attributes 5-351
query initial attributes 5-304
query names 5-353
query priority 5-355
query transform matrix 5-357
return last error during drawing 5-138
set attributes 5-538
set initial attributes 5-488
set priority 5-541
set transform matrix 5-543

Select Palette 5-396
Send Drag Message 3-45
Send Message 8-437
Send Message Hook 10-23
Send Message to Dialog Item 8-435
SendMsgHook 10-23
SEPARATOR menu item 32-15
session title

query 8-355
Set Accelerator Table 8-439
Set Active Window 8-441
Set Arc Parameters 5-398, 33-23
Set Attribute Mode 5-401
Set Attributes 5-404
Set Background Color 5-412, 33-23
Set Background Indexed Color 33-24
Set Background Mix 5-415, 33-25
Set Bit Map 5-418
Set Bit-Map Bits 5-420
Set Bit-Map Dimension 5-423
Set Bit-Map Identifier 5-425
Set Capture 8-442
Set Character Angle 5-427, 33-26
Set Character Box 5-430
Set Character Break Extra 5-433, 33-26
Set Character Cell 33-27
Set Character Direction 5-435, 33-28
Set Character Extra 5-438, 33-28
Set Character Mode 5-440
Set Character Precision 33-29
Set Character Set 5-443, 33-30

Set Character Shear 5-445, 33-30
Set Checkstate of Button 8-30
Set Class Message Interest 8-444
Set Class Pointer-Conversion Procedure 8-447
Set Clip Path 5-448, 33-31
Set Clip Region 5-451
Set Clipboard Data 8-449
Set Clipboard Owner 8-452
Set Clipboard Viewer 8-454
Set Code Page 5-456, 8-456
Set Color 5-453, 33-31
Set Color of Text 4-26
Set Current Position 5-458, 33-32
Set Default Arc Parameters 5-460
Set Default Attributes 5-462
Set Default Tag 5-470
Set Default View Matrix 5-467
Set Default Viewing Limits 5-472
Set Desktop Background 8-457
Set Dialog Item Short 8-459
Set Dialog Item Text 8-461
Set Drag Image 3-48
Set Draw Control 5-474
Set Drawing Mode 5-477
Set Edit Mode 5-480
Set Element Pointer 5-482
Set Element Pointer At Label 5-484
Set Extended Color 33-32
Set File Icon 8-463
Set Focus 8-464
Set Fractional Line Width 33-33
Set Graphics Field 5-486
Set Hook 8-466
set identifier

delete 5-106
Set Indexed Color 33-34
Set Individual Attribute 33-35
Set Initial Segment Attributes 5-488
Set Keyboard State Table 8-468
Set Line End 5-491, 33-36
Set Line Join 5-493, 33-36
Set Line Type 5-495, 33-37
Set Line Width 5-498, 33-38
Set Line Width Geom 5-500
Set Listbox Item Text 8-470
Set Marker 5-502
Set Marker Box 5-504
Set Marker Cell 33-39
Set Marker Precision 33-40
Set Marker Set 5-506, 33-40
Set Marker Symbol 33-41
Set Menu Item Text 8-472
Set Message Interest 8-473
Set Message Mode 8-476
Set Metafile Bits 5-508
Set Mix 5-510, 33-41
Set Model Transform 33-42
Set Model Transform Matrix 5-513
Set Multiple Window Positions 8-478
Set Object Data 8-480
Set Owner 8-481
Set Page Viewport 5-516
Set Palette Entries 5-518
Set Parent 8-482
Set Pattern 5-521
Set Pattern Reference Point 5-524, 33-43
Set Pattern Set 5-526, 33-44

Index X-35

Set Pattern Symbol 33-44
Set Pel 5-528
Set Pick Identifier 33-45
Set Pick-Aperture Position 5-530
Set Pick-Aperture Size 5-531
Set Pointer 8-484
Set Pointer Position 8-486
Set Pointing Device Pointer 3-53
Set Presentation Parameter 8-487
Set Presentation Space 5-533
Set Rectangle 8-489
Set Rectangle Empty 8-491
Set Region 5-536
Set Segment Attributes 5-538
Set Segment Boundary 33-45
Set Segment Priority 5-541
Set Segment Transform Matrix 5-543
Set Stop Draw 5-546
Set Stroke Line Width 33-46
Set Synchronization Mode 8-492
Set System Colors 8-494
Set System Modal Window 8-500
Set System Value 8-502
Set Tag 5-548
Set Text Alignment 5-550, 33-47
Set Values in DRAGITEM 3-50
Set Viewing Limits 5-553
Set Viewing Transform 33-48
Set Viewing Transform Matrix 5-555
Set Viewing Window 33-48
Set Window Enabled State 8-135
Set Window Pointer-Conversion Procedure 8-514
Set Window Position 8-506
Set Window Text 8-512
Set Window Word Bits 8-504
Set Window Word Long 8-515
Set Window Word Short 8-517
Set Window Words Pointer 8-510
$FACTORS A-115
SHANDLE A-116
Sharp Fillet at Current Position 33-50
Sharp Fillet at Given Position 33-50
SHE_* values A-101
SHORT A-116
Show Cursor 8-518
Show Pointer 8-520
Show Tracking Rectangle 8-522
Show Window 8-523
Shutdown System 8-525
single-byte character set 1-6
single-byte character sets 34-23
SIZEF A-116
SIZEL A-116
SLDCDATA A-116
SLDCDATA data structure A-116
slider control window processing

data structures 26-3
notification messages 26-4
purpose 26-1
styles 26-1
window messages 26-7

SLM_ADDDETENT 26-7
SLM_QUERYDETENTPOS 26-7
SLM_ QUERYSCALETEXT 26-8
SLM_QUERYSLIDERINFO 26-9
SLM_ QUERYTICKPOS 26-11
SLM_QUERYTICKSIZE 26-11

X-36 PM Programming Reference

SLM_REMOVEDETENT 26-12
SLM_SETSCALETEXT 26-13
SLM_SETSLIDERINFO 26-13
SLM_SETTICKSIZE 26-15
SLS_* values 26-1
SMHSTRUCT A-117
SMIM_ *values 8-444, 8-473
SMI_ * values 8-444, 8-473
SM_QUERYHANDLE 22-3
SM_SETHANDLE 22-4
Sound Alarm 8-11
source resource file 32-27
SPBM_OVERRIDESETLIMITS 21-3
SPBM_QUERYLIMITS 21-4
SPBM_QUERYVALUE 21-4
SPBM_SETARRAY 21-6
SPBM_ SETCURRENTV ALUE 21-6
SPBM_SETLIMITS 21-7
SPBM_SETMASTER 21-8
SPBM_SETTEXTLIMIT 21-9
SPBM_SPINDOWN 21-9
SPBM_SPINUP 21-10
Specify Text Font 4-29
Specify Text Font Style 4-32
spin button control window processing 21-1

notification message 21-2
purpose 21-1
styles 21-1

SplControlDevice 7-2
SplCopyJob 7-5
SplCreateDevice 7-7
SplCreateQueue 7-10
SplDeleteDevice 7-14
SplDeleteJob 7-16
SplDeleteQueue 7-18
SplEnumDevice 7-20
SplEnumDriver 7-23
SplEnumJob 7-26
SplEnumPort 7-29
SplEnumPrinter 7-32
SplEnumQueue 7-35
SplEnumQueueProcessor 7-39
SPLERR A-117
SplHoldJob 7-42
SplHoldQueue 7-44
SplPurgeQueue 7-46
SplQmAbort 7-48
SplQmAbortDoc 7-49
SplQmClose 7-50
SplQmEndDoc 7-51
SplQmOpen 7-53
SplQmStartDoc 7-55
SplQmWrite 7-57
SplQueryDevice 7-59
SplQueryJob 7-62
SplQueryQueue 7-66
SplReleaseJob 7-70
SplReleaseQueue 7-72
SplSetDevice 7-7 4
SplSetJob 7-77
SplSetQueue 7-81
SPL_* values 7-51, 7-53
Spool File Close 7-50
spooler

control device 7-2
copy job 7-5
create device 7-7

\
)

spooler (continued)
create queue 7-10
delete device 7-14
delete job 7-16
delete queue 7-18
enumerate device 7-20
enumerate driver 7-23, 7-29
enumerate job 7-26
enumerate printer 7-32
enumerate queue 7-35
enumerate queue processor 7-39
hold job 7-42
hold queue 7-44
purge queue 7-46
query device 7-59
query job 7-62
query queue 7-66
queue manager abort 7-48
queue manager abort document 7-49
queue manager close 7-50
queue manager end document 7-51
queue manager open 7-53
queue manager start document 7-55
queue manager write 7-57
release job 7-70
release queue 7-72
set device 7-74
set job information 7-77
set queue 7-81

Spooler Control Device 7-2
Spooler Copy Job 7-5
Spooler Create Device 7-7
Spooler Create Queue 7-10
Spooler Delete Device 7-14
Spooler Delete Job 7-16
Spooler Delete Queue 7-18
Spooler Enumerate Device 7-20
Spooler Enumerate Driver 7-23
Spooler Enumerate Job 7-26
Spooler Enumerate Port 7-29
Spooler Enumerate Print Destinations 7-32
Spooler Enumerate Queue 7-35
Spooler Enumerate Queue Processor 7-39
Spooler File Abort 7-48
Spooler File Abort Document 7-49
Spooler File End Document 7-51
Spooler File Open 7-53
Spooler File Start Document 7-55
Spooler File Write 7-57
Spooler Hold Job 7-42
Spooler Hold Queue 7-44
Spooler Purge Queue 7-46
Spooler Query Device 7-59
Spooler Query Job 7-62
Spooler Query Queue 7-66
Spooler Release Job 7-70
Spooler Release Queue 7-72
Spooler Set Device 7-74
Spooler Set Job 7-77
Spooler Set Queue 7-81
SPTR_ * values 8-365
SS_* values 22-1
standard bit-map formats D-1
Standard File Dialog 8-152
Standard File Dialog Default Procedure 8-87
Standard Font Dialog 8-163
Standard Font Dialog Default Procedure 8-88

Start Timer 8-529
static control data 22-2
static control styles 22-1
static control window processing 22-1
Stop Timer 8-531
storage mapping of data types 1-6
store attribute for segments

modify (GpiSetSegmentAttrs) 5-539
Store Window Position 8-533
string

convert to uppercase 8-556
string handle

create 3-5
delete 3-10, 3-11

strings
load from resource 8-251
substitute 8-536

STRINGTABLE statement 32-7
Stroke Path 5-558
STRUCT A-117
structures A-1
STR16 A-117
STR32 A-117
STR64 A-117
STR8 A-117
STYLECHANGE A-117
Subclass Window 8-534
submenus 32-14
Substitute Strings 8-536
Subtract Rectangle 8-538
suppression options 5-194
SUP_* values 5-194
SV_* values

effect on container icon size A-17
effect on container mini-icon size A-17

SWBLOCK A-118
SWCNTRL A-118
SWENTRY A-119
Switch To Program 8-540
SWL_ *values A-119
SWP A-119
SWP_* values 8-386, 8-506, 12-69, A-120
SW_* options 8-432
SYSCLR_ * indexes 8-494
SYSINF _ * values 8-381
system color

query 8-362
set 8-494

system pointer
query 8-365

system value
query 8-368
set 8-502

T
tag

query 5-363
query default 5-277
set 5-548

TA_* values 5-550, 5-551
TBM_QUERYHILITE 23-3
TBM_SETHILITE 23-3
templates

dialog 32-19
format 32-15
menus 32-15

Index X-37

Terminate 8-542
Terminate Application 8-544
text

draw 8-126
query alignment 5-364
query box 5-365
set alignment 5-550

TF_*Values A-121
ThunkProc 10-3
TIO A-120
timer

start 8-529
title bar

control data 23-1
control window processing 23-1
style 23-1

TRACKINFO A-120
tracking rectangle

hide 8-522
show 8-522

transform matrix
query model 5-325
rotate 5-386
scale. 5-393
set model 5-513
translate 5-560

transformability attribute for segments
modify (GpiSetSegmentAttrs) 5-539

transforms
set viewing 5-555

TRANSFORM_* values 5-31, 5-386, 5-393, 5-467, 5-513,
5-543, 5-555, 5-560

Translate Accelerator 8-550
Translate Character with Code Page 8-40
Translate Matrix 5-560
Translate String with Code Page 8-42
TREEITEMDESC A-122
triplets G-2
TXTBOX_ * values 5-366

u
UCHAR A-122
ULONG A-122
Union Rectangle 8-552
Unload Fonts 5-563
Unload Public Fonts 5-565
Up cursor key 8-547
update region

exclude 8-150
query 8-379

Update Window 8-554
Uppercase Character 8-558
Uppercase String 8-556
USEITEM A-122
user-defined resources 32-3
USERBUTTON A-122
USHORT A-123

v
Validate Rectangle 8-560
Validate Region 8-562
value set control window processing

data structures 27-4
notification messages 27-5
purpose 27-1

X-38 PM Programming Reference

value set control window processing (continued)
styles 27-1
window messages 27-8

Verify Given Rendering Mechanism and Format 3-57
Verify Native Rendering Mechanism and Format 3-55
Verify True Type of Dragged Object 3-59
Verify Type of Dragged Object 3-61
Verify Types 3-63
VGA 2-19
VIA_* Vt[ilues

querying item attributes 27-9
setting item attributes 27-15

view matrix
query default 5-273

viewing limits
query 5-368
query default 5-278
set 5-553

viewing transform
set default 5-467

viewing transforms
query 5-370

VIEWITEM A-123
viewports

query page 5-330
VIOFONTCELLSIZE A-123
VIOSIZECOUNT A-123
virtual key definitions 1-1
visibility attribute for segments

modify (GpiSetSegmentAttrs) 5-539
VK_* values 8-176, A-1
VM_QUERYITEM 27-8
VM_QUERYITEMATTR 27-9
VM_QUERYMETRICS 27-11
VM_QUERYSELECTEDITEM 27-12
VM_SELECTITEM 27-12
VM_SETITEM 27-13
VM_SETITEMATTR 27-14
VM_SETMETRICS 27-16
VOID A-123
VSCDATA A-123
VSCDATA data structure A-123
VSDRAGINFO A-123
VSDRAGINFO data structure A-123
VSDRAGINIT A-124
VSTEXT A-124
VS_* values 27-1

w
Wait Event Semaphore 8-565
Wait Message 8-567
Wait MuxWait Semaphore or Message 8-569
WA_* values 8-11
wcs_* values 8-35
WC_* classes 8-398
we_* values 11-2, 23-1
WinAddAtom 8-7
WinAddSwitchEntry 8-9
WinAlarm 8-11
WinAssociateHelplnstance 8-13
WinBeginEnumWindows 8-16
WinBeginPaint 8-18
WinBroadcastMsg 8-20
WinCalcFrameRect 8-22
WinCallMsgFilter 8-24
WinCancelShutdown 8-26

WinChangeSwitchEntry 8-28
WinCheckButton 8-30
WinCheckMenultem 8-32
WinCloseClipbrd 8-34
WinCompareStrings 8-35
WinCopyAccelTable 8-37
WinCopyRect 8-39
WinCpTranslateChar 8-40
WinCpTranslateString 8-42
WinCreateAccelTable 8-44
WinCreateAtomTable 8-46
WinCreateCursor 8-48
WinCreateDlg 8-50
WinCreateFrameControls 8-52
WinCreateHelplnstance 8-54
WinCreateHelpTable 8-56
WinCreateMenu 8-58
WinCreateMsgQueue 8-60
WinCreateObject 8-62
WinCreatePointer 8-64
WinCreatePointerlndirect 8-66
WinCreateStdWindow 8-68
WinCreateSwitchEntry 8-72
WinCreateWindow 8-74
WinDdelnitiate 8-78
WinDdePostMsg 8-80
WinDdeRespond 8-83
WinDefDlgProc 8-85
WinDefFileDlgProc 8-87
WinDefFontDlgProc 8-88
WinDefWindowProc 8-89
WinDeleteAtom 8-91
WinDeletelboxltem 8-93
WinDeletelibrary 8-95
WinDeleteProcedure 8-96
WinDeregisterObjectClass 8-97
WinDestroyAccelTable 8-98
WinDestroyAtomTable 8-99
WinDestroyCursor 8-101
WinDestroyHelplnstance 8-102
WinDestroyMsgQueue 8-104
WinDestroyObject 8-106
WinDestroyPointer 8-107
WinDestroyWindow 8-109
WinDismissDlg 8-111
WinDispatchMsg 8-113
WinDlgBox 8-115
window

create 8-74
destroy 8-109
query 8-382
query active 8-293
query class name 8-305
query desktop 8-319
query device context for 8-384
query handle from device context 8-572
query pointer 8-390
query position 8-386
query size 8-386
query text 8-394
query text length 8-396
query unsigned long integer value of 8-398
query unsigned short integer value of 8-400
register class of 8-405
scroll 8-432
set message interest 8-473
set multiple positions 8-478

window (continued)
set owner 8-481
set position 8-506
set to system modal 8-500
update 8-554

window class
set message interest 8-444

window class styles 12-1
Window From Point 8-576
window list

remove entry 8-424
Window List title

query 8-375
Window Procedure 10-4
window processing

button control 13-1
combo box control 19-1
container control 24-1
control 11-2
default 11-1, 12-1
entry field control 14-1
frame control 15-1
language support 12-80
list box control 16-1
menu control 17-1
multi-line entry field control 18-1
notebook control 25-1
prompted entry field control 19-1
scroll bar control 20-1
slider control 26-1
spin button control 21-1
static control 22-1
value set control 27-1

Window Start Application 8-526
windows

create standard 8-68
create standard frame controls 8-52
define procedure 10-4
enable update 8-137
find descendant 8-576
get maximum position 8-179
get minimum position 8-181
get multiples from identities 8-266
invoke default procedure 8-89
is handle valid 8-226
map points 8-260
open device context 8-273
process message box 8-262
query class information 8-303
query descendancy 8-213
query enabled state 8-228

. query handle from identifier 8-574
query is child 8-213
query object 8-340
query rectangle 8-392
query system modal 8-364
query visibility 8-232
set active 8-441
set enabled state 8-135
set parent 8-482
set text 8-512
set visibility state 8-137, 8-523
show 8-523
start flashing 8-158
stop flashing 8-158

WINDOWTEMPLATE statement 32-16
WinDrawBitmap 8-118

Index X-39

WinDrawBorder 8-121
WinDrawPointer 8-124
WinDrawText 8-126
WinEmptyClipbrd 8-130
WinEnableControl 8-131
WinEnableMenultem 8-132
WinEnablePhyslnput 8-134
WinEnableWindow 8-135
WinEnableWindowUpdate 8-137
WinEndEnumWindows 8-139
WinEndPaint 8-141
WinEnumClipbrdFmts 8-143
WinEnumDlgltem 8-145
WinEnumObjectClasses 8-147
WinEqualRect 8-148
WinExcludeUpdateRegion 8-150
WinFileDlg 8-152
WinFillRect 8-154
WinFindAtom 8-156
WinFlashWindow 8-158
WinFocusChange 8-160
WinFontDlg 8-163
WinFreeErrorlnfo 8-165
WinFreeFileDlglist 8-166
WinFreeFilelcon 8-168
WinGetClipPS 8-169
WinGetCurrentTime 8-171
WinGetDlgMsg 8-172
WinGetErrorlnfo 8-175
WinGetKeyState 8-176
WinGetlastError 8-178
WinGetMaxPosition 8-179
WinGetMinPosition 8-181
WinGetMsg 8-183
WinGetNextWindow 8-186
WinGetPhysKeyState 8-188
WinGetPS 8-190
WinGetScreenPS 8-192
WinGetSysBitmap 8-194
WinlnflateRect 8-197
Winlnitialize 8-199
WinlnSendMsg 8-201
Winlnsertlboxltem 8-203
WinlntersectRect 8-205
WinlnvalidateRect 8-207
WinlnvalidateRegion 8-209
WinlnvertRect 8-211
WinlsChild 8-213
WinlsControlEnabled 8-214
WinlsMenultemChecked 8-216
WinlsMenultemEnabled 8-218
WinlsMenultemValid 8-220
WinlsPhyslnputEnabled 8-222
WinlsRectEmpty 8-223
WinlsThreadActive 8-224
WinlsWindow 8-226
WinlsWindowEnabled 8-228
WinlsWindowShowing 8-230
WinlsWindowVisible 8-232
WinloadAccelTable 8-234
WinloadDlg 8-236
WinloadFilelcon 8-239
WinloadHelpTable 8-241
Winloadlibrary 8-243
WinloadMenu 8-244
WinloadMessage 8-246
WinloadPointer 8-248

X-40 PM Programming Reference

WinloadProcedure 8-250
WinloadString 8-251
WinlockVisRegions 8-253
WinlockWindowUpdate 8-255
WinMakePoints 8-257
WinMakeRect 8-258
WinMapDlgPoints 8-259
WinMapWindowPoints 8-260
WinMessageBox 8-262
WinMultWindowFromlDs 8-266
WinNextChar 8-268
WinOffsetRect 8-270
WinOpenClipbrd 8-272
WinOpenWindowDC 8-273
WinPeekMsg 8-275
WinPopupMenu 8-277
WinPostMsg 8-281
WinPostQueueMsg 8-283
WinPrevChar 8-285
WinProcessDlg 8-287
WinPtlnRect 8-289
WinQueryAccelTable 8-291
WinQueryActiveWindow 8-293
WinQueryAnchorBlock 8-294
WinQueryAtomlength 8-295
WinQueryAtomName 8-297
WinQueryAtomUsage 8-299
WinQueryButtonCheckstate 8-300
WinQueryCapture 8-302
WinQueryClasslnfo 8-303
WinQueryClassName 8-305
WinQueryClassThunkProc 8-307
WinQueryClipbrdData 8-308
WinQueryClipbrdFmtlnfo 8-310
WinQueryClipbrdOwner 8-312
WinQueryClipbrdViewer 8-313
WinQueryCp 8-314
WinQueryCplist 8-315
WinQueryCursorlnfo 8-316
WinQueryDesktopBkgnd 8-317
WinQueryDesktopWindow 8-319
WinQueryDlgltemShort 8-321
WinQueryDlgltemText 8-323
WinQueryDlgltemTextlength 8-325
WinQueryFocus 8-327
WinQueryHelplnstance 8-328
WinQuerylboxCount 8-330
WinQuerylboxltemText 8-331
WinQuerylboxltemTextlength 8-333
WinQuerylboxSelectedltem 8-335
WinQueryMsgPos 8-336
WinQueryMsgTime 8-338
WinQueryObject 8-402
WinQueryObjectWindow 8-340
WinQueryPointer 8-342
WinQueryPointerlnfo 8-343
WinQueryPointerPos 8-345
WinQueryPresParam 8-347
WinQueryQueuelnfo 8-350
WinQueryQueueStatus 8-352
WinQuerySessionTitle 8-355
WinQuerySwitchEntry 8-357
WinQuerySwitchHandle 8-358
WinQuerySwitchlist 8-360
WinQuerySysColor 8-362
WinQuerySysModalWindow 8-364
WinQuerySysPointer 8-365

\
\

)

WinQuerySystemAtomTable 8-372
WinQuerySysValue 8-368
WinQueryTaskSizePos 8-373
WinQueryTaskTitle 8-375
WinQueryUpdateRect 8-377
WinQueryUpdateRegion 8-379
WinQueryVersion 8-381
WinQueryWindow 8-382
WinQueryWindowDC 8-384
WinQueryWindowModel 8-385
WinQueryWindowPos 8-386
WinQueryWindowProcess 8-388
WinQueryWindowPtr 8-390
WinQueryWindowRect 8-392
WinQueryWindowText 8-394

· WinQueryWindowTextLength 8-396
WinQueryWindowThunkProc 8-397
WinQueryWindowULong 8-398
WinQueryWindowUShort 8-400
WinRealizePalette 8-403
WinRegisterClass 8-405
WinRegisterObjectClass 8-407
WinRegisterUserDatatype 8-408
WinRegisterUserMsg 8-415
WinReleaseHook 8-418
WinReleasePS 8-420
WinRemovePresParam 8-422
WinRemoveSwitchEntry 8-424
WinReplaceObjectClass 8-426
WinRequestMutexSem 8-427
WinRestoreWindowPos 8-429
WinSaveWindowPos 8-430
WinScrollWindow 8-432
WinSendDlgltemMsg 8-435
WinSendMsg 8-437
WinSetAccelTable 8-439
WinSetActiveWindow 8-441
WinSetCapture 8-442
WinSetClassMsglnterest 8-444
WinSetClassThunkProc 8-447
WinSetClipbrdData 8-449
WinSetClipbrdOwner 8-452
WinSetClipbrdViewer 8-454
WinSetCp 8-456
WinSetDesktopBkgnd 8-457
WinSetDlgltemShort 8-459
WinSetDlgltemText 8-461
WinSetFilelcon 8-463
WinSetFocus 8-464
WinSetHook 8.:.466
WinSetKeyboardStateTable 8-468
WinSetLboxltemText 8-470
WinSetMenultemText 8-472
WinSetMsglnterest 8-473
WinSetMsgMode 8-476
WinSetMultWindowPos 8-478
WinSetObjectData 8-480
WinSetOwner 8-481
WinSetParent 8-482
WinSetPointer 8-484
WinSetPointerPos 8-486
WinSetPresParam 8-487
WinSetRect 8-489
WinSetRectEmpty 8-491
WinSetSynchroMode 8-492
WinSetSysColors 8-494
WinSetSysModalWindow 8-500

WinSetSysValue 8-502
WinSetWindowBits 8-504
WinSetWindowPos 8-506
WinSetWindowPtr 8-510
WinSetWindowText 8-512
WinSetWindowThunkProc 8-514
WinSetWindowULong 8-515
WinSetWindowUShort 8-517
WinShowCursor 8-518
WinShowPointer 8-520
WinShowTrackRect 8-522
WinShowWindow 8-523
WinShutdownSystem 8-525
WinStartApp 8-526
WinStartTimer 8-529
WinStopTimer 8-531
WinStoreWindowPos 8-533
WinSubclassWindow 8-534
WinSubstituteStrings 8-536
WinSubtractRect 8-538
WinSwitchToProgram 8-540
WinTerminate 8-542
WinTerminateApp 8-544
WinTrackRect 8-546
WinTranslateAccel 8-550
WinUnionRect 8-552
WinUpdateWindow 8-554
WinUpper 8-556
WinUpperChar 8-558
WinValidateRect 8-560
WinValidateRegion 8-562
WinWaitEventSem 8-565
WinWaitMsg 8-567
WinWaitMuxWaitSem 8-569
WinWindowFromDC 8-572
WinWindowFromlD 8-574
WinWindowFromPoint 8-576
WM_ACTIVATE 8-109, 8-508, 12-3
WM_ACTIVATE (in Frame Controls) 15-6
WM_ACTIVATE (Language Support Dialog) 12-83
WM_ACTIVATE (Language Support Window) 12-80
WM_ADJUSTFRAMEPOS 15-6
WM_ADJUSTWINDOWPOS 8-508, 12-5
WM_APPTERMINATENOTIFY 12-4
WM_BEGINDRAG 12-6
WM_BEGINSELECT 12-7
WM_BUTION1CLICK 12-7
WM_BUTION1DBLCLK 12-10
WM_BUTION1DBLCLK (in Frame Controls) 15-7
WM_BUTION1DBLCLK (in Multiline Entry Fields) 18-36
WM_BUTION1DOWN 12-13
WM_BUTION1DOWN (in Frame Controls) 15-8
WM_BUTION1DOWN (in Multiline Entry Fields) 18-36
WM_BUTION1MOTIONEND 12-14
WM_BUTION1MOTIONSTART 12-14
WM_BUTION1UP 12-19
WM_BUTION1UP (in Frame Controls) 15-8
WM_BUTION1UP (in Multiline Entry Fields) 18-37
WM_BUTION2CLICK 12-8
WM_BUTION2DBLCLK 12-11
WM_BUTION2DBLCLK (in Frame Controls) 15-7
WM_BUTION2DOWN 12-15
WM_BUTION2DOWN (in Frame Controls) 15-8
WM_BUTION2MOTIONEND 12-16
WM_BUTION2MOTIONSTART 12-16
WM_BUTION2UP 12-20
WM_BUTION2UP (in Frame Controls) 15-9

Index X-41

WM_BUTTON3CLICK 12-9
WM_BUTTON3DBLCLK 12-12
WM_BUTTON3DOWN 12-17
WM_BUTTON3MOTIONEND 12-18
WM_BUTTON3MOTIONSTR 12-18
WM_BUTTON3UP 12-21
WM_CALCFRAMERECT 12-22
WM_CALCFRAMERECT (in Frame Controls) 15-9
WM_CALCVALIDRECTS 12-22
WM_CHAR 12-24
WM_CHAR (Default Dialogs) 12-70
WM_CHAR (in Entry Fields) 14-12
WM_CHAR (in Frame Controls) 15-9
WM_CHAR (in List Boxes) 16-15
WM_CHAR (in Multiline Entry Fields) 18-37
WM_CHAR (in Notebook Controls) 25-18
WM_CHAR (in Slider Controls) 26-16
WM_CHAR (in Value Set Controls) 27-17
WM_CHORD 12-25
WM_CLOSE 12-26
WM_CLOSE (Default Dialogs) 12-71
WM_CLOSE (in Frame Controls) 15-10
WM_COMMAND 11-3, 12-27, 15-10
WM_COMMAND (Default Dialogs) 12-71
WM_COMMAND (in Button Controls) 13-3
WM_COMMAND (in Menu Controls) 17-4
WM_CONTEXTMENU 12-28
WM_CONTROL 11-3, 12-28
WM_CONTROL (in Button Controls) 13-3
WM_CONTROL (in Combination Boxes) 19-3
WM_CONTROL (in Container Controls) 24-4
WM_CONTROL (in Entry Fields) 14-3
WM_CONTROL (in List Boxes) 16-2
WM_CONTROL (in Multiline Entry Fields) 18-3
WM_ CONTROL (in Notebook Controls) 25-3
WM_ CONTROL (in Slider Controls) 26-4
WM_CONTROL (in Spin Button Controls) 21-2
WM_CONTROL (in Value Set Controls) 27-5
WM_CONTROL (Language Support Dialog) 12-83
WM_ CONTROL (Language Support Window) 12-80
WM_CONTROLPOINTER 12-29
WM_CONTROLPOINTER (in Container Controls) 24-5
WM_CONTROLPOINTER (in Notebook Controls) 25-19
WM_CONTROLPOINTER (in Slider Controls) 26-4
WM_CONTROLPOINTER (in Value Set Controls) 27-6
WM_CREATE 12-29
WM_DDE_ACK 30-1
WM_DDE_ADVISE 30-2
WM_DDE_DATA 30-3
WM_DDE_EXECUTE 30-3
WM_DDE_INITIATE 30-5
WM_DDE_INITIATEACK 30-5
WM_DDE_POKE 30-6
WM_DDE_REQUEST 30-7
WM_DDE_TERMINATE 30-8
WM_DDE_UNADVISE 30-9
WM_DESTROY 8-109, 12-30
WM_DESTROYCLIPBOARD 28-1
WM_DRAWCLIPBOARD 28-2
WM_DRAWITEM 12-31
WM_DRAWITEM (in Container Controls) 24-6
WM_DRAWITEM (in Font Dialog) 12-75
WM_DRAWITEM (in Frame Controls) 15-10
WM_DRAWITEM (in List Boxes) 16-3
WM_DRAWITEM (in Menu Controls) 17-4
WM_DRAWITEM (in Notebook Controls) 25-20

X-42 PM Programming Reference

WM_DRAWITEM (in Slider Controls) 26-5
WM_DRAWITEM (in Value Set Controls) 27-6
WM_ENABLE 12-31
WM_ENABLE (in Button Controls) 13-10
WM_ENABLE (in Multiline Entry Fields) 18-40
WM_ENDDRAG 12-32
WM_ENDSELECT 12-33
WM_ERASEBACKGROUND 15-10
WM_ERASEWINDOW 12-33
WM_ERROR 12-34
WM_FLASHWINDOW 15-11
WM_FOCUSCHANGE 12-34
WM_FOCUSCHANGE (in Frame Controls) 15-12
WM_FORMATFRAME 12-35
WM_FORMATFRAME (in Frame Controls) 15-12
WM_HELP 11-3, 12-36
WM_HELP (in Button Controls) 13-4
WM_HELP (in Menu Controls) 17-5
WM_HITTEST 12-37
WM_HSCROLL 12-38
WM_HSCROLL (in Horizontal Scroll Bars) 20-3
WM_HSCROLLCLIPBOARD 28-2
WM_INITDLG 12-38
WM_INITDLG (Default Dialogs) 12-71
WM_INITMENU 12-39
WM_INITMENU (in Frame Controls) 15-13
WM_INITMENU (in Menu Controls) 17-5
WM_JOURNALNOTIFY 12-39
WM_MATCHMNEMONIC 12-40
WM_MATCHMNEMONIC (Default Dialogs) 12-71
WM_MATCHMNEMONIC (in Button Controls) 13-10
WM_MATCHMNEMONIC (in Static Controls) 22-4
WM_MEASUREITEM 12-41
WM_MEASUREITEM (in Frame Controls) 15-13
WM_MEASUREITEM (in List Boxes) 16-4
WM_MEASUREITEM (in Menu Controls) 17-5
WM_MENUEND 12-41
WM_MENUEND (in Menu Controls) 17-6
WM_MENUSELECT 12-42
WM_MENUSELECT (in Frame Controls) 15-13
WM_MENUSELECT (in Menu Controls) 17-6
WM_MINMAXFRAME 12-42
WM_MINMAXFRAME (in Frame Controls) 15-4
WM_MOUSEMOVE 12-43
WM_MOUSEMOVE (in Multiline Entry Fields) 18-40
WM_MOVE 8-508, 12-44
WM_NEXTMENU 12-44
WM_NEXTMENU (in Frame Controls) 15-14
WM_NEXTMENU (in Menu Controls) 17-7
WM_NULL 12-45
WM_OPEN 12-45
WM_OWNERPOSCHANGE 15-14
WM_PACTIVATE 12-46
WM_PAINT 12-47
WM_PAINT (in Frame Controls) 15-15
WM_PAINT (Langauge Support Window) 12-80
WM_PAINT (Language Support Dialog) 12-83
WM_PAINTCLIPBOARD 28-3
WM_PCONTROL 12-47
WM_PPAINT 12-48
WM_PPAINT (Language Support Dialog) 12-84
WM_PPAINT (Language Support Window) 12-81
WM_PRESPARAMCHANGED 12-48
WM_PRESPARAMCHANGED (in Container

Controls) 24-52
WM_PRESPARAMCHANGED (in Notebook

Controls) 25-21

WM_PRESPARAMCHANGED (in Slider Controls) 26-17
slider control 26-17
value set control 27-18

WM_PRESPARAMCHANGED (in Value Set
Controls) 27-18

WM_PSETFOCUS 12-49
WM_PSIZE 12-49
WM_PSYSCOLORCHANGE 12-50
WM_ QUERY ACCEL TABLE 12-50
WM_QUERYBORDERSIZE 15-15
WM_QUERYCONVERTPOS 12-51
WM_QUERYCONVERTPOS (in Button Controls) 13-10
WM_QUERYCONVERTPOS (in Entry Fields) 14-13
WM_QUERYCONVERTPOS (in Frame Controls) 15-16
WM_QUERYCONVERTPOS (in List Boxes) 16-15
WM_QUERYCONVERTPOS (in Menu Controls) 17-23
WM_QUERYCONVERTPOS (in Scroll Bars) 20-8
WM_QUERYCONVERTPOS (in Static Controls) 22-5
WM_QUERYCONVERTPOS (in Title Bar Controls) 23-4

WM_QUERYDLGCODE 12-72
WM_QUERYFOCUSCHAIN 15-16
WM_ QUERYFRAMECTLCOUNT 15-17
WM_QUERYFRAMEINFO 15-18
WM_OUERYHELPINFO 12-52
WM_QUERYICON 15-18
WM_ OUERYTRACKINFO 12-52
WM_QUERYWINDOWPARAMS 12-53
WM_QUERYWINDOWPARAMS (in Button

Controls) 13-11
WM_OUERYWINDOWPARAMS (in Entry Fields) 14-13

WM_QUERYWINDOWPARAMS (in Frame
Controls) 15-19

WM_QUERYWINDOWPARAMS (in List Boxes) 16-16
WM_QUERYWINDOWPARAMS (in Menu Controls) 17-23

WM_QUERYWINDOWPARAMS (in Multiline Entry
Fields) 18-41

WM_QUERYWINDOWPARAMS (in Scroll Bars) 20-8
WM_QUERYWINDOWPARAMS (in Slider Controls) 26-18

slider control 26-18
value set control 27-19

WM_QUERYWINDOWPARAMS (in Static Controls) 22-5
WM_QUERYWINDOWPARAMS (in Title Bars) 23-4

WM_QUERYWINDOWPARAMS (in Value Set
Controls) 27-19

WM_QUIT 12-53
WM_REALIZEPALETTE 12-54
WM_RENDERALLFMTS 8-109, 28-4
WM_RENDERFMT 28-4
WM_ SAVEAPPLICATION 12-55
WM_SEM1 12-55
WM_SEM2 12-56
WM_SEM3 12-56
WM_SEM4 12-57
WM_SETACCEL TABLE 12-57
WM_SETBORDERSIZE 15-19
WM_SETFOCUS 12-58
WM_SETFOCUS (Language Support Dialog) 12-84
WM_SETFOCUS (Language Support Window) 12-81
WM_SETHELPINFO 12-58
WM_SETICON 15-20
WM_SETSELECTION 12-59
WM_SETWINDOWPARAMS 12-60
WM_SETWINDOWPARAMS (in Button Controls) 13-11

WM_SETWINDOWPARAMS (in Entry Fields) 14-13
WM_SETWINDOWPARAMS (in Frame Controls) 15-20

WM_SETWINDOWPARAMS (in List Boxes) 16-16
WM_SETWINDOWPARAMS (in Menu Controls) 17-23

WM_SETWINDOWPARAMS (in Multiline Entry
Fields) 18-42

WM_SETWINDOWPARAMS (in Scroll Bars) 20-8
WM_SETWINDOWPARAMS (in Slider Controls) 26-19

slider control 26-19
value set control 27-20

WM_SETWINDOWPARAMS (in Static Controls) 22-5
WM_SETWINDOWPARAMS (in Title Bar Controls) 23-4

WM_SETWINDOWPARAMS (in Value Set Controls) 27-20
WM_SHOW 12-60
WM_SINGLESELECT 12-61
WM_SIZE 8-508, 12-61
WM_SIZE (in Frame Controls) 15-20
WM_SIZE (in Notebook Controls) 25-22
WM_SIZE (in Value Set Controls) 27-20
WM_SIZE (Language Support Dialog) 12-84
WM_SIZE (Language Support Window) 12-81
WM_SIZECLIPBOARD 28-5
WM_SUBSTITUTESTRING 12-62
WM_SYSCOLORCHANGE 12-63
WM_SYSCOLORCHANGE (Language Support

Dialog) 12-85
WM_SYSCOLORCHANGE (Language Support

Window) 12-82
WM_SYSCOMMAND 12-63, 13-4, 15-21, 17-7
WM_SYSCOMMAND (in Title Bar Controls) 23-2
WM_SYSVALUECHANGED 12-64
WM_TEXTEDIT 12-65
WM_TIMER 12-65
WM_TRACKFRAME 12-66
WM_TRACKFRAME (in Frame Controls) 15-22
WM_TRACKFRAME (in Title Bar Controls 23-2
WM_ TRANSLATEACCEL 12-67
WM_ TRANSLATEACCEL (in Frame Controls) 15-23
WM_ TRANSLATEMNEMONIC 12-67
WM_TRANSLATEMNEMONIC (in Frame Controls) 15-23
WM_UPDATEFRAME 12-68
WM_UPDATEFRAME (in Frame Controls) 15-23
WM_ VSCROLL 12-68
WM_VSCROLL (in Vertical Scroll Bars) 20-3
WM_ VSCROLLCLIPBOARD 28-5
WM_WINDOWPOSCHANGED 12-69
WM_* messages 8-352
WNDPARAMS A-125
WndProc 10-4
World Coordinates Bit Bit 5-567
wpAddClockAlarmPage 9-53
wpAddClockDateTimePage 9-54
wpAddClockView1 Page 9-55
wpAddClockView2Page 9-56
wpAddCountryDatePage 9-57
wpAddCountryNumbersPage 9-58
wpAddCountryPage 9-59
wpAddCountryTimePage 9-60
wpAddDesktopLockup1Page 9-61
wpAdd Desktoplockup2Page 9-62
wpAddDesktopLockup3Page 9-63
wpAddDiskDetailsPage 9-64
wpAddFileMenuPage 9-65
wpAddFileTypePage 9-66
wpAddFile1Page 9-67
wpAddFile2Page 9-68
wpAddFile3Page 9-69
wpAddFolderBackgroundPage 9-70
wpAddFolderlncludePage 9-71
wpAddFolderSortPage 9-72
wpAddFolderView1 Page 9-73

Index X-43

wpAddFolderView2Page 9-74
wpAddFolderView3Page 9-75
wpAddKeyboardMappingsPage 9-76
wpAddKeyboardSpecialNeedsPage 9-77
wpAddKeyboardTimingPage 9-78
wpAddMouseMappingsPage 9-79
wpAddMouseTimingPage 9-80
wpAddMouseTypePage 9-81
wpAddObjectGeneralPage 9-82
wpAddProgramAssociationPage 9-83, 9-84
wpAddProgramPage 9-85, 9-86
wpAddProgramSessionPage 9-87, 9-88
wpAddSettingsPages 9-89
wpAddSoundWarningBeepPage 9-90
wpAddSystemConfirmationPage 9-91
wpAddSystemlogoPage 9-92
wpAddSystemPrintScreenPage 9-93
wpAddSystemWindowPage 9-94
wpAddToObjUseList 9-95
wpAllocMem 9-97
WPClock * A-125
wpClose 9-98
wpclsCreateDefau ltT em plates 9-240
wpclsFindObjectEnd 9-241
wpclsFindObjectFirst 9-242
wpclsFindObjectNext 9-244
wpclslnitData 9-246
wpclsMakeAwake 9-247
wpclsNew 9-249
wpclsQueryDefaultHelp 9-251
wpclsQueryDefaultView 9-252
wpclsQueryDetails 9-253
wpclsQueryDetailslnfo 9-254
wpclsQueryEditString 9-257
wpclsQueryError 9-258
wpclsQueryFolder 9-259
wpclsQuerylcon 9-260
wpclsQuerylconData 9-261
wpclsQuerylnstanceFilter 9-262
wpclsQuerylnstanceType 9-263
wpclsQueryObject 9-264
wpclsQueryOpenFolders 9-265
wpclsQuerySettingsPageSize 9-266
wpclsQueryStyle 9-267
wpclsQueryTitle 9-268
wpclsSetError 9-269
wpclsUnlnitData 9-270
wpCnrlnsertObject 9-99
wpCnrRemoveObject 9-101
wpCnrSetEmphasis 9-102
wpConfirmDelete 9-103
wpCopiedFromTemplate 9-104
wpCopyObject 9-105
WPCountry * A-125
wpCreateFromTemplate 9-106
wpCreateShadowObject 9-107
WPDataFile * A-125
wpDelete 9-108
wpDeleteAllJobs 9-109
wpDeleteContents 9-110
wpDeleteFromObjUselist 9-111
wpDeleteJob 9-112
WPDesktop * A-125
WPDisk * A-125
wpDisplayHelp 9-113
wpDoesObjectMatch 9-114
wpDragCell 9-115

X-44 PM Programming Reference

wpDraggedOverObject 9-116
wpDragOver 9-118
wpDrop 9-119
wpDroppedOnObject 9-120
wpEditCell 9-121
wpEndConversation 9-122
WPFileSystem * A-125
wpFilterPopupMenu 9-123
wpFindUseltem 9-125
WPFolder * A-125
wpFormatDragltem 9-126
wpFree 9-127
wpFreeMem 9-128
wpHide 9-129
wpHideFldrRunObjs 9-130
wpHoldJob 9-131
wpHoldPrinter 9-132
wplnitData 9-133
wplnsertPopupMenultems 9-134
wplnsertSettingsPage 9-136
wplsCurrentDesktop 9-137
WPJob * A-126
WPKeyboard * A-126
wpMenultemHelpSelected 9-138
wpMenultemSelected 9-139
wpModifyPopupMenu 9-140
WPMouse * A-126
wpMoveObject 9-141
WPM_* values A-125
WPObject * A-126
WPOINT A-126
wpOpen 9-142
wpPaintCell 9-143
WPPalette * A-126
wpPopulate 9-144
WPPrinter * A-126
wpPrintJobNext 9-145
wpPrintMetaFile 9-146
wpPrintObject 9-147
wpPrintPifFile 9-148
wpPrintPlainTextFile 9-149
wpPrintPrinterSpecificFile 9-150
wpPrintUnknownFile 9-151
WPProgramFile * A-126
WPProgramGroup * A-126
WPProgram * A-126
wpQueryAssociationFilter 9-152, 9-153
wpQueryAssociationType 9-154, 9-155
wpQueryComputerName 9-156
wpQueryConfirmations 9-157
wpQueryContent 9-158
wpQueryDefaultHelp 9-159
wpQueryDefaultView 9-160
wpQueryDetailsData 9-161
wpQueryError 9-163
wpQueryFldrAttr 9-164
wpQueryFldrDetailsClass 9-165
wpQueryFldrFlags 9-166
wpQueryFldrFont 9-167
wpQueryHandle 9-168
wpQuerylcon 9-169
wpQuerylconData 9-170
wpQuerylogicalDrive 9-171
wpQueryNextlconPos 9-172
wpQueryPaletteHelp 9-173
wpQueryPalettelnfo 9-174
wpQueryPrinterName 9-175

\

)

wpQueryProgDetails 9-176, 9-177
wpQueryRealName 9-178
wpQueryRootFolder 9-179
wpQueryShadowedObject 9-180
wpQueryStyle 9-181
wpQueryTitle 9-182

. wpQueryType 9-183
wpRedrawCell 9-184
wpRefresh 9-185
wpRegisterView 9-186
wpReleaseJob 9-187
wpReleasePrinter 9-188
wpRender 9-189
wpRenderComplete 9-190
wpRestore 9-191
wpRestoreData 9-192
wpRestorelong 9-193
wpRestoreState 9-194
wpRestoreString 9-195
WPRootFolder * A-126
wpSaveData 9-196
wpSaveDeferred 9-197
wpSavelmmediate 9-198
wpSavelong 9-199
wpSaveState 9-200
wpSaveString 9-201
wpScanSetupString 9-202
wpSetAssociationFilter 9-204, 9-205
wpSetAssociationType 9-206, 9-207
wpSetComputerName 9-208
wpSetDefaultHelp 9-209
wpSetDefaultPrinter 9-210
wpSetDefaultView 9-211
wpSetError 9-212
wpSetFldrAttr 9-213
wpSetFldrDetailsClass 9-214
wpSetFldrFlags 9-215
wpSetFldrFont 9-216
wpSetlcon 9-217
wpSetlconData 9-218
wpSetNextlconPos 9-219
wpSetPalettelnfo 9-220
wpSetPrinterName 9-221
wpSetProgOetails 9-222, 9-223
wpSetRealName 9-224
wpSetShadowTitle 9-225
wpSetStyle 9-226
wpSetTitle 9-227
wpSetType 9-228
wpSetup 9-229
wpSetupCell 9-233
WPShadow * A-126
wpShowPalettePointer 9-234
WPSound * A-126
WPSpooler * A-126
WPSRCLASSBLOCK* A-126
wpStartJobAgain 9-235
wpSwitchTo 9-236
WPSystem * A-127
wpUnlnitData 9-238
wpUnlockObject 9-237
WRECT A-127
Write Profile Data 6-19
Write Profile String 6-21
WS_ *values 8-190, 12-2

x
XYF_* values A-128
XYWINSIZE A-127

Index X-45

®IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

---- ------- - - ---- - -- - ---- -- ------- ------'®

© IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6264

Sl0G-6264-00

111111 lllU 1111111
Pl0G6264

