

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Before using this information and the product it supports, be sure to read the general information under

"Notices" on page xvii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent

with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not

allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may make

improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and

programs), programming, or services that are not announced in your country. Such references or information must

not be construed to mean that IBM intends to announce such IBM products, programming, or services in your

country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM

Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of

this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM

Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which

illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to

the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must

include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices . xvii

About This Book . xix

Control Program Programming Interface

©Copyright IBM Corp. 1992

Chapter 1. Introduction to the Control Program . 1-1
Control Program Functionality . 1-1

File Systems and File Management 1-2
Memory Management 1-2
Program Execution and Control 1-2
Semaphores .. 1-3
Pipes .. 1-3
Queues ... 1-3
Timers .. 1-3
Error Management 1-3
Exception Management 1-3
Device 1/0 ... 1-4
Message Management 1-4
National Language Support and Code Page Management 1-4
Debugging ... 1-4

Chapter 2. File Systems . 2-1
About File Systems ... 2-1

Types of File Systems . 2-2
FAT File System . 2-2
Installable File Systems 2-2
High Performance File System 2-3
Local and Remote File Systems 2-5

Recognizing DOS and OS/2 File Objects . 2-5
Storage Devices and File Systems 2-5
File System Utilities . 2-7
OS/2 Boot Manager . 2-8

Using File Systems . 2-8
Attaching and Detaching File Systems 2-8
Obtaining Information about an Attached File System 2-9
Obtaining Information about a File System . 2-10
Obtaining Information about a File . 2-11
Communicating with a File System . 2-12
Preparing File Systems for System Shutdown . 2-14
Writing Cache Buffers . 2-14

Summary . 2-16

Chapter 3. File Names . 3-1
File-Naming Conventions 3-1

File Names in the FAT File System 3-2
File Names in the High Performance File System 3-3
Long File Names . 3-4
Moving Files with Long Names . 3-5

Metacharacters in File Names . 3-6
Searching for Files Using Metacharacters 3-7

iii

Editing File Names Using Metacharacters 3-7
Transforming File Names Using Metacharacters 3-8

File Names in User Input . 3-8
Device Names . 3-9

Chapter 4. Fiie Management . 4-1
About Volumes and Drives 4-1
About Directories .. 4-2

Creating a Subdirectory . 4-2
Determining and Changing the Current Directory 4-2
Deleting a Directory 4-2

About Files . 4-3
File Attributes ... 4-3
File Handles . 4-3
File Pointer . 4-4
Copying Files . 4-4
Moving Files . 4-5
Deleting Files . 4-5
Changing File Sizes . 4-5
Locking and Unlocking File Regions . 4-5
Searching for Files . 4-6
Determining the Maximum Path Length . 4-6
Devices . 4-6

Using File Commands . 4-7
Creating Files . 4-7
Opening Files . 4-9
Reading from Files . 4-11
Writing to Files . 4-12
Moving the File Pointer . 4-13
Closing Files . 4-14
Creating Duplicate File or Device Handles . 4-15
Determining and Setting the State of a File or Device Handle 4-16
Determining the Handle Type . 4-17
Searching for Files . 4-18
Searching Paths for Files . 4-20

Standard File Handles . 4-21
Standard Input, Output, and Error File Handles 4-21
Redirecting Standard File Handles . 4-22

Summary .. 4-23

Chapter 5. Extended Attributes . 5-1
About Extended Attributes. 5-1

Extended Attribute Data Type Conventions 5-3
Multi-Value Data Type Fields 5-4
Multi-Valued, Multi-Typed Data Type . 5-4
Multi-Valued, Single-Type Data Type . 5-5
ASN.1 Data Type . 5-5

Including One Extended Attribute in Another 5-6
Extended Attribute Naming Conventions 5-6
Standard Extended Attributes . 5-6

The .ASSOCTABLE Standard Extended Attribute 5-7
The .CODEPAGE Standard Extended Attribute 5-10
The .COMMENTS Standard Extended Attribute 5-10
The .HISTORY Standard Extended Attribute . 5-10
The .ICON Standard Extended Attribute . 5-11
The .KEYPHRASES Standard Extended Attribute 5-12

iv OS/2 2.0 Programming Guide-Volume I

The .LONGNAME Standard Extended Attribute
The .SUBJECT Standard Extended Attribute
The .TYPE Standard Extended Attribute
The .VERSION Extended Attribute

Managing Extended Attributes
Controlling Access to Extended Attributes
Extended Attribute Data Structures
Preserving Extended Attributes
Protecting Extended Attributes
Searching for Extended Attributes
Supporting Extended Attributes

Summary

5-12
5-12
5-13
5-14
5-14
5-14
5-15
5-16
5-17
5-18
5-18
5-19

Chapter &. Memory Management . 6-1
About Memory Management . 6-1

Process Address Space 6-1
Memory Objects . 6-3
Memory Pages . 6-4
Memory Overcommitment and Swapping 6-4
User Configuration of Memory Swapping 6-5
Memory Allocation and Commitment . 6-5
Memory Resizing and Reallocation 6-6
Memory Protection . 6-7
Obtaining Information about a Page Range 6-8
Protection Violations . 6-8
Memory Suballocation and Using Heaps 6-8
Shared Memory . 6-9

Using Memory Management . 6-10
Allocating Private Memory . 6-10
Committing and Decommitting Page Ranges . 6-11
Establishing Access Protection . 6-12
Querying Memory Object Information . 6-12
Freeing Memory . 6-13

Using Suballocation and Heaps . 6-14
Suballocating Memory . 6-14
Increasing the Size of a Heap . 6-14
Allocating a Block of Memory from a Heap . 6-15
Freeing Memory Blocks . 6-16
Ending the Use of the Heap . 6-17

Using Shared Memory 6-18
Using Named Shared Memory . 6-18
Using Unnamed Shared Memory 6-19

Summary . 6-20

Chapter 7. Program Execution Control . 7-1
About Program Execution Control-Thread, Processes, and Sessions 7-1

Threads ... 7-3
Processes . 7-3

Creating Processes 7-4
Process Termination . 7-5
Process Exit Lists . 7-6

Multitasking with Threads and Multitasking with Processes 7-6
Sessions .. 7-6

Creating Sessions . 7-7
Child Session Control . 7-8
Child Session Termination 7-9

Contents V

About CPU Scheduling . 7-9

Priority Classes . 7-10

Priority Levels . 7-11

Priority Guidelines . 7-12

Dynamic Priority Alteration . 7-13

Altering the Size of the Time Slice . 7-14

Using Processes . 7-14

Starting a Child Process . 7-15

Starting an Asynchronous Child Process . 7-15

Starting a Background Process . 7-16

Setting the Command Line and Environment for a Child Process 7-17

Changing the Priority of a Process . 7-18

Obtaining Information about Child Processes . 7-18

Waiting for a Child Process to Terminate . 7-19

Ending the Current Process . 7-19

Terminating a Process . 7-20

Creating an Exit List . 7-22

Using Threads . 7-24

Creating a Thread . 7-24

Obtaining Information about a Thread . 7-25

Changing the Priority of a Thread . 7-26

Suspending the Current Thread . 7-27

Suspending and Resuming Execution of a Thread 7-27

Entering Critical Sections . 7-28

Waiting for a Thread to Terminate . 7-29

Ending the Current Thread . 7-30

Terminating a Thread . 7-31

Using Sessions . 7-32

Starting a Session . 7-32

Controlling the Execution of Child Sessions . 7-34

Setting User Selectability of a Child Session 7-34

Binding Child Sessions to Parent Sessions . 7-35

Switching a Session to the Foreground . 7-35

Terminating a Session . 7-36

Summary .. 7-37

Chapter 8. Semaphores . 8-1

About Semaphores ... 8-1

Event Semaphores . 8-1

Mutual Exclusion (Mutex) Semaphores 8-2

Multiple Wait (Muxwait) Semaphores . 8-3

Named and Anonymous Semaphores . 8-4

Semaphore Management . 8-4

Using Event Semaphores 8-5

Creating an Event Semaphore . 8-5

Opening an Event Semaphore . 8-6

Closing an Event Semaphore 8-7

Resetting an Event Semaphore 8-8

Posting an Event Semaphore 8-9

Waiting for an Event Semaphore . 8-10

Querying an Event Semaphore . 8-11

Using Mutex Semaphores . 8-12

Creating a Mutex Semaphore . 8-12

Opening a Mutex Semaphore . 8-13

Requesting a Mutex Semaphore . 8-14

Releasing a Mutex Semaphore . 8-16

Vi OS/2 2.0 Programming Guide-Volume I

Closing a Mutex Semaphore 8-16
Querying a Mutex Semaphore . 8-17

Using Muxwait Semaphores . 8-18
Creating a Muxwait Semaphore . 8-18
Opening a Muxwait Semaphore . 8-20
Closing a Muxwait Semaphore . 8-22
Waiting for a Muxwait Semaphore . 8-22
Adding a Semaphore to a Muxwait List . 8-25
Deleting a Semaphore from a Muxwait List . 8-26
Querying a Muxwait Semaphore . 8-26

Summary .. 8-27

Chapter 9. Pipes . 9-1
About Pipes . 9-1

Unnamed Pipes ... 9-1
Named Pipes ... 9-2

Server-Client Communications Using Named Pipes 9-3
Steps in Managing Server-Client Transactions 9-5
Preparing a Named Pipe for a Client . 9-5
Facilitating Transaction Processing 9-6
Coordinating Access to a Local Named Pipe with Semaphores 9-6

Using Unnamed Pipes . 9-7
Creating Unnamed Pipes . 9-7
Reading from and Writing to Unnamed Pipes 9-8
Redirecting Standard 1/0 for Child Processes 9-8

Using Named Pipes . 9-10
Creating Named Pipes . 9-10
Opening Named Pipes . 9-13
Reading from Named Pipes 9-15
Writing to Named Pipes . 9-16
Synchronizing Named Pipe Dialogs . 9-17
Determining Pipe Status . 9-17
Examining the Contents of Named Pipes . 9-19
Closing Named Pipes . 9-20

Summary . 9-20

Chapter 1 O. Queues . 10-1
About Queues . 10-1

Queues and Semaphores . 10-3
Queue Servers and Clients . 10-3
Queue Element Order . 10-3
Obtaining Information about Queues and Queue Elements 10-4

Using Queues . 10-4
Creating a Queue . 10-4
Allocating Memory for Queue Data . 10-5

Named Shared Memory Objects . 10-5
Unnamed Shared Memory Objects . 10-5

Opening a Queue . 10-6
Writing to a Queue . 10-6
Reading from a Queue . 10-7
Peeking at a Queue . 10-9
Purging a Queue 10-11
Closing a Queue . 10-11

Summary . 10-12

Chapter 11. Timers 11-1

Contents Vii

About Timers . 11-1
Suspending Threads . 11-1
Asynchronous Timers . 11-2

Using Timers . 11-2
Suspending the Current Thread . 11-3
Timing a Single Interval . 11-4
Timing Repeated Intervals . 11-5

Summary . 11-7

Chapter 12. Error Management . 12-1
About Error Management . 12-1

Classifying Return Values . 12-1
Disabling Error Notification . 12-2

Using Error Management . 12-2
Classifying Errors . 12-2
Disabling Hard-Error and Exception Messages 12-3

Summary . 12-4

Chapter 13. Exception Management . 13-1
About Exception Management . 13-2

System Exceptions . 13-3
Signal Exceptions . 13-6

Handling Signal Exceptions . 13-7
Sending Signal Exceptions . 13-8

Raising Exceptions . 13-8
User-Defined Exceptions . 13-9
Must-Complete Sections . 13-9
Unwinding Exception Handlers . 13-10
Nested Exceptions . 13-12
Piocess Exit Lists . 13~13

Error Pop-Up Screens . 13-13
Exception Handler Interface . 13-14

Exception Handler Parameters . 13-15
Exception Management Data Structures . 13-15

ExceptionReportRecord Data Structure . 13-15
ExceptionRegistrationRecord Data Structure 13-16
ContextRecord Data Structure . 13-17

Exception Handler Return Values . 13-17
Using Exception Management . 13-18

Example Exception Handler . 13-18
Registering an Exception Handler . 13-20

Summary . 13-21

Chapter 14. Device 1/0 . 14-1
About Device 110 . 14-1

Accessing Devices . 14-1
Device Names . 14-1
Device Drivers . 14-2
IOCtl Interface . 14-3
IOCtl Commands . 14-3

Category and Function Codes . 14-3
Parameter and Data Packets . 14-3

Using the File System to Access Devices . 14-4
Using IOCtl Functions to Access Devices . 14-4

Setting Communications-Port Parameters . 14-5
Setting the Data Rate . 14-5

Viii OS/2 2.0 Programming Guide-Volume I

Getting the COM Port Transmission Status . 14-6

Summary . 14-6

Chapter 15. Message Management . 15-1

About Message Management . 15-1

Using Message Management . 15-1

Message Retrieval and String Substitution . 15-2

Text String Substitution in Memory . 15-3

Writing Messages . 15-5

Code Page Information Associated with Message Files 15-5

Summary . 15-6

Chapter 16. National Language Support . 16-1

About National Language Support . 16-1

National Language Resource Files . 16-1

Language-Specific Versions of NLS-Enabled Applications 16-2

About Code Page Management . 16-3

ASCII and EBCDIC Code Page Support . 16-4

Code Page Preparation . 16-4

Code Page Functions . 16-5

Using Code Pages . 16-5

Querying Code Page Support and the Current Code Page 16-5

Setting the Code Page for Text Characters . 16-6

Obtaining the Case Map String . 16-6

Obtaining the DBCS Environment Vector . 16-6

Obtaining Formatting Information . 16-7

Obtaining Collating Information for SORT . 16-7

National Language Support and Code Page Management Summary 16-7

Chapter 17. Debugging . 17-1

About Debugging . 17-1

Using the Debugging Function . 17-2

Summary . 17-5

Index .. X-1

Contents ix

X OS/2 2.0 Programming Guide-Volume I

Figures

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.

4-10.

4-11.
4-12.
4-13.
4-14.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
6-1.
6-2.
6-3.
6-4.
6-5.
6•6.
6-7.
6-8.
6-9.

© Copyright IBM Corp. 1992

High Performance File System Data Caching 2-4
Routing of File System Requests . 2-7
Attaching a Drive to a Remote File System Driver 2-9
Obtaining Information about an Attached File System 2-10
Obtaining Information about the File System 2-11
Obtaining Information about a File . 2-12
Communicating with a File System Driver 2-13
Preparing to Turn Off Power to the System 2-14
Writing the Buffers to the Device . 2-15
Creating a New File . 4-8
Opening a File and Obtaining a File Handle 4-9
Opening and Reading a File . 4-12
Opening and Writing to a File . 4-13
Moving the File Pointer . 4-14
Closing a File . 4-15
Setting the State of a File Handle . 4-17
Determining the Handle Type . 4-18
Finding All *.C Files . 4-19
Method 1: Searching Directory Paths Using DosScanEnv and
DosSearchPath . 4-20
Method 2: Searching Directory Paths Using DosSearchPath 4-21
Reading from Standard Input . 4-21
Writing to Standard Output . 4-22
Duplicating the Standard Input Handle . 4-23
Extended Attributes of a File . 5-2
Extended Attribute ASCII Text String . 5-4
Format of Multi-Valued, Multi-Typed Extended Attributes 5-4
A Multi-Valued Multi-Typed Extended Attribute 5-5
Format of Multi-Valued, Single-Typed Extended Attributes 5-5
MVMT Extended Attribute Containing Three ASCII Names 5-5
Extended Attribute Containing Data in Another Extended Attribute . . . 5-6
Extended Attribute Names 5-6
Format of the Entries in the .ASSOCTABLE Extended Attribute 5-8
.ASSOCTABLE Table Used by the Resource Compiler 5-8
My_Application's .TYPE Extended Attribute 5-9
Sample Resource Compiler Source File . 5-9
.ASSOCTABLE EA Value for My_Application 5-10
Format of the .HISTORY Extended Attribute 5-11
.HISTORY Extended Attribute with Two Entries 5-11
Format of the .ICON Extended Attribute . 5-11
.KEYPHRASES Extended Attribute with Three Keyphrases 5-12
My_Company My_Application Spreadsheet's File Type 5-13
The .VERSION Extended Attribute . 5-14
How Memory is Divided by the OS/2 Operating System 6-2
Process Address Spaces 6-3
Requesting 512 Bytes of Memory . 6-10
A!locating Uncommitted Memory and Committing Part of It 6-11
Allocating Committed Memory and Decommitting Part of It 6-11
Setting Read-Only Access for a Region . 6-12
Determining the Allocation State of a Memory Object 6-13
Allocating and Freeing Memory . 6-13
Suballocating Memory . 6-14

xi

6-10. Increasing the Size of Suballocated Memory 6-15
6-11. Allocating a Block of Memory from a Heap 6-16
6-12. Freeing a Block of Memory from a Heap 6-17
6-13. Ending the Use of a Heap . 6-17
6-14. Allocating Named Shared Memory . 6-18
6-15. Getting a Pointer to Named Shared Memory 6-18
6-16. Allocating 24576 Bytes of Unnamed Shared Memory 6-19
6-17. Validating Shared Memory . 6-19
7-1. Sessions, Processes, and Threads 7-2
7-2. Starting a Child Process Synchronously and Asynchronously 7-5
7-3. Starting a Child Process . 7-15
7-4. Retrieving the Termination Status of a Child Process 7-16
7-5. Starting a Background Child Process . 7-17
7-6. Setting the Command Line Environment for a Child Process 7-18
7-7. Obtaining Information about a Child Process 7-18
7-8. Waiting for a Child Process to End . 7-19
7-9. Ending the Current Process . 7-20

7-10. Terminating a Process . 7-20
7-11. Obtaining the Termination Status of a Child Process 7-22
7-12. Exit List Routines . 7-23
7-13. Creating a Thread . 7-25
7-14. Obtaining Information about a Thread . 7-26
7-15. Changing the Priority of a Thread . 7-26
7-16. Suspending the Current Thread . 7-27
7-17. Suspending and Resuming Execution of a Thread 7-28
7-18. Entering and Exiting a Critical Section of Code 7-28
7-19. Waiting for a Certain Thread to End . 7-30
7-20. Waiting for Any Thread to End . 7-30
7-21. Ending the Current Thread . 7-31

Terminating a Thread within tha Sama Process 7-32
7-23. Starting a Foreground Session . 7-33
7-24. Making a Child Session Nonselectable . 7-34
7-25. Binding a Child Session to a Parent Session 7-35
7-26. Switching a Child Session to the Foreground 7-36
7-27. Terminating a Child Session . 7-36
8-1. Resetting and Waiting for an Event Semaphore 8-2
8-2. Creating and Posting a Named Event Semaphore 8-6
8-3. Opening an Event Semaphore and Waiting for It to be Posted 8-7
8-4. Closing an Event Semaphore 8-8
8-5. Resetting an Event Semaphore . 8-9
8-6. Posting an Event Semaphore . 8-10
8-7. Waiting for an Event Semaphore . 8-11
8-8. Querying an Event Semaphore . 8-12
8-9. Creating a Mutex Semaphore . 8-13

8-10. Opening, Requesting, Releasing, and Closing a Mutex Semaphore 8-15
8-11. Releasing a Mutex Semaphore 8-16
8-12. Closing a Mutex Semaphore . 8-17
8-13. Creating and Waiting for a Muxwait Semaphore 8-19
8-14. Opening a Muxwait Semaphore . 8-21
8-15. Waiting for a Muxwait Semaphore . 8-23
9-1. Redirecting Standard 110 through a Pipe 9-2
9-2. Creating an Unnamed Pipe . 9-7
9-3. Redirecting the Standard 110 of a Child Process into an Unnamed Pipe 9-9
9-4. Creating a Named Pipe . 9-11
9-5. Opening and Writing to a Remote Pipe . 9-14
9-6. Client-Server Communications with a Named Pipe 9-16

Xii OS/2 2.0 Programming Guide-Volume I

9-7. Getting Information about a Named Pipe 9-17
9-8. Using DosQueryNPipelnfo to Get Information about a Pipe 9-18
9-9. Using DosPeekNPipe to Peek into a Named Pipe 9-19

9-10. Closing a Named Pipe . 9-20
10-1. Queue with Server and Client Processes 10-2
10-2. Creating a Named FIFO Queue . 10-4
10-3. Opening a Queue . 10-6
10-4. Adding an Element to a Queue . 10-7
10-5. Reading an Element from a Queue . 10-8
10-6. Peeking at the Elements of a Queue . 10-10
10-7. Purging a Queue . 10-11
11-1. Suspending a Thread . 11-2
11-2. Using a Single-Interval Timer with an Event Semaphore 11-5
11-3. Using a Repeated-Interval Timer with an Event Semaphore 11-6
11-4. Stopping a Repeated-Interval Timer . 11-6
12-1. Classifying File Errors . 12-3
12-2. Disabling and Enabling Hard-Error and Exception Messages 12-3
13-1. Exception Handler Chain with Nested Exceptions 13-12
13-2. Exception Handler Interface . 13-14
13-3. Exception Handler for Memory Errors . 13-19
13-4. Registering an Exception Handler . 13-20
14-1. Writing the Contents of a Disk File to the COM1 Serial Port 14-4
14-2. Setting COM1to9600 Bits Per Second . 14-5
14-3. Getting the Transmission Status of COM1 14-6
15-1. Retrieving a Message and Substituting Text-Strings for Variables 15-2
15-2. Substituting Text-Strings for Variables in a String in Memory 15-4
15-3. Writing an Edited Message to a File . 15-5
15-4. Getting Code Page and Language Identifiers Associated with a

Message File . 15-6
16-1. Obtaining the Current Code Page and Other Prepared Code Pages 16-5
16-2. Obtaining a DBCS Environmental Vector 16-6
17-1. The debug_buffer Data Structure . 17-3
17-2. Modifying a WORD in a Process Being Debugged 17-4

Figures Xiii

XiV OS/2 .2.0 Pro.gramming Guide-Volume I

Tables

2-1.
2=2.
4-1.
4-2.
4-3.
4-4.
5-1.
5-2.
6-1.
6-2.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
8-1.
8-2.
9-1.
9-2.
9-3.

10-1.
10-2.
11-1.
12-1.

12-2.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
14-1.
14-2.
14-3.
15-1.
16-1.
16-2.
16-3.
17-1.

© Copyright IBM Corp. 1992

File System Functions . 2-16
File System Data Structures . 2-16
File Access and Sharing Rights . 4-10
File Handle Characteristics . 4-11
File Management Functions . 4-23
File Management Data Structures . 4-24
Extended Attribute Data Types 5-3
Extended Attribute Data Structures . 5-19
Memory Access Protection Attributes . 6-7
Memory Management Functions . 6-20
Termination Queue Element Format . 7-8
Priority Classes . 7-10
Recommended Priority Levels for Time-Critical Threads 7-13
Recommended Priority Levels for Regular Priority Threads 7-13
Program Execution Control Functions . 7-37
Program Execution Control Data Structures 7-37
Semaphore Functions . 8-27
Semaphore Data Structures . 8-28
Named Pipe States . 9-4
Pipe Functions . 9-20
Pipe Data Structures . 9-21
Queue Functions . 10-12
Queue Data Structures . 10-12
Timer Functions . 11-7
Bit Values to Enable and Disable Hard-Error and Exception Pop-up
Messages . 12-4
Error Management Functions . 12-4
Non-Fatal, Software-Generated Exceptions 13-4
Fatal, Software-Generated Exceptions . 13-4
Fatal, Hardware-Generated Exceptions . 13-5
Fatal Exceptions . 13-5
Unwind Operation Exceptions . 13-6
Fatal Signal Exceptions . 13-6
Signal Exceptions . 13-7
Exception Handling Functions . 13-21
Exception Handling Data Structures . 13-21
Common Device Names . 14-2
Device 110 Functions . 14-6
Device 1/0 Data Structures . 14-7
Message Management Functions . 15-6
Translation Expansion . 16-2
Code Page Management Functions . 16-7
Code Page Management Data Structures 16-8
Debugging Functions . 17-5

xv

XVi OS/2 2.0 Programming Guide-Volume I

Notices

© Copyright IBM Corp. 1992

The following terms, denoted by an asterisk(*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

IBM Presentation Manager
Operating System/2 OS/2
Systems Application Architecture SAA
Personal System/2 PS/2

Double-Byte Character Set (DBCS)
Throughout this publication, you will see reference to specific values for character
strings. The values are for single-byte character set (SBCS). If you use the
double-byte character set (DBCS), note that one DBCS character equals two SBCS
characters.

xvii

XViii OS/2 2.0 Programming Guide-Volume I

About This Book
\"1 '

The three volumes of the OS/2 2.0 Programming Guide provide information and
code examples to enable you to start writing source code, using the functions in the
application programming interface (API) of the os12· 2.0 operating system (OS/2).
Each volume covers a different facet of the operating system, as follows:

Programming Gulde: Volume I-Control Program Programming Interface (this book)
Introduces you to the Control Program Programming Interface which describes
the functionality provided by the base operating system.

Programming Gulde: Volume II-Presentation Manager Window Programming
Interface

Describes the Presentation Manager* (PM) window programming interface.
This volume will familiarize you with the windowed, message-based, PM user
interface.

Programming Gulde: Volume Ill-Graphics Programming Interface
Describes the Graphics Programming Interface. This volume provides
information on how to prepare graphical output for display and printing.

For complete and comprehensive information about the API, refer to the OS/2 2.0
Control Program Programming Reference and the OS/2 2.0 Presentation Manager
Programming Reference-Volumes I, II, and Ill.

For information on how to compile and link your programs, refer to the compiler
publications for the programming language you are using.

The OS/2 2.0 operating system is a 32-bit system, and this guide is about
programming 32-bit applications. (Sixteen-bit applications are still supported by the
operating system).

To illustrate programming with the API, this guide makes extensive use of code
fragments. Also, there are sample applications available with the Developer's
Toolkit for OS/2 2.0 (Toolkit). You should familiarize yourself with the operation of
each sample from a user's viewpoint. That will help you understand the code in the
samples.

* Trademark of the IBM Corporation

© Copyright IBM Corp. 1992 xix

Structure of the Book
This book describes the different components of the OS/2 Control Program API. The

file system and file management information is divided into four chapters, the rest of

the components are covered in a single chapter each.

Each chapter of these books is divided into two sections: about the topic and using

the functions related to that topic. The first section of each chapter provides

concepts, terms, and background material; the second section is divided into

subsections, each providing information about accomplishing a specific task. Code

fragments are included for most of the functions.

Prerequisite Knowledge
These books are for application designers and programmers who are familiar with
the following:

• Information contained in the Application Design Guide

• Information contained in the Control Program and Presentation Manager

reference materials

• C Programming Language.

Programming experience on a multitasking operating system also would be helpful.

XX OS/2 2.0 Programming Guide-Volume I

Control Program Programming Interface

© Copyright IBM Corp. 1992

OS/2 2.0 Programming Guide-Volume I

Chapter 1. Introduction to the Control Program

The 05/2 operating system is an advanced, multitasking, single-user, operating
system for personal computers. The operating system has a rich application
programming interface (API) that supports:

• Multitasking
• Interprocess communication
• Error and exception handling
• Dynamic (run-time) linking
• Graphical user interface (GUI).

The operating system also provides advanced file system features such as
installable file systems, extended file attributes, and long file names.

The 05/2 operating system runs on and takes full advantage of the 80386
microprocessor. Features based on the 80386 microprocessor include:

• 32-bit operands and operations
• Flat (non-segmented) 4 gigabyte address space
• 32-bit memory pointers
• Hardware-based memory protection and task management.

The 05/2 operating system provides a windowed, graphical user interface called the
Presentation Manager (PM).

Control Program Functionality

© Copyright IBM Corp. 1992

The lowest-level functions supplied by the 05/2 operating system are those
provided by the kernel and the kernel's subsystems-the control programs of the
operating system. The Control Program functions involve the most basic aspects of
program execution, such as memory management, file handling, and process,
thread, and session management. They also involve more sophisticated
programming tasks, such as exception handling and interprocess communications.
The names of all the system functions in the Control Program API are prefixed with
the letters "Dos", as in DosAllocMem.

The book describes the following topics from the operating system's Control
Program API:

• File and disk management
• Memory management
• Program execution control (Process and session management)
• Semaphores
• Pipes
• Queues
• Timing functions
• Error handling
• Exception handling
• Device 110 support
• Message management
• National language support and code page management
• Debugging.

The Presentation Manager windowed GUI is covered in the Programming Guide:
Volume II. The graphics programming interface is described in the Programming
Guide: Volume Ill.

1-1

File Systems and File Management
The file system is the component of the operating system that supports storing
information on mass storage devices, such as hard disks and floppy disks.
Applications view a file as a logical sequence of data; the file system manages the
physical locations of data on the storage device for the application and specifies
how the device and the stored information are formatted.

The file system also manages file 110 operations. Applications use file system
functions to open, read, write, and close disk files. File system functions enable an
application to maintain the disk that holds the files-volumes, directories, and files
on the disks of the computer. Applications also use OS/2 file system functions to
perform 1/0 operations to pipes and peripheral devices connected to the computer,
like the printer.

The file system also supports redirection of input and output, for example
redirecting output from the monitor to a disk file or to the printer.

There are two types of file systems supported by the OS/2 operating system. The
first is the File Allocation Table (FAT) file system. The FAT file system is the file
system used by DOS. The second type of file system supported by the operating
system is the installable file system (IFS). Installable file systems are external to
the base operating system and are loaded by the operating system when the
computer is started. The High Performance File System (HPFS) included with the
OS/2 operating system is an installable file system.

Memory Management
The key features of OS/2 memory management are paged virtual memory and a
32-bit linear (flat) address space that is mapped through page tables to physical
memory. This is in contrast to the segmented memory model used in previous
versions of the operating system.

An application can allocate memory for its own use, or to be shared with other
applications.

Program Execution and Control
Multitasking is the ability of the operating system to manage the execution of more
than one application at a time. For the programmer, this includes the ability to
multitask your own programs.

The OS/2 operating system supports two forms of multitasking for programs. An
application can start other programs that will execute concurrently with the
application. These programs can be a new copy of the application, a related
program that is designed to work with the application, or an unrelated program. The
operating system provides functions to communicate with and control the programs
started by the application.

The OS/2 operating system also enables applications to run multiple threads of
execution within the same application; separate activities can be multitasked within
the application. An example of this is dispatching a separate subroutine to load a
file and having the subroutine execute at the same time the main routine continues
to monitor and respond to user input.

1-2 OS/2 2.0 Programming Guide-Volume I

Semaphores

Pipes

Queues

Timers

Semaphores signal the beginning and ending of an operation and provide mutually

exclusive ownership of resources. Typically, semaphores are used to prevent more

than one process or thread within a process from accessing a resource, such as

shared memory, at the same time.

Semaphores are defined by the system and reside in an internal memory buffer.

They are divided into three types, according to the functionality they provide:

• Event semaphores enable a thread to notify waiting threads that an event has

occurred.

• Mutual exclusion (mutex) semaphores enable threads to serialize their access to

shared resources.

• Multiple Wait (muxwait) semaphores enable threads to wait either for multiple

events to occur, or for multiple resources to become available.

A pipe is a named or unnamed buffer used to pass data between processes. A

process writes to or reads from a pipe as though the pipe were standard input or

standard output. A parent process can use pipes to control the input that a child

process receives and to receive the output that the child process produces. There

are two types of pipes-named and unnamed.

A queue is a named, ordered list of elements that is used to pass information

between related or unrelated processes. The owner of the queue (the server

process) can choose the order in which to read incoming information and can

examine queue elements without removing them from the queue. Queue elements

can be added and accessed in First-In-First-Out (FIFO), Last-In-First-Out (LIFO), or

priority-based order.

Timers enable an application to suspend operation for a specific length of time, to

block a thread of execution until an interval has elapsed, or to post an event

semaphore at repeated intervals.

Error Management
The OS/2 operating system provides functions to facilitate error processing.

DosErrClass returns a classification of the error and a recommended action.

DosError enables an application to prevent the operating system from displaying the

default error message in a pop-up window when either a hard error or a software

exception occurs.

Exception Management
A multitasking operating system must manage applications carefully. A serious

error (such as an attempt to access protected memory) occurring in one application

cannot be permitted to damage any other application in the system. To manage

errors that might damage other applications, the OS/2 operating system defines a

class of error conditions called exceptions and defines default actions for those

errors.

Chapter 1. Introduction to the Control Program 1-3

Device 1/0

An exception is an abnormal condition that can occur during program execution.
Common causes of exceptions include 110 errors and access protection violations.
When an exception is caused by the user pressing Ctrl +Break or Ctrl +C, the
exception is called a signal exception.

When an exception occurs, the default action usually taken by the operating system
is to terminate the application that caused the exception. An application can
register its own exception handling routine and try to handle the exception itself. It
might be possible for the application to correct the condition that caused the
exception and continue execution.

The OS/2 operating system uses devices to communicate with the real world. A
device is a piece of hardware used for input and output. Devices used with
computers include the keyboard, video display, mouse, floppy and fixed disk drives,
and external systems, such as modems and printers. The operating system
supplies functions that can be used to access and control such devices.

Message Management
For full-screen applications, text messages-used by an application to display
information to the user-can be held in a message file. Keeping an application's
messages in a message file simplifies changing those messages, which, for
example, can facilitate marketing an application in several countries
simultaneously.

National Language Support and Code Page Management

Debugging

Many applications must support more than one national language, for example,
French and German. This requirement is simplified through the use of such
resources as string tables, menu templates, dialog templates, and accelerator
tables.

A code page is a table that defines how characters are encoded. Code page
management enables a user to select a code page for keyboard input, and screen
and printer output before starting an application, a system command, or a utility
program in the OS/2 multitasking environment.

Debugging is the process of detecting, diagnosing, and eliminating errors in
programs. A debugger program is designed to interact with the application that it is
debugging. Because of the protected mode architecture of the OS/2 operating
system, special steps must be taken to allow a debugging program to perform its
functions in the program being debugged. DosDebug enables one application to
control the execution of another application for debugging purposes.

1-4 OS/2 2.0 Programming Guide-Volume I

Chapter 2. File Systems

An application views a file as a logical sequence of data; OS/2 file systems manage
the physical locations of that data on the storage device for the application. The file
systems also manage file 110 operations and control the format of the stored
information.

Applications use the OS/2 file system functi.ons to open, read, write, and close disk
files. File system functions also enable an application to use and maintain the disk
that contains the files-the volumes, the directories, and the files on the disks of the
computer. Applications also use OS/2 file system functions to perform 110
operations to pipes and to peripheral devices connected to the computer, like the
printer.

The following topics are related to the information in this chapter:

• File Names
• File Management
• Extended Attributes
• Device 1/0.

About File Systems

© Copyright IBM Corp. 1992

A file system is the combination of software and hardware that supports storing
information on a storage device. In the OS/2 operating system, the file system
specifies how data is organized on the mass storage devices of the computer, such
as hard disks and floppy disks.

Each drive is assigned a unique letter to distinguish it from other drives. A single
hard disk can also be divided into two or more logical drives. A logical drive
represents a portion of the hard disk and, like a physical drive, is assigned a unique
letter to distinguish it from other physical and logical drives.

The file system organizes disks into volumes, directories, and files. A volume is the
largest file system unit. It represents all the available storage on the logical drive.
An optional volume name identifies the volume.

Volumes are subdivided into directories, which contain files and other
subdirectories. Each volume has a root directory, which contains file and directory
entries. All other subdirectories trace their ancestry back to the root directory.
Each directory entry identifies the name, location, and size of a specific file or
subdirectory on the disk. A file is one or more bytes of data stored on the disk.
Subdirectories provide an additional level of organization and, like the root
directory, can contain files and directory entries.

The file system also enables users and applications to access certain non-disk
devices as if they were files. An example of such a device would be the printer,
which can be accessed through the file system by using the printer's logical name,
PRN, as a file name.

2-1

Types of File Systems
The OS/2 operating system has two file systems: the file allocation table (FAD file
system and the High Performance File System (HPFS). These file systems define
how information is organized on the storage devices.

A user can choose to install either or both file systems. An application must be able
to work with any file system. The OS/2 operating system provides a common set of
file system functions that are not dependent on a particular file system.

Both of these file systems support:

• Existing logical file and directory structure
• Existing naming conventions
• Multiple logical volumes (partitions)
• Multiple and different storage devices
• Redirection or connection to remote file systems
• Extended attributes
• Metacharacter file-name processing.

Additionally, HPFS supports:

• Long file names
• An extendable application interface.

The High Performance File System is an example of a class of file systems called
installable file systems. Installable file systems are installed by the user (by
changing CONFIG.SYS) and are loaded by the operating system during system
initialization.

The OS/2 operating system permits users to have multiple file systems active at the
same time; for example a FAT file system for one hard disk and HPFS for another.

FAT File System
The OS/2 FAT file system is based on the DOS FAT file system. This file system,
also used in previous releases of the OS/2 operating system and in PC-DOS,
controls storage of data files for hard and floppy disks.

The FAT file system is hierarchical, supporting multiple directories on the disk.
Each directory can contain one or more files or subdirectories.

The FAT file system uses the 8.3 file name convention. Under this convention, the
file name consists of a file name of up to eight characters, a separating period (.),
and a file name extension of up to three characters.

Installable File Systems
An installable file system is a file system in which software is installed when the
operating system is started. The OS/2 operating system supports installable file
systems and permits users to have multiple file systems active at the same time.

Users install a file system by specifying the file system components in the
CONFIG.SYS file. The file system software consists of device drivers and dynamic
link libraries. The device drivers access storage devices; the dynamic link libraries
control the format of information on a device and manage the flow of data to and
from the device. The user must use the DEVICE= command to specify the device
driver and the IFS= command to specify the dynamic link library.

2-2 OS/2 2.0 Programming Guide-Volume I

Installable file system drivers are loaded during system initialization when an IFS=
statement is encountered in the CONFIG.SYS file. The operating system loads the
device driver and dynamic link library and initializes a specific device for use with a
file system.

These file systems can support file and directory structures different from the FAT
file system.

An example of an installable file system might be a file system designed specifically
for use on a network server. Another example of an installable file system is the
High Performance File System (HPFS), which is included with the OS/2 operating
system.

High Performance File System
The High Performance File System (HPFS) is an installable file system. It is a
hierarchical system and supports multiple directories. In many cases, accessing
files under HPFS is faster than accessing similar files under the FAT file system.
During installation of the OS/2 operating system, users can install the HPFS on the
hard disk they use to start their computer.

Features of HPFS include:

• Caching of directories, data, and file system data structures
• Multi-threaded 110 operations
• Write-behind logic
• Optional write-through
• Strategic allocation of directory structures
• Highly contiguous file allocation
• Enhanced recoverability
• Extended attribute support
• Long file name support
• Starting the OS/2 operating system from an HPFS disk.

File names under HPFS can contain 255 characters (one must be the terminating
NULL, "\O") and can contain characters that are not valid for the FAT file system-for
example, spaces. Each element of a path name residing on an HPFS disk can also
have up to 255 characters. The total path including drive, directories, and file name
cannot exceed 260 characters (259 with the terminating NULL). For more
information on long file name support by installable file systems see "Long File
Names" on page 3-4.

HPFS provides extremely fast access to very large disk volumes. HPFS uses a
memory cache divided into blocks of 2KB. Data that is read from and written to the
disk is transferred through this cache. Frequently-used data will often be found in
the cache, thereby saving the time that a disk-read operation would require. When
a user request specifies data that is not present in the cache, HPFS selects the
least-recently-used block, writes the data within that block to disk, if necessary, and
then fills the block with the requested data.

When a write-data request is received, it usually is not necessary that the data be
immediately written to the disk. HPFS will copy such data into the block cache
without actually performing the disk-write operation. When the data is in the cache,
it is written to disk as a background activity (referred to as lazy writing) which
enables the typical user-write operation to occur much faster than in file systems
where all write operations are synchronous. Figure 2-1 on page 2-4 shows the
operation of the memory cache.

Chapter 2. File Systems 2-3

User

DosRead Dos Write

OS/2 Fiie System Request Router

If data requested
is not in the cache,
the data is placed
in the LAU block.

L
A
u

HPFS

Memory
Cache

•Lazy write• to disk

Fixed Disk
Drive C

Figure 2-1. High Performance File System Data Caching

The High Performance File System consists of:

• The High Performance File System driver, HPFS.IFS
• The High Performance File System lazy-write utility, CACHE.EXE
• The High Performance File System lazy-write startup program, STARTLW.DLL
• The High Performance File System utilities, UHPFS.DLL.

The user determines the amount of lazy-write support by setting the following
parameters on the command line that calls CACHE.EXE:

• MaxAge:

When the data in a cache block exceeds the specified time the block is queued
for writing to the disk. This reduces the amount of data lost due to inopportune
system shutdowns.

• Diskldle and Bufferldle

When no user 110 request (non-lazy-write) has been made for Disk/die number of
milliseconds, all cache blocks (in oldest-first order) that have not been touched
for Buffer/die number of milliseconds are queued for writing to disk. This
enables HPFS to write out user data during times of relative disk inactivity and to
reduce the need for rewriting heavily used cached blocks.

STARTLW.DLL contains the code that starts the lazy-write thread.

2-4 OS/2 2.0 Programming Guide-Volume I

Local and Remote File Systems
Installable file systems work with a variety of storage devices. A file system on a
local device such as a disk drive or virtual drive is called a local file system. A file
system on a remote device, such as a disk drive on another computer, is called a
remote file system. An application can establish a connection to a local or a remote
file system by using DosFSAttach.

For a local file system, the operating system uses a block device driver, which
accesses disk hardware, to handle input and output to the device. The operating
system automatically connects most (if not all) local file systems when it starts.
However, an application can attach and detach additional file systems as needed.

For a remote file system, the operating system uses a device driver that typically
accesses a communications or network device. Usually, the actual storage device
is located on another computer, and the two computers communicate requests and
data through a network connection. An application can associate a remote file
system with a drive letter by using DosFSAttach. Once the connection is made, the
application can access directories and files on the remote device simply by using
the assigned drive letter, treating the remote device as if it were on the same
computer.

Recognizing DOS and OS/2 File Objects
The OS/2 FAT file system recognizes file objects created by the DOS FAT file
system. This means that applications running under the OS/2 operating system
(these include both OS/2 applications and DOS applications running in a DOS
Session) can access file objects created by applications running under DOS.

Because the OS/2 FAT file system supports the same directory structure as the DOS
FAT file system, applications running under DOS can access files and directories
created by the OS/2 FAT file system.

However, the High Performance File System (HPFS) does not support the same
directory structure as the DOS FAT file system. Therefore, the DOS FAT file system
will not recognize file objects created by HPFS. This means that if you start the
computer with DOS, applications running under DOS cannot access files and
directories on HPFS disks.

DOS applications running in a DOS Session under the OS/2 operating system can
recognize files and directories on both FAT and HPFS disks. A request from a DOS
Session to read a file on a FAT disk is handled by the OS/2 FAT file system.
Similarly, a request from a DOS Session to read a file on an HPFS disk is handled
by the OS/2 High Performance File System.

Storage Devices and File Systems
OS/2 file systems store information on mass storage devices. These devices are
usually hard disks or floppy diskettes, but can be other media, such as CD-ROM.

Each drive (or device) is assigned a unique letter to distinguish it from other drives.
On most personal computers, drive A is the first floppy disk drive, drive B is the
second floppy disk drive, drive C is the first hard disk drive, and drive D is the
second hard disk drive.

A single hard disk can be divided into two or more partitions, each of which are then
viewed as a separate logical drive. A logical drive, like a physical drive, is
assigned a unique letter to distinguish it from other physical and logical drives.

Chapter 2. File Systems 2-5

FDISK is the OS/2 utility used to partition physical storage devices; see the
description of the FDISK utility in the online OS/2 Command Reference.

A personal computer running the OS/2 operating system can have up to 26 logical
disk drives.

Each logical storage device can be managed by a different file system. The file
system attached to a storage device manages that device. A user attaches a file
system to a storage device by:

• Loading the file system driver during system initialization (by including an IFS=
statement in CONFIG.SYS).

• Formatting the storage device by using the format options for the file system.

During installation of the OS/2 operating system, users have the option of formatting
hard disks with the FAT file system or with the High Performance File System
(HPFS). If the user chooses to use the HPFS, an IFS= statement is added to the
CONFIG.SYS file so that HPFS is loaded automatically during each system startup.
During formatting, the file system driver is associated with the logical storage
device or drive letter of the hard disk.

When an application calls a file system function, the operating system directs the
request to:

• The installable file system managing the storage device, or
• The FAT file system, if no installable file system is loaded and attached to the

storage device.

The file system used to format the storage media manages that media each time the
system is started, as long as the file system is loaded during system start-up. The
operating system directs file system requests for a storage media to the file system
that formatted the media. If no file system recognizes the format of the media, the
OS/2 FAT file system attempts to manage that media. This might occur when the file
system used to format the storage media is not loaded during system startup (the
IFS= statement was removed from the CONFIG.SYS file after OS/2 installation). If
the OS/2 FAT file system cannot recognize the media format (the media might have
a different directory structure), the user receives an error when attempting to
access the media.

For example, assume a system is configured with diskette drive A and hard disk
drives C and D. During OS/2 installation, the user elects to format drive C using
HPFS. Drive C is, then, managed by HPFS. Drive D was formatted with the FAT file
system, so it is managed by the OS/2 FAT file system, as is diskette drive A
(removable media cannot be formatted using HPFS). Figure 2-2 on page 2-7 shows
this relationship.

2-6 OS/2 2.0 Programming Guide-Volume I

Application

Standard File 1/0 API

File System Request Router

FAT
HPFS File

System

Drive A

Figure 2-2. Routing of File System Requests

When an application calls DosOpen to open a file on drive C, the operating system
directs the request to HPFS. When an application calls DosOpen to open a file on
drive A, the operating system directs the request to the OS/2 FAT file system.

If HPFS is not loaded during system startup, the FAT file system will receive file
system requests made for drive C. However, because HPFS supports a different
directory structure than the FAT file system does, the OS/2 FAT file system cannot
recognize file objects on the disk. The user will receive an error when attempting to
gain access to the disk.

Users can determine which file system was used to format a storage device by
using the CHKDSK utility. CHKDSK displays a message indicating which file system
manages the specified drive. For more information on FORMAT and CHKDSK, see
the online OS/2 Command Reference.

File System Utilities
Utilities for each file system are in a single dynamic link library. The utilities that
the operating system calls are based on the file system that recognizes the volume
on which the utility is to be run. The dynamic link library for each file system has
the following utilities:

FORMAT
CHKDSK
RECOVER
SYS

Disk formatter
File system validation and repair
File recovery
System installation.

Chapter 2. File Systems 2-7

OS/2 Boot Manager
The OS/2 Boot Manager enables different operating systems to co-reside on the

same computer. The user selects the operating system to boot when the computer
is turned on. For example, DOS, AIX, and the OS/2 operating system can co-reside

on the same machine. There can also be a previous version of the OS/2 operating

system on the machine co-existing with the current version of the operating system.

Each operating system has its own partition and each partition is managed by the
appropriate file system for the operating system that owns it. A DOS partition has a

FAT file system. An OS/2 partition can have either a FAT file system or HPFS. An

AIX partition will use the AIX file system to manage its partition.

Note: FAT partitions that follow HPFS partitions on the same physical disk cannot

be accessed when using DOS because DOS stops at the first partition it does
not recognize.

For information on installing and using the Boot Manager see the OS/2 2.0
Installation Guide.

Using File Systems
In order to take advantage of the capabilities of OS/2 file systems, application
developers must be able to manage the file systems.

Most of the file system functions work with either the FAT file system or the High

Performance File System (HPFS). If you have questions about a specific function,
see the reference information for that function in the Control Program Programming

Reference.

Note: In the example code fragments that follow, error checking was left out to

conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error

occurred.

Attaching and Detaching File Systems
A file system driver that uses a block device driver for 1/0 operations to a local or

remote (virtual disk) device is called a local file system. A file system driver that

accesses a remote system without a block device driver is called a remote file
system.

An application, typically a network application, can call DosFSAttach to:

• Attach a drive to a remote file system
• Detach a drive from a remote file system
• Attach a pseudocharacter device name to a local or remote file system
• Detach a pseudocharacter device name from a local or remote file system.

DosFSAttach establishes or breaks the connection between a drive or device and a

file system. If an attachment is successful, all requests to that drive or name are
routed to the specified file system. If a detachment is successful, the operating

system will no longer recognize the drive or name in a file system call.

2-8 OS/2 2.0 Programming Guide-Volume I

DosFSAttach does not support:

• Redirection of drive letters representing local drives
• Attachment to drives or devices that are not in the system's name space.

(DosFSCtl can be used to attach to drives or devices not in the system's name
space.)

A name space is a set of names that are known to the file system. For example,
CON and PRN are always in the OS/2 file system's name space.

The following code fragment attaches a drive to a remote file system driver (FSD).
Assume that the FSD does not require any user-supplied data arguments.

Figure 2-3. Attaching a Drive to a Remote File System Driver

Obtaining Information about an Attached File System
To obtain information about block devices, and all character and pseudocharacter
devices, including the type of device and the name of the file system driver the
device is attached to, use DosQueryFSAttach.

The information can be used to determine if the operating system recognizes that a
particular file system is attached to a storage device. This is important to an
application that must guarantee such a state. An application of this type must
handle the situation where the file system driver that formatted a certain disk was
not loaded during system startup. (The user might have omitted the IFS= statement
in the CONFIG.SYS. file). In such a situation, the data on the disk could be
destroyed because the wrong file system was attached to the disk by default.

Chapter 2. File Systems 2-9

The following code fragment returns information about an attached file system.

Figure 2-4. Obtaining Information about an Attached File System

In this example, information was requested about the drive whose name was
specified within the DeviceName variable. After the DosQueryFSAttach call, the
DataBuffer structure contained a set of information describing the specified attached
file system, and the DataBufferLen variable contained the size of information within
the structure.

Obtaining Information about a File System
An application can retrieve information about the file system on a given drive by
using DosQueryFSlnfo. The file system information includes information on the
amount of free storage space on the disk. The storage space is given in number of
allocation units {clusters) on the disk. Each cluster has an associated number of
sectors; each sector contains a given number of bytes. A typical disk has 512 bytes
for each sector and 4 sectors for each cluster. DosSetFSlnfo enables an application
to change the volume identifier for the disk in the given drive.

2-10 OS/2 2.0 Programming Guide-Volume I

The following code fragment obtains information about the file system that is
associated with a particular logical drive.

Figure 2-5. Obtaining Information about the File System

In this example, the data buffer FS/nfoBuf is used to receive information about space
allocation within the specified file system.

Obtaining Information about a File
An application can retrieve and set information about a specific file by using
DosQueryFilelnfo and DosSetFilelnfo. File information consists of the dates and
times that the file was created, last accessed, and last written to; the size (in bytes)
of the file; the number of sectors (or clusters) the file occupies; and the file
attributes.

The following code fragment obtains file information for a specified file. The
example obtains the Level 1 information set for the file. The Level 1 information set
for a file includes the dates and times of creation, last access, and last writing. It
also includes information about the size of the file and the file's standard attributes.
Assume that the handle of the desired file has been placed into FileHandle already.

Chapter 2. File Systems 2-11

Figure 2-6. Obtaining Information about a File

In this example, Level 1 file information is placed into the FilelnfoBuf buffer.

Communicating with a File System
An extended standard interface between an application and a file system driver is
provided by DosFSCtl. This function is similar to DosDevlOCtl, which provides a
standard interface between an application and a device driver. An application
sends a request to the file system driver by specifying a particular function code.
Data is exchanged through data areas and parameter lists.

DosFSCtl can be used to establish open connections to file system drivers that are
not attached to a name in the operating system's name space. (A name space is a
set of names that are known to the file system. For example, CON and PRN are
always in the OS/2 file system's name space.)

The following code fragment demonstrates how a process can communicate with a
file system driver (FSD). Assume that the calling process has placed an .appropriate
file handle into FileHandle. Assume that the specified file system recognizes a
function code of hex 8100, and that the function code accepts an ASCII string as
input, requires no specific command parameter list, and returns a string of ASCII
characters to the caller.

2-12 OS/2 2.0 Programming Guide-Volume I

Figure 2-7. Communicating with a File System Driver

In this example, the the DataArea buffer is used to store the ASCII string sent by the
file system in response to the function request, and the DataLengthlnOut variable is
used to store the number of bytes placed in the buffer by the file system.

Chapter 2. File Systems 2-13

Preparing File Systems for System Shutdown
At any time during normal system operation, data destined for a disk might be in a
cache. If this information is not written to disk before the system powered-off, the
disk can become corrupted. To prevent this, applications call DosShutdown to
ensure that the operating system writes the data in the cache to the disk and
prevents any further data from being cached. The user can then safely power-off
the system.

Note: This call prepares all file systems and device drivers for system shutdown.
Therefore, it must be called only when system shutdown is about to occur.
The user and applications will no longer have access to their storage
devices.

The following code fragment locks out changes to all file systems, and writes system
buffers to the disk in preparation for turning off power to the system.

r"c =: ~~sSh,µtd9wntRe~~rvetO ;'

iif (rct= e) {
printff"Dosshutdown error: re~ur,n ··~ode.;:: .%1cln~
return.;·· · · ·· · ·

·}

Figure 2-8. Preparing to Turn Off Power to the System

Writing Cache Buffers
DosResetBuffer is used to write to disk (flush) the file system's cache buffers for a
specific file handle. When called with a value of hex FFFF for the file handle,
DosResetBuffer writes all files belonging to the requesting process to disk (this
usage should be administered with care, so the user is not burdened with insertion
and removal of a large number of removable media volumes).

When DosResetBuffer is called for single file handle, the directory entry for the file
is updated as if the file had been closed. However, the file remains open.

DosResetBuffer can also be called with the name of a named pipe. The process that
calls DosResetBuffer is blocked at one end of the pipe until all data it has written
has been successfully read by the process at the other end of the pipe. This
enables communicating processes to synchronize their dialogs. For information
about using named pipes, see "Named Pipes" on page 9-2.

The following code fragment opens a file, writes some data to the file's buffer, then
writes the file's system buffer to the disk.

2-14 OS/2 2.0 Programming Guide-Volume I

re = OosWrite.(F.11 eHandJ e,
(l'YOlD) FileData.
si'zeof(Fi leData) t

&Wrote);

Figure 2-9. Writing the Buffers to the Device

Chapter 2. File Systems 2-15

Summary
Following are the OS/2 functions and data structures used in file system
management.

Table 2-1. File System Functions

Function Description

DosFSAttach Attaches a file system to a device.

DosFSCtl Communicates with a file system.

DosQueryFSAttach Obtains information about an attached file system.

DosQueryFSlnfo Obtains volume information.

DosRes~tBuffer Writes (flushes) cache buffers to disk.

DosSetFSlnfo Sets volume information.

DosShutdown Prepares file system for system shutdown.

Table 2-2. File System Data Structures

Data Structure Description

FSALLOCATE Used by a DosQueryFSlnfo level 1 call; returns the
size of the volume and the number of free bytes.

FSINFO Used by a DosQueryFSlnfo level 2 call; returns the
serial ID and label of the volume.

FSQBUFFER2 Used by DosQueryFSAttach; returns which file
system is managing an attachable device.

2-16 OS/2 2.0 Programming Guide-Volume I

Chapter 3. File Names

File names are the identifiers used by the file system to uniquely identify files on a
disk. All file systems have specific rules for constructing names of file objects.
Different file systems can have different rules for naming file objects.

The OS/2 FAT file system supports the DOS naming conventions. The OS/2 High
P&rformance File System (HPFS) supports a superset of the DOS naming
conventions, allowing for long file names and characters illegal under DOS.
Although different file systems can have different rules for naming file objects, all
OS/2 file systems require that full path names consist of directory and file names
separated by backslashes (\).

The OS/2 operating system views path names as ASCII strings and does not restrict
file systems to the DOS file name format. Compatibility with existing DOS
applications requires that all installable file systems support a superset of the 8.3
file name format used in the FAT file system.

The following topics are related to the information in this chapter:

• File Systems
• File Management
• Extended Attributes
• Device 1/0.

File-Naming Conventions

© Copyright IBM Corp. 1992

File name conventions are the rules used to form file names in a given file system.
Although each installable file system {IFS) can have specific rules about how
individual components in a directory or file name are formed, all file systems follow
the same general conventions for combining components. For example, although
the FAT file system requires that file and directory names have the 8.3 file name
format, and HPFS supports names of up to 255 characters long, both file systems
use the backslash(\) character to separate directory names and the file name when
forming a path.

When creating names for directories and files, or when processing names supplied
by the user, an application must follow these general rules:

• Process a path as a NULL-terminated string. An application can determine
maximum length for a path by using DosQuerySyslnfo.

• Use any character in the current code page for a name, but do not use a path
separator, a character in the range 0 through 31, or any character explicitly
prohibited by the file system.

The following characters are reserved by the operating system. Do not use them
in directory or file names.

< > II I \
Although a name can contain characters in the extended character set {128 -
255), an application must be able to switch code pages if necessary to access the
corresponding file.

3-1

• Compare names without regard to case. Names such as "ABC", "Abe", and
"abc" are considered to be the same.

• Use the backslash (\)or the forward slash (/)to separate components in a path.
No other character is accepted as a path separator.

• Use the dot(.) as a directory component in a path to represent the current
directory.

• Use two dots(..) as a directory component in a path to represent the parent of
the current directory.

• Use a period (.)to separate components in a directory name or file name.
Unless explicitly defined by a file system, no restrictions are placed on the
number of components in a name.

File Names in the FAT File System
Valid file names in the OS/2 FAT file system have the following form:

[drive:][directory\]filename[extension]

The drive parameter must name an existing drive and can be any letter from A
through Z. The drive letter must be followed by a colon (:).

The directory parameter specifies the directory that contains the file's directory
entry. The directory name must be followed by a backslash(\) to separate it from
the file name. If the specified directory is not the current directory, directory must
include the names of all the directories in the path, separated by backslashes. The
root directory is specified by using a backslash at the beginning of the name.

For example, if the directory ABC is in the directory SAMPLE, and SAMPLE is in the
root directory, the directory specification is:

\SAMPLE\ABC.

A directory name can also have an extension, which is any combination of up to
three letters, digits, or special characters, preceded by a period (.).

The filename and extension parameters specify the file.

FAT Fiie-Naming Rules
For file objects managed by the FAT file system, the following rules apply:

• File names are limited to 8 characters before and three characters after a single
dot. This is referred to as the 8.3 file name format.

The 8 characters before the dot are blank-filled. Embedded blanks are
significant, trailing blanks and blanks immediately preceding the dot are not
significant. Trailing blanks are truncated.

For example, "FILE.A" is really "FILE .A ". "FILE.A" and "FILE .A "are
treated as the same file by the operating system and refer to the same file. Also,
"FILE.TXT " and "FILE.TXT" are treated as the same file.

Blanks elsewhere in the name are significant-"F IL E.TXT" is not the same as
"FILE.TXT".

• Names are not case sensitive. This means that "FILE.TXT" and "file.txt" refer to
the same file. Lowercase and uppercase characters are folded together for
name comparison purposes.

3-2 OS/2 2.0 Programming Guide-Volume I

• Names returned by file system functions are in uppercase. This means that if
"file.txt" is created, DosFindFirst returns "FILE.TXT".

• Directory and file names can be any combination of up to eight letters, digits, or
the following special characters:

$ @ { } #

File extensions can be any combination of up to three letters, digits, or special
characters, preceded by a period.

• Invalid characters for directory names, file names, and volume labels are:

the range 0 - 1 Fh

and the characters:

< > + = I \ [J

File Names in the High Performance File System
In HPFS, file names can be up to 255 characters long (one must be a terminating
NULL, "\O"). Directory names can also be 255 characters long, but the length of the
complete path, including drive, directories, and file name, cannot exceed 260
characters.

Certain characters that are illegal in the FAT file system are legal in HPFS file
names:

+ = []
Also, blank spaces can be used anywhere in an HPFS file name or directory name,
but blank spaces and periods at the end of a file name are ignored. Additionally, the
period (.) is a valid file name character and can be used as many times as desired.
There is no requirement that HPFS file names have extensions; however, many
applications still create and use them.

An HPFS file name can be all uppercase, all lowercase, or mixed case. The case is
preserved for directory listings but is ignored in file searches and all other system
operations. Therefore, in a given directory, there cannot be more than one file with
the same name when the only difference is case.

Fiie-Naming Rules for Installable Fiie Systems
For file objects managed by OS/2 installable file systems, the following rules apply:

• Each element of a full path name residing on a disk managed by an installable
file system can consist of up to 255 characters. File names can be up to 255
characters long (one of the characters must be a terminating NULL, "\O").
Directory names can also be 255 characters long, but the length of the complete
path, including drive, directories, and file name, cannot exceed 260 characters.
For example, in the path name "c:\XXX ... XXX\YYY", "XXX ... XXX" can include up
to 255 characters. This is referred to as long file names.

• Names are not case sensitive.

• File name case as specified at create time is preserved. This means that if the
file "file.TXT" is created, DosFindFirst returns "file.TXT". File name case may
be modified using DosMove.

• Blanks immediately preceding a dot are significant. This means that "FILE.TXT"
and "FILE .TXT" refer to different files.

Chapter 3. File Names 3-3

Long File Names

• Trailing blanks are truncated. This means that "FILE.TXT " is the same as
"FILE.TXT".

• Blanks elsewhere in the name are significant. This means that "FIL E.TXT" is
not the same as "FILE.TXT".

• For compatibility reasons, trailing dots on component names are discarded. For
Example, "\FILE.TXT ... TEXT ... \A .. B ... \C." becomes "\FILE.TXT ... TEXT\A .. B\C".
This processing includes semaphore, queue, pipe, module, shared memory
names, and device names.

• The set of legal characters is expanded to include

+ = []

as well as all characters legal for the FAT file system.

• If an installable file system uses a component separator within a file name, it
must be a dot (.). There are no restrictions on the number of components which
can be allowed within a file name.

Programs that recognize long file names must indicate this by including the
NEWFILES statement in their module definition file. This statement directs the linker
to set a bit in the executable file header. It indicates that the module supports long
file names. This bit is meaningless in a DOS Session and on versions of the OS/2
operating system prior to Version 1.2. Programs written for OS/2 Version 1.2 (and
all later versions) installable file systems should set this bit. Bound programs that
have this bit set can see files with long file names in OS/2 mode, but only files with
8.3 file name format in DOS Sessions.

This bit has meaning when attached to program modules, not when attached to
DLLs. Whether the program recognizes long file names format is entirely
dependent on the value of its NEWFILES bit and the effect of the bit extends into any
calls to DLLs. In order to be compatible with all OS/2 file systems, dynamic link
libraries must not create internal temporary files or directories that do not comply
with 8.3 file naming conventions. In addition, dynamic link libraries cannot return
long file names to an application. (The caller might be running on a file system that
only supports 8.3 file names and use the returned name to create a file.)

OS/2 applications which do not recognize long file names can run with some
restrictions. For these programs, long names (including device names) are filtered
according to the following rules:

• Any name not representable in the 8.3 file name format is not returned from
DosFindFirst or DosFindNext. This is because the application's buffers are
unlikely to be large enough to handle longer names.

• Any long file name passed to the file system functions listed below are rejected
in exactly the same way as under previous versions of the OS/2 operating
system. It is not acceptable to create and manipulate a name that you cannot
find.

DosOpen
DosDelete
Dos Move
DosQueryPathlnfo
DosSetPathlnfo
DosCreateDi r
DosDeleteDir

3-4 OS/2 2.0 Programming Guide-Volume I

DosFindFirst
DosFindNext
DosQueryFSAttach
DosFSAttach
DosCopy
DosSearchPath

• Long file names can be passed to DosSetCurrentDir and DosQueryCurrrentDir so
that all programs can use all directories.

• Long names used with non-file system functions (for example, DosCreateSem)
are not filtered.

For files located on file devices managed by the OS/2 FAT file system, long file
names are handled differently in OS/2 mode than in DOS mode. In OS/2 mode, the
long file name is considered an error. In DOS mode, the name is truncated and is
not an error. The DOS mode treatment of file name formats provides compatibility
with the PC-DOS environment for applications originally written for PC-DOS.
However, if you are writing a family application to run under both the OS/2 operating
system and the PC-DOS environment, your application must allow for this difference
in operating environments.

Because long file names can be input to applications through program command
lines, dialog boxes, or function calls, applications must provide their users with
rules for how to enter file names. "File Names in User Input" on page 3-8 provides
some general guidelines in this matter, that are applicable to both long file names
and 8.3 file names.

Moving Files with Long Names
The OS/2 Workplace Shell supports copying files with long file names to media that
is managed by a non-installable file system (IFS) and for returning these files to IFS
media with the long name intact.

When a file with a long name is copied to media that does not support long file
names, the OS/2 Workplace Shell stores the file's long name in the .LONGNAME
extended attribute. When the file is copied back to a disk that does support long file
names, the OS/2 Workplace Shell restores the long name from the extended
attribute. See "The .LONGNAME Standard Extended Attribute" on page 5-12 for
information on the .LONGNAME extended attribute.

If the new media does not support extended attributes, files that have long names
cannot be moved to the media without having their names modified or truncated.

Note: The behavior described above only applies to the OS/2 Workplace Shell. The
command processors, CMD.EXE and COMMAND.COM, do not automatically
save the long file name; they require the user to enter a new file name that is
legal on the new media. The DosCopy command also does not save the long
file name automatically; the programmer must provide the target file name to
DosCopy and the target file name must be a legal file name for the target
media.

If you choose to store and restore the file's long name, you must do it
yourself in the manner described above.

Chapter 3. File Names 3-5

Metacharacters in File Names
Metacharacters are characters that can be used to represent placeholders in a file
name. The asterisk (*) and the question mark (?) are the two metacharacters. The
asterisk matches one or more characters, including blanks, but does not match the
period. The question mark matches exactly one character, unless that character is
a period. To match a period, the original name must contain a period.
Metacharacters are illegal in all but the last component of a path. Metacharacters
are also referred to as global file name characters, or as wildcard characters.

An application that allows more than one file name on its command line, can accept
metacharacters to provide users with a shortcut for entering a long list of names.
For instance, metacharacters can be used to reference a set of files with a common
base name; to reference all files with an extension of .EXE, the user would enter:

*.exe

Although a name that contains metacharacters is not a complete file name, an
application can use functions, such as DosFindFirst and DosEditName, to expand
the name (replace the metacharacters) and create one or more valid file names.

Metacharacters have two sets of semantics:

• As search metacharacters, which are used to select the files that are returned to
the user when the user searches the disk for a file.

• As edit metacharacters, which are used to construct a new file name, given a
source name and a target name specification.

Both asterisks and question marks, therefore, have two sets of rules, one for
searching for file names and one for editing file names.

Search metacharacters are used in commands that search for files or groups of
files, like DIR:

dir *.exe

An application can expand a name with metacharacters to a list of file names by
using DosFindFirst and DosFindNext. These functions take a file name template (a
name with metacharacters) and return the names of files on the disk that match the
pattern in the template.

Edit metacharacters are used in commands that can change the names of files; for
example, in a global copy command:

copy *.txt *.old

An application can create a new file name from an existing name by using the
DosEditName function. This function takes a template (a name with metacharacters)
and expands it, using characters from an existing name. An asterisk in the template
directs the function to copy all characters in the existing name until it locates a
character that matches the character following the asterisk. A question mark directs
the function to copy one character, unless that character is a period. The period in
the template directs the function to look for and move to the next period in the
existing name, skipping any characters between the current position and the period.

3-6 OS/2 2.0 Programming Guide-Volume I

Searching for Files Using Metacharacters
An asterisk(*) matches 0 or more characters, any character, including blank. It
does not cross NULL or\, which means it only matches a file name, not an entire
path.

A question mark(?) matches 1 character, unless what it would match is a period (.)
or the terminating NULL, in which case it matches O characters. It also does not
cross the backslash character(\).

Any character, other than asterisks and question marks, matches itself, including a
period.

Searching is case-insensitive. For example, "FILE.TXT" references the same file
named "file.txt".

For compatibility reasons, any file name that does not have a dot in it gets an
implicit one automatically appended to the end during searching operations. This
means that searching for "FILE." would return "FILE".

Some file system functions accept file object name specifications using
metacharacters. See the descriptions of the individual file system functions in the
Control Program Programming Reference for details on the use of metacharacters.

Editing File Names Using Metacharacters
Metacharacters in a source name simply match files and behave just like any other
search metacharacter.

Metacharacters in a target name are copy-edit commands and work as follows:

• A question mark (?) copies one character unless the character it would copy is a
period (.), in which case it copies O characters. It also copies O characters if it is
at the end of the source string.

• An asterisk(*) copies characters from the source name to the target name until it
finds a source character that matches the character following it in the target.

• A period (.) in the target name causes the source pointer to match the
corresponding "." in the target. They count from the left.

Editing is case-insensitive. If a case conflict between the source and editing string
arises, the case in the editing string is used, thus:

copy file.txt *E.tmp

results in file.txt being copied as filE.tmp.

DosEditName provides applications with the ability to transform a file object name
into another name, using an editing string that contains global characters.

Chapter 3. File Names 3-7

Transforming File Names Using Metacharacters
File system functions that an application uses to copy, rename or move file objects
do not support the use of global characters. For example, a user can perform a
global copy of all files with the extension .EXE by entering the following on the
command line:

copy *.exe

An application, however, cannot perform a similar global copy operation by making
a single call to DosCopy or DosMove. These functions operate on a single, specific
file object.

DosEditName, however, provides applications with the ability to transform an
element of a full path name into another name, using an editing string that contains
global characters. For example, for an application to copy all files with an extension
of .SRC to files with an extension of .SAM, the application would:

1. Search for all files with the .SRC extension by using DosFindFirst and
DosFindNext,

2. Transform the file names by using DosEditName with an editing string of
"*.SAM",

3. Copy the files with the new extension with DosCopy.

File Names in User Input
Users often supply file names as part of an application's command line or in
response to a prompt from the application. Traditionally, users have been able to
supply more than one file name by separating the names with certain characters,
such as a blank space. In some file systems, however, traditional separators are
valid file name characters. This means additional conventions are required to
ensure that an application processes all characters in a name.

When an application processes arguments (including file names) from its command
line, the operating system treats the double quotation mark(") and the caret n as
quotation characters. All characters between the opening and closing double
quotation marks are processed as a single argument. The caret is used to quote
characters that would otherwise have some special property. The character
immediately following the caret is treated as a normal character; any special
characteristics that the character has are to be ignored. For example, the
greater-than symbol (>)normally causes a program's output to be redirected to a
file or device. Typing"">" causes the">" to be included in the command line
passed to the application. In both cases, the operating system discards the
quotation characters and does not treat them as part of the final argument.

When a Presentation Manager (PM) application processes two or more file names
from a dialog box or other prompt, it expects the user to enter each file name on a
new line. Therefore, a PM application would use a multiple-line entry field to
prompt for multiple file names. This often makes the use of quotation characters
unnecessary.

3-8 OS/2 2.0 Programming Guide-Volume I

Device Names

When an application is started, the operating system constructs a command line for
the application. If the command line includes file names, the operating system
places a space character between names and marks the end of the list with two
NULL characters. Applications that start other applications by using DosExecPgm
can also pass arguments by using this convention or by using quotation characters.
In practice, most applications receive a command line as a single, NULL-terminated
string. Therefore, applications that use DosExecPgm should prepare command
lines as a single string, and enclose any file names in quotation marks.

Naming conventions for character devices are similar to those for naming files. The
OS/2 operating system h~s reserved certain names for character devices supported
by the base device drivers. These device names are listed below:

CLOCK$
COM1-COM4
CON
KBD$
LPT1
LPT2
LPT3
MOUSE$
NUL
POINTER$
PRN
SCREEN$

Clock
First through fourth serial ports
Console keyboard and screen
Keyboard
First parallel printer
Second parallel printer
Third paralle1 printer
Mouse
Nonexistent (dummy) device
Pointer draw device (mouse screen support)
The default printer, usually LPT1
Screen

These names can be used with DosOpen to open the corresponding devices.
Reserved device names take precedence over file names; DosOpen checks for a
device name before checking for a file name. Do not use a file name which is the
same as a reserved device name; the file will never be opened, because the
command will open the device instead.

COM1 through COM4 are reserved device names only when the ASYNC (RS-232C)
device driver is loaded. The same is true for POINTER$ and MOUSE$, which are
reserved only when a mouse device driver is loaded.

An application can call DosQueryFHState to verify that a file or device has been
opened. See "Determining and Setting the State of a File or Device Handle" on
page 4-16 for more information on getting the state of a file handle.

Chapter 3. File Names 3-9

3-10 OS/2 2.0 Programming Guide-Volume I

Chapter 4. File Management

The OS/2 operating system provides a standard set of file system functions. This
means that applications can create, open, read, write, copy, and delete files and
directories by using the same functions, regardless of which file system is used.
When an application calls a file system function, the operating system passes the
request to the dynamic link library that supports the file system. The dynamic link
library carries out most file system processing, such as validating file names. If an
error occurs, the file system returns the error to the operating system, which then
passes it back to the calling application.

The OS/2 file system functions identify files and directories by their names. These
functions store or search for the file or directory in the current directory on the
current drive unless the name explicitly specifies a different directory and drive.

Occasionally, a file system has control functions in addition to the standard file
system functions. The control functions are specific to the given file system. An
application can call a control function by using DosFSCtl, which directs the
operating system to pass the control-function information to the corresponding
dynamic link library.

The following topics are related to the information in this chapter:

• Files Systems
• Files Names
• Extended Attributes
• Pipes
• Device 110.

About Volumes and Drives

© Copyright IBM Corp. 1992

The OS/2 operating system allows more than one file system on a single storage
device. If the device can have more than one partition (or volume), each partition
can be initialized as an OS/2 partition and given a valid OS/2 file system. For each
volume, the operating system determines the type of file system the first time the
volume is accessed by a function or when the medium in the drive changes. After
that, the operating system manages all input and output to that volume by using the
corresponding dynamic link library.

The operating system uses the volume label and serial number to ensure that the
medium in the drive does not change while there are outstanding requests for input
and output. Each volume has a volume label and a 32-bit volume serial number,
stored in a reserved location in logical sector Oat the time of formatting. If the
volume label and serial number do not match, the operating system signals the
critical error handler to prompt the user to insert the volume that has the specified
serial number and label. The operating system maintains the connection between
the medium and the volume label and serial number until all open files on the
volume are closed and all search references and cache buffer references are
removed. The system redetermines the type of file system and the volume label
and serial number only when the medium changes.

4-1

The OS/2 operating system enables applications to:

About Directories

• Determine and set the default drive using DosQueryCurrentDisk and
DosSetCurrentDisk, respectively.

• Determine and set drive information using DosQueryFSlnfo and DosSetFSlnfo.

• Determine and set the write verification switch using DosQueryVerify and
DosSetVerify. If the write verification switch is on, each time data is written to
the disk, the data is verified to ensure it has been recorded correctly. These
functions are provided for recording critical data.

When an application starts, it inherits the current directory and drive from the
application that starts it. An application can determine which directory and drive
are current by using DosQueryCurrentDir and DosQueryCurrentDisk. An application
can change the current directory and drive of the file system by using
DosSetCurrentDir and DosSetDefaultDisk.

When an application creates a new file, the system adds a file entry to the specified
directory. Each directory can have any number of entries, up to the physical limit of
the disk. An application can create new directories and delete existing directories
by using DosCreateDir and DosDeleteDir. Before a directory can be deleted, it must
be empty; if there are files or directories in that directory, they must be deleted or
moved. An application can delete a file by using DosDelete or move a file to
another directory by using DosMove.

Creating a Subdirectory
To create a new subdirectory, an application calls DosCreateDir and specifies a
directory path name. If the call is successful, a new subdirectory is created at the
end of the path on the specified disk. If no path name is specified, a new
subdirectory is created at the end of the current directory for the process. If any
subdirectories in the path do not exist, the subdirectory is not created.

Because a subdirectory is a file object, an application also can define an extended
attribute for the directory when it is created during this call. See Chapter 5,
"Extended Attributes" on page 5-1 for more information on extended attributes.

Determining and Changing the Current Directory
Calling DosQueryCurrentDir returns the full path name of the current directory for
the specified drive. The string does not begin with a back slash(\) and it ends with
a byte containing OOH, the NULL character.

To change the current directory, call DosSetCurrentDir with the path name of the
directory you want to make the current directory.

Deleting a Directory
A subdirectory cannot be removed if it is the current subdirectory or if it contains
hidden files or subdire.ctory entries other than the "." and " .. " entries. When these
requirements for removal are met, DosDeleteDir can be called with a path name to
remove the subdirectory from the disk.

4-2 OS/2 2.0 Programming Guide-Volume I

About Files

File Attributes

File Handles

A file is one or more bytes of data, usually stored on a disk. While the application
that creates the file determines the format of the file, the file system determines how
the file is stored on the disk and what actions can be performed on it. The file
system also stores information about the file in file attributes and extended
attributes.

Files are accessed through the file system using file handles. File handles are
returned by DosOpen when the file is opened and are used for all subsequent
accesses to the file. Files can be be opened, read from, written to, closed, copied,
moved, deleted, renamed, and locked. Files can be searched for based on a
metacharacter template.

Each open file has a file pointer that indicates the current reading or writing location
within the file. The file pointer moves automatically with each read or write
operation on the file and can be moved manually by the application.

Each directory entry includes a set of file attributes. File attributes specify whether
the directory entry is for a file, a directory, or a volume identifier. The attributes
also specify if the file is read-only, hidden, archived, or a system file.

A read-only file cannot be opened for writing, nor can it be deleted. A hidden file (or
directory) cannot be displayed by using an ordinary directory listing. A system file
is excluded from normal directory searches. The archived attribute is for use by
special purpose applications to mark a file that has been changed since the last
time the file was examined.

An application can retrieve and set the file attributes by using DosQueryFilelnfo and
DosSetFilelnfo.

The operating system identifies each open file by assigning it a file handle when the
application opens or creates the file. The file handle is a unique 32-bit integer. The
application can use the handle in functions that read from and write to the file,
depending on how the file was opened. The application can continue to use the
handle until the file is closed.

The default maximum number of file handles for a process is 20. An application can
change this maximum by using DosSetMaxFH. When this call is made, all currently
open file handles are preserved.

When an application starts, it inherits all open file handles from the process that
starts it. If the system's command processor starts an application, file handles 0, 1,
and 2 represent the standard input, standard output, and standard error files. The
standard input file is the keyboard; the standard output and standard error files are
the screen. An application can read from the standard input file and write to the
standard output and standard error files immediately; it does not have to open the
f i I es first.

An application can create a duplicate file handle for an open file by using
DosDupHandle. A duplicate handle is identical to the original handle. Typically,
duplicate handles are used to redirect the standard input and standard output files.
For example, an application can open a disk file and duplicate the disk-file handle

Chapter 4. File Management 4-3

File Pointer

Copying Files

as handle 0. Thereafter, an application reading from the standard input file (handle
0) takes data from the disk file, not from the keyboard.

When devices and pipes are accessed through the file system functions (using
DosOpen, DosRead, and so on), the devices and pipes are treated as files and are
identified using file handles. The standard file handles can be redirected to a
device or pipe.

Every open file has a file pointer that specifies the next byte to be read or the
location to receive the next byte that is written. When a file is first opened, the
system places the file pointer at the beginning of the file. As each byte is read or
written, the operating system advances the pointer.

An application can also move the pointer by using DosSetFilePtr. When the pointer
reaches the end of the file and the application attempts to read from the file, no
bytes are read and no error occurs. Thus, reading O bytes without an error means
the program has reached the end of the file.

When an application writes to a disk file, the data being written is usually collected
in an internal buffer. The operating system writes to the disk only when the amount
of data equals (or is a multiple of) the sector size of the disk. If there is data in the
internal buffer when the file is closed, the system automatically writes the data to
the disk before closing the file. An application can also flush the buffer (that is,
write the contents of the buffer to the disk) by using DosResetBuffer.

DosCopy is used to copy files and subdirectories. Metacharacters (global file name
characters) are not allowed, so only individual files or entire subdirectories can be
copied with this function. The source and target can be on different drives.

When the source specified is a subdirectory and an 110 error occurs, the file being
copied from the source directory to the target directory at the time of the error will
be deleted from the target directory and DosCopy will be terminated.

When a file is being copied and an 1/0 error occurs,

• if the source file name is that of a file to be replaced, the file is deleted from the
target path,

• if the source file name is that of a file to be appended, the target file is resized
to its original size,

and the function is terminated.

DosCopy will copy the attributes of the source file, such as date of creation, and
time of creation to the target file. Additionally, DosCopy will copy the extended
attributes of the source file when creating a new subdirectory or a new file, or when
replacing an existing file.

4-4 OS/2 2.0 Programming Guide-Volume I

Moving Files

Deleting Files

DosMove is used to move a file from one subdirectory to another on the same drive.
In the process of moving the file, its name can be changed. Metacharacters (global
file name characters) are not permitted.

Calling DosDelete removes the directory entry associated with a file name.
Metacharacters (global file name characters) are not permitted.

Files whose read-only attribute is set cannot be deleted.

Changing File Sizes
DosSetFileSize is used to extend or truncate the size of a file that is open for
Read/Write or Write-Only access.

When a file is extended, for example to reserve disk space, the value of the
additional bytes allocated by the system is undefined.

Locking and Unlocking File Regions
Because the OS/2 operating system permits more than one application to open a file
and write to it, it is important that the applications not write over each other's work.
An application can protect against this problem by temporarily locking a region in a
file.

DosSetFilelocks provides a simple mechanism that temporarily prevents access by
other processes to regions within a file. DosSetFilelocks specifies a range of bytes
in the file that is locked by an application and that can be accessed only by the
application locking the region. The application uses the same function to free the
locked region.

Locking and unlocking regions in a file enables sharing processes to coordinate
their efforts. A process can lock a region in a file so the process can read and
update the file region. A sharing process that attempts to lock the region before the
other process finishes its update and unlocks the region receives an error code.
When a lock is unsuccessful because a lock is already in place,
ERROR_LOCK_VIOLATION is returned.

A lock that extends beyond end-of-file is not considered an error. However, a
locked region cannot overlap another locked region, nor can it encompass a locked
region. Any such conflicting locks must be cleared before a region can be locked.

When a file handle is duplicated, the duplicate handle has access to any locked
regions currently being accessed by the original handle. Although a child process
created with DosExecPgm can inherit the file handles of its parent process, it does
not inherit access to locked regions in effect for a file handle unless the file handle
is duplicated and passed to it.

Notes:

1. File locks are intended to be in effect for only short periods of time.

2. When a file with locks is closed, the locks are released in no defined order.

Chapter 4. File Management 4-5

Searching for Files
An application can use DosFindFirst, DosFindNext, and DosFindClose to search the
current directory for all file names that match a given pattern.

The pattern must be an OS/2 file name and can include metacharacters (global file
name characters). The wildcard characters are the question mark(?) and the
asterisk(*). The question mark matches any single character; the asterisk matches
any combination of characters. For example, the pattern "A*" matches the names
"ABC'', "A23", and "ABCD", but the pattern "A?C" matches only the name "ABC".

Determining the Maximum Path Length

Devices

An application that recognizes long file names might be run on systems with or
without installable file systems. Additionally, the maximum length of a file name
might vary from one installable file system to another. So that an application can
properly handle this variable condition (and, for example, allocate large enough
buffers to hold file names), the application should call DosQuerySyslnfo to
determine the maximum path length supported by the file system.

Make this call before calling file system functions that require full path names.

The OS/2 operating system enables you to access peripheral devices using file
system commands, and treat those devices as file streams of data. These devices
include:

Character devices COM, clock, console (keyboard and screen), screen,
keyboard, printer, null, pointer, and mouse devices.

Standard 1/0 devices Character devices automatically installed by the
operating system and recognized by the file system as
the standard input, standard output, and standard error
devices.

Pseudocharacter devices An application can attach a device name to a file
system and use the file system as a pseudocharacter
device (also called a single-file device). Attaching a
device name to a file system allows an application to
open the device associated with the file system as if it
were a character device (for example, a serial port) and
read from and write to the device by using DosRead and
Dos Write.

In addition, an application can use DosSetFilePtr and
DosSetFilelocks with a pseudocharacter device. Also,
pseudocharacter devices can be redirected.

A file system that can be attached to a pseudocharacter
device is typically associated with a single disk file or
with a special storage device, such as a tape drive. The
file system establishes a connection with the device and
transfers requests and data between the operating
system and the device. The user perceives this file as a
device name for a nonexistent device.

This file is seen as a character device because the
current drive and directory have no effect on the name.

4-6 OS/2 2.0 Programming Guide-Volume I

Logical file devices.

A pseudocharacter device name is an ASCII string with
the name of an OS/2 file in the form:

\dev\dev_name

The "\dev\" is a required part of the name, but there is
no actual subdirectory named "\dev\". This just lets the
operating system know that it is a pseudocharacter
device name.

The hard disk or floppy disk drives, or the partitions on
the hard disk or floppy disk drives.

Using File Commands

Creating Files

Files are accessed through the file system using file handles. File handles are
returned by DosOpen when the file is opened and are used for all subsequent
accesses to the file. Files can be be created, opened, read from, written to, closed,
copied, moved, deleted, renamed, and locked. Files can be searched for based on a
metacharacter pattern template.

Each open file has a file pointer that indicates the current reading or writing location
within the file. The file pointer moves automatically with each read or write
operation on the file and can be moved manually by the application.

The standard file handles-standard input, standard output, and standard
error-provide redirectable input and output to applications. The standard file
handles can be used to read input from the keyboard and write output to the display.
Alternatively, they can be redirected to read input from and write output to a file. To
an application reading and writing the standard file handles, there is no difference
between the two.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

DosOpen is used to create files, which are then read from or written to. To create a
file, specify FILE_ CREATE as the sixth argument in the call to the function.
DosOpen then creates the file, if it does not already exist. If the file already exists,
the function returns the error value FILE_EXISTED.

Chapter 4. File Management 4-7

In the following code fragment, DosOpen creates the file NEWFILE.TXT:

Figure 4-1. Creating a New File

In this example, DosOpen creates the file and opens it for writing only. Note that the
sharing method chosen permits other processes to open the file for any access. The
new file is empty (contains no data).

When you use DosOpen to create (or replace) a file, you must specify the attributes
the new file is to have. In the preceding example, this value is FILE_NORMAL, so
the file is created as a normal file. Other possible file attributes include read-only
and hidden, which correspond to FILE_READONLY and FILE_HIDDEN, respectively.
The possible file attributes are:

Fiie Attribute
Normal file
Read-only file
Hidden file
System file
Subdirectory
Archived file

Defined Constant
FILE_ NORMAL
FILE_READONLY
FILE_HIDDEN
FILE_ SYSTEM
FILE_ DI RECTORY
FILE_ARCHIVED.

The file attribute affects how other processes access the file. For example, if the file
is read-only, no process can-open the file for writing. There is one exception-the
process that creates the read-only file can write to it immediately after creating it.
After closing the file, however, the process cannot reopen it for writing.

If you are creating a new file object (a new file or a replacement for an existing
one), you must specify the size of the new file in bytes. For example, if you specify
256, the file size is 256 bytes. However, these 256 bytes are undefined. If the file
being opened already exists, the file size parameter is ignored. It is up to the
application to write valid data to the file. No matter what size you specify, the file
pointer is set to point to the beginning of the file so a subsequent call to DosWrite
starts writing data at the beginning of the file.

Extended attributes can be defined by an application when a file object is created.
An application can define an extended attribute for a file when the file is created
during a DosOpen call. (See Chapter 5, "Extended Attributes" on page 5-1 for
more on extended attributes).

Applications can also control access to specific regions within a file by calling
DosSetFi lelocks.

4-8 OS/2 2.0 Programming Guide-Volume I

Opening Files
Before performing input or output operations on a file, you must open the file and
obtain a file handle. You obtain a file handle by using DosOpen. This function
opens the specified file and returns a file handle for it. DosOpen can also be used
to create new files.

DosOpen establishes a connection between a file object and an application. This
connection is in the form of a 32-bit identifier called a file handle, which is used to
refer to the file object and any information associated with it. DosOpen returns a
handle that is used in other file system calls to gain access to the object. The file
object can be a new file, an existing file, or a replacement for an existing file. It can
also be a character device, a block device, or the client end of a named pipe. The
type of object is determined by the file name you pass to DosOpen.

Note: If the object is a named pipe, it must be in a listening state for DosOpen to be
successful. For more information about opening a named pipe, see
"Opening Named Pipes" on page 9-13.

In the following code fragment, DosOpen opens the existing file SAMPLE.TXT for
reading and puts the file handle into the hf variable:

Figure 4-2. Opening a File and Obtaining a File Handle

If DosOpen successfully opens the file, it copies the file handle to the hf variable and
copies a value to the u/Action variable indicating what action was taken (for
example, FILE_EXISTED for "existing file opened"). A file size is not needed to
open an existing file, so the fourth argument is 0. The fifth argument,
FILE_NORMAL, specifies the normal file attribute. The sixth argument, FILE_OPEN,
directs DosOpen to open the file if it exists or return an error if it does not exist. The
seventh argument directs DosOpen to open the file for reading only and enables
other applications to open the file even while the current application has it open.
The final argument is a pointer to a structure containing information on extended
attributes. If the file has no extended attributes, this argument must be NULL.

DosOpen returns 0 if it successfully opens the file. Applications use the file handle
in subsequent functions to read data from the file or to check the status and other
file characteristics. If DosOpen fails to open the file, it returns an error value.

When you open a file you must specify whether you want to read from the file, write
to it, or both read and write. Also, since more than one application might attempt to
open the same file, you must also specify whether you want to allow other

Chapter 4. File Management 4-9

processes to have access to the file while you have it open. A file that is shared can
be shared for reading only, writing only, or reading and writing. A file that is not
shared cannot be opened by another application (or more than once by the first
application) until it has been closed by the first application.

An application defines its file access rights (that is, 110 it needs to perform on a file)
by setting the appropriate file access mode field in the file open-mode parameter.
An application accesses a file as:

• Read-Only
• Write-Only
• Read/Write.

An application defines what 110 operations other processes can perform on a file by
setting the appropriate sharing mode field in the OpenMode parameter. Other
processes are granted:

• Deny Read/Write access
• Deny Write access
• Deny Read access
• Deny Neither Read or Write access (Deny None).

File sharing requires cooperation between the sharing processes. For example, if
process A calls DosOpen to open a file with Deny Write sharing and process B calls
DosOpen to open the same file with Read/Write access, the DosOpen call made by
process B fai Is.

You indicate whether or not you want to permit another application to access your
file by combining an OPEN_ACCESS_ value and an OPEN_ SHARE_ value from the
following list:

Table 4-1. File Access and Sharing Rights

Value Meaning

OPEN_ACCESS_READONLY Open a file for reading.

OPEN_ACCESS_WRITEONL Y Open a file for writing.

OPEN_ACCESS;_READWRITE Open a file for reading and writing.

OPEN_SHARE_DENYREADWRITE Open a file for exclusive use, denying other
processes read and write access.

OPEN_SHARE_DENYWRITE Deny other processes write access to a file.

OPEN_SHARE_DENYREAD Deny other processes read access to a file.

OPEN_SHARE_DENYNONE Open a file with no sharing restrictions,
granting read and write access to all
processes.

In general, you can combine any access method (read, write, or read and write) with
any sharing method (deny reading, deny writing, deny reading and writing, or grant
any access). Some combinations have to be handled carefully, however, such as
opening a file for writing without denying other processes access to it.

Note: For named pipes, the access and sharing modes must be consistent with
those specified by DosCreateNPipe.

4-10 OS/2 2.0 Programming Guide-Volume I

Other characteristics of the file handle that can be set:

Table 4-2. File Handle Characteristics

Flag Purpose

Inheritance Handle is inherited by a child process created with DosExecPgm,
or is private to the calling process.

Write-Through Actual 1/0 for synchronous writes is not guaranteed as complete
or is guaranteed as complete before the write returns.

Fail-Errors Media errors are reported by the system critical error handler, or
by the application.

DASO The file name parameter is the name of a file or device opened in
the normal way, or a drive specification for a fixed disk or
diskette drive. The DASO flag can be set for direct access to an
entire disk or diskette volume, independent of the file system.
When the DASO flag is set, the handle returned by DosOpen
represents the logical volume as a single file. To block other
processes from accessing the logical volume, a DosDevlOCtl
Category 8, Function O call should be made using the handle
returned by DosOpen. The DASO flag should be set only by
systems programs, not by applications.

Cache The file system caches or does not cache data for 110 operations
on the file. This flag is advisory only.

See the DosOpen material in the Control Program Programming Reference for
details of these characteristics.

After an object has been opened, its file handle state flags can be queried by calling
DosQueryFHState and reset by calling DosSetFHState. See "Determining and
Setting the State of a File or Device Handle" on page 4-16 for information on
determining the state of a file handle.

When a child process inherits a file handle, it also inherits the sharing and access
rights of the file.

You cannot use metacharacters (global file name characters;* and?) in file names
you supply to DosOpen.

Reading from Files
Once you open a file or have a file handle, you can read from and write to the file by
using DosRead and DosWrite.

DosRead is called with a handle (obtained with DosOpen) for a file, pipe, or device.
DosRead copies a specified number of bytes (up to the end of the file) from the file
object to the buffer you specify. The operating system returns, in a parameter, the
number of bytes actually read (which might not be the same as the number of bytes
requested because the end of the file might have been reached).

To read from a file, you must open it for reading or for reading and writing.

Chapter 4. File Management 4-11

Writing to Files

The following code fragment shows how to open the file named SAMPLE.TXT and
read the first 512 bytes from it:

Figure 4-3. Opening and Reading a File

If the file does not have 512 bytes, DosRead reads to the end of the file and puts the
number of bytes read in the cbRead variable. If the file pointer is already positioned
at the end of the file when DosRead is called, the function puts a O in the cbRead
variable.

Once you open a file or have a file handle, you can read from and write to the file by
using DosRead and DosWrite.

DosWrite copies bytes from a buffer you specify to a file, device, or pipe.

Calling DosWrite with a handle for a file, pipe, or device transfers the number of
bytes specified from a buffer location to the object. The system returns, in a
parameter, the number of bytes actually written {which in the case of a disk file
might not be the same as the number requested because of insufficient disk space).

To write to a file, you must first open it for writing or for reading and writing.

4-12 OS/2 2.0 Programming Guide-Volume I

The following code fragment shows how to open the file SAMPLE.TXT again and
write 512 bytes to it:

Figure 4-4. Opening and Writing to a File

DosWrite writes the contents of the buffer to the file. If it fails to write 512 bytes (for
example, if the disk is full), the function puts the number of bytes written in the
cbWritten variable. The data is read and written exactly as given; the function does
not format the data-that is, they do not convert binary data to decimal strings, or
vice versa.

The Write-Through Flag
If an application requires data to be written in a specific order, setting the
Write-Through flag to 1 guarantees that actual 110 for a synchronous write is
completed before the DosWrite returns. If this flag has been set with DosOpen for
buffered 110, and multiple synchronous writes are performed, the system cannot
guarantee the actual order in which the data is written. For details on changing the
state of the Write-Through flag, see "Determining and Setting the State of a File or
Device Handle" on page 4-16.

Moving the File Pointer
Every disk file has a corresponding file pointer that marks the current location in the

, file. The current location is the byte in the file that will be read from or written to on
the next call to DosRead or DosWrite. Usually, the file pointer is at the beginning of
the file when you first open or create the file, and it advances as you read or write to
the file. You can, however, change the position of the file pointer at any time by
using DosSetFilePtr.

DosSetFilePtr moves the file pointer a specified offset from a given position. You
can move the pointer from the beginning of the file, from the end, or from the current
position.

Chapter 4. File Management 4-13

Closing Files

The following code fragment shows how to move the pointer 200 bytes from the end
of the file:

-~/ .: ;-: ,::.: ' :~·' ,<<:' / ,.· :«· ':,-:· ., .. < ~

.#defi:ae: '.iNCl·'. DtlSfILlHM~:~
:11rri~1:~~~ ~~9$~'.~:n>:: · ··

BYTE abBuf{BUF •. SIZE];
HFfLt hf;

ULONG cbRead, ··· cbWri tten:,
I ' ' '

· DosOpen(11SAMPLE.nT11
, &hf, &ulAction, a. FILE"'""NORMAL, FILEj)PEN,

OPEN ACCESS READONLYI OPENSHAREDENYNONE,
(PEAOP2) NULL); - -

DosSetFilePtr(hf, •200, FILE_END, &l.llNewPtr);

DosRead(hf, &abBuf, sizeof(abBuf), &cbRead);

DC>sWrite(HF~STDOUT. abBuf, cbRead, &cbWritten);

Figure 4-5. Moving the File Pointer

In this example, DosSetFilePtr moves the file pointer to the 200th byte from the end
of the file. If the file is not that long, the function moves the pointer to the first byte
in the file and returns the actual position (relative to the end of the file) in the
u/NewPtr variable.

You can move the file pointer for disk files only. You cannot use DosSetFilePtr on
devices, despite using other file functions (DosOpen, DosRead) to access a device.

If a file is read-only, write operations to the file will not be performed.

Moving the pointer from the end of the file can be used to determine the size of the
file.

You can close a file by using DosClose. Since each application has a limited
number of file handles that can be open at one time, it is a good practice to close a
file after using it.

4-14 OS/2 2.0 Programming Guide-Volume I

To do so, supply the file handle in DosClose, as shown in the following code
fragment:

Figure 4-6. Closing a File

If you open a file for writing, DosClose directs the system to flush the file buffer-that
is, to write any existing data in the operating system's intermediate file buffer to the
disk or device. The system keeps these intermediate file buffers to make file input
and output more efficient. For example, it saves data from previous calls to
DosWrite until a certain number of bytes are in the buffer then writes the contents of
the buffer to the disk.

DosClose also closes the handle to the file (or pipe, or device). If one or more
additional handles to a file have been created with DosDupHandle, the internal
buffers for the file are not written to disk, and its directory entry is not updated, until
DosClose has been called for all the handles.

For information on the effects of DosClose called with a named pipe handle, see
"Named Pipes" on page 9-2.

Creating Duplicate File or Device Handles
DosDupHandle enables a process to create a duplicate handle for an open file, pipe,
or device.

The value for the old-file-handle parameter is the handle of an open file, a pipe, or a
device. The valid values for the new-file-handle parameter include FFFFH, OOOOH
(standard input), 0001H (standard output), and 0002H (standard error). Any value
other than FFFFH is assumed to be the value of the new file handle.

A value of FFFFH causes the system to allocate a new file handle and send it to this
location. If the value specified for the new-file-handle parameter is that of a
currently open file, the file handle is closed before it is redefined:

An agreed upon value for a duplicate file handle can be established between a
pa-rent process and a child process. Avoid choosing arbitrary values for the new file
handle.

Chapter 4. File Management 4-15

The duplicate handle acquires the characteristics of the original. If you move the
read/write pointer of the original file handle, for example by calling DosRead,
DosWrite, or DosSetFilePtr, the pointer of the duplicate handle is also moved. If the
original handle has access to regions in a file that have been locked by
DosSetFilelocks, the duplicate also has access.

If inheritance was indicated when a file was opened with DosOpen, a parent process
can create a duplicate handle for the file and pass it to a child process by means of
shared memory. This permits the child to close the duplicate handle without
affecting the file handle of the parent.

Because a parent process controls the meanings for standard 110 done by any child
process it creates, the parent can use DosDupHandle to redefine unnamed pipe
handles as standard 110 handles to communicate with a child. The steps involved
are:

• The parent process creates two pipes and duplicates the read handle of one pipe
as 0000 and the write handle of the other pipe as 0001.

• When the child process performs standard 110, instead of reading from the
keyboard and writing to the display, it reads from and writes to the pipes created
by its parent.

• As the owner of the pipe, the parent process uses its read and write handles to
write to the pipe defined to the child as standard input and read from the pipe
defined to the child as standard output.

Determining and Setting the State of a File or Device Handle
After a file has been opened, the file handle state flags set with a DosOpen can be
queried and reset by calling DosQueryFHState and DosSetFHState. The handle
returned by DosSetFHState is used for subsequent input and output to the file.

The following code fragment calls DosSetFHState to set the File Write-Through flag
for an opened file. Writes to the file may go through the file system buffer, but the
sectors are to be written before any synchronous write call returns.
DosQueryFHState is called first to obtain the file handle state bits. Assume that the
appropriate file handle has been placed into FileHandle already.

4-16 OS/2 2.0 Programming Guide-Volume I

. ff~:~:f:tne ·:.rN~L;.;P,OS~~ L~M~~ ... · .•
/r.~n~1.uqe':~os2:h;~··.·.:

·~ ffinoTude:.~stdio·,fi~·;~:.
, .. : . , ":i ·~ ,. ' ..,. < •••• ••• ··; x; <,, . ' . ,

Figure 4-7. Setting the State of a File Handle

Here are two scenarios involving the use of this function.

• An application requires that data be written in a specific order. To guarantee the
order of the data written, it must perform separate synchronous write operations.
The application can call DosSetFHState to set the Write-Through flag for the file.
This action does not affect any previous asynchronous writes, whose data can
remain in the buffers.

• An application cannot handle a certain critical error situation. DosSetFHState
can be called to reset critical error handling as the operating system's
responsibility. The 110 function that caused the critical error must be called
again so the error can recur, causing control to be passed to the operating
system. In the case where asynchronous 110 is being done, the precise time the
results of this function will be available to the application is unpredictable.

Determining the Handle Type
DosQueryHType enables an application to determine whether a handle is to a file, a
pipe, or a device. This function can be used when a file-oriented application needs
to modify its behavior, depending on the source of its input. For example, CMD.EXE
suppresses writing prompts when its input is from a disk file.

Chapter 4. File Management 4-17

The following code fragment determines whether a given file handle refers to a file
or a device. Assume that the desired file handle has been placed into FileHandle
already.

Figure 4-8. Determining the Handle Type

In the preceding example, DosQueryHType returns a value that characterizes the
type of file handle, and the associated device driver attribute word if handle type
indicates that the file handle is associated with a local character device

Searching for Files
You can locate files with names that match a given pattern by using metacharacters
in DosFindFirst and DosFindNext.

DosFindFirst searches the current directory and locates the first file name that
matches the given pattern. DosFindNext locates the next matching file name and
continues to find additional matches on each subsequent call until all matching
names are found. The functions copy the file statistics on each file located to a data
structure that you supply. The file information returned by a search includes file
dates and times, length of data in the file, file size, file attributes, and file name.

To find all files that match the file specification, call DosFindNext repeatedly until
the message ERROR_NO_MORE_FILES is returned. Then call DosFindClose to
close the directory handle.

4-18 05/2 2.0 Programming Guide-Volume I

The following code fragment shows how to find all file names that have the
extension ".C":

#define INCL DOSFILEMGR /* File System values */
#include <os2.h>

HDIR . hdir;
ULONG · efi 1 enames;

.• FILEFINDBUF f.i ndbuf;
APIRET re;

cFi 1 enames = · l;
hdir = HDIR_,SYSTEM;

re= OosFindFirst(11 *.C 11
•

&hdi r, /* Di rectory ;handl e *I

if (Ire) {
do{

FILE_NORMAL, l* fl 1 e attribute to 1 ook for *I
&findbuf, /* Result buffer */
sizeof(findbufL /* Size of result buffer */
&cFilenames, /*.Number• of matching .names to .. look. for */.
FIL_STANDARD); l* Standard level of information */

/* Use file n:ame ~1n findt)uf.aehName * /

re = DosFindNext(hdir, &findbtif, stzeof(ifindbuf), &cFi 1 enames);

} while (!re);
.}
·oosFi ndClose{hd1 r);

Figure 4-9. Finding All *.C Files

In this example, DosFindNext continues to retrieve matching file names until it
returns an error value (it returns ERROR_NO_MORE_FILES when it cannot find any
more matching files).

To keep track of which files have already been found, both functions use the
directory handle, hdir.

This directory handle must be set to HDIR_SYSTEM or HDIR_CREATE before the call
to DosFindFirst. HDIR_SYSTEM (00000001H) tells the operating system to use the
system handle for standard output, which is always available to the requesting
process. HDIR_CREATE (FFFFFFFFH) tells the operating system to allocate a new,
unused handle.

The directory handle returned by DosFindFirst must be used in subsequent calls to
DosFindNext; it identifies for DosFindNext the name of the file being sought and the
current position in the directory.

An attribute parameter for DosFindFirst allows hidden and system files, as well as
normal files, to be included in searches.

After locating the files you need, use DosFindClose to close the directory handle.
This ensures that when you search for the same files again, you will start at the
beginning of the directory. After DosFindClose is called, a subsequent DosFindNext
fails.

Chapter 4. File Management 4-19

Searching Paths for Files
DosSearchPath searches directory paths for the name of a file object. The file
specification can include metacharacters (global file name characters).

The path string used in the search consists of directory paths separated by
semicolons. The caller can supply the path string, or it can supply the name of an
environment variable whose value is the path string to be searched. The caller can
request that the current working directory be searched before the path string is
searched.

If the caller specifies an environment variable, DosSearchPath uses DosScanEnv to
find the path string. DosScanEnv searches the environment segment for an
environment variable name; for example, DPATH. The result pointer points to the
string that is the value of the environment variable. The call to DosScanEnv can be
made directly by the application, or it can be invoked by DosSearchPath.

If the file is found, its full path name is returned, with metacharacters left in place.
The results might not be meaningful if a buffer overflow occurs.

As an example, assume that a string such as the following exists in the
environment:

DPATH=C:\SYSDIR;C:\INIT

Two methods for searching directory paths to find a file are illustrated below.

Figure 4-10. Method 1: Searching Directory Paths Using DosScanEnv and DosSearchPath

4-20 OS/2 2.0 Programming Guide-Volume I

Figure 4-11. Method 2: Searching Directory Paths Using DosSearchPath

Standard File Handles
Every application, when it first starts, has three input and output file handles
available to use. These file handles, called the standard input, standard output, and
standard error files, enable the application to read input from the keyboard and
display output on the screen without opening or preparing the keyboard or screen.

Standard Input, Output, and Error File Handles
As the operating system starts an application, it automatically opens the three
standard files and makes the file handles-numbered 0, 1, and 2-available to the
application. Applications can read from and write to the standard files as soon as
they start.

Standard Input
File handle 0 is the standard input file. This handle can be used to read characters
from the keyboard with DosRead. The function reads the specified number of
characters unless the user types a turnaround character-that is, a character that
marks the end of a line (the default turnaround character is a
carriage-return/Ii nefeed character pair).

As DosRead reads the characters, it copies them to the buffer you have supplied, as
shown in the following code fragment:

Figure 4-12. Reading from Standard Input

In this example, DosRead copies to the cbRead variable the number of characters
read from standard input. The function also copies the turnaround character, or

Chapter 4. File Management 4-21

characters, to the buffer. If the function reads fewer than 80 characters, the
turnaround character is the last one in the buffer.

Standard Output
File handle 1 is the standard output file. This handle can be used to write
characters on the screen with DosWrite. The function writes the characters in the
given buffer to the current line. If you want to start a new line, you must place the
current turnaround character in the buffer.

The following code fragment displays a prompt, reads a string, and displays the
string:

#define .INCL··•oos.FILEMGR
#include <os2.h>

#define HF STDIN 0
#define HF-STDOUT 1
#define BUF;;;.SIZL80

ULONG .. cbWri tten, cbRead;
BYTE abBuffer[BUF_SIZE];

·/* FileSy~tem values*/

/* Standard input. handle */
/* Standard output handle */

static UCHAR szEnterName[] = "Enter a name: 11
;

DosWrite(HF_STDOUT, szEnterName, sizeof(szEriterName), &cbWritten);

DosRead(HF_STDIN, abBuffer, sizeof(abBuffer), &cbRead};

DosWrite(HF_STDOUT. abBuffer, cbRead, &cbWritten);

Figure 4-13. Writing to Standard Output

Standard Error
File handle 2 is the standard error file. This handle, like the standard output handle,
enables applications to write characters on the screen. Most applications use the
standard error file to display error messages, enabling the application to redirect
standard output to a file without also redirecting error messages to the file.

Redirecting Standard File Handles
The standard input, standard output, and standard error files are usually the
keyboard and screen, but not always. For example, if you redirect standard output
by using the greater-than (>) redirection symbol on the application's command line,
all data written to the standard output file goes to the given file.

The following command line redirects standard output to the file SAMPLE.TXT and
redirects error messages to the file SAMPLE.ERR:

type startup.cmd >sample.txt 2>sample.err

When a standard file is redirected, its handle is still available but corresponds to the
given disk file instead of to the keyboard or screen. You can still use DosRead and
DosWrite to read from and write to the files.

You can use DosDupHandle to redirect a standard file from inside your application.
If you duplicate the standard input file handle, your application reads from the
specified file rather than from the keyboard. Duplicating the stanpard output file
handle causes output to be directed to a file or device instead of to the standard
output device.

4-22 OS/2 2.0 Programming Guide-Volume I

Summary

The following code fragment shows how to use the standard input handle to read
from a file:

Figure 4-14. Duplicating the Standard Input Handle

Following are the OS/2 functions and data structures used in file object
management.

Table 4-3 (Page 1 of 2). File Management Functions

File Functions

DosClose

Dos Copy

Dos Delete

DosEdltName

Dos Move

Dos Open

Dos Read

DosSetFilelnfo

DosSetFileLocks

DosSetFllePtr

DosSetFlleSlze

DosSetPathlnfo

DosSetVerify

Dos Write

Closes a file handle.

Copies a file or subdirectory.

Deletes a file.

Transforms a file name.

Moves a file or subdirectory.

Gets a handle to a file, pipe, or device.

Reads from a file, pipe, or device.

Sets information for an open file.

Locks an unlocks a range in a file.

Moves the position of the file pointer.

Changes the size of a file.

Sets information for a file or subdirectory.

Enables write verification.

Writes data to a file, pipe, or device.

Chapter 4. File Management 4-23

Table 4-3 (Page 2 of 2). File Management Functions

File Handle Functions

DosDupHandle Duplicates a file handle.

DosQueryFHState Gets the file handle state.

DosQueryHType Gets the handle type.

DosSetFHState Sets the file handle state.

DosSetMaxFH Sets the maximum number of file handles.

File Query Functions

DosEnumAttrlbute Gets the name and size of a file object's extended
attributes.

DosQueryFilelnfo Gets information for an open file.

DosQueryPathlnfo Gets information for a file or subdirectory.

DosQuerySyslnfo Gets values of system variables.

DosQueryVerlfy Determines whether or not write verification is
enabled.

Directory Search (FileFind) Functions

DosFindClose Ends a search for matching file objects.

DosFlndFlrst Begins a search for matching file objects.

Dos Find Next Continues a search for matching file objects.

Directory and Disk Functions

DosCreateDlr Creates a subdirectory.

DosDeleteDlr Deletes an empty subdirectory.

DosQueryCurrentDir Gets the current directory.

DosQueryCurrentDlsk Gets the current drive.

DosSetCurrentDlr Sets the current directory.

DosSetDefaultDisk Sets the default drive.

Environment and Search Path Functions

DosScanEnv Scans environment variable.

DosQueryPathlnfo Gets information for a file or subdirectory.

DosSearchPath Searches along a specified path.

DosSetPathlnfo Sets information for a file or subdirectory.

Table 4-4 (Page 1 of 2). File Management Data Structures

Data Structure Description

DENA1 Level 1 info. returned from DosEnumAttribute.

FDATE A sub-structure used in the FILEFINDBUF and the
FILESTATUS structures. Used to contain
information about various dates associated with
the file (creation, last change, and so on).

4-24 OS/2 2.0 Programming Guide-Volume I

Table 4-4 (Page 2 of 2). File Management Data Structures

Data Structure

FILEFINDBUF

FILE LOCK

FILESTATUS

FTIME

VOLUMELABEL

Description

Used by DosFindFirst and DosFindNext to return
information about files. There are also variations
of the data structure called FILEFINDBUF2,
FILEFINDBUF3, and FILEFINDBUF4.

Used by DosSetFilelocks to indicate the range to
lock within the file.

Used when querying and setting information about
a file, such as the file's dates, times, and size.

A sub-structure of FILEFINDBUF and FILESTATUS.
Contains information about the time the file was
created, last changed, and so on.

A sub-structure of the FSINFO data structure. It
contains the volume's label.

Chapter 4. File Management 4-25

4-26 OS/2 2.0 Programming Guide-Volume I

Chapter 5. Extended Attributes

OS/2 file systems maintain a standard set of information on file objects. This
standard set of information is referred to as Level 1 file information. level 1 file
information includes the name and size of the file object, and the date and time the
file object was created, last accessed, and last written to.

Applications can attach additional information to a file object in the form of an
extended attribute (EA). There can be many EAs associated with a file object and,
because of their flexibility, almost any information about the file can be stored in
one.

The following topics are related to the information in this chapter:

• Files Systems
• Files Names
• Files Management.

About Extended Attributes.

© Copyright IBM Corp. 1992

Level 1 file information is the basic information describing files that is stored by the
file system. Level 1 file information includes the size of the file, and the date and
time it was created, last written, and last accessed. A subset of this information is
typically displayed by entering the DIR command on the OS/2 command line.
Applications can obtain Level 1 file information by calling DosQueryPathlnfo and
DosQueryFilelnfo. Applications can set Level 1 File Information by calling
DosSetPathlnfo and DosSetFilelnfo.

Applications can attach additional information to a file object in the form of an
extended attribute (EA). Extended attributes can be used to describe the file object
to another application, to the operating system, and to the file system that is
managing that object.

This information can be used to:

• Store notes on file objects (for example, the name of the file creator)
• Categorize file objects (for example, source, samples, icons, bit maps)
• Describe the format of data contained in the file object (for example, a data

record)
• Append additional data to the file object.

An application uses extended attributes to provide a description of a file or directory
but the application does not place the description in the file or directory itself.
Extended attributes associated with a file object are not part of the file object or its
data. They are stored separately from the file they are linked to and the file system
manages the storage and maintenance of the EA.

Each extended attribute has two parts, a name and a value. The name is a
NULL-terminated string; any convenient name can be chosen. EA names are
restricted to the same character set as file names.

5-1

The value of the EA can be text, a bit map, binary data, anything at all. The
operating system does not check data that is associated with an EA. The application
that creates the extended attributes and the applications that read them must
recognize the format and meaning of the data associated with a given EA name.

Applications can examine, add, and replace extended attributes at any time. Any
application can read the extended attributes by using the DosQueryFilelnfo or
DosQueryPathlnfo function. Applications can use DosFindFirst and DosFindNext to
search for files that have specific extended attributes.

A file can have any number of extended attributes. This is illustrated in Figure 5-1.
Each extended attribute can be up to 64KB in size. The sum of all extended
attributes for a file must not exceed 64KB.

FILE TYPE ~ HISTORY

I Data for My_App
My_File I Created by myself 1989 I

VERSION

1
COMMENTS

11.00 Cannot be used with
any other app

KEYPHRASES EXTRA DATA

I my_own_key_phrases I A brief summary You can store additional
of the file's data for My _App in an
content/purpose extended attribute

Figure 5-1. Extended Attributes of a File

In Figure 5-1, the file My_File has extended attributes with the following names and
values:

Name
FILE TYPE
HISTORY
VERSION
COMMENTS
KEYPHRASES
SUBJECT
EXTRA DATA

Value
Data for My_App
Created by myself 1989
1.00
Cannot be used with any other app
my_ own_ key _phrases
A brief summary of the file's contents or purpose
I can store additional data for My_App in an extended attribute

So that extended attribute data can be understood by other applications,
conventions have been established for naming EAs and indicating the type of data
they contain.

In addition, a set of Standard Extended Attributes (SEAs) have been defined. SEAs
define a common set of information that can be associated with most files (for
example, file type and file purpose). Through SEAs, many applications can access
the same, useful information associated with files.

Applications are not limited to using SEAs to associate information with files. They
can define their own application-specific extended attributes.

5-2 OS/2 2.0 Programming Guide-Volume I

Extended attributes associated with a file object are not part of the file object or its
data.

Extended attributes are supported by the OS/2 High Performance File System and
by the OS/2 FAT file system in versions of the OS/2 operating system including and
following Version 1.2.

Applications define and associate extended attributes with a file object through file
system functions. The file system functions that use and manipulate EAs are:

• DosOpen
• DosFindFirst
• DosQueryFilelnfo
• DosQueryPathlnfo
• DosSetFilelnfo
• DosSetPathlnfo.

Extended Attribute Data Type Conventions
Extended attributes (EAs) can contain any type of data. So that applications can
understand the type of information stored in an EA, the first WORD of EA data must
specify one of the following data types:

Table 5-1. Extended Attribute Data Types

Data Type Value Description

EAT_BINARY FFFE Binary (non-text) data; the first WORD following
the data type specifies the length of the data.

EAT_ASCll FFFD ASCII text; the first WORD following the data type
specifies the length of the data.

EAT_BITMAP FFFB Bit map data; the first WORD following the data
type specifies the length of the data.

EAT_METAFILE FFFA Metafile data; the first WORD following the data
type specifies the length of the data.

EAT_ICON FFF9 Icon data; the first WORD following the data type
specifies the length of the data.

EAT_EA FFEE ASCII name of another EA that is associated with
the file. The contents of that EA are to be
included into the current EA. The first WORD
following the data type specifies the length of the
data.

EAT_MVMT FFDF Multi-Valued, Multi-Typed data-two or more
consecutive extended attribute values. Each
value has an explicitly specified type.

EAT_MVST FFDE Multi-Valued, Single-Typed data-two or more
consecutive extended attribute values. All
values have the same type.

EAT_ASN1 FFDD ASN.1 field data; an ISO standard for describing
multivalue data streams.

Values of hex 8000 and up are reserved. Values between hex 0000 and hex 7FFF
can be defined by the user.

Symbolic constants are defined in BSEDOS.H and BSEDOS.INC.

Chapter 5. Extended Attributes 5-3

In all cases, the length specifies the number of bytes of data. Other values for data
types, in the range hex 0000 through hex 7FFF, can be used for user-defined
extended attributes.

All user-defined data types should be length-preceded, meaning that a WORD
indicating the length of the data (in bytes) precedes the data.

For example, here is how to represent the string "Hello":

EAT_ASCII 0005 Hello

Figure 5-2. Extended Attribute ASCII Text String

Multi-Value Data Type Fields
In many cases, it is desirable for extended attributes (EAs) to store more than a
single piece of information. For example, an extended attribute can store a list of
names to which a document was sent. The multi-value formats specify how
individual pieces of data are stored.

Data entries are length-preceded, making it easy to traverse a multi-valued list.

In order to allow EAs of different code pages, multi-valued EAs include a field in
which the EA's code page is specified. For example, the code page field could be
used to indicate that the comments for a Kanji file are written in Spanish. If this
value is 0, the file default is assumed. (Code page data is for use by applications.
The operating system does not examine or use EA code page information.)

When the concept of a default applies to a multi-valued EA, the first entry in the list
is assumed to be the default. For example, suppose an EA entry contains the
strings "Text" and "C Code". "Text" is considered the default type. If "C Code"
were the first entry in the list ("C Code" then "Text"), then "C Code" would be
considered the default type.

There are three multi-valued EA data types:

• Multi-Valued, Multi-Typed Data
• Multi-Valued, Single-Type Data
• ASN .1 Data.

Multi-Valued, Multi-Typed Data Type
This data type indicates that the value of a single extended attribute (EA) contains
several pieces of information, each of a different data type. It is formatted as
follows:

Figure 5-3. Format of Multi-Valued, Multi-Typed Extended Attributes

The first word indicates that the EA value is multi-valued, multi-typed. The second
word indicates the code page associated with the language in which the EA value is
written. The third word indicates the number of entries contained in this EA value.
The next word indicates the data type for the first entry in this EA value, followed by
the data for the first entry. The next word, if any, indicates the data type for the

5-4 OS/2 2.0 Programming Guide-Volume I

second entry in this EA value, followed by the data for the second entry. The pattern
repeats- data type, followed by data-for any remaining entries.

For example, an extended attribute can have the following value:

Figure 5-4. A Multi-Valued Multi-Typed Extended Attribute

This is a multi-valued extended attribute with two entries, using the default code
page. The first entry is the string "Hello John", and the second is the binary data
Ox12 Ox21 Ox34.

Whether or not the data is length-preceded is a function of the data type.

Multi-Valued, Single-Type Data Type
This data type indicates that the value of a single extended attribute (EA) contains
several pieces of information, each of the same data type. For example:

Figure 5-5. Format of Multi-Valued, Single-Typed Extended Attributes

The first word indicates that the EA value is multi-valued, single-typed. The second
word indicates the code page associated with the language in which the EA value is
written. The third word indicates the number of entries contained in this EA value.
The next word indicates the data type of all the entries contained in this EA value,
followed by the data for all entries.

For example, the following EA value contains three ASCII names:

Figure 5-6. MVMT Extended Attribute Containing Three ASCII Names

Each name string is preceded by the length of the string. Whether or not the data is
length-preceded is a function of the data type.

ASN.1 Data Type
This data type indicates that the extended attribute uses the ASN.1 ISO standard to
describe a multi-valued data stream.

Chapter 5. Extended Attributes 5-5

Including One Extended Attribute in Another
Extended attributes (EA) can contain pointers to data stored in other places.

This data type indicates that the data contained in another EA associated with the
file object should be included into the current EA.

For example, the following EA value contains the string "Hello", followed by the
data in the EA named AB.STUFF, followed by the string "Bye".

Figure 5-7. Extended Attribute Containing Data in Another Extended Attribute

Extended Attribute Naming Conventions
Because many applications use text, bit maps, and other binary data in extended
attributes, standard names have been adopted to help identify these formats. An
application is not limited to these Standard Extended Attributes but should use them
when many applications will be accessing the same data.

Standard Extended Attributes (SEAs) have a dot(.) as a prefix. This identifies the
extended attribute as a SEA. The leading dot is reserved, so applications should not
define extended attributes that start with a dot. Also, extended attributes that start
with the characters $, @, &, or + are reserved for system use.

To ensure that its extended attributes are unique, an application should use the
name of the company and the name of the application (or suitable abbreviations of
each) as a prefix for application-specific extended attributes.

For example, Company A has an OS/2 Application, B, that defines extended
attributes STUFF, MORE_STUFF, and STILL_MORE_STUFF for its file objects. The
names of these extended attributes could be represented by the following entry:

Figure 5-8. Extended Attribute Names

Standard Extended Attributes
There are nine OS/2 Standard Extended Attributes (SEAs).

The name of a SEA has a dot(.) as a prefix. This identifies the extended attribute as
a SEA.

The values of Standard Extended Attributes can be multi- or single-valued, with
formats following the data type conventions discussed previously.

Where entries for Standard EAs consist of ASCII characters, case is important.

5-6 OS/2 2.0 Programming Guide-Volume I

The Standard EAs that have been defined are:

.ASSOCTABLE

.CODEPAGE

.COMMENTS

.HISTORY

.ICON

.KEYPHRASES

.LONG NAME

.SUBJECT

.TYPE

.VERSION

The .TYPE and .ASSOCTABLE extended attributes (EA) are two of the most useful
SE As.

The .TYPE extended attribute indicates what type of data is in a file. It also implies
what programs can edit the file, and what icon is to be used for the file. The
operating system can use the .TYPE EA to determine a default application to run
and a default icon for a file of a particular type (if there is a .ICON EA, it will be used
instead of the icon associated with a particular data type).

The .ASSOCTABLE extended attribute allows an application to indicate the type,
extension, and icon for data files that it recognizes. It also contains an ownership
flag. This data can be automatically installed by the operating system. When your
program recognizes files created by other programs, you might want to install
.ASSOCTABLE EA entries for those other programs.

The .ASSOCT ABLE Standard Extended Attribute
The .ASSOCTABLE extended attribute (EA) contains information that associates
data files with the applications that create them or that know how to use them. The
.ASSOCTABLE extended attribute enables an application to indicate the type,
extension, and icon for the data files it recognizes. The .ASSOCTABLE EA also
contains an ownership flag. This tells the operating system which application to run
when the user double-clicks the mouse on a given data file.

Because programs can understand and reference data files generated by other
programs, this EA can be used to link a program with those files.

The name of this EA consists of the string ".ASSOCTABLE". The value of this EA
contains application information and consists of multi-valued, multi-typed fields that
link the application with:

• the file type (that is, the value of a .TYPE EA),
• the file extension,
• and icon data for data files that it generates or references. The .ASSOCTABLE

EA associates icons by file-type. The data file's file-type is indicated in the
.TYPE EA, or, if the data file does not have a .TYPE EA, by the extension.

This data can be installed automatically by the operating system.

Chapter 5. Extended Attributes 5-7

The format of the EA is as follows.

Figure 5-9. Format of the Entries in the .ASSOCTABLE Extended Attribute

The source for the .ASSOCTABLE EA is contained in the resource file for an
application. The .ASSOCTABLE EA is created using the Resource Compiler from a
table with the following form:

Figure 5-10 .. ASSOCTABLE Table Used by the Resource Compiler

The association_name is the name of a file type that the Resource Compiler
understands. (This is the same name found in the .TYPE field of data files.)

The extension is the three letter file extension that is used to identify files of this
type, if they have no .TYPE EA entry. (Three letter extensions should be used so
that FAT file systems can make use of this EA). This field can be empty.

The icon_tilename is the name of the file that contains the icon that is to be used to
represent this file type. (This field can also be empty.)

The .ASSOCTABLE flag indicates that the program is the default application for data
files with the specified type. This determines the program the operating system will
start when the file is double-clicked with the mouse.

If more than one program has marked itself as the EAF _DEFAUL TOWNER for a
particular data file .TYPE, the operating system will not know which program to run
when the file of this .TYPE is double-clicked on with the mouse. If no program is
marked as the EAF _DEFAUL TOWNER for a particular data file .TYPE, the operating
system will be similarly confused. In both cases, the operating system provides the
user with a list of applications that understand the file .TYPE, regardless of whether
the application is the owner or not. The user selects the program to run from this
list.

The flag entry indicates whether the application owns the file or merely recognizes
the .TYPE. If this flag is set, the entry describing data files of this type cannot be
edited. This flag is specified if a previously defined icon in the ASSOCTABLE is to
be reused. Entries with this flag set have no icon data defined. The icon used for
this entry will be the icon used for the previous entry.

EAF _flags can be ORed together when specified in the ASSOCTABLE. The EAF
flags are defined in PMWIN.H and PMWIN.INC.

5-8 OS/2 2.0 Programming Guide-Volume I

.ASSOCTABLE Example
For example, My_Company's application, My_Application, generates or references

·data files that have the following .TYPE names:

.My....;Co111pany My,,,.Application·documentation
My_CQmpany My_Appl i cation macros
MY...;.Company My._Application spreadsheet
My,,,_Company My_Application chart
Your.:,.CompanyJour Applicationforecast

Figure 5-11. My_Application's .TYPE Extended Attribute

The source for the .ASSOCTABLE extended attribute in the resource file for
My_Application could look like the following.

ASSOCTABLE
. BEGIN ~

11My,;_Company My_Appl ication documentation", 11 DOC 11
, EAF._DEFAULTOWNER, My_App.ICO

1'My.,,.Company My~Appl ication macros", "MAC", EA(,,DEFAULTOWNER+EAF..,.REQSElICON
11My...;.Company ftfY._~pplkaUon spreadsheet", 11SPR11

, •. · EAF.:..OEFAULTOWNER+EAF_REUS~ICON
"My.:._COJllpanyMy.._Af:Jplication· .. chart 11

, ·
11 .CHI" ;. EAF_DEJAULTOWNER+EAF"""REUSEI:CON

11Your_Company Your""Application·•.forecast11
, "FOR", .. 0

·ENO

Figure 5-12. Sample Resource Compiler Source File

My_Application can load and use some files generated by Your_Application.
However, because My_Application is not the default owner of those files, the
operating system does not run My_Application when the user double-clicks on the
files with the mouse.

Figure 5-13 on page 5-10 illustrates how the value of the .ASSOCTABLE EA for
My_Application might look. It is a multi-valued, multi-typed EA with five
multi-valued, multi-typed entries (one for each file type referenced or generated by
the application).

Chapter 5. Extended Attributes 5-9

Figure 5-13 .. ASSOCTABLE EA Value for My_Application

The .CODEPAGE Standard Extended Attribute
The .CODEPAGE extended attribute (EA) contains the code page for the file. If this
extended attribute is not provided, the code page of the file is the system default or
is defined by the application.

The code page of the EA data associated with the file is assumed to be that of the
file, unless the EA entry is specifically overridden in the code page field in the
multi-valued extended attribute data type.

The .COMMENTS Standard Extended Attribute
The .COMMENTS extended attribute (EA) contains miscellaneous notes or
reminders about the file (for example, peculiarities, restrictions, or requirements).

The name of this EA consists of the string ".COMMENT". The value of this EA
consists of miscellaneous notes and can be multi-valued and of any type.

The .HISTORY Standard Extended Attribute
The .HISTORY extended attribute (EA) contains the modification history for a file
object, indicating the author of the file and all subsequent changes. Each entry is
separate field in a multi-value field and consists of be ASCII characters only.

The name of this EA consists of the string ".HISTORY". The value of this EA
contains the modification history for a file object and can be multi-valued, with each
action entry described in a separate field.

5-10 OS/2 2.0 Programming Guide-Volume I

Each entry in the .HISTORY field has the following format:

Figure 5-14. Format of the .HISTORY Extended Attribute

For example, the following .HISTORY extended attribute contains two entries:

Figure 5-15 .. HISTORY Extended Attribute with Two Entries

This extended attribute can potentially become quite large. To avoid unwanted

growth, an application can let the user decide when an entry should be added to this

extended attribute. For example, there are some cases when it is important to note

when a document is printed. However, it is probably unnecessary to note it every

time the file is printed.

The .ICON Standard Extended Attribute
The .ICON extended attribute (EA) specifies the icon to be used for the file

representation, for example when the application is minimized. This extended

attribute contains the physical icon data used to represent the file object.

If there is no .ICON EA, the operating system can use the .TYPE entry to determine a

default icon to use for the particular file. If there is an .ICON entry, however, it is

used instead of the default icon.

The name of this EA consists of the string ".ICON". The value of this EA contains

the physical icon data and has the following format:

Figure 5-16. Format of the .ICON Extended Attribute

The data is of type BITMAPARRAYFILEHEADER and is used to specify an array of

one device-dependent and one device-independent icon bit maps. The

GpiloadBitmap and WinloadPointer functions support this icon file format.

It is best to provide as much icon information as possible. Ideally, an icon should be

64-by-64 bits in 8-color, device-independent format.

The Icon Editor is used to create the icon, which is saved in an icon file. The .ICON

extended attribute for an application is created by the Resource Compiler as part of

the compile process by specifying the DEFAULTICON keyword, as in:

DEFAULTICON <filename.ico>

This keyword uses the icon definition contained in the specified icon file

(FILENAME.ICO) to create the .ICON EA for the application.

Chapter 5. Extended Attributes 5-11

Applications store the binary icon data in this extended attribute. To install icons for
data files, the applications can use the .ASSOCTABLE extended attribute, or
DosSetPathl nfo.

The .KEYPHRASES Standard Extended Attribute
The .KEYPHRASES extended attribute (EA) contains key text phrases for the file.
Such phrases can be used in performing a database-type search or in helping the
user understand the nature of the file.

The name of this EA consists of the string ".KEYPHRASES". The value of this EA
consists of key phrases in ASCII.

Key phrases are represented as ASCII characters. Multiple key phrases can be
stored in the value of this extended attribute, each stored in a separate entry in a
multi-valued field.

For example, the following extended attribute contains three key phrases:

EAT MVST . 0000 0003 EAT ASCII aoes ~BC Inc~:
- EAT-ASCU ~00A Sal e~ma~ Am . . .•. ·.

EA(ASCIIOeeF·Product X sales

Figure 5-17 .. KEYPHRASES Extended Attribute with Three Keyphrases

If there is more than one key phrase, each should be stored in a separate entry in a
multi-value field.

The .LONGNAME Standard Extended Attribute
When an application attempts to write a file with a long name to a file system that
does not support long names, it must generate a short name for the file. The
application should notify the user of the new short name and save the original (long)
name in the .LONGNAME extended attribute.

When a file is copied from a system that uses short names to a system that uses
long names, the application should check the .LONGNAME extended attribute. If a
value is present, the application should rename the file to the long name, then
remove the .LONGNAME extended attribute.

See "Moving Files with Long Names" on page 3-5 for more information on moving
files with long file names.

The .SUBJECT Standard Extended Attribute
The .SUBJECT extended attribute (EA) contains a brief summary of the content or
purpose of the file object it is associated with.

The name of this EA consists of the string ".SUBJECT". The value of this EA
consists of a single-valued ASCII string that contains the purpose of the file object.

The length of this field must be less than 40 characters.

5-12 OS/2 2.0 Programming Guide-Volume I

The . TYPE Standard Extended Attribute
The .TYPE extended attribute (EA) indicates the file-type of the file object it is
associated with. It is similar to a file name extension.

The name of this EA consists of the string ".TYPE". The value of this EA contains
the file object's file-type. The following file types are predefined:

Plain Text
OS/2 Command File
DOS Command File
Executable
Metafile
Bit map
Icon
Binary Data
Dynamic Link Library
CCode
Pascal Code
.BASIC Code
COBOL Code
FORTRAN Code
Assembler Code
Library
Resource Fi le
Object Code.

Data files only require identification of the file type. For data files without EAs, the
file type is derived from the file extension, if there is one.

File object types are represented as length-preceded ASCII strings, uniquely
identifying the file object's type. This identifier is referenced within the application's
.ASSOCTABLE EA in order to bind the data file type to the application. It is
important that this name be a unique identifier because all file type names are
public data. For example, if application A and application B both had a type name of
SPREADSHEET, the filing system would not be able to identify A's SPREADSHEET
from B's SPREADSHEET.

The recommended convention for defining file object types is:

• Company_name
• Application_name
• Application-specific_name

with spaces separating each.

For example, spreadsheet files generated by My_Application written by
My_ Company might have a file object type of the following.

Figure 5-18. My_Company My_Application Spreadsheet's File Type

Type names must be ASCII characters and case is significant.

Note: The performance of extended attributes is dependent on the file system.
Because some file systems store extended attributes in first-in/first-out

Chapter 5. Extended Attributes 5-13

(FIFO) order, it is important to write the .TYPE entry first so the operating
system can access that information quickly.

The . VERSION Extended Attribute
The .VERSION extended attribute (EA) contains the version number of the file
format, as shown below.

Figure 5-19. The .VERSION Extended Attribute

The name of this EA consists of the string ".VERSION". The value of this EA
contains the file object version number. This attribute can be ASCII or binary. Only
the application that created the file object should modify the value of this EA. It can
also be used to indicate an application or dynamic link library version number.

Managing Extended Attributes
An application can create, query, and set extended attributes (EAs) for any file
object.

The application can define extended attributes for a file when the file is created with
DosOpen. Similarly, the application can define EAs for a directory when the
directory is created using DosCreateDir.

An application can define EAs for existing file objects by referencing the file object
by its handle and calling DosSetFilelnfo, or by referencing the file object by its name
and calling DosSetPathlnfo.

An application can examine the EAs for a file object by referencing the file object by
its handle and calling DosQueryFilelnfo, or by referencing the file object by its name
and calling DosQueryPathlnfo. The application can also call DosEnumAttribute,
using either the file object's handle or its name, to get information about the file
object's EAs.

In addition, an application can search for file objects and specify that certain EAs be
returned by calling DosFindFirst.

Controlling Access to Extended Attributes
Like the file objects they are associated with, extended attributes (EAs) can have
more than one process accessing them at the same time. This means that one
process could be querying EAs for a file object, while another is setting EAs for the
same file object.

In addition, operations on EAs are not atomic. That is, a query or set operation
might not complete before another query or set operation is performed on the same
object. If an error occurs before an entire list of EAs has been set, all, some, or
none of them may actually remain set on the file object. This means that EAs may
not remain in a consistent state unless the order in which the operations are
performed can be guaranteed.

Sharing protection is provided so that unpredictable results do not occur during
multiple simultaneous operations on extended attributes. EA manipulation is
associated with the access permission to the related file object (file or directory).

5-1-il- OS/2 2.0 Programming Guide-Volume I

Handle-based access permission is controlled by the sharing/access mode of the
associated file object:

• If the file object is open for read access, querying EAs (using DosQueryFilelnfo)
is permitted.

• If the file object is open for write access, setting EAs (using DosSetFilelnfo) is
permitted.

Path-based access permission is controlled by adding the file object to the sharing
set for the duration of the call:

• For querying EAs (using DosQueryPathlnfo), an application requires read access
and file-sharing permission must be set to deny-write.

• For setting EAs (using DosSetPathlnfo), an application requires write access and
file-sharing permission must be deny-read-write.

Note: The functions that set and query EAs fail if another process holds conflicting
sharing rights to the file object.

No explicit EA sharing is performed for DosEnumAttribute. Implicit sharing exists if
the caller passes the handle of an open file, since sharing access to the associated
file is required to modify its EA. No sharing is performed if the caller passes the
path name. This means that if some other process is editing the EAs, and changes
them between two calls to DosEnumAttribute, inconsistent results might be returned
(for example, the same values might be returned twice, some values might be
missed, and so on).

To prevent the modification of EAs for the handle case, the file should be opened in
deny-write mode before calling DosEnumAttribute. To prevent the modification of
EAs for the path name case, the file should be open in deny-write mode before
calling DosEnumAttribute. For the directory name case, no sharing is possible.

Extended Attribute Data Structures
There are a ~eries of data structures through which OS/2 functions manipulate
extended attributes (EAs) for applications:

• Full EAs (FEA2s)
• A list of full EAs (FEA2List)
• Get EAs (GEA2)
• A list of get EAs (GEA2List)
• EAOP2s

Full Extended Attribute (FEA2) Data Structure
A full EA (FEA2) data structure contains the extended attribute name and value. The
name length does not include the trailing NULL. The characters that form the name
are legal file name characters.

An FEA2List is a list of FEA2 structures, preceded by the length of the list (including
the length itself). FEA2Lists are used for querying, adding, deleting, or changing
EAs. They are required input parameters for the functions that create or set
extended attributes (DosSetFilelnfo and DosSetPathlnfo). They are required output
parameters for the functions that query extended attributes (DosQueryFilelnfo,
DosQueryPathlnfo, and DosEnumAttribute).

Chapter 5. Extended Attributes 5-15

FEA2 data structures include the lengths of the extended attribute's names and
values. EA name lengths of Oare illegal and cause errors to be returned by EA
functions. An EA value length of O has special meaning:

• Setting an EA with a value length of O in the FEA2 data structure causes that
attribute to be deleted, if possible.

• Getting an EA with a value length of O in the FEA2 data structure indicates that
the attribute is not present.

Get Extended Attribute (GEA2) Data Structure
A Get EA (GEA2) is an extended attribute name. The name length does not include
the trailing NULL.

A GEA2List is a list of GEA2 structures, preceded by a length of the list (including
the length itself). GEA2Lists are used for retrieving the values for a particular set of
extended attributes. They are required input parameters for the functions that query
extended attributes (DosQueryFilelnfo, DosQueryPathlnfo, and DosEnumAttribute).

Note: GEA2 data structures include the lengths of extended attribute's names and
values. EA name lengths of 0 are illegal and cause errors to be returned by
EA functions. An EA value length of O has special meaning. Setting an EA
with a value length of 0 in the FEA2 data structure causes that attribute to be
deleted, if possible. Getting an EA with a value length of 0 in the FEA2 data
structure indicates that the attribute is not present.

Extended Attribute Operation (EAOP2) Data Structure
An extended attribute operation (EAOP2) data structure consists of a GEA2List, an
FEA2List, and an error field. All extended attribute manipulation is performed using
this structure. Before calling an extended attribute function, an application must
define an EAOP2 structure, with the GEA2List and FEA2List appropriately defined.

The use of GEA2List and FEA2List for each function is described further in the
Control Program Programming Reference.

Preserving Extended Attributes
Extended attributes (EAs) are supported in the OS/2 operating system FAT file
system and High Performance File System. Extended attributes are not supported
by the FAT file system used in versions of Operating System/2 prior to Version 1.2,
nor are they supported in the DOS operating system.

EAs associated with a file object are not part of a file object or of its data, but are
maintained separately and managed by the file system that manages that object.
EAs reside on the volume on which the file object resides and are connected to their
file object by pointers from the file object.

Therefore, EAs belonging to a file object are lost when moving that file object from a
storage device managed by an OS/2 FAT or installable file system to a storage
device managed by the old FAT file system.

EAs can be lost under other circumstances, as well:

• When a program that does not recognize EAs (for example, an editor written for
DOS) performs a non-truncating open on the files the EAs are associated with

• When the files they are associated with are sent over COM links.

So that files with EAs can be manipulated under these circumstances, without losing
their EAs, the OS/2 operating system provides a utility called EAUTIL EAUTIL

5-16 OS/2 2.0 Programming Guide-Volume I

enables users to separate extended attributes from the specified file object,
optionally disassociating them from the file object. The extended attributes are
placed into a specified HoldFile. This utility also enables users to reattach the
separated extended attributes with their file objects.

EAUTIL can be applied to subdirectories, as well as to files. It does not support
global file name characters in parameters; it operates on a single file object at each
invocation.

Users can use EAUTIL to:

• Strip EAs off files to be edited with a program that does not recognize EAs.

• Place the EAs into normal files so they can be dealt with by old tools (such as
backup, restore, and so on) or easily transmitted.

• Reattach EAs to files after the files have been brought back from the systems
where EAs are not supported.

For more information on EAUTIL, see the online OS/2 Command Reference.

Protecting Extended Attributes
Programs written for releases of the OS/2 operating system and DOS that do not
support extended attributes (EAs) will tend to lose EAs simply because they do not
know that they exist. The OS/2 operating system provides some controls that
prevent old programs from destroying critical data without unduly restricting their
activities. This is done by classifying programs and marking the extended attributes
that are associated with files.

Programs are classified as:

• Those that recognize EAs. These include OS/2 Version 1.2 and later programs.

• Those that do not recognize EAs. These include programs written for releases of
the OS/2 operating system and DOS that do not support EAs.

EAs associated with files are marked as critical or non-critical. Programs that do
not recognize EAs are not permitted to manipulate files that have critical EAs
associated with them. This protection does not apply to directories. EAs associated
with directories cannot be marked as critical.

Crltlcal Extended Attributes
Extended attributes (EAs) are non-critical by default. A non-critical EA is one that is
not necessary to the functionality of the application. That is, if a non-critical EA is
lost, the system continues to operate correctly. For example, losing the icons
associated with data files does not generally cause any ill effect other than the
inability to show the icon.

A critical extended attribute is one which is necessary to the correct operation of the
operating system or of a particular application. EAs should be marked as critical if
their loss would cause the system or program to perform incorrectly. For example,
a mail program might store mail headers in EAs. The loss of the header from a
message would normally render the mail program completely unable to further use
that message. This would be unacceptable, so the mail program should mark this
EA as critical.

A file has critical extended attributes (EAs) if at least one EA attached to the file is
marked as critical.

Chapter 5. Extended Attributes 5-17

Marking EAs as critical only prevents programs that do not recognize EAs from
losing the EAs from the file. It does not prevent deletion of files by any application.

Applications must be careful how they mark their EAs. If they are too aggressive
marking EAs as critical, users might be prevented from accessing files that their
application uses.

EAs are marked as critical by setting the critical bit. The critical bit is bit 7 of the
flags byte of the FEA2 data structure. If this bit is 0, the EA is a non-critical EA. If it
is 1, it is a critical EA. The symbolic constant FEA_NEEDEA can be used to indicate
a critical EA.

The creator of the EA determines whether it is critical or not.

Programs that do not recognize extended attributes (EAs) are prevented from
performing certain operations on files that have critical EAs associated with them.
For example, a program that does not recognize EAs is not permitted to perform a
non-truncating open on a file with critical EAs associated with it, because programs
cannot be permitted to read the data and ignore the EAs.

Programs that do not recognize EAs are, however, permitted to perform those
operations that they can do completely. For example, they can delete files with
critical EAs associated with them. Programs that do not recognize EAs are not
prevented from accessing files whose EAs are not critical.

Programs that recognize EAs have no restrictions placed on their actions with
respect to critical EAs.

Programs that recognize extended attributes must identify themselves to the
operating system. This is done by including the NEWFILES declaration in the
program's module definition file. The NEWFILES declaration is also how programs
indicate that they understand and use long file names.

Searching for Extended Attributes
An application can search for file objects that have specific extended attribute
names by calling DosFindFirst twice. The steps involved are:

1. Call DosFindFirst for Filelnfolevel = 2, to get the length of the buffer required to
hold the EAOP2 data associated with a matching file object.

2. Call DosFindFirst for Filelnfolevel = 3, to get the EAOP2 data associated with
the matching file object.

Supporting Extended Attributes
To support extended attributes, applications should do the following:

1. Fill in the .ASSOCTABLE extended attribute for all major file types that the
application recognizes or uses.

2. Fill in the .ICON extended attribute for executable files.

3. Set the .TYPE extended attribute for data files the application creates.

4. Fill in and use the .LONGNAME extended attribute as appropriate.

5. Support .HISTORY and .VERSION.

6. Support the other Standard Extended Attributes as appropriate.

5-18 OS/2 2.0 Programming Guide-Volume I

Summary
Following are the OS/2 data structures used in managing extended file attributes.

Table 5-2. Extended Attribute Data Structures

Data Structure Description

EAOP2 Extended Attribute OPeration data structure.
Contains a FEA2List data structure, a GEA2List
data structure, and an error field. All EA
manipulation is performed using this structure.

FEA2 Full Extended Attribute data structure. Contains an
EAs name and value. Used in a FEA2List for
querying, adding, deleting, and changing EAs.

FEA2List List of FEA2 data structures. Used in an EAOP2 for
the functions that create, set, or query EAs.

GEA2 Get Extended Attribute data structure. Contains an
EAs name. Used in a GEA2List for querying
certain EAs.

GEA2List List of GEA2 data structures. Used in an EAOP2
for the functions that query certain EAs.

Chapter 5. Extended Attributes 5-19

5-20 OS/2 2.0 Programming Guide-Volume I

Chapter 6. Memory Management

This chapter describes the memory management features and functions of the OS/2
operating system. The key features of OS/2 memory management are paged virtual
memory and a 32-bit linear (flat) address space that is mapped through page tables
to physical memory. An OS/2 application can allocate memory for its own use or to
be shared with other applications.

The following topics are related to the information in this chapter:

• Exception Handling
• Program Execution and Control
• Semaphores
• Queues.

About Memory Management
The OS/2 operating system offers developers a 32-bit, linear (flat) memory address
space. The OS/2 operating system uses a paged memory structure. The operating
system allocates, protects, and manipulates memory in terms of pages.

Process Address Space

© Copyright IBM Corp. 1992

The OS/2 memory allocation functions return a 32-bit pointer to the allocated
memory object. While a 32-bit pointer is sufficient to address the entire 4 gigabyte
global address space, applications can access only the first 512MB of linear
memory, called the process address space. Of this 512MB process address space,
a minimum of 64MB is reserved for shared memory regions, leaving 448MB. Of this
448MB, some will be used by the application itself and a small amount will be taken
by operating system overhead. The remainder is available for allocation. The
amount of memory that can actually be committed and used is, of course,
determined by the physical memory and hard disk space available on the machine.

6-1

Figure 6-1 shows how memory is apportioned by the OS/2 operating system. A
minimum of 64MB is reserved for both the shared memory region and the private
memory region.

Linear
Addresses

4 GB L ________ ,:

I

512 MB

0

OS/2
System Space

Shared Memory

Private Memory

Shared memory
grows downward

i
Private memory
grows upward

Figure 6-1. How Memory is Divided by the OS/2 Operating System

Figure 6-2 on page 6-3 shows a more detailed view of how the process address
space (memory below 512MB) is used. The shared memory region is used for DLL
code and data, and for memory shared between processes. Each process in the
figure below-A, B, and C-has access to the complete linear address range
between 0 and 512MB. The linear address range of each process is virtual memory
and is completely independent of the linear address ranges of any other process.
Conceptually, the processes run side-by-side, in the same linear address space.
Note that shared memory is allocated across all process address spaces, whether a
process has access to the shared memory or not.

6-2 OS/2 2.0 Programming Guide-Volume I

Memory Objects

512 MB

Process A
Unallocated

Memory

11

o 111111111111;~11111mm1111111111

DLL Code and Data

Process B
Unallocated

Memory

Figure 6-2. Process Address Spaces

Process C
Unallocated

Memory

Shared
Memory

}

Private
Memory

Keep in mind that the amount of memory that can be committed for actual use is
limited by the amount of physical memory and free hard disk space that is available
on the computer on which the application is executing.

Applications allocate and manipulate memory in terms of memory objects. A
memory object consists of one or more pages of memory. An OS/2 application can
allocate any number of memory objects, within the following limits:

• the physical memory in the system
• the free hard disk space on the hard disk containing the swap file
• the 512MB process address space limit (see "Process Address Space" on

page 6-1).

When requesting memory, the size of the memory object is rounded up to the next
higher multiple of 4KB. An application can suballocate a memory object into
memory blocks whose size can range from 1 byte to the size of the memory object.

Memory objects have the following characteristics:

• They are not relocatable.
• They are allocated in units of 4KB. One 4KB unit is called a page.
• They can be larger than 64KB in size.

Chapter 6. Memory Management 6-3

Memory Pages
The operating system allocates and commits memory objects in pages. A memory
page is a 4KB (4096 bytes) piece of memory. Memory access protection is also
done on a page-basis, rather than the segment-based protection used in previous
versions of the operating system.

A page range is a linearly contiguous group of pages within a memory object. A
page range can be:

• the entire memory object,
• part of the memory object, or
• a single page within a memory object.

If an application requests 512 bytes of memory, it will receive a 32-bit pointer to a
4KB page. All 4096 bytes are available to the application, even though the request
specified only 512 bytes. If an application requests 62000 bytes, it will receive a
pointer to a 65536-byte (64KB, 16-page) object. Again, all 65536 bytes are available
for use.

Each page in the virtual address space of the process is either free (unallocated),
private (available only to the process that allocated it), or shared (memory that is
shared between processes).

Each page within a memory object can be in one of two states, either uncommitted
(that is, the linear address range has been reserved, but is not yet backed by
physical storage) or committed (physical storage has been allotted for the logical
address range).

Access to a committed page is controlled by the page's access protection attribute.
These protection attributes are read access, write access, execute access (on the
80386, this is the same as read access), and guard page access.

An uncommitted page is not accessible.

Memory Overcommitment and Swapping
Memory overcommitment occurs when applications allocate and commit more
memory than is actually available in the computer. The operating system handles
memory overcommitment by copying memory to the system swap file,
SWAPPER.DAT, on the hard disk then reusing the memory for another allocation.
The operating system copies as many pages of memory as are necessary to make
room for the new allocation. The swapped memory can be retrieved the next time it
is accessed; at that time, some other memory might be written to the swap file.

The operating system selects the memory to swap based on when it was last used.
The page that is least-recently-used, that is, the page that has gone the longest
since its last access, is the page chosen to swap to disk.

Swapping is transparent to an application, although excessive swapping can cause
an application to run slowly.

Through swapping, the OS/2 operating system enables applications to allocate more
memory than actually -exists in the computer, bounded only by the amount of free
space on the hard disk that contains the swap file.

6-4 05/2 2.0 Programming Guide-Volume I

User Configuration of Memory Swapping
Although an application cannot control swapping, the user can specify whether the
system can swap memory by including the MEMMAN command in the CONFIG.SYS
file.

If the MEMMAN command specifies SWAP, the operating system writes selected
memory pages to the SWAPPER.DAT file whenever insufficient physical memory
exists to satisfy an allocation request. This is the default choice. If the MEMMAN
command specifies NOSWAP, the operating system does not swap memory.

Note: Be aware that disabling swapping will severely limit the number of
applications that the user will be able to run concurrently; if there is not
enough physical memory present, the operating system might not even boot.

The exact amount of memory available to an application depends on the amount of
physical memory in the machine and the amount of free disk space on the partition
that contains the SWAPPER.DAT file. The location of the SWAPPER.DAT file can be
specified by including the SWAPPATH command in the CONFIG.SYS file. The
SWAPPATH command specifies the location of SWAPPER.DAT and the amount of
free space to reserve on the disk. The operating system adjusts the size of
SWAPPER.DAT as necessary, leaving other files on the drive and the requested free
space untouched.

Memory Allocation and Commitment
When an application asks the operating system to allocate memory, a linear
address range is reserved. The range is not backed by physical memory until the
memory is committed. Commitment assigns physical memory to the linear address
range.

A memory object that is allocated, but not committed is called a sparse memory
object. A sparse memory object must be committed before it can be used. An
attempt to read from or write to uncommitted memory will cause an access
violation.

An application can ask the operating system to commit the memory at the same
time it is allocated, thus making it immediately usable, or the memory can be
committed at a later time. If the application commits the memory at the same time
the memory is allocated, the entire memory object is committed. If the application
commits the memory at a later time, it can commit the entire sparse memory object
or only commit a portion of it.

When multiple pages are committed at the same time (a page range), the pages will
have sequential linear addresses.

Managing Memory Allocatlon and Commitment
The recommended way to manage memory is to make a large memory allocation
early in program execution, then to commit or suballocate memory as the need
occurs.

The initial allocation should be for as much space as you expect to use during
program execution. Allocation without commitment does not actually use any
physical memory, so there is no waste involved in allocating several megabytes.

Chapter 6. Memory Management 6-5

After the memory object is allocated, the application uses one of two ways to
manage the memory object:

• commit and decommit the memory as it is required
• set up the memory object as a heap and suballocate memory from the heap.

Committing and decommitting memory gives the application more control over the
process, but the application will have to keep track of which pages are committed
and which pages are not. When suballocating memory from a heap, the application
can have the operating system track commitment and decommitment of physical
memory pages, so the application does not have to. If you want DosSubAllocMem
to manage the commitment of the pages spanned by the heap, all of the pages
spanned by the memory object must be uncommitted initially.

Remember, no matter how much memory is originally allocated, the amount that an
application will ultimately be able to commit and use is limited by the amount of
physical memory and free disk space available on the machine.

Applications are not limited to a single large allocation of memory-other memory
allocations can be made as necessary during execution-but large allocations and
small commitments or suballocations are the most efficient way to manage memory.

Memory Resizing and Reallocation
In earlier versions of the operating system, an application could increase or
decrease the size of an allocated memory segment by reallocating the segment.

Memory objects cannot be resized. Instead, an application should allocate a sparse
memory object of whatever size might be necessary, then commit or decommit
portions of the object.

If the amount of memory required cannot be determined at the time the memory is
allocated, the application should allocate a sparse memory object large enough to
meet the largest memory requirement. The application can then change the amount
of committed memory as necessary.

For example, if you anticipate your application will use around 512KB of memory for
most purposes, but might use 5MB under certain circumstances, you might take the
following steps:

• During program initialization, use DosAllocMem to allocate 5MB.

• Commit the first 512KB (or some part of it) using DosSetMem.

• Proceed with normal processing.

• If extra memory is required occasionally, commit it and decommit it using
DosSetMem.

• When the situation arises that the application requires the full 5MB, commit it at
that time, using DosSetMem, then decommit it after you are finished with it, also
using DosSetMem.

• When the application is finished with the memory, use DosFreeMem to release
the memory back to the system.

6-6 OS/2 2.0 Programming Guide-Volume I

Memory Protection
When an application allocates a memory object, it can specify the type of access to
allow to the object. Memory access protection provides a program with control over
the type of access that its threads have to a page of memory.

Access protection can only be defined for committed pages of memory and is
initially set at the time the memory is committed. Different pages within the same
memory object can have different access attributes and access attributes can be
changed on a page-by-page basis at any time.

An application can request any combination of the following access protection
attributes:

Table 6-1. Memory Access Protection Attributes

Access Defined Constant Description

Read Access PAG_READ The object can be read from, but not
written to.

Write Access PAG_WRITE The object can be written to. On the
80386 microprocessor, write access
implies both read and execute access.

Execute Access PAG_EXECUTE This is equivalent to read access on the
80386.

Guard Page PAG_GUARD Causes a guard-page-entered exception
Access to be raised in a process that attempts

to access the memory. This exception
can be ignored or handled by the
application's exception handler, if one is
registered.

The guard page attribute is intended to provide automatic stack growth and stack
limit checking. An application can also use it in other data structures, such as
arrays. For example, if an application is using an array of 4096 bytes (one page),
the application can allocate and commit two pages, one with read and write access
and one designated as a guard page. If the application tries to write past the end of
the array a page guard exception will be generated.

Any reference-read, write, or execute-to a guard page causes an access violation
(page fault) to be generated. This fault causes a Guard Page Entered exception to
occur for the thread that referred to the guard page. The exception can be handled
by the exception handler of the process, if one is registered. If the process does not
have an exception handler registered, the operating system's default exception
handler will handle the exception. The default action by the system exception
handler is to convert the page from a guard page to a committed page, then try to
mark the next page in memory as a guard page. If the system is not successful in
marking the next page as a guard page, an Unable-To-Grow-Stack exception occurs.
The thread is allowed to continue execution, but must be aware that it has at most
4KB of stack remaining.

Chapter 6. Memory Management 6-7

Obtaining Information about a Page Range
DosQueryMem is used to obtain information about a range of pages within the
virtual address space of the current process.

Each page in the virtual address space of a process is either free, private, or
shared.

Each page within a memory object can be in one of two states, either committed or
uncommitted.

A committed page has its access controlled by an access protection attribute.
These protection attributes are read protection (PAG_READ), write protection
(PAG_WRITE), execute protection (PAG_EXECUTE), and guard page protection
(PAG_GUARD).

Protection Violations
The operating system fully utilizes the memory protection capabilities of the 80386
microprocessor. The operating system grants an application access to a memory
object only if the object has been explicitly allocated by the application or made
available for use by the application.

If an application attempts to access memory that it is not assigned, the system
interrupts the application and executes the exception handling routine for protection
violations. Protection violations can be handled by the application (in its own
exception handling routines) or by the operating system. If the protection violation
is handled by the operating system, the system exception handling routine
determines the cause of the exception, displays an error message, and then
terminates the application.

It is usually not possible for an application to recover from a protection violation.
Therefore, programmers should ensure that all pointers are valid. Because
protection violations commonly occur during application debugging, each message
displayed for a protection violation includes the contents of the registers when the
violation occurred. If the violation occurred as a result of passing an invalid pointer
to a memory function, an error code is returned by the memory function.

In earlier versions of the operating system, protection violations could be used to
find bugs when an application accessed memory that was not allocated to the
application. This approach will no longer work because memory objects can be
larger than the size requested by the application because the memory objects are
allocated on 4KB page boundaries. For example, a pointer to the 513th byte of a 512
byte memory object is valid and does not cause a protection violation. This means
that programmers cannot always rely on protection violations to spot memory
addressing errors.

Memory Suballocation and Using Heaps
There are times when a process requires only small amounts of memory rather than
an entire memory object. It would be wasteful to allocate an entire page of memory
when only a few bytes are necessary, so a mechanism is provided for applications
to allocate a large block of memory and then suballocate portions of the memory as
necessary to fulfill small requests from an application. This is done by creating a
heap.

6-8 OS/2 2.0 Programming Guide-Volume I

Shared Memory

A heap is a region of storage within a memory object from which an application can
allocate blocks of memory. A memory block is a piece of memory within a heap.
The size of the memory block is rounded up to the next higher multiple of 8 bytes.

Because the operating system allocates a 4KB page for each memory allocation,
using a heap to suballocate amounts of memory smaller than 4KB is more efficient
than using DosAllocMem.

When an application creates a heap, it can have the operating system track the
committing and decommitting of memory within the heap. When the application
commits and decommits memory itself, it has to keep track of the access state of
each page as they are accessed.

Applications use DosSubSetMem to initialize a memory object for suballocation,
then use DosSubAllocMem and DosSubFreeMem to allocate and free the memory.

Memory is still committed in pages when an application uses suballocation. If the
application suballocates 512 bytes, 4096 bytes will be committed. Accessing the
513th byte will not cause a protection violation, but you could be accessing memory
that was suballocated by another thread in the process.

Shared memory is memory that two or more applications can read from and write
to. Shared memory is prepared in such a way that any application can receive a
pointer to the memory and access the data. Applications must explicitly request
access to shared memory; the shared memory is protected from applications that
are not granted access.

There are two kinds of shared memory: named and unnamed. For named shared
memory, any application that knows the name of the shared memory can access it.
For unnamed shared memory, a pointer to the shared memory must be passed from
the process that created the shared memory to the process being given access.
Access can be granted to any application; it is not necessary that the process being
granted access be related (parent-child) to the application that created the shared
memory.

Since memory sharing is done by sharing linear addresses, the linear address
range of the shared memory object is reserved in all process address spaces.

There are two basic methods of managing shared memory:

• In one method, two or more applications share the same memory at the same
time. These applications read from and write to the memory object, usually
controlling access to the memory by using a semaphore.

• In the other method of managing shared memory, one application prepares data
in memory, then passes that memory to another application for further
processing. The first application releases the memory after passing it along, so
that only one application accesses the memory at a time.

Chapter 6. Memory Management 6-9

Using Memory Management
This section describes how to use the OS/2 memory management functions and
configuration commands to control the use of memory for OS/2 applications.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

Allocating Private Memory
An application can allocate regions of storage within the virtual address space of
the process. Such an allocated region is called a memory object.

DosAllocMem is used to allocate a memory object. You specify a variable to
receive the pointer that will address the new object, the amount of memory needed,
and the allocation attributes and access protection attributes of the new memory
object. When choosing the size of the memory object to allocate, remember that the
maximum size of the memory object is defined when it is allocated, and memory
objects cannot be resized.

When applications call DosAllocMem, the operating system reserves a range of
private pages large enough to fulfill the specified allocation request from the private
virtual address space of the subject process.

DosAllocMem will reserve this linear space and return zero if the allocation was
successful. If it was unsuccessful, DosAllocMem will return an error code. An
application should always test the return value before attempting to use the
memory.

The following code fragment requests an allocation of 512 bytes. Remember that
4096 bytes will actually be allocated for this request:

Figure 6-3. Requesting 512 Bytes of Memory

In this example, DosAllocMem returns a 32-bit pointer to a 4096 byte committed
memory object and allows the application to write to and read from the memory.
This pointer is valid only for the 4096 bytes allocated by the system. An attempt to
use the pointer outside the allocated memory will cause a protection violation.

6-10 OS/2 2.0 Programming Guide-Volume I

Committing and Decommitting Page Ranges
If an application allocates a sparse memory object, no physical memory location is
committed for the object. Memory in a sparse object must be committed before it
can be used. DosSetMem is used to commit or decommit a range of previously
allocated pages in a private or shared memory object. Applications can make
specific address ranges within a memory object valid or invalid. Commitment and
decommitment always take place in multiples of one or more pages.

Applications can also use DosSetMem to change the access protection attributes of
a range of pages within a memory object.

The following code fragment requests allocation of 2MB of uncommitted memory
and then commits 4096 bytes of the memory:

Figure 6-4. Allocating Uncommitted Memory and Committing Part of It

An application can also allocate a large committed object and then decommit
portions of it as they are no longer needed. Decommitment, like commitment, is
done on page boundaries; an application can decommit no less than a 4096 byte
page.

The following code fragment allocates 16384 bytes of committed memory and then
decommits the first 4096 bytes of the memory:

Figure 6-5. Allocating Committed Memory and Decommitting Part of It

After memory is decommitted, an attempt to access the decommitted memory will
cause a protection violation.

You cannot pass an argument that crosses multiple memory objects. The function
will return an error.

Chapter 6. Memory Management 6-11

Establishing Access Protection
When an OS/2 application commits a memory object, it specifies the types of access
permitted for the memory object. This can be done at the same time the memory
object is allocated, with DosAllocMem, or at a later time, using DosSetMem.

Any combination of read, write, execute, or guard-page access can be set, but at
least read or write access must be specified when the memory object is committed;
it is not possible to commit an object with no access protection attributes.

The application can also use DosSetMem to change the access permission of pages
within a previously committed memory object. An application can permit read
access to one page of the memory object and write access to the rest.

When using DosSetMem, all the pages in the range being changed must be either
committed or decommitted.

The following code fragment commits a region of two pages within a previously
allocated memory object, and sets read-only access rights for the region. Assume
that the base address for DosSetMem was previously obtained by the process.

Figure 6-6. Setting Read-Only Access for a Region

Querying Memory Object Information
DosQueryMem is used to determine the allocation state and access protection for a
specified memory object. The application can query an entire memory object or a
range of pages within an object.

6-12 OS/2 2.0 Programming Guide-Volume I

Freeing Memory

The following code fragment uses DosQueryMem to ensure that memory is
committed before the application attempts to use the memory:

Figure 6-7. Determining the Allocation State of a Memory Object

When memory object is no longer needed, the application uses the DosFreeMem
function to release the memory.

If applications do not release memory, the operating system either swaps the
memory to the hard disk (if swapping is enabled) or uses memory that could be
used by other applications. If the operating system swaps the memory to the hard
disk, the SWAPPER.DAT swap file could become very large. Therefore, applications
should release memory as soon as it is no longer needed. Any memory that is still
allocated when the application ends is released by the operating system.

DosFreeMem frees a private or shared memory object from the virtual address
space of the process. The released pages are returned to the system.

The following code fragment allocates 8192 bytes of committed memory and then
releases the memory:

Figure 6-8. Allocating and Freeing Memory

Chapter 6. Memory Management 6-13

Using Suballocation and Heaps
This section describes how you can use DosAllocMem, DosSubSetMem,
DosSubAllocMem, DosSubFreeMem, and DosSubUnsetMem to manage a memory
heap.

Suballocating Memory
DosAllocMem can be used to create a memory heap.

Before an application can allocate small portions of the heap, it must use the
DosSubSetMem function to set up the memory for suballocation. The size of the
heap is rounded up to the next higher multiple of 8 bytes.

Then, the application uses DosSubAllocMem to allocate sections of the heap and the
DosSubFreeMem function to release the memory.

DosSubAllocMem returns a 32-bit pointer to a block of memory. The pointer can be
used to access the memory without further modification.

The following code fragment sets up 8192 bytes for suballocation and then allocates
two small blocks of memory:

Figure 6-9. Suballocating Memory

Increasing the Size of a Heap
DosSubSetMem can also be used to increase the size of a previously initialized
heap. The heap size can be increased up to the size of the memory object that
contains it.

The size of the heap is rounded up to the next higher multiple of 8 bytes.

6-14 05/2 2.0 Programming Guide-Volume I

The following code fragment increases the size of a heap. Assume that a memory
object was previously allocated for the heap, and that the Offset variable was
previously loaded with the virtual address of the memory object.

Figure 6-10. Increasing the Size of Suballocated Memory

In this example, the heap is incremented, and that memory commitment is managed
internally within subsequent DosSubAllocMem calls.

When using DosSubSetMem to increase the size of the heap, the Flags parameter
must have the same setting as when the heap was initialized.

Note: Do not call DosSetMem to change the allocation attribute or access
protection attributes of any pages spanned by a memory object that the
suballocation functions are managing. Otherwise, unpredictable results
could occur.

Call DosSubUnsetMem when finished with the heap that was set up with
DosSubSetMem. This enables the suballocation function to free the resources that it
uses to manage the heap. When you are through with the memory object that the
heap was part of, use DosFreeMem to free the memory object.

Allocating a Block of Memory from a Heap
DosSubAllocMem allocates a block of memory from a heap that was previously
initialized by DosSubSetMem. This is used when an application needs an area of
memory that is smaller than an entire heap.

The size of the memory block is rounded up to the next higher multiple of 8 bytes.

Chapter 6. Memory Management 6-15

The following code fragment allocates a block of memory from a heap that was
previously initialized by DosSubSetMem. Assume that the Offset variable has been
set to the address of the initialized heap already.

Figure 6-11. Allocating a Block of Memory from a Heap

In this example, the address of the allocated block (from the heap) is stored in the
BlockOffset variable.

Remember to call DosSubFreeMem to free this block of memory when you are
finished with it.

Freeing Memory Blocks
DosSubFreeMem frees a block of memory that was previously allocated by
DosSubAllocMem.

Call DosSubFreeMem to free a block of memory in the heap when you are finished
with that memory block.

The following code fragment frees a block of memory that was previously allocated
from a heap. DosSubFreeMem returns the block to the heap. Assume that the
Offset variable has been previously set to the address of the initialized heap, and
that the BlockOffset variable has been previously set to the address of the block to
be returned to the heap.

6-16 05/2 2.0 Programming Guide-Volume I

Figure 6-12. Freeing a Block of Memory from a Heap

Ending the Use of the Heap
DosSubUnsetMem terminates the use of a heap within a memory object. All calls to
DosSubSetMem must eventually be followed by a call to DosSubUnsetMem. This
enables the suballocation function to free the resources that it uses to manage the
heap.

The application must call DosSubUnsetMem before it frees the memory object that
contains this heap (with DosFreeMem).

The following code fragment shows the termination of a heap. Assume that the
address of the heap was placed into Offset already.

Figure 6-13. Ending the Use of a Heap

Chapter 6. Memory Management 6-17

Using Shared Memory
This section describes how you can use DosAllocSharedMem, DosGiveSharedMem,
DosGetSharedMem, and DosGetNamedSharedMem to use shared memory.

Using Named Shared Memory
An application uses DosAllocSharedMem to allocate shared memory. When
allocating the shared memory, an application can assign a unique name to the
memory. Any application that has the name of the shared memory can use
DosGetNamedSharedMem to retrieve a pointer to the memory. This makes it
possible for two or more applications to share memory at the same time.

The name of a shared memory object has the following form:

\sharemem\name

The "\sharemem\" is required. The "name" parameter can be any name that
conforms to the rules for an OS/2 file name. No file is actually created for the
memory object. There is no actual "\sharemem\" subdirectory.

The following code fragment allocates 65536 bytes of named shared memory with
the name "\sharemem\mymem".

Figure 6-14. Allocating Named Shared Memory

Once the named memory is allocated, any other process can retrieve a pointer to
the named memory by using DosGetNamedSharedMem.

The following code fragment retrieves a pointer to the named memory allocated
above:

Figure 6-15. Getting a Pointer to Named Shared Memory

6-18 OS/2 2.0 Programming Guide-Volume I

Using Unnamed Shared Memory
An application can allocate unnamed shared memory by using DosAllocSharedMem
with the object name set to NULL and the memory options set to OBJ_ GIVEABLE or
OBJ_ GETTABLE. Sharing unnamed memory is more difficult than sharing named
memory because the application allocating the memory must somehow pass a
pointer to another application. This is typically done by using some form of
interprocess communication, such as a queue or a named pipe.

If an application allocates shared memory with the OBJ_GETTABLE option, it can
pass a pointer to another application. The second application can then gain access
to the shared memory by using DosGetSharedMem to validate the passed pointer.
If an application allocates shared memory with the OBJ_ GIVEABLE option, the
process that allocates the memory can validate the pointer in another process with
DosGiveSharedMem. The allocating process must still pass a pointer to the second
process, but the second process need not use DosGetSharedMem.

The following code fragment allocates 24576 bytes (24KB) of unnamed shared
memory:

Figure 6-16. Allocating 24576 Bytes of Unnamed Shared Memory

Once the memory is allocated, the process can pass the memory pointer to a
second process via interprocess communication. Once the second process receives
the pointer, it can validate the memory with DosGetSharedMem, as shown in the
following code:

Figure 6-17. Validating Shared Memory

Chapter 6. Memory Management 6-19

Summary
Following are the OS/2 functions used in memory management.

Table 6-2. Memory Management Functions

Memory Functions

DosAllocMem

DosSetMem

DosFreeMem

DosQueryMem

Memory Suballocation Functions

DosSubSetMem

DosSubAllocMem

DosSubFreeMem

DosSubUnsetMem

Shared Memory Functions

DosAllocSharedMem

DosGetNamedSharedMem

DosGetSharedMem

DosGiveSharedMem

Allocates a private memory object within the
virtual address space.

Commits or decommits a range of pages within a
memory object, or alters their protection.

Frees a private or shared memory object from the
virtual address space of the process.

Obtains information about a range of pages within
the virtual address space of the subject process.

Initializes a heap for suballocation, or increases
the size of a previously initialized heap.

Suballocates a block of memory from a heap that
was previously initialized by DosSubSetMem.

Frees a block of memory that was previously
suballocated by DosSubAllocMem.

Terminates the use of a heap.

Allocates a shared memory object within the
virtual address space.

Obtains access to an existing named shared
memory object.

Obtains access to an existing shared memory
object.

Gives a target process access to an existing
shared memory object.

6-20 OS/2 2.0 Programming Guide-Volume I

Chapter 7. Program Execution Control

Multitasking is the ability of the operating system to manage the execution of more
than one application at a time. A multitasking operating system, such as OS/2 2.0,
enables users to run many applications simultaneously.

For the programmer, the OS/2 operating system supports two types of multitasking.
An application can start other programs, in separate processes, that will execute
concurrently with the application. These programs can be a new copy of the
application, a related program that is designed to work with the application, or an
unrelated program. Running multiple processes is the first type of multitasking
provided for programmers.

Running multiple threads is the second type of multitasking supported by the OS/2
operating system. The OS/2 operating system enables applications to run multiple
threads of execution within the same process; separate activities can be multitasked
within the application. An example of multiple-thread multitasking would be for the
application to dispatch a separate subroutine to load a file from the disk, and have
the subroutine execute at the same time the main program continues to monitor and
respond to user input.

This chapter describes processes, threads, and sessions, and the OS/2 functions
used to create and manage them. Additionally, there is a section describing CPU
scheduling.

The following topics are related to the information in this chapter:

• Memory
• Semaphores
• Queues
• Pipes
• Exception Handling
• Debugging.

About Program Execution Control-Thread, Processes, and Sessions

© Copyright IBM Corp. 1992

To successfully use multitasking-multiple processes and multiple threads-in your
programs, you need to understand the difference between a thread, a process, and
a session.

A thread is a dispatchable unit of execution that consists of a set of instructions,
related CPU register values, and a stack. Each process has at least one thread,
called the main thread or thread 1, and can have many threads running
simultaneously. The application runs when the operating system gives control to a
thread in the process. The thread is the basic unit of execution scheduling.

A process is the code, data, and other resources-such as file handles, semaphores,
pipes, queues, and so on-of an application in memory. The OS/2 operating system
considers every application it loads to be a process. System resources are
allocated on a per-process basis.

7-1

A session is one (or more) processes with their own virtual console. (A virtual
console is a virtual screen-either a character-based, full screen or a Presentation
Manager window-and buffers for keyboard and mouse input.)

The OS/2 operating system supports up to 255 concurrent sessions and up to 4095
processes. The operating system supports a system-wide maximum of 4095
threads, but the number of threads available in a single process will be lower, and
will vary, because of resource usage within the process.

Figure 7-1 shows sessions, processes and threads, and their relationship with each
other.

Sessions consist of one or more processes and a virtual console

Process I ,-;~:;~-------------1

~:=~~~~~i~~~~ii~ti~~mmm~mmmmmlmm~~m~mlmmmmm~~~mmm~~~m~~~~tEiii=~=;:;=:=:;:.:.:.~~.----------J

1------------------------1
I I

: Process :
I I
I I L ________________________ :

Sessions consist of one or more threads and a group of resources

File Handles

~
3

~ ·2

_.. File1

Memory

- Thread 1 (main thread) --------------

-~ -:
Threads consist of a path of execution and program state information

Executing Code

PROCEDURE EXAMPLE
XOR EAX, EAX
MOV EBX, VARIABLE ~ EIP
CMP EBX, 0
JE SOMEWHERE

Figure 7-1. Sessions, Processes, and Threads

7-2 OS/2 2.0 Programming Guide-Volume I

Stack Flags Register

1111111111111111 I

Threads

Processes

Applications always have at least one thread of execution-thread 1. Using multiple
threads of execution, an application can do several things at the same time.

For example, a simple Presentation Manager application consists of a single
process with two threads:

• A user interface thread that listens and responds to user requests, and that
queues work for the second thread

• A processing thread that handles lengthy processing.

The operating system creates the first thread of execution for a process when it
starts the executable file. To create another thread of execution, a thread calls
DosCreateThread, specifying the address within the program module where the
thread begins asynchronous execution. Although a thread can execute any part of
the application, including a part being executed by another thread, threads typically
are used to execute separate sections of the application. By using several threads,
the system can distribute the available CPU time and enable an application to carry
out several tasks simultaneously. For example, an application can load a file and
prompt the user for input at the same time.

Each thread in a process has a unique stack and register context. Threads shares
the resources of the process with the other threads in the process. For example,
threads in the same process have access to the memory spaces of other threads
within the process. However, threads of one process do not have access to the data
spaces of other processes.

Each thread has a priority, that determines the amount of CPU time the thread is
allocated. Threads inherit the priority of the thread that creates them. The priority
of a thread can be changed by the application; see "Changing the Priority of a
Thread" on page 7-26 for details.

An application can use DosSuspendThread and DosResumeThread to suspend and
resume the execution of a given thread. When an application suspends a thread,
the thread remains suspended until the application calls DosResumeThread.

When an application has more than one thread, it might be necessary to ensure that
one thread is finished executing before another thread uses a shared resource, such
as a disk file. DosWaitThread causes the application to wait until a specific thread
has finished. DosWaitThread can also be used to determine the state of a thread;
the function can return immediately with an error value if the identified thread is still
running.

A thread ends when it calls DosExit.

An OS/2 application that has been loaded into memory and prepared for execution
is called a process. As mentioned earlier, a process consists of the code, data, and
other resources (for example, open file handles) that belong to the application.
Each process has at least one thread, called the main thread or thread 1.

When the operating system executes an application, it confirms that the process
code and data are in memory and that the main thread's registers and stack are set
before starting the application. Each application has access to all resources of the
computer, such as memory, disk drives, screen, keyboard, and the CPU itself. The

Chapter 7. Program Execution Control 7-3

system carefully manages these resources so that applications can access them
without conflict.

A process can have more than one thread. The operating system creates the first
thread of execution for a process when it starts the executable file. More threads
can be created with DosCreateThread. Each thread runs independently, with its
own stack and register values. Unless the application changes a thread's priority,
each thread gets a slice of the CPU in a round-robin strategy. All the threads in a
process share the application's globally defined variables and other resources
(open file handles, and so on).

A process or thread ends when it calls DosExit. The operating system automatically
closes any files or other resources left open by the process when the process ends.
When a thread ends, however, any open resources remain open until another thread
closes them or the process ends. A process can direct the operating system to
carry out other actions when the process ends, by using DosExitlist to create a list
of termination functions. The operating system calls the termination functions, in
the order given, when the process is about to end. If the thread has registered any
exception handlers, the exception handlers will also be called before the thread
terminates.

Creating Processes
An application can load and execute other applications by using DosExecPgm. The
new application, once loaded, is called a child process. The process that starts the
new application is called the parent process.

A child process is like any other process. It has its own code, data, and threads.
The child process inherits the resources-such as file handles, pipes, and
queues-that belong to the parent process at the time the child process is created,
although not necessarily with the same access rights. The parent process can place
restrictions on the access of the child process to these resources:

• Files are inherited except for files that were opened with no inheritance
indicated.

• Pipes are inherited.

Assuming that the parent process gives the child process appropriate access rights,
the child process can use the inherited resources without preparing them. For
example, if the parent process opens a file for reading and then starts a child
process, the child process can read from the file immediately; it does not have to
open the file. However, once the child process is created additional resources that
the parent process creates are not available to the child process. Similarly,
resources the child process creates are not available to the parent process.

The parent process also has control over the meanings of standard input, output,
and error for the child process. For example, the parent can write a series of
records to a file, open the file as standard input, open a listing file as standard
output, and then execute a sort program that takes its input from standard input and
writes to standard output.

Note that memory is not included in the list of things that a child process can inherit
from its parent process. The child process is created with its own process address
space that is separate and distinct from the memory of the parent process. A new
linear address space is built for the new process. The only way for a parent process
and a child process to access the same memory is to set up a shared memory area.

7-4 OS/2 2.0 Programming Guide-Volume I

The executable file of the child process can be started either synchronously or
asynchronously to the parent process. If the parent process starts the child process
running synchronously, the parent process is suspended and waits until the child
process ends before continuing. A child process running asynchronously executes
independently of the parent process (that is, both run at the same time). The parent
process specifies how the child process is to run by setting a parameter in the call
to DosExecPgm.

Figure 7-2 shows the difference between synchronous and asynchronous program
execution. In the first drawing, child process B is started and executes
synchronously; parent process A is suspended while B executes. In the second
drawing, child process Bis started and executes asynchronously; parent process A
continues to execute concurrently with B.

Process A

--•Ill DosExecPgm(WAIT)

\

Process A
Suspended

Process A
Resumes

---------------• DosExlt
Process B

Process A Process A continues execution

--•Ill DosExecPgm(NO_WAIT)

---------------•DosExit
Process B

Figure 7-2. Starting a Child Process Synchronously and Asynchronously

The OS/2 command processor, CMD.EXE, starts most child processes
synchronously. The parent process waits for each child process to end before it
prompts the user for the next command. The command processor also enables the
user to start asynchronous applications by using the DETACH command. When the
user detaches an application, the command processor starts the application
asynchronously, in the background, and continues to prompt for input.

Process Termination
A parent process can use DosWaitChild to determine the termination status of a
child process that is running independently. The parent process can have one of its
threads .call DosWaitChild to wait for completion of the child process while other
threads of the parent continue processing.

If the child has started another process, DosWaitChild waits for the completion of
any grandchild processes before returning, but does not report their status. If the
specified child process has multiple threads, DosWaitChild returns the result code of
the last DosExit request.

Chapter 7. Program Execution Control 7-5

If there are no child processes, either active or ended with a return code,
DosWaitChild returns with an error code. If no child processes have terminated,
DosWaitChild can optionally wait until one terminates before returning to the parent.

Process Exit Lists
Because any process can terminate any other process for which it has a process
identifier, applications might lose information if a process terminates the application
before it can save its work. To prevent this loss of data, you can create a list of
functions to clean up data and files before the operating system terminates the
process. This list is called an exit list. The operating system maintains an exit list
for each process and calls these functions whenever the application is terminated,
whether by another process or by itself.

You call DosExitlist to add to the exit list a routine that is to be given control when a
process is terminated (or finishes its execution). Multiple routines can be added to
the list. When the process is terminating, the operating system transfers control to
each address on the list.

Exit-list functions perform clean-up operations on resources. For example, an
exit-list function can be used in a dynamic link library module to free resources or
clear flags and semaphores when a client program has ended.

Multitasking with Threads and Multitasking with Processes

Sessions

The creation and termination of a process is relatively slow compared to the
creation and termination of a thread, and is more costly in terms of system
resources.

For example, sharing data and resources between processes requires shared
memory and the mechanisms of interprocess communication; threads, on the other
hand, have full access to the memory and other resources that belong to the
process the threads are part of and can be coordinated using semaphores. For
these reasons, thread-to-thread task context switches are faster than
process-to-process context switches.

Because the operating system can create and execute threads more quickly than
processes, the preferred multitasking method for applications is to distribute tasks
among threads in the same process instead of among processes.

The OS/2 operating system uses sessions to help the user move from one
application to the next without disrupting the screen display of an application.

A session consists of at least one process and a virtual console-buffers for
keyboard and mouse input and either a character-based, full screen or a
Presentation Manager window. When the system creates a session, the process in
the session displays output in the screen or window. The user can view the output
and supply input by moving to the session. The user moves to a session by
pressing the Alt+ Esc key combination, by selecting the title of the session from the
Window List, or, for windowed sessions, by clicking the mouse in the session
window.

A child session is under the control of the session that creates it. The session that
starts the child session is called the parent session. Any process in the parent
session can exercise control over a child session.

7-6 OS/2 2.0 Programming Guide-Volume I

An unrelated session is not under the control of the session that started it. The
process that creates the unrelated session cannot select it, make it nonselectable,
bind it, or terminate it, nor can any other session. DosStartSession does not even
return a session identifier when an unrelated session is started. Unrelated sessions
are controlled entirely by the user. When the operating system starts new sessions,
it starts them as unrelated sessions.

Creating Sessions
A process creates a new session by using DosStartSession. DosStartSession
enables an application to start another session and to specify the name of the
application to be started in that session.

DosStartSession also specifies which of the five session types is to be started:

• Full screen, protect mode,
• Text windowed, protect mode,
• Presentation Manager (PM),
• Full screen DOS Session, or
• Windowed DOS Session.

Protect mode applications run in full screen and text windowed sessions, PM and
AVIO applications run in PM windows, and DOS applications run in full screen DOS
Sessions and windowed DOS Sessions.

OS/2 applications running in any of the OS/2 session types-full screen, text
windowed, and PM-can start sessions of any other type, including DOS Sessions.
DOS Session applications cannot start other sessions.

An application can start another process in a separate session when the application
will not manage any 1/0 done by the process. For example, an application that
starts an unrelated application could start it in a separate session.

A session can be started as a related or an unrelated session. A related session is
called a child session, and the session starting the child session is called the parent
session. An application can control its child sessions by using the session identifier
returned by DosStartSession with the DosSetSession, DosSelectSession, and
DosStopSession. If an application starts an unrelated session, the new session
cannot be controlled by the application. The Related field in the STARTDATA
structure specifies whether the new session is related to the session calling
DosStartSession.

After a process has started a child session, no other process in its session can start
a child session until all dependent sessions started by this process have ended.

When a session is created, the title specified in the function call (or the application
name if no title is specified) is added to the Window List.

DosStartSession can be used to start either a foreground or a background session,
but a new session can be started in the foreground only when the caller's session,
or one of the caller's descendant sessions, is currently executing in the foreground.
The foreground session for windowed applications is the session of the application
that owns the window focus.

Termination Queues
The parent session must create a termination queue prior to specifying the queue
name in a call to DosStartSession. The operating system will continue to notify the
parent session through the specified queue as long as the session calling

Chapter 7. Program Execution Control 7-7

DosStartSession remains a parent session. In other words, when all the child
sessions for a particular parent session terminate, the termination queue is closed
by the operating system. An existing queue name must be specified on the next
DosStartSession call if the caller wants to continue receiving termination notification
messages.

The operating system writes a data element to the specified queue when any child
session terminates. The queue is posted regardless or who terminates the child
session (the child, the parent, or the user) and whether the termination is normal or
abnormal.

A parent session calls DosReadQueue to receive notification when a child session
has terminated. The word that contains the request parameter, returned by
DosReadQueue, will be 0. The data element has the following format:

Table 7-1. Termination Queue Element Format

Size Description

WORD Session ID of the child session that terminated

WORD Result code

The process that originally called the DosStartSession request should call
DosReadQueue, with the NOWAIT parameter set to 0. This is the only process that
has addressability to the notification data element. After reading and processing
the data element, the caller must free the segment containing the data element by
calling DosFreeMem.

When a child session terminates, the result code returned in the termination
queue's data element is the result code of the program specified in the
DosStartSession call, providing

• the program was executed directly, with no intermediate secondary command
processor, or

• the program is executed indirectly through a secondary command processor,
and the IC parameter is specified.

When a child session is running in the foreground at the time it terminates, the
parent session becomes the new foreground session. When a parent session
terminates, any child sessions are terminated. When an unrelated session
terminates in the foreground, the operating system selects the next foreground
session.

Child Session Control
A session can be either a child session or an unrelated session. A child session is
under the control of the processes in the session that creates it (the parent session).
A process can select, set, or stop a child session by using DosSelectSession,
DosSetSession, or DosStopSession, respectively. DosStartSession returns a unique
session identifier for the child session for use in these functions.

A session can run in either the foreground or background. A process can create a
foreground session only if the creating process or one of its descendant sessions is
executing in the current foreground session. A process can move a child session to
the foreground by selecting the child session using the session identifier and calling
DosSelectSession. A process can make a child session nonselectable by using
DosSetSession to change· the Selectlnd field in the STATUSDATA structure. This

7-8 OS/2 2.0 Programming Guide-Volume I

prevents the user from selecting the session from the Window List but does not
prevent a process from selecting the child session by using DosSelectSession.

A process can bind a child session to its own session by using DosSetSession.
Binding a session causes that session to move to the foreground whenever the user
selects the parent session from the Window List.

A parent session can use a session identifier with the DosSetSession function only if
the parent session created the child session associated with that identifier. It
cannot use identifiers for child sessions created by other parent processes. This is
true for all session management functions.

Although a child session is related to the session that started it, the processes in the
child and original sessions are not related. This means that even though
DosStartSession supplies the process identifier of the process in the child session,
the process identifier cannot be used with OS/2 functions such as DosSetPriority.

Child Session Termination
A parent session can stop a child session by using DosStopSession. Stopping the
child session terminates the processes in that session. It also stops any sessions
related to the child session. If a child session is in the foreground when it is
stopped, the parent session becomes the foreground session. DosStopSession
breaks any bond that exists between the parent session and the specified child
session.

A process running in the session specified in the call to DosStopSession can ignore
the request to terminate. If this happens, DosStopSession still returns O (indicating
success). The only way to be certain that the child session has terminated is to wait
for notification through the termination queue specified in the call to
DosStartSession. The operating system writes a data element into the specified
queue when the child session terminates. The process in the parent session must
call DosReadQueue to retrieve this data element, which contains the session
identifier for the child session and the return value for the process in the child
session. Only the process that created the child session can read the data element.

About CPU Scheduling
The OS/2 operating system performs prioritized, preemptive, multitasking.
Prioritized means that the operating system does not divide CPU-time equally
among all threads. All programs do not get equal access to the CPU. A prioritizing,
time-slicing strategy is used to allocate access to the CPU among competing
threads. Each thread has a priority and the operating system runs the highest
priority thread that is ready to run. Programs with higher priorities (a real-time
robotic application, for example), are given access to the CPU before programs with
lower priorities. If a thread with a higher priority than the currently running thread
becomes ready to run, the current thread is stopped immediately, or preempted,
and the higher priority thread is given the CPU. The lower priority thread does not
get to complete its time slice. Threads of equal priority are given CPU time in a
round-robin manner.

Preemptive means that the multitasking activity needs no cooperation from the
executing programs. The operating system maintains control over executing
programs, and stops, or preempts, them when their time slice with the CPU is over
or when a higher priority program is ready to run.

Chapter 7. Program Execution Control 7-9

Priority Classes

CPU scheduling is based on four priority classes-Time Critical, Fixed-High,
Regular, and Idle-Time. Each class has 32 levels of execution ordering. Scheduling
parameters are user-selectable at the time the system is started or can be varied
dynamically based on system load.

Depending on a thread's priority class and level, the operating system periodically
gives each thread in each process a small slice of CPU time. Threads with higher
priorities always run before threads having lower priorities. A thread runs until its
time is up or until a thread with a higher priority is ready to run. At that time, the
operating system preempts the thread and starts another thread. Threads can also
voluntarily relinquish the CPU (for example, by calling DosSleep).

The amount of time in each time slice is defined by the TIMESLICE command in the
CONFIG.SYS file. The TIMESLICE command can be used by the user to customize
the size of the time slices that a thread gets. The default is for the operating system
to dynamically vary the size of the time slice based on the activity of the thread and
the overall system load.

When a thread is created (using DosCreateThread), it inherits the priority of the
thread that started it. DosSetPriority enables threads to change their priority
classes and levels in response to changes in their execution environments.
DosSetPriority enables a thread to change its own priority, or the priority of any
thread within its process. DosSetPriority also enables changing priorities for entire
processes and for descendant processes. Within each class, the priority level of a
thread can vary because of a DosSetPriorty request or, if dynamic priority variation
is being used, because of action taken by the operating system.

The operating system uses four priority classes to determine when a thread
receives a time slice:

Table 7-2. Priority Classes

Priority Description

Time-critical Highest priority. For use when response time is critical.

Fixed-high Used by threads that provide service to other threads. This priority
class is to be used when it is desirable that the thread not be too
sensitive to the foreground/background boost provided by dynamic
priority variation. It is meant for programs that need to execute
before regular programs, but without the immediate response time
requirement called for by time-critical threads.

Regular Default priority. Most threads belong in this class.

Idle-time Lowest priority. This priority only gets CPU time when there is no
other work to do.

A time-critical thread always receives a time slice before a fixed-high thread, a
fixed-high thread always receives a time slice before a regular thread, and a regular
thread always receives a time slice before an idle-time thread.

Time-Critical Threads
Time-critical threads have the highest priority class and execute before any
fixed-high, regular, or idle-time threads.

The time-critical class is for threads that must react to events outside the system.
For example, in a communications application, a thread responsible for reading

7-10 OS/2 2.0 Programming Guide-Volume I

Priority Levels

data from the communications device needs enough time to read all incoming data.
Because more than a regular time slice might be needed, a time-critical
classification ensures that the thread gets all the time required.

Time-critical threads have a static priority that is not varied by the operating system.
They are scheduled among themselves in priority level order, with round-robin
scheduling of threads of equal priority.

Time-critical threads must be executed quickly, then free the CPU for other work
until another time-critical event occurs. This is important to maintain good
interactive responsiveness to the user and enable communications and other time
critical applications to run concurrently. The time-critical activity should, when
possible, be in a thread separate from the rest of the application, to isolate and
minimize the time spent processing at the time-critical level. A good rule of thumb
is that a time-critical thread should consist of no more than about 20,000 assembly
language instructions.

Fixed-High Threads
A fixed-high thread has a priority class that is lower than time-critical but executes
before any regular or idle-time threads. This class of threads should be used to
provide service for other threads where it is desirable that the thread not be too
sensitive to the foreground/background boost provided by dynamic priority
variation. A messaging thread, would be a good example of this type of thread.

The operating system varies the priority of a fixed-high thread around a base value
according to the activity of the thread and the system at any point in time. The base
value can be set by the thread itself.

Regular Threads
A regular thread is the class that the majority of threads fall into. No explicit action
is necessary by the application to run at this priority, it is the default.

The operating system varies the priority level of a regular thread around a base
value according to the activity of the thread and the system at any point in time. The
base value can be set by the thread itself.

Idle-Time Threads
An idle-time thread is one with very low priority that executes only when there are
no regular, fixed-high, or time-critical threads to execute. Idle-time threads get CPU
time only when there is no other work to do. The idle-time class is for threads that
need very little CPU time.

Idle-time threads have a static priority that is not varied by the operating system.

Within each class, the operating system maintains a priority level for a thread. For
each of the four priority classes, there are 32 priority levels-0 to 31. A thread with
priority level 31 always receives a time slice before a thread with priority level 30,
and so on.

If two or more threads have the same priority level, the operating system distributes
the CPU time equally by using a round-robin scheme; that is, the operating system
gives a time slice to first one, then another, and so on, and then goes back to the
first. A thread can use DosSetPriority to change its own priority or the priority of
any other thread within its process.

Chapter 7. Program Execution Control 7-11

Although an application can set the priority level of a thread at any time, only

applications that use more than one thread or process should do so. The best use

of priority is to speed up threads or processes on which other threads or processes

depend. For example, an application might temporarily raise the priority of a thread

loading a file if another thread is waiting for that file to be loaded. Because the

priority of a thread is relative to all other threads in the system, raising the priority

of the threads in an application merely to get the extra CPU time adversely affects

the overall operation of the system.

There are other ways to affect the amount of CPU time a thread is given. A thread

can define a critical section of code by using DosEnterCritSec and DosExitCritSec.

While inside the critical section of code, a thread cannot be preempted by any other

thread within its process (threads in other processes are still given their time

slices). Using critical sections enables threads to get more CPU time, while not

unduly affecting the rest of the system.

The priority class and priority level are set using DosSetPriority. The priority class

is changed by passing the new priority class to the function. The priority level,

however, is changed by passing a value, called the priority-delta, that is added to

the existing priority level to produce the new priority level; changes to the priority

level are relative to the current priority level. Specifying a positive priority-delta

increases the priority level, enabling the thread to obtain more CPU time than it

normally would. A negative priority-delta decreases the priority level, giving the

thread less CPU time than it would normally receive. The value is restricted to the

valid range, based upon the current priority class of the process.

If you change the priority level without changing the priority class, the priority-delta

is relative to the current priority level. However, if you change the priority class at

the same time that you change the priority level, the priority-delta value is relative

to 0. Whenever DosSetPriority is called with a class specification, but no value is

specified for priority-delta, the base priority level defaults to 0.

The process identifier parameter of DosSetPriority specifies which process is

affected by the call. A process can change the priority of itself, of any process that

is a descendant of itself, or of one of its threads.

A thread can change the priority of any thread within its current process. However,

when a thread changes the priority of threads in another process, or its

descendants, only those threads running at the default priority will be changed. You

cannot change the priority of a thread in another process that has already changed

its priority from the default.

The initial thread of execution for an application is given a regular class priority that

varies by the system. When a thread is created, it is initially dispatched in the same

class and priority as the thread that started it. A child process inherits the priority of

the thread in the parent process that creates it.

Priority Guidelines
Within the two most common priority classes-time-critical and regular-there are

certain broad guidelines recommended for choosing the priority level for a program.

• TIME-CRITICAL CLASS

The guidelines for level within the time critical class are set to maximize the

number of different applications that can successfully multitask in an OS/2

system. The guidelines are described in the following table.

7-12 OS/2 2.0 Programming Guide-Volume I

Table 7-3. Recommended Priority Levels for Time-Critical Threads

Activity Range of Justification/Comments
Recommended
Priority Levels

Robotics/Real 20-31 OS/2 systems can be used on manufacturing
time process lines to control equipment or in other real
control time process control applications. In this

case a slow response from the PC could
cause expensive damage to equipment or
even human injury. Therefore the highest
priority levels should be reserved for these
applications.

Communications 10-19 In communications, the inability to get the
processor could cause a loss of data or
communications sessions. Therefore this
class of applications is next highest.

Other 0-09 Other threads might need to preempt the
foreground in special cases (for example,
Control-Break). These should be set below
the other 2 classes.

In general, application performance is not a good reason to make a thread time
critical.

• REGULAR CLASS

In cases where explicit priority levels are set, they should follow the guidelines
listed below.

Table 7-4. Recommended Priority Levels for Regular Priority Threads

Activity Range of Justification
Recommended
Priority Level

Communications 26-31 Communications should take priority over
other background processing to increase
overlap with transmission and processing on
the partner PC or host. This gives the best
system performance.

Other 0-25. If an application has multiple threads it might
be necessary to set them to several different
priorities to optimize the order in which they
run. A range of priority levels is provided to
facilitate this. (The default priority is regular
class, level = 0.)

Dynamic Priority Alteration
The operating system can be configured to dynamically alter the priority of a
process. The PRIORITY statement in CONFIG.SYS can be set to either ABSOLUTE
or DYNAMIC. If PRIORITY specifies the ABSOLUTE option, all processes receive
CPU time based on the priority established by calls to DosSetPriority. If the
PRIORITY command in the CONFIG.SYS file specifies the DYNAMIC option, the
operating system adjusts process priorities based on system load and process
activity, and on whether the process is in the foreground. DYNAMIC is the default
setting; if the PRIORITY command is not specified, the system uses DYNAMIC

Chapter 7. Program Execution Control 7-13

priority. DYNAMIC is designed to gives the best overall system performance under
most conditions.

When dynamic priority variation is enabled, the operating system grants higher
priority to the foreground process than to background processes. System load and
process activity are also taken into consideration. The priority of the process
consists of a computed priority value that is based upon the display status of the
process (foreground or background), and its recent 110 and CPU time usage history.
When dynamic priority variation is enabled, 110 priority boosts are generated for
keyboard input, window, foreground, processor starvation, device 110, and DOS
Session interrupts. This ensures that the foreground process-the process most
likely to be in use-receives enough CPU time to provide quick response to user
input.

Altering the Size of the Time Slice
The TIMESLICE command in CONFIG.SYS sets the minimum and maximum amount
of processor time allocated to processes and programs for both OS/2 and DOS
sessions.

The first parameter selects the minimum TIMESLICE value in milliseconds. This
value is the minimum amount of time a thread is to be processed before yielding the
processor to a thread of the same priority level. This value must be an integer
greater than or equal to 32.

The second parameter selects the maximum TIMESLICE value in milliseconds. The
value of this parameter is the maximum amount of time a thread can be processed
before yielding processor time. This value must be an integer greater than or equal
to the minimum value, and less than 65536.

The default is dynamic time slicing, which varies the size of the time slice
depending on system load and paging activity. Dynamic time slicing is designed to
give the best performance in most situations.

For examples and more details of the TIMESLICE command, see the online OS/2
Command Reference.

Using Processes
An OS/2 application that has been loaded into memory and prepared for execution
is called a process. A process is the code, data, and other resources of the
application, such as the open file handles, semaphores, pipes, queues and so on.
The OS/2 operating system considers every application it loads to be a process.

Each process has at least one thread, called the main thread or thread 1. The
application runs when the system scheduler gives control to a thread in the process.
For more on thread management, see "Using Threads" on page 7-24.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of O indicates success. If a non-zero value is returned, an error
occurred.

7-14 OS/2 2.0 Programming Guide-Volume I

Starting a Child Process
You start a process by calling DosExecPgm. The process you start is a child of the
calling, or parent, process and inherits many of the resources owned by the parent
process, such as file handles.

DosExecPgm creates a process environment from an executable file. The target
program is loaded into storage, and it begins execution.

The following code fragment starts an application named ABC:

Figure 7-3. Starting a Child Process

In this example, ABC runs synchronously (as specified by EXEC_SYNC). This
means the parent process temporarily stops while the child process runs. The
parent process does not continue until the child process ends.

Starting an Asynchronous Child Process
To start a child process and enable it to run asynchronously (that is, without
suspending the parent process until the child process ends), you use the
EXEC_ASYNC constant in a call to DosExecPgm. If you start a process in this way,
the function copies the process identifier of the child process to the codeTerminate
field of the RESUL TCODES structure that is returned by DosExecPgm. You can use
this process identifier to check the progress of the child process or to terminate the
process.

You can also run a child process asynchronously by using DosExecPgm with the
EXEC_ASYNCRESULT constant. In addition to causing DosExecPgm to return to the
parent process immediately, this constant also directs the operating system to save
a copy of the termination status when the child process terminates. This status
specifies the reason the child process stopped. The parent process can retrieve the
termination status by using DosWaitChild.

Chapter 7. Program Execution Control 7-15

The following code fragment starts the program SIMPLE.EXE, and then waits for it to

finish. It then prints the termination code and the return code.

Figure 7-4. Retrieving the Termination Status of a Child Process

Starting a Background Process
You can start a child process in the background by specifying the
EXEC_BACKGROUND constant in DosExecPgm. A background process runs

independently of the parent process and is called a detached process. A detached

process should not require any input from the keyboard or output to the video

screen, but it can use interprocess communication, such as pipes, queues, and
shared memory.

7-16 OS/2 2.0 Programming Guide-Volume I

The following code fragment starts the program BATCH.EXE in the background.

Figure 7-5. Starting a Background Child Process

Setting the Command Line and Environment for a Child Process
When you start a process, it inherits many of the resources of the parent. This
includes file handles, such as the standard input and standard output files. A child
process also inherits the resources of the screen group, such as the mouse and
video modes, and the environment variables of the parent process.

The call to DosExecPgm determines the command line and environment that the
child process receives. The fourth and fifth parameters of the function are pointers
to the command line and the environment, respectively. If these pointers are NULL,
the child process receives nothing for a command line and only an exact duplicate
of the environment of the parent process. The parent process can modify this
information by creating a string (ending with two NULL characters) and passing the
address of the string to the function. The command line string must include the
name of the application, followed by a NULL character, and the command line
arguments, followed by two NULL characters. Any number of arguments can be
passed to the child process, as long as the argument string ends with two NULL
characters.

Chapter 7. Program Execution Control 7-17

The following code fragment passes to the child process the string "test -option1
-option2" as its command line:

Figure 7-6. Setting the Command Line Environment for a Child Process

Changing the Priority of a Process
Changing the priority of a process is simply a matter of changing the priority of
every thread executing in the process. For the details see the section on changing
thread priorities, "Changing the Priority of a Thread" on page 7-26.

Obtaining Information about Child Processes
The operating system creates and maintains a Process Information Block for every
process. An application can use DosGetlnfoBlocks to access the Process
Information Block. This function returns a pointer to a pib_s data structure, which
contains the information from the Process Information Block.

The following code fragment returns the address of the Process Information Block of
the current process. The calling thread can subsequently browse either the pib_s
block.

Figure 7-7. Obtaining Information about a Child Process

·oosGetlnfoBlocks also returns the address of the Thread Information Block of the
current thread.

7-18 OS/2 2.0 Programming Guide-Volume I

Waiting for a Child Process to Terminate
You can synchronize the execution of a process with the execution of one of its child
processes by calling DosWaitChild. DosWaitChild does not return until the specified
child process terminates. This can be useful, for example, if the parent process
needs to ensure that the child process has completed its task before the parent
process continues with its own task.

In the following code fragment, the parent process starts a child process and then
waits for the child process to finish:

Figure 7-8. Waiting for a Child Process to End

You can cause a process to wait for all its child processes to end by using the
DCWA_PROCESSTREE constant in the call to DosWaitChild.

Ending the Current Process
You terminate the current process by calling DosExit. When you exit, the system
stops the process and frees any existing resources the process owns.

In the following code fragment, DosExit is used to terminate the process if the given
file does not exist:

Chapter 7. Program Execution Control 7-19

Figure 7-9. Ending the Current Process

EXIT_PROCESS directs DosExit to terminate all the threads in a process including
the calling thread, thus terminating the process. DosExit includes an error value
that is returned to the parent process through the RESUL TCODES structure
specified in the DosExecPgm call that started the process. If you started the
application from the command line, the command processor, CMD.EXE, makes this
value available through the ERRORLEVEL variable. If another process started the
application, that process can call DosWaitChild to determine the error value.

If you want to exit only from a given thread, you can call DosExit with the
EXIT_THREAD constant. This will terminate only the calling thread; other threads in
the process are not affected. If the thread you terminate is the last thread in the
process, the process also terminates. If the thread consists of a function, the thread
terminates when the function returns.

Terminating a Process
A process can terminate the execution of a descendant process by calling
DosKillProcess. This causes the operating system to send a
XCPT_SIGNAL_KILLPROC exception to the target process. The child processes of
the target process can also be terminated.

The following code fragment terminates the specified process and all child
processes belonging to that process:

Figure 7-10. Terminating a Process

In this example, the pidProcess parameter specifies which descendant process to
terminate. The process identifier is returned by DosExecPgm in the codeTerminate
field of the RESUL TCODES structure when you start the child process.

7-20 OS/2 2.0 Programming Guide-Volume I

The parameter DKP _PROCESSTREE in the example indicates that the specified
process, pidProcess, and all of its descendant processes are to be terminated.

If you specify DKP _PROCESS in a call to DosKillProcess, only the specified process
is terminated. Its child processes, if any, continue to run.

The process to be terminated must either be the current process, or it must have
been directly created by the current process with DosExecPgm for asynchronous
execution. That is, a process can terminate itself and its descendants.

The process to be terminated need not still be executing. If it has started its own
child processes, but has stopped executing, its children can still be flagged for
termination.

Obtaining the Termination Status of a Child Process
The operating system saves the termination status for a process if the process was
started by using the EXEC_ASYNCRESULT constant in the call to DosExecPgm. You
can retrieve the termination status of the most recently terminated process by using
the DCWW_NOWAIT constant with DosWaitChild and setting the child process
identification parameter to 0. The DCWW_NOWAIT constant directs the function to
return immediately, without waiting for a process to end. Instead, the function
retrieves the termination status from the process that most recently ended. If you
specify a child process identification with DCWW_NOWAIT, DosWaitChild returns
ERROR_CHILD_NOT_COMPLETE if the child process has not terminated. Once the
specified process has ended, DosWaitChild returns its termination code.

The following code fragment starts a child session (the program SIMPLE.EXE), and
then retrieves the termination status from the process that most recently ended.

Chapter 7. Program Execution Control 7-21

Figure 7-11. Obtaining the Termination Status of a Child Process

Creating an Exit List
You call DosExitlist to add to the exit list a routine that is to be given control when a
process is terminated (or finishes its execution). Multiple routines can be added to
the list. When the process is terminating, the operating system transfers control to
each address on the list.

If there are multiple addresses on the list, each function gets control in numerical
o-rder (with O being first and OFFH being last), based on a value supplied by the
application when it calls DosExitlist. In case of duplicate entries for this parameter,
the routines will be executed in LIFO (last in, first out) order.

DosExitlist requires a function code that specifies an action and a pointer to the
function that is to receive control upon termination.

7-22 OS/2 2.0 Programming Guide-Volume I

The following code fragment adds the locally defined function SaveFiles to the exit
list:

Figure 7-12. Exit List Routines

Any function that you add to the list must take one parameter. The function can
carry out any task, as shown in the preceding example, but as its last action it must
call DosExitlist, specifying the EXLST_EXIT constant. An exit-list function must not
have a return value and must not call DosExit to terminate.

When an exit-list routine receives control, the parameter (located at ESP+4 on the
stack) contains an indicator of why the process ended. The values returned are the
same as those for termination codes returned by DosWaitChild or DosExecPgm
requests. These values are:

TC_EXIT (0)
TC_HARDERROR (1)
TC_TRAP (2)
TC_KILLPROCESS (3)
TC_EXCEPTION (4)

Normal exit
Hard-error halt
Trap operation for a 16-bit child process
Unintercepted DosKillProcess
Exception operation for a 32-bit child process

To execute the exit-list functions, the operating system reassigns thread 1 after
terminating all other threads in the process. If thread 1 has already exited (for
example, if it called DosExit without terminating other threads in the process), the
exit-list functions cannot be executed. In general, it is poor practice to terminate
thread 1 without terminating all other threads.

Chapter 7. Program Execution Control 7-23

Using Threads

Before transferring control to the termination routines, the operating system resets
the stack to its initial value. Transfer is by way of an assembly language JMP
instruction. The routine must be in the address space of the terminating process.
The termination routine at that address takes the necessary steps and then calls
DosExitlist with FunctionOrder= EXLST_EXIT. Control is then transferred to the
next address in the invocation order of the exit list. When all such addresses have
been processed, the process completes exiting. If a routine on the list does not call
DosExitlist at the completion of its processing, the process waits, and the operating
system prevents termination.

During DosExitlist processing, the process is in a state of partial termination. All
threads of the process are terminated, except for the one executing the exit-list
routines. To ensure good response to a user request to end a program, there
should be minimal delay in completing termination. Termination routines should be
short and fail-safe.

You can use DosExitlist with the EXLST_REMOVE constant to remove a function
from the list.

The designer of an exit-list routine must carefully consider which functions will be
used by the routine. In general, calls to most OS/2 functions are valid in a
DosExitlist routine, but certain functions, such as DosCreateThread and
DosExecPgm, are not.

A thread is a dispatchable unit of execution that consists of a set of instructions,
related CPU register values, and a stack. Every process has at least one thread and
can have many threads running at the same time. The application runs when the
operating system gives control to a thread in the process. The thread is the basic
unit of execution scheduling.

Every process has at least one thread, called the main thread or thread 1. To
execute different parts of an application simultaneously, you can start several
threads.

A new thread inherits all the resources currently owned by the process. This means
that if you opened a file before creating the thread, the file is available to the thread.
Similarly, if the new thread creates or opens a resource, such as another file, that
resource is available to the other threads in the process.

Creating a Thread
You use DosCreateThread to create a new thread for a process. DosCreateThread
requires the address of the code to execute and a variable to receive the identifier
of the thread. The address of the code is typically the address of a function that is
defined within the application.

You can pass one ULONG parameter to the thread when you start it. To pass more
information to the thread, pass the address of a data structure.

You specify how you want the thread to run when you call DosCreateThread. If bit 1
of the flag parameter in the function call is 0, the thread starts immediately. If bit 1
of the flag parameter is 1, the thread starts suspended and will not run until the
application calls DosResumeThread.

7-24 OS/2 2.0 Programming Guide-Volume I

Each thread maintains its own stack. You specify the size of the stack when you call
DosCreateThread. The amount of space needed depends on a number of factors,
including the number of function calls the thread makes and the number of
parameters and local variables used by each function. If you plan to call OS/2
functions, a reasonable stack size is 8192 bytes (8KB); 4096 bytes (4KB) should be
the absolute minimum. If bit 1 of the flag parameter is 0, the operating system uses
the default method for initializing the thread's stack. If bit 1 of the flag parameter is
1, memory for the thread's entire stack is pre-committed.

The following code fragment creates a thread:

Figure 7-13. Creating a Thread

A thread continues to run until it calls DosExit, returns control to the operating
system, or is terminated by a DosKillThread call. In the preceding example, the
thread exits when the function implicitly returns control at the end of the function.

Obtaining Information about a Thread
The operating system creates and maintains a Thread Information Block for each
thread. An application can use DosGetlnfoBlocks to access the Thread Information
Block. This function returns a pointer to a tib_s data structure.

The following code fragment returns the address of the Thread Information Block of
the current thread. The calling thread can subsequently browse the tib_s control
block.

Chapter 7. Program Execution Control 7-25

Figure 7-14. Obtaining Information about a Thread

DosGetlnfoBlocks also returns the address of the Process Information Block of the
current process.

Changing the Priority of a Thread
You can use DosSetPriority to change the execution priority of threads in a process.
The execution priority defines when or how often a thread receives an execution
time slice. Threads with higher priorities receive time slices before those with
lower priorities. When a thread that is higher in priority than the currently running
thread becomes ready to run, it immediately preempts the lower priority thread (the
lower priority thread does not get to complete its time slice). Threads with equal
priority receive time slices in a round-robin order. If you raise the priority of a
thread, the thread is executed more frequently.

You can use DosSetPriority to set the priority for one thread in a process, for all
threads in a process (and thus the process itself), or for threads in a child process.

A process can change the priority of any thread within itself. However, when a
process changes the priority of threads in another process, or its descendants, only
those with default priorities are changed. The priority of any thread in another
process that has already explicitly changed its priority from the default with
DosSetPriority is not changed.

In the following code fragment, DosSetPriority lowers the priority of a process to be
used as a background process:

Figure 7-15. Changing the Priority of a Thread

DosGetlnfoBlocks retrieves the Process Information Blocks and Thread Information
Blocks. DosSetPriority then uses the process identifier to change the priority to idle
time (idle-time processes receive the least attention by the operating system).

If you specify PRTYS_PROCESS when calling DosSetPriority, only the priority of the
specified process changes. The priorities of all child processes remain unchanged.

7-26 OS/2 2.0 Programming Guide-Volume I

If you specify PRTYS_THREAD in the call to DosSetPriority, you must specify a
thread identifier as the last parameter. The priority of the specified thread changes,
but the priorities of all other threads in the process remain unchanged.

Whenever DosSetPriority is called with a class specification, but no value is
specified for priority-delta, the base priority level defaults to 0.

Suspending the Current Thread
You can temporarily suspend the execution of the current thread for a set amount of
time by using DosSleep. This function suspends execution of the thread for the
specified number of milliseconds. DosSleep is useful when you need to delay the
execution of a task. For example, you can use DosSleep to delay a response when
the user presses a DIRECTION key. The delay provides the user with enough time
to observe the results and release the key.

The following code fragment uses DosSleep to suspend execution of a thread for
1000 milliseconds (1 second):

Figure 7-16. Suspending the Current Thread

Suspending and Resuming Execution of a Thread
DosSuspendThread and DosResumeThread are used to temporarily suspend the
execution of a thread when it is not needed and resume execution when the thread
is needed.

These functions are best used when it is necessary for a process to temporarily
suspend execution of a thread that is in the middle of a task. For example, consider
a thread that opens and reads files from a disk. If other threads in the process do
not require input from these files, the process can suspend execution of the thread
so that the operating system does not needlessly grant control to it.

The specified thread might not be suspended immediately if it has some system
resources locked that must be freed first. However, the thread is not permitted to
execute further application program instructions until a corresponding
DosResumeThread is called.

A thread can only suspend another thread that is within its process.

DosResumeThread is used to enable the suspended thread to resume execution.

The following code fragment temporarily suspends the execution of another thread
within the same process. A subsequent call to DosResumeThread restarts the
suspended thread. Assume that the thread identifier of the target thread has been
placed int Thread/D already.

Chapter 7. Program Execution Control 7-27

Figure 7-17. Suspending and Resuming Execution of a Thread

Entering Critical Sections
A thread can prevent execution of any of the other threads in its process by calling
DosEnterCritSec. This function temporarily prevents a thread from being preempted
by other threads within its process. The other threads in the process will not be
executed until the current thread calls DosExitCritSec. This enables the calling
thread to access a time-critical resource of the process.

The following code fragment enters a section that will not be preempted, performs a
simple task, and then exits quickly.

Figure 7-18. Entering and Exiting a Critical Section of Code

7-28 OS/2 2.0 Programming Guide-Volume I

A count is maintained of the outstanding DosEnterCritSec requests. The count is
incremented when a DosEnterCritSec request is made, and decremented when a
DosExitCritSec request is made. A DosExitCritSec request wi II not cause normal
thread dispatching to be restored while the count is greater than 0.

This count is maintained in a WORD-sized variable. If overflow occurs, the count is
set to its maximum value, and an error is returned. The operation is not performed
when this occurs.

Threads that call DosEnterCritSec must not must not make dynamic link calls within
these critical sections. The dynamic link procedure could be using semaphores to
serialize a resource. If a thread entering the critical section blocks another thread
that already owns the resource which the dynamic link function is about to request,
a deadlock occurs.

For example, threads of an application are serializing their access to a queue by
means of a semaphore. A thread enters a critical section and makes a request to
read the queue while another thread already has the semaphore that controls
access to the queue. The thread that has the semaphore is now effectively blocked
by DosEnterCritSec, and the thread that has requested the queue waits forever to
access it.

Note: Thread 1 is the initial thread of execution. It handles all signals (Ctrl + C,
Ctrl +Break, and KillProcess). If a signal occurs while DosEnterCritSec is
active, thread 1 can begin execution to process the signal. Thread 1 must not
access the critical resource that is being protected by the use of
DosEnterCritSec.

Waiting for a Thread to Terminate
An application might need to ensure that one thread has finished executing before
another thread continues with its own task. For example, one thread might have to
finish reading a disk file into memory before another thread can use the information.
You can use DosWaitThread to suspend a thread until another thread has
terminated.

DosWaitThread places the current thread into a wait state until another thread in the
current process has terminated. It then returns the thread identifier of the
terminating thread.

The following code fragment creates three threads. The thread identifier for each
thread is returned by DosCreateThread in the atid array. Using &atid[O] as a
parameter in the call to DosWaitThread causes the operating system to wait until the
thread with that identifier (the thread running Thread2Func) terminates.

Chapter 7. Program Execution Control 7-29

Figure 7-19. Waiting for a Certain Thread to End

If you set the tid parameter to 0 in the call to DosWaitThread, the operating system
waits only until the next thread (any thread in the process) terminates. The
identifier for the terminated thread is then returned in the tid parameter.

After the threads are created as in the preceding example, the following code
fragment waits until one of the threads terminates, and then returns its thread
identifier:

Figure 7-20. Waiting for Any Thread to End

The thread identifier of the next thread to terminate after the DosWaitThread call is
returned in the tid parameter.

You can use DosWaitThread so that you can recover thread resources when the
thread terminates, or to synchronize the execution of a thread with the execution of
other threads.

Ending the Current Thread
To end the execution of the current thread, call DosExit, specifying the action code
as 0. It is good practice to end each thread in the application individually.

If the thread that is ending is the last thread in the process, or if the request is to
terminate all threads in the process, then the process also terminates. All threads
except one are terminated, and that thread executes any routines in the list
specified by DosExitlist.

When this is complete, the resources of the process are released, and the result
code that was specified in the DosExit call is passed to any thread that calls
DosWaitChild for this process.

7-30 OS/2 2.0 Programming Guide-Volume I

In the following code fragment, the main routine starts another program,
SIMPLE.EXE, and then expects a return code of 3 to be returned. SIMPLE.EXE sets
the return code with DosExit.

Figure 7-21. Ending the Current Thread

When you specify DosExit for thread 1 (the initial thread of execution started by the
operating system for this process), all of the threads in the process are terminated,
and the process is ended.

Terminating a Thread
DosKillThread terminates a thread in the current procesr. DosKillThread enables a
thread in a process to terminate any other thread in the process.

DosKillThread is used to force a thread within the current process to terminate
without causing the entire process to be terminated.

Chapter 7. Program Execution Control 7-31

Using Sessions

Figure 7-22. Terminating a Thread within the Same Process

DosKillThread returns to the requestor without waiting for the target thread to
complete its termination processing.

It is an invalid operation to use DosKillThread to kill the current thread.

Terminating thread 1 will cause the entire process to terminate similar to executing
DosExit on thread 1.

If the target thread is executing 16-bit code or was created by a 16-bit requester,
ERROR_BUSY is returned.

A session consists of at least one process and a virtual console (either full screen,
or Presentation Manager window, and buffers for keyboard and mouse input). An
application can manage its own child sessions by using DosStartSession,
DosStopSession, DosSelectSession, and DosSetSession.

Starting a Session
DosStartSession is used to start new sessions and to specify the name of the
application to be started in the new session.

There are five types of sessions that you can start: full screen, text window,
Presentation Manager (PM), full screen DOS Session, and windowed DOS Session.
OS/2 applications running in any of the OS/2 session types-full screen, text window,
and PM-can start a session for any other application type, including DOS Sessions.
Applications running in DOS Sessions cannot start sessions.

DosStartSession can be used to start either a foreground or a background session,
but a new session can be started in the foreground only when the session of the
caller, or one of the descendant sessions of the caller, is currently executing in the
foreground.

A session can be started as an unrelated session or as a child session.

7-32 OS/2 2.0 Programming Guide-Volume I

In the following code fragment, an unrelated, foreground session is created, and the
application, SIMON.EXE, is started in the new session:

lde"fine INCL.DOSPROCESS
#define INCC°DOSStSMGR.
linclud~~os2.h>

/* Process and· thread·· values *I

Figure 7-23. Starting a Foreground Session

/* .. Length ofJh~ strµct4re */
l*:.UnteJa~ed .. se.ssion *:/
/*:1!1 the foregroµn<t */
/'lf.:No;tr~cing .. ·... .. . */
/*.J"itJ:e js :PgmName . .. */ ·
r.:Mdt~s~.of.szP~mNa11Je... *!
/:*:. ~o·:<i?l\lfna!1~ .ltrr~: (lrgs · · *;l.··

.• /~··No.::.·t:erRl~l1~·1 · .~ueµ·e · · :· */.:
· </*· · In.~eri:t.5:: .. e.nvJtoonment .· ~l
l~: Uses pare~t .• environment:.~/·
f*. PM sess.ion. ·· .. ··· ... · ... ·· ... · · *:/

.)*: Uses:. :d~f a.µ~.~·· .icon.···· · tl •.r ·us·e~ b¥ ~in.calls · ·1ft
·/.:*: ... ·· ~~~·rts ... ap~· 1'1~~illli.zecl .. */

· ··; 1*:::~.9"!·ef: .:l~~t.: ~orn~r · */
.r·~<J"!e~left ~omer.. ·"*l
·:1* ... 1gnored:.f~l"·m~xi1ni.,z:ed: '*:.J. ··
/* · Ignor~dtot ro~xJmi.~ec! ·*i·
/~:.FaJl·;r~J11e·:b1.tffer· *:l·

·• /~ .. Buffer l e[J9th ·· · it 1 ·

Before calling DosStartSession, you must create a STARTDATA data structure that
defines the session to be started. Different lengths for the data structure are
supported to provide compatibility and various levels of application control.

DosStartSession uses the STARTDATA structure to specify the details of the new
session, such as the name of the application to start in the session, whether the new
session should be started in the foreground or background, and whether the new
session is unrelated or is a child session of the session calling DosStartSession.

When a session is created, the title specified in STARTDATA, (or the application title
if no title is specified in STARTDATA) is added to the Window List.

The Related field in the STARTDATA structure specifies whether the new session is
related to the session calling DosStartSession.

Chapter 7. Program Execution Control 7-33

\

\

If the lnheritOpt field in the STARTDATA data structure is set to 1, the new session
inherits the environment and open file handles of the calling process. This applies
for both unrelated and related sessions.

Controlling the Execution of Child Sessions
Once a process has started a child session, it can use DosSelectSession to control
the child session.

A process calls DosSetSession to set the selectability and bonding of a child
session.

Setting User Selectability of a Child Session
A process calls DosSetSession to set the selectability of a child session. When a
child session is selectable, the user can select it from the Window List or by using
Alt+ Esc. When a child session is nonselectable, the user cannot select the session
from the Window List or move to it by using the Alt+ Esc keys.

In the following code fragment, DosSetSession makes a child session nonselectable:

Figure 7-24. Making a Child Session Nonselectable

Once a child session is made nonselectable, the user cannot select the session from
the Window List or move to it by using the Alt+ Esc keys. However, the parent
session can still bring the child session to the foreground by using
DosSelectSession. If the session contains a Presentation Manager application or is
a windowed session, the user will still be able to select it with a mouse.

The parent session can make a nonselectable child session selectable by setting the
Se/ectlnd field to SET_SESSION_SELECTABLE in the STATUSDATA structure.

DosSetSession can be called only by a parent session and only for a child session.
That is, the calling process must be the process that started the child session using
DosStartSession. Neither the parent session itself nor any grandchild, nor any other
descendant session beyond a child session can be the target of this call.

Additionally, DosSetSession cannot be used to change the status of a session that
was started as an unrelated session. The Related field in the STARTDATA structure
must have been set to 1 when the session was started.

7-34 OS/2 2.0 Programming Guide-Volume I

Binding Child Sessions to Parent Sessions
An application can use DosSetSession to establish a bond between a parent session
and one of its child sessions. When the two sessions are bound, the operating
system brings the child session to the foreground when the user selects the parent
session.

In the following code fragment, a parent session is bound to the child session
specified by the u/Session/D parameter:

Figure 7-25. Binding a Child Session to a Parent Session

When the application uses DosSetSession to establish a parent-child bond, any bond
the parent has with another child session is broken. The application can remove the
parent-child bond by calling DosSetSession with the Bondlnd field (in the
STATUSDATA structure) set to SET_SESSION_NO_BOND.

A parent session can be executing in either the foreground or the background when
it calls DosSetSession.

Switching a Session to the Foreground
An application can bring a session to the foreground, or select the session, by
calling DosSelectSession.

DosSelectSession can only be used to select the current session or one of the
current session's child sessions. It cannot be used to select a grandchild session,
or any other descendant session beyond a child session, or any sessions that were
started as unrelated sessions.

The session making the call, or one of its child sessions, must be executing in the
foreground at the time the function is called. A process can call DosSelectSession
with its own session identifier to switch itself to the foreground when one of its
descendants is executing in the foreground.

The following code fragment uses DosSelectSession to switch the child session
specified by the ulSessionlD parameter to the foreground for five seconds. The
application then switches the parent session back to the foreground:

Chapter 7. Program Execution Control 7-35

Figure 7-26. Switching a Child Session to the Foreground

Terminating a Session
DosStopSession can be used by a parent session to stop one or all of its child
sessions. If the child session specified in the call to DosStopSession has related
sessions, the related sessions are also terminated. The parent session can be
running in the foreground or the background when it calls DosStopSession. If the
child session is running in the foreground when it is terminated, the parent session
becomes the foreground session.

DosStopSession can only be called by a parent session for a child session. Neither
the parent session itself, nor any grandchild, nor any other descendant session
beyond a child session, nor any unrelated session, can be the target of this call.

In the following code fragment, the child session specified by the u/Session/D
parameter is terminated:

#define INCL DOSPROCESS
#define" INC(DOSSESMGR
#include<os2.h>

OtON6- ul Se·ssiohID;

/* Process ·and. thread values··· * l

DosStopS~sston{STOP:.:_SESSION_.SPEClFlEQ.

Figure 7-27. Terminating a Child Session

An application can terminate all its child sessions by setting the first parameter to
STOP _SESSION_ALL in the call to DosStopSession. If this is specified, the second
parameter is ignored.

A process running in a child session can ignore the request to terminate. If the
process has set up its own exception handler, it might not terminate immediately
after the call to DosStopSession. The only way the parent process can be certain
that the child session has terminated is to wait for notification through the
termination queue specified in the call to DosStartSession that started the session.
When the child session terminates, the operating system writes a data element into
the termination queue, specifying the child process identifier and the termination
status.

If the process in the session specified by DosStopSession has not ended, then
DosStopSession still returns a normal return code. You can ensure that a process
in a session has ended by waiting for notification from the termination queue
specified with DosStartSession.

7-36 OS/2 2.0 Programming Guide-Volume I

Summary
Following are the OS/2 functions and data structures used for multitasking.

Table 7-5. Program Execution Control Functions

Thread Control Functions

DosCreateThread

DosEnterCritSec

Dos Exit

DosExitCrltSec

DosGetlnfoBlocks

DosKillThread

Dos Resume Thread

DosSetPriority

DosSuspendThread

DosWaitThread

Process Control Functions

DosExecPgm

DosExitList

DosGetlnfoBlocks

DosKillProcess

DosWaitChild

Session Control Functions

DosSelectSession

DosSetSession

DosStartSesslon

DosStopSession

Creates an asynchronous thread of execution
under the current process.

Disables thread switching for the current process.

Terminates thread execution in the current
process.

Enables thread switching for the current process.

Obtains the address of the Thread Information
Block and the Process Information Block.

Terminates a thread in the current process.

Restarts a thread that was previously suspended.

Changes the priority of a child process or thread in
the current process.

Suspends execution of another thread within the
current process.

Waits for another thread in the current process to
end.

Executes another program as a child process.

Defines a list of routines to be executed when the
current process ends.

Obtains the address of the Thread Information
Block and the Process Information Block.

Flags a process or group of processes for
termination.

Waits for a child process to end.

Switches a child session to the foreground.

Sets the status of a child session.

Starts an unrelated or child session.

Terminates one or all child sessions.

Table 7-6. Program Execution Control Data Structures

Data Structure Description

RESUL TCODES Describes the reason a process terminated and
contains the value returned by the process.

pib_s Process Information Block.

STATUSDATA Data structure for DosSetSession.

STARTDATA Data structure for DosStartSession.

tlb_s Thread Information Block.

Chapter 7. Program Execution Control 7-37

7-38 OS/2 2.0 Programming Guide-Volume I

Chapter 8. Semaphores

Communication between processes is valuable in a multitasking operating system
to enable concurrent processes to work together. Semaphores are one of three
forms of interprocess communication (IPC), the other forms of IPC being pipes and
queues.

This chapter describes how to create and use semaphores. Semaphores enable an
application to signal the completion of tasks and control access to resources that
are shared between more than one thread or process.

The following topics are related to the information in this chapter:

• Memory (Shared Memory)
• Program Execution and Control
• Pipes
• Queues.

About Semaphores
Semaphores signal the beginning or ending of an operation and provide mutually
exclusive ownership of resources. Typically, semaphores are used to prevent more
than one process or thread within a process from accessing a resource, such as
shared memory, at the same time.

Semaphores are defined by the operating system and reside in an internal memory
buffer. They are divided into three types, according to the functionality they provide:

• Event semaphores enable a thread to notify waiting threads that an event has
occurred. The waiting threads then resume execution, performing operations
that are dependent on the completion of the signaled event.

• Mutual exclusion (mutex) semaphores enable threads to serialize their access to
shared resources. That is, ownership of a mutex semaphore is used by
cooperating threads as a prerequisite for performing operations on a resource.
(Threads cooperate by using the mutex semaphore functions to ensure that
access to the resource is mutually exclusive.)

• Multiple Wait (muxwait) semaphores enable threads to wait either for multiple
events to occur, or for multiple resources to become available. Alternatively, a
flag can be set so that a thread waits for any one of multiple events to occur, or
for any one of multiple resources to become available.

Event Semaphores

© Copyright IBM Corp. 1992

An event semaphore provides a signaling mechanism among threads or processes,
ensuring that events occur in the desired sequence. Event semaphores are used by
one thread to signal other threads that an event has occurred. An application can
use this type of semaphore to block a thread or process until the event has
occurred.

An event semaphore has two states, reset and posted. When an event semaphore is
in the reset state, the operating system blocks any thread or process that is waiting
on the semaphore. When an event semaphore is in the posted state, all threads or
processes waiting on the semaphore resume execution.

8-1

For example, assume thread 1 is allocating a shared memory object and threads 2
and 3 must wait for the memory to be allocated before they attempt to examine its
contents. Before thread 1 allocates the memory, it creates an event semaphore,
specifying the initial state of the semaphore as reset. (If the event semaphore has
already been created, thread 1 simply resets the semaphore.) Threads 2 and 3 use
DosWaitEventSem to wait for the semaphore to signal that the event, in this case the
allocation and preparation of the shared memory object, has been completed.
Because the semaphore was reset by thread 1, threads 2 and 3 are blocked when
they call DosWaitEventSem. After thread 1 has finished allocating and placing data
in the shared memory object, it signals the completion of its task by posting the
event semaphore. The posting of the event semaphore unblocks threads 2 and 3,
enabling them to resume execution. They can then proceed to examine the contents
of the allocated memory.

In the example above, one thread controls the resetting and posting of the event
semaphore, while other threads merely wait on the semaphore. Another approach
could be for an application or thread to reset an event semaphore, then block itself
on that semaphore. At a later time, another application or thread would post the
event semaphore, unblocking the first thread. This method is shown in Figure 8-1.
Process A resets the event semaphore, then blocks itself on the semaphore by
calling DosWaitEventSem. At a later time, process B posts the event semaphore.
This unblocks process A and enables it to continue execution. Note that in this
example two different processes are accessing the event semaphore; this means
that the event semaphore being used must be a shared semaphore. It might be a
named semaphore, as well.

Process A
Process A Suspended Process A Continues
___ ...,. DOSResetEventSem ---+ DosWaitEventSem

"---- £1
------=--•~ lsemaphorel-'

__/
• DosPostEventSem ~

Process B

Figure 8-1. Resetting and Waiting for an Event Semaphore

Mutual Exclusion (Mutex) Semaphores
A mutual exclusion (mutex) semaphore protects resources (such as files, data in
memory, and peripheral devices) from simultaneous access by several processes.
Mutex semaphores enable threads to serialize their access to resources. It does so
by preventing the processes from concurrently executing the sections of code
through which access is made. These sections of code are called critical sections.
For example, a mutex semaphore could be used to prevent two or more threads
from simultaneously writing to the same file on a disk.

Before a thread can execute a mutex-protected critical section, it must request and
receive ownership of the mutex semaphore. Only the thread that has gained
ownership of the mutex semaphore is permitted to perform operations on the
protected resource. Only one thread at a time can own the mutex semaphore, and
the owner thread retains ownership until it finishes executing its critical section.
When finished, the owner thread releases the mutex semaphore, enabling another
thread to become the owner.

8-2 OS/2 2.0 Programming Guide-Volume I

When a thread requests ownership of a mutex semaphore that is already owned, the
operating system blocks the thread. When more than one thread requests
ownership of the same semaphore, the operating system queues the requests and
grants subsequent ownership based on the thread's priority and the order in which
the requests were received.

If more than one thread is blocked on a DosRequestMutexSem request, then
ownership is given to the thread that has the highest priority level. If more than one
of the waiting threads have the same priority level, then FIFO ordering is used to
determine which thread is unblocked and given ownership of the semaphore.

For example, both thread 1 and thread 2 must write information to the same disk
file. Thread 1 claims ownership of an agreed-upon mutex semaphore and starts
writing its information to the file. If thread 2 also requests ownership of the
semaphore, it will be blocked. When thread 1 has finished writing to the file, it
releases the semaphore. The operating system then unblocks thread 2 and
designates it as the new owner of the semaphore so that it can write to the file.

During process termination, after delivery of process-termination exceptions and
unwind exceptions, if any threads in the process aside from Thread 1 (the main
thread) own a mutex semaphore, ownership of the semaphore (and therefore, the
shared resource) passes to Thread 1. This gives Thread 1 a last chance to clean up
the semaphore and the shared resource before the process ends. If Thread 1 ends
without releasing the semaphore, all threads that are currently waiting on
ownership of the semaphore will be unblocked with the SEM_OWNER_DIED return
code. Any thread that attempts to open it or request ownership of the semaphore
will receive a SEM_OWNER_DIED return code.

The recommended way to clean up semaphores, and other resources, is for each
thread, especially Thread 1, to have an exception handler to handle clean up during
process termination (the XCPT_PROCESS_TERMINATE or
XCPT_ASYNC_PROCESS_TERMINATE exceptions). When it is not possible to
register an exception handler for a thread, (a DLL, for example, must de-register its
exception handlers when it returns control to the thread that called it), you should
add a clean up routine to the exit list of the process.

Multiple Wait (Muxwait) Semaphores
A multiple wait (muxwait) semaphore enables a thread to wait on several event or
mutex semaphores simultaneously. A muxwait semaphore is a compound
semaphore that consists of a list of up to 64 event semaphores or mutex
semaphores (the two types cannot be mixed).

A flag is set when the muxwait semaphore is created to enable threads to use the
semaphore in either of two ways:

• Threads can wait for all of the mutex semaphores to be released, or for all of the
event semaphores to be posted.

• Threads can wait for any one of the mutex semaphores in the list to be released,
or for any one of the event semaphores in the list to be posted.

Depending on the value of the flag, a muxwait semaphore is said to have cleared
when either any or all of the semaphores in the muxwait list have been posted or
released.

Chapter 8. Semaphores 8-3

For example, suppose a thread requires access to several regions of shared
memory at the same time. The operating system blocks the thread until the thread
acquires ownership of all the mutex semaphores protecting the shared regions. The
thread can then access all the memory regions. Meanwhile, the operating system
prevents access by other threads.

Named and Anonymous Semaphores
A semaphore can be either named or anonymous. A named semaphore is always
shared; that is, it is always available to any process that knows the name. An
anonymous semaphore can be either private to a process or shared among
processes, depending on whether the application includes the DC_SEM_SHARED
flag in the function that creates the semaphore. A semaphore intended for use
solely among threads of the same process can be anonymous and private.

The operating system creates a named semaphore when an application specifies a
name in the function that creates the semaphore. The name must have the
following form:

\SEM32\SemName

The "\SEM32\" is required, though it need not be uppercase. The semaphore name
must conform to the rules for OS/2 file names, although no actual file is created for
the semaphore. If the application does not specify a name in the function that
creates the semaphore, the operating system creates an anonymous semaphore.

The OS/2 operating system permits a system-wide maximum of 65536 (64K) shared
semaphores. In addition, each process can use up to 65536 (64K) private
semaphores.

A shared muxwait semaphore must contain either all shared event semaphores or
all shared mutex semaphores. However, a private muxwait semaphore can contain
a combination of shared and private event or mutex semaphores. The operating
system generates a unique handle when it creates a semaphore. Processes must
obtain this handle before they can access the semaphore. A semaphore's handle is
always available to the process that created the semaphore. A process can obtain
the handle of a named semaphore created in another process by using the
appropriate semaphore-opening function. A process that requires access to an
anonymous shared semaphore that was created in another process must obtain the
handle of the semaphore through some other form of interprocess communication,
such as a pipe or a queue.

Semaphore Management
After one process creates a semaphore, threads in other processes must open the
semaphore before they can access it. (Creating a semaphore automatically opens it
for the creating process.) The open operation ensures that the process is a valid
user of the semaphore. The operating system keeps track of the number of open
operations that each process performs on a semaphore. A process can have up to
65535 (64K - 1) open operations performed on a semaphore at any one time.

If a process finishes using a semaphore and will not use it again, the process should
close the semaphore so that the operating system can free the memory the
semaphore is using. The operating system returns the ERROR_SEM_BUSY error
value if a thread tries to close a semaphore that has another thread in the same
process still waiting for it.

8-4 OS/2 2.0 Programming Guide-Volume I

If a process terminates with open semaphores, the operating system automatically
closes the semaphores for that process.

Semaphores reside in a memory buffer rather than a disk file. Therefore, when the
last process that has a semaphore open exits or closes that semaphore, the
operating system frees the associated handle or name.

When an application calls a function that causes a thread to wait on a semaphore,
the application can specify the amount of time for the thread to wait. When the
interval elapses without the semaphore being posted or released, the function
returns the ERROR_ TIMEOUT error value and the thread continues running. The
application can provide a specific time-out value in milliseconds, or it can specify
either the SEM_INDEFINITE_WAIT or the SEM_IMMEDIATE_RETURN flag. If a
thread is interrupted while it is waiting on a semaphore, the ERROR_INTERRUPT
error value is returned to the caller.

Using Event Semaphores
An application can use an event semaphore to trigger execution of other processes.
This is useful if, for example, one process provides data to many other processes.
Using an event semaphore frees the other process from the trouble of polling to
determine when new data is available.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

Creating an Event Semaphore
Processes create an event semaphore by using DosCreateEventSem. The process
that controls the event or resource is usually the one that creates the semaphore,
but it does not have to be.

Threads in the process that creates the semaphore do not have to open the
semaphore before using it. DosCreateEventSem obtains access to the semaphore
for the calling process and its threads. Threads in other processes must call
DosOpenEventSem to open the semaphore before they can use it.

Event semaphores can be defined as either private or shared:

• Private semaphores are always unnamed and are therefore always identified by
their handles. They can be used only by threads within a single process.

• Shared semaphores can be either named or unnamed. If named, they can be
opened using either the name or the handle. The handle returned by
DosOpenEventSem is then used to identify the semaphore for all other functions.
Semaphore names must include the prefix \SEM32\ and must conform to file
system naming conventions. Shared semaphores can be used by threads in
multiple processes.

Chapter 8. Semaphores 8-5

In the following code fragment, the controlling process creates a named event

semaphore and posts the semaphore after writing data to a shared file:

Figure 8-2. Creating and Posting a Named Event Semaphore

There is a system-wide limit of 65536 (64K) shared semaphores (including mutex,

event, and muxwait semaphores); in addition, each process can have up to 65536

(64K) private semaphores.

When an event semaphore is created, a flag is used to specify the initial state of the

event semaphore, either reset or posted. If the initial state is reset, a thread that

calls DosWaitEventSem will be blocked until a process that has access to the

semaphore uses DosPostEventSem to post the event semaphore. If the initial state

is posted, then a thread that calls DosWaitEventSem will return immediately to

continue its execution. If the thread calling DosWaitEventSem is not in the process

that created the semaphore, the thread must open the semaphore with

DosOpenEventSem before calling DosWaitEventSem.

The operating system maintains a usage count for each semaphore.

DosCreateEventSem initializes the usage count to 1. Thereafter, each call to

DosOpenEventSem increments the count, and each call to DosCloseEventSem

decrements it.

Opening an Event Semaphore
When a process creates an event semaphore, all of the threads that belong to the

process have immediate access to the semaphore.

Threads in other processes must open the semaphore by calling DosOpenEventSem

before they can use the semaphore in any other event semaphore function.

8-6 OS/2 2.0 Programming Guide-Volume I

The following code fragment shows how processes can open an event semaphore
that was created in a different process and then wait for the event to be posted:

Figure 8-3. Opening an Event Semaphore and Waiting for It to be Posted

Applications can open an event semaphore by name or by handle. If the name is
used to open the semaphore, as in the code fragment above, the handle parameter
must be 0. If the handle is used to open the semaphore, the name parameter must
be NULL

Access to semaphores is on a per-process basis. Therefore, a semaphore that has
been opened by one thread in a process is open to all other threads in that process
as well.

DosOpenEventSem merely provides access to an event semaphore. In order to wait
for an event semaphore to be posted, a thread must call DosWaitEventSem. In
order to post or reset an open event semaphore, a thread uses DosPostEventSem or
DosResetEventSem respectively. ~

When a process no longer requires access to an event semaphore, it closes the
semaphore by calling DosCloseEventSem. If a process ends without closing an
open semaphore, the semaphore is closed by the operating system.

Each call to DosOpenEventSem increments the usage count of the semaphore. This
count is initialized to 1 when the semaphore is created and is decremented by each
call to DosCloseEventSem. When the usage count reaches 0, the semaphore is
deleted by the operating system.

Calls to DosOpenEventSem and DosCloseEventSem can be nested, but the usage
count for a semaphore cannot exceed 65535. If an attempt is made to exceed this
number, ERROR_TOO_MANY_OPENS is returned.

Closing an Event Semaphore
When a process no longer requires access to an event semaphore, it closes the
semaphore by calling DosCloseEventSem.

Chapter 8. Semaphores 8-7

The following code fragment closes an event semaphore. Assume that the handle of
the semaphore has been placed into hev already.

Figure 8-4. Closing an Event Semaphore

Calls to DosOpenEventSem and DosCloseEventSem can be nested, but the usage
count for a semaphore cannot exceed 65535. If an attempt is made to exceed this
number, ERROR_TOO_MANY_OPENS is returned.

If a process ends without closing an open semaphore, the semaphore is closed by
the operating system.

Each call to DosCloseEventSem decrements the usage count of the semaphore.
This count is initialized to 1 when the semaphore is created and is incremented by
each call to DosOpenEventSem. When the usage count reaches 0, the semaphore is
deleted from the operating system. The call to DosCloseEventSem that decrements
the usage count to 0 and causes the semaphore to be deleted is referred to as the
final close. If a thread attempts to perform the final close for a semaphore while
another thread in the same process is still waiting for it, ERROR_SEM_BUSY is
returned.

Resetting an Event Semaphore
DosResetEventSem resets an event semaphore if it is not already reset, and returns
the number of times the semaphore was posted since it was last reset. All threads
that subsequently call DosWaitEventSem for this semaphore will be blocked.

Any thread belonging to the process that created the event semaphore can change
the state of the semaphore to reset by calling DosResetEventSem. Threads in other
processes can also call DosResetEventSem, but they must first gain access to the
semaphore by calling DosOpenEventSem.

When an event semaphore is in the reset state, any thread that calls
DosWaitEventSem to wait for the semaphore will be blocked. When the event
semaphore is posted, all of the threads that are waiting for the semaphore are
released to continue execution.

8-8 OS/2 2.0 Programming Guide-Volume I

The following code fragment resets an event semaphore. Assume that the handle of
the semaphore has been placed into hev already.

Figure 8-5. Resetting an Event Semaphore

DosResetEventSem returns the post count of the event semaphore and resets the
post count to 0. The post count is the number of times the semaphore has been
posted (using DosPostEventSem) since the last time the semaphore was in the reset
state. (An event semaphore can be reset when it is created, as well as by calling
DosResetEventSem.) The post count can also be obtained by calling
DosQueryEventSem.

If the event semaphore is already reset when DosResetEventSem is called,
ERROR_ALREADY _RESET is returned, along with a post count of 0. The semaphore
is not reset a second time.

Posting an Event Semaphore
DosPostEventSem posts the semaphore, if it is not already posted, and increments
the post count. All threads that have called DosWaitEventSem for this semaphore
are unblocked and resume execution. Threads that call DosWaitEventSem after the
event semaphore has been posted and before the next time it is reset, will return
immediately from a call to DosWaitEventSem and continue execution. If the
semaphore is subsequently reset, threads that call DosWaitEventSem will again be
blocked.

Any thread in the process that created an event semaphore can post the semaphore
by calling DosPostEventSem. Threads in other processes can also call
DosPostEventSem, but they must first gain access to the semaphore by calling
DosOpenEventSem.

Chapter 8. Semaphores 8-9

The following code fragment posts a system event semaphore. Assume that the
handle of the semaphore has been placed into hev already.

Figure 8-6. Posting an Event Semaphore

The operating system maintains a post count for each event semaphore. The post
count is the number of times the semaphore has been posted (with
DosPostEventSem) since the last time the semaphore was in the reset state.

If the event semaphore is reset when DosPostEventSem is called, the semaphore is
posted and the post count is set to 1. If the event semaphore is already posted when
DosPostEventSem is called, the post count is incremented, and
ERROR_ALREADY_POSTED is returned to the calling thread.

The post count is returned as output by DosResetEventSem; it can also be obtained
by calling DosQueryEventSem.

The maximum number of times an event semaphore can be posted is 65535. The
value of the post count cannot exceed 65535. If an attempt is made to exceed this
number, DosPostEventSem returns ERROR_TOO_MANY_POSTS.

Waiting for an Event Semaphore
Any thread in the process that created an event semaphore can wait for the
semaphore to be posted by calling DosWaitEventSem. Threads in other processes
can also call DosWaitEventSem, but they must first gain access to the semaphore by
calling DosOpenEventSem.

If the semaphore is already posted when DosWaitEventSem is called, the function
returns immediately, and the thread continues to run. Otherwise, the thread is
blocked until the semaphore is posted.

The following code fragment causes the calling thread to wait until the specified
event semaphore is posted. Assume that the handle of the semaphore has been
placed into hev already. u/Timeout is the number of milliseconds that the calling
thread will wait for the event semaphore to be posted. If the specified event
semaphore is not posted during this time interval, the request times out.

8-10 OS/2 2.0 Programming Guide-Volume I

~def}n·~ J~CL 00$SEMAPHORE$ /* $em~phore ya 1 ues * /
··· · lln~ 1 ucie <os2. h> ·
· #i.nclude·· <stdio.h>

· HEV hev; /* Event semaphore· handle */
. O{QNG . ulTimeout,; /* Number of mil H seconds to wait */
AP,IRET · ~¢; /~ Return code */

/"!.Wait .for a maximum. of 1 minute */

Figure 8-7. Waiting for an Event Semaphore

If the time limit specified in u/Timeout is reached before the semaphore is posted,
ERROR_ TIMEOUT is returned. If the waiting period is interrupted for some reason
before the semaphore is posted, ERROR_INTERRUPT is returned. If
SEM_IMMEDIATE_RETURN is specified for the time limit, DosWaitEventSem returns
to the calling thread immediately. If SEM_INDEFINITE_WAIT is specified for the time
limit, the thread waits indefinitely.

Unlike multiple event semaphores in a muxwait list, which are level-triggered,
single event semaphores are edge-triggered. This means that if an event
semaphore is posted and then reset before a waiting thread gets a chance to run,
the semaphore is considered to be posted for the rest of that thread's waiting
period; the thread does not have to wait for the semaphore to be posted again.

Querying an Event Semaphore
DosQueryEventSem returns the current post count of a semaphore. The post count
is the number of times that the semaphore has been posted (with
DosPostEventSem) since the lasttime the semaphore was reset. A count of 0
indicates that the semaphore is in the reset state; therefore, the operating system
will block any threads that call DosWaitEventSem to wait on the semaphore.

Any thread in the process that created an event semaphore can obtain the post
count for the semaphore by calling DosQueryEventSem. Threads in other
processes can also call DosQueryEventSem, but they must first gain access to the
semaphore by calling DosOpenEventSem.

Chapter 8. Semaphores 8-11

The following code fragment retrieves the post count for an event semaphore.
Assume that the handle of the semaphore has been placed into hev already.

Figure 8-8. Querying an Event Semaphore

If the specified event semaphore does not exist, ERROR_INVALID_HANDLE is
returned.

Using Mutex Semaphores
An application can use a mutual exclusion (mutex) semaphore to protect a shared
resource from simultaneous access by multiple threads or processes. For example,
if several processes must write to the same disk file, the mutex semaphore ensures
that only one process at a time writes to the file.

Creating a Mutex Semaphore
Mutex semaphores are created by calling DosCreateMutexSem. This function also
opens the semaphore for the calling process and its threads.

When a mutex semaphore is created, a flag is set to specify the initial state of the
semaphore, owned or unowned. If the semaphore is owned by a thread, other
threads requesting the semaphore are blocked. If the semaphore is unowned-not
owned by any thread-then any thread requesting ownership will be granted
ownership immediately.

If the calling thread sets the initial state to owned, it owns the semaphore as soon as
the operating system creates the semaphore and can proceed to access the
resource that the semaphore was created to protect.

If the semaphore is unowned, any thread in the creating process can subsequently
request ownership of the semaphore by calling DosRequestMutexSem. Threads in
other proce~ses can gain ownership of the semaphore, but they must call
DosOpenMutexSem to acquire access to the semaphore before they can call
DosRequestMutexSem.

8-12 OS/2 2.0 Programming Guide-Volume I

Mutex semaphores can be defined as either private or shared.

• Private semaphores are always unnamed and are therefore identified by their
handles. They can be used only by threads within a single process.

• Shared semaphores can be either named or unnamed. If named, they can be
opened using either the name or the handle. The handle returned by
DosOpenMutexSem is then used to identify the semaphore for all other
functions. Semaphore names must include the prefix \SEM32\ and must conform
to file system naming conventions. Shared semaphores can be used by threads
in multiple processes.

The following code fragment creates a mutex semaphore:

Figure 8-9. Creating a Mutex Semaphore

There is a system-wide limit of 65536 shared semaphores (including mutex, event,
and muxwait semaphores); in addition, each process can have up to 65536 private
semaphores.

The operating system maintains a usage count for each semaphore.
DosCreateMutexSem initializes the usage count to 1. Thereafter, each call to
DosOpenMutexSem increments the count, and each call to DosCloseMutexSem
decrements it.

Opening a Mutex Semaphore
All of the threads belonging to the process that creates a mutex semaphore have
immediate access to the semaphore. Threads in other processes must request
access to the semaphore by calling DosOpenMutexSem before they can use the
semaphore in other mutex semaphore functions.

Access to system resources is granted on a per-process basis. Therefore, a
semaphore that has been opened by one thread in a process is open to all other
threads in that process as well.

DosOpenMutexSem merely provides access to a mutex semaphore. To request
ownership of a mutex semaphore, a thread must call DosRequestMutexSem.

When a process no longer requires access to a mutex semaphore, it should close
the semaphore by calling DosCloseMutexSem. However, if a process ends without
closing an open semaphore, the semaphore is closed by the operating system.

Each call to DosOpenMutexSem increments the usage count of the semaphore. This
count is initialized to 1 when the semaphore is created and is decremented by each
call to DosCloseMutexSem. When the usage count reaches 0, the semaphore is
deleted by the system.

Chapter 8. Semaphores 8-13

Calls to DosOpenMutexSem and DosCloseMutexSem can be nested, but the usage
count for a semaphore cannot exceed 65535. If an attempt is made to exceed this
number, ERROR_TOO_MANY_OPENS is returned.

If a process ends without releasing a mutex semaphore that it owns, any other
thread that subsequently tries to open the semaphore will receive
ERROR_SEM_OWNER_DIED. This return code indicates that the owning process
ended abnormally, leaving the protected resource in an indeterminate state.
However, the semaphore is still opened for the calling thread, enabling the thread to
call DosQueryMutexSem to find out which process ended without releasing the
semaphore. The thread can then take appropriate action concerning the semaphore
and the protected resource.

Requesting a Mutex Semaphore
In order to access a shared resource, a process must own the mutex semaphore
that is protecting the shared resource. Ownership is obtained by first opening the
mutex semaphore with DosOpenMutexSem, then using DosRequestMutexSem to
request ownership of the semaphore. If another process already owns the
semaphore, the requesting process is blocked. If the semaphore is not owned, the
operating system grants ownership to the requesting process and the process can
access the shared resource. When the process is finished using the shared
resource, it uses DosReleaseMutexSem to relinquish its ownership of the
semaphore, thereby enabling another process to gain ownership.

A process can gain ownership of a mutex semaphore in three ways:

1. The thread that creates a mutex semaphore can designate itself as the owner by
setting a flag when it calls DosCreateMutexSem.

2. Any thread in the process that created the semaphore can request ownership by
calling DosRequestMutexSem.

3. A thread in another process must request access to the semaphore with
DosOpenMutexSem before it can call DosRequestMutexSem.

Note that ownership of a mutex semaphore is given only to the requesting thread; it
is not shared by other threads in the same process.

If a mutex semaphore is unowned, DosRequestMutexSem sets it as owned and
returns immediately to the caller. If the semaphore is already owned, the calling
thread is blocked until either the owning thread calls DosReleaseMutexSem to
release the semaphore, or a specified time limit is reached.

The following code fragment shows how a process opens a mutex semaphore,
requests it, and, after writing to the shared file, releases and closes the semaphore:

8-14 05/2 2.0 Programming Guide-Volume I

. ' ' '

.#~efi:ne.··~·NC·~QO§SEMAPHORES. ·· /!S.~!llaJ)~Qr~.v~JUe.S,::*(: .
. #1.ndude. ·.<os2 .. n>,·. · ·

Figure 8-10. Opening, Requesting, Releasing, and Closing a Mutex Semaphore

If more than one thread is blocked on a DosRequestMutexSem request, the thread
with the highest priority level is the first to be unblocked and given ownership of the
semaphore. If more than 1 of the waiting threads have the same priority level, then
FIFO ordering is used to determine which thread is unblocked and given ownership.

The time-out parameter (5000 milliseconds in the example above) places a limit on
the amount of time a thread blocks on a DosRequestMutexSem request. If the time
limit is reached before the thread gains ownership of the semaphore,
ERROR_ TIMEOUT is returned. If SEM_IMMEDIATE_RETURN is specified for the
time limit, DosRequestMutexSem returns without blocking the thread. The thread
can then perform other operations and call DosRequestMutexSem again later if it
still requires access to the protected resource. If SEM_INDEFINITE_WAIT is
specified for the time limit, the thread waits indefinitely. If the thread is unblocked
by an external event while it is waiting for the mutex semaphore (as when a No Wait
1/0 request has just been completed), ERROR_INTERRUPT is returned to the caller.

In addition to the usage count that the operating system maintains for all
semaphores, the operating system maintains a request count for each mutex
semaphore. Each call to DosRequestMutexSem increments the count, and each call
to DosReleaseMutexSem decrements it.

Calls to DosRequestMutexSem and DosReleaseMutexSem can be nested, but the
request count for a semaphore cannot exceed 65535. If an attempt is made to
exceed this number, ERROR_TOO_MANY_SEM_REQUESTS is returned. When calls
to DosRequestMutexSem and DosReleaseMutexSem are nested, a call to
DosReleaseMutexSem merely decrements the request count for the semaphore; the
semaphore is not actually released to another thread until its request count is 0.

If a process ends while it owns a mutex semaphore, all of the currently blocked
DosRequestMutexSem requests, as well as any future requests for the semaphore,
return ERROR_SEM_OWNER_DIED. This return code indicates that the owning
process ended abnormally, leaving the protected resource in an indeterminate
state. An application that receives this error should close the mutex semaphore (so
that it can be deleted from the operating system), because it is no longer valid.
Appropriate action should also be taken concerning the protected resource.

Chapter 8. Semaphores 8-15

Releasing a Mutex Semaphore
A thread can release ownership of a mutex semaphore by calling
DosReleaseM utexSem.

Each call to DosReleaseMutexSem decrements the request count that is maintained
for the semaphore by the operating system. Each call to DosRequestMutexSem
increments the count.

The following code fragment relinquishes ownership of a mutex semaphore.
Assume that the handle of the semaphore has been placed into hmtx already.

Figure 8-11. Releasing a Mutex Semaphore

Calls to DosRequestMutexSem and DosReleaseMutexSem can be nested, but the
request count cannot exceed 65535. If an attempt is made to exceed this number,
ERROR_TOO_MANY_SEM_REQUESTS is returned. When calls to
DosRequestMutexSem and DosReleaseMutexSem are nested, a call to
DosReleaseMutexSem merely decrements the request count for the semaphore; the
semaphore is not actually released to another thread until its request count is 0.

Closing a Mutex Semaphore
When a process no longer requires access to a mutex semaphore, it can close the
semaphore by calling DosCloseMutexSem. However, if a process ends without
closing an open semaphore, the semaphore is closed by the operating system.

The following code fragment closes a mutex semaphore. Assume that the handle of
the semaphore has been placed into hmtx already.

8-16 OS/2 2.0 Programming Guide-Volume I

Figure 8-12. Closing a Mutex Semaphore

Each call to DosCloseMutexSem decrements the usage count of the semaphore.
This count is initialized to 1 when the semaphore is created and is incremented by
each call to DosOpenMutexSem. When the usage count reaches 0, the semaphore
is deleted by the operating system.

The call to DosCloseMutexSem that decrements the usage count to 0 and causes the
semaphore to be deleted is referred to as the final close. The final close will not
succeed if either of the following conditions exists:

• The semaphore is owned by another thread in the same process.

• Another thread in the same process is still blocked on a DosRequestMutexSem
request for the semaphore.

For both conditions, ERROR_SEM_BUSY is returned.

ERROR_SEM_BUSY is also returned if a thread tries to close a mutex semaphore
that it still owns. The thread must first relinquish ownership of the semaphore by
calling DosReleaseMutexSem.

Calls to DosOpenMutexSem and DosCloseMutexSem can be nested, but the usage
count for a semaphore cannot exceed 65535. If an attempt is made to exceed this
number, ERROR_TOO_MANY_OPENS is returned.

Querying a Mutex Semaphore
An application can use DosQueryMutexSem to determine the current owner of a
mutex semaphore and to obtain a count of the number of requests on it. If the mutex
semaphore is not owned, the request count is 0.

Any thread in the process that created a mutex semaphore can obtain information
about the semaphore by calling DosQueryMutexSem. Threads in other processes
can also call DosQueryMutexSem, but they must first gain access to the semaphore
by calling DosOpenMutexSem.

If the mutex semaphore exists and is owned, DosQueryMutexSem returns the
process and thread identifications of the owner, as well as the request count for the
semaphore. The request count is the number of DosRequestMutexSem calls minus
the number of DosReleaseMutexSem calls that have been made for the semaphore
by the owning thread.

Chapter 8. Semaphores 8-17

If DosQueryMutexSem returns a request count of 0, the mutex semaphore is
unowned.

If the owning process ended without calling DosCloseMutexSem, then
ERROR_SEM_OWNER_DIED is returned, and the output parameters contain
information about the ended owning process.

Using Muxwait Semaphores
A process that requires exclusive use of several shared resources at once can use a
multiple wait (muxwait) semaphore to obtain ownership of all the mutex
semaphores protecting the shared resources. A process can also use a muxwait
semaphore to wait on a group of event semaphores so that the process continues
running whenever events of interest occur.

A muxwait semaphore can refer to up to 64 event or mutex semaphores. An
application cannot refer to event and mutex semaphores in a single muxwait
semaphore, or include a muxwait semaphore in another muxwait semaphore.

Creating a Muxwait Semaphore
DosCreateMuxWaitSem is used to create muxwait semaphores. This function also
opens (obtains access to) the semaphore for the calling process and its threads.
Threads in other processes must call DosOpenMuxWaitSem to open the semaphore
before they can use it in any other muxwait semaphore function.

All the semaphores in the muxwait list must be created and opened before the
muxwait list can be created.

The following code fragment creates five event semaphores and a corresponding
array of semaphore records. The array is used to specify the semaphores included
in the muxwait semaphore in the subsequent call to DosCreateMuxWaitSem.

8-18 OS/2 2.0 Programming Guide-Volume I

{laef i rt~. l.t'CL: DQ$SEMAPHOR~S
#i nc1 uae <os2~ h> · · ·

·~uLONG. ulloop, uJ$em,;
. HMUX ·hmuxHa~dAny;
.$~MR~CQRD apsr[?J;

,,; : ·, ·~'·". ,.d . ' '

for·• {~l~pop. ::ertil~oc>p .. ~· .. s;.\ ulboop+;+.J· t· .·-t~·. <;reqte $ priya~.e.···· .. even.ts
DosCreateEventSem({f?SZl NQ~L .• ·.. ·. · , : ..

· (~HEM). &apsr.[~lL<>,opJ~ h~emC.ur,
0,

· ... · .··· · ... ··· F~LSE:);
apsrCultoopl~ulUser = :ulLoop; */

Figure 8-13. Creating and Waiting for a Muxwait Semaphore

Muxwait semaphores can be defined as either private or shared:

• Private semaphores are always unnamed and are therefore always identified by
their handles. They can be used only by threads within a single process.

• Shared semaphores can be either named or unnamed. If named, they can be
opened using either the name or the handle. The handle returned by
DosOpenMuxWaitSem is then used to identify the semaphore for all other
functions. Semaphore names must include the prefix \SEM32\ and must conform
to file system naming conventions. Shared semaphores can be used by threads
in multiple processes.

There is a system-wide limit of 65536 (64K) shared semaphores (including mutex,
event, and muxwait semaphores); in addition, each process can have up to 65536
(64K) private semaphores.

Chapter 8. Semaphores 8-19

The following conditions apply to the kinds of semaphores that can be included in a
muxwait-semaphore list:

• The list must contain either mutex semaphores or event semaphores. It cannot
contain both at the same time and it cannot contain other muxwait semaphores.

• If the muxwait semaphore is shared, then all the semaphores in the list must
also be shared.

• If the muxwait semaphore is private, then the semaphores in its list can be either
private or shared.

If any of these conditions is violated, ERROR_WRONG_TYPE is returned.

The muxwait list can contain a maximum of 64 event semaphores or mutex
semaphores. If an attempt is made to exceed this maximum,
ERROR_TOO_MANY_SEMAPHORES is returned.

If the owners of any of the mutex semaphores in the muxwait semaphore list have
ended without releasing them, ERROR_SEM_OWNER_DIED is returned. The thread
should call DosQueryMutexSem for each mutex semaphore in the
muxwait-semaphore list so that it can determine which semaphores are in the
Owner Died state.

Each mutex semaphore that returns ERROR~SEM_OWNER_DIED from the query
should be closed by calling DosCloseMutexSem. Also, because semaphore handles
can be reused, the mutex semaphores that are closed must be deleted from the
muxwait-semaphore list by calling DosDeleteMuxWaitSem.

The operating system maintains a usage count for each semaphore.
DosCreateMuxWaitSem initializes the usage count to 1. Thereafter, each call to
DosOpenMuxWaitSem increments the count, and each call to DosCloseMuxWaitSem
decrements it.

One parameter of this function is a pointer to an array of SEMRECORD data
structures. Each data structure contains one semaphore record for each of the
semaphores to be included in the muxwait semaphore. A semaphore record
contains the handle and a programmer-defined identifier for that semaphore.

Opening a Muxwait Semaphore
Processes other than the semaphore-creating process must use
DosOpenMuxWaitSem to gain access to the muxwait semaphore before they can
use the semaphore in any other muxwait semaphore function. All of the threads
that belong to the process that creates the muxwait semaphore have immediate
access to the semaphore.

The following code fragment opens a system muxwait semaphore.

8-20 OS/2 2.0 Programming Guide-Volume I

Figure 8-14. Opening a Muxwait Semaphore

On successful return, hmux contains the handle of the system muxwait semaphore.

Opening a muxwait semaphore does not open the semaphores in its muxwait list. A
process must open each of the semaphores included in a muxwait semaphore
before it opens the muxwait semaphore. Otherwise, DosOpenMuxWaitSem returns
the ERROR_INVALID_HANDLE error value to the calling function.

Access to semaphores is on a per-process basis. Therefore, a semaphore that has
been opened by one thread in a process is open to all other threads in that process
as well.

Note that DosOpenMuxWaitSem merely provides access to a muxwait semaphore.
In order to wait for a muxwait semaphore to clear, a thread must call
DosWaitMuxWaitSem.

When a process no longer requires access to a muxwait semaphore, it closes the
semaphore by calling DosCloseMuxWaitSem. However, if a process ends without
closing an open semaphore, the semaphore is closed by the operating system.

Each call to DosOpenMuxWaitSem increments the usage count of the semaphore.
This count is initialized to 1 when the semaphore is created and is decremented by
each call to DosCloseMuxWaitSem. When the usage count reaches 0, the
semaphore is deleted by the operating system.

Calls to DosOpenMuxWaitSem and DosCloseMuxWaitSem can be nested, but the
usage count for a semaphore cannot exceed 65535. If an attempt is made to exceed
this number, ERROR_TOO_MANY_OPENS is returned.

Even if the owner of a mutex semaphore in a muxwait-semaphore list has ended
without releasing the semaphore, the muxwait semaphore is still opened.
Subsequent calls to the muxwait semaphore will return ERROR_SEM_OWNER_DIED.
But because the process has opened the semaphore, it can then call
DosQueryMuxWaitSem to identify all the mutex semaphores in the muxwait list.
Next, the process can call DosQueryMutexSem for each mutex semaphore in the list
to find out which ones are in the Owner Died state. Each mutex semaphore that
returns ERROR_SEM_OWNER_DIED from the query should be closed by calling
DosCloseMutexSem. Also, because semaphore handles can be reused, the mutex

Chapter 8. Semaphores 8-21

semaphores that are closed should be deleted from the muxwait-semaphore list by
calling DosDeleteMuxWaitSem.

Closing a Muxwait Semaphore
When a process no longer requires access to a muxwait semaphore, it closes the
semaphore by calling DosCloseMuxWaitSem. However, if a process ends without
closing an open semaphore, the semaphore is closed by the operating system.

Each call to DosCloseMuxWaitSem decrements the usage count of the semaphore.
This count is initialized to 1 when the semaphore is created and is incremented by
each call to DosOpenMuxWaitSem. When the usage count reaches 0, the
semaphore is deleted by the operating system.

The call to DosCloseMuxWaitSem that decrements the usage count to O and causes
the semaphore to be deleted is referred to as the final close. If a thread attempts to
perform the final close for a semaphore while another thread in the same process is
still waiting for it, ERROR_SEM_BUSY is returned.

Calls to DosOpenMuxWaitSem and DosCloseMuxWaitSem can be nested, but the
usage count for a semaphore cannot exceed 65535. If an attempt is made to exceed
this number, ERROR_TOO_MANY _OPENS is returned.

Waiting for a Muxwait Semaphore
A thread can wait on a muxwait semaphore by using DosWaitMuxWaitSem.

A~y thread !r! the process that created a mux'.a!a!t semaphore can '.a.'a!t tor the
semaphore to clear by calling DosWaitMuxWaitSem. Threads in other processes
can also call DosWaitMuxWaitSem, but they must first gain access to the semaphore
by calling DosOpenMuxWaitSem.

The following code fragment waits for a muxwait semaphore to clear. Assume that
the handle of the semaphore has been placed into hmux already. u/Timeout is the
number of milliseconds that the calling thread will wait for the muxwait semaphore
to clear. If the specified muxwait semaphore is not cleared during this time interval,
the request times out.

8-22 OS/2 2.0 Programming Guide-Volume I

Figure 8-15. Waiting for a Muxwait Semaphore

On successful return, the u/User variable contains the user identifier of the
semaphore that caused the wait to terminate. If the caller had to wait for all the
semaphores within the muxwait semaphore to clear, then the value corresponds to
the last semaphore within the muxwait semaphore to clear. If the caller had to wait
for any semaphore with the muxwait semaphore to clear, then the value
corresponds to that semaphore.

An application can use the DCMW_WAIT _ANY flag in DosCreateMuxWaitSem to
block a thread until any one of the event or mutex semaphores included in the
muxwait semaphore is posted or released. If the muxwait semaphore refers to
mutex semaphores, the thread only gains ownership of the one mutex semaphore
that was released.

An application can use the DCMW_WAIT_ALL flag in DosCreateMuxWaitSem to
block a thread until all of the event or mutex semaphores included in the muxwait
semaphore are posted or released. If the muxwait semaphore refers to mutex
semaphores, the thread does not gain ownership of any of the mutex semaphores
until they are all released. When all are released, the thread becomes owner of all
the mutex semaphores included in the muxwait semaphore. If the muxwait
semaphore refers to event semaphores, the thread will not run until all of the event
semaphores are in the posted state at the same time. This is because event
semaphores in a muxwait list are level-triggered, unlike individual event
semaphores, which are edge-triggered.

For example, suppose that a thread is waiting for five event semaphores in a
muxwait list to be posted. The first semaphore is posted and then reset. Next, the
remaining semaphores are all posted, and they remain in the posted state. The

Chapter 8. Semaphores 8-23

thread that is waiting for the muxwait semaphore will not run until the first

semaphore is posted again.

If an application specifies the DCMW_WAIT_ANY flag when the semaphore is

created, DosWaitMuxWaitSem returns the programmer-defined identifier of the

semaphore that is subsequently posted or released. If an application specifies the

DCMW_WAIT_ALL flag, DosWaitMuxWaitSem returns the programmer-defined

identifier of the last semaphore that was posted or released.

The ulTimeout parameter places a limit on the amount of time a thread blocks on a

DosWaitMuxWaitSem request. If the time limit is reached before the semaphore has

cleared, ERROR_ TIMEOUT is returned. If SEM_IMMEDIATE_RETURN is specified as

the time limit, DosWaitMuxWaitSem returns without blocking the thread. The thread

can then go on to perform other operations and call DosWaitMuxWaitSem again

later to wait for the event or mutex semaphores in the muxwait list to be posted or

released. If a time limit of SEM_INDEFINITE_WAIT is specified, the thread waits (is

blocked) indefinitely. If the thread is unblocked by an external event while it is

waiting for the muxwait semaphore (as when a "no wait" 110 request has just been

completed), DosWaitMuxWaitSem returns ERROR_INTERRUPT.

When a thread is waiting for any one of the semaphores in a muxwait list to be

posted or released, the semaphores are checked in the order in which they are

defined in the list.

Waiting for Multiple Event Semaphores

The following information pertains only to muxwait semaphores that consist of

multiple event semaphores:

Unlike individual event semaphores, which are edge-triggered, event semaphores in

a muxwait list are level-triggered. This means that if a thread is waiting for all of

the event semaphores in the muxwait list, it will not run until all of the event

semaphores are in the posted state at the same time.

For example, a thread is waiting for five event semaphores in a muxwait list to be

posted. The first semaphore is posted and then reset. Next, the remaining

semaphores are all posted, and they remain in the posted state. The thread that is

waiting for the muxwait semaphore will not run until the first semaphore is posted

again.

Waiting for Multiple Mutex Semaphores

The following information pertains only to muxwait semaphores that consist of

multiple mutex semaphores:

• If a thread is waiting for all of the mutex semaphores in a muxwait list to be

released, it does not receive ownership of any of the semaphores until all of the

semaphores have been released.

• If a thread is waiting for any one of the mutex semaphores in a muxwait list, then

the thread gains ownership only of the first mutex semaphore that is released.

The ownership of all other mutex semaphores in the muxwait list remains

unchanged.

• If two threads have the same priority, then a thread that is waiting for a mutex

semaphore in a muxwait list takes precedence over a thread that has requested

ownership of only the individual semaphore, provided all other mutex

semaphores in the muxwait list have been released. For example, a mutex

semaphore that is part of a muxwait semaphore is released. One thread has

requested ownership of that single mutex semaphore, and another thread with

8-24 OS/2 2.0 Programming Guide-Volume I

the same priority is waiting for the muxwait semaphore that contains the same
mutex semaphore. If all of the other mutex semaphores in the muxwait list are
unowned and ready to be given to the muxwait semaphore, then the thread that
is waiting for the muxwait semaphore will run first.

• If the owners of any of the mutex semaphores in the muxwait semaphore list
have ended without releasing them, ERROR_SEM_OWNER_DIED is returned.
The thread must then call OosQueryMuxWaitSem to obtain the records of all the
semaphores in the muxwait list. Next, the thread must call DosQueryMutexSem
for each mutex semaphore in the muxwait-semaphore list so that it can
determine which semaphores are in the Owner Died state.

Each mutex semaphore that returns ERROR_SEM_OWNER_DIED from the query
should be closed by calling DosCloseMutexSem. Also, because semaphore
handles can be reused, the mutex semaphores that are closed should be deleted
from the muxwait-semaphore list by calling DosDeleteMuxWaitSem.

• If any of the mutex semaphores in the muxwait list are owned by the calling
thread, ERROR_MUTEX_OWNED is returned.

Adding a Semaphore to a Muxwait List
An application uses OosAddMuxWaitSem to add semaphores to a muxwait
semaphore that has already been created, even while threads are waiting on the
muxwait semaphore.

Any thread in the process that created a muxwait semaphore can add a mutex
semaphore or an event semaphore to the muxwait list by calling
DosAddMuxWaitSem. Threads in other processes can also use this function, but
they must first gain access to the semaphore by calling DosOpenMuxWaitSem.

A maximum of 64 semaphores can be included in a muxwait-semaphore list. If an
attempt is made to exceed this maximum, ERROR_TOO_MANY_SEMAPHORES is
returned.

All of the semaphores in a muxwait-semaphore list must be of the same type. That
is, if a mutex semaphore is being added, then the other semaphores in the list must
be mutex semaphores. If an event semaphore is being added, then the other
semaphores in the list must be event semaphores. A shared muxwait semaphore
can contain only shared semaphores in its list. A private muxwait semaphore can
contain both private and shared semaphores. If any of these conditions is violated,
ERROR_WRONG_TYPE is returned.

If the semaphore is successfully added to the muxwait list, DosAddMuxWaitSem
checks to see whether each thread that is waiting for the muxwait semaphore has
the newly added semaphore open in its process. The muxwait semaphore is invalid
for any waiting threads that do not have the newly added semaphore open in their
process; these threads are unblocked with a return code of
ERROR_INVALID_HANDLE. Any processes that opened the muxwait semaphore
before the add operation and that do not have the new semaphore open, will have to
open the new semaphore before making any further use of the muxwait semaphore.
Any future calls concerning the muxwait semaphore by processes that do not have
the new semaphore open will have ERROR_INVALID_HANDLE returned until the
new semaphore is opened.

Chapter 8. Semaphores 8-25

A thread that receives a return code of ERROR_INVALID_HANDLE can take the

following corrective action:

1. First, the thread can obtain the records of all the semaphores in the muxwait list

by calling DosQueryMuxWaitSem.

2. Next, it can query each semaphore in the muxwait list, using
DosQueryMutexSem or DosQueryEventSem, to find out which semaphore is not

open to its process.

3. Finally, it can open the semaphores that are not open by calling

DosOpenMutexSem or DosOpenEventSem.

As soon as this semaphore is opened, the muxwait semaphore becomes valid again

for the process, as long as no other changes have been made to the muxwait list to

make it invalid. However, in order to successfully wait for the muxwait semaphore,

the process must call DosWaitMuxWaitSem again.

A semaphore must be open for a process before the process can add that

semaphore to a muxwait semaphore. If it is not open and a thread is waiting on the

muxwait semaphore, DosAddMuxWaitSem returns ERROR_INVALID_HANDLE to the

process adding the new semaphore, and the waiting thread continues waiting.

Deleting a Semaphore from a Muxwait List
An application can delete semaphores from a muxwait semaphore by using

DosDeleteM uxWaitSem.

Any thread in the process that created a muxwait semaphore can delete a mutex or

event semaphore from the muxwait list by calling DosDeleteMuxWaitSem. Threads

in other processes can also use this function, but they must first gain access to the

semaphore by calling DosOpenMuxWaitSem.

Semaphores can be deleted from the muxwait list even while threads are currently

waiting for the semaphore. If the deleted semaphore is the only one in the muxwait

list that has not yet been posted or released, then threads that are waiting for the

muxwait semaphore are unblocked. Also, if the deleted semaphore happens to be

the last one that a particular thread was waiting for, that thread is unblocked. Also,

if the deleted semaphore is the last one in the muxwait list (that is, if the list is now

empty), then all the threads that are waiting for the muxwait semaphore are

unblocked.

Querying a Muxwait Semaphore
Processes use DosQueryMuxWaitSem to obtain the semaphore records for each of

the semaphores included in the muxwait semaphore.

Any thread in the process that created a muxwait semaphore can obtain information

about the semaphores in the muxwait list by calling DosQueryMuxWaitSem.

Threads in other processes can also use this function, but they must first gain

access to the semaphore by calling DosOpenMuxWaitSem.

An application must provide this function with an array in which to store the

semaphore records. If the array is not large enough to hold all of the semaphore

records that are in the muxwait list, then ERROR_PARAM_TOO_SMALL is returned,

and the record-counting parameter of DosQueryMuxWaitSem will contain the

number of semaphore records that are in the muxwait list. The calling thread can

then allocate the correct amount of space and call DosQueryMuxWaitSem again

with the correct amount of space for the list of records.

8-26 OS/2 2.0 Programming Guide-Volume I

Summary

If the owner of any mutex semaphore in the muxwait-semaphore list has ended
without releasing the semaphore, the records of all the semaphores in the list are
still returned, but DosQueryMuxWaitSem also returns ERROR_SEM_OWNER_DIED.
The calling thread can call DosQueryMutexSem for each mutex semaphore in the
muxwait-semaphore list so that it can determine which semaphores are in the
Owner Died state. The process can then close the unowned mutex semaphores.

Each mutex semaphore that returns ERROR_SEM_OWNER_DIED from the query
should be closed by calling DosCloseMutexSem. Also, because semaphore handles
can be reused, the mutex semaphores that are closed should be deleted from the
muxwait-semaphore list by calling DosDeleteMuxWaitSem.

If the specified muxwait semaphore does not exist, ERROR_INVALID_HANDLE is
returned.

Following are the OS/2 functions and data structures used with semaphores.

Table 8-1 (Page 1 of 2). Semaphore Functions

Event Semaphore Functions

DosCloseEventSem

DosCreateEventSem

DosOpenEventSem

DosPostEventSem

DosQueryEventSem

DosResetEventSem

DosWaitEventSem

Mutex Semaphore Functions

DosCloseMutexSem

DosCreateMutexSem

DosOpenMutexSem

DosQueryMutexSem

DosReleaseMutexSem

DosRequestMutexSem

Muxwait Semaphore Functions

DosAddMuxWaitSem

DosCloseMuxWaitSem

DosCreateMuxWaltSem

DosDeleteMuxWaitSem

DosOpenMuxWaitSem

DosQueryMuxWaitSem

Closes an event semaphore.

Creates an event semaphore.

Opens an event semaphore for use.

Posts an event semaphore.

Returns the post count of an event semaphore (the
number of times the semaphore has been posted).

Resets an event semaphore.

Waits for an event semaphore to be posted.

Closes a mutex semaphore.

Creates a mutex semaphore.

Opens a mutex semaphore for use.

Returns information about the owner of a mutex
semaphore.

Releases a mutex semaphore.

Requests ownership of a mutex semaphore.

Adds a mutex or event semaphore to a
muxwait-semaphore list.

Closes a muxwait semaphore.

Creates a muxwait semaphore.

Deletes a mutex or event semaphore to a
muxwait-semaphore list.

Opens a muxwait semaphore.

Returns the semaphore records from a
muxwait-semaphore list.

Chapter 8. Semaphores 8-27

Table 8-1 (Page 2 of 2). Semaphore Functions

DosWaitMuxWaitSem Waits for a muxwait semaphore to clear.

Table 8-2. Semaphore Data Structures

Data Structure Description

SEMRECORD Used when adding a semaphore to a
muxwait-semaphore list.

8-28 OS/2 2.0 Programming Guide-Volume I

Chapter 9. Pipes

About Pipes

Unnamed Pipes

© Copyright IBM Corp. 1992

Communication between processes is valuable in a multitasking operating system
to enable concurrent processes to work together. Pipes are one of three forms of
interprocess communication (IPC), the other forms of IPC being semaphores and
queues.

This chapter describes how to create, manage, and use pipes. Pipes enable two or
more processes to communicate as if they were reading from and writing to a file.

The following topics are related to the information in this chapter:

• Memory (Shared Memory)
• Program Execution and Control
• Semaphores
• Queues.

A pipe is a named or unnamed buffer used to pass data between processes. A
process writes to or reads from a pipe as if the pipe were standard input or standard
output. A parent process can use pipes to control the input that a child process
receives and to receive the output that the child process produces.

There are two types of pipes-named and unnamed.

An unnamed pipe is a circular buffer in memory. The buffer has in and out pointers
that are maintained by the system.

An unnamed pipe can transfer information only between related processes. A child
process started by a parent process with DosExecPgm inherits the handles to any
unnamed pipes created by its parent. This inheritance enables the parent process
and the child process to use the unnamed pipe to communicate with one another.
This type of pipe is typically used to redirect the standard input and standard output
of a child process.

To do this, a process opens a pipe and duplicates the read and write handles of the
pipe as the standard input and standard output files for the child process. Once the
handles are duplicated, the parent process can use DosExecPgm to start the child
process. When the child process reads and writes to its standard input and
standard output handles, it is reading and writing to the pipe. The parent process
can also communicate with the child process through the pipe. Figure 9-1 on
page 9-2 shows a parent process communicating with a child process through a
pipe.

9-1

Named Pipes

Parent
Process

Dos Read

Figure 9-1. Redirecting Standard 110 through a Pipe

Dos Read

Child
Process

Using an unnamed pipe, a text editor could run another program, such as a compiler
or assembler, and display the output of the compiler or assembler within the editor.

DosCreatePipe creates an unnamed pipe. This function returns two file handles for
the pipe, one for writing to the pipe and another for reading from the pipe. A
process can then write to the pipe by using DosWrite and read from the pipe by
using DosRead.

A pipe exists until both handles are closed. The order in which the handles are
closed is sometimes important. For example, DosWrite might wait for data to be
read from the pipe before completing its operation. In this case, the read handle is
closed before the write handle is closed, writing to the pipe generates an error.

No control or permission mechanisms or checks are performed on operations to
unnamed pipes.

Named pipes enable related or unrelated processes on either the same computer
system or different systems to communicate with each other. Any process that
knows the name of a pipe can open and use a named pipe. In addition, named pipe
data can be transparently redirected across a network, such as a local area network
(LAN). (Unnamed pipes, by contrast, can be used only by related processes that are
on the same computer system.)

One process (the server process) creates the pipe and connects to one end of it.
Other processes that access the named pipe are called client processes; they
connect to the other end of the pipe. The server and client processes can then pass
data back and forth by reading from and writing to the pipe. The server process
controls access to the named pipe.

The client process can be either local or remote. A local client process is one that
runs on the same computer system as the server process. A remote client process
runs on a different system and communicates with the server process across a local
area network (LAN).

When the server process creates a named pipe with DosCreateNPipe, it must

inbound pipe if it intends to read data from the client process, an outbound pipe if it
intends to write data to the client process, or a duplex pipe if it intends to read from
and write to the client process.

9-2 OS/2 2.0 Programming Guide-Volume I

The server process also specifies whether data passes through the pipe as bytes or
messages. A message is a block of data, with a system-supplied header, that is
read or written as a single unit. The server and client processes define the size and
format of a message.

The server process also specifies whether child processes will inherit the named
pipe and how information will be read from and written to the pipe. If the server
specifies wait mode, DosRead will be blocked (it will not return to the process) until
data is available in the pipe, and DosWrite will be blocked until there is enough
room in the pipe to contain the entire data buffer. If the server specifies no-wait
mode, reading from an empty pipe or writing to a full pipe immediately returns an
error value.

A named pipe consists of two pipe buffers, one for each direction of communication.
However, each end of the pipe has only one handle associated with it. The server
receives the handle for its end when it creates the pipe with DosCreateNPipe. The
client receives the handle for its end when it opens the pipe with DosOpen.

The server and the client use their respective handles both to read from the pipe
and to write to it. (This is in contrast to unnamed pipes, for which both the server
and the client read from one handle and write to another.) In other words, data that
is written by the process at one end of the pipe is read by the process at the other
end, as shown in the following diagram.

A named pipe can have multiple instances, up to the number specified when the
pipe is first created. Pipe instances are actually separate pipes-that is, unique sets
of pipe buffers with unique handles-that share the same name. The ability to
create multiple pipe instances enables the server to communicate with multiple
client processes at the same time.

See "Creating Multiple Instances of a Named Pipe" on page 9-12 for more
information about named pipe instances.

Server-Client Communications Using Named Pipes
A server process initiates a connection to a client process by using
DosConnectNPipe. Once the pipe has been connected by the server process, the
client process must open the pipe by using DosOpen to complete the connection. If
no client process has opened the pipe when the server process calls
DosConnectNPipe, the function either waits until a client opens the pipe or returns
ERROR_PIPE_NOT_CONNECTED, depending on whether the server process created
the pipe to wait for data.

Each client process requires a separate instance of a pipe. For example, if a server
process creates a named pipe and specifies that four instances of the pipe can be
created, the process can then create three more instances of the named pipe (for a
total of four pipes, including the original). Each instance has the same name, but
each has a unique pipe handle. The process can then connect each pipe to the
server. (Each instance must be connected by an explicit use of DosConnectNPipe.)
In this example, the server must use each function four times to create and connect
four separate instances of the named pipe. Each pipe is then available to a
separate c!ient process.

If a client process receives the ERROR_PIPE_BUSY return value from DosOpen, no
instances of the given pipe are available. The process can use DosWaitNPipe to
wait for an instance to become available. The function waits until an instance is free
or until the specified time interval elapses. When an instance becomes free, the

Chapter 9. Pipes 9-3

process can open the pipe. If several processes are waiting for an instance to
become available, the system gives the named pipe to the process that has been
waiting the longest.

The server process can disconnect a client process from a pipe by using
DosDisConnectNPipe. Ideally, the client process closes the pipe by using DosClose
before the server process disconnects the pipe. If the client process has not closed
the pipe when the server process disconnects it, the server process forces the pipe
closed and the client process subsequently receives errors if it attempts to access
the pipe. Note that forcing the closure of the pipe might discard data in the pipe
before the client process has had an opportunity to read it.

A process can read and write bytes to a named pipe by using DosRead and
DosWrite. A process can read or write messages by using DosTransactNPipe.
Depending on the access mode, DosTransactNPipe writes a message to the pipe,
reads a message from the pipe, or both. If a named pipe contains unread data or is
not a message pipe, DosTransactNPipe fails. If it is reading from the pipe,
DosTransactNPipe does not return until a complete message is read, even if the
server process specified no-wait mode when the pipe was created.

A process can also read data from a named pipe without removing the data from the
pipe by using DosPeekNPipe. This function copies the specified number of bytes
from the pipe and returns the number of bytes of data left in the pipe and the
number of bytes left in the current message, if any.

DosPeekNPipe also returns the state of the pipe. A named pipe can be in one of the
following states:

Table 9-1. Named Pipe States

State Description

Connected The pipe has been created and connected by the server process
and has been opened by a client process. Only connected pipes
can be written to or read from.

Closing The pipe has been closed by the client process but has not yet
been disconnected by the server process.

Disconnected The pipe has been created by the server process but not
connected, or has been explicitly disconnected and not yet
reconnected. A disconnected pipe cannot accept a DosOpen
request.

Listening The pipe has been created and connected by the server process
but has not yet been opened by a client process. A listening pipe
is ready to accept a request to open. If the pipe is not in a
listening state, DosOpen returns ERROR_PIPE_BUSY.

A process can open, read from, write to, and close a named message-format pipe by
using DosCallNPipe. This function is equivalent to calling DosOpen,
DosTransactNPipe, and DosClose. If no instances of the pipe are available,
DosCallNPipe waits for an instance or returns without opening the pipe if the
specified interval of time elapses.

A process can retrieve information about the handle state of a named pipe by using
DosQueryNPHState. The handie state is a combination of the instance count, the
access mode, and the pipe type (byte or message). DosQueryNPHState also

9-4 OS/2 2.0 Programming Guide-Volume I

specifies whether the process owning the handle is a server or client and whether
the pipe waits if reading and writing cannot proceed.

A process can modify the handle state of a named pipe by using DosSetNPHState.
For example, the process can change the reading mode for the pipe, enabling a
process to read bytes from the pipe instead of messages.

Steps in Managing Server-Client Transactions
The following sequence summarizes the typical steps in the management of a
named pipe:

1. The server process creates the pipe by calling DosCreateNPipe.
DosCreateNPipe returns a handle for the server end of the pipe. (Note that the
server uses the same handle to both read from and write to the pipe.) The pipe is
now in the disconnected state and cannot be opened by a client process.

2. The server process calls DosConnectNPipe to put the pipe into a listening state.
The pipe can now be opened by a client process.

3. A client process supplies the name of the pipe in a call to DosOpen and receives
a pipe handle in return. (The client uses the same handle to both read from and
write to the pipe.) The pipe is now in the connected state and can be read from
or written to by the client.

4. The server and client processes communicate by calling DosRead and DosWrite.
DosResetBuffer can be used to synchronize read and write dialogs. A server
process that supports a large number of clients for a local named pipe can use
DosSetNPipeSem and DosQueryNPipeSemState to coordinate access to the pipe.

Server and client processes can also use DosTransactNPipe and DosCallNPipe
to facilitate their communication.

5. After completing its transactions, the client process calls DosClose to close its
end of the pipe. The pipe is now in the closing state and cannot be accessed by
another client.

6. The server process calls DosDisConnectNPipe to acknowledge that the client
has closed its end of the pipe. The pipe is now in the disconnected state again.

7. To enable another client process to open the pipe, the server must call
DosConnectNPipe again. This puts the pipe back into the listening state. To end
its access to the pipe, the server calls DosClose. When all of the handles for
both ends of the pipe have been closed, the pipe is deallocated by the system.

Preparing a Named Pipe for a Client
A server process uses DosConnectNPipe to put a newly created named pipe into the
listening state. The pipe must be in the listening state in order for a client process
to gain access to the pipe by calling DosOpen.

After successfully opening the pipe and finishing its transactions, the client process
calls DosClose to end its access to the pipe. The server process must acknowledge
the close by calling DosDisConnectNPipe. It can then call DosConnectNPipe again
to put the pipe into the listening state for the next client.

Together, DosConnectNPipe and DosDisConnectNPipe enable a server to create a
named pipe and to reuse it for communication with different clients. Without these
functions, the server would have to delete and re-create the pipe for each client.

Note: If multiple instances of a named pipe have been created, then each instance
of the pipe must be put into the listening state before it can be opened by a
client.

Chapter 9. Pipes 9-5

Facilitating Transaction Processing
DosTransactNPipe and DosCallNPipe facilitate the use of named pipes by combining

other named pipe functions. Compared to calling the other functions separately,

DosTransactNPipe and DosCallNPipe provide significant performance gains for

applications that operate in a networked environment. They can also be used by

local processes. However, both of these functions can be used only with duplex

message pipes.

• DosTransactNPipe performs a transaction (a DosWrite followed by DosRead) on

a duplex message pipe.

• DosCallNPipe has the combined effect of DosOpen, DosTransactNPipe, and

DosClose, and is referred to as a procedure call. It provides an efficient means

of implementing local and remote procedure call interfaces between processes.

Coordinating Access to a Local Named Pipe with Semaphores
When a process writes to a named pipe, the process at the other end (or handle) of

the pipe might require notification that data is available to be read. Similarly, when

a process reads from a named pipe, the process at the other end might require

notification that write space has become available. As long as the communicating

processes are on the same computer system, shared event semaphores and

muxwait semaphores can be used to provide this notification. Using shared

semaphores for this purpose is more efficient than dedicating a thread to

periodically poll each pipe, particularly when a server process is communicating

with a large number of client processes. The server or client (whichever is writing

to the pipe) can post a semaphore whenever data is available in the pipe. This

means that the reading process can use DosWaitEventSem or DosWaitMuxWaitSem

to wait for data to arrive, rather than devote a thread to periodically polling the pipe.

A process associates a semaphore with a named pipe by using DosSetNPipeSem.

First, create an event semaphore with DosCreateEventSem, specifying the initial

state of the semaphore as reset. Then call DosSetNPipeSem to attach the event

semaphore to a particular named-pipe handle. Up to two event semaphores can be

attached to each named pipe, one for the server process and one for the client

process. If there is al ready a semaphore associated with one end of the pipe, that

semaphore is replaced. A process can check the state of the semaphores by using

DosQueryNPi peSemState.

The server or client process must then call DosWaitEventSem. The particular

thread that calls this function will block until data is either read from or written to

the pipe. At that time, the system posts the event semaphore, enabling the blocked

thread to resume its execution.

If a process requires notification whenever any one of multiple named pipes has

been written to or read from, it can either attach the same event semaphore to

multiple pipes, or it can create a muxwait semaphore:

• If the same event semaphore is attached to multiple pipes, then the KeyHandle

parameter of DosSetNPipeSem is used to assign a unique value to each pipe.

After the event semaphore has been posted, the process calls
DosQueryNPipeSemState. This function returns information about each of the

named pipes that are attached to the semaphore, including key-handle values.

The calling process can use this information to determine which one of the

named pipes has either data or write space available.

• To use a muxwait semaphore, a process first creates an event semaphore for

each of the pipes that it wants to monitor. Each semaphore must then be

9-6 OS/2 2.0 Programming Guide-Volume I

attached to a pipe by calling DosSetNPipeSem. Again, a unique key-handle
value must be assigned to each pipe.

Next, the process calls DosCreateMuxWaitSem to create the muxwait
semaphore, specifying DCMW_WAIT_ANY as one of the f/Attr flags. The muxwait
semaphore will consist of a linked list of the previously created event
semaphores.

The process calls DosWaitMuxWaitSem so that it will be notified the next time
data is read from or written to any of the pipes. However, it must call
DosQueryNPipeSemState to determine which one of the pipes is ready to be
read from or written to.

Using Unnamed Pipes
Unnamed pipes are useful in applications that transfer data between related
processes. They are commonly used to control the input and output of child
processes by redirecting the standard input and output of the child process to a pipe
controlled by the parent process.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of O indicates success. If a non-zero value is returned, an error
occurred.

Creating Unnamed Pipes
DosCreatePipe creates an unnamed pipe. Two handles are returned: one for read
access to the pipe and one for write access. The pipe size specified is advisory; its
actual size is dependent on the amount of available memory. If the size parameter
is 0, the pipe is created with the default size, which is 512 bytes.

This example creates an unnamed pipe. The current process can use the unnamed
pipe for communication between itself and a child process.

Figure 9-2. Creating an Unnamed Pipe

On successful return, the ReadHandle variable contains the read handle for the
pipe, and the WriteHandle variable contains the write handle for the pipe.

Chapter 9. Pipes 9-7

After a process creates a pipe, any child process started with DosExecPgm inherits
the pipe handles. Using shared memory, the parent process can pass one of the
pipe handles to the child process; thus, one process can store data in the pipe and
the other can retrieve it.

Reading from and Writing to Unnamed Pipes
Applications use the OS/2 file system functions to read from and write to unnamed
pipes. The handles returned by DosCreatePipe are used as file handles to DosRead
and DosWrite.

To write (or add data) to an unnamed pipe, call DosWrite, specifying the write
handle of the pipe in DosWrite's file handle parameter. DosWrite requests to a pipe
are processed in the order in which they are made. Multiple calls to DosWrite can
be made before data is read (or removed) from the pipe. When the pipe becomes
full, write requests are blocked until space is freed by read requests.

To read from a pipe, call DosRead, specifying the read handle of the pipe in
DosRead's file handle parameter. Subsequent calls to DosRead can empty the pipe
if no further calls to DosWrite are made in the meantime.

If the process reading the pipe ends, the next DosWrite request for that pipe returns
ERROR_BROKEN_PIPE.

Calling DosClose terminates access to an unnamed pipe. However, the pipe is not
deleted from memory until all handles to the pipe have been closed, including any
handles that were defined with DosDupHandle.

Redirecting Standard 1/0 for Child Processes
An application can use unnamed pipes to redirect the standard input and the
standard output for a child process.

A typical use of an unnamed pipe is to read the output of a child process. An
application creates a pipe and then duplicates the standard output handle. When
the child process is started, its standard output will be written into the pipe, where
the application can read and display it. The following code fragment shows how to
do this:

9-8 OS/2 2.0 Programming Guide-Volume I

Figure 9-3. Redirecting the Standard 110 of a Child Process into an Unnamed Pipe

A parent process can also use unnamed pipes to communicate with a child process
by redirecting both the standard input and the standard output for the child process.
To do this, the parent process:

1. Creates two pipes with DosCreatePipe.
2. Uses DosDupHandle to redefine the read handle of one pipe as standard input

(0000), and the write handle of the other pipe as standard output (0001).
3. Starts the child process with DosExecPgm.
4. Uses the remaining pipe handles to read and write to the pipes.

The parent process controls the meanings for standard 1/0 for the child process.
Thus, when the child process uses standard 110 handles with DosRead and
DosWrite, it reads from and writes to the pipes of its parent instead of reading from
the keyboard and writing to the display.

Chapter 9. Pipes 9-9

Using Named Pipes
Named pipes are useful in applications that transfer data between processes. The
processes using named pipes can be related, unrelated, or even on different
computers.

Creating Named Pipes
The server process creates a named pipe by using DosCreateNPipe. You must
specify the name of the pipe, the access modes, the type of pipe (byte or message),
and the sizes of the input and output buffers. DosCreateNPipe returns a pipe handle
that can be used in subsequent pipe operations.

Each named pipe must have a unique name of the following form:

\PIPE\PipeName

The "\PIPE\" in the name above is required, but need not be uppercase. It is not the
name of a subdirectory.

To open a pipe on a remote computer, the client process must specify the name of
the server process that opened the pipe as part of the pipe name, as follows:

\\Server\PIPE\PipeName

"\\Server" in the name above is the name of the remote computer; again, "\PIPE\"
is required.

The name parameter must conform to the rules for OS/2 file names, but no actual
file is created for the pipe.

In the following code fragment, DosCreateNPipe creates a pipe named \pipe\pipe1
and supplies a unique handle identifying the pipe. OpenMode is set to
NP _ACCESS_DUPLEX. This activates full duplex access to the named pipe. There
will be no inheritance to child process, and no write-through (write-through only
affects remote pipes). PipeMode is set to "NP _WMESG I NP _RMESG I Ox01 ". This
specifies that the pipe should be read as a message stream for both reading and
writing and an instance count of 1 (only one instance of the named pipe can be
created at a time). The pipe will block on Read/Write if no data is available.

9-10 OS/2 2.0 Programming Guide-Volume I

Figure 9-4. Creating a Named Pipe

Once the named pipe is created, the application can call DosConnectNPipe to

connect a client process to the pipe.

Once a client process connects to the pipe, the process can read from and write to

the pipe. The preceding example creates a byte pipe, so the process can use

DosRead and DosWrite to read from and write to the pipe.

After the client process finishes using the pipe, the server process can disconnect

the pipe by using DosDisConnectNPipe. The server process can either connect

again or close the named pipe by using DosClose.

When a server process creates a named pipe, it defines the pipe to the system by

specifying the file write-through mode, the inheritance mode, the access and

blocking modes, the pipe type, the read mode, the size of the in and out buffers, and

the instance count. The following list describes these modes, types, and buffers.

• The file write-through mode has significance only for communication with remote

client processes. When the file write-through bit is set, data is sent across the

network as soon as it is written; otherwise, the operating system will in some

cases hold data briefly in a local buffer before sending it across the network.

• The inheritance mode specifies whether or not the pipe handle will be inherited

by a child process.

Chapter 9. Pipes 9-11

• The access mode specifies the direction in which data will flow through the pipe.
The server creates an inbound pipe (a pipe with inbound access mode) if it
intends to read data from the client process, an outbound pipe if it intends to
write data to the client process, or a duplex pipe if it intends to both read from
and write to the client process.

• The blocking mode specifies whether or not DosRead and DosWrite will block
when no data is available.

• The pipe type is the form in which a stream of data is written to the pipe. If the
pipe is a byte pipe, the server and client processes write data as an
undifferentiated stream of bytes. If the pipe is a message pipe, the processes
write data as a stream of messages; messages are blocks of data, each with a
system-supplied header, that are written as single units. The server and client
processes define the size and format of a message.

• The read mode is the form in which data is read from the pipe. The data in a
pipe that was created as a byte pipe can only be read as bytes; therefore, a byte
pipe will always be in byte-read mode. The data in a message pipe, however,
can be read either as messages or as bytes. (If it is to be read as bytes,
DosRead skips over the message headers). Therefore, message pipes can be in
either message-read mode or byte-read mode.

Note: The terms "byte pipe" and "message pipe" always refer to the pipe
type-the form in which data is written to the pipe. When the read mode
of a pipe is being referred to, it is always explicitly identified as either
message-read mode or byte-read mode.

• The in and out buffers can be up to 64KB in size. If the pipe will be read in
message-read mode, and if the message size is known, the server can control
how many messages the buffer will hold at one time by specifying the
appropriate buffer size.

• The instance count is the maximum number of instances of the named pipe that
can be created. A pipe instance is actually a separate pipe-that is, a unique set
of pipe buffers with unique handles. However, the term "pipe instance" is used
to distinguish pipes that share the same name from pipes with different names.
Because a client process uses only the name of the pipe when opening it, the
existence of multiple pipe instances is transparent to a client process.

Creating Multiple Instances of a Named Pipe
Although each named pipe must have a unique name, a server process can create
multiple instances of a pipe, all of which have the same name. A pipe instance is
actually a separate pipe-that is, a unique set of pipe buffers with unique handles.

The ability to create multiple pipe instances enables the server to communicate with
multiple client processes at the same time. Because a client process uses only the
name of the pipe when opening it, the existence of multiple pipe instances is
transparent to a client process.

The /Count parameter of DosCreateNPipe specifies the maximum number of named
pipe instances that can be created. (An unlimited number can also be specified.)
This parameter is specified only when the first instance of a named pipe is created;
any subsequent attempt to redefine the instance count will be ignored.

If the instance count is greater than 1, the server process can create additional pipe
lnstances by spec!fy!:1g the same pipe name iii subsequer.t caiis to DosCreaieNPipe.
Generally, the attributes of the subsequent pipe instances are defined to be the

9-12 OS/2 2.0 Programming Guide-Volume I

same as those of the original pipe instance, because a client process that requests
the pipe has no way of controlling which pipe instance will be assigned to it.

After an additional pipe instance has been created, it is used in the same manner as
the original pipe instance. That is, the same sequence of named pipe functions is
used in the control or management of all named pipe instances. (See "Steps in
Managing Server-Client Transactions" on page 9-5 for more information.)

Note: If all of the instances of a named pipe are in use when a client calls
DosOpen, ERROR_PIPE_BUSY is returned. However, the client can wait for
an instance of that pipe to become available by calling DosWaitNPipe.

Multiple instances of a named pipe can be created by different processes.
That is, multiple server processes can create and use instances of the same
named pipe to communicate with their clients.

Opening Named Pipes
A client process can open the client end of a named pipe by using DosOpen.
DosOpen opens the client end of a pipe by name and returns a handle. The
application must use the appropriate pipe name and access modes to open the pipe
for reading, writing, or both. (To open a pipe on a remote computer, the client
process must also specify the name of the computer system as part of the pipe
name, as follows:

\\ComputerName\PIPE\PipeName.)

If a pipe name includes a remote LAN server name, DosOpen attempts to open the
pipe on a remote computer. The server process can then read input from the client
process through the pipe.

The following code fragment opens a remote pipe, reads from the standard input
(usually the keyboard), and sends the information to the server process through the
pipe:

Chapter 9. Pipes 9-13

Figure 9-5. Opening and Writing to a Remote Pipe

The client process checks the return value from DosOpen to verify that the pipe was
actually opened. If the server process has not yet created the pipe, DosOpen
returns an error. When the client process finishes using the pipe, it closes the pipe
by using DosClose.

When a named pipe is opened, its initial state is set by the system to block read and
write operations (blocking mode), and to read data as a byte stream (byte-read
mode). However, the client can change these modes by calling DosSetNPHState.

A call to DosOpen fails if all instances of the named pipe are already open. The
open also fails if the pipe has been closed by a client, but the server has not called
DosDisConnectNPipe (to acknowledge the client's close), followed by
DosConnectNPipe (to prepare the pipe for the next client). In both of these
situations, ERROR_PIPE_BUSY is returned.

If all instances of a named pipe are busy, a client process can call DosWaitNPipe to
wait for an instance to become available before it calls DosOpen again.

After a pipe instance has been opened by a client, that same instance cannot be
opened by another client at the same time. However, the opening process can
duplicate the handle as many times as desired by calling DosDupHandle. This
enables child processes to share access to a pipe instance with a parent process.

The access-mode and sharing-mode fields that are specified for DosOpen must be
the same as those that were specified by the server when it created the pipe with
DosCreateNPipe.

9-14 OS/2 2.0 Programming Guide-Volume I

Reading from Named Pipes
Both the server and the client processes read data from a pipe by calling DosRead.
The server reads from the handle that was returned when it created the pipe with
DosCreateNPipe, and the client reads from the handle that was returned to it by
DosOpen.

When a pipe is created, the PipeMode parameter is used to specify both the pipe
type and the read mode for the server end of the pipe:

• A byte pipe can be read-only in byte-read mode. (DosCreateNPipe and
DosSetNPHState return ERROR_INVALID_PARAMETER if message-read mode is
specified for a byte pipe.) In byte-read mode, all currently available data is
returned, up to the buffer size specified by DosRead.

• A message pipe can be read in either byte-read mode or message-read mode,
as follows:

When a message pipe is read in byte-read mode, the message headers are
skipped, and the pipe is read as if it were a byte pipe.

When a message pipe is read in message-read mode, each message is read
either in its entirety, or not at all, depending on the size of the message and
the buffer length:

- If the buffer length that was specified for DosRead is larger than the next
available message, then only that message is read, and the Bytes-Read
parameter indicates the size of the message.

- If the buffer length for DosRead is smaller than the next available
message, DosRead returns the number of bytes requested and
ERROR_MORE_DATA. Subsequent calls to DosRead are blocked until the
rest of the message can be transferred. (DosPeekNPipe can be used to
find out how many bytes are left in the message.)

The PipeMode parameter of DosCreateNPipe also specifies the blocking mode for
the server end of the pipe:

• If nonblocking mode was specified, DosRead returns immediately with 0 in the
Bytes-Read parameter if no data is available.

• If blocking mode was specified, DosRead blocks until data is available; the only
time it will return with 0 in the Bytes-Read parameter is if it reaches end-of-file.

DosRead works the same for both ends of the pipe. However, the read mode and
blocking mode are not necessarily the same for the client end of the pipe as they
are for the server end, because DosOpen always opens the CLIENT end in byte-read
mode and blocking mode.

The read mode and blocking mode for either end of the pipe can be changed by
calling DosSetNPHState. The pipe type, however, is always the same for both the
server and client ends of the pipe, and it cannot be changed.

Chapter 9. Pipes 9-15

Writing to Named Pipes
Both the server and the client processes write to a pipe by calling DosWrite. The
server writes to the handle that was returned to it by DosCreateNPipe, and the client
writes to the handle that was returned to it by DosOpen. This relationship is shown
in Figure 9-6.

Process A
(Server End) Pipe

Buffers

Process B
(Client End)

Dos Write --9' I I I I I I I i--I _.. DosRead

DosRead -~-----11 II I I II -I ~i----- DosWrite

Process A uses
the handle
returned by
DosCreateNPipe.

Process B uses
the handle
returned by
DosOpen.

Figure 9-6. Client-Server Communications with a Named Pipe

Either bytes or messages can be written, depending on whether the pipe was
created as a byte pipe or as a message pipe.

When a process writes to a message pipe, the buffer-length parameter for DosWrite
holds the size of the message that the process is writing. Because DosWrite
automatically encodes message lengths in the pipe, applications do not have to
encode this information in the data buffers.

The action taken by DosWrite depends on the blocking mode of the pipe, which is
not necessarily the same for the server and client ends of the pipe. For the server
process, the blocking mode of the pipe is specified when the pipe is created. For a
client process, the blocking mode is automatically set to blocking when the pipe is
opened. The blocking mode can also be reset by calling DosSetNPHState.

If the end of the message pipe that is being written to is in blocking mode, DosWrite
does not return until all of the requested bytes have been written. (It might have to
wait for the first part of the message to be read before it can write the rest of the
message.)

If the message pipe is in nonblocking mode, DosWrite takes the following action:

• If the message is larger than the pipe buffer, DosWrite blocks until the entire
message has been written. (Again, it might have to wait for the first part of the
message to be read before it can write the rest of the message.)

• If the message is smaller than the pipe buffer, but there is currently not enough
room in the buffer, DosWrite returns with a value of O in the Bytes-Written
parameter.

9-16 OS/2 2.0 Programming Guide-Volume I

If a byte pipe is in nonblocking mode, and if there is more data to be written than
will fit in the pipe buffer, then DosWrite writes as many bytes as will fit in the buffer
and returns the number of bytes that were actually written.

If a process tries to write to a pipe whose other end is closed,
ERROR_BROKEN_PIPE is returned.

Synchronizing Named Pipe Dialogs
Communicating processes can synchronize their named pipe dialogs by calling
DosResetBuffer after each call to DosWrite.

When used with external files, DosResetBuffer flushes the buffer cache of the
requesting process to disk. When used with named pipes, this function blocks the
calling process at one end of the pipe until the data the calling process has written
to the pipe has been successfully read at the other end of the pipe.

Determining Pipe Status
DosQueryNPHState and DosQueryNPipelnfo can be used to obtain information about
named pipes.

DosQueryNPHState
A client process can read data from the pipe, write data to the pipe, or both,
depending on the access mode specified when the pipe was created. To check the
current access mode, the client process can call DosQueryNPHState.

The following code fragment shows how to use DosQueryNPHState to obtain
information about a named pipe:

Figure 9-7. Getting Information about a Named Pipe

On successful return, PipeHandleState will contain information that describes the
nature of the named pipe.

DosQueryNPHState returns the following information about the pipe handle and the
attributes of the pipe:

• The end of the pipe that the handle is for (server or client end)

• The pipe type (byte pipe or message pipe)

Chapter 9. Pipes 9-17

• The instance count

• The blocking mode (blocking or nonblocking)

• The read mode (byte-read mode or message-read mode).

The values for pipe type and instance count cannot be changed, so they are always
the same as those that were specified when the pipe was created with
DosCreateNPipe. The information returned for blocking mode and read mode,
however, can come from different sources:

• If the handle is for the server end of the pipe, then the blocking mode and the
read mode were set with DosCreateNPipe, but could have been reset with
DosSetNPHState.

• If the handle is for the client end of the pipe, then the blocking mode and the
read mode were set to "blocking" and "byte-read" by the system when the client
called DosOpen. However, again, they could have been reset with
DosSetN PHState.

The pipe attributes are described in more detail in "Creating Named Pipes" on
page 9-10.

An application can use DosSetNPHState to change the wait mode and the read
mode. The pipe cannot be changed to no-wait mode when another thread is blocked
on a read or write operation to the same end of the pipe.

DosQueryNPipelnfo
More detailed information about a named pipe can be obtained by using
DosQueryNPipelnfo. This function returns information in a PIPEINFO data structure
that includes the name of the pipe, the current and maximum instance counts (the
current number of pipes and the maximum number of times the pipe can be
created), the size of the input and output buffers for the pipe, and the pipe identifier
of the client process.

The following code fragment shows how to use DosQueryNPipelnfo:

Figure 9-8. Using DosQueryNPipelnfo to Get Information about a Pipe

9-18 OS/2 2.0 Programming Guide-Volume I

On successful return, the pipe information data structure contains a set of
information describing the nature and the current state of the named pipe.

DosQueryNPipelnfo returns level 1 or level 2 file information for the pipe. Level 1
information includes the following:

• The actual sizes of the in-buffer and out··buffer
• The maximum number of pipe instances permitted
• The current number of pipe instances
• The length of the pipe name
• The ASCllZ name of the pipe, including \\ComputerName if the pipe is in a

remote computer system.

Level 2 information consists of a unique 2-byte identifier for each of the pipe's
client processes.

Examining the Contents of Named Pipes
DosPeekNPipe examines the current contents of a named pipe. It is similar to
DosRead, except that DosPeekNPipe does not remove data from the pipe. In
addition, DosPeekNPipe never blocks, even if the pipe is in blocking mode; if the
pipe cannot be accessed immediately, ERROR_PIPE_BUSY is returned.

Because DosPeekNPipe does not block, it returns only what is currently in the pipe.
Thus, if a message pipe is being examined, only a portion of a message might be
returned, even though the specified buffer length could accommodate the entire
message.

DosPeekNPipe also returns the state of the pipe. A named pipe can be in any of the
following states: Connected, Disconnected, Listening, Closing. For more on pipe
states see Table 9-1 on page 9-4.

The following code fragment shows how to use DosPeekNPipe:

Figure 9-9. Using DosPeekNPipe to Peek into a Named Pipe

On successful return, the input buffer Buffer will contain up to the first 200 bytes
from the named pipe, BytesRead will contain the number of bytes read into Buffer,

Chapter 9. Pipes 9-19

BytesAvail will contain the total number of bytes that were available in the pipe, and
PipeState will contain a value indicating the state of the named pipe

Closing Named Pipes

Summary

DosClose closes the specified pipe handle. When all of the handles that access one
end of a pipe have been closed, the pipe is referred to as a broken pipe.

If the client end of the pipe closes, no other process can reopen the pipe until the
server calls DosDisConnectNPipe (to acknowledge the client's close) followed by
DosConnectNPipe (to prepare the pipe for a new client). Until it calls
DosDisConnectNPipe, the server will receive ERROR_EOF if it tries to read from the
pipe, and ERROR_BROKEN_PIPE if it tries to write to it. Clients that attempt to open
the pipe receive ERROR_PIPE_BUSY.

If the server end closes when the client end is already closed, the pipe is
deallocated immediately; otherwise, the pipe is not deallocated until the last client
handle is closed.

The following code fragment shows how to close a named pipe. Assume that a
previous call to DosOpen provided the named pipe handle that is contained in
Handle.

Figure 9-10. Closing a Named Pipe

Following are the OS/2 functions and data structures used with pipes.

Table 9-2 (Page 1 Qi 2). Pipe Functions

Named-Pipe Functions

DosCallNPipe Combines the functionality of DosTransactNPipe
and DosClose for a duplex pipe. This action is
called a procedure call.

DosConnectNPipe Prepares a named pipe for a client process by
placing the pipe into the listening state.

nnet~r11u:11t11:11NDin11:11 Creates a named p!pe. ----· ----·-· ·.--

DosDisConnectNPipe Acknowledges that a client process has closed a
named pipe.

9-20 OS/2 2.0 Programming Guide-Volume I

Table 9-2 (Page 2 of 2). Pipe Functions

DosPeekNPipe

DosQueryNPHSiate

DosQueryNPipelnfo

DosQueryNPipeSemState

DosSetNPHState

DosSetNPipeSem

DosTransactNPipe

DosWaitNPipe

Unnamed-Pipe Functions

DosClose

DosCreatePipe

DosDupHandle

Dos Open

Dos Read

Dos Write

Table 9-3. Pipe Data Structures

Data Structure

AVAILDATA

PIPEINFO

PIPESEMSTATE

Examines the data in a named pipe without
removing the data. Also returns information about
the state of the pipe.

Returns information about a named pipe handle.

Returns information about a named pipe.

Returns information about local named pipes that
are attached to a shared event or muxwait
semaphore.

Resets the blocking mode and the read mode of a
named pipe.

Attaches a shared event semaphore to a local
named pipe.

Writes to a duplex message pipe, then reads from
it.

Waits for an instance of a named pipe to become
available.

Closes a file or pipe.

Creates an unnamed (anonymous) pipe.

Returns a new file handle for an open file or pipe.

Opens a file or pipe for reading or writing.

Reads from a file or pipe.

Writes to a file or pipe.

Description

Used to return a count of the available items in a
named pipe.

Used to return level 1 information about a named
pipe.

Used to return information about local named
pipes attached to a semaphore.

Chapter 9. Pipes 9-21

9-22 OS/2 2.0 Programming Guide-Volume I

Chapter 10. Queues

About Queues

© Copyright IBM Corp. 1992

Communication between processes is valuable in a multitasking operating system
to enable concurrent processes to work together. Queues are one of three forms of
interprocess communication (IPC), the other forms of IPC being semaphores and
pipes.

This chapter describes how to create and use queues. Queues enable one or more
processes to transfer data to a specific target process.

Note: The queues used for interprocess communication should not to be confused
with the message queues used for communication between Presentation
Manager (PM) and PM applications, nor with the printer queues used by the
print spooler in managing print jobs.

The following topics are related to the information in this chapter:

• Memory (Shared Memory)
• Program Execution and Control
• Semaphores
• Pipes.

A queue is a named, ordered list of elements that is used to pass information
between threads of the same (related) process or between different (unrelated)
processes.

Processes pass information to a queue in the form of elements. An element is a
32-bit unit of information. Queue elements can be values, flags, pointers to shared
memory regions, anything that can fit into 32 bits. The format of a queue element
depends entirely on the process that creates the queue (the queue owner). Only the
queue owner can read elements from the queue; other processes can only write to
the queue. Reading an element automatically removes it from the queue.

The process that creates the queue is known as the server process of the queue.
The other processes that access the queue are known as client processes.

A queue can be thought of as looking something like Figure 10-1 on page 10-2, with
one or more client processes writing elements to the queue and one server process
reading the queue.

10-1

Client
Process

A

Server
Process

Client
Process

B

Figure 10-1. Queue with Server and Client Processes

The owner of the queue (the server process) can choose the order in which to read
incoming information and can examine queue elements without removing them from
the queue. Queue elements can be added and accessed in First-In-First-Out (FIFO),
Last-In-First-Out (LIFO), or priority-based order.

Any process that has the name of a queue can open the queue and write to it. The
processes writing elements to the queue must use the format determined by the
queue owner.

Queues are very efficient. They pass only 32-bit sized elements, rather than large
data structures. However, queues can be used only for one-way communication,
because a client process can write to a queue but cannot read from one.

Typically, processes use queues to transfer information about the contents of a
shared memory. The elements in the queue could contain the address and length of
data areas in shared memory objects. The sending process allocates a shared
memory object and gives access to the shared memory to the queue owner. The
sending process can free the shared memory after writing the elements to the
queue because the shared memory will not be deallocated until the queue owner
frees it.

Any thread in the process that owns the queue can examine queue elements without
removing them. This is called peeking at the queue.

The operating system supplies the process identifier of the process that writes an
element to the queue, so that a process reading from or peeking at the queue can
determine the origin of the element. The process identifier is returned as part of a
REQUESTDATA data structure. Threads can use the ulData field of the
REQUESTDATA data structure to pass additional information about the queue
element.

10-2 OS/2 2.0 Programming Guide-Volume I

If the queue is empty when a process attempts to read from it, the process can
either wait for an element to become available or continue executing without
reading from the queue. Semaphores can be used to indicate when an element is in
the queue.

Queues and Semaphores
If a process manages only one queue, it typically waits for an element to become
available. However, if a process manages several queues, waiting for one queue
means that other queues cannot be read. To avoid wasting time while waiting, a
process can supply an event semaphore when it calls DosReadQueue or
DosPeekQueue. The process can then continue to execute without actually reading
an element from the queue, because DosWriteQueue will post the semaphore only
when an element is ready. The semaphore remains posted until someone resets it;
usually the queue owner process resets the semaphore after it reads all the
available information from the queue.

If a process uses a unique semaphore for each queue, it can use
DosWaitMuxWaitSem to wait for the first queue to receive an element.

Only one semaphore is permitted per queue.

Queue Servers and Clients
The server process and its threads have certain queue-managing privileges. Only
the server process and its threads can:

• Examine queue elements without removing them (DosPeekQueue)
• Remove elements from the queue (DosReadQueue)
• Purge all the elements in a queue (DosPurgeQueue)
• Write to the queue without opening it first (DosWriteQueue)
• Delete the queue (DosCloseQueue).

Both server and client processes can query the number of elements in the queue
using DosQueryQueue.

Client processes can query the queue (DosQueryQueue) and add elements to it
(DosWriteQueue), but they must first gain access to the queue by calling
DosOpenQueue. When a client process is finished with a queue, it ends its access
to the queue by calling DosCloseQueue. (Note that, unlike the server process and
its threads, a client process cannot use DosCloseQueue to delete a queue.)

When a queue is opened by a client process, an access count is set to 1. Each client
process has its own access count. The access count is incremented whenever a
thread in a process opens the queue and decremented whenever a thread in the
process closes the queue. Access to the queue by the client process ends when the
access count for the process reaches 0. When the server process closes the queue,
the queue is terminated and removed from the system.

Queue Element Order
DosReadQueue reads either a specified element or the first element in the queue.
The first element in the queue depends on the queue type, which is specified when
the queue is created. A queue can have FIFO, LIFO, or priority ordering.

Priority values range from O (lowest priority) through 15 (highest priority). The
writing process assigns a priority to a queue element when the element is written to
the queue. DosReadQueue reads elements from the queue in descending order of

Chapter 10. Queues 10-3

priority, regardless of the order in which DosWriteQueue placed the elements in the
queue. Elements with equal priority are read in FIFO order.

Obtaining Information about Queues and Queue Elements

Using Queues

Any thread in the process that owns the queue can use DosPeekQueue to examine
the elements in the queue to determine which one to actually read. Each call to
DosPeekQueue returns the identifier of the next element in the queue, so the
function can be called repeatedly to move through the queue. The identifier of the
desired element can then be supplied to DosReadQueue.

Any process that has opened a queue can use DosQueryQueue to determine the
number of elements in the queue. This function also returns an error value if the
queue owner has closed the queue.

Queues are useful for a process to manage input from other processes. The
examples in the following sections show how to create and use queues.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

Creating a Queue
A thread creates a queue by using DosCreateQueue and specifying a queue name
and the queue type as arguments. The queue name must be unique and have the
following form:

\QUEUES\QueName

The "\QUEUES\" is required, though it need not be uppercase. It is not a
subdirectory.

The QueName parameter must conform to the rules for OS/2 file names, although no
actual file is created for the queue.

The process that creates the queue is known as the server process of the queue.
The other processes that access the queue are known as client processes.

The following code fragment creates a FIFO queue named \queues\sample.que:

Figure 10-2. Creating a Named FIFO Queue

When the server process creates the queue, it determines whether the ordering of
queue elements is based on arrival (FIFO or LIFO) or priority. If the ordering is

10-4 OS/2 2.0 Programming Guide-Volume I

based on priority, then priority values must be assigned whenever data is added to
the queue.

The server must also specify whether the operating system is to convert 16-bit
addresses of elements placed in the queue by 16-bit processes to 32-bit addresses.

After a process has created a queue, any thread in that process can access the
queue with equal authority.

Allocating Memory for Queue Data
When queues are used only to pass the addresses to data rather than the data itself,
processes must allocate shared memory objects for storing queue data. The two
most common methods of storing queue data are:

• Using a named shared memory object - for related processes
• Using unnamed shared memory objects - for unrelated processes.

Named Shared Memory Objects
Related processes generally use a single named shared memory object for storing
queue data. The server process allocates the memory object by calling
DosAllocSharedMem. Care must be taken to ensure that the memory object is large
enough to meet application requirements.

The name of the shared memory object is established by agreement among the
server and the client processes. For simplicity, the name can be the same as the
queue name, except that the prefix \SHAREMEM\ must be used instead of
\QUEUES\.

A client process accesses the named shared memory object by calling
DosGetNamedSharedMem. It must then call DosOpenQueue to gain access to the
queue of the server.

Before the server process ends, it releases the memory object by calling
DosFreeMem.

Unnamed Shared Memory Objects
Unrelated processes generally use unnamed shared memory objects for storing
queue data. This makes it possible for a client process to store data in a shared
memory object without knowing its name. To use unnamed shared memory objects
for storing queue data, the server process must take the following steps whenever it
is called by a client:

1. Save the process identification (PIO) of the client process.
2. Allocate an unnamed shared memory object for the data of the client process by

calling DosAllocSharedMem.
3. Give the client process the capability of accessing the memory object by calling

DosGiveSharedMem with the client's PIO.

The client process must then call DosOpenQueue to gain access to the server's
queue.

After each client completes its queue requests or ends, the server calls
DosFreeMem to release the client's memory object.

Chapter 10. Queues 10-5

Opening a Queue
Once the queue is created, the server process of the queue and the threads of the

server process have immediate access to the queue and can proceed to access the

queue. A client process must request access to a queue by calling DosOpenQueue.

Once the queue is open, the client process can add an element to the queue with

DosWriteQueue, and it can query the number of elements in the queue with

DosQueryQueue.

DosOpenQueue retrieves the queue handle and the process identifier of the queue

owner. The function also increments the queue's access count.

The following code fragment shows how another process would open the queue

created with DosCreateQueue.

Figure 10-3. Opening a Queue

When it is finished with the queue, a thread in the client process ends its access by

calling DosCloseQueue. DosCloseQueue decrements the access count for the

process each time it is called. When the access count reaches 0, the connection

between the client process and the queue is terminated.

After a process has opened a queue, any thread in that process can access the

queue with equal authority.

Note: If a queue was created by a call to the 16-bit DosCreateQueue, then it is not

accessible to 32-bit DosOpenQueue requests, and

ERROR_QUE_PROC_NO_ACCESS will be returned.

Writing to a Queue
The server process and any of its threads can add an element to a queue simply by

calling DosWriteQueue. A client process, however, must first request access to the

queue by calling DosOpenQueue.

Processes that communicate by passing the addresses of shared memory objects

ihrough tile queue must have a sharnd memory object that they each have access

to. Once a process opens the queue, it can allocate shared memory by using

10-6 OS/2 2.0 Programming Guide-Volume I

DosAllocMem with the OBJ_GIVEABLE attribute and then give the shared memory
to the queue owner with DosGiveSharedMem.

A process that has opened a queue can write to the queue by using DosWriteQueue.
The writing process must create elements in a form that the queue owner can read.

The following code fragment adds an element to a queue. Assume that the caller
has placed the handle of the queue into QueueHandle already. Assume also that
DataBuffer has been set to point to a data element in shared memory, and that
DataLength has been set to contain the length of the data element in shared
memory.

Figure 10-4. Adding an Element to a Queue

Once the process has written to the queue, it frees the shared memory. However,
the memory will not be freed until the queue owner also frees it.

If the queue was created as a priority-based queue (as specified in the QueueF/ags
parameter of DosCreateQueue), then the priority of the element that is being added
must be specified.

If the server process has ended, or if it has closed the queue before DosWriteQueue
is called, then ERROR_QUE_INVALID_HANDLE is returned.

Reading from a Queue
The queue owner (server process) and its threads can read an element from the
queue by using DosReadQueue. The owner can read the first element in the queue
by specifying 0 as the element number. Alternatively, the owner can read a
particular element in the queue by specifying an element code returned from
DosPeekQueue. This function is not available to client processes.

Chapter 10. Queues 10-7

DosReadQueue can either remove queue elements in the order that was specified
when the queue was created (FIFO, LIFO, or priority), or it can use an element
identifier from DosPeekQueue as input to remove a previously examined element.

The following code fragment reads an element from the queue. Assume that the
caller has placed the handle of the queue into QueueHandle already and that the
identifier of the process that owns the queue has been placed into OwningPID
already.

·,<l:ei:~·ne·::·.•··~·Nt;(. · n6s~~~W:s. ·1~ .. j'.~«.P.a···.•.·~.f ~F;::·iP.'. ... :~.·.:~~{·~·1···~.•.·.· .. {::
~j .nc ~i~.~e" ·:~~s~:~:.11~·:.;: .. :··: .· / .. : . . · · . . ·

.}ltri~1:uq~:·''.<S:~~i9:·:h:::-·;·.:·: : ..•
<·'.;;

,?-

if · ou~1ie/'hanC11·· ... ·•. :
··1·'1i R~H.µ~s·~.~.1~en.ttf.1c~tt(}mT ci~.M·· .. ~t ..
[*· teogth of:.· ~Yeiqe~t:i •"~S~.~ .v.ect .· · : *l ...

)tr: /\4~·re.~s·· ..•. or .:· el·~l,Deht •... re~e).ve~ •. •·· .•... *,/
· ./~ . R~.ciu:~$t . ~1 .Patt:tc •• ~J·at ;el :e~ent .·.· *1
:l*·:~a.:waa~i.1f:i:t~eu~· is:·empt.Y ··.· ... "Yl
·/~ :p:·~iJJT:i'tY.··(}t~l~rnent •.. re~~; ved.·· *I
{* :Sem~phor~· ltan.91;t: ... · · ·· · · . · '*t .··
:/~. PlR·><~f .. <tu.e,·µe·.:.9YJne·r·. · · · *,f:
.l* . Return :¢ode · · · · 'fr.:/

., ,, . : , ,' .) ·.,J.::·;; .;' .. · ~=. '· .:: .~ .. ,. ' <•" '~

Figure 10-5. Reading an Element from a Queue

On successful return, DataLength contains the size of the element on the queue that
is pointed to by the pointer within DataAddress, ElemPriority has been updated to
contain the priority of the queue element pointed to by DataAddress, and
Request.u/Data contains any special data that the DosWriteQueue caller placed into
the queue.

If the queue is empty and NoWait is set to DCWW_WAIT (0), the calling thread waits
until an element is placed in the queue. If the queue is empty and NoWait is set to
DCWW_NOWAIT (1), DosReadQueue returns immediately with
ERROR_ QUE_EMPTY.

If NoWait is set to DCWW_NOWAIT, an event semaphore must be provided so that
the calling thread can determine when an element has been placed in the queue.

10-8 OS/2 2.0 Programming Guide-Volume I

The semaphore is created by calling DosCreateEventSem, and its handle is
supplied as a DosReadQueue parameter. The first time an event semaphore handle
is supplied in a DosReadQueue or DosPeekQueue request for which
DCWW_NOWAIT has been specified for a particular queue, the handle is saved by
the system. The same handle must be supplied in all subsequent DosReadQueue
and DosPeekQueue requests that are called for that queue; if a different handle is
supplied, ERROR_INVALID_PARAMETER is returned.

When a client process adds an element to the queue, the system automatically
opens the semaphore (if necessary) and posts it. The server can either call
DosQueryEventSem periodically to determine whether the semaphore has been
posted, or it can call DosWaitEventSem. DosWaitEventSem causes the calling
thread to block until the semaphore is posted.

After the event semaphore has been posted, the calling thread must call
DosReadQueue again to remove the newly added queue element.

If QUE_CONVERT_ADDRESS is specified in the call to DosCreateQueue, the
operating system will automatically convert 16-bit addresses to 32-bit addresses.

Peeking at a Queue
The server process and its threads can examine a queue element by calling
DosPeekQueue. This function is not available to client processes.

Unlike DosReadQueue, DosPeekQueue does not remove the element from the
queue.

DosPeekQueue can either examine elements in the order that was specified when
the queue was created (FIFO, LIFO, or priority), or it can examine the next element
in the queue after a previous DosPeekQueue request has been called. By making
multiple DosPeekQueue requests, the server process can search through a queue,
examining each element in turn. When it locates the element it is searching for, the
server process can remove the element from the queue by calling DosReadQueue.

If several threads are using the same queue, the process writing to the queue can
use the ulData field of the REQUESTDATA data structure to indicate that an element
is directed to a particular thread. The thread can peek at the queue whenever data
is available and read any elements containing the appropriate value in the ulData
field.

The following code fragment shows how a thread can use DosPeekQueue to
examine the elements in a queue. Assume that a previous call to DosOpenQueue
provided the queue handle that is contained in QueueHandle. Assume that the
identifier of the process that owns the queue has been placed into OwningPID
already.

Chapter 10. Queues 10-9

Figure 10-6. Peeking at the Elements of a Queue

On successful return, DataLength contains the size of the element on the queue that
is pointed to by the pointer within DataAddress, ElementCode has been updated to
indicate the next queue element, ElemPriority has been updated to contain the
priority of the queue element pointed to by DataAddress, and Request.u/Data
contains any special data that the DosWriteQueue caller placed into the queue.

If the queue is empty and NoWait is set to DCWW_WAIT (0), the calling thread waits
until an element is placed in the queue. If the queue is empty and NoWait is set to
DCWW_NOWAIT (1), DosPeekQueue returns immediately with ERROR_QUE_EMPTY.

If NoWait is set to DCWW_NOWAIT, an event semaphore must be provided so that
the calling thread can determine when an element has been placed in the queue.
The semaphore is created by calling DosCreateEventSem, and its handle is
supplied as a DosPeekQueue parameter. The first time an event semaphore handle
is supplied in a DosPeekQueue or DosReadQueue request for which
DCWW_NOWAIT has been specified for a particular queue, the handle is saved by
the system. The same handle must be supplied in all subsequent DosPeekQueue
and DosReadQueue requests that are called for that queue; if a different handle is
supplied, ERROR_INVALID_PARAMETER is returned.

When a client process adds an element to the queue, the system automatically
opens the semaphore (if necessary) and posts it. The server can either call

10-10 OS/2 2.0 Programming Guide-Volume I

DosQueryEventSem periodically to determine whether the semaphore has been
posted, or it can call DosWaitEventSem. DosWaitEventSem causes the calling
thread to block until the semaphore is posted.

After the event semaphore has been posted, the calling thread must call
DosPeekQueue again to examine the newly added queue element.

If QUE_CONVERT_ADDRESS is specified in the call to DosCreateQueue, the
operating system will automatically convert 16-bit addresses to 32-bit addresses.

Purging a Queue

Closing a Queue

The server process or any of its threads can empty a queue of all its elements by
calling DosPurgeQueue. This function is not available to client processes.

Warning: This is an unconditional purge of all elements in the queue.

The following code fragment shows how the owner of a queue can empty the queue
of all data elements. Assume that the owner of the queue has saved the queue's
handle (obtained in a previous call to DosCreateQueue) in QueueHandle.

Figure 10-7. Purging a Queue

DosCloseQueue can be used both to end access to a queue and to delete a queue.
The action taken as a result of a DosCloseQueue request depends on:

• Whether the requesting process is the server process or a client process
• The value of the access count, which is maintained for each client process by the

operating system. The access count for a client process is incremented
whenever DosOpenQueue is called, and decremented whenever DosCloseQueue
is called.

If the requesting process is a client, and the access count equals 0, DosCloseQueue
ends the client's access to the queue, but the queue itself is not affected. If the
access count does not equal 0, the count is decremented, but the process retains
access to the queue.

If the requesting process is the server, DosCloseQueue purges any outstanding
elements from the queue and deletes the queue regardless of the access count;
client processes that still have the queue open receive
ERROR_QUE_INVALID_HANDLE on their next request.

Chapter 10. Queues 10-11

Summary
Following are the OS/2 functions and the data structures used with queues.

Table 10-1. Queue Functions

Function

DosCloseQueue

DosCreateQueue

DosOpenQueue

DosPeekQueue

DosPurgeQueue

DosQueryQueue

DosReadQueue

DosWriteQueue

Table 10-2. Queue Data Structures

Data Structure

REQUESTDATA

10-12 OS/2 2.0 Programming Gutde-Volume I

Description

Closes a queue.

Creates a queue.

Opens a queue for use.

Examines a queue element without removing it
from the queue. Also returns information about
the element it peeked at.

Empties a queue of all its elements.

Returns the number of elements in a queue.

Reads (and removes) an element from a queue.
Also returns information about the element it read.

Writes an element to a queue.

Description

Used to return information about a queue element,
and about the process that added the element to
the queue, when the element is read or peeked at.

Chapter 11. Timers

About Timers

This chapter describes how to create and use timers. Timers enable applications to

time events by waiting for an interval to elapse or by waiting for a semaphore to be

posted.

The following topics are related to the information in this chapter:

• Program Execution and Control
• Semaphores.

Because the OS/2 operating system is a multitasking system, an application cannot

predict when it will lose execution control or how much time will elapse before

control returns. A timer enables an application to suspend operation for a specific

length of time, to block a thread until an interval has elapsed, or to post an event

semaphore at repeated intervals.

Timers are managed by the operating system. When an application requests a

timer, the system monitors the system clock and notifies the application when the

interval has elapsed.

The system clock counts the number of system-clock interrupts (clock ticks) that

have occurred since the system was started. On most hardware, clock ticks occur

approximately 32 times a second, so the length of a tick is approximately 31.25

mi II iseconds.

When an application specifies a timer interval, the system rounds up the interval to

the next clock tick. For example, if an application requests a 10 millisecond interval,

it will sleep for at least 31.25 milliseconds. If an application requests a 100

millisecond interval, the actual interval will be at least 125 milliseconds (4 ticks).

Because the OS/2 operating system is a preemptive operating system, there is no

guarantee that a thread will resume immediately after the timer interval. If a higher

priority process or thread is executing, the timed thread must wait.

Although timers are not absolutely accurate, they can be used where the inaccuracy

can be ignored. In a real-time control application, for example, an event can be

timed in seconds or minutes, so an error of a few milliseconds is unimportant. If an

application requires as much accuracy as the system can provide, it can dedicate a

thread to managing timer intervals and then elevate the priority of that thread.

Suspending Threads

© Copyright IBM Corp. 1992

An application can use DosSleep to suspend operation of a thread for a specified

interval. The system waits the specified number of milliseconds (subject to the

round-off error just discussed) before returning control to the application. Because

a sleeping application yields execution control to the system, the system can

execute other processes or threads while the application sleeps.

11-1

The following code fragment shows how to suspend the calling thread for one
minute:

Figure 11-1. Suspending a Thread

See "Suspending the Current Thread" on page 7-27 for more information on
DosSleep.

Asynchronous Timers

Using Timers

DosSleep is useful for temporarily suspending a thread but is much less useful for
timing. Typically, an application carries out part of its task and then waits an
interval. If the execution time varies (as it will if the application runs on different
hardware), the overall interval varies. In these situations, asynchronous timers
provide greater precision than DosSleep.

The OS/2 operating system supports two types of asynchronous timers,
single-interval (one-shot) and repeated. DosAsyncTimer starts a single-interval
timer. During the timing interval, the application can carry out other tasks. The
system posts an event semaphore when the timing interval elapses. The
application can reset the semaphore with DosResetEventSem before starting the
timer. DosAsyncTimer yields a more accurate timing interval than DosSleep
because the interval is independent of the execution time.

DosStartTimer starts a repeated timer. The system posts an event semaphore each
time the interval expires. The application can reset the semaphore before starting
the timer and after each posting. When the application resets the semaphore with
DosResetEventSem, it can check the cPosts value to determine how many times the
semaphore has been posted. If the semaphore has been posted more than once,
the application has missed a timer interval.

Applications frequently need to synchronize the execution of threads, to cause an
event to occur after a specified interval, or to cause an event to occur at regular
intervals. Timers are typically used to enable an application to pause before
processing user input or to carry out a task at a given time.

The operating system provides the following timer functions:

• DosSleep suspends the execution of the calling thread, enabling other threads to
run while the calling thread sleeps.

11-2 OS/2 2.0 Programming Guide-Volume I

• DosAsyncTimer starts a single-interval timer.

• DosStartTimer starts a repeated-interval timer.

• DosStopTimer stops a single-interval or repeated-interval timer.

The system also provides two functions, DosGetDateTime and DosSetDateTime, for
getting and setting the system date and time.

The timers that are started by DosAsyncTimer and DosStartTimer are asynchronous
timers; that is, the timers run independently of the calling thread, enabling the
calling thread to perform other operations while the timer is running. When an
asynchronous timer interval expires, the system notifies the application by posting
an event semaphore.

Time intervals for DosAsyncTimer, DosStartTimer, and DosSleep are specified in
milliseconds; however, it is important to recognize that the actual duration of the
specified time interval will be affected by two factors:

• First, the system clock keeps track of time in less precise units known as clock
ticks. On most hardware, clock ticks occur approximately 32 times a second, so
each tick interval lasts approximately 31.25 milliseconds. (To determine the
duration of a clock tick on your computer, call DosQuerySyslnfo and examine the
timer-interval field.)

Because clock ticks are less precise than millisecond values, any time interval
that is specified in milliseconds will essentially be rounded up to the next clock
tick.

• Second, because the OS/2 operating system is a priority-based, multitasking
operating system, there is no guarantee that a thread will resume execution
immediately after the timer interval expires. If a higher priority process or
thread is running, or if a hardware interrupt occurs, the timed thread blocks. (To
minimize delays caused by preemptive scheduling, an application can dedicate a
thread to managing time-critical tasks, and then raise that thread to a higher
priority.)

These factors usually cause the timer interval to be longer than requested; however,
it will generally be within a few clock ticks.

Timers for Presentation Manager applications are provided through the message
queue. Therefore, a Presentation Manager application will not use the timer
functions unless it performs some real-time control task.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

Suspending the Current Thread
An application can suspend a thread by using DosSleep. DosSleep suspends the
execution of the calling thread for a specified time interval.

DosSleep requires one argument-the amount of time (in milliseconds) to suspend
the thread. This value is rounded up to the nearest clock tick. If a time interval of O
is specified, the thread gives up the remainder of the current time slice, enabling
other ready threads of equal or higher priority to run; the calling thread will run
again during its next scheduled time slice. If there is no other ready thread of equal

Chapter 11. Timers 11-3

or higher priority, DosSleep returns immediately; it does not yield to a thread of

lower priority.

If there is a round-off error or if other threads in the system have higher priority, a

thread might not resume execution immediately after the sleep interval.

The following DosSleep call suspends a thread for at least 5 seconds:

DosSleep(5000);

Note that the specified time interval refers to execution time (accumulated

scheduled time slices), not to elapsed real time. Elapsed real time will be longer

and will vary, depending on the hardware and on the number and priorities of other

threads running in the system. In addition, even though the calling thread is

scheduled for execution as soon as the specified time interval has elapsed, its

execution could be delayed if a higher priority thread is running or if a hardware

interrupt occurs.

Because the above factors usually cause the sleep interval to be longer than

requested (though generally within a few clock ticks), DosSleep should not be used

as a substitute for a real-time clock.

Note:

1. Elapsed real time for the asynchronous timers (started by DosAsyncTimer

and DosStartTimer) will be much closer to their specified time intervals

because these timers run independent of the execution of the calling

thread.

2. To ensure optimal performance, do not use DosSleep in a single-thread

Presentation Manager application. (Use WinStartTimer.)

Timing a Single Interval
To carry out other tasks while the timer counts an interval, an application can use

DosAsyncTimer. This function sets a single-interval timer without stopping the

application-the timer runs asynchronously to the calling thread, enabling the thread

to perform other operations while it is waiting for the specified time interval to

expire. When the interval elapses, the operating system notifies the application of

the expiration of the timer by posting an event semaphore. The application resets

the semaphore before starting the timer and monitors the semaphore to determine

when the time has elapsed. The application can use DosCreateEventSem with the

initial state FALSE to create a reset semaphore. For more information on

semaphores, see Chapter 8, "Semaphores" on page 8-1.

The following code fragment creates an event semaphore and then calls

DosAsyncTimer to count an interval while the application performs other tasks:

11-4 OS/2 2.0 Programming Guide-Volume I

Figure 11-2. Using a Single-Interval Timer with an Event Semaphore

Before starting the timer, the thread creates the event semaphore with
DosCreateEventSem, specifying its initial state as reset. If the semaphore was
previously created by the same process, the thread resets it by calling
DosResetEventSem. If the semaphore was previously created by another process,
then the thread must call DosOpenEventSem to gain access to the semaphore
before calling DosResetEventSem.

Next, the thread calls DosAsyncTimer, specifying the handle of the event semaphore
and the desired time interval. The thread can then perform other tasks. However,
in order for the application to be notified of the expiration of the timer, one or more
threads in the application must call DosWaitEventSem.

When the time interval expires, the system posts the semaphore, and any threads
that were blocked on DosWaitEventSem requests can resume their execution. If
another time interval is required, the semaphore is reset, and both DosAsyncTimer
and DosWaitEventSem are called again. (To time regular repeated intervals, use
DosStartTimer.)

The timer can be canceled before its time interval expires by calling DosStopTimer.

Timing Repeated Intervals
To count an interval repeatedly, an application can use DosStartTimer. This
function starts a repeated-interval timer.

Unlike DosAsyncTimer, DosStartTimer does not stop after the first interval is
counted. The timer runs asynchronously to the calling thread, enabling the thread
to perform other operations while it is waiting for the specified time intervals to
expire. The system notifies the application of the timer's expirations by posting an
event semaphore.

The application resets the semaphore before starting the timer and whenever the
system posts the semaphore. The application can use the value returned in the

Chapter 11. Timers 11-5

post-counting parameter by DosResetEventSem to assure the semaphore was

posted only once before it was reset.

The following code fragment starts a timer and then waits on and resets the

associated event semaphore. Assume that the handle of the targeted event

semaphore has been placed into SemHandle.

Figure 11-3. Using a Repeated-Interval Timer with an Event Semaphore

On successful return, Handle will contain the handle of this periodic timer.

DosStopTimer can be used later to stop the periodic timer.

A repeated timer will continue to count the interval and post the semaphore until the

application terminates or the application uses DosStopTimer to stop the timer

explicitly. The following code fragment shows how to stop a periodic timer that has

been started previously with DosStartTi mer:

Figure 11-4. Stopping a Repeated-Interval Timer

Before starting the timer, the event semaphore must be reset. If the semaphore

does not exist, the thread can create it with DosCreateEventSem, specifying its

initial state as reset. If the semaphore was previously created by the same process,

the thread resets it by calling DosResetEventSem. If the semaphore was previousiy

created by another process, then the thread calls DosOpenEventSem to gain access

to the semaphore before calling DosResetEventSem.

11-6 OS/2 2.0 Programming Guide-Volume I

Summary

Next, the thread calls DosStartTimer, specifying the handle of the event semaphore
and the desired time interval. The thread can then perform other tasks. However,
in order for the application to be notified of the timer's expirations, one or more
threads in the application must call DosWaitEventSem.

When the time interval expires, the system posts the semaphore, and any threads
that were blocked on DosWaitEventSem requests can resume their execution. Each
time the semaphore is posted, it must be reset with DosResetEventSem before the
next timer expiration. DosWaitEventSem must also be called to wait for the
semaphore to be posted again.

In addition to resetting the event semaphore, DosResetEventSem returns the
semaphore's post count (the number of times the semaphore has been posted since
the last time it was in the set state). An application can use the post count to ensure
that it has not missed a timer interval; if the post count is greater than one, the
application missed a timer interval.

Following are the OS/2 functions used with timers.

Table 11-1. Timer Functions

Function Description

DosAsyncTimer Starts an asynchronous, single-interval timer.

DosSleep Suspends the current thread for a specified time
interval.

DosStartTimer Starts an asynchronous, repeated-interval timer.

DosStopTimer Stops an asynchronous, single-interval or
repeated-interval ti mer.

Chapter 11. Timers 11-7

11-8 OS/2 2.0 Programming Guide-Volume I

Chapter 12. Error Management

Error checking and error handling is extremely important in a multitasking operating
system. The conditions in which an application is executing can change at any time
due to the activity of other programs executing concurrently with the application.
This chapter describes the functions that an application can use to manage errors
that occur during processing.

The following topic is related to the information in this chapter:

• Exception Management.

About Error Management
Successful completion of most Control Program functions is indicated by an error
return code of 0. In the event of an error, Control Program functions usually return
an error code that has a non-zero integer value. The non-zero value equates to a
symbolic error identifier in the include file, BSEERR.H. The symbolic identifiers
indicate the cause of the error. For example, a return code of 2 from DosOpen
equates to the symbolic identifier ERROR_FILE_NOT _FOUND; the cause of the error
is that the file being opened cannot be found.

DosErrClass and DosError are supplied to assist in error processing.

• DosErrClass takes as input a non-zero return value that was received from any
control-program function. (Any return value other than 0 indicates that an error
occurred.) The output is a classification of the error and a recommended action.
Depending on the application, the recommended action could be followed, or a
specific recovery action could be performed.

• DosError enables an application to prevent the operating system from displaying
a default error message in a pop-up window when either a hard error or a
software exception occurs.

Classifying Return Values

©.Copyright IBM Corp. 1992

When a control-program function has been successfully completed, a return value of
0 is returned to the calling thread. A non-zero return value indicates that an error
has occurred.

Each non-zero value corresponds to a symbolic error identifier that indicates the
cause of the error. For example, a return value of 2 from DosOpen (indicating that
the file was not found) corresponds to the symbolic identifier
ERROR_FILE_NOT _FOUND.

DosErrClass helps applications deal with non-zero return values by taking a return
value as input and returning both an error classification and a recommended action.
Depending on the application, the recommended action could be followed, or a
more specific recovery routine could be executed.

12-1

Disabling Error Notification
A hard error is typically an error (such as the opening of a disk-drive door while a

diskette is being read, or any similar kind of device error) that cannot be resolved

by software. When a hard error occurs, the system default action is to prompt for

user input by displaying a message in a pop-up window.

DosError disables the default action, foregoing the displayed message and causing

an appropriate return value to be returned to whichever control-program function

was running when the hard error occurred. The application must determine the

appropriate response by referring to the return value.

DosError also enables the application to disable end-user notification if either a

program exception or an untrapped numeric-processor exception occurs. However,

if one of these exceptions occurs while user notification is disabled, the application

will still be ended.

As with hard errors, the system default is that user notification for these exceptions

is enabled.

Using Error Management
The OS/2 operating system supplies DosErrClass and DosError for error processing.

DosErrClass aids in determining the appropriate action that an application should

take in response to an error. DosError enables applications to disable the pop-up

windows used by the operating system to inform the user of a hard-error or an

exception.

Note: In the example code fragments that follow, error checking was left out to

conserve space. Applications should always check the return code that the

functions return. Control Program functions return an APIRET value. A

return code of 0 indicates success. If a non-zero value is returned, an error

occurred.

Classifying Errors
DosErrClass receives a non-zero return value from another control-program

function as input. It then classifies the return value, tells where in the system the

error occurred, and recommends a corrective action.

In the following example, an attempt is made to delete a nonexistent file. The return

value is then passed to DosErrClass so that more information about the error can be

obtained, including any corrective actions that can be taken.

12-2 05/2 2.0 Programming Guide-Volume I

Figure 12-1. Classifying File Errors

When called by a family-mode application, this function can return a valid error
classification only for errors that have actually occurred. Also, the classifications of
a given return value might not be the same for family-mode and OS/2-mode
applications.

Disabling Hard-Error and Exception Messages
DosError disables or enables end-user notification of hard errors, program
exceptions, or untrapped, numeric-processor exceptions.

In the following example, pop-up windows for hard errors and exceptions are
disabled, then enabled again.

Figure 12-2. Disabling and Enabling Hard-Error and Exception Messages

Chapter 12. Error Management 12-3

Summary

The action to take is encoded as a binary flag. The following table shows the
bit-values and their meanings.

Table 12-1. Bit Values to Enable and Disable Hard-Error and Exception Pop-up
Messages

Bit Value Meaning

0 1 Enables hard-error pop-up messages.
0 0 Disables hard-error pop-up messages.
1 0 Enables exception pop-up messages.
1 1 Disables exception pop-up messages.

If DosError is not called, user notification for hard errors and exceptions is enabled
by default.

Following are the OS/2 functions used for error management.

Table 12-2. Error Management Functions

Function Description

DosErrClass Returns information on the classification of a
non-zero return code, and a recommended
corrective action.

Dos Error Disables and enables hard-error and exception
pop-up messages.

12-4 OS/2 2.0 Programming Guide-Volume I

Chapter 13. Exception Management

© Copyright IBM Corp. 1992

An exception is an abnormal condition that can occur during program execution.
Common causes of exceptions include:

• 110 errors
• Protection violations
• Math errors
• Intervention by the user or by another process.

Activities that can cause exceptions include:

• Trying to use memory that you do not have permission to access
• Dividing by 0
• The user pressing Ctrl +Break.

Exceptions include both unexpected errors (such as a memory protection violation)
and expected errors (such as guard-page exceptions). Exceptions can be a
synchronous exception, that is, caused by an action of the executing thread, or an
asynchronous exception, caused by an event external to the executing thread (such
as the user pressing Ctrl +Break). When an exception is caused by the user
pressing Ctrl +Break or Ctrl + C, or by another process issuing DosKillProcess for
your process, the exception is called a signal exception.

In most cases, the default action taken by the operating system when an exception
occurs is to terminate the application that caused the exception. Rather than having
the operating system default action occur, an application can register its own
subroutine to handle exceptions. These routines are called exception handlers.
Exception handlers enable an application to handle some errors itself, allowing the
application to avoid termination (or at least to terminate gracefully).

When exception handlers are registered, they are added to an exception handler
chain. The chain starts empty and each new handler is added to the head of the
chain. Exceptions are passed to the exception handlers in the chain in
Last-In-First-Out order, so the last exception handler to be registered is the first one
to get an opportunity to handle each exception.

Exception handlers have the capability to complete critical code sections without
being interrupted by other asynchronous exceptions; these critical code sections are
called must-complete sections.

Exception handlers can be removed from the exception handler chains with
DosUnsetExceptionHandler. Another way that exception handlers can be removed
from the chain is with an unwind operation. When unwinding an exception handler,
the exception handler is first called, then removed from the exception handler chain.

The following topics are related to the information in this chapter:

• Memory
• Program Execution and Control.

13-1

About Exception Management
A multitasking operating system must manage applications carefully. A serious
error (such as an attempt to access protected memory) occurring in one application
cannot be permitted to damage any other application in the system. To manage
errors that might damage other applications, the OS/2 operating system defines a
class of error conditions called exceptions and defines default actions for those
errors.

When an exception occurs, the default action taken by the operating system is
usually to terminate the application causing the exception (unless the application
has registered its own exception handling routines). In some cases, when the
exception can safely be ignored, execution is allowed to continue.

Rather than having the operating system default action occur, an application can
register its own exception handlers routines. An exception handler routine could be
written to correct certain error conditions-when these error conditions occur, the
thread's exception handler gets the exception, corrects the condition, and the thread
continues executing rather than being terminated immediately by the operating
system. The operating system's default action is taken if there are no user-defined
exception handling routines or if all user-defined routines return without handling
the exception.

An application can use DosSetExceptionHandler to register an exception handling
routine. DosSetExceptionHandler takes a pointer to an
ExceptionRegistrationRecord data structure as its only argument. The first field in
this data structure is a pointer to the previous exception handler in the chain. This
field is maintained by the operating system and must never be modified by an
application. The second field is a pointer to the exception handling routine that will
be registered by the operating system.

A single exception handler can be used to handle all the exceptions that you choose
to handle. It is not necessary to have a separate exception handler for each
exception.

Once an exception handling routine is registered, the system will notify it when an
exception occurs. The operating system sends synchronous exceptions only to the
thread causing the exception. An application must register an exception handler for
each thread that is handling exceptions. When the operating system terminates an
application, however, a process-termination exception is sent to all threads used by
the application to be terminated. When the user presses Ctrl +Break, an
asynchronous signal exception is sent only to Thread 1, the main thread, of the
executing process.

The exception handling routine is passed the following four parameters that provide
exception-specific information:

ExceptlonReportRecord
Describes the exception and its parameters. The first field of this data structure
contains the number of the exception that occurred.

ExceptlonRegistrationRecord
The ExceptionRegistrationRecord data structure used to initially register the
exception handler. This is a microprocessor-specific value.

ContextRecord
Describes the machine state at the time the exception occurred.

13-2 OS/2 2.0 Programming Guide-Volume I

DispatcherContext
Contains state information on nested exception and collided unwinds. This
information must not be modified by the application.

Details of the parameters and data structures can be found in "Exception Handler
Interface" on page 13-14.

The operating system places the exception handlers for each thread in an exception
handler chain. Registering an exception handler adds it to the head of the chain.

When an application registers an exception handler, the exception handler is added
to the head of the chain. If the application calls a routine in a dynamic link library
(DLL), the DLL might register an exception handler in case there is an exception
while its code is executing; the DLL deregisters the exception handler before
returning control to the application. The DLL's exception handler would be ahead of
the application's exception handler in the chain.

Exception handlers in the chain are notified of an exception in Last-In-First-Out
(LIFO) order. Thus, if an exception occurs while your thread is executing, the
exception handler for your thread is notified of the exception first. If your exception
handler chooses to handle the exception, the earlier exception handlers in the chain
never see the exception. If your exception handler chooses not to handle the
exception, it is passed along to the next earlier exception handler in the chain. If no
exception handler in the chain chooses to handle the exception, the operating
system takes the default action for the exception.

If an exception happens while DLL code is executing, and if the DLL's exception
handler chooses to handle the exception, your application's exception handlers will
never be aware it.

System Exceptions
Th~ operating system defines a class of error conditions called system exceptions,
and specifies the default actions that are taken when these system exceptions
occur. The default action taken by the operating system in most cases is to
terminate the thread that caused the system exception.

System exceptions include both synchronous and asynchronous exceptions.
Synchronous exceptions are caused by events that are internal to the execution of a
thread. For example, synchronous exceptions could be caused by invalid
parameters, or by the request of a thread to end its own execution.

Asynchronous exceptions are caused by events that are external to the execution of
a thread. For example, an asynchronous exception can be caused by a user
entering a Ctrl + C or Ctrl +Break key sequence, or by a process calling
DosKillProcess to end the execution of another process.

The Ctrl +Break, Ctrl + C, and DosKillProcess-generated exceptions are also known
as signals, or as signal exceptions.

Chapter 13. Exception Management 13-3

The operating system delivers exceptions that occur in 16-bit as well as 32-bit code.
The sequence or hierarchy for delivering exceptions is as follows:

• When an exception occurs in 32-bit code, the system gives control only to the
32-bit exception handlers registered for the current thread. If the thread has not
registered any 32-bit handlers, the system default action occurs.

• When an exception occurs in 16-bit code, the system first gives control to the
32-bit exception handlers registered for the current thread. If the exception is
not handled by one of these handlers, control is passed to the 16-bit handler, if
one exists for the given exception. If there is no 16-bit handler for the exception,
the system default action occurs.

Notification of an exception is usually sent only to the thread that caused the
exception. However, if a thread uses DosExit to terminate all the threads in the
process, notification of the process-termination exception is sent to every thread in
the process. The thread that used DosExit gets a XCPT_PROCESS_TERMINATE
exception, all the other threads in the process get a
XCPT _ ASYNC _PROCESS_ TERMINATE exception.

Exit-list processing occurs on a per-process basis after a process-termination
exception has been delivered to each thread in the process and each thread has
finally ended except Thread 1 (the main thread). Therefore, any thread that handles
a process-termination exception must eventually end its own execution voluntarily.
Otherwise, the process-termination sequence will not conclude properly.

The following tables briefly list the possible exceptions. For more detailed
information about the system exceptions, including default system action,
parameters, and related trap numbers, see the Control Program Programming
Reference.

Table 13-1. Non-Fatal, Software-Generated Exceptions

Exception Symbolic Constant Description

XCPT_GUARD_PAGE_VIOLATION A guard page has been accessed.

XCPT _UNABLE_ TO_ GROW_ STACK The system is unable to allocate the
memory page directly below the guard
page just accessed.

Table 13-2. Fatal, Software-Generated Exceptions

Exception Symbolic Constant Description

XCPT _IN_PAGE_ERROR An 110 error occurred while reading a
memory page into memory.

XCPT_PROCESS_TERMINATE The thread has terminated itself with
Dos Exit.

XCPT _ASYNC_PROCESS_ TERMINATE Another thread in the process has
caused the thread to terminate.

XCPT _NONCONTINUABLE_EXCEPTION An exception handler has attempted to
continue execution in response to a
non-continuable exception.

XCPT _INVALID _DISPOSITION An exception handler has returned an
-- -mva11a va1ue.

13-4 OS/2 2.0 Programming Guide-Volume I

Table 13-3. Fatal, Hardware-Generated Exceptions

Exception Symbolic Constant Description

XCPT _ACCESS_ VIOLATION An access violation or page fault has
occurred.

XCPT _INTEGER_DIVIDE_BY _ZERO An attempt to divide by O has occurred
in an integer operation.

XCPT _FLOAT _DIVI DE_BY _ZERO An attempt to divide by 0 has occurred
in a floating point operation.

XCPT _FLOAT _INVALID_ OPERATION An invalid floating point operation was
attempted.

XCPT _ILLEGAL_INSTRUCTION An attempt was made to execute an
instruction that is not defined on the host
machine's architecture.

XCPT _PRIVILEGED _INSTRUCTION An attempt was made to execute an
instruction that is not permitted in the
current machine mode or that the
application does not have permission to
execute.

XCPT _INTEGER_ OVERFLOW An integer operation generated a
carry-out of the most significant bit.

XCPT _FLOAT_ OVERFLOW A floating point operation generated a
resulting exponent that is greater than
the magnitude permitted for the
operands.

XCPT _FLOAT_ UNDERFLOW A floating point operation generated a
resulting exponent that is less than the
magnitude provided for the operands.

XCPT _FLOAT _DENORMAL_ OPERAND An attempt was made to perform an
arithmetic operation on a denormal
operand.

XCPT _FLOAT _INEXACT _RESULT The result of an operation is not exactly
representable in the target format.

XCPT_FLOAT_STACK_CHECK An illegal stack operation was attempted
by the floating point coprocessor.

XCPT_DATATYPE_MISALIGNMENT An attempt was made to store a data in
an address that is not naturally aligned
on a hardware architecture that does not
provide alignment hardware.

XCPT _BREAKPOINT A breakpoint instruction was executed.

XCPT_SINGLE_STEP One instruction has been executed in
single-step mode.

Table 13-4. Fatal Exceptions

Exception Symbolic Constant Description

XCPT _INVALID_LOCK_SEQUENCE An invalid operation was attempted
within an interlocked section of code.

XCPT_ARRAY_BOUNDS_EXCEEDED An array index outside its upper and
lower boundary was detected.

Chapter 13. Exception Management 13-5

Table 13-5. Unwind Operation Exceptions

Exception Symbolic Constant Description

XCPT_UNWIND An unwind operation is in process.

XCPT_BAD_STACK An ExceptionRegistrationRecord data
structure was reached that is not
properly aligned or that is not within the
current stack boundaries.

XCPT_INVALID_UNWIND_TARGET The address of the target
ExceptionRegistrationRecord is below
the current stack pointer or not in the
exception handler chain.

Table 13-6. Fatal Signal Exceptions

Exception Symbolic Constant Description

XCPT _SIGNAL A signal was made to your process
(usually to stop). All the signal
exceptions (Ctrl + Break, Ctrl + C, and
XCPT_SIGNAL_KILLPROC) come under
this exception.

Signal Exceptions
Signal exceptions are special events sent to a thread when the user presses certain
key sequences or when another thread or process explicitly initiates the exception.
There are three types of signal exceptions:

XCPT _SIGNAL_BREAK
When the user presses Ctrl +Break

XCPT _SIGNAL_INTR
When the user presses Ctrl + C

XCPT _SIGNAL_KILLPROC
When another process uses DosKillProcess to send a
XCPT _SIGNAL_KILLPROC exception to your process.

Signal exceptions are sent only to Thread 1 (the main thread) in the process
receiving the exception. If an exception handler is registered on Thread 1, it must
be prepared to receive signal exceptions. The thread 1 exception handler can
always ignore the signal exception by returning XCPT_CONTINUE_SEARCH.

If the thread 1 exception handler is to receive signal exceptions, it must use
DosSetSignalExceptionFocus to notify the operating system that it wants to receive
the XCPT _SIGNAL_INTR (Ctrl + C) and XCPT _SIGNAL_BREAK (Ctrl +Break) signals.
Otherwise, these exceptions are not passed to the exception handler and the default
action-to terminate the process-is taken by the operating system. The thread will
get XCPT_SIGNAL_KILLPROC signals whether it uses DosSetSignalExceptionFocus
or not.

All three of these signals are delivered by a single exception-XCPT_SIGNAL-and
the exception handler for Thread 1 can choose to handle none, some, or all of the
signals. The signal being sent can be determined by examining the exception

13-6 05/2 2.0 Programming Guide-Volume I

The following table provides information about each type of signal.

Table 13-7. Signal Exceptions

Signal Symbolic Constant Description

Ctrl+Break XCPT_SIGNAL_BREAK This exception is sent to
Thread 1 in the current
keyboard-focus process when
a Ctrl +Break key sequence is
received from the keyboard.
The default action taken by the
operating system for this
exception is forced process
termination.

Ctrl+C XCPT _SIGNAL_INTR This exception is sent to
Thread 1 in the current
keyboard-focus process when
a Ctrl + C key sequence is
received from the keyboard.
The default action taken by the
operating system for this
exception is forced process
termination.

Kill Process XCPT _SIGNAL_KILLPROC This exception is sent to
Signal Thread 1 in the process

specified when an application
uses DosKillProcess. The
XCPT _ SIGNAL_KILLPROC
signal exception results from
an action external to the
process. The default action
taken by the operating system
for this exception is forced
process termination.

Handling Signal Exceptions
To handle signal exceptions, a process must first call DosSetExceptionHandler to
register a handler for the exceptions. Next, the process must call
DosSetSignalExceptionFocus, with the Flag parameter set to ON, in order to receive
signal exceptions.

After a process calls DosSetSignalExceptionFocus, it remains the signal focus for its
screen group until it calls DosSetSignalExceptionFocus again with the Flag
parameter set to OFF, or until another process in the screen group makes a call to
the same function with Flag set to ON.

Each call to DosSetSignalExceptionFocus with Flag set to ON increments a counter
in the per-task data area of the process. Each call with Flag set to OFF decrements
the counter. When a signal exception occurs, the system checks to see whether the
value of the counter is greater than 0. If it is, the signal is sent.

DosSetSignalExceptionFocus returns ERROR_NESTED_TOO_DEEP if the value of
the counter exceeds 65535. If a thread tries to turn off the signal focus when the
value of the counter is 0, ERROR_ALREADY _RESET is returned.

All 32-bit exception handlers that are attached to thread 1 of the process will be
given an opportunity to handle the signal. If no 32-bit exception handler returns

Chapter 13. Exception Management 13-7

XCPT_CONTINUE_EXECUTION in response to the signal, then the 16-bit handler for
the signal will be executed, if one exists; if none exists, then the process will be
terminated.

In order to continue receiving signals, the process must either return
XCPT_CONTINUE_EXECUTION from a 32-bit exception handler, or it must call the
16-bit DosSetSigHandler function, specifying SIG_ACKNOWLEDGE as the value of
the Action parameter to acknowledge the signal, or call
DosAcknowledgeSignalException.

The typematic facility of the keyboard could cause a Ctrl + C or Ctrl +Break signal
exception to repeat. For this reason, the system holds these exceptions until an
exception handler returns XCPT_CONTINUE_EXECUTION, or calls
DosAcknowledgeSignalException. However, only one signal exception is actually
held; they are not queued by the system.

See "Must-Complete Sections" on page 13-9 for information about how a process
can defer the handling of signal exceptions.

Sending Signal Exceptions
A process can send the XCPT _SIGNAL signal exception to another process by
calling DosSendSignalException.

In order for the specified process to receive the exception, it must have an
exception handler registered for Thread 1, and it must designate itself as the signal
focus for its screen group by calling DosSetSignalExceptionFocus.

Presentation Manager applications cannot request exception focus for Ctrl + C and
Ctrl +Break. However, establishing an exception handler for Ctrl + C and
Ctrl +Break is supported for Via-Window and full-screen applications.

Raising Exceptions
Asynchronous exceptions that have been deferred in a must-complete section are
dispatched automatically by the system when the thread exits the must-complete
section. However, a synchronous exception that has been deferred must be raised
by calling DosRaiseException.

DosRaiseException can also be used to simulate either an asynchronous or
synchronous exception. For example, a floating point emulator (a program that
emulates a numeric coprocessor) can use this function to simulate an NPX
exception.

Raising a software exception captures the machine state of the current thread in a
ContextRecord data structure. The ExceptionAddress field of
ExceptionReportRecord is set to the return address of the caller, as are the
corresponding fields of the ContextRecord data structure. The system then calls
each exception handler on the list, passing each a pointer to
ExceptionReportRecord and the created ContextRecord data structures. In the case
of a continuable exception for which XCPT_CONTINUE_EXECUTION is returned,
DosRaiseException restores the potentially modified context back into the machine
before returning. Note that control cannot return to the caller of DosRaiseException
if the instruction pointer in ContextRecord has been modified.

The caller of DosRaiseException can set the EH_NONCONTINUABLE bit in the flags
field of the ExceptionReportRecord data structure. By doing so, the caller
guarantees that it is never returned to after the call to DosRaiseException. Note that

13-8 OS/2 2.0 Programming Guide-Volume I

once set, the EH_NONCONTINUABLE bit cannot be modified by any exception
handler. The system will enforce this.

Following are some possible scenarios that might occur after a call to
DosRaiseException has been made:

• If one of the exception handlers returns from a continuable exception with a
status of XCPT_CONTINUE_EXECUTION, DosRaiseException returns NO_ERROR
to the caller, and the thread resumes execution.

• If one of the exception handlers returns from a noncontinuable exception with a
status of XCPT_CONTINUE_EXECUTION, the process is terminated, because it is
illegal to return XCPT_CONTINUE_EXECUTION from a noncontinuable exception.

• If none of the exception handlers in the thread's chain of handlers returns with a
status of XCPT_CONTINUE_EXECUTION, then the action taken depends on the
exception number:

If the exception number indicates a user-assigned exception or an
unassigned system exception, the process is terminated.

If the exception number is assigned to a system exception, and CS:EIP points
to 32-bit code, no 16-bit handlers are called and the system default action is
taken. Depending on which system exception has been raised, the default
action is either to terminate the process, or to continue execution of the
thread with NO_ERROR returned to the caller.

If the exception number is assigned to a system exception that maps to a
16-bit exception and CS:EIP points to 16-bit code, a 16-bit exception handler
is called, if one is registered. Otherwise the operating system takes the
default action.

User-Defined Exceptions
Exceptions can also be defined by the application. These are called user-defined
exceptions (as opposed to system-defined exceptions, which are those exceptions
defined by the operating system). Applications can define an exception in the
following fashion:

#define XCPT_YOUR_EXCEPTION 0xE004ABCD

The application then raises the exception, using DosRaiseException:

DosRaiseException(XCPT_YOUR_EXCEPTION);

The exception handlers in the exception handler chain that are ahead of the
application's exception handler will see the exception, but they will not recognize it,
so they will return XCPT_CONTINUE_SEARCH. Only the application's exception
handler will recognize the exception.

The application's exception handler must return XCPT_CONTINUE_EXECUTION so
that the exception will not continue to be passed down the exception handler chain.

Must-Complete Sections
A thread can defer the handling of asynchronous exceptions by creating a
must-complete section. A must-complete section is a section of code that cannot be
safely interrupted; it must be allowed to complete its execution even if an
asynchronous exception occurs while within its boundaries. For example, a
must-complete section can be used:

• When modifying shared-memory data structures that cannot be modified through
an atomic operation

Chapter 13. Exception Management 13-9

• Across database update operations
• During a remote communications operation.

Creating a must-complete section ensures that the execution of critical instructions
will be completed and that resources will be cleaned up before the thread ends.
When used in conjunction with a mutual exclusion (mutex) semaphore, a
must-complete section also ensures that a thread will have exclusive access to a
resource.

The boundaries of the must-complete section are defined by DosEnterMustComplete
and DosExitMustComplete requests. While a thread is executing instructions in a
must-complete section, the system will hold asynchronous exceptions, which
include signal exceptions and asynchronous process terminations.

The system increments a counter each time DosEnterMustComplete is called, and
decrements the counter when DosExitMustComplete is called. Any asynchronous
exceptions that have been held are dispatched when the counter reaches 0. A count
greater than 1 indicates the degree of nesting of the must-complete section. If
DosExitMustComplete is called when the count is already 0,
ERROR_ALREADY _RESET is returned.

The handling of synchronous system exceptions and user-defined exceptions is not
deferred by the system. To defer the handling of these exceptions, a procedure
typically registers an exception handler (by calling DosSetExceptionHandler) and
initializes a local Raise Exception flag to 0 before entering the must-complete
section. The flag is set to 1, and the information is stored, if the exception handler
receives a synchronous exception that it wants to reraise later.

If the value of the raise exception flag is 0 after the thread exits from the
must-complete section, then no exceptions occurred, and the thread continues its
normal operation.

If the value of the flag is 1 after the must-complete section has been completed, then
an exception occurred, and the thread must call DosRaiseException to raise the
deferred exception for handling.

Note: A thread must not call a function that is outside the scope of the
must-complete section (for example, a DLL routine), because an error in the
called routine could cause the process to end without returning. Keep
must-complete sections as short as possible.

Unwinding Exception Handlers
In addition to handling exceptions, exception handlers are used to clean up
resources during the execution of a nonlocal GOTO instruction or during thread
termination. (A nonlocal GOTO instruction jumps to a label outside the current
procedure. The label is a procedure address or an address within a procedure that
is on the stack, higher in the call frame chain.)

DosUnwindException calls and removes exception handlers from a thread's chain of
registered exception handlers up to, but not including, a specified exception
handler. This is known as an unwind operation. DosUnwindException can also be
used to unwind all exception handlers from the thread's exception handler chain
and to terminate the thread.

For example, with the C language setjmp() and longjmp() routines, the setjmp()
would save the address of the current exception handler structure, along with any

13-10 OS/2 2.0 Programming Guide-Volume I

other information that is necessary to perform the longjmp() routine. (The address
of the current exception handler structure is obtained from the head of the exception
handler chain. A pointer to the head of the chain is located in the Thread
Information Block.)

The longjmp() routine would initiate the unwind of procedure call frames by calling
DosUnwindException and passing to it the saved address of the
ExceptionRegistrationRecord data structure. If the address of the
ExceptionRegistrationRecord data structure is not found in the chain, then the
XCPT_INVALID_UNWIND_TARGET exception is raised, and the chain is not
unwound.

The machine state at the time of the call to DosUnwindException is captured in
ContextRecord. The EH_UNWINDING flag is set in the exception flags field of the
ExceptionReportRecord data structure. The EH_EXIT_UNWIND flag is also set if the
ExceptionRegistrationRecord parameter is set to 0 (if the application does not
provide its own ExceptionReportRecord parameter the operating system will
construct one). A backward walk through the procedure call frames is then
performed to find the target of the unwind operation.

The first parameter to DosUnwindException is the address of an exception handler's
EXCEPTIONREGISTRATIONRECORD. DosUnwindException will unwind exception
handlers up to, but not including that exception handler. If a -1 is passed to
DosUnwindException for this parameter, DosUnwindException will unwind all the
exception handlers on the chain. If a 0 is passed to DosUnwindException for this
parameter, DosUnwindException will unwind all the exception handlers on the chain
and exit.

There is no return from a call to DosUnwindException, unless the stack is invalid.
Control is transferred to the specified instruction pointer address. If
DosUnwindException encounters an error during its processing, it raises another
exception rather than return control to the caller.

If the target call frame is reached and an exit unwind is not being performed (that is,
an ExceptionRegistrationRecord is not 0), then the computed machine state is
restored from ContextRecord and control is transferred to the address specified by
the target-IP address parameter. Note that the stack pointer is not restored, making
it possible to transfer information on the stack. It is the responsibility of the code at
the target address to reset the stack pointer as necessary.

DosUnwindException is called with C language calling conventions, which permits
the use of a variable number of arguments. Thus, the caller can pass any amount of
information on the stack, to be picked up at the target-IP address.

If an exit unwind is being performed (the ExceptionRegistrationRecord parameter is
0 or -1), then all call frames are unwound until the base of the stack is reached.

If the ExceptionReportRecord parameter is specified, then each exception handler
encountered during the unwind operation is called, using the specified record. If
this parameter is not specified, then DosUnwindException constructs an
ExceptionReportRecord that specifies the exception XCPT_UNWIND.

Chapter 13. Exception Management 13-11

Colliding Unwinds
During an unwind operation, it is possible for one unwind to collide with a previous
unwind. This occurs when the scope of the second unwind overlaps the scope of the
first unwind. Following are two situations:

• The target frame of the second unwind is a frame that has already been unwound
by the first unwind.

• The target frame of the second unwind is a valid frame that is positioned before
or after the target frame of the first unwind.

Either of these situations could occur during the following scenarios:

• An unwind handler calls unwind, or

• An unwind handler hits an exception that has called unwind.

In the first scenario, the second unwind is attempting to unwind to an invalid target.
This causes the exception XCPT_INVALID_UNWIND_TARGET to be raised.

In the second scenario, the first unwind is abandoned, and the second unwind
continues to its target. The second scenario is far more likely.

Note: A user program that uses high level language exception mechanisms must
never call DosUnwindException, because this could create conflicts with the
runtime exception strategy of the high level language. Unwind operations in
this case are performed through language-supported facilities such as the C
language longjmp() routine.

Nested Exceptions
A nested exception is an exception that occurs while another exception is being
handled.

The operating system supports nested exceptions because an unhandled exception
that occurs in an exception handler should be handled at a higher level-that is, by
an ancestor of the procedure that registered the offending handler.

When a nested exception occurs, the EH_NESTED_CALL flag is set in the exception
structure to indicate that a nested function call is being made. The normal
convention then is for the handler to return immediately without handling the
exception if the EH_NESTED_CALL flag is set. Without this flag, it would be easy to
create an infinitely recursive situation.

For example, suppose we have the following scenario:

1. Procedure main calls procedure PA, which establishes exception handler HA.
2. Procedure PA calls procedure PB, which establishes exception handler HB.
3. Procedure PB calls procedure PC, which establishes exception handler HC.
4. Procedure PC calls procedure PD.

The chain of exception handlers now looks like the following figure.

TIB (Thread Information Block)

HC HB HA 0

Figure 13-1. Exception Handler Chain with Nested Exceptions

13-12 OS/2 2.0 Programming Guide-Volume I

Now suppose that procedure PD causes an exception. The system refers to the
current thread's chain of exception handlers.

Because procedure PD has no handler, the system calls HC, the handler for
procedure PC, with the EH_NESTED_CALL flag clear. If handler HC returns
CONTINUE_SEARCH, the system calls the next handler in the chain, handler HB,
again with the EH_NESTED_CALL flag clear.

Now suppose that exception handler HB causes an exception while it is processing
the original exception. The call frames for the procedures are arranged in the
following order on the stack:

1. Procedure main
2. Procedure PA
3. Procedure PB
4. Procedure PC
5. Procedure PD
6. The operating system's exception dispatcher
7. Procedure HB, which is the exception handler procedure
8. The operating system's exception dispatcher

The system will now start traversing the exception handler chain again. Exception
handler HB could have registered an exception handler, which would be the first
handler in the chain. If it had registered a handler, it would be called with the
EH_NESTED_CALL flag clear.

The range of the nested exception is exception handlers HC and HB. The end of this
range can be determined by the fact that exception handler HB is the currently
active handler.

These exception handlers have already been given a chance to handle the original
exception. They are now about to be called again in a nested range. Therefore,
when handlers HC and HB are called again, they will be called with the
EH_NESTED_CALL flag set. If they do not handle the exception, then exception
handler HA will be called with the EH_NESTED_CALL flag clear, because it is
outside the nested range.

Process Exit Lists
A process executes any routines registered in its exit list (with DosExitlist) after the
Process Termination exception has been delivered to each thread in the process
and after each thread except Thread 1 has finally been terminated. If a thread
handles the process termination exception, it must eventualty voluntarily terminate,
or the exit-list sequence will not finish running properly. Threads must not use
DosCreateThread, DosExecPgm, DosStartSession, or DosExit when they are
delivered a process termination exception.

Error Pop-Up Screens
Some error conditions, such as general protection violations, cause the operating
system to display a pop-up screen containing information about the error. An
application can use DosError to disable error pop-up screens. Typically, a
Presentation Manager application would disable error pop-up screens if it sets up
its own routines to handle errors that would ordinarily generate pop-up screens.

DosError is also used to control and disable hard errors, which usually have to do
with reading from and writing to disks.

Chapter 13. Exception Management 13-13

Exception Handler Interface
Exception handlers are passed four parameters. The interface for writing a 32-bit

exception handler is:

Figure 13-2. Exception Handler Interface

The exception handler returns XCPT_CONTINUE_EXECUTION to indicate that the

exception has been handled and is to be dismissed, or XCPT_CONTINUE_SEARCH

to indicate that the exception has not been handled and is to be passed to the next

exception handler on the chain.

Note that there are no invalid exception numbers; if a handler does not recognize an

exception number, it simply returns XCPT _CONTINUE_SEARCH.

In addition to handling exceptions, exception handlers are used in unwind

operations. An unwind operation simply calls and removes exception handlers from

the exception handler chain of the thread. Unwind exceptions are not actually being

delivered to the handlers, so the individual return codes are irrelevant, and they do

not affect the unwind operation.

A single exception handler can be used to handle all the exceptions that you choose

to handle. It is not necessary to have a separate exception handler for each

exception.

A handler is not required to return to the system; it can handle the exception, and

then continue thread execution directly. For example, when an application executes

a longjmp(), the C language compiler adds code that essentially performs an unwind

operation to clean up the stack. Execution then resumes at the point where the

target setjmp() occurred.

For synchronous exceptions, an exception handler can alter the contents of the

interrupted thread's context, except for the fields that cannot normally be altered

during thread execution. For asynchronous exceptions (signal and termination)

changes made to the context of the thread are ignored.

Some exceptions are continuable; if the thread's exception handler handles the

exception, execution can continue. If the exception condition is such that execution

cannot be continued safely, the exception is said to be noncontinuab/e. If an

exception is noncontinuable the EH_NONCONTINUABLE bit is set in the exception

structure, and it is an error to indicate the exception has been handled. Returning

XCPT _CONTINUE_EXECUTION causes an XCPT _NONCONTINUABLE_EXCEPTION

exception to be raised.

Generally, exception handlers can use any function while they are handling an

exception. However, while handling a process-termination exception, an exception

handler must not call DosCreateThread, DosExecPgm, or DosStartSession, because

unpredlctab:e iesu:ts can occur. A h~rnd!er a!so must not ca!! DosExit whi!e

handling a process-termination exception, because this request will cause the

exception to be dispatched as a nested exception to the current thread's entire

chain of handlers.

13-14 OS/2 2.0 Programming Guide-Volume I

Exception Handler Parameters
ExceptlonReportRecord (EXCEPTIONREPORTRECORD) - input/output

A pointer to the exception report record, which describes the exception and its
parameters.

ExceptlonReglstratlonRecord (EXCEPTIONREGISTRATIONRECORD) - Input/output
This is a microprocessor-specific value. For the 80386 microprocessor, this is a
pointer to the exception registration record data structure that was used to
register the current exception handler.

ContextRecord (CONTEXTRECORD) - Input/output
A pointer to a context record, which describes the machine state at the time the
exception occurred.

DlspatcherContext (DISPATCHERCONTEXT) - output
A pointer to a reserved field that receives state information on nested exceptions
and collided unwinds. This field returns information to either the exception
dispatcher (in the case of nested exceptions) or to the unwind routine (in the
case of collided unwinds). User code must not modify the DispatcherContext
field at any time.

When the system's exception handler is called (it is already registered by the
exception dispatcher), the exception handler returns NESTED and fills in the
DispatcherContext field with the address of the ExceptionRegistrationRecord
corresponding to the exception handler most recently called by the exception
dispatcher. This indicates how far the exception dispatcher progressed through
the call chain before the nesting occurred. The EH_NESTED_CALL bit is set in
the ExceptionReportRecord flags field for each exception handler that is called
between handler of the exception dispatcher and the establisher of the most
recently called handler.

In the case of a collided unwind, the exception handler registered by the unwind
dispatcher will return COLLIDED_UNWIND and the DispatcherContext field will
contain a pointer to the target frame of the current unwind.

Exception Management Data Structures
Applications use three data structures for exception management (the
DispatcherContext parameter is for system use).

• ExceptionReportRecord data structure
• ExceptionRegistrationRecord data structure
• ContextRecord data structure.

An overview of each of these data structures is presented below.

ExceptionReportRecord Data Structure
The ExceptionReportRecord data structure describes an exception and any
additional parameters associated with the exception. The data structure contains
fields for the following information:

• Exception number
• Exception flags, describing exception attributes
• A pointer to a nested exception report record, if any
• The address where the exception occurred
• Information for any additional parameters.

For descriptions of the system exceptions see the Control Program Programming
Reference.

Chapter 13. Exception Management 13-15

Following are the flags that are set to indicate exception attributes. Only the
EH_NONCONTINUABLE flag can be set (but not cleared} by the user. All other flags
are set by the system.

EH_NONCONTINUABLE (Ox1}
The exception is not continuable, and any attempt to continue causes the
exception XCPT _NONCONTINUABLE_EXCEPTION to be raised.

EH_ UNWINDING (Ox2}
The ExceptionReportRecord data structure describes an exception for which an
unwind is in progress.

EH_EXIT_UNWIND (Ox4}
An exit unwind operation implies that call frames are being unwound until the
base of the stack is reached. Note that EH_UNWINDING is also set.

EH_STACK_INVALID (Ox8}
Following are causes for this flag to be set:

• The user stack exceeds the limits specified by the Thread Information Block.
Applications can get the Thread Information Block by calling
DosGetlnfoBlocks.

• A call frame exceeds the stack limits specified by the Thread Information
Block.

• A call frame is not aligned on the stack.

This flag is set only when the ExceptionReportRecord is passed to an associated
debugger. It is not possible to build exception information on the user's stack
when the stack is invalid.

EH_NESTED_CALL (Ox10}
ExceptionReportRecord describes an exception raised while the current
exception handler was active. That is, a nested exception is in progress, and the
current handler was also called to handle the previous exception.

ExceptionReportRecord data structures can be chained together to provide
additional information when nested exceptions are raised.

ExceptionRegistrationRecord Data Structure
The application is responsible for the creation and registration of the
ExceptionRegistrationRecord data structure. This is the data structure used by the
application when it established the exception handler on the chain.

The only restrictions are that each pointer in the linked list must either point directly
to the next pointer in the list or contain END_OF _CHAIN (-1), and the field
immediately following the pointer field must be the pointer to the exception handler
code. No fields other than these two will be examined by the operating system. The
application can keep any state information that it chooses in this data structure, as
long as it does not alter either of the fields used by the system.

When a procedure begins, it must create an ExceptionRegistrationRecord on the
stack, fill in the pointer to the exception handler routine, and link the data structure
to the front of the exception handler chain by calling DosSetExceptionHandler.

13-16 OS/2 2.0 Programming Guide-Volume I

Similarly, when the procedure ends, it must remove ExceptionRegistrationRecord
from the chain by calling DosUnsetExceptionHandler. This maintains the necessary
frame-exception handler correspondence.

Notes:

1. For the benefit of assembly language programmers, the Thread Information
Block (TIB) is located at FS:[O]. This speeds access to the TIB data structure.

2. Because the FS is used to point to the TIB, applications that use the FS register
must restore the original value when they are finished. Exception handling
depends on the FS register pointing to the TIB.

3. ExceptionRegistrationRecord data structure must be created on the stack of the
application. That is, it must be a data structure that is local to the routine that
registers the exception handler. It cannot be stored in the application's data
segment. The reason for this is that the operating system must be able to
determine the relative ordering of ExceptionRegistration records by examining
their addresses.

ContextRecord Data Structure
The ContextRecord data structure describes the machine state at the time of an
exception. This data structure is hardware dependent and is not portable.
Therefore, as a rule, software should not use the information contained in this data
structure. However, hardware dependent code, such as math libraries, can make
use of this information to optimize certain operations.

For a hardware-initiated exception, ContextRecord contains the complete machine
state at the time of the exception. For a software-initiated exception, ContextRecord
contains the machine state at the time the software raised the exception.

The ContextRecord data structure consists of fields for the following:

• General purpose registers
• Segment registers
• The flags register
• The floating point environment and stack.

Note: With asynchronous exceptions (signal and termination exceptions), the
context in ContextRecord is read-only. The exception handler can modify it,
but the changes with be ignored.

With synchronous exceptions, changes to ContextRecord will be used when
the context is restored.

Exception Handler Return Values
Exception handlers can return one of the following values:

XCPT_CONTINUE_SEARCH (OxOOOOOOOO)
Indicates that the exception has not been handled. The system responds
by passing the exception to the previously installed handler in the
thread's chain of exception handlers.

XCPT _ CONTINUE_EXECUTION (OxFFFFFFFF)
Indicates that the exception has been handled. The operating system
responds by dismissing the exception, restoring the context of the
thread, and continuing the execution of the thread.

Chapter 13. Exception Management 13-17

Using Exception Management
When an exception occurs, the system default action in most cases is to end the
application that caused the exception. Instead of having the system default action
occur, an application can register its own exception handling routines. Exception
handlers can be written to take corrective action so that a thread can continue
running rather than being terminated by the system.

If an exception is handled by the application's exception handler, the exception
handler must return XCPT_CONTINUE_EXECUTION. If the application's exception
handler does not handle the exception, the exception handler must return
XCPT _CONTINUE_SEARCH. If all the exception handlers in the exception handler
chain return XCPT_CONTINUE_SEARCH, the operating system takes the default
action, which is usually to terminate the process that caused the exception.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of O indicates success. If a non-zero value is returned, an error
occurred.

Example Exception Handler
This section of the chapter will present a simple exception handler. Because
exception handlers are commonly used to handle memory faults, the example will
show the exception handler working with a memory fault.

Memory exceptions can occur when an application attempts to access a guard page,
attempts to use memory that has been allocated but not committed (a sparse
memory object), or when an application attempts to write to memory that has
read-only access. Without an application-registered exception handler, some of
these exceptions might cause the application to terminate. If the application
registers its own exception handler, it can correct the cause of the memory fault and
continue to run.

If the application's exception handler handles the exception, it returns
XCPT_CONTINUE_EXECUTION. If the routine does not handle the exception, it
returns XCPT_CONTINUE_SEARCH so that the exception will be passed to the next
handler in the chain.

The following code fragment shows an exception handling routine set up to deal
with memory errors:

13-18 OS/2 2.0 Programming Guide-Volume I

Figure 13-3. Exception Handler for Memory Errors

Chapter 13. Exception Management 13-19

Registering an Exception Handler
An application uses DosSetExceptionHandler to register its own exception handling
routines. More than one routine can be registered; the last routine registered will
be called first.

One or more exception handlers can be registered for each thread in a process.
Moreover, exception handlers can be specified not only for system exceptions, but
also for user-defined exceptions that are anticipated for a particular thread.

Only Process Termination exceptions are sent to all threads in a process. Other
exceptions (synchronous exceptions) are sent only to the exception handler
registered for the thread where the exception occurred. The application must
register an exception handler for each thread that is handling exceptions.

The following code fragment shows how an application registers an exception
handling routine:

Figure 13-4. Registering an Exception Handler

If a procedure registers an exception handler, it must deregister the handler by
calling DosUnsetExceptionHandler before returning.

Notes:

1. A procedure must not call DosSetExceptionHandler if it performs
language-specific exception or unwind handling. This restriction is not enforced,
but unpredictable results could occur if it is violated.

2. DosSetExceptionHandler and DosUnsetExceptionHandler provide the portable
means of implementing exception handlers. The non-portable approach is taken
by uirectiy maoipuiating the exception handier chain. High ievei ianguages
generate code that abides by this restriction. Assembly language programmers

13-20 OS/2 2.0 Programming Guide-Volume I

Summary

must assume responsibility for verifying that handler registration and
deregistration occur correctly.

3. ExceptionRegistrationRecord must be created on the application's stack. That
is, it must be local to the routine that registers the exception handler, rather than
a global variable. It cannot be stored in the data segment of the program.

Note that in the code fragment above, the declaration

EXCEPTIONREGISTRATIONRECORD xcpthand = { e, &myHandler };

is placed inside the braces. Therefore xcpthand is local to the main() routine
and is stored on the program's stack.

Following are the OS/2 functions and data structures used for exception handling.

Table 13-8. Exception Handling Functions

Exception Handling Functions

DosRaiseException Raises an exception.

DosSetExceptlonHandler Registers an exception handler.

DosUnsetExceptionHandler Deregisters an exception handler (removes it from
the exception handler chain).

DosUnwlndException Calls and removes exception handlers from a
thread's chain of exception handlers.

Signal Exception Functions

DosAcknowledgeSlgnalException Acknowledges a signal exception.

DosSendSlgnalExceptlon Sends a keyboard signal (Ctrl + C or Ctrl +Break)
exception.

DosSetSlgnalExceptionFocus Sets keyboard signal focus.

Must-Complete Functions

DosEnterMustComplete Enters a must-complete section of code.

DosExltMustComplete Exits a must-complete section of code.

Table 13-9. Exception Handling Data Structures

Data Structure Description

CONTEXTRECORD Contains information about the machine's context
at the time of the exception.

EXCEPTIONREGISTRATIONRECORDContains information about the exception handler.
Used in registering the exception handler.

EXCEPTIONREPORTRECORD Contains information about the exception that
occurred.

Chapter 13. Exception Management 13-21

13-22 OS/2 2.0 Programming Guide-Volume I

Chapter 14. Device 110

Devices used with computers include the keyboard, video display, mouse, floppy
and fixed disk drives, and external systems, such as modems and printers. This
chapter describes the OS/2 functions used to access and control such devices.

The following topics are related to the information in this chapter:

• File Systems
• File Names
• File Management
• Semaphores.

About Device 110
The OS/2 operating system uses devices to communicate with the real world. A
device is a piece of hardware used for input and output. The keyboard and screen
are devices, as are serial and parallel ports. The computer's speaker, which can be
made to beep using DosBeep, is a device.

Accessing Devices

Device Names

©Copyright IBM Corp. 1992

OS/2 applications usually communicate with devices through the operating system.
Some devices, like the screen, have their own set of supporting functions. Most
other devices can be accessed by using the standard OS/2 file system
functions-DosOpen, DosRead, DosWrite, and DosClose. Using the file system
functions, an application can open and access the device just as it would a disk file.
Using the file system also enables applications to redirect the device's 110 stream.

Sometimes however, these higher-level approaches do not suffice. For these
situations, the operating system provides several functions that interface with
devices at a lower level. DosDevConfig is used to retrieve information about the
devices available. DosPhysicalDisk can be used to retrieve information about a
partitionable hard disk. DosDevlOCtl is used to send device-specific commands
directly to a particular device driver.

To open a device using DosOpen, the application must supply the reserved name for
that device. For example, to open the console (both keyboard and screen), you
must specify the name CON.

The following table shows some of the common reserved device names:

14-1

Device Drivers

Table 14-1. Common Device Names

Device Name Description

CON The system console. This device consists of both the keyboard and

the screen. You can open CON for reading (from the keyboard),

writing (to the screen), or both.

COM1 Serial port 1. You can open this device for reading, writing, or both.

Other serial ports will have names in ascending sequence-COM2,

COM3, and so on.
PRN The default printer port. This device corresponds to one of the

system's parallel ports, usually LPT1. You can open it for writing but

not for reading.
LPT1 Parallel port 1. You can open this device for writing but not for

reading. Other parallel ports will have names in ascending

sequence-LPT2, LPT3, and so on.

NUL The null device. This device provides a method of discarding output.

If you open this device for writing, any data written to the file is

discarded. If you open the device for reading, any attempt to read

from the file returns an end-of-file mark.

SCREEN$ The screen. This device can be written to but not read from. Writing

to the screen is similar to writing to the system console. Bytes are

displayed as characters (unless the ANSI screen driver is loaded and

the character represents an ANSI escape sequence).

KBD$ The keyboard. This device can be read from but not written to.

Reading from the keyboard is similar to reading from the system

console.

After an application uses a device, it should close it by using DosClose.

The operating system communicates with devices through special programs called

device drivers. A device driver acts as an interface between the operating system,

together with its applications, and a physical device such as the keyboard, mouse,

or printer. The device driver sends data to and receives data from a device,

resolving device-independent requests from applications with the device-specific

attributes of the device.

The primary method of communication between the operating system and a device

driver is request packets. The operating system receives 110 requests from

applications and sends data in the form of request packets to the device driver. The

device driver communicates with the device either directly or through the BIOS and

ABIOS interfaces. (Applications can communicate with device drivers also, by using

DosDevlOCtl. See "IOCtl Interface" on page 14-3)

Devices work differently depending on the device driver installed. For example, if

an application writes to the system console, each byte is interpreted as a character

and is displayed on the screen. If, however, the ANSI display driver is loaded, some

byte sequences direct the system to carry out certain actions on the screen, such as

moving the cursor or clearing the screen. These byte sequences are called ANSI

escape sequences.

Some devices are available to applications only if the appropriate device driver is

installed. For example, an application cannot open a serial port unless a

communications device driver, such as COM.SYS, has been loadsd by us!r:g a

DEVICE= command in CONFIG.SYS.

14-2 OS/2 2.0 Programming Guide-Volume I

IOCtl Interface
Many devices have more than one operating mode. For example, a serial port
typically can operate at a variety of bit rates (sometimes called baud rates).
Because the modes are unique to each device, the operating system does not
include specific functions to set or retrieve these modes. Instead the operating
system provides an 1/0 Control (IOCtl) interface to enable applications to control
devices by communicating directly with the device driver.

The IOCtl interface is a method that an application or subsystem can use to send
device-specific control commands to a device driver. The IOCtl interface function
for OS/2 applications is DosDevlOCtl.

DosDevlOCtl provides a generic, expandable IOCtl facility. Applications send
commands and data to the device driver with DosDevlOCtl. The OS/2 kernel
reformats the generic IOCtl packets into request packets then calls the device
driver. The device driver then carries out the specified action. IOCtl commands can
be sent to both block and character device drivers.

Before using DosDevlOCtl, the application or subsystem must first obtain the device
handle by calling DosOpen for the device name. The opened device handle is used
to specify the device the command is to go to.

Refer to the Control Program Programming Reference for details of DosDevlOCtl.

IOCtl Commands
DosDevlOCtl has many subfunctions. These are called generic IOCtl commands and
typically are used to retrieve data from a device driver that is not available through
standard OS/2 functions. For example, an application can use these functions to set
the bit rate of a serial port or read input directly from a sector on a disk.

Category and Function Codes
Each IOCtl function has a category and a function code. The category defines the
type of device to be accessed. The operating system has several predefined
categories. In general, all codes in the range OxOOOO through Ox007F are reserved
for predefined categories. A device driver can use additional categories, but they
must be explicitly defined by the device and be in the range Ox0080 through OxOOFF.

In each category, a function code defines the action to carry out, such as reading
from or writing to the device and retrieving or setting the device modes. The
number and meaning of each function code depend on the device driver and the
specified category.

There is a listing of the IOCtl control functions, by category and function, with
parameter and data packet structures, in the Generic IOCtl Commands chapter in
the Physical Device Driver Reference.

Parameter and Data Packets
DosDevlOCtl uses a parameter packet and a data packet to pass information to and
from the device driver. The packets can vary in format and length, depending on the
IOCtl function. Simple functions might use only a single variable, while more
complex functions might require a more complex data structure for the parameter
packet, the data packet, or both.

Chapter 14. Device 1/0 14-3

There is a listing of the IOCtl control functions, by category and function, with
parameter and data packet structures, in the Generic IOCtl Commands chapter in
the Physical Device Driver Reference.

Using the File System to Access Devices
An application can use the OS/2 file system functions-DosOpen, DosRead,
DosWrite, and DosClose-with the standard (predefined) devices. The application
simply specifies the name of the device in the call to DosOpen, then uses the
returned handle to read from and write to the device. When the application has
finished using the device, the application should close the device handle by using
DosClose.

The following code fragment shows how an application can open the COM1 device
(serial port 1) and write the contents of a disk file to the communications port:

Figure 14-1. Writing the Contents of a Disk File to the COM1 Serial Port

Note: In this example code fragment and the ones that follow, error checking was
left out to conserve space. Applications should always check the return code
that the functions return. Control Program functions return an APIRET value.
A return code of 0 indicates success. If a non-zero value is returned, an
error occurred.

Using IOCtl Functions to Access Devices
Many OS/2 functions communicate with devices. Usually, this communication is
transparent to the application (the application has no knowledge of how the
communication actually occurs). At times, however, an application requires more
direct access to a device. To accommodate this need, the operating system
furnishes DosDevlOCtl. Applications can use DosDevlOCtl to send commands and
data to a device driver; the device driver interprets these commands and sends the
appropriate instructions to the physical device.

14-4 OS/2 2.0 Programming Guide-Volume I

As an example, some devices have several operating modes. A communications
port can operate at one of a number of bit rates and have several data-word
formats. The actual commands to set these parameters might vary, depending on
the communications hardware.

Named constants have been defined for the categories, functions, and commands
that are passed to a device driver, to make it easier for application programmers to
use DosDevlOCtl. These named constants are defined in the file BSEDEV.H. This
file must be included in your application when you use the constants. This file also
contains data structure definitions for the parameter and data packets commonly
used with DosDevlOCtl. The following examples use the communications port to
demonstrate how DosDevlOCtl works

Setting Communications-Port Parameters
You can use DosDevlOCtl to control the data parameters (bit rate, stop bits, parity,
and data bits) of a communications port and to get the status of the COM port. The
IOCTL_ASYNC category is used for communications-port control. The
ASYNC_SETBAUDRATE function sets the COM port transmission rate. The
ASYNC_GETCOMMSTATUS returns the COM port status-byte.

Setting the Data Rate
The ASYNC_SETBAUDRATE function sets the bit rate of a communications port.

The following code fragment sets the bit rate of COM1 to 9600 bits per second:

Figure 14-2. Setting COM1 to 9600 Bits Per Second

Chapter 14. Device 110 14-5

Summary

Getting the COM Port Transmission Status
The ASYNC_GETCOMMSTATUS function get the transmission status of the specified

COM port. This function has no parameter packet.

The following code fragment uses the ASYNC_GETCOMMSTATUS function to get the

transmission status of COM1:

Figure 14-3. Getting the Transmission Status of COM1

Following are the OS/2 functions and data structures used for device 110.

Table 14-2. Device 110 Functions

Dos Beep Generates sound from the speaker

DosDevConfig Returns information about an attached device,
such as a printer or a floppy disk drive.

DosDevlOCtl Performs control functions on a device that is
specified by an opened device handle

DosPhysicalDisk Obtains information about partitionable disks

File System Functions Used to Perform 110 to Devices

DosClose Closes a file or device.

Dos Open Opens a file or device for 1/0.

Dos Read Reads from a file or device.

Dos Write Writes to a file or device.

14-6 OS/2 2.0 Programming Guide-Volume I

Table 14-3. Device 110 Data Structures

Data Structure Description

LINECONTROL Used to set the line characteristics of a COM port
through the IOCtl interface.

BIOSPARAMETERBLOCK Used to return information about a logical disk
through the IOCtl interface.

TRACKLAYOUT Used for reading and writing disk sectors through
the IOCtl interface.

Chapter 14. Device 1/0 14-7

14-8 OS/2 2.0 Programming Guide-Volume I

Chapter 15. Message Management

This chapter describes the use of message files to hold an application's text
messages to the user. Keeping messages in a message file simplifies changing
those messages, for example when maintaining versions of the same application for
different countries.

The following topic is related to the information in this chapter:

National Language Support.

About Message Management
For full-screen applications, text messages-used by an application to display
information to the user-can be held in a message file.

To keep and maintain messages in a message file, create a separate message file
for each national language you intend to support. Use the MKMSGF utility program
to create a binary version of a message file, and the MSGBIND utility program to
bind the binary file to the application's executable file. Binding the messages to an
application's executable file inserts the messages into the .EXE file. This enables
faster access (but, of course, a larger .EXE file).

The OS/2 operating system provides several functions to assist in message
management. Applications can get messages from a message file, substitute
variable information into the messages, and write messages to the screen or to a
file.

Code Page Considerations
You can have versions of the message file for each code page you choose to
support. When you use MKMSGF to create the message files, the utility will insert
the code page information and link together the message files of the different
versions.

When message files are linked together in this manner, DosGetMessage will search
for the appropriate version of the message for the code page that is active at the
time the function is called. If there is no version of the message for the current code
page, the function will return the first version of the message, no matter which code
page it is associated with.

Using Message Management

© Copyright IBM Corp. 1992

DosGetMessage retrieves a message from the specified system message file, and
inserts variable information into the body of the message.

DoslnsertMessage inserts variable text-string information into the body of the
message, but does not retrieve the message.

DosPutMessage sends the message in a buffer, usually to a display screen.
DosPutMessage formats the screen buffer to prevent words from being split at the
end of a line.

DosQueryMessageCp retrieves the message file list of code pages and language
identifiers.

15-1

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of 0 indicates success. If a non-zero value is returned, an error
occurred.

Message Retrieval and String Substitution
DosGetMessage retrieves a message from a system message file, and inserts
variable text-string information into the message.

In the following code fragment, the message file is "D:\MESSAGE\AUTOMSG.MSG".
The third message within the message file contains the string "%1 Error at Station
%2". The application calls DosGetMessage to convert this message into the string
"Automation Failure Error at Station 698".

Figure 15-1. Retrieving a Message and Substituting Text-Strings for Variables

15-2 OS/2 2.0 Programming Guide-Volume I

On successful return, the DataArea buffer contains the complete message (with the
two variable fields appropriately updated), and the MsgLength variable contains the
length of the message that was placed into the DataArea buffer.

If an error occurs (that is, if the return code does not equal 0), a message that is
related to the error will be placed in the message buffer. See the DosGetMessage
API reference in Control Program Programming Reference for a description of the
default messages that can be placed into the user's buffer if an error occurs during
the processing of these requests.

Text String Substitution in Memory
DoslnsertMessage inserts variable text-string information into a message that
resides within program memory.

In the following code fragment, the message resides in a program string variable
named Message. The message is the string "% 1 Error at Station %2". The
application calls DoslnsertMessage to convert this message into the string
"Automation Failure Error at Station 698".

Chapter 15. Message Management 15-3

15-4

Figure 15-2. Substituting Text-Strings for Variables in a String in Memory

On successful return, the DataArea buffer contains the complete message (with the
two variable fields appropriately updated), and the MsgLength variable contains the
length of the message that was placed into the DataArea buffer.

If an error occurs (that is, if the return code does not equal O), a message that is
related to the error will be placed in the message buffer. See the DosGetMessage
API reference in Control Program Programming Reference for a description of the
default messages that can be placed into the user's buffer if an error occurs during
the processing of these requests.

OS/2 2.0 Programming Guide-Volume I

Writing Messages
DosPutMessage is used to write the message to the screen or to a file on a disk.

The following code fragment writes the message string contained in MessageBuffer
to the file specified by FileHandle. The message string has already been placed in
MessageBuffer using either DosGetMessage or DoslnsertMessage. MsgLength was
set to the length of the message string by the same call that put the message into
MessageBuffer.

Figure 15-3. Writing an Edited Message to a File

To write a message to the screen, use the standard output file handle.

Code Page Information Associated with Message Files
DosQueryMessageCp obtains a list of code page identifiers and language identifiers
that are associated with a specified message file.

In the following code fragment code page and language identifiers associated with
the message file "D:\MESSAGE\AUTOMSG.MSG" are retrieved.

Chapter 15. Message Management 15-5

Summary

Figure 15-4. Getting Code Page and Language Identifiers Associated with a Message File

On successful return, the BufferArea buffer contains a set of information concerning
the code page identifiers and language identifiers that are associated with the
message file.

Following are the OS/2 functions for message management.

Table 15-1. Message Management Functions

Function Description

DosGetMessage Retrieves a message from the specified system
message file, and inserts variable information into
the body of the message.

DoslnsertMessage Inserts variable text-string information into the
body of a message.

DosPutMessage Sends a message to an output file or device.

DosQueryMessageCp Retrieves a message file list of code pages and
language identifiers.

15-6 OS/2 2.0 Programming Guide-Volume I

Chapter 16. National Language Support

Many applications need to be independent of a particular language. Rather than

being hard-coded in English, they want to support, for example, an English version

of the application, and a French version, and a German version; preferably without

having to change the program code for each version. Meeting this requirement is

simplified through the use of such resources as string tables, menu templates,

dialog templates, accelerator tables, and through the use of code pages.

This chapter describes the functions an application uses to be NLS enabled, or

language independent.

The following topic is related to the information in this chapter:

• Message Management.

About National Language Support
The support of national languages by applications requires the following

considerations:

• Displayed text must be translated into the appropriate language.

• Symbols or icons might not convey the same meaning in all countries.

Alternative designs for different countries might be necessary.

• Translation changes the length of text strings.

• Different languages often have different text characters.

The use of national language resource files can help with the first three items, and

the ability of the application to receive input and display output in any ASCII code

page can help with the last item.

The use of ASCII code page 850 avoids many of the problems in this area, since it

contains most of the characters required for Latin-1 languages, which include much

of Western Europe and North and South America. However, older programs use

code page 437 for U.S. English, and code pages 860, 863, and 865 for various

languages. The code page applies to both input and output data.

Note: Code page 850 was used for translating Presentation Manager text. Use

code page 850 whenever possible for all Presentation Manager applications

that might require translation.

National Language Resource Files

© Copyright IBM Corp. 1992

When creating an application, define national language dependencies in resources

that are held in resource files separate from the program code. That is:

• Keep pure text strings in string tables.
• Keep menus in menu templates.
• Keep dialog boxes in dialog templates.
• Keep accelerators in accelerator tables.

The language displayed by the application can then be changed by translating the

resources, in most cases without changing the application.

16-1

However, when translating from one language to another, the length of a text string
can change substantially. For example, when translating from English to German,
the length of a text string can double in length. Table 16-1 on page 16-2 furnishes a
general idea of the amount of expansion that can be expected during translation.

Table 16-1. Translation Expansion

For English Phrases Translation Expansion Factors

Up to 10 characters 101 -200%

11 - 20 characters 81 - 100%

21 - 30 characters 61 - 80%

31 - 50 characters 41 - 60%

51 - 70 characters 31 -40%

Over 70 characters 30%

When designing your dialog boxes and text string messages, add white space to
allow for the expansion that will occur when the text is translated. You might have
to adapt the application program to allow for the change in the length of text strings
after they are translated. For example, a change in the length of a text string can
cause it to become misaligned with other displayed objects.

You can also use the Dialog Box Editor to adjust for misalignments, or to change the
size of the dialog box. This would enable you to leave your application program
unchanged.

Text strings explicitly displayed by the application program are more of a problem.
You will have to include program code that can handle text strings of varying length
and format them at runtime according to their size.

Language-Specific Versions of NLS-Enabled Applications
There are two methods of creating a specific national language version of a
program designed to handle more than one national language. The choice of the
method depends on the amount of available disk space and whether the user wants
to change between different languages once the program is installed. The two
methods are:

• Statically link the resources to the application's .EXE files. The executable files
are then language-specific and cannot be changed to another national language.
The specific .EXE files are then sent to the user.

• Place the resources into a language-specific, dynamic link library. Designate
one library file for each national language. Selecting a particular library file for
use with the application gives the desired version of the program. Using this
method, all national languages can be shipped with the product; selection of the
national language occurs during installation (for example, by naming a specific
.DLL file). It is possible to change the national language setting while the
program is operating.

16-2 OS/2 2.0 Programming Guide-Volume I

About Code Page Management
A code page is a table that defines how the characters in a language or group of
languages are encoded. A specific value is given to each character in the code
page. For example, in code page 850 the letter "fl" {lowercase) is encoded as hex
A4 (decimal 164), and the letter "r\.I" (uppercase) is encoded as hex AS (decimal
165).

Code page management enables a user to select a code page for keyboard input,
and screen and printer output before starting an application, a system command, or
a utility program in the OS/2 multitasking environment.

This means that a user in a particular country, such as England (code page 850),
Norway (code page 865), or a language region such as Canadian French (code page
863) can use a code page that defines an ASCII-based character set containing
characters used by that particular country or language.

Installable code page files include keyboard translate tables, display character sets,
printer character sets, and country/language information for each code page
supported.

The code page tables are shown in the Presentation Manager Programming
Reference. Check the tables to ensure that the code page you plan to use contains
the characters that your application needs.

Of particular interest are two code pages:

• Code Page 850
• Code Page 437

Code Page 850 (CP850)
Code Page 850 is also called the Latin-1, multilingual code page. This code page
supports the alphabetic characters of the Latin-1-based languages. It contains
characters required by 13 languages used in approximately 40 countries.

CP850 also provides the flexibility to develop new applications based on
non-Latin-based or special industry-based code pages.

Code Page 850 supports countries using the following languages:

Belgian French
Danish
Finnish
French
Italian
Portuguese
LAD Spanish
Swiss French
U.K. English

Code Page 437 (CP437)

Canadian French
Dutch
Flemish
German
Norwegian
Spanish
Swedish
Swiss German
U.S. English

Code Page 437 is the standard personal computer code page.

The lower 128 characters are based on the 7-bit ASCII code. The upper 128
characters contain characters from several European languages (including part of
the Greek alphabet) and various graphic characters. However, some of the
accented characters, such as those used in the Nordic countries, are not

Chapter 16. National Language Support 16-3

represented. The missing characters are available in other code pages (code page
850 will usually contain the desired characters).

Note: Some of the 256 symbols that can be displayed are printer control characters,
and are not printed.

ASCII and EBCDIC Code Page Support
The two leading character-coding systems are ASCII and EBCDIC. Presentation
Manager applications can use an EBCDIC code page instead of an ASCII code page.
Code pages based on both systems are supported by the OS/2 operating system.
Lists of the code pages supported, and tables showing the contents of the code
pages, are in the Presentation Manager Programming Reference.

Any code page that either is defined in the CONFIG.SYS file, or is one of the EBCDIC
code pages supported, can be selected.

Code Page Preparation
During system initialization, the code pages specified in the CODEPAGE statement
are prepared to enable run-time.code page switching of the display, the keyboard,
the printer, and the country information. The display, keyboard, and printer must be
defined in a DEVINFO statement in order to be prepared. Country information is
prepared for the system country code specified in the COUNTRY statement.

If a resource cannot be prepared for the selected code page during system
initialization, it is prepared for a default code page. The following are the defaults:

• A keyboard layout defaults to the code page of the translate table designated as
the default layout in the KEYBOARD.DCP file. The default layout is based on the
national code page of its associated country. You must explicitly specify
KEYBOARD.DCP in the DEVINFO statement for the keyboard in CONFIG.SYS.

• The display defaults to the code page of ROM_O for the device.

(ROM_O means a device default code page that is the device native code page or
the lowest addressed ROM code page.)

• The printer defaults to the code page of ROM_O for the device.

(ROM_O means a device default code page that is the device native code page or
the lowest addressed ROM code page.)

• The country information defaults to the code page of the first entry found in the
COUNTRY.SYS file for the country code. Each entry is the same information for
a given country code, but is encoded in a different code page. The first entry is
based on the preferred country code page.

If country information cannot be prepared at system initialization because it is not
found in the COUNTRY.SYS file, for a code page selected with the CODEPAGE
statement, then it is prepared (maintained for run-time code page switching in
memory) in the default code page. Similarly, a keyboard layout is prepared in its
default code page if it cannot be prepared in the selected code page, because it is
not found in the KEYBOARD.DCP file.

COUNTRY.SYS contains one default entry per country code, and KEYBOARD.DCP
contains one default entry per keyboard layout based on these assignments:

16-4 OS/2 2.0 Programming Guide-Volume I

Code Page Functions
At the system level, the operating system switches the code pages of supported
displays and printers to agree with the code page of the process sending the output.
At the application level, OS/2 functions enable a process to control code page
assignments.

Using Code Pages
The OS/2 operating system provides applications with several functions to obtain
information about and manipulate code pages. These functions enable applications
to determine and set the current code page.

OS/2 code page management functions enable applications to read keyboard input
and write display and printer output for multiple processes using ASCII-based data
encoded in different code pages.

The system switches to the required code page, for a code-page-supported device,
before input or output.

Note: In the example code fragments that follow, error checking was left out to
conserve space. Applications should always check the return code that the
functions return. Control Program functions return an APIRET value. A
return code of O indicates success. If a non-zero value is returned, an error
occurred.

Querying Code Page Support and the Current Code Page
DosQueryCp is used to determine the code page of the current process and the
prepared system code pages. The following code fragment shows how to get the
current code page, and then up to three other prepared pages:

Figure 16-1. Obtaining the Current Code Page and Other Prepared Code Pages

The required code page is the current code page of the process at the time it opens
a device, or a specific code page selected by the process with a set-code-page
function. A character set can also be specified for some devices, for example, for
some printers.

The country functions retrieve country- and language-dependent information in the
current code page of the calling process, or in a code page selected by the process.

Chapter 16. National Language Support 16-5

Setting the Code Page for Text Characters
Each process has a code page tag maintained by the operating system. A code

page tag is the identifier of the current code page for the process.

A child process inherits the code page tag of its parent. The default code page for
the first process in a session is the same as the session code page. The default
code page for a new session is the primary code page specified in the CODEPAGE
configuration statement.

To change the code page tag of a process, call DosSetProcessCp. This will not
change the process code page tag of its parent or any child process.

Obtaining the Case Map String
DosMapCase performs case mapping on a string of binary values that represent
ASCII characters.

The case map that is used is the one in the country file that corresponds to the
system country code or selected country code, and to the process code page or
selected code.page. The default name of the country file is COUNTRY.SYS.

Obtaining the DBCS Environment Vector
DosQueryDBCSEnv obtains a double-byte character set (DBCS) environment vector
that resides in the country file. The default name of the country file is
COUNTRY.SYS.

The vector corresponds to the system country code or selected country code, and to
the process code page or selected code page.

The following code fragment shows how to use DosQueryDBCSEnv:

·;·idefi:~e.··INCL ··~QSNLS
·· .ftnc,:l~qe····.~os~ •. h> ·
'.111.n:c1~9e.: ~~~dto;h>.

Figure 16-2. Obtaining a DBCS Environmental Vector

16-6 OS/2 2.0 Programming Guide-Volume I

On successful return, the buffer MemoryBuffer will contain the country dependent
information for the DBCS environmental vector.

Instead of the single-byte character set (SBCS) representation used for Latin text,
some Asian countries use code pages that consist of double-byte character set
characters, in which each character is represented by a two-byte code. The DBCS
code pages enable single-byte data, double-byte data, or mixed (single-byte and
double-byte) data.

Obtaining Formatting Information
DosQueryCtrylnfo obtains country dependent formatting information that resides in
the country file. The default name of the country file is COUNTRY.SYS.

The information corresponds to the system country code or selected country code,
and to the process code page or selected code page.

Obtaining Collating Information for SORT
DosQueryCollate obtains a collating sequence table (for characters OOH through
FFH) from the country file. The default name of the country file is COUNTRY.SYS.
The SORT utility program uses this table to sort text according to the collating
sequence.

The collating table returned corresponds to the system country code or selected
country code, and to the process code page or selected code page.

National Language Support and Code Page Management Summary
Following are the OS/2 functions used in National Language Support and Code
Page Management.

Table 16-2. Code Page Management Functions

Code Page Functions

DosQueryCp Returns the current code page and the prepared
system code pages.

DosSetProcessCp Sets the code page of a process.

Country Dependent Functions

DosMapCase Performs case mapping on a string of binary
values that represent ASCII characters.

DosQueryCollate Obtains a collating sequence table (for characters
OOH through FFH) that resides in the country file.

DosQueryCtrylnfo Obtains country-dependent formatting information
that resides in the country file.

DosQueryDBCSEnv Obtains a DBCS environment vector that resides in
the country file.

DosQueryMessageCp Retrieves a message file list of code pages and
language identifiers.

Chapter 16. National Language Support 16-7

Table 16-3. Code Page Management Data Structures

Data Structure Description

COUNTRYCODE Contains the country and code page.

COUNTRYINFO Contains more detailed, complete, information
than COUNTRYCODE.

16-8 OS/2 2.0 Programming Guide-Volume I

Chapter 17. Debugging

Debugging is the process of detecting, diagnosing, and eliminating errors in
programs. A debugger application is designed to interact with and control the
application that it is debugging. Because of the protected mode architecture of the
OS/2 operating system, special steps must be taken to enable a debugger
application to perform its functions in the application being debugged (for example,
to examine and manipulate memory locations in the address space of another
process)~

The following topic is related to the information in this chapter:

Program Execution and Control.

About Debugging

© Copyright IBM Corp. 1992

DosDebug enables one application to control the execution of another application
for debugging purposes.

An application is selected for debugging when it is started. DosExecPgm and
DosStartSession both have flags that can be used to specify that the application
being started is to be controlled by the starting application.

DosExecPgm starts an application within a new process. DosStartSession starts a
new session within which one or more processes can be executing. See
DosStartSession and DosExecPgm in the Control Program Programming Reference
for details on how to start an application for debugging purposes. For information
on processes and sessions, see Chapter 7, "Program Execution Control" on
page 7-1 in this book.

Once a process has been selected for debugging, DosDebug is used to control its
execution and to examine and manipulate its variables.

DosDebug provides a full set of debugging commands, including execution control
commands-like single stepping and setting watchpoints-and commands to
examine and manipulate the memory and registers of the process being debugged.
The debugger process can access specific threads within a process being debugged
and specific processes within a session being debugged.

DosDebug also has a rich set of notification messages to keep the debugger
application informed of activities occurring during the execution of the application
being debugged.

The deb_ugger application can use the session and process control functions
described in Chapter 7, "Program Execution Control" on page 7-1 to control the
child process or session being debugged. For example, the debugger can use
DosSelectSession to switch itself, or the session being debugged, to the foreground.

17-1

Using the Debugging Function
DosDebug provides a set of commands that permit one process to control another
process for debugging.

In the following code fragment, the calling process uses DosDebug to modify a word

in a controlled process. All the necessary steps have already been taken so that the

calling process controls the second process-the process identifier of the controlled

process has been placed into PID, the address of the word to be modified in the

controlled process has been placed into Addr, and the value to be substituted in the

controlled process has been placed into Value.

(Due to the size of the debug_buffer data structure, the code fragment has been

divided into two figures. If you were actually entering this into a program, the

information would be together as if it were all one figure.)

Note: In the example code fragments that follow, error checking was left out to

conserve space. Applications should always check the return code that the

functions return. Control Program functions return an APIRET value. A

return code of O indicates success. If a non-zero value is returned, an error
occurred.

17-2 OS/2 2.0 Programming Guide-Volume I

Figure 17-1. The debug_buffer Data Structure

Chapter 17. Debugging 17-3

Figure 17-2. Modifying a WORD in a Process Being Debugged

The Cmd field in the debug buffer is used for two purposes. On input, the Cmd field

is used to pass the commands that direct DosDebug's activities. On output, the Cmd

field is used by DosDebug to return a notification indicating the events and activities

that occurred during the call.

If DosDebug returns no error, a notification resides in the Cmd field of the debug

buffer. The data returned with the notification varies, depending on the command

passed in the Cmd field of the debug buffer data structure when DosDebug was

called.

Not all fields in the debug buffer have to be defined on every DosDebug command.

The same field can have a different meaning in different DosDebug commands.

Some notifications (such as DBG_N_Moduleload and DBG_N_NewProc) might

require multiple returns to the debugger. These additional, pending notifications

will be returned before the process being debugged is permitted to execute any

more user code, and will be returned on the Go, Single Step, or Stop commands.

Additional notifications can be pending at any time, so a debugger must be ready to

handle any notification any time a Go, Single Step, or Stop command is called.

17-4 OS/2 2.0 Programming Guide-Volume I

Summary
Following are the OS/2 functions used for debugging.

Table 17-1. Debugging Functions

Function Description

Dos Debug Used by one process to control another for
debugging purposes.

Chapter 17. Debugging 17-5

17-6 OS/2 2.0 Programming Guide-Volume I

Index

A
about

code page management 16-3
debugging 17-1
device i/o 14-1
directories 4-2
drives and volumes 4-1
error management 12-1
exception management 13-2
extended attributes 5-1
file systems 2-1
files 4-3
memory management 6-1
message management 15-1
national language support 16-1
pipes 9-1
program execution control 7-1
queues 10-1
semaphores 8-1
timers 11-1
volumes and drives 4-1

access mode, pipes 9-12
access protection, memory 6-12
access rights of files 4-9
access to extended attributes, controlling 5-14
accessing

a mutex semaphore 8-13
a muxwait semaphore 8-20
a queue 10-6
devices 14-1
devices using IOCtl functions 14-4
devices using the file system 14-4
DOS disks 2-5
FAT disks 2-5
FAT disks from OS/2 2-5
files, access rights 4-9
HPFS disks from DOS Sessions 2-5
memory

querying access attributes 6-8
memory, access protection attributes 6-7
memory, protection attributes 6-7
named shared memory 6-18
OS/2 FAT disks from DOS 2-5
OS/2 High Performance File System disks from

DOS 2-5
unnamed shared memory 6-19

adding a semaphore to a muxwait list 8-25
adding an element to a queue 10-6
adding an element to a queue, example code 10-7
AIX 2-8
allocating

a block of memory from a heap 6-15
a block of memory from a heap, example code 6-16

© Copyright IBM Corp. 1992

allocating (continued)
a heap 6-14
a memory heap 6-14
committed memory and decommitting part of it,

example code 6-11
memory 6-5, 6-6, 6-10
memory allocation attributes 6-11
memory for queue data 10-5
memory reallocation/resizing 6-6
memory, and freeing memory, example code 6-13
named shared memory 6-18
named shared memory, example code 6-18
suballocating heaps 6-14
uncommitted memory and committing part of it,

example code 6-11
unnamed shared memory 6-19
24576 bytes of unnamed shared memory, example

code 6-19
allocation state, memory 6-12
alteration of time-slice size 7-14
anonymous semaphores 8-4
ANSI escape sequences 14-2
archived file attribute 4-3, 4-8
ASCII and EBCDIC code page support 16-4
ASN.1 extended attribute data type 5-5
association, file type to icon 5-7
asynchronous exceptions 13-1, 13-3, 13-9, 13-10
asynchronous program execution 7-5
asynchronous timers 11-2
attaching and detaching file systems 2-8
attaching file systems 2-6
attaching to a remote file system 2-8
attaching to a remote file system, example code 2-9
attributes

archived file attribute 4-3
file attributes 4-3, 4-8
hidden file attribute 4-3
read-only file attribute 4-3
system file attribute 4-3

AVAILDATA, pipe data structure 9-21

B
background sessions 7-7
binding child sessions to parent sessions 7-35
binding child sessions to parent sessions, example

code 7-35
BIOSPARAMETERBLOCK, device 1/0 data

structure 14-7
BITMAPARRAYFILEHEADER, extended attribute icon

data structure 5-11
block device drivers 2-8
block device names 3-9

X-1

block devices 2-9
blocking mode, pipes 9-12, 9-15
blocks, memory 6-9
Boot Manager 2-8
bootable partitions

AIX 2-8
DOS 2-8
High Performance File System 2-8

broken pipes 9-20
Bufferldle parameter for CACHE.EXE 2-4

c
cache buffers, writing 2-14
CACHE.EXE, High Performance File System lazy-write

utility 2-4
caching data, High Performance File System 2-3
changing

current directory 4-2
directories 4-2
file sizes 4-5
size of the time slice 7-14
the priority of a process 7-18
the priority of a thread 7-26
the priority of a thread, example code 7-26

character device names 3-9
character devices 2-9
character devices, file 110 with 4-6
characteristics, memory objects 6-3
checking error codes 2-8, 4-7, 6-10, 7-14, 8-5, 9-7,

10-4, 11-3, 12-2, 13-18, 14-4, 15-2, 16-5, 17-2
child processes 7-4
child sessions 7-6, 7-7
CHKDSK 2-7
classifying errors 12-2
classifying file errors, example code 12-3
classifying return values, error management 12-1
client process 9-2
client processes, queues 10-1
client process, queues 10-4
clock device, file 110 with 4-6
clock ticks 11-3
CLOCK$, device name 3-9
closing

a file, example code 4-15
a mutex semaphore 8-16
a mutex semaphore, example code 8-17
a muxwait semaphore 8-22
a queue 10-11
an event semaphore 8-7
an event semaphore, example code 8-8
files 4-14
named pipes 9-20
named pipe, example code 9-20

closing state, pipes 9-5
CMD.EXE 3-5
code page management

about 16-3

X-2 OS/2 2.0 Programming Guide-Volume I

code page management (continued)
ASCII and EBCDIC code page support 16-4
code page information associated with message

files 15-5
code page tag 16-6
code page 437 16-3
code page 850 16-3
data structures

COUNTRYCODE 16-8
COUNTRYCODE (in code) 16-6
COUNTRYINFO 16-8
table of data structures 16-8

determining the current code page 16-5
functions 16-5

DosMapCase 16-6, 16-7
DosQueryCollate 16-7
DosQueryCp 16-5, 16-7
DosQueryCp (in code) 16-5
DosQueryCtrylnfo 16-7
DosQueryDBCSEnv 16-6, 16-7
DosQueryDBCSEnv (in code) 16-6
DosSetProcessCp 16-6, 16-7
table of functions 16-7

obtaining a DBCS environmental vector, example
code 16-6

obtaining collating information for SORT 16-7
obtaining formatting information 16-7
obtaining the case map string 16-6
obtaining the current code page and other prepared

code pages, example code 16-5
obtaining the DBCS environment vector 16-6
preparation of 16-4
querying code page support 16-5
querying the current code page 16-5
setting the code page for text characters 16-6
summary of functions 16-7

code pages, with extended attributes 5-10
code samples

See example code fragments
colliding unwinds 13-12
COM device, file 110 with 4-6
command line 3-9
commands, IOCtl 14-3
COMMAND.COM 3-5
committing memory 6-5, 6-6, 6-11
communicating with a file system 2-12
communicating with a file system driver, example

code 2-13
communications, server-client, using named pipes 9-5
COM1 ,COM2,COM3,COM4, device names 3-9
CONFIG.SYS 2-2, 6-5

DEVICE= 2-2
IFS= 2-2, 2-6, 2-9
MEMMAN 6-5
NOSWAP, MEMMAN value 6-5
SWAPPATH 6-5
SWAP, MEMMAN value 6-5
TIMESLICE 7-14

connected state, pipes 9-5
console device, file 110 with 4-6
ContextRecord, exception management data

structure 13-17, 13-21
CONTEXTRECORD, exception management data

structure (in code) 13-19, 13-20
continuable exceptions 13-14
Control Program functionality 1-1
controlling a process for debugging 17-1
controlling access to extended attributes 5-14
controlling child sessions 7-6, 7-7, 7-8
controlling the execution of child sessions 7-34
CON, device name 3-9
coordinating access to a local named pipe with

semaphores 9-6
copying files 4-4
COUNTRYCODE, NLS data structure 16-8
COUNTRYCODE, NLS data structure (in code) 16-6
COUNTRYINFO, NLS data structure 16-8
CPU scheduling 7-9
creating

a child process 7-15
a mutex semaphore 8-12
a mutex semaphore, example code 8-13
a muxwait semaphore 8-18
a named FIFO queue, example code 10-4
a named pipe, example code 9-11
a new file, example code 4-8
a pipe 9-7
a queue 10-4
a session 7-32
a thread 7-24
a thread, example code 7-25
an exit list 7-22
an unnamed pipe, example code 9-7
and posting a named event semaphore, example

code 8-6
and waiting for a muxwait semaphore, example

code 8-19
directories 4-2
duplicate file, pipe, or device handles 4-15
event semaphores 8-5
files 4-7
multiple instances of a named pipe 9-12
must-complete sections 13-9
named pipes 9-10
private memory objects 6-10
subdirectories 4-2

critical errors 4-17
critical extended attribute 5-17
critical extended attributes 5-17
critical sections-thread execution control 7-28
current drive and directory 4-2

D
DASO flag, setting 4-11

data storage 2-1
data structures

AVAILDATA, pipe 9-21
BIOSPARAMETERBLOCK, device 110 14-7
BITMAPARRAYFILEHEADER, extended attribute

icon 5-11
CONTEXTRECORD (in code) 13-19, 13-20
ContextRecord, exception management 13-17,

13-21
COUNTRYCODE (in code) 16-6
COUNTRYCODE, NLS 16-8
COUNTRYINFO, NLS 16-8
debug_buffer (in code) 17-3
DENA 1, file management 4-24
EAOP2, extended attribute 5-15, 5-16, 5-19
exception management data structure

descriptions 13-15
EXCEPTIONREGISTRATIONRECORD (in

code) 13-19, 13-20
ExceptionRegistrationRecord, exception

management 13-16, 13-21
EXCEPTIONREPORTRECORD (in code) 13-19,

13-20
ExceptionReportRecord, exception

management 13-15, 13-21
extended attribute data structure descriptions 5-15
FDATE, file management 4-24
FEA2List, extended attribute 5-15, 5-16, 5-19
FEA2, extended attribute 5-15, 5-16, 5-18, 5-19
FILEFINDBUF (in code) 4-19
FILEFINDBUF, file management 4-25
FILELOCK, file management 4-25
FILESTATUS, file management 4-25
FSALLOCATE, file system 2-16
FSINFO, file system 2-16
FSQBUFFER2 (in code) 2-10
FSQBUFFER2, file system 2-16
FTIME, file management 4-25
GEA2List, extended attribute 5-15, 5-16, 5-19
GEA2, extended attribute 5-15, 5-16, 5-19
LINECONTROL, device 1/0 14-7
pib_s, program execution control 7-18, 7-37
pipe data structure list 9-21
PIPEINFO (in code) 9-18
PIPEINFO, pipe 9-18, 9-21
PIPESEMSTATE, pipe 9-21
REQUESTDATA, queue 10-2, 10-9, 10-12
RESULTCODES (in code) 7-15, 7-16, 7-17, 7-18,

7-19, 7-22, 7-31
RESULTCODES, program execution control 7-15,

7-20, 7-37
SEMRECORD (in code) 8-19
SEMRECORD, semaphore 8-20, 8-28
STARTDATA (in code) 7-33
STARTDATA, program execution control 7-7, 7-33,

7-34, 7-37
STATUSDATA (in code) 7-34, 7-35
STATUSDATA, program execution control 7-8,

7-34, 7-35, 7-37

Index X-3

data structures (continued)
table of code page management data

structures 16-8
table of exception handling data structures 13-21
table of extended attribute data structures 5-19
table of file system data structures 2-16, 4-24
table of muxwait semaphore data structures 8-28
table of process data structures 7-37
table of program execution control data

structures 7-37
table of queue data structures 10-12
table of semaphore data structures 8-28
table of session data structures 7-37
table of thread data structures 7-37
tib_s, program execution control 7-25, 7-37
TRACKLAYOUT, device 1/0 14-7
VOLUMELABEL, file management 4-25

data structures, device 110 14-6
data structures, pipes 9-21
data type conventions for extended attributes 5-3
DBG_N_Moduleload, DosDebug notification

message 17-4
DBG_N_NewProc, DosDebug notification

message 17-4
debuggers 17-1
debugging 17-1

about 17-1
commands 17-1, 17-4
controlling a process for debugging 17-1
debug_buffer data structure 17-4
debug_buffer data structure, example code 17-3
debug_buffer, debugging data structure (in

code) 17-3
DosDebug, debugging function 17-1, 17-2, 17-4,

17-5
DosDebug, debugging function (in code) 17-4
DosExecPgm, debugging function 17-1
messages 17-1
modifying a WORD in a process being debugged,

example code 17-4
notification message, DBG_N_Moduleload 17-4
notification message, DBG_N_NewProc 17-4
notifications 17-1, 17-4
single stepping 17-1
starting an application for debugging 17-1
summary of functions 17-5
table of debugging functions 17-5
using 17-2
watchpoints 17-1

debug_buffer, debugging data structure 17-2
debug_ buffer, debugging data structure (in code) 17-3
decommitting memory page ranges 6-11
default drive and directory 4-2
DEFAUL TICON, Resource Compiler keyword 5-11
deleting

a queue 10-11
a semaphore from a muxwait list 8-26
directories 4-2

X-4 OS/2 2.0 Programming Guide-Volume I

deleting (continued)
files 4-2, 4-5
!par.closing) a mutex semaphore 8-16
subdirectories 4-2

DENA 1, file management data structure 4-24
deny none access 4-1 O
deny read access 4-1 O
deny read/write access 4-10
deny write access 4-10
detached processes 7-16
detaching and attaching file systems 2-8
detaching from a remote file system 2-8
determining

code page support 16-5
collating information for SORT 16-7
current directory 4-2
drive information 4-2
extended attribute values 5-15, 5-16
extended attributes for a file 5-14
file attributes 4-3
file information 2-11
formatting information 16-7
handle type 4-17
information about a file system 2-10
information about an attached file system 2-9
memory access protection 6-12
memory allocation state 6-12
named pipe status 9-17
state of a file handle 4-16
the allocation state of a memory object, example

code 6-13
the case map string 16-6
the current code page 16-5
the current directory 4-2
the current drive 4-2
the DBCS environment vector 16-6
the default drive 4-2
the handle type, example code 4-18
the maximum path length 4-6
write verification switch 4-2

device drivers 14-2
device handles 4-4

See also file handles
device handles, duplicating 4-15
device handle, determining the state 4-16
device handle, setting the state 4-16
device 1/0 14-1

about 14-1
accessing devices 14-1
closing a device 4-15
data structures

BIOSPARAMETERBLOCK 14-7
LINECONTROL 14-7
TRACKLAYOUT 14-7

determining handle type 4-17
device drivers 14-2
device names 14-1
functions

DosBeep i4-i

device 1/0 (continued)
functions (continued)

DosClose 14-1, 14-2, 14-6
DosClose (in code) 14-4, 14-5, 14-6
DosDevConfig 14-1, 14-6
DosDevlOCtl 14-1, 14-2, 14-3, 14-4, 14-5, 14-6
DosDevlOCtl (in code) 14-5, 14-6
DosOpen 14-1, 14-6
DosOpen (in code) 14-4, 14-5, 14-6
DosPhysicalDisk 14-1, 14-6
DosRead 14-1, 14-6
DosRead (in code) 14-4
DosWrite 14-1, 14-6
DosWrite (in code) 14-4
table of functions 14-6

getting the COM port transmission status 14-6
getting the transmission status of COM1, example

code 14-6
IOCtl category and function codes 14-3
IOCtl commands 14-3
IOCtl parameter and data packets 14-3
obtaining a handle to a device 4-9
opening a device 4-9
releasing a device handle 4-15
setting communications-port parameters 14-5
setting COM1 to 9600 bits per second, example

code 14-5
setting the data rate 14-5
summary of functions and data structures 14-6
the IOCtl interface 14-3
using IOCtl functions to access devices 14-4
using the file system to access devices 14-4
writing the contents of a disk file to the COM1 serial

port, example code 14-4
device 110 data structure list 14-6
device names 2-1, 3-9, 14-1
device names, reserved 3-9
device support

See device 110
device type, querying 2-9
devices, file 110 4-6
directories 2-1

about 4-2
changing directories 4-2
creating 4-2
deleting 4-2
deleting directories 4-2
extended attributes for directories 4-2
inheriting the current directory 4-2
querying the current directory 4-2
setting the current directory 4-2

directory entries 2-1
directory searches using metacharacters 3-7
directory, root 2-1
disabling

and enabling hard-error and exception messages,
example code 12-3

error notification 12-2

disabling (continued)
hard-error and exception messages 12-3
memory swapping 6-5

disconnected state, pipes 9-5
disk drive letters 2-5
disk error reporting 4=11
Diskldle parameter for CACHE.EXE 2-4
disks 2-1

obtaining information about the attached file
system 2-9

obtaining information about the file system 2-10
DLLs

See dynamic link libraries (DLL)
DOS and OS/2 file objects 2-5
DOS disks, accessing 2-5
DOS FAT file system 2-2
DOS Session applications 7-7
DosAcknowledgeSignalException 13-8, 13-21
DosAddMuxWaitSem 8-25, 8-26, 8-27
DosAllocMem 6-6, 6-9, 6-10, 6-12, 6-14, 6-20, 10-6
DosAllocMem (in code) 6-10, 6-11, 6-13, 6-14
DosAllocSharedMem 6-18, 6-19, 6-20, 10-5
DosAllocSharedMem (in code) 6-18, 6-19
DosAsyncTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosAsyncTimer (in code) 11-5
DosBeep 14-1, 14-6
DosBeep (in code) 7-25, 7-33
DosCallNPipe 9-4, 9-5, 9-6, 9-20
DosClose 4-14, 4-15, 4-23, 9-8, 9-21, 14-1, 14-2, 14-6
DosClose (in code) 4-12, 4-13, 4-14, 4-15, 9-9, 9-14,

14-4, 14-5, 14-6
DosCloseEventSem 8-6, 8-7, 8-8, 8-27
DosCloseEventSem (in code) 8-8
DosCloseMutexSem 8-13, 8-16, 8-17, 8-20, 8-25, 8-27
DosCloseMutexSem (in code) 8-15, 8-17
DosCloseMuxWaitSem 8-21, 8-22, 8-27
DosCloseQueue 10-3, 10-6, 10-11, 10-12
DosConnectNPipe 9-3, 9-5, 9-11, 9-14, 9-20
DosCopy 3-5, 3-8, 4-4, 4-23
DosCreateDir 4-2, 4-24, 5-14
DosCreateEventSem 8-5, 8-6, 8-27, 9-6, 10-8, 10-10,

11-4, 11-5, 11-6
DosCreateEventSem (in code) 8-6, 8-19, 11-5
DosCreateMutexSem 8-12, 8-13, 8-14, 8-27
DosCreateMutexSem (in code) 8-13
DosCreateMuxWaitSem 8-18, 8-20, 8-23, 8-27, 9-7
DosCreateMuxWaitSem (in code) 8-19
DosCreateNPipe 4-11, 9-2, 9-3, 9-5, 9-10, 9-12, 9-14,

9-15, 9-16,9-18,9-20
DosCreateNPipe (in code) 9-11
DosCreatePipe 9-2, 9-7, 9-8, 9-9, 9-21
DosCreatePipe (in code) 9-7, 9-9
DosCreateQueue 10-4, 10-6, 10-7, 10-9, 10-12
DosCreateQueue (in code) 10-4
DosCreateThread 7-3, 7-10, 7-24, 7-25, 7-29, 7-37,

13-13' 13-14
DosCreateThread (in code) 7-25, 7-30, 7-32

Index X-5

DosDebug 17-1, 17-2, 17-4, 17-5
DosDebug (in code) 17-4
DosDelete 4-2, 4-5, 4-23
DosDelete (in code) 12-3
DosDeleteDir 4-2, 4-24
DosDeleteMuxWaitSem 8-20, 8-21, 8-25, 8-26, 8-27
DosDevConfig 14-1, 14-6
DosDevlOCtl 2-12, 4-11, 14-1, 14-2, 14-3, 14-4, 14-5,

14-6
DosDevlOCtl (in code) 14-5, 14-6
DosDisConnectNPipe 9-4, 9-5, 9-11, 9-14, 9-20
DosDisConnectNPipe (in code) 9-20
DosDupHandle 4-3, 4-15, 4-22, 4-24, 9-8, 9-9, 9-14, 9-21
DosDupHandle (in code) 4-23, 9-9
DosEditName 3-6, 3-7, 3-8, 4-23
DosEnterCritSec 7-12, 7-28, 7-29, 7-37
DosEnterCritSec (in code) 7-28
DosEnterMustComplete 13-10, 13-21
DosEnumAttribute 4-24, 5-14, 5-15, 5-16
DosErrClass 12-1, 12-2, 12-4
DosErrClass (in code) 12-3
DosError 12-1, 12-2, 12-3, 12-4, 13-13
DosError (in code) 12-3, 13-20
DosExecPgm 3-9, 4-5, 4-11, 7-4, 7-5, 7-15, 7-16, 7-17,

7-20, 7-23, 7-24, 7-37, 9-1, 9-8, 9-9, 13-13, 13-14, 17-1
DosExecPgm (in code) 7-15, 7-16, 7-17, 7-18, 7-19,

7-22, 7-31, 9-9
DosExit 7-4, 7-5, 7-19, 7-20, 7-23, 7-30, 7-31, 7-37, 13-4,

13-13, 13-14
DosExit (in code) 7-16, 7-20, 7-23, 7-25, 7-31, 7-33,

9-14, 10-6
DosExitCritSec 7-12, 7-28, 7-29, 7-37
DosExitCritSec (in code) 7-28
DosExitlist 7-4, 7-6, 7-22, 7-23, 7-24, 7-30, 7-37, 13-13
DosExitlist (in code) 7-23
DosExitMustComplete 13-10, 13-21
DosFindClose 4-6, 4-19, 4-24
DosFindClose (in code) 4-19
DosFindFirst 3-3, 3-4, 3-6, 3-8, 4-6, 4-18, 4-19, 4-24,

5-2, 5-14, 5-18
DosFindFirst (in code) 4-19
DosFindNext 3-4, 3-6, 3-8, 4-6, 4-18, 4-19, 4-24, 5-2
DosFindNext (in code) 4-19
DosFreeMem 6-6, 6-13, 6-15, 6-17, 6-20, 7-8, 10-5
DosFreeMem (in code) 6-13
DosFSAttach 2-5, 2-8, 2-16
DosFSAttach (in code) 2-9
DosFSCtl 2-9, 2-12, 2-16, 4-1
DosFSCtl (in code) 2-13
DosGetDateTime 11-3
DosGetlnfoBlocks 7-18, 7-25, 7-26, 7-37, 13-16
DosGetlnfoBlocks (in code) 7-18, 7-26
DosGetMessage 15-1, 15-2, 15-5, 15-6
DosGetMessage (in code) 15-2
DosGetNamedSharedMem 6-18, 6-20, 10-5
DosGetNamedSharedMem (in code) 6-18
DosGetSharedMem 6-18, 6-19, 6-20

X-6 OS/2 2.0 Programming Guide-Volume I

DosGetSharedMem (in code) 6-19
DosGiveSharedMem 6-18, 6-19, 6-20, 10-5, 10-7
DoslnsertMessage 15-1, 15-3, 15-5, 15-6
DoslnsertMessage (in code) 15-4
DosKillProcess 7-20, 7-21, 7-23, 7-37, 13-1, 13-3, 13-6,

13-7
DosKillProcess (in code) 7-20
DosKillThread 7-25, 7-31, 7-32, 7-37
DosKillThread (in code) 7-32
DosMapCase 16-6, 16-7
DosMove 3-3, 3-8, 4-2, 4-5, 4-23
DosOpen 2-7, 3-9, 4-7, 4-8, 4-9, 4-10, 4-11, 4-16, 4-23,

5-14, 9-21, 12-1, 14-1, 14-6
DosOpen (in code) 2-15, 4-8, 4-9, 4-12, 4-13, 4-14, 4-15,

4-20, 4-21, 4-23, 7-20, 9-14, 14-4, 14-5, 14-6
DosOpenEventSem 8-5, 8-6, 8-7, 8-9, 8-10, 8-11, 8-27,

11-5, 11-6
DosOpenEventSem (in code) 8-7
DosOpenMutexSem 8-12, 8-13, 8-14, 8-17, 8-26, 8-27
DosOpenMutexSem (in code) 8-15
DosOpenMuxWaitSem 8-18, 8-19, 8-20, 8-21, 8-22,

8-25, 8-26, 8-27
DosOpenMuxWaitSem (in code) 8-21
DosOpenQueue 10-3, 10-5, 10-6, 10-12
DosOpenQueue (in code) 10-6
DosPeekNPipe 9-4, 9-15, 9-19, 9-21
DosPeekNPipe (in code) 9-19
DosPeekQueue 10-3, 10-4, 10-7, 10-9, 10-10, 10-12
DosPeekQueue (in code) 10-10
DosPhysicalDisk 14-1, 14-6
DosPostEventSem 8-6, 8-7, 8-9, 8-10, 8-27
DosPostEventSem (in code) 8-6, 8-10
DosPurgeQueue 10-3, 10-11, 10-12
DosPurgeQueue (in code) 10-11
DosPutMessage 15-1, 15-5, 15-6
DosPutMessage (in code) 15-5
DosQueryCollate 16-7
DosQueryCp 16-5, 16-7
DosQueryCp (in code) 16-5
DosQueryCtrylnfo 16-7
DosQueryCurrentDir 3-5, 4-2, 4-24
DosQueryCurrentDisk 4-2, 4-24
DosQueryDBCSEnv 16-6, 16-7
DosQueryDBCSEnv (in code) 16-6
DosQueryEventSem 8-10, 8-11, 8-26, 8-27, 10-9
DosQueryEventSem (in code) 8-12
DosQueryFHState 3-9, 4-11, 4-16, 4-24
DosQueryFHState (in code) 4-17
DosQueryFilelnfo 2-11, 4-3, 4-24, 5-1, 5-2, 5-14, 5-15,

5-16
DosQueryFilelnfo (in code) 2-12
DosQueryFileMode 4-8
DosQueryFSAttach 2-9, 2-16
DosQueryFSAttach (in code) 2-10
DosQueryFSlnfo 2-10, 2-16, 4-2
DosQueryFSlnfo (in code) 2-11
DosQueryHType 4-17, 4-24

DosQueryHType (in code) 4-18
DosQueryMem 6-8, 6-12, 6-20
DosQueryMem (in code) 6-13, 13-19
DosQueryMessageCp 15-1, 15-5, 15-6, 16-7
DosQueryMessageCp (in code) 15-6
DosQueryMutexSem 8-14, 8-17, 8-18, 8-20, 8-21, 8-27
DosQueryMuxWaitSem 8-21, 8-25, 8-26, 8-27
DosQueryNPHState 9-4, 9-17, 9-21
DosQueryNPHState (in code) 9-17
DosQueryNPipelnfo 9-17, 9-18, 9-19, 9-21
DosQueryNPipelnfo (in code) 9-18
DosQueryNPipeSemState 9-5, 9-6, 9-7, 9-21
DosQueryPathlnfo 4-24, 5-1, 5-2, 5-14, 5-15, 5-16
DosQueryQueue 10-3, 10-4, 10-6, 10-12
DosQuerySyslnfo 3-1, 4-6, 4-24, 11-3
DosQueryVerify 4-2, 4-24
DosRaiseException 13-8, 13-9, 13-10, 13-21
DosRead 4-6, 4-11, 4-12, 4-16, 4-21, 4-23, 9-2, 9-21,

14-1, 14-6
DosRead (in code) 4-12, 4-14, 4-15, 4-21, 4-22, 4-23,

9-9, 9-14, 14-4
DosReadQueue 7-8, 7-9, 10-3, 10-4, 10-8, 10-12
DosReadQueue (in code) 10-8
DosReleaseMutexSem 8-14, 8-15, 8-16, 8-17, 8-27
DosReleaseMutexSem (in code) 8-15, 8-16
DosRequestMutexSem 8-3, 8-12, 8-13, 8-14, 8-15, 8-16,

8-17, 8-27
DosRequestMutexSem (in code) 8-15
DosResetBuffer 2-14, 2-16, 4-4, 9-5
DosResetBuffer (in code) 2-15
DosResetEventSem 8-8, 8-9, 8-10, 8-27, 11-2, 11-5,

11-6, 11-7
DosResetEventSem (in code) 8-9
DosResumeThread 7-3, 7-24, 7-27, 7-37
DosResumeThread (in code) 7-28
DosScanEnv 4-20, 4-24
DosScanEnv (in code) 4-20
DosSearchPath 4-20, 4-24
DosSearchPath (in code) 4-20, 4-21
DosSelectSession 7-7, 7-8, 7-34, 7-35, 7-37, 17-1
DosSelectSession (in code) 7-36
DosSendSignalException 13-8, 13-21
DosSetCurrentDir 3-5, 4-2, 4-24
DosSetCurrentDisk 4-2
DosSetDateTime 11-3
DosSetDefaultDisk 4-2, 4-24
DosSetExceptionHandler 13-2, 13-7, 13-10, 13-16,

13-20, 13-21
DosSetFHState 4-16, 4-17, 4-24
DosSetFHState (in code) 4-17
DosSetFilelnfo 2-11, 4-3, 4-23, 5-1, 5-14, 5-15, 5-16
DosSetFileLocks 4-5, 4-6, 4-8, 4-16, 4-23
DosSetFileMode 4-8
DosSetFilePtr 4-4, 4-6, 4-13, 4-14, 4-16, 4-23
DosSetFilePtr (in code) 4-14
DosSetFileSize 4-5, 4-23
DosSetFSlnfo 2-10, 2-16, 4-2

DosSetMaxFH 4-3, 4-24
DosSetMem 6-6, 6-11, 6-12, 6-15, 6-20
DosSetMem (in code) 6-11, 6-12, 13-19
DosSetNPHState 9-5, 9-14, 9-15, 9-16, 9-18, 9-21
DosSetNPipeSem 9-5, 9-6, 9-7, 9-21
DosSetPathlnfo 4-23, 4-24, 5-1, 5-14, 5-15, 5-16
DosSetPriority 7-9, 7-10, 7-11, 7-12, 7-13, 7-26, 7-27,

7-37
DosSetPriority (in code) 7-26
DosSetProcessCp 16-6, 16-7
DosSetSession 7-7, 7-8, 7-9, 7-34, 7-35, 7-37
DosSetSession (in code) 7-34, 7-35
DosSetSigHandler 13-8
DosSetSignalExceptionFocus 13-6, 13-7, 13-8, 13-21
DosSetVerify 4-2, 4-23
DosShutdown 2-14, 2-16
DosShutdown (in code) 2-14
DosSleep 7-10, 7-27, 11-1, 11-2, 11-3, 11-4, 11-7
DosSleep (in code) 7-27, 7-36, 11-2
DosStartSession 7-7, 7-8, 7-9, 7-32, 7-33, 7-34, 7-36,

7-37, 13-13, 13-14, 17-1
DosStartSession (in code) 7-33
DosStartTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosStartTimer (in code) 11-6
DosStopSession 7-7, 7-8, 7-9, 7-36, 7-37
DosStopSession (in code) 7-36
DosStopTimer 11-3, 11-5, 11-7
DosStopTimer (in code) 11-6
DosSubAllocMem 6-6, 6-9, 6-14, 6-15, 6-16, 6-20
DosSubAllocMem (in code) 6-14, 6-16
DosSubFreeMem 6-9, 6-14, 6-16, 6-20
DosSubFreeMem (in code) 6-14, 6-17
DosSubSetMem 6-9, 6-14, 6-15, 6-17, 6-20
DosSubSetMem (in code) 6-14, 6-15
DosSubUnsetMem 6-14, 6-15, 6-17, 6-20
DosSubUnsetMem (in code) 6-17
DOSSUB_INIT (in code) 6-14
DosSuspendThread 7-3, 7-27, 7-37
DosSuspendThread (in code) 7-28
DosTransactNPipe 9-4, 9-5, 9-6, 9-20, 9-21
DosUnsetExceptionHandler 13-1, 13-20, 13-21

' DosUnwindException 13-10, 13-11, 13-12, 13-21
DosWaitChild 7-5, 7-15, 7-19, 7-20, 7-21, 7-23, 7-30,

7-37
DosWaitChild (in code) 7-19, 7-22
DosWaitEventSem 8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11,

8-27, 9-6, 10-9, 10-11, 11-5, 11-7
DosWaitEventSem (in code) 8-7, 8-11, 11-5
DosWaitMuxWaitSem 8-21, 8-22, 8-24, 8-26, 8-28, 9-6,

9-7, 10-3
DosWaitMuxWaitSem (in code) 8-19, 8-23
DosWaitNPipe 9-3, 9-13, 9-14, 9-21
DosWaitThread 7-3, 7-29, 7-30, 7-37
DosWaitThread (in code) 7-30
DosWrite 4-8, 4-11, 4-13, 4-15, 4-16, 4-22, 4-23, 9-2,

9-21, 14-1, 14-6
DosWrite (in code) 4-13, 4-22, 4-23, 7-20, 7-23, 7-25,

7-30, 7-33, 9-9, 9-14, 10-6, 13-19, 14-4

Index X-7

DosWriteQueue 10-3, 10-4, 10-6, 10-7, 10-12
DosWriteQueue (in code) 10-7
DosWrite, code (in code) 2-15
DPATH, environmental variable 4-20
drives 2-5

default drive 4-2
querying drive information 4-2
querying the current drive 4-2
querying the default drive 4-2
setting drive information 4-2
setting the current drive 4-2
setting the default drive 4-2

duplicating file handles 4-3, 4-5
duplicating file, pipe, or device handles 4-15
duplicating standard file handles 4-22
duplicating the standard input handle, example

code 4-23
dynamic link libraries (DLL) 3-4, 4-1
dynamic priority alteration of CPU scheduling 7-13
dynamic time slice alteration 7-14
dynamic time slicing 7-14

E
EAOP2., extended attribute data structure 5-15
EAOP2, extended attribute data structure 5-16, 5-19
EAUTIL 5-16
EA, extended attribute

See extended attributes (EA)
edge-triggered semaphores 8-11, 8-23
edit metacharacters 3-6, 3-7
editing file names using metacharacters 3-7
emptying a queue 10-11
end-of-file (EOF) 4-4
ending

current process 7-19
current process, example code 7-20
current thread 7-30
current thread, example code 7-31
processes 7-5, 7-6
sessions 7-7
threads 7-4, 7-6
use of a heap, example code 6-17
use of the heap 6-17

entering and exiting a critical section of code, example
code 7-28

environmental variable, DPATH 4-20
error checking 2-8, 4-7, 6-10, 7-14, 8-5, 9-7, 10-4, 11-3,

12-2, 13-18, 14-4, 15-2, 16-5, 17-2
error management 12-1

about 12-1
classifying errors 12-2
classifying file errors, example code 12-3
classifying return values 12-1
disabling and enabling hard-error and exception

messages, example code 12-3
disabling error notification 12-2
disabling hard-error and exception messages 12-3

X-8 OS/2 2.0 Programming Guide-Volume I

error management (continued)
DosErrClass (in code) 12-3
DosError (in code) 12-3
functions

DosErrClass 12-1, 12-2, 12-4
DosError 12-1, 12-2, 12-3, 12-4
DosOpen 12-1
table of functions 12-4

summary of functions 12-4
using 12-2

error pop-up screens 13-13
escape sequences 14-2
establishing memory access protection 6-12
event semaphores 8-1
examining a queue element 10-9
examining the contents of named pipes 9-19
example code fragments

adding an element to a queue 10-7
allocating a block of memory from a heap 6-16
allocating and freeing memory 6-13
allocating committed memory and decommitting part

of it 6-11
allocating named shared memory 6-18
allocating uncommitted memory and committing part

of it 6-11
allocating 24576 bytes of unnamed shared

memory 6-19
attaching a drive to a remote file system driver 2-9
binding a child session to a parent session 7-35
changing the priority of a thread 7-26
classifying file errors 12-3
closing a file 4-15
closing a mutex semaphore 8-17
closing a named pipe 9-20
closing an event semaphore 8-8
communicating with a file system driver 2-13
CONTEXTRECORD, exception management data

structure 13-19, 13-20
COUNTRYCODE, NLS data structure 16-6
creating a mutex semaphore 8-13
creating a named FIFO queue 10-4
creating a named pipe 9-11
creating a new file 4-8
creating a thread 7-25
creating an unnamed pipe 9-7
creating and posting a named event

semaphore 8-6
creating and waiting for a muxwait

semaphore 8-19
debug_buffer data structure 17-3
debug_buffer, debugging data structure 17-3
determining the allocation state of a memory

object 6-13
determining the handle type 4-18
disabling and enabling hard-error and exception

messages 12-3
DosAllocMem 6-10, 6-11, 6-13, 6-14
DosAllocSharedMem 6-18, 6-19

example code fragments (continued)
DosAsyncTimer 11-5
DosBeep 7-25, 7-33
DosClose 4-12, 4-13, 4-14, 4-15, 9-9, 9-14, 14-4,

14-5, 14-6
DosCloseEventSem 8-8
DosCloseMutexSem 8-15, 8-17
DosCreateEventSem 8-6, 8-19, 11-5
DosCreateM utexSem 8-13
DosCreateMuxWaitSem 8-19
DosCreateNPipe 9-11
DosCreatePipe 9-7, 9-9
DosCreateQueue 10-4
DosCreateThread 7-25, 7-30, 7-32
DosDebug 17-4
DosDelete 12-3
DosDevlOCtl 14-5, 14-6
DosDisConnectNPipe 9-20
DosDupHandle 4-23, 9-9
DosEnterCritSec 7-28
DosErrClass 12-3
DosError 12-3, 13-20
DosExecPgm 7-15, 7-16, 7-17, 7-18, 7-19, 7-22, 7-31,

9-9
DosExit 7-16, 7-20, 7-23, 7-25, 7-31, 7-33, 9-14, 10-6
DosExitCritSec 7-28
DosExitlist 7-23
DosFindClose 4-19
DosFindFirst 4-19
DosFindNext 4-19
DosFreeMem 6-13
DosFSAttach 2-9
DosFSCtl 2-13
DosGetlnfoBlocks 7-18, 7-26
DosGetMessage 15-2
DosGetNamedSharedMem 6-18
DosGetSharedMem 6-19
DoslnsertMessage 15-4
DosKillProcess 7-20
DosKillThread 7-32
DosOpen 4-8, 4-9, 4-12, 4-13, 4-14, 4-15, 4-20, 4-21,

4-23, 7-20, 9-14, 14-4, 14-5, 14-6
DosOpenEventSem 8-7
DosOpenMutexSem 8-15
DosOpenMuxWaitSem 8-21
DosOpenQueue 10-6
DosPeekNPipe 9-19
DosPeekQueue 10-10
DosPostEventSem 8-6, 8-10
DosPurgeQueue 10-11
DosPutMessage 15-5
DosQueryCp 16-5
DosQueryDBCSEnv 16-6
DosQueryEventSem 8-12
DosQueryFHState 4-17
DosQueryFilelnfo 2-12
DosQueryFSAttach 2-10
DosQueryFSlnfo 2-11

example code fragments (continued)
DosQueryHType 4-18
DosQueryMem 6-13
DosQueryMessageCp 15-6
DosQueryNPHState 9-17
DosQueryNPipelnfo 9-18
DosRead 4-12, 4-14, 4-15, 4-21, 4-22, 4-23, 9-9, 9-14,

14-4
DosReadQueue 10-8
DosReleaseMutexSem 8-15, 8-16
DosRequestMutexSem 8-15
DosResetBuffer 2-15
DosResetEventSem 8-9
DosResumeThread 7-28
DosScanEnv 4-20
DosSearchPath 4-20, 4-21
DosSelectSession 7-36
DosSetFHState 4-17
DosSetFilePtr 4-14
DosSetMem 6-11, 6-12
DosSetPriority 7-26
DosSetSession 7-34, 7-35
DosShutdown 2-14
DosSleep 7-27, 7-36, 11-2
DosStartSession 7-33
DosStartTimer 11-6
DosStopSession 7-36
DosStopTimer 11-6
DosSubAllocMem 6-14, 6-16
DosSubFreeMem 6-14, 6-17
DosSubSetMem 6-14, 6-15
DosSubUnsetMem 6-17
DOSSUB_INIT 6-14
DosSuspendThread 7-28
DosWaitChild 7-19, 7-22
DosWaitEventSem 8-7, 8-11, 11-5
DosWaitMuxWaitSem 8-19, 8-23
DosWaitThread 7-30
DosWrite 2-15, 4-13, 4-22, 4-23, 7-20, 7-23, 7-25,

7-30, 7-33, 9-9, 9-14, 10-6, 14-4
DosWriteQueue 10-7
duplicating the standard input handle 4-23
ending the current process 7-20
ending the current thread 7-31
ending the use of a heap 6-17
entering and exiting a critical section of code 7-28
exception handler for memory errors 13-19
EXCEPTIONREGISTRATIONRECORD, exception

management data structure 13-19, 13-20
EXCEPTIONREPORTRECORD, exception

management data structure 13-19, 13-20
exit list routines 7-23
fALLOC 6-10, 6-11, 6-13, 6-14, 6-18, 6-19
FILEFINDBUF, file management data structure 4-19
finding all *.C files 4-19
freeing a block of memory from a heap 6-17
FSQBUFFER2, file system data structure 2-10
getting a pointer to named shared memory 6-18

Index X-9

example code fragments (continued)
getting code page and language identifiers

associated with a message file 15-6
getting information about a named pipe using

DosQueryNPHState 9-17
getting information about a pipe using

DosQueryNPipelnfo 9-18
getting the transmission status of COM1 14-6
increasing the size of suballocated memory 6-15
making a child session nonselectable 7-34
modifying a WORD in a process being

debugged 17-4
moving the file pointer 4-14
OBJ_GETTABLE 6-19
obtaining a DBCS environmental vector 16-6
obtaining information about a child process 7-18
obtaining information about a file 2-12
obtaining information about a thread 7-26
obtaining information about an attached file

system 2-10
obtaining information about the file system 2-11
obtaining the current code page and other prepared

code pages 16-5
obtaining the termination status of a child

process 7-22
opening a file and obtaining a file handle 4-9
opening a muxwait semaphore 8-21
opening a queue 10-6
opening an event semaphore and waiting for it to be

posted 8-7
opening and reading a file 4-12
opening and writing to a file 4-13
opening and writing to a remote pipe 9-14
opening, requesting, releasing, and closing a mutex

semaphore 8-15
PAG_COMMIT 6-11, 6-13
PAG_DECOMMIT 6-11
PAG_DEFAULT 6-11
PAG_READ 6-11, 6-18, 6-19
PAG_WRITE 6-11, 6-18, 6-19
peeking at the elements of a queue 10-10
peeking into a named pipe using

DosPeekNPipelnfo 9-19
PIPEINFO, pipe data structure 9-18
posting an event semaphore 8-10
preparing to turn off power to the system 2-14
purging a queue 10-11
querying an event semaphore 8-12
reading an element from a queue 10-8
reading from standard input 4-21
redirecting the standard 110 of a child process into

an unnamed pipe 9-9
registering an exception handler 13-20
releasing a mutex semaphore 8-16
requesting 512 bytes of memory 6-10
resetting an event semaphore 8-9
RESULTCODES 7-31
RESUL TCODES, program execution control data

strnctuie 7-15, 7-18, 7-H, 7-18, 7-19, 7-22

X-10 OS/2 2.0 Programming Guide-Volume I

example code fragments (continued)
retrieving a message and substituting text-strings

for variables 15-2
retrieving the termination status of a child

process 7-16
searching directory paths using DosScanEnv and

DosSearchPath 4-20
searching directory paths using

DosSearchPath 4-21
SEMRECORD, semaphore data structure 8-19
setting COM1 to 9600 bits per second 14-5
setting read-only access for a region 6-12
setting the command line environment for a child

process 7-18
setting the state of a file handle 4-17
ST ARTDATA, program execution control data

structure 7-33
starting a background child process 7-17
starting a child process 7-15
starting a foreground session 7-33
STATUSDATA, program execution control data

structure 7-34, 7-35
stopping a repeated-interval timer 11-6
suballocating memory 6-14
substituting text-strings for variables in a string in

memory 15-4
suspending a thread 11-2
suspending and resuming execution of a

thread 7-28
suspending the current thread 7-27
switching a child session to the foreground 7-36
terminating a child session 7-36
terminating a process 7-20
terminating a thread within the same process 7-32
using a repeated-interval timer with an event

semaphore 11-6
using a single-interval timer with an event

semaphore 11-5
validating shared memory 6-19
waiting for a certain thread to end 7-30
waiting for a child process to end 7-19
waiting for a muxwait semaphore 8-23
waiting for an event semaphore 8-11
waiting for any thread to end 7-30
writing an edited message to a file 15-5
writing the buffers to the device 2-15
writing the contents of a disk file to the COM1 serial

port 14-4
writing to standard output 4-22

example exception handler 13-18
exception condition 13-1
exception handler for memory errors, example

code 13-19
exception handler interface 13-14
exception handling

See exception management
exception management 6-8, 13-1, 13-3

about 13-2

exception management (continued)
colliding unwinds 13-12
constants

XCPT_ACCESS_VIOLATION 13-5, 13-19
XCPT_ARRAY_BOUNDS_EXCEEDED 13-5
XCPT_ASYNC_PROCESS_TERMINATE 13-4
XCPT_BAD_STACK 13-6
XCPT_BREAKPOINT 13-5
XCPT_CONTINUE_EXECUTION 13-7, 13-8, 13-9,

13-14, 13-17, 13-18, 13-19
XCPT_CONTINUE_SEARCH 13-6, 13-9, 13-14,

13-17, 13-18, 13-19
XCPT_DATATYPE_MISALIGNMENT 13-5
XCPT_DATA_UNKNOWN 13-19
XCPT_FLOAT_DENORMAL_OPERAND 13-5
XCPT_FLOAT_DIVIDE_BY_ZERO 13-5
XCPT _FLOAT _INEXACT _RESULT 13-5
XCPT_FLOAT_INVALID_OPERATION 13-5
XCPT _FLOAT_ OVERFLOW 13-5
XCPT_FLOAT_STACK_CHECK 13-5
XCPT_FLOAT_UNDERFLOW 13-5
XCPT_GUARD_PAGE_VIOLATION 13-4
XCPT _ILLEGAL_INSTRUCTION 13-5
XCPT _INTEGER_DIVIDE_BY _ZERO 13-5
XCPT _INTEGER_ OVERFLOW 13-5
XCPT_INVALID_DISPOSITION 13-4
XCPT_INVALID_LOCK_SEQUENCE 13-5
XCPT_INVALID_UNWIND_TARGET 13-6, 13-11,

13-12
XCPT_IN_PAGE_ERROR 13-4
XCPT _NONCONTINUABLE_EXCEPTION 13-4,

13-14, 13-16
XCPT _PRIVILEGED _INSTRUCTION 13-5
XCPT_PROCESS_TERMINATE 13-4
XCPT_READ_ACCESS 13-19
XCPT_SIGNAL 13-6, 13-8
XCPT_SIGNAL_BREAK 13-6, 13-7
XCPT_SIGNAL_INTR 13-6, 13-7
XCPT_SIGNAL_KILLPROC 13-6, 13-7
XCPT _SINGLE_STEP 13-5
XCPT_UNABLE_TO_GROW_STACK 13-4
XCPT_UNWIND 13-6, 13-11
XCPT_WRITE_ACCESS 13-19
XCPT _ YOUR_EXCEPTION 13-9

data structure descriptions 13-15
data structures

ContextRecord 13-17, 13-21
CONTEXTRECORD (in code) 13-19, 13-20
ExceptionRegistrationRecord 13-16, 13-21
EXCEPTIONREGISTRATIONRECORD (in

code) 13-19, 13-20
ExceptionReportRecord 13-15, 13-21
EXCEPTIONREPORTRECORD (in code) 13-19,

13-20
table of data structures 13-21

error pop-up screens 13-13
exception handler chain 13-1, 13-3
exception handler for memory errors, example

code 13-19

exception management (continued)
exception handler interface 13-14
exception handlers 13-1, 13-2

ContextRecord parameter 13-17
example exception handler 13-18
ExceptionRegistrationRecord parameter 13-16
ExceptionReportRecord parameter 13-15
handling signal exceptions 13-7
interface 13-14
parameters 13-15
registering 13-20
return values 13-17

functions
DosAcknowledgeSignalException 13-8, 13-21
DosCreateThread 13-13, 13-14
DosEnterMustComplete 13-10, 13-21
DosError 13-13
DosError (in code) 13-20
DosExecPgm 13-13, 13-14
DosExit 13-4, 13-13, 13-14
DosExitlist 13-13
DosExitMustComplete 13-10, 13-21
DosGetlnfoBlocks 13-16
DosKillProcess 13-1, 13-3, 13-6, 13-7
DosQueryMem 13-19
DosRaiseException 13-8, 13-9, 13-10, 13-21
DosSendSignalException 13-8, 13-21
DosSetExceptionHandler 13-2, 13-7, 13-10,

13-16, 13-20, 13-21
DosSetMem 13-19
DosSetSigHandler 13-8
DosSetSignalExceptionFocus 13-6, 13-7, 13-8,

13-21
DosStartSession 13-13, 13-14
DosUnsetExceptionHandler 13-1, 13-20, 13-21
DosUnwindException 13-10, 13-11, 13-12, 13-21
DosWrite 13-19
table of functions 13-21

handling signal exceptions 13-7
must-complete sections 13-9
nested exceptions 13-12
process exit I ists 13-13
raising exceptions 13-8
registering an exception handler, example

code 13-20
registering exception handlers 13-20
sending signal exceptions 13-8
signal exceptions 13-6
summary of functions and data structures 13-21
unwinding exception handlers 13-10
using 13-18

ExceptionRegistrationRecord, exception management
data structure 13-16, 13-21

EXCEPTIONREGISTRA TIONRECORD, exception
management data structure (in code) 13-19, 13-20

ExceptionReportRecord, exception management data
structure 13-15, 13-21

Index X-11

EXCEPTIONREPORTRECORD, exception management
data structure {in code) 13-19, 13-20

exceptions 6-8, 13-1
signal 13-6
using the guard-page-entered exception in memory

management 6-7
exit list routines, example code 7-23
exit lists for processes 7-6
exiting

processes 7-5, 7-6
threads 7-4, 7-6

extended attribute ASCII text string 5-4
extended attribute containing data in another extended

attribute 5-6
extended attribute names 5-6
extended attributes 4-8, 5-1
extended attributes of a file 5-2
extended attributes {EA)

applications that do and don't recognize EAs 5-17
ASCII data type 5-3
ASN.1 data type 5-3, 5-5
binary data type 5-3
bit map data type 5-3
controlling access to 5-14
creating 5-14, 5-15
critical 5-17
data structure descriptions 5-15
data type conventions 5-3
data types 5-3
defining 4-8
defining for a new file 5-14
defining for an existing file 5-14
EA's code page 5-4
examining 5-14
extended attribute operation (EAOP2) data

structure 5-16
file systems that support EAs 5-16
full extended attribute (FEA2) data structures 5-15
get extended attribute (GEA2) data structure 5-16
icon data type 5-3
INCLUDE data type 5-3, 5-6
length-preceded data types 5-4
losing 5-16
managing 5-14
marking as critical 5-18
metafile data type 5-3
multi-valued data types 5-4, 5-5
multi-valued, multi-typed (MVMT) data type 5-3, 5-4
multi-valued, single-typed (MVST) data type 5-3,

5-5
naming conventions 5-6
non-critical 5-17
operations on 5-16
operations, non-atomic 5-14
preserving 5-16
protecting 5-17
querying 5-14
querying values 5-15, 5-16

X-12 OS/2 2.0 Programming Guide-Volume I

extended attributes {EA) (continued)
reading 5-2

F

searching for 5-18
searching for files based on their extended

attributes 5-14
separating EAs from their files with EAUTIL 5-16
setting 5-15
sharing 5-14
standard extended attributes (SEA) 5-2, 5-6
standard extended attributes {SEA)

naming conventions 5-6
.ASSOCTABLE 5-7, 5-13
.ASSOCTABLE example 5-9
.ASSOCT ABLE, source code 5-9
.CODEPAGE 5-10
.COMMENT 5-10
.HISTORY 5-10
.ICON 5-11
.KEYPHRASES 5-12
.LONGNAME 5-12
.SUBJECT 5-12
.TYPE 5-7, 5-13
.TYPE, used to determine a default icon 5-11
.VERSION 5-14

summary of data structures 5-19
supporting 5-18
table of data structures 5-19

facilitating named pipe transaction processing 9-6
fALLOC (in code) 6-10, 6-11, 6-13, 6-14, 6-18, 6-19
FAT file system 2-2, 2-5

accessing FAT disks 2-5
file names 2-2, 3-2
file names, invalid characters 3-3
file names, permissible characters 3-3
file-naming rules 3-2

FDATE, file management data structure 4-24
FDISK 2-5
FEA2List, extended attribute data structure 5-15, 5-16,

5-19
FEA2, extended attribute data structure 5-15, 5-16,

5-18, 5-19
FEA_NEEDEA, extended attribute flag 5-18
File Allocation Table file system 2-2
file allocation table (FAT) file system 2-2
file handle state flags 4-8
file handles 4-3, 4-9

closing 4-14
determining the state 4-16
determining type 4-17
device handles 4-4
duplicating 4-3, 4-15
duplicating handles of locked files 4-5
duplicating standard file handles 4-22
inheritance 4-11
inheriting 4-3, 4-16

file handles (continued)
maximum number per process, default 4-3
obtaining 4-9
pipe handles 4-4
querying state 4-11
redirecting standard file handles 4-22
redirecting standard 1/0 file handles 4-3, 4-15
redirecting standard 1/0 file handles for a child

process 4-16
setting the maximum number of 4-3
setting the state 4-16
standard error file handle 4-21, 4-22
standard file handles, duplicating 4-22
standard file handles, redirecting 4-22
standard input file handle 4-21
standard 1/0 file handles 4-3, 4-15
standard output file handle 4-21, 4-22
stderr 4-21, 4-22
stdin 4-21
stdout 4-21, 4-22
to devices 4-9

file management 4-1
about directories 4-2
about drives and volumes 4-1
about files 4-3
about volumes and drives 4-1
access rights 4-8, 4-9
changing directories 4-2
changing file sizes 4-5
character devices, file 1/0 with 4-6
clock device, file 1/0 with 4-6
closing a file, example code 4-15
closing file handles 4-14
closing files 4-14
COM device, file 1/0 with 4-6
console device, file 1/0 with 4-6
copying files 4-4
creating a new file, example code 4-8
creating directories 4-2
creating files 4-7
creating subdirectories 4-2
data structures

DENA1 4-24
FDATE 4-24
FILEFINDBUF 4-25
FILEFINDBUF (in code) 4-19
FILELOCK 4-25
FILESTATUS 4-25
FTIME 4-25
table of data structures 4-24
VOLUMELABEL 4-25

defining extended attributes with DosOpen 4-8
deleting files 4-2, 4-5
deleting subdirectories 4-2
determining the handle type, example code 4-18
determining the maximum path length 4-6
determining the state of a file handle 4-16
devices 4-6

file management (continued)
disk error reporting 4-11
DosCreateDi r 4-2
DosQueryHType (in code) 4-18
duplicating file handles of locked files 4-5
duplicating standard file handles 4-22
duplicating the standard input handle, example

code 4-23
end-of-file 4-4
file attributes 4-3
file 1/0 4-6
file names

device names 3-9
editing file names using metacharacters 3-7
global file name characters 3-6
metacharacters 3-6, 3-7, 3-8, 4-4, 4-5, 4-11
metacharacters in file searches 4-6, 4-18, 4-20
on the command line 3-9
quotation characters 3-8
searching for files using metacharacters 3-7
transforming file names using

metacharacters 3-8
user input of 3-8

file pointer 4-4
file write-through flag 4-13
finding all *.C files, example code 4-19
finding files 4-6, 4-18
finding files along a search path 4-20
functions

DosClose 4-14, 4-15, 4-23
DosClose (in code) 4-12, 4-13, 4-14, 4-15
DosCopy 3-5, 3-8, 4-4, 4-23
DosCreateDir 4-2, 4-24
DosCreateNPi pe 4-11
DosDelete 4-2, 4-5, 4-23
DosDelete (in code) 12-3
DosDeleteDir 4-2, 4-24
DosDevlOCtl 4-11
DosDupHandle 4-3, 4-15, 4-22, 4-24
DosDupHandle (in code) 4-23
DosEditName 3-6, 3-7, 3-8, 4-23
DosEnumAttribute 4-24
DosExecPgm 3-9, 4-5, 4-11
DosFindClose 4-6, 4-19, 4-24
DosFindClose (in code) 4-19
DosFindFirst 3-3, 3-4, 3-6, 3-8, 4-6, 4-18, 4-19,

4-24
DosFindFirst (in code) 4-19
DosFindNext 3-4, 3-6, 3-8, 4-6, 4-18, 4-19, 4-24
DosFindNext (in code) 4-19
DosFSCtl 4-1
DosMove 3-3, 3-8, 4-2, 4-5, 4-23
DosOpen 3-9, 4-7, 4-8, 4-9, 4-10, 4-11, 4-16, 4-23
DosOpen (in code) 4-8, 4-9, 4-12, 4-13, 4-14,

4-15, 4-20, 4-21, 4-23
DosQueryCurrentDir 3-5, 4-2, 4-24
DosQueryCurrentDisk 4-2, 4-24
DosQueryFHState 3-9, 4-11, 4-16, 4-24
DosQueryFHState (in code) 4-17

Index X-13

file management (continued)
functions (continued)

DosQueryFilelnfo 4-3, 4-24
DosQueryFileMode 4-8
DosQueryFSlnfo 4-2
DosQueryHType 4-17, 4-24
DosQueryPathlnfo 4-24
DosQuerySyslnfo 3-1, 4-6, 4-24
DosQueryVerify 4-2, 4-24
DosRead 4-6, 4-11, 4-12, 4-16, 4-21, 4-23
DosRead (in code) 4-12, 4-14, 4-15, 4-21, 4-22,

4-23
DosResetBuffer 4-4
DosScanEnv 4-20, 4-24
DosScanEnv (in code) 4-20
DosSearchPath 4-20, 4-24
DosSearchPath (in code) 4-20, 4-21
DosSetCurrentDir 3-5, 4-2, 4-24
DosSetCurrentDisk 4-2
DosSetDefaultDisk 4-2, 4-24
DosSetFHState 4-16, 4-17, 4-24
DosSetFHState (in code) 4-17
DosSetFilelnfo 4-3, 4-23
DosSetFilelocks 4-5, 4-6, 4-8, 4-16, 4-23
DosSetFileMode 4-8
DosSetFilePtr 4-4, 4-6, 4-13, 4-14, 4-16, 4-23
DosSetFilePtr (in code) 4-14
DosSetFileSize 4-5, 4-23
DosSetFSlnfo 4-2
DosSetMaxFH 4-3, 4-24
DosSetPathlnfo 4-23, 4-24
DosSetVerify 4-2, 4-23
DosWrite 4-8, 4-11, 4-13, 4-15, 4-16, 4-22, 4-23
DosWrite (in code) 4-13, 4-22, 4-23
table of functions 4-23

keyboard device, file 1/0 with 4-6
level 1 file information 5-1
locating files 4-6, 4-18
locating files along a search path 4-20
locking file regions 4-5
locking/unlocking regions in a file 4-8
maximum number of file handles per process,

default 4-3
maximum path length 4-6
mouse device, file 1/0 with 4-6
moving files 4-2, 4-5
moving the file pointer 4-4, 4-13
moving the file pointer, example code 4-14
null device, file 1/0 with 4-6
opening a file and obtaining a file handle, example

code 4-9
opening and reading a file, example code 4-12
opening and writing to a file, example code 4-13
opening files 4-9
pointer device, file 1/0 with 4-6
printer device, file 1/0 with 4-6
pseudocharacter devices, file 1/0 4-6
querying drive information 4-2

X-14 OS/2 2.0 Programming Guide-Volume I

file management (continued)
querying the current directory 4-2
querying the current drive 4-2
querying the default drive 4-2
reading from files 4-11
reading from standard input, example code 4-21
redirecting standard file handles 4-22
screen device, file 1/0 with 4-6
searching directory paths using DosScanEnv and

DosSearchPath, example code 4-20
searching directory paths using DosSearchPath,

example code 4-21
searching for files 4-6, 4-18
searching for files based on extended

attributes 5-14
searching for files based on their extended

attributes 5-14
searching paths for files 4-20
setting a new file's size with DosOpen 4-8
setting drive information 4-2
setting the current directory 4-2
setting the current drive 4-2
setting the default drive 4-2
setting the state of a file handle 4-16
setting the state of a file handle, example

code 4-17
sharing files 4-5, 4-8, 4-9
standard error file handle 4-21, 4-22
standard file handles, duplicating 4-22
standard file handles, redirecting 4-22
standard input file handle 4-21
standard 1/0 devices, file 1/0 4-6
standard output file handle 4-21, 4-22
stderr 4-21, 4-22
stdin 4-21
stdout 4-21, 4-22
summary of functions and data structures 4-23
unlocking file regions 4-5
using file commands 4-7
write verification switch 4-2
write-through flag 4-11
writing to files 4-12
writing to standard output, example code 4-22

file names 3-1
case sensitivity

FAT file names 3-2
HPFS file names 3-3
IFS file names 3-3

conventions and general rules 3-1
device names 3-9
editing file names using metacharacters 3-7
FAT file name format 3-2
FAT file name length 3-2
FAT file names 3-1, 3-2
FAT file names, invalid characters 3-3
FAT file names, permissible characters 3-3
FAT file system file names 2-2
FAT file-naming rules 3-2

file names (continued)
file-naming conventions and general rules 3-1
file-naming rules for installable file system 3-3
functions

DosCopy 3-5, 3-8
DosEditName 3-6, 3-7, 3-8
DosExecPgm 3-9
DosFindFirst 3-3, 3-4, 3-6, 3-8
DosFindNext 3-4, 3-6, 3-8
DosMove 3-3, 3-8
DosOpen 3-9
DosQueryCurrentDir 3-5
DosQueryFHState 3-9
DosQuerySyslnfo 3-1
DosSetCurrentDir 3-5

global file name characters 3-6
High Performance File System file names 2-3
HPFS file name length 3-3
HPFS file names 3-1, 3-3
HPFS file names, permissible characters 3-3
IFS file name length 3-3
IFS file names, permissible characters 3-4
long file names 2-2, 3-4
metacharacters 3-6, 3-7, 3-8, 4-4, 4-5, 4-11
metacharacters in file searches 4-6, 4-18, 4-20
moving files with long names 3-5
on the command line 3-9
quotation characters 3-8
searching for files using metacharacters 3-7
transforming file names using metacharacters 3-8
user input of 3-8
8.3 file names 2-2

file systems 2-1
about 2-1
accessing devices through the file system 2-1
additional control functions 4-1
applications that do and don't recognize EAs 5-17
ASCII data type 5-3
ASN.1 data type 5-3
attaching a drive to a remote file system driver,

example code 2-9
attaching and detaching 2-8
binary data type 5-3
bit map data type 5-3
character devices, file 110 with 4-6
clock device, file 110 with 4-6
COM device, file 110 with 4-6
communicating with 2-12
communicating with a file system driver, example

code 2-13
console device, file 110 with 4-6
constants
creating 5-15
critical 5-17
data structures

EAOP2, extended attribute 5-15, 5-16, 5-19
FEA2List, extended attribute 5-15, 5-16, 5-19
FEA2, extended attribute 5-15, 5-16, 5-18, 5-19
FSALLOCATE 2-16

file systems (continued)
data structures (continued)

FSINFO 2-16
FSQBUFFER2 2-16
FSQBUFFER2 (in code) 2-10
GEA2List, extended attribute 5-15, 5-16, 5-19
GEA2, extended attribute 5-15, 5-16, 5-19
table of data structures 2-16

detaching and attaching 2-8
determining the maximum path length 4-6
device names 3-9
devices 4-6
EA's code page 5-4
editing file names using metacharacters 3-7
extended attributes 5-1

ASN.1 data type 5-5
controlling access to 5-14
creating 5-14
critical 5-17
data structure descriptions 5-15
data type conventions 5-3
data types 5-3
defining for a new file 5-14
defining for an existing file 5-14
examining 5-14
extended attribute operation (EAOP2) data

structure 5-16
full extended attribute (FEA2) data

structures 5-15
get extended attribute (GEA2) data

structure 5-16
INCLUDE data type 5-6
managing 5-14
multi-valued data types 5-4
multi-valued, multi-typed (MVMT) data type 5-4
multi-valued, single-typed (MVST) data type 5-5
naming conventions 5-6
non-critical 5-17
preserving 5-16
protecting 5-17
querying 5-14
searching for 5-18
searching for files based on their extended

attributes 5-14
sharing 5-14
single-valued data types 5-5
standard extended attributes (SEA) 5-6
summary of data structures 5-19
supporting 5-18
table of data structures 5-19
.ASSOCTABLE 5-7, 5-9, 5-13
.CODEPAGE 5-10
.COMMENT 5-10
.HISTORY 5-10
.ICON 5-11
.KEYPHRASES 5-12
.LONGNAME 5-12
.SUBJECT 5-12
.TYPE 5-7, 5-13

Index X-15

file systems (continued)
extended attributes (continued)

.TYPE, used to determine a default icon 5-11

.VERSION 5-14
FAT

file names 3-2
file-naming rules 3-2

FAT file system 2-2
FEA_NEEDEA, extended attribute flag 5-18
file names 3-1

metacharacters 3-6, 3-7, 3-8, 4-4, 4-5, 4-11
metacharacters in file searches 4-6, 4-18, 4-20

file systems that support EAs 5-16
file-naming conventions and general rules 3-1
functions

DosCreateDir 5-14
DosDevlOCtl 2-12
DosEnumAttribute 5-14, 5-15, 5-16
DosFindFirst 5-2, 5-14, 5-18
DosFindNext 5-2
DosFSAttach 2-5, 2-8, 2-16
DosFSCtl 2-9, 2-12, 2-16
DosOpen 2-7, 5-14
DosQueryFilelnfo 2-11, 5-1, 5-2, 5-14, 5-15, 5-16
DosQueryFSAttach 2-9, 2-16
DosQueryFSlnfo 2-10, 2-16
DosQueryPathlnfo 5-1, 5-2, 5-14, 5-15, 5-16
DosResetBuffer 2-14, 2-16
DosSetFilelnfo 2-11, 5-1, 5-14, 5-15, 5-16
DosSetFSlnfo 2-10, 2-16
DosSetPathlnfo 5-1, 5-14, 5-15, 5-16
DosShutdown 2-14, 2-16
DosWrite (in code) 2-15
table of functions 2-16

global file name characters 3-6
High Performance File System 2-2, 2-3

HPFS file names 3-3
High Performance File System driver, HPFS.IFS 2-4
High Performance File System lazy-write startup

program, STARTLW.DLL 2-4
High Performance File System lazy-write utility,

CACHE.EXE 2-4
High Performance File System utility dynamic link

library, UHPFS.DLL 2-4
icon data type 5-3
INCLUDE data type 5-3
installable file system naming conventions and

general rules 3-1
installable file systems 2-2
installable file systems (IFS)

file-naming rules 3-3
keyboard device, file 110 with 4-6
length-preceded data types 5-4
level 1 information 5-1
local and remote 2-5
local file systems 2-8
long file names 3-4
losing 5-16

X-16 OS/2 2.0 Programming Guide-Volume I

file systems (continued)
marking as critical 5-18
maximum path length 4-6
metafile data type 5-3
mouse device, file 110 with 4-6
moving files with long names 3-5
multi-valued, multi-typed (MVMT) data type 5-3
multi-valued, single-typed (MVST) data type 5-3
non-critical 5-17
null device, file 110 with 4-6
obtaining information about 2-10
obtaining information about a file, example

code 2-12
obtaining information about an attached file

system 2-9
obtaining information about an attached file system,

example code 2-10
obtaining information about files 2-11
obtaining information about the file system, example

code 2-11
operations on 5-16
operations, non-atomic 5-14
pointer device, file 110 with 4-6
preparing for system shutdown 2-14
preparing to turn off power to the system, example

code 2-14
printer device, file 110 with 4-6
pseudocharacter devices, file 110 4-6
querying the file system driver name 2-9
querying values 5-15, 5-16
reading 5-2
remote and local 2-5
remote file systems 2-8
screen device, file 110 with 4-6
searching for files using metacharacters 3-7
separating EAs from their files with EAUTIL 5-16
setting 5-15
standard extended attributes (SEA) 5-2
standard 1/0 devices, file 110 4-6
summary of functions and data structures 2-16
transforming file names using metacharacters 3-8
types of file systems 2-2
using 2-8
utilities 2-7
writing the buffers to the device, example

code 2-15
file write-through mode, pipes 9-11
FILEFINDBUF, file management data structure 4-25
FILEFINDBUF, file management data structure (in

code) 4-19
FILELOCK, file management data structure 4-25
files 2-1

access rights 4-8, 4-9
applications that do and don't recognize EAs 5-17
ASCII data type 5-3
ASN.1 data type 5-3
binary data type 5-3
bit map data type· 5-3

files (continued)
changing sizes 4-5
closing 4-14
constants
copying 4-4
creating 4-7, 5-15
critical 5-17
data structures

DENA1 4-24
EAOP2, extended attribute 5-15, 5-16, 5-19
FDATE 4-24
FEA2List, extended attribute 5-15, 5-16, 5-19
FEA2, extended attribute 5-15, 5-16, 5-18, 5-19
FILEFINDBUF 4-25
FILEFINDBUF (in code) 4-19
FILELOCK 4-25
Fl LEST A TUS 4-25
FTIME 4-25
GEA2List, extended attribute 5-15, 5-16, 5-19
GEA2, extended attribute 5-15, 5-16, 5-19
table of data structures 4-24
VOLUMELABEL 4-25

deleting 4-2, 4-5
EA's code page 5-4
end-of-file 4-4
extended attributes 5-1

ASN.1 data type 5-5
controlling access to 5-14
creating 5-14
critical 5-17
data structure descriptions 5-15
data type conventions 5-3
data types 5-3
defining 4-8
defining for a new file 5-14
defining for an existing file 5-14
examining 5-14
extended attribute operation (EAOP2) data

structure 5-16
full extended attribute (FEA2) data

structures 5-15
get extended attribute (GEA2) data

structure 5-16
INCLUDE data type 5-6
managing 5-14
multi-valued data types 5-4, 5-5
multi-valued, multi-typed (MVMT) data type 5-4
multi-valued, single-typed (MVST) data type 5-5
naming conventions 5-6
non-critical 5-17
preserving 5-16
protecting 5-17
querying 5-14
searching for 5-18
searching for files based on their extended

attributes 5-14
sharing 5-14
standard extended attributes (SEA) 5-6
summary of data structures 5-19

files (continued)
extended attributes (continued)

supporting 5-18
table of data structures 5-19

FEA_NEEDEA, extended attribute flag 5-18
file attributes 4-8

archived 4-3
file attributes 4-3
hidden 4-3
read-only 4-3
system 4-3

file handles 4-3
closing 4-14
determining the state 4-16
determining type 4-17
device handles 4-4
duplicating 4-3, 4-15
duplicating handles of locked files 4-5
duplicating the standard file handles 4-22
flushing cache buffers for a file handle 2-14
inheritance 4-11
inheriting 4-3, 4-16
pipe handles 4-4
querying state 4-11
redirecting standard 110 file handles 4-3, 4-15
redirecting standard 110 file handles for a child

process 4-16
redirecting the standard file handles 4-22
setting the maximum number of 4-3
setting the state 4-16
standard error file handle 4-21, 4-22
standard file handles, duplicating 4-22
standard file handles, redirecting 4-22
standard input file handle 4-21
standard 110 file handles 4-3, 4-15
standard output file handle 4-21, 4-22
stderr 4-21, 4-22
stdin 4-21
stdout 4-21, 4-22

file 110 4-6
file pointer 4-4

moving the file pointer for duplicated file
handles 4-16

file pointer, moving 4-13
file systems that support EAs 5-16
finding 4-6, 4-18
finding files along a search path 4-20
functions

DosClose 4-23
DosCopy 4-23
DosCreateDir 4-24, 5-14
DosDelete 4-23
DosDeleteDir 4-24
DosDupHandle 4-24
DosEditName 4-23
DosEnumAttribute 4-24, 5-14, 5-15, 5-16
DosFindClose 4-24
DosFindFirst 4-24, 5-2, 5-14, 5-18
DosFindNext 4-24, 5-2

Index X-17

files (continued)
functions (continued)

DosMove 4-23
DosOpen 4-23, 5-14
DosQueryCurrentDir 4-24
DosQueryCurrentDisk 4-24
DosQueryFHState 4-24
DosQueryFilelnfo 4-24, 5-1, 5-2, 5-14, 5-15, 5-16
DosQueryHType 4-24
DosQueryPathlnfo 4-24, 5-1, 5-2, 5-14, 5-15, 5-16
DosQuerySyslnfo 4-24
DosQueryVerify 4-24
DosRead 4-23
DosScanEnv 4-24
DosSearchPath 4-24
DosSetCurrentDir 4-24
DosSetDefaultDisk 4-24
DosSetFHState 4-24
DosSetFilelnfo 4-23, 5-1, 5-14, 5-15, 5-16
DosSetFilelocks 4-23
DosSetFilePtr 4-23
DosSetFileSize 4-23
DosSetMaxFH 4-24
DosSetPathlnfo 4-23, 4-24, 5-1, 5-14, 5-15, 5-16
DosSetVerify 4-23
DosWrite 4-23
table of functions 4-23

icon data type 5-3
icon/file type association 5-7
INCLUDE data type 5-3
length-preceded data types 5-4
level 1 file information 5-1
level 1 information 5-1
locating 4-6, 4-18
locating files along a search path 4-20
locking file regions 4-5
losing 5-16
marking as critical 5-18
maximum number per process, default 4-3
metafile data type 5-3
moving 4-2, 4-5
moving the file pointer 4-4, 4-13
multi-valued, multi-typed (MVMT) data type 5-3
multi-valued, single-typed (MVST) data type 5-3
non-critical 5-17
obtaining 4-9
obtaining information about 2-11
opening 4-9
operations on 5-16
operations, non-atomic 5-14
ownership flag 5-7
querying values 5-15, 5-16
reading 5-2
reading from 4-11
searching for 4-6, 4-18
searching for based on extended attributes 5-14
searching paths for files 4-20
separating EAs from their files with EAUTIL 5-16

X-18 OS/2 2.0 Programming Guide-Volume I

files (continued)
setting 5-15
sharing 4-8, 4-9
standard extended attributes (SEA) 5-2, 5-6
standard extended attributes (SEA)

.ASSOCTABLE 5-7, 5-9, 5-13

.CODEPAGE 5-10

.COMMENT 5-10

.HISTORY 5-10

.ICON 5-11

. KEYPH RAS ES 5-12

.LONGNAME 5-12

.SUBJECT 5-12

.TYPE 5-7, 5-13

.TYPE, used to determine a default icon 5-11

.VERSION 5-14
summary of functions and data structures 4-23
to devices 4-9
unlocking file regions 4-5
using file commands 4-7
writing to 4-12

FILESTATUS, file management data structure 4-25
final closing of event semaphores 8-8
final closing of mutex semaphores 8-17
final closing of muxwait semaphores 8-22
finding all *.C files, example code 4-19
finding files 4-6, 4-18
finding files along a search path 4-20
finding files using metacharacters 3-7
fixed-high priority threads 7-11
flat memory address space 6-1
floppy drives 2-6
flushing cache buffers 2-14
flushing the internal write buffer 4-4
foreground sessions 7-7
FORMAT 2-7
format of multi-valued, multi-typed extended

attributes 5-4
format of multi-valued, single-typed extended

attributes 5-5
format of the entries in the .ASSOCTABLE extended

attribute 5-8
format of the .HISTORY extended attribute 5-11
format of the . ICON extended attribute 5-11
formatting a drive 2-6
freeing

a block of memory from a heap, example code 6-17
a memory object 6-13
memory 6-13
memory blocks in a heap 6-16

FSALLOCATE, file system data structure 2-16
FSINFO, file system data structure 2-16
FSQBUFFER2, file system data structure 2-16
FSQBUFFER2, file system data structure (in

code) 2-10
FTIME, file management data structure 4-25
full screen applications 7-7

full-screen applications, using text files for
messages 15-1

functions
device 110 data structure list 14-6
DosAcknowledgeSignalException 13-8, 13-21
DosAddMuxWaitSem 8-25, 8-26, 8-27
DosAllocMem 6-6, 6-9, 6-10, 6-12, 6-14, 6-20, 10-6
DosAllocMem (in code) 6-10, 6-11, 6-13, 6-14
DosAllocSharedMem 6-18, 6-19, 6-20, 10-5
DosAllocSharedMem (in code) 6-18, 6-19
DosAsyncTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosAsyncTimer (in code) 11-5
DosBeep 14-1, 14-6
DosBeep (in code) 7-25, 7-33
DosCallNPipe 9-4, 9-5, 9-6, 9-20
DosClose 4-14, 4-15, 4-23, 9-8, 9-21, 14-1, 14-2, 14-6
DosClose (in code) 4-12, 4-13, 4-14, 4-15, 9-9, 9-14,

14-4, 14-5, 14-6
DosCloseEventSem 8-6, 8-7, 8-8, 8-27
DosCloseEventSem (in code) 8-8
DosCloseMutexSem 8-13, 8-16, 8-17, 8-20, 8-25,

8-27
DosCloseMutexSem (in code) 8-15, 8-17
DosCloseMuxWaitSem 8-21, 8-22, 8-27
DosCloseQueue 10-3, 10-6, 10-11, 10-12
DosConnectNPipe 9-3, 9-5, 9-11, 9-14, 9-20
DosCopy 3-5, 3-8, 4-4, 4-23
DosCreateDir 4-2, 4-24, 5-14
DosCreateEventSem 8-5, 8-6, 8-27, 9-6, 10-8, 10-10,

11-4, 11-5, 11-6
DosCreateEventSem (in code) 8-6, 8-19, 11-5
DosCreateMutexSem 8-12, 8-13, 8-14, 8-27
DosCreateMutexSem (in code) 8-13
DosCreateMuxWaitSem 8-18, 8-20, 8-23, 8-27, 9-7
DosCreateMuxWaitSem (in code) 8-19
DosCreateNPipe 4-11, 9-2, 9-3, 9-5, 9-10, 9-12, 9-14,

9-15, 9-16, 9-18, 9-20
DosCreateNPipe (in code) 9-11
DosCreatePipe 9-2, 9-7, 9-8, 9-9, 9-21
DosCreatePipe (in code) 9-7, 9-9
DosCreateQueue 10-4, 10-6, 10-7, 10-9, 10-12
DosCreateQueue (in code) 10-4
DosCreateThread 7-3, 7-10, 7-24, 7-25, 7-29, 7-37,

13-13, 13-14
DosCreateThread (in code) 7-25, 7-30, 7-32
DosDebug 17-1, 17-2, 17-4, 17-5
DosDebug (in code) 17-4
DosDelete 4-2, 4-5, 4-23
DosDelete (in code) 12-3
DosDeleteDir 4-2, 4-24
DosDeleteMuxWaitSem 8-20, 8-21, 8-25, 8-26, 8-27
DosDevConfig 14-1, 14-6
DosDevlOCtl 2-12, 4-11, 14-1, 14-2, 14-3, 14-4, 14-5,

14-6
DosDevlOCtl (in code) 14-5, 14-6
DosDisConnectNPipe 9-4, 9-5, 9-11, 9-14, 9-20
DosDisConnectNPipe (in code) 9-20
DosDupHandle 4-3, 4-15, 4-22, 4-24, 9-8, 9-9, 9-14,

9-21

functions (continued)
DosDupHandle (in code) 4-23, 9-9
DosEditName 3-6, 3-7, 3-8, 4-23
DosEnterCritSec 7-12, 7-28, 7-29, 7-37
DosEnterCritSec (in code) 7-28
DosEnterMustComplete 13-10, 13-21
DosEnumAttribute 4-24, 5-14, 5-15, 5-16
DosErrClass 12-1, 12-2, 12-4
DosErrClass (in code) 12-3
DosError 12-1, 12-2, 12-3, 12-4, 13-13
DosError (in code) 12-3, 13-20
DosExecPgm 3-9, 4-5, 4-11, 7-4, 7-5, 7-15, 7-16,

7-17, 7-20, 7-23, 7-24, 7-37, 9-1, 9-8, 9-9, 13-13,
13-14, 17-1

DosExecPgm (in code) 7-15, 7-16, 7-17, 7-18, 7-19,
7-22, 7-31, 9-9

DosExit 7-4, 7-5, 7-19, 7-20, 7-23, 7-30, 7-31, 7-37,
13-4, 13-13, 13-14

DosExit (in code) 7-16, 7-20, 7-23, 7-25, 7-31, 7-33,
9-14, 10-6

DosExitCritSec 7-12, 7-28, 7-29, 7-37
DosExitCritSec (in code) 7-28
DosExitlist 7-4, 7-6, 7-22, 7-23, 7-24, 7-30, 7-37,

13-13
DosExitlist (in code) 7-23
DosExitMustComplete 13-10, 13-21
DosFindClose 4-6, 4-19, 4-24
DosFindClose (in code) 4-19
DosFindFirst 3-3, 3-4, 3-6, 3-8, 4-6, 4-18, 4-19, 4-24,

5-2, 5-14, 5-18
DosFindFirst (in code) 4-19
DosFindNext 3-4, 3-6, 3-8, 4-6, 4-18, 4-19, 4-24, 5-2
DosFindNext (in code) 4-19
DosFreeMem 6-6, 6-13, 6-15, 6-17, 6-20, 7-8, 10-5
DosFreeMem (in code) 6-13
DosFSAttach 2-5, 2-8, 2-16
DosFSAttach (in code) 2-9
DosFSCtl 2-9, 2-12, 2-16, 4-1
DosFSCtl (in code) 2-13
DosGetDateTime 11-3
DosGetlnfoBlocks 7-18, 7-25, 7-26, 7-37, 13-16
DosGetlnfoBlocks (in code) 7-18, 7-26
DosGetMessage 15-1, 15-2, 15-5, 15-6
DosGetMessage (in code) 15-2
DosGetNamedSharedMem 6-18, 6-20, 10-5
DosGetNamedSharedMem (in code) 6-18
DosGetSharedMem 6-18, 6-19, 6-20
DosGetSharedMem (in code) 6-19
DosGiveSharedMem 6-18, 6-19, 6-20, 10-5, 10-7
DoslnsertMessage 15-1, 15-3, 15-5, 15-6
DoslnsertMessage (in code) 15-4
DosKillProcess 7-20, 7-21, 7-23, 7-37, 13-1, 13-3,

13-6, 13-7
DosKillProcess (in code) 7-20
DosKillThread 7-25, 7-31, 7-32, 7-37
DosKillThread (in code) 7-32
DosMapCase 16-6, 16-7
DosMove 3-3, 3-8, 4-2, 4-5, 4-23

Index X-19

functions (continued)
DosOpen 2-7, 3-9, 4-7, 4-8, 4-9, 4-10, 4-11, 4-16,

4-23, 5-14, 9-21, 12-1, 14-1, 14-6
DosOpen (in code) 2-15, 4-8, 4-9, 4-12, 4-13, 4-14,

4-15, 4-20, 4-21, 4-23, 7-20, 9-14, 14-4, 14-5, 14-6
DosOpenEventSem 8-5, 8-6, 8-7, 8-9, 8-10, 8-11,

8-27, 11-5, 11-6
DosOpenEventSem (in code) 8-7
DosOpenMutexSem 8-12, 8-13, 8-14, 8-17, 8-26,

8-27
DosOpenMutexSem (in code) 8-15
DosOpenMuxWaitSem 8-18, 8-19, 8-20, 8-21, 8-22,

8-25, 8-26, 8-27
DosOpenMuxWaitSem (in code) 8-21
DosOpenQueue 10-3, 10-5, 10-6, 10-12
DosOpenQueue (in code) 10-6
DosPeekNPipe 9-4, 9-15, 9-19, 9-21
DosPeekNPipe (in code) 9-19
DosPeekQueue 10-3, 10-4, 10-7, 10-9, 10-10, 10-12
DosPeekQueue (in code) 10-10
DosPhysicalDisk 14-1, 14-6
DosPostEventSem 8-6, 8-7, 8-9, 8-10, 8-27
DosPostEventSem (in code) 8-6, 8-10
Dos Pu rgeQueue 10-3, 10-11, 10-12
DosPurgeQueue (in code) 10-11
DosPutMessage 15-1, 15-5, 15-6
DosPutMessage (in code) 15-5
DosQueryCollate 16-7
DosQueryCp 16-5, 16-7
DosQueryCp (in code) 16-5
DosQueryCtrylnfo 16-7
DosQueryCurrentDir 3-5, 4-2, 4-24
DosQueryCurrentDisk 4-2, 4-24
DosQueryDBCSEnv 16-6, 16-7
DosQueryDBCSEnv (in code) 16-6
DosQueryEventSem 8-10, 8-11, 8-26, 8-27, 10-9
DosQueryEventSem (in code) 8-12
DosQueryFHState 3-9, 4-11, 4-16, 4-24
DosQueryFHState (in code) 4-17
DosQueryFilelnfo 2-11, 4-3, 4-24, 5-1, 5-2, 5-14,

5-15, 5-16
DosQueryFilelnfo (in code) 2-12
DosQueryFileMode 4-8
DosQueryFSAttach 2-9, 2-16
DosQueryFSAttach (in code) 2-10
DosQueryFSlnfo 2-10, 2-16, 4-2
DosQueryFSlnfo (in code) 2-11
DosQueryHType 4-17, 4-24
DosQueryHType (in code) 4-18
DosQueryMem 6-8, 6-12, 6-20, 13-19
DosQueryMem (in code) 6-13
DosQueryMessageCp 15-1, 15-5, 15-6, 16-7
DosQueryMessageCp (in code) 15-6
DosQueryMutexSem 8-14, 8-17, 8-18, 8-20, 8-21,

8-27
DosQueryMuxWaitSem 8-21, 8-25, 8-26, 8-27
DosQueryNPHState 9-4, 9-17, 9-21
DosQueryNPHState (in code) 9-17

X-20 OS/2 2.0 Programming Guide-Volume I

functions (continued)
DosQueryNPipelnfo 9-17, 9-18, 9-19, 9-21
DosQueryNPipelnfo (in code) 9-18
DosQueryNPipeSemState 9-5, 9-6, 9-7, 9-21
DosQueryPathlnfo 4-24, 5-1, 5-2, 5-14, 5-15, 5-16
DosQueryQueue 10-3, 10-4, 10-6, 10-12
DosQuerySyslnfo 3-1, 4-6, 4-24, 11-3
DosQueryVerify 4-2, 4-24
DosRaiseException 13-8, 13-9, 13-10, 13-21
DosRead 4-6, 4-11, 4-12, 4-16, 4-21, 4-23, 9-2, 9-21,

14-1, 14-6
DosRead (in code) 4-12, 4-14, 4-15, 4-21, 4-22, 4-23,

9-9, 9-14, 14-4
DosReadQueue 7-8, 7-9, 10-3, 10-4, 10-8, 10-12
DosReadQueue (in code) 10-8
DosReleaseMutexSem 8-14, 8-15, 8-16, 8-17, 8-27
DosReleaseMutexSem (in code) 8-15, 8-16
DosRequestMutexSem 8-3, 8-12, 8-13, 8-14, 8-15,

8-16, 8-17, 8-27
DosRequestMutexSem (in code) 8-15
DosResetBuffer 2-14, 2-16, 4-4, 9-5
DosResetBuffer (in code) 2-15
DosResetEventSem 8-8, 8-9, 8-10, 8-27, 11-2, 11-5,

11-6, 11-7
DosResetEventSem (in code) 8-9
DosResumeThread 7-3, 7-24, 7-27, 7-37
DosResumeThread (in code) 7-28
DosScanEnv 4-20, 4-24
DosScanEnv (in code) 4-20
DosSearchPath 4-20, 4-24
DosSearchPath (in code) 4-20, 4-21
DosSelectSession 7-7, 7-8, 7-34, 7-35, 7-37, 17-1
DosSelectSession (in code) 7-36
DosSendSignalException 13-8, 13-21
DosSetCurrentDir 3-5, 4-2, 4-24
DosSetCurrentDisk 4-2
DosSetDateTime 11-3
DosSetDefaultDisk 4-2, 4-24
DosSetExceptionHandler 13-2, 13-7, 13-10, 13-16,

13-20, 13-21
DosSetFHState 4-16, 4-17, 4-24
DosSetFHState (in code) 4-17
DosSetFilelnfo 2-11, 4-3, 4-23, 5-1, 5-14, 5-15, 5-16
DosSetFileLocks 4-5, 4-6, 4-8, 4-16, 4-23
DosSetFileMode 4-8
DosSetFilePtr 4-4, 4-6, 4-13, 4-14, 4-16, 4-23
DosSetFilePtr (in code) 4-14
DosSetFileSize 4-5, 4-23
DosSetFSlnfo 2-10, 2-16, 4-2
DosSetMaxFH 4-3, 4-24
DosSetMem 6-6, 6-11, 6-12, 6-15, 6-20, 13-19
DosSetMem (in code) 6-11, 6-12
DosSetNPHState 9-5, 9-14, 9-15, 9-16, 9-18, 9-21
DosSetNPipeSem 9-5, 9-6, 9-7, 9-21
DosSetPathlnfo 4-23, 4-24, 5-1, 5-14, 5-15, 5-16
DosSetPriority 7-9, 7-10, 7-11, 7-12, 7-13, 7-26, 7-27,

7-37
DosSetPriority (in code) 7-26

functions (continued)
DosSetProcessCp 16-6, 16-7
DosSetSession 7-7, 7-8, 7-9, 7-34, 7-35, 7-37
DosSetSession (in code) 7-34, 7-35
DosSetSigHandler 13-8
DosSetSignalExceptionFocus 13-6, 13-7, 13-8,

13-21
DosSetVerify 4-2, 4-23
DosShutdown 2-14, 2-16
DosShutdown (in code) 2-14
DosSleep 7-10, 7-27, 11-1, 11-2, 11-3, 11-4, 11-7
DosSleep (in code) 7-27, 7-36, 11-2
DosStartSession 7-7, 7-8, 7-9, 7-32, 7-33, 7-34, 7-36,

7-37, 13-13, 13-14, 17-1
DosStartSession (in code) 7-33
DosStartTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosStartTimer (in code) 11-6
DosStopSession 7-7, 7-8, 7-9, 7-36, 7-37
DosStopSession (in code) 7-36
DosStopTimer 11-3, 11-5, 11-7
DosStopTimer (in code) 11-6
DosSubAllocMem 6-6, 6-9, 6-14, 6-15, 6-16, 6-20
DosSubAllocMem (in code) 6-14, 6-16
DosSubFreeMem 6-9, 6-14, 6-16, 6-20
DosSubFreeMem (in code) 6-14, 6-17
DosSubSetMem 6-9, 6-14, 6-15, 6-17, 6-20
DosSubSetMem (in code) 6-14, 6-15
DosSubUnsetMem 6-14, 6-15, 6-17, 6-20
DosSubUnsetMem (in code) 6-17
DosSuspendThread 7-3, 7-27, 7-37
DosSuspendThread (in code) 7-28
DosTransactNPipe 9-4, 9-5, 9-6, 9-20, 9-21
DosUnsetExceptionHandler 13-1, 13-20, 13-21
DosUnwindException 13-10, 13-11, 13-12, 13-21
DosWaitChild 7-5, 7-15, 7-19, 7-20, 7-21, 7-23, 7-30,

7-37
DosWaitChild (in code) 7-19, 7-22
DosWaitEventSem 8-5, 8-6, 8-7, 8-8, 8-9, 8-1 O, 8-11,

8-27, 9-6, 10-9, 10-11, 11-5, 11-7
DosWaitEventSem (in code) 8-7, 8-11, 11-5
DosWaitMuxWaitSem 8-21, 8-22, 8-24, 8-26, 8-28,

9-6, 9-7, 10-3
DosWaitMuxWaitSem (in code) 8-19, 8-23
DosWaitNPipe 9-3, 9-13, 9-14, 9-21
DosWaitThread 7-3, 7-29, 7-30, 7-37
DosWaitThread (in code) 7-30
DosWrite 4-8, 4-11, 4-13, 4-15, 4-16, 4-22, 4-23, 9-2,

9-21, 13-19, 14-1, 14-6
DosWrite (in code) 2-15, 4-13, 4-22, 4-23, 7-20, 7-23,

7-25, 7-30, 7-33, 9-9, 9-14, 10-6, 14-4
DosWriteQueue 10-3, 10-4, 10-6, 10-7, 10-12
DosWriteQueue (in code) 10-7
table of code page management functions 16-7
table of debugging functions 17-5
table of device 110 functions 14-6
table of error management functions 12-4
table of event semaphore functions 8-27
table of exception handling functions 13-21

functions (continued)
table of file management functions 4-23
table of file system functions 2-16
table of memory management functions 6-20
table of message management functions 15-6
table of mutex semaphore functions 8-27
table of muxwait semaphore functions 8-27
table of pipe functions 9-20
table of process management functions 7-37
table of program execution control functions 7-37
table of queue functions 10-12
table of semaphore functions 8-27
table of session management functions 7-37
table of thread management functions 7-37
table of timer functions 11-7

G
GEA2List, extended attribute data structure 5-15, 5-16,

5-19
GEA2, extended attribute data structure 5-15, 5-16,

5-19
general rules for file-naming conventions 3-1
getting

a pointer to named shared memory, example
code 6-18

code page and language identifiers associated with
a message file, example code 15-6

collating information for SORT 16-7
current directory 4-2
drive information 4-2
extended attribute values 5-15, 5-16
extended attributes for a file 5-14
file attributes 4-3
file information 2-11
formatting information 16-7
handle type 4-17
information about a file system 2-10
information about a memory page range 6-8
information about a named pipe using

DosQueryNPHState, example code 9-17
information about a pipe using DosQueryNPipelnfo,

example code 9-18
information about an attached file system 2-9
information about queue elements 10-4
information about queues 10-4
information on a mutex semaphore 8-17
information on a muxwait semaphore 8-26
information on an event semaphore 8-11
memory access protection 6-12
memory al location state 6-12
named pipe status 9-17
the case map string 16-6
the COM port transmission status 14-6
the current code page 16-5
the current directory 4-2
the current drive 4-2
the DBCS environment vector 16-6

Index X-21

getting (continued)
the default drive 4-2
the number of queue elements 10-4
the state of a file handle 4-16
the transmission status of COM1, example

code 14-6
write verification switch 4-2

global file name characters 3-6, 3-7, 3-8
See also metacharacters

GpiLoadBitmap and icon bitmaps 5-11
guard page entered exception 6-7

H
handle-based access permission 5-15
handles, file

See file handles
handles, semaphore 8-4
handle, determining type 4-17
handling exceptions

See exception management
handling signal exceptions 13-7
hard errors 13-13
heaps 6-9
heaps (memory suballocation)

allocating 6-14
allocating a block from 6-15
ending the use of 6-17
freeing a block from 6-16
increasing the size of 6-14
managing 6-9
suballocating memory into heaps 6-14

hidden file attribute 4-3, 4-8
High Performance File System 2-5
high performance file system data caching 2-4
High Performance File System disks, accessing 2-5
High Performance File System (HPFS) 2-2, 2-3, 2-6
High Performance File System (HPFS)

caching data 2-3
file names 2-3, 3-3
file system driver, HPFS.IFS 2-4
lazy-write startup program, STARTLW.DLL 2-4
lazy-write utility, CACHE.EXE 2-4
least recently used data-caching algorithm 2-3
permissible characters in file names 3-3
utility dynamic link library, UHPFS.DLL 2-4

HPFS
See High Performance File System (HPFS)

HPFS.IFS, High Performance File System driver 2-4

Icon Editor 5-11
icon/file type association 5-7
idle-time threads 7-11
IFS

See installable file systems

X-22 OS/2 2.0 Programming Guide-Volume I

IFS file names, permissible characters 3-4
in and out pointers for unnamed pipes 9-1
in-memory substitution, message text strings 15-3
INCLUDE extended attribute data type 5-6
including one extended attribute in another 5-6
increasing the size of heaps 6-14
increasing the size of suballocated memory, example

code 6-15
independent sessions

See unrelated sessions
inheritance

by child processes 7-4
by threads 7-3
file handles 4-5, 4-11

inheritance modes, pipes 9-11
installable file systems 2-2

file-naming rules 3-3
High Performance File System 2-2, 2-3, 2-6
High Performance File System driver, HPFS.IFS 2-4
High Performance File System lazy-write startup

program, STARTLW.DLL 2-4
High Performance File System lazy-write utility,

CACHE.EXE 2-4
High Performance File System utility dynamic link

library, UHPFS.DLL 2-4
installation of 2-2

installable file systems (IFS) 2-3
instance count, pipes 9-12
instances of a pipe, multiple 9-12
internal write buffer 4-4
internal write buffer, flushing 4-4
IOCtl category and function codes 14-3
IOCtl commands 14-3
IOCtl interface 14-3
IOCtl parameter and data packets 14-3
1/0 redirection using unnamed pipes 9-8

K
KBD$, device name 3-9
keyboard device, file 1/0 with 4-6

L
language-specific versions of NLS-enabled

applications 16-2
lazy writing, High Performance File System 2-3
least recently used data-caching algorithm, High

Performance Fi le System 2-3
least-recently-used (LRU), memory swapping

algorithm 6-4
least-recently-used (LRU), memory swapping algorithm
level 1 file information 2-11, 5-1
level-triggered semaphores 8-23, 8-24
limitations in suballocating memory 6-9
linear (memory) address space 6-1
LINECONTROL, device 110 data structure 14-7

linker module definition file, NEWFILES statement 3-4
listening state, pipes 9-5
local and remote file systems 2-5
local devices 2-8
local file system 2-8
locating files 4-6, 4-18
locating files along a search path 4-20
location of SWAPPER.DAT, the system swap file 6-5
locking and unlocking file regions 4-5
locking and unlocking regions in a file 4-8
logical drives 2-1, 2-5, 4-7
long file names 2-2, 3-3, 3-4
long file names, moving 3-5
looking at the contents of named pipes 9-19
losing extended attributes 5-16
LPT1, LPT2, LPT3, device names 3-9
LRU

See least-recently-used (LRU), memory swapping
algorithm

M
main thread 7-1, 7-3, 7-14
making a child session nonselectable, example

code 7-34
managing extended attributes 5-14
managing shared memory 6-9
marking extended attributes as critical 5-18
MaxAge parameter for CACHE.EXE 2-4
maximum path length 4-6
MEMMAN, disable memory swapping in

CONFIG.SYS 6-5
memory

about memory management 6-1
access 6-12

access protection attributes 6-7
attributes 6-7, 6-8
named shared memory 6-18
protection attributes 6-7
protection, querying 6-12
querying access attributes 6-8
unnamed shared memory 6-19

access protection 6-7
access protection attributes 6-7
allocating 6-4, 6-5, 6-6
allocating a block of memory from a heap 6-15
allocating a block of memory from a heap, example

code 6-16
allocating a heap 6-14
allocating and freeing memory, example code 6-13
allocating committed memory and decommitting part

of it, example code 6-11
allocating named shared memory, example

code 6-18
allocating private memory objects 6-10
allocating uncommitted memory and committing part

of it, example code 6-11
allocating 24576 bytes of unnamed shared memory,

example code 6-19

memory (continued)
allocation 6-8

a block of memory from a heap 6-15
attributes 6-8, 6-11
heaps 6-14
into heaps 6-14
named shared memory 6-18
querying allocation attributes 6-8
reallocation/resizing 6-6
unnamed shared memory 6-19

allocation attributes 6-11
attributes

access 6-7, 6-8
allocation 6-8, 6-11
execute access attribute 6-7
guard page access attribute 6-7
protection 6-7
querying access attributes 6-8
querying allocation attributes 6-8
read access attribute 6-7
setting access attributes of page ranges 6-7
write access attribute 6-7

blocks 6-9
blocks in a heap, freeing 6-16
committed 6-8
committing 6-4, 6-5, 6-6, 6-11

page ranges 6-11
constants

DOSSUB_INIT (in code) 6-14
fALLOC (in code) 6-10, 6-11, 6-13, 6-14, 6-18,

6-19
OBJ_GETTABLE 6-19
OBJ_GETTABLE (in code) 6-19
OBJ_GIVEABLE 6-19
PAG_COMMIT (in code) 6-11, 6-13
PAG_DECOMMIT (in code) 6-11
PAG_DEFAULT (in code) 6-11
PAG_EXECUTE 6-7, 6-8
PAG_GUARD 6-7, 6-8
PAG_READ 6-7, 6-8
PAG_READ (in code) 6-11, 6-18, 6-19
PAG_WRITE 6-7, 6-8
PAG_WRITE (in code) 6-11, 6-18, 6-19

creating private memory objects 6-10
decommitting 6-11
determining the allocation state of a memory object,

example code 6-13
disabling memory swapping 6-5
ending the use of a heap, example code 6-17
ending the use of the heap 6-17
flat address space 6-1
free 6-8
freeing

a block of memory from a heap, example
code 6-17

a memory object 6-13
memory blocks in a heap 6-16

functions
DosAllocMem 6-6, 6-9, 6-10, 6-12, 6-14, 6-20

Index X-23

memory (continued)
functions (continued)

DosAllocMem (in code) 6-10, 6-11, 6-13, 6-14
DosAllocSharedMem 6-18, 6-19, 6-20
DosAllocSharedMem (in code) 6-18, 6-19
DosFreeMem 6-6, 6-13, 6-15, 6-17, 6-20
DosFreeMem (in code) 6-13
DosGetNamedSharedMem 6-18, 6-20
DosGetNamedSharedMem (in code) 6-18
DosGetSharedMem 6-18, 6-19, 6-20
DosGetSharedMem (in code) 6-19
DosGiveSharedMem 6-18, 6-19, 6-20
DosQueryMem 6-8, 6-12, 6-20
DosQueryMem (in code) 6-13
DosSetMem 6-6, 6-11, 6-12, 6-15, 6-20
DosSetMem (in code) 6-11, 6-12
DosSubAllocMem 6-6, 6-9, 6-14, 6-15, 6-16, 6-20
DosSubAllocMem (in code) 6-14, 6-16
DosSubFreeMem 6-9, 6-14, 6-16, 6-20
DosSubFreeMem (in code) 6-14, 6-17
DosSubSetMem 6-9, 6-14, 6-15, 6-17, 6-20
DosSubSetMem (in code) 6-14, 6-15
DosSubUnsetMem 6-14, 6-15, 6-17, 6-20
DosSubUnsetMem (in code) 6-17
table of functions 6-20

getting a pointer to named shared memory, example
code 6-18

heaps 6-6, 6-9
allocating 6-14
limitations in suballocating memory 6-9
managing 6-9

heaps, allocating a block of memory from 6-15
heaps, ending the use of 6-17
heaps, increasing the size of 6-14
heaps, suballocating memory into 6-14
increasing the size of a heap 6-14
increasing the size of suballocated memory,

example code 6-15
limitations in suballocating memory 6-9
linear address space 6-1
managing 6-9
named 6-9
named shared memory 6-18
objects 6-3, 6-8

boundaries 6-3
characteristics 6-3
freeing 6-13
sizes 6-3
sparse 6-5, 6-6

overcommitment 6-4
page ranges 6-4

obtaining information about 6-8
paged 6-1
pages 6-3, 6-4, 6-8

access protection attributes 6-4
allocation states, committed or uncommitted 6-4
ownership states-private, shared, or free 6-4
protection attributes 6-4
uncommitted 6-4

X-24 OS/2 2.0 Programming Guide-Volume I

memory (continued)
private 6-8
process address space 6-1
protection 6-7, 6-8
protection attributes 6-7
protection violations 6-8
protection, changing 6-12
protection, establishing 6-12
querying memory access protection 6-12
querying memory allocation state 6-12
reallocation/resizing 6-6
recommended approach to memory

management 6-5
requesting 512 bytes of memory, example

code 6-10
resizing/reallocation 6-6
setting memory object size 6-10
setting read-only access for a region, example

code 6-12
shared 6-1, 6-8, 6-9

accessing named shared memory 6-18
accessing unnamed shared memory 6-19
allocating named shared memory 6-18
allocating unnamed shared memory 6-19
named shared memory 6-18
using 6-18

shared memory, using 6-18
sparse memory objects 6-11
suballocating and heaps 6-6
suballocating memory into heaps 6-14
suballocating memory, example code 6-14
suballocation and heaps 6-8, 6-14

limitations in suballocating memory 6-9
summary of functions 6-20
swapping 6-4, 6-5

disabling 6-5
user configuration of 6-5

swapping, user configuration 6-5
uncommitted 6-8
unnamed 6-9
unnamed shared memory 6-19
user configuration of memory swapping 6-5
using memory management 6-10
using shared memory 6-18
using suballocation and heaps 6-14
validating shared memory, example code 6-19
virtual 6-1

memory management 6-1
message files 15-1
message management 15-1

about 15-1
code page information associated with message

files 15-5
functions

DosGetMessage 15-1, 15-2, 15-5, 15-6
DosGetMessage (in code) 15-2
DoslnsertMessage 15-1, 15-3, 15-5, 15-6
DoslnsertMessage (in code) 15-4
DosPutiviessage 15-1, 15-5, 15-6

message management (continued)
functions (continued)

DosPutMessage (in code) 15-5
DosQueryMessageCp 15-1, 15-5, 15-6, 16-7
DosQueryMessageCp (in code) 15-6
table of functions 15-6

getting code page and language identifiers
associated with a message file, example
code 15-6

message retrieval 15-2
message string substitution 15-2
retrieving a message and substituting text-strings

for variables, example code 15-2
substituting text-strings for variables in a string in

memory, example code 15-4
summary of functions 15-6
text string substitution in memory 15-3
using 15-1
writing a message to the screen or to a file 15-5
writing an edited message to a file, example

code 15-5
metacharacters 3-6, 3-7, 3-8, 4-4, 4-5, 4-11

file name templates 3-6
semantics 3-6
used as edit metacharacters 3-6
used as search metacharacters 3-6

metacharacters, in file searches 4-6, 4-18, 4-20
modifying a WORD in a process being debugged,

example code 17-4
module definition file, NEWFILES 5-18
mouse device, file 110 with 4-6
MOUSE$, device name 3-9
moving

file pointer 4-13
files 4-2, 4-5
files with long names 3-5
the file pointer 4-4
the file pointer, example code 4-14

multi-valued extended attribute data types 5-4
multi-valued multi-typed extended attribute 5-5
multi-valued, multi-typed (MVMT) extended attribute

data type 5-4
multi-valued, single-type (MVST) extended attribute

data type 5-5
multiple event semaphores 8-24
multiple instances of a pipe 9-12
multiple mutex semaphores 8-24
multiple processes 7-1
multiple threads 7-1, 7-3
multiple wait (muxwait) semaphores 8-1, 8-3
multiprocessing

See program execution control
multiprocessing and multithreading 7-6
multitasking 4-5, 7-1

See also program execution control
multitasking with threads and multitasking with

processes 7-6

multithreading
See program execution control

multithreading and multiprocessing 7-6
must-complete sections 13-1, 13-9
mutual exclusion semaphores 8-2
mutual exclusion (mutex) semaphores 8-1, 8-20, 13-10
muxwait semaphores 8-3
MVMT extended attribute containing three ASCII

names 5-5
My_Application's .TYPE extended attribute 5-9
My_Company My_Application Spreadsheet's file

type 5-13

N
named pipes 9-2

access rights 4-10
accessing 9-13
closing 9-20
coordinating access to 9-6
creating 9-10
creating multiple instances 9-12
data structures

AVAILDATA data structure 9-21
PIPEINFO data structure 9-21
PIPESEMSTATE data structure 9-21

determining named pipe status 9-17
examining the contents of 9-19
functions

DosCallNPipe 9-20
DosConnectNPipe 9-20
DosCreateNPipe 9-20
DosDisConnectNPipe 9-20
DosPeekNPipe 9-21
DosQueryNPHState 9-21
DosQueryNPipelnfo 9-21
DosQueryNPipeSemState 9-21
DosSetNPHState 9-21
DosSetNPipeSem 9-21
DosTransactNPipe 9-21
DosWaitNPipe 9-21

local pipe access 9-6
opening 9-13
preparing for a client 9-5
reading from 9-15
server-client communications using 9"."3
server-client transactions 9-5
sharing modes 4-10
synchronizing dialogs 9-17
transaction processing 9-6
using 9-10
writing to 9-16

named semaphores 8-4
named shared memory 6-9, 6-18
name, extended attribute 5-1
naming conventions and general rules, files 3-1
naming conventions, extended attributes 5-6

Index X-25

naming conventions, standard extended attributes 5-6
national language resource files 16-1
national language support (NLS) 16-1

about 16-1
code page management

about 16-3
ASCII and EBCDIC code page support 16-4
code page information associated with message

files 15-5
code page 437 16-3
code page 850 16-3
determining the current code page 16-5
functions 16-5
obtaining collating information for SORT 16-7
obtaining formatting information 16-7
obtaining the case map string 16-6
obtaining the DBCS environment vector 16-6
preparation of 16-4
querying code page support 16-5
querying the current code page 16-5
setting the code page for text characters 16-6
summary of functions 16-7

code page management data structures
COUNTRYCODE 16-8
COUNTRYCODE (in code) 16-6
COUNTRYINFO 16-8
table of data structures 16-8

code page management functions
DosMapCase 16-6, 16-7
DosQueryCollate 16-7
DosQueryCp 16-5, 16-7
DosQueryCp (in code) 16-5
DosQueryCtrylnfo 16-7
DosQueryDBCSEnv 16-6, 16-7
DosQueryDBCSEnv (in code) 16-6
DosSetProcessCp 16-6, 16-7
table of functions 16-7

language-specific versions of NLS-enabled
applications 16-2

NLS enabled applications 16-1
resource files 16-1
summary of functions 16-7

nested exceptions 13-12
network applications 2-8
networks 2-5
NEWFILES 3-4
NEWFILES declaration, module definition file 5-18
NLS

See national language support (NLS)
non-bootable partitions, AIX 2-8
non-bootable partitions, DOS 2-8
non-bootable partitions, High Performance File

System 2-8
non-critical extended attributes 5-17
non-8.3 file name format 3-3
noncontinuable exceptions 13-14
NOSWAP, MEMMAN value in CONFIG.SYS 6-5

X-26 OS/2 2.0 Programming Guide-Volume I

nul device, file 110 with 4-6
NUL, device name 3-9

0
objects, memory 6-3
OBJ_GETTABLE 6-19
OBJ_GETTABLE (in code) 6-19
OBJ_GIVEABLE 6-19
obtaining

a DBCS environmental vector, example code 16-6
collating information for SORT 16-7
current directory 4-2
drive information 4-2
extended attribute values 5-15, 5-16
extended attributes for a file r--14
file attributes 4-3
file information 2-11
formatting information 16-7
handle type 4-17
information about a child process, example

code 7-18
information about a file system 2-10
information about a file, example code 2-12
information about a memory page range 6-8
information about a thread 7-25
information about a thread, example code 7-26
information about an attached file system 2-9
information about an attached file system, example

code 2-10
information about child processes 7-18
information about queue elements 10-4
information about queues 10-4
information about the file system, example

code 2-11
information on a mutex semaphore 8-17
information on a muxwait semaphore 8-26
information on an event semaphore 8-11
memory access protection 6-12
memory allocation state 6-12
named pipe status 9-17
the case map string 16-6
the current code page 16-5
the current code page and other prepared code

pages, example code 16-5
the current directory 4-2
the current drive 4-2
the DBCS environment vector 16-6
the default drive 4-2
the number of queue elements 10-4
the state of a file handle 4-16
the termination status of a child process 7-21
the termination status of a child process, example

code 7-22
write verification switch 4-2

opening
a mutex semaphore 8-13
a muxwait semaphore 8-20

opening (continued)
a muxwait semaphore, example code 8-21
a queue 10-6
a queue, example code 10-6
an event semaphore 8-6
an event semaphore and waiting for it to be posted,

example code 8-7
and reading a file, example code 4-12
and requesting, releasing, and closing a mutex

semaphore, example code 8-15
and writing to a file, example code 4-13
and writing to a remote pipe, example code 9-14
file and obtaining a file handle, example code 4-9
files 4-9
named pipes 9-13

OS/2 and DOS file objects 2-5
overcommitment, memory 6-4
overview of the Control Program 1-1
ownership flag, files 5-7

p
page ranges, memory 6-4
page tables 6-1
paged memory 6-1
pages, memory 6-3, 6-4

querying access attributes 6-8
PAG_COMMIT (in code) 6-11, 6-13
PAG_DECOMMIT (in code) 6-11
PAG_DEFAULT (in code) 6-11
PAG_EXECUTE 6-7, 6-8
PAG_GUARD 6-7, 6-8
PAG_READ 6-7, 6-8
PAG_READ (in code) 6-11, 6-18, 6-19
PAG_WRITE 6-7, 6-8
PAG_WRITE (in code) 6-11, 6-18, 6-19
parent process 7-4
parent sessions 7-6, 7-7
parent-child relationships
partitions 2-5, 4-1, 4-7
partitions, AIX, bootable and non-bootable 2-8
partitions, DOS, bootable and non-bootable 2-8
partitions, High Performance File System, bootable and

non-bootable 2-8
path length, maximum 4-6
path names 2-3
path-based access permission 5-15
peeking

at a queue 10-9
at the elements of a queue, example code 10-10
into a named pipe using DosPeekNPipelnfo, example

code 9-19
queues 10-2

peripheral devices, file 110 4-6
pib_s, program execution control data structure 7-18,

7-37
pipe data structure list 9-21

pipe handles 4-4
See also file handles

pipe handles, duplicating 4-15
pipe handle, determining the state 4-16
pipe handle, setting the state 4-16
PIPEINFO, pipe data structure 9-18, 9-21
PIPEINFO, pipe data structure (in code) 9-18
pipes 9-1

about 9-1
access mode 9-12
blocking mode 9-12, 9-15
broken 9-20
closing 4-15
closing a named pipe, example code 9-20
closing state 9-5
connected state 9-5
creating a named pipe, example code 9-11
creating an unnamed pipe, example code 9-7
data structure list 9-21
data structures

AVAILDATA data structure 9-21
PIPEINFO 9-18
PIPEINFO data structure 9-21
PIPESEMSTATE data structure 9-21

determining handle type 4-17
disconnected state 9-5
file write-through mode 9-11
flushing data 2-14
functions

DosCallNPipe 9-4, 9-5, 9-6, 9-20
DosClose 9-8, 9-21
DosClose (in code) 9-9, 9-14
DosConnectNPipe 9-3, 9-5, 9-11, 9-14, 9-20
DosCreateEventSem 9-6
DosCreateMuxWaitSem 9-7
DosCreateNPipe 9-2, 9-3, 9-5, 9-10, 9-12, 9-14,

9-15, 9-16, 9-18, 9-20
DosCreateNPipe (in code) 9-11
DosCreatePipe 9-2, 9-7, 9-8, 9-9, 9-21
DosCreatePipe (in code) 9-7, 9-9
DosDisConnectNPipe 9-4, 9-5, 9-11, 9-14, 9-20
DosDisConnectNPipe (in code) 9-20
DosDupHandle 9-8, 9-9, 9-14, 9-21
DosDupHandle (in code) 9-9
DosExecPgm 9-1, 9-8, 9-9
DosExecPgm (in code) 9-9
DosExit (in code) 9-14
DosOpen 9-21
DosOpen (in code) 9-14
DosPeekNPipe 9-4, 9-15, 9-19, 9-21
DosPeekNPipe (in code) 9-19
DosQueryNPHState 9-4, 9-17, 9-21
DosQueryNPHState (in code) 9-17
DosQueryNPipelnfo 9-17, 9-18, 9-19, 9-21
DosQueryNPipelnfo (in code) 9-18
DosQueryNPipeSemState 9-5, 9-6, 9-7, 9-21
DosRead 9-2, 9-21
DosRead (in code) 9-9, 9-14
DosResetBuffer 9-5

Index X-27

pipes (continued)
functions (continued)

DosSetNPHState 9-5, 9-14, 9-15, 9-16, 9-18, 9-21
DosSetNPipeSem 9-5, 9-6, 9-7, 9-21
DosTransactNPipe 9-4, 9-5, 9-6, 9-20, 9-21
DosWaitEventSem 9-6
DosWaitMuxWaitSem 9-6, 9-7
DosWaitNPipe 9-3, 9-13, 9-14, 9-21
DosWrite 9-2, 9-21
DosWrite (in code) 9-9, 9-14
table of functions 9-20

getting information about a named pipe using
DosQueryNPHState, example code 9-17

getting information about a pipe using
DosQueryNPipelnfo, example code 9-18

in and out pointers 9-1
inheritance mode 9-11
instance count 9-12
listening state 9-5
multiple instances of a pipe 9-12
named 9-2

accessing 9-13
closing 9-20
coordinating access to 9-6
creating 9-10
creating multiple instances 9-12
determining named pipe status 9-17
examining the contents of 9-19
local pipe access 9-6
opening 9-13
preparing for a client 9-5
reading from 9-15
server-client communications using 9-3
server-client transactions 9-5
synchronizing dialogs 9-17
transaction processing 9-6
using 9-10
writing to 9-16

obtaining a pipe handle 4-9
opening 4-9
opening and writing to a remote pipe, example

code 9-14
peeking into a named pipe using DosPeekNPipelnfo,

example code 9-19
PIPEINFO (in code) 9-18
procedure call 9-6
read mode 9-12, 9-15
redirecting the standard 110 of a child process into

an unnamed pipe 9-9
releasing a pipe handle 4-15
summary of functions and data structures 9-20
type of pipe (message or byte stream) 9-12, 9-15
unnamed 9-1

creating 9-7
reading from 9-8
redirecting standard 110 for a child process 9-8
redirecting the standard 1/0 file handles for a

child process 4-16
using 9-7

X-28 OS/2 2.0 Programming Guide-Volume I

pipes (continued)
unnamed (continued)

writing to 9-8
PIPESEMSTATE, pipe data structure 9-21
pointer device, file 1/0 with 4-6
POINTER$, device name 3-9
posting an event semaphore 8-9
posting an event semaphore, example code 8-10
preemption, multitasking 7-9
preparing
preparing a named pipe for a client 9-5
preparing file systems for system shutdown 2-14
preparing to turn off power to the system, example

code 2-14
preserving extended attributes 5-16
printer device, file 110 with 4-6
printing
prioritization, multitasking 7-9
priority alteration of CPU scheduling 7-13
priority classes for CPU scheduling 7-10
priority guidelines for CPU scheduling 7-12
priority levels for CPU scheduling 7-11
priority-delta 7-12
private semaphores 8-5
PRN, device name 3-9
procedure call, pipes 9-6
process address space 6-1
process exit lists 13-13
processes 7-1, 7-3, 7-14

changing the priority 7-18
changing the size of the time slice 7-14
CPU scheduling 7-9
creating 7-4, 7-6
creating an exit list 7-22
data structures

pib_s 7-37
RESUL TCODES 7-37
table of data structures 7-37

dynamic priority alteration of CPU scheduling 7-13
ending 7-6
ending the current process 7-19
exit I ists 7-6
exiting 7-6
functions

DosExecPgm 7-37
DosExitlist 7-37
DosGetlnfoBlocks 7-37
DosKillProcess 7-37
DosWaitChild 7-37
table of functions 7-37

inheritance by child processes 7-4
multitasking with threads and multitasking with

processes 7-6
obtaining information about child processes 7-18
obtaining the termination status of a child

process 7-21
priority classes for CPU scheduling 7-10
priority guidelines for CPU scheduling 7-12

processes (continued)
priority levels for CPU scheduling 7-11
redirecting standard 1/0, child processes 7-4
setting the command line and environment for a

child process 7-17
starting 7-4, 7-7
starting a background process 7-16
starting a child process 7-15
starting a process asynchronously 7-5
starting a process synchronously 7-5
starting an asynchronous child process 7-15
starting programs 7-4
summary of functions and data structures 7-37
system resources 7-1
terminating 7-6
terminating a different process 7-20
termination 7-5
using 7-14
waiting for a child process to terminate 7-19

processes and threads for multitasking 7-6
program execution control 7-1

about 7-1
binding a child session to a parent session, example

code 7-35
changing the priority of a thread, example

code 7-26
CPU scheduling 7-9

changing the size of the time slice 7-14
dynamic priority alteration of CPU

scheduling 7-13
fixed-high threads 7-11
idle-timethreads 7-11
priority classes for CPU scheduling 7-10
priority guidelines for CPU scheduling 7-12
priority levels for CPU scheduling 7-11
regular threads 7-11
round-robin 7-4
time-critical threads 7-10

creating a thread, example code 7-25
data structures

pib s 7-18, 7-37
RESULTCODES 7-15, 7-20, 7-37
RESULTCODES (in code) 7-15, 7-16, 7-17, 7-18,

7-19, 7-22, 7-31
STARTDATA 7-7, 7-33, 7-34, 7-37
STARTDATA (in code) 7-33
STATUSDATA 7-8, 7-34, 7-35, 7-37
STATUSDATA (in code) 7-34, 7-35
table of data structures 7-37
tib_s 7-25, 7-37

ending the current process, example code 7-20
ending the current thread, example code 7-31
entering and exiting a critical section of code,

example code 7-28
exit list routines, example code 7-23
functions

DosBeep (in code) 7-25, 7-33
DosCreateThread 7-3, 7-10, 7-24, 7-25, 7-29,

7-37

program execution control (continued)
functions (continued)

DosCreateThread (in code) 7-25, 7-30, 7-32
DosEnterCritSec 7-12, 7-28, 7-29, 7-37
DosEnterCritSec (in code) 7-28
DosExecPgm 7-4, 7-5, 7-15, 7-16, 7-17, 7-20,

7-23, 7-24, 7-37
DosExecPgm (in code) 7-15, 7-16, 7-17, 7-18,

7-19, 7-22, 7-31
DosExit 7-4, 7-5, 7-19, 7-20, 7-23, 7-30, 7-31, 7-37
DosExit (in code) 7-16, 7-20, 7-23, 7-25, 7-31,

7-33
DosExitCritSec 7-12, 7-28, 7-29, 7-37
DosExitCritSec (in code) 7-28
DosExitList 7-4, 7-6, 7-22, 7-23, 7-24, 7-30, 7-37
DosExitList (in code) 7-23
DosFreeMem 7-8
DosGetlnfoBlocks 7-18, 7-25, 7-26, 7-37
DosGetlnfoBlocks (in code) 7-18, 7-26
DosKillProcess 7-20, 7-21, 7-23, 7-37
DosKillProcess (in code) 7-20
DosKillThread 7-25, 7-31, 7-32, 7-37
DosKillThread (in code) 7-32
DosOpen (in code) 7-20
DosReadQueue 7-8, 7-9
DosResumeThread 7-3, 7-24, 7-27, 7-37
DosResumeThread (in code) 7-28
DosSelectSession 7-7, 7-8, 7-34, 7-35, 7-37, 17-1
DosSelectSession (in code) 7-36
DosSetPriority 7-9, 7-10, 7-11, 7-12, 7-13, 7-26,

7-27, 7-37
DosSetPriority (in code) 7-26
DosSetSession 7-7, 7-8, 7-9, 7-34, 7-35, 7-37
DosSetSession (in code) 7-34, 7-35
DosSleep 7-10, 7-27
DosSleep (in code) 7-27, 7-36
DosStartSession 7-7, 7-8, 7-9, 7-32, 7-33, 7-34,

7-36, 7-37, 17-1
DosStartSession (in code) 7-33
DosStopSession 7-7, 7-8, 7-9, 7-36, 7-37
DosStopSession (in code) 7-36
DosSuspendThread 7-3, 7-27, 7-37
DosSuspendThread (in code) 7-28
DosWaitChild 7-5, 7-15, 7-19, 7-20, 7-21, 7-23,

7-30, 7-37
DosWaitChild (in code) 7-19, 7-22
DosWaitThread 7-3, 7-29, 7-30, 7-37
DosWaitThread (in code) 7-30
DosWrite (in code) 7-20, 7-23, 7-25, 7-30, 7-33
table of functions 7-37

inheritance of file handles by a process 4-5
inheriting (by a process) file handles for locked

files 4-5
making a child session nonselectable, example

code 7-34
multiple processes 7-1
multiple threads 7-1
multitasking with threads and multitasking with

processes 7-6

Index X-29

program execution control (continued)
obtaining information about a child process,

example code 7-18
obtaining information about a thread, example

code 7-26
obtaining the termination status of a child process,

example code 7-22
processes 7-1, 7-3

changing the priority 7-18
creating 7-4, 7-6
creating an exit list 7-22
ending 7-6
ending the current process 7-19
exit I ists 7-6
exiting 7-6
inheritance by child processes 7-4
multitasking with threads and multitasking with

processes 7-6
obtaining information about child

processes 7-18
obtaining the termination status of a child

process 7-21
redirecting standard 110, child processes 7-4
setting the command line and environment for a

child process 7-17
starting 7-4, 7-7
starting a background process 7-16
starting a child process 7-15
starting an asynchronous child process 7-15
starting programs 7-4
summary of functions and data structures 7-37
system resources 7-1
table of data structures 7-37
table of functions 7-37
terminating 7-6
terminating a different process 7-20
termination 7-5
using 7-14
waiting for a child process to terminate 7-19

retrieving the termination status of a child process,
example code 7-16

sessions 7-1, 7-6
binding child sessions to parent sessions 7-35
child 7-7
child session control 7-6, 7-7, 7-8
child session termination 7-9
child sessions 7-6
controlling the execution of child sessions 7-34
creating 7-7, 7-32
ending 7-7
five session types 7-7
parent 7-7
selecting 7-6
setting user selectability of a child session 7-34
starting 7-7, 7-32
summary of functions and data structures 7-37
switching a session to the foreground 7-35
table of data structures 7-37
tabie oi iUfiCtiOfiS

.......... , _.,,

X-30 OS/2 2.0 Programming Guide-Volume I

program execution control (continued)
sessions (continued)

terminating a different session 7-36
termination 7-7
termination of a child 7-9
termination queues 7-7
unrelated 7-7, 7-8
unrelated sessions 7-7
using 7-32
virtual console 7-6

setting the command line environment for a child
process, example code 7-18

starting a background child process, example
code 7-17

starting a child process, example code 7-15
starting a foreground session, example code 7-33
summary of functions and data structures 7-37
suspending and resuming execution of a thread,

example code 7-28
suspending the current thread, example code 7-27
switching a child session to the foreground, example

code 7-36
terminating a child session, example code 7-36
terminating a process, example code 7-20
terminating a thread within the same process,

example code 7-32
threads 7-1, 7-3

changing the priority 7-26
creating 7-3, 7-6, 7-24
critical sections 7-28
ending 7-6
ending the current thread 7-30
exiting 7-4, 7-6
inheritance by 7-3
main thread 7-1, 7-3
multiple 7-3
multitasking with threads and multitasking with

processes 7-6
obtaining information about 7-25
resuming suspended threads 7-3
summary of functions and data structures 7-37
suspending 7-3
suspending and resuming execution of a different

thread 7-27
suspending the current thread 7-27
table of data structures 7-37
table of functions 7-37
terminating 7-6
terminating a different thread 7-31
thread 1 7-1, 7-3
using 7-24
waiting for 7-3
waiting for a thread to terminate 7-29

virtual consoles 7-2
waiting for a certain thread to end, example

code 7-30
waiting for a child process to end, example

code 7-19

program execution control (continued)
waiting for any thread to end, example code 7-30

protect mode applications 7-7
protecting extended attributes 5-17
protection violations 6-8
pseudocharacter devices 2-8, 2-9, 4-6
purging a queue 10-11
purging a queue, example code 10-11
putting a thread to sleep 7-27

Q
querying

a mutex semaphore 8-17
a muxwait semaphore 8-26
an event semaphore 8-11
an event semaphore, example code 8-12
code page support 16-5
current directory 4-2
extended attribute values 5-15, 5-16
extended attributes for a file 5-14
file attributes 4-3
file information 2-11
file system driver name 2-9
handle type 4-17
information about a file system 2-10
information about a memory page range 6-8
information about an attached file system 2-9
information about queue elements 10-4
information about queues 10-4
memory access protection 6-12
memory allocation state 6-12
named pipe status 9-17
the current code page 16-5
the number of queue elements 10-4
the state of a file handle 4-16
type of device 2-9

queues 10-1
about 10-1
accessing 10-6
adding an element 10-6
adding an element to a queue, example code 10-7
allocating memory for queue data 10-5

named shared memory objects 10-5
unnamed shared memory objects 10-5

client processes 10-1, 10-4
clients and servers 10-3
closing 10-11
creating 10-4
creating a named FIFO queue, example code 10-4
data structures

REQUESTDATA 10-2, 10-9, 10-12
table of data structures 10-12

deleting 10-11
element order 10-3
emptying 10-11
examining an element 10-9
functions

DosAllocMem 10-6

queues (continued)
functions (continued)

DosAllocSharedMem 10-5
DosCloseQueue 10-3, 10-6, 10-11, 10-12
DosCreateEventSem 10-8, 10-10
DosCreateQueue 10-4, 10-6, 10-7, 10-9, 10-12
DosCreateQueue (in code) 10-4
DosExit (in code) 10-6
DosFreeMem 10-5
DosGetNamedSharedMem 10-5
DosGiveSharedMem 10-5, 10-7
Dos Open Queue 10-3, 10-5, 10-6, 10-12
DosOpenQueue (in code) 10-6
DosPeekQueue 10-3, 10-4, 10-7, 10-9, 10-10,

10-12
DosPeekQueue (in code) 10-10
DosPurgeQueue 10-3, 10-11, 10-12
DosPurgeQueue (in code) 10-11
DosQueryEventSem 10-9
DosQueryQueue 10-3, 10-4, 10-6, 10-12
DosReadQueue 10-3, 10-4, 10-8, 10-12
DosReadQueue (in code) 10-8
DosWaitEventSem 10-9, 10-11
DosWaitMuxWaitSem 10-3
DosWrite (in code) 10-6
DosWriteQueue 10-3, 10-4, 10-6, 10-7, 10-12
DosWriteQueue (in code) 10-7
table of functions 10-12

obtaining information about 10-4
obtaining information about queue elements 10-4
obtaining the number of elements 10-4
opening 10-6
opening a queue, example code 10-6
peeking 10-2
peeking at an element 10-9
peeking at the elements of a queue, example

code 10-10
purging 10-11
purging a queue, example code 10-11
reading an element from a queue, example

code 10-8
reading from 10-7
removing an element 10-7
server process 10-1, 10-4
servers and clients 10-3
summary of functions and data structures 10-12
using 10-4
with semaphores 10-3
writing to 10-6

quotation characters 3-8

R
raising exceptions 13-8
read mode, pipes 9-12, 9-15
read-only file access 4-10
read-only file attribute 4-3, 4-8

Index X-31

reading
an element from a queue, example code 10-8
from a queue 10-7
from an unnamed pipe 9-8
from files 4-11
from named pipes 9-15
from standard input, example code 4-21

read/write file access 4-10
read/write file pointer

See files, file pointer
reallocating/resizing memory 6-6
recommend approach to memory management 6-5
RECOVER 2-7
redirecting standard file handles 4-22
redirecting standard 110 file handles 4-3, 4-15
redirecting standard 110 for child processes using

unnamed pipes 9-8
redirecting standard 110 using unnamed pipes 9-8
redirecting standard 110, child processes 7-4
redirecting the standard 1/0 file handles for a child

process 4-16
redirecting the standard 110 of a child process into an

unnamed pipe 9-9
redirection 2-1, 2-9
registering an exception handler, example code 13-20
registering exception handlers 13-20
regular priority threads 7-11
releasing a mutex semaphore 8-16
releasing a mutex semaphore, example code 8-16
remote and local file systems 2-5
remote devices 2-8
remote file system 2-8
removable media 2-6
renaming a file 4-5
repeated interval timing 11-5
reprioritization, dynamic, of CPU scheduling 7-13
REQUESTDATA 10-2, 10-9
REQUESTDATA, queue data structure 10-12
requesting a mutex semaphore 8-14

_,,requesting 512 bytes of memory, example code 6-10
reserved device names 3-9
reset state (of semaphore) 9-6
resetting an event semaphore 8-8
resetting an event semaphore, example code 8-9
resizing

heaps, increasing the size of 6-14
memory, resizing/reallocation 6-6

Resource Compiler, DEFAULTICON keyword 5-11
resource files, resource files 16-1
resource files, source for .ASSOCTABLE extended

attribute 5-8
RESUL TCODES, program execution control data

structure 7-15, 7-20, 7-37
RESUL TCODES, program execution control data

structure (in code) 7-15, 7-16, 7-17, 7-18, 7-19, 7-22,
7-31

resuming and suspending execution of a different
thread 7-27

X-32 OS/2 2.0 Programming Guide-Volume I

resuming suspended threads 7-3
retrieving

a message and substituting text-strings for
variables, example code 15-2

current directory 4-2
drive information 4-2
extended attribute values 5-15, 5-16
extended attributes for a file 5-14
file attributes 4-3
file information 2-11
handle type 4-17
information about a file system 2-10
information about a memory page range 6-8
information about an attached file system 2-9
information on a mutex semaphore 8-17
information on a muxwait semaphore 8-26
information on an event semaphore 8-11
memory access protection 6-12
memory al location state 6-12
the current directory 4-2
the current drive 4-2
the default drive 4-2
the state of a file handle 4-16
the termination status of a child process, example

code 7-16
write verification switch 4-2

root directory 2-1
round-robin CPU scheduling 7-4, 7-11
routing of file system requests 2-7
running an asynchronous child process 7-15

s
sample code

See example code fragments
sample Resource Compiler source file 5-9
saving cache buffers 2-14
screen device, file 110 with 4-6
SCREEN$, device name 3-9
search metacharacters 3-6, 3-7
searching directory paths using DosScanEnv and

DosSearchPath, example code 4-20
searching directory paths using DosSearchPath,

example code 4-21
searching for extended attributes 5-18
searching for files 4-6, 4-18
searching for files based on extended attributes 5-14
searching for files using metacharacters 3-7
searching paths for files 4-20
SEA, standard extended attribute

See extended attributes (EA), standard extended
attributes (SEA)

selectability of sessions 7-34
selecting a session 7-6
selecting sessions 7-35
semaphore management 8-4
semaphores 8-1

about 8-1

semaphores (continued)
anonymous semaphores 8-4
closing a mutex semaphore, example code 8-17
closing an event semaphore, example code 8-8
coordinating access to a local named pipe with

semaphores 9-6
creating a mutex semaphore, example code 8-13
creating and posting a named event semaphore,

example code 8-6
creating and waiting for a muxwait semaphore,

example code 8-19
data structures

SEMRECORD 8-20, 8-28
SEMRECORD (in code) 8-19
table of data structures 8-28
table of muxwait semaphore data

structures 8-28
event 8-1

closing 8-7
creating 8-5
DosCloseEventSem 8-27
DosCreateEventSem 8-27
DosOpenEventSem 8-27
DosPostEventSem 8-27
DosQueryEventSem 8-27
DosResetEventSem 8-27
DosWaitEventSem 8-27
final close 8-8
in muxwait semaphores 8-24
opening 8-6
posting 8-9
querying 8-11
resetting 8-8
table of functions 8-27
using 8-5
waiting for 8-10

functions
DosAddMuxWaitSem 8-25, 8-26, 8-27
DosCloseEventSem 8-6, 8-7, 8-8, 8-27
DosCloseEventSem (in code) 8-8
DosCloseMutexSem 8-13, 8-16, 8-17, 8-20, 8-25,

8-27
DosCloseMutexSem (in code) 8-15, 8-17
DosCloseMuxWaitSem 8-21, 8-22, 8-27
DosCreateEventSem 8-5, 8-6, 8-27
DosCreateEventSem (in code) 8-6, 8-19
DosCreateMutexSem 8-12, 8-13, 8-14, 8-27
DosCreateMutexSem (in code) 8-13
DosCreateMuxWaitSem 8-18, 8-20, 8-23, 8-27
DosCreateMuxWaitSem (in code) 8-19
DosDeleteMuxWaitSem 8-20, 8-21, 8-25, 8-26,

8-27
DosOpenEventSem 8-5, 8-6, 8-7, 8-9, 8-10, 8-11,

8-27
DosOpenEventSem (in code) 8-7
DosOpenMutexSem 8-12, 8-13, 8-14, 8-17, 8-26,

8-27
DosOpenMutexSem (in code) 8-15
DosOpenMuxWaitSem 8-18, 8-19, 8-20, 8-21,

8-22, 8-25, 8-26, 8-27

semaphores (continued)
functions (continued)

DosOpenMuxWaitSem (in code) 8-21
DosPostEventSem 8-6, 8-7, 8-9, 8-10, 8-27
DosPostEventSem (in code) 8-6, 8-10
DosQueryEventSem 8-10, 8-11, 8-26, 8-27
DosQueryEventSem (in code) 8-12
DosQueryMutexSem 8-14, 8-17, 8-18, 8-20, 8-21,

8-27
DosQueryMuxWaitSem 8-21, 8-25, 8-26, 8-27
DosReleaseMutexSem 8-14, 8-15, 8-16, 8-17,

8-27
DosReleaseMutexSem (in code) 8-15, 8-16
DosRequestMutexSem 8-3, 8-12, 8-13, 8-14,

8-15, 8-16, 8-17, 8-27
DosRequestMutexSem (in code) 8-15
DosResetEventSem 8-8, 8-9, 8-10, 8-27
DosResetEventSem (in code) 8-9
DosWaitEventSem 8-5, 8-6, 8-7, 8-8, 8-9, 8-10,

8-11, 8-27
DosWaitEventSem (in code) 8-7, 8-11
DosWaitMuxWaitSem 8-21, 8-22, 8-24, 8-26, 8-28
DosWaitMuxWaitSem (in code) 8-19, 8-23
table of event semaphore functions 8-27
table of functions 8-27
table of mutex semaphore functions 8-27
table of muxwait semaphore functions 8-27

handles 8-4
management of 8-4
multiple wait semaphores 8-3
multiple wait (muxwait) 8-1
multiple wait (muxwait)

adding semaphores to a muxwait list 8-25
closing 8-22
creating 8-18
deleting semaphores from a muxwait list 8-26
DosAddMuxWaitSem 8-27
DosCloseMuxWaitSem 8-27
DosCreateMuxWaitSem 8-27
DosDeleteMuxWaitSem 8-27
DosOpenMuxWaitSem 8-27
DosQueryMuxWaitSem 8-27
DosWaitMuxWaitSem 8-28
final close 8-22
multiple event semaphores 8-24
multiple mutex semaphores 8-24
opening 8-20
querying 8-26
SEMRECORD 8-28
table of data structures 8-28
table of functions 8-27
using 8-18
waiting for 8-22

mutual exclusion 8-2
mutual exclusion (mutex) 8-1, 8-20
mutual exclusion (mutex)

closing 8-16
creating 8-12
DosCloseMutexSem 8-27

Index X-33

semaphores (continued)
mutual exclusion {mutex) (continued)

DosCreateMutexSem 8-27
DosOpenMutexSem 8-27
DosQueryM utexSem 8-27
DosReleaseMutexSem 8-27
DosRequestMutexSem 8-27
final close 8-17
in muxwait semaphores 8-24
opening 8-13
querying 8-17
releasing 8-16
requesting ownership 8-14
table of functions 8-27
using 8-12

named semaphores 8-4
opening a muxwait semaphore, example code 8-21
opening an event semaphore and waiting for it to be

posted, example code 8-7
opening, requesting, releasing, and closing a mutex

semaphore, example code 8-15
posting an event semaphore, example code 8-10
private 8-5
querying an event semaphore, example code 8-12
releasing a mutex semaphore, example code 8-16
resetting an event semaphore, example code 8-9
shared 8-5
summary of functions and data structures 8-27
waiting for a muxwait semaphore, example

code 8-23
waiting for an event semaphore, example

code 8-11
waiting for multiple event semaphores 8-24
waiting for multiple mutex semaphores 8-24
with queues 10-3

SEMRECORD, semaphore data structure 8-20, 8-28
SEMRECORD, semaphore data structure {in

code) 8-19
sending signal exceptions 13-8
server process 9-2
server process, queues 10-1, 10-4
server-client communications using named pipes 9-3
server-client transactions using named pipes 9-5
session selectability 7-34
session selection 7-35
sessions 7-1, 7-6

background 7-7
binding child sessions to parent sessions 7-35
child 7-7
child session control 7-6, 7-7, 7-8
child session termination 7-9
child sessions 7-6
controlling the execution of child sessions 7-34
creating 7-7, 7-32
data structures

STARTDATA 7-37
STATUSDATA 7-37
table of data structures 7-37

X-34 OS/2 2.0 Programming Guide-Volume I

sessions (continued)
ending 7-7
five session types 7-7
foreground 7-7
functions

DosSelectSession 7-37
DosSetSession 7-37
DosStartSession 7-37
DosStopSession 7-37
table of functions 7-37

parent 7-7
selecting 7-6
setting user selectability of a child session 7-34
starting 7-7, 7-32
summary of functions and data structures 7-37
switching a session to the foreground 7-35
terminating a different session 7-36
termination 7-7
termination of a child 7-9
termination queues 7-7
unrelated 7-7, 7-8
unrelated sessions 7-7
using 7-32
virtual console 7-6

setting
access attributes of memory page ranges 6-7
communications-port parameters 14-5
COM1 to 9600 bits per second, example code 14-5
drive information 4-2
extended attribute values 5-15
file attributes 4-3
maximum number of file handles 4-3
memory access protection 6-12
memory allocation attributes 6-11
new file's size with DosOpen 4-8
read-only access for a region, example code 6-12
the code page for text characters 16-6
the command line and environment for a child

process 7-17
the command line environment for a child process,

example code 7-18
the current directory 4-2
the current drive 4-2
the data rate 14-5
the default drive 4-2
the state of a file handle 4-16
the state of a file handle, example code 4-17
user selectability of a child session 7-34
write verification switch 4-2
write-through flag 4-16

shared files 4-5, 4-8, 4-9
shared memory 6-1, 6-9

accessing named shared memory 6-18
accessing unnamed shared memory 6-19
allocating named shared memory 6-18
allocating unnamed shared memory 6-19
managing 6-9
named 6-9

shared memory (continued)
named shared memory 6-18
unnamed 6-9
unnamed shared memory 6-19
using 6-18
64MB minimum reserved 6-1

shared semaphores 8-5
sharing extended attributes 5-14
shutting down the system 2-14
signal exceptions 13-1
signals, signal exceptions 13-3, 13-6
single interval timing 11-4
sleeping, suspending a thread 7-27
sparse memory object 6-5, 6-6
sparse memory objects 6-11
specifying

access attributes of memory page ranges 6-7
memory access protection 6-12
memory allocation attributes 6-11

standard error file handle 4-21, 4-22
standard error file handle, duplicating 4-22
standard error file handle, redirecting 4-22
standard error, device 4-6
standard extended attributes (SEA) 5-2, 5-6
standard extended attributes (SEA)
standard file handles 4-21
standard file handles, duplicating 4-22
standard file handles, redirecting 4-22
standard input file handle 4-21
standard input file handle, duplicating 4-22
standard input file handle, redirecting 4-22
standard input, device 4-6
standard 1/0 devices 4-6
standard 110 redirection using unnamed pipes 9-8
standard output file handle 4-21, 4-22
standard output file handle, duplicating 4-22
standard output file handle, redirecting 4-22
standard output, device 4-6
STARTDAT A, program execution control data

structure 7-7, 7-33, 7-34, 7-37
STARTDATA, program execution control data structure

(in code) 7-33
starting

a background child process, example code 7-17
a background process 7-16
a child process 7-15
a child process, example code 7-15
a foreground session, example code 7-33
a session 7-32
an application for debugging 17-1
an asynchronous child process 7-15
applications 7-7
asynchronous program execution 7-5
DOS Session applications 7-7
full screen applications 7-7
processes 7-4, 7-7
programs 7-4
protect mode applications 7-7

starting (continued)
sessions 7-7
synchronous program execution 7-5
text windowed applications 7-7

STARTLW.DLL, High Performance File System
lazy-write startup program 2-4

STATUSDATA, program execution control data
structure 7-8, 7-34, 7-35, 7-37

STATUSDATA, program execution control data
structure (in code) 7-34, 7-35

stderr 4-21, 4-22
stderr, duplicating 4-22
stderr, redirecting 4-22
stdin 4-21
stdin, duplicating 4-22
stdin, redirecting 4-22
stdout 4-21, 4-22
stdout, duplicating 4-22
stdout, redirecting 4-22
stopping a repeated-interval timer, example

code 11-6
storage devices and file systems 2-5
storage of data in files 2-1
suballocating memory 6-6
suballocating memory objects into heaps 6-14
suballocating memory, example code 6-14
suballocation of memory into heaps 6-8
subdirectories 2-1

about 4-2
changing directories 4-2
creating 4-2
deleting 4-2
deleting subdirectories 4-2
extended attributes for subdirectories 4-2
inheriting the current directory 4-2
querying the current directory 4-2
setting the current directory 4-2

substituting text-strings for variables in a string in
memory, example code 15-4

summary
code page management functions 16-7
debugging functions 17-5
device 110 functions and data structures 14-6
error management functions 12-4
exception handling functions and data

structures 13-21
extended attribute data structures 5-19
file management functions and data structures 4-23
file systems functions and data structures 2-16
memory management functions 6-20
message management functions 15-6
national language support functions 16-7
pipe functions and data structures 9-20
process management functions and data

structures 7-37
program execution control functions and data

structures 7-37
queue functions and data structures 10-12

Index X-35

summary (continued)
semaphore functions and data structures 8-27
session management functions and data

structures 7-37
thread management functions and data

structures 7-37
timer functions 11-7

supporting extended attributes 5-18
suspending a thread, example code 11-2
suspending and resuming execution of a different

thread 7-27
suspending and resuming execution of a thread,

example code 7-28
suspending the current thread 7-27, 11-3
suspending the current thread, example code 7-27
suspending threads 7-3, 11-1, 11-3
SWAPPATH, specify location of swap file in

CONFIG.SYS 6-5
SWAPPER.DAT, the system swap file 6-4, 6-5, 6-13
SWAPPER.DAT, the system swap file, location of 6-5
swapping memory 6-4, 6-5, 6-13
swapping memory, user configuration 6-5
SWAP, MEMMAN value in CONFIG.SYS 6-5
switching a child session to the foreground, example

code 7-36
switching a session to the foreground 7-35
synchronizing named pipe dialogs 9-17
synchronous exceptions 13-1, 13-3, 13-10
synchronous program execution 7-5
SYS 2-7
system cache 4-11
system exceptions 13-3
system file attribute 4-3, 4-8
system shutdown, preparation for 2-14

T
terminating

another process 7-20
another session 7-36
another thread 7-31
child sessions 7-9
child sessions, example code 7-36
processes 7-5, 7-6
processes, example code 7-20
sessions 7-7
threads 7-4, 7-6
threads within the same process, example

code 7-32
termination queues 7-7
text files used for messages in full-screen

applications 15-1
text windowed applications 7-7
Thread Control Functions 7-37
thread 1 7-1, 7-3
threads 7-1, 7-3, 7-14, 7-24

changing the priority 7-26
changing the size of the time slice 7-14

X-36 OS/2 2.0 Programming Guide-Volume I

threads (continued)
CPU scheduling 7-9
creating 7-3, 7-6, 7-24
critical sections 7-28
data structures

table of data structures 7-37
tib_s 7-37

dynamic priority alteration of CPU scheduling 7-13
ending 7-6
ending the current thread 7-30
exiting 7-4, 7-6
fixed-high threads 7-11
functions

DosCreateThread 7-37
DosEnterCritSec 7-37
DosExit 7-37
DosExitCritSec 7-37
DosGetlnfoBlocks 7-37
DosKillThread 7-37
DosResumeThread 7-37
DosSetPriority 7-37
DosSuspendThread 7-37
DosWaitThread 7-37
table of functions 7-37

idle-time threads 7-11
inheritance by 7-3
mainthread 7-1, 7-3
multiple 7-3
multitasking with threads and multitasking with

processes 7-6
obtaining information about 7-25
priority classes for CPU scheduling 7-10
priority guidelines for CPU scheduling 7-12
priority levels for CPU scheduling 7-11
regular threads 7-11
resuming suspended threads 7-3
round-robin CPU scheduling 7-4
summary of functions and data structures 7-37
suspending 7-3, 11-1
suspending and resuming execution of a different

thread 7-27
suspending the current thread 7-27
terminating 7-6
terminating a different thread 7-31
thread 1 7-1, 7-3
time-critical threads 7-10
using 7-24
waiting for 7-3
waiting for a thread to terminate 7-29

threads and processes for multitasking 7-6
tib_s, program execution control data structure 7-25,

7-37
time-critical threads 7-10
timers 11-1

about 11-1
asynchronous 11-2
asynchronous repeated-interval 11-5
asynchronous single-interval 11-4

timers (continued)
clock ticks 11-3
functions

DosAsyncTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosAsyncTimer (in code) 11-5
DosCreateEventSem 11-4, 11-5, 11-6
DosCreateEventSem (in code) 11-5
DosGetDateTime 11-3
DosOpenEventSem 11-5, 11-6
DosQuerySyslnfo 11-3
DosResetEventSem 11-2, 11-5, 11-6, 11-7
DosSetDateTime 11-3
DosSleep 11-1, 11-2, 11-3, 11-4, 11-7
DosSleep (in code) 11-2
DosStartTimer 11-2, 11-3, 11-4, 11-5, 11-7
DosStartTimer (in code) 11-6
DosStopTimer 11-3, 11-5, 11-7
DosStopTimer (in code) 11-6
DosWaitEventSem 11-5, 11-7
DosWaitEventSem (in code) 11-5
table of functions 11-7

repeated-interval 11-5
single-interval 11-4
stopping a repeated-interval timer, example

code 11-6
summary of functions 11-7
suspending a thread, example code 11-2
suspending the current thread 11-3
using 11-2
using a repeated-interval timer with an event

semaphore, example code 11-6
using a single-interval timer with an event

semaphore, example code 11-5
TIMESLICE, allocate process wait time in

CONFIG.SYS 7-14
timing a single interval 11-4
timing repeated intervals 11-5
TRACKLAYOUT, device 110 data structure 14-7
transactions, server-client, using named pipes 9-5
transforming file names using metacharacters 3-8
turnaround character 4-21
types of file systems 2-2

u
UHPFS.DLL, High Performance File System utility

dynamic link library 2-4
unable to grow stack exception 6-7
unlocking and locking file regions 4-5
unnamed pipes 9-1

creating 9-7
functions

DosClose 9-21
DosCreatePipe 9-21
DosDupHandle 9-21
DosOpen 9-21
DosRead 9-21
DosWrite 9-21

unnamed pipes (continued)
in and out pointers 9-1
reading from 9-8
redirecting standard 110 for a child process 9-8
redirecting the standard 110 file handles for a child

process 4-16
using 9-7
writing to 9-8

unnamed shared memory 6-9, 6-19
unnamed shared memory objects 10-5
unrelated sessions 7-7, 7-8, 7-32, 7-35, 7-36
unwind operation 13-1, 13-10, 13-14
unwinding exception handlers 13-10
user configuration of memory swapping 6-5
user input of file names 3-8
user-defined exceptions 13-9
using

debugging function 17-2
DosDebug 17-2
error management 12-2
event semaphores 8-5
exception management 13-18
file commands 4-7
file systems 2-8
IOCtl functions to access devices 14-4
memory management 6-10
memory suballocation and heaps 6-14
message management 15-1
mutex semaphores 8-12
muxwait semaphores 8-18
named pipes 9-10
processes 7-14
queues 10-4
sessions 7-32
shared memory 6-18
the file system to access devices 14-4
threads 7-24
timers 11-2
unnamed pipes 9-7

using a repeated-interval timer with an event
semaphore, example code 11-6

using a single-interval timer with an event semaphore,
examplecode 11-5

utilities, file system 2-7

v
validating shared memory, example code 6-19
value, extended attribute 5-1
virtual console 7-6
virtual consoles 7-2
virtual memory 6-1
volume label 4-1
VOLUMELABEL, file management data structure 4-25
volumes 2-1, 2-5, 4-1

Index X-37

w
waiting

for a certain thread to end, example code 7-30
for a child process to end, example code 7-19
for a child process to terminate 7-5, 7-19
for a muxwait semaphore 8-22
for a muxwait semaphore, example code 8-23
for a thread to complete 7-3
for a thread to terminate 7-29
for an event semaphore 8-10
for an event semaphore, example code 8-11
for any thread to end, example code 7-30
for multiple event semaphores 8-24
for multiple mutex semaphores 8-24

wi ldcard characters
See metacharacters

WinLoadPointer and icon bitmaps 5-11
write verification switch, querying 4-2
write verification switch, setting 4-2
write-only file access 4-10
write-through flag 4-11, 4-13
write-through flag, setting 4-16

refid-fileman.setting the write-through flag 4-16
writing

x

an edited message to a file, example code 15-5
cache buffers 2-14
messages 15-5
the buffers to the device, example code 2-15
the contents of a disk file to the COM1 serial port,

example code 14-4
to a queue 10-6
to an unnamed pipe 9-8
to files 4-12
to named pipes 9-16
to standard output, example code 4-22

XCPT_YOUR_EXCEPTION 13-9

Numerics
8.3 file name format 3-2
8.3 file names 2-2

Special Characters
.ASSOCTABLE EA value for My_Application 5-10
.ASSOCTABLE standard extended attribute 5-7, 5-13
.ASSOCTABLE standard extended attribute

example 5-9
.ASSOCTABLE standard extended attribute, source

code 5-9
.ASSOCTABLE table used by the Resource

Compiler 5-8
.CODEPAGE standard extended attribute 5-10
.COMMENT standard extended attribute 5-10

X-38 05/2 2.0 Programming Guide-Volume I

.HISTORY extended attribute with two entries 5-11

.HISTORY standard extended attribute 5-10

.ICON standard extended attribute 5-11

.KEYPHRASES extended attribute with three
keyphrases 5-12

.KEYPHRASES standard extended attribute 5-12

.LONGNAME standard extended attribute 5-12

.SUBJECT standard extended attribute 5-12

.TYPE standard extended attribute 5-7, 5-13

.TYPE standard extended attribute, used to determine a
default icon 5-11

.VERSION extended attribute 5-14

.VERSION standard extended attribute 5-14
\DEV\, pseudocharacter devices 4-7
\SHAREMEM\, named shared memory 6-18

®IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

----------- - - ---- - -- - ---- - - -------- --____ ,®

© IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6261

Sl0G-6261-00

n 1111 m111111111
Pl0G6261

