

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~----~~~~~~~~~~~

Before using this information and the product it supports, be sure to read the general information under

"Notices" on page iii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are Inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not

allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

ltis possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must

not be construed to mean that IBM intends to announce such IBM products, programming, or services in your

country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

IBM may h~ve patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM

Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which

illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without

payment tc IBM, for the purposes of developing, using, marketing or distributing application programs conforming to

the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must

include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1986, 1991. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

CP Programming Reference

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only IBM's product, program, or service
may be used. Any functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights or other legally protectible rights may be used instead of the IBM
product, program, or service. Evaluation and verification of operation in conjunction with other
products, programs, or services, except those expressly designated by IBM, are the user's
responsibility.

Trademarks
The following terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM
Corporation in the United States and/or other countries:

AT
Common User Access
CUA
IBM
IBM PCAT
Operating System/2
OS/2
Personal System/2
Presentation Manager
PS/2
SAA
Systems Application Architecture

The following terms, denoted by a double asterisk(**) in this publication, are trademarks of another
company as follows:

Intel
80386
80386SX
80387
80387 NPX
80486

Intel Corporation
Intel Corporation
Intel Corporation
Intel Corporation
Intel Corporation
Intel Corporation

Double-Byte Character Set (DBCS)
Throughout this publication, you will see references to specific values for character strings. The
values are for the single-byte character set (SBCS). If you use the double-byte character set (DBCS),
note that one DBCS character equals two SBCS characters.

Notices iii

iv CP Programming Reference

Preface

About this Book
The OS/2 2.0 Control Program Programming Reference is a detailed technical reference for
application programmers creating programs using OS/2 system functions. These functions are also
called the control program functions. The control program functions carry out such tasks as
allocating memory and performing file operations.

The reference does not give guidance on how to use the functions, nor does it contain information
about how the functions are related to each other. It is intended to be used in conjunction with the
OS/2 2.0 Programming Guide.

Prerequisite Knowledge
The OS/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which OS/2 programs can be written. The information in the
Technical Library assumes that you are new to programming with OS/2 and the Presentation
Manager. You shou.ld understand the OS/2 services available to users.

Related Publications
The OS/2 2.0 Getting Started manual introduces the programming concepts that you should
understand before you begin developing applications to run on an OS/2 system, and describes the
set of books, tools, programming aids, and sample programs that make up the OS/2 2.0 Developer's
Toolkit.

Organization of this Book
Chapter 1, "Introduction" on page 1-1

This chapter contains information about:

• Notation conventions
• Conventions used in Function Descriptions
• Programming Considerations

Chapter 2, "Control Program Functions" on page 2-1
This chapter describes the control program functions.

Appendix A, "Data Types" on page A-1
This appendix lists the data types for the control program functions.

Appendix B, "Errors" on page B-1
This appendix lists the errors for the control program functions.

Appendix C, "System Exceptions" on page C-1
This appendix describes the system exceptions.

Appendix D, "DosDebug Commands" on page D-1
This appendix describes the DosDebug commands.

Appendix E, "DosDebug Notifications" on page E-1
This appendix describes the DosDebug notifications.

"Glossary" on page X-1

"Index" on page X-15

Preface v

vi CP Programming Reference

Contents

Chapter 1. Introduction .
Conventions Used in Function Descriptions
Programming Considerations .

Chapter 2. Control Program Functions

1-1
1-1
1-2

DosAcknowledgeSignalException - Acknowledge Signal Exception
2-1
2-2
2-4
2-6
2-9

DosAddMuxWaitSem - Add MuxWait Semaphore
DosAllocMem - Allocate a Private Memory Object Memory
DosAllocSharedMem - Allocate a Shared Memory Object .
DosAsyncTimer - Start an Asynchronous Timer
DosBeep - Generate Sound from the Speaker .
DosCallNPipe - Perform Procedure Call Transaction
DosCancellockRequest - Cancel an Outstanding DosSetFilelocks Request
DosClose - Close a Handle to a File, Pipe, or Device
DosCloseEventSem - Close Event Semaphore .
DosCloseMutexSem - Close Mutex Semaphore .
DosCloseMuxWaitSem - Close MuxWait Semaphore
DosCloseQueue - Close Queue .
DosCloseVDD - Close a Virtual Device Driver Handle
DosConnectNPipe - Connect Named Pipe
DosCopy - Copy a File or Subdirectory
DosCreateDir - Create a Directory
DosCreateEventSem - Create Event Semaphore .
DosCreateMutexSem - Create Mutex Semaphore
DosCreateMuxWaitSem - Create MuxWait Semaphore
DosCreateNPipe - Create Named Pipe
DosCreatePipe - Create Unnamed Pipe
DosCreateQueue - Create Queue .
DosCreateThread - Create an Asynchronous Thread
DosDebug - Enable the Calling Program to Control Another Program for Debugging
DosDelete - Remove a File Name from a Directory
DosDeleteDir - Delete a Directory
DosDeleteMuxWaitSem - Delete MuxWait Semaphore
DosDevConfig - Get Information about Attached Devices
DosDevlOCtl - Perform Control Function on a Device Specified by an Opened Device Handle
DosDisConnectNPipe - Disconnect Named Pipe
DosDupHandle - Get a New Handle for an Open File
DosEditName - Edit File and Directory Name
DosEnterCritSec - Disable Thread Switching
DosEnterMustComplete - Enter Must Complete
DosEnumAttribute - Identify Names and Lengths of Extended Attributes
DosErrClass - Provide More Information about Return Values
DosError - Disables or Enables Error Notification to End User
DosExecPgm - Execute Another Program as a Child Process
DosExit - Issued When a Thread Finishes Executing .
DosExitCritSec - Restore Normal Thread Dispatching for Current Process
DosExitlist - Maintain a List of Routines that Execute when the Current Process Ends .. .
DosExitMustComplete - Exit Must Complete
DosFindClose - Close a Handle to a Find Request
DosFindFirst - Find the First File Object
DosFindNext - Find the Next Set of File Objects
DosForceDelete - Remove a File Name from a Directory
DosFreeMem - Free a Private or Shared Memory Object
DosFreeModule - Frees the Reference to the Dynamic Link Module
DosFreeResource - Free a Resource .
DosFSAttach - Attach a Device .
DosFSCtl - Communicate with a File System
DosGetDateTime - Get Current Date and Time
DosGetlnfoBlocks - Get the Addresses of Information Blocks

Contents

2-12
2-15
2-16
2-19
2-22
2-24
2-25
2-26
2-28
2-30
2-31
2-33
2-36
2-38
2-40
2-42
2-45
2-49
2-51
2-53
2-56
2-59
2-61
2-63
2-65
2-67
2-70
2-72
2-75
2-78
2-80
2-82
2-85
2-87
2-89
2-95
2-97
2-98

2-101
2-103
2-105
2-110
2-113
2-115
2-117
2-119
2-120
2-123
2-127
2-129

vii

DosGetMessage - Retrieve a Message .
DosGetNamedSharedMem - Obtain Access to a Named Shared Memory Object
DosGetResource - Return the Address of the Resource Object
DosGetSharedMem - Obtain Access to a Shared Memory Object
DosGiveSharedMem - Give Another Process Access to a Shared Memory Object
DoslnsertMessage - Insert Variable Text-string Information into a Message
DosKillProcess - Flag a Process to Terminate
DosKillThread - Allow a Thread to End another Thread
DosLoadModule - Load a Dynamic Link Module
DosM1:1pCase - Perform Case Mapping ..
DosMove - Move a File Object
DosOpen - Open a File
DosOpenEventSem - Open Event Semaphore
DosOpenMutexSem - Open Mutex Semaphore
DosOpenMuxWaitSem - Open MuxWait Semaphore
DosOpenQueue - Open Queue
DosOpenVDD - Open a Virtual Device Driver
DosPeekNPipe - Peek Named Pipe
DosPeekQueue - Peek Queue .
DosPhysicalDisk - Obtain Information about Partitionable Disks
DosPostEventSem - Post Event Semaphore
DosPurgeQueue - Purge Queue
DosPutMessage - Sends a Message to an Output File or Device
DosQueryAppType - Return the Application Type
DosQueryCollate - Obtain a Collating Sequence Table from the Country File
DosQueryCp - Query Current Process Code Page .
DosQueryCtrylnfo - Obtain Country Dependent Formatting Information
DosQueryCurrentDir - Get the Full Path Name of the Current Directory
DosQueryCurrentDisk - Get the Current Default Drive
DosQueryDBCSEnv - Obtain a DBCS Environmental Vector
DosQueryEventSem - Query Event Semaphore .
DosQueryFHState - Query File Handle State
DosQueryFilelnfo - Query File Information
DosQueryFSAttach - Query Attached File System
DosQueryFSlnfo - Query File System Information
DosQueryHType - Query Handle Type
DosQueryMem - Obtain Information about a Range of Pages
DosQueryMessageCp - Retrieve a Message File List of Code Pages and Language

Identifiers .
DosQueryModuleHandle - Return the Handle of a Dynamic Link Module Previouly Loaded
DosQueryModuleName - Return Fully Qualified Name with Referenced Module Handle
DosQueryMutexSem - Query Mutex Semaphore
DosQueryMuxWaitSem - Query MuxWait Semaphore
DosQueryNPHState - Query Named Pipe Handle State
DosQueryNPipelnfo - Query Named Pipe Information
DosQueryNPipeSemState - puery Named Pipe Operations
DosQueryPathlnfo - Query Path Information
DosQueryProcAddr - Return the Address of the Specified Procedure within a Dynamic Link

Module
DosQueryProcType - Return Procedure Type within a Dynamic Link Module
DosQueryQueue - Query Queue .
DosQueryResourceSize - Return the size of the Specified Resource Object
DosQuerySyslnfo - Return Values of Static System Variables
DosQueryVerify - Return the State of the Verification Flag
DosRaiseException - Raise Exception
DosRead - Read from a File, Pipe, or Device to a Buffer
DosReadQueue - Read Queue
DosReleaseMutexSem - Release Mutex Semaphore ..
DosRequestMutexSem - Request Mutex Semaphore ..
DosRequestVDD - Request Virtual Device Driver Services
DosResetBuffer - Reset Buffer
DosResetEventSem - Reset Event Semaphore
DosResumeThread - Restart a Thread

viii CP Programming Reference

2-131
2-135
2-137
2-139
2-141
2-144
2-147
2-149
2-151
2-153
2-156
2-158
2-164
2-166
2-168
2-170
2-172
2-174
2-177
2-181
2-184
2-186
2-188
2-190
2-192
2-194
2-196
2-199
2-201
2-203
2-206
2-208
2-211
2-214
2-217
2-220
2-222

2-225
2-229
2-231
2-233
2-235
2-238
2-241
2-244
2-247

2-250
2-252
2-254
2-256
2-259
2-262
2-263
2-265
2-268
2-272
2-273
2-275
2-277
2-279
2-281

DosScanEnv - Search an Environment Segment for an Environment Variable

DosSearchPath - Search Path

DosSelectSession - Select Foreground Session

DosSendSignalException - Send Signal Exception

DosSetCurrentDir - Define Current Directory

DosSetDateTime - Set Current Date and Time

DosSetDefaultDisk - Set Default Drive

DosSetExceptionHandler - Set Exception Handler

DosSetFHState - Set the State of a Specified File Handle .

DosSetFilelnfo - Set File Information

DosSetFilelocks - Lock and Unlock a Range of ari Open File

DosSetFilePtr - Move the Read/Write Pointer

DosSetFileSize - Change the Size of a File

DosSetFSlnfo - Set Information for a File System Device

DosSetMaxFH - Define the Maximum Number of File Handles

DosSetMem - Set a Range of Pages within a Memory Object

DosSetNPHState - Set Named Pipe Handle State

DosSetNPipeSem - Set Named Pipe Semaphore

DosSetPathlnfo - Set Information for a File or Directory

DosSetPriority - Change the Base Priority

DosSetProcessCp - Allow a Process to Set Its Code Page

DosSetRelMaxFH - Adjust the Maximum Number of File Handles

DosSetSession - Set Session Status

DosSetSignalExceptionFocus - Set Signal Exception Focus

DosSetVerify - Set Write Verification

DosShutdown - Shut Down the System

DosSleep - Delay Process Execution

DosStartSession - Start Session
DosStartTimer - Start an Asychronous Timer

DosStopSession - Stop Session

DosStopTimer - Stop an Asynchronous Timer

DosSubAllocMem - Allocate a Block of Memory from a Memory Pool

DosSubFreeMem - Free Suballocated Block of Memory

DosSubSetMem - Set a Memory Pool

DosSubUnsetMem - End the Use of a Memory Pool

DosSuspendThread - Suspend Execution of Another Thread

DosTransactNPipe - Perform Transaction on a Named Pipe

DosUnsetExceptionHandler - Unset Exception Handler

DosUnwindException - Unwind Exception

DosWaitChild - Place Current Thread in a Wait State Until Child Process Ends

DosWaitEventSem - Wait Event Semaphore

DosWaitMuxWaitSem - Wait MuxWait Semaphore

DosWaitNPipe - Wait Named Pipe Instance

DosWaitThread - Place Current Thread into a Wait State

DosWrite - Write to a File from a Buffer
DosWriteQueue - Write Queue

Appendix A. Data Types

Appendix B. Errors . . .

Appendix C. System Exceptions . .

System Exception Descriptions ...

Appendix D. DosDebug Commands

Appendix E. DosDebug Notifications

Glossary

Index ..

2-282
2-284
2-287
2-289
2-291
2-293
2-295
2-296
2-298
2-301
2-304
2-309
2-312
2-314
2-316
2-317
2-320
2-322
2-324
2-327
2-329
2-331
2-333
2-336
2-338
2-339
2-341
2-343
2-351
2-353
2-355
2-357
2-359
2-361
2-364
2-366
2-368
2-371
2-373
2-375
2-379
2-381
2-384
2-386
2-388
2-391

A-1

B-1

C-1
C-3

D-1

E-1

X-1

X-15

Contents ix

x CP Programming Reference

Chapter 1. Introduction

The purpose of this reference is to provide information about control program functions, parameters,
return codes, and constants of the OS/2* 2.0 operating system. This chapter provides information
about the notation conventions and function descriptions used in this reference.

The functions can be used in full-screen and Presentation Manager· sessions to perform basic
operating-system functions, such as file input and output, memory allocation, and thread and process
creation, control, and communication.

An example in C language is shown at the end of each function.

Conventions Used in Function Descriptions
The documentation of each function contains these sections:

Function name
The function name is listed in alphabetical order at the top of each page, followed by a brief
description of the function.

Parameters
Each parameter is listed with its C language data type, parameter type, and a brief description.

• All data types are written in uppercase. A data type of 'Pxxxxxxx' implicitly defines a
pointer to the data type 'xxxxxxx'.

The term NULL applied to a parameter indicates the presence of the parameter, but with
no value.

• There are three parameter types:

Input
Specified by the programmer.

Output
Returned by the operating system.

lnpuUOutput
Specified by the programmer and modified by the operating system.

• A brief description is provided with each parameter. Where appropriate, restrictions are
also included. In some cases, the parameter points to a structure.

Returns
A list of possible return codes or errors (when appropriate) is included in this section. Some
functions do not have return codes. Refer to Appendix 8, "Errors" on page 8-1 for a complete
list of all return codes and their descriptions.

Remarks
This section contains additional information about the function, when required.

Related Functions
This List shows the functions (if any) that are related to the function being described.

Example Code
An example is shown in C language for each function.

Programming Note: The functions in this book are named in mixed-case for readability, but are
known to the system as uppercase character strings. If you are using a compiler that
generates a mixed-case external name, you should code the functions in uppercase.

• Trademark of the IBM Corporation.

Chapter 1. Introduction 1-1

Programming Considerations
The Presentation Manager component of the Operating System/2* system is based on the IBM*
Systems Application Architecture· (SAA*) Common Programming Interface - a software interface for
the design and development of applications.

The Presentation Manager component implements the Common User Access· (CUA*) interface, which
you can use to attain consistency in the appearance and behavior of you applications on IBM
Personal System/2* (PS/2*) systems.

The operating system supports the addressing capabilities of the Intel** 80386**, 80386SX**, 80387**,
80387 NPX**, and 80486** processors, with page-level memory protection. One page is 4KB (KB
equals 1024 bytes) of contiguous physical memory.

•• Trademark of the Intel Corporation.

1-2 CP Programming Reference

Chapter 2. Control Program Functions

Chapter 2. Control Program Functions 2-1

DosAcknowledgeSignalException
Acknowledge Signal Exception

#define INCL_DOSEXCEPTIONS

APIRET DosAcknowledgeSlgnalExceptlon (ULONG ulSlgnalNumber)

DosAcknowledgeSignalException indicates that a process wants to receive further signals.

Parameters
ulSlgnalNumber (ULONG) - input

The number of the signal to be acknowledged. Valid signals are:

Number
1
3
4

Returns

Signal
XCPT _SIGNAL_INTR
XCPT _SIGNAL_KILLPROC
XCPT _SIGNAL_BREAK

Return Code.

DosAcknowledgeSignalException returns the following values:

0 NO_ERROR
209 ERROR_INVALID_SIGNAL_NUMBER

Remarks
DosAcknowledgeSignalException is used to tell the system that the process wishes to receive further
signal exceptions.

This function may be used by any thread in the process, but will only affect thread 1.

See Appendix C, "System Exceptions" on page C-1 for a detailed list of the system exceptions.

Related Functions
• DosEnterMustComptete
• DosExitMustComplete
• DosRaiseException
• DosSendSignalException
• DosSetExceptionHandler
• DosSetSignalExceptionFocus
• DosUnsetExceptionHandler
• DosUnwindException

2'-2 CP Programming Reference

DosAcknowledgeSignalException -
Acknowledge Signal Exception

Example Code
This example shows how a thread can indicate that it wants to receive new signals. Typically, this
function would be issued from within a signal handling routine.

#define INCL_DOSEXCEPTIONS /* Exception values */
#include <os2.h>
#include <stdio.h>

ULONG ulSignalNum; /* Number of signal to be acknowledged */
APIRET re; /* Return code */

ulSignalNum = XCPT_SIGNAL_INTR;
/* Register for new Ctrl-C signals */

re= DosAcknowledgeSignalException(ulSignalNum);

if (re != e)
{

printf(11 DosAcknowledgeSignalException error: return code= %ld 11
,

re);
}

Chapter 2. Control Program Functions 2-3

DosAddMuxWaitSem
Add MuxWait Semaphore

#define INCL_DOSSEMAPHORES

APIRET DosAddMuxWaltSem (HMUX hmux, PSEMRECORD ppSemRec)

DosAddMuxWaitSem adds a mutex semaphore or an event semaphore to a muxwait-semaphore list.

Parameters
hmux (HMUX) - input

The handle of the muxwait semaphore that is to receive the additional semaphore.

ppSemRec (PSEMRECORD) - input

A pointer to the semaphore record that is to be added to the muxwait list.

Returns
Return Code.

DosAddMuxWaitSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID_PARAMETER
100 ERROR_TOO_MANY_SEMAPHORES
105 ERROR_SEM_OWNER_DIED
284 ERROR_DUPLICATE_HANDLE
292 ERROR_ WRONG_ TYPE

Remarks
The Semaph.C sample program demonstrates the use of mutex, event, and muxwait semaphores. In
the application, several threads are sharing access to the same resource:

• A mutex (mutual exclusion) semaphore is used to ensure that only one thread at a time has
access to the resource.

• An event semaphore is used to signal a thread to give up the resource. The event can be posted
by the user, or posted by the application at fixed time intervals.

• A muxwait (multiple wait) semaphore is used to check for a stop event or a user signal to give
up the resource.

The Semapti.C sample program is in the C:\TOOLKT20\C\SAMPLES\SEMAPH directory.

Related Functions
• DosCloseMutexSem
• DosCreateMuxWaitSem
• DosDeleteMuxWaitSem
• DosOpenMuxWaitSem
• DosQueryMuxWaitSem
• DosWaitMuxWaitSem

2-4 CP Programming Reference

DosAddMuxWaitSem
Add MuxWait Semaphore

Example Code
This example adds a new event semaphore to an existing muxwait semaphore. Assume that the
handle of the muxwait semaphore has been placed into hmux already. Assume that the handle of the
event semaphore has been placed into hev already, and that the corresponding user identifier value
has been placed into ulUser.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

/* Muxwait semaphore handle */ HMUX
SEMRECORD

hmux;
SemRec; /* Muxwait semaphore list entry to add

HEV
ULONG
APIRET

hev;
ulUser;
re;

to semaphore list */
/* Event semaphore handle */
/* User sempahore ID value */
/* Return code */

SemRec.hsemCur = (PVOID) hev; /* Initialize the semaphore */
SemRec.ulUser = ulUser; /* list entry to pass to */

/* DosAddMuxWait */

re= DosAddMuxWaitSem(hmux, &SemRec);

if (re != 0)
{

printf("DosAddMuxWaitSem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-5

DosAllocMem
Allocate a Private Memory Object Memory

#define INCL_DOSMEMMGR

APIRET DosAllocMem (PPVOID ppBaseAddress, ULONG ulOb)ectSlze,
ULONG ulAllocationFlags)

DosAllocMem allocates a private memory object within the virtual-address space.

Parameters
ppBaseAddress (PPVOID) - output

A pointer to a variable that will receive the base address of the allocated private memory object.

ulObJectSlze (ULONG) - input

A value specifying the size (in bytes) of the private memory object to allocate. The size is

rounded up to the next page-size boundary.

ulAllocatlonFlags (ULONG) - input

A set of flags describing the allocation attributes and desired access protection for the private

memory object.

Allocation Attributes

• If the PAG_COMMIT bit (Ox00000010) is set, all pages in the private memory object are

initially committed.

• If the OBJ_ TILE bit (Ox00000040) is set, the private memory object must be allocated in the

first 512MB of virtual-address space, with 16-bit selectors mapping the memory object.

The 16-bit selectors are allocated to map the 32-bit object at 64KB boundaries. The figure below

shows how the 16-bit alias selectors map the 32-bit object.

32-bit
Off set

32-bit
Object

16-bit alias
Selectors

BaseAddress+eeeKB+--------------+ <----- Sel
I I
I I

BaseAddress+064KB+--------------+ <----- Sel+Hugelnc
I I
I I

BaseAddress+l28KBI--------------+ <----- Sel+Hugelnc*2
I I
I I

BaseAddress+192KB+--------------+ <----- Sel+Hugelnc*3
I I
I I

Hugelnc is the huge increment used for DosAllocHuge.

Desired Access Protection

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed pages in the

private memory object is desired.

• If the PAG_READ bit (Ox00000001) is set, read access is desired.

• If the PAG_WRITE bit (Ox00000002) is set, write access is desired.

2-6 CP Programming Reference

DosAllocMem
Allocate a Private Memory Object Memory

• If the PAG_GUARD bit (Ox00000008) is set, access to the committed pages in the private
memory object causes a "guard page entered" condition to be raised in the subject process.

• At least one of the bits PAG_READ, PAG_WRITE, or PAG_EXECUTE must be set. All other
bits must be clear.

Returns
Return Code.

DosAllocMem returns the following values:

0 NO_ERROR
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID_PARAMETER
95 ERROR_INTERRUPT

Remarks
DosAllocMem can be used to reserve, or reserve and commit, linear address space for a private
memory object.

The operating system allocates a range of private pages large enough to fulfill the specified
allocation request from the private virtual-address space of the subject process. The base address
of the object is returned in the BaseAddress parameter.

The allocated memory object is rounded up to a multiple of 4KB in size.

The committed memory allocated by DosAllocMem can be swapped.

Any access protection can be applied to committed pages within a private memory object.
Committed pages are initially allocated and backed by demand pages. The first attempt to read or
write the page causes a page of zeros to be created.

If a failure occurs during the allocation, no pages are allocated, and an appropriate error code is
returned.

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies
both read and execute access.

The guard-page attribute is intended to provide automatic stack-growth and stack-limit checking. An
application may also use it in other data structures.

Reserved pages that are not committed are given an access protection of "no access".

Related Functions
• DosAllocSharedMem
• DosFreeMem

Chapter 2. Control Program Functions 2-7

DosAllocMem
Allocate a Private Memory Object Memory

Example Code
This example allocates a private memory object within the virtual address space.

#define INCL_DOSMEMMGR /* Memory Manager values */
#include <os2.h>
#include <stdio.h>
#include <bsememf .h> /* Get flags for memory management */

PVOID BaseAddress; /* Pointer to the base address of the
allocated memory object */

ULONG Objectsize; /* Size in bytes of the
memory object */

ULONG AllocationFlags; /* Flags describing characteristics
of the memory object */

APIRET re; /* Return code */

Objectsize = 6000; /* Ask for a memory object of 6000 */
/* bytes, this size will be */
/* rounded up to 8KB */

AllocationFlags = PAG_WRITE I PAG_READ;
/* Pennit read and write access to */
/* the memory block, but do not */
/* have it iD1Dediately coDIDitted */
/* within memory *I

re= DosAllocMem(&BaseAddress, Objectsize, AllocationFlags);

if (re != 0)
{

}

printf("DosAllocMem error: return code= %ld 11
, re);

return;

2-8 CP Programming Reference

#define INCL_DOSMEMMGR

DosAllocSharedMem
Allocate a Shared Memory Object

APIRET DosAllocSharedMem (PPVOID ppBaseAddress, PSZ pszName, ULONG ulObJectSlze,
ULONG ulFlags)

DosAllocSharedMem allocates a shared memory object within the virtual-address space.

Parameters
ppBaseAddress (PPVOID) - output

A pointer to a variable that will receive the base address of the allocated range of pages. The
operating system will determine where to allocate the virtual address for the shared memory
object.

pszName (PSZ) - input

An optional address of the name string associated with the shared memory object to be
allocated. The name is an ASCllZ string in the format of an 05/2 file name, and is in the
subdirectory, \SHAREMEM\; for example, \SHAREMEM\PUBLIC.DAT.

ulObjectSlze (ULONG) - input

A value specifying the size, in bytes, of the shared memory object to allocate. The size is
rounded up to the next page-size boundary.

ulFlags (ULONG) - input

A set of flags describing the allocation attributes and desired access protection for the shared
memory object.

Allocation Attributes

• If the PAG...;.COMMIT bit (Ox00000010) is set, all pages in the shared memory object are
initially committed.

• If the OBJ_GIVEABLE bit (Ox00000200) is set, the access to the memory object can be given
to another process using the DosGiveSharedMem function.

• If the OBJ_ GETTABLE bit (Ox00000100) is set, the memory object can be accessed by
another process that knows the address of the memory and calls the DosGetSharedMem
function.

• If the OBJ_TILE bit (Ox00000040) is set, the shared memory object must be allocated in the
first 512MB of virtual-address space, with 16-bit selectors mapping the memory object.

The 16-bit selectors are allocated to map the 32-bit object at 64KB boundaries. The figure in
the description of the Parameters for DosAllocMem shows how the 16-bit alias selectors
map the 32-bit object.

Desired Access Protection

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed pages in the
private memory object is desired.

• If the PAG_READ bit (Ox00000001) is set, read access is desired.

• If the PAG_WRITE bit (Ox00000002) is set, write access is desired.

• If the PAG_GUARD bit (Ox00000008) is set, access to the committed pages in the private
memory object causes a "guard page entered" condition to be raised in the subject process.

• At least one of the bits of PAG_READ, PAG_WRITE, or PAG_EXECUTE must be set. All other
bits must be clear.

Chapter 2. Control Program Functions 2-9

DosAllocSharedMem
Allocate a Shared Memory Objed

Returns
Return Code.

DosAllocSharedMem returns the following values:

0 NO_ERROR
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID _PARAMETER
95 ERROR_INTERRUPT
123 ERROR_INVALID_NAME
183 ERROR_ALREADY _EXISTS

Remarks
DosAllocSharedMem allocates a shared memory object within the virtual-address space.

Allocating a shared memory object causes the creation of an object that describes a region of
memory that can be shared. The virtual-address space in the calling process is allocated and
mapped to the shared memory object.

The virtual-address space for a shared memory object is reserved at the same location in the virtual
address space of every process. This allows any process to gain access to the shared object at the
same virtual address where it was originally allocated.

When the shared memory object is given a name, the shared memory object can be shared by other
processes that gain access through the shared memory name (see DosGetNamedSharedMem).

To specify the name for the shared memory object, the name string provided must include the prefix
"\SHAREMEM\".

It is an error to request giveable or gettable named shared memory.

If the shared memory object is unnamed, it may be specified as giveable or gettable. Unnamed
shared memory may be shared by all processes that get access to the shared memory object (see
DosGetSharedMem), or are given access to the shared memory object (see DosGiveSharedMem).

It is an error to request non-giveable or non-gettable unnamed shared memory.

The allocated memory object is rounded up to a multiple of 4KB in size.

The committed memory allocated by DosAllocSharedMem is movable and can be swapped.

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies
both read and execute access.

The tiled allocation attribute is provided for compatibility with the existing 16-bit implementation of
the operating system. If the shared memory object is tiled, the virtual address for the shared
memory object will be within the first 512MB of the virtual address space, with 16-bit selectors
mapping the memory object.

Related Functions
• DosAllocMem
• DosFreeMem
• DosGetNamedSharedMem
• DosGetSharedMem
• DosGiveSharedMem

2-10 CP Programming Reference

Example Code

DosAllocSharedMem -
Allocate a Shared Memory Objed

This example allocates a shared named memory object within the virtual address space.

#define INCL_DOSMEMMGR /* Memory Manager values */
#include <os2.h>
#include <stdio.h>
#include <bsememf.h> /* Get flags for memory management */

PVOID BaseAddress;

UCHAR Name[40];

ULONG ObjectSize;

ULONG Flags;

APIRET re;

/* Pointer to the base address of the
allocated range of pages */

/* Pointer to the name of the shared
memory object to be allocated */

/* Size in bytes of the
the memory object */

/* Flags describing characteristics
of the memory object */

/* Return code */

strcpy(Name, 11
\ \SHAREMEM\ \BLOCKl.DAT");

/* Name of shared memory object to be */
/* created *I

ObjectSize = 6000; /* Ask for a memory object of 6000 */
/* bytes. This size will be rounded */
/* to 8KB. */

Flags = PAG_WRITE I PAG_READ;
/* Permit read and write access to the */
/* named shared memory block, but do */
/* not have its pages immediately */
/* committed within virtual memory */

re = DosAllocSharedMem(&BaseAddress, Name,
ObjectSize, Flags);

if (re != 0)
{

printf("DosAllocSharedMem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-11

DosAsyncTimer -
Start an Asynchronous Timer

#define INCL_DOSASYNCTIMER

APIRET DosAsyncTlmer (ULONG ulTlmelnterval, HSEM hsemSemHandle, PHTIMER ppHandle)

DosAsyncTimer starts an asynchronous, single-interval timer.

Parameters
ulTlmelnterval (ULONG) - input

The time, in milliseconds, before the event semaphore specified by SemHandle is posted. (The
system rounds this value up to the next clock tick.)

hsemSemHandle (HSEM) - input

The handle of an event semaphore that will be posted when the time specified by Timelnterval
has elapsed. This semaphore must be a shared event semaphore, and should be reset before
issuing DosAsyncTimer.

ppHandle (PHTIMER) - output

A pointer to the timer handle. This handle can be passed to DosStopTimer to stop the timer
before its time interval expires.

Returns
Return Code.

DosAsyncTimer returns the following values:

0 NO_ERROR
323 ERROR_ TS_SEMHANDLE
324 ERROR_ TS_NOTIMER

Remarks
DosAsyncTimer starts a single-interval timer. The timer runs asynchronously to the calling thread,
and posts an event semaphore when the specified time interval expires.

Time intervals for DosAsyncTimer, DosStartTimer, and DosSleep are specified in milliseconds;
however, it is important to recognize that the actual duration of the specified time interval will be
affected by two factors:

• First, the system clock keeps track of time in less precise units known as clock ticks. The
duration of a clock tick depends on the frequency of the system-clock interrupt that is used by
your computer. (To determine the duration of the clock tick on your computer, issue
DosQuerySyslnfo and examine the timer-interval field.)

Because clock ticks are less precise than millisecond values, any time interval that is specified
in milliseconds will be rounded up to the next clock tick.

• Second, because the system is a priority-based, multitasking operating system, there is no
guarantee that a thread will resume immediately after the timer interval expires. If a
higher-priority process or thread is running, the timed thread blocks. (To minimize the
inaccuracy caused by preemptive scheduling, an application can dedicate a thread to managing
time-critical tasks, and then raise that thread to a higher priority.)

These factors usually cause the timer interval to be longer than requested; however, it will generally
be within a few clock ticks.

2-12 CP Programming Reference

Related Functions
• DosGetDate Ti me
• DosSetDateTime
• DosSleep
• DosStartTimer
• DosStopTimer
• DosCreateEventSem
• DosOpenEventSem
• DosResetEventSem
• DosWaitEventSem

Example Code

DosAsyncTimer -
Start an Asynchronous Timer

The following example shows the use of DosAsyncTimer.

#define INCL_BASE
#define OS2_API32
#define INCL_DOSDATETIME /* Date and time values */
#include <os2.h>
#include <stdio.h>
#include <string.h>

main()
{

APIRET re;
ULONG Timeinterval = 10000L;
UCHAR szName[20];
HSEM SemHandle = 0;
ULONG flAttr = 0;

BOOL32 fState = FALSE;

HTIMER Handle = 0;
PHTIMER pHandle = &Handle;
ULONG ulTimeout = 2eeeeL;

/* Return code */
/* Time delay */
/* Event-semaphore name */
/* Event-semaphore handle repository */
/* Ignored semaphore creation

attributes */
/* Initial state of semaphore

(FALSE = 11 reset 11
) */

/* Timer handle */
/* Pointer to timer handle */

/*Time-out value */

/* Create an event semaphore to be posted by the timer. */

strcpy(szName, 11 \\SEM32\\TIMASYNC 11
); /*Set up semaphore name*/

re= DosCreateEventSem(szName, (PULONG) &SemHandle, flAttr, fState);

if (re != 0) /* Error received */
{

printf(11 DosCreateEventSem failed -- re= %ld 11
, re);

DosExit(0,1);
}

/* Start the timer. */

re= DosAsyncTimer(Timeinterval, SemHandle, &Handle);

if (re != 0)
{

/* Error received */

printf(11 DosAsyncTimer failed -- re= %ld 11
, re);

DosExit(0,l);
}

/* Wait for the semaphore to be posted. */

re= DosWaitEventSem((ULONG) SemHandle, ulTimeout);

if (re != 0) /* Error received */

Chapter 2. Control Program Functions 2-13

DosAsyncTimer -
Start an Asynchronous Timer

}

{

}

printf(11 DosWaitEventSem failed -- re= %ld 11
, re);

DosExit(0,1);

/* Indicate that the timer has posted the event semaphore. */

printf(11 Timer has posted semaphore.");
DosExit(0,0);

2-14 CP Programming Reference

DosBeep -
Generate Sound from the Speaker

#define INCL DOSPROCESS

APIRET DosBeep (ULONG ulFrequency, ULONG ulDuratlon)

DosBeep generates sound from the speaker.

Parameters
ulFrequency (ULONG) - input

Cycles per second (Hertz) in the range of hex 25 to hex 7FFF.

ulDuration (ULONG) - input

The length of the sound in milliseconds.

Returns
Return Code.

DosBeep returns the following values:

0 NO_ERROR
395 ERROR_INVALID _FREQUENCY

Related Functions
• DosDevConfig
• DosDevlOCtl
• DosPhysicalDisk

Example Code
This example generates a beep for 1 second (1000 milliseconds) at a frequency of 1380.

#define INCL_DOSPROCESS /* Process and thread values */
#include <os2.h>
#include <stdio.h>

#define BEEP_FREQUENCY 1380
#define BEEP_DURATION 1000

APIRET re; /* Return code */

re= DosBeep{BEEP_FREQUENCY.
BEEP _DURATION);

Chapter 2. Control Program Functions 2-15

DosCallNPipe
Perform Procedure Call Transaction

#define INCL_DOSNMPIPES

APIRET DosCallNPlpe (PSZ pszFlleName, PVOID plnBuffer, ULONG ullnBufferLen,
PVOID pOutBuffer, ULONG ulOutBufferLen, PU LONG pBytesOut,
ULONG ulTlmeOut)

DosCallNPipe makes a procedure call to a duplex message pipe.

Parameters
pszFlleName (PSZ) - input

The ASCllZ name of the pipe to be opened. Pipe names must include the prefix \PIPE\ and must
conform to file-system naming conventions. When communicating with a remote process, the
computer name must also be included, using the format \\ComputerName\PIPE\FileName.

plnBuffer (PVOID) - Input

A pointer to the buffer that is to be written to the pipe.

ullnBufferLen (ULONG) - input

The number of bytes to be written.

pOutBuffer (PVOID) - output

A pointer to the buffer for returned data.

ulOutBufferLen (ULONG) - input

The maximum size, in bytes, of returned data.

pBytesOut (PULONG) - output

The address of a doubleword where the system returns the number of bytes actually read.

ulTlmeOut (ULONG) - input

The maximum time, in milliseconds, to wait for a pipe instance to become available.

Returns
Return Code.

DosCallNPipe returns the following values:

0 NO_ERROR
2 ERROR_FILE_NOT _FOUND
11 ERROR_BAD_FORMAT
95 ERROR_INTERRUPT
230 ERROR_BAD_PIPE
231 ERROR_PIPE_BUSY
233 ERROR_PIPE_NOT _CONNECTED
234 ERROR_MORE_DATA

Remarks
DosCallNPipe combines the functions of DosOpen, DosTransactNPipe, and DosClose for a duplex
message pipe. If no instances of a pipe are available, DosCallNPipe waits for a specified time
interval, and returns ERROR_INTERRUPT if the time interval elapses.

If this function is issued for a pipe that is not a duplex message pipe, ERROR_BAD_FORMAT is
returned.

2-16 CP Programming Reference

DosCallNPipe -
Perform Procedure Call Transaction

If an invalid pipe name is specified, DosCallNPipe returns ERROR_FILE_NOT_FOUND.

If OutBuffer is too small to contain the response message, ERROR_MORE_DATA is returned.

If the server process has not issued DosConnectNPipe to put the pipe into a listening state,
DosCallNPipe returns ERROR_PIPE_BUSY.

Related Functions
• DosConnectNPipe
• DosCreateNPipe
• DosDisConnectNPipe
• DosPeekNPipe
• DosQueryNPHState
• DosQueryNPipelnfo
• DosQueryNPipeSemState
• DosSetNPHState
• DosSetNPipeSem
• DosTransactNPipe
• DosWaitNPipe
• DosClose
• DosDupHandle
• DosOpen
• DosRead
• DosResetBuffer
• DosWrite

Chapter 2. Control Program Functions 2-17

DosCallNPipe -
Perform Procedure Call Transaction

Example Code
This example is a "procedure call" through a named pipe. It returns with the results of the
procedure call, assuming that the call does not time out past the user-supplied time-out period.

#define INCL_DOSNMPIPES /* Named-pipe values */
#include <os2.h>
#include <stdio.h>

UC HAR
UC HAR
ULONG
UCHAR
UL ONG
ULONG
ULONG
APIRET

FileName[40];
InBuffer[800];
InBufferlen;
OutBuffer[800];
OutBufferLen;
BytesOut;
Timeout;
re;

/* Pipe name */
/* Write-buffer address */
/* Write-buffer length */
/* Read-buffer address */
/* Read-buffer length */
/* Bytes read (returned) */
/* Maximum wait time */
/* Return code */

strcpy(FileName,"\PIPE\PIPEl");

strcpy(InBuffer, "Conmand 1: Start Proc 1");
/* Set input buffer to contain the */
/* desired procedure call data */

InBufferLen = strlen(InBuffer);
/* Set length indicator for input */
/* buffer */

OutBufferlen = 800; /* Max data length for output */
/* (return) buffer */

Timeout = 30000; /* Timeout of 30 seconds (units */
/* are milliseconds) */

re = DosCallNPipe(FileName, InBuffer, InBufferlen, OutBuffer,

if (re I= 0)
{

OutBufferlen, &BytesOut, Timeout);
/* On successful return, variable */
/* BytesOut will contain the */
/* number of bytes written to */
/* the output buffer (OutBuffer) */

printf("DosCallNPipe error: return code = %1d 11
, re);

return;
}

2-18 CP Programming Reference

DosCancelLockRequest -
Cancel an Outstanding DosSetFileLocks Request

#define INCL DOSFILEMGR

APIRET DosCancelLockRequest (HFILE FileHandle, PFILELOCK ppLockRange)

DosCancelLockRequest cancels an outstanding DosSetFileLocks request.

Parameters
FlleHandle (HFILE) - input

File handle used in the DosSetFileLocks function that is to be cancelled.

ppLockRange (PFILELOCK) - input

Address of the structure describing the region to be locked by DosSetFilelocks. The structure is

as follows:

FlleOffset (LONG) - Input
The offset to the beginning of the range to be locked.

RangeLength (LONG) - Input
The length, in bytes, of the range to be locked.

Returns
Return Code.

DosCancelLockRequest returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
87 ERROR_INVALID_PARAMETER
173 ERROR_ CANCEL_ VIOLATION

Remarks
DosCancelLockRequest allows a process to cancel the lock range request of an outstanding

DosSetFileLocks function.

If two threads in a process are waiting on a lock file range, and another thread issues

DosCancelLockRequest for that lock file range, then both waiting threads are released.

Not all file-system drivers (FSDs) can cancel an outstanding lock request.

Local Area Network (LAN) servers cannot cancel an outstanding lock request if they use a version of

the operating system prior to OS/2 Version 2.00.

Related Functions
• DosSetFileLocks

Example Code
This example opens a file, writes some data to it, locks a block of the data, and then cancels the lock

request.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

Chapter 2. Control Program Functions 2-19

DosCancelLockRequest -
Cancel an Outstanding DosSetFileLocks Request

#define OPEN_FILE exel
#define CREATE_FILE 0x10
#define FILE_ARCHIVE 0x20
#define FILE_EXISTS OPEN_FILE
#define FILE_NOEXISTS CREATE_FILE
#define DASD_FLAG e
#define INHERIT 0x80
#define WRITE_THRU e
#define FAIL_FLAG e
#define SHARE_FLAG Gxle
#define ACCESS_FLAG exe2

#define FILE_NAME "test.dat 11

#define FILE_SIZE aeeL
#define FILE_ATTRIBUTE FILE_ARCHIVE
#define EABUF GL
#define NULL_RANGE el

#define LOCK_FLAGS G

FileHandle;
Wrote;
Action;
Fi 1 eData [lee] ;
LockTimeout = 2ee0;

HF ILE
ULONG
ULONG
PSZ
ULONG
APIRET re; /* Return code * /

struct LockStrc
{
1 ong Off set;
long Range;
} Area;

inti;

Action = 2;
strcpy(FileData, "Data .•. ");
Area.Offset = 4;
Area.Range = lee;

re = DosOpen(FILE_NAME, /* File path name */
&FileHandle, /* File handle */
&Action, /* Action taken */
FILE_SIZE, /* File primary allocation */
FILE ATTRIBUTE, /* File attribute */
FILE-EXISTS I FILE NOEXISTS, /* Open function type */
DASD=FLAG I INHERIT I /* Open mode of file */
WRITE THRU I FAIL FLAG I
SHARE-FLAG I ACCESS FLAG,
EABUF); - /*No extended attributes*/

if (re != e)
{

}

{

printf("DosOpen error: return code= %1d",rc);
return;

for(i=e; i<2ee; ++i)
DosWrite(FileHandle,

FileData,
sizeof(FileData),
&Wrote);

/* File handle */
/* User buffer*/
/* Buffer length */
/* Bytes written */

2-20 CP Programming Reference

DosCancelLockRequest -
Cancel an Outstanding DosSetFileLocks Request

re = DosSetFileLocks(FileHandle,
NULL RANGE.
(PFILELOCK) &Area,
&Lock Timeout,
LOCK_FLAGS);

if (re != 0)
{

/* File handle */
/* Unlock range */

/* Lock range */
/* Lock time-out */
/* Request flags */

printf("DosSetFileLocks error: return code= %ld",rc);
return;

}

re = DosCancelLockRequest(FileHandle.
(PFILELOCK) &Area);

if (re != 0)
{

/* File handle */
/* Lock range */

printf("DosCancelLockRequest error: return code= %ld",rc);
return;

}

}

Chapter 2. Control Program Functions 2-21

DosClose -
Close a Handle to a File, Pipe, or Device

#define INCL_DOSFILEMGR

I APIRET DosClose (HFILE FllaHandle)

DosClose closes a handle to a file, pipe, or device.

Parameters
FlleHandle {HFILE} - input

The handle returned by a previous call to DosCreateNPipe, DosCreatePipe, DosDupHandle, or
DosOpen.

Returns
Return Code.

DosClose returns the following values:

0
2
5
6

Remarks

NO_ERROR
ERROR_FILE_NOT _FOUND
ERROR_ACCESS_DENIED
ERROR_INVALID _HANDLE

Issuing DosClose with the handle to a file closes a handle to a file, pipe, or device.

If additional handles to a file were created with DosDupHandle, DosClose must be issued for the
duplicate handles before the directory is updated, and information in internal buffers is written to the
medium.

Closing a device handle causes the device to be notified of the close, if appropriate.

Named-Pipe Considerations

DosClose closes a named pipe by handle. When all handles that refer to one end of a pipe are
closed, the pipe is considered broken.

If the client end closes, no other process can reopen the pipe until the serving end issues
DosDisConnectNPipe, followed by DosConnectNPipe.

If the server end closes when the pipe is already broken, the pipe is immediately deallocated;
otherwise, it is not deallocated until the last client handle is closed.

Related Functions
• DosConnectNPipe
• DosCreateNPipe
• DosDisConnectNPipe
• DosDupHandle
• DosOpen
• DosResetBuffer

2-22 CP Programming Reference

DosClose -
Close a Handle to a File, Pipe, or Device

Example Code
This example opens a file, then closes it.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

#define OPEN_FILE 0x01
#define CREATE_FILE 0xl0
#define FILE_ARCHIVE 0x20
#define FILE_EXISTS OPEN_FILE
#define FILE_NOEXISTS CREATE_FILE
#define DASD_FLAG 0
#define INHERIT 0x80
#define WRITE_THRU 0
#define FAIL_FLAG 0
#define SHARE_FLAG 0xl0
#define ACCESS_FLAG 0x02

#define FILE_NAME "test.dat"
#define FILE_SIZE 800L
#define FILE_ATTRIBUTE FILE_ARCHIVE
#define EABUF 0L

HFILE FileHandle;
ULONG Wrote;
ULONG Action;
PSZ FileData[l00];
APIRET re; /* Return code */

Action = 2;
strcpy(FileData, "Data •.. ");
re = DosOpen(FILE_NAME. /* File path name */

if (re != 0)
{

&FileHandle, /* File handle */
&Action, /* Action taken */
FILE_SIZE, /* File primary allocation */
FILE_ATTRIBUTE, /*File attribute*/
FILE_EXISTS I FILE_NOEXISTS, /* Open function type */
DASD_FLAG I INHERIT I /* Open mode of the file */
WRITE_THRU I FAIL_FLAG I
SHARE FLAG I ACCESS FLAG,
EABUF); - /* No extended attributes * /

printf("DosOpen error: return code= %ld 11 ,re);
return;

}

re= DosClose(FileHandle);

if (re != 0)
{

/* File Handle */

printf("DosClose error: return code= %ld 11 ,re);
return;

}

Chapter 2. Control Program Functions 2-23

DosCloseEventSem -
Close Event Semaphore

#define INCL_DOSSEMAPHORES

I APIRET DoaCloaaEvantSam (HEY hav)

DosCloseEventSem closes an event semaphore.

Parameters
hev (HEV) - input

The handle of the event semaphore to close.

Returns
Return Code.

DosCloseEventSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
301 ERROR_SEM_BUSY

Related Functions
• DosCreateEventSem
• DosOpenEventSem
• DosPostEventSem
• DosQueryEventSem
• DosResetEventSem
• DosWaitEventSem

Example Code
This example closes an event semaphore. Assume that the handle of the semaphore has been
placed into hev already.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

HEV hev;
APIRET re;

/* Event semaphore handle */
/* Return code */

re= DosCloseEventSem(hev);

if (re != e)
{

}

printf("DosCloseEventSem error: return code= %ld 11
, re);

return;

2-24 CP Programming Reference

#define INCL DOSSEMAPHORES

I APIRET DosCloaeMutexSem (HMTX hmtx)

DosCloseMutexSem closes a mutex semaphore.

Parameters
hmtx (HMTX) - input

The handle of the mutex semaphore to close.

Returns
Return Code.

DosCloseMutexSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
301 ERROR_SEM_BUSY

Remarks

DosCloseMutexSem -
Close Mutex Semaphore

DosCloseMutexSem closes (ends access to) a mutex semaphore for all of the threads in the calling
process.

When all of the processes that had opened the semaphore have either closed the semaphore or have
ended, the semaphore is deleted by the system.

Related Functions
• DosCreateMutexSem
• DosOpenMutexSem
• DosQueryMutexSem
• DosReleaseMutexSem
• DosRequestMutexSem

Example Code
This example closes a mutex semaphore. Assume that the handle of the semaphore has been
placed into hmtx already.

#define INCL DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

HMTX hmtx;
APIRET re;

/* Mutex semaphore handle */
/* Return code */

re= DosCloseMutexSem(hmtx);

if (re != 0)
{

printf("DosCloseMutexSem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-25

DosCloseMuxWaitSem -
Close MuxWait Semaphore

#define INCL_DOSSEMAPHORES

APIRET DosCloseMuxWaltSem (HMUX hmux)

DosCloseMuxWaitSem closes a muxwait semaphore.

Parameters
hmux (HMUX) - input

The handle of the muxwait semaphore to close.

Returns
Return Code.

DosCloseMuxWaitSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
301 ERROR_SEM_BUSY

Remarks
DosCloseMuxWaitSem closes (ends access to) a muxwait semaphore for all of the threads in the
calling process.

When all of the processes that opened the semaphore have either closed the semaphore or have
ended, the system deletes the semaphore.

Related Functions
• DosAddMuxWaitSem
• DosCreateMuxWaitSem
• DosDeleteMuxWaitSem
• DosOpenMuxWaitSem
• DosQueryMuxWaitSem
• DosWaitMuxWaitSem

2-26 CP Programming Reference

Example Code

DosCloseMuxWaitSem -
Close MuxWait Semaphore

This example closes a muxwait semaphore. Assume that the handle of the semaphore has been
placed into hmux already.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

HMUX hmux;
APIRET re;

/* Muxwait semaphore handle */
/* Return code */

re= DosCloseMuxWaitSem(hmux);

if (re ! = 0)
{

printf("DosCloseMuxWaitSem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-27

DosCloseQueue
Close Queue

#define INCL_DOSQUEUES

APIRET DosCloseQueue (HQUEUE QueueHandle)

DosCloseQueue ends access to a queue, or deletes a queue.

Parameters
QueueHandle (HQUEUE) - input

The handle of the queue to be closed. This is the handle received from a previous call to
DosCreateQueue or DosOpenQueue.

Returns
Return Code.

DosCloseQueue returns the following values:

0 NO_ERROR
337 ERROR_ QUE_INVALID _HANDLE

Remarks
DosCloseQueue ends further processing of a queue by the requesting process. The action taken
depends on whether the requester is the owner of the queue or a writer of the queue.

For the owner, any outstanding elements are deleted. Other processes that have the queue open will
receive the ERROR_QUE_INVALID_HANDLE return code on their next request.

For a writer of the queue, access to the queue is ended, but the queue elements are not deleted.

Related Functions
• DosCreateQueue
• DosOpenQueue
• DosPeekQueue
• DosPurgeQueue
• DosQueryQueue
• DosReadQueue
• DosWriteQueue

2-28 CP Programming Reference

Example Code

DosCloseQueue -
Close Queue

The following code fragment creates and opens a queue named SPECIAL.QUE for a server process,

then closes the queue.

#define INCL_DOSQUEUES /* Queue values */
#include <os2.h>
#include <stdio.h>

#define QUE_NAME 11
\ \QUEUES\ \SPECIAL.QUE"

HQUEUE QueueHandle;
APIRET re;

/* Queue handle */
/* Return code */

re = DosCreateQueue(&QueueHandle,
QUE_FIFO I

/* Queue handle */

QUE CONVERT ADDRESS,
QU(NAME); -

/* Ordering of elements */
/* 16-bit address conversion */

/* Queue name string */

re= DosCloseQueue(QueueHandle); /* Queue handle */

Chapter 2. Control Program Functions 2-29

DosCloseVDD -
Close a Virtual Device Driver Handle

#define INCL_DOSMVDM

I APIRET DosCloaeVDD (HVDD VDDHanclle)

DosCloseVDD closes the specified virtual device driver {VDD) handle.

Parameters
VDDHandle (HVDD) - input

The handle of the virtual device driver to be closed. Specify the handle that was returned by a
previous call to DosOpenVDD.

Returns
Return Code.

DosCloseVDD returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
644 ERROR_INVALID_CALLER

Remarks
DosCloseVDD closes the specified virtual device driver {VDD) handle.

Related Functions
• DosOpenVDD
• DosRequestVDD

Example Code
This example closes a virtual device driver {VDD). Assume that the handle of the VDD has been
placed into VDDHandle already.

#define INCL_DOSMVDM /* Multiple DOS sessions values */
#include <os2.h>
#include <stdio.h>
#include <vdnm.h>

HVDD VDDHandle; /* Handle of VDD */
APIRET re; /* Return code */

re= DosCloseVDD(VDDHandle);

if (re != 0)
{

}

printf("DosCloseVDD error: return code= %ld", re);
return;

2-30 CP Programming Reference

#define INCL_DOSNMPIPES

APIRET DosConnectNPlpe (HPIPE hpipeHandle)

DosConnectNPipe
Connect Named Pipe

DosConnectNPipe prepares a named pipe for a client process.

Parameters
hplpeHandle (HPIPE) - input

The named-pipe handle to connect (returned to tbe server process by DosCreateNPipe).

Returns
Return Code.

DosConnectNPipe returns the following values:

0 NO_ERROR
95 ERROR_INTERRUPT
109 ERROR_BROKEN_PIPE
230 ERROR_BAD_PIPE
233 ERROR_PIPE_NOT _CONNECTED

Remarks
DosConnectNPipe is issued by a server process to put a named pipe into the listening state. This
enables a client process to gain access to the pipe by calling DosOpen.

If the client end of the pipe is already open when DosConnectNPipe is issued, DosConnectNPipe
returns immediately and has no effect. If the client end is closed, the result depends on whether the
pipe is in blocking mode or nonblocking mode. (Blocking/nonblocking mode is specified when the
pipe is created; it can also be changed by DosSetNPHState).

• If the pipe is in blocking mode, DosConnectNPipe waits for a client to open the pipe before
returning.

• If the pipe is in nonblocking mode, DosConnectNPipe returns immediately with
ERROR_PIPE_NOT_CONNECTED. Nevertheless, the pipe is placed into the listening state,
permitting a client to subsequently issue DosOpen successfully.

Multiple DosConnectNPipe calls can be issued for a pipe that is in nonblocking mode. If the pipe is
not already either open or closing, the first call to DosConnectNPipe puts the pipe into the listening
state; subsequent calls merely test the pipe state.

If the pipe was previously opened and then closed by a client, but has not yet been disconnected by
the server, DosConnectNPipe returns ERROR_BROKEN_PIPE.

If the function is interrupted while it is waiting for a client to open the pipe, ERROR_INTERRUPT is
-returned.

If DosConnectNPipe is called by a client process, ERROR_BAD_PIPE is returned.

Chapter 2. Control Program Functions 2-31

DosConnectNPipe -
Connect Named Pipe

Related Functions
• DosCallNPipe
• DosCreateNPipe
• DosDisConnectNPipe
• DosPeekNPipe
• DosQueryNPHState
• DosQueryNPipelnfo
• DosQueryNPipeSemState
• DosSetNPHState
• DosSetNPipeSem
• DosTransactNPipe
• DosWaitNPipe
• DosClose
• DosDupHandle
• DosOpen
• DosRead
• DosResetBuffer
• DosWrite

Example Code
This example shows how to wait for a new client to open a named pipe (through a DosOpen call).
Assume that a previous call to DosCreateNPipe provided the named pipe handle that is contained in
Handle.

#define INCL_DOSNMPIPES /* Named-pipe values */
#include <os2.h>
#include <stdio.h>

HPIPE Handle;
APIRET re;

/* Pipe handle */
/* Return code */

re= DosConnectNPipe(Handle);

if (re != e)
{

}

printf("DosConnectNPipe error: return code= %ld", re);
return;

2-32 CP Programming Reference

DosCopy -
Copy a File or Subdirectory

#define INCL_DOSFILEMGR

APIRET DosCopy (PSZ pszSourceName, PSZ pszTargetName, ULONG ulOpMode)

DosCopy copies the source file or subdirectory to the destination file or subdirectory.

Parameters
pszSourceName (PSZ) - input

Address of the ASCllZ path name of the source file, subdirectory, or character device. Global
file-name characters are not allowed.

pszTargetName (PSZ) - input

Address of the ASCllZ path name of the target file, subdirectory, or character device. Global
file-name characters are not allowed.

ulOpMode (ULONG) - input

Doubleword bit map that defines how the DosCopy function is done.

Bit

31-3

2

1

0

Returns

Description

Reserved; must be set to zero.

(DCPY _FAILEAS Ox00000004) Discard the EAs if the source file contains EAs and the
destination file system does not support EAs.

0: Discard the EAs (extended attributes) if the destination file system does not
support EAs.

1: Fail the copy if the destination file system does not support EAs.

(DCPY _APPEND Ox00000002) Append the source file to the target file's end of data.

0: Replace the target file with the source file.

1: Append the source file to the target file's end of data.

This is ignored when copying a directory, or if the target file does not exist.

(DCPY_EXISTING Ox00000001) Existing Target File Disposition.

0: Do not copy the source file to the target if the file name already exists within
the target directory. If a single file is being copied and the target already exists,
an error is returned.

1: Copy the source file to the target even if the file name already exists within
the target directory.

Return Code.

DosCopy returns the following values:

0 NO_ERROR
2 ERROR_FILE_NOT _FOUND
3 ERROR_PATH_NOT_FOUND
5 ERROR_ACCESS_DENIED
26 ERROR_NOT _DOS_DISK
32 ERROR_ SHARING_ VIOLATION
36 ERROR_SHARING_BUFFER_EXCEEDED
87 ERROR_INVALID_PARAMETER
108 ERROR_DRIVE_LOCKED

Chapter 2. Control Program Functions 2-33

DosCopy -
Copy a File or Subdirectory

112 ERROR_DISK_FULL
206 ERROR~ . .FILENAME_EXCED _RANGE
267 ERROR_DIRECTORY
282 ERROR_EAS_NOT_SUPPORTED
283 ERROR_NEED_EAS_FOUND

Remarks
DosCopy copies all files and subdirectories in the source path to the target path. Global file-name
characters are not allowed in source or target names. The source and the target can be on different
drives.

If an 110 error occurs, DosCopy takes the following actions:

• If the source name is that of a subdirectory, deletes the file being copied from the target path.

• If the source name is that of a file to be replaced, deletes the file from the target path.

• If the source name is that of a file to be appended, resizes the target file to its original size.

Read-only files in the target path cannot be replaced by a DosCopy request. If such files exist in the
target, and OpMode bit flagO is set to 1, any attempt to replace these files with files from the source
will result in an error.

When copying is specified for a single file that has OpMode bit 1 set to 1, the operation proceeds
even if the file already exists and its OpMode bit O is set to 0. That is, OpMode bit 0 is significant
only when replacing a file, not when appending a file.

If a device name is specified as the target, the source name must be a file, not a directory. When the
request is issued, OpMode bit flags 0 and 1 are ignored.

File-object attributes, such as date of creation, and time of creation, are always copied from the
source to the target; however, extended attributes (EAs) are not copied in every case. DosCopy
copies EAs from the source to the target when creating a file or directory, or when replacing an
existing file on the target. However, it does not copy them when appending an existing file or when
copying files to an existing directory on the target. If the file system of the target does not support
EAs, DosCopy ends and returns an error.

If the source file object contains a need EA, and the destination file system does not support EAs,
DosCopyfails regardless of the value of OpMode bit 2.

DosQ.uerySyslnfo is called by an application during initialization to determine the maximum path
length allowed by the operating system.

Related Functions
• DosMove
• DosQueryCurrentDisk
• DosQuerySyslnfo
• DosSetDefaultDisk

2-34 CP Programming Reference

DosCopy -
Copy a File or Subdirectory

Example Code
This example copies a source file into a different directory.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

UCHAR
UCHAR
ULONG
APIRET

SourceName[40]; /*Source path name*/
TargetName[40]; /*Target path name*/
OpMode; /* Operation mode */
re; /* Return code * /

strcpy(SourceName, 11 C:\\DIRl\\MYFILEP);
/* Source file path name */

strcpy(TargetName, 11 \\DIR7\\SUBDIR\\MYFILE3 11
);

/*Target file path name relative to */
/* current drive letter (since the */
/* path name contains no drive */
/* 1 etter) *I

OpMode = DCPY_EXISTING I DCPY_FAILEAS;
/* Control bits: 1) Copy the source */
/* file to the target directory even */
/* if a file with that name already */
/* exists in the directory, */
/* 2) Replace rather than append the */
/* target file, 3) make the copy fail*/
/* if target file system does not */
/* support the copy of Extended */
/* Attributes (if any) in the source */
/* file */

re= DosCopy(SourceName, TargetName, OpMode);

if (re != 0)
{

printf(11 DosCopy error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-35

DosCreateDir -
Create a Directory

#define INCL_DOSFILEMGR

APIRET DosCreateDlr (PSZ pszDlrName, PEAOP2 ppEABuf)

DosCreateDir creates a new directory.

Parameters
pszDlrName (PSZ} - input

Address of the ASCllZ directory path name, which may contain a drive specification. If no drive

is specified, the current drive is assumed.

DosQuerySyslnfo is called by an application during initialization to determine the maximum path

length allowed by the operating system.

ppEABuf (PEAOP2) - input/output

Address of the extended attribute buffer, which contains an EAOP2 data structure.

On input, the fpGEA2List field and oError fields are ignored. The EA setting operation is

performed on the information contained in FEA2List. If extended attributes are not to be defined

or modified, then EABuf must be set to null.

On output, fpGEA2List and fpFEA2List are unchanged. The area that fpFEA2List points to is

unchanged. If an error occurred during the set, oError is the offset of the FEA2 where the error

occurred. The return code is the error code corresponding to the condition generating the error.

If no error occurred, oError is undefined.

If EABuf is zero, then no extended attributes are defined for the directory.

Returns
Return Code.

DosCreateDir returns the following values:

0 NO_ERROR
3 ERROR_PATH_NOT_FOUND
5 ERROR_ACCESS_DENIED
26 ERROR_NOT _DOS_DISK
87 ERROR_INVALID_PARAMETER
108 ERROR_DRIVE_LOCKED
206 ERROR_FILENAME_EXCED _RANGE
254 ERROR_INVALID _EA_NAME
255 ERROR_EA_LIST _INCONSISTENT

ERROR_EA_ VALUE_ UNSUPPORTABLE

Remarks
DosCreateDir enables an application to define extended attributes for a subdirectory at the time of its

creation.

If any subdirectory names specified in the path name do not exist, the subdirectory is not created.

Upon successful return, a subdirectory is created at the end of the specified path.

An application must issue DosQuerySyslnfo to determine the maximum path length that the operating

system supports. The returned value should be used to dynamically allocate buffers that are to be

used to store paths.

2-36 CP Programming Reference

DosCreateDir -
Create a Diredory

If a program with its NEWFILES bit set tries to create a directory on an FAT file system drive and
specifies blanks immediately preceding the dot in a file name, the system rejects the name. For
example, if c: is an FAT file system drive, the name "file .txt" is rejected, but "file.txt" is accepted.

Related Functions
• DosQuerySyslnfo

Example Code
This example creates a new directory. Assume that no extended attributes need to be defined for the
new directory.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

UCHAR DirName[40]; /*New directory name string*/
PEAOP2 EABuf; /* Extended attribute buffer */
APIRET re; /* Return code */

strcpy(DirName, 11 \\PROG\\SRC\\UTIL 11
);

/* New directory name */

EABuf = 0; /* Indicate that no EAs are defined */

re= DosCreateDir(DirName, EABuf);

if (re ! = e)
{

printf(11 DosCreateDir error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-37

DosCreateEventSem
Create Event Semaphore

#define INCL_DOSSEMAPHORES

APIRET DosCreateEventSem (PSZ pszName, PHEV ppphev, ULONG ulflattr, BOOL32 f32fState)

DosCreateEventSem creates an event semaphore.

Parameters
pszName (PSZ) - input

A pointer to the ASCllZ name of the semaphore.

Semaphore names are validated by the file system, and must include the prefix \SEM32\. A
maximum of 255 characters is allowed. If these requirements are not met,
ERROR_INVALID_NAME is returned. If the semaphore already exists,
ERROR_DUPLICATE_NAME is returned.

If this field is null, the semaphore is unnamed. Unnamed event semaphores can be either
private or shared, depending on f/Attr. They are identified by the semaphore handle that phev
points to.

By default, named semaphores are shared.

ppphev (PHEV) - output

A pointer to the handle of the event semaphore.

ulflattr (ULONG) - input

A set of flags that specify the attributes of the event semaphore. If the DC_SEM_SHARED bit is
set, the semaphore is shared. This bit is checked only if the semaphore is unnamed (that is, if
Name is null), because all named semaphores are shared.

f32fState (BOOL32) - input

Describes the initial state of the semaphore:

Value

0

1

Returns

Definition

(FALSE) The initial state of the semaphore is "set."

(TRUE) The initial state of the semaphore is "posted."

Return Code.

DosCreateEventSem returns the following values:

0 NO_ERROR
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID _PARAMETER
123 ERROR_INVALID_NAME
285 ERROR_DUPLICATE_NAME
290 ERROR_ TOO _MANY _HANDLES

Related Functions
• DosCloseEventSem
• DosOpenEventSem
• DosPostEventSem
• DosQueryEventSem
• DosResetEventSem
• DosWaitEventSem

2-38 CP Programming Reference

Example Code

DosCreateEventSem
Create Event Semaphore

This example creates a system event semaphore.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

UCHAR Name[40];
HEV hev;
ULONG fl Attr;
BOOL32 fState;
APIRET re;

/* Semaphore name */
/* Event semaphore handle */
/* Creation attributes */
/* Initial state of semaphore */
/* Return code */

strcpy(Name, 11 \\SEM32\\EVENT1 11
);

flAttr = 0;

fState = 0;

/* Name of the new system event semaphore */

/*Unused, since this· is a named semaphore*/

/* The initial state of the semaphore is */
/* 11 set 11 *I

re= DosCreateEventSem(Name, &hev, flAttr, fState);

if (re != 0)
{

/* On successful return, the hev variable */
/* contains the handle of the new */
/* system event semaphore */

printf(11 DosCreateEventSem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-39

DosCreateMutexSem
Create Mutex Semaphore

#define INCL DOSSEMAPHORES

APIRET DosCreateMutexSem (PSZ pszName, PHMTX ppphmtx, ULONG ulllAttr,
BOOL32 f32fState)

DosCreateMutexSem creates a mutex semaphore.

Parameters
pszName (PSZ) - input

A pointer to the ASCllZ name of the semaphore.

Semaphore names are validated by the file system, and must include the prefix \SEM32\. A
maximum of 255 characters is allowed. If these requirements are not met,
ERROR_INVALID_NAME is returned. If the semaphore already exists,
ERROR_DUPLICATE_NAME is returned.

If this field is null, the semaphore is unnamed. Unnamed mutex semaphores can be either
private or shared, depending on f/Attr. They are identified by the semaphore handle that phmtx
points to.

By default, named semaphores are shared.

ppphmtx (PHMTX) - output

A pointer to the handle of the mutex semaphore.

ulflAttr (ULONG) - input

A set of flags that specify the attributes of the semaphore. If the DC_SEM_SHARED bit is set, the
semaphore is shared. This bit is checked only if the semaphore is unnamed (that is, if Name is
null), because all named semaphores are shared.

f32fState (BOOL32) - input

Describes the initial state of the semaphore:

Value

0

1

Returns

Definition

(FALSE) The initial state of the semaphore is "unowned."

(TRUE) The initial state of the semaphore is "owned."

Return Code.

DosCreateMutexSem returns the following values:

0 NO_ERROR
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID_PARAMETER
123 ERROR_INVALID_NAME
285 ERROR_DUPLICATE_NAME
290 ERROR_ TOO _MANY _HANDLES

2-40 CP Programming Reference

Remarks

DosCreateMutexSem
Create Mutex Semaphore

DosCreateMutexSem creates a mutual exclusion (mutex) semaphore, and opens it for all of the
threads in the current process.

Related Functions
• DosCloseMutexSem
• DosOpenMutexSem
• DosQueryMutexSem
• DosReleaseMutexSem
• DosRequestMutexSem

Example Code
This example creates a system mutex semaphore.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

UCHAR Name[40];
HMTX hmtx;
ULONG flAttr;
BOOL32 fState;

APIRET re;

/* Semaphore name */
/* Mutex semaphore handle */
/* Creation attributes */
/* Initial state of the

mutex semaphore */
/* Return code */

strcpy{Name, 11 \\SEM32\\MUTEX1 11
);

/* Name of the new system mutex semaphore */

flAttr = 0;

fState = 0;

/*Unused, since this is a named.semaphore*/

/* The initial state of the semaphore is */
/* 11 unowned 11 *I

re= DosCreateMutexSem{Name, &hmtx, flAttr, fState);

if {re != 0)
{

/* On successful return, the hmtx variable */
/* contains the handle of the new */
/* system mutex semaphore */

printf{ 11 DosCreateMutexSem error: return code= %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-41

DosCreateMuxWaitSem
Create MuxWait Semaphore

#define INCL_DOSSEMAPHORES

APIRET DosCreateMuxWaltSem (PSZ pszName, PHMUX ppphmux, ULONG ulcSemRec,
PSEMRECORD pppSemRec, ULONG ulllAttr)

DosCreateMuxWaitSem creates a muxwait semaphore.

Parameters
pszName (PSZ) - input

A pointer to the ASCllZ name of the semaphore.

Semaphore names are validated by the file system, and must include the prefix \SEM32\. A
maximum of 255 characters is allowed. If these requi.rements are not met,
ERROR_INVALID_NAME is returned. If the semaphore already exists,
ERROR_DUPLICATE_NAME is returned.

If this field is null, the muxwait semaphore is unnamed. Unnamed semaphores can be either
private or shared, depending on f/Attr. They are identified by the semaphore handle that phmux
points to.

By default, named semaphores are shared.

ppphmux (PHMUX) - output

A pointer to the handle of the muxwait semaphore.

ulcSemRec (ULONG) - input

The count of semaphore record entries in pSemRec.

pppSemRec (PSEMRECORD) - input

A pointer to the array of semaphore record entries to put into the muxwait semaphore. This is
the list of event or mutex semaphores that must be posted or released in order for the muxwait
semaphore to clear.

ulllAttr (ULONG) - input

A set of fiags that specify the attributes of the semaphore:

• If the DC_SEM_SHARED bit is set, the semaphore is shared; otherwise, it is a private
semaphore. This bit is checked only if the semaphore is unnamed (that is, if Name is null),
because all named semaphores are shared.

• If the DCMW_WAIT_ANY bit is set, the semaphore clears when any event semaphore in its
pSemRec list is posted, or when any mutex semaphore in its pSemRec list is released.
When any one of the semaphores is cleared, the thread waiting for the muxwait semaphore
can continue execution.

• If the DCMW_WAIT_ALL bit is set, the semaphore clears when all of the event semaphores in
its pSemRec list have been posted, or when all of the mutex semaphores in its pSemRec list
have been released. When all of the semaphores are cleared, the thread waiting for the
muxwait semaphore can continue execution.

2-42 CP Programming Reference

Returns
Return Code.

DosCreateMuxWaitSem
Create MuxWait Semaphore

DosCreateMuxWaitSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
8 ERROR_NOT_ENOUGH_MEMORY
87 ERROR_INVALID_PARAMETER
100 ERROR_TOO_MANY_SEMAPHORES
105 ERROR_SEM_OWNER_DIED
123 ERROR_INVALID_NAME
284 ERROR_DUPLICATE_HANDLE
285 ERROR_DUPLICATE_NAME
290 ERROR_TOO_MANY _HANDLES
292 ERROR_ WRONG_ TYPE

Remarks
DosCreateMuxWaitSem creates a multiple wait (muxwait) semaphore, and opens it for all of the
threads in the current process.

Related Functions
• DosAddMuxWaitSem
• DosCloseMuxWaitSem
• DosDeleteMuxWaitSem
• DosOpenMuxWaitSem
• DosQueryMuxWaitSem
• DosWaitMuxWaitSem

Example Code
This example creates a system muxwait semaphore with two initial event semaphore components.
Assume that the two event semaphore handles have been placed into hevO and hev1 already.
Assume that the two corresponding user semaphore identifier values have been placed into u/UserO
and u/User1 already.

Chapter 2. Control Program Functions 2-43

DosCreateMuxWaitSem -
Create MuxWait Semaphore

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

UCHAR
HMUX
ULONG
SEMRECORD
UL ONG

Name[40]; /*Semaphore name*/
hmux; /* Muxwait semaphore handle */
cSemRec; /* Number of entries in pSemRec */
SemRec[2]; /*List of mutex or event semaphores*/
f'iAttr; /* Creation attributes */

HEV heva; /* Event semaphore handle */
HEV hevl; /* Event semaphore handle */
ULONG
ULONG
APIRET

ulUsera; /* User semaphore ID value */
ulUserl; /* User semaphore ID value */
re; /* Return code *I

strcpy(Name,"\\SEM32\\MUXWAIT1");
/* Name of the new system muxwait semaphore */

cSemRec = 2; /* Number of initial entries in muxwait */
/* semaphore *I

SemRec[a].hsemCur = (PULONG) heva; /*Initialize the list */
SemRec[a].ulUser = ulUsera; /* of event semaphores*/
SemRec[l].hsemCur = (PULONG) hevl; /* that defines the */
SemRec[l].ulUser = ulUserl; /* muxwait semaphore */

flAttr = DCMW_WAIT_ANY;
/* Indicate that the user of this muxwait */
/* semaphore will wait for any one of */
/* its event semaphores to clear */

re = DosCreateMuxWaitSem(Name, &hmux, cSemRec, SemRec,

if (re != a)
{

flAttr);
/* On successful return, the hmux variable */
/* contains the handle of the new */
/* system muxwait semaphore */

printf("DosCreateMuxWaitSem error: return code= %ld 11
, re);

return;
}

2-44 CP Programming Reference

DosCreateNPipe
Create Named Pipe

#define INCL_DOSNMPIPES

APIRET DosCreateNPipe (PSZ pszFlleName, PHPIPE ppPipeHandle, ULONG ulOpenMode,

ULONG ulPipeMode, ULONG ulOutBufSize, ULONG ullnBufSize,

ULONG ulTlmeOut)

DosCreateNPipe creates a named pipe.

Parameters
pszFileName (PSZ) - input

The ASCllZ name of the pipe to be opened. Pipe names must include the prefix \PIPE\ and must

conform to file-system naming conventions.

ppPlpeHandle (PHPIPE) - output

A pointer to the variable in which the system returns the handle of the pipe that is created.

ulOpenMode (ULONG) - input

OpenMode contains the following bit fields:

Bit

31-16

15

14

13-8

7

Description

Reserved.

Reserved and must be 0.

Write-through bit. Possible values are:

0 = (NP _WRITEBEHIND) (OxOOOO) Write-behind to remote pipes is allowed.

1 = (NP _NOWRITEBEHIND) (Ox4000) Write-behind to remote pipes is not allowed.

This bit is meaningful only for a remote pipe. Occasionally, data written to a remote

pipe is buffered locally and then sent across the network to the pipe at a later time.

Setting the write-through bit ensures that data is sent to the remote pipe as soon as

it is written.

Reserved.

Inheritance flag. Possible values are:

O =(NP _INHERIT) (OxOOOO) The pipe handle is inherited by a child process.

1 = (NP _NOINHERIT) (Ox0080) The pipe handle is private to the current process and

cannot be inherited.

This bit is not inherited by child processes.

6 -3 Reserved and must be 0.

2-0 Access mode: The pipe access is defined as follows:

000 = (NP _ACCESS_INBOUND) (OxOOOO) Inbound pipe (client to server)

001 = (NP_ACCESS_OUTBOUND) (Ox0001) Outbound pipe (server to client)

010 = (NP _ACCESS_DUPLEX) (Ox0002) Duplex pipe (server to and from client)

Any other value is invalid.

ulPlpeMode (ULONG) - input

PipeMode contains the following bit fields:

Bit Description

Chapter 2. Control Program Functions 2-45

DosCreateNPipe
Create Named Pipe

31-16

15

14-12

11-10

Reserved.

Blocking mode. Blocking mode is defined as either "blocking"or "nonblocking," as
follows:

0 =(NP _WAIT) (OxOOOO) Blocking mode: DosRead and DosWrite block if no data is
available.

1 = (NP_NOWAIT) (Ox8000) Nonblocking mode: DosRead and DosWrite return
immediately if no data is available.

DosRead normally blocks until at least partial data can be returned. DosWrite
blocks by default until all of the requested bytes have been written. Nonblocking
mode changes this behavior as follows:

DosRead returns immediately with ERROR_NO_DATA if no data is available.

DosWrite returns immediately with a value of 0 for BytesWritten if there is not
enough buffer space available in the pipe; otherwise, the entire data area is
transferred.

Reserved.

Type of named pipe. The pipe type is defined as follows:

00 = (NP_ TYPE_BYTE) (OxOOOO) The pipe is a byte pipe; that is, data is written to the
pipe as an undifferentiated stream of bytes.

01 = (NP_TYPE_MESSAGE) (Ox0400) The pipe is a message pipe; that is, data is
written to the pipe as messages. The system records the length of each message in
the first two bytes of the message, which are called the message header. A header
of all zeroes is reserved, and zero-length messages are not allowed.

9 -a Read mode. The read mode is defined as follows:

00 = (NP _READMODE_BYTE) (OxOOOO) Byte-read mode: Read the pipe as a byte
stream.

01 = (NP_READMODE_MESSAGE) (Ox0100) Message-read mode: Read the pipe as a
message stream.

Message pipes can be read as either byte streams or message streams, depending
on the value of this bit. Byte pipes can be read only as byte streams.

7 -0 !Count (Instance count). When the first instance of a named pipe is created, !Count
specifies how many instances (including the first instance) may be created.
Possible values are:

Value

1

1 < value < 255

-1

0

ulOulBufSlze (ULONG) - input

Definition

This is the only instance permitted (the pipe is unique).

The number of instances is limited to the value specified.

(NP _UNLIMITED_INSTANCES) (OxOOFF) The number of
instances is unlimited.

Reserved value.

The /Count parameter is ignored when specifying any
instance of a pipe other than the first one. Subsequent
attempts to create a pipe instance fail if the maximum
number of allowed instances already exists. When multiple
instances are allowed, multiple clients can simultaneously
open the same pipe name; they will receive handles to
distinct pipe instances.

Tells the system how many bytes to allocate for the outbound (server to client) buffer.

2-46 CP Programming Reference

ullnBufSlze (ULONG) - input

DosCreateNPipe -
Create Named Pipe

Tells the system how many bytes to allocate for the inbound (client to server) buffer.

ulTlmeOut (ULONG) - input

The default value for the Timeout parameter of DosWaitNPipe. This value may be set only when
the first instance of the pipe name is being created. If the value is 0, a system-wide default value
(50 ms) is chosen.

Returns
Return Code.

DosCreateNPipe returns the following values:

0 NO_ERROR
3 ERROR_PATH_NOT_FOUND
8 ERROR_NOT _ENOUGH_MEMORY
84 ERROR_OUT_OF_STRUCTURES
87 ERROR_INVALID_PARAMETER
231 ERROR_PIPE_BUSY

Related Functions
• DosCallNPipe
• DosConnectNPipe
• DosDisConnectNPipe
• DosPeekNPipe
• DosQueryNPHState
• DosQueryNPipelnfo
• DosQueryNPipeSemState
• DosSetNPHState
• DosSetNPipeSem
• DosTransactNPipe
• DosWaitNPipe
• DosClose
• DosDupHandle
• DosOpen
• DosRead
• DosResetBuffer
• DosWrite

Example Code
This example creates a named pipe.

#define INCL_DOSNMPIPES /* Named-pipe values */
#include <os2.h>
#include <stdio.h>

UC HAR
HPlPE
ULONG
UL ONG
UlONG
UL ONG
ULONG

FileName[40]; /*Pipe name*/
PipeHandle; /* Pipe handle (returned) */
OpenMode; /* Open-mode parameters */
PipeMode; /* Pipe-mode parameters */
OutBufSize; /* Size of the out-buffer */
InBufSize; /* Size of the in-buffer */
Timeout; /* Default value for

DosWaitNPipe time-out
parameter */

APIRET re; /* Return code */

strcpy(Fi 1 eName, "\\PIPE\ \PIPEl 11
);

Chapter 2. Control Program Functions 2-47

DosCreateNPipe -
Create Named Pipe

OpenMode = NP_ACCESS_DUPLEX;
/* Specify full duplex access to named */
/* pipe, no inheritance to child */
/* process. and no write-through */
/* (write-through only affects */
/* remote pipes) *I

PipeMode = NP_WMESG I NP_RMESG I 0x01;
/* Specify block on Read/Write if no */
/* data available, message stream */
/* pipe for both reading and writing, */
/* and an instance count of 1 */
/* (only one instance of the named */
/* pipe can be created at a time) */

OutBufSize = 4096; /* The outgoing buffer must be 4KB */
/* in size *I

InBufSize = 2048; /* The incoming buffer must be 2KB */
/* in size */

Timeout = 10000; /* Time-out is 10 seconds (units are */
/* in milliseconds) */

re = DosCreateNPipe(FileName, &PipeHandle, OpenMode,
PipeMode, OutBufSize, InBufSize,
Timeout);

if (re != 0)
{

}

printf("DosCreateNPipe error: return code= %ld 11
, re);

return;

2-48 CP Programming Reference

#define INCL_DOSQUEUES

DosCreatePipe -
Create Unnamed Pipe

APIRET DosCreatePlpe (PHFILE ppReadHandle, PHFILE ppWrlteHandle, ULONG ulPlpeSlze)

DosCreatePipe creates an unnamed pipe.

Parameters
ppReadHandle (PHFILE) - output

A pointer to a doubleword where the read handle for the pipe is returned.

ppWrlteHandle (PHFILE) - output

A pointer to a doubleword where the write handle for the pipe is returned.

ulPlpeSlze (ULONG) - input

The amount of storage to reserve for the pipe.

Returns
Return Code.

DosCreatePipe returns the following values:

0 NO_ERROR
8 ERROR_NOT_ENOUGH_MEMORY

Related Functions
• DosClose
• DosDupHandle
• DosRead
• DosWrite

Chapter 2. Control Program Functions 2-49

DosCreatePipe -
Create Unnamed Pipe

Example Code
This example creates an unnamed pipe. The current process may use the unnamed pipe for

communication between itself and a child process.

#define INCL_DOSQUEUES /* Queue values */
#include <os2.h>
#include <stdio.h>

HFILE
HFILE
ULONG
APIRET

ReadHandle;
WriteHandle;
PipeSize;
re;

PipeSize = 4096;

/* Pointer to the read handle */
/* Pointer to the write handle */
/* Pipe size */
/* Return code */

/* Ask for 4KB of internal storage *l
/* for the pipe */

re= DosCreatePipe(&ReadHandle, &WriteHandle, PipeSize);

if (re != 0)
{

/* On successful return, the ReadHandle */
/* variable contains the read handle */
/* for the pipe, and the WriteHandle */
/* variable contains the write handle */
/* for the pipe */

printf("DosCreatePipe error: return code= %ld", re);
return;

}

2-50 CP Programming Reference

#define INCL_DOSQUEUES

DosCreateQueue
Create Queue

APIRET DosCreateQueue (PHQUEUE ppRWHandle, ULONG ulQueueFlags,
PSZ pszQueueName)

DosCreateQueue creates a queue.

Parameters
ppRWHandle (PHQUEUE) - output

A pointer to the read/write handle of the queue that is being created. After DosCreateQueue
returns, this handle may be used immediately by the requesting process; it is not necessary to
issue DosOpenQueue.

ulQueueFlags (ULONG) - input

A set of flags that indicate which priority-ordering algorithm to use when placing elements in the
queue, and whether or not to convert to 32-bit addresses the addresses of elements that are
placed in the queue by 16-bit processes.

Priority-algorithm flag

Value

0

1

Definition

(QUE_FIFO) FIFO queue

(QUE_LIFO) LIFO queue

2 (QUE_PRIORITY) Priority queue: the requesting process specifies priority 0 to 15,
with 15 being the highest priority.

Address-conversion flag

Definition

0 (QUE_NOCONVERT _ADDRESS) The data addresses of elements placed in the
queue by 16-bit processes are not converted.

4 (QUE_CONVERT_ADDRESS) The data addresses of elements placed in the
queue by 16-bit processes are converted to 32-bit data addresses.

pszQueueName (PSZ) - input

A pointer to the ASCllZ name of the queue. The name string must include \QUEUES\ as the first
element of the path. For example, \QUEUES\RETRIEVE\CONTROL.QUE is a valid queue name.
This name must be specified by a client process in a DosOpenQueue request before the client
process can add an element to the queue.

Returns
Return Code.

DosCreateQueue returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER
332 ERROR_QUE_DUPLICATE
334 ERROR_QUE_NO_MEMORY
335 ERROR_ QUE_INVALID _NAME

Chapter 2. Control Program Functions 2-51

DosCreateQueue
Create Queue

Related Functions
• DosCloseQueue
• DosOpenQueue
• DosPeekQueue
• DosPurgeQueue
• DosQueryQueue
• DosReadQueue
• DosWriteQueue

Example Code
This example creates and opens a queue named SPECIAL.QUE for a server process.

#define INCL_DOSQUEUES /* Queue values */
#include <os2.h>
#include <stdio.h>

#define QUE_NAME "\\QUEUES\ \SPECIAL.QUE"

HQUEUE QueueHandle;
APIRET re;

re = DosCreateQueue(&QueueHandle,
QUE_FIFO I
QUE CONVERT ADDRESS,
QU(NAME); -

2-52 CP Programming Reference

/* Return code */

/* Queue handle */
/* Ordering for elements */

/* 16-bit address conversion */
/* Queue name string */

DosCreateThread
Create an Asynchronous Thread

#define INCL_DOSPROCESS

APIRET DosCreateThread (PTID ppThreadlD, PFNTHREAD ppThreadAddr,
ULONG ulThreadArg, ULONG ulThreadflags, ULONG ulStackSize)

DosCreateThread creates an asynchronous thread of execution under the current process.

Parameters
ppThreadlD (PTID) - output

Address of a doubleword where the thread identifier of the created thread is returned.

ppThreadAddr (PFNTHREAD) - input

Address of the code to be executed when the thread begins execution. This function is called
near, accepts a single parameter ThreadArg, and returns a doubleword exit status (see DosExit).
Returning from the function without executing DosExit causes the thread to end. In this case, the
exit status is the value in EAX when the thread ends.

ulThreadArg (ULONG) - input

An argument that is passed to the target thread routine as a parameter. It is usually a pointer to
a parameter block.

ulThreadflags (ULONG) - input

If bit 0 is set to 0, the new thread starts immediately. If bit 0 is set to 1, the thread is created in
the suspended state, and the creator of the thread must issue DosResumeThread to start the
new thread's execution. If bit 1 is set to 0, the system uses the default method for initializing the
thread's stack. If bit 1 is set to 1, the system precommits all the pages in the stack. One page is
4KB.

ulStackSize (ULONG) - input

The size, in bytes, of the new thread's stack. The size is rounded up to the nearest page-size
boundary or two pages, whichever is larger. The system allocates the stack upon creation of the
thread, and deallocates it upon completion of the thread. The system provides dynamic stack
storage commitment up to the limit specified in StackSize by using the guard-page technique.
See Remarks for more details.

Returns
Return Code.

DosCreateThread returns the following values:

0 NO_ERROR
8 ERROR_NOT _ENOUGH_MEMORY
95 ERROR_INTERRUPT
115 ERROR_PROTECTION_VIOLATION
164 ERROR_MAX_THRDS_REACHED

Remarks
DosCreateThread creates an asynchronous thread of execution under the current process.

The operating system creates the first thread of a process when it starts the executable file. This
thread is dispatched with a regular class priority. To start another thread of execution under the
current process, the current thread issues DosCreateThread. The thread's initial dispatch point is
the address specified for ThreadAddr. The started thread has a unique stack and register context
and the same priority as the requesting thread.

Chapter 2. Control Program Functions 2-53

DosCreateThread
Create an Asynchronous Thread

The created thread can access all files and resources owned by the parent process. The thread

shares resources with other threads of the process. Any thread in the process can open a file or

device, and any other thread can issue a read or write to that handle. This is also true for pipes,

queues, and system-managed semaphores

When a thread is created, the system creates a Thread Information Block (TIB) to maintain

per-thread information (TIO, priority, and so on) in the user address space. See DosGetlnfoBlocks

for details on the TIB layout.

When a thread is created, its initial dispatch point is provided by ThreadAddr. This routine is

invoked by Near Call, and when that routine returns or issues DosExit, the thread ends. The format

of the thread's stack when the thread begins executing at ThreadAddr is:

StackSize +---------------+ High Address
I ThreadArg I
+---------------+
I EIP

Initial ESP ->+---------------+
I I

<Conmitted> I
<Stack> I
<Pages> I

+---------------+
Stack I
Guard I
Page I

+---------------+
Unco11111itted I
Stack I

I Pages I
StackBase +---------------+ Low Address

When the system allocates the stack for the thread, a guard page is set up to facilitate dynamic stack

growth. When a thread attempts to use stack in or "below" the guard page, a guard-page exception

is generated. The default system action for this exception is to attempt to grow the stack by

committing another page and moving the guard page. Since only a single guard page is committed

at a time, and the page size of the 80386 processor is 4KB, a local stack allocation that is greater

than 4KB must be handled by a stack probe that is performed by a compiler-generated routine.

The default stack commitment has one committed page, and a guard page is set up below the

committed page. The pages beyond the guard page are uncommitted. If the system cannot allocate

another guard page when the guard-page exception is not handled, a guard-page-allocation failure

exception is generated. It is essential that applications and language runtime routines handle the

guard-page-allocation exception. For more details on guard-page exception management, see

DosSetExceptionHandler.

A thread started with DosCreateThread ends upon return of this call or when DosExit is issued. Any

thread can temporarily stop the execution of other threads in its process with DosSuspendThread,

DosResumeThread, DosEnterCritSec, and DosExitCritSec.

Any thread can also examine and change the priority at which it and other threads execute with

DosGetlnfoBlocks and DosSetPriority.

2-54 CP Programming Reference

Related Functions
• DosExit
• DosKillThread
• DosResumeThread
• DosSuspendThread
• DosWaitThread

Example Code

DosCreateThread -
Create an Asynchronous Thread

This example creates a new thread within a process. Assume that the desired initial program
address for the new thread has been stored in ThreadAddr already. Assume that ThreadArg has
been set to contain the long parameter that is sent to the new thread.

#define INCL_DOSPROCESS
#include <os2.h>
#include <stdio.h>

TIO
PFNTHREAD
UL ONG
ULONG

ULONG
APIRET

ThreadID;
ThreadAddr;
ThreadArg;
ThreadFlags;

StackSize;
re;

Thread Flags = 0;

StackSize = 4096;

/* Process and thread values */

/* New thread ID (returned) * /
/* Program address */
/* Parameter to thread routine */
/* When to start thread,

how to allocate stack */
/*Size in bytes of new thread's stack*/
/* Return code */

/* Indicate that the thread is to */
/* be started irmiediately */

/* Set the size for the new */
/* thread's stack */

re = DosCreateThread(&ThreadID, ThreadAddr, ThreadArg,
ThreadFlags, StackSize);

if (re != 0}
{

/* On successful return, the */
/* ThreadID variable wi 11 *I
/* contain the TIO of the */
/* newly-created thread */

printf("DosCreateThread error: return code= %ld", re};
return;

}

Chapter 2. Control Program Functions 2-55

DosDebug
Enable the Calling Program to Control Another Program for
Debugging

#define INCL DOSPROCESS

I APIRET DoaDebug (PVOID pDbgBul)

DosDebug enables the calling application to control another application for debugging purposes.

Parameters
pDbgBuf (PVOID) - input

Address of a DosDebug Buffer Structure.

Returns
Return Code.

DosDebug returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER
95 ERROR_INTERRUPT
115 ERROR_PROTECTION_VIOLATION

Remarks
DosDebug allows one process (the debugger) to control the execution of another process that is
being debugged (the debuggee).

A process must be selected for debugging when it is started. See DosExecPgm or DosStartSession
for how this is done. Once a process has been selected for debugging, you must use DosDebug to
control and examine its execution.

If no error is returned, a notification resides in the Debug Buffer structure. The Command field (Cmd)
of the Debug Buffer structure determines which notification is set. The data returned with the
notification varies, depending on the command passed in the Command field of the Debug Buffer
structure.

If the return code is set to ERROR_INTERRUPT, a debug notification might have been lost, depending
on the command that was interrupted.

DosDebug can also return with a return value set by another function.

For details about the commands that are available with Dos Debug, see Appendix D, "DosDebug
Commands" on page D-1.

For details about the notifications that are available with DosDebug, see Appendix E, "DosDebug
Notifications" on page E-1.

Example Code
DosDebug provides a set of functions that permit one process to control another process. In this
example, the calling process uses DosDebug to modify a word in a controlled process. Assume that
all the necessary steps have been taken already so that the calling process controls the second
process. Also assume that process identifier of the controlled process has been placed into PID
already, the address of the word to be modified in the controlled process has been placed into Addr

2-56 CP Programming Reference

DosDebug -
Enable the Calling Program to Control Another Program for

Debugging

already, and the value to be substituted in the controlled process has been placed into Value
already.

#define INCL_DOSPROCESS /* Process and thread values */
#include <os2.h>
#include <stdio.h>

struct debug_buf fer
{

};

ULONG
ULONG
LONG
LONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
UC HAR
UC HAR
US HORT
ULONG
ULONG
UC HAR
UCHAR
US HORT
ULONG
ULONG
UC HAR
UC HAR
US HORT
ULONG
ULONG
UC HAR
UC HAR
US HORT
UL ONG
ULONG
UCHAR
UCHAR
USHORT
ULONG
UL ONG
UC HAR
UC HAR
US HORT

Pid;
Tid;
Cmd;
Value;
Addr;
Buffer;
Len;
Index;
MTE;
EAX;
ECX;
EDX;
EBX;
ESP;
EBP;
ESI;
EDI;
EFlags;
EIP;
CS Lim;
CSBase;
CSAcc;
CSA tr;
CS;
DSLim;
DSBase;
DSAcc;
DSAtr;
OS;
ESLim;
ESBase;
ESAcc;
ESAtr;
ES;
FSLim;
FSBase;
FSAcc;
FSA tr;
FS;
GSLim;
GSBase;
GSAcc;
GSA tr;
GS;
SSLim;
SSBase;
SSAcc;
SSA tr;
SS;

/* Debuggee Process ID */
/* Debuggee Thread ID */
/* Co11111and or Notification */
/* Generic Data Value */
/* Debuggee Address */
/* Debugger Buffer Address */
/* Length of Range */
/* Generic Identifier Index */
/* Module Handle */
/* Register Set */

/* Byte Granular Limits */
/* Byte Granular Base */
/* Access Bytes */
/* Attribute Bytes */

struct debug_buffer DbgBuf;

Chapter 2. Control Program Functions 2-57

DosDebug -
Enable the Calling Program to Control Another Program for
Debugging

ULONG PID;
ULONG Addr;
lONG Value;

APIRET re;

/* Debug buffer */
/* Process ID of controlled process */
/* Address within the controlled process */
/* Value to be substituted within the

controlled process */
/* Return code */

DbgBuf .Cmd = DBG_C_WriteMem;
/* Indicate that a Write Word command */
/* is requested *I

ObgBuf.Pid = PIO;
/* Place PIO of controlled process */
/* into the debug buffer */

DbgBuf .Addr = Addr;
/* Place the word address (within the */
/* controlled process) into the debug buffer */

DbgBuf .Value = Value;
/* Place the value to be updated into the */
/* specified word of the controlled process */

re= DosDebug(&DbgBuf);

if (re != 0)
{

}

printf("DosDebug error: return code= %ld", re);
return;

2~58 CP Programming Reference

DosDelete -
Remove a File Name from a Diredory

#define INCL_DOSFILEMGR

I APIRET DosDelete (PSZ pazFlleName)

DosDelete removes a file name from a directory. The deleted file may be recoverable.

Parameters
pszFlleName (PSZ) - input

Address of the name of the file to be deleted.

Returns
Return Code.

DosDelete returns the following values:

0 NO_ERROR
2 ERROR_FILE_NOT _FOUND
3 ERROR_PATH_NOT_FOUND
5 ERROR_ACCESS_DENIED
26 ERROR_NOT _DOS_DISK
32 ERROR_SHARING_VIOLATION
36 ERROR_SHARING_BUFFER_EXCEEDED
87 ERROR_INVALID_PARAMETER
206 ERROR_FILENAME_EXCED _RANGE

Remarks
Global file-name characters are not permitted in the name of the file to be deleted.

Read-only files cannot be deleted by DosDelete. To delete a read-only file, you must first issue

DosSetFilelnfo to change the file's read-only attribute to zero, then delete the file.

If a storage directory for the drive has been defined with the SET DELDIR command, the UNDELETE
command may recover the deleted file.

DosDelete cannot be used to delete directories. Issue DosDeleteDir to delete a directory.

Related Functions
• DosDeleteDir
• DosForceDelete
• DosSetFilelnfo

Chapter 2. Control Program Functions 2-59

DosDelete -
Remove a File Name from a Directory

Example Code
This example deletes a file named test.dat from the current directory.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

#define FILE_DELETE 11 test.dat 11

APIRET re; /* Return code */

re = DosDelete(FILE_DELETE); /* File path name*/

if (re ! = 0)
{

}

printf("DosDelete error: return code= %ld 11 ,rc);
return;

2-60 CP Programming Reference

#define INCL_DOSFILEMGR

APIRET DosDeleteDlr (PSZ pszDlrName)

DosDeleteDir removes a subdirectory from the specified disk.

Parameters
pszDlrName (PSZ) - input

DosDeleteDir -
Delete a Directory

Address of the fully qualified path name of the subdirectory to be removed.

Returns
Return Code.

DosDeleteDir returns the following values:

0 NO_ERROR
2 ERROR_FILE_NOT _FOUND
3 ERROR_PATH_NOT_FOUND
5 ERROR_ACCESS_DENIED
16 ERROR_CURRENT_DIRECTORY
26 ERROR_NOT _DOS_DISK
87 ERROR_INVALID_PARAMETER
108 ERROR_DRIVE_LOCKED
206 ERROR_FILENAME_EXCED _RANGE

Remarks
The subdirectory must be empty; that is, it cannot have hidden files or directory entries other than
the"." and" .. " entries. To delete files, use DosDelete.

The root directory and current directory cannot be removed.

Related Functions
• DosDelete
• DosForceDelete

Chapter 2. Control Program Functions 2-61

DosDeleteDir -
Delete a Directory

Example Code
This example deletes a subdirectory. Assume that the subdirectory was empty before the attempt to
remove it.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

UCHAR DirName[40]; /*New directory name string*/
APIRET re; /* Return code */

strcpy(DirName,"\\PROG\\SRC\\UTIL");
/* Directory to be deleted */

re= DosDeleteDir(DirName);

if (re!= 0)
{

}

printf("DosDeleteDir error: return code= %ld", re);
return;

2-62 CP Programming Reference

#define INCL_DOSSEMAPHORES

DosDeleteMuxWaitSem
Delete MuxWait Semaphore

APIRET DosDeleteMuxWaltSem (HMUX hmux, HSEM hsem)

DosDeieteMuxWaitSem deletes an event semaphore or a mutex semaphore from a
muxwait-semaphore list.

Parameters
hmux (HMUX) - input

The handle of the muxwait semaphore that is to have a semaphore deleted from its semaphore
record I ist.

hsem (HSEM) - input

The handle of the semaphore that is to be deleted from the semaphore record list of the muxwait
semaphore.

Returns
Return Code.

DosDeleteMuxWaitSem returns the following values:

0 NO_ERROR
6 ERROR_INVALID_HANDLE
286 ERROR_EMPTY _MUXWAIT

Remarks
DosDeleteMuxWaitSem deletes an event semaphore or a mutex semaphore from the existing list of
semaphores in a muxwait semaphore.

This function can be called by any thread in the process that created the muxwait semaphore. Other
processes can also call this function, but they must first gain access to the muxwait semaphore by
calling DosOpenMuxWaitSem.

Related Functions
• DosAddMuxWaitSem
• DosCloseMuxWaitSem
• DosCreateMuxWaitSem
• DosOpenMuxWaitSem
• DosQueryMuxWaitSem
• DosWaitMuxWaitSem

Chapter 2. Control Program Functions 2-63

DosDeleteMuxWaitSem -
Delete MuxWait Semaphore

Example Code
This example deletes an event or mutex semaphore from an existing muxwait semaphore. Assume
that the handle of the muxwait semaphore has been placed into hmux already. Assume that the
handle of the event semaphore has been placed into hsem already.

#define INCL_DOSSEMAPHORES /* Semaphore values */
#include <os2.h>
#include <stdio.h>

HMUX hmux;
HSEM hSem;

APIRET re;

/* Muxwait semaphore handle */
/* Handle of semaphore to be

deleted from muxwait list */
/* Return code */

re= DosDeleteMuxWaitSem(hmux, hSem);

if (re != e)
{

}

printf("DosDeleteMuxWaitSem error: return code= %ld", re);
return;

2-64 CP Programming Reference

DosDevConfig -
Get Information about Attached Devices

#define INCL_DOSPROCESS

APIRET DosDevConflg (PVOID pDevlcelnlo, ULONG ulDevlceType)

DosDevConfig gets information about attached devices.

Parameters
pDevlcelnfo (PVOID) - output

Address of the area where the information is returned.

ulDevlceType (ULONG) - input

Indicates what device information to return, as follows:

Item
0
1
2
3

4

5

6

Defined Name
DEVINFO _PRINTER
DEVINFO_RS232
DEVINFO _FLOPPY
DEVINFO _COPROCESSOR

DEVINFO_SUBMODEL

DEVINFO _MODEL

DEVINFO _ADAPTER

Returns
Return Code.

Size
BYTE
BYTE
BYTE
BYTE

BYTE

BYTE

BYTE

DosDevConfig returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER

Related Functions
• DosBeep
• DosDevlOCtl
• DosPhysicalDisk

Returned Device Information
Number of attached printers.
Number of RS232 ports.
Number of diskette drives.
Presence of math coprocessor
hardware: O = No coprocessor
hardware. 1 = Coprocessor hardware
installed.
PC Submode! Type. The returned
information is the system submode!
byte.
PC Model Type. The returned
information is the system model byte.
Type of primary display adapter: 0 =
Monochrome or printer adapter. 1 =
Other.

Chapter 2. Control Program Functions 2-65

DosDevConfig -
Get Information about Attached Devices

Example Code
This example gets information about the model type, monitor, and coprocessor, and displays it.

#define INCL_DOSDEVICES /* Device values */
#include <os2.h>
#include <stdio.h>

#define MACHINE_MODEL 5
#define DISPLAY_TYPE 6
#define FIND_COPROCESSOR 3

BYTE Devicelnfo; /* Device infonnation */
APIRET re; /* Return code */

if(!DosDevConfig(&Devicelnfo,
MACHINE_MODEL))

printf("Model Type %d 11 ,Devicelnfo);

if(!DosDevConfig(&Devicelnfo,
DISPLAY TYPE))

if (Devicelnfo) -
printf("Color display ");

else
printf("Mono display ");

if(!DosDevConfig(&Devicelnfo,
FIND_COPROCESSOR))

if (Devi celnfo)
printf("Coprocessor");

else
printf("No Coprocessor");

2•66 CP Programming Reference

/* Returned infonnation */
/* Device type item number */

/* Returned infonnation */
/* Device type item number */

/* Returned infonnation */
/* Device type item number */

DosDevlOCtl
Perform Control Function on a Device Specified by an

Opened Device Handle

#define INCL DOSPROCESS

APIRET DosDevlOCll (HFILE DevHandle, ULONG ulCategory, ULONG ulFunction,
PVOID pParmList, ULONG ulParmLengthMax,
PULONG pParmLengthlnOut, PVOID pDataArea,
ULONG ulDataLengthMax, PULONG pDataLengthlnOut)

DosDevlOCtl performs control functions on a device specified by an opened device handle.

Parameters
DevHandle (HFILE) - input

Device handle returned by DosOpen, or a standard (open) device handle.

ulCategory (ULONG) - input (us(°'-!e3ury) 4

Device category. The valid range is 0 to 255.

ulFunctlon (ULONG) - input

Device-specific function code. The valid range is Oto 255.

pParmList (PVOID) - input (pv Po.rM5)

Address of the command-specific argument list.

rt ulParmLengthMax (ULONG) - input

Length, in bytes, of ParmList. This is the maximum length of the data to be returned in ParmList.
ParmLengthlnOut may be larger than this on input, but not on output.

i pParmLengthlnOut (PULONG) - input/output

On input, a pointer to the length, in bytes, of the parameters passed by the application in
Parmlist. On output, a pointer to the length, in bytes, of the parameters returned.

If this function returns ERROR_BUFFER_OVERFLOW, then ParmLengthlnOut points to the size of
the buffer required to hold the parameters returned. No other data is returned in this case.

pDataArea (PVOID) - input

Address of the data area.

* ulDataLengthMax (ULONG) - input

Length, in bytes, of DataArea. This is the maximum length of the data to be returned in
DataArea. DataLengthlnOut may be larger than this on input, but not on output.

>f. pDataLengthlnOut (PULONG) - input/output (u<AL) ?

On input, a pointer to the length, in bytes, of the data passed by the application in DataArea. On
output, a pointer to the length, in bytes, of the data returned.

If this function returns ERROR_BUFFER_OVERFLOW, then DataLengthlnOut points to the size of
the buffer required to hold the data returned.

VS \+ORt DD sCizvioc.+I (b bi1 t0t\d10,.,

(Pvorp NOcfc..
1

z_
f\.}OIO pvPor<'-'.S 1

3
V5HoRI vsi=vl\c+<ori,

'-I U.SHD!fi ue.Cc.-fe"::Jo"r 1

5 HFI-L£ nDe..vlc.Q..)

Chapter 2. Control Program Functions 2-67

DosDevlOCtl
Perform Control Function on a Device Specified b~ an
Opened Device Handle

Returns
Return Code.

DosDevlOCtl returns the following values:

0 NO_ERROR
1 ERROR_INVALID _FUNCTION
6 ERROR_INVALID_HANDLE
15 ERROR_INVALID_DRIVE
31 ERROR_ GEN_FAILURE
87 ERROR_INVALID_PARAMETER
111 ERROR_BUFFER_OVERFLOW
115 ERROR_PROTECTION_ VIOLATION
117 ERROR_INVALID_CATEGORY
119 ERROR_BAD_DRIVER_LEVEL
163 ERROR_ UNCERTAIN_ MEDIA
165 ERROR_MONITORS_NOT _SUPPORTED

Remarks
Values returned in the range hex FFOO through FFFF are user-dependent error codes. Values
returned in the range hex FEOO through FEFF are device-driver-dependent error codes.

This function provides a generic, expandable IOCtl facility.

A null (zero) value for DataArea specifies that this parameter is not defined for the generic IOCtl
function being specified. A null value for DataArea causes the values passed in DataLengthMax and
DataLengthlnOut to be ignored.

A null (zero) value for ParmList specifies that this parameter is not defined for the generic IOCtl
function being specified. A null value for ParmList causes the values passed in ParmLengthMax and
ParmLengthlnOut to be ignored.

The kernel formats a generic IOCtl packet and calls the device driver. Because OS/2 Version 1.0 and
Version 1.1 device drivers do not understand generic IOCtl packets with DataLengthMax,
DataLengthlnOut, ParmLengthMax, and ParmLengthlnOut, the kernel does not pass these fields to
the device driver. Device drivers that are marked as level 2 or higher must support receipt of the
generic IOCtl packets with associated length fields.

Do not pass a non-null pointer with a zero length.

Refer to the Physical Device Driver Reference for a complete listing of the generic IOCtl control
functions (the IOCtl interface).

Related Functions
• DosBeep
• DosDevConfig
• DosPhysicalDisk

Example Code
This example demonstrates how a process can issue control functions to a device. Assume that the
calling process has placed an appropriate device handle into DevHandle. Assume that the specified
device recognizes a category code of hex 83 and a function code of hex 63. Assume that the
specified device control function that is utilized in this example requires no input parameter string or
input data, and returns no parameters. Assume that it returns a set of data to the user in a
user-supplied data buffer.

2-68 CP Programming Reference

DosDevlOCtl
Perform Control Function on a Device Specified by an

Opened Device Handle

#define INCL_DOSDEVICES /* Device values */
#include <os2.h>
#include <stdio.h>

HFILE DevHandle;
ULONG Category;
ULONG Function;
PVOID Pannlist;
ULONG PannlengthMax;
ULONG PannlengthinOut;
UCHAR DataArea[200];
ULONG DatalengthMax;
ULONG DatalengthinOut;
APIRET re;

Category = 0x83;

Function = 0x63;

Pannlist = 0;
PannlengthinOut = 0;
PannlengthMax = 0;

/* Device handle specifies the device */
/* Device category */
/* Device function */
/* Con111and-specific argument list */
/* Con111and arguments list max length */
/* Con111and arguments length (returned) */
/* Data area */
/* Data area maximum length */
/* Data area length (returned) */
/* Return code */

/* Specify device driver category hex 83 */

/* Specify device driver function hex 63 */

/* Indicate that no input parameters */
/* are being passed to the device, */
/* and that there is no buffer to */
/* receive parameters back from */
/* the device *I

DatalengthinOut = 0; /* Indicate that no input data is */
/* being passed to the device */

DatalengthMax = 200; /* Indicate the maximum amount of data */
/* (in bytes) that can be returned */
/* to the caller by the device */

re= DosDevIOCtl(DevHandle, Category, Function, Pannlist,
PannlengthMax, &PannLengthinOut, DataArea,
DatalengthMax, &DatalengthinOut);

if (re ! = 0)
{

/* On successful return, the DataArea */
/* buffer contains the data passed */
/* back by the device, and the */
/* DatalengthinOut variable contains */
/* the size of that data. In this */
/* example, the device is assumed to */
/* pass back no parameters, so the */
/* PannlengthinOut variable will */
/* remain unchanged. */

printf("DosDevIOCtl error: return code = %ld", re);
return;

}

Chapter 2. Control Program Functions 2-69

DosDisConnectNPipe
Disconnect Named Pipe

#define INCL DOSNMPIPES

APIRET DosDlsConnectNPlpe (HPIPE hpipeHandle)

DosDisConnectNPipe acknowledges that a client process has closed a named pipe.

Parameters
hplpeHandle (HPIPE) - input

The named-pipe handle to disconnect (returned to the server process by DosCreateNPipe).

Returns
Return Code.

DosDisConnectNPipe returns the following values:

0 NO_ERROR
109 ERROR_BROKEN_PIPE
230 ERROR_BAD_PIPE

Remarks
DosDisConnectNPipe is issued by a server process to acknowledge that a client process has closed
a named pipe. (If a client process tries to issue DosDisConnectNPipe, ERROR_BAD_PIPE is
returned.) The pipe cannot be opened by another client process until the server process issues this
function, followed by DosConnectNPipe.

Until the client's close has been acknowledged, the server process will receive a value of zero for
BytesRead (indicating end-of-file) if it tries to read from the pipe, and ERROR_BROKEN_PIPE if it tries
to write to it. Clients that attempt to open the pipe receive ERROR_PIPE_BUSY.

Any threads that are blocked on the pipe are awakened by DosDisConnectNPipe. A thread that is
blocked on a DosWrite request returns ERROR_BROKEN_PIPE. A thread that is blocked on a
DosRead request returns a value of zero for BytesRead.

If the client end of the pipe is open when DosDisConnectNPipe is issued, it is forced to close, and the

client receives an error code on its next operation. Note that when a client is forced to close in this
manner, data may be discarded before it has been read by the client.

DosDisConnectNPipe makes the client's handle invalid, but it does not free the handle. Therefore, a
client that is forced off a pipe by DosDisConnectNPipe must still issue DosClose to free the handle
resource.

Related Functions
• DosCallNPipe
• DosConnectNPipe
• DosCreateNPipe
• DosPeekNPipe
• DosQueryNPHState
• DosQueryNPipelnfo
• DosQueryNPipeSemState
• DosSetNPHState
• DosSetNPipeSem
• DosTransactNPipe
• DosWaitNPiR~e ___________________________________ _

2-70 CP Programming Reference

• DosClose
• DosDupHandle
• DosOpen
• DosRead
• DosResetBuffer
• DosWrite

Example Code

DosDisConnedNPipe -
Disconnect Named Pipe

This example forces a named pipe to close. Assume that a previous call to DosCreateNPipe
provided the named pipe handle that is contained in Handle.

#define INCL_DOSNMPIPES /* Named-pipe values */
#include <os2.h>
#include <stdio.h>

HPIPE Handle;
APIRET re;

/* Pipe handle */
/* Return code */

re= DosDisConnectNPipe(Handle);

if (re != 0)
{

printf("DosDisconnectNPipe error: return code= %ld", re);
return;

}

Chapter 2. Control Program Functions 2-71

DosDupHandle -
Get a New Handle for an Open File

#define INCL_DOSFILEMGR

APIRET DosDupHandle (HFILE OldFlleHandle, PHFILE ppNewFlleHAndle)

DosDupHandle gets a new handle for an open file.

Parameters
OldFlleHandle (HFILE) - input

File handle to duplicate, or alias.

ppNewFileHAndle (PHFILE) - input/output

Address of a doubleword that, on input, describes how the handle is to be duplicated and, on
output contains the duplicate file handle.

On input, the value and meaning of this doubleword are as follows:

hex FFFFFFFF

not hex FFFFFFFF

Definition

Allocate a new file handle and return it here.

Assign this value as the new file handle. A valid value is any of the
handles assigned to standard 110, or the handle of a file currently
opened by the process.

On output, a value of hex FFFFFFFF returns a value for NewfileHandle, allocated by the
operating system.

Returns
Return Code.

DosDupHandle returns the following values:

0 NO_ERROR
4 ERROR_ TOO _MANY_ OPEN_FILES
6 ERROR_INVALID_HANDLE
114 ERROR_INVALID_TARGET_HANDLE

Remarks
Duplicating the handle duplicates and ties all handle-specific information between OldfileHandle and
NewfileHandle. For example, if you move the read/write pointer of either handle with DosRead,
DosSetFilePtr, or DosWrite, the pointer for the other handle also is changed.

The valid values for NewfileHandle include the following handles for standard 1/0, which are always
available to the process:

hex 00000000 Standard input
hex 00000001 Standard output
hex 00000002 Standard error.

If a file-handle value of a currently open file is specified in NewfileHandle, the file handle is closed
before it is redefined as the duplicate of OldfileHandle. Avoid using arbitrary values for
Newf ileHandle.

Issuing DosClose for a file handle does not affect the duplicate handle.

2-72 CP Programming Reference

DosDupHandle -
Get a New Handle for an Open File

Related Functions
• DosClose
• DosCreatePipe
• DosOpen
• DosRead
• DosSetFHState
• DosSetFilePtr
• DosSetMaxFH
• DosSetRelMaxFH
• DosWrite

Example Code
This example opens a file, creates a second file handle, then closes the file with the second handle.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

#define OPEN_FILE 0x01
#define CREATE_FILE 0xl0
#define FILE_ARCHIVE 0x20
#define FILE_EXISTS OPEN_FILE
#define FILE_NOEXISTS CREATE_FILE
#define DASD_FLAG 0
#define INHERIT 0x80
#define WRITE_THRU 0
#define FAIL_FLAG 0
#define SHARE_FLAG 0xl0
#define ACCESS_FLAG 0x02

#define FILE_NAME 11 test.dat 11

#define FILE_SIZE aeeL
#define FILE_ATTRIBUTE FILE_ARCHIVE
#define EABUF 0L

HFILE FileHandle;
HFILE NewHandle;
ULONG Wrote;
ULONG Action;
PSZ FileData[100];
APIRET re; /* Return code */

Action = 2;
strcpy(FileData, "Data ... ");

re = DosOpen(FILE_NAME, /* File path name */

if (re I= 0)
{

&FileHandle, /* File handle */
&Action, /* Action taken */
FILE_SIZE, /* File primary allocation */
FILE_ATTRIBUTE, /* File attribute */
FILE EXISTS I FILE NOEXISTS, /* Open function type */
DASD=FLAG I INHERIT I /* Open mode of the file */
WRITE_THRU I FAIL_FLAG I
SHARE FLAG I ACCESS FLAG,
EABUF); - /* No extended attributes * /

printf("DosOpen error: return code= %ld 11 ,rc);
return;

}

Chapter 2. Control Program Functions 2-73

DosDupHandle -
Get a New Handle for an Open File

re = OosDupHandle(FileHandle,
&NewHandle);

if (re != 0)
{

/* Existing file handle */
/* New file handle */

printf("DosOupHandle error: return code= %ld",rc);
return;

}

re = DosClose(NewHandle);

if (re I= 0)
{

/* Close with new fil~ handle */

printf("DosClose error: return code= %ld 11 ,rc);
return;

}

2-74 CP Programming Reference

DosEditName
Edit File and Directory Name

#define INCL_DOSFILEMGR

APIRET DosEdltName (ULONG ulEdltlevel, PSZ pszSourceStrlng, PSZ pszEdltStrlng,
PBYTE pbTargetBuf, ULONG ulTargetBuflen)

DosEditName edits file and directory names indirectly by transforming one ASCII string into another,
using global file-name characters for editing or search operations on the string.

Parameters
ulEdltLevel (ULONG) - input

The level of editing semantics to use in transforming the source string. If the value of EditLevel
is 1, the system uses editing semantics for OS/2 Version 1.2.

pszSourceStrlng (PSZ) - input

Address of the ASCllZ string to transform. Global file-name characters are specified only in the
subdirectory or file-name component of the path name, and are interpreted as search
characters. SourceString should contain only the component of the path name to edit, not the
entire path.

pszEdltStrlng (PSZ) - input

Address of the ASCllZ string to use for editing. Global file-name characters specified in the edit
string are interpreted as editing characters. Because only the name component of a path name
is transformed, this string does not include the path component.

pbTargetBuf (PBYTE) - output

Address of the buffer for the resulting ASCllZ string.

ulTargetBufLen (ULONG) - input

The length of the buffer, in bytes, for the resulting string.

Returns
Return Code.

DosEditName returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER
123 ERROR_INVALID_NAME

Remarks
DosEditName is used to search for and edit names of files and subdirectories. Typically, it is used in
conjunction with such functions as DosMove and DosCopy, which do not permit the use of global
file-name characters, to perform repetitive operations on files.

An example of an editing operation is: SourceString ="too.bar"; EditString = "*.baz"; result=
"FOO.BAZ." In the editing process, the string is changed to uppercase.

Global file-name characters have two uses: searching and editing. If they are specified in
SourceString, they are interpreted as search characters; in EditString, they are interpreted as editing
characters. This difference can be illustrated with an example using the COPY utility. The user
types the following:

copy *.old *.new

Chapter 2. Control Program Functions 2-75

DosEditName
Edit File and Directory Name

In the source,"*" acts as a search character and determines which files to return to the user. In the
target,"*" functions as an editing character by constructing new names for the matched files.

When used as search characters in SourceString, global file-name characters simply match files and
behave like any other search characters. They have the following meanings:

*

?

The period(.) has no special meaning itself, but"?" gives it one.

The asterisk will form a match with any character, including a blank, or with the absence
of a character. The matching operation does not cross the null character or the
backslash(\), which means that only the file name is matched, not an entire path.

The question mark matches 1 character, unless what it would match is a"." or the
terminating null characters, in which case it matches 0 characters. It also does not
cross"\".

Any character other than* and? matches itself, including".".

Searching is not case-sensitive.

If a file name does not have a period(.), an implicit one is automatically appended to the end during
searching operations. For example, searching for "too." would return "foo".

When used in EditString, global file-name characters have the following meanings:

?

*

The period(.) in the target synchronizes pointers. It causes the source pointer to match
a corresponding pointer to the period in the target. Counting starts from the left of the
pointers.

The question mark copies one character, unless what it would copy is a period (.), in
which case it copies no characters. It also copies no characters when the end of the
source string is reached.

The asterisk copies characters from the source to the target until it finds a source
character that matches the character following it in the target.

Editing is case-insensitive and case-preserving. If conflicts arise between the case of the source and
that of the editing string, the case of the editing string is used, for example:

source string: "file.txt"
editing string: "*E.TMP"
destination string: "filE.TMP"

copy file.txt *E.tmp -> filE.tmp

Related Functions
• DosCopy
• DosMove
• DosQuerySyslnfo

2-76 CP Programming Reference

DosEditName
Edit File and Directory Name

Example Code
This example transforms a source string into a destination string through the use of an editing string.

Both the source and editing strings can contain global file name characters. These global file name

characters control the form of the string transformation.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

UL ONG
UC HAR
UC HAR
UC HAR
ULONG
APIRET

EditLevel;
SourceString[80];
EditString[80];
TargetBuf[200];
TargetBufLen;
re;

EditLevel = 1;

/* Level of meta editing semantics */
/* String to transform */
/* Editing string */
/* Destination string buffer */
/* Destination string buffer length */
/* Return code */

/* Use OS/2 1.2 editing semantics */

strcpy(SourceString, 11 xyz.src 11
);

strcpy(EditString, 11 *.bak11
);

TargetBufLen = 200; /* Length of target buffer (bytes) */

re= DosEditName(EditLevel, SourceString, EditString, TargetBuf,

if (re ! = 0)
{

TargetBufLen);
/* On successful return, the */
/* transformed source string */
/* is found within the */
/* target buffer. In this */
/* example, TargetBuf should */
/* hold the string 11 XYZ.BAK 11 */

printf(11 DosEditName error: return code = %ld 11
, re);

return;
}

Chapter 2. Control Program Functions 2-77

DosEnterCritSec
Disable Thread Switching

#define INCL_DOSPROCESS

I APIRET DoaEnterCrllSec O

DosEnterCritSec disables thread switching for the current process.

Parameters

Returns
Return Code.

DosEnterCritSec returns the following values:

0 NO_ERROR
309 ERROR_INVALID_THREADID
484 ERROR_ CRITSEC _OVERFLOW

Remarks
DosEnterCritSec causes other threads in the process to block themselves and give up their time
slice. After a DosEnterCritSec request is made, no dynamic link calls should be made until the
corresponding DosExitCritSec is completed.

If a signal occurs, thread 1 begins execution to process the signal even though another thread in the
process has a DosEnterCritSec active. Thread 1 of a process is its initial thread of execution, not a
thread created with DosCreateThread. Any processing done by thread 1 to satisfy the signal must
not include accessing the critical resource intended to be protected by DosEnterCritSec.

A count is maintained of the number of times DosEnterCritSec is issued without a corresponding
DosExitCritSec. The count is incremented by DosEnterCritSec and decremented by DosExitCritSec.
Normal thread dispatching is not restored until the count is zero. The outstanding DosEnterCritSec
count is maintained in a word. If an overflow occurs, the count is set to the maximum value, no
operation is performed, and the request returns with ERROR_CRITSEC_OVERFLOW.

A thread can also execute code without having to give up time slices to other threads in its process if
it requests a priority class that is higher than those of the other threads. A thread's priority is
examined with DosGetlnfoBlocks, and changed with DosSetPriority.

ERROR_INVALID_THREADID is returned when an invalid attempt is made to enter a critical section of
code in a signal handler or exception handler.

ERROR_INVALID_THREADID is also returned when a dynamic link library (DLL) routine incorrectly
issues DosEnterCritSec.

Related Functions
• DosCreateThread
• DosExitCritSec

2-78 CP Programming Reference

Example Code

DosEnterCritSec -
Disable Thread Switching

This example enters a section that will not be pre-empted, performs a simple task, and then exits
quickly.

#define INCL_DOSPROCESS
#include <os2.h>
#include <stdio.h>

BOOL flag;

DosEnterCritSec();
flag = TRUE;
DosExitCritSec();

/* Enter critical code section */
/* Perfonn some work */
/* Exit critical code section */

Chapter 2. Control Program Functions 2-79

DosEnterMustComplete
Enter Must Complete

#define INCL_DOSEXCEPTIONS

APIRET DosEnlerMustComplele (PULONG ppulNestlng)

DosEnterMustComplete provides entry into a section of code in which asynchronous exceptions are
held.

Parameters
ppulNesling (PULONG) - output

A pointer to a value that is equal to the number of DosEnterMustComplete requests minus the
number of DosExitMustComplete requests for the current thread.

Returns
Return Code.

DosEnterMustComplete returns the following values:

0 NO_ERROR
650 ERROR_NESTING_ TOO _DEEP

Remarks
DosEnterMustComplete notifies the system that the thread is entering a section of code in which
asynchronous exceptions (signals and asynchronous process terminations) are to be held, rather
than being immediately delivered to the thread.

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1.

Related Functions
• DosAcknowledgeSignalException
• DosExitMustComplete
• DosRaiseException
• DosSendSignalException
• DosSetExceptionHandler
• DosSetSignal Exception Focus
• DosUnsetExceptionHandler
• DosUnwindException

2-80 CP Programming Reference

Example Code

DosEnterMustComplete
Enter Must Complete

This example shows how a thread can notify the system that the thread is entering a section of code
in which asynchronous exceptions (signals and asynchronous process terminations) are to be held,
rather than being delivered to the thread immediately.

Assume that the unsigned long variable NestingLevel is a global program variable that is used to
maintain the number of nested calls to DosEnterMustComplete that are currently in effect for the
section of code. Assume that NestingLevel was originally initialized to zero, and that its value is
subsequently incremented by calls to DosEnterMustComplete, and decremented by calls to
DosExitMustComplete.

#define INCL_DOSEXCEPTIONS /* Exception values */
#include <os2.h>
#include <stdio.h>

extern ULONG
APIRET re;

Nestinglevel; /*Number of signal to be acknowledged*/
/* Return code */

re = DosEnterMustComplete(&NestingLevel);

if (re != 0)
{

printf(11 DosEnterMustComplete error: return code= %ld 11
,

re);
return;

}

Chapter 2. Control Program Functions 2-81

DosEnumAttribute -
Identify Names and Lengths of Extended Attributes

#define INCL_DOSFILEMGR

APIRET DosEnumAttrlbute (ULONG ulRetType, PVOID pf lie Ref, ULONG ulEntryNum,
PVOID pEnumBuf, ULONG ulEnumBufSlze, PULONG pEnumCnt,
ULONG ullnfoLevel)

DosEnumAttribute identifies names and lengths of extended attributes for a specific file or
subdirectory.

Parameters
ulRetType (ULONG) - input

A value that indicates whether FileRef points to a handle or to an ASCllZ name:

Value

0

Definition

(ENUMEA_REFTYPE_FHANDLE): Handle of a file.

1 (ENUMEA_REFTYPE_PATH): ASCllZ name of a file or subdirectory.

pFlleRef (PVOID) - input

Address of the handle of a file returned by DosOpen; or the ASCllZ name of a file or
subdirectory.

ulEntryNum (ULONG) - input

Ordinal of an entry in the file object's EA list, which indicates where in the list to begin the return
of EA information. The value 0 is reserved. A value of 1 indicates the file object's first EA; a
value of 2, the second; and so on.

pEnumBuf (PVOID) - output

Address of the buffer where EA information is returned. Level 1 information is returned in a data
structure of type DENA2.

ulEnumBufSlze (ULONG) - input

The length, in bytes, of the buffer pointed to by EnumBuf.

pEnumCnt (PULONG) - input/output

On input, the address of a doubleword containing the number of EAs for which information is
requested. A value of -1 requests that information be returned for as many EAs whose
information fits in EnumBuf.

On output, this is the address of a doubleword containing the actual number of EAs for which
information is returned. When.this value is greater than 1, enumerated information is returned
in a series of DENA2 data structures. Each data structure is aligned on a doubleword boundary.
The first field of the data structure (oNextEntryOffset) contains the number of bytes to the
beginning of the next data structure. A value of zero for oNextEntryOffset indicates that this is
the last data structure.

ullnfoLevel (ULONG) - input

Level of information required. Only the value 1 (ENUMEA_LEVEL_NO_VALUE) can be specified,
indicating return of level 1 information.

2-82 CP Programming Reference

DosEnumAttribute
Identify Names and Lengths of Extended Attributes

Returns
Return Code.

DosEnumAttribute returns the following values:

0 NO_ERROR
3 ERROR_PA TH_NOT _FOUND
5 ERROR_ACCESS_DENIED
6 ERROR_INVALID_HANDLE
8 ERROR_NOT _ENOUGH_MEMORY
87 ERROR_INVALID_PARAMETER
111 ERROR_BUFFER_OVERFLOW
124 ERROR_INVALID_LEVEL
206 ERROR_FILENAME_EXCED_RANGE

Remarks
The structure that DosEnumAttribute returns is used to calculate the size of the buffer needed to hold
the full extended attribute (FEA2) information for a DosQueryPathlnfo or DosQueryFilelnfo call that
actually gets the FEA2. The buffer size is calculated as follows:

Four bytes (for oNextEntryOffset) +
One byte (for fEA) +
One byte (for cbName) +
Two bytes (for cbValue) +
Value of cbName (for the name of the EA) +
One byte (for terminating NULL in cbName) +
Value of cbValue (for the value of the EA)

Each entry must start on a doubleword boundary.

A process can continue through a file's EA list by reissuing DosEnumAttribute with EntryNum set to
the value specified in the previous call, plus the value returned in EnumCnt.

DosEnumAttribute does not control the specific ordering of EAs; it merely identifies them. Extended
attributes can have multiple readers and writers, just as the files they are associated with can. If a
file is open in a sharing mode that allows other processes to modify the file's EA list, repetitively
calling DosEnumAttribute to back up to an EA's position may return inconsistent results. For
example with DosSetFilelnfo or DosSetPathlnfo, another process can edit the EA list between calls by
your process to DosEnumAttribute. Therefore, the EA returned when EntryNum is 11 for the first call
might not be the same EA returned when EntryNum is 11 for the next call.

To prevent EAs from being modified between calls to DosEnumAttribute for a specified file handle or
file name, the calling function must open the file in deny-write sharing mode before it calls
DosEnumAttribute. If a subdirectory name is specified, modification by other processes is not a
concern, because no sharing is possible.

When a value of 1 is specified for RefType, the EAs returned are current only when the call was
made, and may have been changed by another thread or process since then.

Related Functions
• DosCreateDir
• DosOpen
• DosQueryFilelnfo
• DosQueryPathlnfo
• DosSetFilelnfo
• DosSetPathlnfo

Chapter 2. Control Program Functions 2-83

DosEnumAttribute -
Identify Names and Lengths of Extended Attributes

Example Code
This example identifies the names and lengths of extended attributes that are associated with a
specified file. Assume that the file has been opened already, and that the handle of the file has been
loaded into FileRef. Assume that the file has at least 6 different extended attributes associated with
it. In the example, extended attributes 3 through 6 will be read into the caller's buffer.

#define INCL_DOSFILEMGR /* File Manager values */
#include <os2.h>
#include <stdio.h>

ULONG
HFILE
ULONG
UC HAR
ULONG
ULONG
ULONG
APIRET

RefType;
FileRef;
EntryNum;
Enum8uf[200];
EnumBufSize;
EnumCnt;
Infolevel;
re;

/* Type of reference */
/* Handle {in this example) or Name */
/*Starting entry in EA list */
/* Data buffer */
/* Data buffer size */
/* Count of entries to return */
/* Level of information requested */
/* Return code */

RefType = ENUMEA_REFTYPE_FHANDLE;
/* Indicate that the FileRef variable */
/* contains a file handle rather than */
/* an ASCII name *I

EntryNum = 3; /* Start with the current extended */
/* attribute number 3 */

EnumBufSize = 200; /*Size of data buffer that will */
/* receive the extended attribute */
/* current valuess {in bytes) */

EnumCnt = 4; /* Ask to see the current values of */
/* four extended attributes */
/* {extended attributes 3 to 6). */

Infolevel = ENUMEA_LEVEL_NO_VALUE;
/* Ask for Level 1 information */
/* characterizing the specified */
/* extended attributes */

re = DosEnumAttribute{RefType, &FileRef, EntryNum, EnumBuf,
EnumBufSize, &EnumCnt, InfoLevel);

if (re != 0)
{

/* On successful return, the EnumBuf */
/* data buffer contains a chain of */
/* Level 1 data structures that */
/* each describe a single extended */
/* attribute. Each Level 1 data */
/* structure can have a different */
/* size because both the name and the */
/* value of an extended attribute are */
/* of variable length. Also, the */
/* EnumCnt variable will have been */
/* updated to contain the total number */
/* extended attribute data structures */
/* that were placed in the data buffer.*/

printf{"DosEnumAttribute error: return code= %ld", re);
return;

}

2-84 CP Programming Reference

DosErrClass -
Provide More Information about Return Values

#define INCL_DOSMISC

APIRET DosErrClass (ULONG ulCode, PULONG pClass, PULONG pActlon, PULONG pLocus)

DosErrClass provides more information about return values that have been received from other
control-program functions.

Parameters
ulCode (ULONG) - input

A non-zero return value returned by a control-program function. (A non-zero return value
indicates that an error has occurred.)

pClass (PULONG) - output

A pointer to a doubleword whose value indicates the classification for the error. The following
values are possible:

Value Name Descriotion

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15

ERRCLASS_OUTRES
ERRCLASS_TEMPSIT
ERRCLASS_AUTH
ERRCLASS_INTRN
ERRCLASS_HRDFAIL
ERRCLASS_SYSFAIL
ERRCLASS_APPERR
ERRCLASS_NOTFND
ERRCLASS_BADFMT
ERRCLASS_LOCKED
ERRCLASS_MEDIA

ERRCLASS_ALREADY

ERRCLASS_UNK
ERRCLASS_CANT
ERRCLASS _TIME

pAction (PULONG) - output

Out of resources
Temporary situation
Authorization failed
Internal error
Device hardware failure
System failure
Probable application error
Item not located
Bad format for function or data
Resource or data locked
Incorrect media, cyclic redundancy
check (CRC) error

Action already taken or done,
or resource already exists

Unclassified
Cannot perform requested action
Timeout

A pointer to a doubleword whose value indicates the recommended corrective action for the
error. The following values are possible:

Value Name Description

1
2
3
4
5
6
7

ERRACT_RETRY
ERRACT_DLYRET
ERRACT_USER
ERRACT_ABORT
ERRACT_PANIC
ERRACT_IGNORE
ERRACT_INTRET

pLocus (PULONG) - output

Retry immediately
Delay and retry
Bad user input - get new values
Terminate in an orderly manner
Terminate immediately
Ignore error
Retry after user intervention

A pointer to a doubleword whose value indicates where the error originated. The following
values are possible:

Chapter 2. Control Program Functions 2-85

DosErrClass -
Provide More Information about Return Values

Description

Unknown 1
2
3
4
5

ERRLOC_UNK
ERRLOC_DISK
ERRLOC_NET
ERRLOC_SERDEV
ERRLOC_MEM

Random-access device such as a disk
Network
Serial device
Memory

Returns
Return Code.

DosErrClass returns the following values:

0 NO_ERROR

Remarks
DosErrClass receives a non-zero return value from another control-program function as input. It

then classifies the return value, tells where in the system the error occurred, and recommends a

corrective action.

When called by a family-mode application, DosErrClass can return a valid error classification only

for errors that have actually occurred. Also, the classifications of a given return value might not be

the same for family-mode and OS/2-mode applications.

Related Functions
• DosError

Example Code
In the following example, an attempt is made to delete a nonexistent file. The return value is then

passed to DosErrClass so that more information about the error can be obtained, including any

corrective actions that may be taken.

#define INCL_DOSQUEUES
#include <os2.h>
#include <stdio.h>

#define FILE_DELETE 11 adlkjf .dkf11

ULONG Error;
ULONG Class;
ULONG Action;
ULONG Locus;
APIRET re; /* Return code */

Error= DosDelete(FILE_DELETE);

re = DosErrClass(Error,
&Class,
&Action,
&Locus);

if (re != 0)
{

/* File name path */

/* Return value to be analyzed */
/* Error classification */
/* Recommended action */
/* Error locus */

printf("DosErrClass error: return code= %ld 11 ,rc);
return;

}

2-86 CP Programming Reference

DosError -
Disables or Enables Error Notification to End User

#define INCL_DOSMISC

I APIRET DosError (ULONG ulFlags)

DosError disables or enables error notification to end users.

Parameters
ulFlags (ULONG) - input

A doubleword bit field, defined as shown below. The unused high-order bits are reserved, and
must be zero. The following values can be specified for this parameter. You can combine them
with the "logical or" (I) operator:

FERR_DISABLEHARDERR (OxOOOOOOOO)
Disable hard error pop-ups.

FERR_ENABLEHARDERR (Ox00000001)
Enable hard error pop-ups.

FERR_ENABLEEXCEPTION (OxOOOOOOOO)
Enable program exception and untrapped numeric-processor exception pop-ups.

FERR_DISABLEEXCEPTION (Ox00000002)
Disable program exception and untrapped numeric-processor exception pop-ups.

Returns
Return Code.

DosError returns the following values:

0 NO_ERROR
87 ERROR_INVALID_PARAMETER

Remarks
DosError disables or enables end-user notification of hard errors, program exceptions, or untrapped,
numeric-processor exceptions.

If DosError is not issued, user notification for hard errors and exceptions is enabled.

Related Functions
• DosErrClass

Chapter 2. Control Program Functions 2-87

DosError -
Disables or Enables Error Notification to End User

Example Code
In the following example, pop-up windows for hard errors and exceptions are disabled, then enabled
again.

#define INCL_DOSMISC /* Error and exception values */
#include <os2.h>
#include <stdio.h>

#define ENABLE_EXCEPTION 0
#define DISABLE_EXCEPTION 2
#define ENABLE_HARDERROR 1
#define DISABLE HARDERROR 0
#define DISABLE-ERRORPOPUPS DISABLE EXCEPTION I DISABLE HARDERROR
#define ENABLE_ERRORPOPUPS ENABLE_EXCEPTION I ENABLE_HARDERROR

APIRET re; /* Return code */

re= DosError(DISABLE_ERRORPOPUPS); /*Action flag for disable*/

if (re ! = 0)
{

}

printf(11 DosError error: return code= %ld 11 .rc);
return;

re= DosError(ENABLE_ERRORPOPUPS); /*Action flag for enable*/

if (re ! = 0)
{

}

printf(11 DosError error: return code= %ld 11 .rc);
return;

2-88 CP Programming Reference

DosExecPgm
Execute Another Program as a Child Process

#define INCL DOSPROCESS

APIRET DosExecPgm (PCHAR ppOb)NameBuf, LONG IObJNameBufL, ULONG ulExecFlags,
PSZ pszArgPolnter, PSZ pszEnvPolnter,
PRESULTCODES ppReturnCodes, PSZ pszPgmPolnter)

DosExecPgm allows a program to request that another program execute as a child process.

Parameters
ppObJNameBuf (PCHAR) - output

Address of the buffer in which the name of the object that contributed to the failure of
DosExecPgm is returned.

IObJNameBufL (LONG) - input

Length, in bytes, of the buffer described by ObjNameBuf.

ulExecFlags (ULONG) - input

Indicates how the program runs in relation to the requester, and whether execution is under
conditions for debugging. The values of this field are as follows:

0

1

2

3

4

5

6

Definition

(EXEC_SYNC): Execution is synchronous to the parent process. The termination
code and result code are stored in the two-doubleword structure pointed to by
ReturnCodes.

(EXEC_ASYNC): Execution is asynchronous to the parent process. When the child
process ends, its result code is discarded. The process ID is stored in the first
doubleword of the two-doubleword structure pointed to by ReturnCodes

(EXEC_ASYNCRESUL T): Execution is asynchronous to the parent process. When the
child process ends, its result code is saved for examination by a DosWaitChild
request. The process ID is stored in the first doubleword of the two-doubleword
structure pointed to by ReturnCodes.

(EXEC_ TRACE): Execution is the same as if a value of 2 were specified for
ExecFlags. Debugging conditions are present for the child process.

(EXEC_BACKGROUND): Execution is asynchronous to and detached from the
parent-process session. When the detached process starts, it is not affected by the
ending of the parent process. The detached process is treated as an orphan of the
parent process.

A program executed with this option runs in the background, and should not require
any input from the keyboard or output to the screen other than VioPopups. It should
not issue any console 110 calls (VIO, KBD, or MOU functions).

(EXEC_LOAD): The program is loaded into storage and made ready to execute, but
is not executed until the session manager dispatches the threads belonging to the
process.

(EXEC_ASYNCRESUL TDB): Execution is the same as if a value of 2 were specified
for ExecF/ags, with the addition of debugging conditions being present for the child
process and any of its descendants. In this way, it is possible to debug even
detached and synchronous processes.

Some memory is consumed for uncollected result codes. Issue DosWaitChild to release this
memory. If result codes are not collected, then a value of 0 or 1 should be used for ExecF/ags.

Chapter 2. Control Program Functions 2-89

DosExecPgm
Execute Another Program as a Child Process

pszArgPolnler (PSZ) - input

Address of the ASCllZ argument strings passed to the program. These strings represent
command parameters, which are copied to the environment segment of the new process.

The convention used by CMD.EXE is that the first of these strings is the program name (as
entered from the command prompt or found in a batch file), and the second string consists of the
parameters for the program. The second ASCllZ string is followed by an additional byte of
zeros. A value of zero for the address of ArgPointer means that no arguments are to be passed
to the program.

pszEnvPolnler (PSZ) - input

Address of the ASCllZ environment strings passed to the program. These strings represent
environment variables and their current values. An environment string has the following form:

variable=value

The last ASCllZ environment string must be followed by an additional byte of zeros.

A value of O for the address of EnvPointer results in the new process' inheriting the environment
of its parent process.

When the new process is given control, it receives:

• A pointer to its environment segment
• The fully qualified file specification of the executable file
• A copy of the argument strings.

A coded example of this follows:

eo: ASCIIZ string 1 environment string 1
ASCIIZ string 2 ; environment string 2

ASCIIZ string n
Byte of e

po: ASCIIZ

ao: ASCIIZ

ASCIIZ

Byte of e

environment string n

string of file name
of program to run.

argument string 1
(name of program being started
for the case of CMD.EXE)
argument string 2
(program parameters following
program name for the case of
CMD.EXE)

The beginning of the environment segment is "eo", and "ao" is the offset of the first argument
string in that segment. The offset to the command line, "ao", is passed to the program on the
stack at SS:[ESP+16].

The environment strings typically have the form: parameter= value

A value of zero for EnvPointer causes the newly created process to inherit the parent's
environment unchanged.

ppRelurnCodes (PRESUL TCODES) - output

Address of the two-doubleword structure where the process ID, or the termination code and the
result code indicating the reason for ending the child process are returned. This structure also

2-90 CP Programming Reference

DosExecPgm
Execute Another Program as a Child Process

is used by a DosWaitChild request, which waits for an asynchronous child process to end. This
structure contains two doublewords, as follows:

termcodepld (ULONG)
For an asynchronous request, the process identifier of the child process. For a synchronous
request, the termination code furnished by the system describes why the child process
ended. The values of the termination codes are as follows:

Definition Value

0

1

(TC_EXIT): Normal exit

(TC_HARDERROR): Hard-error halt

2

3

(TC_ TRAP): Trap operation for a 16-bit child process

(TC_KILLPROCESS): Unintercepted DosKillProcess

4 (TC_EXCEPTION): Exception operation for a 32-bit child process

resultcode (ULONG)
Result code specified by the terminating synchronous process on its last DosExit function.

pszPgmPointer {PSZ) - input

Address of the name of the file that contains the program to be executed. When the environment
is passed to the target program, this name is copied into "po" in the environment description
shown above.

If the string appears to be a fully qualified file specification (that is, it contains a" : " in the
second position, or it contains a " \ ", or both), then the file name must include the extension,
and the program is loaded from the indicated drive:directory.

If the string is not a fully qualified path, the current directory is searched. If the file name is not
found in the current directory, each drive:directory specification in the PATH defined in the
current-process environment is searched for this file. Note that any extension (.XXX) is
acceptable for the executable file being loaded.

Returns
Return Code.

DosExecPgm returns the following values:

0 NO_ERROR
1 ERROR_INVALID_FUNCTION
2 ERROR_FILE_NOT_FOUND
3 ERROR_PATH_NOT_FOUND
4 ERROR_ TOO _MANY_ OPEN_FILES
5 ERROR_ACCESS_DENIED
8 ERROR_NOT_ENOUGH_MEMORY
10 ERROR_BAD_ENVIRONMENT
11 ERROR_BAD_FORMAT
13 ERROR_INVALID_DATA
26 ERROR_NOT_DOS_DISK
32 ERROR_SHARING_VIOLATION
33 ERROR_LOCK_VIOLATION
36 ERROR_SHARING_BUFFER_EXCEEDED
89 ERROR_NO_PROC_SLOTS
95 ERROR_INTERRUPT
108 ERROR_DRIVE_LOCKED
127 ERROR_PROC_NOT_FOUND
182 ERROR_INVALID _ORDINAL
190 ERROR_INVALID_MODULETYPE
191 ERROR_INVAUD_EXE_SIGNATURE
192 ERROR_EXE_MARKED_INVAUD
195 ERROR_INVALID_MINALLOCSIZE

Chapter 2. Control Program Functions 2-91

DosExecPgm
Execute Another Program as a Child Process

196 ERROR_DYNLINK_FROM_INVALID_RING

Remarks
DosExecPgm allows a program to request that another program execute as a child process.

The target program is located and loaded into storage (if necessary), a process is created for it and
placed into execution. The execution of a child process can be synchronous or asynchronous to the
execution of its parent process. If synchronous execution is indicated, the requesting thread waits
for completion of the child process. Other threads in the requesting process may continue to run.

If asynchronous execution is indicated, DosExecPgm places the process ID of the started child
process into the first doubleword of the ReturnCodes structure. If a value of 2 is specified for
ExecF/ags, the parent process can issue DosWaitChild (after DosExecPgm) to examine the result
code returned when the child process ends. If the value of ExecF/ags is 1, the result code of the
asynchronous child process is not returned to the parent process.

If synchronous execution is indicated, DosExecPgm places the termination code and result code into
the ReturnCodes structure.

The new process is created with an address space separate and distinct from its parent; that is, a
new linear address space is built for the process.

The new process inherits all file handles and pipes of its parent, although not necessarily with the
same access rights:

• Files are inherited except for those opened with no inheritance indicated.

• Pipes are inherited.

A child process inherits file handles obtained by its parent process with DosOpen calls that indicated

inheritance. The child process also inherits handles to pipes created by the parent process with
DosCreatePipe. This means that the parent process has control over the meanings of standard input,

output, and error. For example, the parent could write a series of records to a file, open the file as
standard input, open a listing file as standard output, and then execute a sort program that takes its
input from standard input and writes to standard output.

Because a child process can inherit handles, and a parent process controls the meanings of handles

for standard 110, the parent can duplicate inherited handles as handles for standard 110. This
permits the parent process and the child process to coordinate 110 to a pipe or file. For example, a
parent process can create two pipes with DosCreatePipe requests. It can issue DosDupHandle to
redefine the read handle of one pipe as standard input (hex 0000), and the write handle of the other
pipe as standard output (hex 0001). The child process uses the standard 110 handles, and the parent

process uses the remaining read and write pipe handles. Thus, the child process reads what the
parent process writes to one pipe, and the parent process reads what the child process writes to the
other pipe.

When an inherited file handle is duplicated, the position of the file pointer is always the same for both
handles, regardless of which handle repositions the file pointer.

An asynchronous process that was started because the value of Execflags was 3 or 6 is provided a
trace flag facility. This facility and the trace buffers provided by DosDebug enable a debugger to
perform breakpoint debugging. DosStartSession provides additional debugging capabilities that
allow a debugger to trace all processes associated with an application running in a child session,
regardless of whether the process is started with DosExecPgm or DosStartSession.

A detached process is treated as an orphan of the parent process and runs in the background. Thus,
it cannot make any VIO, KBD, or MOU calls, except from within a video pop-up requested by
VioPopUp. To test whether a program is running detached, use the following method. Issue a video
call, (for example, VioGetAnsi). If the call is not issued within a video pop-up and the process is

~~~~~~de~hed,thevideocall returns error code ERROR VIO.~D~E=T~A~C~H=E=D~·~~~~~~~~~~~~~~~~~ 

2-92 CP Programming Reference 



DosExecPgm 

Execute Another Program as a Child Process 

You may use DosExecPgm to start a process that is of the same type as the starting process. 

Process types include Presentation Manager, text-windowed, and full-screen. You may not use 

DosExecPgm to start a process that is of a different type than the starting process. 

You must use DosStartSession to start a new process from a process that is of a different type. For 

example, use DosStartSession to start a Presentation Manager process from a non-Presentation 

Manager process. 

The following are the register conventions for 32-bit programs: 

Register 

EIP 

ESP 

cs 
DS,ES,SS 

FS 

GS 

EAX,EBX 

ECX,EDX 

ESl,EDI 

EBP 

[ESP+O] 

[ESP+4] 

[ESP+8] 

[ESP+12] 

[ESP+16] 

Definition 

Starting program entry address 

Top of stack address 

Code selector for the base of the linear address space 

Data selector for the base of the linear address space 

Data selector for the thread information block 

0 

0 

0 

0 

0 

Return address to the routine that calls DosExit 

Module handle for the program module 

0 

Address of the environment data object 

Offset to the command line in the environment data object. 

Related Functions 
• DosCreatePipe 
• DosCreateThread 
• DosExit 
• DosKillProcess 
• DosKillThread 
• DosOpen 
• DosWaitChild 

Example Code 
This example starts the program simple.axe and then waits for it to finish. It then prints the 

termination code and return code. 

#define INCL_DOSPROCESS 

#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

#define START_PROGRAM 11 simple.exe 11 

#ifndef RESULTCODES 
typedef-struct _RESULTCODES { /*Result codes */ 

ULONG codeTerminate; /* Termination code or process ID */ 

Chapter 2. Control Program Functions 2-93 



DosExecPgm -
Execute Another Program as a Child Process 

ULONG codeResult; /* Exit code */ 

} RESULTCODES; 
#endif 

CHAR LoadError[l00]; 
PSZ Args; 
PSZ Envs; 
RESULTCODES ReturnCodes; 
APIRET re; 

re = DosExecPgrn(LoadError, 
sizeof(LoadError), 
EXEC_SYNC, 

if (re == e) 
{ 

Args, 
Envs, 
&ReturnCodes, 
START_PROGRAM); 

/* Return code */ 

/* Object name buffer */ 
/* Length of object name buffer */ 
/* Asynchronous/Trace flags */ 
/* Argument string */ 
/* Environment string */ 
/* Termination codes */ 
/* Program file name */ 

printf("Termination Code %d Return Code %d \n", 
ReturnCodes.codeTerminate, 
ReturnCodes.codeResult); 

} 

----------------simple.exe------------------

#define INCL_DOSPROCESS 

#include <os2.h> 

#define RETURN_CODE 0 

main() 
{ 

} 

printf("Hello!\n"); 
DosExit(EXIT_PROCESS, 

RETURN_CODE); 

2-94 CP Programming Reference 

/* Process and thread values */ 

/* End thread/process */ 
/* Result code */ 



#define INCL DOSPROCESS 

Dos Exit 
Issued When a Thread Finishes Executing 

VOID DosExlt (ULONG ulAclionCode, ULONG ulResultCode) 

DosExit is issued when a thread finishes executing. The current thread or process ends. 

Parameters 
ulActlonCode (ULONG) - input 

Ends the process and all of its threads. The values of this field are as follows: 

Definition Value 

0 (EXIT_ THREAD): The current thread ends. 

1 (EXIT _PROCESS): All threads in the process end. 

ulResultCode (ULONG) - input 

Program's completion code. It is passed to any thread that issues DosWaitChild for this process. 

Returns 
The return value is VOID. 

Remarks 
DosExit is issued when a thread completes executing. The current thread or process ends. 

DosExit allows a thread to terminate itself or be terminated by another thread in its process. If 

ActionCode is 0 and the specified thread is the last thread executing in the process, the process 
ends. If ActionCode is 1, the process ends. 

The system can start threads on behalf of an application. Thus, if the intent of DosExit is to terminate 

the process, a value of 1 should be specified for ActionCode to end all the threads belonging to the 
process. 

Do not end thread 1 without ending the process. Thread 1 is the initial thread of execution, not a 
thread started by a DosCreateThread request. When thread 1 ends, any monitors or signal 
processing routines set for this process also end. To avoid unpredictable results, DosExit should be 
issued with a value of 1 for ActionCode to ensure that the process ends. 

When a process is ending, all but one thread is ended, and that thread executes routines whose 
addresses have been specified with DosExitlist. After resources have been released by the exit list 

routines, this thread and all other resources owned by the process are released. 

Related Functions 
• DosExecPgm 
• DosExitlist 
• DosKillThread 
• DosWaitChild 

Chapter 2. Control Program Functions 2-95 



DosExit -
Issued When a Thread Finishes Executing 

Example Code 
In this example, the main routine starts up another program, simple.axe, and then expects a return 
code of 3 to be returned. Simple.axe sets the return code with DosExit. 

#define INCL_DOSPROCESS /* Process and thread values */ 
#include <os2.h> 
#include <stdio.h> 

#define START_PROGRAM 11 simple.exe11 

#define RETURN_OK 3 

CHAR LoadError[100]; 
PSZ Args; 
PSZ Envs; 
RESULTCODES ReturnCodes; 
APIRET re; /* Return code */ 

re = DosExecPgm(LoadError, 
sizeof(LoadError), 

EXEC_SYNC, 

Args, 
Envs, 
&ReturnCodes, 
START_PROGRAM); 

if (ReturnCodes.codeResult == RETURN_OK) 
printf( 11 things are ok .•. 11

); 

else 
printf( 11 something is wrong ... 11

); 

----------------simple.exe------------------

/* Object name buffer */ 
/* Length of object name 

buffer */ 
/* Asynchronous/Trace 

flags */ 
/* Argument string */ 
/* Environment string */ 
/* Termination codes */ 
/* Program file name*/ 

/* Check result code */ 

#define INCL_DOSPROCESS 
#include <os2.h> 

/* Process and thread values */ 

#define RETURN_CODE 3 

main() 
{ 

} 

printf( 11 Hello!\n 11
); 

DosExit(EXIT_THREAD, 
RETURN_CODE); 

2-96 CP Programming Reference 

/* End thread/process */ 
/* Result code */ 



DosExitCritSec -
Restore Normal Thread Dispatching for Current Process 

#define INCL_DOSPROCESS 

I APIRET DosExHCrltSec O 

DosExitCritSec restores normal thread dispatching for the current process. 

Parameters 

Returns 
Return Code. 

DosExitCritSec returns the following values: 

0 NO_ERROR 
309 ERROR_INVALID_THREADID 
485 ERROR_CRITSEC_UNDERFLOW 

Remarks 
DosExitCritSec is used following DosEnterCritSec to restore normal thread switching to the threads 
of a process. 

A count is maintained of the number of times DosEnterCritSec is issued without a corresponding 
DosExitCritSec. The count is incremented by DosEnterCritSec, and decremented by DosExitCritSec. 
Normal thread dispatching is not restored until the count is zero. 

The outstanding count is maintained in a word. If an underflow occurs (the count is decremented 
below zero), the count is set to zero, no operation is performed, and the request returns with 
ERROR_ CRITSEC _UNDERFLOW. 

ERROR_INVALID_THREADID is returned when an invalid attempt is made to exit a critical section of 
code in a signal handler or exception handler. 

ERROR_INVALID_THREADID is also returned when a dynamic link library (DLL) routine incorrectly 
issues DosExitCritSec. 

Related Functions 
• DosCreateThread 
• DosEnterCritSec 

Example Code 
This example enters a section that will not be pre-empted, performs a simple task, and then exits 
quickly. 

#define INCL_DOSPROCESS /* Process and thread values */ 
#include <os2.h> 
#include <stdio.h> 

BOOL flag; 

DosEnterCritSec(); 

flag = TRUE; 
DosExitCritSec(); 

/* Enter critical code 
code section */ 

/* Perfonn some work */ 
/* Exit critical code section */ 

Chapter 2. Control Program Functions 2-97 



DosExitList -
Maintain a List of Routines that Execute when the Current 
Process Ends 

#define INCL_DOSPROCESS 

APIRET DosExltllst (ULONG ulFunctlonOrder, PFNEXITLIST ppRtnAddress) 

DosExitlist maintains a list of routines that execute when the current process ends. 

Parameters 
ulFunctlonOrder (ULONG) - input 

Contains two one-byte fields in the low-order word. The high-order word is zero. 

The low-order byte of the low-order word indicates which function DosExitlist performs. This 
function can update the list of routines, or transfer to the next address on the termination list at 
the completion of a routine. The values of the byte and their meanings are as follows: 

Definition 

1 (EXLST_ADD): Add an address to the termination list. 

2 (EXLST _REMOVE): Remove an address from the termination list. 

3 (EXLST _EXIT): When termination processing completes, transfer to the next address 
on the termination list. 

The high-order byte of the low-order word indicates the invocation order. This value is valid 
only when the low-order byte is 1 (add an address). For the other low-order byte values, the 
high-order byte of the low-order word must be set to zero. 

The invocation order indicates where the routine address is to be placed in an ordered list. This 
list determines the order in which the exit list routines are invoked. Routines with a value of 0 
are invoked first, and routines with a value of 255 are invoked last. If more than one routine is 
added with the same invocation order value, the last routine to be added is invoked first. The 
following values are used by OS/2 components: 

Value 
X'80' - X'88' 
X'90' - X'98' 
X' AO' - X' AB' 
X'BO' 
X'CO' 
X'DO' 

Definition 
OS/2 Extended Edition Database Manager 
OS/2 Extended Edition Communications Manager 
OS/2 Presentation Manager 
OS/2 Keyboard (KBD) component 
OS/2 Video (VIO) component 
OS/2 Interprocess Communication (IPC) Queues component 

ppRtnAddress (PFNEXITLIST) - input 

The address of a routine to be executed. 

Returns 
Return Code. 

DosExitlist returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID_FUNCTION 
8 ERROR_NOT _ENOUGH_MEMORY 
13 ERROR_INVALID_DATA 

2-98 CP Programming Reference 



DosExitList 
Maintain a List of Routines that Execute when the Current 

Process Ends 

Remarks 
DosExitlist is issued to define a routine that is to be given control when a process completes its 
execution. Multiple routines may be defined to receive control when a process is ending. For each 
process, the operating system maintains a list of addresses of defined exit list routines. 

When the process is ending, the operating system transfers control to each address in this list. If 
there are multiple addresses in the list, they will each get control in numerical order by function 
invocation order, that is, low (O) will be first, and high (hex FF) will be last. In case of duplicate 
entries for the same value, the routines will be executed in LIFO (last in, first out) order. 

Library modules can issue DosExitlist to free resources or to clear flags and semaphores in case the 
client process ends without notifying them. 

Before transferring control to the routines in the termination list, the operating system resets the 
stack to its initial value. The routine must be in the address space of the ending process. The 
termination routine should perform its processing and then issue DosExitlist with a value of 3 
(EXLST _EXIT) for FunctionOrder. The termination routine should be as short as possible. 

Most system functions are allowed in an exit list routine. However, DosCreateThread and 
DosExecPgm are not. 

An exit list routine must not call functions that have a better function order priority (that is, a lower 
value for FunctionOrder) than itself. For example, an exit list routine with a function order value of 
hex 9A can use Presentation Services functions but not Communications Manager functions. 

When the exit list routine receives control, the first parameter on the stack (located at ESP+4) 
contains a termination code that describes why the process ended. The values of the termination 
codes are as follows: 

Value 

0 

1 

Definition 

(TC_EXIT) Normal exit 

(TC_HARDERROR) Hard-error halt 

2 

3 

4 

(TC_ TRAP) Trap operation for a 16-bit child process 

(TC_KILLPROCESS) Unintercepted DosKillProcess 

(TC_EXCEPTION) Exception operation for a 32-bit child process 

When the exit list routine receives control, all system semaphores owned by the process have their 
ownership transferred to the thread that performs exit list processing. This allows the thread to 
request serialization semaphores without danger of blocking in case the semaphore was held by 
another thread in the process that has already ended. 

Note: All exit list routines must be declared as VOID APIENTRY. This ensures the integrity of the 
stack. 

Related Functions 
• DosCreateThread 
• DosExecPgm 
• DosExit 
• DosKillProcess 
• DosKillThread 

Chapter 2. Control Program Functions 2-99 



DosExitList -
Maintain a List of Routines that Execute when the Current 
Process Ends 

Example Code 
In this example, TestRoutine is added to the exit-list sequence. Routines in the exit-list sequence 

must use DosExitlist instead of DosExit to end. 

#define INCL_DOSPROCESS 
#define INCL_VIO 
#include <os2.h> 
#include <stdio.h> 
#define ROUTINE_ORDER 0x0000EE00 
#define VIO_HANDLE 0 

APIRET re; 

/* Process and thread values */ 

/* Return code */ 

/*All exit list routines must be declared as VOID APIENTRY. */ 
/* This ensures the integrity of the stack. */ 

VOID APIENTRY TestRoutine2() 
{ 
APIRET r; 

VioWrtTTY( 11 This runs last .•• \n", 
18, 
VIO HANDLE); 

r = DosExitList(EXLST_EXIT, 

/* Return code */ 

/* String to be written */ 
/* Length of string */ 
/* Video handle */ 

/* Function request 
code/order */ 

(PFNEXITLIST) TestRoutine2); /*Address of routine*/ 
} 

main() 
{ 
re = DosExitList(EXLST_ADD I ROUTINE_ORDER, /* Function request 

code/order */ 
(PFNEXITLIST) TestRoutine2); /*Address of routine*/ 

} 

2-100 CP Programming Reference 



#define INCL_DOSEXCEPTIONS 

DosExitMustComplete -
Exit Must Complete 

APIRET DosExltMustComplete (PULONG ppulNestlng) 

DosExitMustComplete provides exit from a section of code in which asynchronous exceptions are 
held. 

Parameters 
ppulNestlng (PULONG) - output 

A pointer to a value that is equal to the number of DosEnterMustComplete requests minus the 
number of DosExitMustComplete requests for the current thread. 

Returns 
Return Code. 

DosExitMustComplete returns the following values: 

0 NO_ERROR 
300 ERROR_ALREADY _RESET 

Remarks 
DosExitMustComplete notifies the system that the calling thread is leaving a section of code in which 
any asynchronous exceptions (signals and asynchronous process terminations) that may have 
occurred were held, rather than being immediately delivered to the thread. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
• DosAcknowledgeSignalException 
• DosEnterMustComplete 
• DosRaiseException 
• DosSendSignalException 
• DosSetExceptionHandler 
• DosSetSignalExceptionFocus 
• DosUnsetExceptionHandler 
• DosUnwindException 

Chapter 2. Control Program Functions 2-101 



DosExitMustComplete 
Exit Must Complete 

Example Code 
This example shows how a thread can notify the system that the thread is leaving a section of code in 
which asynchronous exceptions (signals and asynchronous process terminations) are to be held, 
rather than being delivered to the thread immediately. 

Assume that the unsigned long variable Nestinglevel is a global program variable that is used to 
maintain the number of nested calls to DosEnterMustComplete that are currently in effect for the 
section of code. Assume that Nestinglevel was originally initialized to zero, and that its value is 
subsequently incremented by calls to DosEnterMustComplete, and decremented by calls to 
DosExitMustComplete. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

extern ULONG NestingLevel; /*Number of signal to be acknowledged*/ 
APIRET re; /* Return code */ 

re= DosExitMustComplete(&NestingLevel); 

if (re != e) 
{ 

} 

printf("DosExitMustComplete error: return code= %ld", 
re); 

return; 

2-102 CP Programming Reference 



#define INCL_DOSFILEMGR 

DosFindClose -
Close a Handle to a Find Request 

APIRET DosflndClose (HDIR hdlrDlrHandle) 

DosFindClose closes the handle to a find request; that is, ends a search. 

Parameters 
hdtrDlrHandle (HDIR) - input 

The handle previously associated with a DosFindFirst function by the system, or used with a 
DosFindNext directory search function. 

Returns 
Return Code. 

DosFindClose returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 

Remarks 
When DosFindClose is issued, any subsequent issuance of DosFindNext for the closed handle 
(DirHandle) fails unless an intervening DosFindFirst specifying the handle is issued. 

Related Functions 
• DosFindFirst 
• DosFindNext 

Chapter 2. Control Program Functions 2-103 



DosFindClose -
Close a Handle to a Find Request 

Example Code 
This example searches for a file, then ends the search. 

#define INCL_DOSFILEMGR 
#include <os2.h> 
#include <stdio.h> 

/* File Manager values */ 

#define SEARCH_PATTERN 11 *. * 11 

#define FILE_ATTRIBUTE 0 

HDIR FindHandle; 
FILEFINDBUF3 FindBuffer; 
ULONG FindCount; 
APIRET re; /* Return code */ 

FindHandle = 0x0001; 
FindCount = 1; 

re = DosFindFirst(SEARCH_PATTERN, 
&FindHandle, 

if (re != 0) 
{ 

FILE ATTRIBUTE, 
(PVOID) &FindBuffer, 
sizeof(FindBuffer), 
&FindCount, 
FIL_STANDARD); 

/* File pattern */ 
/* Directory search handle */ 
/* Search attribute */ 
/* Result buffer */ 
/* Result buffer length */ 
/* # of entries to find */ 
/* Level 1 file infonnation */ 

printf( 11 DosFindFirst error: return code = %ld 11 ,rc); 
return; 

} 

re= DosFindClose(FindHandle); 

if (re != 0) 
{ 

/* Directory search handle */ 

printf( 11 DosFindClose error: return code = %ld 11 ,rc); 
return; 

} 

2-104 CP Programming Reference 



DosFindFirst -
Find the First File Object 

#define INCL_DOSFILEMGR 

APIRET DosFlndFlrsl (PSZ pszFlleName, PHDIR ppDlrHandle, ULONG ulAttrlbule, 
PVOID pResullBuf, ULONG ulResullBufLen, PULONG pSearchCounl, 
ULONG ulFllelnfoLevel) 

DosFindFirst finds the first file object or group of file objects whose names match the specification. 
The specification can include extended attributes associated with a file or directory. 

Parameters 
pszFlleName (PSZ) - input 

Address of the ASCllZ path name of the file or subdirectory to be found. The name component 
may contain global file-name characters. 

ppDlrHandle (PHDIR) - input/output 

Address of the handle associated with this DosFindFirst request. The values that can be 
specified for the handle are: 

hex 00000001 

hex FFFFFFFF 

Descriotion 

(HDIR_SYSTEM) The system assigns the handle for standard output, which 
is always available to a process. 

(HDIR_CREATE) The system allocates and returns a handle. Upon return to 
the caller, DirHandle contains the handle allocated by the system. 

The DosFindFirst handle is used with subsequent DosFindNext requests. Reuse of this handle in 
another DosFindFirst request closes the association with the previous DosFindFirst request, and 
opens a new association with the current DosFindFirst request. 

ulAttrlbule (ULONG) - input 

Attribute value that determines the file objects to be searched for. The bit values are as follows: 

Bit 

31-14 

13 

12 

11 

10 

9 

8 

7-6 

5 

Description 

Reserved; must be zero. 

(MUST_HAVE_ARCHIVED Ox00002000) Must have Archive bit; excludes files without 
the archive bit set if bit 13 is set to 1. Files may have the Archive bit set if bit 13 is 
set to 0. 

{MUST_HAVE_DIRECTORY Ox00001000) Must have Subdirectory bit; excludes files 
that are not subdirectories if bit 12 is set to 1. Files may have the Subdirectory bit 
set if bit 12 is set to 0. 

Reserved; must be zero. 

(MUST_HAVE_SYSTEM Ox00000400) Must have System File bit; excludes 
non-system files if bit 10 is set to 1. Files may be system files if bit 10 is set to 0. 

(MUST_HAVE_HIDDEN Ox00000200) Must have Hidden File bit; excludes non-hidden 
files if bit 9 is set to 1. Files may be non-hidden if bit 9 is set to 0. 

(MUST_HAVE_READONLY Ox00000100) Must have Read-Only File bit; excludes 
writeable files if bit 8 is set to 1. Files may be read-only if bit 8 is set to 0. 

Reserved; must be zero. 

(FILE_ARCHIVED Ox00000020) May have Archive bit; includes files with the Archive 
bit set if bit 5 is set to 1. Excludes files with the Archive bit set if bit 5 is set to 0. 

Chapter 2. Control Program Functions 2-105 



DosFindFirst -
Find the First File Object 

4 

3 

2 

1 

0 

(FILE_DIRECTORY Ox00000010) May have Subdirectory bit; includes files that are 
subdirectories if bit 4 is set to 1. Excludes files that are subdirectories if bit 4 is set 
to 0. 

Reserved; must be zero. 

(FILE_SYSTEM Ox00000004) May have System File bit; includes system files if bit 2 
is set to 1. Excludes system files if bit 2 is set to 0. 

(FILE_HIDDEN Ox00000002) May have Hidden File bit; includes hidden files if bit 1 is 
set to 1. Excludes hidden files if bit 1 is set to 0. 

(FILE_READONLY Ox00000001) May have Read-Only File bit; includes read-only 
files if bit O is set to 1. Excludes read-only files if bit O is set to o. 

These bits may be set individually or in combination. For example, an attribute value of hex 
00000021 (bits 5 and O set to 1) indicates searching for read-only files that have been archived. 

Bits 8 through 13 are "Must-have" flags. These allow you to obtain files-that definitely have the 
given attributes. For example, if the Must have Subdirectory bit is set to 1, then all returned 
items are subdirectories. 

If a Must-have bit is set to 1 and the corresponding May-have bit is set to zero, no items are 
returned for that attribute. 

Attribute cannot specify the volume label. Volume labels are queried using DosQueryFSlnfo. 

pResultBuf (PVOID) - input/output 

Address of the directory search structures for file object information levels 1 through 3. The 
structure required for ResultBuf is dependent on the value specified for FilelnfoLevel. The 
information returned reflects the most recent call to DosClose or DosResetBuffer. 

For Level 1 Fiie Information: 
On output, ResultBuf contains the FILEFINDBUF3 data structure. This is used without EAs 
(extended attributes). 

The oNextEntryOffset field indicates the number of bytes from the beginning of the current 
structure to the beginning of the next structure. When this field is zero, the last structure 
has been reached. 

For Level 2 Fiie Information: 
On output, ResultBuf contains the FILEFINDBUF4 data structure. This is used with EAs. 

The cbList field contains the size, in bytes, of the file's entire extended attribute (EA) set on 
disk. You can use this field to calculate the maximum size of the buffer needed for level 3 
file information .. The size of the buffer required to hold the entire EA set is less than or 
equal to twice the size of the EA set on disk. 

For Level 3 Fiie Information: 
On input, ResultBuf contains an EAOP2 data structure. fpGEA2List contains a pointer to a 
GEA2 list, which defines the attribute names whose values are to be returned. Entries in the 
GEA2 list must be aligned on a doubleword boundary. Each oNextEntryOffset field must 
contain the number of bytes from the beginning of the current entry to the beginning of the 
next entry. 

On output, ResultBuf contains a structure with a set of records, each aligned on a 
doubleword boundary. These records represent the directory entry and associated 
extended attributes (EAs) for the matched file object. fpFEA2List in the EAOP2 data 
structure contains a pointer to the first FEA2 list. 

ResultBuf has the following format: 

• The EAOP2 data structure 

• Level 1 file information FILEFINDBUF3 

• Length of the entire EA set on disk (cbList) 

• A FEA2LIST data structure 

2-106 CP Programming Reference 



DosFindFirst 
Find the First File Object 

• Length of the name string of the file object (cbName) 

• Name of the file object matched by the input pattern (achName) 

The records following the EAOP2 data structure are repeated for the remainder of the file 
objects found. 

Even if there is not enough room to hold all of the requested information, as for return code 
ERROR_BUFFER_OVERFLOW, the cblist field of the FEA2L/ST data structure is valid if there 

is at least enough space to hold it. 

When buffer overflow occurs, cbList contains the size on disk of the entire EA set for the file, 

even if only a subset of its attributes was requested. The size of the buffer required to hold 

the EA set is less than or equal to twice the size of the EA set on disk. If no error occurs, 
cbList includes the pad bytes (for doubleword alignment) between FEA2 structures in the 
list. 

If a particular attribute is not attached to the object, ResultBuf has an FEA2 structure 
containing the name of the attribute, and the length value is zero. 

ulResultBufLen (ULONG) - input 

The length, in bytes, of ResultBuf. 

pSearchCount (PULONG) - input/output 

On input, the address of the number of matching entries requested in ResultBuf. On output, the 
number of entries placed into ResultBuf. 

ulFllelnfoLevel (ULONG) - input 

The level of file information required. 

Description Value 

1 

2 

3 

(FIL_STANDARD) Level 1 file information 

(FIL_QUERYEASIZE) Level 2 file information 

(FIL_QUERYEASFROMLIST) Level 3 file information 

The structures described in ResultBuf indicate the information returned for each of these levels. 

Regardless of the level specified, a DosFindFirst request (and an associated DosFindNext) 
request on a handle returned by DosFindFirst) always includes level 1 information as part of the 

information that is returned. 

However, when level 1 information is specifically requested, and Attribute specifies hidden files, 
system files, or subdirectory files, an inclusive search is made. That is, all normal file entries 

plus all entries matching any specified attributes are returned. Normal files are files without any 

mode bits set. They may be read from or written to. 

Returns 
Return Code. 

DosFindFirst returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
6 ERROR_INVALID_HANDLE 
18 ERROR_NO_MORE_FILES 
26 ERROR_NOT _DOS_DISK 
87 ERROR_INVALID_PARAMETER 
108 ERROR_DRIVE_LOCKED 
111 ERROR_BUFFER_OVERFLOW 
113 ERROR_NO_MORE_SEARCH_HANDLES 
206 ERROR_FILENAME_EXCED _RANGE 
208 ERROR_META_EXPANSION_TOO_LONG 

Chapter 2. Control Program Functions 2-107 



DosFindFirst -
Find the First File Object 

254 ERROR_INVALID_EA_NAME 
255 ERROR_EA_LIST _INCONSISTENT 
275 ERROR_EAS_DIDNT _FIT 

Remarks 
DosFindFirst returns directory entries (up to the number requested in SearchCount) and 
extended-attribute information for as many files or subdirectories whose names, attributes, and 
extended attributes match the specification, and whose information fits in ResultBuf. On output, 
SearchCount contains the actual number of directory entries returned. 

The file name pointed to by FileName can contain global file-name characters. 

DosFindNext uses the directory handle associated with DosFindFirst to continue the search started 
by the DosFindFirst request. 

Any non-zero return code, except ERROR_EAS_DIDNT _FIT, indicates that no handle has been 
allocated. This includes such non-error indicators as ERROR_NO_MORE_FILES. 

For ERROR_EAS_DIDNT _FIT, a search handle is returned, and a subsequent call to DosFindNext gets 
the next matching entry in the directory. You can use DosQueryPathlnfo to retrieve the extended 
attributes (EAs) for the matching entry by using the same EA arguments used for the DosFindFirst 
call, and the name that was returned by DosFindFirst. 

For ERROR_EAS_DIDNT_FIT, only information for the first matching entry is returned. This entry is 
the one whose extended attributes did not fit in the buffer. The information returned is in the format 
of that returned for information level 2. No further entries are returned in the buffer, even if they 
could fit in the remaining space. 

Related Functions 
• DosClose 
• DosFindClose 
• DosFindNext 
• DosQueryFilelnfo 
• DosQueryPathlnfo 
• DosQuerySyslnfo 
• DosResetBuffer 
• DosSearchPath 
• DosSetFilelnfo 
• DosSetPathlnfo 

2-108 CP Programming Reference 



Example Code 

DosFindFirst -
Find the First File Object 

This example gets the first file in the current directory. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define NORMAL_FILES 0 
#define SEARCH_PATTERN 11 *.* 11 

#define FILE_ATTRIBUTE NORMAL_FILES 

HDIR FindHandle; 
FILEFINDBUF3 FindBuffer; 
ULONG FindCount; 
APIRET re; /* Return code */ 

FindHandle = 0x0001; 
FindCount = 1; 

re = DosFindFirst(SEARCH_PATTERN, 
&FindHandle, 

if (re != 0) 
{ 

FILE ATTRIBUTE, 
(PVOID) &FindBuffer, 
sizeof(FindBuffer), 
&FindCount, 
FIL_STANDARD); 

/* File pattern */ 
/* Directory search handle */ 
/* Search attribute */ 
/* Result buffer */ 
/* Result buffer length */ 
/* # of entries to find */ 

/* Return level 1 file info */ 

printf("DosFindFirst error: return code= %ld 11
, re); 

} 

Chapter 2. Control Program Functions 2-109 



DosFindNext -
Find the Next Set of File Objects 

#define INCL DOSFILEMGR 

APIRET DosflndNext (HDIR hdlrDlrHandle, PVOID pResultBuf, ULONG ulResultBufLen, 
PULONG pSearchCount) 

DosFindNext finds the next set of file objects whose names match the specification in a previous call 
to DosFindFirst or DosFindNext. 

Parameters 
hdlrDlrHandle (HDIR) - input 

The handle of the directory. 

pResultBuf (PVOID) - input/output 

The address of the directory search information structure. The information returned reflects the 
most recent call to DosClose or DosResetBuffer. 

For the continuation of a Level 3 File Information search, this buffer should contain input in the 
same format as a Level 3 File Information search by DosFindFirst. 

See the description of the ResultBuf parameter in DosFindFirst for information about the output 
data that the file system driver places into this buffer. 

ulResultBufLen (ULONG) - input 

The length, in bytes, of ResultBuf. 

pSearchCount (PULONG) - input/output 

On input, the address of the number of matching entries requested in ResultBuf. On output, the 
number of entries placed into ResultBuf. 

Returns 
Return Code. 

DosFindNext returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
18 ERROR_NO_MORE_FILES 
26 ERROR_NOT _DOS_DISK 
87 ERROR_INVALID_PARAMETER 
111 ERROR_ BUFFER_ OVERFLOW 
275 ERROR_EAS_DIDNT_FIT 

Remarks 
If ERROR_BUFFER_ OVERFLOW is returned, further calls to DosFindNext start the search from the 
same entry. 

If ERROR_EAS_DIDNT _FIT is returned, the buffer is too small to hold the extended attributes (EAs) for 
the first matching entry being returned. A subsequent call to DosFindNext gets the next matching 
entry. This enables the search to continue if the extended attributes being returned are too large for 
the buffer. You can use DosQueryPathlnfo to retrieve the extended attributes for the matching entry 
by using the same EA arguments used for the call to DosFindFirst, and the name that was returned 
by DosFindFirst. 

In the case of ERROR_EAS_DIDNT_FIT, only information for the first matching entry is returned. This 
is the entry whose extended attributes did not fit in the buffer. The information returned is in the 

2-110 CP Programming Reference 



DosFindNext -
Find the Next Set of File Objects 

format of Level 2 File Information (FILEFINDBUF4). No further entries are returned in the buffer, even 
if they could fit in the remaining space. 

Related Functions 
• DosClose 
• DosFindClose 
• DosFindFirst 
• DosFindNext 
• DosQueryFilelnfo 
• DosQueryPathlnfo 
• DosQuerySyslnfo 
• DosResetBuffer 
• DosSearchPath 
• DosSetFilelnfo 
• DosSetPathlnfo 

Chapter 2. Control Program Functions 2-111 



DosFindNext -
Find the Next Set of File Objects 

Example Code 
This example gets the first file in the current directory, and then gets the next file. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define NORMAL_FILES 0 
#define SEARCH_PATTERN 11 *.* 11 

#define FILE_ATTRIBUTE NORMAL_FILES 

HDIR FindHandle; 
FILEFINDBUF3 FindBuffer; 
ULONG FindCount; 
APIRET re; /* Return code */ 

FindHandle = 0x0001; 
FindCount = 1; 

re = DosFindFirst(SEARCH_PATTERN, 
&FindHandle, 

if (re != e) 
{ 

FILE ATTRIBUTE, 
(PVOID) &FindBuffer, 
sizeof(FindBuffer), 
&FindCount, 
FIL_STANDARD); 

/* File pattern */ 
/* Directory search handle */ 
/* Search attribute */ 
/* Result buffer*/ 
/* Result buffer length */ 
/* Number of entries to find */ 

/* Return level 1 file info */ 

printf( 11 DosFindFirst error: return code= %ld 11 ,rc); 
return; 

} 

re = DosFindNext(FindHandle, /* Directory handle */ 

if (re != e) 
{ 

(PVOID) &FindBuffer, /* Result buffer */ 
sizeof(FindBuffer), /* Result buffer length */ 
&FindCount); /*Number of entries to find*/ 

printf("DosFindNext error: return code= %ld 11 ,rc); 
return; 

} 

2-112 CP Programming Reference 



DosForceDelete -
Remove a File Name from a Directory 

#define INCL_DOSFILEMGR 

APIRET DosForceDelete (PSZ pszFlleName) 

DosForceDelete removes a file name from a directory. The deleted file is not recoverable. 

Parameters 
pszFlleName (PSZ) - input 

Address of the name of the file to be deleted. 

Returns 
Return Code. 

DosForceDelete returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
5 ERROR_ACCESS_DENIED 
26 ERROR_NOT_DOS_DISK 
32 ERROR_SHARING_VIOLATION 
36 ERROR_SHARING_BUFFER_EXCEEDED 
87 ERROR_INVALID_PARAMETER 
206 ERROR_FILENAME_EXCED _RANGE 

Remarks 
Global file-name characters are not permitted in the name of the file to be deleted. 

Read-only files cannot be deleted by DosForceDelete. To delete a read-only file, you must first issue 
DosSetFilelnfo to change the file's read-only attribute to zero, then delete the file. 

The deleted file cannot be recovered with the UNDELETE command. You may want to issue 
DosForceDelete to delete a temporary file that you would not want to recover. 

DosForceDelete cannot be used to delete directories. Issue DosDeleteDir to delete a directory. 

Related Functions 
• DosDelete 
• DosDeleteDi r 
• DosSetFilelnfo 

Chapter 2. Control Program Functions 2-113 



DosForceDelete -
Remove a File Name from a Directory 

Example Code 
This example deletes a file named test.dat from the current directory. The deleted file cannot be 
recovered. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define FILE_DELETE "test.dat" 

APIRET re; /* Return code */ 

re= DosForceDelete(FILE_DELETE); /* File path name*/ 

if (re != e) 
{ 

} 

printf("DosForceDelete error: return code= %ld",rc); 
return; 

2-114 CP Programming Reference 



DosFreeMem 
Free a Private or Shared Memory Object 

#define INCL DOSMEMMGR 

APIRET DosFreeMem (PVOID pBaseAddress) 

DosFreeMem frees a private or shared memory object from the virtual-address space of the process. 

Parameters 
pBaseAddress (PVOID) - input 

The base virtual address of the private or shared memory object whose reference is to be freed. 

Returns 
Return Code. 

DosFreeMem returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
95 ERROR_INTERRUPT 
487 ERROR_INVALID_ADDRESS 

Remarks 
DosFreeMem releases a previously allocated private or shared memory object from the 
virtual-address space of the subject process. The released pages are given an access protection of 
no access. 

Freeing a shared memory object decrements the reference count for the associated object. If the 
resulting count is zero (that is, no other references to the shared memory object exist throughout the 
system), then the object is deleted. The deletion of the shared memory object releases the backing 
storage for the committed pages within the object. 

Related Functions 
• DosAllocMem 
• DosAllocSharedMem 

Chapter 2. Control Program Functions 2-115 



DosFreeMem -
Free a Private or Shared Memory Object 

Example Code 
This example allocates and then frees a private memory object from the virtual address space. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID BaseAddress; /* Pointer to the base address of the 
allocated memory object */ 

ULONG Objectsize; /* Size in bytes of the 
memory object */ 

ULONG AllocationFlags; /* Flags describing characteristics 
of the memory object */ 

APIRET re; /* Return code */ 

Objectsize = 6000; /* Ask for a memory object of 6000 */ 
/* bytes. This size will be rounded */ 
/* to 8KB. */ 

AllocationFlags = PAG_WRITE I PAG_READ; 
/* Permit read and write access to */ 
/* the memory block, but do not have */ 
/* it imnediately co11111itted within */ 
/* memory */ 

re = DosAllocMem(&BaseAddress, Objectsize, AllocationFlags); 

if (re != 0} 
{ 

} 

printf("DosAllocMem error: return code= %ld 11
, re); 

return; 

re= DosFreeMem(BaseAddress); /* Free the memory object*/ 

if (re != 0} 
{ 

} 

printf("DosFreeMem error: return code= %ld 11
, re); 

return; 

2-116 CP Programming Reference 



DosFreeModule -
Frees the Reference to the Dynamic Link Module 

#define INCL_DOSMODULEMGR 

APIRET DosFreeModule (HMODULE hmodModHandle) 

DosFreeModule frees the reference to the dynamic link module for this process. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the dynamic link module that is to be freed. 

Returns 
Return Code. 

DosFreeModule returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
12 ERROR_INVALID_ACCESS 
95 ERROR_INTERRUPT 

Remarks 
DosFreeModule frees the reference to the dynamic link module for this process. 

If the dynamic link module is no longer used by any process, the module is freed from system 
memory. 

The module identified by the handle must have been loaded using DosLoadModule. If the handle is 
invalid, an error is returned. 

After this function has completed, the module handle is no longer valid, and may not be used to refer 
to the dynamic link module. Procedure entry addresses returned for this module are also no longer 
valid, and will cause a protection fault if they are invoked. 

Related Functions 
• DosloadModule 
• DosQueryModuleName 

Chapter 2. Control Program Functions 2-117 



DosFreeModule -
Frees the Reference to the Dynamic Link Module 

Example Code 
This example tries to load module ABCD. The system searches LIBPATH. If unsuccessful, the 
system tries to load the module from the program's directory (in case the user forgot to update 
LIBPATH). 

#define INCL_DOSMODULEMGR 
#include <os2.h> 

/* Module Manager values */ 

#include <stdio.h> 

#define MODULE_NAME 11 abcd 11 

#define FULL_MODULE_NAME 11 \\nifty\\abcd.dll 11 

CHAR LoadError[l00]; 
HMODULE ModuleHandle; 
APIRET re; /* Return code */ 

if (DosLoadModule(LoadError, 
sizeof(LoadError), 

MODULE NAME, 
&ModuleHandle) == 2) 

re = DosLoadModule(LoadError, 
sizeof(LoadError), 

/* Object name buffer */ 
/* Length of object name 

buffer */ 
/* Module name string */ 
/* Module handle */ 

/* Object name buffer */ 
/* Length of object name 

buffer */ 
FULL MODULE NAME, /* Module name string */ 
&ModuleHandle); /*Module handle*/ 

re= DosFreeModule(ModuleHandle); /* Module handle */ 

2-118 CP Programming Reference 



#define INCL_DOSMODULEMGR 

APIRET DosFreeResource (PVOID pResAddr) 

DosFreeResource 
Free a Resource 

DosFreeResource frees a resource that was loaded by DosGetResource. 

Parameters 
pResAddr (PVOID) - input 

The address of the resource to be freed. 

Returns 
Return Code. 

DosFreeResource returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 

Remarks 
DosFreeResource frees a resource that was loaded by DosGetResource. 

After the last reference to a resource is freed, the memory becomes available for reuse by the 
system. However, the memory is not reused until the system determines that it cannot satisfy a 
memory allocation request. This allows the resource to remain in memory in case the process 
issues DosGetResource again. The system thus avoids having to read the contents of the resource 
from the disk again. 

Related Functions 
• DosGetResource 

Example Code 
This example frees a resource that was previously loaded by DosGetResource. Assume that the 
address of the resource has been placed into ResAddr already. 

#define INCL_DOSFREERESOURCE 
#include <os2.h> 
#include <stdio.h> 

PVOID ResAddr; 
APIRET re; 

/* Resource address */ 
/* Return code */ 

re= DosFreeResource(ResAddr); 

if (re != 0) 
{ 

printf( 11 DosFreeResource error: return code= %1d 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-119 



DosFSAttach 
Attach a Device 

#define INCL_DOSFILEMGR 

APIRET DosFSAttach (PSZ pszDevlcename, PSZ pszFSDName, PVOID pDataBuffer, 
ULONG ulDataBufferLen, ULONG ulOpFlag) 

DosFSAttach attaches or detaches a drive to or from a remote FSD (file system driver), or a 
pseudocharacter device name to or from a local or remote FSD. 

Parameters 
pszDevlcename (PSZ) - input 

A drive designation or a pseudocharacter device name when OpF/ag is 0 or 1. A drive 
designation is an ASCllZ string consisting of the drive name followed by a colon. If an 
attachment is successful, all requests to that drive are routed to the specified file-system driver. 
If a detachment is successful, the drive is removed from the system's name space. 

DeviceName points to the name of a spooled device when OpF/ag is 2 or 3. The DeviceName 
format is the same as above. Requests to that name are not seen by the file-system driver. 

A pseudocharacter device name (single file device) is an ASCllZ string consisting of the 
file-name subdirectory \DEV\. All requests to that name are routed to the specified file-system 
driver after a successful attachment. A successful detachment removes the name from the 
system's name space. 

pszFSDName (PSZ) - input 

Address of the ASCllZ name of the remote file-system driver that is to be attached to or detached 
from the device specified by DeviceName. For spooled objects, this pointer is set to 0. The 
pointer to FSDName must be set to 0 when OpF/ag is 2 or 3. 

pDataBuffer (PVOID) - input 

Address of the user-supplied file-system driver argument data area when OpF/ag is 0 or 1. The 
meaning of the data is specific to the file-system driver. DataBuffer contains contiguous ASCllZ 
strings; the first word of the buffer contains the number of ASCllZ strings. When OpF/ag is 2, 
DataBuffer points to a SpoolAttach structure as follows: 

WORD hNmPipe; Handle of named pipe opened by spooler 
BYTE cbSpoolObj; Length of name of spooler object (excluding NULL) 
ASCllZ szSpoolObj; Name of spooler object 

When OpF/ag is 3, DataBuffer is set to zero. 

ulDataBufferLen (ULONG) - input 

The length, in bytes, of Data Buffer. 

ulOpFlag (ULONG) - input 

The type of operation to be performed. 

• Attach= O 

• Detach= 1 

• SpoolAttach = 2 

• SpoolDetach = 3 

2-120 CP Programming Reference 



Returns 
Return Code. 

DosFSAttach returns the following values: 

0 NO_ERROR 
8 ERROR_NOT _ENOUGH_MEMORY 
15 ERROR_INVALID_DRIVE 
124 ERROR_INVALID_LEVEL 
252 ERROR_INVALID_FSD_NAME 
253 ERROR_INVALID_PATH 

Remarks 

DosFSAttach -
Attach a Device 

The redirection of drive letters that represent local drives is not supported. 

File-system drivers cannot use DosFSAttach to establish open connections that are not attached to a 
name in the system's name space. They must issue DosFSCtl for such purposes as optimizing UNC 
connections or establishing access rights. DosFSAttach creates attachments only to drives or 
devices in the system's name space. 

Related Functions 
• DosFSCtl 

Chapter 2. Control Program Functions 2-121 



DosFSAttach -
Attach a Device 

Example Code 
This example attaches a drive to a remote FSD (file system driver). Assume that the FSD does not 
require any user-supplied data arguments. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR DeviceName[S]; 
UCHAR FSDName[40]; 
PVOID DataBuffer; 
ULONG DataBufferlen; 
ULONG OpFlag; 
APIRET re; 

/* Device name or drive letter string */ 
/* FSD name */ 
/* Attach argument data */ 
/* Buffer length */ 
/* Attach or detach */ 
/* Return code */ 

strcpy(DeviceName, 11 Y: 11
); 

/* Drive letter with which to attach the */ 
/* file system driver *I 

strcpy(FSDNAME, 11 \\lan03\\src 11
); 

DataBuffer = 0; /* Assume that no user-supplied data */ 
/* arguments are required *I 

DataBufferlen = 0; /* No data buffer supplied */ 

OpFlag = 0; /* Indicate Attach request */ 

re = DosFSAttach(DeviceName, FSDName, DataBuffer, 
DataBufferlen, OpFlag); 

if (re != 0) 
{ 

} 

printf( 11 DosFSAttach error: return code= %ld", re); 
return; 

2-122 CP Programming Reference 



#define INCL DOSFILEMGR 

DosFSCtl 
Communicate with a File System 

APIRET DosFSCll (PVOID pDataArea, ULONG ulDataLengthMax, PULONG pDataLengthlnOut, 
PVOID pParmLlst, ULONG ulParmLengthMax, PULONG pParmLengthlnOut, 
ULONG ulFunctlonCode, PSZ pszRouteName, HFILE FlleHandle, 
ULONG ulRouteMethod) 

DosFSCtl provides an extended standard interface between an application and a file-system driver 
(FSD). 

Parameters 
pDataArea (PVOID) - input 

Address of the data area. 

ulDataLengthMax (ULONG) - input 

The length, in bytes, of DataArea. This is the maximum length of the data to be returned by the 
file-system driver in DataArea. DataLengthlnOut may be larger than this on input, but not on 
output. 

pDataLengthlnOut (PULONG) - input/output 

On input, a pointer to the length, in bytes, of the data passed to the file-system driver in 
DataArea. On output, a pointer to the length, in bytes, of the data returned by the file-system 
driver in DataArea. If this function returns ERROR_BUFFER_OVERFLOW, DataLengthlnOut 
points to the size of the buffer required to hold the data returned by the file-system driver. 

pParmLlst (PVOID) - input 

Address of the command-specific parameter list. 

ulParmLengthMax (ULONG) - input 

The length, in bytes, of ParmList. This is the maximum length of the data to be returned by the 
file-system driver in ParmList. ParmLengthlnOut may be larger than this on input, but not on 
output. 

pParmLenglhlnOut (PULONG) - input/output 

On input, a pointer to the length, in bytes, of the parameters passed to the file-system driver in 
ParmList. On output, a pointer to the length, in bytes, of the parameters returned by the 
file-system driver in ParmList. If this function returns ERROR_BUFFER_OVERFLOW, 
ParmLengthlnOut points to the size of the buffer required to hold the parameters returned by the 
file-system driver. No other data is returned in this case. 

ulFunctionCode (ULONG) - input 

The function code that is specific to the file-system driver. For remote file-system drivers, two 
kinds of DosFSCtl functions are possible: functions that are handled locally, and functions that 
are exported across the network. If bit hex 4000 is set in FunctionCode, this indicates to the 
remote file-system driver (FSD) that the function should be exported. 

Function codes from hex 0000 to hex 7FFF are reserved for use by the operating system. 
Function codes from hex 8000 to hex BFFF are FSD-defined DosFSCtl functions handled by the 
local file-system driver. Function codes from hex COOO to hex FFFF are FSD-defined DosFSCtl 
functions exported to the server. 

Chapter 2. Control Program Functions 2-123 



DosFSCtl 
Communicate with a File System 

FunctionCode may have one of the following values: 

Definition 

(FSCTL_ERROR_INFO) Returns error-code information from the file-system driver. 
On input, the error code is passed to the file-system driver in the first word of 
ParmList. On output, the ASCllZ string returned in DataArea is an explanation of the 
error code. 

2 (FSCTL_MAX_EASIZE) Queries the file-system driver for the maximum size of 
individual EAs (extended attributes), and the maximum size of the full EA list that it 
supports. The information is returned in DataArea in the following format: 

EASizeBuf 
USHORT cb_MaxEASize; /* Max. size of one EA */ 
ULONG cb_MaxEAListSize; /*Max. size of full EA list */ 

pszRouteName (PSZ) - input 

Address of the ASCllZ name of the file-system driver, or the path name of a file or directory that 
the operation applies to. 

FlleHandle (HFILE) - input 

File-specific or device-specific handle. 

ulRouteMethod (ULONG) - input 

Selects how the request is routed, as follows: 

2 

3 

Returns 

Definition 

(FSCTL_HANDLE) FileHandle directs routing. RouteName must be a null pointer 
(OL). The file-system driver associated with the handle receives the request. 

(FSCTL_PATHNAME) RouteName refers to a path name that directs routing. 
FileHandle must be -1. The file-system driver associated with the drive that the 
path name refers to at the time of the request receives the request. The path name 
need not refer to a file or directory that actually exists, only to a drive. A relative 
path name may be used; it is processed like any other path name. 

(FSCTL_FSDNAME) RouteName refers to a file-system driver name that directs 
routing. FileHandle must be -1. The named file-system driver receives the 
request. 

Return Code. 

DosFSCtl returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID_FUNCTION 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
111 ERROR_BUFFER_OVERFLOW 
117 ERROR_INVALID_CATEGORY 
124 ERROR_INVALID_LEVEL 
252 ERROR_INVALID_FSD_NAME 

2-124 CP Programming Reference 



Related Functions 
• DosFSAttach 

Example Code 

DosFSCtl 

Communicate with a File System 

This example demonstrates how a process can communicate with a file system driver (FSD). 

Assume that the calling process has placed an appropriate file handle into FileHandle. Assume that 

the specified file system recognizes a function code of hex 8100, and that the function accepts an 

ASCII string as input, requires no specific command parameter list, and returns a string of ASCII 

characters to the caller. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 
UL ONG 
ULONG 
PVOID 
ULONG 
ULONG 
ULONG 
PSZ 
HFILE 
ULONG 
APIRET 

DataArea[100]; 
DatalengthMax; 
DatalengthlnOut; 
Parmlist; 
ParmlengthMax; 
ParmlengthlnOut; 
FunctionCode; 
RouteName; 
FileHandle; 
RouteMethod; 
re; 

/* Data area */ 
/* Max. length of Data area */ 
/* Data area length, in and out */ 
/* Parameter list */ 
/*Max. length of Parameter list */ 
/* Parameter list length, in and out */ 
/* Function code */ 
/* Path or FSD name */ 
/* File handle */ 
/* Method for routing */ 
/* Return code */ 

FunctionCode = 0x8100; /* Indicate the function to request of */ 
/* the fi 1 e system *I 

strcpy(DataArea, 11 PARMl: 98 11
); 

/* ASCII string to pass to file system */ 

DatalengthMax = 100; /* Tell the file system the maximum */ 
/* amount of data it can return */ 

DatalengthinOut = strlen(DataArea); 

Parmlist = 0; 
ParmlengthMax = 0; 
ParmlengthinOut = 0; 

RouteMethod = 1; 
RouteName = 0; 

/* On input, this is the number of */ 
/* bytes sent to the file system */ 

/* In this example, assume that no */ 
/* specific command parameter list */ 
/* is required by the file system */ 
/* for this function code */ 

/* Indicate that the file handle */ 
/* directs routing (this implies */ 
/* that the RouteName variable is */ 
/* unused in this example) */ 

re= DosFSCtl(DataArea, DatalengthMax, &DatalengthlnOut, 
Parmlist, ParmlengthMax, &ParmLengthlnOut, 
FunctionCode, RouteName, FileHandle, 
RouteMethod); 

/* On successful return, the DataArea */ 
/* buffer will contain the ASCII */ 
/* string sent by the file system */ 
/* in response to the function */ 
/* request, and the DatalengthlnOut */ 
/* variable will contain the number */ 
/* of bytes placed in the buffer by */ 
/* the f i 1 e system *I 

Chapter 2. Control Program Functions 2-125 



DosFSCtl -
Communicate with a File System 

if (re != e) 
{ 

} 

printf("DosFSCtl error: return code= %ld", re); 
return; 

2-126 CP Programming Reference 



DosGetDateTime 
Get Current Date and Time 

#define INCL_DOSDATETIME 

APIRET DosGetDateTlme (PDATETIME ppPDateTime) 

DosGetDateTime gets the current date and time. 

Parameters 
ppPDateTlme (PDATETIME) - output 

Pointer to the DateTime data structure. 

Hours (UCHAR) Current hour, using values 0 through 23. 

Minutes (UCHAR) Current minute, using values 0 through 59. 

Seconds (UCHAR) Current second, using values 0 through 59. 

Hundredths (UCHAR) Current hundredths of a second, using values O through 99. 

Day (UCHAR) Current day of the month, using values 1 through 31. 

Month (UCHAR) Current month of the year, using values 1 through 12. 

Year (USHORT) Current year. 

Timezone (SHORT) The difference in minutes between the current time zone and Greenwich 

Mean Time (GMT). This value is positive for time zones west of Greenwich, 

England, and negative for time zones east of Greenwich. A value of-1 indicates that 

the time zone is undefined. 

DayofWeek (UCHAR) Current day of the week, using values 0 through 6. (Sunday is equal to 0.) 

Returns 
Return Code. 

DosGetDateTime returns no values. 

Remarks 
DosGetDateTime gets the date and time that are maintained by the operating system. 

To set the date and time, issue DosSetDateTime. 

Related Functions 
• DosAsyncTimer 
• DosSetDateTime 
• DosSleep 
• DosStartTimer 
• DosStopTimer 

Chapter 2. Control Program Functions 2-127 



DosGetDateTime -
Get Current Date and Time 

Example Code 
The following example shows the use of DosGetDateTime. 

#define INCL_DOSDATETIME /* Date and time values */ 
#include <os2.h> 

DATETIME DateTime; 
APIRET re; /* Return code */ 

re = DosGetDateTime(&DateTime); /* Date/Time structure */ 

2-128 CP Programming Reference 



DosGetlnfoBlocks 
Get the Addresses of Information Blocks 

#define INCL_DOSPROCESS 

APIRET DosGetlnloBlocks (PTIB ppppllb, PPIB ppppplb) 

DosGetlnfoBlocks returns the address of the Thread Information Block (TIB) of the current thread. 
This function also returns the address of the Process Information Block (PIB) of the current process. 

Parameters 
pppptib (PTIB) - output 

Address of a doubleword in which the address of the Thread Information Block (TIB) of the 
current thread is returned. 

Refer to the Remarks section for a description of the Thread Information Block. 

pppppib (PPIB) - output 

Address of a doubleword in which the address of the Process Information Block (PIB) of the 
current process is returned. 

Refer to the Remarks section for a description of the Process Information Block. 

Returns 
Return Code. 

DosGetlnfoBlocks returns no values. 

Remarks 
DosGetlnfoBlocks returns the address of the Thread Information Block (TIB) of the current thread. 
This function also returns the address of the Process Information Block (PIB) of the current process. 

Several items of per-thread information are kept in a read/write area of the process address space 
called the Thread Information Block, or TIB. You can access this information directly after calling 
DosGetlnfoBlocks. Each data item is a doubleword field that describes the current thread as follows: 

Field 

Exception List Chain 

Base ESP 

Thread Stack Limit 

System-specific Thread Information 

Version 

Thread Ordinal Number 

Description 

Current thread exception-handler chain 

Address of the base of the thread stack 

Address of the end of the thread stack 

Address of a thread information block that is 
specific to an operating system 

Version number of the Thread Information Block 

Ordinal number of the thread. There is a unique 
thread ordinal number for every thread in the 
system. 

The System-specific Thread Information block contains the following doubleword fields: 

Field 

TID 

Priority 

Version 

Description 

Current thread identifier 

Current thread priority 

Version number of the System-specific Thread Information block 

Chapter 2. Control Program Functions 2-129 



DosGetlnfoBlocks -
Get the Addresses of Information Blocks 

Must Complete The low-order word maintains a count for DosEnterMustComplete and 
DosExitMustComplete. The high-order word is reserved. 

Several items of per-process information are kept in a read/write area of the process address space 
called the Process Information Block, or PIB. You can access this information directly after calling 
DosGetlnfoBlocks. Each data item is a doubleword field that describes the current process as 
follows: 

Field 

PID 

PPID 

Module Handle 

Command Line 

Environment 

Status 

Type 

Descriotion 

Process identifier 

Parent process identifier 

Module handle of the current process 

Address of the command line 

Address of the environment block 

Status of the current process 

Type of.the current process. 

Related Functions 
• DosCreateThread 

Example Code 
This example returns the address of the Thread Information Block (TIB) of the current thread. It also 
returns the address of the Process Information Block (PIB) of the current process. The calling thread 
can subsequently browse either control block. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

PTIB pptib; 

PPIB pppib; 

APIRET re; 

/* Address of a pointer to the 
Thread Infonnation Block */ 

/* Address of a pointer to the 
Process Infonnation Block */ 

/* Return code */ 

re= DosGetlnfoBlocks(&pptib, &pppib); 
/* On successful return, the variable pptib */ 
/* contains the address of the TIB, and */ 
/* the variable pppib contains the */ 
/* address of the PIB *I 

2-130 CP Programming Reference 



#define INCL DOSMISC 

DosGetMessage 
Retrieve a Message 

APIRET DosGetMessage (PCHAR pplvTable, ULONG ullvCount, PCHAR ppDataArea, 

ULONG ulDataLength, ULONG ulMsgNumber, PSZ pszFileName, 

PULONG pMsgLength) 

DosGetMessage retrieves a message from the specified system message file, and inserts variable 

text-string information into the message. 

Parameters 
pplvTable (PCHAR) - input 

A pointer table. Each doubleword pointer points to an ASCllZ string or a double-byte 

character-set (DBCS) string ending in nulls. A maximum of nine strings can be present. 

ullvCount (ULONG) - input 

The number of variable insertion text strings (O to 9). If lvCount is 0, lvTable is ignored. 

ppDataArea (PCHAR) - output 

The address of the caller's buffer area where the system returns the requested message. If the 

message is too long to fit in the caller's buffer, then as much of the message text as possible is 

returned, with the appropriate error return code. 

ulDataLength (ULONG) - input 

The length, in bytes, of the caller's buffer area. 

ulMsgNumber (ULONG) - input 

The message number requested. 

pszFileName (PSZ) - input 

The drive designation, path, and name of the file where the message can be found. The drive 

designation and path are optional. This specifies a file that was previously prepared by the 

MKMSGF utility program. 

pMsgLength (PULONG) - output 

The actual length, in bytes, of the message returned. 

Returns 
Return Code. 

DosGetMessage returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
206 ERROR_FILENAME_EXCED _RANGE 

316 ERROR_MR_MSG_TOO_LONG 
317 ERROR_MR_MID_NOT_FOUND 
318 ERROR_MR_UN_ACC_MSGF 
319 ERROR_MR_INV_MSGF_FORMAT 
320 ERROR_MR_INV _IVCOUNT 
321 ERROR_MR_UN_PERFORM 

Chapter 2. Control Program Functions 2-131 



DosGetMessage 
Retrieve a Message 

Remarks 
DosGetMessage retrieves a message from th~ specified system message file, and inserts variable 
text-string information into the message. 

If /vCount is greater than 9, DosGetMessage returns an error indicating that /vCount is out of range. 

If the numeric value of x in the %x sequence for % 1 to %9 is less than or equal to lvCount, then text 
insertion, through substitution for %x, is performed for all occurrences of %x in the message. 
Otherwise, text insertion is ignored, and the %x sequence is returned in the message unchanged. 
Text insertion is performed for all text strings defined by lvCount and lvTable. 

Variable data insertion does not depend on blank character delimiters, nor are blanks automatically 
inserted. 

For warning and error messages, the 7-character message ID (3-character component ID 
concatenated with a 4-digit message number) followed by a colon and a blank character is returned 
as part of the message text. DosGetMessage determines the type of message based on the message 
classification generated in the output file of MKMSGF. 

The following is an example of a sample error message returned with the message ID: 

SYS0002: The system cannot find the file specified 

DosGetMessage retrieves messages previously prepared by MKMSGF to create a message file, or 
by MSGBIND to bind a message segment to an .EXE file. First, DosGetMessage tries to retrieve the 
message from memory in the message segment bound to the .EXE program. If the message cannot 
be found, DosGetMessage retrieves the message from the message file on DASO (direct access 
storage device, such as a diskette or fixed-disk). 

If the file name is not fully qualified, DosGetMessage searches the following directories for the 
default drive and path: 

1. The system root directory 

2. The current working directory 

3. Directories listed in the DPATH (protect-mode) statement 

4. Directories listed in the APPEND (DOS session) statement. 

If a message cannot be retrieved because of a DASO error or a file-not-found condition, the system 
places an error message into the user's buffer area. 

The following error conditions cause the system to place an error message into the user's buffer 
area: 

• Unable to format the system message 

An error message is returned as a result of an invalid parameter (for example, invalid message 
number or invalid lvCount). 

• Unable to read the system message file 

An error message is returned when the system message file cannot be read (for example, 
because of a DASO error or an invalid message-file format). 

• Unable to find the system message file 

An error message is returned when the system message file cannot be found. 

The presence of the message in memory (EXE bound) or on DASO is not apparent to the caller, and 
is handled by DosGetMessage. In both cases, you refer to the message by message number and file 
name. 

2-132 CP Programming Reference 



DosGetMessage -
Retrieve a Message 

For DosGetMessage to be called from an input/output privilege level (IOPL) code segment, the 
following statement must be in the program's definition (.DEF) file: 

SEGMENT '_MSGSEG' CLASS 'MSGSEGCODE' IOPL CONFORMING 

In OS/2 Version 2.00, the message segment or object is packed with other application code. If the 
size of the code segment or object and the bound messages exceeds 64KB, then the message 
segment or object may be isolated from the application program code by placing the following 
statement into the program's definition (.DEF) file: 

SEGMENT '_MSGSEG' CLASS 'CODE' LOADONCALL (16-bit application) 

SEGMENT '_MSGSEG32' CLASS 'CODE' LOADONCALL (32-bit application) 

Related Functions 
• DoslnsertMessage 
• DosPutMessage 
• DosQueryMessageCp 

Example Code 
This example retrieves a message from a system message file, and inserts variable text-string 
information into the message. Assume that the third message within the message file contains the 
string "% 1 Error at Station %2". Assume that the caller of DosGetMessage wants to convert this 
message into the string "Automation Failure Error at Station 698". Assume that the path name of the 
relevant message file is "D:\MESSAGE\AUTOMSG.MSG". 

#define INCL_DOSMISC /* Miscellaneous values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 
ULONG 
UCHAR 
ULONG 
ULONG 
UCHAR 
ULONG 
UC HAR 

UC HAR 

APIRET 

*IvTabl e[2]; 
IvCount; 
DataArea[80]; 
DataLength; 
MsgNumber; 
Fi 1 eName [ 40] ; 
MsgLength; 
Field1[20]; 

Field2[20]; 

re; 

/* Table of variables to insert */ 
/* Number of variables */ 
/* Message buffer (returned) */ 

/* Length of buffer */ 
/* Number of the message */ 
/*Message file path-name string */ 
/* Length of message (returned) */ 
/* String to substitute into variable 

field %1 of the message */ 
/* String to substitute into variable 

field %2 of the message */ 
/* Return code */ 

strcpy(Fieldl, 11Automation Failure"); 

strcpy(Field2, 11 69B 11
); 

/* Define the field with which to */ 
/* perfonn the first substitution */ 

/* Define the field with which to */ 
/* perfonn the second substitution */ 

IvTable[e] = Fieldl; /* Set up the array of pointers to */ 
IvTable[l] = Field2; /* substitute strings */ 

IvCount = 2; 

DataLength = 80; 

/* Two variable message fields in */ 
/* message *I 

/* Data buffer that will receive the */ 

Chapter 2. Control Program Functions 2-133 



DosGetMessage -
Retrieve a Message 

MsgNumber = 3; 

/* complete message is ae bytes long */ 

/* Specify the third message in the */ 
/* message file *I 

strcpy(FileName, 11 D:\\MESSAGE\\AUTOMSG.MSG 11
); 

/* Path name of the message file */ 

re = DosGetMessage(IvTable, IvCount, DataArea, Datalength, 
MsgNumber, FileName, &Msglength); 

if (re ! = e) 
{ 

/* On successful return, the DataArea */ 
/* buffer contains the complete */ 
/* message (with its two variable */ 
/* fields appropriately updated), */ 
/* and the Msglength variable */ 
/* contains the length of the */ 
/* message that was placed into the */ 
/* DataArea buffer */ 

printf("DosGetMessage error: return code= %ld 11
, re); 

return; 
} 

2-134 CP Programming Reference 



DosGetNamedSharedMem 
Obtain Access to a Named Shared Memory Object 

#define INCL_DOSMEMMGR 

APIRET DosGetNamedSharedMem (PPVOID ppBaseAddress, PSZ pszSharedMemName, 
ULONG ulAttrlbuteFlags) 

DosGetNamedSharedMem obtains access to a named shared memory object. 

Parameters 
ppBaseAddress (PPVOID) - output 

A pointer to a variable that will receive the base address of the shared memory object. 

pszSharedMemName (PSZ) - input 

The address of the name string associated with the shared memory object. The name is an 
ASCllZ string in the format of an OS/2 file name, and is in the subdirectory \SHARMEM\, for 
example, \SHAREMEM\PUBLIC.DAT. 

ulAttrlbuteFlags (ULONG) - input 

A set of attribute flags that specify the desired access protection for the shared memory object. 

Desired Access Protection 

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed pages in the 
shared memory object is desired. 

• If the PAG_READ bit (Ox00000001) is set, read access is desired. 

• If the PAG_WRITE bit (Ox00000002) is set, write access is desired. 

• If the PAG_GUARD bit (Ox00000008) is set, access to the committed pages in the shared 
memory object causes a "guard page entered" condition to be raised in the subject process. 

• At least one of the bits PAG_READ, PAG_WRITE, or PAG_EXECUTE must be specified. 

Returns 
Return Code. 

DosGetNamedSharedMem returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
8 ERROR_NOT _ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
123 ERROR_INVALID_NAME 
212 ERROR_LOCKED 

Remarks 
DosGetNamedSharedMem obtains access to a named shared memory object. 

Getting a named shared memory object allocates the virtual address (of the shared memory object) 
in the virtual-address space of the process. 

When-the name of the shared memory object is specified, the name string provided must include the 
prefix "\SHAREMEM\". 

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies 
both read and execute access. 

Chapter 2. Control Program Functions 2-135 



DosGetNamedSharedMem -
Obtain Access to a Named Shared Memory Object 

The value BaseAddress returned to the process issuing this function will be the same as that 
returned to the process that created the shared memory object. 

Related Functions 
• DosAttocSharedMem 
• DosGetSharedMem 
• DosGiveSharedMem 

Example Code 
This example obtains access to a named shared memory object. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID BaseAddress; /* Pointer to the base address of 
the shared memory object */ 

UCHAR Name[40]; /*Pointer to the name of the shared 
memory object to be allocated */ 

ULONG AttributeFlags; /* Flags describing characteristics 
of the shared memory object */ 

APIRET re; /* Return code */ 

strcpy(Name, 11
\ \SHAREMEM\ \BLOCK1.DAT 11

); 

/* Name of shared memory object */ 

AttributeFlags = PAG_WRITE I PAG_READ; 
/* Request read and write access to */ 
/* the shared memory object */ 

re = DosGetNamedSharedMem(&BaseAddress, Name, 
AttributeFlags); 

if (re != 0) 
{ 

} 

printf( 11 DosGetNamedSharedMem error: return code= %ld 11
, re); 

return; 

2-136 CP Programming Reference 



DosGetResource -
Return the Address of the Resource Object 

#define INCL_DOSMODULEMGR 

APIRET DosGetResource (HMODULE hmodModHandle, ULONG ulTypelD, ULONG ulNamelD, 
PPVOID ppOffset) 

DosGetResource returns the address of the specified resource object. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the module that has the required resource. A value of zero means to get the 
address from the current process. A value other than zero is a module handle that was returned 
by DosloadModule. 

ulTypelD (ULONG) - input 

The type identifier of the 32-bit resource. 

ulNamelD (ULONG) - input 

The name identifier of the 32-bit resource. 

ppOffset (PPVOI 0) - output 

The address of a doubleword in which the offset of the resource is returned. 

Returns 
Return Code. 

DosGetResource returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 

Remarks 
DosGetResource returns the address of the specified resource object. 

Resource objects are read-only data objects that can be accessed dynamically at run time. The 
access key is two 32-bit numbers. The first number is a type ID; the second, a name ID. These are 
similar to the file extension and file-name portions of a file name. 

Resource objects are placed into an executable file by the Resource Compiler (RC.EXE). 

Related Functions 
• DosFreeResource 
• DosloadModule 

Chapter 2. Control Program Functions 2-137 



DosGetResource 
Return the Address of the Resource Object 

Example Code 
This example loads a resource object and returns the address of the object. Assume that the handle 

of the module that contains the desired resource has been placed into ModHandle already. Assume 

that the appropriate resource type identifier has been placed into Type/D already, and that the 

appropriate resource name identifier has been placed into Name/D already. The two identifiers are 

derived from the development process that created the module (and its contained resources). 

#define I NC L __ DOSRESOURCES 
#include <os2.h> 

/* Resource types */ 

#include <stdio.h> 

HMODULE ModHandle; /* Handle of the module that has the 
required resource */ 

ULONG Type ID; /* Resource type ID */ 
ULONG Name ID; /* Resource name ID */ 
PVOID Offset; /* Off set of the resource (returned) */ 
APIRET re; /* Return code */ 

re= DosGetResource(ModHandle. TypeID, NameID. &Offset); 

if (re != 0) 
{ 

/* On successful return, the Offset */ 
/* variable contains the linear */ 
/* offset of the specified resource */ 
/* within the module */ 

printf( 11 DosGetResource error: return code= %ld 11
, re); 

return; 
} 

2-138 CP Programming Reference 



DosGetSharedMem 
Obtain Access to a Shared Memory Object 

#define INCL_DOSMEMMGR 

APIRET DosGetSharedMem {PVOID pBaseAddress, ULONG ulAttributeFlags) 

DosGetSharedMem obtains access to a shared memory object. 

Parameters 
pBaseAddress {PVOID) - input 

The base virtual address of the gettable shared memory object as assigned by 

DosAllocSharedMem. 

ulAttrlbuteFlags {ULONG) - input 

A set of attribute flags that specify the desired access protection for the shared memory object. 

Desired Access Protection 

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed pages in the 

shared memory object is desired. 

• If the PAG_READ bit (Ox00000001) is set, read access is desired. 

• If the PAG_WRITE bit (Ox00000002) is set, write access is desired. 

• If the PAG_GUARD bit (Ox00000008) is set, access to the committed pages in the shared 

memory object causes a "guard page entered" condition to be raised in the subject process. 

• At least one of the bits, PAG_READ, PAG_WRITE, or PAG_EXECUTE must be specified. 

Returns 
Return Code. 

DosGetSharedMem returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
8 ERROR_NOT_ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
212 ERROR_LOCKED 

Remarks 
DosGetSharedMem obtains access to a shared memory object. 

Getting access to a shared memory object allocates the virtual address (of the shared memory 

object) in the virtual-address space of the process. 

The virtual address of the gettable shared memory object is the base address assigned when the 

gettable shared memory object was created. The creating and receiving processes must use some 

form of lnterProcess Communication (IPC) to exchange this value. 

The shared memory object specified by the virtual address must be gettable (that is, it must have 

been created using DosAllocSharedMem with the OBJ_GETTABLE attribute set). 

Gettable shared memory objects are mapped at the same virtual address in all processes that obtain 

access to the shared memory object. 

Chapter 2. Control Program Functions 2-139 



DosGetSharedMem 
Obtain Access to a Shared Memory Objed 

The desired access protection applied to committed pages must be compatible with the access 
protection granted to the shared memory object when it was created. 

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies 
both read and execute access. 

Related Functions 
• DosAllocSharedMem 
• DosGetNamedSharedMem 
• DosGiveSharedMem 

Example Code 
This example obtains access to a shared memory object that was created as an unnamed gettable 
shared memory object. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID BaseAddress; /* Pointer to the shared 
memory object */ 

ULONG AttributeFlags; /* Flags describing characteristics 
of the shared memory object */ 

APIRET re; /* Return code */ 

AttributeFlags = PAG_WRITE I PAG_READ; 
/* Request read and write access to */ 
/* the shared memory object */ 

re= DosGetSharedMem(&BaseAddress, AttributeFlags); 

if (re != 0) 
{ 

} 

printf( 11 DosGetSharedMem error: return code= %ld 11
, re); 

return; 

2-140 CP Programming Reference 



DosGiveSharedMem 

Give Another Process Access to a Shared Memory Object 

#define INCL_DOSMEMMGR 

APIRET DosGiveSharedMem (PVOID pBaseAddress, PID ldProcessld, ULONG ulAttrlbuteFlags) 

DosGiveSharedMem gives another process access to a shared memory object. 

Parameters 
pBaseAddress (PVOID) - input 

The base virtual address of the giveable shared memory object as assigned by 

DosAllocSharedMem. 

idProcessld (PIO) - input 

The identifier of the target process that is to receive access to the shared memory object. 

ulAttrlbuteFlags (ULONG) - input 

A set of attribute flags that specify the desired access protection for the shared memory object. 

Desired Access Protection 

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed pages in the 

shared memory object is desired. 

• If the PAG_READ bit (Ox00000001) is set, read access is desired. 

• If the PAG_WRITE bit (Ox00000002) is set, write access is desired. 

• If the PAG_GUARD bit (OxOOOOOOOB) is set, access to the committed pages in the shared 

memory object causes a a "guard page entered" condition to be raised in the subject 

process. 

• At least one of the bits PAG_READ, PAG_WRITE, or PAG_EXECUTE must be specified. 

Returns 
Return Code. 

DosGiveSharedMem returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
8 ERROR_NOT _ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
212 ERROR_LOCKED 
303 ERROR_INVALID_PROCID 
487 ERROR_INVALID _ADDRESS 

Remarks 
DosGiveSharedMem gives another process access to a shared memory object. 

Giving access to a shared memory object allocates the virtual address (of the shared memory object) 

in the virtual-address space of the target process. This is similar to the target process' performing a 

DosGetSharedMem operation on the specified shared memory object. 

The virtual address of the giveable shared memory object is the base address assigned when the 

giveable shared memory object was created. The creating and receiving processes must use some 

form of lnterProcess Communication (IPC) to exchange this value. 

Chapter 2. Control Program Functions 2-141 



DosGiveSharedMem 
Give Another Process Access to a Shared Memory Object 

Giveable shared memory objects are mapped at the same virtual address in all processes that 
obtain access to the shared memory object. 

The shared memory object specified by the virtual address must be giveable (that is, it must have 
been created with the OBJ_GIVEABLE attribute set on a call to DosAllocSharedMem). 

The desired access protection applied to committed pages must be compatible with the access 
protection granted to the shared memory object when it was created. 

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies 
both read and execute access. 

Related Functions 
• DosAllocSharedMem 
• DosGetNamedSharedMem 
• DosGetSharedMem 

Example Code 
This example shows how a process that has created a giveable unnamed shared memory object can 
give access to that object to another process. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID BaseAddress; 

UC HAR Name[40]; 

ULONG ObjectSize; 

ULONG Attri buteFl ags; 

PIO Process ID; 

APIRET re; 

strcpy(Name, 1111
); 

ObjectSize = 6000; 

/* Pointer to the shared 
memory object */ 

/* Pointer to the name of the shared 
memory object to be allocated */ 

/* Size in bytes of the 
the memory object */ 

/* Flags describing characteristics 
of the shared memory object */ 

/* ID of the process that is to receive 
access to the shared memory object */ 

/* Return code */ 

/* Create an unnamed shared memory */ 
/* block *I 

/* Ask for a memory object of 6000 */ 
/* bytes. This size will be rounded */ 
/* to 8KB. */ 

AttributeFlags = OBJ_GIVEABLE I PAG_WRITE I PAG_READ; 
/* Create a giveable unnamed shared */ 
/* memory object. Permit read and */ 
/* write access to the named shared */ 
/* memory block, but do not have its */ 
/* pages immediately committed */ 
/* within virtual memory. */ 

re = DosAllocSharedMem(&BaseAddress, Name, 
ObjectSize, AttributeFlags); 

if (re != 0) 
{ 

printf("DosAllocSharedMem error: return code = %ld", re); 
return; 

2-142 CP Programming Reference 



DosGiveSharedMem -
Give Another Process Access to a Shared Memory Object 

} 

/* Assume that the variable ProcessID has already been loaded */ 
/* with a valid Process ID for another process. Also */ 
/* assume that this process wishes to give the same */ 
/* Read/Write access to the other process. */ 

re= DosGiveSharedMem(BaseAddress, ProcesslD, AttributeFlags); 

if (re ! = 0) 
{ 

printf("DosGiveSharedMem error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-143 



DoslnsertMessage -
Insert Variable Text-string Information into a Message 

#define INCL_DOSMISC 

APIRET DoslnsertMessage (PCHAR pplvTable, ULONG ullvCount, PSZ pszMsglnput, 
ULONG ulsglnLength, PCHAR ppDataArea, ULONG ulDataLength, 
PULONG pMsgLength) 

DoslnsertMessage inserts variable text-string information into a message. 

Parameters 
pplvTable (PCHAR) - input 

A pointer table. Each doubleword pointer points to an ASCllZ string or a double-byte 
character-set (DBCS) string ending in nulls. A maximum of nine strings can be present. 

ullvCount (ULONG) - input 

The number of variable insertion text strings (O to 9). If lvCount is 0, lvTable is ignored. 

pszMsglnput (PSZ) - input 

The address of the input message. 

ulsglnLength (ULONG) - input 

The length, in bytes, of the input message. 

ppDataArea (PCHAR) - output 

The address of the caller's buffer area where the system returns the requested message. If the 
message is too long to fit in the caller's buffer, then as much of the message text as possible is 
returned, with the appropriate error return code. 

ulDataLength (ULONG) - input 

The length, in bytes, of the caller's buffer area. 

pMsgLength (PULONG) - output 

The length, in bytes, of the updated message returned. 

Returns 
Return Code. 

DoslnsertMessage returns the following values: 

0 NO_ERROR 
316 ERROR_MR_MSG_TOO_LONG 
320 ERROR_MR_INV _IVCOUNT 

Remarks 
DoslnsertMessage inserts variable text-string information into a message. 

DoslnsertMessage differs from DosGetMessage in that it does not retrieve a message. It is 
particularly useful when messages are loaded early, before actual insertion text strings are known. 

If lvCount is greater than 9, DoslnsertMessage returns an error indicating that lvCount is out of 
range. A default message also is placed into the caller's buffer. Refer to DosGetMessage for details 
about default messages. 

If the numeric value of x in the o/ox sequence for % 1-%9 is less than or equal to lvCount, then text 
insertion, by substitution for o/ox, is performed for all occurrences of o/ox in the message. Otherwise, 

2-144 CP Programming Reference 



DoslnsertMessage 
Insert Variable Text-string Information into a Message 

text insertion is ignored, and the %x sequence is returned in the message unchanged. Text insertion 
is performed for all text-strings defined by lvCount and lvTable. 

Variable data insertion does not depend on blank character delimiters, nor are blanks automatically 
inserted. 

Related Functions 
• DosGetMessage 
• DosPutMessage 
• DosQueryMessageCp 

Example Code 
This example inserts variable text-string information into a message that resides within pr~gram 
memory. Assume that the message that resides within the program character string variab.le named 
Message, and contains the string "% 1 Error at Station %2". Assume that the caller of 
DoslnsertMessage wants to convert this message into the string "Automation Failure Error at Station 
698". 

#define INCL_DOSMISC /* Miscellaneous values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR *lvTabl e[2]; /* Table of variables to insert */ 
UL ONG IvCount; /* Number of variables */ 
UCHAR Msglnput[40] = "%1 Error at Station %2"; 

/* Input message */ 
ULONG MsglnLength; /* Length of input message */ 
UC HAR DataArea [80] ; /* Message buffer (returned) */ 
ULONG Datalength; /* Length of updated message buffer */ 
ULONG Msglength; /* Length of updated message (returned) */ 
UC HAR Fieldl[20]; /* String to substitute into variable 

field %1 of the message */ 
UC HAR Field2[20]; /* String to substitute into variable 

field %2 of the message */ 
APIRET re; /* Return code */ 

strcpy(Fieldl, 11Automation Failure"); 

strcpy(Fieldl, 11 698"); 

/* Define the field with which to */ 
/* perform the first substitution */ 

/* Define the field with which to */ 
/* perform the second substitution */ 

IvTable[e] = Fieldl; /* Set up the array of pointers to */ 
IvTable[l] = Field2; /* substitute strings */ 

IvCount = 2; /* Two variable message fields in */ 
/* message *I 

Msglnlength = strlen(Msglnput); 

DataLength = 80; 

/* Length of input message */ 

/* Data buffer that will receive the */ 
/* complete message is 80 bytes in */ 
/* size */ 

re = DoslnsertMessage(IvTable, IvCount, Msglnput, MsglnLength, 
DataArea, Datalength, &Msglength); 

/* On successful return, the DataArea */ 
/* buffer contains the complete */ 

Chapter 2. Control Program Functions 2-145 



DoslnsertMessage -

Insert Variable Text-string Information into a Message 

if (re != 0) 
{ 

/* message (with its two variable */ 
/* fields appropriately updated), */ 
/* and the MsgLength variable */ 
/* contains the length of the */ 
/* message that was placed into the */ 
/* DataArea buffer *I 

printf{ 11 DoslnsertMessage error: return code= %ld 11
, re); 

return; 
} 

2-146 CP Programming Reference 



#define INCL_DOSPROCESS 

DosKillProcess 
Flag a Process to Terminate 

APIRET DosKlllProcess (ULONG ulActlonCode, PID ldProcesslD) 

DosKillProcess flags a process to terminate, and returns the termination code to its parent (if any). 

Parameters 
ulActionCode (ULONG) - input 

The processes to be flagged for termination. The values of this field are as follows: 

Value 

0 

1 

Definition 

(DKP _PROCESSTREE): A process and all its descendant processes. The process 
must be either the current process, or it must have been directly created by the 
current process using DosExecPgm with a value of 2 (EXEC_ASYNCRESUL T) for 
ExecF/ags. 

After the indicated process terminates, its descendants are flagged for termination. 
The indicated process need not still be executing. If it has terminated, its 
descendants are still flagged for termination. 

(DKP _PROCESS): Any process. Only the indicated process is flagged for 
termination. 

ldProcesslD (PIO) - input 

Process ID of the process, or root process of the process tree to be flagged for termination. 

Returns 
Return Code. 

DosKillProcess returns the following values: 

0 NO_ERROR 
13 ERROR_INVALID_DATA 
217 ERROR_ZOMBIE_PROCESS 
303 ERROR_INVALID_PROCID 
305 ERROR_NOT _DESCENDANT 

Remarks 
DosKillProcess allows a process to send the KILLPROCESS exception to another process or group of 
processes. The default action of the system is to terminate each of the processes. A process may 
intercept this action by installing an exception handler for the KILLPROCESS exception (see 
DosSetExceptionHandler). In such a case, the program will ensure the integrity of its files, and then 
issue DosExit. 

If there is no exception handler, or if no handler handles the exception, then DosKillProcess affects 
the process as if one of its threads has issued DosKillProcess for the entire process. All file buffers 
are written, and the handles opened by the process are closed. Any internal buffers managed by the 
program externally of the system are not written. An example of such a buffer is a C-language 
library internal character buffer. 

The parent of the process gets the "Unintercepted DosKillProcess" termination code when it issues 
DosWaitChild. 

The "ERROR_ZOMBIE_PROCESS" error code indicates that the specified process has ended, but its 
parent has not yet issued DosWaitChild to get its return code. 

Chapter 2. Control Program Functions 2-147 



DosKillProcess -
Flag a Process to Terminate 

Related Functions 
• DosExecPgm 
• DosExit 
• DosExitlist 
• DosKillThread 
• DosWaitChild 

Example Code 
This example ends a process, and returns a termination code to its parent process (if any). Assume 

that the target PIO value has been placed into Process/D already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

ULONG ActionCode; /* Processes identified 
for tennination */ 

PIO ProcessID; /* ID of process or root 
of process tree */ 

APIRET re; /* Return code */ 

ActionCode = 0; /* Indicate that the specified process */ 
/* and all of its child processes */ 
/* have been targeted for tennination */ 

re = DosKillProcess(ActionCode, ProcessID); 

if (re != 0) 
{ 

} 

printf("DosKillProcess error: return code= %ld 11
, re); 

return; 

2-148 CP Programming Reference 



DosKillThread 
Allow a Thread to End another Thread 

#define INCL DOSPROCESS 

APIRET DosKlllThread (TIO ldThreadlD) 

DosKillThread allows a thread to end another thread in the current process. 

Parameters 
ldThreadlD (TIO) - input 

Identifier of the thread within the current process to be ended. 

Returns 
Return Code. 

DosKillThread returns the following values: 

0 NO_ERROR 
170 ERROR_ BUSY 
309 ERROR_INVALID _THREADID 

Remarks 
DosKillThread allows a thread to end another thread in the current process. 

DosKillThread returns to the caller without waiting for the ending thread to complete its termination 
processing. 

You cannot use this function to end the current thread. If you use DosKillThread to end thread 1, the 
entire process ends. This is similar to issuing DosExit for thread 1. 

If the thread to be ended is executing 16-bit code, or has been created by a 16-bit request, 
ERROR_BUSY is returned. 

Related Functions 
• DosCreateThread 
• DosExitlist 
• DosExecPgm 
• DosExit 
• DosKillProcess 
• DosResumeThread 
• DosSuspendThread 
• DosWaitChild 
• DosWaitThread 

Chapter 2. Control Program Functions 2-149 



DosKillThread -
Allow a Thread to End another Thread 

Example Code 
This example shows how a thread withtn a process can end another thread within that process. 

Assume that the target thread ID (of the thread that the caller wants to end) has been placed into 

Thread/D already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

TIO ThreadID; /* ID of thread to be ended */ 
APIRET re; /* Return code */ 

re= DosKillThread(ThreadID); 

if (re I= 0) 
{ 

} 

printf( 11 DosKillThread error: return code = %ld 11
, re); 

return; 

2-150 CP Programming Reference 



#define INCL DOSMODULEMGR 

DosLoadModule -
Load a Dynamic Link Module 

APIRET DosLoadModule (PSZ pszObJNameBuf, ULONG ulObJNameBufL, PSZ pszModName, 
PHMODULE ppMoc:IHandle) 

DosloadModule loads a dynamic link module, and returns a handle for the module. 

Parameters 
pszObjNameBuf (PSZ) - input 

The address of a buffer into which the name of an object that contributed to the failure of 
DosloadModule is to be placed. 

ulObJNameBufL (ULONG) - input 

The length, in bytes, of the buffer described by ObjNameBuf. 

pszMoc:IName (PSZ) - input 

The address of an ASCllZ name string that contains the dynamic link module name. The 
file-name extension used for dynamic link libraries is .DLL. 

ppMoc:IHandle (PHMODULE) - output 

The address of a doubleword in which the handle for the dynamic link module is returned. 

Returns 
Return Code. 

DosloadModule returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
4 ERROR_TOO_MANY_OPEN_FILES 
5 ERROR_ACCESS_DENIED 
8 ERROR_NOT_ENOUGH_MEMORY 
11 ERROR_BAD_FORMAT 
26 ERROR_NOT_DOS_DISK 
32 ERROR_SHARING_VIOLATION 
33 ERROR_LOCK_ VIOLATION 
36 ERROR_SHARING_BUFFER_EXCEEDED 
95 ERROR_INTERRUPT 
108 ERROR_DRIVE_LOCKED 
123 ERROR_INVALID_NAME 
127 ERROR_PROC_NOT_FOUND 
180 ERROR_INVALID_SEGMENT_NUMBER 
182 ERROR_INVALID_ORDINAL 
190 ERROR_INVALID_MODULETYPE 
191 ERROR_INVALID_EXE_SIGNATURE 
192 ERROR_EXE_MARKED_INVALID 
194 ERROR_ITERATED_DATA_EXCEEDS_64K 
195 ERROR_INVALID_MINALLOCSIZE 
196 ERROR_DYNLINK_FROM_INVALID _RING 
198 ERROR_INVALID_SEGDPL 
199 ERROR_AUTODATASEG_EXCEEDS_64K 
201 ERROR_RELOCSRC_CHAIN_EXCEEDS_SEGLIMIT 
206 ERROR_FILENAME_EXCED_RANGE 

Chapter 2. Control Program Functions 2-151 



DosLoadModule -
Load a Dynamic Link Module 

295 ERROR_INIT_ROUTINE_FAILED 

Remarks 
DosloadModule loads a dynamic link module, and returns a handle for the module. 

If the file is an OS/2 dynamic link module, then the module is loaded, and a handle is returned. The 
returned handle is used for freeing the dynamic link module, getting procedure addresses, and 
getting the fully qualified file name. 

DosloadModule cannot be issued from ring 2 if the dynamic library routine has an initialization 
routine, or the process will be terminated. 

If the module has an initialization routine that is in an object that has IOPL indicated, any process 
attempting to use the module will cause a general protection fault, and will be terminated. 

Related Functions 
• DosExecPgm 
• DosFreeModule 
• DosQueryModuleName 
• DosQueryProcAddr 

Example Code 
This example loads a module. 

#define INCL_DOSMODULEMGR /* Module Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define MODULE_NAME "abed" 
#define FULL_MODULE_NAME 11 \\nifty\\abcd.dll" 

CHAR LoadError[100]; 
HMODULE ModuleHandle; 
APIRET re; /* Return code */ 

re = DosLoadModule(LoadError, 
sizeof(LoadError), 

MODULE NAME, 
&ModuleHandle); 

/* Object name buffer */ 
/* Length of object name 

buffer */ 
/* Module name string */ 
/* Module handle */ 

if (re != 0) /* Error occurred */ 
{ 

} 

printf("DosLoadModule error: return code= %ld 11
, re); 

return; 

2-152 CP Programming Reference 



#define INCL DOSNLS 

DosMapCase 
Perform Case Mapping 

APIRET DosMapCase (ULONG ullength, PCOUNTRYCODE ppStructure, 
PCHAR ppBlnaryStrlng) 

DosMapCase performs case mapping on a string of binary values that represent ASCII characters. 

Parameters 
ullength (ULONG) - input 

The length, in bytes, of the string of binary values to be case-mapped. 

ppStructure (PCOUNTRYCODE) - input 

A two-doubleword input data structure as follows: 

• Doubleword 0: Country Code 
• Doubleword 1: Code Page Identifier 

Doubleword zero is the binary value of the selected country code, in which 0 means use the case 
map table for the default system country code. Doubleword one is the binary value of the 
selected code page identifier, in which O means use the case map table for the current process 
code page of the caller. 

The following table shows the country, country code, primary code page, and secondary code 
page identifier values: 

Table 2-1 (Page 1 of 2). Code page identifiers 

Country Country Code Primary Secondary 

Asian English 099 437 850 

Australia 061 437 850 

Belgium 032 437 850 

Canadian French 002 863 850 

Czechoslovakia 042 852 850 

Denmark 045 865 850 

Finland 358 437 850 

France 033 437 850 

Germany 049 437 850 

Hungary 036 852 850 

Iceland 354 850 861 

Italy 039 437 850 

Japan 081 932 437,850 

Japan SAA 081 942 437,850 

Korea 082 934 437,850 

Korea SAA 082 944 437,850 

Latin America 003 437 850 

Netherlands 031 437 850 

Chapter 2. Control Program Functions 2-153 



DosMapCase 
Perform Case Mapping 

Table 2-1 (Page 2 of 2). Code page identifiers 

Country Country Code Primary Secondary 

Norway 047 865 850 

People's Republic of 086 936 437,850 
China 

People's Republic of 086 946 437,850 
China SAA 

Poland 048 852 850 

Portugal 351 860 850 

Spain 034 437 850 

Sweden 046 437 850 

Switzerland 041 437 850 

Taiwan 088 938 437,850 

Taiwan SAA 088 948 437,850 

Turkey 090 857 850 

United Kingdom 044 437 850 

United States 001 437 850 

Yugoslavia 038 852 850 

Note: Code pages 932, 934, 936, 938, 942, 944, 946, and 948 are supported only with the Asian 
version of the operating system on Asian hardware. 

ppBlnaryStrlng (PCHAR) - input/output 

The string of binary characters that are to be case-mapped. They are case-mapped in place, 
and they replace the input, so the results appear in BinaryString. 

Returns 
Return Code. 

DosMapCase returns the following values: 

0 NO_ERROR 
397 ERROR_NLS_OPEN_FAILED 
398 ERROR_NLS_NO_CTRY_CODE 
401 ERROR_NLS_ TYPE_NOT _FOUND 
476 ERROR_CODE_PAGE_NOT_FOUND 

Remarks 
DosMapCase performs case mapping on a string of binary values that represent ASCII characters. 

The case map in the country file (the default name is COUNTRY.SYS) that corresponds to the system 
country code or selected country code, and to the process code page or selected code page, is used 
to perform the case mapping. 

2-154 CP Programming Reference 



Related Functions 
• DosQueryCollate 
• DosQueryCp 
• DosQueryCtrylnfo 
• DosQueryDBCSEnv 
• DosSetProcessCp 

Example Code 

DosMapCase -
Perform Case Mapping 

This example case maps a string for the default country, and code page 850. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

#define CURRENT_COUNTRY a 
#define NLS_CODEPAGE 850 

COUNTRYCODE Country; 
CHAR BinString[30]; 
APIRET re; 

Country.country = CURRENT_COUNTRY; 

Country.codepage = NLS_CODEPAGE; 

strcpy(BinString, 11 Howdy 11
); 

re= DosMapCase(sizeof(BinString), 
&Country, 
BinString); 

/* Return code */ 

/* Country code */ 

/* Code page */ 

/* String to map */ 

/* Length of string */ 
/* Input data structure */ 
/* String */ 

Chapter 2. Control Program Functions 2-155 



DosMove -
Move a File Object 

#define INCL DOSFILEMGR 

APIRET DosMove (PSZ pszOldPathName, PSZ pszNewPathName) 

. DosMove moves a file object to another location, and changes its name. 

Parameters 
pszOldPathName (PSZ) - input 

Address of the old path name of the file or subdirectory to be moved. 

pszNewPathName (PSZ) - input 

Address of the new path name of the file or subdirectory. 

Returns 
Return Code. 

DosMove returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
5 ERROR_ACCESS_DENIED 
17 ERROR_NOT_SAME_DEVICE 
26 ERROR_NOT_DOS_DISK 
32 ERROR_SHARING_VIOLATION 
36 ERROR_SHARING_BUFFER_EXCEEDED 
87 ERROR_INVALID_PARAMETER 
108 ERROR_DRIVE_LOCKED 
206 ERROR_FILENAME_EXCED _RANGE 
250 ERROR_ CIRCULARITY _REQUESTED 
251 ERROR_DIRECTORY _IN_CDS 

Remarks 
DosMove can be used to change only the name of a file or subdirectory, allowing the file object to 
remain in the same subdirectory. Global file-name characters are not allowed in the source or target 
name. 

If the specified paths are different, the subdirectory location of the file object is changed also. If a 
drive is specified for the target, it must be the same as the one specified or implied by the source. 

Any attempts to move a parent subdirectory to one of its descendant subdirectories will be rejected, 
because a subdirectory cannot be both an ancestor and a descendant of the the same subdirectory. 

Any attempts to move the current subdirectory or any of its ancestors for the current process, or any 
other process, will be rejected. 

Attributes (times and dates) of the source file object are moved to the target. If read-only files exist 
in the target path, they are not replaced. 

During initialization by an application, DosQuerySyslnfo is called to determine the maximum path 
length allowed by the operating system. 

DosMove can be used to change the case of a file on a drive that is controlled by a file system driver 
(FSD). The following example would change the name of the file to "File.Txt.". 

2-156 CP Programming Reference 



DosMove{"file.txt"."File.Txt") 

Related Functions 
• DosClose 
• DosCopy 
• DosDelete 
• DosQuerySyslnfo 
• DosQueryCurrentDisk 
• DosSetDefaultDisk 

Example Code 

DosMove -
Move a File Object 

This example moves a file to another directory, and stores it there under a different name. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 
UC HAR 
APIRET 

OldPathName[40]; /*Old path name string*/ 
NewPathName[40]; /*New path name string*/ 
re; /* Return code */ 

strcpy{OldPathName. "D:\ \PROG\ \SRC\ \FILE1.DLL 11
); 

strcpy{NewPathName. 11 C:\\OS2\\DLL\\XYZ.DLL 11
); 

re= DosMove{OldPathName. NewPathName); 

if {re != e) 
{ 

printf{ 11 DosMove error: return code= %ld 11
• re); 

return; 
} 

Chapter 2. Control Program Functions 2-157 



DosOpen 
Open a File 

#define INCL DOSFILEMGR 

APIRET DosOpen (PSZ pszFlleName, PHFILE ppFlleHandle, PULONG pActlonTaken, 
ULONG ulFlleSlze, ULONG ulFlleAttrlbute, ULONG ulOpenFlag, 
ULONG ulOpenMode, PEAOP2 ppEABuf) 

DosOpen opens a new file, an existing file, or a replacement for an existing file. An open file can 
have extended attributes. 

Parameters 
pszFlleName (PSZ) - input 

Address of the ASCllZ path name of the file or device to be opened. 

ppFlleHandle (PHFILE) - output 

Address of the handle for the file. 

pActlonTaken {PULONG) - output 

Address of the variable that receives the value that specifies the action taken by the DosOpen 
function. If DosOpen fails, this value has no meaning. Otherwise, it is one of the following 
values: 

Value 

1 

2 

3 

Definition 

(FILE_EXISTED) File already existed. 

(FILE_CREATED) File was created. 

(FILE_ TRUNCATED) File existed and was changed to a given size (file was 
replaced). 

ulFileSlze (ULONG) - input 

New logical size of the file (end of data, EOD), in bytes. This parameter is significant only when 
creating a new file or replacing an existing one. Otherwise, it is ignored. It is an error to create 
or replace a file with a nonzero length if the OpenMode Access-Mode flag is set to read-only. 

ulFileAttrlbute (ULONG) - input 

Doubleword field containing file attribute bits: 

Bit 

31-6 

5 

4 

3 

2 

1 

0 

0 

Description 

Reserved, must be 0. 

(FILE_ARCHIVED Ox00000020) File has been archived. 

(FILE_DIRECTORY Ox00000010) File is a subdirectory. 

Reserved, must be 0. 

(FILE_SYSTEM Ox00000004) File is a system file. 

(FILE_HIDDEN Ox00000002) File is hidden and does not appear in a directory listing. 

(FILE_READONLY Ox00000001) File can be read from, but not written to. 

(FILE_NORMAL OxOOOOOOOO) File can be read from or written to. 

File attributes apply only if the file is created. 

These bits may be set individually or in combination. For example, an attribute value of hex 
00000021 (bits 5 and 0 set to 1) indicates a read-only file that has been archived. 

2-158 CP Programming Reference 



DosOpen 
Open a File 

ulOpenFlag (ULONG) - input 

Doubleword field that indicates the action to be taken depending on whether the file exists or 

does not exist. 

Bits 

31-8 

7-4 

Descriotion 

Reserved, must be 0. 

0000: (OPEN_ACTION_FAIL_IF _NEW) Open an existing file; fail if the file does not 

exist. 

0001: (OPEN_ACTION_CREATE_IF _NEW) Create the file if the file does not exist. 

3-0 0000: (OPEN_ACTION_FAIL_IF_EXISTS) Open the file; fail if the file already exists. 

0001: (OPEN_ACTION_OPEN_IF_EXISTS) Open the file if it already exists. F•'e -<of~ 

0010: (OPEN_ACTION_REPLACE_IF _EXISTS) Replace the file if it already exists. 

ulOpenMode (ULONG) - input 

Doubleword field that describes the mode of the open function. 

Bit 

31-16 

15 

Description 

Reserved, must be zero. 

(OPEN_FLAGS_DASD Ox00008000) Direct Open flag: 

O: FileName represents a file to be opened normally. 

1: FileName is "drive:" (such as C: or A:), and represents a mounted disk or diskette 

volume to be opened for direct access. 

14 (OPEN_FLAGS_WRITE_THROUGH Ox00004000) Write-Through flag: 

O: Writes to the file may go through the file-system driver's cache. The file-system 

driver writes the sectors when the cache is full or the file is closed. 

1: Writes to the file may go through the file-system driver's cache, but the sectors 

are written (the actual file 110 operation is completed) before a synchronous write 

call returns. This state of the file defines it as a synchronous file. For synchronous 

files, this bit must be set, because the data must be written to the medium for 

synchronous write operations. 

This bit flag is not inherited by child processes. 

13 {OPEN_FLAGS_FAIL_ON_ERROR Ox00002000) Fail-Errors flag. Media 110 errors are 

handled as follows: 

0: Reported through the system critical-error handler. 

1: Reported directly to the caller by way of a return code. 

Media 110 errors generated through an IOCtl Category 8 function always get 

reported directly to the caller by way of return code. The Fail-Errors function 

applies only to non-IOCtl handle-based file 110 calls. 

This flag bit is not inherited by child processes. 

12 (OPEN_FLAGS_NO_CACHE Ox00001000) No-Cache/Cache flag: 

0: The file-system driver should place data from 110 operations into its cache. 

1: 110 operations to the file need not be done through the file-system driver's cache. 

The setting of this bit determines whether file-system drivers should place data into 

the cache. Like the write-through bit, this is a per-handle bit, and is not inherited by 

child processes. 

11 Reserved; must be 0. 

Chapter 2. Control Program Functions 2-159 



DosOpen 
Open a File 

10-8 The locality of reference flags contain information about how the application is to get 
access to the file. The values are as follows: 

7 

Value 

000 

001 

010 

011 

Definition 

(OPEN_FLAGS_NO_LOCALITY OxOOOOOOOO) No locality known. 

(OPEN_FLAGS_SEQUENTIAL Ox00000100) Mainly sequential access. 

(OPEN_FLAGS_RANDOM Ox00000200) Mainly random access. 

(OPEN_FLAGS_RANDOMSEQUENTIAL Ox00000300) Random with some 
locality. 

(OPEN_FLAGS_NOINHERIT Ox00000080) Inheritance flag: 

O: File handle is inherited by a process created from a call to DosExecPgm. 

1: File handle is private to the current process. 

This bit is not inherited by child processes. 

6-4 Sharing Mode flags. This field defines any restrictions.to file access placed by the 
caller on other processes. The values are as follows: 

Value 

001 

010 

011 

100 

Definition 

(OPEN_SHARE_DENYREADWRITE Ox00000010) Deny read/write access. 

(OPEN_SHARE_DENYWRITE Ox00000020) Deny write access. 

(OPEN_SHARE_DENYREAD Ox00000030) Deny read access. 

(OPEN_SHARE_DENYNONE Ox00000040) Deny neither read nor write 
access (deny none). 

Any other value is invalid. 

3 Reserved; must be 0. 

2- 0 Access-Mode flags. This field defines the file access required by the caller. The 
values are as follows: 

Value 

000 

001 

010 

Definition 

(OPEN_ACCESS_READONL Y OxOOOOOOOO) Read-only access 

(OPEN_ACCESS_WRITEONLY Ox00000001) Write-only access 

(OPEN_ACCESS_READWRITE Ox00000002) Read/write access. 

Any other value is invalid, as are any other combinations. 

File sharing requires the cooperation of sharing processes. This cooperation is communicated 
through sharing and access modes. Any sharing restrictions placed on a file opened by a 
process are removed when the process closes the file with a DosClose request. 

Sharing Mode 
Specifies the type of file access that other processes may have. For example, if other 
processes can continue to read the file while your process is operating on it, specify Deny 
Write. The sharing mode prevents other processes from writing to the file but still allows 
them to read it. 

Access Mode 
Specifies the type of file access (access mode) needed by your process. For example, if 
your process requires read/write access, and another process has already opened the file 
with a sharing mode of Deny None, your DosOpen request succeeds. However, if the file is 
open with a sharing mode of Deny Write, the process is denied access. 

If the file is inherited by a child process, all sharing and access restrictions also are 
inherited. 

2-160 CP Programming Reference 



DosOpen 
Open a File 

If an open file handle is duplicated by a call to DosDupHandle, all sharing and access 
restrictions also are duplicated. 

ppEABuf (PEAOP2) - input/output 

On input, the address of the extended-attribute buffer, which contains an EAOP2 structure. 
fpFEA2List points to a data area where the relevant FEA2 list is to be found. fpGEA2List and 
oError are ignored. 

On output, fpGEA2List and fpFEA2List are unchanged. The area that fpFEA2List points to is 
unchanged. If an error occurred during the set, oError is the offset of the FEA2 entry where the 
error occurred. The return code from DosOpen is the error code for that error condition. If no 
error occurred, oError is undefined. 

If EABuf is zero, then no extended attributes are defined for the file. 

If extended attributes are not to be defined or modified, the pointer EABuf must be set to zero. 

Returns 
Return Code. 

DosOpen returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
4 ERROR_ TOO _MANY_ OPEN_FILES 
5 ERROR_ACCESS_DENIED 
12 ERROR_INVALID_ACCESS 
26 ERROR_NOT _DOS_DISK 
32 ERROR_SHARING_VIOLATION 
36 ERROR_SHARING_BUFFER_EXCEEDED 
82 ERROR_CANNOT_MAKE 
87 ERROR_INVALID_PARAMETER 
99 ERROR_DEVICE_IN_USE 
108 ERROR_DRIVE_LOCKED 
110 ERROR_OPEN_FAILED 
112 ERROR_DISK_FULL 
206 ERROR_FILENAME_EXCED_RANGE 
231 ERROR_PIPE_BUSY 

Remarks 
A successful DosOpen request returns a handle for accessing the file. The read/write pointer is set 
at the first byte of the file. The position of the pointer can be changed with DosSetFilePtr or by read 
and write operations on the file. 

The file's date and time can be queried with DosQueryFilelnfo. They are set with DosSetFilelnfo. 

The read-only attribute of a file can be set with the ATTRIB command. 

FileAttribute cannot be set to Volume Label. To set volume-label information, issue DosSetFSlnfo 
with a logical drive number. Volume labels cannot be opened. 

FileSize affects the size of the file only when the file is new or a is replacement. If an existing file is 
opened, FileSize is ignored. To change the size of the existing file, issue DosSetFileSize. 

The value in FileSize is a recommended size. If the full size cannot be allocated, the open request 
may still succeed. The file system makes a reasonable attempt to allocate the new size in an area 
that is as nearly contiguous as possible on the medium. When the file size is extended, the values of 
the new bytes are undefined. 

Chapter 2. Control Program Functions 2-161 



DosOpen 
Open a File 

The Direct Open bit provides direct access to an entire disk or diskette volume, independent of the 
file system. This mode of opening the volume that is currently on the drive returns a handle to the 
calling function; the handle represents the logical volume as a single file. The calling function 
specifies this handle with a DosDevlOCtl Category 8, Function O request to prevent other processes 
from accessing the logical volume. When you are finished using the logical volume, issue a 
DosDevlOCtl Category 8, Function 1 request to allow other processes to access the logical volume. 

The file-handle state bits can be set by DosOpen and DosSetFHState. An application can query the 
file-handle state bits, as well as the rest of the Open Mode field, by issuing DosQueryFHState. 

You can use an EAOP2 structure to set extended attributes in EABuf when creating a file, replacing 
an existing file, or truncating an existing file. No extended attributes are set when an existing file is 
just opened. 

A replacement operation is logically equivalent to atomically deleting and re-creating the file. This 
means that any extended attributes associated with the file also are deleted before the file is 
re-created. 

Related Functions 
• DosClose 
• DosDevlOCtl 
• DosDupHandle 
• DosQueryHType 
• DosSetFilelnfo 
• DosSetFilePtr 
• DosSetFileSize 
• DosSetMaxFH 
• DosSetRelMaxFH 

Example Code 
This example opens a file. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define OPEN_FILE 0x01 
#define CREATE_FILE 0x10 
#define FILE_ARCHIVE 0x20 
#define FI LE_EXISTS OPEN_FI LE 
#define FILE_NOEXISTS CREATE_FILE 
#define DASD_FLAG e 
#define INHERIT 0x80 
#define WRITE_THRU e 
#define FAIL_FLAG e 
#define SHARE_FLAG exte 
#define ACCESS_FLAG 0x02 

#define FILE_NAME 11 test.dat 11 

#define FILE_SIZE aeeL 
#define FILE_ATTRIBUTE FILE_ARCHIVE 
#define EABUF 0l 

HFILE 
ULONG 
ULONG 
PSZ 
APIRET 

FileHandle; 
Wrote; 
Action; 
Fil eData [100] ; 
re; 

Action = 2; 

/* Return code */ 

2-162 CP Programming Reference 



strcpy(FileData, "Data ... 11
); 

re = DosOpen(FILE_NAME, /* File path name */ 
&FileHandle, /* File handle */ 
&Action, /* Action taken */ 
FILE_SIZE, /* File primary allocation */ 

DosOpen -
Open a File 

FILE ATTRIBUTE, /* File attribute */ 
FILE-EXISTS I FILE NOEXISTS, /* Open function type */ 
DASO-FLAG I INHERIT I /* Open mode of the file */ 

if (re != 0) 
{ 

WRITE THRU I FAIL FLAG I 
SHARE-FLAG I ACCESS FLAG, 
EABUF); - /* No extended attributes *I 

printf( 11 DosOpen error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-163 



DosOpenEventSem 
Open Event Semaphore 

#define INCL_DOSSEMAPHORES 

APIRET DosOpenEventSem (PSZ pszName, PHEV ppphev) 

DosOpenEventSem opens an event semaphore. 

Parameters 
pszName (PSZ) - input 

A pointer to the ASCllZ name of the semaphore to open. 

This field is null if the semaphore is either an unnamed, shared event semaphore or a private 

event semaphore (private semaphores are always unnamed). An unnamed event semaphore is 

identified by the pointer to the event semaphore handle (phev). If this field is not null, then the 

semaphore is a named shared semaphore, and phev must be set to zero. 

ppphev (PHEV) - input/output 

On input, a pointer to the event-semaphore handle to open if Name is null. If Name is not null, 

set phev to zero. 

On output, a pointer to the event-semaphore handle that was opened. 

Returns 
Return Code. 

DosOpenEventSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT _ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
123 INVALID_NAME 
187 ERROR_SEM_NOT_FOUND 
291 ERROR_TOO_MANY_OPENS 

Remarks 
DosOpenEventSem opens (obtains access to) an event semaphore for all of the threads in the calling 

process. 

Note: The process that created the semaphore has immediate access to the semaphore, and does 

not need to call DosOpenEventSem. 

Related Functions 
• DosCloseEventSem 
• DosCreateEventSem 
• DosPostEventSem 
• DosQueryEventSem 
• DosResetEventSem 
• DosWaitEventSem 

2-164 CP Programming Reference 



Example Code 
This example opens a system event sempahore. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR 
HEV 
APIRET 

Name[40]; /*Semaphore name*/ 
hev; /* Event semaphore handle */ 
re; /* Return code */ 

strcpy(Name, 11 \\SEM32\\EVENT1 11
); 

DosOpenEventSem -
Open Event Semaphore 

/* Name of the system event semaphore */ 

re= DosOpenEventSem(Name, &hev); 

if (re != 0) 
{ 

/* On successful return, the hev variable */ 
/* contains the handle of the system */ 
/* event semaphore *I 

printf( 11 DosOpenEventSem error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-165 



DosOpenMutexSem 
Open Mutex Semaphore 

#define INCL DOSSEMAPHORES 

APIRET DosOpenMutexSem (PSZ pszName, PHMTX ppphmtx) 

DosOpenMutexSem opens a mutex semaphore. 

Parameters 
pszName (PSZ) - input 

A pointer to the ASCllZ name of the semaphore to open. 

This field is null if the semaphore is either an unnamed, shared mutex semaphore or a private 
mutex semaphore (private semaphores are always unnamed). An unnamed mutex semaphore 
is identified by the pointer to the mutex-semaphore handle (phmtx). If this field is not null, the 
semaphore is a named shared semaphore, and phmtx must be set to zero. 

ppphmtx (PHMTX} - input/output 

On input, a pointer to the mutex-semaphore handle to open if Name is null; otherwise, this field 
is set to zero. On output, a pointer to the mutex-semaphore handle that was opened. 

Returns 
Return Code. 

DosOpenMutexSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT_ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
105 ERROR_SEM_OWNER_DIED 
123 ERROR_INVALID_NAME 
187 ERROR_SEM_NOT_FOUND 
291 ERROR_TOO_MANY_OPENS 

Remarks 
DosOpenMutexSem opens (obtains access to) a mutual exclusion (mutex) semaphore for all of the 
threads in the calling process. 

Note: The process that created the semaphore has immediate access to the semaphore, and does 
not need to call DosOpenMutexSem. 

Related Functions 
• DosCloseMutexSem 
• DosCreateMutexSem 
• DosQueryMutexSem 
• DosReleaseMutexSem 
• DosRequestMutexSem 

2-166 CP Programming Reference 



Example Code 
This example opens a system mutex sempahore. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR 
HMTX 
APIRET 

Name[40]; /*Semaphore name*/ 
hmtx; /* Mutex semaphore handle */ 
re; /* Return code */ 

strcpy(Name, 11
\ \SEM32\ \MUTEXl"); 

DosOpenMutexSem -
Open Mutex Semaphore 

/* Name of the system mutex semaphore */ 

re= DosOpenMutexSem(Name, &hmtx); 

if (re != 0) 
{ 

/* On successful return, the hmtx variable */ 
/* contains the handle of the system */ 
/* mutex semaphore *I 

printf("DosOpenMutexSemerror: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-167 



DosOpenMuxWaitSem 
Open MuxWait Semaphore 

#define INCL DOSSEMAPHORES 

APIRET DosOpenMuxWaltSem {PSZ pszName, PHMUX ppphmux) 

DosOpenMuxWaitSem opens a muxwait semaphore. 

Parameters 
pszName (PSZ) - input 

A pointer to the ASCllZ name of the semaphore to open. 

This field is null if the semaphore is either an unnamed, shared muxwait semaphore or a private 
muxwait semaphore (private semaphores are always unnamed). An unnamed muxwait 
semaphore is identified by the pointer to the muxwait-semaphore handle (phmux). 

If this field is not null, the semaphore is a named, shared semaphore, and phmux must be set to 
0. 

ppphmux {PHMUX) - input/output 

On input, a pointer to the muxwait-semaphore handle to open if Name is null; otherwise, this 
field is set to zero. On output, a pointer to the muxwait-semaphore handle that was opened. 

Returns 
Return Code. 

DosOpenMuxWaitSs:n returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT_ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
105 ERROR_SEM_OWNER_DIED 
123 ERROR_INVALID_NAME 
187 ERROR_SEM_NOT_FOUND 
291 ERROR_TOO_MANY_OPENS 

Remarks 
DosOpenMuxWaitSem opens (obtains access to) a multiple wait (muxwait) semaphore for all of the 
threads in the calling process. 

Note: The process that created the semaphore has immediate access to the semaphore, and does 
not need to call DosOpenMuxWaitSem. 

Related Functions 
• DosAddMuxWaitSem 
• DosCloseMuxWaitSem 
• DosCreateMuxWaitSem 
• DosDeleteMuxWaitSem 
• DosQueryMuxWaitSem 
• DosWaitMuxWaitSem 

2-168 CP Programming Reference 



Example Code 
This example opens a system muxwait semaphore. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 
HMUX 
APIRET 

Name[40]; /*Semaphore name*/ 
hmux; /* Muxwait semaphore handle */ 
re; /* Return code */ 

strcpy(Name,"\\SEM32\\MUXWAIT1"); 

DosOpenMuxWaitSem -
Open MuxWait Semaphore 

/* Name of the system muxwait semaphore */ 

re= DosOpenMuxWaitSem(Name, &hmux); 

if (re != 0) 
{ 

/* On successful return, the hmux variable */ 
/* contains the handle of the system */ 
/* muxwai t semaphore *I 

printf("DosOpenMuxWaitSem error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-169 



DosOpenQueue 
Open Queue 

#define INCL DOSQUEUES 

APIRET DosOpenQueue (PPID ppOwnerPID, PHQUEUE ppQueueHandle, PSZ pszQueueName) 

DosOpenQueue gives a client process access to a queue. 

Parameters 
ppOwnerPID (PPID) - output 

A pointer to the process identification of the queue's server process. 

ppQueueHandle (PHQUEUE) - output 

A pointer to the write handle of the queue to be opened. 

pszQueueName (PSZ) - input 

A pointer to the ASCllZ name of the queue to be opened. This is the name that was specified by 
the server process when it created the queue with DosCreateQueue. The name string must 
include \QUEUES\ as the first element of the path. 

Returns 
Return Code. 

DosOpenQueue returns the following values: 

0 NO_ERROR 
334 ERROR_QUE_NO_MEMORY 
341 ERROR_ QUE_PROC_NO _ACCESS 
343 ERROR_ QUE_NAME_NOT _EXIST 

Remarks 
DosOpenQueue opens a queue for a client process. 

If the queue was created by a call to the 16-bit DosCreateQueue function, the queue is not accessible 
to 32-bit DosOpenQueue requests, and ERROR_QUE_PROC_NO_ACCESS is returned. 

Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosPeekQueue 
• DosPurgeQueue 
• DosQueryQueue 
• DosReadQueue 
• DosWriteQueue 

2-170 CP Programming Reference 



Example Code 

DosOpenQueue -
Open Queue 

The following example opens a queue named SPECIAL.QUE for a client process, then closes the 
queue. 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

#define QUE_NAME 11
\ \QUEUES\ \SPECIAL.QUE" 

PIO OwnerPID; 
HQUEUE QueueHandle; 
APIRET re; /* Return code */ 

re = DosOpenQueue(&OwnerPID, 
&QueueHandle, 
QUE_NAME); 

if (re ! = 0) 
{ 

/* Server process ID */ 
/* Queue handle */ 
/* Queue name string */ 

printf("DosOpenQueue error: return code= %ld 11 ,rc); 
return; 

} 

re = DosCloseQueue(QueueHandle); 

if (re l= 0) 
{ 

/* Queue handle */ 

printf("DosCloseQueue error: return code= %ld",rc); 
return; 

} 

Chapter 2. Control Program Functions 2-171 



DosOpenVDD 
Open a Virtual Device Driver 

#define INCL DOSMVDM 

APIRET DosOpenVDD (PSZ pszVDDName, PHVDD ppVDDHandle) 

DosOpenVDD opens a virtual device driver (VDD), and returns a handle for it. 

Parameters 
pszVDDName (PSZ) - input 

The ASCllZ name of the virtual device driver to be opened. 

ppVDDHandle (PHVDD) - output 

The address of a doubleword variable where the handle of the virtual device driver is returned. 

Returns 
Return Code. 

DosOpenVDD returns the following values: 

0 NO_ERROR 
643 ERROR_ VDD_NOT_FOUND 
644 ERROR_INVALID_CALLER 

Remarks 
DosOpenVDD opens a virtual device driver, and returns a handle for it. 

If VDDName specifies the name of an OS/2 virtual device driver, the returned handle allows an OS/2 
protected-mode application to communicate with a virtual device driver by issuing DosRequestVDD. 

Issue DosCloseVDD to close the handle of the virtual device driver. 

Related Functions 
• DosCloseVDD 
• DosRequestVDD 

2-172 CP Programming Reference 



Example Code 

DosOpenVDD -

Open a Virtual Device Driver 

This example opens a sample virtual device driver {VDD). Assume that the sample virtual device 

driver has registered a name of "VSAMPLE" with the operating system. 

#define INCL_DOSMVDM 
#include <os2.h> 
#include <stdio.h> 
#include <vdnm.h> 

/* Multiple DOS sessions values */ 

UC HAR 
HVDD 
APIRET 

VDDName[10]; /*Name of VDD */ 
VDDHandle; /* Handle of VDD */ 
re; /* Return code */ 

strcpy(VDDName, 11 VSAMPLE 11
); 

/* Name that the virtual device driver */ 
/* chose to register */ 

re= DosOpenVDD(VDDName, &VDDHandle); 

if (re != 0) 
{ 

/* On successful return, the VDDHandle */ 
/* variable contains the handle of */ 
/* the virtual device driver */ 

printf( 11 DosOpenVDD error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-173 



DosPeekNPipe 
Peek Named Pipe 

#define INCL_DOSNMPIPES 

APIRET DosPeekNPlpe (HPIPE hplpeHandle, PVOID pBuffer, ULONG ulBufferLen, 
PULONG pBytesRead, PAVAILDATA pBytesAvall, PULONG pPlpeState) 

DosPeekNPipe examines the data in a named pipe without removing it. 

Parameters 
hplpeHandle (HPIPE) - input 

The named-pipe handle to examine. DosCreateNPipe returns the server handle; DosOpen 
returns the client handle. 

pBuffer (PVOID) - output 

A pointer to the output buffer. 

ulBufferLen (ULONG) - input 

The number of bytes to be read. 

pBytesRead (PULONG) - output 

A pointer to the number of bytes that were read. 

pBytesAvall (PAVAILDATA) - output 

A pointer to the 4-byte buffer in which the system returns the number of bytes that were 
available. The buffer structure is: 

Bit 

32-16 

15-0 

Description 

The number of bytes that were buffered in the pipe (including message-header bytes 
and bytes that have been examined). 

The number of bytes that were in the current message (O for a byte-stream pipe). 

pPlpeState (PULONG) - output 

A pointer to a value that represents the state of the named pipe. 

Value 

1 

2 

3 

4 

Definition 

{NP _STATE_DISCONNECTED) Disconnected 

{NP_ STATE_LISTENING) Listening 

{NP_ STATE_ CONNECTED) Connected 

{NP _STATE_CLOSING) Closing 

The pipe is in a disconnected state immediately after a call to DosCreateNPipe, or 
DosDisConnectNPipe. A disconnected pipe cannot accept a call to DosOpen. The server must 
issue DosDisConnectNPipe before the pipe can be opened by a client. 

The pipe is in a listening state after the server issues DosConnectNPipe. A listening pipe is 
ready to accept a DosOpen request. If the pipe is not in a listening state, DosOpen returns 
ERROR_PIPE_BUSY. 

The pipe is in a connected state after a client has successfully issued DosOpen. The connected 
pipe allows the server and the client to read and write to the pipe, provided both have valid 
handles. 

The pipe is in a closing state after the last DosClose request has been made to the pipe by either 
the client or the server. When DosClose has been issued for the client handle and all of its 
duplicates, the client end of the pipe is closed. The serving end must acknowledge the closing of 

2-174 CP Programming Reference 



DosPeekNPipe 
Peek Named Pipe 

the client end by issuing either DosDisConnectNPipe or DosClose. Issuing DosClose deallocates 
the pipe. 

Returns 
Return Code. 

DosPeekNPipe returns the following values: 

0 NO_ERROR 
230 ERROR_BAD_PIPE 
231 ERROR_PIPE_BUSY 
233 ERROR_PIPE_NOT _CONNECTED 

Remarks 
DosPeekNPipe examines the current contents of a named pipe without removing it. It also returns 
information about the state of the pipe. 

DosPeekNPipe never blocks, even if the pipe is in blocking mode; if the pipe cannot be accessed 
immediately, ERROR_PIPE_BUSY .is returned. Because this function does not block, it returns only 
what is currently in the pipe. Thus, if a message pipe is being examined, only a portion of a 
message may be returned, even though the specified buffer length could accommodate the entire 
message. 

The value returned in PipeState can be used by the client or the server to determine the current state 
of the pipe and to take appropriate action. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNPHState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 

Chapter 2. Control Program Functions 2-175 



DosPeekNPipe -
Peek Named Pipe 

Example Code 
This example peeks into a named pipe. It reads the data in the pipe without removing the data from 
the pipe. Assume that a previous call to DosOpen provided the named-pipe handle that is contained 
in Handle. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

HPIPE Handle; /* Pipe handle */ 
UCHAR Buffer[200]; /*Address of user buffer*/ 
ULONG Bufferlen; /* Buffer length */ 
ULONG BytesRead; /* Bytes read (returned) */ 
struct _AVAILDATA BytesAvail; /*Bytes available (returned)*/ 
ULONG PipeState; /* Pipe state (returned) */ 
APIRET re; /* Return code */ 

Buff'erlen = 200; /* Length of the read buffer */ 

re = DosPeekNPipe(Handle, Buffer, Bufferlen, 
&BytesRead, &BytesAvail, &PipeState); 

if (re != 0) 
{ 

/* On successful return, the input buffer */ 
/* Buffer will contain up to the first */ 
/* 200 bytes from the named pipe, the */ 
/* variable BytesRead will contain the */ 
/* number of bytes read into Buffer, */ 
/* the variable BytesAvail will contain */ 
/* the total number of bytes that were */ 
/* available in the pipe, and the */ 
/* variable PipeState will contain a */ 
/* value indicating the state of the */ 
/* named pipe *I 

printf( 11 DosPeekNPipe error: return code= %ld 11
, re); 

return; 
} 

2-176 CP Programming Reference 



#define INCL_DOSQUEUES 

DosPeekQueue 
Peek Queue 

APIRET DosPeekQueue (HQUEUE QueueHandle, PREQUESTDATA ppRequest, 
PULONG pDatalength, PPVOID ppDataAddress, 
PULONG pElementCode, BOOL32 f32NoWalt, PBYTE pbElemPrlorlty, 
HEV SemHandle) 

DosPeekQueue examines a queue element without removing it from the queue. 

Parameters 
QueueHandle (HQUEUE) - input 

The handle of the queue from which an element is to be examined. 

ppRequest (PREQUESTDAT A) - output 

A pointer to a two-doubleword data area that returns the following information: 

Doubleword Description 

1 The identification of the process (PIO) that added the element to the queue. 

2 An event code that is specified by the application. The data in this word is the 
same as the data in the Request parameter of the DosWriteQueue request for the 
corresponding queue element. The value of this data is understood by both the 
client thread and the server thread. There is no special meaning to this data, and 
the operating system does not alter it. 

pDatalength (PULONG) - output 

A pointer to the length of the examined data. This field is the same as the Datalength that was 
furnished by DosWriteQueue when the element was added to the queue. 

ppDataAddress (PPVOID) - output 

A pointer to the address of the element that is to be examined. (This field may or may not be the 

same as the DataAddress that was returned by DosWriteQueue when the element was added to 

the queue. If QUE_CONVERT_ADDRESS was specified when the queue was created, then the 
addresses of any elements that are written to the queue by the 16-bit DosWriteQueue function 

are converted to 32-bit addresses.) 

pElementCode (PULONG) - input/output 

A pointer to an indicator that specifies whether to start at the beginning of the queue or at a 
particular element. 

0 

non-0 

Definition 

The field is set to O by the application to indicate "examine the first element in the 
queue," according to the order that was specified when the queue was created 
(FIFO, LIFO, or priority). 

The field is set to non-0 by the DosPeekQueue function to identify the element that 
has been examined (output), or by the owner to indicate "examine the next element" 
(input). 

Note: By contrast, when a DosReadQueue request follows DosPeekQueue, DosReadQueue 
removes the same element that is identified by ElementCode, not the next element in the 
queue. 

f32NoWait (BOOL32) - input 

Specifies the action to be performed when there are no elements in the queu~: 

Chapter 2. Control Program Functions 2-177 



DosPeekQueue 
Peek Queue 

0 

1 

Definition 

(DCWW_WAIT) The requesting thread waits until an element is placed in the queue. 

(DCWW_NOWAIT) The requesting thread does not wait, and DosPeekQueue returns 
with ERROR_QUE_EMPTY. 

pbElemPrlorlty (PBYTE) - output 

A pointer to the element's priority value. This is the value that was specified for ElemPriority 
when DosWriteQueue added the element to the queue. ElemPriority is a numeric value in the 
range of 0 to 15, with 15 being the highest priority. 

SemHandle (HEV) - input 

The handle of an. event semaphore that is to be posted when data is added to the queue and 
NoWait is set to 1. SemHandle is ignored if NoWait is set to 0. The semaphore may be either 
private or shared, depending on whether the queue is shared across processes. 

Note: The first time an event-semaphore handle is supplied in a DosPeekQueue or 

Returns 

DosReadQueue request for which NoWait is set to 1, the handle is saved by the system. 
The same handle must be supplied in all subsequent DosPeekQueue and DosReadQueue 
requests that are issued for that queue. 

Return Code. 

DosPeekQueue returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
330 ERROR_QUE_PROC_NOT_OWNED 
333 ERROR_ QUE_ELEMENT _NOT _EXIST 
337 ERROR_ QUE_INVALID _HANDLE 
340 ERROR_QUE_PREV_AT_END 
342 ERROR_QUE_EMPTY 
433 ERROR_QUE_INVALID_WAIT 

Remarks 
DosPeekQueue examines a queue element without removing it from the queue. This function can be 
used only by the queue's server process and its threads. 

If the NoWait parameter is set to 1, an event semaphore must be provided so that the calling thread 
can determine when an element has been placed into the queue. The semaphore is created by 
calling DosCreateEventSem, and its handle is supplied in the SemHandle parameter of 
DosPeekQueue. 

The first time an event-semaphore handle is supplied in a DosPeekQueue or DosReadQueue request 
for which NoWait has been set to 1, the handle is saved by the system. The same handle must be 
supplied in all subsequent DosPeekQueue and DosReadQueue requests that are issued for the same 
queue; if a different handle is supplied, ERROR_INVALID_PARAMETER is returned. 

When a client process adds an element to the queue, the system automatically opens and posts the 
semaphore. The server can either issue DosQueryEventSem periodically to de1ermine whether the 
semaphore has been posted, or it can issue DosWaitEventSem. DosWaitEventSem causes the 
calling thread to block until the semaphore is posted. 

After the event semaphore has been posted, the calling thread must call DosPeekQueue again to 
examine the newly added queue element. 

2-178 CP Programming Reference 



Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosOpenQueue 
• DosPurgeQueue 
• DosQueryQueue 
• DosReadQueue 
• DosWriteQueue 

Example Code 

DosPeekQueue 
Peek Queue 

This example peeks into a queue. It reads the data within the queue without removing the data from 
the queue. Assume that a previous call to DosOpenQueue provided the queue handle that is 
contained in QueueHandle Assume that the identifier of the process that owns the queue has been 
placed into OwningPID already. 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

HQUEUE 
REQUESTDATA 
ULONG 
PVOID 
ULONG 
BOOL32 
BYTE 
HEV 
PIO 
APIRET 

QueueHandle; 
Request; 
Data Length; 
DataAddress; 
ElementCode; 
NoWait; 
ElemPriority; 
SemHandle; 
OwningPID; 
re; 

/* Queue handle */ 
/* Request-identification data */ 
/* Length of examined element */ 
/* Address of examined element */ 
/* Indicator of examined element */ 
/* No wait if queue is empty */ 
/* Priority of examined element */ 
/* Semaphore handle */ 
/* PIO of queue owner */ 
/* Return code */ 

Request.pid = OwningPID; /* Set request data block to */ 

ElementCode = 0; 

NoWait = 0; 

SemHandle = 0; 

/* indicate queue owner */ 

/* Indicate that the peek should */ 
/* start at the front of the */ 
/* queue *I 

/* Indicate that the peek call */ 
/* should wait if the queue is */ 
/* currently empty */ 

/* Unused since this is a call */ 
/* that synchronously waits */ 

re = DosPeekQueue(QueueHandle, &Request, &Datalength, 
&DataAddress, &ElementCode, NoWait, 
&ElemPriority, SemHandle); 

/* On successful return, the */ 
/* Datalength variable contains */ 
/* the size of the element on */ 
/* the queue that is pointed to */ 
/* by the pointer within the */ 
/* DataAddress variable, the */ 
/* ElementCode variable has */ 
/* been updated to indicate the */ 
/* next queue element, the */ 
/* ElemPriority variable has */ 
/* been updated to contain the */ 
/* priority of the queue */ 
/* element pointed to by the */ 
/* DataAddress variable, and */ 

Chapter 2. Control Program Functions 2-179 



DosPeekQueue 
Peek Queue 

if (re != 0) 
{ 

/* the Request.ulData variable */ 
/* contains any special data */ 
/* that the DosWriteQueue */ 
/* caller placed into the queue */ 

printf("DosPeekQueue error: return code= %ld 11
, re); 

return; 
} 

2-180 CP Programming Reference 



DosPhysicalDisk -
Obtain Information about Partitionable Disks 

#define INCL_DOSPROCESS 

APIRET DosPhyslcalDlsk (ULONG ulFunctlon, PVOID pDataPtr, ULONG ulDataLen, 
PVOID pParmPtr, ULONG ulParmLen) 

DosPhysicalDisk obtains information about partitionable disks. 

Parameters 
ulFunctlon (ULONG) - input 

The type of information to obtain about the partitionable disks, as follows: 

2 

3 

Definition 

(INFO_COUNT_PARTITIONABLE_DISKS) Obtain the total number of partitionable 
disks. 

(INFO_GETIOCTLHANDLE) Obtain a handle to use with Category 9 IOCtls. 

(INFO_FREEIOCTLHANDLE) Release a handle for a partitionable disk. 

pDataPtr (PVOID) - input 

The address of the buffer where the returned information is placed. 

The output data for each function is as follows (all lengths are in bytes): 

Function 
1 

Datalen 
2 

Returned Information 
Total number of partitionable disks in the system 
(1-based). 

2 2 

3 0 

Handle for the specified partitionable disk for the 
Category 9 IOCtls. 
None - pointer must be zero. 

ulDataLen (ULONG) - input 

The length, in bytes, of the data buffer. 

pParmPtr (PVOID) - input 

The address of the buffer used for input parameters. 

The input parameters required for each function are as follows (all lengths are in bytes): 

Function 
1 

Parm Len 
0 

Input Parameters 
None - must be set to zero. 

2 

3 

string 
length 
2 

ASCllZ string that specifies the partitionable disk. 

Handle obtained from Function 2. 

The ASCllZ string used to specify the partitionable disk must be of the following format: 

number : <null byte> 

Where: 

number specifies the partitionable disk number (1-based) in ASCII. 

colon ( : ) must be present. 

<null byte> is the byte of zero for the ASCllZ string. 

Chapter 2. Control Program Functions 2-181 



DosPhysicalDisk -
Obtain Information about Partitionable Disks 

ulParmLen (ULONG) - input 

The length, in bytes, of the parameter buffer. 

Returns 
Return Code. 

DosPhysicalDisk returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID _FUNCTION 
87 ERROR_INVALID_PARAMETER 

Remarks 
DosPhysicalDisk obtains information about partitionable disks. The handle returned for the specified 
partitionable disk can only be used with the DosDevlOCtl function for the Category 9 Generic IOCtl. 
Use of the handle for a physical partitionable disk is not permitted for handle-based file system 
functions, such as DosRead or DosClose. 

Related Functions 
• DosBeep 
• DosDevConfig 
• DosDevlOCtl 

2-182 CP Programming Reference 



Example Code 

DosPhysicalDisk -
Obtain Information about Partitionable Disks 

This example obtains the total number of partitionable disks in the system. A partitonable disk is a 
physical disk drive that the calling process can format into partitions. 

#define INCL_DOSDEVICES /* Device values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG Function; 
ULONG DataBuf; 
ULONG Datalen; 
PVOID PannPtr; 
ULONG Pannlen; 
APIRET re; 

/* Type of infonnation */ 
/* Data return buffer */ 
/* Data return buffer length */ 
/* Pointer to user-supplied infonnation */ 
/* Length of user-supplied infonnation */ 
/* Return code */ 

Function = INFO_COUNT_PARTITIONABLE_DISKS; 

PannPtr = 0; 
Parmlen = 0; 

Datalen = 2; 

/* Indicate that a count of the number of */ 
/* partitionable disks within the */ 
/* system is requested *I 

/* No input parameters are relevant for */ 
/* the requested DosPhysicalDisk */ 
/* function */ 

/* Number of bytes in data return buffer */ 

re = DosPhysicalDisk(Function, &DataBuf, Datalen, 

if (re != 0) 
{ 

ParmPtr, Parmlen); 
/* On successful return, the DataBuf */ 
/* variable contains the number of */ 
/* partitionable disks in the system */ 

printf("DosPhysicalDisk error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-183 



DosPostEventSem 
Post Event Semaphore 

#define INCL_DOSSEMAPHORES 

I APIRET DoaPostEvenlSem (HEY hev) 

DosPostEventSem posts an event semaphore. 

Parameters 
hev (HEV) - input 

The handle of the event semaphore to post. 

Returns 
Return Code. 

DosPostEventSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
298 -.:.c_., ERROR_ TOO _MANY _POSTS 
299 ERROR_ALREADY _POSTED 

Remarks 
DosPostEventSem posts an event semaphore, causing all of the threads that were blocked on 
DosWaitEventSem requests for that semaphore to execute. 

This function can be called by any thread in the process that created the semaphore. Other 
processes can also call this function, but they must first gain access to the semaphore by calling 
DosOpenEventSem. 

Related Functions 
• DosCloseEventSem 
• DosCreateEventSem 
• DosOpenEventSem 
• DosQueryEventSem 
• DosResetEventSem 
• DosWaitEventSem 

2-184 CP Programming Reference 



Example Code 

DosPostEventSem 
Post Event Semaphore 

This example posts a system event semaphore. Assume that the handle of the semaphore has been 
placed into hev already. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HEV hev; 
APIRET re; 

/* Event semaphore handle */ 
/* Return code */ 

re= DosPostEventSem(hev); 

if (re != 0) 
{ 

printf("DosPostEventSem error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-185 



DosPurgeQueue 
Purge Queue 

#define INCL DOSQUEUES 

APIRET DosPurgeQueue (HQUEUE QueueHandle) 

DosPurgeQueue purges a queue of all its elements. 

Parameters 
QueueHandle (HQUEUE) - input 

The handle of the queue to be purged. 

Returns 
Return Code. 

DosPurgeQueue returns the following values: 

0 NO_ERROR 
330 ERROR_QUE_PROC_NOT_OWNED 
337 ERROR_ QUE_INVALID _HANDLE 

Remarks 
The server process issues DosPurgeQueue to empty a queue of all its elements. This function is not 
available to client processes. 

Warning: This is an unconditional purge of all elements in the queue. 

Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosOpenQueue 
• DosPeekQueue 
• DosPurgeQueue 
• DosQueryQueue 
• DosReadQueue 
• DosWriteQueue 

2-186 CP Programming Reference 



Example Code 

DosPurgeQueue 
Purge Queue 

This example shows how the owner of a queue can empty the queue of all data elements. Assume 
that the owner of the queue has saved the queue's handle (obtained in a previous call to 
DosCreateQueue) in QueueHandle. 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

HQUEUE QueueHandle; 
APIRET re; 

/* Queue handle */ 
/* Return code */ 

re= DosPurgeQueue(QueueHandle); 

if (re != a) 
{ 

printf( 11 DosPurgeQueue error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-187 



DosPutMessage -
Sends a Message to an Output File or Device 

#define INCL DOSMISC 

APIRET DosPutMessage {HFILE FlleHandle, ULONG ulMessageLength, 
PCHAR ppMessageBulfer) 

DosPutMessage sends a message to an output file or device. 

Parameters 
FlleHandle {HFILE) - input 

The handle of the output file or device. 

ulMessageLength {ULONG) - input 

The length, in bytes, of the message to be sent. 

ppMessageBulfer {PCHAR) - input 

The buffer that contains the message to be sent. 

Returns 
Return Code. 

DosPutMessage returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
19 ERROR_WRITE_PROTECT 
321 ERROR_MR_UN_PERFORM 

Remarks 
DosPutMessage sends a message that is currently in a buffer to an output file or device. 

Screen width is assumed to be 80 characters. If a word would go past column 78, it is moved to the 
beginning (column 1) of a new line. 

DosPutMessage assumes that the starting cursor position is column 1 when handling a word wrap. If 
the last character to be positioned on a line is a double-byte character, the character is not bisected. 

Related Functions 
• DosGetMessage 
• DoslnsertMessage 
• DosQueryMessageCp 

2-188 CP Programming Reference 



DosPutMessage -

Sends a Message to an Output File or Device 

Example Code 
This example sends an edited message to a file. Assume that the message string contained in 

MessageBuffer has been constructed through the use of DosGetMessage or DoslnsertMessage 

already. Assume that MessageLength was set (by the call) to the length of the message string that is 

contained in the buffer. Assume that FileHandle has been set to the file handle of the desired output 

file already. 

#define INCL_DOSMISC /* Miscellaneous values */ 
#include <os2.h> 
#include <stdio.h> 

HFILE 
ULONG 
UC HAR 
APIRET 

FileHandle; /* Handle of output file or device */ 
Messagelength; /* Length of message buffer */ 
MessageBuffer[88]; /*Message buffer*/ 
re; /* Return code */ 

re= DosPutMessage(FileHandle, Messagelength, MessageBuffer); 

if (re I= 8) 
{ 

printf("DosPutMessage error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-189 



DosQueryAppType 
Return the Application Type 

#define INCL_DOSMODULEMGR 

APIRET DosQueryAppType (PSZ pszExeFlleName, PULONG pAppType) 

DosQueryAppType returns the application type of an executable file. 

Parameters 
pszExeFlleName (PSZ} - input 

An ASCllZ string that contains the file name of the executable file for which the flags are to be 
returned. 

If the string appears to be a fully qualified path (that is, it contains a " : " in the second position, 
or it contains a" \",or both), then the file is located in the indicated drive:directory. If neither of 
these is true, and this file name is not found in the current directory, each drive:directory 
specification in the path defined in the current program's environment is searched for this file. 
Note that any extension (.xxx) is acceptable for the executable file name. If no extension is 
specified, a default extension of ".exe" is used. 

pAppType (PULONG) - output 

A doubleword that will contain flags denoting the application type, as determined by reading the 
executable file header specified by ExeFileName. Note that the call sequence passes a pointer 
to a location in application memory to return the application type flags. 

AppType is defined as follows: 

Bits 2, 1 and 0 indicate the application type as specified in the header: 

000 - (FAPPTYP _NOTSPEC, OxOOOOOOOO): Application type is not specified in the 
executable header. 

001 - (FAPPTYP _NOTWINDOWCOMPAT, Ox00000001): Application type is 
not-window-compatible. 

010 - (FAPPTYP _WINDOWCOMPAT, Ox00000002): Application type is window-compatible. 

011 - (FAPPTYP _WINDOWAPI, Ox00000003): Application type is window-AP!. 

Bit 3 (FAPPTYP _BOUND, OxOOOOOOOB): Set to 1 if the executable file has been "bound" (by 
the BIND command) as a Family API application. Bits 0, 1, and 2 still apply. 

Bit 4 (FAPPTYP _DLL, Ox00000010): Set to 1 if the executable file is a dynamic link library 
(DLL) module. Bits 0, 1, 2, 3, and 5 will be set to 0. 

Bit 5 (FAPPTYP _DOS, Ox00000020): Set to 1 if the executable file is in PC/DOS format. 
Bits 0, 1, 2, 3, and 4 will be set to 0. 

Bit 6 (FAPPTYP _PHYSDRV, Ox00000040): Set to 1 if the executable file is a physical device 
driver. 

Bit 7 (FAPPTYP _ VIRTDRV, OxOOOOOOBO): Set to 1 if the executable file is a virtual device 
driver. 

Bit 8 (FAPPTYP _PROTDLL, Ox00000100): Set to 1 if the executable file is a 
protected-memory dynamic link library module. 

Bits 9-13 Reserved. 

Bit 14 (FAPPTYP _32BIT, Ox00004000): Set to 1 for 32-bit executable files. 

Bit 15 Reserved. 

2-190 CP Programming Reference 



Returns 
Return Code. 

DosQueryAppType returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT _FOUND 
4 ERROR_ TOO _MANY_ OPEN_FILES 
11 ERROR_BAD_FORMAT 
15 ERROR_INVALID_DRIVE 
32 ERROR_SHARING_VIOLATION 
108 ERROR_ DRIVE_ LOCKED 
110 ERROR_OPEN_FAILED 
191 ERROR_INVALID_EXE_SIGNATURE 
192 ERROR_EXE_MARKED_INVALID 

Remarks 

DosQueryAppType -

Return the Application Type 

DosQueryAppType returns the application type of an executable file. 

The Presentation Manager shell uses this function to determine the application type that is being 

executed. 

The application type is specified at link time in the module definition file. 

Related Functions 
• DosloadModule 
• DosQueryProcType 

Example Code 
This example obtains the application type of an executable file. 

#define lNCL_DOSSESMGR /* Session Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR ExecutableFileName[200]; 
/* Executable file path name string */ 

ULONG AppType; /*Application type flags (returned) */ 
APIRET re; /* Return code */ 

strcpy( 11 C:\ \OS2\ \SYSLOG.EXE"); 
/* Get the application type of the OS/2 */ 
/* system error log formatter */ 

re= DosQueryAppType(ExecutableFileName, &AppType); 

if (re l= 0) 
{ 

/* On successful return, the AppType */ 
/* variable contains a set of bit fla9s */ 
/* that describe the application type */ 
/* of the specified executable file */ 

printf( 11 DosQueryAppTypeerror: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-191 



DosQueryCollate 
Obtain a Collating Sequence Table from the Country File 

#define INCL_DOSNLS 

APIRET DosQueryCollate (ULONG ulLength, PCOUNTRYCODE ppStructure, 
PCHAR ppMemBuff, PULONG pDataLength) 

DosQueryCollate obtains a collating sequence table that resides in the country file. 

Parameters 
ulLength (ULONG) - input 

The length, in bytes, of the data area (MemBuff) provided by the caller. A length value of 256 
bytes is sufficient. 

ppStructure (PCOUNTRYCODE) - input 

A two-doubleword input data structure as follows: 

• Doubleword 0: Country Code 
• Doubleword 1: Code Page Identifier 

Doubleword zero is the binary value of the selected country code, in which O means return the 
collate table for the default system country code. Doubleword one is the binary value of the 
selected code page identifier, in which 0 means return the collate table for the current process 
code page of the caller. 

Refer to the Parameters for DosMapCase for a table of values for country code and code page 
identifier. 

ppMemBuff (PCHAR) - output 

The data area where the collating sequence table is returned. The caller provides this data 
area. The input parameter Length specifies the length of this area. 

If this area is too small to hold all of the available information, then as much information as 
possible is provided in the available space (in the order in which the data would appear). If the 
amount of data returned is not enough to fill the memory area provided by the caller, then the 
memory that is unaltered by the available data is zeroed out. The format of the information 
returned in this buffer is as follows: 

1 Byte 

1 Byte 

Sort weight of ASCII (O) 

Sort weight of ASCII (1) 

(additional values in collating order) 

1 Byte Sort weight of ASCII (255) 

pDataLength (PULONG) - output 

The length, in bytes, of the collating sequence table returned. 

Returns 
Return Code. 

DosQueryCollate returns the following values: 

0 NO_ERROR 
397 ERROR_NLS_OPEN_FAILED 
398 ERROR_NLS_NO_CTRY _CODE 
399 ERROR_NLS_TABLE_TRUNCATED 
401 ERROR_NLS_TYPE_NOT_FOUND 
476 ERROR_ CODE_PAGE_NOT _FOUND 

2-192 CP Programming Reference 



DosQueryCollate -

Obtain a Collating Sequence Table from the Country File 

Remarks 
DosQueryCollate obtains a collating sequence table (for characters hex 00 through hex FF) that 
resides in the country file (the default name is COUNTRY.SYS). It is used by the SORT utility to sort 

text according to the collating sequence. 

The collating table returned corresponds to the system country code or selected country code, and to 
the process code page or selected code page. 

Related Functions 
• DosMapCase 
• DosQueryCp 
• DosQueryCtrylnfo 
• DosQueryDBCSEnv 
• DosSetProcessCp 

Example Code 
This example gets a collating sequence table for the current country, and code page 850. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

#define CURRENT_COUNTRY 0 
#define NLS_CODEPAGE 850 

COUNTRYCODE Country; 
CHAR Col1Buffer[256]; 
ULONG Length; 
APIRET re; 

Country.country = CURRENT_COUNTRY; 
Country.codepage = NLS_CODEPAGE; 

/* Return code */ 

re = DosQueryCollate(sizeof(CollBuffer), /* Length of data area 
provided */ 

if (re I= 0) 
{ 

&Country, /* Input data structure */ 
CollBuffer, /* Data area to contain collate 

table */ 
&Length); /*Length of table*/ 

printf( 11 DosQueryCollate error: return code = %ld 11 ,rc); 
return; 

} 

Chapter 2. Control Program Functions 2-193 



DosQueryCp -
Query Current Process Code Page 

#define INCL DOSNLS 

APIRET DosQueryCp (ULONG ulLength, PULONG pCodePageLlst, PULONG pDataLength) 

DosQueryCp allows a process to query its current process code page and the prepared system code 
pages. 

Parameters 
ulLength (ULONG) - input 

The length, in bytes, of CodePageLlst. 

pCodePageLlsl (PULONG) - output 

The returned data list, in which the first doubleword is the current code page identifier of the 
calling process. 

If one or two code pages have been prepared for the system, then the second doubleword is the 
first prepared code page, and the third doubleword is the second prepared code page. 

If the data length is less than the number of bytes needed to return all of the prepared system 
code pages, then the returned list is truncated. 

The code page identifiers have the foHowing values: 

Value 

437 

850 

852 

857 

860 

861 

863 

865 

932 

934 

936 

938 

942 

944 

946 

948 

Descriotion 

United States 

Multilingual 

Latin 2 (Czechoslovakia, Hungary, Poland, Yugoslavia) 

Turkish 

Portuguese 

Iceland 

Canadian French 

Nordic 

Japan 

Kore.a 

People's Republic of China 

Taiwan 

Japan SAA 

Korea SAA 

People's Republic of China SAA 

Taiwan SAA 

Note: Code pages 932, 934, 936, 938, ·942, 944, 946, and 948 are supported only with the Asian 
version of the operating system on Asian hardware. 

pDataLength (PULONG) - output 

The length, in bytes, of the returned data. 

2-194 CP Programming Reference 



Returns 
Return Code. 

DosQueryCp -
Query Current Process Code Page 

DosQueryCp returns the following values: 

0 NO_ERROR 
473 ERROR_CPLIST_TOO_SMALL 
474 ERROR_CP _NOT_MOVED 

Remarks 
DosQueryCp allows a process to query its current process code page and the prepared system code 
pages. 

The process code page identifier previously set by DosSetProcessCp or inherited by the process is 
returned to the caller. An input list size of two bytes returns only the current process code page 
identifier. If no code pages have been prepared with the CODEPAGE command, a length of two and 
a current code page identifier value of zero are returned. 

The system code page identifiers are returned to the caller in the same order as they appear in the 
CODEPAGE command. The code page identifiers are returned in the following order: 

1. The current code page of the process (one of the system code pages). 

2. The primary (default) system code page. 

3. The secondary system code page, if specified. 

Related Functions 
• DosMapCase 
• DosQueryCollate 
• DosQueryCtrylnfo 
• DosQueryDBCSEnv 
• DosSetProcessCp 

Example Code 
This example gets the current code page, and then up to three other prepared code pages. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG CpList[B]; 
ULONG CpSize; 
APIRET re; 

re= DosQueryCp(sizeof(CpList), 
CpList, 

if (re l= e) 
{ 

&CpSize); 

/* Return code */ 

/* Length of list*/ 
/* List */ 
/*Length of returned list*/ 

printf( 11 DosQueryCp error: return code= %ld 11 ,rc); 
return; 

} 

Chapter 2. Control Program Functions 2-195 



DosQueryCt,Ylnfo 
Obtain Country Dependent Formatting Information 

#define INCL DOSNLS 

APIRET DosQueryCtrylnfo (ULONG ullength, PCOUNTRYCODE ppStructure, 
PCOUNTRYINFO ppMemBuff, PULONG pDatalength) 

DosQueryCtrylnfo obtains country-dependent formatting information that resides in the country file. 

Parameters 
ullength (ULONG) - input 

The length, in bytes, of the data area (MemBuff) provided by the caller. A length value of 40 

bytes is sufficient. 

ppStructure (PCOUNTRYCODE) - input 

A two-doubleword input data structure as follows: 

• Doubleword 0: Country Code 
• Doubleword 1: Code Page Identifier 

Doubleword zero is the binary value of the selected country code, in which 0 means return the 
country information for the default system country code. Doubleword one is the binary value of 
the selected code page identifier, in which O means return the country information for the current 
process code page of the caller. 

Refer to the Parameters for DosMapCase for a table of values for country code and code page 
identifier. 

ppMemBuff (PCOUNTRYINFO) - output 

The data area where the country-dependent information is placed. The caller provides this data 
area. The input parameter Length specifies the size of this area. 

If this area is too small to hold all of the available information, then as much information as 
possible is provided in the available space (in the order in which the data would appear). If the 
amount of data returned is not enough to fill the memory area provided by the caller, then the 
memory that is unaltered by the available data is zeroed out. The format of the information 
returned in this buffer is as follows: 

1 DWord Country Code. 

1 DWord Reserved (set to zero). 

1 DWord Date format: O = mm/dd/yy, 1 = dd/mm/yy, 2 = yy/mm/dd. 

5 Byte Currency indicator, null terminated. 

2 Byte Thousands separator, null terminated. 

2 Byte Decimal separator, null terminated. 

2 Byte Date separator, null terminated. 

2 Byte Time separator, null terminated. 

1 Byte Bit field for currency format: 

Bit 0: 1 = currency indicator follows money value. 0 = currency indicator 
precedes money value. 

Bil 1: Number of spaces (0 or 1) between currency indicator and money value. 

Bit 2: When this bit is set, ignore the first two bits; the currency indicator 
replaces the decimal indicator. 

2-196 CP Programming Reference 



DosQueryCtrylnfo -

Obtain Country Dependent Formatting Information 

1 Byte 

1 Byte 

Binary number of decimal places used in the currency indication. 

Time format for file directory presentation: 

Bit 0: 1 = 24 hour 0 = 12 hour with "a" or "p" 

2Word 

2 Byte 

sword 

Reserved (set to zero). 

Data list separator, null terminated. 

Reserved (set to zero). 

pDataLength (PULONG) - output 

The length, in bytes, of the country-dependent data returned. 

Returns 
Return Code. 

DosQueryCtrylnfo returns the following values: 

0 NO_ERROR 
397 ERROR_NLS_OPEN_FAILED 

398 ERROR_NLS_NO_CTRY_CODE 

399 ERROR_NLS_TABLE_TRUNCATED 

401 ERROR_NLS_TYPE_NOT_FOUND 

476 ERROR_CODE_PAGE_NOT_FOUND 

Remarks 
DosQueryCtrylnfo obtains country-dependent formatting information that resides in the country file 

(the default name is COUNTRY.SYS). 

The country-dependent information returned corresponds to the system country code or selected 

country code, and to the process code page or selected code page. 

Related Functions 
• DosMapCase 
• DosQueryCollate 
• DosQueryCp 
• DosQueryDBCSEnv 
• DosSetProcessCp 

Chapter 2. Control Program Functions 2-197 



DosQueryCtrylnfo -
Obtain Country Dependent Formatting Information 

Example Code 
This example gets country-dependent information. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

#define CURRENT_COUNTRY e 
#define NLS_CODEPAGE 850 

COUNTRYCODE Country; 
COUNTRYINFO CtryBuffer; 
ULONG Length; 
APIRET re; 

Country.country = CURRENT_COUNTRY; 
Country.codepage = NLS_CODEPAGE; 

/* Return code */ 

re= DosQueryCtrylnfo(sizeof(CtryBuffer), /*Length of data area 
provided */ 

if (re ! = 0) 
{ 

&Country, /* Input data structure */ 
&CtryBuffer, /* Data area to be filled 

by function */ 
&Length); /*Length of data 

returned */ 

printf( 11 DosQueryCtrylnfo error: return code= %ld 11 ,rc); 
return; 

} 

2-198 CP Programming Reference 



DosQueryCurrentDir -
Get the Full Path Name of the Current Directory 

#define INCL_DOSFILEMGR 

APIRET DosQueryCurrentDlr (ULONG ulDrlveNumber, PBYTE pbDlrPath, 
PULONG pDlrPathlen) 

DosQueryCurrentDir gets the full path name of the current directory for the requesting process on 
the specified drive. 

Parameters 
ulDrlveNumber (ULONG) - input 

Drive number. The value O means the current drive, 1 means drive A, 2 means drive B, 3 means 
drive C, and so on. 

pbDlrPath (PBYTE) - output 

Address of the fully qualified path name of the current directory. 

pDlrPathlen (PULONG) - input/output 

Address of the length, in bytes, of the DirPath buffer. On input, this field contains the length, in 
bytes, of the directory path buffer. On output, if an error is returned because the buffer is too 
small, this field contains the required length, in bytes, of the buffer. 

Returns 
Return Code. 

DosQueryCurrentDir returns the following values: 

0 NO_ERROR 
15 ERROR_INVALID_DRIVE 
26 ERROR_NOT _DOS_DISK 
108 ERROR_DRIVE"'"LOCKED 
111 ERROR_BUFFER_OVERFLOW 

Remarks 
The drive letter is not part of the returned string. The string does not begin with a backslash, and it 
ends with a byte containing hex 00. 

The system provides the length of the returned path-name string in DirPathLen, which does not 
include the ending null byte. If the DirPath buffer is not large enough to hold the current-directory 
path string, the system returns the required length, in bytes,. for the DirPath buffer in DirPathLen. 

For file-system drivers, the case of the current directory is set at the time of creation. For example, if 
the directory "c:\bin" is created, and is called with a DirName of "c:\bin", the current directory 
returned by DosQueryCurrentDir will be "c:\bin." 

Programs running without the NEWFILES bit set are allowed to issue DosSetCurrentDir for a 
directory that is not in the 8.3 file.;.name format. 

An application must issue DosQuerySyslnfo to determine the maximum path length supported by the 

operating system. The returned value should be used to dynamically allocate buffers that are to be 
used to store paths. 

Chapter 2. Control Program Functions 2-199 



DosQueryCurrentDir -
Get the Full Path Name of the Current Directory 

Related Functions 
• DosQueryCurrentDisk 
• DosQuerySyslnfo 
• DosSetCurrentDir 
• DosSetDefaultDisk 

Example Code 
This example gets the full path name of the current directory on the specified drive. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG 
UC HAR 
ULONG 

APIRET 

DriveNumber; /* Drive number */ 
DirPath[256]; /*Directory path buffer (returned) */ 
DirPathlen; /* Directory path buffer length 

(number of bytes) */ 
re; /* Return code */ 

DriveNumber = 3; /* Specify drive C */ 

DirPathlen = 256; /* Length of the DirPath buffer */ 

re= DosQueryCurrentDir(DriveNumber. DirPath, &DirPathlen); 

if (re != e) 
{ 

/* On successful return, the directory */ 
/* path name string is returned in */ 
/* the DirPath buffer, and the length */ 
/* of the path name is returned in */ 
/* the DirPathlen variable */ 

printf("DosQueryCurrentDir error: return code= %ld 11
, re); 

return; 
} 

2-200 CP Programming Reference 



#define INCL DOSFILEMGR 

DosQueryCurrentDisk -
Get the Current Default Drive 

APIRET DosQueryCurrentDlsk (PULONG pDrlveNumber, PULONG pLoglcalDrlveMap) 

DosQueryCurrentDisk gets the current default drive for the requesting process. 

Parameters 
pDrlveNumber (PULONG) - output 

Address of the number of the default drive. The value 1 means drive A, 2 means drive 8, 3 
means drive C, and so on. 

pLoglcalDrlveMap (PULONG) - output 

Address of the bit map (stored in the low-order portion of the 32-bit, doubleword area) where the 
system returns the mapping of the logical drives. Logical drives A to Z have one-to-one 
mapping with bit positions 0 to 25 of the map; for example, bit 0 represents drive A, bit 1 
represents drive 8, and so on. The settings of these bits indicate which drives exist, as follows: 

Value 
0 
1 

Returns 

Definition 
The logical drive does not exist. 
The logical drive exists. 

Return Code. 

DosQueryCurrentDisk returns the following values: 

0 NO_ERROR 

Related Functions 
• DosSetDefaultDisk 

Chapter 2. Control Program Functions 2-201 



DosQueryCurrentDisk -
Get the Current Default Drive 

Example Code 
This example gets the current default drive and a bit map that specifies which logical drives are 
currently valid for the calling process. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG DriveNumber; 
ULONG LogicalDriveMap; 
APIRET re; 

/* Default drive number (returned) */ 
/* Drive map area (returned) */ 
/* Return code */ 

re= DosQueryCurrentDisk(&DriveNumber, &LogicalDriveMap); 

if (re != 0) 
{ 

/* On return, the DriveNumber variable */ 
/* contains a number (1-26) that */ 
/* indicates the current logical */ 
/* drive, and the LogicalDriveMap */ 
/* variable contains a bit map */ 
/* (in bits 0-25 of the long word) */ 
/* that specifies which logical */ 
/* drives are currently valid */ 

printf("DosQueryCurrentDisk error: return code= %ld 11
, re); 

return; 
} 

2-202 CP Programming Reference 



DosQueryDBCSEnv 
Obtain a DBCS Environmental Vector 

#define INCL_DOSNLS 

APIRET DosQueryDBCSEnv (ULONG ullength, PCOUNTRYCODE ppStructure, 
PCHAR ppMemoryBuffer) 

DosQueryDBCSEnv obtains a DBCS (double-byte character set) environmental vector that resides in 
the country file. 

Parameters 
ulLength (ULONG) - input 

The length, in bytes, of the data area (MemoryBuffer) provided by the caller. A length value of 
12 bytes is sufficient. The caller can always determine if all of the information has been 
obtained, because it terminates with four bytes of zeros. A length of 4 is sufficient for 
information returned from non-DBCS-related countries. 

ppStructure (PCOUNTRYCODE) - input 

A two-doubleword input data structure as follows: 

• Doubleword 0: Country Code 
• Doubleword 1: Code Page Identifier 

Doubleword zero is the binary value of the selected country code, in which 0 means return the 
DBCS information for the default system country code. Doubleword one is the binary value of 
the selected code page identifier, in which O means return the DBCS information for the current 
process code page of the caller. 

Refer to the Parameters for DosMapCase for a table of values for country code and code page 
identifier. 

ppMemoryBuffer (PCHAR) - output 

The data area where the country-dependent information for the DBCS environmental vector is 
returned. The caller provides this memory area. The size of the area is specified by the input 
parameter Length. 

If this area is too small to hold all of the available information, then as much information as 
possible is provided in the available space (in the order in which the data would appear). 
Assuming that the data area is large enough, the valid information is terminated by two bytes of 
zero. The format of the information returned in this buffer is as follows: 

2 Bytes 

2 Bytes 

2 Bytes 

2 Bytes 

First range definition for DBCS lead byte values: 

Byte 1: binary start value (inclusive) for range one 
Byte 2: binary stop value (inclusive) for range one 

Second range definition: 

Byte 1 binary start value for range two 
Byte 2 binary stop value for range two 

Nth range definition: 

Byte 1: binary start value for Nth range 
Byte 2: binary stop value for Nth range 

Two bytes of binary zero terminate the list. 

For example: DB 
DB 
DB 

81H,9FH 
E0H,FCH 
e,e 

Chapter 2. Control Program Functions 2-203 



DosQueryDBCSEnv -
Obtain a DBCS Environmental Vector 

Returns 
Return Code. 

DosQueryDBCSEnv returns the following values: 

0 NO_ERROR 
397 ERROR_NLS_OPEN_FAILED 
398 ERROR_NLS_NO_CTRY _CODE 
399 ERROR_NLS_ TABLE_ TRUNCATED 
401 ERROR_NLS_ TYPE_NOT _FOUND 
476 ERROR_CODE_PAGE_NOT_FOUND 

Remarks 
DosQueryDBCSEnv obtains a double-byte character set environmental vector that resides in the 
country file (the default name is COUNTRY.SYS). 

The vector returned corresponds to the system country code or selected country code, and to the 
process code page or selected code page. 

A double-byte character set is for a code page that contains more than 256 characters. A DBCS data 
string may contain both SBCS (single-byte character set) and DBCS (double-byte character set) 
characters. 

A DBCS character is two bytes in length. It contains a lead byte and a trail byte. A lead byte is in the 
range returned by DosQueryDBCSEnv. A trail byte is not restricted to any range. The trail byte 
always follows the lead byte in a DBCS character. 

Related Functions 
• DosMapCase 
• DosQueryCollate 
• DosQueryCp 
• DosQueryCtrylnfo 
• DosSetProcessCp 

2-204 CP Programming Reference 



Example Code 

DosQueryDBCSEnv -

Obtain a DBCS Environmental Vector 

This example obtains a DBCS (double-byte character set) environmental vector that resides in the 

country file (default name COUNTRY.SYS). The vector returned corresponds to the system country 

code or selected country code and the process code page or selected code page. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG Length; /* Length of data 
area provided */ 

COUNTRYCODE Structure; /* Input data structure */ 
UCHAR MemoryBuffer[12]; /* DBCS environmental 

vector (returned) */ 
APIRET re; /* Return code */ 

Length = 12; /* A length of 12 bytes is */ 
/* sufficient to contain the */ 
/* DBCS data returned */ 

Structure.country = 0; /* Use the default system */ 
/* country code */ 

Structure.codepage = 0; /* Return DBSC information for the */ 
/* caller's current process code */ 
/* page */ 

re= DosQueryDBCSEnv(Length, &Structure, MemoryBuffer); 

if (re != 0) 
{ 

/* On successful return, the buffer */ 
/* MemoryBuffer contains the */ 
/* country-dependent information */ 
/* for the DBCS environmental */ 
/* vector */ 

printf("DosQueryDBCSEnv error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-205 



DosQueryEventSem 
Query Event Semaphore 

#define INCL_DOSSEMAPHORES 

APIRET DosQueryEventSem (HEY hev, PULONG ppulPostCI) 

DosQueryEventSem retrieves the post count for an event semaphore. 

Parameters 
hev (HEV) - input 

The handle of the event semaphore to query. 

ppulPostCI (PULONG) - output 

A pointer to the semaphore's post count. The post count is the number of times 
DosPostEventSem has been called since the last time the event semaphore was in the reset 
state. 

Returns 
Return Code. 

DosQueryEventSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 

Remarks 
DosQueryEventSem returns the post count for an event semaphore. The post count is the number of 
times that DosPostEventSem has been called since the last time the semaphore was in the reset 
state. 

This function can be called by any thread in the process that created the semaphore. Other 
processes can also call this function, but they must first gain access to the semaphore by calling 
DosOpenEventSem. 

Related Functions 
• DosCloseEventSem 
• DosCreateEventSem 
• DosOpenEventSem 
• DosPostEventSem 
• DosResetEventSem 
• DosWaitEventSem 

2-206 CP Programming Reference 



Example Code 

DosQueryEventSem -
Query Event Semaphore 

This example retrieves the post count for an event semaphore. Assume that the handle of the 
semaphore has been placed into hev already. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HEV hev; /* Event semaphore handle */ 
ULONG ulPostCt; /* Current post count for the semaphore 

(returned) */ 
APIRET re; /* Return code */ 

re= DosQueryEventSem(hev, &ulPostCt); 

if (re != 0) 
{ 

/* On successful return, the ulPostCt */ 
/* variable contains the number of */ 
/* posts that have been performed on */ 
/* the event semaphore since the */ 
/* last time it was reset */ 

printf("DosQueryEventSem error: return code= %ld", re); 
return; 

} 

;,' 

Chapter 2. Control Program Functions 2-207 



DosQueryFHState -
Query File Handle State 

#define INCL_DOSFILEMGR 

APIRET DosQueryFHState (HFILE FlleHandle, PULONG pFlleHandleState) 

DosQueryFHState queries the state of the specified file handle. 

Parameters 
FlleHandle (HFILE) - input 

Handle of the file to be queried. 

pFlleHandleState (PULONG) - output 

Address of the contents of the open-mode word defined in a previous DosOpen function. 

Bit Description 

15 (OPEN_FLAGS_DASD Ox00008000) Direct Open flag: 

O: PathName represents a file to be opened normally. 

1 : PathName is "drive:" (such as C: or A:). It represents a mounted disk or diskette 
volume to be opened for direct access. 

14 (OPEN_FLAGS_WRITE_THROUGH Ox00004000) Write-Through flag: 

O: Write operations to the file go through the file system buffer cache. 

1 : Write operations to the file may go through the file system buffer cache, but the 
sectors are written (the actual file 110 operation is completed) before a synchronous 
write call returns. This state of the file defines it as a synchronous file. For 
synchronous files, this bit is set to 1 because the data must be written to the medium 
for synchronous write operations. 

The Write-Thro.ugh flag bit is not inherited by child processes. 

13 (OPEN_FLAGS_FAIL_ON_ERROR Ox00002000) Fail-Errors flag. Media 110 errors are 
handled as follows: 

0: Reported through the system critical-error handler. 

1 : Reported directly to the caller by a return code. 

Media 1/0 errors generated through an IOCtl Category 8 function always are 
reported directly to the caller by a return code. The Fail-Errors function applies only 
to non-IOCtl handle-based file 110 functions. 

The Fail-Errors flag bit is not inherited by child processes. 

12 (OPEN_FLAGS_NO_CACHE Ox00001000) Cache or No-Cache: 

11-8 

7 

0: The disk driver should place data from 110 operations into the cache on this file. 

1 : 1/0 operations to the file need not be done through the disk-driver cache. 

The setting of this bit determines whether it is worth caching the data for 
file-systems drivers and device drivers. This bit, like the Write-Through bit, is a 
per-handle bit. 

This bit is not inherited by child processes. 

Reserved bits. 

(OPEN_FLAGS_NOINHERIT Ox00000080) Inheritance flag: 

0: The file handle is inherited by a process that is created by issuing DosExecPgm. 

2-208 CP Programming Reference 



DosQueryFHState 
Query File Handle State 

1 : The file handle is private to the current process. 

This bit is not inherited by child processes. 

8-4 Sharing-Mode flags: Define the operations other processes can perform on the file: 

Value 

001 

010 

011 

100 

Definition 

(OPEN_SHARE_DENYREADWRITE) Deny read and write access. 

(OPEN_SHARE_DENYWRITE) Deny write access. 

(OPEN_SHARE_DENYREAD) Deny read access. 

(OPEN_SHARE_DENYNONE) Deny neither read nor write access (deny 
none). 

Any other value is invalid. 

3 Reserved. 

2 -0 Access-Mode flags. File access is assigned as follows: 

Definition Value 

000 

001 

010 

(OPEN_ACCESS_READONL Y) Read-only access. 

(OPEN_ACCESS_WRITEONLY) Write-only access. 

(OPEN_ACCESS_READWRITE) Read and write access. 

Any other value is invalid. 

Returns 
Return Code. 

DosQueryFHState returns the following values: 

0 
8 

Remarks 

NO_ERROR 
ERROR_INVALID_HANDLE 

When the application cannot handle a critical error that occurs, critical-error handling can be reset to 
the system. This is done by having DosSetFHState turn off the fail/errors bit and then reissuing the 
110 function. The expected critical error recurs, and control is passed to the system critical-error 
handler. The precise time that the effect of this function is visible at the application level is 
unpredictable when asynchronous 110 operations are pending. 

The Direct Open bit parameter is the "Direct 110 flag." It provides an access mechanism to a disk or 
diskette volume independent of the file system. This mode should be used only by system programs 
and not by application programs. 

Named-Pipe Considerations 

As defined by the operating system, D = 0. Other bits are as defined by DosCreateNPipe (serving 
end), DosOpen (client end), or the last DosSetFHState. 

Related Functions 
• DosDevlOCtl 
• DosOpen 
• DosSetFHState 

Chapter 2. Control Program Functions 2-209 



DosQueryFHState -
Query File Handle State 

Example Code 
This example queries the state of a file, given its file handle. Assume that the appropriate file handle 
has been placed into FileHandle already. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HFILE 
ULONG 
APIRET 

FileHandle; /* File handle */ 
FileHandleState; /* File handle state (returned) */ 
re; /* Return code */ 

re= DosQueryFHState(FileHandle, &FileHandleState); 

if (re != 0) 
{ 

/* On successful return, the */ 
/* FileHandleState variable */ 
/* contains a set of */ 
/* infonnation characterizing */ 
/* the current state of the */ 
/* file (as it has been */ 
/* opened by the calling */ 
/* process) *I 

printf("DosQueryFHState error: return code= %ld", re); 
return; 

} 

2-210 CP Programming Reference 



DosQueryFilelnfo 
Query File Information 

#define INCL_DOSFILEMGR 

APIRET DosQueryFllelnfo (HFILE FlleHandle, ULONG ulFilelnfoLevel, PVOID pFilelnfoBuf, 
ULONG ulFllelnfoBufSize) 

DosQueryFilelnfo gets file information. 

Parameters 
FlleHandle (HFILE) - input 

File handle. 

ulFilelnfoLevel (ULONG) - input 

Level of file information required. A value of 1, 2, or 3 can be specified, as follows: 

Value 

1 

Descriotion 

(FIL_STANDARD) Level 1 file information 

(FIL_QUERYEASIZE) Level 2 file information 2 

3 (FIL_ QUERYEASFROMLIST) Level 3 file information 

Level 4 is reserved. 

The structures described in FilelnfoBuf indicate the information returned for each of these levels. 

pFllelnfoBuf (PVOID) - output 

Address of the storage area where the system returns the requested level of file information. 
File information, where applicable, is at least as accurate as the most recent DosClose, 
DosResetBuffer, DosSetFilelnfo, or DosSetPathlnfo. 

Level 1 Fiie Information 
FilelnfoBuf contains the FILESTATUS3 data structure, to which file information is returned. 

Level 2 File Information 
FilelnfoBuf contains the FILESTATUS4 data structure. This is similar to the Level 1 structure, 
with the addition of the cblist field after the attrFile field. 

The cblist field is an unsigned doubleword. On output, this field contains the size, in bytes, 
of the file's entire extended attribute (EA) set on disk. You can use this value to calculate the 
size of the buffer required to hold the EA information returned when a value of 3 is specified 
for FilelnfoLevel. The buffer size is less than or equal to twice the size of the file's entire EA 
set on disk. 

Level 3 Fiie Information 
On input, FilelnfoBuf contains an EAOP2 data structure. fpGEA2List points to a GEA2 list 
defining the attribute names whose values are returned. The GEA2 data structures must be 
aligned on a doubleword boundary. Each oNextEntryOffset field must contain the number of 
bytes from the beginning of the current entry to the beginning of the next entry in the GEA2 
list. The oNextEntryOffset field in the last entry of the GEA2 list must be zero. fpFEA2List 
points to a data area where the relevant FEA2 list is returned. The length field of this FEA2 
list is valid, giving the size of the FEA2 list buffer. oError is ignored. 

On output, Fi!elnfoBuf is unchanged. The buffer pointed to by fpFEA2List is filled in with the 
returned information. If the buffer that fpFEA2List points to is not large enough to hold the 
returned information (the return code is ERROR_BUFFER_OVERFLOW), cblist is still valid, 
assuming there is at least enough space for it. Its value is the size of the entire EA set on 
disk for the file, even though only a subset of attributes was requested. 

Chapter 2. Contro1 Program Functions 2-211 



DosQueryFilelnfo -
Query File Information 

ulFllelnfoBufSlze (ULONG) - input 

The length, in bytes, of FilelnfoBuf. 

Returns 
Return Code. 

DosQueryFilelnfo returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
6 ERROR_INVALID_HANDLE 
111 ERROR_BUFFER_ OVERFLOW 
124 ERROR_INVALID_LEVEL 
130 ERROR_DIRECT _ACCESS_HANDLE 
254 ERROR_INVALID _EA_NAME 
255 ERROR_EA_LIST _INCONSISTENT 

Remarks 
In the FAT file system, only date and time information contained in level-1 file information can be 
modified. Zero is returned for the creation and access dates and times. 

To return information contained in any of the file information levels, DosQueryFilelnfo must be able 
to read the open file. DosQueryFilelnfo works only when the file is opened for read access, with a 
deny-write sharing mode specified for access by other processes. If another process that has 
specified conflicting sharing and access modes has already opened the file, any call to DosOpen will 
fail. 

DosEnumAttribute returns the lengths of extended attributes. This information can be used to 
calculate what size FilelnfoBuf needs to be to hold full-extended-attribute (FEA) information returned 
by DosQueryFilelnfo when Level 3 is specified. The size of the buffer is calculated as follows: 

Four bytes (for fea_oNextEntryOffset) + 
One byte (for fea_usFlags) + 
One byte (for fea_cbName) + 
Two bytes (for fea_cbValue) + 
Value of cbName (for the name of the EA) + 
One byte (for terminating NULL in fea_cbName) + 
Value of cbValue (for the value of the EA) 

Related Functions 
• DosClose 
• DosEnumAttribute 
• DosOpen 
• DosQueryPathlnfo 
• DosResetBuffer 
• DosSetFilelnfo 
• DosSetFileSize 
• DosSetPathlnfo 

2-212 CP Programming Reference 



Example Code 

DosQueryFilelnfo -
Query File Information 

This example obtains file information for a specified file. The example will obtain the Level 1 
information set for the file. The Level 1 information set for a file includes the dates and times of 
creation, last access and last writing. It also includes information about the size of the file and the 
file's standard attributes. Assume that the handle of the desired file has been placed into FileHandle 
already. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HF ILE 
ULONG 
FILESTATUS3 
ULONG 
APIRET 

FileHandle; 
FilelnfoLevel; 
FilelnfoBuf; 
FilelnfoBufSize; 
re; 

/* File handle */ 
/* Level of file info required */ 
/* File info buffer */ 
/* File data buffer size */ 
/* Return code */ 

FilelnfoLevel = 1; /* Indicate that Level 1 information */ 
/* is desired *I 

FilelnfoBufSize = sizeof(FILESTATUS3); 
/* Size of the buffer that will */ 
/* receive the Level 1 information */ 

re= DosQueryFilelnfo(FileHandle, FilelnfoLevel, 

if (re != 0) 
{ 

&FilelnfoBuf, FilelnfoBufSize); 
/* On successful return, the Level 1 */ 
/* file information is in the */ 
/* FilelnfoBuf buffer */ 

printf("DosQueryFilelnfo error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-213 



DosQueryFSAttach 
Query Attached File System 

#define INCL_DOSFILEMGR 

APIRET DosQueryFSAttach (PSZ pszDevlceName, ULONG ulOrdlnal, ULONG ulFSAlnfoLevel, 

PFSQBUFFER2 ppDataBuffer, PULONG pDataBufferLen) 

DosQueryFSAttach obtains information about an attached file system (local or remote), or about a 

character device or pseudocharacter device attached to the file system. 

Parameters 
pszDevlceName (PSZ) - input 

A drive designation or the name of a character or pseudocharacter device. If it is a drive 

designation, DeviceName is an ASCllZ string consisting of a drive name followed by a colon. If it 

is a character or pseudocharacter device name, DeviceName is an ASCllZ string consisting of a 

file name and the subdirectory, DEV. DeviceName is ignored if level 2 or 3 is specified for 

FSAlnfoLevel. 

ulOrdlnal (ULONG) - input 

An index into the list of character or pseudocharacter devices, or the set of drives. Ordinal 

always starts at 1. The ordinal position of an item in a list has no significance. Ordinal is used 

only to step through the list. The mapping from Ordinal to the item is volatile, and may change 

from one call to DosQueryFSAttach to the next. Ordinal is ignored if level 1 is specified for 

FSAlnfoLevel. 

ulFSAlnfoLevel (ULONG) - input 

Level of information returned in DataBuffer: 

• Level 1 (FSAIL_QUERYNAME) returns data for the drive or device name specified in 

DeviceName. Ordinal is ignored. 

• Level 2 (FSAIL_DEVNUMBER) returns data for the entry in the list of character or 

pseudocharacter devices selected by Ordinal. DeviceName is ignored. 

• Level 3 (FSAIL_DRVNUMBER) returns data for the entry in the list of drives selected by 

Ordinal. DeviceName is ignored. 

ppDataBuffer (PFSQBUFFER2) - output 

Address of the buffer for returned information. The buffer has the following format: 

iType (USHORT) 
Type of item. 

Value 

1 

2 

3 

4 

Definition 

(FSAT _ CHARDEV) Resident character device 

(FSAT _PSEUDODEV) Pseudocharacter device 

(FSAT_LOCALDRV) Local drive 

(FSAT_REMOTEDRV) Remote drive attached to the file-system driver. 

cbName (USHORT) 
Length, in bytes, of the item name, not counting null. 

cbFSDName (USHORT) 
Length, in bytes, of the file-system driver name, not counting null. 

cbFSAData (USHORT) 
Length, in bytes, of the file-system driver Attach data returned by the file-system driver. 

2-214 CP Programming Reference 



DosQueryFSAttach 
Query Attached File System 

szName (UCHAR) 
Item name. The name is an ASCllZ string. 

szFSDName (UCHAR) 
Name of the me-system driver that the item is attached to. The name is an ASCllZ string. 

rgFSAData (UCHAR) 
File-system driver Attach data returned by the file-system driver. 

Note: 
The szFSDName is the file-system driver name exported by the file-system driver. This 
name is not necessarily the same as the file-system driver name in the boot sector. 

For local character devices (iType = 1), cbFSDName = 0, and szFSDName contains only a 
terminating null byte; cbFSAData = 0. 

For local drives {iType = 3), szFSDName contains the name of the file-system driver 
attached to the drive at the time of the call. This information changes dynamically. If the 
drive is attached to the kernel's resident file system, szFSDName contains FAT or an 
unknown name. Since the resident file system gets attached to any disk that other 
file-system drivers refuse to mount, it is possible to have a disk that does not contain a 
recognizable file system, but yet gets attached to the resident file system. In this case, it is 
possible to detect the difference, and this information would help programs to preserve data 
on a disk that was not properly recognized. 

pDataBufferLen (PULONG) - input/output 

On input, the address of the length, in bytes, of the return buffer (DataBuffer). On output, it is the 
length, in bytes, of the data returned in DataBuffer by the file-system driver. 

Returns 
Return Code. 

DosQueryFSAttach returns the following values: 

0 NO_ERROR 
15 ERROR_INVALID_DRIVE 
111 ERROR_BUFFER_OVERFLOW 
124 ERROR_INVALID_LEVEL 
259 ERROR_NO_MORE_ITEMS 

Remarks 
DosQueryFSAttach returns information aboutall block devices, and all character and 
pseudocharacter devices. The subject of the information returned by this call changes frequently. 
Therefore, the information that this function returns may no longer be valid when you receive it. 

The information returned for disks attached to the resident file system of the kernel can be used to 
determine: 

• If the kernel recognized the disk as one attached to its file system, or 

• If the kernel attached its file system to the disk because no other file-system drivers were 
attached to the disk. 

This information can be important for a program that needs to know what file system is attached to 
the drive .. · A situation could arise where the file-system driver that recognizes a certain disk has not 
been loaded into the system. There is then a potential for the data on the disk to be destroyed 
because th·e wrong file system gets attached to the disk by default. 

Chapter 2. Control Program Functions 2-215 



DosQueryFSAttach -
Query Attached File System 

Related Functions 
• DosFSAttach 
• DosQuerySyslnfo 

Example Code 
This example returns information about an attached file system. 

#define INCL_UOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR 
ULONG 
ULONG 
FSQBUFFER2 
ULONG 
APIRET 

DeviceName[8]; /*Device name or drive letter string*/ 
Ordinal; /*Ordinal of entry in name list*/ 
FSAinfoLevel; /*Type of attached FSD data required*/ 
DataBuffer; /* Returned data buffer */ 
DataBufferLen; /* Buffer length */ 
re; /* Return code */ 

strcpy(DeviceName, 11 Y: 11
); /* Logical drive of attached*/ 

FSAlnfoLevel = 1; 

/* file system */ 

/* Indicate that the request is to */ 
/* return infonnation about the */ 
/* drive whose name is specified */ 
/* within the DeviceName variable */ 
/* (also indicate that the */ 
/* Ordinal variable is to be */ 
/* ignored) *I 

DataBufferLen = sizeof(FSQBUFFER2); 
/* Length of data buffer */ 

re= DosQueryFSAttach(DeviceName. Ordinal. FSAinfoLevel. 
&DataBuffer. &DataBufferLen); 

if (re != 0) 
{ 

/* On successful return. the */ 
/* DataBuffer structure contains */ 
/* a set of infonnation describing */ 
/* the specified attached file */ 
/* system. and the DataBufferLen */ 
/* variable contains the size of */ 
/* infonnation within the structure */ 

printf( 11 DosQueryFSAttach error: return code= %ld 11
, re); 

return; 
} 

2-216 CP Programming Reference 



DosQueryFSlnfo 
Query File System Information 

#define INCL_DOSFILEMGR 

APIRET DosQueryFSlnfo (ULONG ulDrlveNumber, ULONG ulFSlnfoLevel, PVOID pFSlnfoBuf, 
ULONG ulFSlnfoBufSlze) 

DosQueryFSlnfo gets information from a file-system device. 

Parameters 
ulDrlveNumber (ULONG) - input 

Logical drive number for the disk about which information is to be retrieved. This parameter can 
be any value from O through 26. If this parameter is zero, information about the disk in the 
current drive is retrieved. Otherwise, 1 specifies drive A, 2 specifies drive B, and so on. 

When a logical drive is specified, the media in the drive is examined {for a local drive only), and 
the request is passed to the file system driver {FSD) responsible for managing that media, or to 
the FSD that is attached to the drive. 

ulFSlnfoLevel (ULONG) - input 

Level of file information required. 

Value 

1 

2 

Description 

(FSIL_ALLOC) Level 1 information 

(FSIL_ VOLSER) Level 2 information 

pFSlnfoBuf (PVOID) - output 

Address of the storage area where the system returns the requested level of file information. 

Level 1 Information 
When a value of 1 is specified for FSlnfoLevel, the information is returned in the following 
format: 

fllesysld (UL ONG) 
File system ID. 

sectornum (ULONG) 
Number of sectors per allocation unit. 

unltnum (ULONG) 
Number of allocation units. 

unltavall (ULONG) 
Number of allocation units available. 

bytesnum (USHORT) 
Number of bytes per sector. 

Level 2 Information 
When a value of 2 is specified for FSlnfoLevel, the information is returned in the following 
format: 

VolumeSerlalNum (ULONG) 
Volume serial number. 

volumelength (BYTE) 
Length of the volume label, not including the null. 

volumelabel (CHAR) 
Volume label. This is an ASCllZ string. 

Chapter 2. Control Program Functions 2-217 



DosQueryFSlnfo -
Query File System Information 

ulFSlnfoBufSlze (ULONG) - input 

The length, in bytes, of the buffer that receives the file-system information. 

Returns 
Return Code. 

DosQueryFSlnfo returns the following values: 

0 NO_ERROR 
15 ERROR_INVALID_DRIVE 
111 ERROR_BUFFER_OVERFLOW 
124 ERROR_INVALID_LEVEL 
125 ERROR_NO_ VOLUME_LABEL 

Remarks 
DosQueryFSlnfo gets information from a file-system device. 

Trailing blanks supplied at the time the volume label is defined are not considered part of the label, 

and are not returned as valid label data. The volume label is limited to a length of 11 bytes. 

Volume Serial Number is a unique 32-bit number that the operating system uses to identify its disk or 

diskette volumes. The hard error prompts the user for an unmounted removable volume by 

displaying both the Volume Serial Number (an 8-digit hexadecimal number) and the Volume Label. 

If the disk or diskette has no volume serial number, the volume-serial-number information is 

returned as binary zeros. If there is no volume label, the volume-label information is returned as 

blank spaces. 

If there is no volume serial number or volume label for disk or diskette volumes formatted by DOS, 

this information is not displayed by the Hard Error handler. 

Related Functions 
• DosSetFSlnfo 

2-218 CP Programming Reference 



Example Code 

DosQueryFSlnfo -
Query File System Information 

This example obtains information about the file system that is associated with a particular logical 
drive. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG DriveNumber; 
ULONG FSinfolevel; 
UCHAR FSinfoBuf[40]; 
ULONG FSinfoBufSize; 
APIRET re; 

DriveNumber = 3; 

/* Drive number */ 
/* File system data required */ 
/* File system info buffer*/ 
/* File system info buffer size */ 
/* Return code */ 

/* Specify drive C */ 

FSinfolevel = FSIL_ALLOC; 
/* Indicate that file system allocation */ 
/* information is requested */ 

FSinfoBufSize = 40; /* Size of return data buffer */ 

re= DosQueryFSinfo(DriveNumber, FSinfolevel, FSinfoBuf, 

if (re ! = a) 
{ 

FSinfoBufSize); 
/* On successful return, the data buffer */ 
/* FSinfoBuf contains a set of */ 
/* information about space allocation */ 
/* within the specified file system */ 

printf("DosQueryFSinfo error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-219 



DosQueryHType 
Query Handle Type 

#define INCL_DOSFILEMGR 

APIRET DosQueryHType (HFILE FlleHandle, PULONG pHandleType, PULONG pFlagWord) 

DosQueryHType determines whether a handle refers to a file or a device. 

Parameters 
FlleHandle (HFILE) - input 

File handle. 

pHandleType (PULONG) - output 

Address of the value indicating the handle type. Handle Type consists of two bytes: 

Bit Descriotion 

15 Network bit: 

14-8 

7-0 

0: The handle refers to a local file, device, or pipe. 

1: The handle refers to a remote file, device, or pipe. 

Reserved. 

HandteCtass describes the handle class. It may take on the following values in the 
low byte of Handle Type: 

Value 
0 
1 
2 

Definition 
Disk file 
Character device 
Pipe. 

Values greater than 2 are reserved. 

pflagWord (PULONG) - output 

Address of the device-driver attribute word if Handle Type indicates a local character device. 

Returns 
Return Code. 

DosQueryHType returns the following values: 

0 
6 

Remarks 

NO_ERROR 
ERROR_INVALID _HANDLE 

DosQueryHType enables programs that are interactive or file-oriented to determine the source of 
their input. For example, CMD.EXE suppresses writing prompts if the input is from a disk file. 

Related Functions 
• DosOpen 

2-220 CP Programming Reference 



Example Code 

DosQueryHType -
Query Handle Type 

This example determines whether a given file handle refers to a file or a device. Assume that the 
desired file handle has been placed into FileHandle already. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HF ILE 
ULONG 
ULONG 
APIRET 

FileHandle; 
HandType; 
FlagWord; 
re; 

/* File handle */ 
/* Handle type (returned) */ 
/* Device driver attribute (returned) */ 
/* Return code */ 

re= DosQueryHType(FileHandle, &HandType, &FlagWord); 

if (re != 0) 
{ 

/* On successful return, the variable */ 
/* HandType contains a value that */ 
/* characterizes the type of file */ 
/* handle, and the variable FlagWord */ 
/* contains the associated device */ 
/* driver attribute word if HandType */ 
/* indicates that the file handle is */ · 
/* associated with a local character */ 
/* device *I 

printf("DosQueryHType error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-221 



DosQueryMem 
Obtain Information about a Range of Pages 

#define INCL_DOSMEMMGR 

APIRET DosQueryMem (PVOID pBaseAddress, PULONG pulReglonSlze, 
PULONG pulAllocationflags) 

DosQueryMem obtains information about a range of pages within the virtual-address space of the 
subject process. 

Parameters 
pBaseAddress (PVOID) - input 

The base address of the range of pages to be queried. 

pulReglonSlze (PULONG) - input/output 

On input, this parameter points to a variable that contains the size, in bytes, of the range of 
pages to be queried. The initial value of the variable is rounded to include all pages addressed 
by the requested base address and size. Upon return, this parameter points to a variable that 
contains the actual size, in bytes, of the queried range of pages. 

pulAllocatlonflags (PULONG) - output 

A pointer to a variable that receives a set of attribute flags describing the type of allocation and 
access protection for the specified range of pages. 

Allocation Type 

• If the PAG_COMMIT bit (Ox00000010) is set, the pages within the specified region are 
committed. 

• If the PAG_FREE bit (Ox00004000) is set, the pages within the specified region are free. 

• If the PAG_SHARED bit (Ox00002000) is set, the pages within the specified region are in a 
shared memory object. Otherwise, the pages are in a private memory object. 

• If the PAG_BASE bit (Ox00010000) is set, the first page in the specified region is the first 
page in an allocated memory object. 

Access Protection 

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed range of 
pages is allowed. 

• If the PAG_READ bit (Ox00000001) is set, read access to the committed range of pages is 
allowed. 

• If the PAG_WRITE bit (Ox00000002) is set, write access to the committed range of pages is 
allowed. 

• If the PAG_GUARD bit (OxOOOOOOOB) is set, access to the committed range of pages causes a 
"guard page entered" condition to be raised in the subject process. 

Returns 
Return Code. 

DosQueryMem returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
487 ERROR_INVALID _ADDRESS 

2-222 CP Programming Reference 



Remarks 

DosQueryMem 
Obtain Information about a Range of Pages 

DosQueryMem provides the capability to determine the type and access protection of a range of 
pages within the virtual-address space of the subject process. This is the only memory-management 
function that accepts an address range that is not entirely contained within a previously allocated 
memory object. 

The state of the first page within the region is determined, then subsequent entries in the 
virtual-address space of the process are scanned from the base address upward until either the 
entire range of pages has been scanned, a page with a nonmatching set of attributes is encountered, 

or the first page in an adjacent allocated memory object is encountered. The region attributes, the 
length of the range of pages with matching attributes, and an appropriate error code are returned. 

If the entire requested range of pages does not have a matching set of attributes, then the returned 
RegionSize parameter value can be used to calculate the address and length of the range of pages 
that were not scanned. 

Page scanning stops when the first page in an adjacent allocated memory object is encountered. 
This allows the calling application to determine the appearance of the virtual memory map, including 

object boundaries. 

A region of pages that is neither committed nor free is considered reserved, that is, it is contained 
within an allocated memory object but has an access protection of "no access". 

If the allocation type returned indicates that the pages are reserved, that is, neither PAG_COMMIT 
nor PAG_FREE is set, then the access protection returned is the same as was specified when the 
object was allocated in the address space of the requesting process. 

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies 
both read and execute access. 

Related Functions 
• DosSetMem 

Chapter 2. Control Program Functions 2-223 



DosQueryMem 
Obtain Information about a Range of Pages 

Example Code 
This example obtains information about a range of pages within the virtual address space of the 
calling process. Assume that the base address for the DosQueryMem function was previously 
obtained by the process. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 

· #include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID BaseAddress; 

ULONG RegionSize; 

ULONG Flags; 

APIRET re; 

RegionSize = 16384; 

/* Pointer to the range of memory 
whose attributes are being queried */ 

/* Long value that on input contains the 
size, in bytes, of the region of 
memory to be queried, and on output 
contains the size, in bytes, of the 
region that was queried */ 

/* Long value that on output will receive 
a set of attribute flags that describe 
the type of allocation and access 
protection within the queried 
region */ 

/* Return code */ 

/* Ask to query a four-page region */ 
/* starting at the specified base */ 
/* address *I 

re= DosQueryMem(BaseAddress, &RegionSize, &Flags); 

if (re != 0) 
{ 

/* On return, the RegionSize and */ 
/* Flags variables will be set to */ 
/* values that characterize the */ 
/* queried region *I 

printf("DosQueryMem error: return code= %ld", re); 
return; 

} 

2-224 CP Programming Reference 



DosQueryMessageCp -
Retrieve a Message File List of Code Pages and Language 

Identifiers 

#define INCL_DOSMISC 

APIRET DosQueryMessageCp (PCHAR ppBufferArea, ULONG ulBufferLength, 
PSZ pszFlleName, PULONG pDataLength) 

DosQueryMessageCp retrieves a message file list of code pages and language identifiers. 

Parameters 
ppBufferArea (PCHAR) - output 

Pointer to the caller's buffer area, where the system returns the requested message file list of 
code pages and language identifiers. 

ulBufferLength (ULONG) - input 

The length, in bytes, of BufferArea. 

pszFlleName (PSZ) - input 

The drive designation, path, and name of the message file. The drive designation and path are 
optional. This specifies a file that was previously prepared by the MKMSGF utility program. 

pDataLength (PULONG) - output 

Pointer to the doubleword that receives the actual length, in bytes, of the returned data. 

Returns 
Return Code. 

DosQueryMessageCp returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
206 ERROR_FILENAME_EXCED_RANGE 
318 ERROR_MR_UN_ACC_MSGF 
319 ERROR_MR_INV _MSGF _FORMAT 
321 ERROR_MR_UN_PERFORM 

Remarks 
DosQueryMessageCp retrieves the message file list of code pages and language identifiers. 

The system returns the requested message file list of code pages and language identifiers in the 
caller's buffer (BufferArea). It has the following format: 

Length 

WORD 

WORD 

DWORD 

Field 

Code page count (N) 

Code page identifier. This field occurs N times, once per code page. 

Language identifier 

This data structure is repeated for each subfile within the specified message file. 

Chapter 2. Control Program Functions 2-225 



DosQueryl\llessageCp 
Retrieve a Message File List of Code Pages and Language 

Identifiers 

The code page identifier can have the following values: 

Description 

United States 

Multilingual 

Value 

437 

850 

852 

857 

860 

861 

863 

865 

932 

934 

936 

938 

942 

944 

946 

948 

Latin 2 (Czechoslovakia, Hungary, Poland, Yugoslavia) 

Turkish 

Portuguese 

Iceland 

Canadian French 

Nordic 

Japan 

Korea 

People's Republic of China 

Taiwan 

Japan SAA 

Korea SAA 

People's Republic of China SAA 

Taiwan SAA 

Note: Code pages 932, 934, 936, 938, 942, 944, 946, and 948 are supported only with the Asian 

version of the operating system on Asian hardware. 

The language identifier is a doubleword. The low-order word identifies a language family, and the 

high-order word identifies a specific version of that language (a sublanguage). 

The language and sublanguage identifier values O through 255 are reserved for system use. The 

values 256 through 511 are reserved for application use. 

The MKMSGF utility program performs range checking on the language and sublanguage identifier 

values. The value 0 means a null or unspecified language or sublanguage. Only the values defined 

in the following table are valid below 256. Any values from 256 through 511 are valid. Any identifier 

value greater than 511 is invalid. 

The following table shows the valid language and sublanguage identifier values. Column 1 is the 

language family identifier, and column 2 is the sublanguage identifier. Column 3 shows the 

language, and column 4 shows the principal country for this language. 

Table 2-2 (Page 1 of 3). Language identifiers 

Family Subl. Language Principal country 

0 0 null null 

1 1 Arabic Arab countries 

2 1 Bulgarian Bulgaria 

3 2 Spanish Spain 

3 3 Spanish Mexican Mexico 

4 1 Traditional Chinese Republic of China 

2-226 CP Ptogramming Reference 



DosQueryMessageCp -
f Retrieve a Message File List of Code Pages and Language 

Identifiers 

Table 2-2 (Page 2 of 3). Language identifiers 

Family Subl. Language Principal country 

4 2 Simplified Chinese People's Republic of 
China 

5 1 Czech Czechoslovakia 

6 1 Danish Denmark 

7 1 German Germany 

7 2 Swiss German Switzerland 

8 1 Greek Greece 

9 1 U.K. English United Kingdom 

9 2 U.S. English United States 

10 1 Finnish Finland 

11 1 French France 

11 2 Belgian French Belgium 

11 3 Canadian French Canada 

11 4 Swiss French Switzerland 

12 1 Hebrew Israel 

13 1 Hungarian Hungary 

14 1 Icelandic Iceland 

15 1 Italian Italy 

15 2 Swiss Italian Switzerland 

16 1 Japanese Japan 

17 1 Korean Korea 

18 1 Dutch Netherlands 

18 2 Belgian Dutch Belgium 

19 1 Norwegian - Bokmal Norway 

19 2 Norwegian - Nynorsk Norway 

20 1 Polish Poland 

21 1 Portuguese Portugal 

22 2 Brazilian Portuguese Brazil 

23 1 Rhaeto-Romanic Switzerland 

24 1 Serbo-Croatian (Cyrillic) Yugoslavia 

24 2 Serbo-Croatian (Latin) Yugoslavia 

25 1 Slovakian Czechoslovakia 

26 1 Albanian Albania 

27 1 Swedish Sweden 

28 1 Thai Thailand 

29 1 Turkish Turkey 

Chapter 2. Control Program Functions 2-227 



DosQueryMessageCp -

Retrieve a Message File List of Code Pages and Language 

Identifiers 

Table 2-2 (Page 3 of 3). Language identifiers 

Family Subl. Language Principal country 

30 1 Urdu Pakistan 

31 1 Russian U.S.S.R. 

32 1 Catalan Spain 

Related Functions 
• DosGetMessage 
• DoslnsertMessage 
• DosPutMessage 

Example Code 
This example obtains a list of code-page identifiers and language identifiers that are associated with 

a specified message file. Assume that the path name of the relevant message file is 

"D:\MESSAGE\AUTOMSG.MSG". 

#define INCL_DOSMISC /* Miscellaneous values */ 
#include <os2.h> 
#include <stdio.h> 

UCHAR 
ULONG 
UC HAR 
ULONG 
APIRET 

BufferArea[20]; 
BufferLength; 
Fi 1 eName [ 40] ; 
DataLength; 
re; 

/*Buffer for the returned list*/ 
/* Length of the buffer area */ 
/* Message file path-name string */ 
/* Length of the returned data */ 
/* Return code */ 

strcpy(FileName, 11 D:\\MESSAGE\\AUTOMSG.MSG 11
; 

/* Path name of the message file */ 

BufferLength = 20; /* Length of the buffer area (bytes) */ 

re = DosQueryMessageCp(BufferArea, BufferLength, FileName, 
&DataLength); 

if (re ! = 0) 
{ 

/* On successful return, the */ 
/* BufferArea buffer contains a */ 
/* set of infonnation concerning */ 
/* the code-page identifiers and */ 
/* language identifiers that are */ 
/* associated with the message */ 
/* file */ 

printf( 11 DosQueryMessageCp error: return code= %ld 11
, re); 

return; 
} 

2-228 CP Programming Reference 



DosQueryModuleHandle -
Return the Handle of a Dynamic Link Module Previouly 

Loaded 

#define INCL DOSMODULEMGR 

APIRET DosQueryModuleHandle (PSZ pszModName, PHMODULE ppModHandle) 

DosQueryModuleHandle returns the handle of a dynamic link module that was previously loaded. 

Parameters 
pszModName (PSZ) - input 

The address of an ASCllZ name string containing the dynamic link module name. The file-name 
extension used for dynamic link libraries is .DLL. 

ppModHandle (PHMODULE) - output 

The address of a doubleword in which the handle for the dynamic link module is returned. 

Returns 
Return Code. 

DosQueryModuleHandle returns the following values: 

0 NO_ERROR 
123 ERROR_INVALID_NAME 

Remarks 
DosQueryModuleHandle returns the handle of a dynamic link module that was previously loaded. 

The module name must match the name of the module already loaded. Otherwise, an error code is 
returned. This is a way of testing whether a dynamic link module is already loaded. 

Related Functions 
• DosFreeModule 
• DosLoadModule 
• DosQueryModuleName 

Chapter 2. Control Program Functions 2-229 



DosQueryModuleHandle -

Return the Handle of a Dynamic Link Module Previouly 

Loaded 

Example Code 
This example attempts obtain the handle of a dynamic link module. This allows the caller to test 

whether a given dynamic link module is currently loaded. 

#define INCL_DOSMODULEMGR /* Module Manager values */ 
#include <os2.h> 
#include <std·io.h> 

UC HAR 
HMODULE 
APIRET 

ModuleName[288]; /*Module name string*/ 
ModuleHandle; /* Module handle (returned) */ 
re; /* Return code * / 

strcpy(ModuleName, 11 C:\\OS2\\DLL\\PMREXX.DLL 11
); 

/* See if the PMREXX module is */ 
/* loaded *I 

re = DosQueryModuleHandle(ModuleName, &ModuleHandle); 

if (re != G) 
{ 

/* On successful return, the */ 
/* ModuleHandle variable */ 
/* contains the handle of the */ 
/* module */ 

printf( 11 DosQueryModuleHandle error: return code= %ld 11
, re); 

return; 
} 

2-230 CP Programming Reference 



DosQueryModuleName -
Return Fully Qualified Name with Referenced Module Handle 

#define INCL_DOSMODULEMGR 

APIRET DosQueryModuleName (HMODULE hmodModHandle, ULONG ulBufferLength, 
PCHAR ppNameBuffer) 

DosQueryModuleName returns the fully qualified drive, path, file name, and extension associated 
with the referenced module handle. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the dynamic link module that is being referenced. This handle is provided in DI on 
entry to a module, or on the initialization entry to a dynamic link routine. 

ulBufferLength (ULONG) - input 

The maximum length of the buffer, in bytes, where the name will be stored. 

ppNameBuffer (PCHAR) - output 

The address of the buffer where the fully qualified drive, path, file name, and extension of the 
module are returned. 

Returns 
Return Code. 

DosQueryModuleName returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
24 ERROR_BAD_LENGTH 

Remarks 
DosQueryModuleName returns the fully qualified drive, path, file name, and extension associated 
with the referenced module handle. 

If the buffer is not large enough, an error is returned. 

Related Functions 
• DosFreeModule 
• DosLoadModule 
• DosQueryModuleHandle 

Chapter 2. Control Program Functions 2-231 



DosQueryModuleName -
Return Fully Qualified Name with Referenced Module Handle 

Example Code 
Given a dynamic link module handle, this example obtains the fully qualified drive, path, file name, 

and extension associated with the module. Assume that the appropriate module handle has been 

placed into ModuleHandle already. 

#define INCL_DOSMODULEMGR /* Module Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HMODULE 
ULONG 
UC HAR 
APIRET 

ModuleHandle; /*Module handle */ 
Bufferlength; /* Buffer length */ 
Buffer[256]; /*Buffer (returned) */ 
re; /* Return code */ 

Bufferlength = 256; /* Length of return buffer */ 

re= DosQueryModuleName(ModuleHandle, Bufferlength, Buffer); 
/* On successful return, the buffer */ 
/* named Buffer will contain the */ 
/* fully qualified path name of the */ 
/* specified module */ 

if (re ! = 0) 
{ 

printf("DosQueryModuleName error: return code= %ld 11
, re); 

return; • 
} 

2-232 CP Programming Reference 



#define INCL_DOSSEMAPHORES 

DosQueryMutexSem 
Query Mutex Semaphore 

APIRET DosQueryMulexSem (HMTX hmtx, PPID ppppldOwner, PTID ppplldOwner, 
PULONG ppulCount) 

DosQueryMutexSem retrieves information about the owner of a mutex semaphore. 

Parameters 
hmlx (HMTX} - input 

The handle of the mutex semaphore to query. 

ppppldOwner (PPID} - output 

A pointer to the process ID of either the current owner of the mutex semaphore, or a process 
that has ended without releasing the semaphore. 

ppplldOwner (PTID) - output 

A pointer to the thread ID of either the current owner of the mutex semaphore, or a process that 
has ended without releasing the semaphore. 

ppulCounl (PULONG} - output 

A pointer to the request count for the semaphore. The request count is the number of calls to 
DosRequestMutexSem, minus the number of calls to DosReleaseMutexSem, that have been 
made for the semaphore by the owning thread. If the semaphore is unowned, this value will be 
zero. If the owning thread has ended, the value will be the request count for the ended owner. 

Returns 
Return Code. 

DosQueryMutexSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 
105 ERROR_SEM_OWNER_DIED 

Remarks 
DosQueryMutexSem returns the process identification (PIO) and thread identification (TIO) of a mutex 
semaphore's current owner, as well as the request count for the semaphore. The request count is 
the number of calls to DosRequestMutexSem, minus the number of calls to DosReleaseMutexSem, 
that have been made for the semaphore by the owning thread. 

This function can be called by any thread in the process that created the semaphore. Threads in 
other processes can also call this function, but they must first gain access to the semaphore by 
calling DosOpenMutexSem. 

Related Functions 
• DosCloseMutexSem 
• DosCreateMutexSem 
• DosOpenMutexSem 
• DosReleaseMutexSem 
• DosRequestMutexSem 

Chapter 2. Control Program Functions 2-233 



DosQueryMutexSem -
Query Mutex Semaphore 

Example Code 
This example obtains information about a mutex semaphore. Assume that the handle of the 

semaphore has been placed into hmtx already. 

#define INCL_OOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HMTX hmtx; /* Mutex semaphore handle */ 
PIO pidOwner; /* PIO of current mutex semaphore owner 

(returned) */ 
TIO tidOwner; /* TIO of current mutex semaphore owner 

(returned) */ 
ULONG ulCount; /* Request count for the semaphore 

(returned) */ 
APIRET re; /* Return code */ 

re = OosQueryMutexSem(hmtx. &pidOwner. &tidOwner. 

if (re != 0) 
{ 

&ulCount); 
/* On successful return. the pidOwner */ 
/* variable contains the PIO of the */ 
/* semaphore's owner, the tidOwner */ 
/* variable contains the TIO of the */ 
/* semaphore's owner, the ulCount */ 
/* variable contains the request */ 
/* count for the semaphore's owner */ 

printf("OosQueryMutexSem error: return code= %ld 11
, re); 

return; 
} 

2-234 CP Programming Reference 



#define INCL_DOSSEMAPHORES 

DosQueryMuxWaitSem 
Query MuxWait Semaphore 

APIRET DosQueryMuxWaltSem (HMUX hmux, PULONG ppcSemRec, 
PSEMRECORD pppSemRec, PULONG ppflAttr) 

DosQueryMuxWaitSem retrieves the semaphore records from a muxwait-semaphore list. 

Parameters 
hmux (HMUX) - input 

The handle of the muxwait semaphore to query. 

ppcSemRec (PULONG) - input/output 

On input, a pointer to the maximum number of semaphore record entries that can be contained 
in the list pointed to by pSemRec. On output, a pointer to the number of semaphore record 
entries returned in the list pointed to by pSemRec. If the list pointed to by pSemRec is not large 
enough to hold all of the semaphore records in the specified muxwait semaphore, the system 
sets the value pointed to by pSemRec to the number of semaphore records in the specified 
muxwait semaphore, and sets the return code to ERROR_PARAM_TOO_SMALL. 

pppSemRec (PSEMRECORD) - output 

A pointer to the semaphore record entries in the muxwait-semaphore list. This is the list of 
event or mutex semaphores that must be posted or released in order for the muxwait semaphore 
to be cleared. 

ppflAttr (PULONG) - output 

The f/Attr attribute flags that were passed by DosCreateMuxWaitSem, as follows: 

• If the DC_SEM_SHARED bit is set, the semaphore is shared. 

• If the DCMW_WAIT_ANY bit is set, the semaphore waits for any event semaphore in the 
muxwait-semaphore list to be posted, or for any mutex semaphore in the list to be released. 
When any one of the semaphores is cleared, the thread that is waiting on the muxwait 
semaphore can continue executing. 

• If the DCMW_WAIT_ALL bit is set, the semaphore waits for all of the event semaphores in 
the muxwait list to be posted, or for all of the mutex semaphores in the list to be released. 
When all of the semaphores are cleared, the thread that is waiting on the muxwait 
semaphore can continue executing. 

Returns 
Return Code. 

DosQueryMuxWaitSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT _ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
105 ERROR_SEM_OWNER_DIED 
289 ERROR_PARAM_TOO_SMALL 

Chapter 2. Control Program Functions 2-235 



DosQueryMuxWaitSem 
Query MuxWait Semaphore 

Remarks 
DosQueryMuxWaitSem retrieves the semaphore records from a muxwait-semaphore list. 

The process must have previously opened the muxwait semaphore by issuing 
DosCreateMuxWaitSem or DosOpenMuxWaitSem. If the muxwait semaphore does not exist, then the 
system returns the ERROR_INVALID_HANDLE return code to the caller. 

The value that pcSemRec points to on input must be the maximum number of semaphore record 
entries that can be contained in the list pointed to by pSemRec. For example, if the list pointed to by 
pSemRec can contain ten semaphore record entries, then you should set the input value pointed to 
by pcSemRec to ten before issuing DosQueryMuxWaitSem. 

If the list pointed to by pSemRec is not large enough to hold all of the semaphore records in the 
specified muxwait semaphore, then the system sets the value pointed to by pcSemRec to the number 
of semaphore records in the specified muxwait semaphore, and sets the return code to 
ERROR_PARAM_TOO_SMALL. This allows you to issue DosQueryMuxWaitSem again, with the 
correct amount of memory for the muxwait-semaphore list. 

The system returns the ERROR_SEM_OWNER_DIED return code if any of the mutex semaphores in 
the muxwait semaphore have been placed into the owner-died state. This means that a thread ended 
while it owned at least one mutex semaphore, and at least one mutex semaphore is part of the 
muxwait semaphore. It also means that the mutex semaphore has not yet been removed by 
DosCloseMutexSem. 

When the system returns the ERROR_SEM_OWNER_DIED return code, you should issue 
DosQueryMutexSem for each mutex semaphore in the muxwait-semaphore list to determine which 
ones are invalid. For each mutex semaphore that results in the ERROR_SEM_OWNER_DIED return 
code from DosQueryMutexSem, issue DosCloseMutexSem to close the mutex semaphore. 
Semaphore handles may be used again, so the mutex semaphores that are closed must be deleted 
from the muxwait semaphore. 

Related Functions 
• DosAddMuxWaitSem 
• DosCloseMuxWaitSem 
• DosCreateMuxWaitSem 
• DosDeleteMuxWaitSem 
• DosOpenMuxWaitSem 
• DosWaitMuxWaitSem 

2-236 CP Programming Reference 



Example Code 

DosQueryMuxWaitSem 
Query MuxWait Semaphore 

This example retrieves the semaphore records from a muxwait semaphore. Assume that the handle 

of the semaphore has been placed into hmux already. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HMUX 
ULONG 
SEMRECORD 

ULONG 

APIRET 

hmux; 
cSemRec; 
SemRec[S]; 

flAttr; 

re; 

cSemRec = 5; 

/* Muxwait semaphore handle */ 
/* Number of entries in SemRec */ 
/* List of mutex or event semaphores 

that comprise the muxwait semaphore 
(returned) */ 

/* Muxwait semaphore creation 
attributes (returned) */ 

/* Return code */ 

/* SemRec has room for 5 entries */ 

re= DosQueryMuxWaitSem(hmux, &cSemRec, SemRec, &flAttr); 
/* On successful return, the SemRec */ 
/* buffer contains a list of */ 
/* structures that define each of */ 
/* the semaphores that constitute */ 
/* the MuxWait semaphore, and the */ 
/* flAttr variable contains the */ 
/* attribute flags that were passed */ 
/* in through the DosCreateMuxWaitSem */ 
/* function that created the muxwait */ 
/* semaphore. *I 

/* If the SemRec buffer is not large enough to */ 
/* contain all of the constituent semaphores of the */ 
/* muxwait semaphore. then an error is returned to the */ 
/* caller, and cSemRec contains the number of */ 
/* constituent semaphores that comprise the muxwait */ 
/* semaphore. */ 

if (re != 0) 
{ 

printf( 11 DosQueryMuxWaitSem error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-237 



DosQueryNPHState -
Query Named Pipe Handle State 

#define INCL_DOSNMPIPES 

APIRET DosQueryNPHState (HPIPE hplpeHandle, PULONG pPlpeHandleState) 

DosQueryNPHState returns information about a named-pipe handle. 

Parameters 
hplpeHandle (HPIPE) - input 

The named-pipe handle to query. (The server handle is returned by DosCreateNPipe; the client 
handle is returned by DosOpen.) 

pPipeHandleState (PULONG) - output 

A pointer to the named-pipe handle state. This parameter contains the following bit fields: 

Bit 

31-16 

15 

Description 

Reserved. 

Blocking mode. Blocking mode is defined as either "blocking" or "nonblocking," as 
follows: 

0 = (NP _WAIT) (OxOOOO) Blocking mode: DosRead and DosWrite block if no data is 
available. 

1 = (NP _NOWAIT) (Ox8000) Nonblocking mode: DosRead and DosWrite return 
immediately if no data is available. 

DosRead normally blocks until at least partial data can be returned. DosWrite 
blocks by default until all of the requested bytes have been written. Nonblocking 
mode changes this behavior as follows: 

DosRead returns immediately with a value of zero for BytesRead if no data is 
available. 

DosWrite returns immediately with a value of zero for BytesWritten if there is not 
enough buffer space available in the pipe; otherwise, the entire data area is 
transferred. 

14 Specifies whether the handle is for the server or client end of the pipe, as follows: 

13-12 

11-10 

O = (NP __ END_CLIENT) (OxOOOO) The handle is for the client end of the pipe. 

1 =(NP _END_SERVER) (Ox4000) The handle is for the server end of the pipe. 

Reserved. 

Type of named pipe. The pipe type is defined as follows: 

00 = (NP_ TYPE_BYTE) (OxOOOO) The pipe is a byte pipe; that is, data is written to the 
pipe as an undifferentiated stream of bytes. 

01 = (NP_ TYPE_MESSAGE) (Ox0400) The pipe is a message pipe; that is, data is 
written to the pipe as messages. The system records the length of each message in 
the first two bytes of the message, which are called the message header. 

9 - 8 Read mode. The read mode is defined as follows: 

00 = (NP _READMODE_BYTE) (OxOOOO) Byte-read mode: Read the pipe as a byte 
stream. 

01 = (NP _READMODE_MESSAGE) (Ox0100) Message-read mode: Read the pipe as a 
message stream. 

2-238 CP Programming Reference 



DosQueryNPHState 
Query Named Pipe Handle State 

7-0 Instance count: When the first instance of a named pipe is created, this field 
specifies how many instances (including the first instance) can be created. Possible 
values are: 

Returns 
Return Code. 

1 < value < 255 

-1 

0 

Definition 

This is the only instance permitted (the pipe is unique). 

The number of instances is limited to the value specified. 

(NP _UNLIMITED_INSTANCES) (OxOOFF) The number of 
instances is unlimited. 

Reserved value. 

DosQueryNPHState returns the following values: 

0 NO_ERROR 
230 ERROR_BAD_PIPE 
233 ERROR_PIPE_NOT _CONNECTED 

Remarks 
DosQueryNPHState returns the following information about a pipe handle and the attributes of the 
pipe: 

• The end of the pipe that the handle is for (server or client end) 

• The pipe type (byte pipe or message pipe) 

• The instance count 

• The blocking mode (blocking or nonblocking) 

• The read mode (byte-read mode or message-read mode). 

The values for the pipe type and instance count cannot be changed, so they are always the same as 
those that were specified when the pipe was created with DosCreateNPipe. The informatjon returned 
for blocking mode and read mode, however, can come from different sources: 

• If the handle is for the server end of the pipe, then the blocking mode and the read mode were 
set with DosCreateNPipe, but may have been reset with DosSetNPHState. 

• If the handle is for the client end of the pipe, then the blocking mode and the read mode were set 
to "blocking" and "byte-read" by the system when the client issued DosOpen. However, they 
may have been reset with DosSetNPHState. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNPHState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 

Chapter 2. Control Program Functions 2..:239 



DosQueryNPHState -

Query Named Pipe Handle State 

• DosRead 
• DosResetBuffer 
• DosWrite 

Example Code 
This example returns information relating to the nature of a named pipe. Assume that a previous call 

to DosOpen or DosCreateNPipe provided the named pipe handle that is contained in Handle. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

HP I PE 
ULONG 
APIRET 

Handle; 
PipeHandleState; 
re; 

/* Pipe handle */ 
/* Pipe-handle state */ 
/* Return code */ 

re= DosQueryNPHState(Handle, &PipeHandleState); 

if (re != e) 
{ 

/* On successful return, the variable */ 
/* PipeHandleState will contain */ 
/* information that describes the */ 
/* nature of the named pipe */ 

printf("DosQueryNPHState error: return code= %ld 11
, re); 

return; 
} 

2-240 CP Programming Reference 



DosQueryNPipelnfo -
Query Named Pipe Information 

#define INCL_DOSNMPIPES 

APIRET DosQueryNPlpelnfo (HPIPE hplpeHandle, ULONG ullnfoLevel, PVOID plnfoBuf, 
ULONG ullnfoBufSlze) 

DosQueryNPipelnfo returns information about a named pipe. 

Parameters 
hpipeHandle (HPIPE) - input 

The named-pipe handle to query. (The server handle is returned by DosCreateNPipe; the client 
handle is returned by DosOpen). 

ullnfoLevel (ULONG) - input 

Level of the required pipe information. Only levels 1 and 2 are supported. 

plnfoBuf (PVOID) - output 

A pointer to the storage area in which the requested level of named-pipe information is returned. 

• When lnfoLeve/ is equal to 1, information about the pipe itself is returned in the following 
format: 

outbufslze (USHORT) 
The actual size of the buffer for outbound data. 

lnbufslze (USHORT) 
The actual size of the buffer for inbound data. 

maxnumlnstances (UCHAR) 
The maximum number of pipe instances. 

numlnstances (UCHAR) 
The current number of pipe instances. 

namelength (UCHAR) 
The length of the pipe name. 

pipename (CHAR) 
The name of the pipe (including \\ComputerName if the pipe is on a remote system). 

• When lnfoLeve/ is equal to 2, the buffer will contain a unique 2-byte identifier of the client. 

ullnfoBufSlze (ULONG) - input 

The length, in bytes, of lnfoBuf. 

Returns 
Return Code. 

DosQueryNPipelnfo returns the following values: 

0 NO_ERROR 
111 ERROR_ BUFFER_ OVERFLOW 
124 ERROR_INVALID_LEVEL 
230 ERROR_BAD_PIPE 

Chapter 2. Control Program Functions 2-241 



DosQueryNPipelnfo -
Query Named Pipe Information 

Remarks 
DosQueryNPipelnfo returns all of the level-1 or level-2 information about a named pipe that will fit in 
the lnfoBuf storage area. 

If the length of the pipe name is greater than 255 bytes, then a length of 0 is returned in the 
namelength field. However, the full ASCllZ name is still returned in the pipename field. 

If there is more information than will fit in lnfoBuf, ERROR_BUFFER_OVERFLOW is returned. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHSta1e 
• DosQueryNPipeSemState 
• DosSetNPHState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 

2-242 CP Programming Reference 



Example Code 

DosQueryNPipelnfo -
Query Named Pipe Information 

This example returns information relating to the nature and current state of a named pipe. Assume 
that a previous call to DosOpen or DosCreateNPipe provided the named pipe handle that is contained 
in Handle. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

HPIPE Handle; 
ULONG Infolevel; 
PIPEINFO InfoBuf; 
ULONG InfoBufSize; 
APIRET re; 

Infolevel = 1; 

/* Pipe handle */ 
/* Pipe data required */ 
/* Pipe infonnation data structure */ 
/* Pipe data-buffer size */ 
/* Return code */ 

/* Ask for standard level of pipe */ 
/* i nfonnat ion *I 

InfoBufSize = sizeof(PIPEINFO); 
/* Length of pipe infonnation data */ 
/* structure *I 

re= DosQueryNPipeinfo(Handle, InfoLevel, &InfoBuf, InfoBufSize); 
/* On successful return, the pipe */ 
/* infonnation data structure contains */ 
/* a set of information describing the */ 
/* nature and the current state of the */ 
/* named pipe */ 

if (re!= e) 
{ 

printf( 11 DosQueryNPipeinfo error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-243 



DosQueryNPipeSemState 
Query Named Pipe Operations 

#define INCL_DOSNMPIPES 

APIRET DosQueryNPlpeSemState (HSEM hsemSemHandle, PPIPESEMSTATE pplnfoBuf, 

ULONG ullnfoBufLen) 

DosQueryNPipeSemState returns information about local named pipes that are attached to a 

semaphore. 

Parameters 
hsemSemHandle (HSEM) - input 

The handle of a shared event or muxwait semaphore that was previously attached to one or 

more named pipes with DosSetNPipeSem. 

pplnfoBuf (PPIPESEMST ATE) - output 

A pointer to a buffer containing a record for each named pipe that is attached to the semaphore. 

Each record contains the following fields: 

fStatus (BYTE) 
A coded value that indicates the status of the named pipe: 

Value 

0 

1 

2 

3. 

Definition 

(NPSS_EOI) End of information buffer. No more information records follow, and 

subsequent fields in this information record have no defined value. 

(NPSS_RDATA) Read data is available. 

(NPSS_WSPACE) Write space is available. 

(NPSS_CLOSE) The pipe is closed. 

fflag (BYTE) 
A bit field that indicates additional information about the state of the named pipe: 

Bit Description 

7 -1 Reserved 

0 (NPSS_WAIT) If set, a thread is waiting at the other end of the pipe. 

usKey (USHORT) 
The value specified for KeyHandle when DosSetNPipeSem was issued. 

usAvall (USHORT) 
If fStatus has a value of 1, this field contains the number of bytes of data that are available to 

read from the pipe. If fStatus has a value of 2, this field contains the number of bytes of write 

space that are available in the pipe. 

ullnfoBufLen (ULONG) - input 

The size, in bytes, of lnfoBuf. 

Returns 
Return Code. 

DosQueryNPipeSemState returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
111 ERROR_BUFFER_OVERFLOW 

2-244 CP Programming Reference 



Remarks 

DosQueryNPipeSemState 
Query Named Pipe Operations 

DosQueryNPipeSemState returns information about the status of local named pipes that are attached 
to a shared event or multiple-wait (muxwait) semaphore. (Event semaphores are attached to local 
named pipes by calling DosSetNPipeSem.) 

A record is returned for each local named pipe that is attached to the specified semaphore and 
whose state is either closed or allows blocking-mode input and output to be done. However, there is 
no guarantee that the records in the buffer refer only to named pipes that were opened by the 
process making this call. If the same semaphore has been attached to different named pipes by 
multiple processes, information about named pipes that are not accessible to the caller can be 
returned. For this reason, communicating processes should have a convention for key values to help 
identify the named pipes of interest. (A key value is specified when DosSetNPipeSem is called to 
attach the semaphore to a named pipe.) 

If a process wants data in the buffer to refer only to its own named pipes, it must use a private event 
semaphore. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosSetNPHState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 

Chapter 2. Control Program Functions 2-245 



DosQueryNPipeSemState -
Query Named Pipe Operations 

Example Code 
This example returns information about all named pipes in blocking mode on the local computer that 
are associated with a shared event semaphore. The semaphore handle used in the call to 
DosQueryNPipeSemState was previously associated with the named pipes through the use of 
DosSetNPipeSem. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

HSEM SemHandle; 
UCHAR InfoBuf[200]; 

ULONG InfoBuflen; 
APIRET re; 

/* Semaphore handle */ 
/* Buffer that will contain an array */ 
/* of Named Pipe semaphore state */ 
/* information block structures */ 
/* Length of InfoBuf */ 
/* Return code */ 

InfoBufLen = 200; /* Total buffer length */ 

re = DosQueryNPipeSemState(SemHandle, (PVOID) &InfoBuf, 

if (re != 0) 
{ 

InfoBuflen); 
/* On successful return, the buffer will */ 
/* contain an array of named pipe */ 
/* semaphore state information block */ 
/* structures that contain information */ 
/* concerning the states of the various */ 
/* named pipes that have been associated */ 
/* with the specified system semaphore */ 

printf( 11 DosQueryNPipeSemState error: return code= %ld 11 ,rc); 
return; 

} 

2-246 CP Programming Reference 



DosQueryPathlnfo 
Query Path Information 

#define INCL_DOSFILEMGR 

APIRET DosQueryPathlnfo (PSZ pszPathName, ULONG ulPathlnfoLevel, PVOID pPathlnfoBuf, ULONG ulPathlnfoBufSlze) 

DosQueryPathlnfo gets file information for a file or subdirectory. 

Parameters 
pszPathName (PSZ) - input 

Address of the ASCllZ full path name of the file or subdirectory. Global file-name characters can be used in the name only for level 5 file information. 
DosQuerySyslnfo is called by an application during initialization to determine the maximum path length allowed by the operating system. 

ulPathlnfoLevel (ULONG) - input 

The level of path information required. A value of 1, 2, 3, or 5 can be specified, as follows: 
Value 

1 

Descriotion 

(FIL_STANDARD) Level 1 file information 
2 

3 

5 

(FIL_ QUERYEASIZE) Level 2 file information 
(FIL_QUERYEASFROMLIST) Level 3 file information 
(FIL_ QUERYFULLNAME) Level 5 file information 

Level 4 is reserved. 

The structures described in PathlnfoBuf indicate the information returned for each of these levels. 

pPathlnfoBuf (PVOID) - output 

Address of the storage area containing the requested level of path information. Path information, where applicable, is based on the most recent DosClose, DosResetBuffer, DosSetFilelnfo, or DosSetPathlnfo. 

Level 1 Fiie Information 
PathlnfoBuf contains the FILESTATUS3 data structure, in which path information is returned. 

Level 2 Fiie Information 
PathlnfoBuf contains the FILESTATUS4 data structure. This is similar to the Level 1 structure, with the addition of the cblist field after the attrFile field. 
The cblist field is an unsigned doubleword. On output, this field contains the size, in bytes, of the file's entire extended attribute (EA) set on disk. You can use this value to calculate the size of the buffer required to hold the EA information returned when a value of 3 is specified for PathlnfoLeve/. The buffer size is less than or equal to twice the size of the file's entire EA set on disk,. 

Level 3 Fiie Information 
This is a subset of the EA information of the file. 
On input, PathlnfoBuf contains an EAOP2 data structure. fpGEA2List points to a GEA2 that defines the attribute names whose values are returned. The GEA2 data structures must be aligned on a doubleword boundary. Each oNextEntryOffset field must contain the number of bytes from the beginning of the current entry to the beginning of the next entry in the GEA2 list. The oNextEntryOffset field in the last entry of the GEA2 list must be zero. fpFEA2List points to a data area where the relevant FEA2 list is returned. The length field of this FEA2 list is valid, giving the size of the FEA2 list buffer. oError is ignored. 

Chapter 2. Control Program Functions 2-247 



DosQueryPathlnfo 
Query Path Information 

On output, PathlnfoBuf is unchanged. If an error occurs, oError points to the GEA2 entry that 

caused the error. The buffer pointed to by fpFEA2List is filled in with the returned 

information. If the buffer that fpFEA2List points to is not large enough to hold the returned 

information (the return code is ERROR_BUFFER_OVERFLOW), cblist is still valid, assuming 

there is at least enough space for it. Its value is the size, in bytes, of the file's entire EA set 

on disk, even though only a subset of attributes was requested. The size of the buffer 

required to hold the EA information is less than or equal to twice the size of the file's entire 

EA set on disk. 

Level 5 File Information 

Level 5 returns the fully qualified ASCllZ name of PathName in PathlnfoBuf. PathName may 

contain global file-name characters. 

ulPathlnfoButSlze (ULONG) - input 

The length, in bytes, of PathlnfoBuf. 

Returns 
Return Code. 

DosQueryPathlnfo returns the following values: 

0 NO_ERROR 

3 ERROR_PATH_NOT_FOUND 

32 ERROR_ SHARING_ VIOLATION 

111 FPROR_BUFFER_OVERFLOW 

124 ERROR_INVALID_LEVEL 

206 ERROR_FILENAME_EXCED _RANGE 

254 ERROR_INVALID_EA_NAME 

255 ERROR_EA_LIST _INCONSISTENT 

Remarks 
For DosQueryPathlnfo to return information contained in any of the file information levels, the file 

object must be opened for read access, with a deny-write sharing mode specified for access by other 

processes. Thus, if the file object is already accessed by another process that holds conflicting 

sharing and access rights, a call to DosQueryPathlnfo fails. 

Related Functions 
• DosClose 
• DosCreateDir 
• DosEnumAttribute 

• DosOpen 
• DosQueryFilelnfo 

• DosResetBuffer 

• DosSetFilelnfo 
• DosSetPathlnfo 

Example Code 
This example illustrates how DosQueryPathlnfo can be used to obtain information about a directory. 

DosQueryPathlnfo is similar to DosQueryFilelnfo. DosQueryPathlnfo accepts a path name as an 

input parameter. DosQueryFilelnfo accepts a file handle of an open file as an input parameter. Both 

functions return the same classes of file information. An important difference between them is that 

DosQueryPathlnfo can be used to obtain information about files and directories, while 

DosQueryFilelnfo can only be used to obtain information about open files. 

This example obtains the Level 1 information set for a specified directory. The Level 1 information 

set for the directory includes the dates and times of creation, last access and last writing. It also 

includes information about the size of the directory and the directory's standard attributes. 

2-248 CP Programming Reference 



DosQueryPathlnfo -
Query Path Information 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 

ULONG 
FILESTATUS3 
UL ONG 
APIRET 

PathName[60]; /*File or directory path name 
string */ 

Pathlnfolevel; /*Data required*/ 
PathlnfoBuf; /* File info buffer */ 
PathlnfoBufSize; /* Data buffer size */ 
re; /* Return code */ 

strcpy(PathName, "D: \\TOOLS\ \UTIL \ \DIRP); 

PathlnfoLevel = 1; 

/* Name of the specified directory */ 

/* Indicate that Level 1 information */ 
/* i s des i red *I 

PathlnfoBufSize = sizeof(FILESTATUS3); 
/* Size of the buffer that will */ 
/* receive the Level 1 information */ 

re= DosQueryPathlnfo(PathName, PathlnfoLevel, &PathlnfoBuf, 

if (re l= 0) 
{ 

PathlnfoBufSize); 
/* On successful return, the Level 1 */ 
/* directory information is in the */ 
/* PathlnfoBuf buffer */ 

printf("DosQueryPathlnfo error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-249 



DosQueryProcAddr -
Return the Address of the Specified Procedure within a 

Dynamic Link Module 

#define INCL_DOSMODULEMGR 

APIRET DosQueryProcAddr (HMODULE hmodModHandle, ULONG ulOrdlnal, 

PSZ pszProcName, PFN pProcAddr) 

DosQueryProcAddr returns the address of the specified procedure within a dynamic link module. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the dynamic link module that contains the procedure. 

ulOrdlnal (ULONG) - input 

The ordinal number of the procedure whose address is desired. If the ordinal number is 

non-zero, ProcName is ignored. 

pszProcName (PSZ) - input 

The address of an ASCllZ name string that contains the procedure name that is being 

referenced. 

Calls to DosQueryProcAddr for entries within the DOSCALLS module are supported for ordinal 

references only. References to the DOSCALLS module by name strings are not supported, and 

will return an error. Dynamic link ordinal numbers for DOSCALLS routines are resolved by 

linking with 052386.LIB. 

pProcAddr (PFN) - output 

The address of a doubleword where the procedure address is returned. 

Returns 
Return Code. 

DosQueryProcAddr returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
123 ERROR_INVALID_NAME 
65079 ERROR_ENTRY_IS_CALLGATE 

Remarks 
DosQueryProcAddr returns the address of the specified procedure within a dynamic link module. 

If you receive return code ERROR_INVALID_HANDLE, issue OosloadModule and repeatthis call. 

If you issue DosQueryProcAddr to obtain the address of an entry point that may only be accessed via 

a call gate, you receive the return code ERROR_ENTRY_IS_CALLGATE. 

2-250 CP Programming Reference 



DosQueryProcAddr -
Return the Address of the Specified Procedure within a 

Dynamic Link Module 

Related Functions 
• DosFreeModule 
• DosloadModule 
• DosQueryModuleName 
• DosQueryProcType 

Example Code 
This example obtains the address of a specified procedure within a dynamic link module. Assume 
that the appropriate module handle has been placed into ModuleHandle already. The example 
specifies the procedure by name rather than by ordinal number. 

#define INCL_DOSMODULEMGR /* Module Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HMODULE 
ULONG 
UC HAR 
PFN 
APIRET 

ModuleHandle; 
Ordinal; 
ProcName[40]; 
ProcAddress; 
re; 

/* Module handle */ 
/* Ordinal number of procedure */ 
/* Procedure name string */ 
/* Procedure address (returned) */ 
/* Return code */ 

strcpy(ProcName, 11 SearchProc2"); 

Ordinal = 0; 

/* Specify the name of the procedure */ 

/* The zero value indicates that the */ 
/* procedure name string has been */ 
/* provided */ 

re= DosQueryProcAddr(ModuleHandle, Ordinal, ProcName, 

if (re != a) 
{ 

&ProcAddress); 
/* On successful return, the */ 
/* ProcAddress variable contains */ 
/* the address of the procedure */ 
/* within the module */ 

printf("DosQueryProcAddr error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-251 



DosQueryProcType 
Return Procedure Type within a Dynamic Link Module 

#define INCL_DOSMODULEMGR 

APIRET DosQueryProcType (HMODULE hmodModHandle, ULONG ulOrdlnal, 

PSZ pszProcName, PULONG pProcType) 

DosQueryProcType returns the type of the specified procedure within a dynamic link module. The 

type returned indicates whether the specified procedure is a 16-bit or 32-bit callable procedure. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the dynamic link module that contains the procedure. 

ulOrdlnal (ULONG) - input 

The ordinal number of the procedure whose type is desired. If the ordinal number is non-zero, 

ProcName is ignored. 

pszProcName (PSZ) - input 

The address of an ASCllZ name string that contains the procedure name that is being 

referenced. 

Calls to DosQueryProcType for entries within the DOSCALLS module are supported for ordinal 

references only. References to the DOSCALLS module by name strings are not supported, and 

will return an error. Dynamic link ordinal numbers for DOSCALLS routines are resolved by 

linking with 082386.LIB. 

pProcType (PULONG) - output 

The address of a doubleword where the procedure type is returned. The value returned in this 

field is one of the following: 

Value 

0 

1 

Returns 

Definition 

(PT_ 16BIT): Procedure is 16-bit. 

(PT _32BIT): Procedure is 32-bit. 

Return Code. 

DosQueryProcType returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
123 ERROR_INVALID_NAME 
182 ERROR_INVALID_ORDINAL 

Remarks 
DosQueryProcType returns the type of the specified procedure within a dynamic link module. 

The type returned indicates whether the specified procedure is a 16-bit or 32-bit callable procedure. 

If return code ERROR_INVALID_HANDLE is received, issue DosloadModule and then issue 

DosQueryProcType again. 

2-252 CP Programming Reference 



DosQueryProcType -
Return Procedure Type within a Dynamic Link Module 

Related Functions 
• DosFreeModule 
• DosloadModule 
• DosQueryModuleName 
• DosQueryProcAddr 

Example Code 
This example obtains the type of a procedure that resides within a specified dynamic link module. 
Assume that the appropriate module handle has been placed into ModuleHandle already. The 
example specifies the procedure by name rather than by ordinal number. 

#define INCL_DOSMODULEMGR /* Module Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HMODULE 
UL ONG 
UCHAR 
ULONG 
APIRET 

ModuleHandle; 
Ordinal; 
ProcName[40]; 
ProcType; 
re; 

/* Module handle */ 
/* Ordinal number of procedure */ 
/* Procedure name string */ 
/* Procedure type (returned) */ 
/* Return code */ 

strcpy(ProcName, 11 SearchProc2 11
); 

Ordinal = 0; 

/* Specify the name of the procedure */ 

/* The zero value indicates that the */ 
/* procedure name string has been */ 
/* provided *I 

re= DosQueryProcType(ModuleHandle, Ordinal, ProcName, 

if (re ! = e) 
{ 

&ProcType); 
/* On successful return, the ProcType */ 
/* variable will contain a value */ 
/* indicating whether the Sf:l~Cified */ 
/* procedure is a 16-bit procedure */ 
/* or a 32-bit procedure */ 

printf( 11 DosQueryProcType error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-253 



DosQueryQueue 
Query Queue 

#define INCL_DOSQUEUES 

APIRET DosQueryQueue (HQUEUE QueueHandle, PULONG pNumberElements) 

DosQueryQueue queries the number of elements in a queue. 

Parameters 
QueueHandle (HQUEUE) - input 

The handle of the queue to be queried. 

pNumberElements (PULONG) - output 

A pointer to the number of elements in the queue. 

Returns 
Return Code. 

DosQueryQueue returns the following values: 

0 NO_ERROR 
337 ERROR_ QUE_INVALID _HANDLE 

Remarks 
DosQueryQueue returns the number of elements that are currently in a queue. This function can be 
used by the server process and its threads, as well as by any client processes that have gained 
access to the queue by issuing DosOpenQueue. 

If the server process closes the queue before this request is made, ERROR_QUE_INVALID_HANDLE 
is returned. 

Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosOpenQueue 
• OosPeekQueue 
• DosPurgeQueue 
• DosReadQueue 
• DosWriteQueue 

2-254 CP Programming Reference 



Example Code 

DosQueryQueue 
Query Queue 

This example finds the number of entries in a queue. Assume that the caller has placed the handle 

of the queue into QueueHandle already. 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

HQUEUE 
ULONG 
APIRET 

QueueHandle; 
NumberElements; 
re; 

/* Queue handle */ 
/* Size of the queue */ 
/* Return code */ 

re= DosQueryQueue(QueueHandle, &NumberElements); 

if (re != 0) 
{ 

/* On succesful return, the variable */ 
/* NumberElements contains the */ 
/* number of entries currently */ 
/* in the queue *I 

printf("DosQueryQueue error: return code= %1d", re); 
return; 

} 

Chapter 2. Control Program Functions 2-255 



DosQueryResourceSize -
Return the size of the Specified Resource Object 

#define INCL DOSMODULEMGR 

APIRET DosQueryResourceSlze (HMODULE hmodModHandle, ULONG ulTypelD, 
ULONG ulNamelD, PULONG pSlze) 

DosQueryResourceSize returns the size of the specified resource object. 

Parameters 
hmodModHandle (HMODULE) - input 

The handle of the module that has the required resource. A value of zero means to get the size 
from the current process. A value other than zero is a module handle that was returned by 
DosLoadModule. 

ulTypelD (ULONG) - input 

The type identifier of the resource. This field can have one of the following values: 

Value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Definition 

(RT _POINTER): Mouse pointer shape 

(RT _BITMAP): Bit map 

(RT _MENU): Menu template 

(RT _DIALOG): Dialog template 

(RT _STRING): String tables 

(RT _FONTDIR): Font directory 

(RT _FONT): Font 

(RT _ACCEL TABLE): Accelerator tables 

(RT_RCDATA): Binary data 

(RT _MESSAGE): Error message tables 

(RT _DLGINCLUDE): Dialog include file name 

(RT_ VKEYTBL): Key to vkey tables 

(RT _KEYTBL): Key to UGL tables 

(RT_CHARTBL): Glyph to character tables 

(RT_DISPLAYINFO): Screen display information 

(RT _FKASHORT): Function key area short form 

(RT _FKALONG): Function key area long form 

(RT _HELPTABLE): Help table for Help manager 

(RT _HELPSUBTABLE): Help subtable for Help manager 

(RT _FDDIR): DBCS unique/font driver directory 

21 (RT _FD): DBCS unique/font driver 

ulNamelD (ULONG) - input 

The name identifier of the resource. 

pSlze (PULONG) - output 

The address of a doubleword in which the size, in bytes, of the resource is returned. 

2-256 CP Programming Reference 



DosQueryResourceSize 
Return the size of the Specified Resource Object 

Returns 
Return Code. 

DosQueryResourceSize returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 

Remarks 
DosQueryResourceSize returns the size of the specified resource object. 

Resource objects are read-only data objects that can be accessed dynamically at run time. The 

access key is two numbers. The first number is a type ID; the second, a name ID. These are similar 

to the file-extension and file-name portions of a file name. 

Resource objects are placed into an executable file by the Resource Compiler (RC.EXE). 

This function obtains the size of resources loaded from 16-bit executable files or dynamic link 

libraries (DLLs), since the size is not explicitly stored in most resources. 

Related Functions 
• DosFreeResource 
• DosGetResource 
• DosloadModule 

Chapter 2. Control Program Functions 2-257 



DosQueryResourceSize 
Return the size of the Specified Resource Object 

Example Code 
This example obtains the size of a specified resource object that resides within a dynamic link 
module. Assume that the handle of the module that contains the desired resource has been placed 
into ModHandle already. Assume that the appropriate resource type identifier has been placed into 
Type/D already, and that the appropriate resource name identifier has been placed into Name/D 
already. The two identifiers are derived from the development process that created the module (and 
its contained resources). 

#define INCL_DOSRESOURCES /* Resource types */ 
#include <os2.h> 
#include <stdio.h> 

HMODULE 

ULONG 
ULONG 
ULONG 
APIRET 

ModHandle; 

Type ID; 
Name ID; 
Size; 
re; 

/* Handle of the module that has the 
required resource */ 

/* Resource type identifier */ 
/* Resource name identifier */ 
/* Size of the resource (returned) */ 
/* Return code */ 

re= DosQueryResourceSize(ModHandle, TypeID, NameID, &Size); 
/* On successful return, the Size */ 

if (re != e) 
{ 

/* variable contains the size of */ 
/* specified resource (in bytes) */ 

printf("DosQueryResourceSize error: return code= %ld", re); 
return; 

} 

2-258 CP Programming Reference 



DosQuerySyslnfo -

Return Values of Static System Variables 

#define INCL_DOSFILEMGR 

APIRET DosQuerySyslnfo (ULONG ulStartlndex, ULONG ullastlndex, PVOID pDataBul, 
ULONG ulDataBuflen) 

DosQuerySyslnfo returns values of static system variables. 

Parameters 
ulStartlndex (ULONG) - input 

Ordinal of the first system variable to return. 

ullastlndex (ULONG) - input 

Ordinal of the last system variable to return. 

pDataBul (PVOID) - output 

Address of the data buffer where the system returns the variable values. 

ulDataBulLen (ULONG) - input 

Length, in bytes, of the data buffer. 

Returns 
Return Code. 

DosQuerySyslnfo returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
111 ERROR_BUFFER_OVERFLOW 

Remarks 
DosQuerySyslnfo returns a single system variable or a range of system variables to a user-allocated 

buffer. To request a single system variable, set Startlndex equal to Lastlndex. To request a range of 

system variables, set Startlndex less than Lastlndex. 

Each system variable is a doubleword value. The following list gives the ordinal index, name, and 

description of the system variables. 

1. QSV_MAX_PATH_LENGTH: Maximum length, in bytes, of a path name. 

2. QSV_MAX_TEXT_SESSIONS: Maximum number of text sessions. 

3. QSV _MAX_PM_SESSIONS: Maximum number of PM sessions. 

4. QSV_MAX_VDM_SESSIONS: Maximum number of DOS sessions. 

5. QSV _BOOT _DRIVE: Drive from which the system was started (1 means drive A, 2 means drive 

B, and so on). 

6. QSV_DYN_PRl_VARIATION: Dynamic priority variation flag (0 means absolute priority, 1 means 

dynamic priority). 

7. QSV_MAX_WAIT: Maximum wait in seconds. 

8. QSV _MIN_SLICE: Minimum time slice in milliseconds. 

9. QSV _MAX_SLICE: Maximum time slice in milliseconds. 

10. QSV_PAGE_SIZE: Memory page size in bytes. This value is 4096 for the 80386 processor. 

Chapter 2. Control Program Functions 2-259 



DosQuerySyslnfo 
Return Values of Static System Variables 

11. QSV _ VERSION_MAJOR: Major version number. 

12. QSV_VERSION_MINOR: Minor version number. 

13. QSV_VERSION_REVISION: Revision letter. 

14. QSV_MS_COUNT: Value of a 32-bit, free-running millisecond counter. This value is zero when 
the system is started. 

15. QSV_TIME_LOW: Low-order 32 bits of the time in seconds since January 1, 1970 at 0:00:00. 

16. QSV_TIME_HIGH: High-order 32 bits of the time in seconds since January 1, 1970 at 0:00:00. 

17. QSV_TOTPHYSMEM: Total number of pages of physical memory in the system. One page is 
4KB. 

18. QSV_TOTRESMEM: Total number of pages of resident memory in the system. 

19. QSV_TOTAVAILMEM: Maximum number of pages of memory that can be allocated by all 
processes in the system. This number is advisory and is not guaranteed, since system 
conditions change constantly. 

20. QSV _MAXPRMEM: Maximum number of bytes of memory that this process can allocate in its 
private arena. This number is advisory and is not guaranteed, since system conditions change 
constantly. 

21. QSV _MAXSHMEM: Maximum number of bytes of memory that a process can allocate in the 
shared arena. This number is advisory and is not guaranteed, since system conditions change 
constantly. 

22. QSV_TIMER_INTERVAL: Timer interval in tenths of a millisecond. 

23. QSV_MAX_COMP_LENGTH: Maximum length, in bytes, of one component in a path name. 

An application can specify file objects managed by an installable file system that supports long file 
names. Because some installable file systems support longer names than others, the application 
should issue DosQuerySyslnfo upon initialization. 

DosQuerySyslnfo returns the maximum path length (QSV_MAX_PATH_LENGTH) supported by the 
installed file system. The path length includes the drive specifier (d:), the leading backslash ( \ ), 
and the trailing null character. The value returned by DosQuerySyslnfo can be used to allocate 
buffers for path names returned by other functions, for example, DosFindFirst and DosFindNext. 

Related Functions. 
• DosCreateDir 
• DosFindFirst 
• DosFindNext 
• DosOpen 
• DosQueryCurrentDir 
• DosQueryFSlnfo 
• DosQueryPathlnfo 
• DosSearchPath 
• DosSetCurrentDir 
• DosSetPathlnfo 
• DosSetFSlnfo 

2-260 CP Programming Reference 



Example Code 

DosQuerySyslnfo -
Return Values of Static System Variables 

This example obtains the values of three static system variables. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG Startlndex; 
ULONG Lastlndex; 
UCHAR DataBuf[50]; 
ULONG DataBuflen; 
APIRET re; 

Startlndex = 2; 
Lastlndex = 4; 

DataBuflen = 50; 

/* Ordinal of 1st variable to return */ 
/* Ordinal of last variable to return */ 
/* System information (returned) */ 
/* Data buffer size */ 
/* Return code */ 

/* In this example we will ask for the */ 
/* maximum number of Text, PM and */ 
/* DOS sessions on the local system */ 

/* Size of the supplied data buffer*/ 

re = DosQuerySyslnfo(Startlndex, Lastlndex, DataBuf, 

if (re I= 0) 
{ 

DataBuflen); 
/* On successful return, the three */ 
/* requested doubleword values will */ 
/* be contained within the supplied */ 
/* data buffer *I 

printf("DosQuerySysinfo error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-261 



DosQueryVerify -
Return the State of the Verification Flag 

#define INCL_DOSFILEMGR 

APIRET DosQueryVerlfy (PBOOL32 ppVerifySetting) 

DosQueryVerify determines if write verification is enabled. 

Parameters 
ppVerlfySettlng (PBOOL32) - output 

Address of the verify mode for the process. 

Definition Value 
0 
1 

Verify mode is not active. 
Verify mode is active. 

Returns 
Return Code. 

DosQueryVerify returns the following values: 

0 NO_ERROR 

Remarks 
When the verify mode is active, the operating system verifies that data written to the disk is recorded 
correctly, even though disk recording errors are rare. 

Related Functions 
• DosSetVerify 

Example Code 
This example determines if write verification is enabled. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

BOOL32 

APIRET 

VerifySetting; /* Pointer to current verify mode 
{returned) */ 

re; /* Return code */ 

re= DosQueryVerify{&VerifySetting); 

if {re != 0) 
{ 

/* On return, the variable */ 
/* VerifySetting is set to a binary */ 
/* value indicating whether or not */ 
/* write verification is enabled */ 

printf{ 11 DosQueryVerify error: return code= %ld 11
, re); 

return; 
} 

2-262 CP Programming Reference 



#define INCL DOSEXCEPTIONS 

DosRaiseException 
Raise Exception 

APIRET DosRalseExceptlon (PEXCEPTIONREPORTRECORD pExcepllonReportRecord) 

DosRaiseException raises an exception for the current thread. 

Parameters 
pExceptlonReportRecord (PEXCEPTIONREPORTRECORD) - input 

A pointer to an exception report record that contains exception-specific information needed for 
the exception to be raised. The pointer to the exception report record, as well as certain handler 
flags in the structure, are supplied by the system. 

Returns 
Return Code. 

DosRaiseException returns the following values: 

0 NO_ERROR 

Remarks 
DosRaiseException enables a thread to raise a synchronous exception that has been deferred from a 
must-complete section. DosRaiseException can also be used to simulate an asynchronous or 
synchronous exception. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
• DosAcknowledgeSignalException 
• DosEnterMustComplete 
• DosExitMustComplete 
• DosSendSignalException 
• DosSetExceptionHandler 
• DosSetSignalExceptionFocus 
• DosUnsetExceptionHandler 
• DosUnwindException 

Chapter 2. Control Program Functions 2-263 



DosRaiseException 
Raise Exception 

Example Code 
This example shows how a thread can raise a synchronous exception that has been deferred within a 
must-complete section. 

Assume that the variable pexcept has already been set to point to the exception record structure that 
pertains to the exception that is currently being handled. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

PEXCEPTIONREPORTRECORD pexcept; 
APIRET re; /* Return code */ 

re= DosRaiseException(pexcept); 

if (re != 0) 
{ 

} 

printf("DosRaiseException error: return code= %ld 11
, re); 

return; 

2-264 CP Programming Reference 



DosRead 
Read from a File, Pipe, or Device to a Buffer 

#define INCL_DOSFILEMGR 

APIRET DosRead (HFILE FlleHandle, PVOID pBufferArea, ULONG ulBufferlength, 
PULONG pBytesRead) 

DosRead reads the specified number of bytes from a file, pipe, or device to a buffer location. 

Parameters 
FlleHandle (HFILE) - input 

File handle obtained from DosOpen. 

pBufferArea (PVOID) - output 

Address of the buffer to receive the bytes read. 

ulBufferlength (ULONG) - input 

The length, in bytes, of BufferArea. This is the number of bytes to be read. 

pBytesRead (PULONG) - output 

Address of the variable to receive the number of bytes actually read. 

Returns 
Return Code. 

DosRead returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
6 ERROR_INVALID_HANDLE 
26 ERROR_NOT_DOS_DISK 
33 ERROR_LOCK_ VIOLATION 
109 ERROR_BROKEN_PIPE 
234 ERROR_MORE_DATA 

Remarks 
The requested number of bytes might not be read. If the value returned in BytesRead is zero, the 
process tried to read from the end of the file. 

A value of zero for Bufferlength is not considered an error. In such a case, the system treats the 
request as a null operation. 

The file pointer is moved to the desired position by reading data, writing data, or issuing 
OosSetFi lePtr. 

If you issue DosOpen with the Direct Open flag set to 1 in the OpenMode parameter, you have direct 
access to an entire disk or diskette volume, independent of the file system. You must lock the logical 
volume before accessing it, and you must unlock the logical volume when you are finished accessing 
it. Issue DosDevlOCtl for Category 8, Function O to lock the logical volume, and for Category 8, 
Function 1 to unlock the logical volume. While the logical volume is locked, no other process can 
access it. 

Named-Pipe Considerations 

A named pipe is read as one of the following: 

Chapter 2. Control Program Functions 2-265 



DosRead 
Read from a File, Pipe, or Device lo a Buffer 

• A byte pipe in byte-read mode 
• A message pipe in message-read mode 
• A message pipe in byte-read mode. 

A byte pipe must be in byte-read mode to be read; an error is returned if it is in message-read mode. 
All currently available data, up to the size requested, is returned. 

A message pipe can be read in either message-read mode or byte-read mode. When the message 
pipe is in mesRage-read mode, a read operation that is larger than the next available message 
returns only that message. BytesRead is set to indicate the size of the message returned. 

A read operation that is smaller than the next available message returns with the number of bytes 
requested and an ERROR_MORE_DATA return code. When the reading of a message is resumed 
after ERROR_MORE_DATA is returned, a read operation always blocks untiJ the next piece (or the 
rest) of the message can be transferred. DosPeekNPipe can be issued to determine how many bytes 
are left in the message. 

A message pipe in byte-read mode is read as if it were a byte stream, and DosRead skips over 
message headers. This is like reading a byte pipe in byte-read mode. 

When blocking mode is set for a named pipe, a read operation blocks until data is available. In this 
case, the read operation never returns with BytesRead equal to zero, except at the end of the file. 
When the mode is set to message-read, messages are always read in their entirety, except when the 
message is bigger than the size of the read operation. 

BytesRead can equal zero in nonblocking mode, but only when no data is available at the time of the 
read operation. 

Related Functions 
• DosOpen 
• DosSetFilePtr 
• DosWrite 

2-266 CP Programm(ng Reference 



DosRead -
Read from a File, Pipe, or Device to a Buffer 

Example Code 
This example reads a specified number of bytes from a file into a user-supplied buffer. Assume that 
a file handle for the desired file has been placed into FileHandle already. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HF ILE 
UC HAR 
ULONG 
ULONG 
APIRET 

FileHandle; 
BufferArea[256]; 
Bufferlength; 
BytesRead; 
re; 

Bufferlength = 256; 

/* File Handle */ 
/* User buffer (returned) */ 
/* Buffer length */ 
/* Bytes read (returned) */ 
/* Return code */ 

/* Size of user-supplied buffer*/ 

re= DosRead(FileHandle, BufferArea, Bufferlength, &BytesRead); 
/* On successful return, the user- */ 
/* supplied buffer contains up to */ 
/* the requested number of bytes */ 
/* from the file, and the variable */ 
/* BytesRead contains the number */ 

if (re l = 0) 
{ 

/* of bytes that were actually */ 
/* read into the buufer */ 

printf( 11 DosRead error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-267 



DosReadQueue 
Read Queue 

#define INCL_DOSQUEUES 

APIRET DosReadQueue (HQUEUE QueueHandle, PREQUESTDATA ppRequest, 
PULONG pDatalength, PPVOID ppDataAddress, 
ULONG ulElementCode, BOOL32 f32NoWalt, PBYTE pbElemPrlorlty, 

HEY SemHandle) 

DosReadQueue reads an element from a queue. 

Parameters 
QueueHandle (HQUEUE) - input 

The handle of the queue from which an element is to be removed. 

ppRequest (PREQUESTDAT A) - output 

A pointer to a two-doubleword data field that returns the following information: 

1 

2 

Definition 

The identification of the process (PIO) that added the element to the queue. 

An event code that is specified by the application. The data in this field is the 

same as the data that was furnished in the Request parameter of the 

DosWriteQueue request for the corresponding queue element. The value of this 

data is understood by both the client thread and the server thread. There is no 

special meaning to this data, and the operating system does not alter it. 

pDatalength (PULONG) - output 

A pointer to the length, in bytes, of the data that is being removed. 

ppDataAddress (PPVOID) - output 

A pointer to the element that is being removed from the queue. (This field may or may not be 

the same as the value of DataBuffer that was specified with DosWriteQueue when the element 

was added to the queue. If QUE_CONVERT_ADDRESS was specified when the queue was 

created, the addresses of any elements that are written to the queue by the 16-bit 
DosWriteQueue function are converted to 32-bit addresses.) 

ulElementCode (ULONG) - input 

An indicator that specifies whether to start at the beginning of the queue or to remove a queue 

element that was previously examined by DosPeekQueue. 

Value 

0 

non-0 

Definition 

This field is set to 0 by the application to indicate "remove the first element in the 

queue," according to the order that was specified when the queue was created 

(FIFO, LIFO, or priority). 

The field is set to non-0 (to the value that was returned by a previous 
DosPeekQueue operation) to indicate "remove the element that was examined by· 

DosPeekQueue." 

f32NoWalt (BOOL32) - input 

The action to be performed when no entries are found in the queue. 

Value 

0 

Definition 

(DCWW_WAIT) The requesting thread waits for an element to be added to the 

queue. 

2-268 CP Programming Reference 



DosReadQueue 
Read Queue 

1 (DCWW_NOWAIT) The requesting thread does not wait, and DosReadQueue 
returns with ERROR_QUE_EMPTY. 

pbElemPriority (PBYTE) - output 

The address of the element's priority value. This is the value that was specified for ElemPriority 
by DosWriteQueue when it added the element to the queue. ElemPriority is a numerical value in 
the range of Oto 15, with 15 being the highest priority. 

SemHandle (HEV) - input 

The handle of an event semaphore that is to be posted when when data is added to the queue 
and NoWait is set to 1. (This parameter is ignored if NoWait is set to O.) The event semaphore 
may be shared or private, depending on whether the queue is shared across processes. 

Note: The first time an event-semaphore handle is supplied in a DosReadQueue or 
DosPeekQueue request for which NoWait is set to 1, the handle is saved by the system. 
The same handle must be supplied in all subsequent DosReadQueue and DosPeekQueue 
requests that are issued for that queue. 

Returns 
Return Code. 

DosReadQueue returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
330 ERROR_QUE_PROC_NOT_OWNED 
333 ERROR_QUE_ELEMENT_NOT_EXIST 
337 ERROR_ QUE_INVALID _HANDLE 
342 ERROR_QUE_EMPTY 
433 ERROR_QUE_INVALID_WAIT 

Remarks 
DosReadQueue reads (removes) an element from a queue. This function can be issued only by the 
server process and its threads. 

If the NoWait parameter is set to 1, an event semaphore must be provided so that the calling thread 
can determine when an element has been placed into the queue. The semaphore is created by 
calling DosCreateEventSem, and its handle is supplied in the SemHandle parameter of 
DosReadQueue. 

The first time an event-semaphore handle is supplied in a DosReadQueue or DosPeekQueue request 
for which NoWait has been set to 1, the handle is saved by the system. The same handle must be 
supplied in all subsequent DosReadQueue and DosPeekQueue requests that are issued for the same 
queue; if a different handle is supplied, ERROR_INVALID_PARAMETER is returned. 

When a client process adds an element to the queue, the system automatically opens and posts the 
semaphore. The server can either issue DosQueryEventSem periodically to determine whether the 
semaphore has been posted, or it can issue DosWaitEventSem. DosWaitEventSem causes the 
calling thread to block until the semaphore is posted. 

After the event semaphore has been posted, the calling thread must issue DosReadQueue again to 
remove the newly added queue element. 

Chapter 2. Control Program Functions 2-269 



DosReadQueue 
Read Queue 

Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosOpenQueue 
• DosPeekQueue 
• DosPurgeQueue 
• DosQueryQueue 
• DosWriteQueue 

Example Code 
This example reads an element from the queue. Assume that the caller has placed the handle of the 
queue into QueueHandle already. Assume that the identifier of the process that owns the queue has 
been placed into OwningPID already. 

2-270 CP Programming Reference 



DosReadQueue 
Read Queue 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

HQUEUE 
REQUESTDATA 
ULONG 
PVOID 
ULONG 
BOOL32 
BYTE 
HEV 
PIO 
APIRET 

QueueHandle; 
Request; 
Datalength; 
DataAddress; 
ElementCode; 
NoWait; 
ElemPriority; 
SemHandle; 
OwningPID; 
re; 

/* Queue handle */ 
/* Request-identification data */ 
/* Length of element received */ 
/* Address of element received */ 
/* Request a particular element */ 
/* No wait if queue is empty */ 
/* Priority of element received */ 
/* Semaphore handle */ 
/* PIO of queue owner */ 
/* Return code */ 

Request.pid = OwningPID; /* Set request data block to */ 

ElementCode = 0; 

NoWait = 0; 

SemHandle = 0; 

/* indicate queue owner */ 

/* Indicate that the read should */ 
/* start .at the front of the */ 
/* queue */ 

/* Indicate that the read */ 
/* should wait if the queue is */ 
/* currently empty */ 

/* Unused since this is a call */ 
/* that waits synchronously */ 

re = DosReadQueue(QueueHandle, &Request, &Datalength, 
&DataAddress, ElementCode, NoWait, 
&ElemPriority, SemHandle); 

if (re != 0) 
{ 

/* On successful return, the */ 
/* Datalength variable contains */ 
/* the size of the element on */ 
/* the queue that is pointed to */ 
/* by the pointer within the */ 
/* DataAddress variable, the */ 
/* ElemPriority variable has */ 
/* been updated to contain the */ 
/* priority of the queue */ 
/* element pointed to by the */ 
/* DataAddress variable, and */ 
/* the Request.ulData variable */ 
/* contains any special data */ 
/* that the DosWriteQueue */ 
/* caller placed into the queue */ 

printf( 11 DosReadQueue error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-271 



DosReleaseMutexSem 
Release Mutex Semaphore 

#define INCL DOSSEMAPHORES 

APIRET DosReleaseMutexSem (HMTX hmtx) 

DosReleaseMutexSem relinquishes ownership of a mutex semaphore. 

Parameters 
hmtx (HMTX} - input 

The handle of the mutex semaphore to release. 

Returns 
Return Code. 

DosReleaseMutexSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
288 ERROR_NOT_OWNER 

Remarks 
DosReleaseMutexSem relinquishes ownership of a mutex semaphore that was requested by 
DosRequestMutexSem. 

Only the thread that owns the mutex semaphore can issue DosReleaseMutexSem. 

Related Functions 
• DosCloseMutexSem 
• DosCreateMutexSem 
• DosOpenMutexSem 
• DosQueryMutexSem 
• DosRequestMutexSem 

Example Code 
This example relinquishes ownership of a mutex semaphore. Assume that the handle of the 
semaphore has been placed into hmtx already. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HMTX hmtx; 
APIRET re; 

/* Mutex semaphore handle */ 
/* Return code */ 

re= DosReleaseMutexSem(hmtx); 

if (re ! = 0) 
{ 

} 

printf( 11 DosReleaseMutexSem error: return code= %ld 11
, re); 

return; 

2-272 CP Programming Reference 



#define INCL_DOSSEMAPHORES 

DosRequestMutexSem 
Request Mutex Semaphore 

APIRET DosRequestMutexSem (HMTX hmtx, ULONG ulTimeout) 

DosRequestMutexSem requests ownership of a mutex semaphore. 

Parameters 
hmtx (HMTX) - input 

The handle of the mutex semaphore to request. 

ulTlmeout (ULONG) - input 

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the 
thread to be blocked. 

This parameter can also have the following values: 

Definition Value 

0 (SEM_IMMEDIATE_RETURN) DosRequestMutexSem returns immediately without 
blocking the calling thread. 

-1 (SEM_INDEFINITE_WAIT) DosRequestMutexSem blocks the calling thread 
indefinitely. 

Returns 
Return Code. 

DosRequestMutexSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
95 ERROR_INTERRUPT 
103 ERROR_ TOO_MANY _SEM_REQUESTS 
105 ERROR_SEM_OWNER_DIED 
640 ERROR_ TIMEOUT 

Remarks 
DosRequestMutexSem requests ownership of a mutex semaphore. 

This function can be called by any thread in the process that created the semaphore. Threads in 
other processes can also call this function, but they must first gain access to the semaphore by 
issuing DosOpenMutexSem. 

Related Functions 
• DosCloseMutexSem 
• DosCreateMutexSem 
• DosOpenMutexSem 
• DosQueryMutexSem 
• DosReleaseMutexSem 

Chapter 2. Control Program Functions 2-273 



DosRequestMutexSem -
Request Mutex Semaphore 

Example Code 
This example requests ownership of a mutex semaphore. Assume that the handle of the semaphore 
has been placed into hmtx already. 

u/Timeout is the number of milliseconds that the calling thread will wait for ownership of the mutex 
semaphore. If the specified mutex semaphore is not released during this time interval, the calling 
thread does not receive ownership of it. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

#ifndef ERROR_TIMEOUT 
#define ERROR_TIMEOUT 640 
#define ERROR_INTERRUPT 95 

#endif 

HMTX hmtx; 
ULONG ulTimeout; 
APIRET re; 

/* Mutex semaphore handle */ 
/* Number of mi Tl i seconds to wait * / 
/* Return code */ 

ulTimeout = 60000; /* Wait for a maximum of 1 minute */ 

re= DosRequestMutexSem(hmtx, ulTimeout); 

if (re == ERROR TIMEOUT) 
{ -

} 

printf("DosRequestMutexSem call timed out"); 
return; 

if (re == ERROR INTERRUPT) 
{ -

} 

printf("DosRequestMutexSem call was interrupted"); 
return; 

if (re != 0) 
{ 

} 

printf("DosRequestMutexSem error: return code= %ld 11
, re); 

return; 

2-274 CP Programming Reference 



DosRequestVDD 
Request Virtual Device Driver Services 

#define INCL_DOSMVDM 

APIRET DosRequestVDD (HVDD VDDHandle, SGID sgidSesslonlD, ULONG ulCommand, 
ULONG ullnputBufferLen, PVOID plnputBuffer, 
ULONG ulOutputBufferLen, PVOID pOutputBuffer) 

DosRequestVDD allows a protected-mode OS/2* session to communicate with a virtual device driver 
(VDD). 

Parameters 
VDDHandle (HVDD) - input 

The handle of a virtual device driver (VDD) returned by a previous call to DosOpenVDD. 

sgldSesslonlD (SGID) - input 

The identifier of a specific DOS session, or null. 

ulCommand (ULONG) - input 

A function code that is specific to a virtual device. 

ullnputBufferLen (ULONG) - input 

The length, in bytes, of the application data in lnputBuffer. 

plnputBuffer (PVOID) - input 

The address of the command-specific information. The system sends this data to the virtual 
device driver to process the specified command. 

ulOutputBufferLen (ULONG) - input 

The length, in bytes, of OutputBuffer. 

pOutputBuffer (PVOID) - output 

The address of the buffer where the virtual device driver returns the information for the specified 
command. This information is specific to the command and the virtual device driver. 

Returns 
Return Code. 

DosRequestVDD returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
21 ERROR_NOT _READY 
644 ERROR_INVALID _CALLER 

Remarks 
The system calls every DosRequestVDD procedure registered by VDHRegisterVDD under the VDD 
name associated with the specified handle. This calling continues until a virtual device driver gives 
a return code other than VDDREQ_PASS. There is no predefined order to the calling sequence. 

Chapter 2. Control Program Functions 2-275 



DosRequestVDD -
Request Virtual Device Driver Services 

Related Functions 
• DosCloseVDD 
• DosOpenVDD 

Example Code 
This example illustrates how a protected-mode OS/2 process can communicate with a virtual device 

driver {VDD). The example shows a protected-mode process calling a hypothetical VDD with a 

request to read a string of bytes from the VDD. Assume that the handle for the VDD has been placed 

into VDDHandle already. Assume that the session identifier of the specified DOS session has been 

placed into Session/D already. 

#define INCL_DOSMVDM 
#include <os2.h> 
#include <stdio.h> 
#include <vdnm.h> 

HVDD VDDHandle; 
SGID SessionID; 
ULONG Conmand; 
ULONG InputBufferLen; 
UCHAR InputBuffer[10]; 
ULONG OutputBufferLen; 
UCHAR OutputBuffer[30]; 
APIRET re; 

/* Multiple DOS sessions values */ 

/* Handle of VDD */ 
/* Session identifier */ 
/* VDD function code */ 
/* Length of input buffer */ 
/* Conmand infonnation */ 
/* Length of output buffer */ 
/* Output data (returned) */ 
/* Return code */ 

Conmand = 3; /* Hypothetical conmand to read a string of */ 
/* control infonnation from the VDD */ 

strcpy(InputBuffer, 11 811
); 

/* Hypothetical conmand parameter to the VDD */ 

InputBufferLen = 4; 
/* Length of application data being sent to */ 
/* the VDD in the input buffer */ 

OutputBufferLen = 30; 
/* Size of the output buffer that will */ 
/* accept the returned data from the VDD */ 

re = DosRequestVDD(VDDHandle, SessionlD, Conmand, 
InputBufferLen, InputBuffer, OutputBufferLen, 
OutputBuffer); 

if (re ! = 0) 
{ 

/* On successful return, the output buffer */ 
/* contains the string of bytes that was */ 
/* read from the VDD *I 

printf("DosRequestVDD error: return code = %ld 11
, re); 

return; 
} 

2-276 CP Programming Reference 



#define INCL_DOSFILEMGR 

APIRET DosResetBuffer (HFILE FlleHandle) 

DosResetBuffer -
Reset Buffer. 

DosResetBuffer writes the buffers for the specified file to the device. 

Parameters 
FlleHandle (HFILE) - input 

The handle of the file whose buffers are to be written to the disk. If FileHandle has a value of hex 
FFFF, all of the buffers for all of the file handles of the process are written to the disk. 

Returns 
Return Code. 

DosResetBuffer returns the following values: 

0 
2 
5 
6 

Remarks 

NO_ERROR 
ERROR_FILE_NOT _FOUND 
ERROR_ACCESS_DENIED 
ERROR_INVALID _HANDLE 

When DosResetBuffer is issued for a file handle, the contents of the file's buffers are written to the 
disk, and the file's directory entry is updated as if the file had been closed; however, the file remains 
open. 

DosResetBuffer should be issued with caution. When files are on diskettes, issuing DosResetBuffer 
could have the undesirable effect of requiring the user to insert and remove a large number of 
diskettes. 

Named-Pipe Considerations 

Issuing DosResetBuffer for a named pipe results in an operation that is similar to forcing the buffer 
cache to the disk. The request blocks the calling process at one end of the pipe until all written data 
has been read at the other end. 

Related Functions 
• DosClose 
• DosOpen 
• DosWrite 

Example Code 
This example opens a file, writes some data to the file's buffer, then writes the file's system buffer. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define OPEN_FILE 0x01 
#define CREATE_FILE 0x10 
#define FILE_ARCHIVE 0x20 
#define FILE_EXISTS OPEN_FILE 
#define FILE_NOEXISTS CREATE_FILE 

Chapter 2. Control Program Functions 2-277 



DosResetBuffer 
Reset Buffer 

#define DASD_FLAG 0 
#define INHERIT 0x80 
#define WRITE_THRU 0 
#define FAIL_FLAG 0 
#define SHARE_FLAG 0x10 
#define ACCESS_FLAG 0x02 

#define FILE_NAME 11 test.dat 11 

#define FILE_SIZE 800L 
#define FILE_ATTRIBUTE FILE_ARCHIVE 
#define EABUF 0L 

HFILE FileHandle; 
ULONG Wrote; 
ULONG Action; 
PSZ FileData[100]; 
APIRET re; /* Return code */ 

Action = 2; 
strcpy(FileData, "Data .•• 11

); 

re = DosOpen(FILE_NAME, /* File path name */ 

if (re!= 0) 
{ 

&FileHandle, /* File handle */ 
&Action, /* Action taken */ 
FILE_SIZE, /* File primary allocation */ 
FILE ATTRIBUTE, /* File attribute */ 
FILE-EXISTS I FILE NOEXISTS, /* Open function type */ 
DASO-FLAG I INHERIT I /* Open mode of the file */ 
WRITE THRU I FAIL FLAG I 
SHARE=FLAG I ACCESS_FLAG, 
EABUF); /*No extended attributes*/ 

printf("DosOpen error: return code= %ld 11 ,rc); 
return; 

} 

re = DosWrite(FileHandle, 
(PVOID) FileData, 
sizeof(FileData), 
&Wrote); 

if (re I= 0) 
{ 

/* File handle */ 
/* User buffer */ 
/* Buffer length */ 
/* Bytes written */ 

printf( 11 DosWrite error: return code= %ld 11 ,rc); 
return; 

} 

re= DosResetBuffer(FileHandle); 

if (re != e) 
{ 

/* File handle */ 

printf("DosResetBuffer error: return code= %ld 11 ,rc); 
return; 

} 

2-278 CP Programming Reference 



#define INCL_DOSSEMAPHORES 

DosResetEventSem 
Reset Event Semaphore 

APIRET DosResetEventSem (HEY hev, PULONG ppulPostCt) 

DosResetEventSem resets an event semaphore. 

Parameters 
hev (HEV) - input 

The handle of the event semaphore to reset. 

ppulPostCt (PULONG) - output 

A pointer to receive the event semaphore's post count. The post count is the number of calls to 
DosPostEventSem that have been made since the last time the semaphore was in the reset 
state. 

Returns 
Return Code. 

DosResetEventSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
300 ERROR_ALREADY _RESET 

Remarks 
DosResetEventSem resets an event semaphore, causing all threads that subsequently call 
DosWaitEventSem to be blocked. It also returns the post count for the semaphore. The post count is 
the number of times that DosPostEventSem has been called since the last time the semaphore was in 
the reset state. 

This function can be cafled by any thread in the process that created the semaphore. Threads in 
other processes can also call this function, but they must first gain access to the semaphore by 
calling DosOpenEventSem. 

Related Functions 
• DosCloseEventSem 
• DosCreateEventSem 
• DosOpenEventSem 
• DosPostEventSem 
• DosQueryEventSem 
• DosWaitEventSem 

Chapter 2. Control Program Functions 2-279 



DosResetEventSem -
Reset Event Semaphore 

Example Code 
This example resets an event semaphore. Assume that the handle of the semaphore has been 
placed into hev already. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

HEV hev; /* Event semaphore handle */ 
ULONG ulPostCt; /* Post count for the event semaphore 

(returned) */ 
APIRET re; /* Return code */ 

re= DosResetEventSem(hev, &ulPostCt); 

if (re != 0) 
{ 

/* On successful return, the ulPostCt */ 
/* variable contains the number of */ 
/* previous posts that were performed */ 
/* on the event semaphore before it */ 
/* was reset by this function */ 

printf("DosResetEventSem error: return code= %ld 11
, re); 

return; 
} 

2-280 CP Programming Reference 



#define INCL_DOSPROCESS 

APIRET DosResumeThread (TIO ldThreadlD) 

DosResumeThread -
Restart a Thread 

DosResumeThread restarts a thread that was previously stopped with DosSuspendThread. 

Parameters 
ldThreadlD (TIO) - input 

Thread identifier of the resumed thread. 

Returns 
Return Code. 

DosResumeThread returns the following values: 

0 NO_ERROR 
90 ERROR_ NOT _FROZEN 
309 ERROR_INVALID_THREADID 

Remarks 
DosResumeThread restarts a thread that was previously stopped with DosSuspendThread. 

If the thread is not in a suspended state when you issue DosResumeThread for it, 
ERROR_NOT _FROZEN is returned. 

Related Functions 
• DosCreateThread 
• DosSuspendThread 

Example Code 
This example restarts a thread that was previously suspended by DosSuspendThread. Assume that 
the target thread ID has been placed into Thread/D already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

TIO ThreadID; /* Thread ID of thread to resume */ 
APIRET re; /* Return code */ 

re= DosResumeThread(ThreadlD); 

if (re I= 0) 
{ 

printf( 11 DosResumeThread error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-281 



DosScanEnv -
Search an Environment Segment for an Environment Vari

able 

#define INCL_DOSFILEMGR 

APIRET DosScanEnv (PSZ pszEnvVarName, PSZ pszResultPolnter) 

DosScanEnv searches an environment segment for an environment variable. 

Parameters 
pszEnvVarName (PSZ) - input 

Address of the name of the environment variable. Do not include a trailing equal sign(" "), 

since this is not part of the name. 

pszResultPolnter (PSZ) - output 

Address of the variable where the system returns the pointer to the environment string. 

ResultPointer points to the first character of the string that is the value of the environment 

variable, and can be passed directly to DosSearchPath. 

Returns 
Return Code. 

DosScanEnv returns the following values: 

0 NO_ERROR 
203 ERROR_ENWAR_NOT _FOUND 

Remarks 
Assume that the process' environment contains this statement: 

DPATH=c:\sysdir;c:\libdir 
I 
I 
I 
----- ResultPointer points here after the 

following call to DosScanEnv: 

DosScanEnv( 11 DPATH 11
, ResultPointer); 

ResultPointer points to the first character of the value of the environment variable. 

Related Functions 
• DosSearchPath 

2-282 CP Programming Reference 



DosScanEnv -
Search an Environment Segment for an Environment Vari

abl~ 

Example Code 
The following example scans the environment segment for the PATH variable, and prints its value. It 
then searches the path given by inserting the current directory into the value of the PATH variable for 
the file named 'cmd.exe', and prints the full file name. 

#define INCL_DOS 

#include <os2.h> 
#include <stdio.h> 

#define ENVVARNAME 
#define FILENAME 

11 PATW 
11 cmd.exe 11 

/* Environment variable name */ 
/* File for which to search */ 

main() 
{ 

} 

PSZ 

BYTE 

APIRET 

ResultPointer; 

ResultBuffer[128]; 

re; 

/* Environment scan result pointer 
(returned) */ 

/* Path search result 
(returned) */ 

/* return code */ 

/** Scan environment segment for PATH; notice the far-string pointer **/ 
/** specification (11%Fs 11

) used to print. **/ 

if(!(rc=DosScanEnv(ENVVARNAME, /*Environment variable name*/ 
ResultPointer))) /* Scan result pointer 

(returned) */ 
printf( 11 %s is %Fs\n 11

, ENVVARNAME, ResultPointer); 

/** Search current directory + PATH variable for 11 cmd.exe 11 **/ 
if(!(rc=DosSearchPath(SEARCH_CUR_DIRECTORY, /*Search control 

ENVVARNAME, 
vector */ 

/* Search path reference 
string */ 

FILENAME, 
ResultBuffer, 

/* File name string */ 
/* Search result 

(returned) */ 
sizeof(ResultBuffer)))) /* Length of search 

result */ 
printf( 11 Found desired file -- %s\n 11

, ResultBuffer); 

Chapter 2. Control Program Functions 2-283 



DosSearchPath 
Search Path 

#define INCL DOSFILEMGR 

APIRET DosSearchPath {ULONG ulControl, PSZ pszPathRef, PSZ pszFlleName, 
PBYTE pbResultBuffer, ULONG ulResultBufferLen) 

DosSearchPath finds files residing along paths. The path string may come from the process 
environment, or be supplied directly by the caller. 

Parameters 
ulControl {ULONG) - input 

A word bit vector that controls the behavior of DosSearchPath. 

Bit 

31-3 

2 

1 

0 

Descriotion 

Reserved; must be zero. 

(SEARCH_IGNORENETERRS Ox00000004) Ignore Network Errors bit. This bit 
controls whether the search will abort if it encounters a network error, or will 
continue the search with the next element. This allows you to place network paths 
in the PATH variable and be able to find executables in components of the PATH 
variable, even if the network returns an error, for example, if a server is down. If 
the Ignore Network Errors Bit is 0, DosSearchPath will end the search if it 
encounters an error from the network. If the Ignore Network Errors Bit is 1, 
DosSearchPath will continue the search if it encounters network errors. 

(SEARCH_ENVIRONMENT Ox00000002) Path Source bit. This bit determines how 
DosSearchPath interprets PathRef. 

0: PathRef points to the actual search path. The search path string may be 
anywhere in the calling process's address space. Therefore, it may be in the 
environment, but is not required. 

1 : PathRef points to the name of an environment variable in the process 
environment, and that environment variable contains the search path. 

(SEARCH_CUR_DIRECTORY Ox00000001) Implied Current bit. This bit controls 
whether the current directory is implicitly on the front of the search path. 

0: DosSearchPath only searches the current directory if it appears in the search 
path. 

1 : DosSearchPath searches the current working directory before it searches the 
directories in the search path. 

For example, Implied Current bit= 0 and path= ".\;a;b" is equivalent to Implied 
Current bit= 1 and path= "a;b". 

pszPathRef {PSZ) - input 

Address of the path. If the Path Source bit of Control is 0, PathRef is the search path that may be 
anywhere in the caller's address space. 

If the Path Source,bit of Control is 1, PathRef is the name of an environment variable that 
contains the search path. 

A search path consists of a sequence of paths separated by a semicolon (;). It is a single ASCllZ 
string. The directories are searched in the order they appear in the path. Paths that contain 
semicolons should be quoted. For example: 
11 c:&this is ; one directory path";thisisanother 

Environment variable names are simply strings that match name strings in the environment. 
The equal(=) sign is not part of the name. 

2-284 CP Programming Reference 



pszFlleName (PSZ) - input 

DosSearchPath 
Search Path 

Address of the ASCllZ file name. It may contain global file-name characters. If FileName does 

contain global file-name characters, they remain in the result path returned in ResultBuffer. This 

allows applications like CMD.EXE to pass the output directly to DosFindFirst. If there are no 

global file-name characters in Fi/eName, the resulting path returned in ResultBuffer is a fully 

qualified name, and may be passed directly to DosOpen, or any other system function. 

pbResultBuffer (PBYTE) - output 

Address of the path name of the file, if found. If FileName is found in one of the directories along 

the path, its full path name is returned in ResultBuffer (with global file-name characters from 

FileName left in place). The contents of ResultBuffer are not meaningful if DosSearchPath 

returns a non-zero return code. 

ulResultBufferLen (ULONG) - input 

The length, in bytes, of ResultBuffer. 

Returns 
Return Code. 

DosSearchPath returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID_FUNCTION 

2 ERROR_FILE_NOT _FOUND 

87 ERROR_INVALID_PARAMETER 

111 ERROR_BUFFER_ OVERFLOW 

203 ERROR_ENVVAR_NOT _FOUND 

Remarks 
PathRef always points to an ASCllZ string. Let DPATH be an environment variable in the 

environment segment of the process. 

DPATH=c:\sysdir;c:\init /* In the environment */ 

The following two code fragments are equivalent: 

DosScanEnv( 11 DPATH 11
, &PathRef); 

DosSearchPath(0, /* Path Source Bit = 0 */ 
PathRef, 11myprog.ini 11

, &ResultBuffer, ResultBufLen); 

DosSearchPath(2, /* Path Source Bit = 1 */ 
11 DPATH 11

, 
11myprog.ini 11

, &ResultBuffer, ResultBufLen); 

They both use the search path stored as DPATH in the environment segment. In the first case, the 

application issues DosScanEnv to find the variable; in the second case, DosSearchPath issues 

DosScanEnv for the application. 

DosSearchPath does not check for consistency or formatting of the names. It issues DosFindFirst on 

a series of names that it builds from PathRef and FileName. 

To determine the size of the returned path name, ResultBuffer must be scanned for the ASCllZ 

terminator. 

An application must issue DosQuerySyslnfo to determine the maximum path length that the operating 

system supports. The returned value should be used to dynamically allocate buffers that are to be 

used to store paths. 

Chapter 2. Control Program Functions 2-285 



DosSearchPath 
Search Path 

Related Functions 
• DosFindFirst 
• DosFindNext 
• DosQuerySyslnfo 
• DosScanEnv 

Example Code 
The following example scans the environment segment for the PATH variable and prints its value. It 
then searches the path given by inserting the current directory into the value of the PATH variable for 
the file named 'cmd.exe' and prints the full file name. 
#define INCL_DOS 

#include <os2.h> 
#include <stdio.h> 

#define ENVVARNAME 
#define FILENAME 

"PATH" 
"cmd.exe" 

/* Environment variable name */ 
/* File for which to search */ 

main() 
{ 

} 

PSZ 

BYTE 

APIRET 

ResultPointer; 

ResultBuffer[128]; 

re; 

/* Environment scan result pointer 
(returned) */ 

/* Path search result 
(returned) */ 

/* return code */ 

/** Scan environment segment for PATH; notice the far-string pointer **/ 
/** specification ("%Fs") used to print. **/ 

if(!(rc=DosScanEnv(ENVVARNAME, /*Environment variable name*/ 
ResultPointer))) /* Scan result pointer 

(returned) */ 
printf("%s is %Fs\n", ENVVARNAME, ResultPointer); 

/** Search current directory + PATH variable for "cmd.exe" **/ 
if(!(rc=DosSearchPath(SEARCH_CUR_DIRECTORY, /*Search control 

ENVVARNAME, 
vector */ 

/* Search path reference 
string */ 

FILENAME, 
ResultBuffer, 

/* File name string */ 
/* Search result 

(returned) */ 
sizeof(ResultBuffer)))) /* Length of search 

result */ 
printf("Found desired file -- %s\n", ResultBuffer); 

2-286 CP Programming Reference 



#define INCL_DOSSESMGR 

APIRET DosSelectSesslon (ULONG ulSesslD) 

DosSelectSession 
Select Foreground Session 

DosSelectSession allows a parent session to switch one of its child sessions to the foreground. 

Parameters 
ulSesslD (ULONG) - input 

The identifier of the session to be switched to the foreground. The value specified must have 
been returned on a previous call to DosStartSession, except that a value of zero indicates 
switching the caller's session (that is, the parent session) to the foreground. 

Returns 
Return Code. 

DosSelectSession returns the following values: 

0 NO_ERROR 
224 ERROR_SMG_NO_TARGET_WINDOW 
369 ERROR_SMG_INVALID_SESSION_ID 
418 ERROR_SMG_INVALID_CALL 
459 ERROR_SMG_BAD_RESERVE 
460 ERROR_SMG_PROCESS_NOT_PARENT 
463 ERROR_SMG_RETRY _SUB_ALLOC 

Remarks 
DosSelectSession allows a parent session to switch one of its child sessions to the foreground. The 
session specified will not be brought to the foreground unless the parent session or one of its 
descendant sessions is currently executing in the foreground. 

The foreground session for windowed applications is the session of the application that owns the 
window focus. 

DosSelectSession may only be issued by a parent session to select itself or a child session. 
DosSelectSession may not be used to select a grandchild session, or any other descendant session 
beyond a child session. DosSelectSession may only be issued by the process that originally started 
the specified session (Sess/D) through DosStartSession. 

DosSelectSession may only be used to select child sessions that were originally started by the caller 
with DosStartSession specifying a value of 1 for Related. That is, sessions started as independent 
sessions may not be selected through DosSelectSession. 

When DosSelectSession is issued, the session specified wiJI not be brought to the foreground unless 
the parent session or one of its descendant sessions is currently executing in the foreground. 

Return code ERROR_SMG_NO_TARGET_WINDOW is a warning that the session might not be brought 
to the foreground. If the selected session is a Presentation Manager (PM) application, its window 
must be created with the FCF_TASKLIST flag bit set on. If the window is created with this bit set off, 
its session cannot be selected using DosSelectSession, and ERROR_SMG_NO_TARGET_WINDOW is 
returned. 

If you issue DosSelectSession before creating the PM window of the selected session, 
ERROR_SMG_NO_TARGET_WINDOW is returned. However, if the PM window of the selected session 

Chapter 2. Control Program Functions 2-287 



DosSelectSession -
Select Foreground Session 

is subsequently created with the FCF _TASKLIST flag bit set on, the window is brought to the 

foreground if the issuer of DosSelectSession still owns the foreground focus. 

If a session still exists but its window has been destroyed, and you issue DosSelectSession for that 

session, ERROR_SMG_NO_TARGET_WINDOW is returned. 

Related Functions 
• DosSetSession 
• DosStartSession 
• DosStopSession 

Example Code 
This example illustrates how a parent session switches one of its child sessions to the foreground. 

Assume that the session ID of the desired child session has been placed into Sess/D already. 

#define INCL_DOSSESMGR 
#include <os2.h> 
#include <stdio.h> 

/* Session Manager values */ 

ULONG SessID; 
APIRET re; 

/* Session identifier */ 
/* Return code */ 

re= DosSelectSession(SessID); 

if (re != 0) 
{ 

} 

printf( 11 DosSelectSession error: return code= %ld 11
, re); 

return; 

2-288 CP Programming Reference 



#define INCL_DOSEXCEPTIONS 

DosSendSignalException 
Send Signal Exception 

APIRET DosSendSlgnalExceptlon (PID ldpid, ULONG ulexceptlon) 

DosSendSignalException sends a Ctrl + C or a Ctrl +Break signal exception to another process. 

Parameters 
ldpld (PIO) - input 

The identification of the process that is to receive the signal exception. 

ulexceptlon (ULONG) - input 

The number of the signal exception to send. Only 1 (XCPT _SIGNAL_INTR) or 4 
(XCPT_SIGNAL_BREAK) is allowed. 

Returns 
Return Code. 

DosSendSignalException returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID _FUNCTION 
156 ERROR_ SIGNAL_ REFUSED 
205 ERROR_NO_SIGNAL_SENT 
209 ERROR_INVALID_SIGNAL_NUMBER 
303 ERROR_INVALID _PROCID 

Remarks 
DosSendSignalException sends either an XCPT _SIGNAL_INTR (Ctrl+C) or an XCPT _SIGNAL_BREAK 
(Ctrl+Break) signal exception to another process. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
• DosAcknowledgeSignal Exception 
• DosEnterMustComplete 
• DosExitMustComplete 
• DosRaiseException 
• DosSetExceptionHandler 
• DosSetSignal Exception Focus 
• DosUnsetExceptionHandler 
• DosUnwindException 

Chapter 2. Control Program Functions 2-289 



DosSendSignalException 
Send Signal Exception 

Example Code 
This example sends a Ctrl + C signal to another process. Assume that the process identifier of the 
other process has been placed into PID already. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

PIO pid; 

ULONG exception; 
APIRET re; 

/* ID of the process to receive signal 
exception */ 

/* Exception number to be sent */ 
/* Return code */ 

exception = XCPT_SIGNAL_INTR; 
/* Ctrl+C signal number */ 

re= DosSendSignalException(pid, exception); 

if (re != 0) 
{ 

} 

printf( 11 DosSendSignalException error: return code= %ld 11
, 

re); 
return; 

2-290 CP Programming Reference 



#define INCL_DOSFILEMGR 

APIRET DosSetCurrentDlr (PSZ pszDirName) 

DosSetCurrentDir defines the current directory. 

Parameters 
pszDirName (PSZ) - input 

DosSetCurrentDir -
Define Current Directory 

Address of the directory path name. The name is an ASCllZ string. 

Returns 
Return Code. 

DosSetCurrentDir returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
3 ERROR_PATH_NOT_FOUND 
5 ERROR_ACCESS_DENIED 
8 ERROR_NOT _ENOUGH_MEMORY 
26 ERROR_NOT_DOS_DISK 
87 ERROR_INVALID_PARAMETER 
108 ERROR_DRIVE_LOCKED 
206 ERROR_FILENAME_EXCED_RANGE 

Remarks 
The directory path does not change if any member of the path does not exist. The current directory 
changes only for the requesting process. 

For file-system drivers, the case of the current directory is set by DirName, and not by the case of the 
directories on the disk. For example, if the directory "c:\bin" is created, and a DirName value of 
"c:\bin," is specified, the current directory returned by DosQueryCurrentDir will be "c:\bin." 

Programs running without the NEWFILES bit can set the current directory to a non-8.3 file-name 
format. 

An application must issue DosQuerySyslnfo to determine the maximum path length that the operating 
system supports. The returned value should be used to dynamically allocate buffers that are to be 
used to store paths. 

Related Functions 
• DosQueryCurrentDir 
• DosQueryCurrentDisk 
• DosSetDefaultDisk 
• DosQuerySyslnfo 

Chapter 2. Control Program Functions 2-291 



DosSetCurrentDir -
Define Current Directory 

\ 
Example Code 

This example changes the current directory to \os2\system. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define PATH 11 \\os2\\system 11 

APIRET re; /* Return code */ 

re= DosSetCurrentDir(PATH); 

if (re != 0) 
{ 

} 

printf("DosSetCurrentDir error: return code= %ld 11 ,rc); 
return; 

2-292 CP Programming Reference 



DosSetDateTime 
Set Current Date and Time 

#define INCL_DOSDATETIME 

APIRET DosSetDateTlme (PDATETIME ppPDateTlme) 

DosSetDateTime sets the current date and time. 

Parameters 
ppPDateTlme (PDATETIME) - input 

Pointer to the DateTime data structure. 

Pointer to the address of a structure that provides the following data items: 

Hours (UCHAR) Current hour, using values 0 through 23. 

Minutes (UCHAR) Current minute, using values 0 through 59. 

Seconds (UCHAR) Current second, using values 0 through 59. 

Hundredths (UCHAR) Current hundredths of a second, using values O through 99. 

Day (UCHAR) Current day of the month, using values 1 through 31. 

Month (UCHAR) Current month of the year, using values 1 through 12. 

Year (USHORT) Current year. 

Timezone (SHORT) The difference in minutes between the current time zone and Greenwich 
Mean Time (GMT). This value is positive for time zones west of Greenwich, 
England, and negative for time zones east of Greenwich. A value of-1 indicates that 
the time zone is undefined. 

DayofWeek (UCHAR) Current day of the week, using values 0 through 6. (Sunday is equal to 0.) 

Returns 
Return Code. 

DosSetDateTime returns the following values: 

0 NO_ERROR 
327 ERROR_TS_DATETIME 

Remarks 
DosSetDateTime sets the date and time that are maintained by the operating system. 

The system verifies that the day is possible for the month and year (even for leap year) and that the 
values specified for the parameters are within their respective limits; if either of these conditions is 
violated, ERROR_TS_DATETIME is returned. 

To get the date and time, issue DosGetDateTime. 

Related Functions 
• DosAsyncTimer 
• DosGetDate Ti me 
• DosSleep 
• DosStartTimer 
• DosStopTimer 

Chapter 2. Control Program Functions 2-293 



DosSetDateTime -
Set Current Date and Time 

Example Code 
The following example shows the use of DosSetDateTime. In this example, the current date and time 

are printed. Then the system date is changed to 5/10/87, and the new information is printed. 

#define INCL_DOSDATETIME /* Date and time values */ 

#include <os2.h> 
#include <stdio.h> 

main() 
{ 

} 

DATETIME DateTime; 
APIRET re; 

/* Structure to hold date/time info. */ 
/* Return code */ 

re= DosGetDateTime(&DateTime); /* Address of d/t structure */ 

printf( 11 Today is %d-%d-%d; the time is %d:%d\n 11
, DateTime.month, 

DateTime.day, DateTime.year, DateTime.hours, DateTime.minutes); 

DateTime.day = 10; 

DateTime.month = 5; 

DateTime.year = 1987; 

printf( 11 The new date is %d-%d-%d; the time is %d:%d\n 11
, DateTime.month, 

DateTime.day, DateTime.year, DateTime.hours, DateTime.minutes); 

re= DosSetDateTime(&DateTime); /* Address of d/t structure */ 

printf( 11 rc is %ld\n 11
, re); 

2-294 CP Programming Reference 



#define INCL_DOSFILEMGR 

APIRET DosSetDefaultDlsk (ULONG ulDrlveNumber) 

DosSetDefaultDisk -
Set Default Drive 

DosSetDefaultDisk sets the specified drive as the default drive. 

Parameters 
ulDrlveNumber (ULONG) - input 

New default-drive number. The value 1 means drive A, 2 means drive 8, 3 means drive C, and 
so on. 

Returns 
Return Code. 

DosSetDefaultDisk returns the following values: 

0 NO_ERROR 
15 ERROR_INVALID_DRIVE 

Related Functions 
• DosQueryCurrentDir 
• DosQueryCurrentDisk 
• DosSetCurrentDir 

Example Code 
This example sets the specified drive as the default drive for the calling process. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG DriveNumber; /* Default drive number */ 
APIRET re; /* Return code */ 

DriveNumber = 3; /* Specify drive C */ 

re= DosSetDefaultDisk(DriveNumber); 

if (re != 0) 
{ 

printf("DosSetDefaultDisk error: return code = %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-295 



DosSetExceptionHandler 
Set Exception Handler 

#define INCL_DOSEXCEPTIONS 

APIRET DosSetExceptlonHandler (PEXCEPTIONREGISTRATIONRECORD pppERegRec) 

DosSetExceptionHandler registers an exception handler for the current thread. 

Parameters 
pppERegRec (PEXCEPTIONREGISTRATIONRECORD) - input 

A pointer to the exception registration record that describes the exception handler to be 
registered. This exception registration record must be on the stack. 

Returns 
Return Code. 

DosSetExceptionHandler returns the following values: 

0 NO_ERROR 

Remarks 
DosSetExceptionHandler registers an exception handler for the current thread. 

If you register more than one exception handler within the same procedure, each handler's exception 
registration record must have a lower storage address (a higher position on the stack) than the 
exception registration record of the previously installed handler. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
• DosAcknowledgeSignalException 
• DosEnterMustComplete 
• DosExitMustComplete 
• DosRaiseException 
• DosSendSignalException 
• DosSetSignalExceptionFocus 
• DosUnsetExceptionHandler 
• DosUnwindException 

2-296 CP Programming Reference 



Example Code 

DosSetExceptionHandler -
Set Exception Handler 

This example registers an exception handler for the current thread. The example creates an 

exception registration record that contains a pointer to the desired exception handler. It is also 

possible to save the program state within the exception registration record, although the example 

does not show this. That program state will be passed to the exception handler when it is invoked. 

Assume that the routine named ExceptRoutine is the exception handler that is to be registered. 

Assume that ExceptRoutine is local to the module containing this code. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG _cdecl ExceptRoutine(PEXCEPTIONREPORTRECORD, 
PEXCEPTIONREGISTRATIONRECORD, 
PCONTEXTRECORD, 
PVOID); 

typedef struct SysERegRec { 
PEXCEPTIONREGISTRATIONRECORD plink; 
ULONG (_cdecl *pSysEH)(PEXCEPTIONREPORTRECORD, 

PEXCEPTIONREGISTRATIONRECORD, 
PCONTEXTRECORD, 

} SYSEREGREC; 

SYSEREGREC 
APIRET 

RegRec; 
re; 

PVOID); 

/* Structure to pass to exception handler */ 
/* Return code */ 

RegRec.plink = 0; /*The DosSetExceptionHandler call will link*/ 
/* the exception registration record into */ 
/* the chain for the thread */ 

RegRec.pSysEH = ExceptRoutine; 
/* Pointer to the exception handler */ 

re = DosSetExceptionHandler( (PEXCEPTIONREGISTRATIONRECORD) 
&RegRec); 

if (re ! = e) 
{ 

printf("DosSetExceptionHandler error: return code = %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-297 



DosSetFHState 
Set the State of a Specified File Handle 

#define INCL_DOSFILEMGR 

APIRET DosSetFHState (HFILE FlleHandle, ULONG ulFlleHandleState) 

DosSetFHState sets the state of the specified file handle. 

Parameters 
FlleHandle (HFILE) - input 

File handle to be set. 

ulflleHandleState (ULONG) - input 

Contents of the open-mode word defined in a previous DosOpen function. 

Bit Descriotion 

15 (OPEN_FLAGS_DASD Ox00008000) This bit must be set to 0. 

14 (OPEN_FLAGS_WRITE_THROUGH Ox00004000) Write-Through flag: 

0: Writes to the file may go through the system-buffer cache. 

1 : Writes to the file may go through the system-buffer cache, but the data is written 
(the actual file 1/0 operation is completed) before a synchronous-write call returns. 
This state of the file defines it as a synchronous file. For synchronous files, this bit 
must be set, because the data must be written to the medium for synchronous-write 
operations. 

This flag bit is not inherited by child processes. 

13 (OPEN_FAIL_ON_ERROR Ox00002000) Fail-Errors flag. Media 110 errors are handled 
as follows: 

0: Reported through the system critical-error handler. 

1 : Reported directly to the caller by way of a return code. 

Media 110 errors generated through an IOCtl category 8 function are always 
reported directly to the caller by way of a return code. The Fail-Errors function 
applies only to non-IOCtl handle-based file 110 functions. 

This flag bit is not inherited by child processes. 

12 (OPEN_FLAGS_NO_CACHE Ox00002000) Cache or No-Cache flag. The file is opened 
as follows: 

0 : The disk driver should place data from 110 operations into cache. 

1 : 110 operations to the file need not be done through the disk-driver cache. 

This bit is an advisory bit, and is used to advise file-system drivers and device 
drivers about whether the data should be cached. This bit, like the write-through bit, 
is a per-handle bit. 

This bit is not inherited by child processes. 

11 -8 These bits are reserved, and should be set to the values returned by 
DosQueryFHState in these positions. 

7 (OPEN_FLAGS_NOINHERIT Ox00000080) Inheritance flag: 

0: File handle is inherited by a process created by DosExecPgm. 

1 : Fite handle is private to the current process. 

2-298 CP Programming Reference 



DosSetFHState 
Set the State of a Specified File Handle 

6 -4 These bits must be set to 0. Any other values are invalid. 

3 This bit is reserved, and should be set to the value returned by DosQueryFHState for 
this position. 

2-0 These bits must be set to 0. Any other values are invalid. 

Returns 
Return Code. 

DosSetFHState returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 

Remarks 
The operating system does not guarantee the write order for multiple-sector write operations. If an 
application requires several sectors to be written in a specific order, the operator should issue the 
sectors as separate synchronous-write operations. Setting the Write-Through flag does not affect 
any previous write operation. That data can remain in the buffers. 

When the application cannot handle a critical error that occurs, critical-error handling can be reset to 
the system. This is done by having DosSetFHState turn off the fail/errors bit, and then reissuing the 
110 operation. The expected critical error recurs, and control is passed to the system critical-error 
handler. The precise time that the effect of this function is visible at the application level is 
unpredictable when asynchronous 110 operations are pending. 

The file-handle-state bits set by this function can be queried by DosQueryFHState. 

Named-Pipe Considerations 

With DosSetFHState, the inheritance (I) bit and Write-Through (W) bit can be set or reset. Setting W 
to 1 prevents write-behind operations on remote pipes. 

Related Functions 
• DosClose 
• DosDevlOCtl 
• DosDupHandle 
• DosExecPgm 
• DosOpen 
• DosQueryFHState 

Chapter 2. Control Program Functions 2-299 



DosSetFHState -
Set the State of a Specified File Handle 

Example Code 
This example issues DosSetFHState to set the File Write-through attribute for an opened file. 
DosQueryFHState is issued first to obtain the file handle state bits. Assume that the appropriate file 
handle has been placed into FileHandle already. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HFILE 
ULONG 
APIRET 

FileHandle; /* File handle */ 
FileHandleState; /* File handle state */ 
re; /* Return code */ 

re= DosQueryFHState(FileHandle. &FileHandleState); 

if (re ! = 0) 
{ 

printf("DosQueryFHState error: return code= %ld 11
• re); 

return; 
} 

FileHandleState I= OPEN_FLAGS_WRITE_THROUGH; 
/* Indicate that writes to the file may */ 
/* go through the file system buffer */ 
/* cache, but the sectors are to be */ 
/* written before any synchronous */ 
/* write call returns. Only this one */ 
/* file attribute is being changed by */ 
/* the following DosSetFHState. */ 

re = DosSetFHState(FileHandle. 

if (re != 0) 
{ 

FileHandleState); 

printf("DosSetFHState error: return code= %ld 11
• re); 

return; 
} 

2-300 CP Programming Reference 



#define INCL_DOSFILEMGR 

DosSetFilelnfo -
Set File Information 

APIRET DosSetFllelnfo (HFILE FileHandle, UL ONG ulFllelnfoLevel, PVOID pFllelnfoBuf, 
ULONG ulFllelnfoBufSlze) 

DosSetFilelnfo sets file information. 

Parameters 
FlleHandle (HFILE) - input 

File handle. 

ulFilelnfoLevel (ULONG) - input 

Level of file information being set. A value of 1 or 2 can be specified, as follows: 

Description Value 

1 

2 

(FIL_STANDARD) Level 1 file information 

(FIL_QUERYEASIZE) Level 2 file information 

The structures described in FilelnfoBuf indicate the information being set for each of these 
levels. 

pFilelnfoBuf (PVOID) - input 

Address of the storage area containing the structures for file information levels. 

Level 1 Fiie Information 
FilelnfoBuf contains the FILESTATUS3 data structure where information is returned. 

Level 2 File Information 
FilelnfoBuf contains an EAOP2 data structure. 

Level 2 sets a series of EA name/value pairs. On input, FilelnfoBuf is an EAOP2 data 
structure. fpGEA2List is ignored. fpFEA2List points to a data area where the relevant FEA2 
list is to be found. oError is ignored. 

On output, fpGEA2List and fpFEA2List are unchanged. The area pointed to by fpFEA2List is 
unchanged. If an error occurred during the set, oError is the offset of the FEA2 where the 
error occurred. The return code is the error code corresponding to the condition generating 
the error. If no error occurred, oError is undefined. 

ulFilelnfoBufSlze (ULONG) - input 

The length, in bytes, of FilelnfoBuf. 

Returns 
Return Code. 

DosSetFilelnfo returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID _FUNCTION 
5 ERROR_ACCESS_DENIED 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 
122 ERROR_INSUFFICIENT _BUFFER 
124 ERROR_INVALID_LEVEL 
130 ERROR_DIRECT_ACCESS_HANDLE 
254 ERROR_INVALID_EA_NAME 

Chapter 2. Control Program Functions 2-301 



DosSetFilelnfo 
Set File Information 

255 ERROR_EA_LIST _INCONSISTENT 

Remarks 
DosSetFilelnfo is successful only when the file is opened for write access, and access by other 
processes is prevented by a deny-both sharing mode. If the file is already opened with conflicting 
sharing rights, any call to DosOpen will fail. 

A value of O in the date and time components of a field does not change the field. For example, if 
both "last write date" and "last write time" are specified as 0 in the Level 1 information structure, 
then both attributes of the file are left unchanged. If either "last write date" or "last write time" are 
other than 0, both attributes of the file are set to the new values. 

In the FAT file system, only the dates and times of the last write can be modified. Creation and 
last-access dates and times are not affected. 

The last-modification date and time will be changed if the extended attributes are modified. 

Related Functions 
• DosClose 
• DosEnumAttribute 
• DosOpen 
• DosQueryFilelnfo 
• DosQueryPathlnfo 
• DosResetBuffer 
• DosSetFileSize 
• DosSetPathlnfo 

Example Code 
This example shows how DosSetFilelnfo can change the attributes of a file. The example changes 
the date and time of last access to the file to the current date and time. DosQueryFilelnfo is issued 
first to obtain the Level 1 file information block that includes the two desired access parameters. The 
two access parameters in the block are changed, and then DosSetFilelnfo is issued to update the 
attributes within the file. Assume that the appropriate file handle has been placed into FileHandle 
already. 

DosSetFilelnfo can also change the extended attributes that are associated with a file. This example 
does not illustrate such a use of DosSetFilelnfo. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

HFILE 
ULONG 
FILESTATUS 
ULONG 
DATETIME 
APIRET 

FileHandle; 
FileinfoLevel; 
FileinfoBuf; 
FileinfoBufSize; 
DateTimeBuf; 
re; 

/* File handle */ 
/* File info data required */ 
/* File info buffer */ 
/* File info buffer size */ 
/* Date/Time buffer */ 
/* Return code */ 

FileinfoLevel = 1; /* Indicate that Level 1 information */ 
/* i s des i red *I 

FileinfoBufSize = sizeof(FILESTATUS); 
/* Size of the buffer that will */ 
/* receive the Level 1 information */ 

re= DosQueryFilelnfo(FileHandle, FileinfoLevel, 
&FilelnfoBuf, FileinfoBufSize); 

2-302 CP Programming Reference 



if (re != 0) 
{ 

/* Obtain a copy of the Level 1 */ 
/* file infonnation */ 

DosSetFilelnfo -
Set File Information 

printf( 11 DosQueryFilelnfo error: return code= %ld 11
, re); 

return; 
} 

re= DosGetDateTime(&DateTimeBuf); 

if (re != 0) 
{ 

/* Get the current date and time */ 
/* from the system */ 

printf( 11 DosGetDateTime error: return code = %ld 11
, re); 

return; 
} 

/* Update the appropriate fields in the Level 1 */ 
/* information block */ 

FilelnfoBuf.fdateLastAccess.year = DateTimeBuf.year; 
FilelnfoBuf.fdateLastAccess.month = DateTimeBuf.month; 
FilelnfoBuf.fdateLastAccess.day = DateTimeBuf.day; 
FilelnfoBuf.ftimeLastAccess.hours = DateTimeBuf.hours; 
FilelnfoBuf.ftimeLastAccess.minutes = DateTimeBuf.minutes; 
FilelnfoBuf.ftimeLastAccess.twosecs = 0; 

/* Update the Level 1 information block associated */ 
/* with the file *I 

re= DosSetFilelnfo(FileHandle, FilelnfoLevel, 
&FilelnfoBuf, FilelnfoBufSize); 

if (re != 0) 
{ 

printf( 11 DosSetFilelnfo error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-303 



DosSetFileLocks -
Lock and Unlock a Range of an Open File 

#define INCL_DOSFILEMGR 

APIRET DosSetFlleLocks (HFILE FlleHandle, PFILELOCK ppUnLockRange, 
PFILELOCK ppLockRange, ULONG ulTlmeOut, ULONG ulFlags) 

DosSetFilelocks locks and unlocks a range of an open file. 

Parameters 
FlleHandle (HFILE} - input 

File handle. 

ppUnLockRange (PFILELOCK) - input 

Address of the structure containing the offset and length of a range to be unlocked. The 
structure is as follows: 

FlleOffset (LONG) - Input 
The offset to the beginning of the range to be unlocked. 

RangeLength (LONG) - Input 
The length of the range to be unlocked. A value of zero means that unlocking is not 
required. 

ppLockRange {PFILELOCK) - input 

Address of the structure containing the offset and length of a range to be locked. The structure 
is as follows: 

FlleOffset (LONG) - Input 
The offset to the beginning of the range to be locked. 

RangeLength (LONG) - Input 
The length of the range to be locked. A value of zero means that locking is not required. 

ulTlmeOut {ULONG) - input 

The maximum time, in milliseconds, that the process is to wait for the requested locks. 

ulFlags {ULONG) - input 

Flags that describe the action to be taken, as follows: 

Bit Description 

31-2 Reserved flags 

1 Atomic 

0 

This bit defines a request for atomic locking. If this bit is set to 1 and the lock range 
is equal to the unlock range, an atomic lock occurs. If this bit is set to 1 and the lock 
range is not equal to the unlock range, an error is returned. 

If this bit is set to 0, then the lock may or may not occur atomically with the unlock. 

Share 

This bit defines the type of access that other processes may have to the file range 
that is being locked. 

If this bit is set to 0 (the default), other processes have no access to the locked file 
range. The current process has exclusive access to the locked file range, which 
must not overlap any other locked file range. 

If this bit is set to 1, the current process and other processes have shared read-only 
access to the locked file range. A file range with shared access may overlap any 

2.;.304 CP Programming Reference 



DosSetFileLocks 
Lock and Unlock a Range of an Open File 

other file range with shared access, but must not overlap any other file range with 
exclusive access. 

Returns 
Return Code. 

DosSetFilelocks returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
33 ERROR_LOCK_ VIOLATION 
36 ERROR_SHARING_BUFFER_EXCEEDED 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
174 ERROR_ATOMIC_LOCK_NOT_SUPPORTED 
175 ERROR_READ_LOCKS_NOT_SUPPORTED 

Remarks 
DosSetFilelocks allows a process to lock and unlock a range in a file. The time during which a file 
range is locked should be short. 

If the lock and unlock ranges are both zero, ERROR_LOCK_VIOLATION is returned to the caller. 

If you only want to lock a file range, set the unlock file offset and the unlock range length to zero. 

If you only want to unlock a file range, set the lock file offset and the lock range length to zero. 

When the Atomic bit of Flags is set to 0, and DosSetFilelocks specifies a lock operation and an 
unlock operation, the unlock operation occurs first, and then the lock operation is performed. If an 
error occurs during the unlock operation, an error code is returned and the lock operation is not 
performed. If an error occurs during the lock operation, an error code is returned and the unlock 
remains in effect if it was successful. 

The lock operation is atomic when all of these conditions are met: 

• The Atomic bit is set to 1 in Flags 

• The unlock range is the same as the lock range 

• The process has shared access to the file range, and has requested exclusive access to it; or the 
process has exclusive access to the file range, and has requested shared access to it. 

Some file system drivers (FSDs) may not support atomic lock operations. Versions of the operating 
system prior to OS/2 Version 2.00 do not support atomic lock operations. If the application receives 
the error code ERROR_ATOMIC_LOCK_NOT_SUPPORTED, the application should unlock the file 
range and then lock it using a non-atomic operation (with the atomic bit set to 0 in Flags). The 
application should also refresh its internal buffers before making any changes to the file. 

If you issue DosClose to close a file with locks still in effect, the locks are released in no defined 
sequence. 

If you end a process with a file open, and you have locks in effect in that file, the file is closed and the 
locks are released in no defined sequence. 

The locked range can be anywhere in the logical file. Locking beyond the end of the file is not an 
error. A file range to be locked exclusively must first be cleared of any locked file subranges or 
overlapping locked file ranges. 

If you repeat DosSetFilelocks for the same file handle and file range, then you duplicate access to 
the file range. Access to locked file ranges is not duplicated across DosExecPgm. The proper 
method of using locks is to attempt to lock the file range, and to examine the return value. 

Chapter 2. Control Program Functions 2-305 



DosSetFileLocks -
Lock and Unlock a Range of an Open File 

The following table shows the level of access granted when the accessed file range is locked with an 
exclusive lock or a shared lock. "Owner" refers to a process that owns the lock. "Non-owner" 
refers to a process that does not own the lock. 

Action Exclusive Lock Shared Lock 
Owner read Success Success 
Non-owner read Wait for unlock. Return Success 

error code after time-out. 
Owner write Success Wait for unlock. Return error 

code after time-out. 
Non-owner write Wait for unlock. Return Wait for unlock. Return error 

error code after time-out. code after time-out. 

If only locking is specified, DosSetFileLocks locks the specified file range using LockRange. If the 
lock operation cannot be accomplished, an error is returned, and the file range is not locked. 

After the lock request is processed, a file range can be unlocked using the UnLockRange parameter 
of another DosSetFilelocks request. If unlocking cannot be accomplished, an error is returned. 

Instead of denying read/write access to an entire file by specifying access and sharing modes with 
DosOpen requests, a process attempts to lock only the range needed for read/write access and 
examines the error code returned. 

Once a specified file range is locked exclusively, read and write access by another process is denied 
until the file range is unlocked. If both unlocking and locking are specified by DosSetFileLocks, the 
unlocking operation is performed first, then locking is done. 

Related Functions 
• DosCancelLockRequest 
• DosDupHandle 
• DosExecPgm 
• DosOpen 

Example Code 
This example opens a file, writes some data to the file, locks a block of the data, and then unlocks it. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define OPEN_FILE 0x01 
#define CREATE_FILE 0x10 
#define FILE_ARCHIVE 0x20 
#define FILE_EXISTS OPEN_FILE 
#define FILE_NOEXISTS CREATE_FILE 
#define, DASD_FLAG 0 
#define INHERIT 0x80 
#define WRITE_THRU 0 
#define FAIL_FLAG 0 
#define SHARE_FLAG 0x10 
#define ACCESS_FLAG 0x02 

#define FILE_NAME "test.dat 11 

#define FILE_SIZE 800L 
#define FILE_ATTRIBUTE FILE_ARCHIVE 
#define EABUF 0L 
#define NULL_RANGE 0L 

#define LOCK_FLAGS 0 

2-306 CP Programming Reference 



HFILE 
ULONG 
ULONG 
PSZ 
ULONG 
APIRET 

FileHandle; 
Wrote; 
Action; 
Fi 1 eData [Ula]; 
LockTimeout = 2000; 

DosSetFileLocks -
Lock and Unlock a Range of an Open File 

re; /* Return code */ 

struct LockStrc 
{ 
long Offset; 
long Range; 
} Area; 

int i; 

Action = 2; 
strcpy(Fil eData, 11 Data ... 11

); 

Area.Offset = 4; 
Area.Range = 100; 

re = DosOpen(FILE_NAME, /* File path name */ 
&FileHandle, /* File handle */ 
&Action, /* Action taken */ 
FILE_SIZE, /* File primary allocation */ 
FILE ATTRIBUTE, /* File attribute */ 
FILE-EXISTS I FILE NOEXISTS, /* Open function type */ 
DASD=FLAG I INHERIT I /* Open mode of file */ 
WRITE_THRU I FAIL_FLAG I 
SHARE_FLAG I ACCESS_FLAG, 
EABUF); /*No extended attributes*/ 

if (re != 0) /* If open failed */ 
{ 

} 

printf( 11 DosOpen error: return code = %ld 11 ,rc); 
return; 

for(i=0; i<20G; ++i) 
DosWrite(FileHandle, 

FileData. 
sizeof(FileData), 
&Wrote); 

/* File handle */ 
/* User buffer */ 
/* Buffer length */ 
/* Bytes written */ 

re = DosSetFileLocks(FileHandle, 
NULL RANGE, 
(PFILELOCK) &Area, 
&LockTimeout, 
LOCK_FLAGS); 

/* File handle */ 
/* Unlock range */ 
/* Lock range */ 
/* Lock time-out */ 
/* Request flags */ 

if (re != G) /* If lock failed */ 
{ 

printf( 11 DosSetFileLocks lock error: return code= %ld 11 ,rc); 
return; 

} 

re = DosSetFileLocks(FileHandle, 
(PFILELOCK) &Area, 
NULL_RANGE, 
&lockTimeout, 
LOCK_FLAGS); 

/* File handle */ 
/* Unlock range */ 
/* Lock range */ 
/* Lock time-out */ 
/* Request flags */ 

if (re != G) 
{ 

/* If unlock failed */ 

Chapter 2. Control Program Functions 2-307 



DosSetFileLocks -
Lock and Unlock a Range of an Open File 

} 

printf("DosSetFilelocks unlock error: return code= %ld",rc); 
return; 

2-308 CP Programming Reference 



#define INCL_DOSFILEMGR 

DosSetFilePtr -
Move the Read/Write Pointer 

APIRET DosSetFllePlr (HFILE FlleHandle, LONG IDlstance, ULONG ulMoveType, 
PULONG pNewPointer) 

DosSetFilePtr moves the read/write pointer according to the type of move specified. 

Parameters 
FlleHandle (HFILE) - input 

The handle returned by a previous DosOpen function. 

IDlstance (LONG) - input 

The signed distance (offset) to move, in bytes. 

ulMoveType (ULONG) - input 

The method of moving. Specifies a location in the file from where the Distance to move the 
read/write pointer starts. The values and their meanings are as follows: 

Definition Value 

0 (FILE_BEGIN) Move the pointer from the beginning of the file. 

1 (FILE_ CURRENT) Move the pointer from the current location of the read/write 
pointer. 

2 (FILE_END) Move the pointer from the end of the file. Use this method to determine 
a file's size. 

pNewPoinler (PULONG) - output 

Address of the new pointer location. 

Returns 
Return Code. 

DosSetFilePtr returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID_FUNCTION 
6 ERROR_INVALID_HANDLE 
132 ERROR_SEEK_ON_DEVICE 
131 ERROR_ NEGATIVE_ SEEK 
130 ERROR_DIRECT _ACCESS_HANDLE 

Remarks 
The read/write pointer in a file is a signed 32-bit number. A negative value for Distance moves the 
pointer backward in the file; a positive value moves it forward. DosSetFilePtr cannot be used to 
move to a negative position in the file. 

DosSetFilePtr cannot be used for a character device or pipe. 

Chapter 2. Control Program Functions 2-309 



DosSetFilePtr -
Move the Read/Write Pointer 

Related Functions 
• DosOpen 
• DosRead 
• DosSetFi leSize 
• DosWrite 

Example Code 
This example opens the file test.dat, writes some data, and resets the file pointer to the beginning of 
the file. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define OPEN_FILE 8x81 
#define CREATE_FILE 8x18 
#define FILE_ARCHIVE 8x20 
#define FILE_EXISTS OPEN_FILE 
#define FILE_NOEXISTS CREATE_FILE 
#define DASD_FLAG e 
#define INHERIT 0x88 
#define WRITE_THRU e 
#define FAIL_FLAG e 
#define SHARE_FLAG 8x10 
#define ACCESS_FLAG 8x02 

#define FILE_NAME 11 test.dat 11 

#define FILE_SIZE 808L 
#define FILE_ATTRIBUTE FILE_ARCHIVE 
#define EABUF 0L 
#define MOVE_DIST 0L 

HFILE FileHandle; 
ULONG Wrote; 
ULONG Action; 
ULONG Local; 

/* Bytes written */ 

UCHAR FileData[188]; 
APIRET re; 

/* Action taken by DosOpen */ 
/* New file pointer location */ 
/* Data to write */ 
/* Return code */ 

Action = 2; 
strcpy(Fi l eData, 11 Data •.• 11

); 

re = DosOpen(FILE_NAME, /* File path name */ 

if (re != e) 
{ 

&FileHandle, /* File handle */ 
&Action, /* Action taken */ 
FILE_SIZE, /* File primary allocation */ 
FILE ATTRIBUTE, /* File attribute */ 
FILE-EXISTS I FILE NOEXISTS, /* Open function type */ 
DASO-FLAG I INHERIT I /* Open mode of the file */ 
WRITE_THRU I FAil_FLAG I 
SHARE FLAG I ACCESS FLAG, 
EABUF); - /*No extended attributes*/ 

printf("DosOpen error: return code= %ld",rc); 
return; 

} 

re = DosWrite(FileHandle, /* File handle */ 

2-310 CP Programming Reference 



if (re != 0) 
{ 

(PVOID) FileData, 
sizeof(FileData), 
&Wrote); 

DosSetFilePtr -
Move the Read/Write Pointer 

/* User buffer */ 
/* Buffer length */ 
/* Bytes written */ 

printf("DosWrite error: return code= %ld 11 ,rc); 
return; 

} 

re = DosSetFil ePtr(Fi 1 eHandl e, /* File handle * / 

if (re != 0) 
{ 

MOVE_DIST, /* Distance to move in bytes */ 
FILE BEGIN, /* Method of moving */ 
&Local); /*New pointer location*/ 

printf("DosSetFilePtr error: return code = %ld 11 ,rc); 
return; 

} 

Chapter 2. Control Program Functions 2-311 



DosSetFileSize -
Change the Size of a File 

#define INCL_DOSFILEMGR 

APIRET DosSetFlleSlze (HFILE FlleHandle, ULONG ulFlleSlze) 

DosSetFileSize changes the size of a file. 

Parameters 
FlleHandle (HFILE) - input 

Handle of the file whose size to be changed. 

ulFlleSlze (ULONG) - input 

New size, in bytes, of the file. 

Returns 
Return Code. 

DosSetFileSize returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
6 ERROR_INVALID_HANDLE 
26 ERROR_NOT_DOS_DISK 
33 ERROR_LOCK_ VIOLATION 
87 ERROR_INVALID _PARAMETER 
112 ERROR_DISK_FULL 

Remarks 
When DosSetFileSize is issued, the file must be open in a mode that allows write access. 

The size of the open file can be truncated or extended. If the file size is being extended, the file 

system tries to allocate additional bytes in a contiguous (or nearly contiguous) space on the medium. 

The values of the new bytes are undefined. 

Related Functions 
• DosOpen 
• DosQueryFilelnfo 
• DosQueryPathlnfo 

2-312 CP Programming Reference 



Example Code 

DosSetFileSize -
Change the Size of a File 

This example changes the size of a file. Assume that the handle of the file has been placed into 
FileHandle already. Assume that the file has been opened in a writeable manner already. In this 
example, assume that the file is being extended. The program logic, however, would be the same if 
the file were being truncated. In this example, the values of the bytes that are being added to the file 
are undefined. 

#define INCL_DOSFILEMGR 
#include <os2.h> 
#include <stdio.h> 

HFILE FileHandle; 
ULONG FileSize; 
APIRET re; 

FileSize = 20000; 

/* File Manager values */ 

/* File handle */ 
/* File's new size */ 
/* Return code */ 

/* Indicate that the new file size */ 
/* should be 20000 bytes */ 

re= DosSetFileSize(FileHandle, FileSize); 

if (re != 0) 
{ 

printf( 11 DosSetFileSize error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-313 



DosSetFSlnfo 
Set Information for a File System Device 

#define INCL_DOSFILEMGR 

APIRET DosSetFSlnlo (ULONG ulDrlveNumber, ULONG ulFSlnloLevel, PVOID pFSlnloBul, 
ULONG ulFSlnloBulSlze) 

DosSetFSlnfo sets information for a file system device. 

Parameters 
ulDrlveNumber (ULONG) - input 

Logical drive number. Zero means the default drive, 1 means drive A, 2 means drive B, 3 means 
drive C, and so on. This represents the file system driver (FSD) for the media currently in that 
drive. A value of hex FFFF means that FSlnfoBuf contains the ASCllZ path name of the FSD. 

ulFSlnloLevel (ULONG) - input 

Level of file information to be set. Only a value of .2 may be specified. 

pFSlnloBul (PVOID) - input 

Address of the storage area where the system gets the new file system information. 

Level 2 Information 
Level 2 information is specified in the following format: 

Byte Description 

1 Length, in bytes, of the volume label (null not included) 

2 - N Volume label. This is an ASCllZ string. 

ulFSlnloBulSlze (ULONG) - input 

The length, in bytes, of FS/nfoBuf. 

Returns 
Return Code. 

DosSetFSlnfo returns the following values: 

0 NO_ERROR 
15 ERROR_INVALID_DRIVE 
82 ERROR_CANNOT_MAKE 
122 ERROR_INSUFFICIENT _BUFFER 
123 ERROR_INVALID_NAME 
124 ERROR_INVALID_LEVEL 
154 ERROR_LABEL_TOO_LONG 

Remarks 
Trailing blanks supplied at the time the volume Jabel is defined are not returned by DosQueryFSlnfo. 

File-system information can be set only if the volume is opened in a mode that allows write access. 

2-314 CP Programming Reference 



Related Functions 

DosSetFSlnfo -
Set Information for a File System Device 

• DosQueryCurrentDisk 
• DosQueryFSlnfo 
• DosQuerySyslnfo 
• DosSetDefaultDisk 

Example Code 
This example shows how a thread can change the volume label for a specified logical drive. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG DriveNumber; 
ULONG FSinfolevel; 
VOLUMELABEL FSinfoBuf; 

/* Drive number */ 
/* File system data type */ 
/* File system info buffer */ 

ULONG FSinfoBufSize; /* File system info buffer size */ 
/* Return code */ APIRET re; 

DriveNumber = 4; /* For this example, specify drive D: */ 

FSinfolevel = FSIL VOLSER; 
- /* Indicate that the caller wants to */ 

/* change the volume label for the */ 
/* specified drive *I 

strcpy(FSinfoBuf.szVollabel,"Utilities"); 
/* The new volume label for logical */ 
/* drive D: */ 

FSinfoBuf.cch = (BYTE)strlen(FSinfoBuf.szVollabel); 
/* Length of the volume label string */ 
/* within the VOLUMELABEL structure */ 

FSinfoBufSize = sizeof(VOLUMELABEL); 
/* Size of the entire VOLUMELABEL */ 
/* structure *I 

re= DosSetFSlnfo(DriveNumber, FSlnfoLevel, &FSinfoBuf, 
FSinfoBufSize); 

if (re != 0) 
{ 

printf("DosSetFSinfo error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-315 



DosSetMaxFH 
Define the Maximum Number of File Handles 

#define INCL_DOSFILEMGR 

APIRET DosSetMaxFH (ULONG ulNumberHandles) 

DosSetMaxFH defines the maximum number of file handles for the calling process. 

Parameters 
ulNumberHandles (ULONG) - input 

Total number of file handles to be provided. 

Returns 
Return Code. 

DosSetMaxFH returns the following values: 

0 NO_ERROR 
8 ERROR_NOT _ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 

Remarks 
The operating system initially allocates 20 file handles to a process. This is the recommended 
number for an application. However, if the system limit has not been reached, this amount can be 
increased with DosSetMaxFH. When DosSetMaxFH is issued, all open file handles are preserved. 

Related Functions 
• DosDupHandle 
• DosOpen 
• DosSetRel MaxFH 

Example Code 
This example sets the maximum number of file handles for the calling process. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG NumberHandles; /* Number of file handles */ 
APIRET re; /* Return code */ 

NumberHandles = 30; /* Set maximum number of file handles */ 
/* to 30 for the calling process */ 

re= DosSetMaxFH(NumberHandles); 

if (re != 0) 
{ 

} 

printf("DosSetMaxFH error: return code= %ld", re); 
return; 

2-316 CP Programming Reference 



DosSetMem 

Set a Range of Pages within a Memory Object 

#define INCL_DOSMEMMGR 

APIRET DosSetMem (PVOID pBaseAddress, ULONG ulRegionSlze, ULONG ulAttributeflags) 

DosSetMem commits or decommits a range of pages within a memory object, or alters their access 

protection. 

Parameters 
pBaseAddress (PVOID) - input 

The base address of the range of pages whose attributes are to be changed. 

ulReglonSize (ULONG) - input 

A value specifying the size, in bytes, of the region whose attributes are to be changed. The size 

is rounded up to include all pages addressed by the requested base address and size. 

ulAttrlbuteflags (ULONG) - input 

A set of flags specifying commitment or decommitment, and desired access protection, for the 

specified range of pages. 

Commit Type 

• If the PAG_COMMIT bit (Ox00000010) is set, the specified range of pages is to be committed. 

• If the PAG_DECOMMIT bit (Ox00000020) is set, the specified range of pages is to be 

decommitted. 

• If neither is specified, no change in commitment is made. 

Desired Access Protection 

• If the PAG_EXECUTE bit (Ox00000004) is set, execute access to the committed range of 

pages is desired. 

• If the PAG_READ bit (Ox00000001) is set, read access to the committed range of pages is 

desired. 

• If the PAG_WRITE bit (Ox00000002) is set, write access to the committed range of pages is 

desired. 

• If the PAG_GUARD bit (Ox00000008) is set, access to the committed range of pages causes a 

"guard page entered" condition to be raised in the subject process. 

• If the PAG_DEFAULT bit (Ox00000400) is set, the access protection assigned to the 

committed range of pages is the access protection specified when the object was allocated 

in the address space of the requesting process. 

• If the PAG_DECOMMIT bit is not set, then the PAG_DEFAULT bit or at least one of the bits 

PAG_READ, PAG_WRITE, or PAG_EXECUTE must be specified. 

• All other bits must be clear. 

Returns 
Return Code. 

DosSetMem returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 

8 ERROR_NOT _ENOUGH_MEMORY 

87 ERROR_INVALID_PARAMETER 

95 ERROR_INTERRUPT 

Chapter 2. Control Program Functions 2-317 



DosSetMem 
Set a Range of Pages within a Memory O,bject 

212 
487 
32798 

Remarks 

ERROR_ LOCKED 
ERROR_INVALID_ADDRESS 
ERROR_CROSSES_OBJECT _BOUNDARY 

DosSetMem can be used to commit or decommit a range of previously allocated pages in either a 
private or shared memory object. It also can be used to create a sparse population of committed 
private or shared pages within a memory object. DosSetMem can also change the access protection 
applied to already-committed pages within a memory object. 

Each page in the virtual-address space of the process is either free, private, or shared. 

The virtual address for free pages is not reserved, not committed, and not accessible. An attempt to 
commit or decommit a free page results in the return of an error. 

The virtual address for pages in a private or shared memory object is reserved during the allocation 
of the memory object. Each page within a memory object can be in one of two states: 
1. Committed: These pages have allocated backing storage, with access controlled by a protection 

code. A committed page in a private memory object may be decommitted; a committed page in 
a shared memory object may not be decommitted. An attempt to commit a previously committed 
page results in the return of an error. 

2. Decommitted: These pages are not committed and are not accessible. A decommitted page may 
be committed if the backing storage is available. An attempt to decommit a previously 
decommitted page results in the return of an error. 

The commitment of a reserved page in a shared object causes the page to be committed in the 
context of each process sharing the shared memory object. 

Any access protection can be applied to committed private pages. Decommitted pages are given an 
access protection of "no access". 

When pages are committed, they are backed by demand pages. The first attempt to read or write the 
page causes a page of zeros to be created. 

Decommitting a private page causes the backing storage for the page to be released. 

Setting the protection on a range of previously committed pages causes the old access protection to 
be replaced by the desired access protection. The access protection can be set only on committed 
pages. 

Setting the access protection to PAG_GUARD causes a range of guard pages to be established. If 
access to this range of pages is attempted, an access violation (page fault) is generated. This fault 
sets the protection of the accessed page to the desired access protection, and generates a condition 
that signifies that a guard page has been entered. This capability is intended to provide automatic 
stack checking. It can also be used to separate other data structures when appropriate. 

If a failure occurs, the attributes are not changed on any pages, and an appropriate error code is 
returned. 

As each page is considered for protection, its state is determined. If the state of the page is not 
committed, or is not being committed, an appropriate error code is returned. Otherwise, the new 
protection of the page is set. 

With the Intel 80386 processor, execute and read access are equivalent. Also, write access implies 
both read and execute access. 

2-318 CP Programming Reference 



DosSetMem -
Set a Range of Pages within a Memory Object 

Related Functions 
• DosAllocMem 
• DosAllocSharedMem 
• DosQueryMem 

Example Code 
This example commits a region of two pages within a previously allocated memory object, and sets 
read-only access rights for the region. Assume that the base address for the DosSetMem function 
was previously obtained by the process. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf. h> /* Get flags for memory management * / 

PVOID BaseAddress; /* Pointer to the range of pages 
whose attributes are to be changed */ 

ULONG RegionSize; /* Size, in bytes, of the region whose 
attributes are to be changed */ 

ULONG AttributeFlags; /* Flags describing characteristics 
of the specified range of pages */ 

APIRET re; /* Return code */ 

RegionSize = 8192; /* Specify a two-page region */ 

AttributeFlags = PAG_COMMIT I PAG_READ; 
/* Comnit the specified region, and */ 
/* set read-only access rights to */ 
/* the region *I 

re= DosSetMem(BaseAddress, RegionSize, AttributeFlags); 

if (re != 0) 
{ 

printf( 11 DosSetMem error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-319 



DosSetNPHState -
Set Named Pipe Handle State 

#define INCL_DOSNMPIPES 

APIRET DosSetNPHState (HPIPE hplpeHandle, ULONG ulPlpeHandleState) 

DosSetNPHState resets the blocking mode and the read mode of a named pipe. 

Parameters 
hplpeHandle (HPIPE) - input 

The named-pipe handle to reset. (The server handle is returned by DosCreateNPipe; the client 
handle is returned by DosOpen) 

ulPlpeHandleState (ULONG) - input 

The named-pipe handle state. This parameter consists of the following bit fields: 

Bit 

31-16 

15 

14-10 

9-8 

Descriotion 

Reserved. 

Blocking mode. The blocking mode is defined as either "blocking" or 
"nonblocking," as follows: 

O = (NP_WAIT) (OxOOOO) Blocking mode: DosRead and DosWrite wait if no data is 
available. 

1 = (NP _NOWAIT) (Ox8000) Nonblocking mode: DosRead and DosWrite return 
immediately if no data is available. 

DosRead normally blocks (waits) until at least partial data can be returned. 
DosWrite blocks by default until all of the requested bytes have been written. 
Nonblocking mode changes this behavior as follows: 

DosRead returns immediately with a value of zero for BytesRead if no data is 
available. 

DosWrite returns a value of zero for BytesWritten if there is not enough buffer space 
available in the pipe; otherwise, the entire data area is transferred. 

Reserved. 

Read Mode. The read mode is defined as follows: 

00 = (NP _READMODE_BYTE) (OxOOOO) Byte-read mode: Read the pipe as a byte 
stream. 

01 = (NP _READMODE_MESSAGE) (Ox0100) Message-stream mode: Read the pipe 
as a message stream. 

7 - 0 Reserved, must be set to 0. 

Returns 
Return Code. 

DosSetNPHState returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
230 ERROR_BAD_PIPE 
231 ERROR_PIPE_BUSY 
233 ERROR_PIPE_NOT_CONNECTED 

2-320 CP Programming Reference 



DosSetNPHState 
Set Named Pipe Handle State 

Remarks 
DosSetNPHState resets the blocking mode and the read mode of a named pipe. Both the blocking 

mode and the read mode must be specified. However, the read mode cannot be changed if the pipe 

is a byte pipe. (Byte pipes can be read only as byte streams.) In addition, the blocking mode cannot 
be changed to nonblocking if another thread is currently blocked on an 110 request to the same end 

of the pipe. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 

Example Code 
This example modifies several of the control parameters that are associated with a named pipe. The 

caller of DosSetNPHState can change the blocking characteristics of its end of a named pipe, and 

whether the pipe is read as a byte stream or as a message stream. Assume that a previous call to 

DosOpen or DosCreateNPipe provided the named pipe handle that is contained in Handle. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

HP I PE 
ULONG 
APIRET 

Handle; /* Pipe handle */ 
PipeHandleState; /* Pipe-handle state */ 
re; /* Return code */ 

PipeHandleState = 0; /* Indicate that pipe Reads/Writes */ 
/* will block if no data is */ 
/* available, and that the pipe */ 
/* is to be read as a byte stream */ 

re= DosSetNPHState(Handle, PipeHandleState); 

if (re I= 0) 
{ 

printf("DosSetNPHState error: return code= %ld",rc); 
return; 

} 

Chapter 2. Control Program Functions 2-321 



DosSetNPipeSem 
Set Named Pipe Semaphore 

#define INCL DOSNMPIPES 

APIRET DosSelNPlpeSem (HPIPE hplpeHandle, HSEM hsemSemHandle, ULONG ulKeyHandle) 

DosSetNPipeSem attaches a shared event semaphore to a local named pipe. 

Parameters 
hplpeHandle (HPIPE) - input 

The named-pipe handle to which a semaphore is to be attached. (The server handle is returned 
by DosCreateNPipe; the client handle is returned by DosOpen.) 

hsemSemHandle (HSEM) - input 

The handle of an event semaphore or a multiple-wait (muxwait) semaphore that is posted when 
the pipe (identified by hpipeHandle) has either data to be read or write space available. 

ulKeyHandle (ULONG) - input 

A key value that distinguishes events arriving on different named pipes that are attached to the 
same semaphore. 

Returns 
Return Code. 

DosSetNPipeSem returns the following values: 

0 NO~ERROR 

1 ERROR_INVALID _FUNCTION 
6 ERROR_INVALID_HANDLE 
87 ERROR_INVALID_PARAMETER 
187 ERROR_SEM_NOT_FOUND 
230 ERROR_BAD_PIPE 
233 ERROR_PIPE_NOT _CONNECTED 
'd-<>t;;i_ ERRO~- W~ON6'-TyP€ 

Remarks 
DosSetNPipeSem works only for local pipes. If an attempt is made to attach a semaphore to a 
remote pipe, ERROR_INVALID_FUNCTION is returned. 

If a semaphore is already attached to the specified handle, DosSetNPipeSem replaces the existing 
semaphore with the new one. 

Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNP.HState 
• DosTransactNPipe 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 

2-322 CP Programming Reference 



DosSetNPipeSem 
Set Named Pipe Semaphore 

• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 
• DosCreateEventSem 
• DosCloseMuxWaitSem 
• DosWaitEventSem 
• DosWaitMuxWaitSem 

Example Code 
This example associates a system semaphore with a named pipe. Associating a semaphore with a 

named pipe increases the flexibility with which a process can wait for events that are associated with 

the pipe. In this example, assume that a previous call to DosOpen or DosCreateNPipe provided the 

named pipe handle that is contained in Handle. Assume that the handle of the system semaphore 

also was obtained previously. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

#define THIRD_KEY 3 

HPIPE Handle; 
HSEM SemHandle; 
ULONG KeyHandle; 
APIRET re; 

/* A unique key that will distinguish */ 
/* the named pipe to which the */ 
/* semaphore is attached */ 

/* Pipe handle */ 
/* Semaphore handle */ 
/* Key value */ 
/* Return code */ 

KeyHandle = THIRD_KEY; 

re= DosSetNPipeSem(Handle, SemHandle, KeyHandle); 

if (re!= 0) 
{ 

printf( 11 DosSetNPipeSem error: return code= %ld 11 ,rc); 
return; 

} 

Chapter 2. Control Program Functions 2-323 



DosSetPathlnfo 
Set Information for a File or Directory 

#define INCL DOSFILEMGR 

APIRET DosSetPathlnfo (PSZ pszPathName, ULONG ulFllelnfoLevel, PVOID pFllelnfoBuf, 
ULONG ulFilelnfoSize, ULONG ulPathlnfoFlags) 

DosSetPathlnfo sets information for a file or directory. 

Parameters 
pszPathName (PSZ) - input 

Address of the ASCllZ full path name of the file or subdirectory. Global file-name characters are 
not permitted. 

DosQuerySyslnfo is called by an application during initialization to determine the maximum path 
length allowed by the operating system. 

ulFllelnfoLevel (ULONG) - input 

The level of file directory information being defined. A value of 1 or 2 can be specified, as 
follows: 

Value 

1 

Description 

(FIL_STANDARD) Level 1 file information 

(FIL_QUERYEASIZE) Level 2 file information 2 

The structures described in FilelnfoBuf indicate the information being set for each of these 
levels. 

pFllelnfoBuf (PVOID) - input 

Address of the storage area containing the file information being set. 

Level 1 File Information 
FilelnfoBuf contains the FILESTATUS3 data structure where information is returned. 

Level 2 Fiie Information 
FilelnfoBuf contains an EAOP2 structure. 

Level 2 sets a series of extended attribute (EA) name/value pairs. On input, FilelnfoBuf 
contains an EAOP2 data structure. fpGEA2List is ignored. fpFEA2List points to a data area 
where the relevant FEA2 list is to be found. oError is ignored. The FEA2 data structures 
must be aligned on a doubleword boundary. Each oNextEntryOffset field must contain the 
number of bytes from the beginning of the current entry to the beginning of the next entry in 
the FEA2 list. The oNextEntryOffset field in the last entry of the FEA2 list must be zero. 

On output, fpGEA2List and fpFEA2List are unchanged. The area that fpFEA2List points to is 
unchanged. If an error occurred during the set, oError is the offset of the FEA2 entry where 
the error occurred. The return code is the error code corresponding to the condition that 
caused the error. If no error occurred, oError is undefined. 

ulFilelnfoSize (ULONG) - input 

The length, in bytes, of FilelnfoBuf. 

ulPathlnfoFlags (ULONG) - input 

Contains information on how the set operation is to be performed. If PathlnfoF/ags is hex 
00000010 (DSPl_WRTTHRU), then all the information, including extended attributes (EAs), must 
be written to the disk before returning to the application. This guarantees that the EAs have 
been written to the disk. All other bits are reserved, and must be zero. 

2-324 CP Programming Reference 



DosSetPathlnfo 
Set Information tor a File or Directory 

Returns 
Return Code. 

DosSetPathlnfo returns the following values: 

· 0 NO_ERROR 
32 ERROR_SHARING_ VIOLATION 
87 ERROR_INVALID_PARAMETER 
124 ERROR_INVALID_LEVEL 
206 ERROR_FILENAME_EXCED_RANGE 
122 ERROR_INSUFFICIENT _BUFFER 
254 ERROR_INVALID _EA_NAME 
255 ERROR_EA_LIST _INCONSISTENT 

Remarks 
To use DosSetPathlnfo to set any level of file information for a file or subdirectory, a process must 
have exclusive write access to the closed file object. Thus, if the file object is already accessed by 
another process, any call to DosSetPathlnfo will fail. 

A value of O in the date and time components of a field causes that field to be left unchanged. For 
example, if both "last write date" and "last write time" are specified as 0 in the Level 1 information 
structure, then both attributes of the file are left unchanged. !f either "last write date" or "last write 
time" are other than 0, then both attributes of the file are set to the new values. 

For data integrity purposes, the Write-Through bit in PathlnfoF/ags should be used only to write the 
extended attributes to the disk immediately, instead of caching them and writing them later. Having 
the Write-Through bit set constantly can degrade performance. 

The last-modification date and time will be changed if the extended attributes are modified. 

Related Functions 
• DosEnumAttribute 
• DosQueryFilelnfo 
• DosQueryPathlnfo 
• DosQuerySyslnfo 
• DosSetFilelnfo 

Example Code 
This example shows how DosSetPathlnfo can be used to change the attributes of a file. The example 
changes the date and time of last access to the file to the current date and time. DosQueryPathlnfo is 
issued first to obtain the Level 1 file information block that includes the two desired access 
parameters. The two access parameters within the block are changed, and then DosSetPathlnfo is 
issued to update the attributes within the file. 

DosSetPathlnfo is similar to DosSetFilelnfo. DosSetPathlnfo accepts a path name as an input 
parameter. DosSetFilelnfo accepts a file handle of an open file as an input parameter. Both 
functions can modify the same classes of file information. An important difference between them is 
that DosSetPathlnfo can be used to modify files and directories, while DosSetFilelnfo can only be 
used to modify open files. DosSetPathlnfo can only operate on closed files. 

DosSetPathlnfo can also be used to change the extended attributes that are associated with a file. 
This example does not illustrate such a use of DosSetPathlnfo. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

Chapter 2. Control Program Functions 2-325 



DosSetPathlnfo -
Set Information for a File or Directory 

UC HAR 
ULONG 
FILESTATUS3 
UL ONG 
ULONG 
DATETIME 
APIRET 

PathName[60]; 
Fil einfoLevel; 
FileinfoBuf; 
FileinfoSize; 
PathinfoFlags; 
DateTimeBuf; 
re; 

/* File or directory path name string */ 
/* File info data required */ 
/* File info buffer */ 
/* Info buffer size */ 
/* Control flags */ 
/* Date/Time buffer */ 
/* Return code */ 

strcpy(PathName. 11 0:\ \ TOOLS\\UTIL\ \DIRl"); 

FileinfoLevel = 1; 

/* Name of the specified directory */ 

/* Indicate that Level 1 information */ 
/* is desired */ 

FileinfoSize = sizeof(FILESTATUS3); 
/* Size of the buffer that will */ 
/* receive the Level 1 */ 
/* information */ 

re= OosQueryPathinfo(PathName. FileinfoLevel. &FileinfoBuf. 

if (re I= 0) 
{ 

FileinfoSize); 
/* Obtain a copy of the Level 1 */ 
/* file information */ 

printf( 11 DosQueryPathinfo error: return code= %ld 11
• re); 

return; 
} 

re= DosGetDateTime(&DateTimeBuf); 

if (re I= 0) 
{ 

/* Get the current date and time */ 
/* from the system *I 

printf( 11 DosGetDateTime error: return code= %ld 11
• re); 

return; 
} 

/* Update the appropriate fields in the Level 1 */ 
/* information block */ 

FileinfoBuf .fdateLastAccess.year = DateTimeBuf .year; 
FileinfoBuf .fdateLastAccess.month = DateTimeBuf .month; 
FileinfoBuf .fdateLastAccess.day = DateTimeBuf .day; 
FileinfoBuf .ftimeLastAccess.hours = DateTimeBuf .hours; 
FileinfoBuf .ftimeLastAccess.minutes = DateTimeBuf .minutes; 
FileinfoBuf .ftimeLastAccess.twosecs = 0; 

/* Update the Level 1 information block associated */ 
/* with the file */ 

PathinfoFlags = 0; /* Since extended attributes are not */ 
/* being updated. the function can */ 
/* return before the data is */ 
/* actually written to the disk */ 

re= DosSetPathinfo(PathName. FileinfoLevel. &FileinfoBuf. 

if (re I= 0) 
{ 

FileinfoSize. PathinfoFlags); 

printf( 11 DosSetPathinfo error: return code= %ld 11
• re); 

return; 
} 

2-326 CP Programming Reference 



#define INCL DOSPROCESS 

DosSetPriority -
Change the Base Priority 

APIRET DosSetPrlorlty (ULONG ulScope, ULONG ulPrlorltyClass, LONG IPrlorltyDelta, 
ULONG ullD) 

DosSetPriority changes the base priority of a child process or thread in the current process. 

Parameters 
ulScope (ULONG) - input 

The extent of the priority change. The values of this field are as follows: 

Definition 

0 (PRTYS_PROCESS): All the threads of any process. 

1 (PRTYS_PROCESSTREE): All the threads of a process and any descendants. The 
indicated process must be the current process or a process created by the current 
process. Detached processes may not be specified. The indicated process may 
have terminated. 

2 (PRTYS_ THREAD): A single thread of the current process. 

ulPriorityClass (ULONG) - input 

Priority class of a process. The values of this field are as follows: 

Value Definition 

0 (PRTYC_NOCHANGE): No change, leave as is 

1 (PRTYC_IDLETIME): Idle-time 

2 (PRTYC_REGULAR): Regular 

3 (PRTYC_TIMECRITICAL): Time-critical 

4 (PRTYC_FOREGROUNDSERVER): Server 

IPrlorltyDelta (LONG) - input 

Change to apply to the current base priority level of the process. This value must range from 
-31 (PRTYD_MINIMUM) to +31 (PRTYD_MAXIMUM). 

ullD (ULONG) - input 

A process identifier (Scope= 0 or 1) or a thread identifier (Scope= 2). If this operand is equal 
to zero, the current process or thread is assumed. 

Returns 
Return Code. 

DosSetPriority returns the following values: 

0 NO_ERROR 
303 ERROR_INVALID _PROCID 
304 ERROR_INVALID_PDELTA 
305 ERROR_NOT _DESCENDANT 
307 ERROR INVALID PCLASS 
308 ERROR=INVAUD=SCOPE 
309 ERROR_INVALID_THREADJD 

Chapter 2. Control Program Functions 2-327 



DosSetPriority -
Change the Base Priority 

Remarks 
DosSetPriority allows a process to change the priority of all the threads of any process, or all the 
threads of the current process or a child process, as well as any descendants. It also allows a 
process to change the priority of a single thread within the current process. 

When a process changes the priority of threads in other processes, only default priorities are 
changed. 

Related Functions 
• DosEnterCritSec 
• DosGetlnfoBlocks 

Example Code 
This example changes the base priority of another process. Assume that the target process ID has 
been placed into ID already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

UL ONG 
ULONG 
LONG 
UL ONG 
APIRET 

Scope; 
PriorityClass; 
PriorityDelta; 
ID; 
re; 

Scope = 0; 

/* Process and thread values */ 

/* Indicate scope of change */ 
/* Priority class to set */ 
/* Priority delta to apply */ 
/* Process or thread ID */ 
/* Return code */ 

/* Indicate that the intent is to change */ 
/* the priority of the process that is */ 
/* identified by the PIO contained */ 
/* within variable ID */ 

PriorityClass = 0; /* Do not change the priority class of */ 
/* the targeted process */ 

PriorityDelta = 5; /* Give the targeted process a priority */ 
/* de 1 ta of +5 *I 

re= DosSetPriority(Scope, PriorityClass, PriorityDelta, ID); 

if (re != 0) 
{ 

} 

printf("DosSetPriority error: return code= %ld", re); 
return; 

2-328 CP Programming Reference 



DosSetProcessCp -
Allow a Process to Set Its Code Page 

#define INCL_DOSNLS 

APIRET DosSetProcessCp (ULONG ulCodePage) 

DosSetProcessCp allows a process to set its code page. 

Parameters 
ulCodePage (ULONG) - input 

A code page identifier that has one of the following values: 

Description 

United States 

Multilingual 

Value 

437 

850 

852 

857 

860 

861 

863 

865 

932 

934 

936 

938 

942 

944 

946 

948 

Latin 2 (Czechoslovakia, Hungary, Poland, Yugoslavia) 

Turkish 

Portuguese 

Iceland 

Canadian French 

Nordic 

Japan 

Korea 

People's Republic of China 

Taiwan 

Japan SAA 

Korea SAA 

People's Republic of China SAA 

Taiwan SAA 

Note: Code pages 932, 934, 936, 938, 942, 944, 946, and 948 are supported only with the Asian 
version of the operating system on Asian hardware. 

Returns 
Return Code. 

DosSetProcessCp returns the following values: 

0 NO_ERROR 
472 ERROR_INVALID_CODE_PAGE 

Remarks 
DosSetProcessCp sets the process code page of the calling process. The code page of a process is 
used in the following ways: 

First, the printer code page is set to the process code page through the file system and printer 
spooler (the system spooler must be installed) when the process makes a request to open the 
printer. Calling DosSetProcessCp does not affect the code page of a printer opened prior to the call, 
and does not affect the code page of a printer opened by another process. 

Chapter 2. Control Program Functions 2-329 



DosSetProcessCp -
Allow a Process to Set Its Code Page 

Second, country-dependent information, by default, is retrieved encoded in the code page of the 
calling process. 

Third, a newly-created process inherits its process code page from its parent process. 

DosSetProcessCp does not affect the display or keyboard code page. 

Related Functions 
• DosMapCase 
• DosQueryCollate 
• DosQueryCp 
• DosQueryCtrylnfo 
• DosQueryDBCSEnv 

Example Code 
This example shows how a process can set its code page. 

#define INCL_DOSNLS /* National Language Support values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG CodePage; /* Code page identifier */ 
APIRET re; /* Return code */ 

CodePage = 850; /* Choose the Multilingual code page*/ 

re= DosSetProcessCp(CodePage); 

if (re != 0) 
{ 

} 

printf("DosSetProcessCp error: return code = %ld". re); 
return; 

2-330 CP Programming Reference 



DosSetRelMaxFH 
Adjust the Maximum Number of File Handles 

#define INCL_DOSFILEMGR 

APIRET DosSetRelMaxFH (PLONG ppReqCount, PULONG pCurMaxFH) 

DosSetRelMaxFH adjusts the maximum number of file handles for the calling process. 

Parameters 
ppReqCount (PLONG) - input 

Address of the number to be added to the maximum number of file handles for the calling 

process. If ReqCount is positive, the maximum number of file handles is increased. If ReqCount 

is negative, the maximum number of file handles is decreased. 

The system treats a decrease in the maximum number of file handles as an advisory request 

that may or may not be granted; the system may track and defer such a request. 

pCurMaxFH (PULONG) - output 

Address of the variable to receive the new total number of allocated file handles. 

Returns 
Return Code. 

DosSetRelMaxFH returns the following values: 

0 NO_ERROR 

Remarks 
All file handles that are currently open are preserved. The system may defer or disregard a request 

to decrease the maximum number of file handles for the current process. The return code is set to 

NO_ERROR even if the system defers or disregards a request for a decrease. 

You should examine the value of CurMaxFH to determine the result of DosSetRelMaxFH. 

Related Functions 
• DosDupHandle 
• DosOpen 
• DosSetMaxFH 

Chapter 2. Control Program Functions 2-331 



DosSetRelMaxFH -
Adjust the Maximum Number of File Handles 

Example Code 
This example increases the maximum number of file handles for the calling process. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

LONG ReqCount; 

ULONG CurMaxFH; 
APIRET re; 

ReqCount = 2; 

/* Number to add to maximum 
handle count */ 

/* New count of handles */ 
/* Return code */ 

/* Increase the maximum number by 2 */ 

re= DosSetRelMaxFH(&ReqCount, &CurMaxFH); 

if (re != 0) 
{ 

/* On successful return, the CurMaxFH */ 
/* variable will contain the total */ 
/* number of allocated file handles */ 
/* for this process *I 

printf("DosSetRelMaxFH error: return code= %ld", re); 
return; 

} 

2-332 CP Programming Reference 



DosSetSession 
Set Session Status 

#define INCL_DOSSESMGR 

APIRET DosSetSession (ULONG ulSesslD, PSTATUSDATA ppStatusData) 

DosSetSession sets the status of a child session. 

Parameters 
ulSesslD (ULONG) - input 

The identifier of the target session. The value specified must have been returned on a previous 

cal I to DosStartSession. 

ppStatusData (PSTATUSDATA) - input 
Address of the status data structure. 

StatusData is a structure that contains the session status data: 

SIZE DESCRIPTION 

WORD Length 
WORD Selectind 
WORD Bondind 

Length is the length of the data structure in bytes, including Length itself. Length is 6 bytes. 

Selectlnd specifies whether the target session should be flagged as selectable or 

non-selectable, as follows: 

Value 

0 

1 

2 

Definition 

(SET _SESSION_ UNCHANGED) Leaves the current setting unchanged. 

(SET_SESSION_SELECTABLE) Makes the target session selectable. 

(SET_SESSION_NON_SELECTABLE) Makes the target session non-selectable. A 

non-selectable session is not selectable from the Shell switch list, nor can the user 

jump to it via the system hot key. The operator may continue to select a 

non-selectable windowed session by pressing a mouse button within a visible part 

of the window. 

Bondlnd specifies which session to bring to the foreground the next time the parent session is 

selected, as follows: 

Value 

0 

1 

2 

Definition 

(SET _SESSION_UNCHANGED) Leaves the current setting unchanged. 

(SET_SESSION_BOND) Establishes a bond between the parent session and the child 

session. The child session is brought to the foreground the next time the parent 

session is selected. If the child session is selected, the child session is brought to 

the foreground. 

(SET_SESSION_NO_BOND) Specifies bringing the parent session to the foreground 

the next time the parent session is selected, and bringing the child session to the 

foreground if the child is selected. Any bond previously established with the child 

session specified is broken. 

Chapter 2. Control Program Functions 2-333 



DosSetSession 
Set Session Status 

Returns 
Return code 

DosSetSession returns the following values: 

0 NO_ERROR 
369 ERROR_SMG_INVALID_SESSION_ID 
418 ERROR_SMG_INVALID_CALL 
455 ERROR_SMG_INVALID_BOND_OPTION 
456 ERROR_SMG_INVALID_SELECT_OPT 
460 ERROR_SMG_PROCESS_NOT_PARENT 
461 ERROR_SMG_INVALID_DATA_LENGTH 
463 ERROR_SMG_RETRY_SUB_ALLOC 

Remarks 
DosSetSession sets or resets one or both of the following parameters related to a child session: 

1. Selectable/non-selectable. This parameter allows a parent session to set one of its child 
sessions as selectable or non-selectable from the Shell switch list. 

2. Bond/no bond. This parameter allows a parent session to bond one of its child sessions to itself. 
This means that if the operator subsequently selects the parent session from the Shell menu (or 
double clutches to the parent session), then the child session will be brought to the foreground. 

The parameters only affect user selections from the Shell switch list or Shell selections during 
system hot key processing. They do not affect selections made by the parent session. Thus, when a 
parent session selects its own session, its own session is brought to the foreground, even if a bond is 
in effect. When a parent session selects a child session, the child session is brought to the 
foreground, even if the parent has previously set the child non-selectable. 

The above parameters may be set individually. Either can be changed without affecting the current 
setting of the other. 

DosSetSession may only be issued by a parent session for a child session. Neither the parent 
session itself nor any grandchild, nor any other descendant session beyond a child session, may be 
the target of this function. DosSetSession may only be issued by the process that originally started 
the specified session (Sess/D) through DosStartSession. 

DosSetSession may only be used to change the status of child sessions that were originally started 
by the caller with DosStartSession specifying a value of 1 for Related. That is, DosSetSession may 
not be used to change the status of sessions started as independent sessions. 

A bond established between a parent session and a child session can be broken by reissuing 
DosSetSession and specifying either: 

• Bondlnd = 2 to break the bond, or 

• Bondlnd = 1 to establish a bond with a different child session. In this case, the bond with the 
previous child is broken. 

If a bond is established between session A and its immediate child session B, and if another bond is 
established between session B and its immediate child session C, then if the operator selects 
session A, session C is brought to the foreground. However, if session A selects itself, session A is 
brought to the foreground. If session A selects session B, session C is brought to the foreground. In 
the latter case, the bond between B and C is honored. 

Assume that a bond is established between session A and its immediate child session B, and 
assume that session Bis non-selectable. The operator will not be able to select session B directly. 
However, if the operator selects session A, session B will be brought to the foreground. 

2-334 CP Programming Reference 



DosSetSession 
Set Session Status 

A parent session may be running in either the foreground or the background when DosSetSession is 
issued. 

Related Functions 
• DosSelectSession 
• DosStartSession 
• DosStopSession 

Example Code 
This example shows a how a parent session sets the status of one of its child sessions to be 
non-selectable from the Shell switch list. Assume that the session ID of the desired child session has 
been placed into Sess/D already. 

#define INCL_DOSSESMGR 
#include <os2.h> 
#include <stdio.h> 

ULONG 
STATUSDATA 
APIRET 

SessID; 
StatusData; 
re; 

StatusData.Length = 6; 

/* Session Manager values */ 

/* Session identifier */ 
/* Session status data */ 
/* Return code */ 

/* Length of the StatusData */ 
/* structure */ 

StatusData.Selectlnd = 2; /* Make the specified child */ 
/* session non-selectable from */ 
/* the Shell switch list */ 

StatusData.Bondlnd = 0; /* Do not change the "bring to */ 
/* foreground" attribute */ 

re = DosSetSession(SesslD, &StatusData); 

if (re != 0) 
{ 

printf("DosSetSession error: return code= %ld", re); 
return; 

} 

Chapter 2. Control Program Functions 2-335 



DosSetSignalExceptionFocus 
Set Signal Exception Focus 

#define INCL_DOSEXCEPTIONS 

APIRET DosSetSlgnalExceptlonfocus (BOOL32 f32Flag, PULONG ppulTlmes) 

DosSetSignalExceptionFocus causes the current process to become the focus for the Ctrl + C and 
Ctrl +Break signals. 

Parameters 
f32Flag (BOOL32) - input 

This parameter may have either of two values: 

Value 

0 

1 

Definition 

(SIG_UNSETFOCUS) Stop receiving signals. 

(SIG_SETFOCUS) Start receiving signals. 

ppulTlmes (PULONG) - output 

The number of times DosSetSignalExceptionFocus has been called by the current process with 
Flag set to 1, minus the number of times it has been called with Flag set to 0. 

Returns 
Return Code. 

DosSetSignalExceptionFocus returns the following values: 

0 NO_ERROR 
1 ERROR_INVALID _FUNCTION 
300 ERROR_ALREADY _RESET 
303 ERROR_INVALID _PROCID 
650 ERROR_NESTING_TOO_DEEP 

Remarks 
DosSetSignalExceptionFocus causes the calling process to become the signal focus for its screen 
group for the XCPT_SIGNAL_BREAK (Ctrl+Break) and XCPT_SIGNAL_INTR (Ctrl+C) signal 
exceptions. 

You cannot issue DosSetSignalExceptionFocus from a Presentation Manager (PM) application. If you 
do, you get the return code ERROR_INVALID_PROCID. You can issue this function from a full-screen 
or windowed application. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
· • DosAcknowledgeSignalException 

• DosEnterMustComplete 
• DosExitMustComplete 
• DosRaiseException 
• DosSendSignalException 
• DosSetExceptionHandler 
• DosUnsetExceptionHandler 
• DosUnwindException 

2-336 CP Programming Reference 



Example Code 

DosSetSignalExceptionFocus -
Set Signal Exception Focus 

This example causes the current process to try to become the focus for Ctrl + C and Ctrl + Break 
signals. Once a process holds the focus, it can issue further DosSetSignalExceptionFocus functions 
that request the focus again. The process must eventually issue an equivalent number of functions 
that relinquish the focus. Each DosSetSignalExceptionFocus returns the net number of focus request 
calls in effect, so the calling process can eventually tell if more relinquish calls are required. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

BOOL32 flag; /* Set flag to start or stop receiving signals */ 
ULONG ulTimes; /* Number of times flag has been set to 1, minus 

number of times set to e */ 
APIRET re; /* Return code */ 

flag = SIG_SETFOCUS; 
/* Indicate that the process should start */ 
/* receiving signal focus */ 

re= DosSetSignalExceptionFocus(flag, &ulTimes); 

if (re != e) 
{ 

/* On successful return, the ulTimes */ 
/* variable contains the net number of */ 
/* times DosSetSignalExceptionFocus has */ 
/* been called by this process to */ 
/* request the focus (SIG_SETFOCUS) */ 
/* minus the number of times it has been */ 
/* called to relinquish the focus */ 
/* (SIG_UNSETFOCUS) *I 

printf("DosSetSignalExceptionFocus error: return code = %ld", 
re); 

return; 
} 

Chapter 2. Control Program Functions 2-337 



DosSetVerify -
Set Write Verification 

#define INCL_DOSFILEMGR 

APIRET DosSetVerlfy (BOOL32 f32VerlfySettlng) 

DosSetVerify sets write verification. 

Parameters 
f32VerlfySettlng (BOOL32) - input 

The state of verify mode, as follows: 

Value Definition 
0 Verify mode is not active. 
1 Verify mode is active. 

Returns 
Return Code. 

DosSetVerify returns the following values: 

0 NO_ERROR 
118 ERROR_INVALID_VERIFY_SWITCH 

Remarks 
When verify mode is active, the operating system verifies that data written to the disk is recorded 
correctly, even though disk recording errors are rare. 

Related Functions 
• DosQueryVerify 

Example Code 
This example enables write verification for the system. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

BOOL32 VerifySetting; /* New value of verify switch */ 
APIRET re; /* Return code */ 

VerifySetting = 1; /* Indicate that verify mode is to be */ 
/* activiated */ 

re= DosSetVerify(VerifySetting); 

if (re != 0) 
{ 

} 

printf("DosSetVerify error: return code= %ld", re); 
return; 

2-338 CP Programming Reference 



#define INCL_DOSFILEMGR 

APIRET DosShuldown (ULONG ulReserved) 

DosShutdown 
Shut Down the System 

DosShutdown locks out changes to all file systems, and writes system buffers to the disk in 
preparation for turning off power to the system. 

Parameters 
ulReserved (ULONG) - input 

Doubleword, value must be zero. 

Returns 
Return Code. 

DosShutdown returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
274 ERROR_ALREADY _SHUTDOWN 

Remarks 
DosShutdown can take several minutes to complete its operation; the time depends on the amount of 
data in the buffers. 

If other functions that change file-system data are issued while the system is shut down, either the 
return code ERROR_ALREADY _SHUTDOWN is set, or the other function calls are blocked 
permanently. 

Allocated memory cannot be increased once DosShutdown has been issued. This means that in 
low-memory situations, some functions may fail because of a lack of memory. This is of particular 
importance to the process issuing DosShutdown. All memory that the calling process will ever need 
should be allocated before DosShutdown is issued. This includes implicit memory allocations that 
system functions make on behalf of DosShutdown. 

When DosShutdown has completed successfully, the system can be powered-off or restarted. 

Related Functions 
• There are none. 

Chapter 2. Control Program Functions 2-339 



DosShutdown -
Shut Down the System 

Example Code 
This example locks out changes to all file systems, and writes system buffers to the disk in 

preparation for turning off power to the system. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG Reserved; 
APIRET re; 

Reserved = 0; 

/* Reserved, must be zero */ 
/* Return code */ 

/* Reserved, must be set to zero */ 

re = DosShutdown(Reserved); 

if (re ! = 0) 
{ 

} 

printf("DosShutdown error: return code= %ld 11
, re); 

return; 

2-340 CP Programming Reference 



#define INCL_DOSDATETIME 

APIRET DosSleep (ULONG ulTlmelnlerval) 

DosSleep 
Delay Process Execution 

DosSleep suspends the current thread for a specified time interval. 

Parameters 
ulTlmelnterval (ULONG) - input 

The time, in milliseconds, for which the calling thread's execution will be suspended. The 
system rounds this value up to the next clock tick. 

Returns 
Return Code. 

DosSleep returns the following values: 

0 NO_ERROR 
322 ERROR_TS_WAKEUP 

Remarks 
DosSleep suspends the current thread for a specified time interval. If a time interval of 0 is specified, 
the thread gives up the remainder of the current time slice, allowing any other ready threads of equal 
or higher priority to execute; the calling thread will execute again during its next scheduled time 
slice. If there is no other ready thread of equal or higher priority, DosSleep returns immediately; it 
does not give control to a thread of lower priority. 

Time intervals for DosSleep, DosAsyncTimer, and DosStartTimer are specified in milliseconds; 
however, it is important to recognize that the actual duration of the specified time interval will be 
affected by two factors: 

• First, the system clock keeps track of time in less precise units known as clock ticks. The 
duration of a clock tick depends on the frequency of the system-clock interrupt that is used by 
your computer. (To determine the duration of the clock tick on your computer, issue 
DosQuerySyslnfo and examine the timer-interval field.) 

Because clock ticks are less precise than millisecond values, any time interval that is specified 
in milliseconds will be rounded up to the next clock tick. 

• Second, because the system is a priority-based, multitasking operating system, there is no 
guarantee that a thread will resume immediately after the timer interval expires. If a 
higher-priority process or thread is executing, the timed thread blocks. (To minimize the 
inaccuracy caused by preemptive scheduling, an application can dedicate a thread to managing 
time-critical tasks and then raise that thread to a higher priority.) 

In addition, the time interval for DosSleep refers to execution time (accumulated scheduled time 
slices), not to elapsed real time. Elapsed real time will be longer and will vary, depending on the 
hardware and on the number and priorities of other threads executing in the system. (Elapsed real 
time for the asynchronous timers, started by DosAsyncTimer and DosStartTimer, will be much closer 
to their specified time intervals because these timers run independently of the calling thread's 
execution.) 

Because the above factors usually cause the sleep interval to be longer than requested (though 
generally within a few clock ticks), DosSleep should not be used as a substitute for a real-time clock. 

To ensure optimal performance, do not use DosSleep in a single-thread Presentation Manager 
application. (See WinStartTimer.) 

Chapter 2. Control Program Functions 2-341 



DosSleep -
Delay Process Execution 

If the calling thread is awakened before the time interval expires (by a system,exception, for 
example), ERROR_TS_WAKEUP is returned. 

Related Functions 
• DosAsyncTimer 
• DosGetDateTime 
• DosSetDateTime 
• DosStartTi mer 
• DosStopTimer 

Example Code 
This example suspends the calling thread for one minute. 

#define INCL_DOSPROCESS /* Process and thread values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG Timelnterval; 
APIRET re; 

/* Interval in milliseconds */ 
/* Return code */ 

Timelnterval = 60000; 

re = DosSleep(Timelnterval); 

if (re != e) 
{ 

} 

printf("DosSleep error: return code= %ld 11
, re); 

return; 

2-342 CP Programming Reference 



DosStartSession 
Start Session 

#define INCL DOSSESMGR 

APIRET DosStartSesslon (PSTARTDATA ppStartData, PULONG pSesslD, PPID ppPID) 

DosStartSession allows an application to start another session, and to specify the name of the 
program to be started in that session. 

Parameters 
ppStartData (PSTARTDATA) - input 

Address of the start session structure: 

Size Descri12tion 
WORD Length 
WORD Related 
WORD FgBg 
WORD TraceOpt 
DWORD PgmTltle 
DWORD PgmName 
DWORD Pgmlnputs 
DWORD TermQ 
DWORD Environment 
WORD lnherltOpt 
WORD Session Type 
DWORD lconFlle 
DWORD PgmHandle 
WORD PgmControl 
WORD lnitXPos 
WORD lnltYPos 
WORD lnltXSlze 
WORD lnltYSlze 
WORD Reserved 
DWORD ObJectBuffer 
DWORD ObJectBuffLen 

Length is the length of the data structure in bytes, including Length itself. This value can be 24, 
30, 32, 50, or 60 bytes. 

A length of at least 32 bytes must be used to start a DOS session with the session type specified. 
A length greater than 32 is not allowed if the Session Manager detects that the Presentation 
Manager is not present. 

When a Length of 24 or 30 bytes is specified, DosStartSession initializes the missing parameters 
to zero. This allows the Shell to provide values for the missing information, based on the 
installation file entry for the program being started. 

Specify a Length of 30 bytes to use the environment and inheritance features of the system. 
Specify a Length of 50 bytes to specify the type of session to start, and to define data for 
windows. 

A Length of 60 bytes allows you to use all of the functions provided by DosStartSession. 

Related specifies whether the session created is related to the calling session. The values of 
this field are as follows: 

Value 

0 

1 

Definition 

(SSF_RELATED_INDEPENDENT): New session is an independent session (not 
related) 

(SSF_RELATED_CHILD): New session is a child session (related) 

Chapter 2. Control Program Functions 2-343 



DosStartSession 
Start Session 

An independent session cannot be controlled by the calling program. It may not be specified as 

the target of DosSelectSession, DosSetSession, or DosStopSession. The TermQ field is ignored 

for independent sessions, and Sess/D and PIO are not returned. Refer to "Parent/Child 

Relationship" in the Remarks section for additional information about related sessions. 

FgBg specifies whether the new session should be started in the foreground or background. If a 

windowed session is started in the foreground, the new session will be given the window focus. 

The values of this field are as follows: 

Value 

0 

1 

Definition 

(SSF _FGBG_FORE): Start session in foreground 

(SSF _FGBG_BACK): Start session in background 

TraceOpt specifies whether the program started in the new session should be executed under 

conditions for tracing. The values of this field are as follows: 

Value 

0 

1 

2 

Definition 

(SSF _ TRACEOPT _NONE): No trace 

(SSF _ TRACEOPT _TRACE): Trace with no notification of descendants 

(SSF _ TRACEOPT _ TRACEALL): Trace all descendant sessions 

Related equals 1 and a termination queue must be supplied when a TraceOpt of 2 is specified. 

Refer to "Debugger Considerations" in the Remarks section for additional information about a 

TraceOpt of 2. 

PgmTltle is the address of an ASCllZ string that contains the program title. The string can be up 

to 61 bytes long, including the terminating byte of zero. If the address specified is zero, or if the 

ASCllZ string is null, then the initial title is PgmName minus any leading drive and path 

information. 

PgmName is either zero or the address of an ASCllZ string that contains the fully-qualified drive, 

path, and file name of the program to be loaded. Refer to "PgmName and Pgmlnputs 

Considerations" in the Remarks section for additional information about a zero PgmName 

address. 

Pgmlnputs is either zero or the address of an ASCllZ string that contains the input arguments to 

be passed to the program. 

TermQ is either zero or the address of an ASCllZ string that contains the fully-qualified path and 

file name of a system queue (refer to DosCreateQueue). Refer to "Parent/Child Termination 

Considerations" in the Remarks section for additional information about the TermQ field. 

Environment is either zero or the address of an environment string (refer to the Parameters for 

DosExecPgm) to be passed to the program started in the new session. The Environment may be 

used for independent or related DosStartSession functions. When the Environment field is zero, 

the program in the new session inherits the environment of the Shell if the lnheritOpt field is 

equal to zero, or the environment of the program issuing DosStartSession if the lnheritOpt field 

is equal to one. 

The Environment field for a DOS session is reserved, and must be zero. The DOS session 

always processes the AUTOEXEC.BAT file on the DOS startup drive. You can define DOS 

environment variables in the AUTOEXEC.BAT file. 

lnherltOpt specifies whether the program started in the new session should inherit the calling 

program's environment and open file handles. The values of this field are as follows: 

0 

1 

Definition 

(SSF _INHERTOPT _SHELL): Inherit the Shell's environment. 

(SSF _INHERTOPT_PARENT): Inherit the environment of the program issuing the 

DosStartSession call. 

The lnherltOpt field may be used for independent or related DosStartSession functions. 

Therefore, a DosStartSession function with the lnheritOpt field equal to one is equivalent to 

2-344 CP Programming Reference 



DosStartSession 
Start Session 

DosExecPgm, except that the new program does not inherit the priority of the parent process, or 
the keyboard and video characteristics associated with the parent session. Also, a parent 
process/child process relationship is not established. 

Refer to "Parent/Child Relatlonshlp" in the Remarks section for additional information about 
related sessions. 

The lnherltOpt field for a DOS session is different than the lnherltOpt field for a non-DOS session. 
An lnheritOpt value of 1 for a DOS session only inherits the parent's current drive and path. It 
does not inherit the parent's environment. 

SessionType defines the type of session that should be created for this program. The values of 
this field are as follows: 

Value 

0 

1 

2 

3 

4 

7 

Definition 

(SSF _ TYPE_DEFAUL T): Use the PgmHandle data, or allow the Shell to establish the 
session type. 

(SSF _ TYPE_FULLSCREEN): Start the program in a full-screen session. 

(SSF _TYPE_WINDOWABLEVIO): Start the program in a windowed session for 
programs using the Base Video Subsystem. 

(SSF _ TYPE_PM): Start the program in a windowed session for programs using the 
Presentation Manager services (including AVIO calls). 

(SSF _TYPE_ VDM): Start the program in a full-screen DOS session. 

(SSF _TYPE_WINDOWEDVDM): Start the program in a windowed DOS session. 

lconFlle is either zero or the address of an ASCllZ string that contains the fully-qualified drive, 
path, and file name of an icon definition. If you do not provide an icon file name with 
DosStartSession, the system looks for an associated icon file (with a file extension of .ICO, or an 
extended attribute of .ICON). The system provides a default icon if an icon file name is not 
provided with DosStartSession. 

PgmHandle is either zero or the program handle returned by WinAddProgram or 
WinQueryProgramHandle. The program handle identifies the program in the installation file to 
be started, the program title, the session type, and the initial window size and position. 
However, information may be specified with DosStartSession to override the information in the 
installation file for this invocation of the program. 

DosStartSession does not support program groups. 

PgmControl may be used to specify the initial state for a windowed application. This field is 
ignored for full-screen sessions. 

The bits in this field have the following values: 

Bit Value Equated Name Initial Window State 
----------------------- --------------------a exeeee SSF_CONTROL_VISIBLE Visible 

a exeee1 SSF_CONTROL_INVISIBLE Invisible 
1 exeee2 SSF_CONTROL_MAXIMIZE Maximize 
2 0x0004 SSF_CONTROL_MINIMIZE Minimize 
3 exeeea SSF_CONTROL_NOAUTOCLOSE No Auto Close 

4 - 14 Reserved 
15 exaeee SSF_CONTROL_SETPOS Use specified size and position 

Note: The "No Auto Close" bit is used only for VIO Windowable applications, and is ignored for 
all other types of applications. 

lnltXPos and lnitYPos contain the initial x and y coordinates, in pels, for the initial session 
window. Coordinates (O,O) indicate the bottom left corner of the display. This field is ignored for 
full-screen sessions. 

Chapter 2. Control Program Functions 2-345 



DosStartSession 
Start Session 

lnltXSlze and lnltYSlze contain the initial x and y extent, in pels, for the initial session window. 
This field is ignored for full-screen sessions. 

Reserved is a word of zeros, reserved for future use. 

ObJectBuffer is the address of a buffer where the name of the object that contributed to the 
failure of DosExecPgm is returned. DosStartSession calls DosExecPgm to start all full-.screen, 
VIO windowed, and Presentation Manager programs. 

ObJectBuffLen is the length, in bytes, of the buffer pointed to by ObJectBuffer. 

pSesslD (PULONG) - output 

The address of a doubleword that receives the session identifier associated with the child 
session created. Sess/D is returned only when the value specified for Related is 1. The Sess/D 
returned can be specified on subsequent calls to DosSelectSession, DosSetSession, and 
DosStopSession. 

ppPID (PPID) - output 

The address of a doubleword that receives the process identifier associated with the child 
process created. PID is returned only when the value specified for Related is 1. The PID 
returned may not be used on any system functions (for example, DosSetPriority) that require a 
parent process/child process relationship. Read "Parent/Chlld Relatlonshlp" in the Remarks 
section for more information. 

Returns 
Return code. 

DosStartSession returns the following values: 

0 NO_ERROR 
369 ERROR_SMG_INVALID_SESSION_ID 
418 ERROR_SMG_INVALID_CALL 
460 ERROR_SMG_PROCESS_NOT _PARENT 
463 ERROR_SMG_RETRY _SUB_ALLOC 

Remarks 
DosStartSession allows an application to start another session, and to specify the name of the 
program to be started in that session. 

A session can be thought of as a logical console, consisting of buffers for the screen, keyboard, and 
mouse. 

New sessions may only be started in the foreground when the caller's session (or one of the caller's 
descendant sessions) is currently executing in the foreground. The foreground session for windowed 
applications is the session of the application that owns the window focus. The new session appears 
in the Shell switch list. 

Any protect-mode application may start any other protect-mode application in a new session, 
regardless of the issuing program's session type. 

You may use DosExecPgm to start a process that is of the same type as the starting process. 
Process types include Presentation Manager, text-windowed, and full-screen. You may not use 
DosExecPgm to start a process that is of a different type than the starting process. 

You must use DosStartSession to start a new process from a process that is of a different type. For 
example, use DosStartSession to start a Presentation Manager process from a non-Presentation 
Manager process. 

Foreground/Background Considerations: 

DosStartSession will only start a new session in the foreground if the program issuing 
DosStartSession or a descendent session is executing in the foreground session. Otherwise, 

2-346 CP Programming Reference 



DosStartSession 
Start Session 

DosStartSession will override the foreground request and start the new session in the 
background. A unique error is returned, indicating that the new session was started in the 
background. The foreground session for windowed applications is the session of the application 
that owns the window focus. Therefore, when a windowed session is started in the foreground, 
the new session will be given the window focus. 

Parent/Child Relationship: 

When you specify a value of 1 for Related, DosStartSession establishes a parent session/child 
session relationship. A parent process/child process relationship is not established. The parent 
process is the shell process just as if the operator had started the program from the shell menu. 
Therefore, the PID returned by DosStartSession may not be used with any system functions (for 
example, DosSetPriority) that require a parent process/child process relationship. 

Once a process has issued DosStartSession specifying a value of 1 for Related, no other process 
within that session can issue related DosStartSession functions until all the dependent sessions 
have ended. 

Debugger Considerations: 

Debuggers may want to debug all processes associated with an application, no matter how the 
process was started (by DosExecPgm or DosStartSession). A special trace option, TraceOpt 
value 2, has been provided for this purpose. When a value of 2 is specified for TraceOpt, the 
debugger must also supply the name of an existing queue, and a value of 1 for Related, on the 
DosStartSession function. 

The Session Manager notifies the debugger whenever a new session is created through 
DosStartSession from the initial session started with a value of 2 for TraceOpt, or from any 
descendant session. The queue is posted regardless of how the new session is started (related, 
independent, with or without inheritance). Sessions started without inheritance are executed for 
tracing. It is the responsibility of the debugger to resume execution of the new process. 

The debugger must issue DosReadQueue to receive notification when a child session is created. 
The word containing the request parameter, returned by DosReadQueue, will have a value of 1. 
The data element structure has the following format: 

Size 
WORD 
WORD 

Description 
Session ID 
Process ID 

The debugger should issue DosReadQueue with the NoWait parameter set to zero. This is the 
only process that has addressability to the notification data element. After reading and 
processing the data element, the debugger must free the segment that contains the data element 
by issuing DosFreeMem. 

The debugger may use DosSelectSession to switch itself or any descendant session into the 
foreground whenever the current foreground session is a descendant of the debugger. 

PgmName and Pgmlnputs Considerations: 

The program identified by PgmName is executed directly, with no intermediate secondary 
command (CMD.EXE) process. Alternatively, the program can be executed indirectly through a 
secondary command (CMD.EXE) process by specifying CMD.EXE for PgmName, and by 
specifying either IC or /K followed by the drive, path, and file name of the application to be 
loaded for Pgmlnputs. If the /C parameter is inserted at the beginning of the Pgmlnputs string, 
then when the application program ends, the session ends. If the /K parameter is inserted at the 
beginning of the Pgmlnputs string, then when the application ends, the operator sees the system 
command line prompt displayed. The operator can then either enter the name of another 
program or command to execute, or enter the EXIT command to end the session. 

When the PgmName address is zero, or the ASCllZ string is null, the program identified by the 
PgmHandle is started in the new session. If the PgmHandle is not specified, then the program 
specified as a parameter to the protect mode shell on the OS2_SHELL statement, or on the SHELL 
statement for a DOS session, in the configuration file (CONFIG.SYS) is executed and passed the 
specified Pgmlnputs. The default is the program name for the command processor (CMD.EXE for 
a non-DOS session, or COMMAND.COM for a DOS session). 

Chapter 2. Control Program Functions 2-347 



DosStartSession 
Start Session 

The PgmName and Pgmlnputs strings' combined length may not exceed 1024 characters. 

Program Handle Considerations: 

If a process issues DosStartSession specifying only the program handle, then it must change to 
the working directory before issuing DosStartSession, and start the new process as inherited. If 
a process is started as non-inherited, it is up to that process to change to the correct directory. 

Parent/Child Termination Considerations: 

The parent must create the termination queue prior to specifying the queue name on 
DosStartSession. The Session Manager will continue to notify the parent session through the 
specified queue as long as the process issuing DosStartSession remains a parent session. When 
all the child sessions for a particular parent session end, the termination queue is closed by the 
Session Manager. An existing queue name must be specified on the next DosStartSession 
function if the caller wants to continue receiving termination notification messages. 

The Session Manager writes a data element into the specified queue when any child session 
ends. The queue is posted regardless of who terminates the child session (for example, child, 
parent, or operator) and whether the termination is normal or abnormal. 

A parent session issues DosReadQueue to receive notification when a child session has ended. 
The word that contains the request parameter, returned by DosReadQueue, will be zero. The 
data element structure has the following format: 

Size 
WORD 
WORD 

Descriotion 
Session ID of child 
Result code 

The process that originally issued DosStartSession should issue DosReadQueue, with the NoWait 
parameter set to zero. This is the only process that has addressability to the notification data 
element. After reading and processing the data element, the caller must free the segment 
containing the data element by issuing DosFreeMem. 

An application may use the termination queue for additional interprocess communication, 
provided that a unique request identifier is passed via DosWriteQueue. Request identifier values 
0 through 99 are reserved for the operating system. Request identifier values equal to or greater 
than 100 are available for application use. 

When a child session ends, the result code returned in the TermQ data element is the result code 
of the program specified by PgmName, assuming either: 

• the program is executed directly, with no intermediate secondary command (CMD.EXE) 
process, or 

• the program is executed indirectly through a secondary command (CMD.EXE) process, and 
the /C parameter is specified. 

Otherwise, the result code of CMD.EXE is returned. 

When a child session is executing in the foreground at the time it ends, the parent session 
becomes the foreground session. When a parent session ends, all child sessions that it created 
with DosStartSession, specifying a value of 1 for Related, are ended. When an independent 
session, created specifying a value of O for Related, ends in the foreground, the Shell selects the 
next foreground session. 

Grandchildren Considerations: 

A session started through DosStartSession may issue DosStartSession. The following rules 
apply: 

• The Sess/D specified on DosSelectSession, DosSetSession, and DosStopSession may only 
be the session identifier (Sess/D) of an immediate child session, not a grandchild session or 
any descendant other than an immediate child session. 

• If a bond is established between session A and its immediate child session B, and if another 
bond is established between session B and its immediate child session C, then if session A 

2-348 CP Programming Reference 



DosStartSession 
Start Session 

is selected, session C is brought to the foreground. Refer to DosSetSession for a description 
of what establishing a bond means. 

• When a session ends, all of its descendants (child sessions, grandchild sessions, and so on) 
are ended. 

Related Functions 
• DosSelectSession 
• DosSetSession 
• DosStopSession 

Example Code 
This example shows how an application starts a program in another session. 

#define INCL_DOSSESMGR 
#include <os2.h> 
#include <stdio.h> 

STARTDATA 
ULONG 
PIO 
UC HAR 
UC HAR 
UC HAR 
APIRET 

StartData; 
SessIO; 
PIO; 
PgmTi tl e[4G]; 
PgmName[80]; 
ObjBuf (100]; 
re; 

/* Session Manager values */ 

/* Start session data structure */ 
/* Session ID (returned) */ 
/* Process ID (returned) */ 
/* Program title string */ 
/* Program pathname string */ 
/* Object buffer */ 
/* Return code */ 

/* Specify the various session start parameters */ 

StartData.Length = sizeof(STARTDATA); 
/* Length of STARTDATA structure */ 

StartData.Related = SSF_RELATED_CHILD; 
/* Child session */ 

StartData.FgBg = SSF_FGBG_BACK; 
/* Start child session in background */ 

StartData.TraceOpt = SSF_TRACEOPT_NONE; 
/* Don't trace session */ 

strcpy(PgmTitle, "Sample Program"); 
StartData.PgmTitle = PgmTitle; 

/* Session Title string */ 

strcpy(PgmName, "D:\ \PROG\ \UTIL\ \SAMPLE!. EXE"); 
StartData.PgmName = PgmName; 

/* Program path-name string */ 

StartData.Pgminputs = 0; 
/* Assume no input arguments need */ 
/* be passed to the program */ 

StartData.TermQ = 0; /*Assume no termination queue*/ 

StartData.Environment = G; 
/* Assume no environment string */ 

StartData.InheritOpt = SSF_INHERTOPT_PARENT; 
/* Inherit environment and open */ 
/* file handles from parent */ 

Chapter 2. Control Program Functions 2-349 



DosStartSession 
Start Session 

StartData.SessionType = SSF_TYPE_DEFAULT; 
/*Allow the Shell to establish*/ 
/* the session type */ 

StartData.IconFile = 0; 
/* Assume no specific icon file */ 
/* is provided */ 

StartData.PgmHandle = 0; 
/* Do not use the installation file */ 

StartData.PgmControl = SSF CONTROL VISIBLE 
1-SSF_CONTROL_MAXIMIZE; 

/* Start the program as visible */ 
/* and maximized */ 

StartData.InitXPos = 30; 
StartData.InitYPos = 40; 
StartData.InitXSize = 200; 
StartData.InitYSize = 140; 

/* Initial window coordinates */ 
/* and size *I 

StartData.Reserved = 0; 
/* Reserved, must be zero */ 

StartData.ObjectBuffer = ObjBuf; 
/* Object buffer to hold DosExecPgm */ 
/* failure causes *I 

StartData.ObjectBuffLen = 100; 
/* Size of object buffer */ 

re = DosStartSession(&StartData, &SessID, &PIO); 

if (re I= 0) 
{ 

/* On successful return, the variable */ 
/* SessID contains the session ID */ 
/* of the new session, and the */ 
/* variable PIO contains the process */ 
/* ID of the new process */ 

printf("DosStartSession error: return code= %ld", re); 
return; 

} 

2-350 CP Programming Reference 



#define INCL_DOSDATETIME 

DosStartTimer 
Start an Asychronous Timer 

APIRET DosStartTlmer (ULONG ulTlmelnterval, HSEM hsemSemHandle, PHTIMER ppHandle) 

DosStartTimer starts an asynchronous, repeated-interval timer. 

Parameters 
ulTlmelnterval (ULONG) - input 

The time, in milliseconds, that will elapse between postings of the event semaphore specified by 
SemHandle. (The system rounds this value up to the next clock tick.) 

hsemSemHandle (HSEM) - input 

The handle of the event semaphore that is posted each time Timelnterval elaps·es. This 
semaphore must be a shared event semaphore. It should be reset between postings by calling 
DosResetEventSem 

ppHandle (PHTIMER) - output 

A pointer to the timer handle. This handle can be passed to DosStopTimer to stop the 
repeated-interval timer. 

Returns 
Return Code. 

DosStartTimer returns the following values: 

0 NO_ERROR 
323 ERROR_TS_SEMHANDLE 
324 ERROR_TS_NOTIMER 

Remarks 
DosStartTimer starts an asynchronous, repeated-interval timer, and posts an event semaphore each 
time the specified time interval expires. 

Time intervals for DosStartTimer, DosAsyncTimer, and DosSleep are specified in milliseconds; 
however, it is important to recognize that the actual duration of the specified time interval will be 
affected by two factors: 

• First, the system clock keeps track of time in less precise units known as clock ticks. The 
duration of a clock tick depends on the frequency of the system-clock interrupt that is used by 
your computer. (To determine the duration of the clock tick on your computer, issue 
DosQuerySyslnfo and examine the timer-interval field.) 

Because clock ticks are less precise than millisecond values, any time interval that is specified 
in milliseconds will be rounded up to the next clock tick. 

• Second, because the system is a priority-based, multitasking operating system, there is no 
guarantee that a thread will resume immediately after the timer interval expires. If a 
higher-priority process or thread is running, or if a hardware interrupt occurs, the timed thread 
blocks. (To minimize the inaccuracy caused by preemptive schedul1ng, an application can 
dedicate a thread to managing time-critical tasks and then raise that thread to a higher priority.) 

These factors usually cause the timer interval to be longer than requested; however, it will generally 
be within a few clock ticks. 

Chapter 2. Control Program Functions 2-351 



DosStartTimer -
Start an Asychronous Timer 

Related Functions 
• DosAsyncTimer 
• DosGetDateTime 
• DosSetDateTime 
• DosSleep 
• DosStopTimer 
• DosCreateEventSem 
• DosOpenEventSem 
• DosResetEventSem 
• DosWaitEventSem 

Example Code 
This example starts a periodic interval timer that runs asychronously to the calling thread. Each 
time the interval timer counts down to zero, it posts the specified event semaphore and then begins 
counting down again from the initial time value. Assume that the handle of the targeted event 
semaphore has been placed into SemHandle already. 

#define INCL_DOSDATETIME /* Date and time values */ 
#include <os2.h> 
#include <stdio.h> 

ULONG 
HSEM 
HTIMER 
APIRET 

Timelnterval; /*Interval (milliseconds) */ 
SemHandle; /* Event-semaphore handle */ 
Handle; /* Timer handle (returned) */ 
re; /* Return code */ 

Timelnterval = 30000; /* Set the periodic time interval to */ 
/* elapse every 30 seconds */ 

re= DosStartTimer(Timeinterval, SemHandle, &Handle); 

if (re != 0) 
{ 

/* On successful return, the variable */ 
/* Handle will contain the handle */ 
/* of this periodic timer. */ 
/* DosStopTimer can be used later */ 
/* to stop the periodic timer. */ 

printf("DosStartTimer error: return code= %ld", re); 
return; 

} 

2-352 CP Programming Reference 



#define INCL_DOSSESMGR 

DosStopSession 
Stop Session 

APIRET DosSlopSesslon (ULONG ulTargetOpllon, ULONG ulSesslD) 

DosStopSession ends one or all child sessions. 

Parameters 
ulTargetOpllon (ULONG) - input 

Specifies whether only the session specified by Sess/D, or all sessions, should be ended, as 

follows: 

Definition Value 

0 

1 

(STOP _SESSION_SPECIFIED) Ends only the specified session. 

(STOP _SESSION_ALL) Ends all sessions. 

ulSesslD (ULONG) - input 

The identifier of the session to be ended. The value specified for Sess/D must have been 

returned on a previous call to DosStartSession. Sess/D is ignored if TargetOption is equal to 1. 

Returns 
Return code 

DosStopSession returns the following values: 

0 NO_ERROR 
369 ERROR_SMG_INVALID_SESSION_ID 
418 ERROR_SMG_INVALID_CALL 
458 ERROR_SMG_INVALID_STOP _OPTION 
459 ERROR_SMG_BAD_RESERVE 
460 ERROR_SMG_PROCESS_NOT _PARENT 

463 ERROR_SMG_RETRY_SUB_ALLOC 

Remarks 
DosStopSession ends one or all child sessions. 

DosStopSession may only be issued by a parent session for a child session. Neither the parent 

session itself nor any grandchild, nor any other descendant session beyond a child session, may be 

the target of this function. DosStopSession may only be issued by the process that originally started 

the specified session (Sess/D) with DosStartSession. 

DosStopSession may only be used to end child sessions that were originally started by the caller 

with DosStartSession specifying a value of 1 for Related. That is, sessions started as independent 

sessions may not be stopped. 

If the child session specified with DosStopSession has related sessions, these sessions will also be 

ended. 

If a child session is executing in the foreground at the time it is ended, the parent session becomes 

the foreground session. DosStopSession breaks any bond that existed between the parent session 

and the specified child session. 

A parent session may be executing in either the foreground or background when DosStopSession is 

issued. 

Chapter 2. Control Program Functions 2-353 



DosStopSession 
Stop Session 

Since any process executing in the specified session may refuse to end, the only way to guarantee 
that the target session has ended is to wait for notification through the termination queue specified 
with DosStartSession. 

Related Functions 
• DosSelectSession 
• DosSetSession 
• DosStartSession 

Example Code 
This example shows how a parent session ends all of its child sessions. 

#define INCL_DOSSESMGR 
#include <os2.h> 
#include <stdio.h> 

/* Session Manager values */ 

ULONG 
ULONG 
APIRET 

TargetOption; /* Target option */ 
SessID; /* Session identifier */ 
re; /* Return code */ 

TargetOption = 1; /* Indicate that all child sessions */ 
/* are to be ended *I 

SessID = 0; /* Unused, because target option 1 */ 
/* i s chosen *I 

re= DosStopSession(TargetOption, SessID); 

if (re != 0) 
{ 

} 

printf("DosStopSession error: return code= %ld 11
, re); 

return; 

2-354 CP Programming Reference 



#define INCL_DOSDATETIME 

APIRET DosStopTlmer (HTIMER htlmerHandle) 

DosStopTimer stops an asynchronous timer. 

Parameters 
htlmerHandle (HTIMER) - input 

The handle of the timer to stop. 

Returns 
Return Code. 

DosStopTimer returns the following values: 

0 NO_ERROR 
326 ERROR_ TS_HANDLE 

Remarks 

DosStopTimer -
Stop an Asynchronous Timer 

DosStopTimer stops either a repeated-interval timer (started by DosStartTimer), or a single-interval 
timer (started by DosAsyncTimer). 

When DosStopTimer is called, no assumption can be made about the state of the event semaphore 
that is associated with the timer. If the application is going to reuse the semaphore in conjunction 
with another timer, it should issue DosResetEventSem to ensure that the semaphore is in the "reset" 
state before starting the timer. 

Related Functions 
• DosAsyncTimer 
• DosGetDateTime 
• DosSetDateTime 
• DosSleep 
• DosStartTimer 

Chapter 2. Control Program Functions 2-355 



DosStopTimer -
Stop an Asynchronous Timer 

Example Code 
This example stops a periodic timer that had been started previously with DosStartTimer. Assume 
that the handle of the periodic timer has been placed into Handle already. 

#define INCL_DOSDATETIME /* Date and time values */ 
#include <os2.h> 
#include <stdio.h> 

HTIMER Handle; 
APIRET re; 

/* Handle of the timer */ 
/* Return code */ 

re= DosStopTimer(Handle); 

if (re != C:l) 
{ 

} 

printf( 11 DosStopTimer error: return code= %ld 11
, re); 

return; 

2-356 CP Programming Reference 



DosSubAllocMem -
Allocate a Block of Memory from a Memory Pool 

#define INCL_DOSMEMMGR 

APIRET DosSubAllocMem (PVOID pOffset, PPVOID ppBlockOffset, ULONG ulSlze) 

DosSubAllocMem allocates a block of memory from a memory pool that was previously initialized by 
DosSubSetMem. 

Parameters 
pOffset (PVOID) - input 

The offset to the memory pool from which the block should be allocated. 

ppBlockOffset (PPVOID) - output 

The address of a doubleword in which the offset of the allocated memory block is returned. 

ulSlze (ULONG) - input 

The size, in bytes, of the memory block requested. 

Returns 
Return Code. 

DosSubAllocMem returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
311 ERROR_DOSSUB_NOMEM 
532 ERROR_DOSSUB_CORRUPTED 

Remarks 
DosSubAllocMem allocates a block of memory from a memory pool previously initialized by 
DosSubSetMem. 

Allocation size should be a multiple of 8 bytes, otherwise it will be rounded up. The maximum value 
for Size is the size of the memory pool initialized by DosSubSetMem minus 64 bytes. 

Related Functions 
• DosSubFreeMem 
• DosSubSetMem 
• DosSubUnsetMem 

Chapter 2. Control Program Functions 2-357 



DosSubAllocMem -
Allocate a Block of Memory from a Memory Pool 

Example Code 
This example allocates a block of memory from a memory pool that was previously initialized by 
DosSubSetMem. Assume that the Offset variable has been set to the address of the initialized 
memory pool al ready. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID Offset; /* Offset to the memory pool from which 
the memory block is to be allocated */ 

PPVOID BlockOffset; /* Pointer to the variable where the 
offset of the suballocated memory 
block is returned */ 

ULONG Size; /* Size in bytes of the memory 
block requested */ 

APIRET re; /* Return code */ 

Size = 102; /*Ask for 102 bytes. This will be 
/* rounded to 104 bytes (a multiple 
/* of 8 bytes). 

re = DosSubAllocMem(Offset, BlockOffset, Size); 

if (re != 0) 
{ 

/* On return, the BlockOffset variable */ 
/* will contain the address of the */ 
/* allocated block (from the memory */ 
/* pool). */ 

printf( 11 DosSubAllocMem error: return code = %ld", re); 
return; 

} 

2-358 CP Programming Reference 

*/ 
*/ 
*/ 



DosSubFreeMem -
Free Suballocated Block of Memory 

#define INCL DOSMEMMGR 

APIRET DosSubFreeMem (PVOID pOffset, PVOID pBlockOffset, ULONG ulSlze) 

DosSubFreeMem frees a block of memory that was previously allocated by DosSubAllocMem. 

Parameters 
pOffset (PVOID) - input 

The offset of the memory pool to which the block is to be freed. 

pBlockOffset (PVOID) - input 

The offset of the memory block to be freed. The value specified must equal the BlockOffset 
value returned on a previous DosSubAllocMem function. 

ulSlze (ULONG) - input 

The size, in bytes, of the memory block to be freed. 

Returns 
Return Code. 

DosSubFreeMem returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
312 ERROR_DOSSUB_OVERLAP 
532 ERROR_DOSSUB_ CORRUPTED 

Remarks 
DosSubFreeMem frees a block of memory that was previously allocated by DosSubAllocMem. 

Size should be a multiple of 8 bytes, otherwise it will be rounded up. The maximum value for the 
Size parameter is the size of the memory pool initialized by DosSubSetMem minus 64 bytes. 

Related Functions 
• DosSubAllocMem 
• DosSubSetMem 
• DosSubUnsetMem 

Chapter 2. Control Program Functions 2-359 



DosSubFreeMem -
Free Suballocated Block of Memory 

Example Code 
This example frees a block of memory that was previously allocated from a memory pool. 
DosSubFreeMem returns the block to the memory pool. Assume that the Offset variable has been 
previously set to the address of the initialized memory pool, and that the BlockOffset variable has 
been previously set to the address of the block to be returned to the memory pool. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID Offset; /* Offset of the memory 
pool to which the block 
is to be freed */ 

PVOID BlockOffset; /* Offset of memory 
block to be freed */ 

ULONG Size; /* Size in bytes of 
block to be freed */ 

APIRET re; /* Return code */ 

Size = 102; /* Return 102 bytes. This will be 
/* _ rounded to 104 bytes (a multiple 
/* of 8 bytes). 

re= DosSubFreeMem(Offset, BlockOffset, Size); 

if (re != 0) 
{ 

} 

printf("DosSubFreeMem error: return code= %ld", re); 
return; 

2-360 CP Programming Reference 

*/ 
*/ 
*/ 



DosSubSetMem 
Set a Memory Pool 

#define INCL_DOSMEMMGR 

APIRET DosSubSetMem (PVOID pOffset, ULONG ulFlags, ULONG ulSlze) 

DosSubSetMem initializes a memory pool for suballocation, or increases the size of a previously 
initialized memory pool. 

Parameters 
pOffset (PVOID) - input 

The address of the memory pool to be used for suballocation. 

ulFlags (ULONG) - input 

Indicators describing the characteristics of the memory object that is being suballocated. 

Bit 0 DOSSUB_INIT (Ox00000001): This bit must be set to initialize a memory object for 
suballocation. Otherwise, the request is to attach a process to a shared memory 
pool that was previously initialized by another process using DosSubSetMem. 

Bit 1 DOSSUB_GROW (Ox00000002): If this bit is set, then the request is to increase the 
size of the memory pool being managed. Bit O then has no meaning. 

Bit 2 DOSSUB_SPARSE_OBJ (Ox00000004): Bit 2 is set if the requester wants a 
suballocation function to manage the commitment of the pages spanned by the 
memory pool. 

All of the pages spanned by the object must be initially uncommitted. If this bit is 
clear, the suballocation function assumes that all of the pages spanned by the 
memory pool are valid and committed. 

For a DosSubSetMem(Grow) request, the setting of this bit should be the same as 
when the memory pool was initialized. Otherwise, an error is returned. 

Bit 3 DOSSUB_SERIALIZE (Ox00000008): This bit is set if the requester requires access to 
the memory pool to be serialized. 

For shared memory pools, the first DosSubSetMem(lnit or Serialize) request causes 
the memory pool to be created and opened for the requesting process. 

Subsequent DosSubSetMem(Attach or Serialize) requests cause the shared memory 
pool to be attached to the requesting process. The requesting process must first 
gain access to the memory object that the pool resides in. DosSubSetMem(Attach) 
is indicated when bit 0 is off. 

On a DosSubSetMem(Grow) request, bit 3 should be the same as when the memory 
pool was initialized, or an error is returned. 

ulSize (ULONG) - input 

The size, in bytes, of the memory pool. If the size is not a multiple of 8 bytes, it is rounded down 
to a multiple of 8. 

Returns 
Return Code. 

DosSubSetMem returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 
310 ERROR_DOSSUB_SHRINK 

Chapter 2. Control Program Functions 2-361 



DosSubSetMem 
Set a Memory Pool 

Remarks 
DosSubSetMem initializes a memory pool for suballocation, or increases the size of a previously 
initialized memory pool. 

The requester must first allocate or gain access to the memory object in which the memory pool 
resides using one of the memory-management function calls. 

All calls to DosSubSetMem must eventually be followed by a call to DosSubUnsetMem. This is 
necessary to allow the suballocation function to reset resources used to manage the memory pool. 

The size of suballocation control information in the memory pool is 64 bytes. Therefore, the 
minimum size for DosSubSetMem is 72 bytes. 

The requester should not issue DosSetMem or change the attributes of any pages spanned by a 
memory object that the suballocation function is managing. Otherwise, unpredictable results may 
occur. 

All the pages spanned by the memory pool must have the same attributes. At least Read/Write 
access must have been requested for the pages spanned by the memory pool when the memory is 
allocated. 

The DosSubSetMem(Grow) function is closely related to the memory and performance requirements 
of the requester as follows: 

• If the requester requires the best performance possible on DosSubAllocMem and 
DosSubFreeMem functions, and a guarantee that those requests will not fail due to a lack of 
space on the swap device, the requester should not use the Sparse feature, because the 
suballocation function will dynamically commit pages and request swap file storage. 

This type of requester may wish to notify the suballocation function later that more committed 
memory is now available for the memory pool by using the DosSubSetMem(Grow) function. 

• Most requesters do not have this kind of requirement. They should allow the suballocation 
function to manage the pages occupied by the memory pool, and they should initialize it with the 
Sparse attribute. This type of requester should not have to issue a DosSubSetMem(Grow) 
function later. 

Related Functions 
• DosSubAllocMem 
• DosSubFreeMem 
• DosSubUnsetMem 

2-362 CP Programming Reference 



Example Code 

DosSubSetMem -
Set a Memory Pool 

This example initializes a memory pool. Assume that a memory object was previously allocated for 
the pool, and that the Offset variable was previously loaded with the virtual address of the memory 
object. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID Offset; /* Address of the memory pool to be 
used for suballocation */ 

ULONG Flags; /* Flags describing the memory object 
that is being suballocated */ 

ULONG Size; /* Size in bytes of 
the memory pool */ 

APIRET re; /* Return code */ 

Size = 20002; /* Indicate a memory pool size of 20002 */ 
/* bytes, which will be rounded down to */ 
/* 20000 bytes (a multiple of a bytes) */ 

Flags = DOSSUB_INIT I DOSSUB_SPARSE_OBJ; 
/* Indicate that the memory pool is to */ 
/* be initialized, and that memory */ 
/* commitment is to be managed */ 
/* internally within subsequent */ 
/* DosSubAllocMem calls */ 

re= DosSubSetMem(Offset, Flags, Size); 

if (re != 0) 
{ 

printf( 11 DosSubSetMem error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-363 



DosSubUnsetMem -
End the Use of a Memory Pool 

#define INCL_DOSMEMMGR 

APIRET DosSubUnsetMem (PVOID pOffset) 

DosSubUnsetMem ends the use of a memory pool. 

Parameters 
pOffset (PVOID) - input 

The offset of the memory pool whose use is being terminated. 

Returns 
Return Code. 

DosSubUnsetMem returns the following values: 

0 NO_ERROR 
532 ERROR_DOSSUB_CORRUPTED 

Remarks 
DosSubUnsetMem ends the use of a memory pool. 

All calls to DosSubSetMem must eventually be followed by a call to DosSubUnsetMem. 

This call allows the suballocation function to release the resources that it used to manage the 
suballocation of the memory object. The call to DosSubUnsetMem must occur before the memory 
object is freed. 

Related Functions 
• DosSubAllocMem 
• DosSubFreeMem 
• DosSubSetMem 

2-364 CP Programming Reference 



Example Code 

DosSubUnsetMem -

End the Use of a Memory Pool 

This example shows the termination of a memory pool. Assume that the address of the memory pool 

was placed into Offset already. 

#define INCL_DOSMEMMGR /* Memory Manager values */ 
#include <os2.h> 
#include <stdio.h> 
#include <bsememf .h> /* Get flags for memory management */ 

PVOID Offset; /* Offset of the memory 
pool whose use is 
being tenninated */ 

APIRET re; /* Return code */ 

re= DosSubUnsetMem(Offset); 

if (re ! = e) 
{ 

printf( 11 DosSubUnsetMem error: return code = %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-365 



DosSuspendThread 
Suspend Execution of Another Thread 

#define INCL_DOSPROCESS 

APIRET DosSuspendThread (TID ldThreadlD) 

DosSuspendThread temporarily suspends execution of another thread within the current process 
until DosResumeThread is issued. 

Parameters 
idThreadlD (TIO) - input 

Thread identifier of the thread to be suspended. 

Returns 
Return Code. 

DosSuspendThread returns the following values: 

0 NO_ERROR 
309 ERROR_INVALID_THREADID 

Remarks 
A thread's execution is suspended when another thread in its process issues DosSuspendThread, 
specifying the ID of the target thread. The thread may not be suspended immediately because it may 
have locked some system resources that have to be freed first. However, the thread is not allowed 
to execute further application program instructions until a corresponding DosResumeThread is 
issued. 

DosSuspendThread permits the suspension of only one other thread within the current process. If a 
thread needs to disable all thread switching within its process so that the calling thread can execute 
time-critical code, it issues DosEnterCritSec and DosExitCritSec. 

Related Functions 
• DosCreateThread 
• DosEnterCritSec 
~ DosResumeThread 

2-366 CP Programming Reference 



DosSuspendThread -
Suspend Execution of Another Thread 

Example Code 
This example temporarily suspends the execution of another thread within the same process. A 
subsequent call to DosResumeThread can restart the suspended thread. Assume that the thread ID 
of the target thread has been placed into Thread/D already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

TIO Thread ID; 
APIRET re; 

/* Thread identifier */ 
/* Return code */ 

re= DosSuspendThread(ThreadID); 

if (re != 0) 
{ 

printf("DosSuspendThread error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-367 



DosTransactNPipe -
Perform Transaction on a Named Pipe 

#define INCL_DOSNMPIPES 

APIRET DosTransactNPlpe (HPIPE hplpeHandle, PVOID pOutBuffer, ULONG ulOutBufferlen, 
PVOID plnBuffer, ULONG ullnBufferlen, PULONG pBytesRead) 

DosTransactNPipe writes to a duplex message pipe, then reads from it. 

Parameters 
hplpeHandle (HPIPE) - input 

A named-pipe handle returned by DosCreateNPipe (for a server process) or by DosOpen (for a 
client process). 

pOutBuffer (PVOID) - input 

A pointer to the buffer that is to be written to the pipe. 

ulOulBufferlen (ULONG) - input 

The number of bytes to be written. 

plnBuffer (PVOID) - output 

A pointer to the buffer for returned data. 

ullnBufferLen (ULONG) - input 

The maximum size, in bytes, of returned data. 

pBytesRead (PULONG) - output 

A pointer to the number of bytes read. 

Returns 
Return Code. 

DosTransactNPipe returns the following values: 

0 NO_ERROR 
11 ERROR_BAD_FORMAT 
230 ERROR_BAD_PIPE 
231 ERROR_PIPE_BUSY 
233 ERROR_PIPE_NOT _CONNECTED 
234 ERROR_MORE_DATA 

Remarks 
DosTransactNPipe is intended for use only on a duplex message pipe that is in message-read mode. 
If this function is issued for a pipe that is not a duplex message pipe, ERROR_BAD_FORMAT is 
returned. 

The current setting of the pipe's blocking mode has no effect on this function; that is, even if the pipe 
is in nonblocking mode, DosTransactNPipe writes the entire OutBuffer to the pipe, and does not 
return until it reads a response from the pipe into lnBuffer. If lnBuffer is too small to contain the 
response message, ERROR_MORE_DATA is returned. 

The function does not succeed if there is any unread data in the pipe, or if the pipe is not in 
message-read mode. 

2-368 CP Programming Reference 



Related Functions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNPHState 
• DosSetNPipeSem 
• DosWaitNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 
• DosCreateEventSem 
• DosCloseMuxWaitSem 
• DosWaitEventSem 
• DosWaitMuxWaitSem 

DosTransactNPipe -
Perform Transaction on a Named Pipe 

Chapter 2. Control Program Functions 2-369 



DosTransactNPipe -
Perform Transaction on a Named Pipe 

Example Code 
This example performs a transaction to a named pipe. In the transaction, a message is written to the 
pipe, and then the caller waits until a response message is read from the pipe. 

#define INCL_DOSNMPIPES 
#include <os2.h> 
#include <stdio.h> 

HPIPE Handle; 
UCHAR Out8uffer[800]; 
ULONG OutBufferlen; 
UCHAR In8uffer[800]; 
ULONG InBufferlen; 
ULONG BytesRead; 
APIRET re; 

/* Named-pipe values */ 

/* Pipe handle */ 
/* Write-buffer address */ 
/* Write-buffer length */ 
/* Read-buffer address */ 
/* Read-buffer length */ 
/* Bytes read (returned} */ 
/* Return code */ 

strcpy(OutBuffer,"Conmand 1: Start Proc 111
); 

/* S~t output buffer to contain the */ 
/* desired message to be sent */ 

OutBufferlen = strlen(OutBuffer}; 

InBufferlen = 800; 

/* Set length indicator for output */ 
/* buffer */ 

/* Max data length for input */ 
/* (return} buffer */ 

re = DosTransactNPipe(Handle, OutBuffer, OutBufferlen, InBuffer, 

if (re I= 0) 
{ 

InBufferlen. &BytesRead}; 
/* On successful return, the input */ 
/* buffer (InBuffer} will contain a */ 
/* response message, and the variable */ 
/* BytesRead will contain the size */ 
/* of that response message */ 

printf("DosTransactNPipe error: return code= %ld 11 ,rc}; 
return; 

} 

2-370 CP Programming Reference 



#define INCL_DOSEXCEPTIONS 

DosUnsetExceptionHandler 
Unset Exception Handler 

APIRET DosUnsetExceptionHandler (PEXCEPTIONREGISTRATIONRECORD pppERegRec) 

DosUnsetExceptionHandler removes an exception handler from a thread's chain of exception 
handlers. 

Parameters 
pppERegRec (PEXCEPTIONREGISTRATIONRECORD) - input 

A pointer to the exception registration record that describes the exception handler to be 
unregistered. 

Returns 
Return Code. 

DosUnsetExceptionHandler returns the following values: 

0 NO_ERROR 
87 ERROR_INVALID_PARAMETER 

Remarks 
DosUnsetExceptionHandler deregisters (removes) an exception handler from a thread's chain of 
registered exception handlers. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Related Functions 
• DosAcknowledgeSignalException 
• DosEnterMustComplete 
• DosExitMustComplete 
• DosRaiseException 
• DosSendSignalException 
• DosSetExceptionHandler 
• DosSetSignalExceptionFocus 
• DosUnwindException 

Chapter 2. Control Program Functions 2-371 



DosUnsetExceptionHandler 
Unset Exception Handler 

Example Code 
This example removes an exception handler from the current thread's chain of registered exception 
handlers. 

Assume that the exception registration record is intact from a previous call to 
DosSetExceptionHandler. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

typedef struct SysERegRec { 
PEXCEPTIONREGISTRATIONRECORD plink; 
ULONG (_cdecl *pSysEH)(PEXCEPTIONREPORTRECORD, 

PEXCEPTIONREGISTRATIONRECORD, 
PCONTEXTRECORD, 

} SYSEREGREC; 

SYSEREGREC 
APIRET 

RegRec; 
re; 

PVOID); 

/* Structure to pass to exception handler */ 
/* Return code */ 

re = DosUnsetExceptionHandler((PEXCEPTIONREGISTRATIONRECORD) 
&RegRec); 

if (re != 8) 
{ 

} 

printf("DosUnsetExceptionHandler error: return code= %ld 11
, re); 

return; 

2-372 CP Programming Reference 



DosUnwindException 
Unwind Exception 

#define INCL_DOSEXCEPTIONS 

APIRET DosUnwlndExceptlon (PEXCEPTIONREGISTRATIONRECORD ppphandler, 
PVOID ppTargetlP, PEXCEPTIONREPORTRECORD pppERepRec) 

DosUnwindException calls and removes exception handlers from a thread's chain of exception 
handlers. 

Parameters 
ppphandler (PEXCEPTIONREGISTRATIONRECORD) - input 

This parameter can have one of the following values: 

Value 

Address 

0 

-1 

Definition 

A pointer to the exception registration record where the unwind operation should 
stop. 

(UNWIND_ALL) An exit unwind operation is performed. This removes all 
exception handlers from the thread, and ends the thread. 

(END_OF_CHAIN) All exception handlers for the thread are unwound. 

ppTargetlP (PVOID} - input 

A pointer to where DosUnwindException branches after calling all applicable handlers. 

pppERepRec (PEXCEPTIONREPORTRECORD) - input 

An optional pointer to an exception record. Set this field to zero if it is not used. 

Returns 
Return Code. 

DosUnwindException returns the following values: 

0 
1 

Remarks 

NO_ERROR 
ERROR_INVALID _FUNCTION 

DosUnwindException "unwinds" (calls and removes) exception handlers from a thread's chain of 
registered exception handlers. It can unwind up to but not including a specified exception handler, 
or it can unwind all the exception handlers. 

Each exception handler in the linked list from the Thread Information Block (TIB) is called with the 
unwind bit in the Exception Report Record structure set, indicating an unwind operation. If the call to 
the exception handler returns, the Exception Registration Record is removed from the linked list, and 
the next exception handler is processed. 

For a detailed list of the system exceptions, see Appendix C, "System Exceptions" on page C-1. 

Chapter 2. Control Program Functions 2-373 



DosUnwindException 
Unwind Exception 

Related Functions 
• DosAcknowledgeSignalException 
• DosEnterMustComplete 
• DosExitMustComplete 
• DosRaiseException 
• DosSendSignalException 
• DosSetExceptionHandler 
• DosSetSignalExceptionFocus 
• DosUnsetExceptionHandler 

Example Code 
This example is assumed to be called from within an exception handler. It unwinds the exception 
handlers up to, but not including, the specified exception handler. It caus~s program execution to be 
resumed eventually at the target address that is assumed to have been placed into pTargetlP 
already. Assume that the Exception Registration Record pointer and the Exception Report Record 
pointer were both obtained from the parameters that were passed to the exception handler. 

#define INCL_DOSEXCEPTIONS /* Exception values */ 
#include <os2.h> 
#include <stdio.h> 

PEXCEPTIONREGISTRATIONRECORD phandler; 
/* Pointer to exception registration record 

where unwind should stop */ 
PVOID pTargetIP; /* Pointer to where DosUnwindException branches 

after calling all applicable handlers */ 
PEXCEPTIONREPORTRECORD pERepRec; 

/* Pointer to exception report record */ 

APIRET re; /* Return code */ 

re= DosUnwindException(phandler. pTargetIP. pERepRec); 

if (re != a) 
{ 

} 

printf( 11 DosUnwindException error: return code= %ld".rc); 
return; 

2-374 CP Programming Reference 



DosWaitChild 
Place Current Thread in a Wait State Until Child Process 

Ends 

#define INCL_DOSPROCESS 

APIRET DosWaltChlld (ULONG ulActlonCode, ULONG ulWaltOptlon, 
PRESULTCODES ppReturnCodes, PPID ppRetProcesslD, 
PID ldProcesslD) 

DosWaitChild places the current thread into a wait state until an asynchronous child process ends. 
When the process ends, its process identifier, termination code, and result code are returned to the 
caller. 

Parameters 
ulActlonCode (ULONG) - input 

Indicates which process the current thread is waiting to terminate. The values of this field are 
as follows: 

0 

1 

Definition 

(DCWA_PROCESS): The child process indicated by Process/D. 

(DCWA_PROCESSTREE): The child process indicated by Process/D and all of its 
child processes. 

ulWaltOptlon (ULONG) - input 

Indicates whether to return if no child process ends. The values of this field are as follows: 

0 

Definition 

(DCWW_WAIT): Wait if no child process ends or until no child processes are 
outstanding. 

1 (DCWW_NOWAIT): Do not wait for child processes to end. 

ppReturnCodes (PRESUL TCODES) - output 

Address of the structure that contains the termination code and the result code indicating the 
reason for the child's termination. If no process furnishes a result code, the system provides the 
value -1. 

This structure consists of two doublewords as follows: 

codeTermlnate (ULONG) 
The termination code furnished by the system describing why the child terminated. The 
values of this field are as follows: 

Value 

0 

1 

2 

3 

4 

Definition 

(TC_EXIT): Normal exit 

(TC_HARDERROR): Hard-error halt 

(TC_ TRAP): Trap operation for a 16-bit child process 

(TC_KILLPROCESS): Unintercepted DosKillProcess 

(TC_EXCEPTION): Exception operation for a 32-bit child process 

codeResult (ULONG) 
Result code specified by the terminating process on its last call to DosExit. 

ppRetProcesslD (PPID) - output 

Address of the process identifier of the ending process. 

Chapter 2. Control Program Functions 2-375 



DosWaitChild 
Place Current Thread in a Wait State Until Child Process 
Ends 

ldProcesslD (PIO) - input 

Identifier of the process whose termination is being waited for. The values of this field are as 
follows: 

Value 

0 

<>0 

Returns 

Definition 

Any child process. The current thread waits until any child process that was 
executed with a return code ends, or until there are no more child processes of any 
type to wait for. 

The indicated child process and all its descendants. 

Return Code. 

DosWaitChild returns the following values: 

0 NO_ERROR 
13 ERROR_INVALID_DATA 
128 ERROR_WAIT_NO_CHILDREN 
129 ERROR_CHILD_NOT_COMPLETE 
184 ERROR_NO_CHILD_PROCESS 
303 ERROR_INVALID_PROCID 

Remarks 
DosWaitChild waits for completion of a child process whose execution is asynchronous to that of its 
parent process. The child process is created by DosExecPgm with a value of 2 specified for 
ExecF/ags. If the child process has multiple threads, the result code returned by DosWaitChild is the 
one passed to it by the DosExit request that ends the process. 

DosWaitChild also can wait for the completion of descendant processes of a child process before it 
returns. However, it does not report status for descendant processes. 

If there are no child processes (either active, or ended but with a return code), then DosWaitChild 
returns an error. If no child processes have ended, DosWaitChild can wait until one ends before 
returning to the parent process. 

To verify that a given return code is from a specific child process, the process identifier must be 
checked. 

To wait for all child processes and descendants to end, it is necessary to: 

1. Issue DosWaitChild with a value of O for Process/D (wait until any child process has ended). 

2. When this DosWaitChild returns, issue a DosWaitChild request with Process/D equal to the value 
returned for RetProcess/D on the previous DosWaitChild request, and a value of 1 for 
ActionCode (wait for the indicated process and a// its child processes). 

3. Repeat steps 1 and 2 above until the "No child process exists" return code is received. 

DosWaitChild will wait for any child processes, regardless of whether or not they were executed with 
a result code (by calling DosExecPgm with a value of 2 for ExecF/ags). DosWaitChild will not return 
to the caller until a process with a return code ends, or until there are no more child processes (of 
any type) to wait for. 

2-376 CP Programming Reference 



DosWaitChild -
Place Current Thread in a Wait State Until Child Process 

Ends 

Related Functions 
• DosExecPgm 
• DosExit 
• DosKillProcess 
• DosKillThread 
• DosWaitThread 

Example Code 
This example starts a child session (the program simple.axe) and then waits for the termination of 
the child process. 

Chapter 2. Control Program Functions 2-377 



DosWaitChild -
Place Current Thread in a Wait State Until Child Process 
Ends 

#define. INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread value~ */ 

#ifndef RESULTCODES 
typedef-struct _RESULTCODES { /*Result codes*/ 

ULONG codeTenninate; 
ULONG codeResult; 

/* Tennination Code */ 
/* Exit Code */ 

} RESULTCODES; 
#endif 

#define START_PROGRAM 11 simple.exe11 

CHAR LoadError[l00]; 
PSZ Args; 
PSZ Envs; 
RESULTCODES ReturnCodes; 
ULONG Pid; 
APIRET re; 

/* Process ID (returned) */ 
/* Return code */ 

strcpy(Args. "-a2 -1"); /*Pass arguments '-a2' and '-1' */ 

re = DosExecPgm(LoadError. 
sizeof(LoadError), 

/* Object name buffer */ 
/* Length of object name 

buffer */ 

if (re I= 0) 
{ 

EXEC_ASYNCRESULT, 

Args. 
Envs. 
&ReturnCodes. 
START_PROGRAM); 

/* Asynchronous/Trace 
flags */ 

/* Argument string */ 
/* Environment string */ 
/* Tennination codes */ 
/* Program file name */ 

printf("DosExecPgm error: return code= %ld".rc); 
return; 

} 

re = DosWaitChild(DCWA_PROCESS. /* Execution options */ 

if (re != 0) 
{ 

DCWW_WAIT, /*Wait options */ 
&ReturnCodes. /* Tennination codes */ 
&Pid, /* Process ID (returned) */ 
ReturnCodes.codeTenninate); /* Process ID of .process 

to wait for */ 

printf("DosWaitChild error: return code= %ld 11 ,rc); 
return; 

} 

2-378 CP Programming Reference 



#define INCL DOSSEMAPHORES 

APIRET DosWaltEventSem (HEV hev, ULONG ulTlmeout) 

DosWaitEventSem waits for an event semaphore to be posted. 

Parameters 
hev (HEV) - input 

The handle of the event semaphore to wait for. 

ulTlmeout (ULONG) - input 

DosWaitEventSem 
Wait Event Semaphore 

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the 
thread to be blocked. 

This parameter can also have the following values: 

Definition Value 

0 (SEM_IMMEDIATE_RETURN) DosWaitEventSem returns without blocking the calling 
thread. 

-1 (SEM_INDEFINITE_WAIT) DosWaitEventSem blocks the calling thread indefinitely. 

Returns 
Return Code. 

DosWaitEventSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT_ENOUGH_MEMORY 
95 ERROR_INTERRUPT 
640 ERROR_ TIMEOUT 

Remarks 
DosWaitEventSem enables a thread to wait for an event semaphore to be posted. 

This function can be called by any thread in the process that created the semaphore. Threads in 
other processes can also call this function, but they must first gain access to the semaphore by 
calling DosOpenEventSem. 

Related Functions 
• DosCloseEventSem 
• DosCreateEventSem 
• DosOpenEventSem 
• DosPostEventSem 
• DosQueryEventSem 
• DosResetEventSem 

Chapter 2. Control Program Functions 2-379 



DosWaitEventSem -
Wait Event Semaphore 

Example Code 
This example causes the calling thread to wait until the specified event semaphore is posted. 
Assume that the handle of the semaphore has been placed into hev already. 

u/Timeout is the number of milliseconds that the calling thread will wait for the event semaphore to 
be posted. If the specified event semaphore is not posted during this time interval, the request times 
out. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

#ifndef ERROR_TIMEOUT 
#define ERROR_TIMEOUT 640 
#define ERROR_INTERRUPT 95 

#endif 

HEV hev; 
ULONG ulTimeout; 
APIRET re; 

/* Event semaphore handle */ 
/* Number of milliseconds to wait */ 
/* Return code */ 

ulTimeout = 60000; /* Wait for a maximum of 1 minute */ 

re= DosWaitEventSem(hev, ulTimeout); 

if (re == ERROR TIMEOUT) 
{ -

} 

printf( 11 DosWaitEventSem call timed out 11
); 

return; 

if (re == ERROR INTERRUPT) 
{ -

} 

printf("DosWaitEventSem call was interrupted 11
); 

return; 

if (re != 0) 
{ 

} 

printf( 11 DosWaitEventSem error: return code= %ld 11
, re); 

return; 

2-380 CP Programming Reference 



#define INCL_DOSSEMAPHORES 

DosWaitMuxWaitSem 
Wait MuxWait Semaphore 

APIRET DosWaltMuxWaltSem (HMUX hmux, ULONG ulTimeout, PULONG pUser) 

DosWaitMuxWaitSem waits for a muxwait semaphore to clear. 

Parameters 
hmux (HMUX) - input 

The handle of the muxwait semaphore to wait for. 

ulTimeout (ULONG) - input 

The time-out in milliseconds. This is the maximum amount of time the user wants to allow the 
thread to be blocked. 

This parameter can also have the following values: 

Definition 

0 (SEM_IMMEDIATE_RETURN) DosWaitMuxWaitSem returns without blocking the 
calling thread. 

-1 (SEM_INDEFINITE_WAIT) DosWaitMuxWaitSem blocks the calling thread 
indefinitely. 

pUser (PULONG) - output 

A pointer to receive the user field (from the muxwait semaphore data structure) of the 
semaphore that was posted or released. 

If DCMW_WAIT_ANY was specified in the f/Attr parameter when the muxwait semaphore was 
created, this will be the user field of the semaphore that was posted or released. If the muxwait 
semaphore consists of mutex semaphores, any mutex semaphore that is released is owned by 
the caller. 

If DCMW_WAIT_ALL was specified in the f/Attr parameter when the muxwait semaphore was 
created, this will be the user field of the last semaphore that was posted or released. (If the 
thread did not block, the last semaphore that was posted or released will also be the last 
semaphore in the muxwait-semaphore list.) If the muxwait semaphore consists of mutex 
semaphores, all of the mutex semaphores that are released are owned by the caller. 

Returns 
Return Code. 

DosWaitMuxWaitSem returns the following values: 

0 NO_ERROR 
6 ERROR_INVALID_HANDLE 
8 ERROR_NOT_ENOUGH_MEMORY 
87 ERROR_INVALID_PARAMETER 
95 ERROR_INTERRUPT 
103 ERROR_TOO_MANY _SEM_REQUESTS 
105 ERROR_SEM_OWNER_DIED 
286 ERROR_EMPTY _MUXWAIT 
287 ERROR_MUTEX_OWNED 
292 ERROR_ WRONG_ TYPE 
640 ERROR_TIMEOUT 

Chapter 2. Control Program Functions 2-381 



DosWaitMuxWaitSem 
Wait MuxWait Semaphore 

Remarks 
DosWaitMuxWaitSem enables a thread to wait for a muxwait semaphore to clear. 

This function can be issued by any thread in the process that created the semaphore. Threads in 
other processes can also issue this function, but they must first gain access to the semaphore by 
issuing DosOpenMuxWaitSem. 

Related Functions 
• DosAddMuxWaitSem 
• DosCloseMuxWaitSem 
• DosCreateMuxWaitSem 
• DosDeleteMuxWaitSem 
• DosOpenMuxWaitSem 
• DosQueryMuxWaitSem 

Example Code 
This example waits for a muxwait semaphore to clear. Assume that the handle of the semaphore has 
been placed into hmux already. 

u/Timeout is the number of milliseconds that the calling thread will wait for the muxwait semaphore 
to clear. If the specified muxwait semaphore is not cleared during this time interval, the request 
times out. 

#define INCL_DOSSEMAPHORES /* Semaphore values */ 
#include <os2.h> 
#include <stdio.h> 

#ifndef ERROR_TIMEOUT 
#define ERROR_TIMEOUT 649 
#define ERROR_INTERRUPT 95 

#endif 

HMUX 
ULONG 
ULONG 

APIRET 

hmux; 
ulTimeout; 
ulUser; 

re; 

/* Muxwait semaphore handle */ 
/*Number of milliseconds to wait*/ 
/* User field for the semaphore that was 

posted or released (returned) */ 
/* Return code */ 

ulTimeout = 6eeee; /* Wait for a maximum of 1 minute */ 

re= DosWaitMuxWaitSem(hmux, ulTimeout, &ulUser); 
/* On successful return, the ulUser */ 
/* variable contains the user */ 
/* identifier of the semaphore */ 
/* that caused the wait to */ 
/* tenninate. If the caller had */ 
/* to wait for all the semaphores */ 
/* within the muxwait semaphore to */ 
/* clear, then the value corresponds */ 
/* to the last semaphore within the */ 
/* muxwait semaphore to clear. If */ 
/* the caller had to wait for any */ 
/* semaphore with the muxwait */ 
/* semaphore to clear, then the */ 
/* value corresponds to that */ 
/* semaphore. *I 

if (re == ERROR_TIMEOUT) 
{ 

printf( 11 DosWaitMuxWaitSem call timed out 11
); 

2-382 CP Programming Reference 



return; 
} 

DosWaitMuxWaitSem -
Wait MuxWait Semaphore 

if (re == ERROR_INTERRUPT) 
{ 

} 

printf("DosWaitMuxWaitSem call was interrupted"); 
return; 

if (re != 0) 
{ 

} 

printf("DosWaitMuxWaitSem error: return code= %ld 11
, re); 

return; 

Chapter 2. Control Program Functions 2-383 



DosWaitNPipe 
Wait Named Pipe Instance 

#define INCL_DOSNMPIPES 

APIRET DosWaltNPlpe (PSZ pszFlleName, ULONG ulTlmeOut) 

DosWaitNPipe waits for a named-pipe instance to become available. 

Parameters 
pszFlleName (PSZ) - input 

A pointer to the ASCllZ name of the pipe to be opened. 

ulTlmeOut (ULONG) - input 

The maximum time, in milliseconds, to wait for a named-pipe instance to become available. 
When a value of O is specified, DosWaitNPipe uses the value of Timeout that was specified when 

the pipe was created with DosCreateNPipe. When a value of -1 is specified, DosWaitNPipe waits 

indefinitely. 

Returns 
Return Code. 

DosWaitNPipe returns the following values: 

0 NO_ERROR 
2 ERROR_FILE_NOT _FOUND 
95 ERROR_INTERRUPT 
231 ERROR_PIPE_BUSY 

Remarks 
DosWaitNPipe enables a client process to wait for a named-pipe instance to become available when 

all instances are busy. It should be used only when ERROR_PIPE_BUSY is returned from a call to 

Dos Open. 

The Timeout parameter of DosWaitNPipe places a limit on the amount of time the calling process 

waits for a named-pipe instance to become available, as follows: 

• If the time limit is reached before a pipe instance becomes available, ERROR_PIPE_BUSY is 

returned. 

• If a time limit of 0 is specified, the system uses the default time-out value that was specified 
when the pipe was created with DosCreateNPipe. 

• If a time limit of -1 is specified, DosWaitNPipe waits indefinitely. 

If DosWaitNPipe is successful, the client must again call DosOpen to gain access to the pipe 

instance. 

If more than one client process is blocked on a DosWaitNPipe request, the system gives the next 

available pipe instance to the process whose thread has the highest priority. If all of the waiting 

threads have the same priority, the thread that has been waiting the longest receives the next pipe 

instance. 

Note: The priority of a thread can be changed by calling DosSetPriority. 

2-384 CP Programming Reference 



Related Ful)ctions 
• DosCallNPipe 
• DosConnectNPipe 
• DosCreateNPipe 
• DosDisConnectNPipe 
• DosPeekNPipe 
• DosQueryNPHState 
• DosQueryNPipelnfo 
• DosQueryNPipeSemState 
• DosSetNPHState 
• DosSetNPipeSem 
• DosTransactNPipe 
• DosClose 
• DosDupHandle 
• DosOpen 
• DosRead 
• DosResetBuffer 
• DosWrite 

Example Code 

DosWaitNPipe 
Wait Named Pipe Instance 

This example waits for an available instance of a named pipe. The example assumes that an attempt 

to connect to a named pipe through a call to DosOpen ended with a "pipe busy" error return code. In 

such cases, a process can wait for an available instance of the named pipe by issuing DosWaitNPipe. 

#define INCL_DOSNMPIPES /* Named-pipe values */ 
#include <os2.h> 
#include <stdio.h> 

UC HAR 
ULONG 
APIRET 

FileName[40]; /*Pipe name*/ 
Timeout; /* Maximum wait time */ 
re; /* Return code */ 

strcpy(Fil eName, 11
\ \PIPE\ \PIPEP); 

Timeout = 30000; /* Wait for up to thirty seconds to */ 
/* connect to the named pipe (units */ 
/* are in milliseconds) */ 

re= DosWaitNPipe(FileName, Timeout); 

if (re ! = 0) 
{ 

printf( 11 DosWaitNPipe error: return code= %ld 11 ,rc); 
return; 

} 

Chapter 2. Control Program Functions 2-385 



DosWaitThread 
Place Current Thread into a Wait State 

#define INCL DOSPROCESS 

APIRET DosWaltThread (PTID ppThreadlD, ULONG ulWaltOptlon) 

DosWaitThread places the current thread into a wait state until another thread in the current process 
has ended. It then returns the thread identifier of the ending thread. 

Parameters 
ppThreadlD (PTID) - input/output 

On input, the address of the ThreadlD of the thread of interest. If Thread/Dis zero, the current 
thread waits until the next thread in the process has ended. If ThreadlD is non-zero, the current 
thread waits until the indicated thread has ended. 

On output, the ThreadlD of the ended thread is returned in this field. 

ulWaitOption (ULONG) - input 

Indicates whether to return if no thread has ended. The values of this field are as follows: 

Value 

0 

1 

Returns 

Definition 

(DCWW_WAIT): The current thread waits until a thread ends. If a thread has already 
ended, the call returns immediately with the Thread/D. 

(DCWW_NOWAIT): The current thread does not wait if no threads have ended. 

Return Code. 

DosWaitThread returns the following values: 

0 NO_ERROR , 
294 ERROR_THREAD_NOT_TERMINATED 
309 ERROR_INVALID_THREADID 

Remarks 
DosWaitThread is used to wait for termination of threads within a process. It is usually used so that 
thread resources (for example, the stack) can be recovered. when a thread ends. DosWaitThread 
waits on any thread within the current process, or on a specific thread within the process, based on 
the ThreadlD parameter's contents. WaitOption allows the caller the option of waiting until a thread 
ends, or getting immediate return and status. If no thread has ended and the NoWait option is 
specified, the Thread/D field is preserved. 

If DosWaitThread is called with the input ThreadlD set to the current thread (the thread attempts to 
wait on its own termination), the ERROR_INVALID_THREADID error code is returned. 
ERROR_INVALID_THREADID is also returned if a caller attempts to wait on the termination of the 
thread with a ThreadlD of 1. 

Related Functions 
• DosCreateThread 
• DosKillThread 
• DosWaitChild 

2-386 CP Programming Reference 



Example Code 

DosWaitThread -
Place Current Thread into a Wait State 

This example places the calling thread into a wait state until a specified thread has ended. Assume 
that the thread ID of the specified thread has been placed into Thread/D already. 

#define INCL_DOSPROCESS 
#include <os2.h> 
#include <stdio.h> 

/* Process and thread values */ 

TIO Thread ID; 

ULONG WaitOption; 
APIRET re; 

WaitOption = 0; 

/* Identifier of the thread 
to wait on */ 

/* Wait options */ 
/* Return code */ 

/* Indicate that the calling thread */ 
/* intends to wait until the */ 
/* specified thread has ended */ 

re= DosWaitThread(&ThreadID, WaitOption); 

if (re I= 0) 
{ 

printf("DosWaitThread error: return code= %ld 11
, re); 

return; 
} 

Chapter 2. Control Program Functions 2-387 



Dos Write 
Write to a File from a Buffer 

#define INCL DOSFILEMGR 

APIRET DosWrlte (HFILE FlleHandle, PVOID pBulferArea, ULONG ulBulferlength, 
PULONG pBytesWrltten) 

DosWrite writes a specified number of bytes from a buffer to the specified file. 

Parameters 
FlleHandle (HFILE) - input 

File handle from DosOpen. 

pBulferArea (PVOID) - input 

Address of the buffer that contains the data to write. 

ulBufferlength (ULONG) - input 

Number of bytes to write. 

pBytesWrltten (PULONG) - output 

Address of the variable to receive the number of bytes actually written. 

Returns 
Return Code. 

DosWrite returns the following values: 

0 NO_ERROR 
5 ERROR_ACCESS_DENIED 
6 ERROR_INVALID_HANDLE 
19 ERROR_WRITE_PROTECT 
26 ERROR_NOT_DOS_DISK 
29 ERROR_WRITE_FAULT 
33 ERROR_LOCK_ VIOLATION 
109 ERROR_BROKEN_PIPE 

Remarks 
DosWrite begins to write at the current file-pointer position. The file pointer is automatically moved 
by read and write operations. It can be moved to a desired position by issuing DosSetFilePtr. 

If the specified file has been opened using the write-through flag, DosWrite writes the data to the disk 
before returning. Upon return to the caller, BytesWritten contains the number of bytes actually 
written. 

If there is not enough space on the disk or diskette to write all of the bytes specified by BufferLength, 
then DosWrite does not write any bytes. Upon return to the caller, BytesWritten contains zero. 

A value of zero for BufferLength is not considered an error. No data transfer occurs, and there is no 
effect on the file or the file pointer. 

If the file is read-only, the write operation to the file is not performed. 

If you issue DosOpen with the Direct Open flag set to 1 in the OpenMode parameter, you have direct 
access to an entire disk or diskette volume, independent of the file system. You must lock the logical 
volume before accessing it, and you must unlock the logical volume when you are finished accessing 
it. Issue DosDevlOCtl for Category 8, Function 0 to lock the logical volume, and for Category 8, 

2-388 CP Programming Reference 



Dos Write 
Write to a File from a Buffer 

Function 1 to unlock the logical volume. While the logical volume is locked, no other process can 

access it. 

Named-Pipe Considerations 

DosWrite also is used to write bytes or messages to a named pipe. 

Each write operation to a message pipe writes a message whose size is the length of the write 

operation. DosWrite automatically encodes message lengths in the pipe, so applications need not 

encode this information in the buffer being written. 

Write operations in blocking mode always write all requested bytes before returning. 

In nonblocking mode, DosWrite returns either with all bytes written or none written. DosWrite 

returns with no bytes written when it would have to divide the message into blocks in order to 

complete the request. This can occur when there is not enough space left in the pipe, or when the 

pipe is currently being written to by another client. If this occurs, DosWrite returns immediately with 

a value of zero for BytesWritten, indicating that no bytes were written. 

For a byte pipe, if the number of bytes to be written exceeds the space available in the pipe, 

DosWrite writes as many bytes as it can, and returns with the number of bytes actually written in 

Bytes Written. 

An attempt to write to a pipe whose other end has been closed returns ERROR_BROKEN_PIPE. 

Related Functions 
• DosOpen 
• DosRead 
• DosSetFilePtr 

Example Code 
This example opens a file, and writes data to the file. 

#define INCL_DOSFILEMGR /* File Manager values */ 
#include <os2.h> 
#include <stdio.h> 

#define OPEN_FILE 0x01 
#define CREATE_FILE 0x10 
#define FILE_ARCHIVE 0x20 
#define FILE_EXISTS OPEN_FILE 
#define FILE_NOEXISTS CREATE_FILE 
#define DASD_FLAG 0 
#define INHERIT 0x80 
#define WRITE_THRU 0 
#define FAIL_FLAG 0 
#define SHARE_FLAG 0x10 
#define ACCESS_FLAG 0x02 

#define FILE_NAME 11 test.dat 11 

#define FILE_SIZE 800L 
#define FILE_ATTRIBUTE FILE_ARCHIVE 
#define EABUF 0L 

HFlLE 
ULONG 
ULONG 
UC HAR 
APIRET 

FileHandle; 
Wrote; 
Action; 
Fi 1 eData [100] ; 
re; 

/* Number of bytes written */ 
/* Action taken by DosOpen */ 
/* Data to write */ 
/* Return code */ 

Chapter 2. Control Program Functions 2-389 



DosWrite -
Write to a File from a Buffer 

Action = 2; 
strcpy(FileData, 11 Data ... 11

); 

re = DosOpen(FILE_NAME, /* File path name */ 

if (re != 0) 
{ 

&FileHandle, /* File handle */ 
&Action, /* Action taken */ 
FILE_SIZE, /* File primary allocation */ 
FILE ATTRIBUTE, /* File attribute */ 
FILE-EXISTS I FILE NOEXISTS, /* Open function type */ 
DASD=FLAG I INHERIT I /* Open mode of the file */ 
WRITE THRU I FAIL FLAG I 
SHARE-FLAG I ACCESS FLAG. 
EABUF); - /* No extended attributes */ 

printf( 11 DosOpen error: return code= %ld 11 ,rc); 
return; 

} 

re = DosWrite(FileHandle. 
(PVOID) FileData, 
sizeof(FileData), 
&Wrote); 

if (re != 0) 
{ 

/* File handle */ 
/* User buffer */ 
/* Buffer length */ 
/* Bytes written */ 

printf( 11 DosWrite error: return code = %ld 11 ,rc); 
return; 

} 

2-390 CP Programming Reference 



#define INCL_DOSQUEUES 

DosWriteQueue 
Write Queue 

APIRET DosWrlteQueue (HQUEUE QueueHandle, ULONG ulRequest, ULONG ulDataLength, 
PVOID pDataBuffer, ULONG ulElemPrlorlty) 

DosWriteQueue adds an element to a queue. 

Parameters 
QueueHandle (HQUEUE) - input 

The handle of the queue to which an element is to be added. 

ulRequest (ULONG) - input 

A doubleword value to be passed with the queue element. It is used by an application to code an 
event. The data is understood by the thread that is adding the element to the queue, as well as 
by the thread that receives the queue element. There is no special meaning to this data, and the 
operating system does not alter it. 

ulDataLength (ULONG) - input 

The length, in bytes, of the data that is being sent to the queue. 

pDataBuffer (PVOID) - input 

A pointer to the buffer that contains the data to be placed into the queue. 

ulElemPrlorlty (ULONG) - input 

The priority value of the element that is being added to the queue. This parameter is valid only 
for queues that were created as priority-based queues, as specified in the QueueFlags 
parameter of DosCreateQueue. ElemPriority is a numerical value in the range of 0 to 15, with 15 
being the highest priority. 

• If the priority value is 15, the element is added to the top of the queue. 

• If the priority value is 0, the element Is added as the last element in the queue. 

• Elements with the same priority value are grouped together in FIFO (first in, first out) order. 

If you assign a value greater than 15 to ElemPriority, the system sets ElemPriority to 15. No 
error code is returned for this condition. 

Returns 
Return Code. 

DosWriteQueue returns the following values: 

0 NO_ERROR 
334 ERROR_QUE_NO_MEMORY 
337 ERROR_ QUE_INVALID _HANDLE 

Remarks 
DosWriteQueue adds an element to the specified queue. A client process must request access to the 
queue by calling DosOpenQueue before it can issue this function. The server process and its 
threads do not need to issue DosOpenQueue, because they already have access to the queue. 

If the queue was created as a priority-based queue (as specified in the QueueFlags parameter of 
DosCreateQueue), then the priority of the element that is being added must be specified. 

Chapter 2. Control Program Functions 2-391 



DosWriteQueue 
Write Queue 

If the server process has closed the queue before this request is issued, 
ERROR_QUE_INVALID_HANDLE is returned. 

Related Functions 
• DosCloseQueue 
• DosCreateQueue 
• DosOpenQueue 
• DosPeekQueue 
• DosPurgeQueue 
• DosQueryQueue 
• DosReadQueue 

Example Code 
This example adds an element to a queue. Assume that the caller has placed the handle of the 
queue into QueueHandle already. Assume that DataBuffer has been set to point to a data element in 
shared memory, and that DataLength has been set to contain the length of the data element in 
shared memory. 

#define INCL_DOSQUEUES /* Queue values */ 
#include <os2.h> 
#include <stdio.h> 

HQUEUE 
ULONG 
ULONG 
PVOID 
ULONG 
APIRET 

QueueHandle; 
Request; 
Datalength; 
DataBuff er; 
ElemPriority; 
re; 

Request = 0; 

ElemPriority = 0; 

/* Queue handle */ 
/* Request-identification data */ 
/* Length of element being added */ 
/* Element being added */ 
/* Priority of element being added */ 
/* Return code */ 

/* Assume that no special data is being */ 
/* sent along with this write request */ 

/* For priority-based queues: add the */ 
/* new queue element at the logical */ 
/* "end" of the queue */ 

re = DosWriteQueue(QueueHandle, Request, Datalength, DataBuffer, 
ElemPriority); 

if (re ! = a) 
{ 

} 

printf("DosWriteQueue error: return code= %ld", re); 
return; 

2-392 CP Programming Reference 



Appendix A. Data Types 

APIRET 

BOOL 

BOOL32 

BYTE 

CHAR 

COLOR 

COUNTRY CODE 

COUNTRYINFO 

Unsigned integer in the range O through 4 294 967 295. 

typedef unsigned long APIRET; 

Boolean. 

Valid values are FALSE, which is 0, and TRUE, which is 1. 

typedef unsigned long BOOL; 

Boolean. 

Valid values are FALSE, which is 0, and TRUE, which is 1. 

typedef unsigned long BOOL32; 

Byte. 

typedef unsigned char BYTE; 

Single-byte character. 

#define CHAR char 

Color value. 

typedef long COLOR; 

Country code and code page. 

typedef struct _COUNTRYCODE { 
ULONG ulcountry; 
ULONG ulcodepage; 
} COUNTRYCODE; 

ulcountry (ULONG) 

ulcodepage (ULONG) 

Country information. 

typedef struct _COUNTRYINFO { 
ULONG ulcountry; 
ULONG ulcodepage; 
ULONG ulfsDateFmt; 
CHAR chszCurrency; 
CHAR chszThousandsSeparator; 
CHAR chszDecimal; 
CHAR chszDateSeparator; 
CHAR chszTimeSeparator; 
UCHAR ucfsCurrencyFmt; 
UCHAR uccDecimalPlace; 
UCHAR ucfsTimeFmt; 
USHORT usabReserved; 
CHAR chszDataSeparator; 
USHORT usabReserved2; 
} COUNTRYINFO; 

ulcountry (ULONG) 

Country code. 

ulcodepage (ULONG) 

Code page. 

ulfsDateFmt (ULONG) 

Date format. 

chszCurrency (CHAR) 

Currency indicator. 

Appendix A. Data Types A-1 



DATETIME 

chszThousandsSeparator (CHAR) 

Thousands separator. 

chszDeclmal (CHAR) 

Decimal separator. 

chszDateSeparator (CHAR) 

Date separator. 

chszTlmeSeparator (CHAR) 

Time separator. 

ucfsCurrencyfmt (UCHAR) 

Bit fields for currency format. 

uccDeclmalPlace (UCHAR) 

Currency decimal places. 

ucfsTlmefmt (UCHAR) 

Time format (AM/PM or 24 hr) 

usabReserved (USHORT) 

Reserved (0). 

chszDataSeparator (CHAR) 

Data I ist separator. 

usabReserved2 (USHORT) 

Reserved (0). 

DateTime data structure. 

typedef struct _DATETIME { 
UCHAR uchours; 
UCHAR ucminutes; 
UCHAR ucSeconds; 
UCHAR uchundredths; 
UCHAR ucday; 
UCHAR ucmonth; 
USHORT usyear; 
SHORT stimezone; 
UCHAR ucweekday; 
} DATETIME; 

uchours (UCHAR) 

Current hour, using values 0 through 23. 

ucmlnutes (UCHAR) 

Current minute~ using values 0 through 59. 

ucSeconds (UCHAR) 

Curren1 second, using values 0 through 59. 

uchundredths (UCHAR) 

Current hundredths of a second, using values 0 through 99. 

ucday (UCHAR) 

Current day of the month, using values 1 through 31. 

ucmonth (UCHAR) 

Current month of the year, using values 1 through 12. 

usyear (USHORT) 

Current year. 

A-2 CP Programming Reference 



stlmezone (SHORT) 

The difference in minutes between the current time zone and Greenwich 
Mean Time (GMT). This value is positive for time zones west of 
Greenwich, England, and negative for time zones east of Greenwich. A 
value of -1 indicates that the time zone is undefined. 

ucweekday (UCHAR) 

Current day of the week, using values O through 6. (Sunday is equal to 
0.) 

DosDebug Buffer Structure DosDebug buffer structure. 

typedef struct _DosDebug Buff er Structure { 
ULONG ulPid; 
ULONG ulTid; 
LONG l Cmd; 
LONG lValue; 
ULONG ulAddr; 
ULONG ulBuffer; 
ULONG ul Len; 
ULONG ulindex; 
ULONG ulMTE; 
ULONG ulEAX; 
ULONG ulECX; 
ULONG ulEDX; 
ULONG ulEBX; 
ULONG ulESP; 
ULONG ulEBP; 
ULONG ulESI; 
ULONG ulEDI; 
ULONG ulEFlags; 
ULONG ulEIP; 
ULONG ulCSLim; 
ULONG ulCSBase; 
UCHAR ucCSAcc; 
UCHAR ucCSAtr; 
USHORT usCS; 
ULONG ulDSLim; 
ULONG ulDSBase; 
UCHAR ucDSAcc; 
UCHAR ucDSAtr; 
USHORT usDS; 
ULONG ulESLim; 
ULONG ulESBase; 
UCHAR ucESAcc; 
UCHAR ucESAtr; 
USHORT usES; 
ULONG ulFSLim; 
ULONG ulFSBase; 
UCHAR ucFSAcc; 
UCHAR ucFSAtr; 
USHORT usFS; 
ULONG ulGSLim; 
ULONG ulGSBase; 
UCHAR ucGSAcc; 
UCHAR ucGSAtr; 
USHORT usGS; 
ULONG ulSSLim; 
ULONG ulSSBase; 
UCHAR ucSSAcc; 
UCHAR ucSSAtr; 
USHORT usSS; 
} DosDebug Buffer Structure; 

ulPid (ULONG) 

Debuggee Process ID 

Appendix A. Data Types A-3 



ulTld (ULONG) 

Debuggee Thread ID 

ICmd (LONG) 

Command or Notification 

IValue (LONG) 

Generic Data Value 

ulAddr (ULONG) 

Debuggee Address 

ulBufler (ULONG) 

Debugger Buffer Address 

ulLen (ULONG) 

Length of Range 

ullndex (ULONG) 

Generic Identifier Index 

ulMTE (ULONG) 

Module Table Entry Handle 

ulEAX (ULONG) 

Register Set 

ulECX (ULONG) 

ulEDX (ULONG) 

ulEBX (ULONG) 

ulESP (ULONG) 

ulEBP (ULONG) 

ulESI (ULONG) 

ulEDI (ULONG) 

ulEFlags (ULONG) 

ulEIP (ULONG) 

ulCSLlm (ULONG) 

Byte Granular Limits 

ulCSBase (ULONG) 

Byte Granular Base 

ucCSAcc (UCHAR) 

Access Bytes 

A-4 CP Programming Reference 



ucCSAtr (UCHAR) 

Attribute Bytes 

uses (USHORT) 

ulDSLlm (ULONG) 

ulDSBase (ULONG) 

ucDSAcc (UCHAR) 

ucDSAtr (UCHAR) 

usDS (USHORT) 

ulESLlm (ULONG) 

ulESBase (ULONG) 

ucESAcc (UCHAR) 

ucESAtr (UCHAR) 

usES (USHORT) 

ulFSLim (ULONG) 

ulFSBase (ULONG) 

ucFSAcc (UCHAR) 

ucFSAtr (UCHAR) 

usFS (USHORT) 

ulGSLlm (ULONG) 

ulGSBase (ULONG) 

ucGSAcc (UCHAR) 

ucGSAtr (UCHAR) 

Appendix A. Data Types A-5 



EAOP2 

ERRORID 

usGS (USHORT) 

ulSSLim (ULONG) 

ulSSBase (ULONG) 

ucSSAcc (UCHAR) 

ucSSAtr (UCHAR) 

usSS (USHORT) 

EAOP2 data structure. 

typedef struct _EAOP2 { 
PGEA2LIST ppfpGEA2List; 
PFEA2LIST ppfpFEA2List; 
ULONG uloError; 
} EAOP2; 

ppfpGEA2Llst (PGEA2LIST) 

GEA set. 

ppfpFEA2Llst (PFEA2LIST) 

FEA set. 

uloError (ULONG) 

Offset of FEA error. 

Error identity. 

typedef ULONG ERRORID; 

EXCEPTIONREGISTRATIONRECORD These structures are linked together to form a chain of 
exception handlers that are dispatched upon receipt of an exception. 
Exception handlers should not be registered directly from a high level 
language such as 'C'. This is the responsibility of the language runtime 
routine. 

typedef struct _EXCEPTIONREGISTRATIONRECORD { 
STRUCT _EXCEPTIONREGISTRATIONRECORD *prev_structure; 
ULONG ul(_cdecl *ExceptionHandler) (PEXCEPTIONREPORTRECORD, 

} EXCEPTIONREGISTRATIONRECORD; 

struct EXCEPTIONREGISTRATIONRECORD *, 
PCONTEXTRECORD, PVOID); 

typedef struct _EXCEPTIONREGISTRATIONRECORD EXCEPTIONREGISTRATIONRECORD; 
typedef struct _EXCEPTIONREGISTRATIONRECORD *PEXCEPTIONREGISTRATIONRECORD; 

_EXCEPTIONREGISTRATIONRECORD *prev _structure (STRUCT) 

Nested ExceptionRegistrationRecord structure. 

EXCEPTIONREPORTRECORD This structure contains machine-independent information about an 
exception or unwind. No system exception will ever have more 
parameters than the value of EXCEPTION_MAXIMUM_PARAMETERS. User 
exceptions are not bound to this limit. 

A-6 CP Programming Reference 



FDATE 

FEA2 

typedef struct _EXCEPTIONREPORTRECORD { 
ULONG ulExceptionNwn; 
ULONG ulfHandlerflags; 
STRUCT _EXCEPTIONREPORTRECORD ; 
PVOID pExceptionAddress; 
ULONG ulcParameters; 
ULONG ulExceptionlnfo[EXCEPTION_MAXIMUM_PARAMETERS]; 
} EXCEPTIONREPORTRECORD; 

ulExceptlonNum (ULONG) 

Exception number. 

ulfHandlerflags (ULONG) 

Handler flags. 

_EXCEPTIONREPORTRECORD (STRUCT) 

Nested ExceptionReportRecord structure. 

pExceptlonAddress (PVOID) 

Address of the exception. 

ulcParameters (ULONG) 

Size of exception specific information. 

ulExceptlonlnfo[EXCEPTION_MAXIMUM_PARAMETERS] (ULONG) 

Exception specific information. 

Date data structure for file-system functions. 

typedef struct _FDATE { 
USHORT usday; 
USHORT usmonth; 
USHORT usyear; 
} FDATE; 

usday (USHORT) 

Binary day for directory entry. 

usmonth (USHORT) 

Binary month for directory entry. 

usyear (USHORT) 

Binary year for directory entry. 

32-bit FEA2 data structure. 

typedef struct _FEA2 { 
ULONG uloNextEntryOffset; 
BYTE bfEA; 
BYTE bcbName; 
USHORT uscbValue; 
CHAR chszName[l]; 
} FEA2; 

uloNextEntryOffset (ULONG) 

Offset to next entry. 

bfEA (BYTE) 

Flags. 

bcbName (BYTE) 

Name length not including NULL. 

uscbValue (USHORT) 

Value length. 

Appendix A. Data Types A-7 



FEA2LIST 

F/LEFINDBUF3 

FILEFINDBUF4 

chszName[1] (CHAR) 

FEA2 data structure. 

typedef struct _FEA2LIST { 
ULONG ulcblist; 
FEA2 list[l]; 
} FEA2LIST; 

ulcbLlst (ULONG) 

Total bytes of structure including full list. 

list[1] (FEA2) 

Variable length FEA2 structures. 

32-bit level 1 information (used without EAs). 

typedef struct _FILEFINDBUF3 { 
ULONG uloNextEntryOffset; 
FDATE fdateCreation; 
FTIME ftimeCreation; 
FDATE fdatelastAccess; 
FTIME ftimelastAccess; 
FDATE fdatelastWrite; 
FTIME ftimelastWrite; 
ULONG ulcbFile; 
ULONG ulcbFileAlloc; 
ULONG ulattrFile; 
UCHAR uccchName; 
CHAR chachName[CCHMAXPATHCOMP]; 
} FILEFINDBUF3; 

uloNextEntryOllset (ULONG) 

fdateCreatlon (FDATE) 

ftlmeCreatlon (FTIM E) 

fdateLastAccess (FDATE) 

ftlmeLastAccess (FTIME) 

fdateLastWrlte (FDATE) 

ftlmeLastWrlte (FTIME) 

ulcbflle (ULONG) 

ulcbFlleAlloc (ULONG) 

ulattrFlle (ULONG) 

uccchName (UCHAR) 

chachName[CCHMAXPATHCOMP] (CHAR) 

32-bit level 2 information (used with EAs). 

typedef struct _FILEFINDBUF4 { 
ULONG uloNextEntryOffset; 
FDATE fdateCreation; 
FTIME ftimeCreation; 
FDATE fdatelastAccess; 
FTIME ftimelastAccess; 
FDATE fdatelastWrite; 
FTIME ftimelastWrite; 
ULONG ulcbFile; 
ULONG ulcbFileAlloc; 
ULONG ulattrFile; 
ULONG ulcblist; 
UCHAR uccchName; 
CHAR chachName[CCHMAXPATHCOMP]; 
} FILEFINDBUF4; 

A-8 CP Programming Reference 



FILE LOCK 

FILESTATUS3 

uloNextEntryOffset (ULONG) 

fdateCreatlon (FDATE) 

ftlmeCreatlon (FTIME) 

fdateLastAccess (FDATE) 

ftlmeLastAccess (FTIME) 

fdateLastWrlte (FDATE) 

ftlmeLastWrlte (FTIME) 

ulcbFlle (ULONG) 

ulcbFlleAlloc (ULONG) 

ulattrFile (ULONG) 

ulcbList (ULONG) 

uccchName (UCHAR) 

chachName[CCHMAXPATHCOMP] (CHAR) 

FILELOCK data structure. 

typedef struct _FILELOCK { 
LONG llOffset; 
LONG llRange; 
} FILELOCK; 

110ffset (LONG) 

Offset to the beginning of the lock range. 

11Range (LONG) 

Length, in bytes, of the lock range. 

32-bit level 1 information. 

typedef struct _FILESTATUS3 { 
FDATE fdateCreation; 
FTIME ftimeCreation; 
FDATE fdateLastAccess; 
FTIME ftimeLastAccess; 
FDATE fdateLastWrite; 
FTIME ftimeLastWrite; 
ULONG ulcbFile; 
ULONG ulcbFileAlloc; 
ULONG ulattrFile; 
} FILESTATUS3; 

fdateCreatlon (FDATE) 

Date of file creation. 

ftlmeCreatlon (FTIME) 

Time of file creation. 

fdateLastAccess (FDATE) 

Date of last access. 

ftimeLastAccess (FTIME) 

Time of last access. 

fdateLastWrite (FDATE) 

Date of last write. 

ftimeLastWrlte (FTI ME) 

Time of last write. 

Appendix A. Data Types A-9 



FILESTATUS4 

FSQBUFFER2 

ulcbFlle (ULONG) 

File size (end of data). 

ulcbFlleAlloc (ULONG) 

File allocated s.ize. 

ulattrFlle (ULONG) 

Attributes of the file. 

32-bit level 2 information. 

typedef struct _FILESTATUS4 { 
FDATE fdateCreation; 
FTIME ftimeCreation; 
FDATE fdatelastAccess; 
FTIME ftimelastAccess; 
FDATE fdatelastWrite; 
FTIME ftimelastWrite; 
ULONG ulcbFile; 
ULONG ulcbFileAlloc; 
ULONG ulattrFile; 
ULONG ulcblist; 
} FILESTATUS4; 

fdateCreatlon (FDATE) 

Date of file creation. 

ftimeCreatlon (FTIME) 

Time of file creation. 

fdatelastAccess (FDATE) 

Date of last access. 

ftlmeLastAccess (FTIME) 

Time of last access. 

fdateLastWrlte (FDATE) 

Date of last write. 

ftlmeLaslWrlle (FTIME) 

Time of last write. 

ulcbFlle (ULONG) 

File size (end of data). 

ulcbFlleAlloc (ULONG) 

File allocated size. 

ulattrFlle (ULONG) 

Attributes of the file. 

ulcbLlst (ULONG) 

Length of entire EA set. 

Data structure for information about an attached file system (local or 

remote), or about a character device or pseudocharacter device attached 

to the file system. 

A-10 CP Programming Reference 



FT/ME 

GEA2 

typedef struct _FSQBUFFER2 { 
USHORT usiType; 
USHORT uscbName; 
USHORT uscbFSDName; 
USHORT uscbFSAData; 
UCHAR ucszName; 
UCHAR ucszFSDName; 
UCHAR ucrgFSAData; 
} FSQBUFFER2; 

uslType (USHORT) 

Type of item. 

Definition 

1 

2 

3 

(FSAT _ CHARDEV) Resident character device 

(FSAT _PSEUDODEV) Pseudocharacter device 

(FSAT _LOCALDRV) Local drive 

4 (FSAT _REMOTEDRV) Remote drive attached to the 
file-system driver. 

uscbName (USHORT) 

Length, in bytes, of the item name, not counting null. 

uscbFSDName (USHORT) 

Length, in bytes, of the file-system driver name, not counting null. 

uscbFSAData (USHORT) 

Length, in bytes, of the file-system driver Attach data returned by the 
file-system driver. 

ucszName (UCHAR) 

Item name. The name is an ASCllZ string. 

ucszFSDName (UCHAR) 

Name of the file-system driver that the item is attached to. The name is 
an ASCllZ string. 

ucrgFSAData (UCHAR) 

File.:.system driver Attach data returned by the file-system driver. 

Time data structure for file-system functions. 

typedef struct _FTIME { 
USHORT ustwosecs; 
USHORT usminutes; 
USHORT ushours; 
} FTIME; 

ustwosecs (USHORT) 

A binary number of two-second increments. 

usmlnutes (USHORT) 

A binary number of minutes. 

ushours (USHORT) 

A binary number of hours. 

32-bit Level 3 File Information - Get Extended Attributes. 

typedef struct _GEA2 { 
ULONG uloNextEntryOffset; 
BYTE bcbName; 
CHAR chszname[l]; 
} GEA2; 

Appendix A. Data Types A-11 



GEA2LIST 

HDC 

HDIR 

HEV 

HF/LE 

HMF 

HMODULE 

HMONITOR 

HMTX 

HMUX 

HP/PE 

HPS 

HSYSSEM 

HQUEUE 

HRGN 

HSEM 

uloNextEntryOffset (ULONG) 

Offset to next entry. 

bcbName (BYTE) 

Name length not including NULL. 

chszname[1] (CHAR) 

Attribute name. 

Get Extended Attributes list. 

typedef struct _GEA2LIST { 
ULONG ulcblist; 
GEA2 list[l]; 
} GEA2LIST; 

ulcbllst (ULONG) 

Total bytes of structure including full list. 

Ust[1] (GEA2) 

Variable-length GEA2 structures. 

Device-context handle. 

typedef LHANDLE HOC; 

32-bit value used as a directory handle. 

typedef VOID *HDIR; 

32-bit value used as an event handle. 

typedef ULONG *HEV; 

Resource handle. 

typedef LHANDLE HFILE; 

Metafile handle. 

typedef LHANDLE HMF; 

Module handle. 

typedef LHANDLE HMODULE; 

32-bit value used as a system monitor handle. 

typedef VOID *HMONITOR; 

32-bit value used as a mutex-semaphore handle. 

typedef ULONG *HMTX; 

32-bit value used as a muxwait semaphore handle. 

typedef ULONG *HMUX; 

32-bit value used as a pipe handle. 

typedef VOID *HPIPE; 

Presentation-space handle. 

typedef LHANDLE HPS; 

32-bit value used as a system semaphore handle. 

typedef VOID *HSYSSEM; 

32-bit value used as a system queue handle. 

typedef VOID *HQUEUE; 

Region handle. 

typedef LHANDLE HRGN; 

Semaphore handle. 

A-12 CP Programming Reference 



HT/MER 

HVDD 

HWND 

LONG 

NID 

NPCH 

NPFN 

NPSZ 

PAVAILDATA 

PBOOL 

PBOOL32 

PBYTE 

PCHAR 

PCOLOR 

PCOUNTRYCODE 

PCOUNTRYINFO 

PDATETIME 

typedef VOID *HSEM; 

32-bit value used as a timer handle. 

typedef VOID *HTIMER; 

32-bit value used as a virtual device driver handle. 

typedef ULONG *HVDD; 

Window handle. 

typedef LHANDLE HWND; 

Signed integer in the range -2 147 483 648 through 2 147 483 647. 

Note: Where this data type represents a graphic coordinate in world or 
model space, its value is restricted to -134 217 728 through 
134 217 727. 

A graphic coordinate in device or screen coordinates is restricted 
to -32 768 through 32 767. 

The value of a graphic coordinate may be further restricted by any 
transforms currently in force, including the positioning of the origin 
of the window on the screen. In particular, coordinates in world or 
model space must not generate coordinate values after 
transformation (that is, in device or screen space) outside the range 
-32 768 through 32 767. 

#define LONG long 

A 32-bit value to hold a name identifier. 

typedef ULONG NID; 

32-bit pointer to a value or array of values. 

typedef CHAR *NPCH; 

32-bit pointer to a function with pascal calling type. 

typedef CHAR *NPFN; 

32-bit pointer to a null-terminated string. 

typedef CHAR *NPSZ; 

Pointer to the 4-byte buffer in which the system returns the number of 
bytes that were available. 

typedef AVAILDATA *PAVAILDATA; 

Pointer to BOOL. 

typedef BOOL *PBOOL; 

Pointer to BOOL32. 

typedef BOOL32 *PBOOL32; 

Pointer to a data area. 

typedef BYTE *PBYTE; 

Pointer to CHAR. 

typedef CHAR *PCHAR; 

Pointer to COLOR. 

typedef COLOR *PCOLOR; 

Pointer to COUNTRYCODE. 

typedef CHAR *PCOUNTRYCODE; 

Pointer to COUNTRYINFO. 

typedef CHAR *PCOUNTRYINFO; 

Pointer to DATETIME. 

Appendix A. Data Types A-13 



typedef DATETIME *PDATETIME; 

PEAOP2 Pointer to EAOP2. 

typedef EAOP2 *PEAOP2; 

PERRORID Pointer to ERRORID. 

typedef ERRORID *PERRORID; 

PE XCEPTIONREGISTRATIONRECORD Pointer to EXCEPTIONREGISTRATIONRECORD. 

typedef EXCEPTIONREGISTRATIONRECORD *PEXCEPTIONREGISTRATIONRECORD; 

PEXCEPTIONREPORTRECORD Pointer to EXCEPTIONREPORTRECORD. 

PFILEFINDBUF3 

PFILEFINDBUF4 

PF/LE LOCK 

PFN 

PFNSIGHANDLER 

PFNTHREAD 

PFNE XITLIST 

PFEA2LIST 

PFSQBUFFER2 

PGEA2L/ST 

PHDC 

PHD/R 

PHEV 

PHFILE 

PHMF 

PH MODULE 

PH MONITOR 

typedef EXCEPTIONREPORTRECORD *PEXCEPTIONREPORTRECORD; 

Pointer to FILEFINDBUF3. 

typedef FILEFINDBUF3 *PFILEFINDBUF3; 

Pointer to FILEFINDBUF4. 

typedef FILEFINDBUF4 *PFILEFINDBUF4; 

Pointer to FILELOCK. 

typedef FILELOCK *PFILELOCK; 

Pointer to procedure. 

typedef int *PFN(); 

32-bit pointer to a function with pascal calling type. 

typedef CHAR *PFNSIGHANDLER; 

Address of the code to be executed when the thread begins execution. 

typedef VOID *PFNTHREAD; 

Address of a routine to be executed. 

typedef PVOID *PFNEXITLIST; 

Pointer to FEA2LIST. 

typedef CHAR *PFEA2LIST; 

Pointer to FSQBUFFER2. 

typedef FSQBUFFER2 *PFSQBUFFER2; 

Pointer to GEA2LIST. 

typedef CHAR *PGEA2LIST; 

Pointer to HOC. 

typedef HOC *PHDC; 

Pointer to HDIR. 

typedef HDIR *PHDIR; 

Pointer to HEV. 

typedef HEV *PHEV; 

Pointer to HFILE. 

typedef HFILE *PHFILE; 

Pointer to HMF. 

typedef HMF *PHMF; 

Pointer to HMODULE. 

typedef HMODULE *PHMODULE; 

Pointer to HMONITOR. 

typedef HMONITOR *PHMONITOR; 

A-14 CP Programming Reference 



PHMTX 

PHMUX 

PH PIPE 

PHPS 

PHQUEUE 

PHRGN 

PHSEM 

PHTIMER 

PHVDD 

PIB 

PID 

Pointer to HMTX. 

typedef HMTX *PHMTX; 

Pointer to HMUX. 

typedef HMUX *PHMUX; 

Pointer to HPIPE. 

typedef HPIPE *PHPIPE; 

Pointer to HPS. 

typedef HPS *PHPS; 

Pointer to HQUEUE. 

typedef HQUEUE *PHQUEUE; 

Pointer to HRGN. 

typedef HRGN *PHRGN; 

Pointer to HSEM. 

typedef HSEM *PHSEM; 

Pointer to HTIMER. 

typedef HTIMER *PHTIMER; 

Pointer to HVDD. 

typedef HVDD *PHVDD; 

Process Information Block structure. 

typedef struct _PIB { 
ULONG ulpib_ulpid; 
ULONG ulpib_ulppid; 
ULONG ulpib_hmte; 
PCHAR pppib_pchcmd; 
PCHAR pppib_pchenv; 
ULONG ulpib_flstatus; 
ULONG ulpib_ultype; 
} PIB; 

ulplb_ulpld (ULONG) 

Process identifier. 

ulplb_ulppld (ULONG) 

Parent process identifier. 

ulplb_hmte (ULONG) 

Module handle of executable program. 

ppplb_pchcmd (PCHAR) 

Command line pointer. 

ppplb_pchenv (PCHAR) 

Environment pointer. 

ulpib_llstatus (ULONG) 

Process status bits. 

ulplb_ultype (ULONG) 

Process type code. 

Process identity. 

typedef ULONG PIO; 

Appendix A. Data Types A-15 



P/PESEMSTATE 

PL ONG 

PPIB 

PPID 

PPIPESEMSTATE 

PPPIB 

PPTIB 

PPVOID 

PREQUESTDATA 

Data structure for the status of a named pipe that is attached to a 
semaphore. 

typedef struct _PIPESEMSTATE { 
BYTE bfStatus; 
BYTE bfFlag; 
USHORT us Key; 
USHORT usAvail; 
} PIPESEMSTATE; 

bfStatus (BYTE) 

A coded value that indicates the status of the named pipe. 

Value 

0 

1 

2 

Definition 

(NPSS_EOI) End of information buffer. No more information 
records follow, and subsequent fields in this information 
record have no defined value. 

(NPSS_RDATA) Read data is available. 

(NPSS_WSPACE) Write space is available. 

3 (NPSS_CLOSE) The pipe is closed. 

bfflag (BYTE) 

A bit field that indicates additional information about the state of the 
named pipe. 

Bit Description 

7 -1 Reserved 

0 (NPSS_WAIT) If set, a thread is waiting at the other end of 
the pipe. 

usKey (USHORT) 

The value specified for KeyHandle when DosSetNPipeSem was issued. 

usAvall (USHORT) 

If fStatus has a value of 1, this field contains the number of bytes of data 
that are available to read from the pipe. If fStatus has a value of 2, this 
field contains the number of bytes of write space that are available in the 
pipe. 

Pointer to LONG. 

typedef LONG *PLONG; 

Pointer to PIB. 

typedef PIB *PPIB; 

Pointer to PIO. 

typedef PIO *PPID; 

Pointer to PIPESEMSTATE. 

typedef PIPESEMSTATE *PPIPESEMSTATE; 

Pointer to PPIB. 

typedef PPIB *PPPIB; 

Pointer to PTIB. 

typedef PTIB *PPTIB; 

Pointer to PVOID. 

typedef PVOID *PPVOID; 

Pointer to REQUESTDATA. 

typedef REQUESTDATA *PREQUESTDATA; 

A-16 CP Programming Reference 



PRESUL TCODES 

PSEMRECORD 

PSTARTDATA 

PSTATUSDATA 

PSZ 

PTIB 

PT/82 

PT/D 

PU LONG 

PVOID 

REQUESTDATA 

RESUL TCODES 

SEMRECORD 

Pointer to RESUL TCODES. 

typedef RESULTCODES *PRESULTCODES; 

Pointer to SEMRECORD. 

typedef SEMRECORD *PSEMRECORD; 

Pointer to STARTDATA. 

typedef STARTDATA *PSTARTDATA; 

Pointer to STATUSDATA. 

typedef STATUSDATA *PSTATUSDATA; 

Pointer to a null-terminated string. 

typedef char *PSZ; 

Pointer to TIB. 

typedef TIB *PTIB; 

Pointer to TIB2. 

typedef TIB2 *PTIB2; 

Pointer to TIO. 

typedef TIO *PTID; 

Pointer to ULONG. 

typedef ULONG *PULONG; 

Pointer to a data type of undefined format. 

typedef VOID *PVOID; 

REQUESTDATA structure. 

typedef struct _REQUESTDATA { 
PIO idpid; 
ULONG ulData; 
} REQUESTDATA; 

idpld (PIO) 

Process identifier of the process that placed the element into the queue. 

ulData (ULONG) 

User-defined value. 

RESUL TCODES data structure. 

typedef struct _RESULTCODES { 
ULONG ulcodeTerminate; 
ULONG ulcodeResult; 
} RESULTCODES; 

ulcodeTermlnate (ULONG) 

Termination code or process identifier. 

ulcodeResult (ULONG) 

Exit code. 

Muxwait semaphore data structure. 

typedef struct _SEMRECORD { 
HSEM hsemCur; 
ULONG ulUser; 
} SEMRECORD; 

hsemCur (HSEM) 

Handle of the semaphore. 

Appendix A. Data Types A-17 



SGID 

SHORT 

STARTDATA 

ulUser (ULONG) 

User-defined value. 

32-bit value used as a session identifier. 

typedef ULONG *SGID; 

Signed integer in the range -32 768 through 32 767. 

#define SHORT short 

Start session data structure. 

typedef struct _STARTDATA { 
USHORT uscb; 
USHORT usRelated; 
USHORT usFgBg; 
USHORT usTraceOpt; 
PSZ pszPgmTitle; 
PSZ pszPgmName; 
PSZ pszPgminputs; 
PSZ pszTermQ; 
PSZ pszEnvironment; 
USHORT usinheritOpt; 
USHORT usSessionType; 
PSZ psziconFile; 
ULONG ulPgmHandle; 
USHORT usPgmControl; 
USHORT usinitXPos; 
USHORT usinitYPos; 
USHORT usinitXSize; 
USHORT usinitYSize; 
USHORT usReserved; 
PSZ pszObjectBuffer; 
ULONG ulObjectBuffLen; 
} STARTDATA; 

uscb (USHORT) 

The length of the data structure in bytes. 

usRelated (USHORT) 

A 0 equals an independent session and a 1 equals a child session. 

usFgBg (USHORT) 

A 0 equals a start in foreground and a 1 equals a start in background. 

usTraceOpt (USHORT) 

A 0 equals no trace and a 1 equals a trace. 

pszPgmTitle (PSZ) 

The address of the program titl.e. 

pszPgmName (PSZ) 

The address of the program name. 

pszPgmlnputs (PSZ) 

Input arguments. 

pszTermQ (PSZ) 

The address of the program queue name. 

pszEnvlronment (PSZ) 

The address of the environment string. 

uslnherltOpl (USHORT) 

The inherit option (shell of the program). 

A-18 CP Programming Reference 



STATUSDATA 

STRUCT 

TIB 

usSesslonType (USHORT) 

The session type. 

pszlconFlle (PSZ) 

The address of the icon definition. 

ulPgmHandle (ULONG) 

The program handle. 

usPgmControl (USHORT) 

The initial state of the windowed application. 

uslnltXPos (USHORT) 

The x coordinate of the initial session window. 

uslnitYPos (USHORT) 

They coordinate of the initial session window. 

uslnltXSlze (USHORT) 

The initial size of x. 

uslnltYSlze (USHORT) 

The initial size of y. 

usReserved (USHORT) 

Reserved area which must be o. 
pszObjectBuffer (PSZ) 

The address of the name of the object that contributed to the failure of 
DosExecPgm. 

ulObjectBuffLen (ULONG) 

The length of the object buffer in bytes. 

Status data structure. 

typedef struct _STATUSDATA { 
USHORT uslength; 
USHORT usSelectlnd; 
USHORT usBondlnd; 
} STATUSDATA; 

usLength (USHORT) 

The length of the data structure in bytes, including Length itself. 

usSelectlnd (USHORT) 

An indicator that specifies whether the target session should be flagged 
as selectable or non-selectable. 

usBondlnd (USHORT) 

Bondlnd specifies which session to bring to the foreground the next time 
the parent session is selected. 

Dummy data structure to be able to nest structures. 

typedef struct _STRUCT { 

Thread Information Block structure. 

Appendix A. Data Types A-19 



T/82 

TID 

UCHAR 

UL ONG 

USHORT 

typedef struct _TIB { 
PVOID ptib_pexchain; 
PVOID ptib_pstack; 
PVOID ptib_pstacklimit; 
PTIB2 pptib_ptib2; 
ULONG ultib_version; 
PVOID ptib_arbpointer; 
} TIB; 

ptlb_pexchaln (PVOID) 

Head of exception handler chain. 

ptlb_pstack (PVOID) 

Pointer to the base of the stack. 

ptlb_pstackllmlt (PVOID) 

Pointer to the end of the stack. 

pptlb_ptlb2 (PTIB2) 

Pointer to a system-specific thread information block. 

ultlb_verslon (ULONG) 

Version number for this Thread Information Block. 

ptlb_arbpolnter (PVOID) 

Thread ordinal number. 

System-specific Thread Information Block structure. 

typedef struct _TIB2 { 
ULONG ultib2_ultid; 
ULONG ultib2_ulpri; 
ULONG ultib2_version; 
USHORT ustib2_usMCCount; 
USHORT ustib2_fMCForceFlag; 
} TIB2; 

ultlb2_ultld (ULONG) 

Current thread identifier. 

ultlb2_ulprl (ULONG) 

Current thread priority. 

ultlb2_version (ULONG) 

Version number for this system-specific Thread Information Block. 

ustlb2_usMCCount (USHORT) 

Must-complete count. 

ustlb2_1MCForceflag (USHORT) 

Must-complete force flag. 

Thread identity. 

typedef ULONG TIO; 

Unsigned integer in the range 0 through 255. 

typedef unsigned char UCHAR; 

Unsigned integer in the range 0 through 4 294 967 295. 

typedef unsigned long ULONG; 

Unsigned integer in the range 0 through 65 535. 

typedef unsigned short USHORT; 

A-20 CP Programming Reference 



Appendix B. Errors 

The following shows the numerical value of an error, its symbolic name, and a brief description of 

the error. 

0 NO_ERROR 
No error occurred. 

1 ERROR_INVALID _FUNCTION 
Invalid function number. 

2 ERROR_FILE_NOT _FOUND 
File not found. 

3 ERROR_PATH_NOT_FOUND 
Path not found. 

4 ERROR_ TOO _MANY_ OPEN_FILES 
Too many open files (no handles left). 

5 ERROR_ACCESS_DENIED 
Access denied. 

6 ERROR_INVALID _HANDLE 
Invalid handle. 

7 ERROR_ARENA_ TRASHED 
Memory control blocks destroyed. 

a ERROR_NOT_ENOUGH_MEMORY 
Insufficient memory. 

9 ERROR_INVALID _BLOCK 
Invalid memory-block address. 

10 ERROR_BAD _ENVIRONMENT 
Invalid environment. 

11 ERROR_BAD_FORMAT 
Invalid format. 

12 ERROR_INVALID _ACCESS 
Invalid access code. 

13 ERROR_INVALID _DATA 
Invalid data. 

14 Reserved. 

15 ERROR_INVALID_DRIVE 
Invalid drive specified. 

16 ERROR_CURRENT_DIRECTORY 
Attempting to remove current directory. 

17 ERROR_NOT_SAME_DEVICE 
Not same device. 

18 ERROR_NO_MORE_FILES 
No more files. 

19 ERROR_WRITE_PROTECT 
Attempt to write on write-protected diskette. 

20 ERROR_BAD_UNIT 
Unknown unit. 

21 ERROR_NOT _READY 
Drive not ready. 

Appendix 8. Errors 8-1 



22 ERROR_BAD_COMMAND 
Unknown command. 

23 ERROR_CRC 
Data error - cyclic redundancy check. 

24 ERROR_BAD _LENGTH 
Invalid request structure length. 

25 ERROR_SEEK 
Seek error. 

26 ERROR_NOT _DOS_DISK 
Unknown media type. 

27 ERROR_SECTOR_NOT _FOUND 
Sector not found. 

28 ERROR_OUT_OF_PAPER 
Printer is out of paper. 

29 ERROR_ WRITE FAULT 
Write fault. 

30 ERROR_READ_FAULT 
Read fault. 

31 ERROR_ GEN_FAILURE 
General failure. 

32 ERROR_SHARING_ VIOLATION 
Sharing violation. 

33 ERROR_LOCK_ VIOLATION 
Lock violation. 

34 ERROR_ WRONG_DISK 
Invalid disk change. 

35 ERROR_FCB _UNAVAILABLE 
FCB unavailable. 

36 ERROR_SHARING_BUFFER_EXCEEDED 
Sharing buffer overflow. 

37 ERROR_CODE_PAGE_MISMATCHED 
Code page does not match. 

38 ERROR_HANDLE_EOF 
End of file reached. 

39 ERROR_HANDLE_DISK_FULL 
Disk is full. 

40 - 49 Reserved. 

50 ERROR_NOT _SUPPORTED 
Network request not supported. 

51 ERROR_REM_NOT _LIST 
Remote network node is not online. 

52 ERROR_DUP _NAME 
Duplicate file name in network. 

53 ERROR_BAD_NETPATH 
Network path not found. 

54 ERROR_NETWORK_BUSY 
Network is busy. 

55 ERROR_DEV _NOT _EXIST 
Device is not installed in network. 

8-2 CP Programming Reference 



56 ERROR_ TOO_MANY_CMDS 
Network command limit reached. 

57 ERROR_ADAP _HDW_ERR 
Network adapter hardware error. 

58 ERROR_BAD _NET ..:.RESP 
Incorrect response in network. 

59 ERROR_UNEXP _NET_ERR 
Unexpected error in network. 

60 ERROR_BAD_REM_ADAP 
Remote network adapter error. 

61 ERROR_PRINTQ_FULL 
Network printer queue is full. 

62 ERROR_NO_SPOOL_SPACE 
No space in print spool file. 

63 ERROR_PRINT _CANCELLED 
Print spool file deleted. 

64 ERROR_NETNAME_DELETED 
Network name deleted. 

65 ERROR_NETWORK_ACCESS_DENIED 
Access to network denied. 

66 ERROR_BAD_DEV_TYPE 
Device type invalid for network. 

67 ERROR_BAD_NET_NAME 
Network name not found. 

68 ERROR_TOO_MANY_NAMES 
Network name limit exceeded. 

69 ERROR_TOO_MANY_SESS 
Network session limit exceeded. 

70 ERROR_SHARING_PAUSED 
Temporary pause in network. 

71 ERROR_REQ_NOT_ACCEP 
Network request denied. 

72 ERROR_REDIR_PAUSED 
Pause in network print disk redirection. 

73 ERROR_SBCS_ATT_WRITE_PROT 
Attempted write on protected disk. 

74 ERROR_SBCS_GENERAL_FAILURE 
General failure, single-byte character set. 

75 - 79 Reserved. 

80 ERROR_FILE_EXISTS 
File exists. 

81 ERROR_DUP _FCB 
Reserved. 

B2 ERROR_CANNOT_MAKE 
Cannot make directory entry. 

83 ERROR_FAIL_l24 
Failure on INT 24. 

84 ERROR_ OUT_ OF _STRUCTURES 
Too many redirections. 

Appendix B. Errors B-3 



85 ERROR_ALREADY _ASSIGNED 
Duplicate redirection. 

86 ERROR_INVALID_PASSWORD 
Invalid password. 

87 ERROR_INVALID _PARAMETER 
Invalid parameter. 

88 ERROR_NET _ WRITE_FAULT 
Network device fault. 

89 ERROR_NO _PROC _SLOTS 
No process slots available. 

90 ERROR_NOT _FROZEN 
System error. 

91 ERR_ TSTOVFL 
Timer service table overflow. 

92 ERR_TSTDUP 
Timer service table duplicate. 

93 ERROR_NO_ITEMS 
No items to work on. 

95 ERROR_INTERRUPT 
Interrupted system call. 

99 ERROR_ DEVICE JN_ USE 
Device in use. 

100 ERROR_TOO_MANY_SEMAPHORES 
User/system open semaphore limit reached. 

101 ERROR_EXCL_SEM_ALREADY_OWNED 
Exclusive semaphore already owned. 

102 ERROR_SEM_IS_SET 
DosCloseSem found semaphore set. 

103 ERROR_TOO_MANY_SEM_REQUESTS 
Too many exclusive semaphore requests. 

104 ERROR_INVALID_AT_INTERRUPT_TIME 
Operation invalid at interrupt time. 

105 ERROR_SEM_OWNER_DIED 
Previous semaphore owner terminated without freeing semaphore. 

106 ERROR_SEM_USER_LIMIT 
Semaphore limit exceeded. 

107 ERROR_DISK_CHANGE 
Insert drive B disk into drive A. 

108 ERROR_DRIVE_LOCKED 
Drive locked by another process. 

109 ERROR_BROKEN_PIPE 
Write on pipe with no reader. 

110 ERROR_OPEN_FAILED 
Open/create failed due to explicit fail command. 

111 ERROR_BUFFER_OVERFLOW 
Buffer passed to system call too small to hold return data. 

112 ERROR_DISK_FULL 
Not enough space on the disk. 

113 ERROR_NO_MORE_SEARCH_HANDLES 
Cannot allocate another search structure and handle. 

B-4 CP Programming Reference 



114 ERROR_INVALID_ TARGET _HANDLE 
Target handle in DosDupHandle invalid. 

115 ERROR_PROTECTION_ VIOLATION 
Invalid user virtual address. 

116 ERROR_ VIOKBD _REQUEST 
Error on display write or keyboard read. 

117 ERROR_INVALID_CATEGORY 
Category for DevlOCtl not defined. 

118 ERROR_INVALID_VERIFY_SWITCH 
Invalid value passed for verify flag. 

119 ERROR_BAD_DRIVER_LEVEL 
Level four driver not found. 

120 ERROR_CALL_NOT_IMPLEMENTED 
Invalid function called. 

121 ERROR_SEM_TIMEOUT 
Time-out occurred from semaphore API function. 

122 ERROR_INSUFFICIENT _BUFFER 
Data buffer too small. 

123 ERROR_INVALID_NAME 
Illegal character or invalid file-system name. 

124 ERROR_INVALID_LEVEL 
Non-implemented level for information retrieval or setting. 

125 ERROR_NO_VOLUME_LABEL 
No volume label found with DosQueryFSlnfo function. 

126 ERROR_MOD_NOT_FOUND 
Module handle not found with getprocaddr, getmodhandle. 

127 ERROR_PROC_NOT_FOUND 
Procedure address not found with getprocaddr. 

128 ERROR_WAIT_NO_CHILDREN 
DosWaitChild finds no children. 

129 ERROR_CHILD_NOT_COMPLETE 
DosWaitChild children not terminated. 

130 ERROR_DIRECT_ACCESS_HANDLE 
Handle operation invalid for direct disk-access handles. 

131 ERROR_NEGATIVE_SEEK 
Attempting seek to negative offset. 

132 ERROR_ SEEK_ ON_DEVICE 
Application trying to seek on device or pipe. 

133 ERROR_IS_JOIN_TARGET 
Drive has previously joined drives. 

134 ERROR_IS_JOINED 
Drive is already joined. 

135 ERROR_IS_SUBSTED 
Drive is already substituted. 

136 ERROR_NOT_JOINED 
Cannot delete drive that is not joined. 

137 ERROR_NOT_SUBSTED 
Cannot delete drive that is not substituted. 

138 ERROR_JOIN_TO_JOIN 
Cannot join to a joined drive. 

Appendix B. Errors B-5 



139 ERROR_SUBST_TO_SUBST 
Cannot substitute to a substituted drive. 

140 ERROR_JOIN_TO_SUBST 
Cannot join to a substituted drive. 

141 ERROR_SUBST_TO_JOIN 
Cannot substitute to a joined drive. 

142 ERROR_BUSY_DRIVE 
Specified drive is busy. 

143 ERROR_SAME_DRIVE 
Cannot join or substitute a drive to a directory on the same drive. 

144 ERROR_DIR_NOT_ROOT 
Directory must be a subdirectory of the root. 

145 ERROR_DIR_NOT_EMPTY 
Directory must be empty to use join command. 

146 ERROR_IS_SUBST_PATH 
Path specified is being used in a substitute. 

147 ERROR_IS_JOIN_PATH 
Path specified is being used in a join. 

148 ERROR_PATH_BUSY 
Path specified is being used by another process. 

149 ERROR_IS_SUBST_TARGET 

150 

151 

152 

153 

154 

155 

156 

157' 

158 

159 

160 

161 

162 

Cannot join or substitute a drive that has a directory that is the target of a previous 
substitute. 

ERROR_SYSTEM_TRACE 
System trace error. 

ERROR_INVALID _EVENT_ COUNT 
DosWaitMuxWaitSem errors. 

ERROR_TOO_MANY_MUXWAITERS 
System limit of 100 entries reached. 

ERROR_INVALID _LIST _FORMAT 
Invalid list format. 

ERROR_LABEL_TOO_LONG 
Volume label too big. 

ERROR_TOO_MANY _ TCBS 
Cannot create another TCB. 

ERROR_SIGNAL_REFUSED 
Signal refused. 

ERROR~DISCARDED 

Segment is discarded. 

ERROR_NOT_LOCKED 
Segment is not locked. 

ERROR_BAD_ THREADID_ADDR 
Invalid thread-identity address. 

ERROR_BAD _ARGUMENTS 
Invalid environment pointer. 

ERROR_BAD_PATHNAME 
Invalid path name passed to exec. 

ERROR_SIGNAL_PENDING 
Signal already pending. 

8-6 CP Programming Reference 



163 ERROR_UNCERTAIN_MEDIA 
Error with INT 24 mapping. 

164 ERROR_MAX_ THRDS_REACHED 
No more process slots. 

165 ERROR_MONITORS_NOT_SUPPORTED 
Error with INT 24 mapping. 

166 ERROR_UNC _DRIVER_NOT _INSTALLED 
Default redirection return code. 

167 ERROR_LOCK_FAILED 
Locking failed. 

168 ERROR_SWAPIO_FAILED 
Swap 110 failed. 

169 ERROR_SWAPIN_FAILED 
Swap in failed. 

170 ERROR_BUSY 
Segment is busy. 

171 -172 Reserved. 

173 ERROR_ CANCEL_ VIOLATION 
A lock request is not outstanding for the specified file range, or the range length is zero. 

174 ERROR_ATOMIC_LOCK_NOT_SUPPORTED 
The file-system driver {FSD) does not support atomic lock operations. Versions of OS/2 
prior to version 2.00 do not support atomic lock operations. 

175 ERROR_READ _LOCKS_NOT _SUPPORTED 
The file system driver (FSD) does not support shared read locks. 

176 -179 Reserved. 

180 ERROR_INVALID_SEGMENT_NUMBER 
Invalid segment number. 

181 ERROR_INVALID _ CALLGATE 
Invalid call gate. 

182 ERROR_INVALID_ORDINAL 
Invalid ordinal. 

183 ERROR_ALREADY_EXISTS 
Shared segment already exists. 

184 ERROR_NO _CHILD _PROCESS 
No child process to wait for. 

185 ERROR_ CHILD _ALIVE_NOWAIT 
NoWait specified and child alive. 

186 ERROR_INVALID_FLAG_NUMBER 
Invalid flag number. 

187 ERROR_SEM_NOT_FOUND 
Semaphore does not exist. 

188 ERROR_INVALID_STARTING_CODESEG 
Invalid starting code segment, incorrect END (label) directive. 

189 ERROR_INVALID_STACKSEG 
Invalid stack segment. 

190 ERROR_INVALID_MODULETYPE 
Invalid module type - dynamic-link library file cannot be used as an application. 
Application cannot be used as a dynamic-link library. 

Appendix 8. Errors 8-7 



191 ERROR_INVALID_EXE_SIGNATURE 
Invalid EXE signature - file is a DOS mode program or an improper program. 

192 ERROR_EXE_MARKED _INVALID 
EXE marked invalid - link detected errors when the application was created. 

193 ERROR_BAD_EXE_FORMAT 
Invalid EXE format - file is a DOS mode program or an improper program. 

194 ERROR_ITERATED_DATA_EXCEEDS_64K 
Iterated data exceeds 64KB - there is more than 64KB of data in one of the segments of 
the file. 

195 ERROR_INVALID_MINALLOCSIZE 
Invalid minimum allocation size - the size is specified to be less than the size of the 
segment data in the file. 

196 ERROR_DYNLINK_FROM_INVALID _RING 
Dynamic link from invalid privilege level - privilege level 2 routine cannot link to 
dynamic-link libraries. 

197 ERROR_IOPL_NOT_ENABLED 
IOPL not enabled - IOPL set to NO in CONFIG.SYS. 

198 ERROR_INVALID_SEGDPL 
Invalid segment descriptor privilege level - can only have privilege levels of 2 and 3. 

199 ERROR_AUTODATASEG_EXCEEDS_64k 
Automatic data segment exceeds 64KB. 

200 ERROR_RING2SEG_MUST _BE_MOVABLE 
Privilege level 2 segment must be movable. 

201 ERROR_RELOC_ CHAIN_XEEDS_SEGLIM 
Relocation chain exceeds segment limit. 

202 ERROR_INFLOOP _IN_RELOC_CHAIN 
Infinite loop in relocation chain segment. 

203 ERROR_ENVV AR_NOT _FOUND 
Environment variable not found. 

204 ERROR_NOT_CURRENT_CTRY 
Not current country. 

205 ERROR_NO_SIGNAL_SENT 
No signal sent - no process in the command subtree has a signal handler. 

206 ERROR_FILENAME_EXCED _RANGE 
File name or extension is greater than 8.3 characters. 

207 ERROR_RING2_STACK_IN_ USE 
Privilege level 2 stack is in use. 

208 ERROR_META_EXPANSION_ TOO _LONG 
Meta (global) expansion is too long. 

209 ERROR_INVALID _SIGNAL_NUMBER 
Invalid signal number. 

210 ERROR_THREAD_1_1NACTIVE 
Inactive thread. 

211 ERROR_INFO_NOT_AVAIL 
File system information is not available for this file. 

212 ERROR_LOCKED 
Locked error. 

213 ERROR_BAD_DYNALINK 
Attempted to execute a non-family API in DOS mode. 

214 ERROR_TOO_MANY_MODULES 
Too many modules. 

B-8 CP Programming Reference 



215 ERROR_NESTING_NOT _ALLOWED 
Nesting is not allowed. 

217 ERROR_ZOMBIE_PROCESS 
Zombie process. 

218 ERROR_STACK_IN_HIGH_MEMORY 
Stack is in high memory. 

219 ERROR_INVALID _EXITROUTINE_RING 
Invalid exit routine ring. 

220 ERROR_ GETBUF _FAILED 
Get buffer failed. 

221 ERROR_FLUSHBUF _FAILED 
Flush buffer failed. 

222 ERROR_ TRANSFER_ TOO_LONG 
Transfer is too long. 

224 ERROR_SMG_NO_TARGET _WINDOW 
The application window was created without the FCF _TASKLIST style, or the application 
window not yet been created or has already been destroyed. 

228 ERROR_NO_CHILDREN 
No child process. 

229 ERROR_INVALID_SCREEN_GROUP 
Invalid session. 

230 ERROR_BAD_PIPE 
Non-existent pipe or invalid operation. 

231 ERROR_PIPE_BUSY 
Pipe is busy. 

232 ERROR_NO_DATA 
No data available on non-blocking read. 

233 ERROR_PIPE_NOT _CONNECTED 
Pipe was disconnected by server. 

234 ERROR_MORE_DATA 
More data is available. 

240 ERROR_ VC _DISCONNECTED 
Session was dropped due to errors. 

250 ERROR_ CIRCULARITY _REQUESTED 
Renaming a directory that would cause a circularity problem. 

251 ERROR_DIRECTORY _IN_ CDS 
Renaming a directory that is in use. 

252 ERROR_INVALID_FSD_NAME 
Trying to access nonexistent FSD. 

253 ERROR_INVALID_PATH 
Invalid pseudo device. 

254 ERROR_INVALID _EA_NAME 
Invalid character in name, or invalid cbName. 

255 ERROR_EA_LIST _INCONSISTENT 
List does not match its size, or there are invalid EAs in the list. 

256 ERROR_EA_LIST _TOO _LONG 
FEAList is longer than 64K-1 bytes. 

257 ERROR_NO_META_MATCH 
String does not match expression. 

Appendix B. Errors B-9 



259 ERROR_NO _MORE_ITEMS 
DosQueryFSAttach ordinal query. 

260 ERROR_SEARCH_STRUC_REUSED 
DOS mode findfirst/next search structure reused. 

261 ERROR_CHAR_NOT_FOUND 
Character not found. 

262 ERROR_TOO_MUCH_STACK 
Stack request exceeds system limit. 

263 ERROR_INVALID_ATIR 
Invalid attribute. 

264 ERROR_INVALID_STARTING_RING 
Invalid starting ring. 

265 ERROR_INVALID _DLL_INIT _RING 
Invalid DLL INIT ring. 

266 ERROR_CANNOT _COPY 
Cannot copy. 

267 ERROR_DIRECTORY 
Used by DOSCOPY in doscall 1. 

268 ERROR_ OPLOCKED _FILE 
Op locked file. 

269 ERROR_ OPLOCK_ THREAD _EXISTS 
Oplock thread exists. 

270 ERROR_ VOLUME_ CHANGED 
Volume changed. 

271 - 273 Reserved. 

274 ERROR_ALREADY _SHUTDOWN 
System is already shut down. 

275 ERROR_EAS_DIDNT_FIT 
Buffer is not big enough to hold the EAs. 

276 ERROR_EA_FILE_CORRUPT 
EA file has been damaged. 

277 ERROR_EA_TABLE_FULL 
EA table is full. 

278 ERROR_INVALID_EA_HANDLE 
EA handle is invalid. 

279 ERROR_NO _CLUSTER 
No cluster. 

280 ERROR_CREATE_EA_FILE 
Cannot create the EA file. 

281 ERROR_CANNOT_OPEN_EA_FILE 
Cannot open the EA file. 

282 ERROR_EAS_NOT_SUPPORTED 
Destination file system does not support EAs. 

283 ERROR_NEED_EAS_FOUND 
Destination file system does not support EAs, and the source file's EAs contain a need EA. 

284 ERROR_DUPLICATE_HANDLE 
The handle already exists. 

285 ERROR_DUPLICATE_NAME 
The name already exists. 

B-10 CP Programming Reference 



286 ERROR_EMPTY_MUXWAIT 
The list of semaphores in a muxwait semaphore is empty. 

287 ERROR_MUTEX_ OWNED 
The calling thread owns one or more of the mutex semaphores in the list. 

288 ERROR_NOT_OWNER 
Catler does not own the semaphore. 

289 ERROR_PARAM_TOO_SMALL 
Parameter is not large enough to contain all of the semaphore records in the muxwait 
semaphore. 

290 ERROR_ TOO _MANY _HANDLES 
Limit reached for number of handles. 

291 ERROR_ TOO_MANY _OPENS 
There are too many files or semaphores open. 

292 ERROR_WRONG_TYPE 
Attempted to create wrong type of semaphore. 

293 ERROR_UNUSED_CODE 
Code is not used. 

294 ERROR_THREAD_NOT_TERMINATED 
Thread has not terminated. 

295 ERROR_INIT_ROUTINE_FAILED 
Initialization routine failed. 

296 ERROR_MODULE_IN_ USE 
Module is in use. 

297 ERROR_NOT_ENOUGH_ WATCHPOINTS 
There are not enough watchpoints. 

298 ERROR_ TOO _MANY _POSTS 
Post count limit was reached for an event semaphore. 

299 ERROR_ALREADY_POSTED 
Event semaphore is already posted. 

300 ERROR_ALREADY_RESET 
Event semaphore is already reset. 

301 ERROR_SEM_BUSY 
Semaphore is busy. 

302 Reserved 

303 ERROR_INVALID _PROCID 
Invalid process identity. 

304 ERROR_INVALID_PDELTA 
Invalid priority delta. 

305 ERROR_NOT_DESCENDANT 
Not descendant. 

306 ERROR_NOT _SESSION_MANAGER 
Requestor not session manager. 

307 ERROR_INVALID _PCLASS 
Invalid P class. 

308 ERROR_INVALID_SCOPE 
Invalid scope. 

309 ERROR_INVALID _ THREADID 
Invalid thread identity. 

Appendix B. Errors B-11 



310 ERROR_DOSSUB_SHRINK 
Cannot shrink segment - DosSubSetMem. 

311 ERROR_DOSSUB_NOMEM 
No memory to satisfy request - DosSubAllocMem. 

312 ERROR_DOSSUB_OVERLAP 
Overlap of the specified block with a block of allocated memory - DosSubFreeMem. 

313 ERROR_DOSSUB_BADSIZE 
Invalid size parameter - DosSubAllocMem or DosSubFreeMem. 

314 ERROR_DOSSUB_BADFLAG 
Invalid flag parameter - DosSubSetMem. 

315 ERROR_DOSSUB_BADSELECTOR 
Invalid segment selector. 

316 ERROR_MR_MSG_TOO_LONG 
Message too long for buffer. 

317 ERROR_MR_MID_NOT_FOUND 
Message identity number not found. 

318 ERROR_MR_UN_ACC_MSGF 
Unable to access message file. 

319 ERROR_MR_INV_MSGF _FORMAT 
Invalid message file format. 

320 ERROR_MR_INV _IVCOUNT 
Invalid insertion variable count. 

321 ERROR_MR_UN_PERFORM 
Unable to perform function. 

322 ERROR_TS_WAKEUP 
Unable to wake up. 

323 ERROR_TS_SEMHANDLE 
Invalid system semaphore. 

324 ERROR_TS_NOTIMER 
No timers available. 

326 ERROR_TS_HANDLE 
Invalid timer handle. 

327 ERROR_TS_DATETIME 
Date or time invalid. 

328 ERROR_SYS_INTERNAL 
Internal system error. 

329 ERROR_ QUE_ CURRENT _NAME 
Current queue name does not exist. 

330 ERROR_QUE_PROC_NOT_OWNED 
Current process does not own queue. 

331 ERROR_QUE_PROC_OWNED 
Current process owns queue. 

332 ERROR_QUE_DUPLICATE 
Duplicate queue name. 

333 ERROR_ QUE_ELEMENT _NOT _EXIST 
Queue element does not exist. 

334 ERROR_QUE_NO_MEMORY 
Inadequate queue memory. 

335 ERROR_QUE_INVALID_NAME 
Invalid queue name. 

B-12 CP Programming Reference 



336 ERROR_ QUE_INVALID _PRIORITY 

Invalid queue priority parameter. 

337 ERROR_QUE_INVALID_HANDLE 

Invalid queue handle. 

338 ERROR_QUE_LINK_NOT_FOUND 

Queue link not found. 

339 ERROR_ QUE_MEMORY _ERROR 

Queue memory error. 

340 ERROR_ QUE_PREV _AT _END 

Previous queue element was at end of queue. 

341 ERROR_QUE_PROC_NO_ACCESS 

Process does not have access to queues. 

342 ERROR_QUE_EMPTY 
Queue is empty. 

343 ERROR_ QUE_NAME_NOT _EXIST 

Queue name does not exist. 

344 ERROR_ QUE_NOT _INITIALIZED 

Queues not initialized. 

345 ERROR_ QUE_UNABLE_ TO _ACCESS 

Unable to access queues. 

346 ERROR_ QUE_ UNABLE_ TO _ADD 

Unable to add new queue. 

347 ERROR_ QUE_ UNABLE_ TO _INIT 

Unable to initialize queues. 

349 ERROR_ VIO _INVALID _MASK 
Invalid function replaced. 

350 ERROR_ VIO _PTR 
Invalid pointer to parameter. 

351 ERROR_ VIO _APTR 
Invalid pointer to attribute. 

352 ERROR_ VIO _RPTR 
Invalid pointer to row. 

353 ERROR_ VIO _ CPTR 
Invalid pointer to column. 

354 ERROR_ VIO _LPTR 
Invalid pointer to length. 

355 ERROR_VIO_MODE 
Unsupported screen mode. 

356 ERROR_ VIO _WIDTH 
Invalid cursor width value. 

357 ERROR_VIO_ATTR 
Invalid cursor attribute value. 

358 ERROR_VIO_ROW 
Invalid row value. 

359 ERROR_VIO_COL 
Invalid column value. 

360 ERROR_ VIO _ TOPROW 
Invalid TopRow value. 

361 ERROR_VIO_BOTROW 
Invalid BotRow value. 

Appendix B. Errors B-13 



362 ERROR_VIO_RIGHTCOL 
Invalid right column value. 

363 ERROR_:VIO_LEFTCO 
Invalid left column value. 

364 ERROR_SCS_CALL 
Call issued by other than session manager. 

365 ERROR_SCS_VALUE 
Value is not for save or restore. 

366 ERROR_VIO_WAIT_FLAG 
Invalid wait flag setting. 

367 ERROR_ VIO _UNLOCK 
Screen not previously locked. 

368 ERROR_SGS_NOT _SESSION_MGR 
Caller not session manager. 

369 ERROR_SMG_INVALID_SGID 
Invalid session .identity. 

369 ERROR_SMG_INVALID_SESSION_ID 
Invalid session ID. 

370 ERROR_SMG_NOSG 
No sessions available. 

370 ERROR_SMG_NO_SESSIONS 
No sessions available. 

371 ERROR_SMG_GRP _NOT_FOUND 
Session not found. 

371 ERROR_SMG_SESSION_NOT_FOUND 
Session not found. 

372 ERROR_SMG_SET_TITLE 
Title sent by shell or parent cannot be changed. 

373 ERROR_KBD_PARAMETER 
Invalid parameter to keyboard. 

374 ERROR_KBD_NO_DEVICE 
No device. 

375 ERROR_KBD_INVALID_IOWAIT 
Invalid 110 wait specified. 

376 ERROR_KBD _INVALID_LENGTH 
Invalid length for keyboard. 

377 ERROR_KBD_INVALID_ECHO_MASK 
Invalid echo mode mask. 

378 ERROR_KBD _INVALID_INPUT _MASK 
Invalid input mode mask. 

379 ERROR_MONJNVALID_PARMS 
Invalid parameters to DosMon. 

380 ERROR_MONJNVALID_DEVNAME 
Invalid device name string. 

381 ERROR.:...MON_INVALID_HANDLE 
Invalid device handle. 

382 ERROR_ MON_ BUFFER_ TOO _SMALL 
Buffer too small. 

383 ERROR_ MON_ BUFFER_ EMPTY 
Buffer is empty. 

8-14 CP Programming Reference 



384 ERROR_MON_DATA_TOO_LARGE 
Data record is too large. 

385 ERROR_MOUSE_NO_DEVICE 
Mouse device closed (invalid device handle). 

386 ERROR_MOUSE_INV _HANDLE 
Mouse device closed (invalid device handle). 

387 ERROR_MOUSE_INV _PARMS 
Parameters invalid for display mode. 

388 ERROR_MOUSE_CANT_RESET 
Function assigned and cannot be reset. 

389 ERROR_MOUSE_DISPLAY _PARMS 
Parameters invalid for display mode. 

390 ERROR_MOUSE_INV _MODULE 
Module not valid. 

391 ERROR_MOUSE_INV _ENTRY _PT 
Entry point not valid. 

392 ERROR_MOUSE_INV _MASK 
Function mask invalid. 

393 NO_ERROR_MOUSE_NO_DATA 
No valid data. 

394 NO_ERROR_MOUSE_PTR_DRAWN 
Pointer drawn. 

395 ERROR_INVALID _FREQUENCY 
Invalid frequency for beep. 

396 ERROR_NLS_NO_COUNTRY_FILE 
Cannot find COUNTRY.SYS file. 

397 ERROR_NLS_OPEN_FAILED 
Cannot open COUNTRY.SYS file. 

398 ERROR_NLS_NO _ CTRY _CODE 
Country code not found. 

398 ERROR_NO _COUNTRY_ OR_ CODEPAGE 
Country code not found. 

399 ERROR_NLS_ TABLE_ TRUNCATED 
Table returned information truncated, buffer is too small. 

400 ERROR_NLS_BAD_TYPE 
Selected type does not exist. 

401 ERROR_NLS_TYPE_NOT_FOUND 
Selected type is not in file. 

402 ERROR_VIO_SMG_ONLY 
Valid from session manager only. 

403 ERROR_VIO_INVALID_ASCllZ 
Invalid ASCllZ length. 

404 ERROR_ VIO _DEREGISTER 
VioDeRegister not allowed. 

405 ERROR_VIO_NO_POPUP 
Pop-up window not allocated. 

406 ERROR_ VIO _EXISTING_POPUP 
Pop-up window on screen (NoWait). 

407 ERROR_KBD_SMG_ONLY 
Valid from session manager only. 

Appendix B. Errors B-15 



408 ERROR_KBD_INVALID _ASCllZ 
Invalid ASCllZ length. 

409 ERROR_KBD _INVALID _MASK 
Invalid replacement mask. 

410 ERROR_KBD_REGISTER 
KbdRegister not allowed. 

411 ERROR_KBD_DEREGISTER 
KbdDeRegister not allowed. 

412 ERROR_MOUSE_SMG_ONLY 
Valid from session manager only. 

413 ERROR_MOUSE_INVALID_ASCllZ 
Invalid ASCllZ length. 

414 ERROR_MOUSE_INVALID _MASK 
Invalid replacement mask. 

415 ERROR_MOUSE_REGISTER 
Mouse register not allowed. 

416 ERROR_MOUSE_DEREGISTER 
Mouse deregister not allowed. 

417 ERROR_SMG_BAD_ACTION 
Invalid action specified. 

418 ERROR_SMG_INVALID_CALL 
INIT called more than once, or invalid session identity. 

419 ERROR_SCS_SG_NOTFOUND 
New session number. 

420 ERROR_SCS_NOT_SHELL 
Caller is not shell. 

421 ERROR_VIO_INVALID_PARMS 
Invalid parameters passed. 

422 ERROR_ VIO _FUNCTION_ OWNED 
Save/restore already owned. 

423 ERROR_VIO_RETURN 
Non-destruct return (undo). 

424 ERROR_SCS_INVALID_FUNCTION 
Caller invalid function. 

425 ERROR_SCS_NOT_SESSION_MGR 
Caller not session manager. 

426 ERROR_VIO_REGISTER 
Vio register not allowed. 

427 ERROR_VIO_NO_MODE_THREAD 
No mode restore thread in SG. 

428 ERROR_VIO_NO_SAVE_RESTORE_THD 
No save/restore thread in SG. 

429 ERROR_VIO_IN_BG 
Function invalid in background. 

430 ERROR_VIO_ILLEGAL_DURING_POPUP 
Function not allowed during pop-up window. 

431 ERROR_SMG_NOT_BASESHELL 
Caller is not the base shell. 

432 ERROR_SMG_BAD_STATUSREQ 
Invalid status requested. 

B-16 CP Programming Reference 



433 ERROR_ QUE_INVALID _WAIT 
NoWait parameter out of bounds. 

434 ERROR_ VIO_LOCK 
Error returned from Scroll Lock. 

435 ERROR_MOUSE_INVALID_IOWAIT 

Invalid parameters for IOWait. 

436 ERROR_ VIO _INVALID_HANDLE 
Invalid VIO handle. 

437 ERROR_ VIO _ILLEGAL_DURING_LOCK 

Function not allowed during screen lock. 

438 ERROR_ VIO _INVALID _LENGTH 
Invalid VIO length. 

439 ERROR_KBD _INVALID _HANDLE 

Invalid K8D handle. 

440 ERROR_KBD_NO_MORE_HANDLE 

Ran out of handles. 

441 ERROR_KBD_CANNOT_CREATE_KCB 

Unable to create kcb. 

442 ERROR_KBD_CODEPAGE_LOAD_INCOMPL 

Unsuccessful code-page load. 

443 ERROR_KBD_INVALID_CODEPAGE_ID 

Invalid code-page identity. 

444 ERROR_KBD_NO_CODEPAGE_SUPPORT 

No code page support. 

445 ERROR_KBD_FOCUS_REQUIRED 

Keyboard focus required. 

446 ERROR_KBD_FOCUS_ALREADY_ACTIVE 

Calling thread has an outstanding focus. 

447 ERROR_KBD_KEYBOARD_BUSY 

Keyboard is busy. 

448 ERROR_KBD_INVALID_CODEPAGE 

Invalid code page. 

449 ERROR_KBD_UNABLE_TO_FOCUS 
Focus attempt failed. 

450 ERROR_SMG_SESSION_NON_SELECT 

Session is not selectable. 

451 ERROR_SMG_SESSION_NOT _FOREGRND 

Parent/child session is not foreground. 

452 ERROR_SMG_SESSION_NOT_PARENT 

Not parent of requested child. 

453 ERROR_SMG_INVALID_START_MODE 

Invalid session start mode. 

454 ERROR_SMG_INVALID_RELATED_OPT 

Invalid session start related option. 

455 ERROR_SMG_INVALID_BOND_OPTION 

Invalid session bond option. 

456 ERROR_SMG_INVALID_SELECT_OPT 

Invalid session select option. 

457 ERROR_SMG_START_IN_BACKGROUND 

Session started in background. 

Appendix 8. Errors 8-17 



458 ERROR_SMG_INVALID _STOP_ OPTION 
Invalid session stop option. 

459 ERROR_SMG_BAD_RESERVE 
Reserved parameters are not zero. 

460 ERROR_SMG_PROCESS_NOT_PARENT 
Session parent process already exists. 

461 ERROR_SMG_INVALID_DATA_LENGTH 
Invalid data length. 

462 ERROR_SMG_NOT_BOUND 
Parent is not bound. 

463 ERROR_SMG_RETRY_SUB_ALLOC 
Retry request block allocation. 

464 ERROR_KBD_DETACHED 
This call is not allowed for a detached PIO. 

465 ERROR_VIO_DETACHED 
This call is not allowed for a detached PIO. 

466 ERROR_MOU_DETACHED 
This call is not allowed for a detached PIO. 

467 ERROR_VIO_FONT 
No font is available to support the mode. 

468 ERROR_VIO_USER_FONT 
User font is active. 

469 ERROR_VIO_BAD_CP 
Invalid code page specified. 

470 ERROR_VIO_NO_CP 
System displays do not support code page. 

471 ERROR_VIO_NA_CP 
Current display does not support code page. 

472 ERROR_INVALID_CODE_PAGE 
Invalid code page. 

473 ERROR_CPLIST_TOO_SMALL 
Code page list is too small. 

474 ERROR_CP _NOT _MOVED 
Code page was not moved. 

475 ERROR_MODE_SWITCH_INIT 
Mode switch initialization error. 

476 ERROR_CODE_PAGE_NOT _FOUND 
Code page was not found. 

477 ERROR_UNEXPECTED _SLOT _RETURNED 
Internal error. 

478 ERROR_SMG_INVALID_TRACE_OPTION 
Invalid start session trace indicator. 

479 ERROR_VIO_INTERNAL_RESOURCE 
VIO internal resource error. 

480 ERROR_ VIO _SHELL_INIT 
VIO shell initialization error. 

481 ERROR_SMG_NO_HARD_ERRORS 
No session manager hard errors. 

482 ERROR_CP _SWITCH_INCOMPLETE 
OosSetProcessCp is unable to set a KBO or VIO code page. 

B-18 CP Programming Reference 



483 ERROR_ VIO _TRANSPARENT _POPUP 
Error during VIO pop-up window. 

484 ERROR_ CRITSEC_ OVERFLOW 
Critical section overflow. 

485 ERROR_ CRITSEC_UNDERFLOW 
Critical section underflow. 

486 ERROR_ VIO _BAD _RESERVE 
Reserved parameter is not zero. 

487 ERROR_INVALID _ADDRESS 
Invalid physical address. 

488 ERROR_ZERO_SELECTORS_REQUESTED 
At least one selector must be requested. 

489 ERROR_NOT _ENOUGH_SELECTORS_AVA 
Not enough GOT selectors to satisfy request. 

490 ERROR_INVALID_SELECTOR 
Not a GOT selector. 

491 ERROR_SMG_INVALID_PROGRAM_TYPE 
Invalid program type. 

492 ERROR_SMG_INVALID _PGM_ CONTROL 
Invalid program control. 

493 ERROR_SMG_INVALID_INHERIT_OPT 
Invalid inherit option. 

494 ERROR_VIO_EXTENDED_SG 

495 ERROR_VIO_NOT_PRES_MGR_SG 

496 ERROR_ VIO _SHIELD_ OWNED 

497 ERROR_ VIO _NO _MORE_HANDLES 

498 ERROR_ VIO _SEE_ERROR_LOG 

499 ERROR_ VIO _ASSOCIATED _DC 

500 ERROR_KBD _NO_ CONSOLE 

501 ERROR_MOUSE_NO _CONSOLE 

502 ERROR_MOUSE_INVALID _HANDLE 

503 ERROR_SMG_INVALID_DEBUG_PARMS 

504 ERROR_KBD_EXTENDED_SG 

505 ERROR_MOU_EXTENDED_SG 

506 ERROR_SMG_INVALID _ICON_FILE 

507 ERROR_TRC_PID_NON_EXISTENT 

Appendix 8. Errors 8-19 



508 ERROR_ TRC _COUNT _ACTIVE 

509 ERROR_ TRC_SUSPENDED_BY _COUNT 

510 ERROR_ TRC _COUNT _INACTIVE 

511 ERROR_ TAC_ COUNT _REACHED 

512 ERROR_NO _MC_ TRACE 

513 ERROR_MC_TRACE 

514 ERROR_TRC_COUNT_ZERO 

515 ERROR_SMG_TOO_MANY_DDS 

516 ERROR_SMG_INVALID _NOTIFICATION 

517 ERROR_LF _INVALID _FUNCTION 

518 ERROR_LF _NOT _AVAIL 

519 ERROR_LF _SUSPENDED 

520 ERROR_LF _BUF _TOO _SMALL 

521 ERROR_LF _BUFFER_CORRUPTED 

521 ERROR_LF _BUFFER_FULL 

522 ERROR_LF _INVALID _DAEMON 

522 ERROR_LF _INVALID _RECORD 

523 ERROR_LF _INVALID_ TEMPL 

523 ERROR_LF _INVALID_SERVICE 

524 ERROR_LF _ GENERAL_FAILURE 

525 ERROR_LF _INVALID _ID 

526 ERROR_LF _INVALID _HANDLE 

527 ERROR_LF _NO _ID _AVAIL 

528 ERROR_LF _ TEMPLATE_AREA_FULL 

529 ERROR_LF _ID_IN_USE 

B-20 CP Programming Reference 



530 ERROR_MOU_NOT_INITIALIZED 

531 ERROR_MOUINITREAL_DONE 

532 ERROR_DOSSUB_ CORRUPTED 

533 ERROR_MOUSE_CALLER_NOT_SUBSYS 

534 ERROR_ ARITHMETIC_ OVERFLOW 

535 ERROR_ TMR_NO _DEVICE 

536 ERROR_ TMR_INVALID _TIME 

537 ERROR_PVW _INVALID _ENTITY 

538 ERROR_PVW _INVALID _ENTITY_ TYPE 

539 ERROR_PVW _INVALID _SPEC 

540 ERROR_PVW _INVALID _RANGE_ TYPE 

541 ERROR_PVW _INVALID_ COUNTER_BLK 

542 ERROR_PVW _INVALID_ TEXT _BLK 

543 ERROR_PRF _NOT _INITIALIZED 

544 ERROR_PRF _ALREADY _INITIALIZED 

545 ERROR_PRF _NOT_STARTED 

546 ERROR_PRF _ALREADY _STARTED 

547 ERROR_PRF _TIMER_ OUT_ OF _RANGE 

548 ERROR_PRF _ TIMER_RESET 

639 ERROR_ VDD _LOCK_USEAGE_DENIED 

640 ERROR_ TIMEOUT 

641 ERROR_ VDM_DOWN 

642 ERROR_ VDM_LIMIT 

643 ERROR_ VDD _NOT _FOUND 

644 ERROR_INVALID _CALLER 

Appendix 8. Errors 8-21 



645 ERROR_PID_MISMATCH 

646 ERROR_INVALID _ VDD_HANDLE 

647 ERROR_ VLPT _NO _SPOOLER 

648 ERROR_ VCOM_DEVICE_BUSY 

649 ERROR_ VLPT _DEVICE_BUSY 

650 ERROR_NESTING_ TOO_DEEP 

651 ERROR_ VDD _MISSING 

691 ERROR_IMP _INVALID_PARM 

692 ERROR_IMP _INVALID_LENGTH 

693 MSG_HPFS_DISK_ERROR_ WARN 

730 ERROR_MON_BAD _BUFFER 

731 ERROR_MODULE_CORRUPTED 

2055 ERROR_LF _TIMEOUT 

2057 ERROR_LF _SUSPEND_SUCCESS 

2058 ERROR_LF _RESUME_SUCCESS 

2059 ERROR_LF_REDIRECT_SUCCESS 

2060 ERROR_LF _REDIRECT _FAILURE 

32768 ERROR_SWAPPER_NOT_ACTIVE 

32769 ERROR_INVALID _SWAPID 

32770 ERROR_IOERR_SWAP _FILE 

32771 ERROR_SWAP _TABLE_FULL 

32772 ERROR_ SWAP _FILE_FULL 

32773 ERROR_ CANT _INIT _SWAPPER 

32774 ERROR_SWAPPER_ALREADY_INIT 

32775 ERROR_PMM_INSUFFICIENT _MEMORY 

B-22 CP Programming Reference 



32776 ERROR_PMM_INVALID _FLAGS 

32777 ERROR_PMM_INVALID_ADDRESS 

32778 ERROR_PMM_LOCK_FAILED 

32779 ERROR_PMM_UNLOCK_FAILED 

32780 ERROR_PMM_MOVE_INCOMPLETE 

32781 ERROR_UCOM_DRIVE_RENAMED 

32782 ERROR_UCOM_FILENAME_TRUNCATED 

32783 ERROR_UCOM_BUFFER_LENGTH 

32784 ERROR_MON_CHAIN_HANDLE 

32785 ERROR_MON_NOT _REGISTERED 

32786 ERROR_SMG_ALREADY _TOP 

32787 ERROR_PMM_ARENA_MODIFIED 

32788 ERROR_SMG_PRINTER_ OPEN 

32789 ERROR_PMM_SET_FLAGS_FAILED 

32790 ERROR_INVALID_DOS_DD 

32791 ERROR_BLOCKED 

32792 ERROR_NOBLOCK 

32793 ERROR_INSTANCE_SHARED 

32794 ERROR_NO_OBJECT 

32795 ERROR_PARTIAL_A TTACH 

32796 ERROR_INCACHE 

32797 ERROR_SWAP _IO_PROBLEMS 

32798 ERROR_ CROSSES_ OBJECT _BOUNDARY 

32799 ERROR_LONGLOCK 

32800 ERROR_SHORTLOCK 

Appendix B. Errors B-23 



32801 ERROR_ UVIRTLOCK 

32802 ERROR_ALIASLOCK 

32803 ERROR_ALIAS 

32804 ERROR_NO _MORE_HANDLES 

32805 ERROR_ SCAN_ TERMINATED 

32806 ERROR_TERMINATOR_NOT _FOUND 

32807 ERROR_NOT _DIRECT _CHILD 

32808 ERROR_DELAY _FREE 

32809 ERROR_GUARDPAGE 

32900 ERROR_SWAPERROR 

32901 ERROR_LDRERROR 

32902 ERROR_NOMEMORY 

32903 ERROR_NOACCESS 

32904 ERROR_NO _DLL_ TERM 

65026 ERROR_ CPSIO _CODE_PAGE_INVALID 

65027 ERROR_ CPSIO_NO_SPOOLER 

65028 ERROR_ CPSIO _FONT _ID _INVALID 

65033 ERROR_ CPSIO _INTERNAL_ERROR 

65034 ERROR_ CPSIO _INVALID _PTR_NAME 

65037 ERROR_CPSIO_NOT_ACTIVE 

65039 ERROR_ CPSIO _PID _FULL 

65040 ERROR_CPSIO _PID_NOT _FOUND 

65043 ERROR_ CPSIO _READ_ CTL_SEQ 

65045 ERROR_CPSIO_READ_FNT_DEF 

65047 ERROR_ CPSIO _ WRITE_ERROR 

8-24 CP Programming Reference 



65048 ERROR_CPSIO _ WRITE_FULL_ERROR 

65049 ERROR_CPSIO _WRITE_HANDLE_BAD 

65074 ERROR_CPSIO_SWIT_LOAD 

65077 ERROR_ CPSIO _INV_ COMMAND 

65078 ERROR_CPSIO_NO_FONT_SWIT 

65079 ERROR_ENTRY_IS_CALLGATE 

Appendix 8. Errors 8-25 



B-26 CP Programming Reference 



Appendix C. System Exceptions 

The operating system defines a class of error conditions called exceptions, and specifies the default 
actions that are taken when these exceptions occur. The system default action in most cases is to 
terminate the thread that caused the exception. 

Exception values have the following 32-bit format: 

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

Facility 

"Sev" is the severity code, as follows: 

Value Meaning 
00 Success 
01 Informational 
10 Warning 
11 Error 

"C" is the Customer code flag. 

"Facility" is the facility code. 

"Code" is the facility's status code. 

Code 

Exceptions that are specific to OS/2 Version 2.00 (for example, XCPT_SIGNAL) have a facility code of 

1. 

System exceptions include both synchronous and asynchronous exceptions. Synchronous 
exceptions are caused by events that are internal to a thread's execution. For example, synchronous 
exceptions could be caused by invalid parameters, or by a thread's request to end its own execution. 

Asynchronous exceptions are caused by events that are external to a thread's execution. For 
example, an asynchronous exception can be caused by a user's entering a Ctrl+C or Ctrl+Break key 
sequence, or by a process' issuing DosKillProcess to end the execution of another process. 

The Ctrl+Break and Ctrl+C exceptions are also known as signals, or as signal exceptions. 

The following tables show the symbolic names of system exceptions, their numerical values, and 
related information fields. 

Table c~1. Portable, Non-Fatal, Software-Generated 
Exceptions 

Exception Name Value 

XCPT _GUARD _PAGE_ VIOLATION Ox80000001 

Exceptionlnfo[ 0] - R/W flag 
Exceptionlnfo[ 1 ] - FaultAddr 

XCPT_UNABLE_TO_GROW_STACK Ox80010001 

Appendix C. System Exceptions C-1 



Table C-2. Portable, Fatal, Hardware-Generated Exceptions 

Exception Name Value Related Trap 

XCPT _ACCESS_ VIOLATION OxC0000005 Ox09, OxOB, 
OxOC, OxOD, OxOE 

Exceptionlnfo[ 0 ] - Flags 
XCPT_UNKNOWN_ACCESS OxO 
XCPT_READ_ACCESS Ox1 
XCPT _WRITE_ACCESS Ox2 
XCPT _EXECUTE_ACCESS Ox4 
XCPT_SPACE_ACCESS Ox8 
XCPT _LIMIT _ACCESS Ox10 

Exceptionlnfo[ 1 ] - FaultAddr 

XCPT _INTEGER_DIVIDE_BY _ZERO OxC000009B 0 

XCPT _FLOAT _DIVIDE_BY _ZERO OxC0000095 Ox10 

XCPT_FLOAT_INVALID_OPERATION OxC0000097 Ox10 

XCPT _ILLEGAL_INSTRUCTION OxC000001C Ox06 

XCPT _PRIVILEGED _INSTRUCTION OxC000009D OxOD 

XCPT _INTEGER_ OVERFLOW OxC000009C Ox04 

XCPT _FLOAT_ OVERFLOW OxC0000098 Ox10 

XCPT _FLOAT_ UNDERFLOW OxC000009A Ox10 

XCPT _FLOAT _DENORMAL_ OPERAND OxC0000094 Ox10 

XCPT _FLOAT _INEXACT _RESULT OxC0000096 Ox10 

XCPT _FLOAT _STACK_ CHECK OxC0000099 Ox10 

XCPT _DATATYPE_M ISALIGNMENT OxC000009E Ox11 

Exceptionlnfo[ O ] - R/W flag 
Exceptionlnfo[ 1 ] - Alignment 
Exceptionlnfo[ 2 ] - FaultAddr 

XCPT _BREAKPOINT OxC000009F Ox03 

XCPT _SINGLE_STEP OxCOOOOOAO Ox01 

Table C-3. Portable, Fatal, Software-Generated Exceptions 

Exception Name Value Related Trap 

XCPT _IN_PAGE_ERROR OxC0000006 Ox OE 

Exceptionlnfo[ 0 ] - FaultAddr 

XCPT _PROCESS_ TERMINATE OxC0010001 

XCPT _ASYNC_PROCESS_ TERMINATE OxC0010002 

Exceptionlnfo[ 0] - TIO of 
terminating thread 

XCPT _NONCONTINUABLE_EXCEPTION OxC0000024 

XCPT_INVALID_DISPOSITION OxC0000025 

C-2 CP Programming Reference 



Table C-4. Non-Portable, Fatal Exceptions 

Exception Name Value Related Trap 

XCPT _INVALID _LOCK_SEQUENCE OxC000001D 

XCPT _ARRAY _BOUNDS_EXCEEDED OxC0000093 Ox05 

Table C-5. Unwind Operation Exceptions 

Exception Name Value 

XCPT_UNWIND OxC0000026 

XCPT_BAD_STACK OxC0000027 

XCPT _INVALID_ UNWIND_ TARGET OxC0000028 

Table C-6. Fatal Signal Exceptions 

Exception Name Value 

XCPT _SIGNAL OxC0010003 

Exceptionlnfo[ O ] - Signal 
Number 

System Exception Descriptions 

XCPT ACCESS VIOLATION - -
Exception Description 

Access Vlolatlon 

An access violation exception is generated when an attempt is made either to load or store data in 
an inaccessible location, or to execute an inaccessible instruction. This exception corresponds to 
both the Intel 80386 general protection fault (#13), caused by an invalid access attempt; and the page 
fault (#14), caused by an attempt to access an uncommitted page or a page with incorrect attributes 
for the desired operation. 

Exception Code: 
XCPT _ACCESS_ VIOLATION (OxC0000005) 

Handler Information: 
The ExceptionAddress field in the ExceptionReportRecord points to the instruction that caused 
the exception. This exception is continuable. 

Default Action: 
The process is ended. 

Additional Parameters (2): 
Exception Info[ 0 ] - Flags 

XCPT_UNKNOWN_ACCESS (OxO) 
XCPT_READ_ACCESS (Ox1) 
XCPT _WRITE_ACCESS (Ox2) 
XCPT_EXECUTE_ACCESS (Ox4) 
XCPT_SPACE_ACCESS (Ox8) 
XCPT_LIMIT_ACCESS (Ox10) 

Exception Info[ 1 ] - FaultAddr 

The virtual address (if available) of the data that is not accessible, or 
XCPT_DATA_UNKNOWN. 

Appendix C. System Exceptions C-3 



XCPT _BREAKPOINT 
Exception Description 

Breakpoint 

A breakpoint exception occurs when a breakpoint instruction is executed. This exception is intended 
for use by debuggers. This exception is continuable. 

Exception Code: 
XCPT _BREAKPOINT (OxC0000006) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT _ARRAY _BOUNDS_EXCEEDED 
Exception Description 

Bounds Check 

The bounds check exception corresponds to the Intel 80386 bounds check fault (#5), caused by a 
BOUND instruction that fails. 

Exception Code: 
XCPT _ARRAY _BOUNDS_EXCEEDED (OxC0000093) 

Handler Information: 
The CS:EIP in the exception context structure points to the instruction that caused the exception. 
This exception is continuable. 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT_DATATYPE_MISALIGNMENT 
Exception Description 

Data-Type M lsallgnment 

A data-type misalignment exception is generated when an attempt is made to load or store data in an 
address that is not naturally aligned on a hardware architecture that does not provide alignment 
hardware. For example, 16-bit entities must be aligned on two-byte boundaries, and 32-bit entities 
must be aligned on four-byte boundaries. This exception does not occur on the Intel 80386 
processor. This exception is continuable. 

Exception Code: 
XCPT_DATATYPE_MISALIGNMENT (OxC000009E) 

Default Action: 
The process is ended. 

Additional Parameters (3): 
Exception Info[ 0 ] - Read/Write Flag 

XCPT_READ_ACCESS, or 
XCPT _ WRITE_ACCESS. 

Exception Info[ 1 ] - Data-type Mask 

A data-type mask that specifies how many low-address bits must be zero. For example, the 
data-type mask for a 1-6-bit entity is one, a 32-bit entity three, and so on. 

Exception Info[ 2] - Virtual Address 

The virtual address of the misaligned data. 

C-4 CP Programming Reference 



XCPT FLOAT DIVIDE BY ZERO - - - -
Exception Description 

Floating Divide-by-Zero 

A floating divide-by-zero exception is generated when an attempt is made to divide a floating-point 
dividend by a floating-point divisor of zero. This exception is continuable. 

Exception Code: 
XCPT _FLOAT _DIVIDE_BY _ZERO (OxC0000095) 

Default Action: 
The process is ended. 

Addlllonal Parameters: 
None. 

XCPT FLOAT OVERFLOW - -
Exception Description 

Floating Overflow 

A floating overflow exception is generated when the resulting exponent of a floating-point operation 
is greater than the magnitude allowed for the respective floating point data type. This exception is 
continuable. 

Exception Code: 
XCPT _FLOAT_ OVERFLOW (OxC0000098) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT FLOAT UNDERFLOW - -Exception Description 

Floating Underflow 

A floating underflow exception is generated when the resulting exponent of a floating-point operation 
is less than the magnitude provided for the respective floating-point data type. This exception is 
continuable. 

Exception Code: 
XCPT _FLOAT_ UNDERFLOW (OxC000009A) 

Default Action: 
The process is ended. 

Addltlonal Parameters: 
None. 

XCPT FLOAT INVALID OPERATION - - -
Exception Description 

Invalid Floating-Point Operation 

This exception usually indicates a programming error corresponding to the invalid floating-point 
operations defined in IEEE Standard 754. The Intel 80386 processor raises trap #16. This exception 
is continuable. 

Default Action: 
The process is ended. 

Appendix C. System Exceptions C-5 



Exception Code: 
XCPT _FLOAT _INVALID_ OPERATION (OxC0000097) 

Addltlonal Parameters: 
None. 

XCPT_FLOAT_DENORMAL_OPERAND 
Exception Description 

Denormalized Operand 

A denormalized operand exception occurs when the 80387 NPX processor attempts an arithmetic 
operation on a denormal operand, and the user has not masked off denormal operations. This 
exception is continuable. 

Exception Code: 
XCPT_FLOAT_DENORMAL_OPERAND (OxC0000094) 

Default Action: 
The process is ended. 

Addltlonal Parameters: 
None. 

XCPT _FLOAT _INEXACT _RESULT 
Exception Description 

Loss of Precision 

A loss of precision exception occurs when the result of an operation is not exactly representable in 
the destination format. For example, the fraction 1/3 cannot be exactly represented in binary form. 
For the Intel 80386 and 80387 processors, this corresponds to one of the class of exceptions for which 
the 80387 processor signals the 80386 processor to raise trap #16. This exception is continuable. 

Default Action: 
The process is ended. 

Exception Code: 
XCPT _FLOAT _INEXACT _RESULT (OxC0000096) 

Addltlonal Parameters: 
None. 

XCPT_FLOAT_STACK_CHECK 
Exception Description 

Invalid Floating-Point Stack Operation 

An invalid floating-point stack check is raised when a floating-point processor attempts an illegal 
operation on a private stack. The Intel 80387 processor maintains eight internal 10-byte "registers" 
that are individually addressable and yet behave as a push-down stack under the influence of the 
FLO (push real) and FST (pop real to destination) instructions. Overflow and underflow are checked 
with each instruction, and this exception is raised when appropriate. This is one of the class of 
exceptions for which the Intel 80387 processor signals the Intel 80386 processor to raise trap #16. 
This exception is continuable. 

Exception Code: 
XCPT _FLOAT _STACK_ CHECK (OxC0000099) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

C-6 CP Programming Reference 



XCPT ILLEGAL INSTRUCTION - -
Exception Description 

Illegal Instruction 

An illegal instruction exception is generated when an attempt is made to execute an instruction 
whose operation is not defined for the host machine architecture. On the Intel 80386 processor, this 

corresponds to the invalid opcode fault (#6), caused by any invalid instruction. This exception is 

continuable. 

Exception Code: 
XCPT _ILLEGAL_ INSTRUCTION (OxC000001 C) 

Default action: 
The process is ended. 

Addltlonal Parameters: 
None. 

XCPT PRIVILEGED INSTRUCTION - -
Exception Description 

Privileged Instruction 

A privileged instruction exception is generated when an attempt is made to execute an instruction 
whose operation is not allowed in the current machine mode. For example, an attempt is made to 
execute an instruction in user mode that is only allowed in kernel mode. This exception is 
continuable. 

Exception Code: 
XCPT _PRIVILEGED _INSTRUCTION (OxC000009D) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT _INVALID_ LOCK_ SEQUENCE 
Exception Description 

Invalid Lock Sequence 

An invalid lock sequence exception is generated when an attempt is made to execute an operation 

within an interlocked section of code, and the sequence is invalid for the host machine architecture. 

This exception is continuable. 

Exception Code: 
XCPT _INVALID _LOCK_ SEQUENCE (OxC000001 D) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT INTEGER DIVIDE BY ZERO - - - -
Exception Description 

Integer Divide-by-Zero 

An integer divide-by-zero exception is generated when an attempt is made to divide an integer 
dividend by an integer divisor of zero. On the Intel 80387 processor, this is a divide by zero fault 

(#0), caused by a DIV or IDIV by zero operation. This exception is continuable. 

Appendix C. System Exceptions C-7 



Exception Code: 
XCPT _INTEGER_DIVIDE_BY _ZERO (OxC0000098) 

Default action: 
The process is ended. 

Addltlonal Parameters: 
None. 

XCPT INTEGER OVERFLOW - -Exception Description 

Integer Overflow 

An integer overflow exception is generated when the result of an integer operation causes a 
carry-out of the the most significant bit of the result, which is not the same as the carry-into of the 
most significant bit of the result. For example, the addition of two positive integers produces a 
negative result. On the Intel 80387 processor, this corresponds to overflow trap (#4), caused by 
executing an INTO instruction with the OF flag set. This exception is continuable. 

Exception Code: 
XCPT _INTEGER_ OVERFLOW (OxC000009C) 

Default action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT SINGLE STEP - -Exception Description 

Single Step 

A single-step exception is generated when a trace trap or other single instruction execution 
mechanism signals that one instruction has been executed. This exception is intended for use by 
debuggers. This exception is continuable. 

Default Action: 
The process is ended 

Exception Code: 
XCPT _SINGLE_STEP (OxCOOOOOAO) 

Additional Parameters: 
None. 

XCPT_GUARD_PAGE_VIOLATION 
Exception Description 

Guard Page Violation 

A guard page violation exception is generated when an attempt is made to load or store data in a 
location that is contained within a guard page. Memory management software immediately turns the 
guard page into a demand zero page and initiates a guard page violation exception. 

Exception Code: 
XCPT _GUARD _PAGE_ VIOLATION (Ox800001) 

Default Action: 
Execution continues. If possible, the memory page immediately below the guard page is 
allocated and marked as a guard page. The higher guard page is marked to no longer be a guard 
page, and the instruction is restarted. This allows for dynamic stack growth. If it is not possible 
to allocate another page below the faulting page, an XCPT_UNABLE_TO_GROW_STACK 
exception is raised. This exception is continuable. 

C-8 CP Programming Reference 



Additional Parameters (2): 
Exceptionlnfo[ 0] - Read/Write Flag 

XCPT_READ_ACCESS,or 
XCPT _WRITE_ACCESS. 

Exceptionlnfo[ 1] - Virtual Address 

The virtual address of the data within a guard page. 

XCPT UNABLE TO GROW STACK - - - -
Exception Description 

Unable to Grow Stack 

The default action for a guard page violation is to attempt to allocate another page of memory 
immediately below the page on which the fault occurred, thereby implementing dynamic stack 
growth. If this attempt fails, XCPT_UNABLE_TO_GROW_STACK is generated, indicating that the 
thread has, at most, one more page of stack space available. This exception is continuable. 

Exception Code: 
XCPT_UNABLE_TO_GROW_STACK (Ox80010001) 

Default Action: 
Execution continues. 

Addltlonal Parameters: 
None. 

XCPT BAD STACK - -Exception Description 

Bad Stack 

This exception is raised when an ExceptionRegistrationRecord is reached that is not properly 
aligned or is not within the current stack boundaries. It is also raised if an unwind target is specified 

that does not point to an ExceptionRegistrationRecord. This exception is noncontinuable. 

Exception Code: 
XCPT_BAD_STACK (OxC0000027) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT INVALID UNWIND TARGET - - -
Exception Description 

Invalid Unwind Target 

This exception is raised when the address of the target ExceptionRegistrationRecord is below the 
current stack pointer. This exception is noncontinuable. 

Exception Code: 
XCPT_INVALID_UNW1ND_TARGET 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

Appendix C. System Exceptions C-9 



XCPT IN PAGE ERROR - - -
Exception Description 

Page Read Error 

A page read error exception is generated when an attempt is made to read a page into memory and 
an 110 error is encountered. This exception is continuable. 

Exception Code: 
XCPT _IN_PAGE_ERROR (OxC0000006) 

Default Action: 
The process is ended. 

Addltlonal Parameters (1 ): 
Exceptionlnfo[ 0 ] - Virtual Address 

A virtual address within the page that was being read. 

XCPT INVALID DISPOSITION - -Exception Description 

Invalid Disposition 

This exception is raised when an exception handler returns anything except 
XCPT_CONTINUE_EXECUTION or XCPT_CONTINUE_SEARCH. This exception is not continuable. 

Execution Code: 
XCPT _INVALID _DISPOSITION (OxC0000025) 

Default Action: 
The process is ended. 

Addltlonal Parameters: 
None. 

XCPT NONCONTINUABLE EXCEPTION - -Exception Description 

Continuing a Noncontinuable Exception 

This exception is raised when an exception handler returns XCPT_CONTINUE_EXECUTION in 
response to a noncontinuable exception. This exception is not continuable. 

Execution Code: 
XCPT _NONCONTINUABLE_EXCEPTION (OxC0000024) 

Default Action: 
The process is ended. 

Additional Parameters: 
None. 

XCPT PROCESS TERMINATE - -
Exception Description 

Process Termination 

There are two exceptions a thread may receive when it is about to end: 

XCPT_PROCESS_TERMINATE, and 
XCPT _ASYNC_PROCESS_ TERMINATE. 

A thread receives XCPT_PROCESS_TERMINATE after it calls DosExit to end itself or the entire 
process. This exception is not continuable. 

C-10 CP Programming Reference 



Addltlonal Parameters: 
None. 

XCPT ASYNC PROCESS TERMINATE - - -
Exception Description 

There are two exceptions a thread may receive when it is about to end: 

XCPT_PROCESS_TERMINATE, and 
XCPT _ASYNC_PROCESS_ TERMINATE. 

A thread receives XCPT_ASYNC_PROCESS_TERMINATE when another thread in the process has 
caused it to end. For example, another thread has called DosExit to end the process, or has not 
handled a fatal exception, and so on. This exception is continuable. 

Additional Parameters (1 ): 
Exceptionlnfo[ O ] - TIO 

The thread identification of the terminating thread. 

XCPT UNWIND 
Exception Description 

Unwinding 

The system fills in an exception number for an unwind if the user chooses not to do so. Note that an 
ExceptionReportRecord containing XCPT_UNWIND does not indicate that an exception has occurred, 
but rather that an unwind is in progress. 

Exception Code: 
XCPT _UNWIND (OxC0000026) 

Default Action: 
Does not apply. 

Additional Parameters: 
None. 

XCPT SIGNAL 
Exception Description 

Signal Exceptions 

An OS/2 Version 2.00 application may receive three signals: 

XCPT_SIGNAL_INTR (Ctrl+C) 
XCPT _SIGNAL_KILLPROC (DosKillProcess) 
XCPT _SIGNAL_BREAK (Ctrl+Break). 

The signal being sent may be determined by examining the exception information in the 
Exception ReportRecord. 

Exception Code: 
XCPT_SIGNAL (OxC0010003) 

Default Action: 
The process is ended. 

Additional Parameters (1 ): 
Exceptionlnfo[ 0 ] - Signal Number 

Number 
1 
3 
4 

Signal 
XCPT _SIGNAL_INTR 
XCPT _SIGNAL_KILLPROC 
XCPT _SIGNAL_BREAK 

Appendix C. System Exceptions C-11 



I ( 

XCPT_SIGNAL is called a "signal exception" and is sent only to thread 1 in the process receiving the 
exception. This is consistent with 16~bit signals, and provides greater consistency in the 
environment of the process for handling the various asynchronous exceptions. For example, since a 
repeated typematic Ctrl+C could possibly cause the thread to recursively process the exception and 
consume stack space without ever being able to handle the first "signal", the exception dispatcher 
"holds" each exception of the same type until a handler either returns XCPT_CONTINUE_EXECUTION 
to the exception dispatcher, or the process calls DosAcknowledgeSignalException for that signal. 
Only one sig.nal or exception is actually held (they are not queued by the system). 

DosSetSignalExceptionFocus indicates to the system that the process wants to receive the 
XCPT_SIGNAL_INTR and XCPT_SIGNAL_BREAK signals. Previously, when a process called 
DosSetSigHandler, the system noted that the process was aware of the particular signal for which it 
was registering the handler. When a process called DosSetSigHandler, it became a candidate for the 
"signal focus" for its session. At any point in time, the focus for a session is the last process to 
register a signal handler for that signal. When the user presses Ctrl+C on the keyboard, the system 
delivers an XCPT _SIGNAL_INTR signal to the current keyboard focus. The user could also press 
Ctrl+Break to deliver an XCPT _SIGNAL_BREAK signal, but this would only work if input were in raw 
mode. 

Note that all exception handlers (on thread 1) must be prepared to "see" signal exceptions. It is 
always possible that a previous handler has issued DosSetSignalExceptionFocus or that a 
Dos16SetSigHandler has been issued by some 16-bit code in the path. They can always be ignored 
by returning XCPT_CONTINUE_SEARCH to the exception dispatcher. Note that signals result in a call 
to the 16-bit signal handler (if installed) if all the 32-bit exception handlers return 
XCPT _CONTINUE_SEARCH. 

DosSetSignalExceptionFocus performs the function of assigning the signal focus exactly as if the 
application had called DosSetSigHandler twice, once for each signal. The process calls 
DosSetSignalExceptionFocus when it wants to indicate that it expects to receive XCPT _SIGNAL_INTR 
or XCPT _SIGNAL_BREAK after it has registered an exception handler to process the signal when it 
comes. Each call to DosSetSignalExceptionFocus increments a counter in the PTDA of the process. 
When the system attempts to send XCPT_SIGNAL_INTR or XCPT_SIGNAL_BREAK to a process, it first 
checks to see if either this counter is greater than zero, or if the process has registered a 16-bit 
signal handler for that signal. If either of these is true, the signal will be sent. If the process has 
registered both 16-bit and 32-bit handlers, the 32-bit handlers are called first. If they do not handle 
the signal, the 16-bit handlers are called. If the 32-bit handlers are called and do not handle the 
signal, and there are no 16-bit handlers, the process is terminated. 

C-12 CP Programming Reference 



Appendix D. DosDebug Commands 

Not all fields must be defined for every DosDebug command. The same field can have a different 
meaning in different DosDebug commands. For each command, fields in the Debug Buffer structure 
that are not listed are not useful for that command, but may be modified by DosDebug as required. 

Error cases for commands are not listed. The listed return values from commands are valid only if 
the DBG_N_Success notification is given. 

DBG_C_Null - Debug Command O 

Null Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_Null 

No operation is performed on the debuggee. You can issue this command to verify the process ID of 
the debuggee, and to check if the debuggee is active. 

Pid must be valid, or an error is returned. 

DBG_C_ReadMem - Debug Command 1and2 

DBG_C_ReadMem_I- Debug Command 1and2 

DBG_C_ReadMem_D - Debug Command 1and2 

Read Word Command 

Parameters 

Pid = Process ID of debuggee 
Addr = Address to read from 
Cmd = DBG_C_ReadMem_I, or DBG_C_ReadMem_D, or DBG_C_ReadMem 

The commands DBG_C_ReadMem_I, DBG_C_ReadMem_D, and DBG_C_ReadMem are identical. 

Returns 

The word at the desired address is read, and stored into Value. 

Value = Word read from the specified address. 

Restrictions 

You are unable to read from any memory outside user space. 

The high-order word of Value is set to zero. 

Appendix D. DosDebug Commands D-1 



DBG_C_ReadReg - Debug Command 3 

Read Register Set Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of register set to read 
Cmd = DBG_C_ReadReg 

If Tid is zero and the debuggee is stopped, the register set comes from the active debuggee thread. 
If Tid is zero and the debuggee is executing, ERROR_INVALID_THREADID is returned. 

Returns 

The register set in the Debug Buffer is updated, including the selector information as follows: 

Tid = Thread ID corresponding to the register set 
MTE = Program module's MTE (Module Table Entry) handle 

DBG_C_WriteMem - Debug Command 4 and 5 

DBG_C_WriteMem_I- Debug Command 4 and 5 

DBG_C_WriteMem_D - Debug Command 4 and 5 

Write Word Command 

Parameters 

Pid = Process ID of debuggee 
Addr = Address to write to 
Value = Word to write 
Cmd = DBG_C_WriteMem_I, or DBG_C_WriteMem_D, or DBG_C_WriteMem 

The commands DBG_C_WriteMem_I, DBG_C_WriteMem_D, and DBG_C_WriteMem are identical. 

Returns 

The word in Value is written to the specified address. 

In the case of a write to shared read-only memory, the memory is converted to private, and any set 
dynamic RAS tracepoints are removed from that memory, before the write is performed. 

The area will continue to be shared by other processes, if any. In this way, breakpoints may be set 
in the debuggee without affecting the other modules. 

Restrictions 

You are unable to write to any memory outside user space. 

The high-order word of Value is ignored. 

D-2 CP Programming Reference 



DBG_C_WriteReg - Debug Command 6 

Write Register Set Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Nonzero Thread ID of register set to write 
Cmd = DBG_C_WriteReg 

The register set in the Debug Buffer should contain the desired values. 

Returns 

Tid = Thread ID corresponding to the register set. 

All registers are updated to the stored values. The access rights, limits, and Eflags are also updated 
to match the current values. 

An error is returned if the selectors are not accessible by user space code, or are not valid memory 
segments. 

Restrictions 

Reserved system or processor flags bits are not modified via this method, but are masked to their 
correct values. The selector access rights and limits cannot be modified. The flags, access rights, 
and limits in the Debug Buffer are updated to the actual values. 

DBG_C_Go - Debug Command 7 

Go Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_Go 

Returns 

All non-frozen threads of the debuggee are allowed to execute user code at once. If all of the 
debuggee threads are frozen, an error is returned. 

The Go command completes when a DosDebug event (such as a Breakpoint) occurs. This event can 
be any one of the DosDebug notifications. See Appendix E, "DosDebug Notifications" on page E-1. 

When the next DosDebug event occurs, all threads in the debuggee process are marked to not 
execute any additional user code until the next Go command is issued. This provides a stable 
environment for debugging. 

When the Go command returns, the register set is automatically updated to reflect the thread that 
detected the event. 

DBG_C_Term - Debug Command 8 

Terminate Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_Term 

Appendix D. DosDebug Commands D-3 



Returns 

The debuggee process is terminated immediately. 

No additional DosDebug commands or notifications will be allowed to this process. Outstanding 
memory aliases and watchpoints will be invalidated automatically. 

Debuggee DosExecPgm processing will be attempted, but any unexpected DosDebug event (such as 
a Breakpoint) during this period will cause the process to terminate without completing DosExitlist 
processing. For this reason, data watchpoints will automatically be cleared before attempting 
DosExitlist processing. 

If the Terminate command is issued during DosExitlist processing, DosExitlist processing will 
terminate immediately, without continuing the DosExitlist routines. 

DBG_C_SStep - Debug Command 9 

Single Step Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread to single-step 
Cmd = DBG_C_SStep 

If Tid is zero, all threads will be marked to single-step at once, and the first thread to be scheduled to 
execute user-space code will single-step. No other threads will single-step. 

Returns 

Usually, the Exception notification is returned, but any notification may be returned. See 
Appendix E, DosDebug Notifications. 

Callgates that result in a privilege level transition to ring 0 will appear to single-step as a single 
instruction, with the single-step occurring just after the function completes. This hides ring 0 
execution from debuggers. 

Attempting to single-step any thread that is frozen results in an error. 

Restrictions 

The Single Step command has two modes of operation, as follows: 

• If Tid is zero, the current thread is single-stepped while allowing all other threads to execute. 

• If Tid is nonzero, a specific thread is selected for single-stepping. Only that thread is executed, 
even if it is single-stepping a kernel function that can potentially cause a deadlock condition. 

The single-step notification is not lost if the single-step operation causes a notification to be sent to 
DosDebug. In this case, the single-step notification is queued. 

The single-step operation is not lost if other notifications were queued before the Single Step 
command was issued. The Debug Continue command will clear the notifications one at a time until 
DosDebug has been completely notified. On the last Continue command, the single-step operation 
will take place as originally requested. 

When a single-step operation is interrupted by an exception, the EIP (instruction pointer) should be 
moved to the next RING3 instruction. This may be in ring 3 system code. The single-step notification 
will be issued at this time. 

The Single Step command correctly single-steps most instructions. Single-stepping some REP 
instructions may not work correctly due to errors in the 80386 processor. 

D-4 CP Programming Reference 



DBG_C_Stop - Debug Command 10 

Stop Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_Stop 

Returns 

The function performed by this command depends on the current state of the debuggee process, as 
follows: 

• If the debuggee is already stopped: 

If there is a pending notification from the current thread, it is returned. See Appendix E, 
DosDebug Notifications for information about pending notifications. 

If there is no pending notification from the current thread, DBG_N_Success is returned. 

• If the debuggee is executing user code: 

The debuggee is marked to stop before the next time it is ready to execute user-space (ring 2 or 
3) code. This is known as an Asynchronous Stop command. 

Kernel operations will not be interrupted for this Asynchronous Stop command. That is, threads 
blocked in the kernel (via a semaphore or internal operation) will not be interrupted. However, 
an infinite loop in user space will be stopped. 

Note that the AsyncStop variation of this command implies a debugger with a minimum of two 
threads - one waiting for a Go or SStep command to finish, and another executing the Stop 
command. 

DBG_C_Freeze - Debug Command 11 

Freeze Thread Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread to freeze 
Cmd = DBG_C_Freeze 

ff Tid is zero, all debuggee threads will be frozen. 

Returns 

The desired threads are prevented from executing user code on a Go or SStep command. 

By using the Freeze and Resume commands, a given set of threads can be executed at once, while 
keeping the other threads suspended. 

No error is returned if the thread was previously frozen; it just remains frozen. Freeze and Resume 
commands cannot be nested. 

If the Tid is specified as zero, it will be set to the thread ID of the debuggee thread most recently 
scheduled to execute. 

Appendix D. DosDebug Commands D-5 



DBG_C_Resume - Debug Command 12 

Resume Thread Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread to thaw 
Cmd = DBG_C_Resume 

If Tid is zero, all debuggee threads will be thawed. 

Returns 

The Resume command complements the Freeze command. A thread that has been resumed will 
function as if it were never frozen. 

No error is returned if the thread was not previously frozen. 

If the Tid is specified as zero, it will be set to the thread ID of the debuggee thread most recently 
scheduled to execute. 

DBG_C_NumToAddr - Debug Command 13 

Convert Object Number to Address Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_NumToAddr 
Value = Logical object number in module 
MTE = Module handle of module of interest 

Returns 

Addr = Starting address of object 
Value = Logical object number 
MTE = Module handle of module of interest 

The logical object number in Value is converted into an address that points to the starting address of 
the desired logical object of the specified module in the debuggee's memory space. This address is 
then stored in the Addr field, in the form of a linear address. 

The Value and MTE fields are left unchanged. 

The logical object numbers for a module are generated at link time. By using this function, a 
debugger can discern the relationship between addresses and logical object numbers. Once the 
logical object number is known, symbols can be generated for an address via a map or symbol file, 
for symbolic debugging. 

DBG_C_ReadCoRegs - Debug Command 14 

Read Coprocessor Registers Command 

Parameters 

Pid = Process ID of debuggee processor 
Tid = Thread ID of Coprocessor register set to read 
Cmd = DBG_C_ReadCoRegs 
Value = Coprocessor Type Identifier 

D-6 CP Programming Reference 



Buffer = Pointer to Coprocessor Register Context Buffer 
Len = Size of Coprocessor Register Context Buffer 
Index = Reserved, must be zero 

If Tid is zero and the debuggee is stopped, the register set comes from the active debuggee thread. 

If Tid is zero and the debuggee is executing, ERROR_INVALID_THREADID is returned. 

The coprocessor type identifier is a number that identifies the format of the coprocessor register 

context buffer. The buffer length must correspond exactly to the requested buffer format. The 

supported coprocessor types, formats and lengths include the following: 

For the Intel 80387 NPX processor: 

Value = DBG_C0_387 = 1 
Len = 108 

The coprocessor register context buffer format is the same as that defined by the fsave/frestore 

instructions as executed by the appropriate processor. 

Returns 

The debugger's coprocessor register context buffer is filled in with a copy of the registers read from 

the appropriate coprocessor, for the thread specified in the Tid field. 

If an error occurs while attempting to access the coprocessor context during this command, the 

DBG_N_CoError notification is returned. 

Restrictions 

An error is returned if any one of the following occurs: 

• The debuggee process is emulating the coprocessor. 

• The specified debuggee thread has not yet attempted to use the coprocessor. 

• The wrong coprocessor type is used. 

• Index is not zero. 

DBG_C_WriteCoRegs - Debug Command 15 

Write Coprocessor Registers Command 

Parameters 

Pid = Process ID of debuggee processor 
Tid = Nonzero Thread ID of Coprocessor register set to read 
Cmd = DBG_C_WriteCoRegs 
Value = Coprocessor Type Identifier 
Buffer = Pointer to Coprocessor Register Context Buffer 
Len = Size of Coprocessor Register Context Buffer 
Index = Reserved, must be zero 

The coprocessor type identifier is a number that identifies the format of the coprocessor register 

context buffer. The buffer length must correspond exactly to the requested buffer format. 

See "DBG_C_ReadCoRegs - Debug Command 14" on page D-6 for the supported coprocessor types, 

formats, and lengths. 

The coprocessor register context buffer format is the same as that defined by the fsave/frestore 

instructions as executed by the appropriate processor. 

Returns 

Appendix D. DosDebug Commands D-7 



The debuggee thread's coprocessor registers are filled with the values passed via the coprocessor 
register context buffer, for the thread specified in the Tid field. 

If an error occurs while attempting to access the coprocessor context during this command, the 
DBG_N_ CoError notification is returned. 

Restrictions 

An error is returned if any one of the following occurs: 

• The debuggee process is emulating the coprocessor. 

• The specified debuggee thread has not yet attempted to use the coprocessor. 

• The wrong coprocessor type is used. 

• Index is not zero. 

The coprocessor may adjust some con1rol register bits, but DosDebug will not return an error if a 
modification is attempted, nor will it mask the values. Because of internal coprocessor management, 
this adjustment may be delayed until the thread actually uses the coprocessor again. 

DBG_C_ThrdStat - Debug Command 17 

Get Thread Status Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread of interest 
Cmd = DBG_C_ThrdStat 
Buffer = Pointer to Thread Status buffer 
Len = Length of Thread Status buffer, in bytes. This value is 4. 

If Tid is zero, the status of the debuggee thread most recently scheduled to run will be returned. 

Returns 

Value = Thread ID of 'next' active thread to examine 
Tid = Thread ID of thread whose status is returned 
Thread Status buffer filled in. 

Thread Status buffer format is as follows: 

TStat struc 
DbgState 
TState 
TPriority 

TStat ends 

db 
db 
dw 

? 
? 
? 

DbgState in the Thread Status buffer contains information about the current state of debugging, and 
will have one of the following values upon return: 

0 DBG_D _Thawed 
1 DBG_D_Frozen 

TState in the Thread Status buffer contains information about the scheduling state of the thread, and 
will have one of the following values upon return: 

0 DBG_T _Runnable 
1 DBG_T_Suspended 
2 DBG_ T _Blocked 
3 DBG_ T _ CritSec 

TPriority in the Thread Status buffer contains the thread's base scheduling priority. This priority will 
be expressed as scheduling class and delta values upon return. 

D-8 CP Programming Reference 



The Value field will be filled in with the Thread ID of the 'next' thread to look at when traversing 
threads. 

By repeatedly calling the Thread Status command, replacing the Tid with the last returned Value until 
a thread ID is repeated, all threads in the process can be traversed. When used in this way, the Tids 
returned by the Thread Status command form a loop of the debuggee's thread IDs. 

DBG_C_MapROAlias - Debug Command 18and19 

DBG_C_MapRWAlias - Debug Command 18 and 19 

Map Read-Only or Read-Write Memory Alias Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_MapROAlias {Read Only) {Not always supported) 
Cmd = DBG_C_MapRWAlias {Read Write) 
Buffer = Reserved, must be zero. 
Addr = Start of debuggee region to alias (Page-Aligned) 
Len = Requested length of alias region {Page-Multiple) 

Returns 

Buffer = Address of the start of the debugger alias region 

An alias to the debuggee's memory region of the requested length is mapped into the debugger's 
memory space. This region is reserved for use as an alias region until it is unmapped. 

The access rights for the alias area are determined by the command number. The 
DBG_C_MapROAlias command maps a read-only alias region, while the DBG_C_MapRWAlias 
command maps a read-write alias region. 

For read-write aliases, if the region is shared and read-only in the debuggee's context, a private 
copy of the aliased pages will be created in the debuggee's context, and dynamic RAS tracepoints 
will be removed from that region. This prevents debugging from affecting other areas of the system, 
while allowing access to shared memory areas, and proper disassembly of regions where dynamic 
RAS tracepoints are in use. 

Because the read-write aliases may convert objects to private, using up system resources, it is 
recommended that read-only aliases be used when simply perusing memory. See the following 
Restrictions regarding read-only aliases on the 80386 processor. 

Because the entire aliased region may map both valid and invalid regions of memory, debuggers 
should issue DosQueryMem just before accessing the alias region to determine if the region is valid. 
Debuggers should not access this region while the debuggee is executing, as portions of this region 
may become invalid without notifying the debugger. It is possible that no valid pages will exist in the 
alias region. 

When the debuggee frees an aliased object, or shrinks the underlying object such that the alias 
would span a region outside the resultant object, an alias-free notification is returned to the 
debugger. This notification will be returned before the alias is invalidated. See Appendix E, 
DosDebug Notifications for details. 

These commands may be performed while the debuggee is executing code via a Go command. 

Restrictions 

Because debuggers can execute code at ring 2, and the read-only bit in the page tables entries is 
effective only at ring 3, the read-only aliases cannot be supported. When the read-only bit becomes 
effective at all rings, as is expected on later processors, the read-only aliases will again be 
supported. 

Appendix D. DosDebug Commands D-9 



Most memory management calls may not be used on these aliases. DosQueryMem is permitted, but 

for interrogation only. 

The passed starting addresses must be aligned on a page boundary, and the length of the aliased 
region must be a multiple of the page size. This restriction is due to the underlying hardware. 

Aliased regions must be completely contained within a single debuggee memory object. 

Unlike the DosPTrace interface for previous versions of the operating system, no interface is 
available for moving an alias to point to another section of debuggee memory. To move an alias, the 
debugger must free an existing alias, and then map a new alias to the desired region. 

Aliases will only be permitted to the the user space memory region of the debuggee. No aliases will 

be provided to system space. 

The alias region will only be provided at the linear level. No debugger LDT (Local Descriptor Table) 
selector will be available to access the alias region. 

DBG_C_UnMapAlias - Debug Command 20 

UnMap Memory Alias Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_UnMapAlias 
Buffer = Address of the debugger alias region to unmap 

Returns 

The UnMapAlias command is used when the debugger has finished using an alias region. Both 
read-only and read-write aliases may be freed in this way. 

Regions returned from other memory management calls may not be used. 

The debugger may issue this command while the debuggee is executing code via a Go command. 

When the debuggee process terminates, all aliases to its memory space will be invalidated. When a 

debugger program terminates, all aliases from its memory space will also be invalidated. 

DBG_C_Connect- Debug Command 21 

Connect To Debuggee Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Reserved, must be zero 
Cmd = DBG_C_Connect 
Value = Debugging Level Number 

The only permitted debugging level number is: 

1 DBG_L_386 

This must be the first DosDebug command. No other DosDebug command will be accepted until the 

debugging connection has been established. 

Returns 

D-10 CP Programming Reference 



This command establishes a debugging connection. It must be the initial command, since it verifies 
the buffer format for the rest of the connection. 

Because DosDebug usually cannot be ported to new machines without changing the format of the 
buffer, this command is needed to establish that the debugger is capable of handling the desired 
buffer format. 

If the requested debugging level is not supported, an error is returned, and the connection is not 
made. This gives the debugger a chance to try again, or to automatically start a different debugger 
process that uses a different buffer format. 

For this command, only the machine-independent portion of the buffer is examined. This portion 
includes the Pid, Tid, Cmd, and Value fields. This makes it possible to port the DosDebug buffer from 
one machine to another, without returning an error to the debugger on the initial DosDebug 
command. 

The only DosDebug notifications that are returned by this command are DBG_N_Success and 
DBG_N_Error. 

Restrictions 

If the connection to the debuggee is not established within a reasonable ammount of time, it is 
assumed that the connection will never be established, and the debuggee process is terminated 
automatically. 

The current format level may or may not be supported in future versions. This is due to the machine 
dependence of the DosDebug function. 

DBG_C_ReadMemBuf- Debug Command 22 

Read Memory Buffer Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_ReadMemBuf 
Addr = Debuggee address to read from 
Buffer = Debugger address to copy to 
Len = Number of bytes to read 

Returns 

The number of bytes specified by Len is copied from the debuggee's user memory space starting at 
Addr into the debugger's Buffer. 

This command is not serialized with respect to the Go command. 

Restrictions 

You are unable to read from any memory outside user space. 

Both specified memory regions must be currently valid. 

DBG_C_WriteMemBuf- Debug Command 23 

Write Memory Buffer Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_WriteMemBuf 

Appendix D. DosDebug Commands D-11 



Addr = Debuggee address to write to 
Buffer = Debugger address to copy from 
Len = Number of bytes to write 

Returns 

The number of bytes specified by Len is copied from the debugger's Buffer into the debuggee's 
memory space starting at Addr. 

This command is not serialized with respect to the Go command. 

In the case of a write to shared read-only memory, the memory is first converted to private, and any 
set dynamic RAS logging points are removed from that memory, before the write is performed. 

Dynamic RAS logging will continue to function in that area, in the context of other processes. The 
area will continue to be shared by other processes, if any. 

In this way, breakpoints may be set in the debuggee without affecting the other modules. 

Restrictions 

You are unable to write to any memory outside user space. 

Both specified memory regions must be currently valid. 

DBG_C_SetWatch - Debug Command 24 

Set Watchpoint Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_SetWatch 
Addr = Starting Address of Watchpoint 
Len = Length of Watchpoint, in bytes 
Index = Reserved, must be zero 
Value = Watchpoint Type and Scope 

The Watchpoint Type and Scope is a combination of a Scope number and a Type number. Both the 
Scope and Type must be specified. For example, to set a local watchpoint for either read or write 
access, Value should be set to (DBG_W_Local + DBG_W_ReadWrite). 

The Watchpoint Scopes are: 

DBG_W_Global equ 00000001h 
DBG_W_Local equ 00000002h 

The Watchpoint Types are: 

DBG_W_Execute equ 
DBG_W_Write equ 
DBG_W_ReadWrite equ 

Returns 

00010000h 
00020000h 

00030000h 

Index = Watchpoint ID Number 

This command sets a code or data watchpoint of the desired scope and type to cover the specified 
range of addresses. 

The Watchpoint Scope controls the context in which the watchpoint is actually effective. 
DBG_W_Local watchpoints are effective only in the context of the debuggee process, while 
DBG_W_Global watchpoints are effective in the context of any process. 

D-12 CP Programming Reference 



Both DBG_W_Local and DBG_W_Global watchpoints remain effective at interrupt time, and while 

executing kernel code. However, the DBG_W_Local watchpoints may miss interrupt time accesses, 

depending on the process context in which the interrupt occurred. 

Watchpoints are disabled as soon as they are hit, so that they can only be hit once. 

The resources used by a watchpoint will not be freed until the debugger is finally notified of the hit, 

or the debugger terminates. The debugger should use the Stop command to free resources held by 

any pending watchpoint hits prior to setting a watchpoint, so that these held resources will not 

prevent setting a new watchpoint. 

DBG_W_Global watchpoints should be used sparingly, as they restrict the watchpoint resources 

available to all processes at once. Watchpoint resources are very limited. 

Restrictions 

The watchpoints are restricted by the hardware. In the case of the 80386 processor, where debug 

registers are used, the available watchpoint lengths are 1, 2, and 4 bytes. The 2-byte data 

watchpoints must be aligned on a word boundary, and the 4-byte data watchpoints must be aligned 

on a doubleword boundary. DBG_W_Execute watchpoints must be exactly 1 byte in length, and they 

must begin on an instruction boundary to be effective. 

Global watchpoints are effective in v86 mode, but cannot detect OMA (direct memory access) device 

accesses. 

Global watchpoints may be set only in the shared memory region of the linear address space. 

Global watchpoints will remain effective even if the underlying memory has been converted to 

private memory via a DosDebug memory write operation. 

DBG_C_ClearWatch - Debug Command 25 

Clear Watchpolnt Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_ClearWatch 
Index = Watchpoint ID Number 

Returns 

This command clears a currently set or hit watchpoint. 

If the watchpoint is not currently set, an error is returned. 

If a debugger wishes to move a watchpoint from one location to another, it should clear the old 

watchpoint before setting the new one, to free any resources used by currently set watchpoints. 

The watchpoint will be cleared even if it is currently hit, and a notification is pending .. To prevent 

missing the watchpoint hit in this way, you should issue the Stop command just before clearing the 

watchpoint, to pick up any pending watchpoint hit notifications. 

DBG_C_RangeStep- Debug Command 26 

Range Step Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread to range-step 
Cmd = DBG_C_RangeStep 

Appendix D. DosDebug Commands D-13 



Value = Linear address denoting start of range (exclusive) 
Addr = Linear address denoting end of range (exclusive) 

Returns 

The RangeStep notification is usually returned, but any Debug notification may be returned. See 
Appendix E, DosDebug Notifications. 

This command allows a debugger to specify a range of addresses (bounded by the linear addresses 
in the Value and Addr fields) through which a debuggee thread should single-step until one of the 
following conditions occurs: 

• The debuggee thread's linear EIP (instruction pointer) is outside the range. 

• The linear EIPs of consecutive debuggee threads are the same. 

• Some other notification occurs. 

When the RangeStep command returns, the register set is automatically updated to reflect the thread 
that detected the event. 

Callgates that result in a privilege level transition to ring O will appear to range-step as a single 
instruction, with the range-step continuing after the function completes. This hides ring 0 execution 
from debuggers. 

Attempting to range-step a thread that is frozen results in an error. 

Restrictions 

To accomplish callgate single-stepping, the single-step must be simulated because the flags 
(specifically, the TF bit) are not stored in the ring O callgate stack frame. Because of this, a 
range-step that results in leaving a ring 0 callgate will sometimes not execute any user-space code. 
The following range-step should function normally. 

Range-stepping some REP instructions may not work correctly due to errors in the 80386 processor. 

DBG_C_Continue - Debug Command 27 

Continue Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID 
Cmd = DBG_C_Continue 
Value= XCPT_CONTINUE_EXECUTION, or XCPT_CONTINUE_SEARCH, or 
XCPT _ CONTINUE_STOP 

Returns 

You must issue the Debug Continue command to continue after DosDebug has been given 
preemptive notifications or an exception notification. For such notifications, the Continue command 
is the only Debug command that will start the child process again. You can issue other Debug 
commands, but you must eventually issue the Debug Continue command. 

If you issue the Debug Continue command and there is no pre-existing notification or exception, the 
Continue command acts like a Debug Go command. 

In single-step mode, XCPT _CONTINUE_STOP has the same effect as XCPT _CONTINUE_EXECUTION. 
That is, execution is always stopped after a single-step operation when DBG_N_Success is returned. 

Handling Preemptive Notifications 

D-14 CP Programming Reference 



The DBG_C_Continue command is used to either continue or stop the child process after a 
preemptive notification has been received from DosDebug. 

The XCPT_CONTINUE_STOP parameter can be used to stop the child process after a preemptive 
notification has been received. Any pending notifications will be held until execution of the child 
process is resumed using subsequent DosDebug commands. While the child process is stopped, you 
can issue other DosDebug commands, such as DBG_C_ReadMem. 

The XCPT_CONTINUE_SEARCH parameter allows the child process to execute until the next 
notification is received. 

The following is a list of preemptive notifications. 

"DBG_N_Moduleload - Debug Notification no. -8" on page E-3 
"DBG_N_ModuleFree - Debug Notification no. -16" on page E-6 
"DBG_N_NewProc - Debug Notification no. -12" on page E-5 
"DBG_N_ProcTerm - Debug Notification no. -6" on page E-2 
"DBG_N_ThreadCreate - Debug Notification no. -15" on page E-6 
"DBG_N_ThreadTerm - Debug Notification no. -10" on page E-4 
"DBG_N_AliasFree - Debug Notification no. -13" on page E-5 
"DBG_N_Exception - Debug Notification no. -7" on page E-2 

Handling the DBG_N_Exceptlon Notification 

Note: XCPT_BREAKPOINT and XCPT_SINGLE_STEP are pre-first chance exception notifications. 

The XCPT_CONTINUE_STOP parameter serves two purposes. It stops the child process, and it tells 
DosDebug that the debugger handled the exception. 

The XCPT_CONTINUE_EXECUTION parameter tells DosDebug to restore the execution context of the 
thread that received the exception, and then continue execution of the child process. This implies 
that the debugger has handled the exception. 

The XCPT_CONTINUE_SEARCH parameter tells DosDebug to pass the exception to the exception 
handler because the debugger will not handle it. After receiving an exception notification other than 
XCPT_BREAKPOINT or XCPT_SINGLE_STEP, the DBG_C_Continue command with the 
XCPT_CONTINUE_SEARCH parameter resumes execution of the child process. 

DBG_C_AddrToObject - Debug Command 28 

Get Memory Object Information Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_AddrToObject 
Addr = Debuggee Linear Address 

Returns 

Buffer = Starting address of object 
Len = Size of object in bytes 
Value = Object flags 
MTE = Module Table Entry handle of module if DBG_O_OBJMTE is set in the Value field object 
flags. 

The object flags are defined as follows: 

DBG_O_OBJMTE equ 10000000h ; Object is part of a module 

Information about the memory object containing the linear address is returned. If the linear address 
is not part of an object, DBG_N_Error is returned with ERROR_INVALID_OBJECT in the Value field. 

Appendix D. DosDebug Commands D-15 



The Addr field will be left unchanged. 

DBG_C_XchngOpcode - Debug Command 29 

Exchange Opcode Command 

Parameters 

Pid = Process ID of debuggee 
Tid = Thread ID of thread 
Cmd = DBG_C_XchngOpcode 
Value = Opcode 1 for Single Step 
Addr = Opcode 2 for Go 

Returns 

The sequence of operations for this Debug command is: 

1. Replace the code at the EIP (instruction pointer) with opcode 1. 

2. Single-step the thread specified by the Tid field. Do not execute other threads. If the single-step 
operation goes into ring 0 code, consider the single-step operation complete at the first ring 0 
instruction. 

3. Replace the code at the original EIP with opcode 2. 

4. Issue a Debug Go command on all non-frozen threads. 

If an exception that DosDebug is to be notified about occurs during the single-step operation of this 
Debug command, opcode 2 is placed at the original EIP, and DosDebug is notified of the exception. 
When the debugger issues the Debug Continue command, the child process continues execution. 

Note: If an exception that Dos Debug is not to be notified about occurs, then the Debug Exchange 
Opcode command executes as if no exception took place. 

If opcode 1 and opcode 2 are identical, this Debug command executes only operations 3 and 4 above. 
There is no need to single-step the thread specified by the Tid field. This would be a 'replace opcode 
and go' sequence using only one DosDebug function instead of two. 

DBG_C_LinToSel - Debug Command 30 

Translate Linear Address to Selector:Offset Command 

Parameters 

Pid = Process ID of debuggee 
Cmd = DBG_C_LinToSel 
Addr = Linear address to be translated 

Returns 

Value = Selector 
Index = Offset 

The Addr field will be left unchanged. 

DBG_C_SelToLin - Debug Command 31 

Translate Selector:Offset to Linear Address Command 

Parameters 

D-16 CP Programming Reference 



Pid = Process ID of debuggee 
Cmd = DBG_C_SelTolin 
Value = Selector from address to be translated 
Index = Offset from address to be translated 

Returns 

Addr = Linear address 

The Value and Index fields will be left unchanged. 

Appendix D. DosDebug Commands D-17 



D-18 CP Programming Reference 



Appendix E. DosDebug Notifications 

Note: References to "IP" in the data return descriptions refer to the instruction pointer address. 
This is the 32-bit equivalent of the CS:EIP instruction pointer, regardless of the CS selector. 
This is also known as a linearized instruction pointer. 

Some notifications (such as DBG_N_Moduleload and DBG_N_Watchpoint) may require multiple 
returns to the debugger. These additional pending notifications will be returned before the process 
being debugged can execute any more user code, and will be returned on the Go, SStep, or Stop 
commands. 

Note that more notifications might be pending at any time, so a debugger should be ready to handle 
any notification at any time that a Go, SStep, or Stop command is issued. 

If DosDebug returns ERROR_INTERRUPT after a command, the next notification might have been lost. 
If the process being debugged was executing code at that time (via a Go, SStep, or RangeStep 
command), it will be stopped automatically. To prevent this, DosDebug should not be used by thread 
1 while signals are being used, or the debugger should issue DosEnterMustComplete before issuing 
the command. 

DBG_N_SUCCESS - Debug Notification no. 0 

Success Notification 

This notification returns: 

Cmd = DBG_N_Success 

The DosDebug command was successful. Returned values depend on the command just executed. 

DBG_N_ERROR - Debug Notification no. -1 

Error Notification 

This notification returns: 

Cmd = DBG_N_Error 
Value = Any standard error code 

An error was detected while attempting a DosDebug command. 

Error codes are returned from DosDebug in different ways: 

1. Errors can be returned via the standard method (EAX = ERROR_CODE). 

This is only done when the DosDebug command failed to execute at all. An example of this 
would be ERROR_INTERRUPT when the debugger receives a signal. If DosDebug returns a 
nonzero value in EAX, the returned Debug buffer is invalid. 

2. Errors are also returned via the DBG_N_Error notification. 

This is used when the DosDebug command was attempted, but failed due to some internal 
DosDebug failure. Examples of error codes returned via this interface are 
ERROR_INVALID_PROCID and ERROR_INVALID_DATA. Generally, these errors are detected 
while in the context of the debuggee process, and may include ERROR_INTERRUPT. 

Appendix E. DosDebug Notifications E-1 



DBG_N_ProcTerm - Debug Notification no. -6 

Process Termination Notification 

This notification returns: 

Cmd = DBG_N_ProcTerm 
Value = Process Exit Code 
Index = Process Exit Type 
Addr = 0 

The debuggee process is about to terminate. 

The debugger is still allowed to examine the debuggee's final register and memory contents at this 

time. Note that when the debugger has completed this examination, it should finish terminating the 

debuggee process with a final Go, SStep, or Terminate command. 

Value and Index contain the same information as that returned via a subsequent DosWaitChild call. 

The act of collecting this information does not terminate the process. 

DBG_N_Exception - Debug Notification no. -7 

General Exception Notification 

This notification returns: 

• For the pre-first chance for a breakpoint exception: 

Cmd = DBG_N_Exception 
Value= 0 (DBG_X_PRE_FIRST_CHANCE) 

Addr = Linear address of breakpoint 
Buffer = Exception number (XCPT _BREAKPOINT) 

• For the pre-first chance for a single-step exception: 

Cmd = DBG_N_Exception 
Value= 0 (DBG_X_PRE_FIRST_CHANCE) 

Addr = Linear address of instruction after Single Step 

Buffer = Exception number (XCPT _SINGLE_STEP) 

• For the first chance for all exceptions: 

Cmd = DBG_N_Exception 
Value= 1 (DBG_X_FIRST_CHANCE) 
Addr = Linear address of exception 
Buffer = Pointer to Exception Report Record in debuggee's context 

Len = Pointer to Exception Context Record in debuggee's context 

• For the last chance for all exceptions: 

Cmd = DBG_N_Exception 
Value= 2 (DBG_X_LAST_CHANCE) 
Addr = Linear address of exception 
Buffer = Pointer to Exception Report Record in debuggee's context 

Len = Pointer to Exception Context Record in debuggee's context 

• For an invalid stack notification: 

Cmd = DBG_N_Exception 
Value = 3 (DBG_X_STACK_INVALID) 
Addr = Linear address of exception 
Buffer = Exception number 

The scenarios under which a debug exception is reported are pre-first, first, and last chance, and 

invalid stack notification. The Value field of the user debug buffer indicates the scenario. 

E-2 CP Programming Reference 



DosDebug has detected an exception (a trap or a fault) at the specified address. The exception 
number in the exception structure identifies the exception that was detected. 

Exception notifications are always returned from the context of the thread that detected the 
exception. That is, the exception structure reflects the state of the thread that caused the exception, 
at the time the exception was detected. 

The debugger is given a maximum of two chances to handle exceptions other than single-step or 
breakpoint exceptions, which have a maximum of three chances. The order of operations for 
handling an exception is as follows: 

1. Debugger has the pre-first chance to handle the exception (for breakpoint and single-step 
exceptions). 

2. Debugger has the first chance to handle the exception, or to invoke an exception handler if it is 
present. 

3. Debugger has the last chance to handle the exception, or to invoke an exception handler if it is 
present. 

An exception notification is returned for all exceptions, including those raised by the user via 
DosRaiseException. 

An exception can have an informational, warning, or fatal severity. The severity is coded in the 
high-order three bits of the exception number for user-raised and system exceptions. 

The debugger may dismiss the exception by returning XCPT_CONTINUE_EXECUTION, so that the 
user's context is restored, and execution continues at the point where the exception occurred. 
Otherwise, the debugger may return XCPT_CONTINUE_SEARCH. This causes the exception to be 
passed to the user's exception handlers (after the debugger's first chance), or causes the default 
action for the exception to occur (after the debugger's last chance). 

For performance reasons, the single-step and breakpoint exceptions cause a "pre-first" notification. 
This is faster than the ordinary first exception notification. At the time of the notification, the 
debugger may decide if the single-step or breakpoint exception was an anticipated event. If it was 
anticipated, the debugger may return XCPT_CONTINUE_EXECUTION, as for an ordinary first 
notification. If it was not anticipated, the debugger may return XCPT_CONTINUE_SEARCH in order to 
raise an ordinary first notification for the single-step or breakpoint exception. With the second 
notification, this allows a maximum of three notifications for the single-step and breakpoint 
exceptions. 

For breakpoint exceptions, the EIP (instruction pointer) of the debuggee is decremented to point to 
the breakpoint instruction. 

Note: Do not confuse the family of floating point exceptions with the DBG_N_CoError error 
notification. 

Restrictions 

The error code may not be reliable in some situations for the page fault exception, due to hardware 
errors. 

DBG N Moduleload - Debug Notification no. -8 

Module Load Notification 

This notification returns: 

Cmd = DBG_N_Moduleload 
Value = MTE (Module Table Entry) handle of newly attached module 
Addr = 0 

A module has just been loaded. This occurs either at program startup, or during a call to 
DosloadModule. 

Appendix E. DosDebug Notifications E-3 



The newly attached module's handle is returned via Value. You can use this handle with 

DosQueryModuleName, or with the Debug DBG_C_NumToAddr - Debug Command 13 command, for 

symbolic debugging. A debugger should save these handles for future reference. 

There may be many module attachments done at one time, but DosDebug is only able to 

communicate a single load during any one notification. In this case, the additional library load 

notifications become pending. The debugger should issue repeated Stop commands to be notified of 

these additional library loads, until Success is returned from the Stop command. If the Go, SStep, or 

RangeStep commands are issued instead of the Stop command, the pending notifications will be 

returned immediately, until there are no further notifications. 

DBG_N_CoError - Debug Notification no. -9 

Coprocessor Error Notification 

This notification returns: 

Cmd = DBG_N_CoError 
Value = Any standard Error Code 

An error was detected while attempting a DosDebug command that attempted to access a 

Coprocessor. 

DBG_N_CoError is similar to the DBG_N_Error notification, but is returned only after attempting an 

access to the coprocessor registers. 

DBG_N_CoError is returned if any one of the following occurs: 

• The debuggee process is emulating the coprocessor. 

• The specified debuggee thread has not yet attempted to use the coprocessor. 

• The wrong coprocessor type is used. 

• The requested coprocessor type is not supported or available. 

This notification should not be confused with any of the floating point exception notifications. 

DBG_N_ThreadTerm - Debug Notification no. -10 

Thread Termination Notification 

This notification returns: 

Cmd = DBG_N_ ThreadTerm 
Value = Thread's proposed return code (from DosExit) 

Addr = 0 

A debuggee thread is about to terminate. 

DosExitlist processing has not yet been started. 

The debugger is still allowed to examine the debuggee thread's final register contents at this time. 

When the debugger has completed this examination, it should finish terminating the debuggee thread 

with a final Go or SStep command. 

Value contains the return code from the thread. This is only a proposed return code passed from 

DosExit. Only when the process actually terminates is the return code that is passed to 

DosWaitChild finally known. 

E-4 CP Programming Reference 



DBG_N_AsyncStop - Debug Notification no. -11 

Asynchronous Stop Notification 

This notification returns: 

Cmd = DBG_N_AsyncStop 
Value= O 
Addr = 0 

An Asynchronous Stop request has been detected. 

The asynchronous stop command is used to get the attention of some debuggee thread, so that the 
debugger can again control the process. Because any notification results in the debuggee's coming 
under control of the debugger again, the asynchronous stop notification becomes redundant in that 
case, and is not returned. 

The asynchronous stop request will be overridden and ignored if another notification can be 
performed instead, at the same time. An asynchronous stop notification never becomes a 'pending' 
notification, in the sense that a library load notification becomes pending. 

DBG_N_NewProc - Debug Notification no. -12 

New Process Notification 

This notification returns: 

Cmd = DBG_N_NewProc 
Value = Process ID of the new process 
Addr = 0 

The debuggee process has just started a child process, and that child process needs to be debugged. 

Note: This notification occurs only if descendant debugging was specified in the DosExecPgm call 
that started the process tree in which the debuggee is executing. 

DBG_N_AliasFree - Debug Notification no. -13 

Alias Free Notification 

This notification returns: 

Cmd = DBG_N_AliasFree 
Buffer = 32-bit offset to debugger alias region 
Addr = 0 

An object that contains an aliased region is about to be freed by the debuggee. This can also occur if 
the underlying memory object is about to be shrunk such that the alias would span memory outside 
the resultant object. 

The alias region must be unmapped before the debugger may execute the debuggee again. 

The UnMapAlias command is the proper response to an alias free notification. 

If a debugger creates an alias to memory in another debugger, and that memory is itself an alias to 
the second debugger's debuggee, then the first debugger will not receive an alias free notification 
when the memory of the second debugger's debuggee is freed. The alias will be freed automatically. 
The second debugger will receive an alias free notification. 

Appendix E. DosDebug Notifications E-5 



DBG_N_Watchpoint - Debug Notification no. --14 

Watchpolnt Hit Notification 

This notification returns: 

Cmd = DBG_N_Watchpoint 
Addr = Linearized instruction pointer of watchpoint hit 
Value = Process ID of process that hit the watchpoint 
Len = Thread ID of thread that hit the watchpoint 
MTE = Module Table Entry handle of process that hit the watchpoint 

Index = Watchpoint ID number 

A watchpoint has been hit. The Watchpoint ID number identifies the watchpoint that was hit. 

Multiple watchpoint hits become pending notifications that are returned on subsequent Stop, Go, or 

SStep commands. A watchpoint may be hit at any time, and more than one watchpoint may be hit at 

the same time. 

If a watchpoint notification is pending, the resources used by the watchpoint will not be freed until the 

watchpoint notification is complete, or the watchpoint is cleared. 

A watchpoint notification is not always returned by the same thread that caused the hit. A watchpoint 

may be hit by one thread, but another thread may return the notification. The thread ID of the thread 

that hit the watchpoint is not necessarily the value passed in the Tid field. 

Data Watchpoint hits are treated as faults, rather than as traps, by the 80386 processor. Therefore, 

the linearized instruction pointer may not point to the exact instruction that caused the fault. 

If a watchpoint is hit at interrupt time, the Value, Addr, MTE, and Len fields are all returned as zero. 

DBG_N_ThreadCreate.- Debug Notification no. -15 

Thread Creation Notification 

This notification returns: 

Cmd = DBG_N_ ThreadCreate 
Tid = Thread ID of new thread 
Addr = 0 

A debuggee thread has just been created. 

The new thread has not executed any user code yet. 

DBG_N_ModuleFree - Debug Notification no. -16 

Module Free Notification 

This notification returns: 

Cmd = DBG_N_ModuleFree 
Value = MTE (Module Table Entry) handle of freed module 
Addr = 0 

A module has just been freed. This occurs either at program termination, or during execution of the 

DosFreeModule. 

E-6 CP Programming Reference 



The newly attached module's handle is returned via Value. You can use this handle with 

DosQueryModuleName, or with the DosDebug DBG_C_NumToAddr - Debug Command 13 command, 

for symbolic debugging. A debugger should save these handles for future reference. 

There may be many modules freed at one time, but DosDebug is only able to communicate the 

freeing of a single module during any one notification. In this case, the additional notifications of 

freed modules become pending. The debugger should issue repeated Stop commands to be notified 

of these additional module freeing operations, until Success is returned from the Stop command. If 

the Go or SStep commands are issued instead of the Stop command, the pending notifications will be 

returned immediately, until there are no further notifications. 

DBG_N_RangeStep - Debug Notification no. -17 

Range Step Notification 

This notification returns: 

Cmd = DBG_N_RangeStep 
Addr = Linearized instruction pointer at exception 
Value = Linearized instruction pointer of last user instruction executed 

The debuggee stopped range-stepping because its linearized instruction pointer was outside the 

original range, or because the current linearized instruction pointer is equal to the linearized 

instruction pointer of the previous user instruction. 

The DBG_N_RangeStep notification is returned independently of the DBG_N_Watchpoint notification, 

even though the Watchpoint fault and the RangeStep may have occurred at the exact same time. 

Appendix E. OosDebug Notifications E-7 



E-8 CP Programming Reference 



Glossary 

A 
accelerator. A single key stroke that invokes an 
application-defined function. 

accelerator table. Used to define which key strokes are 
treated as accelerators and the commands they are 
translated into. 

access permission. All access rights that a user has 

regarding an object. 

action. One of a set of defined tasks that a computer 

performs. Users request the application to perform an 

action in several ways, such as typing a command, 
pressing a function key, or selecting the action name 

from an action bar or menu. 

action bar. The area at the top of a window that contains 

the choices currently available in the application 
program. 

action point. The current position on the screen at 
which the pointer is pointing. (Contrast with hot spot and 
input focus.) 

active program. A program currently running on the 

computer. See also interactive program, noninteractive 
program, and foreground program. 

active window. The window with which the user is 
currently interacting. 

address space. (1) The range of addresses available to 

a program. (2) The area of virtual storage available for a 
particular job. 

alphanumeric video output. Output to the logical video 

buffer when the video adapter is in text mode and the 

logical video buffer is addressed by an application as a 
rectangular array of character cells. 

anchor block. An area of Presentation Manager-internal 

resources allocated to a process or thread that calls 

Win Initialize. 

anchor point. A point in a window used by a program 
designer or by a window manager to position a 
subsequently appearing window. 

ANSI. American National Standards Institute. 

APA. All points addressable. 

API. Application programming interface. The 
formally-defined programming language that is between 

an IBM application program and the user of the program. 

See also GP/. 

area. In computer graphics, a filled shape such as a 
solid rectangle. 

ASCII. American National Standard Code for 
Information Interchange. A coded character set 
consisting of 7-bit coded characters (8 bits including 

parity check), used for information interchange among 

data processing systems, data communications systems, 

and associated equipment. 

ASCllZ. A string of ASCII characters that is terminated 

with a byte containing the value 0. 

aspect ratio. In computer graphics, the width-to-height 
ratio of an area, symbol, or shape. 

asynchronous. (1) Without regular time relationship. (2) 

Unexpected or unpredictable with respect to the 

execution of a program's instructions. See also 
synchronous. 

atom. A constant that represents a string. Once a string 

has been defined as an atom, the atom can be used in 

place of the string to save space. Strings are associated 

with their respective atoms in an atom table. See also 
integer atom. 

atom table. Used to relate atoms with the strings that 

they represent. Also in the table is the mechanism by 

which the presence of a string can be checked. 

attributes. Characteristics or properties that can be 
controlled, usually to obtain a required appearance; for 

example, the color of a line. See also graphics attributes 
and segment attributes. 

AVIO. Advanced Video Input/Output. 

B 
background color. The color in which the background of 
a graphic primitive is drawn. 

background mix. An attribute that determines how the 

background of a graphic primitive is combined with the 

existing color of the graphics presentation space. 
Contrast with mix. 

background program. In multiprogramming, a program 

that executes with a low priority. Contrast with 
foreground program. 

Bezier curves. A mathematical technique of specifying 

smooth continuous lines and surfaces, which require a 
starting point and a finishing point with several 

intermediate points that influence or control the path of 

the linking curve. Named after Dr. P. Bezier. 

bit map. A representation in memory of the data 
displayed on an APA device, usually the screen. 

block. (1) A string of data elements recorded or 
transmitted as a unit. The elements may be characters, 

words, or logical records. (2) To combine two or more 

data elements in one block. 

border. A visual indication (for example, a separator 

line or a background color) of the boundaries of a 
window. 

breakpoint. (1) An instruction in a program for halting 

execution. Breakpoints are usually established at 
positions in a program where halts, caused by external 

Glossary X-1 



intervention, are convenient for restarting. (2) A place in 
a program, specified by a command or a condition, 
where the system halts execution and gives control to 
the workstation user or to a specified program. 

bucket. One or more fields in which the result of an 
operation is kept. 

buffer. (1) A portion of storage used to hold input or 
output data temporarily. (2) To allocate and schedule the 
use of buffers. 

button. A mechanism on a pointing device, such as a 
mouse, used to request or initiate an action. Contrast 
with pushbutton and radio button. 

c 
cache. A high-speed buffer storage that contains 
frequently accessed instructions and data; it is used to 
reduce access time. 

cached micro presentation space. A presentation space 
from a Presentation Manager-owned store of micro 
presentation spaces. It can be used for drawing to a 
window only, and must be returned to the store when the 
task is complete. 

call. (1) The action of bringing a computer program, a 
routine, or a subroutine into effect, usually by specifying 
the entry conditions and jumping to an entry point. (2) To 
transfer control to a procedure, program, routine, or 
subroutine. 

calling order. A sequence of instructions together with 
any associated data necessary to perform a call. Also 
known as calling sequence. 

cancel. An action that removes the current window or 
menu without processing it, and returns the previous 
window. 

CASE statement. In C, provides the body of a window 
procedure. There is one CASE statement for each 
message type written to take specific actions. 

cell. See character cell. 

CGA. Color graphics adapter. 

chained Hsi. A list in which the data elements may be 
dispersed but in which each data element contains 
information for locating the next. Synonym for linked list. 

character. A letter, digit, or other symbol. 

character box. In computer graphics, the boundary that 
defines, in world coordinates, the horizontal and vertical 
space occupied by a single character from a character 
set. See also character mode. Contrast with character 
Cf111. 

character cell. The physical, rectangular space in which 
any single character is displayed on a screen or printer 
device. Position is addressed by row and column 
coordinates. Contrast with character box. 

character code. The means of addressing a character in 
a character set, sometimes called code point. 

X-2 CP Programming Reference 

character mode. The character mode, in conjunction 
with the font type, determines the extent to which 
graphics characters are affected by the character box, 
shear, and angle attributes. 

check box. A control window, shaped like a square 
button on the screen, that can be in a checked or 
unchecked state. It is used to select one or more items 
from a list. Contrast with radio button. 

check mark. The symbol that is used to indicate a 
selected item on a pull-down. 

child process. A process that is loaded and started by 
another process. Contrast with parent process. 

child window. A window that is positioned relative to 
another window {either a main window or another child 
window). Contrast with parent window. 

choice. An option that can be selected. The choice can 
be presented as text, as a symbol (number or letter), or 
as an icon {a pictorial symbol). 

class. See window class. 

class style. The set of properties that apply to every 
window in a window class. 

client area. The area in the center of a window that 
contains the main information of the window. 

clipboard. An area of main storage that can hold data 
being passed from one Presentation Manager 
application to another. Various data formats can be 
stored. 

clipping. In computer graphics, removing those parts of 
a display image that lie outside a given boundary. 

clip limits. The area of the paper that can be reached by 
a printer or plotter. 

clipping path. A clipping boundary in world-coordinate 
space. 

CLOCK$. Character-device name reserved for the 
system clock. 

code page. An assignment of graphic characters and 
control-function meanings to all code points. 

code point. Synonym for character code. 

code segment. An executable section of programming 
code within a load module. 

color dithering. See dithering. 

command. The name and parameters associated with 
an action that a program can perform. 

command area. An area composed of a command field 
prompt and a command entry field. 

command entry field. An entry field in which users type 
commands. 

command line. On a display screen, a display line 
usually at the bottom of the screen, in which only 
commands can be entered. 



command prompt. A field prompt showing the location 
of the command entry field in a panel. 

Common Programming Interface (CPI). A consistent set 
of specifications for languages, commands, and calls to 
enable applications to be developed across all SAA 
environments. See also Systems Application 
Architecture. 

Common User Access (CUA). A set of rules that define 
the way information is presented on the screen, and the 
techniques for the user to interact with the information. 

complle. To translate a program written in a 
higher-level programming language into a machine 
language program. 

COM1, COM2, COM3. Character-device names reserved 
for serial ports 1 through 3. 

CON. Character-device name reserved for the console 
keyboard and screen. 

contiguous. Touching or joining at a common edge or 
boundary, for example, an unbroken consecutive series 
of storage locations. 

control. The means by which an operator gives input to 
an application. A choice corresponds to a control. 

Control Panel. In the Presentation Manager, a program 
used to set up user preferences that act globally across 
the system. 

Control Program. The basic function of OS/2, including 
DOS emulation and the support for keyboard, mouse, 
and video input/output. 

control window. A class of window used to handle a 
specific kind of user interaction. Radio buttons and 
check boxes are examples. 

correlation. The action of determining which element or 
object within a picture is at a given position on the 
display. This follows a pick operation. 

CPI. Common Programming Interface. 

critical extended attribute. An extended attribute that is 
necessary for the correct operation of the system or a 
particular application. 

CUA. Common User Access. 

current position. The point from which the next primitive 
will be drawn. 

cursor. A symbol displayed on the screen and 
associated with an input device. The cursor indicates 
where input from the device will be placed. Types of 
cursors include text cursors, graphics cursors, and 
selection cursors. Contrast with pointer and input focus. 

D 
data structure. (ISO) The syntactic structure of symbolic 
expressions and their storage-allocation characteristics. 

DBCS. See double-byte character set. 

deadlock. (1) Unresolved contention for the use of a 

resource. (2) An error condition in which processing 
cannot continue because each of two elements of the 
process is waiting for an action by, or a response from, 
the other. (3) An impasse that occurs when multiple 
processes are waiting for the availability of a resource 
that will not become available because it is being held by 
another process that is in a similar wait state. 

debug. To detect, diagnose, and eliminate errors in 
programs. 

declpoint. In printing, one tenth of a point. There are 72 
points in an inch. 

default procedure. Function provided by the 
Presentation Interface that may be used to process 
standard messages from dialogs or windows. 

default value. A value used when no value is explicitly 
specified by the user. For example, in the graphics 
programming interface, the default line-type is 'solid'. 

descendant. A process or session that is loaded and 
started by a parent process or parent session. 

Desktop Manager. In the Presentation Manager, a 
window that displays a list of groups of programs, each 
of which can be started or stopped. 

desktop window. The window, corresponding to the 
physical device, against which all other types of windows 
are established. 

device context. A logical description of a data 
destination such as memory, metafile, display, printer, or 
plotter. See also direct device context, information 
device context, memory device context, metafile device 
context, queued device context, and screen device 
context. 

device driver. A file that contains the code needed to 
attach and use a device such as a display, printer, or 
plotter. 

device space. Coordinate space in which graphics are 
assembled after all GPI transformations have been 
applied. Device space is defined in device-specific units. 

dialog. The interchange of information between a 
computer and its user through a sequence of requests by 
the user and the presentation of responses by the 
computer. 

dialog box. A type of window that contains one or more 
controls for the formatted display and entry of data. Also 
known as a pop-up window. A modal dialog box is used 
to implement a pop-up window. 

Dialog Box Editor. A WYSIWYG editor that creates 
dialog boxes for communicating with the application 
user. 

dialog item. A component (for example, a menu or a 
button) of a dialog box. Dialog items are also used when 
creating dialog templates. 

dialog tag language. A markup language used by the 
DTL compiler to create dialog objects. 

dialog template. The definition of a dialog box, which 
contains details of its position, appearance, and window 
ID, and the window ID of each of its child windows. 

Glossary X-3 



direct device context. A logical description of a data 
destination that is a device other than the screen (for 
example, a printer or plotter), and where the output is 
not to go through the spooler. Its purpose is to satisfy 
queries. See also device context. 

direct manipulation. The action of using the mouse to 
move objects around the screen. For example, moving 
files and directories around in the File Manager. 

direct memory access (OMA). The transfer of data 
between main storage and input/output devices without 
intervention by the processor. 

directory. A type of file containing the names and 
controlling information for other files or other 
directories. 

display point. Synonym for pel. 

dithering. The process used in color displays whereby 
every other pel is set to one color, and the intermediate 
pels are set to another. Together they produce the effect 
of a third color at normal viewing distances. This 
process can only be used on solid areas of color; it does 
not work on narrow lines, for example. 

OMA. Direct memory access. 

double-byte character set (DBCS). A set of characters in 
which each character is represented by two bytes. 
Languages such as Japanese, Chinese, and Korean, 
which contain more characters than can be represented 
by 256 code points, require double-byte character sets. 
Since each character requires two bytes, the entering, 
displaying, and printing of DBCS characters requires 
hardware and software that can support DBCS. 

doubleword. A contiguous sequence of bits or 
characters that comprises two computer words and is 
capable of being addressed as a unit. 

dragging. In computer graphics, moving an object on 
the display screen as if it were attached to the pointer. 

drawing chain. See segment chain. 

drop. To fix the position of an object that is being 
dragged, by releasing the select button of the pointing 
device. 

DTL. See dialog tag language. 

dual-boot function. A feature of OS/2 that allows the 
user to start DOS from within OS/2, or OS/2 from within 
DOS. 

duplex. Pertaining to communication in which data can 
be sent and received at the same time. Synonymous 
with full duplex. 

dynamic linking. The process of resolving external 
references in a program module at load time or run time 
rather than during linking. 

dynamic-link library. A collection of executable 
programming code and data that is bound to an 
application at load time or run time, rather than during 
linking. The programming code and data in a dynamic 
link library can be shared by several applications 
simultaneously. 

X-4 CP Programming Reference 

dynamic-link module. A module that is linked at load 
time or run time. 

dynamic segments. Graphics segments drawn in 
exclusive-OR mix mode so that they can be moved from 
one screen position to another without affecting the rest 
of the displayed picture. 

dynamic storage. (1) A device that stores data in a 
manner that permits the data to move or vary with time 
such that the specified data is not always available for 
recovery. (2) A storage in which the cells require 
repetitive application of control signals in order to retain 
stored data. Such repetitive application of the control 
signals is called a refresh operation. A dynamic storage 
may use static addressing or sensing circuits. (3) See 
also static storage. 

E 
EBCDIC. Extended binary-coded decimal interchange 
code. A coded character set consisting of 8-bit coded 
characters (9 bits including parity check), used for 
information interchange among data processing 
systems, data communications systems, and associated 
equipment. 

EGA. Extended graphics adapter. 

8.3 file-name format. A file-naming convention in which 
file names are limited to eight characters before and 
three characters after a single dot. Usually pronounced 
"eight-dot-three." See also non-8.3 file-name format. 

element. An entry in a graphics segment that comprises 
one or more graphics orders and that is addressed by 
the element pointer. 

entry field. An area on the screen, usually highlighted in 
some manner, in which users type information. 

entry-Held control. The means by which the application 
receives data entered by the user in an entry field. 
When it has the input focus, it displays a flashing pointer 
at the position where the next typed character will go. 

entry panel. A defined panel type containing one or 
more entry fields and protected information such as 
headings, prompts, and explanatory text. 

exception. An abnormal condition such as an 110 error 
encountered in processing a data set or a file. 

exclusive system semaphore. A system semaphore that 
can be modified only by threads within the same 
process. 

exit. The action that terminates the current function and 
returns the user to a higher level function. Repeated exit 
requests return the user to the point from which all 
functions provided to the system are accessible. 
Contrast with cancel. 

extended attribute. An additional piece of information 
about a file object, such as its data format or category. It 
consists of a name and a value. A file object may have 
more than one extended attribute associated with it. 

extended-choice selection. A mode that allows the user 
to select more than one item from a window. Not all 



windows allow extended choice selection. Contrast with 
multiple-choice selection. 

extended help. A facility that provides users with 
information about an entire application panel rather than 
a particular item on the panel. 

extent. Continuous space on a disk or diskette that is 
occupied by or reserved for a particular data set, data 
space, or file. 

F 
family-mode application. An application program that 
can run in the OS/2 environment and in the DOS 
environment. However, it cannot take advantage of 
many of the OS/2-mode facilities, such as multitasking, 
interprocess communication, and dynamic linking. 

FAT. File allocation table. 

FEA. Full extended attribute. 

field-level help. Information specific to the field on 
which the cursor is positioned. This help function is 
"contextual" because it provides information about a 
specific item as it is currently used; the information is 
dependent upon the context within the work session. 

file. A named set of records stored or processed as a 
unit. 

file allocation table (FAT). In IBM personal computers, a 
table used by the operating system to allocate space on 
a disk for a file, and to locate and chain together parts of 
the file that may be scattered on different sectors so that 
the file can be used in a random or sequential manner. 

file attribute. Any of the attributes that describe the 
characteristics of a file. 

File Manager. In the Presentation Manager, a program 
that displays directories and files, and allows various 
actions on them. 

file specification. The full identifier for a file, which 
includes its drive designation, path, file name, and 
extension. 

file system driver (FSD). A program that manages file 
1/0 and controls the format of information on the storage 
media. 

fillet. A curve that is tangential to the end points of two 
adjoining lines. See also polyfillet. 

flag. (1) An indicator or parameter that shows the 
setting of a switch. (2) A character that signals the 
occurrence of some condition, such as the end of a word. 

focus. See input focus. 

font. A particular size and style of typeface that contains 
definitions of character sets, marker sets, and pattern 
sets. 

foreground program. The program with which the user 
is currently interacting. Also known as interactive 
program. Contrast with background program. 

frame. The part of a window that can contain several 
different visual elements specified by the application, but 
drawn and controlled by the Presentation Manager. The 
frame encloses the client area. 

frame styles. Different standard window layouts 
provided by the Presentation Manager. 

FSD. File system driver. 

full duplex. Synonym for duplex. 

full-screen application. An application program that 
occupies the whole screen. 

function. (1) In a programming language, a block, with 
or without formal parameters, whose execution is 
invoked by means of a call. (2) A set of related control 
statements that cause one or more programs to be 
performed. 

function key. A key that causes a specified sequence of 
operations to be performed when it is pressed, for 
example, F1 and Alt-K. 

function key area. The area at the bottom of a window 
that contains function key assignments such as 
F1 =Help. 

G 
GDT. Global Descriptor Table. 

general protection fault. An exception condition that 
occurs when a process attempts to use storage or a 
module that has some level of protection assigned to it, 
such as 1/0 privilege level. See also /OPL code segment. 

Global Descriptor Table (GOT). Defines code and data 
segments available to all tasks in an application. 

global dynamic-link module. A dynamic-link module that 
can be shared by all processes in the system that refer 
to the module name. 

global file-name character. A special character used to 
refer to a set of file objects with a common base name. 
The asterisk (*) and question mark (?) are used as global 
file-name characters. For example, *.EXE can be used to 
refer to a set of files with the extension EXE. 

glyph. A graphic symbol whose appearance conveys 
information. 

GPI. Graphics programming interface. The 
formally-defined programming language that is between 
an IBM graphics program and the user of the program. 
See also AP/. 

graphics. A picture defined in terms of graphic 
primitives and graphics attributes. 

graphics attributes. Attributes that apply to graphic 
primitives. Examples are color, line type, and 
shading-pattern definition. See also segment attributes. 

graphics field. The clipping boundary that defines the 
visible part of the presentation-page contents. 

graphics model space. The conceptual coordinate 
space in which a picture is constructed after any model 

Glossary X-5 



transforms have been applied. Also known as model 
space. 

graphic primitive. A single item of drawn graphics, such 
as a line, arc, or graphics text string. See also graphics 
segment. 

graphics segment. A sequence of related graphic 
primitives and graphics attributes. See also graphic 
primitive. 

graying. The indication that a choice on a pull-down is 
unavailable. 

group. A collection of logically-connected controls. For 
example, the buttons controlling paper size for a printer. 
See also program group. 

H 
handle. An identifier that represents an object, such as 
a device or window, to the Presentation Interface. 

hard error. An error condition on a network that 
requires either that the system be reconfigured, or that 
the source of the error be removed before the system 
can resume reliable operation. 

header. (1) System-defined control information that 
precedes user data. (2) The portion of a message that 
contains control information for the message, such as 
one or more destination fields, name of the originating 
station, input sequence number, character string 
indicating the type of message, and priority level for the 
message. 

help. A function that provides information about a 
specific field, an application panel, or information about 
the help facility. 

help Index. A facility that allows the user to select topics 
for which help is available. 

help panel. A panel with information to assist users that 
is displayed in response to a help request from the user. 

help window. A Common User Access-defined 
secondary window that displays information when the 
user requests help. 

heap. An area of free storage available for dynamic 
allocation by an application. Its size varies according to 
the storage requirements of the application. 

hit testing. The means of identifying which window is 
associated with which input device event. 

hook. A mechanism by which procedures are called 
when certain events occur in the system. For example, 
the filtering of mouse and keyboard input before it is 
received by an application program. 

hook chain. A sequence of hook procedures that are 
"chained" together so that.each event is passed, in turn, 
to each procedure in the chain. 

hot spot. The part of the pointer that must touch an 
object before it can be selected. This is usually the tip of 
the pointer. Contrast with action point. 

X-6 CP Programming Reference 

I 
Icon. A pictorial representation of an item the user can 
select. Icons can represent items (such as a document 
file) that the user wants to work on, and actions that the 
user wants to perform. In the Presentation Manager, 
icons are used for data objects, system actions, and 
minimized programs. 

Icon area. In the Presentation Manager, the area at the 
bottom of the screen that is normally used to display the 
icons for minimized programs. 

Icon Editor. The Presentation Manager-provided tool for 
creating icons. 

Image font. A set of symbols, each of which is described 
in a rectangular array of pels. Some of the pels in the 
array are set to produce the image of the symbol. 
Contrast with outline font. 

Information device context. A logical description of a 
data destination other than the screen (for example, a 
printer or plotter), but where no output will occur. Its 
purpose is to satisfy queries. See also device context. 

Information panel. A defined panel type characterized 
by a body containing only protected information. 

Input focus. The area of the screen that will receive 
input from an input device (typically the keyboard). 

Input router. An internal 05/2 process that removes 
messages from the system queue. 

integer atom. A special kind of atom that represents a 
predefined system constant and carries no storage 
overhead. For example, names of window classes 
provided by Presentation Manager are expressed as 
integer atoms. 

Interactive graphics. Graphics that can be moved or 
manipulated by a user at a terminal. 

interactive program. A program that is running (active) 
and is ready to receive (or is receiving) input from the 
user. Compare with active program and contrast with 
noninteractive program. 

Also known as a foreground program. 

interchange file. Data that can be sent from one 
Presentation Interface application to another. 

interval timer. (1) A timer that provides program 
interruptions on a program-controlled basis. (2) An 
electronic counter that counts intervals of time under 
program control. 

IOCtl. A device-specific command that requests a 
function of a device driver through the DosDev/OCtl 
function. 

110 operation. An input operation to, or output operation 
from a device attached to a computer. 

IOPL. Input/output privilege level. 

IOPL code segment. An IOPL executable section of 
programming code that enables an application to directly 



manipulate hardware interrupts and ports without 
replacing the device driver. See also privilege level. 

J 
journal. A special-purpose file that is used to record 
changes made in the system. 

K 
Kan)I. A graphic character set used in Japanese 
ideographic alphabets. 

KBD$. Character-device name reserved for the 
keyboard. 

kernel. The part of an operating system that performs 
basic functions, such as allocating hardware resources. 

kerning. The design of graphics characters so that their 
character boxes overlap. Used to space text 
proportionally. 

keys help. A facility that gives users a listing of all the 
key assignments for the current application. 

L 
label. In a graphics segment, an identifier of one or 
more elements that is used when editing the segment. 

language support procedure. Function provided by the 
Presentation Interface for applications that do not, or 
cannot (as in the case of COBOL and FORTRAN 
programs), provide their own dialog or window 
procedures. 

LDT. Local Descriptor Table. 

LIFO stack. A data stack from which data is retrieved in 
last-in, first-out order. 

linked list. Synonym for chained list. 

list box. A control window containing a vertical list of 
selectable descriptions. 

list panel. A defined panel type that displays a list of 
items from which users can select one or more choices 
and then specify one or more actions to work on those 
choices. 

load-on-call. A function of a linkage editor that allows 
selected segments of the module to be disk resident 
while other segments are executing. Disk resident 
segments are loaded for execution and given control 
when any entry point that they contain is called. 

load time. The point in time at which a program module 
is loaded into main storage for execution. 

local area network (LAN). A data network located on the 
user's premises in which serial transmission is used for 
direct data communication among data stations. 

Local Descriptor Table (LDT). Defines code and data 
segments specific to a single task. 

lock. A serialization mechanism by means of which a 
resource is restricted for use by the holder of the lock. 

LPT1, LPT2, LPT3. Character-device names reserved for 
parallel printers 1 through 3. 

M 
main window. The window that is positioned relative to 
the desktop window. 

map. (1) A set of values having a defined 
correspondence with the quantities or values of another 
set. (2) To establish a set of values having a defined 
correspondence with the quantities or values of another 
set. 

marker box. In computer graphics, the boundary that 
defines, in world coordinates, the horizontal and vertical 
space occupied by a single marker from a marker set. 

marker symbol. A symbol centered on a point. Graphs 
and charts can use marker symbols to indicate the 
plotted points. 

maximize. A window-sizing action that makes the 
window the largest size possible. 

media window. The part of the physical device (display, 
printer, or plotter) on which a picture is presented. 

memory device context. A logical description of a data 
destination that is a memory bit map. See also device 
context. 

memory management. A feature of the operating 
system for allocating, sharing, and freeing main storage. 

menu. A type of panel that consists of one or more 
selection fields. Also called a menu panel. 

message. (1) In the Presentation Manager, a packet of 
data used for communication between the Presentation 
Interface and windowed applications. (2) In a user 
interface, information not requested by users but 
presented to users by the computer in response to a 
user action or internal process. 

message fitter. The means of selecting which messages 
from a specific window will be handled by the 
application. 

message queue. A sequenced collection of messages to 
be read by the application. 

metafile. The generic name for the definition of the 
contents of a picture. Metafiles are used to allow 
pictures to be used by other applications. 

metafile device context. A logical description of a data 
destination that is a metafile, which is used for graphics 
interchange. See also device context. 

metalanguage. A language used to specify another 
language. For example, data types can be described 
using a metalanguage so as to make the descriptions 
independent of any one computer language. 

mickey. A unit of measurement for physical mouse 
motion whose value depends on the mouse device driver 
currently loaded. 

Glossary X-7 



micro presentation space. A graphics presentation 
space in which a restricted set of the GPI function calls is 
available. 

minimize. A window-sizing action that makes the 
window the smallest size possible. In the Presentation 
Manager, minimized windows are represented by icons. 

mix. An attribute that determines how the foreground of 
a graphic primitive is combined with the existing color of 
graphics output. Also known as foreground mix. 
Contrast with background mix. 

mixed character string. A string containing a mixture of 
one-byte and Kanji or Hangeul (two-byte) characters. 

mnemonic. A method of selecting an item on a 
pull-down by means of typing the highlighted letter in the 
menu item. 

modal dialog box. The type of control that allows the 
operator to perform input operations on only the current 
dialog box or one of its child windows. Also known as a 
serial dialog box. Contrast with parallel dialog box. 

modeless dialog box. The type of control that allows the 
operator to perform input operations on any of the 
application's windows. Also known as a parallel dialog 
box. Contrast with modal dialog box. 

model space. See graphics model space. 

module definition file. A file that describes the code 
segments within a load module. For example, it 
indicates whether a code segment is loadable before 
module execution begins (preload), or loadable only 
when referred to at run time (load-on-call). 

mouse. A hand-held device that is moved around to 
position the pointer on the screen. 

MOUSES. Character-device name reserved for a mouse. 

multlple-cholce selection. A mode that allows users to 
select any number of choices, including none at all. See 
also check box. Contrast with extended-choice 
selection. 

multitasking. The concurrent processing of applications 
or parts of applications. A running application and its 
data are protected from other concurrently running 
applications. 

N 
named pipe. A named buffer that provides 
client-to-server, server-to-client, or full duplex 
communication between unrelated processes. Contrast 
with unnamed pipe. 

noncritical extended attribute. An extended attribute 
that is not necessary for the function of an application. 

nondestructive read. A read process that does not 
erase the data in the source location. 

non-8.3 file-name format. A file-naming convention in 
which path names can consist of up to 255 characters. 
See also 8.3 file-name format. 

X-8 CP Programming Reference 

noninteractlve program. A program that is running 
(active) but is not ready to receive input from the user. 
Compare with active program, and contrast with 
interactive program. 

nonretalned graphics. Graphic primitives that are not 
remembered by the Presentation Interface once they 
have been drawn. Contrast with retained graphics. 

NUL. Character-device name reserved for a nonexistent 
(dummy) device. 

null-terminated string. A string of (n + 1) characters 
where the (n + 1)th character is the 'null' character 
(X'OO'), and is used to represent an n-character string 
with implicit length. Also known as 'zero-terminated' 
string and 'ASCllZ' string. 

0 
object window. A window that does not have a parent, 
but which may have child windows. An object window 
cannot be presented on a device. 

open. To start working with a file, directory, or other 
object. 

outline font. A set of symbols, each of which is created 
as a series of lines and curves. Synonymous with vector 
font. Contrast with image font. 

output area. The area of the output device within which 
the picture is to be displayed, printed, or plotted. 

owner window. A window into which specific events that 
occur in another (owned) window are reported. 

owning process. The process that owns the resources 
that may be shared with other processes. 

p 

page. A 4KB segment of contiguous physical memory. 

page vlewport. A boundary in device coordinates that 
defines the area of the output device in which graphics 
are to be displayed. The presentation-page contents are 
transformed automatically to the page viewport in device 
space. 

paint. The action of drawing or redrawing the contents 
of a window. 

panel. A particular arrangement of information grouped 
together for presentation to the user in a window. 

panel area. An area within a panel that contains related 
information. The three major Common User 
Access-defined panel areas are the action bar, the 
function key area, and the panel body. 

panel body. The portion of a panel not occupied by the 
action bar, function key area, title or scroll bars. The 
panel body may contain protected information, selection 
fields, and entry fields. The layout and content of the 
panel body determine the panel type. 

panel body area. The part of a window not occupied by 
the action bar or function key area. The panel body area 



may contain information, selection fields, and entry 
fields. Also known as client area. 

panel body area separator. A line or color boundary 
that provides users with a visual distinction between two 
adjacent areas of a panel. 

panel definition. A description of the contents and 
characteristics of a panel. A panel definition is the 
application developer's mechanism for predefining the 
format to be presented to users in a window. 

panel ID. A panel element located in the upper left-hand 
corner of a panel body that identifies that particular 
panel within the application. 

panel title. A panel element that identifies the 
information in the panel. 

paper size. The size of paper, defined in either standard 
U.S. or European names (for example, A, B, A4), and 
measured in inches or millimeters respectively. 

parallel dialog box. See modeless dialog box. 

parent process. A process that loads and starts other 
processes. Contrast with child process. 

parent window. The window relative to which one or 
more child windows are positioned. Contrast with child 
window. 

partition. (1) A fixed-size division of storage. (2) On an 
IBM personal computer fixed disk, one of four possible 
storage areas of variable size; one may be accessed by 
DOS, and each of the others may be assigned to another 
operating system. 

path. The part of a file specification that lists a series of 
directory names. Each directory name is separated by 
the backslash character. In the file specification 
C:\MYFILES\MISC\GLOSSARY.SCR, the path consists of 
MYFILES\MISC\. 

pel. The smallest area of a display screen capable of 
being addressed and switched between visible and 
invisible states. Synonym for display point, pixel, and 
picture element. 

pick. To select part of a displayed object using the 
pointer. 

picture chain. See segment chain. 

picture element. Synonym for pel. 

PID. Process identification. 

pipe. A named or unnamed buffer used to pass data 
between processes. A process reads from or writes to a 
pipe as if the pipe were a standard-input or 
standard-output file. See also named pipe and unnamed 
pipe. 

pixel. Synonym for pel. 

plotter. An output device that uses pens to draw its 
output on paper or on transparency foils. 

PM. Presentation Manager. 

pointer. (1) The symbol displayed on the screen that is 
moved by a pointing device, such as a mouse. The 
pointer is used to point at items that users can select. 
Contrast with cursor. (2) A data element that indicates 
the location of another data element. 

POINTER$. Character-device name reserved for a 
pointer device (mouse screen support). 

pointing device. A Clevice (such as a mouse) used to 
move a pointer on the screen. 

pointing&. Pairs of x-y coordinates produced by an 
operator defining positions on a screen with a pointing 
device, such as a mouse. 

polyflllet. A curve based on a sequence of lines. It is 
tangential to the end points of the first and last lines, and 
tangential also to the midpoints of all other lines. See 
also fillet. 

polyline. A sequence of adjoining lines. 

pop. To retrieve an item from a last-in-first-out stack of 
items. Contrast with push. 

pop-up window. A window that appears on top of 
another window in a dialog. Each pop-up window must 
be completed before returning to the underlying window. 

Presentation Manager (PM). The visual component of 
OS/2 that presents, in windows, a graphics-based 
interface to applications and files installed and running 
in OS/2. 

presentation page. The coordinate space in which a 
picture is assembled for display. 

presentation space (PS). Contains the 
device-independent definition of a picture. 

primary window. The window in which the main dialog 
between the user and the application takes place. In a 
multiprogramming environment, each application starts 
in its own primary window. The primary window remains 
for the duration of the application, although the panel 
displayed will change as the user's dialog moves 
forward. See also secondary window. 

primitive. See graphic primitive. 

primitive attribute. A specifiable characteristic of a 
graphic primitive. See graphics attributes. 

print Job. The result of sending a document or picture to 
be printed. 

Print Manager. In the Presentation Manager, the part of 
the spooler that manages the spooling process. It also 
allows users to view print queues and to manipulate 
print jobs. 

privilege level. A protection level imposed by the 
hardware architecture of the IBM personal computer. 
There are four privilege levels (number 0 through 3). 
Only certain types of programs are allowed to execute at 
each privilege level. See also IOPL code segment. 

procedure call. In programming languages, a language 
construct for invoking execution of a procedure. 

Glossary X-9 



process. An instance of an executing application and 
the resources it is using. 

program details. Information about a program that is 
specified in the Program Manager window and is used 
when the program is started. 

program group. In the Presentation Manager, several 
programs that can be acted upon as a single entity. 

program name. The full file specification of a program. 
Contrast with program title. 

program tltle. The name of a program as it is listed in 
the Program Manager window. Contrast with program 
name. 

prompt. A displayed symbol or message that requests 
input from the user or gives operational information. 
The user must respond to the prompt in order to 
proceed. 

protocol. A set of semantic and syntatic rules that 
determines the behavior of functional units in achieving 
communication. 

pseudocode. An artificial language used to describe 
computer program algorithms without using the syntax of 
any particular programming language. 

pull-down. An action bar extension that displays a list of 
choices available for a selected action bar choice. After 
users select an action bar choice, the pull-down appears 
with the list of choices. Additional pop-up windows may 
appear from pull-down choices to further extend the 
actions available to users. 

push. To add an item to a last-in-first-out stack of items. 
Contrast with pop. 

pushbutton. A control window, shaped like a 
round-cornered rectangle and containing text, that 
invokes an immediate action, such as 'enter' or 'cancel'. 

Q 
queue. A linked list of elements waiting to be 
processed. For example, a queue may be a list of print 
jobs waiting to be printed. 

queued device context. A logical description of a data 
destination (for example, a printer or plotter) where the 
output is to go through the spooler. See also device 
context. 

R 
radio button. A control window, shaped like a round 
button on the screen, that can be in a checked or 
unchecked state. It is used to select a single item from 
list. Contrast with check box. 

RAS. Reliability, availability, and serviceability. 

raster. (1) In computer graphics, a predetermined 
pattern of lines that provides uniform coverage of a 
display space. (2) The coordinate grid that divides the 
display area of a display device. 

X-10 CP Programming Reference 

read-only Ille. A file that may be read from but not 
written to. 

realize. To cause the system to ensure, wherever 
possible, that the physical color table of a device is set to 
the closest possible match in the logical color table. 

recursive routine. A routine that can call itself or be 
called by another routine called by the recursive routine. 

reentrant. The attribute of a program or routine that 
allows the same copy of the program or routine to be 
used concurrently by two or more tasks. 

reference phrase. A word or phrase that is emphasized 
in a device-dependent manner to inform the user that 
additional information for the word or phrase is 
available. 

reference phrase help. Provides help information for a 
selectable word or phrase. 

refresh. To update a window, with changed information, 
to its current status. 

region. A clipping boundary in device space. 

register. A storage device having a specified storage 
capacity such as a bit, byte, or computer word, and 
usually intended for a special purpose. 

remote flle system. A file-system driver that gains 
access to a remote system without a block device driver. 

resource. The means of providing extra information 
used in the definition of a window. A resource can 
contain definitions of fonts, templates, accelerators, and 
mnemonics; the definitions are held in a resource file. 

resource flle. A file containing information used in the 
definition of a window. Definitions can be of fonts, 
templates, accelerators, and mnemonics. 

restore. To return a window to its original size or 
position following a sizing or moving action. 

retained graphics. Graphic primitives that are 
remembered by the Presentation Interface after they 
have been drawn. Contrast with nonretained graphics. 

return code. (1) A code used to influence the execution 
of succeeding instructions. (2) A value returned to a 
program to indicate the results of an operation 
requested by that program. 

reverse video. A form of alphanumeric highlighting for a 
character, field, or cursor, in which its color is 
exchanged with that of its background. For example, 
changing a red character on a black background to a 
black character on a red background. 

RGB. Red-green-blue. For example, "RGB display". 

roman. Relating to a type style with upright characters. 

root segment. In a hierarchical database, the highest 
segment in the tree structure. 

run time. (1) Any instant at which a program is being 
executed. (2) The time during which an instruction in an 
instruction register is decoded and performed. 



s 
SAA. Systems Application Architecture. 

scheduler. A computer program designed to perform 
functions such as scheduling, initiation, and termination 
of jobs. 

screen. The physical surface of a work station or 
terminal upon which information is presented to users. 

screen device context. A logical description of a data 
destination that is a particular window on the screen. 
See also device context. 

SCREEN$. Character-device name reserved for the 
display screen. 

scroll bar. A control window, horizontally or vertically 
aligned, that allows the user to scroll additional data into 
an associated panel area. 

scrollable entry field. An entry field larger than the 
visible field. 

scrollable selection field. A selection field that contains 
more choices than are visible. 

scrolling. Moving a display image vertically or 
horizontally in a manner such that new data appears at 
one edge, as existing data disappears at the opposite 
edge. 

secondary window. A type of window associated with 
the primary window in a dialog. A secondary window 
begins a secondary and parallel dialog that runs at the 
same time as the primary dialog. 

sector. An addressable subdivision of a track used to 
record one block of program code or data on a disk or 
diskette. 

segment. See graphics segment. 

segment attributes. Attributes that apply to the segment 
as an entity, as opposed to the individual primitives 
within the segment. For example, the visibility or 
detectability of a segment. 

segment chain. AU segments in a graphics presentation 
space that are defined with the 'chained' attribute. 
Synonym for picture chain. 

segment priority. The order in which segments are 
drawn. 

segment store. An area in a normal graphics 
presentation space where retained graphics segments 
are stored. 

select. To mark or choose an item. Note that select 
means to mark or type in a choice on the screen; enter 
means to send all selected choices to the computer for 
processing. 

select button. The button on a pointing device, such as 
a mouse, that is pressed to select a menu choice. Also 
known as button 1. 

selection cursor. A type of cursor used to indicate the 
choice or entry field users want to interact with. It is 

represented by highlighting the item that it is currentty 
positioned on. 

selection fleld. A field containing a list of choices from 
which the user can select one or more. 

semaphore. An object used by multi-threaded 
applications for signalling purposes and for controlling 
access to serially reusable resources. 

separator. See panel body area separator. 

aerlal dlalog box. See modal dialog box. 

aerlaDzatlon. The consecutive ordering of items. 

aerlallze. To ensure that one or more events occur in a 
specified sequence. 

aerially reusable resource (SRR). A logical resource or 
object that can be accessed by only one task at a time. 

session. A routing mechanism for user interaction via 
the console; a complete environment that determines 
how an application runs and how users interact with the 
application. OS/2 can manage more than one session at 
a time, and more than one process can run in a session. 
Each session has its own set of environment variables 
that determine where OS/2 looks for dynamic-link 
libraries and other important files. 

shadow box. The area on the screen that follows mouse 
movements and shows what shape the window will take 
if the mouse button is released. 

shared data. Data that is used by two or more 
programs. 

shared memory. Memory that is used by two or more 
programs. 

shear. The tilt of graphics text when each character 
leans to the left or right while retaining a horizontal 
baseline. 

shell. (1) A software interface between a user and the 
operating system of a computer. Shell programs 
interpret commands and user interactions on devices 
such as keyboards, pointing devices, and touch-sensitive 
screens, and communicate them to the operating system. 
(2) Software that allows a kernel program to run under 
different operating-system environments. 

Shutdown. The procedure required before the computer 
is switched off to ensure that data is not lost. 

sibling processes. Child processes that have the same 
parent process. 

sibling windows. Child windows that have the same 
parent window. 

sllder box. An area on the scroll bar that indicates the 
size and position of the visible information in a panel 
area in relation to the information available. Also known 
as thumb mark. 

source flle. A file that contains source statements for 
items such as high-level language programs and data 
description specifications. 

Glossary X-11 



I 
I 

source statement. A statement written in a 
programming language. 

specific dynamic-link.module. A dynamic-link module 
created for the exclusive use of an application. 

spline. A sequence of one or more Bezier curves. 

spooler. A program that intercepts the data going to 
printer devices and writes it to disk. The data is printed 
or plotted when it is complete, and the required device is 
available. The spooler prevents output from different 
sources from being intermixed. 

stack. A list constructed and maintained so that the next 
data element to be retrieved is the most recently stored. 
This method is characterized as last-in-first-out (LIFO). 

standard window. A collection of window elements that 

trm a panel. The standard window can include one or 
ore of the following window elements: sizing borders, 

ystem menu icon, title bar, maximize/minimize/restore 
Icons, action bar and pull-downs, scroll bars, and client 
,~rea. 

! static control. The means by which the application 
j presents descriptive information (for example, headings 

1 and descriptors) to the user. The user cannot change 
this information. 

static storage. (1) A read/write storage unit in which 
data is retained in the absence of control signals. Static 
storage may use dynamic addressing or sensing circuits. 
(2) Storage other than dynamic storage. 

style. See window style. 

suballocatlon. The allocation of a part of one extent for 
occupancy by elements of a component other than the 
one occupying the remainder of the extent. 

subdirectory. In an IBM personal computer, a file 
referred to in a root directory that contains the names of 
other files stored on the diskette or fixed disk. 

swapping. (1) A process that interchanges the contents 
of an area of real storage with the contents of an area in 
auxiliary storage. (2) In a system with virtual storage, a 
paging technique that writes the active pages of a job to 
auxiliary storage and reads pages of another job from 
auxiliary storage into real storage. (3) The process of 
temporarily removing an active job from main storage, 
saving it on disk, and processing another job in the area 
of main storage formerly occupied by the first job. 

switch. (1) An action that moves the input focus from 
one area to another. This can be within the same 
window or from one window to another. (2) In a 
computer program, a conditional instruction and an 
indicator to be interrogated by that instruction. (3) A 
device or programming technique for making a selection, 
for example, a toggle, a conditional jump. 

switch list. See Task List. 

symbolic identifier. A text string that equates to an 
integer value in an include file, that is used to identity a 
programming object. 

synchronous. Pertaining to events or operations that 
are predictable or occur at the same time. See also 
asynchronous. 

X-12 CP Programming Reference 

System Menu. In the Presentation Manager, the 
pull-down in the top left corner of a window that allows it 
to be moved and sized with the keyboard. 

system queue. This is the master queue for all pointer 
device or keyboard events. 

Systems Application Architecture (SAA). A formal set of 
rules that enables applications to be run without 
modification in different computer environments. 

T 
tag. One or more characters attached to a set of data 
that defines the formatting or other characteristics of the 
set, including its definition. 

Task List. In the Presentation Manager, the list of 
programs that are active. The list can be used to switch 
to a program and to stop programs. 

template. An ASCII-text definition of an action bar and 
pull-down menu, held in a resource file, or as a data 
structure in program memory. 

text. Characters or symbols. 

text cursor. A symbol displayed in an entry field that 
indicates where typed input will appear. 

text window. Also known as the VIO window. 

text-windowed application. The environment in which 
the operating system perfoms advanced-video input and 
output operations. 

thread. A unit of execution within a process. It uses the 
resources of the process. 

thumb mark. The portion of the scroll bar that describes 
the range and properties of the data that is currently 
visible in a window. Also known as a slider box. 

tilde. A mark used to denote the character that is to be 
used as a mnemonic when selecting text items within a 
menu. 

time slice. (1) An interval of time on the processing unit 
allocated for use in performing a task. After the interval 
has expired, processing-unit time is allocated to another 
task, so a task cannot monopolize processing-unit time 
beyond a fixed limit. (2) In systems with time sharing, a 
segment of time allocated to a terminal job. 

title bar. The area at the top of a window that contains 
the window title. The title bar is highlighted when that 
window has the input focus. Contrast with panel title. 

transaction. An exchange between a workstation and 
another device that accomplishes a particular action or 
result. 

transform. (1) The action of modifying a picture by 
scaling, shearing, reflecting, rotating, or translating. (2) 
The object that performs or defines such a modification; 
also referred to as a transformation. 

Tree. In the Presentation Manager, the window in the 
File Manager that shows the organization of drives and 
directories. 



truncate. (1) To end a computational process in 
accordance with some rule. (2) To remove the beginning 
or ending elements of a string. (3) To drop data that 
cannot be printed or displayed in the line width specified 
or available. (4) To shorten a field or statement to a 
specified length. 

u 
unnamed pipe. A circular buffer, created in memory, 
used by related processes to communicate with one 
another. Contrast with named pipe. 

update region. A system-provided area of dynamic 
storage containing one or more (not necessarily 
contiguous) rectangular areas of a window, that are 
visually invalid or incorrect, and therefore in need of 
repainting. 

user Interface. Hardware, software, or both that allows 
a user to interact with and perform operations on a 
system, program, or device. 

User Shell. A component of OS/2 that uses a 
graphics-based, windowed interface to allow the user to 
manage applications and files installed and running 
under OS/2. 

utility program. (1) A computer program in general 
support of computer processes; for example, a 
diagnostic program, a trace program, a sort program. 
(2) A program designed to perform an everyday task 
such as copying data from one storage device to 
another. 

v 
vector font. A set of symbols, each of which is created 
as a series of lines and curves. Synonymous with 
outline font. Contrast with image font. 

VGA. Video graphics array. 

viewing pipeline. The series of transformations applied 
to a graphic object to map the object to the device on 
which it is to be presented. 

viewing window. Clipping boundary that defines the 
visible part of model space. 

VIO. Video Input/Output. 

virtual memory (VM). Addressable space that is 
apparent to the user as the processor storage space, but 
not having a fixed physical location. 

virtual storage. Synonymous with virtual memory. 

vlslble region. A window's presentation space, clipped 
to the boundary of the window and the boundaries of any 
overlying window. 

volume. (1) A file-system driver that uses a block device 
driver for input and output operations to a local or 
remote device. (2) A portion of data, together with its 
data carrier, that can be handled conveniently as a unit. 

w 
wild-card character. The global file-name characters 
asterisk (*) and question mark (?). 

window. A rectangular area of the screen with visible 
boundaries within which information is displayed. A 
window can be smaller than or the same size as the 
screen. Windows can appear to overlap on the screen. 

window class. The grouping of windows whose 
processing needs conform to the services provided by 
one window procedure. 

window coordinates. The means by which a window 
position or size is defined; measured in device units, or 
pels. 

window procedure. Code that is activated in response 
to a message. The procedure controls the appearance 
and behavior of its associated windows. 

window rectangle. The means by which the size and 
position of a window is described in relation to the 
desktop window. 

window style. The set of properties that influence how 
events related to a particular window will be processed. 

workstation. A display screen together with attachments 
such as a keyboard, a local copy device, or a tablet. 

world coordinates. Application-convenient coordinates 
used for drawing graphics. 

world-coordinate space. Coordinate space in which 
graphics are defined before transformations are applied. 

WYSIWYG. What You See Is What You Get. A capability 
that enables text to be displayed on a screen in the same 
way it will be formatted on a printer. 

z 
z-order. The order in which sibling windows are 
presented. The topmost sibling window obscures any 
portion of the siblings that it overlaps; the same effect 
occurs down through the order of lower sibling windows. 

zooming. In graphics applications, the process of 
increasing or decreasing the size of picture. 

Glossary X-13 



X-14 CP Programming Reference 



Index 

A 
Acknowledge Signal Exception 2-2 
Add MuxWait Semaphore 2-4 
Adjust the Maximum Number of File Handles 2-331 
Allocate a Block of Memory from a Memory Pool 2-357 
Allocate a Private Memory Object Memory 2-6 
Allocate a Shared Memory Object 2-9 
Allow a Process to Set Its Code Page 2-329 
Allow a Thread to End another Thread 2-149 
APIRET A-1 
Attach a Device 2-120 

B 
BOOL A-1 
BOOL32 A-1 
BYTE A-1 

c 
Cancel an Outstanding DosSetFilelocks Request 2-19 
Change the Base Priority 2-327 
Change the Size of a File 2-312 
CHAR A-1 
Close a Handle to a File, Pipe, or Device 2-22 
Close a Handle to a Find Request 2-103 
Close a Virtual Device Driver Handle 2-30 
Close Event Semaphore 2-24 
Close Mutex Semaphore 2-25 
Close MuxWait Semaphore 2-26 
Close Queue 2-28 
close virtual device driver handle 2-30 
COLOR A-1 
Communicate with a File System 2-123 
Connect Named Pipe 2-31 
constant names 1-1 
Copy a File or Subdirectory 2-33 
COUNTRYCODE A-1 
COUNTRYINFO A-1 
Create a Directory 2-36 
Create an Asynchronous Thread 2-53 
Create Event Semaphore 2-38 
Create Mutex Semaphore 2-40 
Create MuxWait Semaphore 2-42 
Create Named Pipe 2-45 
Create Queue 2-51 
Create Unnamed Pip,e 2-49 

D 
DATETIME A-2 
Define Current Directory 2-291 
Define the Maximum Number of File Handles 2-316 
Delay Process Execution 2-341 
Delete a Directory 2-61 
Delete MuxWait Semaphore 2-63 
Disable Thread Switching 2-78 
Disables or Enables Error Notification to End User 2-87 
Disconnect Named Pipe 2-70 
DosAcknowledgeSignalException 2-2 
DosAddMuxWaitSem 2-4 

DosAllocMem 2-6 
DosAllocSharedMem 2-9 
DosAsyncTimer 2-12 
DosBeep 2-15 
DosCallNPipe 2-16 
DosCancellockRequest 2-19 
DosClose 2-22 
DosCloseEventSem 2-24 
DosCloseMutexSem 2-25 
DosCloseMuxWaitSem 2-26 
DosCloseQueue 2-28 
DosCloseVDD 2-30 
DosConnectNPipe 2-31 
DosCopy 2-33 
DosCreateDir 2-36 
DosCreateEventSem 2-38 
DosCreateMutexSem 2-40 
DosCreateMuxWaitSem 2-42 
DosCreateNPipe 2-45 
DosCreatePipe 2-49 
DosCreateQueue 2-51 
DosCreateThread 2-53 
DosDebug 2-56 
DosDebug Buffer Structure A-3 
DosDelete 2-59 
DosDeleteDir 2-61 
DosDeleteMuxWaitSem 2-63 
DosDevConfig 2-65 
DosDevlOCtl 2-67 
DosDisConnectNPipe 2-70 
DosDupHandle 2-72 
DosEditName 2-75 
DosEnterCritSec 2-78 
DosEnterMustComplete 2-80 
DosEnumAttribute 2-82 
DosErrClass 2-85 
DosError 2-87 
DosExecPgm 2-89 
DosExit 2-95 
DosExitCritSec 2-97 
DosExitlist 2-98 
DosExitMustComplete 2-101 
DosFindClose 2-103 
DosFindFirst 2-105 
DosFindNext 2-110 
DosForceDelete 2-113 
DosFreeMem 2-115 
DosFreeModule 2-117 
DosFreeResource 2-119 
DosFSAttach 2-120 
DosFSCtl 2-123 
DosGetDateTime 2-127 
DosGetlnfoBlocks 2-129 
DosGetMessage 2-131 
DosGetNamedSharedMem 2-135 
DosGetResource 2-137 
DosGetSharedMem 2-139 
DosGiveSharedMem 2-141 
DoslnsertMessage 2-144 
DosKillProcess 2-147 
DosKillThread 2-149 
DosloadModule 2-151 

Index X-15 



DosMapCase 2-153 
DosMove 2-156 
DosOpen 2-158 
DosOpenEventSem 2-164 
DosOpenMutexSem 2-166 
DosOpenMuxWaitSem 2-168 
DosOpenQueue 2-170 
DosOpenVDD 2-172 
DosPeekNPipe 2-17 4 
DosPeekQueue 2-177 
DosPhysicalDisk 2-181 
DosPostEventSem 2-184 
DosPurgeQueue 2-186 
DosPutMessage 2-188 
DosQueryAppType 2-190 
DosQueryCollate 2-192 
DosQueryCp 2-194 
DosQueryCtrylnfo 2-196 
DosQueryCurrentDir 2-199 
DosQueryCurrentDisk 2-201 
DosQueryDBCSEnv 2-203 
DosQueryEventSem 2-206 
DosQueryFHState 2-208 
OosQueryFilelnfo 2-211 
DosQueryFSAttach 2-214 
DosQueryFSlnfo 2-217 
DosQueryHType 2-220 
DosQueryMem 2-222 
DosQueryMessageCp 2-225 
DosQueryModuleHandle 2-229 
DosQueryModuleName 2-231 
DosQueryMutexSem 2-233 
DosQueryMuxWaitSem 2-235 
DosQueryNPHState 2-238 
DosQueryNPipelnfo 2-241 
DosQueryNPipeSemState 2-244 
DosQueryPathlnfo 2-247 
DosQueryProcAddr 2-250 
DosQueryProcType 2-252 
DosQueryQueue 2-254 
DosQueryResou rceSize 2-256 
DosQuerySyslnfo 2-259 
DosQueryVerify 2-262 
DosRaiseException 2-263 
DosRead 2-265 
DosReadQueue 2-268 
DosReleaseMutexSem 2-272 
DosRequestMutexSem 2-273 
DosRequestVDD 2-275 
DosResetBuffer 2-277 
DosResetEventSem 2-279 
DosResumeThread 2-281 
DosScanEnv 2-282 
DosSearchPath 2-284 
DosSelectSession 2-287 
DosSendSignalException 2-289 
DosSetCurrentDir 2-291 
DosSetDateTime 2-293 
DosSetDefaultDisk 2-295 
DosSetExceptionHandler 2-296 
DosSetFHState 2-298 
DosSetFilelnfo 2-301 
DosSetFilelocks 2-304 
DosSetFilePtr 2-309 
DosSetFileSize 2-312 
DosSetFSlnfo 2-314 
DosSetMaxFH 2-316 

X-16 CP Programming Reference 

DosSetMem 2-317 
DosSetNPHState 2-320 
DosSetNPipeSem 2-322 
DosSetPathlnfo 2-324 
DosSetPriority 2-327 
DosSetProcessCp 2-329 
DosSetRelMaxFH 2-331 
DosSetSession 2-333 
DosSetSignalExceptionFocus 2-336 
DosSetVerify 2-338 
DosShutdown 2-339 
DosSleep 2-341 
DosStartSession 2-343 
DosStartTimer 2-351 
DosStopSession 2-353 
DosStopTimer 2-355 
DosSubAllocMem 2-357 
DosSubFreeMem 2-359 
DosSubSetMem 2-361 
DosSubUnsetMem 2-364 
DosSuspendThread 2-366 
DosTransactNPipe 2-368 
DosUnsetExceptionHandler 2-371 
DosUnwindException 2-373 
DosWaitChild 2-375 
DosWaitEventSem 2-379 
DosWaitMuxWaitSem 2-381 
DosWaitNPipe 2-384 
DosWaitThread 2-386 
DosWrite 2-388 
DosWriteQueue 2-391 

E 
EAOP2 A-6 
Edit File and Directory Name 2-75 
Enable the Calling Program to Control Another Program 

for Debugging 2-56 
End the Use of a Memory Pool 2-364 
Enter Must Complete 2-80 
ERRORID A-6 
EXCEPTIONREGISTRATIONRECORD A-6 
EXCEPTIONREPORTRECORD A-6 
Execute Another Program as a Child Process 2-89 
Exit Must Complete 2-101 

F 
FDATE A-7 
FEA2 A-7 
FEA2LIST A-8 
FILEFINDBUF3 A-8 
FILEFINDBUF4 A-8 
FILELOCK A-9 
FILESTATUS3 A-9 
FILESTATUS4 A-10 
Find the First File Object 2-105 
Find the Next Set of File Objects 2-110 
Flag a Process to Terminate 2-147 
Free a Private or Shared Memory Object 2-115 
Free a Resource 2-119 
Free Suballocated Block of Memory 2-359 
Frees th0 Reference to the Dynamic Link Module 2-117 
FSQBUFFER2 A-10 
FTIME A-11 
function descriptions 

conventions used 1-1 



function descriptions (continued) 
notation 1-1 

G 
GEA2 A-11 
GEA2LIST A-12 
Generate Sound from the Speaker 2-15 
Get a New Handle for an Open File 2-72 
Get Current Date and Time 2-127 
Get Information about Attached Devices 2-65 
Get the Addresses of Information Blocks 2-129 
Get the Current Default Drive 2-201 
Get the Full Path Name of the Current Directory 2-199 
Give Another Process Access to a Shared Memory 

Object 2-141 

H 
HOC A-12 
HDIR A-12 
HEV A-12 
HFILE A-12 
HMF A-12 
HMODULE A-12 
HMONITOR A-12 
HMTX A-12 
HMUX A-12 
HPIPE A-12 
HPS A-12 
HQUEUE A-12 
HRGN A-12 
HSEM A-12 
HSYSSEM A-12 
HTIMER A-13 
HVDD A-13 
HWND A-13 

Identify Names and Lengths of Extended Attributes 2-82 
implicit pointer 1-1 
Insert Variable Text-string Information into a 

Message 2-144 
Issued When a Thread Finishes Executing 2-95 

L 
Load a Dynamic Link Module 2-151 
Lock and Unlock a Range of an Open File 2-304 
LONG A-13 

M 
Maintain a List of Routines that Execute when the 

Current Process Ends 2-98 
Move a File Object 2-156 
Move the Read/Write Pointer 2-309 

N 
NID A-13 
notation conventions 1-1 
NPCH A-13 
NPFN A-13 
NPSZ A-13 

NULL 1-1 

0 
Obtain a Collating Sequence Table from the Country 

File 2-192 
Obtain a DBCS Environmental Vector 2-203 
Obtain Access to a Named Shared Memory 

Object 2-135 
Obtain Access to a Shared Memory Object 2-139 
Obtain Country Dependent Formatting 

Information 2-196 
Obtain Information about a Range of Pages 2-222 
Obtain Information about Partitionable Disks 2-181 
Open a File 2-158 
Open a Virtual Device Driver 2-172 
Open Event Semaphore 2-164 
Open Mutex Semaphore 2-166 
Open MuxWait Semaphore 2-168 
Open Queue 2-170 
open virtual device driver 2-172 

p 
PAVAILDATA A-13 
PBOOL A-13 
PBOOL32 A-13 
PBYTE A-13 
PCHAR A-13 
PCOLOR A-13 
PCOUNTRYCODE A-13 
PCOUNTRYINFO A-13 
PDATETIME A-13 
PEAOP2 A-14 
Peek Named Pipe 2-174 
Peek Queue 2-177 
Perform Case Mapping 2-153 
Perform Control Function on a Device Specified by an 

Opened Device Handle 2-67 
Perform Procedure Call Transaction 2-16 
Perform Transaction on a Named Pipe 2-368 
PERRORID A-14 
PEXCEPTIONREGISTRATIONRECORD A-14 
PEXCEPTIONREPORTRECORD A-14 
PFEA2LIST A-14 
PFILEFINDBUF3 A-14 
PFILEFINDBUF4 A-14 
PFILELOCK A-14 
PFN A-14 
PFNEXITLIST A-14 
PFNSIGHANDLER A-14 
PFNTHREAD A-14 
PFSQBUFFER2 A-14 
PGEA2LIST A-14 
PHDC A-14 
PHDIR A-14 
PHEV A-14 
PHFILE A-14 
PHMF A-14 
PHMODULE A-14 
PHMONITOR A-14 
PHMTX A-15 
PHMUX A-15 
PHPIPE A-15 
PHPS A-15 
PHQUEUE A-15 

Index X-17 



PHRGN A-15 
PHSEM A-15 
PHTIMER A-15 
PHVDD A-15 
PIB A-15 
PIO A-15 
PIPESEMSTATE A-16 
Place Current Thread in a Wait State Until Child Process 

Ends 2-375 
Place Current Thread into a Wait State 2-386 
PLONG A-16 
pointer, implicit 1-1 
Post Event Semaphore 2-184 
PPIB A-16 
PPID A-16 
PPIPESEMSTATE A-16 
PPPIB A-16 
PPTIB A-16 
PPVOID A-16 
PREQUESTDATA A-16 
PRESUL TCODES A-17 
Provide More Information about Return Values 2-85 
PSEMRECORD A-17 
PSTARTDATA A-17 
PST ATUSDAT A A-17 
PSZ A-17 
PTIB A-17 
PTIB2 A-17 
PTID A-17 
PULONG A-17 
Purge Queue 2-186 
PVOID A-17 

Q 
Query Attached File System 2-214 
Query Current Process Code Page 2-194 
Query Event Semaphore 2-206 
Query File Handle State 2-208 
Query File Information 2-211 
Query File System Information 2-217 
Query Handle Type 2-220 
Query Mutex Semaphore 2-233 
Query MuxWait Semaphore 2-235 
Query Named Pipe Handle State 2-238 
Query Named Pipe Information 2-241 
Query Named Pipe Operations 2-244 
Query Path Information 2-247 
Query Queue 2-254 

R 
Raise Exception 2-263 
Read from a File, Pipe, or Device to a Buffer 2-265 
Read Queue 2-268 
Release Mutex Semaphore 2-272 
Remove a File Name from a Directory 2-59, 2-113 
Request Mutex Semaphore 2-273 
Request Virtual Device Driver Services 2-275 
REQUESTDAT A A-17 
Reset Buffer 2-277 
Reset Event Semaphore 2-279 
Restart a Thread 2-281 
Restore Normal Thread Dispatching for Current 

Process 2-97 
RESULTCODES A-17 

X-18 CP Programming Reference 

Retrieve a Message 2-131 
Retrieve a Message File List of Code Pages and 

Language Identifiers 2-225 
Return Fully Qualified Name with Referenced Module 

Handle 2-231 
Return Procedure Type within a Dynamic Link 

Module 2-252 
Return the Address of the Resource Object 2-137 
Return the Address of the Specified Procedure within a 

Dynamic Link Module 2-250 
Return the Application Type 2-190 
Return the Handle of a Dynamic Link Module Previouly 

Loaded 2-229 
Return the size of the Specified Resource Object 2-256 
Return the State of the Verification Flag 2-262 
Return Values of Static System Variables 2-259 

s 
Search an Environment Segment for an Environment 

Variable 2-282 
Search Path 2-284 
Select Foreground Session 2-287 
SEMRECORD A-17 
Send Signal Exception 2-289 
Sends a Message to an Output File or Device 2-188 
Set a Memory Pool 2-361 
Set a Range of Pages within a Memory Object 2-317 
Set Current Date and Time 2-293 
Set Default Drive 2-295 
Set Exception Handler 2-296 
Set File Information 2-301 
Set Information for a File or Directory 2-324 
Set Information for a File System Device 2-314 
Set Named Pipe Handle State 2-320 
Set Named Pipe Semaphore 2-322 
Set Session Status 2-333 
Set Signal Exception Focus 2-336 
Set the State of a Specified File Handle 2-298 
Set Write Verification 2-338 
SGID A-18 
SHORT A-18 
Shut Down the System 2-339 
Start an Asychronous Timer 2-351 
Start an Asynchronous Timer 2-12 
Start Session 2-343 
STARTDATA A-18 
STATUSDATA A-19 
Stop an Asynchronous Timer 2-355 
Stop Session 2-353 
STRUCT A-19 
Suspend Execution of Another Thread 2-366 
System Exceptions C-1 

T 
TIB A-19 
TIB2 A-20 
TIO A-20 

u 
UCHAR A-20 
ULONG A-20 
Unset Exception Handler 2-371 
Unwind Exception 2-373 



USHORT A-20 

v 
virtual device driver, close handle 2-30 
virtual device driver, open 2-172 
virtual device driver, request services 2-275 

w 
Wait Event Semaphore 2-379 
Wait MuxWait Semaphore 2-381 
Wait Named Pipe Instance 2-384 
Write Queue 2-391 
Write to a File from a Buffer 2-388 

Index X-19 







® IBM, OS/2 and Operating System/2 are 
registered trademarks of 
International Business Machines Corporation 

-·-------- - - --- - -- - ---- - - --------___ ,® 

© IBM Corp. 1992 

International Business 
Machines Corporation 

Printed in the 
United States of America 
All Rights Reserved 

10G6263 

Sl0G-6263-00 

I H ~H llllllH~ 111 
Pl0G6263 


