

SOFTWARE
TOOLS
FOROS/2

SOFTWARE
TOOLS
FOROS/2

Creating Dynamic
Link Libraries

Michael J. Young

A
vy

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designations
appear in this book and Addison-Wesley was aware of a trademark claim,
the designations have been printed in initial capital letters.

Library of Congress Cataloging-in-Publication Data

Young, Michael J.
Software tools for OS/2 : creating dynamic link libraries / Michael J.
Young.
p. cm.
Bibliography : p.
Includes index.
ISBN 0-201-51787-6
1. 0S/2 (Computer operating system) I. Title.
QA76.76.063Y676 1989

005.4’469--dc20 89-34203
CIP

Copyright © 1989 by Michael J. Young

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Production Editor: Amorette Pedersen
Cover Design by: Doliber Skeffington Design
Set in 11-point New Century Schoolbook by Benchmark Productions

ABCDEFGHIJ-AL-89
First Printing, July, 1989

To my mother.

TABLE OF CONTENTS

INTRODUCTION

An Overview of the Book
How to Use the Book
Tools and Requirements

CHAPTER 1
MAKING PROTECTED-MODE PROGRAMS
Developing a Simple Protected-Mode Program
Using the OS/2 API
DosSleep
KbdCharln
DosExit
VioWrtTTy
Building the Program

Adding Multitasking
DosCreateThread

Adding Interprocess Communication
DosSemRequest
DosSemClear

CHAPTER 2

PRESENTATION MANAGER PROGRAMS
Presentation Manager and Dynamic-Linking
The Source Files

xiii
XV
xvii
xvii

37
38
39

Vii

viii SOFTWARE TOOLS FOR 0S/2

The C Source File
Initialize the Presentation Manager
WinBeginPaint
WinCreateMsgQueue
WinCreateStdWindow
WinDefWindowProc
WinDestroyMsgQueue
WinDestroyWindow
WinDispatchMsg
WinDrawText
WinEndPaint
WinGetMsg
WinlInitialize
WinMessageBox
WinQueryWindowRect
WinRegisterClass
WinTerminate
Create a Message Queue
Register a Window Class
Create a Standard Window
Process Window Messages
Release Presentation Manager Objects

The Supporting Files
The Resource Script
The Header File
The Module Definition File
The MAKE File

CHAPTER 3
HOW DYNAMIC-LINK LIBRARIES WORK

The Process
Compiling the Program
Linking the Program
Loading the Program
Calling the Dynamic-Link Function
Terminating the Program

The Uses of Dynamic Linking
Dynamic-Link Libraries within the Structure of OS/2

40
49
50
50
51
51
51
52
52
52
52
53
53
53
53

54
55
55
55
58
63

64
64
65
65
66

69
69

71
78
84
84

86
89

CHAPTER 4
CREATING A DYNAMIC-LINK LIBRARY

An Overview of the Process

An Example Dynamic-Link Library
Writing the C Source Code
Writing the Supporting Files
Preparing the Dynamic-Link Library

Using the Dynamic-Link Library
CHAPTER 5
SHARING DATA

Creating an Instance Data Segment

Creating a Global Data Segment
Virtual Memory

Creating Instance and Global Data Segments

Using Two Source Files
Using a Single Source File

Using Instance and Global Data Segments

CHAPTER 6
INITIALIZATION AND TERMINATION
Writing Initialization Routines)
Define the Entry Point
Write the C Initialization Function
Specify When the Routine is to be Called
Testing the Initialization Routine

Writing Termination Routines
DosExitList
Testing the Termination Routine

CHAPTER 7
USING THE C RUNTIME LIBRARY

Multiple-Thread Applications
Single-Thread Dynamic-Link Libraries

TABLE OF CONTENTS ix

93
94

97

109
122
131

133

141
143

148
150

155
155
161

166

175

176
176
183
184
186

187
195
198

199
200
208

x SOFTWARE TOOLS FOR 0S/2

Multiple-Thread DLLs and Applications

Conclusion

CHAPTER 8
USING RUNTIME DYNAMIC LINKING
The Basic Steps
Step 1
DosLoadModule
Step 2
DosGetProcAddr
Step 3
Step 4
DosFreeModule

Advantages of Runtime Dynamic Linking
The Disjoint Descriptor Space
An Example Application

CHAPTER 9
REAL-MODE VERSION OF YOUR LIBRARY

Creating Dual-Mode Programs

Writing a Real-Mode Version of a DLL
Use the OS/2 Family API Functions
Observe Real-Mode Restrictions on Family API Functions
Do Not Use the C Runtime Library
Write Your Code Specifically for Real Mode
Differences between Real and Protected Modes

Real-Mode Versions

CHAPTER 10
ASSEMBLY LANGUAGE DLLS
General Guidelines for Assembly Language
The Assembly Language Source Code
The Module Definition File

The Client Program
The MAKE File

I/0O Privileged Dynamic-Link Functions

213
224

227

228
228
228 -
230
231
233
234
235

235
236
240

251
252

258
269
269
270
270
271

271

271

278
284
290
290
290

291

DosPortAccess
DosCLIAccess
DosR2StackRealloc

GLOSSARY

BIBLIOGRAPHY

TABLE OF CONTENTS xi

302
302
304

307

331

INTRODUCTION

When OS/2 was introduced in 1987, it was accompanied by a myriad of
new concepts and terms. One of the most prominent of these was the
expression dynamic-link library.

Briefly, a dynamic-link library is a collection of subroutines stored in a
disk file, which may be read into memory and called by application
programs. The process of loading and accessing a dynamic-link library is
known as dynamic linking. Traditionally, a subroutine is not stored in
a separate disk file, but rather is incorporated dlrectly into the executable
file of the program that calls it.

Initially, the concept of dynamic linking may seem esoteric, and the
distinction between a dynamic-link function and a normal subroutine
may appear academic. However, after reading this book and after working
with the operating system, you will realize that dynamic linking is one of
the most important features of 0S/2, and that dynamic-link libraries have
far reaching and practical significance for both software developers and
system users. Here are two primary reasons for the unique importance of
dynamic linking.-

First, the vast collection of services that the operating system provides
for application programs (known collectively as the Application Program
Interface) is implemented as a set of dynamic-link libraries. The dynamic-
linking mechanism allows programs written in high-level languages to
call these services using the standard function calling protocol. Thus,
through dynamic linking, the facilities of the operating system are made
readily accessible to programs, and form an integral part of OS/2 applica-

Xiii

xiv. SOFTWARE TOOLS FOR 0S/2

tions. Itis important to understand dynamic-linking so that you can make
optimal use of these services when writing application programs.

A second reason for the significance of dynamic linking is that you can
package your own collections of subroutines as dynamic-link libraries.
Whether you are developing a set of functions for use within your own
applications, or you are preparing a function module to be sold commer-
cially, a dynamic-link library provides a convenient and efficient vehicle
for implementing your module.

The MS-DOS programming world has proven the importance of using
packages of prewritten routines for developing application programs.
Such function libraries allow the application programmer to focus on the
main program logic, and eliminate the need to develop routines for
tangential tasks such as managing windows, performing screen I/O, and
handlingindexed files. In fact, creating and distributing function libraries
currently forms the basis for an entire software industry. The added
complexity of OS/2 and the Presentation Manager will intensify the need
for using prewritten function libraries when developing OS/2 applica-
tions.

Function libraries for OS/2 could be packaged in the same manner as
those for MS-DOS (typically, either as source code or as binary code within
standard object modules). Implementing subroutine packages as
dynamic-link libraries, however, offers many advantages. For example,
since dynamic-link libraries are stored in separate disk files, executable
program files remain small and fast loading. Also, once a dynamic-link
library has been read into memory, the code it contains can be shared by
several simultaneous application programs; consequently, computer
memory is conserved. Furthermore, a program can call a given dynamic-
link library regardless of the language in which it is written; thus,
dynamic-link libraries form truly generic software tools.

Finally, because functions included in dynamic-link libraries are called
in the same manner as the basic services of the operating system,
dynamic-link libraries can be used to form seamless operating system
extensions. In fact, major operating system extensions, such as the
Presentation Manager, are implemented as collections of dynamic-link
libraries. You can also replace certain OS/2 services with your own

INTRODUCTION xv

dynamic-link library routines. Specifically, you can replace many of the
basic functions for managing the screen, keyboard, and mouse.

As you read this book, you will learn other advantages of dynamic
linking, and should come to appreciate the flexibility and elegance of this
mechanism.

This book will help you understand and appreciate many of the features
of dynamic linking. More importantly, however, it is a practical handbook,
written to show you how to create dynamic-link libraries. To date, the
documentation on writing dynamic-link libraries is sketchy and spread
out over many sources. This book gathers this diverse information into a
single source, and offers many tips for avoiding problems and optimizing
your use of the dynamic-linking mechanism. The book also provides many
example listings; most of the discussions begin with concrete program-
ming examples, and subsequently add theoretical and general informa-
tion to deepen your understanding of the basic techniques.

Note finally that dynamic-link libraries developed according to the
techniques given in this book can be used both by basic protected-mode
programs and by Presentation Manager applications. Thus, whether you
are developing a text-mode OS/2 program or a Presentation Manager
application, you will find the programming methods presented in this
book relevant to your work.

An Overview of the Book

The treatment of dynamic-link libraries in this book can be divided into
three primary areas of emphasis: Chapters 1, 2, and 8 describe how to use
dynamic-link libraries; Chapter 3 explains how dynamic-link libraries
work, and the remaining chapters show how to create dynamic-link
libraries.

Chapter 1 summarizes the techniques for writing a basic 0S/2
protected-mode program, and Chapter 2 outlines the methods for develop-
ing an elementary Presentation Manager application. These two chapters
serve to explain (or review) basic OS/2 programming techniques before
the book embarks on the more advanced techniques required to develop
dynamic-link libraries. These chapters also show how to call dynamic-link
functions from the two primary types of OS/2 programs.

xvi SOFTWARE TOOLS FOR 0S/2

Chapter 3 explains how dynamic-link libraries work, and lays the
theoretical groundwork for understanding the techniques presented in
the remainder of the book.

Chapter 4 presents the techniques for writing a simple dynamic-link
library, and provides a general overview of the entire dynamic-link library
development process. Dynamic-linking, however, is a highly flexible
mechanism that offers many options and variables. The techniques
presented in Chapter 4 use only the simplest of these options; each of the
remaining chapters in the book explores one or more of the advanced
options.

Chapter 5 describes how to define both shared and non-shared data
segments, so that a dynamic-link library can either share data among all
programs that call the library, or provide data that is private to each
program.

Chapter 6 shows how to create dynamic-link library initialization and
termination routines. These routines are especially valuable for dynamic-
link libraries that manage resources shared by several programs.

Chapter 7 describes the special versions of the C runtime library that
support multiple-thread applications and dynamic-link libraries. It ex-
plains the steps that you must take to allow a program or dynamic-link
library to use one of these libraries.

Chapter 8 shows how a program can explicitly load a selected dynamic-
link library at runtime (normally all referenced dynamic-link libraries
are automatically read into memory when the program is loaded).

Chapter 9 summarizes the steps for providing a real-mode version of
your dynamic-link library, so that this library can be used by programs
designed to run under either real or protected mode, which are known as
dual-mode programs.

Almost all of the example listings given in chapters 1 through 9 are
written in the C language. Chapter 10, however, describes the methods
for writing a dynamic-link library in assembly language. This chapter
also shows how to use assembly language to write dynamic-link functions
that execute with /O privilege (permission to use certain restricted
machine instructions).

The Glossary at the end of the book defines many of the technical terms
you may encounter while reading this book or other literature on 0S/2.

INTRODUCTION xvii

Finally, the Bibliography cites a number of useful books on OS/2 program-
ming, C and assembly language, and the architecture of the 80286
processor.

There are several special uses for dynamic-link libraries that are not
covered in this book. For example, these libraries can be used to store
0S/2 resources (a form of read-only data read stored within an ex-
ecutable file). Also, dynamic-link functions can be used to replace certain
08S/2 services (see the documentation on the KbdRegister, MouRegister,
and VioRegister OS/2 functions). The basic information presented in this
book, however, should make it easy to employ dynamic-link libraries for
these and other special uses you may encounter.

How to Use the Book

If you feel the need to review fundamental OS/2 and Presentation
Manager programming techniques, you should begin by reading chapters
1 and 2. In all cases, you should read Chapters 3 and 4; these two chapters
constitute the heart of the book. Chapter 3 describes the basic
mechanisms underlying dynamic linking, and Chapter 4 presents the
basic techniques for creating a dynamic-link library.

Once you have finished Chapters 3 and 4, you can read the remaining
chapters in any order. Each of these chapters discusses one or more
specific features of dynamic-link libraries, and you can select from among
them according to your particular needs.

Finally, you should use the comprehensive glossary provided at the end
of this book. The literature on OS/2 programming and the C language
abounds with technical terms, newly coined expressions, and words used
with special meanings. The book employs many of these terms without
stopping to define them (or perhaps they are defined only the first time
they appear). Accordingly, be sure to use the glossary if a term is un-
familiar, or if you are uncertain of the meaning of a word within a specific
context.

Tools and Requirements

Developing OS/2 programs and dynamic-link libraries requires a large
number of software tools. The examples in this book were written using

xviii SOFTWARE TOOLS FOR 0S/2

the Microsoft OS/2 Software Development Kit, which was a large (and
expensive) collection of software tools supplied as a series of shipments,
beginning with pre-release software and culminating with the final retail
products. The required tools are now available as the following separate
retail products: the Microsoft C compiler version 5.1 (essential), the
Microsoft Macro Assembler version 5.1 (most of the examples in the book
can be prepared without the assembler), the Microsoft Programmer’s
Toolkit version 1.1 (containing documentation on the OS/2 API functions,
and a variety of optional utilities), and IBM OS/2 version 1.1 (the operat-
ing system itself, obviously required).

The programming examples in the book are based upon this collection
of software tools. Accordingly, it will be easier to use the book if you have
these specific tools (or later versions of these tools). However, you may be
able to develop OS/2 programs and dynamic-link libraries using tools
supplied by other vendors; you may also be able to use a high-level
language other than C. In either of these cases, you can employ the basic
concepts from this book but will need to translate the specific implemen-
tation details according to the tools you are using.

Note that the term "programmer’s reference,"” which you will see many
times in this book, is a general description referring to either of the
following two specific reference books cited in the bibliography: the
Microsoft Programmer’s Reference (supplied with the Programmer’s
Toolkit) or the IBM OS /2 Technical Reference. These reference books fully
document each of the operating system functions. The most important
OS/2 functions used in this book are described in accompanying figures;
however, for additional details on these functions, as well as descriptions
of other functions, see either of these two reference books.

Also helpful for writing OS/2 programs are third-party function
libraries and programmer’s tools. See the Software Offer at the end of the
book for a description of several such products I have developed. These
products supply complete source code, and are thus valuable as learning
resources as well as for facilitating program development.

Finally, this book assumes a working knowledge of C and assembly
language, and of OS/2 programming basics. If you need further back-
ground knowledge in any of these areas, see the Bibliography for the titles
of useful books. ‘

CHAPTER 1

MAKING PROTECTED-MODE PROGRAMS

This chapter explains the basic steps for writing protected-mode
programs under OS/2. The applications described here are designed to be
run from the OS/2 full-screen command prompt. Although many of these
programs can also be run within a window of the Presentation Manager,
they cannot use the full set of Presentation Manager features. Chapter 2
describes the basic methods for developing programs specifically for the
Presentation Manager—these programs have free access to the facilities
of this environment including its extensive set of graphics functions.
Both chapters serve several purposes. First, they provide a brief intro-
duction to (or review of) basic OS/2 programming concepts that are
important for understanding the more advanced techniques involved in
developing dynamic-link libraries. Next they reveal the general context
in which dynamic-link libraries are used. Dynamic-link libraries are not
freestanding entities; they are software tools called by applications, and
must closely integrate their activities with those of the calling process.
Finally, the chapters show how to use dynamic-link libraries. There are
few OS/2 applications that do not call dynamic-link library functions—
the example programs in these chapters use the dynamic-linking
mechanism to access the services of the operating system. (Subsequent
chapters will explain how dynamic-link libraries work, how to create your

2 SOFTWARE TOOLS FOR 0S/2

own dynamic-link libraries to provide custom extensions to the operating
system services, and how to package your own collections of routines.)

In this chapter you will discover that you can easily use dynamic-link
libraries without knowing how they work or how they are created. From
the application programmer’s vantage, using a dynamic-link library
function is almost identical to calling a subroutine contained in a conven-
tionally linked library; such as the C runtime library. The simplicity of
using dynamic-link libraries adds to their importance as software tools;
it also makes it possible to postpone the discussion of their inner workings
until you have explored several examples of their use.

First you will see how to develop a simple protected-mode application—
a variation on the archetypal "hello, world" C program; then add multi-
tasking features to this example; and finally, how to coordinate the
activities of the separate program tasks using interprocess communica-
tion. Consequently you will learn the fundamental steps to prepare any
protected mode application and how to use several of the advanced
features of OS/2. The chapter will emphasize the differences between
developing protected-mode programs for OS/2 and developing real-mode
programs for MS-DOS.

Developing a Simple Protected-Mode Program

Figure 1-1 lists a C source file destined to produce a simple protected-
mode OS/2 program. This program repeatedly prints a message on the
screen and terminates it when the user presses a key. The message
consists of 11 lines form a box containing the string "Hello from main."
The program pauses for 1/2 second between messages.

Like most C programs, this example contains calls to external functions
(functions not defined within the source file), namely, DosSleep, Kbd-
Charln, DosExit, and VioWrtTTY. As you can see from the source code,
these functions perform most of the work of the program. Although the
program is written in the same manner as a typical MS-DOS application,
there are two important features of these external function calls that are
unique to 0S/2.

MAKING PROTECTED-MODE PROGRAMS 3

Figure 1-1

/*
Figure 1-1

You can prepare this program using the following commands:

cl /c /W2 /G2 /Zp FIGl_l.C

link /NOI /NOD FIGl_1.0BJ,, NUL, SLIBCE.LIB 0S2.LIB, FIGl_6.DEF
*/
#define INCL DOS
#define INCL_SUB

#include <0S2.H>

void PrintMessage (void); /* Prints a message on the screen. */

void main (void)

{

KBDKEYINFO Key; /* Holds ’'KbdCharIn’ information*/
for (;;)
{
PrintMessage () /* Print a message on the screen*/
DosSleep /* Create a delay. */

(500L) ; /* 1/2 second. *x/

4 SOFTWARE TOOLS FOR 0S/2

KbdCharIn

(&Key,
IO_NOWAIT,
0);

if (Key.fbStatus)
DosExit

(EXIT_PROCESS,
0);

} /* end for loop */

} /* end main */

void PrintMessage (void)

{

/* Test for a key.

*/

/* Address to receive key info. */

/* Don’t wait for a keystroke. */

/* Keyboard handle. */
/* If a key has been typed... *x/
/* Terminate program. */
/* Terminate entire process. */
/* Program exit code. */

VAOWZETTY ("* Xk * Ak k Xk Xk kXK XX KKAXKRKKKKKKX KA K KA KA KA KRA XXX KX XXX XX\ r\n",53,0);

VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*
VioWrtTTY ("*

VioWrtTTY ("*

Hello from main.

*\r\n", 53,0);
*\r\n", 53,0);
*\r\n",53,0);
*\r\n",5§,0);
*\r\n", 53,0);
*\r\n",53,0);
*\r\n",53,0);
*\r\n", 53,0);

*\r\n",53,0);

ViOWELTTY (" Xk dkkhk Ak kkk*khk kXXX XX XXX KKK KKXXAKK XXXk KXk k kXX k***\r\n",53,0) ;

} /* end PrintMessage */

MAKING PROTECTED-MODE PROGRAMS 5

These function calls directly invoke the services of the operating system.
Like MS-DOS, OS/2 provides a collection of services that support applica-
tion programs; these services are known collectively as the application
program interface (API). Under MS-DOS, system services are accessed
by generating software interrupts (by means of the INT machine instruc-
tion), and values are exchanged between the program and the system
through machine registers. Because the C language does not provide an
interrupt instruction and because C programs do not have direct access
to machine registers, these programs must access the operating system
services indirectly through library functions such as intdos and int86.
Under MS-DOS, the mechanism for invoking the operating system is
indirect and awkward, and is different from the normal protocol for calling
external functions. Consequently, many C programs for MS-DOS are
written without direct calls to the system and rely upon the C runtime
library routines for obtaining required services, or they include their own
low-level routines for accessing the hardware.

Under 0S/2, C programs can directly call operating system services in
the same manner that they call other external functions, such as routines
belonging to the C runtime library. Values are passed to the function
through a normal list of parameters, the program issues a direct far call
to the operating system code in memory, and the function directly returns
a value to the calling program. System services are simple to access, and
the set of OS/2 functions is more comprehensive and in many cases more
efficient than services offered by MS-DOS. For C programs written under
0S/2, API services provide an important extension to the C runtime
library. You can use the OS/2 API to obtain services not provided by the
C library; you can also call API services that are equivalent to C library
functions to achieve greater efficiency. Since many C library services
ultimately call an API function, you can eliminate a function call and the
associated overhead by calling the API function instead of the library
function. For example, the C library routine write calls the OS/2 function
DosWrite; you can enhance efficiency by calling DosWrite directly.

The second unique feature of the external functions called in Figure
1-1’s example program is that they do not reside in normal object or library
files. They are contained in one or more dynamic-link library files,
which are provided with the operating system and are copied to a special

6 SOFTWARE TOOLS FOR 0S/2

directory when you install the system. The linker doesn’t insert the code
for these functions into the executable program file; rather, the function
code remains in the separate dynamic-link library files until the program
isrun. When the program is loaded, the dynamic-link library files are also
loaded so the program can call the functions they contain.

Using the 0S/2 API

The API functions used in the example program—DosSleep, KbdChar-
In, DosExit, and VioWrtTTY—are summarized in Figures 1-2 through
1-5. All of the OS/2 API functions are called through the dynamic-link
mechanism. OS/2 provides four basic categories of functions (in addition
to the vast collection of functions available to Presentation Manager
applications, which are described in Chapter 2). The first three letters of
a function’s name indicates its category; these prefixes and the cor-
responding categories are shown in Table 1-1:

Table 1-1: Function Categories

PREFIX " FUNCTION CATEGORY

Dos General purpose system functions
Kbd Keyboard management functions
Mou Mouse functions

Vio Screen management functions

The general purpose Dos functions provide a variety of services. These
functions can be divided into the following general classifications accord-
ing to the types of services they provide:

¢ Program startup information
¢ Memory management
e Disk file and character device I/O

¢ Disk, directory, and file management

MAKING PROTECTED-MODE PROGRAMS 7

e Low-level device control

¢ Multitasking of threads

* Multitasking of processes

e Multitasking of screen groups
¢ Interprocess communication
¢ Time and date management

¢ National language support

¢ Runtime dynamic linking

* Device monitor management
¢ Error handling

e Additional miscellaneous functions

Figure 1-2: The DosSleep OS/2 function.

DosSleep

O Purpose: Suspends the execution of the calling program thread for a specified time
period.

O Prototype: USHORT APIENTRY DosSleep

(ULONG ulTime); Period of time to suspend execution in mil-
liseconds; the time is rounded up to the
nearest clock tick; a value of 0 causes the
thread to yield the remainder of its time
slice. ’

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following is the possible error code:

ERROR_TS_WAKEUP The function has returned before the
specified time has elapsed.

8 SOFTWARE TOOLS FOR 0S/2

Figure 1-3: The KbdCharIn 0S/2 function.

KbdCharln

O Purpose: Reads a keystroke from the keyboard.
O Prototype: USHORT APIENTRY KbdCharlIn

(PKBDKEYINFO pkbciKeyInfo;

USHORT fNoWait,

HKBD hkbd);

L1 Structure:

typedef struct _KBDKEYINFO

{
UCHAR

UCHAR
UCHAR
UCHAR

chChar;
chScan;
fbstatus;
bNlsshift;

USHORT fsState;

ULONG

13
KBDKEYINFO;

time;

Points to a KBDKEYINFO structure that
receives information on the keystroke—see
the definition of this structure below.

A flag specifying whether the function
should wait for a keystroke; it can be as-
signed one of the following values:

IO_WAIT: Wait for a key to be entered if one
is not available in the system buffer.

IO_NOWAIT: Return immediately whether
or not a keystroke is available; if a key was
read, the fbStatus field of the KBDKEYIN-
FO structure is given a nonzero value.

The keyboard handle; you can pass the value
0 or the handle of a logical keyboard sup-
plied by KbdOpen.

I* The character code.*/

/* The scan code.*/

/* Status: nonzero if a key was read. */
I* A reserved field.*/

/* State of the shift keys.*/

/* Time when keystroke was entered.*/

O Return Value:

ERROR_KBD_INVALID_IOWAIT

MAKING PROTECTED-MODE PROGRAMS 9

If successful, the function returns zero. If an
error occurs, it returns a nonzero error code.
The following is the possible error code:

The value you passed in the fNoWait
parameter is invalid.

Figure 1-4: The DosExit OS/2 function.

DosExit

[0 Purpose: Terminates a thread or a process.
O Prototype: VOID APIENTRY DosExit

(USHORT fTerminate,

USHORT usExitCode);

A flag indicating whether to terminate a
single thread or the entire process; it may be
assigned one of the following values:

EXIT_THREAD: Terminate only the current
thread.

EXIT_PROCESS: Terminate the entire
process.

The program exit code.

The Kbd, Mou, and Vio sets of functions are known as subsystems.
Each of these subsystems provides a comprehensive set of services for

managing a specific device.

When you call an OS/2 API function from a C program, youmust include
the corresponding function declaration in your programs; otherwise, the
compiler will generate the wrong function calling conventions, and may
fail to properly convert parameter types. All required function declara-
tions, type definitions, and constant definitions are supplied in a set of
header files provided with the Microsoft C compiler (version 5.1 or later)
and with the Microsoft OS/2 Programmer’s Toolkit. You need explicitly

10 SOFTWARE TOOLS FOR 0S/2

include only the single header file 0S2.H, which contains include state-
ments for the other header files. To minimize the amount of compile time,
however, only the most commonly used declarations and definitions are
included by default.To force the inclusion of additional header informa-
tion, you must define certain symbolic constants before including OS2.H.
For example, the program of Figure 1-1 begins with the following
preprocessor commands:

#define INCL_DOS
#define INCL_SUB
#include <0S2.H>

Figure 1-5: The VioWrtTTY OS/2 function.

VioWrtTTy

O Purpose: Writes a character string to the screen at the current cursor position.
O Prototype: USHORT APIENTRY VioWrtTTY

(PCH pchString, Address of the string to write.
USHORT cbString, Length of the string.
HVIO hvio); For most programs, this parameter should

be set to 0; for programs that call the
VioCreateP$ function (advanced VIO
programs), this parameter should supply the
video handle obtained from VioCreatePsS.

O Return Value: If successful, the function returns 0. If an
error ocurrs, it returns a nonzero error code.
The following is the possible error code:

ERROE_VIO_INVALID_HANDLE: The
value passed in the hvio parameter is in-
valid.

MAKING PROTECTED-MODE PROGRAMS 11

Defining the symbolic constant INCL_DOS causes the inclusion of all
header information for the Dos system functions, and INCL_SUB causes
inclusion of the header information for the Kbd, Mou, and Vio subsystem
functions. You can define other constants to include larger or smaller
subsets of information. For a complete list and an explanation of these
constants, see the compiler documentation or the OS/2 Programmer’s
Toolkit manual

In addition to the required function declarations, the header files
contain useful type and symbolic constant definitions. For example, the
first parameter to the function KbdCharln is declared as a pointer to a
KBDKEYINFO structure. Since this structure type is defined in the OS/2
header files, you need merely declare a variable that is an instance of this
type to receive keyboard information, such as the variable Key declared
in Figure 1-1 as follows:

KBDKEYINFO Key;

See Figure 1-3 for the definition of the KBDKEYINFO structure.
Another example of a variable type defined by the OS/2 header files is
USHORT, which is defined as follows (in OS2DEF.H):

typedef unsigned short USHORT;

As you can see in Figures 1-2 through 1-5, USHORT is the return type
for most of the API functions, except those that do not return a value, such
as DosExit. The API return values communicate the error status, which
will be explained shortly. When you declare a variable that interfaces with
an API function (that is, one that receives a return value or is passed as
a parameter), you should use the uppercase type names provided in the
OS/2 header files whenever possible rather than the basic C types, since
these basic types are subject to change. For example, if you declare a
variable to receive an API function return code, you should declare it as
type USHORT, rather than unsigned short. In the initial OS/2 header
files, USHORT was defined as unsigned int. Not only might the basic C
types be adjusted as the programming tools evolve, but these types may
be changed if OS/2 were ported to a computer that was based on another
processor.

12 SOFTWARE TOOLS FOR 0S/2

The program in Figure 1-1 uses several of the symbolic constant
definitions provided in the OS/2 header files, namely IO_NOWAIT, passed
to KbdCharIn, and EXIT PROCESS, passed to DosExit. Using these
definitions rather than raw numeric values makes the program more
understandable. Also, the function explanations in the OS/2
programmer’s reference refer to the symbolic constants rather than the
numeric values.

Finally, the OS/2 header files provide a collection of useful macro
definitions. Using macros is especially valuable for Presentation Manager
programming—see examples in later chapters.

Almost all of the OS/2 API functions in the categories listed at the
beginning of this section, return an error status code to the calling
program. The only exceptions are the functions that do not return values,
which are declared with the return type VOID. If successful, all of these
functions return zero and, if an error does occur, they return a nonzero
code indicating the specific error. The documentation for each function (in
the OS/2 programmer’s reference) lists the possible error return codes
that can be returned by that function. These codes are referred to by
symbolic constants, all of which are defined in the OS/2 header files. For
example, the function DosRead, which is the basic OS/2 function for
reading a file or device, can return one of four error codes. The symbolic
constants for these errors (as listed in the programmer’s reference) are
as follows:

ERROR_ACCESS_DENIED
ERROR_BROKEN_PIPE

ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION

You can include the definitions of the symbolic constants for error codes
in your program by defining INCL_DOSERROR before including OS2.H.
For more information on the API functions, see the OS/2 programmer’s
reference, Programmer’s Guide to OS /2, or one of the other books on OS/2
kernel programming cited in the Bibliography.

You can see that the set of functions available under OS/2 is usually
more complete than that under MS-DOS. A comprehensive and efficient
API is an important requirement in a multitasking operating system.
Whereas MS-DOS programs can efficiently perform a wide variety of
tasks by circumventing the operating system and directly accessing the
underlying hardware, OS/2 programs usually must obtain desired ser-
vices through the operating system. In the interests of protecting the
integrity of the system, OS/2 protected-mode programs are subject to

MAKING PROTECTED-MODE PROGRAMS

several restrictions. These restrictions are summarized as follows:

The example program of Figure 1-1, written to illustrate the use of the
0S/2 API services, did not call any C library functions. However, OS/2

0S/2 programs cannot invoke the routines provided by the BIOS
of IBM-compatible microcomputers. (The BIOS routines are ac-
cessed through software interrupts; however, OS/2 programs are
not allowed to issue software interrupts. Also, the BIOS code in AT-
class machines cannot run in protected mode.) MS-DOS programs
typically rely upon the BIOS for obtaining a wide variety of ser-
vices for controlling devices. The OS/2 API subsystems, however,
provide many of these same services. For instance, the Vio subsys-
tem provides all of the services that MS-DOS programs normally
obtain through the BIOS (via interrupt 10h).

OS/2 programs cannot access arbitrary memory locations. OS/2
takes advantage of the hardware protection provided by the 80286
processor to prevent programs from accessing memory addresses
in segments that have not been explicitly allocated to the process
or designated as globally accessible. Many MS-DOS programs, for
example, achieve fast video output by writing directly to the video
refresh buffer in high memory. Although OS/2 programs cannot
normally write directly to video memory, the Vio functions provide
nearly comparable performance.

0S/2 programs usually cannot write directly to I/O port addresses
to control hardware devices. Exceptions are the I/O-privileged
routines discussed in Chapter 10). However, OS/2 provides a large
family of commands for directly controlling devices—the I/O con-
trol commands accessed through the DosDevIOCtl API function.
See the OS/2 programmer’s reference for more information.

14 SOFTWARE TOOLS FOR 0S/2

protected-mode programs are free to use the routines of the C library,
since special versions of the library are provided that have been written
specifically for the protected mode—these library versions are supplied
with Microsoft C version 5.1 and later. Accordingly, the MS-DOS and OS/2
versions of programs that obtain most of their services through the C
library are very similar. You might be able to port an MS-DOS program
that uses the C library and does not contain low-level code by simply
relinking the program with the protected-mode version of the library.

However, you cannot use the standard protected-mode C library when
writing dynamic-link functions—there are severe restraints on using this
library for programs that employ multitasking. The Microsoft C compiler
now provides special versions of the protected-mode library that eliminate
these restrictions. The use of these library versions is discussed in
Chapter 7.

Building the Program

The example program of Figure 1-1 can be prepared through the following
two commands:

cl /c /W2 /G2 /Zp FIGl_1.C
and:

link /NOI /NOD FIGl_1.0BJ,, NUL, SLIBCE.LIB OS2.LIB, FIGl_6.DEF

The first command compiles the program and produces an object file
(FIG1_1.0BJ); the second command links the object file with the required
library code and produces a protected-mode executable program
(FIG1_1.EXE). This program can be run only in protected mode. If you
attempt to run it under MS-DOS or in the DOS-compatibility environ-
ment of 0S/2, it will display an error message and immediately terminate.

In general, compiling a protected-mode program is the same as compil-
ing a real-mode program—it generates a standard object file. The follow-
ing are the recommended command line switches for compiling the
example program of Figure 1-1:

MAKING PROTECTED-MODE PROGRAMS 15

* /e This flag tells the compiler to generate an object file without
running the linker (the default action of the CL command is to
compile and link the program). To gain greater control over the
compiling and linking processes, these two steps are performed
separately.

e /W2 This flag generates a higher level of warnings than are
emitted by default. For example, it will warn you if you call a func-
tion that has not been declared previously in the source file.

e /G2 This flag allows the compiler to generate instructions that
are unique to the 80286 and later model processors. Since a
protected-mode program must run on at least an 80286 processor,
it makes sense to take advantage of the advanced instructions
provided by this processor.

e /Zp This flag forces the compiler to pack all structures, meaning
that each field of a structure is located at the first available byte
address. By default, the C compiler aligns all structure members
except char and unsigned char on word boundaries. In general,
packing structures makes it simpler to exchange data with as-
sembly language routines and with certain routines belonging to
the OS/2 APL.

Most of the differences between building a protected-mode program
and building a real-mode program appear in the linking step. Although
the compiler generates a standard object file for both protected and real
mode programs, the linker must produce a special EXE file for protected
mode programs. Specifically, protected-mode executable programs have
a unique file header, which will be described in Chapter 3. The example
LINK command given in this section illustrates several important new
requirements for producing a protected-mode program.

First, you must use a version of the linker designed to generate
protected-mode programs such as the linker supplied with OS/2, or with
the Microsoft C compiler version 5.1 or later. The following are the
recommended command line switches used for linking the example pro-

gram:

¢ /NOI (NOIGNORECASE) This flag tells the linker to distin-
guish between uppercase and lowercase letters in names. This op-

16 SOFTWARE TOOLS FOR 0S/2

tion is useful with a case-sensitive language such as C, if you use
identifiers that differ only by the case of one or more letters.

e /NOD (NODEFAULTLIBRARYSEARCH) This flag tells the
linker not to search any default libraries that may have been
specified in the object file. The C compiler normally writes the
names of one or more default search libraries into the object file.
Since the names of your library files may not match the default
names, the best technique is to include the /NOI switch and then
fully specify all library names in the linker command line.

A second requirement for linking a protected-mode program is to
specify the name of the protected-mode version of the C runtime library
for the current memory model. The example LINK command designates
the library name SLIBCE.LIB—the name of the small-model, protected-
mode version of the C library in the system used to develop the example
programs in this book. If you have given this library file a different name,
be sure to substitute your name (for example, one of the names recom-
mended in the compiler documentation is SLIBCEP.LIB).

Although the example program contains no direct calls to functions in
the C library, the linker must obtain the C startup code from this library.
You must link the program with the appropriate C library to resolve the
references to the C startup function generated by the compiler. Note that
the C runtime library is a conventional library file that is linked using
the conventional linking technique; the complete body of code and data
belonging to all referenced object modules is inserted into the final
executable file.

The third new requirement illustrated by the example LINK command,
is that you must specify another library file to resolve all references to
the OS/2 API calls. Depending upon the version of the operating system
or the development tools, this library file is named either OS2.LIB (as in
the example command), or DOSCALLS.LIB—use the correct name for
your installation.

0S2.LIB (or DOSCALLS.LIB) is not a conventional library file contain-
ing object code; rather, it is a special library for resolving references to
dynamic-link functions known as an import library. An import library
generally does not contain program code or data. Instead, for each
dynamic-link function, it provides a record giving the name of the

MAKING PROTECTED-MODE PROGRAMS 17

dynamic-link library containing the function and the entry point of the
function within this library. In other words, rather than supplying the
actual object code, it supplies all the information needed to load and call
the function when the program is run.

When the linker resolves a reference to a dynamic-link function,
instead of copying code and data into the executable file, it merely copies
an import record for this function (listing the dynamic-link library name
and the function entry point) into the program header. When the program
is run, the system knows where to find the actual code and data for each
dynamic-link function called by your program. Also, when the program is
run, all required dynamic-link libraries are loaded into memory, and each
call to a dynamic-link function within the program code is supplied with
the far address of the function in memory.

The dynamic-link libraries containing the actual code and data for the
API functions are stored in an appropriate directory on the hard disk (they
are copied into this directory when you install the operating system).
These files all have the .DLL extension. The application programmer,
however, does not need to know the names of the files, since the names
are contained in the import library and the linker automatically inserts
them into the program header. Note that OS2.H (or DOSCALLS.H) is
provided with the operating system. In general, a supplier of dynamic-link
libraries also furnishes the corresponding import library to allow
programs to call the dynamic-link functions. Chapter 4 will explain an
alternative method.

The C runtime library and the OS/2 import file must be either in the
current directory or in a directory specified by the LIB environment
variable at the time you link your program—see your compiler documen-
tation for an explanation of the LIB variable. Also, the required dynamic-
link library files must be in a directory specified by the LIBPATH
configuration command. See your OS/2 user’s guide for more information
of this command.

Chapter 3 explains the dynamic-link mechanism in greater detail, and
Chapter 4 shows how to create both dynamic-link libraries and the
corresponding import libraries.

The fourth new feature exhibited by the example LINK command is
the use of a module definition file—the name is specified as the last

18 SOFTWARE TOOLS FOR 0S/2

item on the linker command line. You can provide a module definition file
when using any version of the linker that supports Microsoft Windows or
0S/2 applications; this file can be used to specify many of the attributes
of the executable program. Providing a module definition file is required
when linking Presentation Manager applications and dynamic-link
libraries. For other types of protected-mode programs, a module definition
file is optional; if it is omitted, the linker uses the default values for all
items that can be specified through this file. The name of the module
definition file used for linking the example program of Figure 1-1 is
FIG1_6.DEF. This file is listed in Figure 1-6, and contains the following
two commands:

NAME FIGl_l WINDOWCOMPAT
and:

PROTMODE

Figure 1-6

Figure 1-6
A module definition file for the program of Figure 1-1

NAME FIG1_1 WINDOWCOMPAT

PROTMODE

The presence of a NAME command indicates that the output file is to
be an executable program rather than a dynamic-link library. This com-
mand is followed by the name of the executable file, FIG1_1, and a flag
indicating the type of the application, WINDOWCOMPAT, which signifies
that the program can run within a window of the Presentation Manager.
The WINDOWCOMPAT flag does not mean that the program is a Presen-
tation Manager application, merely that it can be run safely within a
window managed by the Presentation Manager. If you do not specify the

MAKING PROTECTED-MODE PROGRAMS 19

application type, the system will automatically run the program in a
separate screen group. For an explanation of screen groups see the end
of the section on Adding Multitasking.

The PROTMODE command indicates that the application can be run
only in protected-mode, and allows the linker to omit certain items of
information from the program header. Figure 1-7 summarizes the OS/2
linking process and illustrates the differences between the conventionally
linked C library code and the dynamically linked OS/2 API function code.

Adding Multitasking

Before concluding this chapter on developing protected-mode programs,
these last two sections briefly introduce two of the advanced features
offered by OS/2: multitasking and interprocess communication.

The example program in Figure 1-1, like programs written for MS-
DOS, consists of a single thread. A thread is the execution of a series of
instructions within a program. In a single-thread application only one
sequence of machine instructions is executed at a given time; therefore,
such a program performs only one task at a time. The example program
in Figure 1-8 is similar to the one in Figure 1-1; however, this version of
the program starts two additional threads of execution. Accordingly, it
performs three simultaneous, independent tasks, namely, three separate
portions of this program run at the same time. You can compile and link
the program in the manner described in the last section—Figure 1-9
provides a module definition file for linking this program. You can prepare
this program using the following two commands:

cl /c /W2 /Asw /G2 /Zp
and:
link /NOI /NOD NUL, SLIBCE.LIB O0S2.LIB,

Note that these commands use the same switches as those used to
prepare the program of Figure 1-1, except for the additional compiler
switch, /ASw. This switch is required because the program runs more
than one simultaneous thread.

20 SOFTWARE TOOLS FOR 0S/2

Figure 1-7: The 0S/2 linking process.

APP.C

APP.DEF —.@D

PROGRAM

HEADER | AP

ON DISK DYNAMIC
PROGRAM LINK

CODE AND LIBRARIES
DATA (.DLL)

CODE AND 0 LINK LIB.

IN RAM B 9 — copEAND

DATA

MAKING PROTECTED-MODE PROGRAMS 21

The S option specifies the small memory model (although a C program
is compiled under this model by default, when you employ the /A flag, you
must explicitly indicate the desired memory model). The w option tells
the compiler that the contents of the stack segment register (SS) are not
equal to the contents of the data segment register (DS). In a normal C
program, these two registers are equal (the default C Stack is located in
the same segment as the program data), and by default the compiler
generates code that assumes this equality. However, additional threads
started by the program do not use the default C stack; rather, each thread
is assigned its own stack, which can be located within another segment.

The program is linked in the same way as Figure 1-1’s program. Figure
1-9 provides a module definition file for performing the linking step.

Figure 1-8

/*

Figure 1-8

You can prepare this program using the following commands:

cl /c /W2 /G2 /Zp FIGl_8.C

link /NOI /NOD FIGl_8.0BJ,, NUL, SLIBCE.LIB 0S2.LIB, FIGl_9.DEF
*/
#define INCL_DOS
#define INCL_SUB

#include <0S2.H>

#pragma check_stack (off) /* Disable stack probes. */

char StackT2 [3072]; /* Reserve a 3K stack for thread 2. */

22 SOFTWARE TOOLS FOR 0S/2

char StackT3 [3072];
void far Thread2 (void);

void far Thread3 (void);

void PrintMessage (int Thread);

void main (void)
{
TID ThreadID;

KBDKEYINFO Key;

DosCreateThread
(Thread2,

&ThreadID,

StackT2 + sizeof

DosCreateThread
(Thread3,

&ThreadlID,

StackT3 + sizeof

KbdCharIn
(&Key,
I0_WAIT,

0);

DosExit

(EXIT_PROCESS,

/*
/*

/*
/*
/*

(StackT2)) ; /* Address of top of stack.

/*
/*
/*

(StackT3)) ; /* Address of top of stack.

/o
/o
/*
s

/*
/*

/* Reserve a 3K stack for thread 3.
/* Function executed by second thread.

/* Function executed by third thread.

/* Prints a message on the screen.

Receives ID of new thread.

Holds ’'KbdCharIn’ information.

Start second thread.
Address of function executed by thread 2.

Address to receive new thread ID.

Start third thread.
Address of function executed by thread 3.

Address to receive new thread ID.

Pause until a key is pressed.
Address to receive key information.
Wait for a keystroke.

Keyboard handle.

Terminate program.

Terminate ALL threads.

*/
*/
*/

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

0);

} /* end main */

void far Thread2 (void)
{
for (;;)
{
PrintMessage (2);
DosSleep
(500L) ;

} /* end Thread2 */

void far Thread3 (void)
{
for (;;)
{
PrintMessage (3);
DosSleep
(500L) ;

} /* end Thread3 */

void PrintMessage (int Thread)

{

/*

/*
/*

/*
/*

MAKING PROTECTED-MODE PROGRAMS 23

Program exit code.

Executed by second thread.

Print a message on the screen.

Create a delay.
1/2 second.

Executed by third thread.

Print a message on the screen.

Create a delay.
1/2 second.

*/

*/

*/
*/
*/

*/

*/
*/
*/

ViowrtTTY("***\r\n",53,0);

VioWrtTTY ("*

VioWrtTTY ("*

*\r\n", 53,0);

*\r\n", 53,0);

24 SOFTWARE TOOLS FOR 0S/2

VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);

if (Thread == 2)

VioWrtTTY ("* Hello from Thread 2 *\r\n",53,0);
else

VioWrtTTY ("* Hello from Thread 3 *\r\n", 53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n", 53,0);
VioWrtTTY ("* *\r\n",53,0);

VioWrtTTY ("***\r\n" , 53’ 0) ;

} /* end PrintMessage */

Figure 1-9

; Figure 1-9

; A module definition file for the program of Figure 1-8

NAME FIGl_8 WINDOWCOMPAT

PROTMODE

When the new version of the example program begins running, it
consists (like all protected-mode applications) of a single thread—known
asthread number 1. The program then makes two calls to the API function
DosCreateThread (explained in Figure 1-10) to start two additional
threads of execution (known as threads 2 and 3). Each of these two new
threads executes a function that repeatedly prints a message box on the
screen, which includes the number of the thread displaying the message.
After starting these threads, thread number 1 waits for a keystroke, when

MAKING PROTECTED-MODE PROGRAMS 25

the user presses a key, this thread terminates the program (it terminates
all three threads by calling DosExit and passing the value
EXIT_PROCESS as the first parameter).

Figure 1-10: The DosCreateThread OS/2 function.

DosCreateThread ‘
[0 Purpose: Begins a new thread of execution.
[0 Prototype: USHORT APIENTRY DosCreateThread

(VOID (FAR *) pfaFunction (VOID), Address of the function to be executed by the

new thread.

PTID ptidThread, Address of variable to receive the identifier
of the new thread.

PBYTE pbThrdStack) Address of the top of the stack for the new
thread.

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_NO_PROC_SLOTS No more threads can be started.
ERROR_NOT_ENOUGH_MEMORY Insufficient free memory.

Figure 1-11 illustrates the activities of the three threads.

The initial program thread uses the default C stack, while each new
thread you start has its own private stack. When you initiate a new
thread, you must reserve an area in memory to serve as the thread’s stack.
You can simply define an array of the required size within the program’s
data segment, or you can dynamically allocate a block of memory from
the system. The address of the top of this stack—that is, the first byte
beyond the allocated block—is supplied to DosCreateThread as the
third parameter. The technical documentation recommends that if a
thread calls an API function, it should have at least 2 kilobytes of free

26 SOFTWARE TOOLS FOR 0S/2

stack space in addition to space for its own needs. Accordingly, the
example program allocates a 3-kilobyte stack for each new thread.

You must disable stack checking for any function executed by a new
thread, since the stack-checking routine assumes that the function uses
the default C program stack, and will immediately abort the program if
the function uses a different stack area.

Figure 1-11: The threads in the example program.

]
THREAD 1

DosCreateThread
DosCreateThread
THREAD 3

THREAD 1 ‘
<

THREAD 2

PrintMessage ’

MAKING PROTECTED-MODE PROGRAMS 27

Stack checking can be disabled for the entire program through the /Gs
command line option, or for selected functions through the check_stack
pragma—as in the example program.

In general, you cannot call standard C library functions from a multi-
ple-thread program. These functions not only contain calls to the stack-
checking routine, but most of them are not designed to be called by more
than one program thread at a given time—the functions are said to be
nonreentrant. Chapter 7 describes how to use alternative versions of
the C runtime library that fully support multiple-thread applications.

IThe processor can execute only a single thread at a giveninstant. 0S/2,
however, switches the processor from thread to thread so rapidly that the
threads appear to be running simultaneously. The operating system
scheduler runs each thread in turn for a small period of time known as a
time slice. Since the processor apportions time slices among individual
threads, a thread can also be defined as the basic dispatchable entity
under OS/2.

In the multitasking example program of Figure 1-8, threads 2 and 3
attempt to draw message boxes on the screen. Since these threads run
concurrently, however, the video output generated by the threads becomes
interspersed. If you run this program, you will not see separate message
boxes from each thread, but rather a confusing mixture of lines drawn by
both threads. Clearly, the program requires some way of coordinating the
activities of threads 2 and 3, so that while one thread is drawing a message
box, the other thread is temporarily prevented from writing to the screen
until the box is completed. The next section describes how to achieve this
coordination.

Before leaving the discussion of multitasking, it is important to define
the concept of a process, and to distinguish a process from a thread. A
process is an instance of the execution of a program. A program is a body
of code and data residing in a disk file or in memory; when you begin
executing a program, you create a process. A given process consists of one
or more individual threads. For example, running the first example
program in this chapter creates a process consisting of a single thread,
and running the second program creates a process that comprises three
threads.

28 SOFTWARE TOOLS FOR 0S/2

Under OS/2, a process is also the entity that owns objects such as
memory segments (code and data), file handles, and connections to
dynamic-link libraries. The threads that constitute a process share the
code and data segments and all other objects owned by the process. Also,
as you will see later in the book, a dynamic-link library function runs as
part of the process that calls it, and therefore has complete access to all
objects belonging to that process.

As stated previously, threads of execution run concurrently. Further-
more, these concurrent threads are not confined to a single process;
rather, the scheduler runs all active threads in the system regardless of
the processes that own them. The scheduler does not know of the existence
of processes; it sees only a collection of threads. Consequently, under OS/2
you can run not only multiple threads of execution within a single process,
but also multiple simultaneous processes.

Under OS/2, the collection of processes that are running simultaneous-
ly can belong to more than one screen group. A screen group, also known
as a session, is a collection of one or more processes that share the screen,
keyboard, and mouse. When you run OS/2, you can switch among screen
groups (using the Alt-Esc system hot key or the Task Manager utility),
bringing one at a time into the foreground. Although you see and control
only the foreground screen group, processes in the background screen
groups continue to run. Note that the Presentation Manager and all the
applications running within its windows belong to a single screen group.

Adding Interprocess Communication

The final version of the example protected-mode program, which is listed
in Figure 1-12, uses a semaphore to coordinate the activities of the two
threads that write to the screen. Figure 1-13 provides the module defini-
tion file for linking the program. You can prepare this program using the
following two commands:

cl /e /W2 /ASw /G2 /2Zp FIGl_l2.c
and:

link /NOI /NOD FIGl_12.0BJ,,NUL, SLIBCE.LIB OS2.LIB, FIGl1_13.DEF

MAKING PROTECTED-MODE PROGRAMS 29

A semaphore is a software flag used to synchronize the activities of two
or more program threads by exchanging simple "stop" and "go” informa-
tion. A semaphore is normally in one of two states: set or clear. A set
semaphore generally indicates that the thread should stop and wait for
the semaphore to be cleared by another thread, and a clear semaphore
generally means that the thread can continue.

Figure 1-12

/*
Figure 1-12

You can prepare this program using the following commands :

cl /¢ /W2 /G2 /Zp FIG1_12.C

link /NOI /NOD FIG1l_12.0BJ,, NUL, SLIBCE.LIB 0S2.LIB, FIG1_13.DEF
*/
#define INCL_DOS
#define INCL_SUB

#include <0S2.H>

#pragma check_stack (off) /* Disable stack probes.

char StackT2 [3072]; /* Reserve a 3K stack for thread 2.
char StackT3 [3072]; /* Reserve a 3K stack for thread 3.
void far Thread2 (void); /* Function executed by second thread.

void far Thread3 (void); /* Function executed by third thread.

*/

*/

*/
*/

30 SOFTWARE TOOLS FOR 0S/2

ULONG Sem = 0; /* Semaphore for synchronizing threads.

void PrintMessage (int Thread); /* Prints a message on the screen.

void main (void)

{

TID ThreadID; /* Receives ID of new thread.
KBDKEYINFO Key; /* Holds ’'KbdCharIn’ information.
DosCreateThread /* Start second thread.

(Thread2, /* Address of function executed by thread 2.

&ThreadlID, /* Address to receive new thread ID.

StackT2 + sizeof (StackT2)); /* Address of top of stack.
DosCreateThread /* Start third thread.

(Thread3, /* Address of function executed by thread 3.

&ThreadlID, /* Address to receive new thread ID.

StackT3 + sizeof (StackT3)); /* Address of top of stack.
KbdCharIn /* Pause until a key is pressed.

(&Key, /* Address to receive key information.

IO _WAIT, /* Wait for a keystroke.

0); /* Keyboard handle.
DosExit /* Terminate program.

(EXIT_PROCESS, /* Terminate entire process.

0); /* Program exit code.

} /* end main */

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

void far Thread2 (void)

{

for (;;)
{
DosSemRequest
(&Sem,
-1L);

DosSleep (500L);

PrintMessage (2);

DosSemClear

(&Sem) ;

DosSleep (OL);

} /* end Thread2 */

void far Thread3 (void)
{
for (;7)
{
DosSemRequest

(&Sem,

MAKING PROTECTED-MODE PROGRAMS 31

/* Executed by thread 2.

/*
/*
/*

/*

/*
/*

/*

/*

*/

Wait for semaphore to clear and then set it.*/

Semaphore handle (its far address).

Wait flag: -1 means wait forever.

Create a 1/2 second pause.

Print a message on the screen.

Clear the semaphore.

Semaphore handle.

Yield remainder of time slice.

Executed by thread 3.

*/
*/

*/

*/

*/
*/

*/

*/

/* Wait for semaphore to clear and then set it.*/

/*

Semaphore handle (its far address).

*/

32 SOFTWARE TOOLS FOR 0S/2

-1L); /* Wait flag: -1 means wait forever. */
DosSleep (500L); /* Create a 1/2 second pause. */
PrintMessage (3); /* Print a message on the screen. */
DosSemClear /* Clear the semaphore. */

(&Sem) ; /* Semaphore handle. */
DosSleep (OL); /* Yield remainder of time slice. */

} /* end Thread3 */

void PrintMessage (int Thread)

{

ViOWrtTTY("***\r\n"’53,0);

VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);

if (Thread == 2)

VioWrtTTY ("* Hello from Thread 2 *\r\n",53,0);
else

VioWrtTTY ("* Hello from Thread 3 *\r\n",53,0)f
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);
VioWrtTTY ("* *\r\n",53,0);

ViOWrtTTY("***\r\n",53,0);

} /* end PrintMessage */

MAKING PROTECTED-MODE PROGRAMS 33

Figure 1-13

; Figure 1-13

; A module definition file for the program of Figure 1-12

NAME FIGl_12 WINDOWCOMPAT

PROTMODE

The purpose for using a semaphore in the example program is to assure
that only one program thread can call the function PrintMessage at a
given time. So while one thread is displaying a message box, the other
thread does not generate video output.

The example program defines the variable to be used for the semaphore
as follows:

ULONG Sem = 0;

Since this variable is initialized with a zero value, the semaphore is
initially in the clear state. Immediately before writing to the screen, both
threads call the OS/2 service DosSemRequest (explained in Figure
1-14), passing it the address of the semaphore Sem. This service performs
the following two tasks:

1. If the semaphore is currently set, it suspends the execution of the
calling thread until the semaphore is cleared by the other thread.

2. It then sets the semaphore.

After creating a short pause and displaying a message box, both threads
call DosSemClear (Figure 1-15) to clear the semaphore. Accordingly,
while a given thread writes to the screen, the semaphore remains set and
the other thread cannot enter the block of code that writes to the screen.
The other thread remains blocked in the call to DosSemRequest until the
semaphore is cleared. Since the semaphore is initially in the clear state,
the first thread to call DosSemRequest is allowed to proceed immediately.

34 SOFTWARE TOOLS FOR 0S/2

At a given time, only one thread can execute the instructions that lie
between the call to DosSemRequest and the call to DosSemClear.

If you run this program, you will see a series of complete message boxes
on the screen generated alternately by each of the two threads.

Figure 1-14: The DosSemRequest OS/2 function.

DosSemRequest

O Purpose: Suspends the current thread, if necessary, until the specified semaphore
is clear, and then sets this semaphore.

O Prototype: UHSORT DosSemRequest

(HSEM hsem, Semaphore handle; for a RAM semaphore
this parameter is the far address of the
ULONG variable used for the semaphore;
for a system semaphore, it is the handle
returned by the DosCreateSem or Dos-
OpenSem function.

LONG ITimeOut) The period of time to wait, if necessary, for
the semaphore to be cleared; a value of -1
means to wait forever.

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_INTERRUPT Interrupted system call.
ERROR_INVALID_HANDLE hsem parameter contains an
invalid handle.
ERROR_SEM_OWNER_DIED Process that owns semaphore
terminated.
ERROR_SEM_TIMEOUT Time given by 1TimeOut
expired.
ERROR_TOO_MANY_SEM_REQUESTS Exceeded limit on semaphore

requests.

MAKING PROTECTED-MODE PROGRAMS 35

Figure 1-15: The DosSemClear OS/2 function.

DosSemClear

O Purpose: Clears a semaphore.
O Prototype: USHORT APIENTRY DosSemClear

(HSEM hsem) Semaphore handle; for a RAM semaphore
this parameter is the far address of the
ULONG variable used for the semaphore;
for a system semaphore, it is the handle
returned by the DosCreateSem or Dos-
OpenSem function.

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_EXCL_SEM_ALREADY_OWNED Exclusive semaphore already
owned by another process.

ERROR_INVALID_HANDLE hsem parameter contains an
invalid handle.

Note that the program loops executed by threads 2 and 3 contain two
calls to DosSleep. The first call—DosSleep (500L)—simply generates a
1/2 second delay between the appearance of each message box so that you
can read the individual messages. After the semaphore is cleared, how-
ever, DosSleep is called again, and is passed a value of 0. Passing 0 to this
function causes the thread to yield the remainder of its current time slice
and allows the system scheduler to run the other thread.

Merely clearing the semaphore does not automatically cause the second
thread to begin running; rather, the current thread is allowed to run for
the remainder of its time slice. If the semaphore is still clear when the
current thread completes its time slice, the system will release the other
thread from the call to DosSemRequest and allow it to resume executing
instructions. Unfortunately, however, before the current thread com-
pletes its time slice, it generally has time to set the semaphore by calling

36 SOFTWARE TOOLS FOR 0S/2

DosSemRequest again at the start of the loop. Consequently, unless the
current thread happened to complete its time slice immediately after
clearing the semaphore, the other thread would never gain the oppor-
tunity to run, and you would see message boxes from only one thread.
Calling DosSleep with a zero value allows both threads to run.

The semaphore used in the example program is known as a RAM
semaphore. You must explicitly declare the 4-byte (ULONG) variable used
for this type of semaphore. OS/2 also provides system semaphores, which
are allocated and managed by the operating system—system semaphores
are more suitable for coordinating the threads belonging to more than one
process.

Semaphores are only one of several forms of interprocess communica-
tion provided by OS/2. OS/2 also supports shared memory, pipes, queues,
and signals. Note that the general term interprocess communication
commonly refers to the exchange of data or the synchronization of ac-
tivities among individual program threads, as well as among separate
processes. For more information on the complex topic of interprocess
communication—see a book on basic OS/2 programming or the 0S/2
programmer’s reference.

CHAPTER 2

PRESENTATION MANAGER PROGRAMS

This chapter continues the discussion of fundamental OS/2 programming
techniques by describing the anatomy of a Presentation Manager applica-
tion—a basic program shell that prints a line of text in a window and
displays a simple menu. Although this program performs only the most
rudimentary tasks, it meets all the essential requirements for a Presen-
tation Manager application. A program that meets these requirements
gains complete access to the vast collection of Presentation Manager
functions for managing windows and displaying graphics.

The chapter first summarizes the close relationship between the
Presentation Manager and the dynamic-linking mechanism. Next, it
presents the set of files used to create the example Presentation Manager
application. finally the chapter describes each of these files, first the C
source code, and then the supporting files used to build the final program.

This chapter provides only a brief introduction to Presentation
Manager programming—a vast topic that could fill many volumes. For
further information, see one of the programming guides cited in the
Bibliography. The chapter uses a number of terms that have special
meanings in the context of the Presentation Manager; these terms are
defined in the glossary.

37

38 SOFTWARE TOOLS FOR 0S/2

Presentation Manager and Dynamic-Linking

Understanding the Presentation Manager is important for appreciating
many of the topics in subsequent chapters. The Presentation Manager
and the programs written for it illustrate many of the most important
uses for dynamic-link libraries. This section discusses five of these uses.

First, Presentation Manager applications can call most of the basic
0S/2 dynamic-link functions described in Chapter 1 (the exceptions will
be noted later in the chapter).

Second, the Presentation Manager itself is an operating system exten-
sion implemented as a set of dynamic-link libraries. The Presentation
Manager is not a freestanding executable program, rather it is a closely
integrated set of dynamic-link library functions that can be called by one
or more programs (which must meet the requirements that will be
discussed). When the first Presentation Manager program is run (normal-
ly the user interface shell, which the system automatically runs at boot
time), these dynamic-link libraries are loaded into memory and perform
initialization tasks. Presentation Manager applications that are sub-
sequently run can share the dynamic-link code that is already loaded. The
set of dynamic-link functions that constitute the Presentation Manager
is known as the Presentation Manager API. Several of these functions, as
well as the general function categories, are described later in the chapter.

The Presentation Manager illustrates that the dynamic-link
mechanism can be used to create complex subsystems—complete pro-
gram environments that smoothly integrate with the operating system.
In subsequent chapters, you will discover the features of dynamic-linking
that make the creation of such systems possible.

Third, placing sets of the routines you develop within dynamic-link
libraries can help to simplify Presentation Manager programming and
allow several programs to share the function code. This is a benefit
enjoyed by all types of protected-mode programs.

Fourth, in addition to storing the code and data belonging to callable
functions, dynamic-link library files can also be used to store OS/2
resources. Resources are a form of read-only data that can be loaded and
used for various purposes at program runtime. Although non-Presenta-
tion Manager programs can employ certain forms of resources, they are

PRESENTATION MANAGER PROGRAMS 39

especially important for Presentation Manager programs. They are used
to store strings, menus, dialog boxes, bitmaps, icons, and other objects.
To illustrate the methods for defining and using resources, the example
program in this chapter includes a Presentation Manager menu.

Finally, dynamic-link files are used to store the character fonts that can
be loaded and used to display text within Presentation Manager
programs. Although font files are dynamic-link modules, they are given
the .FON extension to distinguish them from other types of dynamic-link
library files. OS/2 version 1.1 supplies several font files such as
COURIER.FON and HELV.FON.

The Source Files

Table 2-1 lists the source files used to create the example Presentation
Manager application. As you can see from the names, the files are
presented in Figures 2-1 through 2-5.

Table 2-1: Source Files for Presentation Manager

FILENAME CONTENTS

FIG2_1.C The C source code.

FIG2_2.RC The resource script file defining the menu.

FIG2_3.H Header file containing symbolic constants used for defining

and managing the menu; this file is included in FIG2_1.C
and FIG2_2.RC.

FIG2_4.DEF Module definition file for linking the program.
FIG2_5.MAK Script for preparing the program using the MAKE utility.

These files are typical of the set of source files required to develop a
Presentation Manager application; however, some programs may require
one or more additional files (for example, files for storing bitmaps or

40 SOFTWARE TOOLS FOR 0S/2

icons). This chapter explains each of these files: first the C source file and
then the four supporting files needed to construct the executable program.

The C Source File

A Presentation Manager application must conform to a specific program
architecture. Conformance with this architecture demands that a pro-
gram perform six basic steps (with some possible variations). These six
steps represent the basic shell of a Presentation Manager application; by
performing them, a program becomes a Presentation Manager-application
and thereby gains access to all the facilities and services offered by this
subsystem. The example program of Figure 2-1 implements each of these
operations and therefore provides a simple program skeleton that you can
use to develop more complex applications. The following is a summary of
these six steps:

1. Call WinlInitialize to initialize the Presentation Manager for the cur-
rent process.

2. Call WinCreateMsgQueue to create a queue to receive the messages
sent to the program window.

. Call WinRegisterClass to register a window class.
. Call WinCreateStdWindow to create a standard window.

. Process messages sent to the program window.

(o2 N1 B)

. Release Presentation Manager objects before terminating.

The function main in Figure 2-1 illustrates these six steps, which will
be discussed in order, following Figures 2-1 through 2-5.

PRESENTATION MANAGER PROGRAMS 41

Figure 2-1

/*

Figure 2-1

This is a simple Presentation Manager program, which prints a string in

the client window and displays a menu; one menu item displays a message

box and the other item terminates the program. Preparing this program

requires the following files:

FIG2_2.RC
FIG2_3.H
FIG2_4.DEF
FIG2_5.MAK

*/

#include <0S2.H>

#include <PROCESS.H>

#include "FIG2_3.H"
void Quit (void);

HWND HFrame;
HAB HAncBlk;

HMQ HMesQue;

The resource compiler script defining the menu.
Header file with symbolic constants for the menu.
Module definition file.

MAKE file for building the program.

/* Definitions for menu resource.
/* Releases PM objects and quits program.

/* Frame window handle.
/* Anchor block handle.

/* Message queue handle.

*/

*/

*/
*/
*/

/*** Declare window procedure. ***xkkkkkkk kXA Kk kK kKA KAXKARKARKAKARKK KR KRR KR Kk /

MRESULT EXPENTRY WndProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);

42 SOFTWARE TOOLS FOR 0S/2

void main (void)

/***

/***

/***

{

HWND HClient; /* Client window handle. */
QOMSG QueMess; /* Message queue structure. */
ULONG WindowSpec = /* General window specifications. *x/
FCF_MENU | /* Create a menu from resource segment. */
FCF_MINMAX | /* Minimize/maximize box. */
FCF_SHELLPOSITION | /* Make window visible on screen. */
FCF_SIZEBORDER | /* Wide sizing border. */
FCF_SYSMENU | /* System menu. */
FCF_TASKLIST | /* Display program name in Task Manager. */
FCF_TITLEBAR; /* Title bar. *x/

1. 1Initialize the Presentation Manager and get anchor block handle. ****/

HAncBlk = WinInitialize /* Returns an anchor block handle. */

(0); /* Initialization options: must be 0. */

2. Create a message queue for the current thread. ****kkkkkkkkkkkkkkkkkk/

HMesQue = WinCreateMsgQueue /* Returns a message queue handle. */
(HAncBlk, /* Anchor block handle. */
0); /* Minimum queue size: 0 means default size.*/

3. Register a window class. **kkkkkkkkkkkkkkkkkkkkkk Ak kkkkkhkkkkkk Kk k*k /

WinRegisterClass
(HAncBlk, /* Anchor block handle. */

"MAIN", /* Window class name. * /

PRESENTATION MANAGER PROGRAMS 43

WndProc, /* Window procedure associated with class. */
oL, /* Class style: no styles specified. */
0); /* Bytes of data storage for each window. */

/**% 4. Create a standard window. XX XX XAXKk*AKKKKRKAAKKKKRRAKKKKKKXRKRKAK KA KKK /

HFrame = WinCreateStdWindow /* Returns handle to frame window. */
(HWND_DESKTOP, /* Parent window handle. */
WS_VISIBLE, /* Frame window style. */
&WindowSpec, /* Address of window specifications. */
"MAIN", /* Client window class name. *x/
": PM Program Shell", /* Text for title bar. */
oL, /* Client window style: none specifi;d. *x/
o, /* Resource module handle: 0 is EXE file. */
ID_MENU, /* Resource identification for menu. */
&HClient) ; /* Address to receive client window hand. */

/***% 5. Process messages. *kkkkkkkkkkkkkkkkkhkkhk Ak kkhh xRk RKR KA RRK KK KA KA KRR K/

while (WinGetMsg /* Get messages until WM _QUIT. */
(HAncBlk, /* Anchor block handle. */
&QueMess, /* Address of message structure. */
0, /* Window filter: any window. */
0, /* First message identifier: n/a. *x/
0)) /* Last message identifier: n/a. */
WinDispatchMsg (HAncBlk, &QueMess) ; /* Dispatch messages. */

/*** 6. Relinquish Presentation Manager objects and terminate application. **/

44 SOFTWARE TOOLS FOR 0S/2

Quit ();

} /* end main */

/*** The client window procedure and subroutines. ****xXkkkkkkkkkAXkkkkkkkkhkhk /

MRESULT Paint (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);

MRESULT Command (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);

MRESULT EXPENTRY WndProc /* The client window procedure. */
(HWND hwnd, /* Window handle. */
USHORT msgq, /* The message. */
MPARAM mpl, /* Message-specific information. *x/
MPARAM mp2) /* Message-specific information. */

{

switch (msg)

{

case WM_PAINT: /* Process window paint message. */
return Paint (hwnd, msg, mpl, mp2);

case WM _COMMAND: /* Process message from menu. */
return Command (hwnd{ msg, mpl, mp2);

default: /* Perform the d;fault processing on all other messages. */

return WinDefWindowProc (hwnd,msg,mpl,mp2);

} /* end WndProc */

PRESENTATION MANAGER PROGRAMS 45

/*** Function for processing the window paint message. ***kkkkkkkkkkkkkkkkkkkx /
MRESULT Paint (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)

{

HPS HPresSpace; /* Presentation space handle. */
RECTL Rect; /* Window rectangle, in window coordinates. */
static char Message [] = /* Text to display. */

"Hello from the window procedure.";

/*** Obtain a handle to a presentation space. **Xkxkkkkkkkikkkkhkhkkkkkkkkkk/

HPresSpace = WinBeginPaint /* Returns presentation space handle. *x/
(hwnd, /* Window handle. */
0, /* 0 requests a cache presentation space. *x/
0); /* Address of variable to set to invalid region: none.*/

/*** Obtain the coordinates of the client window. ****kkkkkkkkkkkkkkkkkkk /

WinQueryWindowRect
(hwnd, /* Window handle. */
&Rect) ; /* Structure to receive coordinates. *x/

/*** Print a line Of text. *AKkkkkkkkkAkkhAAAKAKKKKK KKK KIKK KKK KKKR KRR KK /

WinDrawText /* Draws a single line of formatted text into a rectangle. */

(HPresSpace, /* Presentation space handle. *x/
Oxf£f£ff, /* Length of stfing: Oxffff means 0 terminated.*/
Message, /* Text to be displayed. *x/
&Rect, /* Coordinates of rectangle containing text. */
CLR_NEUTRAL, /* Use default foreground color. */
CLR_BACKGROUND, /* Use default background color. */

/* Drawing specifications: */

46 SOFTWARE TOOLS FOR 0S/2

DT_ERASERECT | /* Erase the rectangular area.
DT_LEFT | /* Left-justify string within rectangle.
DT_TOP) ; /* Place string at top of rectangle.

*/
*/
*/

/*** Release presentation space / revalidate window. **kkkkkkkkkkkkkkkkkk /

WinEndPaint (HPresSpace); /* Tells Presentation Manager that

/* redrawing is complete.

return FALSE;

} /* end Paint */

*/
*/

/*** Processes MeNuU MeSSages. *Axkkkkkkkkk KA KAKKRKKKAKKRKKRKARKARKRKA KKK KR Kk K /

MRESULT Command (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)

{
switch ((int)mpl)

{

case ID_HELLO: /* "Hello" menu item was selected.
WinMessageBox /* Display a message box.

(HWND_DESKTOP, /* Handle of parent window.
hwnd, /* Handle of owner window.
"Hello from the menu.", /* Window message.
"PM Program Shell", /* Window title.
0, /* ID msg. box window: n/a.
MB_OK | /* Display an "OK" push button.
MB_ICONASTERISK) ; ' /* Display an asterisk icon.

return FALSE;

*x/

*/
*/
*/
*/
*/
*/
*/
*/

PRESENTATION MANAGER PROGRAMS 47

case ID_GOODBYE:

Quit (); /* Release PM objects and terminate program. */
default: /* Ignore all other messages. */
return FALSE;
}
} /* end Command */
void Quit (void)
/*
Releases Presentation Manager objects and terminates program.
*x/
{
WinDestroyWindow (HFrame); /* Eliminate the window. */
WinDestroyMsgQueue (HMesQue) ; /* Eliminate the message queue. */
WinTerminate (HAncBlk); /* Sever ties with the PM. */
exit (0); /* Terminate program. */
} /* end Quit */
Figure 2-2
/*

Figure 2-2

Resource script for the program of Figure 2-1

*/

48 SOFTWARE TOOLS FOR 0S/2

#include "FIG2_3.H"

MENU ID_MENU
BEGIN
MENUITEM "~Hello", ID_HELLO
MENUITEM "~Goodbye", AID_GOODBYE

END

Figure 2-3

/*
Figure 2-3

Header file to be included in the resource script of Figure 2-2 and the

C source file of Figure 2-1.

*/

#define ID_MENU 1

#define ID_HELLO 10

#define ID_GOODBYE 11

Figure 2-4

; Figure 2-4

; Module definition file for the program of Figure 2-1
NAME FIG2_1 WINDOWAPI

PROTMODE

HEAPSIZE 1024

PRESENTATION MANAGER PROGRAMS 49

Figure 2-5

Figure 2-5
This MAKE file prepares the program of Figure 2-1. The following files

are involved:
FIG2_1.C
FIG2_2.RC, FIG2_2.RES
FIG2_3.H
FIG2_4.DEF

FIG2_5.MAK

I = = = = X k= I I

FIG2_1.0BJ : FIG2_1.C FIG2_3.H

cl /c /W2 /Zp /G2ws FIG2_l1.C

FIG2_2.RES : FIG2_2.RC FIG2_3.H

rc /r FIG2_2.RC

FIG2_1.EXE : FIG2_1.0BJ FIG2_2.RES FIG2_4.DEF
link /NOI /NOD FIG2_1.0BJ,, NUL.LST, SLIBCE.LIB OS2.LIB, FIG2_4.DEF

rc FIG2_2.RES FIG2_1.EXE

Initialize the Presentation Manager

Before calling any other Presentation Manager functions, a program must
call Winlnitialize to initialize the Presentation Manager subsystem for
the current process, and to obtain an anchor block handle. The anchor
block handle is a value that identifies the process to the Presentation
Manager, and must be passed as a parameter to several other functions.

The Presentation Manager functions are divided into groups of related
functions in the same manner as the basic OS/2 services described in

50 SOFTWARE TOOLS FOR 0S/2

Chapter 1; the function category is likewise identified by a three letter
prefix. The two most important groups are the Win functions (such as
Winlnitialize), that manage windows and provide many general-purpose
services; and the Gpi functions (such as GpiLine), that are used to create
graphics output.

The Presentation Manager functions used in the example program are
briefly described in Figure 2-6, which lists them in alphabetical order.
This figure provides the full function prototypes, but does not attempt to
explain the use of each of the parameters and return values. Also, the
chapter text explains only those parameters that relate to the topic under
discussion. For a complete description of the functions, see the 0S/2
Presentation Manager programmer’s reference. See also the comments
in the source listing of Figure 2-1 for a brief explanation of how each
parameter is used in the example program.

Figure 2-6: PM functions used in Figure 2-1’s example program.

WinBeginPaint

O Supplies a handle to a presentation space associated with the specified window,
so that the window procedure can update the window display:

HPS APIENTRY
WinBeginPaint
(HWND hwnd,

HPS hps,

PRECTL prclPaint)

WinCreateMsgQueue
O Creates a queue to receive the messages sent to the program window:
HMQ APIENTRY WinCreateMsgQueue

(HAB hab,
SHORT cmsgq)

PRESENTATION MANAGER PROGRAMS 51

WinCreateStdWindow

[0 Creates a "standard window," which consists of a set of related Presentation
Manager windows:

HWND APIENTRY WinCreateStdWindow
(HWND hwndParent,

ULONG flStyle,

PULONG pflCreateFlags,

PSZ pszClientClass,

PSZ pszTitle,

ULONG styleClient,

HMODULE hmod,

USHORT idResources,

PHWND phwndClient)

WinDefWindowProc

O Performs default message processing; the window procedure calls this function
to handle messages it does not want to process itself:

MRESULT APIENTRY WinDefWindowProc
(HWND hwnd,
USHORT msg,
MPARAM mpl,
MPARAM mp2)

WinDestroyMsgQueue
O Eliminates a message queue created by the function WinCreateMsgQueue:

BOOL APIENTRY WinDestroyMsgQueue
(HMQ hmq)

52 SOFTWARE TOOLS FOR 0S/2

WinDestroyWindow

O Eliminates a Presentation Manager window:

BOOL APIENTRY WinDestroyWindow
(HWND hwnd)

WinDispatchMsg

O Passes a message to the system for processing; the system invokes the window
procedure belonging to the target window:

MRESULT APIENTRY WinDispatchMsg
(HAB hab,
POMSG pgmsg)

WinDrawText

O Displays text string within a window, formatting the string within specified
rectangle:

SHORT APIENTRY WinDrawText
(HPS hps,

SHORT cchText,

PCH lpchText,

PRECTL prcl,

LONG clrFore,

LONG clrBack,

USHORT rgfCmd)

WinEndPaint

O Releases presentation space obtained from WinBeginPaint; the window pro-
cedure should call this function when it has updated the window display:

BOOL APIENTRY WinEndPaint
(HPS hps)

PRESENTATION MANAGER PROGRAMS 53

WinGetMsg

O Extracts a message from the program message queue:

BOOL APIENTRY WinGetMsg
(HAB hab,

POMSG pgmsg,

HWND hwndFilter,

USHORT msgFilterFirst,
USHORT msgFilterLast)

Winlnitialize

[0 Initializes the Presentation Manager for the current process:

HAB APIENTRY WinInitialize
(USHORT £fOptions)

WinMessageBox

(1 Displays a temporary window containing the specified message, and pauses
for user input:

USHORT APIENTRY WinMessageBox
(HWND hwndParent,

HWND hwndOwner,

PSZ pszText,

PSZ pszCaption,

USHORT idWindow,

USHORT flStyle)

WinQueryWindowRect

[0 Obtains the current dimensions of a window:

BOOL APIENTRY WinQueryWindowRect

54 SOFTWARE TOOLS FOR 0S/2

(HWND hwnd,
PRECTL prclDest)

WinRegisterClass

[0 Registers a window class and assigns a window procedure to this class. This
procedure will process the messages sent to any window created as a member
of the class:

BOOL APIENTRY WinRegisterClass
(HAB hab,

PSZ pszClassName,

PFNWP pfnWndProc,

ULONG flStyle,

USHORT cbWindowData)

WinTerminate

O Relinquishes access to the Presentation Manager; called immediately before
program termination:

BOOL APIENTRY WinTerminate
(HAB hab)

Note that unlike the basic OS/2 functions described in Chapter 1, the
Presentation Manager functions do not return specific error codes to the
calling program. Many of these functions use the return value to com-
municate information other than the error status. If an error occurs, a
Presentation Manager function will return a special value such as
FALSE, 0, or NULL, indicating that some error occurred (the special
values are documented for each function in the programmer’s reference).
To obtain a code indicating the specific error, you can then call the function
WinGetLastError.

PRESENTATION MANAGER PROGRAMS 55

Create a Message Queue

All Presentation Manager programs that display a window must call the
WinCreateMsgQueue function to create a message queue. The system
places messages in this queue to inform the program of a wide variety of
important events; for example, it sends a message when the window data
requires updating and when a character is received from the keyboard.
Each message placed in the queue is addressed to a specific window. You
will see shortly how to extract these messages from the queue and how
to process them. Note that WinCreateMsgQueue is passed the anchor
block handle received from WinlInitialize.

Register a Window Class

To be able to process messages, a Presentation Manager program must
call WinRegisterClass to register a window class. You must pass this
function the name of the class you are creating. You can choose any name
for this class; the example program specifies the name "MAIN." You must
also pass the address of the program function that will process messages
(specifically, those messages sent to any window belonging to the class
you are registering; in the example program, there is only one such
window—client window). The example program passes the address of
WndProc, which is the message processing function defined within the
C source file. Since messages are addressed to specific windows, this
function is known as a window procedure; in a C program, it is an
appropriately declared C function.

The essential task performed by WinRegisterClass is to associate the
address of a window procedure with a class name. In the next section, you
will see how this class name is used.

Create a Standard Window

Once you have established a message queue and have registered a window
class, you are ready to call WinCreateStdWindow to create a standard
program window. The "standard window" created by this function is
actually a collection of related windows; each visible component, such as
the title bar and window border, is a distinct Presentation Manager
window.

56 SOFTWARE TOOLS FOR 0S/2

WinCreateStdWindow automatically creates a frame window, which
underlies the entire area occupied by the standard window collection, but
has no visible characteristics itself—this window is known as the parent
of the other windows. You must, however, specify each of the other
component windows you want included. The example program selects the
five windows shown in Table 2-2 by setting the appropriate bits of the
variable pointed to by the third parameter. In the example program, the
variable is named WindowSpec and is initialized with the appropriate
bitmasks at the beginning of main:

Table 2-2: Presentation Manager Windows

BITMASK COMPONENT WINDOW CREATED

FCF_MENU A custom menu (the definition for this menu is
stored as a program resource).

FCF_MINMAX A minimize/maximize box, used to minimize the
window to an icon or to maximize it to encompass
the entire screen.

FCF_SIZEBORDER A sizing border, which is a large border that can be
used to change the size of the window with a
mouse.

FCF_SYSMENU A system menu, which gives the user access to com-

mands for moving the window, closing the pro-
gram, or performing other system operations.

FCF_TITLEBAR A title bar, used to display the program name and
to move the window with a mouse.

Note that setting the FCF_MENU bit causes the Presentation Manager
to load a menu from a resource that is stored within the program, and to
display this menu near the top of the window. If you request the Presen-
tation Manager to load a menu, you must supply the identifier of the
appropriate resource as the eighth parameter (idResources); this iden-
tifier is initially assigned when you define the menu. The section on The

PRESENTATION MANAGER PROGRAMS 57

Resource Script, later in the chapter, describes how to define a menu and
how to store the menu definition as a program resource.

Figure 2-7 illustrates the standard window created by the example
program and labels each of the component windows. Note that there are
several other bitmasks assigned to WindowSpec, which do not specify
component windows rather, they control other aspects of the standard
window. See the programmer’s reference for details.

Figure 2-7: The standard window created by the example program.

PROGRAM MENU WINDOW
SYSTEM MENU WINDOW MINIMIZE/MAXIMIZE WINDOW
TITLE BAR WINDOW
= FIG2_1.EXE: PM Program Shell VA

Hello Goodbye ’
Hello from the window procedure.

CLIENT WINDOW

58 SOFTWARE TOOLS FOR 0S/2

You can see that the call to WinCreateStdWindow has created six
windows: the frame window and the five component windows listed in
Table 2-2. This function call creates one more important window: the
client window. The client window occupies the open area inside the other
component windows and is the window in which a program normally
displays its data. The fourth parameter (pszClientClass) specifies the
name of the class for the client window (if you pass a NULL value, no
client window is created). The example program passes the string
"MAIN," which is the name of the class that was registered in the call to
WinRegisterClass. As a result of assigning the client window to the class
"MAIN," all messages sent to the client window will be processed by the
function that was associated with this class when it was registered:
WndProc. As you will see in the next section, WndProc serves to display
data within the client window and to respond appropriately when a menu
item is selected.

Process Window Messages

As soon as the main function has created the standard window, it must
immediately begin dispatching the messages addressed to the component
windows. The system sends a barrage of messages to these windows to
inform them of relevant events. For example, the Presentation Manager
sends a message to the system menu window when the user clicks the
mouse within its borders, and it sends a message to the client window
when the user selects a menu item or the data in this window requires
updating.

The system places these messages in the message queue created by the
call to WinCreateMsgQueue. To handle the messages, the main function
enters a program loop that repeatedly extracts a message from the queue
and then dispatches this message for processing. A message is extracted
from the queue by calling the WinGetMsg function; this message is
received in a QMSG structure (QueMess). In general, WinGetMsg ex-
tracts messages from the queue in the same order in which they were
inserted— there are some exceptions. The program loop then immediately
dispatches the message by calling WinDispatchMsg.

When the program passes a message to WinDispatchMsg, the system
calls the window procedure belonging to the target window. Remember

PRESENTATION MANAGER PROGRAMS 59

that a message is addressed to a specific window; one of the fields of the
QMSG structure holding the message contains the identifier of the target
window. The system passes the contents of the message as parameters to
the window procedure, which performs the actual message processing.
The parameters passed to this procedure are described later.

The window procedure associated with a given window depends upon
the window’s class (every window belongs to a class, which specifies the
window procedure and possibly one or more other attributes). All of the
component windows created by the call to WinCreateStdWindow—except
the client window—belong to default window classes defined by the
system. Accordingly, the messages that are sent to each of these windows
are processed by default window procedures supplied by the system.
Therefore, the behavior of these windows is not under the program’s
control.

Remember that in the example program the client window was as-
signed to the class "MAIN"; when this class was created in the call to
WinRegisterClass, it was associated with the program function WndProc.
When WinDispatchMsg receives a message addressed to the client win-
dow, it immediately calls WndProc, passing it the contents of the message.
You will see shortly how WndProc processes messages it receives.

Figure 2-8 illustrates how messages are processed in a Presentation
Manager program. Note that the message processing loop in the function
main continues running for the duration of the program. The loop ter-
minates when WinGetMsg extracts the WM_QUIT message, which the
system places in the queue when the user selects the Close item from the
system menu; this message causes WinGetMsg to return FALSE. Mes-
sage processing is the core of a Presentation Manager application. Once
the program has performed necessary initializations and has created a
window, it assumes a passive role. Most subsequent program activity
takes place within the window procedure in response to window mes-
sages.

60 SOFTWARE TOOLS FOR 0S/2

Figure 2-8: Message processing in a Presentation Manager program.

| WINDOW DATA INVALID |——
| MENU ITEM SELECTED |——
| MOUSEEVENT |—
| KEYBOARD INPUT | —
| OTHER EVENTS

[E—

v

MESSAGE SOURCE

MESSAGE QUEUE

MSG

MSG|MSG|MSGMSG

MAIN PROGRAM LOOP

WinGetMsg

WinDispatchMsg

| FRAME WINDOW
| MINIMAX WINDOW |
| TITLE BAR WINDOW |
| SIZING BORDER WIN. |
| PROGRAM MENU WIN. |
| SYSTEMMENUWIN. |
| CLIENTWINDOW |

l._‘

MESSAGE DESTINATION

PRESENTATION MANAGER PROGRAMS 61

The Window Procedure In the example program the window proce-
dure WndProc is declared as follows:

MRESULT EXPENTRY WndProc
(HWND hwnd,

USHORT msg,

MPARAM mpl,

MPARAM mp2) ;

WndProc is called whenever a message is sent to the client window. The
four parameters passed to this function contain the essential contents of
the message; they hold the values that are listed in Table 2-3:

Table 2-3: Parameter Values

PARAMETER VALUE
hwnd Handle of the window to which the message is addressed.

msg The identifier of the message; the header files contain sym-
bolic constants for these identifiers, such as WM_PAINT, the
identifier of the message sent when the window needs redraw-

ing.
mpl Message-specific information.
mp2 More message-specific information.

The first task of the window procedure is to branch to the appropriate
routine to process the specific message—indicated by the message iden-
tifier in msg. WndProc processes two messages: WM_PAINT, which is sent
whenever the data displayed in the window needs to be redrawn, and
WM_COMMAND, which is sent whenever the user selects an item from
the program menu—rnot the system menu. The system sends a myriad of
other messages to the client window; rather than processing these mes-
sages. However, WndProc passes them to the WinDefWindowProc
function, which performs minimal default processing.

62 SOFTWARE TOOLS FOR 0S/2

In response to the WM_PAINT message, the window procedure calls
the function Paint, passing it all four message parameters. Paint is the
function that creates the program display within the client window. In
this simple example, it erases the current contents of the window and
prints a string. In a more complex application, such as a word processor,
it could display an elaborate combination of text and graphic images.

It might seem unusual that window data is drawn in response to a
message from the system instead of when the program needs to create or
update its display. However, the system sends this message at propitious
times, namely, when the window is first created, and subsequently,
whenever the window data needs regenerating due to the actions of the
user or of another program. For example, when a portion of the window
is uncovered, or when the size of the window is increased. Also, a program
can explicitly cause the system to send the WM_PAINT message when-
ever it needs to update its display—by calling the WinInvalidateRect
and WinUpdateWindow functions. See the programmer’s reference.

Writing data to the client window requires several steps, because under
the Presentation Manager you do not draw directly onto a physical device,
such as the screen or a printer, but rather onto an abstract surface known
as a presentation space. A presentation space is implemented as a data
structure within the Presentation Manager, and has a set of charac-
teristics that are independent of any physical device, such as a current
font and drawing colors. To produce actual output, the presentation space
must be associated with a physical device. To obtain a presentation space
and to display window data through this presentation space, WndProc
performs the following steps:

1. It calls WinBeginPaint to obtain the handle to a presentation space
that is already associated with the client window.

2. It calls WinQueryWindowRect to obtain the current dimensions of
the client window.

3. It calls WinDrawText to print a string within the window. The string
is displayed within the rectangle specified by the fourth parameter;
this parameter is passed the dimensions of the entire client just ob-
tained from WinQueryWindowRect. The last parameter is assigned
the flags DT_LEFT and DT_TOP, which place the string at the upper-

PRESENTATION MANAGER PROGRAMS 63

left corner of the rectangle, and the flag DT_ERASERECT, which
causes the function to erase the rectangular area before printing the
string.

4. It releases the presentation space by calling WinEndPaint.

Note that due to the special input/output requirements of Presentation
Manager programs, they should not call the standard Vio, Kbd, and Mou
functions described in Chapter 1, which are designed for non-Presenta-
tion Manager programs. Exceptions are Presentation Manager programs
that create an advanced Vio presentation space, which allows them to use
most of the Vio functions. See the programmer’s reference for more
information. Presentation Manager programs, however, can call almost
all of the standard Dos API functions.

In response to the WM_COMMAND message, the window procedure
calls the function Command. When the user selects a menu item, the
system sends this message to the client window, passing the identifier of
the selected item in the mp I parameter. The identifiers for the menu items
are initially chosen when the menu is defined (defining a menu is
discussed in the section on The Resource Script, later in the chapter). The
menu displayed by the example program has two items—Ilabeled "Hello"
and "Goodbye." If the user has selected the "Hello" item, mp1 will contain
the identifier of this item, ID_HELLO, and Command calls WinMessage-
Box to display a message box. A message box is a temporary window
that displays a string and pauses for user input. If the user has selected
the "Goodbye" item, mp1 will contain the identifier ID_GOODBYE, and
the function calls Quit to terminate the program (Quit is described in the
next section).

Release Presentation Manager Objects

Finally, before a Presentation Manager terminates, it should release the
various objects it has allocated from the system. The example program
calls the function Quit, defined at the end of the source file of Figure 2-1,
which releases these objects. (Quit is called either when the user selects
the "Goodbye" program menu item, or when the user selects the Close
item from the system menu. As mentioned previously, closing the program

64 SOFTWARE TOOLS FOR 0S/2

through the system menu results in the termination of the program loop
in main and causes control to pass to the call to the function Quit.

Quit calls WinDestroyWindow to eliminate the program window;, it
calls WinDestroyMsgQueue to eradicate the message queue, and it
calls WinTerminate to sever its final ties with the Presentation
Manager. Releasing these objects is not mandatory, since the system
releases them automatically when the program terminates. However,
explicitly releasing them in the order shown can give the program ter-
mination a more orderly appearance as various objects are removed from
the screen.

The Supporting Files

This section describes the files that are used in conjunction with the C
source file to generate the executable Presentation Manager program.
The actual steps for preparing the program from these files are outlined
in the description of the MAKE file.

The Resource Script

Figure 2-2 listed the resource script that is used to define the program
menu. As you will see in the description of the MAKE file, the resource
script is processed by the Microsoft resource compiler. This utility con-
verts the resource script into binary data and inserts this data into a
resource segment within the executable program file. When you call
WinCreateStdWindow to create a standard window and specify the
FCF_MENU option, the system reads the menu definition from the
resource segment and displays the menu near the top of the window.

A menu definition must begin with the keyword MENU, followed by
the menu identifier. You can select any reasonable value for the identifier,
which is used to specify the menu resource in the call to WinCreateStd-
Window (as the eighth parameter, idResources). The example application
uses the value ID_MENU, which is defined in the header file.

The definitions of the menu items are surrounded by the keywords
BEGIN and END. The definition of each item begins with the keyword
MENUITEM, which is followed by a string containing the actual text to
appear on the menu. The tilde character (~) in the text string is not

PRESENTATION MANAGER PROGRAMS 65

printed literally; rather, it causes the system to underline the following
character, and allows the user to select the menu item by typing the
underlined character. The definition concludes with the item identifier.
The two items defined for the example program are given the identifiers
ID_HELLO and ID_GOODBYE. As described in the previous section, the
item identifier is sent with the WM_COMMAND message to inform the
client window that the user has selected the corresponding item. The
menu displayed by the example program is illustrated in Figure 2-7.

The Header File

The header file in Figure 2-3 defines the symbolic constants used to
identify the menu resource and the individual menu items; it is included
in the C file of Figure 2-1 and in the resource script of Figure 2-2. Since
these constants are used in both the resource script and in the C source
file, it is convenient to place them in a single header file included in both
source files. Using a separate header is especially important in a complex
Presentation Manager application that uses many resource definitions.

The Module Definition File

The use of a module definition file for linking an OS/2 program was
introduced in Chapter 1. Figure 2-4 provides a module definition file for
the example Presentation Manager program; this file contains four new
items not part of the definition file given in Chapter 1. First, program
type specified by the NAME statement is WINDOWAPI, which indicates
that the program is a full Presentation Manager application, rather than
WINDOWCOMPAT, which indicates that the program can run within a
window managed by the system. Second, the HEAPSIZE command
specifies a program heap size of 1,024 bytes. The program heap is an area
at the end of the default data segment used for dynamic-memory alloca-
tion. Third, the STACKSIZE command specifies a 4,096 byte-program
stack; the stack is also located within the default data segment—imme-
diately below the area reserved for the heap.

Finally, and most importantly, the definition file contains an EXPORTS
statement. When linking a Presentation Manager application, you must
list the names of all window procedures in an EXPORTS statement. The

66 SOFTWARE TOOLS FOR 0S/2

names must be given in all uppercase letters, because window procedures
conform to the Pascal naming convention, according to which the compiler
converts the function names to uppercase letters when writing them to
the object file. Specifying a function in an EXPORTS statement renders
that function accessible to the functions of the Presentation Manager
dynamic-link modules. As you will see in Chapter 4, this statement is also
used to list the dynamic-link functions when linking a dynamic-link
library.

The MAKE File

Finally, Figure 2-5 provides a MAKE file for preparing the executable
program. When compiling the C source file, the MAKE file specifies the
following two command line switches in addition to those used to prepare
the protected-mode programs in Chapter 1:

* /Gw This option should be used for preparing a Presentation
Manager program that contains a window procedure. It causes all
functions to save the value of the DS register, set DS to the seg-
ment selector for the C data segment, and to restore the original
DS value before returning. These steps allow the window proce-
dure to access the C data segment when called by a function
within the Presentation Manager dynamic-link modules, that use
a different data segment.

* /Gs This option disables the calls made to the C stack-checking
routine at the beginning of each function; the C stack-checking
routine is not compatible with the Presentation Manager since it
attempts to write to the screen using conventional teletype-style
screen output, which is not allowed within the Presentation
Manager windowed environment.

Notice that the resource segment containing the menu definition is
prepared with the resource compiler (RC.EXE) in two distinct steps:

1. The resource compiler is invoked with the /r flag to convert the
resource script, FIG2_2.RC, to a file containing the resource data in bi-
nary format, FIG2_2.RES. The /r flag means to compile the resource
script without performing step 2.

PRESENTATION MANAGER PROGRAMS 67

2. After the new executable file FIG2_1.EXE has been generated by the
linker, the resource compiler is called again (without the /r flag) to in-
sert the resource data from the file FIG2_2.RES into a resource seg-
ment within the EXE file.

You could also perform steps 1 and 2 by issuing the following single
command after the program is linked:

rc FIG2_2.RC FIG2_1.EXE

By performing these two steps separately, however, you can avoid
recompiling the resource script (which is the lengthier of the two opera-
tions) if it has not been changed since it was last compiled.

The other commands and switches in this MAKE file are the same as
those described in Chapter 1.

CHAPTER 3

HOW DYNAMIC-LINK LIBRARIES WORK

Now that you have gained an overview of basic OS/2 programming
techniques and you have seen how to use dynamic-link libraries within
an application program, this chapter describes how dynamic-link
libraries work.

The first section gives a detailed description of the dynamic-linking
mechanism, discussing each process that occurs when you compile, link,
and run a program that calls one or more dynamic-link library functions.
The second section summarizes the basic uses for dynamic-linking and
its advantages over static (that is, conventional) linking.

This chapter is unique; unlike the other chapters, it describes
mechanisms and processes rather than presenting techniques. It provides
basic theoretical information important for understanding the methods
for creating the dynamic-link libraries given in the remainder of the book.

The Process

This section describes the processes that occur during each phase of
preparing and loading an application program that contains one or more

69

70 SOFTWARE TOOLS FOR 0S/2

calls to dynamic-link library functions. The discussion of the dynamic-
linking mechanism is divided into the following stages:

¢ Compiling the program

¢ Linking the program

* Loading the program

e Calling the dynamic-link function
¢ Terminating the program

This chapter describes the most common method of dynamic-linking—
known as loadtime dynamic-linking—in which dynamic-link libraries
are automatically loaded when the program is run. A program can also
explicitly load selected dynamic-link modules, and obtain the addresses
of the required functions at any point while the program is running. This
alternative process is known as runtime dynamic linking and is
discussed in Chapter 8.

Compiling the Program

Chapters 1 and 2 described how to call the dynamic-link functions
provided by the operating system. As you saw in those chapters, a
dynamic-link function is called in the same manner as other external
functions. (Remember that an external function is one that is called by
the program but is not contained within the current source code file. It
can be, for example, a C library function, a function you have written
within another C or assembly language source file, or a function in a
dynamic-link library.) When the compiler encounters a call to an external
function, it cannot supply the actual address of the function for the CALL
instruction; rather, it leaves the address unspecified and places an exter-
nal reference for the function within the object file. (Note that if a given
source file has several calls to the same external function, the compiler
writes only a single external reference.) The external reference consists
ofthe name of the function and an optional type description, and is located
within a record that lists all external symbols for the current object

HOW DYNAMIC-LINK LIBRARIES WORK 71

module. The object module is either a freestanding object file or an object
file that has been added to a library file.

Since the compiler processes only a single source file at a time, it cannot
check whether the external function actually exists; it merely places an
external reference in the object file, assuming that the linker will be able
to resolve this reference when the object file is linked. To resolve an
external reference means to determine the location of the actual function
code.

The compiler processes a call to a dynamically linked function in exactly
the same way that it processes a call to a conventionally linked function.
Both calls simply generate an external function reference in the resulting
object file. The compiler does not know about dynamic-link functions.

Linking the Program

The differences between static and dynamic linking first appear when the
linker processes an external function reference in the program object file.
The external reference itself does not indicate the method of linking;
rather, the method of linking is determined by the way that the linker
resolves the reference. When the linker attempts to resolve an external
reference, it begins searching the following files:

¢ Any other object modules (.OBJ files) specified on the LINK com-
mand line. .

* Any library files (.LIB files) specified on the LINK command line
(standard library files or import libraries).

* Any import definitions given in the module definition file (DEF
file), if a definition file has been specified on the LINK command
line. (Import definitions are given in an IMPORTS statement and
resolve references only to dynamic-link functions; this statement
is discussed later in the chapter).

For example, given the LINK command line:

link /NOI /NOD APP.OBJ MOD1.0OBJ,,,SLIBCE.LIB 0S2.LIB, APP.DEF

72 SOFTWARE TOOLS FOR 0S/2

the linker would search the object file MOD1.0BdJ, the standard library
file SLIBCE.LIB, the import library file OS2.LIB, and the IMPORTS
statement (if any) in the module definition file APP.DEF.

As the linker searches these files, it may first find a conventional object
module that resolves the reference, or it may first find a special dynamic-
link object record or IMPORTS definition that resolves the reference. If
the linker is unable to find any of these items, it prints an "Unresolved
external” error message (also, under OS/2, it marks the program file as
non-executable).

If the linker first finds a conventional object module that resolves the
external reference, then the function is linked statically. Such an object
module may be a separate .OBJ file or it may be part of a standard library
file. A given object module contains a record of all public symbols defined
in the module; if the name of the external function is found in this record,
then the module is used to resolve the reference. To resolve a function
reference using a conventional object module, the linker performs the
following two steps:

1. It copies the entire body of code and data defined in the module direct-
ly into the executable program file (provided, of course that the code
and data have not already been copied into the file to resolve a pre-
vious external reference). In addition to the desired function, the ob-
ject module may contain one or more other functions and variables;
all of these items are written to the executable file since the object
module is the smallest linkable unit.

2. It writes the actual function address to the address portion of the
CALL instruction that invokes this function. More precisely, it sup-
plies the offset address; if the function is invoked through a far CALL,
the segment portion of the address cannot be furnished until the pro-
gram is run.

Figure 3-1 illustrates how the linker resolves references to a statically
linked function.

HOW DYNAMIC-LINK LIBRARIES WORK

73

Figure 3-1: Resolving references to a statically linked function.

PROGRAM DBJECT MODULE
APP.OBJ FUNCTION OBJECT MODULE
EXTERNAL SYMBOL RECORD PUBLIC SYMBOL RECORD
~_printf '_printf
PROGRAN BLOCK Z pnnsmm BLOCK
: o ek piinat /
2?2?77 pii /-
CALL 7777 - print | OHER RECORDS
CALL 2277 ; printf
OTHER RECORDS
=z z

LINK

APP.EXE

HEADER

|, OTHER SEGMENTS

Y

CODE SEGMENT

CALL 528C ; printf

CALL 528C ; printf

528C:

CODE SEGMENT INFORMATION

N

4 OTHER SEGMENTS

Y

74 SOFTWARE TOOLS FOR 0S/2

Alternatively, the function will be dynamically linked if the linker first
finds one of the following two items as it attempts to resolve the external
function reference:

¢ A dynamic-link record for the external function in an import
library.

e An IMPORTS statement in the module definition file that includes
an import definition for the external function.

Chapter 1 described how to use an import library to resolve references
to the OS/2 API dynamic-link functions. Rather than containing object
modules that supply the complete body of code and data for each function,
import libraries contain simple dynamic-link records for each function. A
dynamic-link record is a special object record (unique to OS/2) that
contains the following information:

1. The function name, as it appears in the program source file and in the
external reference in the program object file. This is known as the ex-
ternal name.

2. The name of the dynamic-link library file that contains the actual func-
tion code and data.

3. The entry point of the function within the dynamic-link library. The
entry point may be given as a simple number (the ordinal value of the
function), or as an entry point name. The entry point name may be the
same as the external name (item 1), or it may be a different name.

You will see shortly what the linker does with this information. Chapter
4 describes how to prepare an import library for the dynamic-link libraries
you create, using the IMPLIB utility. Import library refers to a library
file containing import definitions created with the IMPLIB utility. How-
ever, you can also add standard object modules to such a library using the
LIB utility. A given library file can contain both standard object modules,
which are recognized by the presence of certain object records, and
dynamic-link object records. The linker simply searches all specified
libraries and responds according to the types of the individual records it
finds in these files.

HOW DYNAMIC-LINK LIBRARIES WORK 75

The linker can also resolve an external function reference for a
dynamic-link function through an import definition in a module definition
file. Import definitions are contained in an IMPORTS statement, which
is described in Chapter 4. As you will see in Chapter 4, import definitions
supply the same three items of information given by dynamic-link object
records (listed above), and provide an alternative to using an import
library.

When the linker resolves an external reference to a dynamic-link
function either through a dynamic-link object record or through an import
definition, it writes the following three items of information to a relocation
record within the program file. The relocation records for a given segment
are found in a relocation table that follows the segment image in the
executable file:

1. The offset of the reference to the dynamic-link function within the pro-
gram code segment; in other words, the offset of the address portion of
the far CALL instruction that invokes the function. (Note that only
the offset of the reference need be stored since each program segment
has its own relocation table, and thus the segment is known implicitly.)

2. The name of the dynamic-link library file containing the function.

3. The entry point of the function within the dynamic-link library,
specified either as an ordinal value or as a name—but not both.

The three values written to the relocation record correspond to the
three items specified by the dynamic-link object record or the import
definition. The names are not written directly to the relocation record;
rather, all name strings are stored in a single imported name table, and
the appropriate index to this table is written to the relocation record. This
structure saves space, since module or function names that appear more
than once do not need to be duplicated.

Thus, unlike the static linking mechanism, the function code and data
are not read into the program file, and the address portion of the CALL
instruction is not supplied. Instead, a relocation record is established in
the program file, which contains the information required to locate the
dynamic-link function at load-time and a pointer to the address field of
the CALL instruction within the program code.

76 SOFTWARE TOOLS FOR 0S/2

Note that the linker creates a new relocation record only for the first
call to a given dynamic-link function that occurs within a code segment.
If a second call to this same function is encountered, the linker places the
offset of the address portion of the second call within the address portion
of the first call. Thus, it forms a linked-list of references to the dynamic-
link function, and continues to add subsequent calls to the same function
to the end of the list. For example, if a code segment contains calls to a
given dynamic-link function at offsets 0x143c, 0x2482, and 0x5f9a, the
relocation record would contain the offset of the address field of the first
CALL instruction—0x143d. Note that the address begins one byte beyond
the beginning of the instruction. The three CALL instructions would be
assigned the values that are recorded in Table 3-1:

Table 3-1: CALL Instructions

OFFSET OF CALL INSTRUCTION
0x143c CALL 0000:2483
0x2482 CALL 0000:5f9b
0x5f9a CALL 0000:ffff

The value, oxffff, is a special value indicating the end of the list.
Obviously, the program is not intended to run with these address values.
As you will see in the next section, the linked list they establish will be
used by the program loader to fill in the appropriate address at all
required locations in the code.

Figure 3-2 illustrates the process of resolving the references to a
dynamically linked function, and shows the linked list that connects the
CALL instructions. (Compare this illustration to Figure 3-1, which
depicts the process of resolving statically linked functions. Note that since
a given program can contain calls to both statically linked and dynami-
cally linked functions, the processes illustrated in both of these figures
can take place during the linking of a single program.)

HOW DYNAMIC-LINK LIBRARIES WORK 77

Figure 3-2: Resolving references to a dynamically linked function.

PROGRAM OBJECT MODULE

APP.OBJ DYNAMIC-LINK OBJECT RECORD for)
- IMPORT DEFINITION IN .DEF FILE

EXTERNAL SYMBOL RECORD
‘DYNFUN function name: DYNFUN
. dynamic-link library: DYNLIB.DLL

PROGRAM BLOCK _

. entry point:

CALL ??272:27?? ; DynFun ordinal value: 5 for)

entry point name: DYNFUN

CALL ?727:72?? ; DynFun

| OTHER RECORDS
3

LINK

APP.EXE
HEADER

AN
AN

|, OTHER SEGMENTS

AN
\T

CODE SECMENT

14C8:
—> | CALL 0000:3BS5A :DynFun |—

3B53; ~
CALL 0000: FFFF : DynFun <«

RELOCATION RECORD

S 14C9
DYNLIB.DLL
5 (o] DYNFUN

<« OTHER SEGMENTS

AN
\Y

78 SOFTWARE TOOLS FOR 0S/2

Loading the Program

Because statically linked functions form an integral part of the code and
data contained in an executable file, they are automatically loaded when
the program is run. Also, since the offset addresses in all CALL instruc-
tions to statically linked functions were supplied by the linker, the loader
does not have to adjust these addresses. (Note, however, that if a function
is invoked through a far CALL instruction, the loader will have to supply
the segment portion of this address, since the segment values are un-
known until the program is loaded.) Figure 3-3 illustrates the loading of
a statically linked function; this figure is presented for comparison with
Figure 3-4, which shows the process of loading a dynamically linked
function.

In contrast, if the program contains dynamically linked functions, the
loader must perform several important tasks to process these functions.
As explained in the previous section, the executable file contains a
relocation record for each dynamic-link function called by the program.
Accordingly, when the program is run, the loader goes through the
relocation table for each segment, and performs the following two basic
operations for each relocation record that refers to a dynamic-link func-
tion:

1. It loads the dynamic-link library code and data into memory.

2. It writes the full address of the dynamic-link function in memory to all
CALL instructions that invoke this function.

These two tasks are now discussed individually.

Loading Dynamic-Link Libraries The loader encounters a relocation
record for a dynamic-link library that has not already been loaded into
memory. It loads the entire body of code and data contained in this library
(this is analogous to the static linking process in which the linker always
links the entire object module into the program). As mentioned previously,
the name of the library is contained in the relocation record; the loader
searches for this library in all directories specified by the LIBPATH
configuration command.

HOW DYNAMIC-LINK LIBRARIES WORK 79

Figure 3-3: Loading a statically linked function.

APP.EXE
HEADER

, OTHER SEGMENTS

\NY

CODE SEGMENT

CALL 528C : printf

ON DISK CALL 528C : printf

CODE SEGMENT INFORMATION

AN
\T

« OTHER SEGMENTS

LOAD

, OTHER SEGMENTS

A 1

\NY

GCODE SEGMENT
CALL 528C : printf

IN RAM .
CALL 528C : printt

CODE FOR p ri
%

OTHER SEGMENTS

P
A

AN

80 SOFTWARE TOOLS FOR 0S/2

In addition to loading the segments of the dynamic-link library into
memory, the linker must render these segments accessible to the calling
process. As you will see in the discussion of virtual memory in Chapter 5,
to allow a process to access a given segment, the system must establish a
segment descriptor which belongs to the process and defines the proper-
ties of the segment, such as its physical address and whether it is a code
segment or a data segment.

What does the loader do if the dynamic-link library has already been
loaded into memory during the loading of a previous process that refer-
enced this library? Its action depends upon the specific dynamic-link
library segment. If the segment is marked as a code segment, the loader
does not load a new copy into memory; rather, the new process shares the
code that has already been loaded. Any number of processes can share a
single code segment because such segments cannot be written to by any
process; thus, one process cannot alter or accidently corrupt the code used
by another process.

If the segment is marked as a data segment, the loader may or may not
load a new copy from the dynamic-link library file. As you will see in
Chapter 5, you can specify in the module definition file whether a new
copy of a given data segment is loaded for each process (an instance data
segment), or whether all processes using the dynamic-link library share
the original copy of the segment in memory (a global data segment). In
general, instance data segments are more common and are easier to use
than global segments. Instance data segments prevent data conflicts
among separate processes using the dynamic-link library (the client
processes), and normally permit you to write a dynamic-link function like
a normal subroutine that is called by a single process. Global data
segments allow the dynamic-link function to share data among multiple
client processes, and force the function to keep track of its individual
clients. The use of global segments is discussed in Chapter 5.

Note that a dynamic-link library may contain references to other
dynamic-link libraries. As described in Chapter 4, a dynamic-link library
is prepared by the linker and contains relocation records conforming to
the same format as a normal executable file. If the loader, while loading
a dynamic-link library, discovers a relocation record within this library
that refers to another dynamic-link file, it immediately begins loading the

HOW DYNAMIC-LINK LIBRARIES WORK 81

newly referenced file, and when it has completed loading this file, it
resumes processing the original dynamic-link library. Thus, the loading
process can be recursive, and there is no documented limit to the level of
recursion. As illustrated later in the chapter, references among dynamic-
link libraries can even be circular.

Once the loader has copied a dynamic-link library into memory, it may
execute an initialization routine contained within this library. Some
dynamic-link libraries do not contain initialization routines, some contain
initialization routines that are executed only when the first client process
is run, and some contain initialization routines that receive control each
time a new client is run. Chapter 6 discusses the techniques for writing
both types of initialization routines. This routine runs before the loader
has completed loading the client process. Initialization routines are
especially important for dynamic-link subsystems that need to initialize
a shared device or other object.

Finally, when a program or dynamic-link library segment is "loaded"
into memory, the appropriate segment selectors are established, but the
segment may not actually be read into memory until it is first accessed.
Such segments are termed "load on call" segments, and are the default
code and data segment type. You can force the loader to physically load
the segment when the program first begins running by assigning the
segment the "preload" attribute in the module definition file. You can
postpone physically loading a segment because of the virtual memory
mechanism used in the protected mode (discussed in Chapter 5).

Supplying Addresses of Dynamic-Link Functions Once the sys-
tem has loaded the dynamic-link library containing the function listed in
the relocation record, it must go through the associated linked list, writing
the address of this function to the address fields of the CALL instructions
on the list. Since a dynamic-link function is always contained in a
separate segment, it must be called with a far CALL instruction; the
loader must therefore supply both the segment selector and the offset of
the function.

The relocation record specifies the entry point either as an ordinal value
or as a name. The ordinal value serves as an index into the entry table
found in the header of the dynamic-link library file. If the entry point is
specified as an ordinal value, the loader reads the corresponding entry in

82 SOFTWARE TOOLS FOR 0S/2

this table, which identifies the segment containing the function and gives
the offset of the function within this segment. The loader supplies the
appropriate segment selector for the specified segment, which it has just
loaded into memory, and uses the offset value obtained from the entry
table. The resulting selector:offset address is then written to all CALL
instructions on the linked list within the program.

If the entry point of the dynamic-link function is identified by name,
the loader must first look in a table of entry point names within the header
of the dynamic-link library. This table supplies the ordinal value for each
function that it lists. The loader must then obtain the function location
from the entry table. Thus, identifying dynamic-link functions by entry
point name involves an extra step. Chapter 4 will show that using names
rather than ordinal values is not only slightly slower, but also consumes
more memory.

Note that the loader follows a special procedure for certain system
services—these services are termed resident functions. Although the
programmer calls these functions in the same manner as normal
dynamic-link routines, the loader resolves references to the functions by
supplying the entry point of a routine within the operating system kernel
and does not load a separate dynamic-link library file. These functions
are described in the section on The Uses of Dynamic-linking, later in the
chapter.

See Chapter 8 for more information on loading dynamic-link library
segments—specifically, how the system sets up descriptors for these
segments.

Figure 3-4 illustrates the process of loading a program that contains a
call to a dynamic-link function (this figure is based on the same example
shown in Figure 3-2, which shows how the program was processed by the
linker). The example depicted in Figure 3-4 references the function entry
point using an ordinal value, rather than an entry point name. Compare
this example to Figure 3-3, which illustrates the loading of a program
containing a statically linked function. Note that these figures isolate
specific processes from the many processes that occur when a program is
loaded. A typical OS/2 program contains many calls to both statically and
dynamically linked functions.

HOW DYNAMIC-LINK LIBRARIES WORK 83
Figure 3-4: Loading a program and a dynamic-link library.
APP.EXE DYNLIB.DLL
HEADER HEADER
|, OTHER SEGMENTS , EN!;Y TABLE
1 1 B
CODE SEGMENT | OTHER SEGNENTS ’
14C8: 7 1
—> !:ALL 0000: 3B5A ; DynFun CODE SEGMENT
3859 | 283
CALL 0000: FFFF : DynFun | ¢— ///
. CODE FOR D nFu
: 7
RELOCATION RECORD
— 14C3 SEGMENT INFORMATION
DYNLIB.DLL
5 (ordinal value of entry point) + OTHER SEGMENTS 7
OTHER SEGMENTS £
ONDISK — T ONDISK
‘ Loan [}
IN RAM -3 Nram IN RAM
| OTHER SEGMENTS 1 | OTHER SEGMENTS]
CODE SEGMENT 4052 | conE sEGmENT
14C8:

§

CALL 4C52:2F3A 5 3A
: DDE FOR DynFun
B5 '

3B59:
CALL 4C52:2F3A

\YT

+ OTHER SEGMENTS

A

\Y

¢ OTHER SEGMENTS

4

84 SOFTWARE TOOLS FOR 0Os/2

Calling the Dynamic-Link Function

Once the program and all referenced dynamic-link libraries have been
loaded, matters become simple. Calls to dynamic-link library functions
become direct far calls to the dynamic-link code in memory. Although a
dynamic-link function is contained in a separate disk file, it runs as part
of the same process as the client program—precisely, it runs as part of the
process thread from which it is called. Calling a dynamic-link function is
similar to calling a normal subroutine within a large memory model C
program. There are two important features of dynamic-link functions that
you should consider as you begin developing dynamic-link libraries.

First, a dynamic-link function can be used by several simultaneous
processes, namely the dynamic-link function can be called by more than
one process at a given time. If the dynamic-link library employs only
instance data segments, the existence of multiple client processes is
largely masked. If, however, it uses one or more global data segments, or
if it manages other shared objects, such as memory segments or devices,
it must smoothly coordinate the activities of the separate processes. These
issues are discussed in Chapter 5.

Second, like a normal program subroutine, a dynamic-link function has
full access to all objects owned by the client process, such as memory
segments, file handles, and semaphores. It can also allocate additional
objects, which become owned by the common process. Accordingly, the
dynamic-link function must be considerate in using allocated objects so
that it will not sabotage the client program. For example, it should neither
arbitrarily close file handles that were opened by the client program, nor
open a large number of files without increasing the limit on the number
of handles that can be opened by the process. Also, certain system calls,
such as DosSetPrty which sets the priority of a thread or a process, can
directly affect the client program and must be used with care.

Terminating the Program

Before the program terminates, a package of dynamic-link routines may
provide a function for the client program to call when it has completed
using the package. A Presentation Manager application can call Win-
Terminate to sever its ties with the Presentation Manager and to release

HOW DYNAMIC-LINK LIBRARIES WORK 85

any remaining objects maintained for the client program. As shown in
Chapter 2, the Presentation Manager is implemented as a package of
dynamic-link routines.

A dynamic-link package can also install a termination routine that is
automatically called when the client process terminates—regardless of
whether the termination is normal or through an error condition. Such a
routine is useful if the client program fails to call the appropriate function
to notify the dynamic-link package that it has completed using its ser-
vices, or if the package does not provide such a routine. Chapter 6
describes how to write and install termination routines.

When the last client process using a given dynamic-link library ter-
minates, the system frees the dynamic-link library from memory. Know-
ing when to release a dynamic-link library is not a matter of maintaining
a reference count of client processes, because these references can be
circular (remember that a dynamic-link library function can call a func-
tion in another dynamic-link library). For example, in Figure 3-5, the
program references dynamic-link library A, which references dynamic-
link library B, which in turn references dynamic-link library A.

Figure 3-5: Circular references among dynamic-link libraries.

CLIENT
"PROGRAM

 CALL

86 SOFTWARE TOOLS FOR 0S/2

If the program terminates, dynamic-link libraries A and B would still
have one reference each; however, these libraries no longer serve a
purpose. Accordingly, the system releases a dynamic-link library when it
can no longer trace a path of references from this library back to a client
program. Thus, libraries A and B would both be freed from memory.

The Uses of Dynamic Linking

This section describes how these functions fit into the overall layered
structure of OS/2. The discussions emphasize the unique advantages
offered by the dynamic linking mechanism for each type of use.

The first general use for the dynamic-linking mechanism is to provide
a convenient method for application programs to obtain the basic services
of the operating system kernel. These services are provided by the set of
dynamic-link functions having the Dos prefix, which were demonstrated
in Chapter 1.

Some of the operating system services, however, cannot be performed
by a normal dynamic-link library. As you have seen, a dynamic-link
function executes as part of the client process. Under OS/2, however,
normal application processes have the lowest privilege level in the system.
In the protected-mode of the 80286 and later model processors, programs
run at one of four privilege levels-—the privilege level determines which
memory segments the process can access and which machine instructions
it can execute. The operating system kernel operates at the highest level
of privilege and can, therefore, access all segments in the system and use
all available machine instructions. An application program, running at
the lowest privilege level, is restricted in the segments it can access and
the machine instructions it can execute. See Chapter 10 for more infor-
mation on privilege levels.

The allocation of a memory segment requires the highest privilege
level. Therefore, an operating system function that provides such a
service cannot be performed by a normal dynamic-link library—which
operates within an application process—rather, the service must be
accomplished by a routine that is within the operating system kernel.

HOW DYNAMIC-LINK LIBRARIES WORK 87

Accordingly, when the loader resolves references to certain system
functions—known as resident functions—rather than reading a
dynamic-link library into memory and obtaining the function entry ad-
dress from this library, the loader assigns the CALL instruction the
address of the appropriate routine within the operating system kernel.
More precisely, the address assigned to the CALL instruction contains a
segment selector for a call gate, which is a special segment descriptor
that points to a code segment at a higher privilege level. Making a function
call through a call gate allows a program to temporarily execute at a
higher privilege level. This mechanism does not breach system protection,
however, since only the system can set up call gates, and application
programs are allowed to execute kernel code only through a highly
restricted set of entry points.

The operating system maintains a list of the resident functions, which
must be resolved in the manner described. This list can vary depending
upon the version of 0S/2; however, whether a function is executed by a
dynamic-link library or by a kernel routine does not affect the function-
calling protocol or the client program.

From the viewpoint of the programmer, the primary advantage of using
the dynamic-linking mechanism to access the services of the operating
system is that these services can be called in the same manner as normal
external functions—using the standard calling protocol employed by
high-level languages. :

A second basic use for the dynamic-link mechanism is to provide access
to the function subsystems supplied by the operating system. Asubsystem
is a collection of related dynamic-link functions, typically used to manage
a device that can be shared by many processes. As you saw in Chapter 1,
0S/2 provides subsystems for managing the keyboard, the mouse, and the
screen (the Kbd, Mou, and Vio functions, respectively). The features of
the dynamic-linking mechanism are ideally suited for supporting subsys-
tems managing shared devices. Specifically, dynamic-link libraries can
easily perform required device initializations when first loaded (through
initialization routines, which are described in Chapter 6); through in-
stance data segments, they can maintain separate information for each
calling process and they can maintain information on the state of the
device itself within a global data segment (described in Chapter 5).

88 SOFTWARE TOOLS FOR 0S/2

Dynamic-link libraries are also useful in the implementation of major
operating system extensions. Examples of operating system extensions
that have been implemented as sets of dynamic-link libraries include the
Presentation Manager and the communications and database facilities of
the OS/2 Extended Edition developed by IBM. Because the dynamic-link
mechanism is well documented and because adding dynamic-link
libraries to the system does not entail modification of the system code,
other software developers have an opportunity to develop similar operat-
ing system extensions.

Asignificant advantage of using the dynamic-link mechanism to extend
the operating system is that such extensions integrate smoothly with the
basic operating system services. An operating system extension can be
installed by merely copying additional .DLL files onto the hard disk; its
functions can be called in the same manner as those of the basic operating
system. Dynamic linking provides an open pathway for expanding the
facilities of OS/2.

Finally, dynamic-linking is useful for packaging collections of routines,
which you can use for your own programs, or distribute as commercial
function libraries. Whereas a function library for MS-DOS is typically
distributed as a collection of object (.OBJ) or library (.LIB) files, a library
for OS/2 could be distributed as a collection of dynamic-link library (.DLL)
files. A package for either system may include the source code in addition
to, or instead of, the binary code. When the final applications are shipped
to the user, they must be accompanied by all referenced dynamic-link
library files.

Packaging functions within dynamic-link libraries can save space both
on the disk and in RAM. Although the user may run several programs
that call these functions, only a single copy of the functions needs to be
stored on the disk, and only a single copy of the code segments must be
loaded into memory when the programs are run. Also, by following the
guidelines discussed in this book (especially in Chapter 4), you can
develop dynamic-link libraries that can be called from programs
developed in any language that supports OS/2. Additionally, the user can
install updated and enhanced versions of dynamic-link functions without
the need to obtain new executable versions of the applications that call
these functions—provided the calling protocol for the functions remains

HOW DYNAMIC-LINK LIBRARIES WORK 89

the same. Subsequent versions of the operating system may provide
enhanced versions of system services that offer higher performance.
Programs that use these services automatically will begin using the latest
function versions without the need to recompile or relink the applications.

In general, packaging software tools within dynamic-link libraries
enhances the ideal of code and data abstraction. According to this ideal,
the systems programmer who writes a set of functions hides the details
of the implementation of the functions and the internal data structures
from the applications programmer who uses the functions. The systems
programmer, however, publishes the function-calling protocol and the use
of any public abstract data types associated with these functions. Accord-
ingly, the systems programmer can freely enhance the implementation of
the functions as long as the public interface is left unaltered. Likewise,
the applications programmer can freely use the functions without concern
for their implementation, and without building into the application a
dependency upon specific implementation details.

Some high-level languages, such as Ada and Modula2, provide greater
intrinsic support for abstraction than C does. The dynamic linking
mechanism, however, enforces a high level of independence between a C
program and the library functions that it calls and therefore enhances
the level of abstraction for programs written in any language. For ex-
ample, changes in the implementation of a dynamic-link library are less
likely to affect the calling program than similar changes in a statically-
linked library. For example, increasing the code size of a dynamic-link
library cannot force the calling program to adopt a larger memory model.
In fact, as mentioned previously, enhanced versions of the functions can
be supplied directly to the application user without even involving the
applications programmer.

Dynamic-Link Libraries within the Structure of 0S/2

Figure 3-6 illustrates the position occupied by various types of dynamic-
link libraries within the layered structure of the OS/2 operating system.
This figure depicts the following five basic operating system layers:

1. The application program level, including the C runtime library and
other statically linked library functions.

90 SOFTWARE TOOLS FOR 0S/2

2. The dynamic-link library level.

3. The operating system kernel level.

4. The device driver level.

5. The hardware level.

Figure 3-6: The layered architecture of 0S/2.

A,

HARDWARE

] APPLICATION
PROGRAM
]]]
0s/2
2 BASIC
RESIDENT | SYSTEM ’*Sggs\)’gé" ’ ;(:ENr?tl?Nﬁ 3RD PARTY
DOS SERVICES || oo YbES | ((Presentalion) | gyneriony
FUNCTIONS (DOS v(iy t.°“’ E? ag:; LIBRARIES
FUNCTIONS) | Vio functions) xten
_ Edition)
| | |
' ! !
3 0S/2 KERNEL
IOPL
EGMENTS
4 DEVICE DRIVERS
5

HOW DYNAMIC-LINK LIBRARIES WORK 91

In general, an application obtains a required service by making a call
to a dynamic-link library function, and control passes through each layer
of the operating system, eventually accessing an underlying hardware
device. As you can see in Figure 3-6, there are some exceptions to this
normal flow of control. First, an application or a dynamic-link function
can directly control a hardware device through an I/O privileged code
segment; Chapter 12 discusses how to write functions that execute with
/O privilege. Second, as described earlier in this section, calls to resident
Dos functions directly invoke routines within the kernel rather than an
actual dynamic-link function. Finally, dynamic-link functions can call
functions in other dynamic-link libraries, often forming complex and
circular flows of control.

CHAPTER 4

CREATING A DYNAMIC-LINK LIBRARY

In the first three chapters you have learned how to use the dynamic-link
library functions provided by OS/2 and the Presentation Manager, and
you have seen how the dynamic linking mechanism works. In this chapter,
you will discover how to create a dynamic-link library.

The chapter is based upon an example dynamic-link library, which
contains a set of functions for managing the printer and for printing
formatted reports. These functions can be called from a standard OS/2
protected-mode program or from a Presentation Manager application.

The chapter explains and illustrates all of the basic steps required to
develop and use a simple dynamic-link library. Methods for adding
advanced features are presented in subsequent chapters. Specifically, a
dynamic-link library developed using the techniques given in this chapter
is subject to the following constraints:

¢ The dynamic-link library can use only instance data segments
(that is, separate data segments are loaded for each client
process). The techniques for sharing data within global data seg-
ments are discussed in Chapter 5.

93

94 SOFTWARE TOOLS FOR 0S/2

* The dynamic-link library has neither an initialization nor a ter-
mination routine; adding initialization and termination routines is
discussed in Chapter 6.

¢ The dynamic-link library is not free to call functions belonging to
the standard C runtime library. Methods for using special versions
of this library within a dynamic-link module are presented in
Chapter 7.

* The example client program presented in this chapter uses only
load-time dynamic linking; runtime dynamic linking is presented
in Chapter 8.

¢ The dynamic-link code is developed in the C language, and does
not contain I/O privileged routines (explained in Chapter 3); tech-
niques for writing dynamic-link libraries in assembly language
and for developing I/O privileged routines are presented in Chap-
ter 12.

The chapter begins by giving an overview of the entire process of
developing a dynamic-link library. It then presents the source code and
supporting files for an example dynamic-link module, and explains in
detail each step of its development. The chapter concludes by presenting
a program that uses the functions in the example module.

An Overview of the Process

Figure 4-1 illustrates the three basic steps for preparing a dynamic-link
library module. These steps are as follows:

1. Compile the source file.
2. Generate the executable dynamic-link library using the linker.
3. Produce an import library.

This section provides a brief overview of these procedures; subsequent
sections explore each step in detail.

CREATING A DYNAMIC-LINK LIBRARY 95

Figure 4-1: The three basic steps for creating a dynamic-link library.

OS2.H include DYNLIB.C include (E')JlfgLILIJBLH

— | (CSOURCE CODE) | * | DULE

(API HEADER) MoDuLE
Step 1

DYNLIB.OBJ DYNLIB.DEF
0S2.LIB (MODULE OBJECT (MODULE

(API IMPORT
LIBRARY) FILE) DEFINITION)

|
Step 2
| !

DYNLIB.DLL
(DYNAMIC-LINK
LIBRARY)

l

DYNLIB.LIB
(MODULE IMPORT
LIBRARY)

96 SOFTWARE TOOLS FOR 0S/2

As you can see from Figure 4-1, the first two steps for preparing a
dynamic-link library are the same as those required to create a normal
executable program. The first step is to compile the source code. If the
dynamic-link module calls OS/2 API functions (either the basic operating
system functions or the services available for Presentation Manager
applications) it must include the appropriate system header files and any
header files containing information specific to the module. As you will see
later in the chapter, declarations and definitions required by the calling
client program are normally placed in a module header file, which is
included in both the dynamic-link module and in the calling program.
Note the absence in Figure 4-1 of the usual C library header files—as
mentioned, the simple dynamic-link library presented in this chapter
does not call C library functions.

If you are writing a larger dynamic-link module, you might want to
place the code in more than one source file. In the same manner as a
normal C application, these source files are compiled separately and the
resulting object modules are combined during the linking phase. (Note
that this book uses the term module in a general sense. It is used to refer
to an object file or the contents of this file within a library file. It is also
used to refer to a single dynamic-link library, which may have been
created from one or more object modules.)

The second step is to use the linker to prepare the actual dynamic-link
library file (.DLL file). A dynamic-link library is prepared from one or
more object modules in the same manner as a normal executable program.
In fact, the final format of a dynamic-link library closely resembles that
of a protected-mode program. Both types of files contain the same header
format, and the same layout of code and data segments with their
accompanying relocation information (described in Chapter 3). A one-bit
flag within the program header indicates whether the file is an executable
program or a dynamic-link library (specifically, bit 15 of the flag word at
offset 0Ch in the OS/2 portion of the header). As you will see later in the
chapter, if the module definition file contains a NAME statement, the
linker generates an executable program, but if it contains a LIBRARY
statement, it generates a dynamic-link library.

If your dynamic-link module calls functions in other dynamic-link
libraries—such as those containing the 0S/2 API functions—you must

CREATING A DYNAMIC-LINK LIBRARY 97

supply the linker with the names of the corresponding import library or
libraries to resolve the references to these functions (such as OS2.LIB or
DOSCALLS.LIB). Alternatively, you can list these functions in an IM-
PORTS statement in the module definition file, as described later in the
chapter.

When linking the dynamic-link library, you must also supply a module
definition file, which is optional for normal protected mode-programs, but
is required for dynamic-link libraries. This file serves not only to tell the
linker to generate a dynamic-link library, but is also required to specify
the names of the functions that can be called by a client program, and to
define other features of the resulting dynamic-link library.

The third step is to use the IMPLIB utility to generate an import library
containing a dynamic-link record for each function in your module that
can be called by a client program. The import library is used to resolve
references to these functions when linking a client program (the use of
import libraries is explained in Chapter 3). Note that creating an import
library is optional, since a client program can also resolve references to
dynamic-link functions by listing these functions in an IMPORTS state-
ment in the module definition file.

An Example Dynamic-Link Library

The example dynamic-link module presented in this chapter consists of
a set of functions for managing the printer and for printing text. These
functions are especially useful for generating formatted reports. Using
the functions, you can perform the following specific tasks:

e Determine whether the printer is ready to receive output (Prt-
Ready).

e Initialize the printer (PrtInit).
e Send a single character or control code to the printer (PrtPutC).

e Send a NULL-terminated string of characters or control codes to
the printer (PrtPutS).

98 SOFTWARE TOOLS FOR 0S/2

¢ Print a string at a specified row and column position (Prt-
Position).

* Start a new page, optionally generating a formfeed (PrtNew-
Page).

In general, you can use this dynamic-link module either from a stand-
ard protected-mode program or from a Presentation Manager application.
However, there are several restrictions in the use of the functions. First,
if the functions are called by more than one thread within a single process,
the printed output will become interspersed on the page, since the module
makes no provision for segregating the output generated by multiple
threads. Also, if you have not installed the OS/2 print spooler, the same
restriction would apply to calling the functions from more than one
concurrent process or screen group. If the OS/2 print spooler is enabled,
however, it automatically segregates the printer output produced by
separate processes, and you may therefore call the functions from more

‘than one simultaneous process. The spooler stores the output from each
process in a spool file, which is printed when the application closes the
printer file handle or terminates.

Another restriction is that you should not perform a lengthy operation,
such as printing a report, from the main thread of a window procedure
within a Presentation Manager application. A window procedure should
return quickly (the documentation recommends returning control within
0.1 second) so that the program can continue processing messages; other-
wise, the user cannot perform other tasks or switch Presentation
Manager windows. Accordingly, you should start a separate program
thread to perform the printing operations (using the methods discussed
in Chapter 1), and allow the main thread to return immediately.

The C source code for the example dynamic-link module is listed in
Figure 4-2. The module header file is given in Figure 4-3 which comes
later in the Chapter. This file is included in the source listing of Figure
4-2 and must also be included within any program that calls the module
functions. Figure 4-4 also comes a bit later and presents the module
definition file required to link the dynamic-link library and, finally, Figure
4-5 provides a MAKE file for generating the dynamic-link library and
corresponding import library.

CREATING A DYNAMIC-LINK LIBRARY 99

Figure 4-2

/*
Figure 4-2

This source file defines a set of dynamic-link functions for managing the
printer and for printing formatted reports. It contains the following

functions that may be called by a client program:

PrtReady Determines whether the printer is ready to receive output.
PrtInit Resets the printer.

PrtPutC Sends a single character to the printer.

PrtPuts Sends a NULL-terminated character string to the printer.
PrtPosition Prints a string at a specified row and column position.
PrtNewPage Generates a new page; used in conjunction with PrtPosition.

Preparing the dynamic-link library file from this source listing requires

the following additional files:

FIG4 3.H Header file included in FIG4_2.C and in the client
program.

FIG4_4.DEF Module definition file.

FIG4_5.MAK MAKE script for preparing the program.

*/

#define INCL_DOS

#include <0S/2.H>

100 SOFTWARE TOOLS FOR 0S/2

#include "FIG4_3.H"

$#define PRTNAME "LPT1"

int _acrtused = 0;

unsigned char Opened = 0;

HFILE Handle;

int CurRow = 1;

int CurCol

1;

USHORT _PrtOpen

(void) ;

USHORT _StrLen

(char far *String):

/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

Printer device name. *x/
Define variable to avoid linking in C *x/
startup code. */
External variables for storing printer state*/

Indicates whether printer has been opened. */

Handle for printer device. */
Current row of printer head. */
Current column of printer head. */
Private functions: */
Opens the printer. */
Calculates length of a string. *x/

unsigned pascal far _loadds PrtReady

/*

*/

(unsigned char far *PtrFlagReady)

This function assigns a nonzero value to ’'*PtrFlagReady’ if the printer

is ready to receive output;

printer is not ready.

it assigns zero to ’*PtrFlagReady’ if the

If successful, it returns zero; if an error

occurs, it returns a nonzero API error code.

*

{
USHORT ErrorCcde;
BYTE PrinterStatus;

/* Stores the API error code. */

/* Receives printer status. */

CREATING A DYNAMIC-LINK LIBRARY 101

BYTE Reserved = 0; /* Reserved DosDevIOCtl parameter.
if (!'Opened) /* Open printer if necessary.

{

ErrorCode = _PrtOpen ();

if (ErrorCode)

return (ErrorCode);

ErrorCode = DosDevIOCtl /* Send I/O control command to printer driver.

(&PrintersStatus, /* Receives printer status.

&Reserved, /* Reserved: must point to 0 variable.
0x0066, /* GETPRINTERSTATUS function.

0x0005, /* Function category.

Handle) ; /* Printer device handle.

if (ErrorCode)

return (ErrorCode);

PtrFlagReady = PrinterStatus & 0x10; / Mask all bits except
/* 'printer selected’ bit.

return (0);

} /* end PrtReady */

unsigned pascal far _loadds PrtInit
(void)
/*
This function initializes the printer device. If successful, it returns

zero; if an error occurs, it returns a nonzero API error code.

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

102 SOFTWARE TOOLS FOR 0S/2

*/
{
USHORT ErrorCode;

BYTE Reserved = 0;

if (!Opened)
{

/* Stores the API error code.

/* Reserved DosDevIOCtl parameter.

/* Open printer if necessary.

ErrorCode = _PrtOpen ();

if (ErrorCode)

return (ErrorCode);

ErrorCode = DosDevIOCtl /*

(oL, /*
&Reserved, /*
0x0046, /*
0x0005, /*
Handle); /*

if (ErrorCode)

return (ErrorCode);

return (0);

} /* PrtInit */

Send I/0 control command to printer driver.

Must be 0 for this function.
Reserved: must point to 0 variable.
INITPRINTER function.

Function category.

Device handle.

unsigned pascal far _loadds PrtPutC

(int Ch)

*/
*/

*/

*/
*/
*/
*/
*/
*/

/*

*/

CREATING A DYNAMIC-LINK LIBRARY 103

This function sends character 'Ch’ to the printer. If successful, it

returns zero; if an error occurs, it returns a nonzero API error code.

Warning: Neither ’'PrtPutC’ nor ’'PrtPutS’ should not be used in conjuntion
with ’'PrtPosition’ unless the function is used to send a control code that
does NOT move the printer head (otherwise the internal record of the

current printer row and column maintained by the module would become

invalid) .

{

USHORT ErrorCode; /* Stores the API error code. *x/
USHORT BytesWritten; /* Number of bytes successfully printed. */
if (!'Opened) /* Open printer if necessary. *x/

{
ErrorCode = _PrtOpen ();
if (ErrorCode)

return (ErrorCode);

ErrorCode = DosWrite /* Send character to printer. */
(Handle, /* Printer device handle. */
&Ch, /* Address of char. to print. *x/
1, /* Number of bytes to print. */
&BytesWritten); /* Assigned bytes written. */

if (ErrorCode)

return (ErrorCode);

return (0);

104 SOFTWARE TOOLS FOR 0S/2

} /* end PrtPutC */
unsigned pascal far _loadds PrtPutS

(char far *String)

/*
This function sends the NULL terminated string ’String’ to the printer.
See the warnings given for ’'PrtPutC’, which apply to ’'PrtPutS’ as well.
If successful, it returns zero; if an error occurs,
nonzero API error code.

*/

{
USHORT ErrorCode;

USHORT BytesWritten;

if (!'Opened)

{

ErrorCode = _PrtOpen ();
if (ErrorCode)

return (ErrorCode) ;

ErrorCode = DosWrite
(Handle,
String,
_StrLen (String),
&BytesWritten);
if (ErrorCode)

return (ErrorCode);

return (0);

it returns a

/* Stores the API error code.

/* Number of bytes successfully printed.

/* Open printer if necessary.

/*
/*

/*
/*

Send string to printer.

Printer device handle.

Address of string to print.

Number of bytes to print.

Assigned bytes written.

*/
*/

*/

*/
*/
*/
*/
*/

CREATING A DYNAMIC-LINK LIBRARY 105

} /* end PrtPutS */

unsigned pascal far _loadds PrtPosition

/*

*/

(char far *String,
int Row,

int Col)

This function prints NULL terminated ’'String’ beginning at the position
specified by 'Row’ and ’'Column’. If successful, it returns zero; if an

error occurs, it returns one of the following error codes:

BADPOSITION The requested print position was to the left of

or above the current printer head position.

For all other errors, it returns the API error code.

The following rules must be observed:

o The string must NOT contain control characters (i.e., any characters
that do not advance the print head a single column). To send control
codes, use ’'PrtPutC’ or ’'PrtPutS’.

o The string must not contain tab characters.

o The string must not contain newline characters. To advance to a new
line, use a subsequent call specifying the desired row. Do not send
more characters than can fit on the current line.

o To generate a new page and reset the row and column numbers, use
'PrtNewPage’ . Do not send more lines than can fit on a single page.

o 'PrtPosition’ and ’'PrtNewPage’ should be used by only a single thread

within a process at a given time.

106 SOFTWARE TOOLS FOR 0S/2

USHORT ErrorCode; /* Stores the API error code. */
/*** Test for valid row and column. *************************************/
if (Row CurRow ||

Row == CurRow &&

Col CurCol)

return (BADPOSITION) ;

/*** print CR/LF pairs until reaching desired row. ***Xxxxkxkx*kkkkkkkkkk /

while (Row - CurRow)

{
ErrorCode = PrtPutS ("\x0d\x0a");

if (ErrorCode)

return (ErrorCode);
++CurRow; /* Adjust record of printer position. */
CurCol = 1;

}

/*** Print spaces until reaching desired column. KhIk KKKk ARk hkhkhkkkkkkx /
while (Col - CurCol)

{

ErrorCode = PrtPutC (32);
if (ErrorCode)
return (ErrorCode);
++CurCol; /* Adjust record of current column. */
}

/*** Print the string. e L T Ty

ErrorCode = PrtPutS (String);

if (ErrorCode)

CREATING A DYNAMIC-LINK LIBRARY 107

return (ErrorCode);

CurCol += _StrLen (String); /* Adjust record of current column. */

return (0);

} /* end PrtPosition */

unsigned pascal far _loadds PrtNewPage

/*

*/

(unsigned FlagFormFeed)

This function resets the internal row and column counters for the
position of the printer head; if 'FlagFormFeed’ is nonzero, the
function also generates a formfeed. If successful, it returns zero;

if an error occurs, it returns a nonzero API error code.

{
USHORT ErrorCode; /* Stores the API error code. . %/

if (FlagFormFeed) -

{

/*** Generate a carriage return and form feed. Kk kkkKIKK XXX KX*kkkkk /
ErrorCode = PrtPutS ("\x0d\x0c"):;
if (ErrorCode)

return (ErrorCode);

/*** Reset current row and column. AARKKKAKKKKKKK KKK ARAKKIKI KRR AR AR Kk ** /

CurRow = CurCol = 1;

108 SOFTWARE TOOLS FOR 0S/2

return (0);

} /* end PrtNewPage */

/*** Private functions: FRIHHHHKH KR KKK KKK KR KA KRR KA A AR A A KRR KKK KKK KKKKK]

USHORT unsigned _PrtOpen

(void)
/*
This private function opens th
zero; if an error occurs, it
*/

{
USHORT ErrorCode;

USHORT Action;

ErrorCode = DosOpen

e printer device. If successful,

returns a nonzero API error code.

/* Stores the API error code.

/* Receives ’'DosOpen’ action code.

(PRTNAME, /* Device name for printer.
&Handle, /* Receives printer device handle.
&Action, /* Receives action code.
oL, /* Initial allocation size: n/a.
0, /* File attribute: n/a.
1, /* Open flag: open file if it exists.
0x0041, /* Open mode: write access and share.
oL) ; /* Reserved: must be 0.

if (ErrorCode)
return (ErrorCode);

Opened = 1; /* Set opened flag.

return (0);

} /* end _PrtOpen */

it returns

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

CREATING A DYNAMIC-LINK LIBRARY 109

USHORT _StrLen
(char far *String)
/*
This private function returns the length of the NULL-terminated string
'String’ .
*/
{

USHORT Count = 0;

while (*String++)

++Count;

return (Count);

} /* end _StrLen */

An example application that uses the functions in this module is
presented at the end of the chapter (in Figure 4-7).

Writing the C Source Code

This section describes the most important step in creating a dynamic-link
module: writing the source code. The discussion is based upon the ex-
ample module of Figure 4-2. It begins by describing the general guidelines
for writing a dynamic-link module, and then explains the implementation
of each of the functions in the example module.

General Guidelines This section describes some general guidelines for
writing dynamic-link libraries in C; most of these guidelines are il-
lustrated by the example dynamic-link module of Figure 4-2.

110 SOFTWARE TOOLS FOR 0S/2

Figure 4-3

/*
Figure 4-3

This header file contains the public declarations and definitions for the

dynamic link module of Figure 4-2. It is included in the dynamic-link

source code (FIG4_2.C) and should be included in any client program that

calls one or more of these functions.

*/

unsigned pascal far _loadds PrtReady

(unsigned char far *PtrFlagReady);

unsigned pascal far _loadds PrtInit

(void) ;

unsigned pascal far _loadds PrtPutC

(int Ch);

unsigned pascal far _loadds PrtPutS$

(char far *String);

unsigned pascal far _loadds PrtPosition
(char far *String,
int Row,

int Col);

unsigned pascal far _loadds PrtNewPage

(unsigned FlagFormFeed);

/* Prt module error constant:

#define BADPOSITION 1000 /* 'PrtPosition’: bad position passed.

*/
*/

CREATING A DYNAMIC-LINK LIBRARY 111

The first guideline is that the program should define the variable
_acrtused to prevent the linker from binding in the C startup code. The
“C startup code is required only for a standard apphcatlon program (or for
a dynamic-link library that uses one of the special versions of the C
runtime library described in Chapter 7); it is not required for a dynamic-
link library that does not use the C runtime library. The compiler auto-
matically writes the name _acrtused to the object file as an external
reference. Since this variable is defined within the C startup code, which
is located in the C runtime library file, its presence as an external
reference in the program object file causes the linker to bind the startup
code into the program. By defining this variable in the C source file, the
reference is resolved immediately and the startup code is eliminated. As
you will see, the C library is not even included on the linker command
line. The example module defines this variable equal to 0, although you
can initialize it to any value.

Although dynamic-link libraries written according to the methods that
are described in this chapter cannot call C library functions, they are free
to call many of the functions belonging to the OS/2 APL. If a dynamic-link
module is designed to be used by either a standard protected-mode
program or by a Presentation Manager application, then it should call
only the basic Dos functions. If the module is designed to be called only
by a Presentation Manager application, then it can call the Dos functions,
as well as the Win, Gpi, and other Presentation-Manager-specific ser-
vices. If the module is designed to be used only by non-Presentation-
Manager programs, it can call any of the Dos, Kbd, Mou, and basic Vio
functions. (These function categories are described in Chapters 1 and 2.)

In general, dynamic-link modules can freely call functions belonging to
other dynamic-link modules. OS/2 can load a set of interdependent
dynamic-link libraries into memory, which can call each other in complex
patterns. As mentioned in Chapter 3, the references among these modules
can even be circular. For example, module A calls module B, B calls C, and
C calls A.

Unlike a normal subroutine called by a program in a single-tasking
system, a dynamic-link function may be called by more than one concur-
rent thread within a single process, or by threads in more than one
concurrent process. Each time a thread calls a dynamic-link function, it

112 SOFTWARE TOOLS FOR 0S/2

creates an instance of this function (separate instances share the func-
tion code, but may or may not share the function data). A potential
problem arises when separate instances of the function attempt to access
the same memory location, device, or other shared object at the same time.
For example, if two simultaneous instances of a function attempt to
modify a memory variable at the same time, the resulting value may
become invalid.

To prevent conflicts when accessing memory variables within a
dynamic-link function, you should know how variables are shared among
separate function instances. The following table, Table 4-1, lists three
basic categories of data that can be declared within a dynamic-link library
written in C:

Table 4-1: Data Categories

DATA CATEGORY DESCRIPTION

automatic Defined within the scope of a function, not using the
static or external keywords; these variables are
stored within the function stack frame or within
machine registers.

non-shared permanent Defined outside the scope of a function, or within a
function using the static keyword, and located in an
instance data segment.

shared permanent The same as non-shared external data, but located in
a global data segment.

Note that an automatic data item must be reassigned a value each time
the function is called, and its value is lost as soon as the function exits.
In contrast, a data item in one of the other two categories can be initialized
when the program begins running, and retains its value throughout the
life of the program unless it is explicitly reassigned—(hence the designa-
tion "permanent").

The dynamic-link module discussed in this chapter employs only the
first two data categories; using shared external data is discussed in

CREATING A DYNAMIC-LINK LIBRARY 113

Chapter 5. Table 4-2 shows how data in each of these categories is shared
among separate function instances.

For example, the function PrtReady (defined in Figure 4-2) defines the
following automatic data item:

BYTE PrinterStatus;

Each function instance would have a separate copy of this variable;
therefore, there is no possibility of conflict among simultaneous instances
that share the function code. For example, after one instance has stored
a value in this variable, a second instance cannot alter the value.

Table 4-2: Data Sharing

DATA CATEGORY SHARING OF A DATA ITEM

automatic No sharing among function instances; a
separate copy is created for each function in-
stance.

non-shared permanent Shared by all instances running within a single
process; a separate copy is created for each
separate client process.

shared permanent All instances share the same copy.

In contrast, the module of Figure 4-2 defines the following variable
outside the scope of a function:

int CurRow = 1;

This variable stores the current vertical position of the printer head,
and is defined externally so that it can be accessed by any function in the
module, and so that it retains its value between function invocations.
Since the module uses an instance data segment, this variable is in the
non-shared permanent category. Accordingly, each client process will have

114 SOFTWARE TOOLS FOR 0S/2

its own copy of the variable, and separate clients will not sabotage each
other’s record of the printer head position.

However, iftwo simultaneous threads within the same process call this
function, both instances will share the same copy of CurRow; overwriting
each other’s record of the printer head position. Because of this feature,
and several others that will be discussed shortly, the example module is
not suitable for simultaneous use by multiple threads within a single
process, unless the process explicitly coordinates the activities of its
separate threads.

In general, when function instances share a data item, you can prevent
simultaneous access to this item by protecting the blocks of code that
access the item with a semaphore or simple form of interprocess com-
munication (the use of semaphores was discussed in Chapter 1). For
example, if the variable Count is shared by separate function instances,
the following code would prevent this variable from being accessed simul-
taneously:

DosSemRequest (&Sem,-1L);
if (Count= <60)

++Count;
else

Count = 1;

DosSemClear (&Sem);

Note that there is no simple mechanism for a C program under OS/2
to obtain a separate copy of a variable for each function instance within
a single process, which maintains its value between function invocations.
An automatic variable is private to each instance, but loses its value
between calls.

For example, if the module of Figure 4-2 supported calls from multiple
program threads, it would have to maintain a separate record of the
printer head position for each program thread. This could be achieved by
dynamically allocating a block of memory to store data for each thread.
You can obtain the identity of the calling thread through the OS/2 function
DosGetInfoSeg (specifically, the identifier of the current thread is stored

CREATING A DYNAMIC-LINK LIBRARY 115

in the tidCurrent field of the local information segment accessed through
DosGetInfoSeg).

Dynamic-link modules that manage a given device must also coor-
dinate the activities of simultaneous function instances to prevent con-
flicts when accessing this device. For instance, the example module given
in this chapter manages the printer. As mentioned previously, the OS/2
print spooler automatically segregates printer output from separate
processes. It collects printer output in individual files, and then prints
these files one at a time.

If, however, two or more threads within a single application program
simultaneously call the functions in the example module, the resulting
printer output becomes interspersed on the page. Also, if one thread resets
the printer by calling PrtInit, it will flush any output generated by other
threads still stored in the printer’s buffer.

Since the module has not been designed to separate the output
produced by distinct threads, a multiple-thread client program would
have to coordinate the activities of its own threads, and attempt to
produce only one printed report at a time. To allow multiple program
threads to simultaneously generate separate reports, the dynamic-link
module has to store an individual record of the printer head position for
each thread, collect printer output from each thread in a distinct tem-
porary file (or memory buffer), and then print these files (or buffers) one
at a time. The module would have to provide the essential features of a
print spooler.

The next general technique is the method for defining functions. A
dynamic-link module contains two basic types of functions: private
functions, that are called only by other functions within the same
module (within the current source file or within separate source files used
to define your library), and public functions, that are called by a client
program (and can also be called by other functions within the module).

For efficiency, the example module defines these two categories of
functions differently. Private functions are defined as normal C functions,
without using special keywords; for example the function _PrtOpen is
called only within the module, and its definition begins as follows:

USHORT unsigned _PrtOpen

(void)

116 SOFTWARE TOOLS FOR 0S/2

Definitions for public functions, however, use several special keywords.
The definition of the first public function within the module begins as

follows:

unsigned pascal far _loadds PrtReady

(unsigned char far *PtrFlagReady)

The special keywords used in this definition are an extension to the C
language provided by the Microsoft C compiler and are not part of the
standard ANSI definition. These keywords and their effects are listed in

Table 4-3.

Table 4-3: Keywords and Effects

KEYWORD

pascal

far

EFFECT

(1) When the function is called, parameters are pushed on
the stack in the same order as they appear in the
parameter list.

(2) The function removes the parameters from the stack
(using the RET n machine instruction).

(3) The number of parameters must be constant (a result
of the first two features).

(4) The function name is written to the object file in all up-
percase letters, without adding a leading underscore.

As a function type: causes the compiler to call the func-
tion with a far call and causes the function to return with
a far return instruction.

CREATING A DYNAMIC-LINK LIBRARY 117

Table 4-3: Keywords and Effects

KEYWORD EFFECT

As a parameter type: the address passed as the
parameter contains both an offset and a segment selector.

_loadds The function loads the DS register with the selector of the
data segment belonging to the dynamic-link module; it
also restores the original value of DS immediately before it
returns.

When declaring a public dynamic-link function, the pascal keyword is
optional. The example module uses this option because it results in
slightly more efficient code (executing the RET n instruction is faster than
adjusting the stack pointer on function return), and it maintains unifor-
mity with the OS/2 API functions, which are all declared as pascal
functions.

The far keyword is required when defining a public function because
the dynamic-link function code resides in a different segment than the
client program code. You should not specify a calling type (either far or
near) when defining a private function. Rather, private functions should
use the default calling conventions for the current memory model (most
dynamic-link modules use the small model; the resulting near calls are
faster than far calls).

The far type modifier should also be used for declaring all address
parameters passed to public functions, since the dynamic-link module has
a separate data segment from that used by the client program.

Because the dynamic-link module uses its own default data segment,
known as the automatic data segment, you must also declare all public
functions with the _loadds keyword. A C function normally assumes that
the DS register already contains the appropriate segment selector for the
C automatic data segment, which is usually set by the C startup code.
When a dynamic-link function is called from a client program however,
the DS register contains the selector for the client’s data segment. The
_loadds keyword forces the function explicitly to load the appropriate

118 SOFTWARE TOOLS FOR 0S/2

value into the DS register at function entry, and to restore the original
value immediately before the function returns. An alternative method—
the /Au compiler flag—will be explained later in the chapter. Note that
private functions do not require this keyword since the DS register has
already been properly set by a public function when the private function
is called. A public function is always called before a private function
receives control.

The dynamic-link module presented in this chapter is designed to be
called from a C program (an example C program that uses the module is
given in the last section). If you are writing a general purpose dynamic-
link module, which may be called from a variety of programming lan-
guages, you can also include the _saveregs keyword when defining the
public functions. This keyword forces the compiler to generate code within
the function that saves and restores all of the machine registers—except
registers AX and DX if they are used to return a value. A function declared
with the _saveregs keyword can safely be called from languages that use
other register saving conventions than those employed by Microsoft C. In
Microsoft C it is necessary to save only the DS, SS, SP, BP, SI, and DI
registers, in addition to the CS and IP registers, which are automatically
restored when the function returns. As an example, the following function
would save and restore all registers:

unsigned pascal far _saveregs _loadds DynaFun (void)

As you will see in the section on Writing the Supporting Files, declara-
tions for all public functions should be placed in the module header file,
which is included in both the module and the client source code. Declara-
tions for private functions, however, should be placed at the beginning of
the dynamic-link module source file. In the spirit of code abstraction,
these functions should be kept hidden from the client process.

Another important guideline to consider when writing a dynamic-link
library is to avoid creating side effects that impact the client process. As

CREATING A DYNAMIC-LINK LIBRARY 119

described in Chapter 3, a dynamic-link function runs as part of the client
process, and therefore has complete access to all memory segments, file
handles, and other objects owned by the client. Also, any objects that the
dynamic-link module allocates will be owned in common with the current
client process, and will survive only until this client terminates. If the
client does not explicitly deallocate these items, the system automatically
deallocates them when the process ends.

A dynamic-link module, however, may require a stable set of memory
segments, file handles, or other objects, which it can allocate and maintain
independently of a client process, and which it can keep until the last
client process terminates. To accomplish this, it can start a separate
process (by calling the DosExecPgm API function), which can allocate
all required items; the dynamic-link functions can then access these
objects through an appropriate form of interprocess communication.
Note, however, that the new process should be started as a detached
(background) process. Otherwise, a client process, or an ancestor of a
client process, could terminate the new process by calling DosKill-
Process. Also, an ancestor process that calls DosCWait may be forced to
wait until the new process terminates. You can find an explanation of
these functions in the programmer’s reference, and a general description
of OS/2 processes in one of the books on basic OS/2 programming cited in
the Bibliography.

As mentioned previously, it may be convenient to place the source code
for a dynamic-link library in more than one source file. These files are
compiled separately and are combined during linking in the same manner
as an application program.

This section concludes with a discussion of several of the conventions
used by the example dynamic-link module. First, following the convention
employed by the OS/2 API, all public functions are named with a descrip-
tive-three letter prefix (Prt). Ideally, the prefix used for a collection of
related dynamic-link functions should be meaningful, and it should not
conflict with a name already used by OS/2. For example, a set of screen
management functions could have the prefix Scr, and the module should
not use the Vio prefix.

Also in keeping with a convention used by the non-Presentation-
Manager API functions, the values returned by the functions in the

120 SOFTWARE TOOLS FOR 0S/2

example module are reserved for supplying the error status. If a function
is successful, it returns 0; if an error occurs, it returns a nonzero code for
the specific error. A value other than the error status is supplied to the
calling program by assigning it to a program variable, the address of
which is passed as a parameter.

The Functions This section briefly describes each of the functions in
the dynamic-link module of Figure 4-2. See the source code listing for
details on the calling protocols and values returned by each of these
functions, and for additional information on their implementation.

PrtReady The function PrtReady reports whether the printer is cur-
rently ready to receive output.

PrtReady begins by checking the external flag Opened to determine
whether the printer has been opened for the current process. Each
function in the module that requires a valid handle to the printer device
begins by checking this flag. If the flag is zero, the function calls the
private subroutine _PrtOpen, which opens the printer, by calling the
DosOpen function, and assigns the printer handle to the external vari-
able, Handle. Note that Opened is initialized to zero and is set to 1 by
_PrtOpen. Since the variables Opened and Handle are located in an
instance data segment, separate copies exist for each new client process.
This arrangement is appropriate since the printer must be opened for
each process; a device handle is valid only within the process that opened
the device.

Note that opening the printer is a task that could be performed by an
initialization routine; specifically, an initialization routine that is called
for each new client. In this case the module functions would not have to
check the Opened flag each time they are called. Initialization routines,
however, are not introduced until Chapter 6.

PrtReady obtains the current status of the printer by calling the
DosDevIOCt] API function. This function is used to send control com-
mands directly to device drivers. The specific control command sent by
PrtReady causes the printer device driver to return a byte containing the
current status of the printer. Since bit number 4 of this byte indicates
whether the printer is selected, ready to receive output, all other bits in
the status byte are masked to 0, and the resulting value is assigned to the
receiving variable; the address of which is passed as the function

CREATING A DYNAMIC-LINK LIBRARY 121

parameter. This value will be nonzero only if the printer is ready for
output. :

Note that you can use DosDevIOCtl to send a wide variety of control
commands to various device drivers. The control commands that can be
sent to the standard OS/2 device drivers are documented in the
programmer’s reference.

PrtInit The PrtInit function resets the printer. Resetting the printer
clears any software control commands that have been sent, restores all of
the printer’s default settings, sets the printer’s line counter to the top-of-
form position, and flushes any data waiting in the printer’s internal
buffer. This function is useful for bringing the printer to a known state
before beginning a new printing job.

PrtInit initializes the printer by sending the appropriate control com-
mand to the printer device driver through the DosDevIOCtl function—
explained in the previous section.

PrtPutC PrtPutC prints a single character at the current position of the
printer head. As you will see in the explanation of PrtPosition, you should
not call this function in conjunction with PrtPosition or PrtNewPage,
unless it is used to send a control code that does not move the printer
head.

PrtPutC prints the character by calling DosWrite, which is the basic
08S/2 function for writing to a file or device.

PrtPutS PrtPutS prints a NULL-terminated string at the current posi-
tion of the printer head. Like PrtPutC, you should not call this function
in conjunction with PrtPosition or PrtNewPage, unless you are sending
a string of control codes that do not move the printer head.

PrtPutS sends the entire string to the printer with a single call to
DosWrite. Note that DosWrite must be passed the number of characters
to write; this value is calculated using the private function _StrLen
(equivalent to the similarly named C library function, which unfortunate-
ly cannot be called from this module).

PrtPosition PrtPosition prints a NULL-terminated string beginning at
the specified row and column position on the printed page. As you will see
in the example program (in Figure 4-7, described later in the chapter),
this function is useful for printing formatted reports, or for printing data

122 SOFTWARE TOOLS FOR 0S/2

onto preprinted forms. Since PrtPosition maintains internal counters of
the current row and column positions of the printer head, printing data
using another function (such as PrtPutC or PrtPutS) would render these
counters invalid. See the comments in the definition of the function
(Figure 4-2) for additional rules.

PrtPosition moves the printer head to the specified starting position,
and then prints the string, using the PrtPutC and PrtPutS functions.

PrtNewPage You should call this function before printing a new page
with PrtPosition. It resets the row and column counters that store the
current position of the printer head. They are both set to 1; therefore, the
printer head should be at the top of the page when you call this function).

If the parameter FormFeed is nonzero, PrtNewPage also generates a
carriage return and a form feed to eject the current page from the printer
and to position the printer head at the beginning of a new page. When
you call this function before printing the first page of a report, you can
set PrtNewPage to 0 to avoid wasting a page.

Writing the Supporting Files

This section describes the two supporting files required to build the
example dynamic-link module of Figure 4-2: the module header file and
the module definition file.

The Module Header File The module header file is listed in Figure
4-3. This file is designed to be included within any client program that
calls one or more of the module functions. In general, a module header
file should contain the following items:

* Full prototype declarations for all functions that can be called by a
client program (that is, the public dynamic-link functions).

* Definitions of any data types used in conjunction with these func-
tions (for example, the definition of a structure used to exchange
information with a public function).

* Symbeolic constant definitions for values passed to or returned by
the functions (such as constants for error return codes).

CREATING A DYNAMIC-LINK LIBRARY 123

* Any other definitions or declarations that can simplify using the
module (such as the macros provided by the OS/2 header files).

You can find examples of each of these items in the module header files
that accompany the OS/2 API.

The module header file should be included not only in the client
program but also in the module source file itself for two reasons. First,
module functions may call other module functions, or use the constant or
type definitions found in the header file. Second, if you include the
function prototype in the header file, within the source file that defines
the function, the compiler will automatically check the consistency be-
tween the two items. Accordingly, if you change the type or parameters of
a function in the source file and forget to update the header file, the
compiler will issue a warning.

The module header file serves as the definition of the module’s public
interface. You should therefore not define or declare items that are used
only internally within the module such as the private functions in the
example module, _PrtOpen and _StrLen. See the discussion on code and
data abstraction in Chapter 3, in the section on The Uses of Dynamic-
Linking.

Note that for statically linked functions—such as those in the C
runtime library—the header file is frequently used to define shared
variables. An example being a global error status variable that is assigned
a value by the library function and is read by the calling application
program. However, creating a variable that is directly shared between a
dynamic-link function and its client programs is difficult, and is contrary
to the principle of data abstraction. Such variables would have to be
defined as external data, and would have to be exported by the dynamic-
link module and imported by the client programs.

There are, however, two alternative methods for sharing an external
variable that preserve the independence between the dynamic-link
module and its client programs. First, you can share an external variable
by explicitly exchanging its address. For example, the dynamic-link
module could store the error status in a variable within its own data
segment, and provide the address of this variable to the client through
a function call. The following code example illustrates how the client
process could obtain and store the address of such an error variable:

124 SOFTWARE TOOLS FOR 0S/2

int far *GetErrorStatusAddr (void); /* Dynamic-link function.*/

int far *PtrErrorStatus;

PtrErrorStatus = GetErrorStatusAddr ();

The client could subsequently obtain the current error status at any
time through the expression *PtrErrorStatus.

Alternatively, the module could provide the error status or other value
by returning this value directly from a function call. You could then
provide a macro to simplify calling this function. For example, if the
dynamic-link function

int GetErrorStatus (void);

returned the module error status, you could define the following macro
within the module header file

#define PrtError GetErrorStatus ()

The client program could then obtain the error status as if it were
simply reading a global variable, as shown in the following example:

/* Call a Prt function*/

if (PrtError) /* then call error handler*®/

CREATING A DYNAMIC-LINK LIBRARY 125

The Module Definition File The module definition file used for link-
ing the example dynamic-link library is listed in Figure 4-4. This file
contains two new statements that you have not seen in previous chapters.
(Chapter 1 presented a module definition file for linking a general
protected-mode program, and Chapter 2 gave a module definition file for
linking a Presentation Manager application.) First, the file begins with
the following statement:

LIBRARY FIG4_2

Figure 4-4

; Figure 4-4

Module definition file for the dynamic-link module of Figure
4-2.

’

’

LIBRARY FIG4_2

PROTMODE

DATA MULTIPLE

EXPORTS
PRTREADY @1
PRTINIT Q2
PRTPUTC @3
PRTPUTS @4
PRTPOSITION @5

PRTNEWPAGE @6

126 SOFTWARE TOOLS FOR 0S/2

The presence of a LIBRARY statement indicates that the linker should
generate a dynamic-link library rather than an executable application.
This statement also specifies the name of the module; this name should
not include the .DLL extension, but should match the output filename
given on the linker command line. The LIBRARY statement in Figure 4-4
specifies the filename FIG4_2, which matches the output filename given
on the linker command line in the MAKE file of Figure 4-5—namely,
FIG4_2.DLL. The MAKE file is described later in the chapter.

Figure 4-5

Figure 4-5
This MAKE file prepares the dynamic-link module of Figure 4-2.
The following files are involved:

FIG4_2.C

FIG4 3.H

FIG4_4.DEF

F H H F H H

FIG4 2.0BJ : FIG4_2.C FIG4_3.H

cl /c /W2 /ASw /G2s /Zp FIG4_2.C

FIG4_2.DLL : FIG4_2.0BJ FIG4_4.DEF

link /NOI /NOD FIG4_2.0BJ, FIG4_2.DLL, NUL, 0S2.LIB, FIG4_4 .DEF

FIG4_2.LIB : FIG4_4.DEF

implib FIG4_2.LIB FIG4_4.DEF

If a module definition file contains a LIBRARY statement, it should not
contain a NAME statement, which indicates that the output file is to be
an application. The NAME statement was used in the module definition

CREATING A DYNAMIC-LINK LIBRARY 127

files in Chapters 1 and 2. If neither statement appears, the linker
generates an application by default; therefore the LIBRARY statement is
mandatory for creating dynamic-link libraries. The module definition file
also contains the following new command:

DATA MULTIPLE

This statement causes the C automatic data segment to become an
instance data segment. As you have seen, an instance data segment is
one that is not shared among client processes; each client process has its
own private copy of the segment, which must therefore be loaded from
the disk every time a new client program is run. Note that this statement
is equivalent to the following statement:

DATA NONSHARED

Chapter 5 describes the differences between instance and global data
segments, and explains how to create and manage global segments. Also,
the module definition file contains the following EXPORT'S statement:

EXPORTS
PRTREADY @1
PRTINIT @2
PRTPUTC @3
PRTPUTS @4
PRTPOSITION @5
PRTNEWPAGE @6

As you saw in Chapter 2, when linking a Presentation Manager
application, the EXPORTS statement must list the names of all window
procedures in order to make these procedures accessible to the Presenta-
tion Manager. When preparing a dynamic-link library, the EXPORTS
statement must list the names of all functions that can be called by a client
program—that is, all public functions. Listing a function name under this
statement is known as exporting the function, and renders the function
accessible to client programs. For the example dynamic-link module, the
function names all have to be given in uppercase letters since the public

128 SOFTWARE TOOLS FOR 0S/2

functions are declared using the pascal keyword—this forces the compiler
to write the function names to the object file using uppercase letters.

When the linker prepares the dynamic-link library, it places the names
of all functions listed in the EXPORT'S statement in a table of entry point
names within the library file header (referred to as the name table in
the remainder of this discussion). As you saw in Chapter 3, if a program
relocation record references a dynamic-link function by entry point name,
the loader must search the name table. Thus, the name of a function listed
in the EXPORTS statement is the name of the function as it appears in
the source code, the entry point name listed in the name table in the
library file header, and the entry point name that is contained in the
relocation record of the client program (provided that the program uses
entry point names). Naming options will be explained shortly.

For each entry point name, the name table also lists the ordinal value
of the function. The ordinal value is an index into the entry table, which
is also contained in the library file header, and lists the actual segment
and offset addresses of the functions within the module code. The relation-
ship between the name table, the entry table, and the function code in the
example module is illustrated in Figure 4-6. This figure depicts only the
first three functions listed in the EXPORTS statement.

As you can see from Figure 4-6, if a relocation record in a program file
refers to a dynamic-link function by entry point name, the system must
first search the name table to obtain the function’s ordinal value. It must
then use the ordinal value to fetch the function address from the entry
table.

Remember from Chapter 3, however, that a program relocation record
can store the entry point of a dynamic-link function as an ordinal value
rather than as an entry point name. In this case, the loader can obtain
the function address directly from the entry table, and loading is more
efficient. Also, if all calling programs use ordinal values rather than
names, the name table is bypassed, and thus the system does not need to
keep this table resident in memory.

CREATING A DYNAMIC-LINK LIBRARY 129

Figure 4-6: Name, entry tables, and function code in an example DLL.

DYNAMIC-LINK

LIBRARY FILE
// A/
NAME TABLE
PRTREADY 1
PRTINIT 2
PRTPUTC 3
DYNAMIC-
LINK LIBRARY)’ /
HEADER % 4
ENTRY TABLE
1 SEG1:0FF1
2 SEG20FF2
3 SEG30FF3
-
—_——
—>
CODE
SEGMENT —
—
—

130 SOFTWARE TOOLS FOR 0S/2

If you list only the name of a dynamic-link function under an EXPORTS
statement, then the relocation records in all client programs subsequently
prepared will reference the function by entry point name. However, you
can optionally follow the function name with an ordinal value, specified
as @n, where n is a unique integer value of 1 or greater. In this case, the
function will be assigned the specified ordinal value, and all client
programs will reference the entry point by ordinal value. Since using
ordinal values is the more efficient option, all of the functions in the
EXPORTS table listed above are assigned ordinal values. Note that the
series of ordinal numbers you choose does not need to be contiguous—for
example, you could assign the values 1, 10, 20.

You may wonder how the EXPORTS statement within the module
definition file can determine the manner in which the program relocation
records refer to the entry points of dynamic-link functions. As you will see
in the next section, the IMPLIB utility uses the module definition file to
generate the import library. Remember that the object records in an
import library specify the entry point for each dynamic-link function
either as an ordinal value or as a name. If the EXPORTS statement for a
given function specifies an ordinal value, the dynamic-link record created
by IMPLIB will identify the entry point by ordinal value; otherwise, it
will identify it by name. When the linker resolves a reference to this
function, the relocation record is assigned either an ordinal value or a
name, depending upon which type of value is found in the dynamic-link
record that is used to resolve the reference.

This section concludes with two additional technical notes. First, the
name table referred to in this discussion actually consists of two parts: a
nonresident name table and a resident name table. If a function
name under the EXPORTS statement is accompanied with an ordinal
value, the linker places this name in the nonresident name table (unless
you include the optional keyword RESIDENTNAME after the ordinal
value). The nonresident name table is not kept resident in memory since
the functions it lists are normally referenced directly by ordinal value;
consequently, the table is seldom used. If, however, a function name is not
accompanied with an ordinal value, the linker places this name in the
resident name table. This table is kept resident in memory since the

CREATING A DYNAMIC-LINK LIBRARY 131

functions it lists must be referenced by name; consequently, the table is
used frequently.

Second, when listing a function name under the EXPORTS statement,
you can optionally specify an internal function name in addition to the
entry name. The internal name is the function name used within the
module source code, and written to the object file by the compiler. You
would specify an internal name only if this name differs from the function
entry point name, which is placed in the dynamic-link file name table,
and may be used by client programs to refer to the function. For example,
the following statement exports a function that has the internal name
privatename and the entry point name PublicName:

EXPORTS
PUBLICNAME=PRIVATENAME (@1

The discussions in this section have assumed that references to
dynamic-link functions are resolved through an import library. See the
section on Using the Dynamic-Link Library, later in the chapter, for
information on resolving these references through an IMPORTS state-
ment in the program’s module definition file.

Preparing the Dynamic-Link Library

Figure 4-4 lists a MAKE file for preparing the example dynamic-link
library. An overview of the three basic steps performed by this MAKE file
was given at the beginning of the chapter. This section discusses some of
the details of the individual commands.

The compiler command line specifies the switch /ASw, which was
explained in Chapter 1. As you saw, the w option tells the compiler not to
assume that the SS register is equal to the DS register. For a multiple-
thread application, this option is necessary because each new thread uses
its own stack, which may be located in another segment. For a dynamic-
link module, the w option is required even if the module does not start
additional program threads. This option is needed because a dynamic-link
function always uses the stack belonging to the client program; simply,
when the function is called, the SS register contains the selector for the
client’s stack segment. In contrast, the DS register is loaded with the

132 SOFTWARE TOOLS FOR 0S/2

selector of the dynamic-link module’s data segment—due to the
_loadds keyword, explained previously. Therefore, these two registers are
unequal during execution of the function code.

Because the dynamic-link function borrows the stack belonging to the
client program, you should also specify the /Gs option to disable stack
checking within dynamic-link functions. This option is likewise required
for Presentation Manager applications, and was explained in Chapter 2.
Since the stack-checking routine assumes that the current stack is located
within the automatic data segment, it would produce unpredictable
results if called from a dynamic-link function.

Note that you can optionally use the /ASu option rather than /ASw. The
u flag has the following two effects:

1. Like the w option, it tells the compiler not to assume the equality of
DS and SS.

2. It causes the compiler to reload the DS register at the beginning of
every function defined within the source file, and to restore the former
DS value immediately before the function returns. This flag thus has
the same effect as the _loadds keyword described earlier, except that it
affects all functions in the file.

Since it is not necessary to reload the DS register for private functions,
the example MAKE file uses the /ASw flag rather than /ASu, and then
defines all public functions with the _loadds keyword.

The LINK command in the MAKE file is similar to linker commands
seen in previous chapters, except that the output file name is fully
specified, and contains the .DLL extension. Note, however, that you
cannot generate a new dynamic-link library file while a client process is
still using this library. The system does not allow you to delete, overwrite,
or otherwise modify a dynamic-link library that is in use. A rationale for
this restriction is that the system may need to reread read-only segments,
such as code segments, that have been temporarily discarded in order to
free memory. See the discussion on virtual memory in Chapter 5.

If the code for your dynamic-link library was defined in more than one
C source file, you must specify all of the corresponding object files when
generating the dynamic-link library with the linker.

CREATING A DYNAMIC-LINK LIBRARY 133

Finally, the MAKE file uses the IMPLIB utility to generate an import
library. The first parameter on the command line invoking this program
is the name of the import library that is to be generated, which should
have the .LIB extension. The second parameter is the name of the module
definition file that is used as the source of data for generating the import
library. As mentioned in the last section, the IMPLIB utility reads the
EXPORTS statement within this definition file, and writes a dynamic-
link record to the import library for each function listed under this
statement.

As you will see in the next section, creating an import library is not
mandatory since the linker can resolve references to dynamic-link func-
tions through an IMPORTS statement within the program’s module
definition file. Using an import library, however, can simplify the task of
preparing the application. If you are developing a commercial dynamic-
link function library, including an import library with your package is an
important asset.

Using the Dynamic-Link Library

Figure 4-7 lists a simple program that demonstrates the use of the
functions in the example dynamic-link module. This program uses these
functions to print a simulated report. First, the main function displays a
menu giving the user a choice of printing the report or terminating the
application.

Figure 4-7

/*
Figure 4-7

This program demonstrates the following functions defined in the example

dynamic-link library of Figure 4-2:

PrtReady

*/

134 SOFTWARE TOOLS FOR 0S/2

PrtInit
PrtPuts
PrtNewPage

PrtPosition
The program can be built using the following commands:

cl /c /W2 /G2 /Zp FIG4_7.C

link /NOI /NOD FIG4_7.0BJ,, NUL, FIG4_2.LIB SLIBCE.LIB 0S2.LIB;

#include <STDIO.H>

#include <CONIO.H>

#include <PROCESS.H>

#include "FIG4_3.H"

void PrintReport (void);

void main (void)

{

int Choice;

printf ("Programs Options:\n"); /* Display a menu.

printf (" (1) Print Report\n");
printf (" (2) Terminate Program\n");

printf ("Select 1 or 2: ");

for (;;)

switch (getch () - ’0’)

/* Uses dynamic-link functions to print report.*/

*/

CREATING A DYNAMIC-LINK LIBRARY

{
case 1:

PrintReport (); /* Use the functions.

case 2:

exit (0);

} /* end main */

/* Report printing data structures and functions:

static void Header (void); /* Prints report headers.

static int Row; /* NEXT row to be printed.

void PrintReport (void)

{

135

unsigned ErrorCode; /* Saves error code.
int i; /* Loop index.
unsigned char FlagReady; , /* Flag indicating printer ready.

/* Make sure that printer is ready:

while (! (ErrorCode = PrtReady (&FlagReady)) && !FlagReady)

{

printf ("\nReady printer and press any key to continue ...");

getch ();

}
if (ErrorCode)

{

printf ("PrtReady error %d\n",ErrorCode) ;

exit (1);

*/

*/

*/
*/

*/
*/
*/

*/

136 SOFTWARE TOOLS FOR 0S/2

}

printf ("\nPrinting report...");
ErrorCode = PrtInit (); /* Initialize printer. */
/* Send control code sequence for near */
ErrorCode = PrtPutsS /* letter quality (Okidata). */
("\x1b\x49\x33") ; /* Control code string. */
if (ErrorCode)
{
printf ("PrtPutS error %d\n",ErrorCode);
exit (1);
}
ErrorCode = PrtNewPage /* Initialize a new page without formfeed.*/
(0); /* Flag indicates NO formfeed. */
if (ErrorCode)
{
printf ("PrtNewPage error %d\n",ErrorCode) ;
exit (1);
}
Header (); /* Print first header. *x/
for (i = 1; i 80; ++i) ./* Process 80 detail lines. */
{
if (Row > 55)
{
PrtNewPage (1); : /* New page with a formfeed. */
Header (); /* Print another header. */

CREATING A DYNAMIC-LINK LIBRARY 137

}
PrtPosition ("Field One",Row,1l);
PrtPosition ("Field Two",Row,23);
PrtPosition ("Field Three", Row, 44);
PrtPosition ("Field Four", Row++, 67);
}

PrtPosition ("End of Report",++Row,1);

PrtNewPage (1) /* Force out last page. */

} /* end PrintReport */

static void Header (void)
{
PrtPosition ("SAMP LE REPORT"1,27);
PrtPosition ("Heading One",3,1);
PrtPosition ("Heading Two",3,23);
PrtPosition ("Heading Three", 3,44);

PrtPosition ("Heading Four",3,67);

PrtPosition ("---=-------- ",4,1);
PrtPosition ("---=-=-=--- ",4,23);
PrtPosition ("----------=-- ", 4,44);
PrtPosition ("------------ ",4,67);
Row = 6;

} /* end Header */

If the user chooses to print the report, the function PrintReport is
called, which performs the following specific tasks:

138 SOFTWARE TOOLS FOR 0S/2

¢ It calls PrtReady (repeatedly if necessary) until it determines that
the printer is ready to receive output.

¢ It calls PrtInit to reset the printer, thereby clearing any control
codes previously sent.

e It calls PrtPutS to send a string of control codes that place the
printer in near-letter quality mode. Note that sending these codes
does not move the printer head.

¢ It calls PrtNewPage to initialize the module row and column
counters to the start of a new page; it passes this function a value
of zero so that it does not generate a formfeed.

¢ It now enters a loop that prints the report detail lines; each field is
printed at a specific position on the page using the PrtPosition
function.

e After 55 lines have been printed, it calls PrtNewPage with a non-
zero parameter to reset the counters and to generate a formfeed.

¢ It also uses the PrtPosition function to print the header at the top
of each page.

As required, the program includes the module header file listed in
Figure 4-3.The program can be prepared using the following two com-
mands at the OS/2 prompt:

cl /c /W2 /G2 /zp FIG4_7.C
and:
link /NOI /NOD FIG4_7.0BJ,, NUL, FIG4_2.LIB SLIBCE.LIB 0S2.LIB;

Note that the linker command line specifies the import library
(FIG4_2.LIB, generated as described previously) to resolve references to
the dynamic-link functions.

Rather than using an import library, the linker could resolve references
to the dynamic-link library functions through an IMPORTS statement in
a module definition file. Figure 4-8 lists a module definition file that could

CREATING A DYNAMIC-LINK LIBRARY 139

be used with the example program of Figure 4-7 in place of an import
library.

Figure 4-8

; Figure 4-8
; A module definition file for the program of Figure 4-7

Name FIG4_7

PROTMODE

IMPORTS
PRTREADY = FIG4_2.1
PRTINIT = FIG4_2.2
PRTPUTS = FIG4_2.4
PRTPOSITION = FIG4_2.5
PRTNEWPAGE = FIG4_2.6

If you use the module definition file to resolve references to the
dynamic-link functions, you should link the program as follows:

link /NOI /NOD FIG4_7.0BJ,, NUL, SLIBCE.LIB 0S2.LIB, FIG4_8.DEF

The following is an example of a line from the IMPORTS statement
within the module definition file of Figure 4-8:

PRTINIT = FIG4_2.2

This line is used to import the function PrtInit. PRTINIT is the internal
name of the function as it appears in the object file (remember that the
compiler converts pascal function names to uppercase letters); FIG4_2 is
the name of the dynamic-link library file (without extension); and the 2
following the period identifies the function entry point by its ordinal

140 SOFTWARE TOOLS FOR 0S/2

value. When the linker writes the relocation record for this function, it
identifies the entry point by ordinal value which, as you have seen, results
in fast loading.

Note that the ordinal value of the function PrtInit is known because it
was explicitly assigned in the EXPORT'S statement of the module defini-
tion file for the dynamic-link library (Figure 4-4). All dynamic-link func-
tions have ordinal values; however, you may not know the ordinal values
of the functions in a particular dynamic-link library for one of two reasons.
First, you may have exported the functions without specifying the ordinal
values (if an EXPORTS statement does not specify the ordinal number of
a function, the linker assigns a default value). Second, you may be calling
the functions, such as an OS/2 API module, in a dynamic-link library
provided by a programmer who has not published the ordinal values of
the functions.

Fortunately, the ordinal values are recorded in the dynamic-link file
header; you can read this header and obtain a list of all functions and
their ordinal values using the Microsoft EXEHDR.EXE utility, or the
program EXELOOK.EXE I have provided in the OS/Tools development
toolkit (see the software offer in the back of the book).

If you decide not to use the ordinal value of a function you can specify
the entry point by the entry point name. The following line
demonstrates this option:

PRTINIT = FIG4_2.PRTINIT

Since the internal name (the first word in the line) is the same as the
entry point name (the name following the period), you can omit the
internal name, as in the following line:

FIG4_2.PRTINIT

When this example program is run, the dynamic-link library must be
in a directory specified by the LIBPATH configuration command. The
library is loaded, and calls to the library functions are resolved, as
described in Chapter 3.

Note that this section describes loadtime dynamic linking. See Chap-
ter 8 for information on runtime dynamic linking.

CHAPTER 5

SHARING DATA

An important feature of the dynamic-link mechanism is its support for
both instance and global data segments. A dynamic-link library can
have one or more instance data segments, and one or more global data
segments.

Remember that a dynamic-link library can be used by several concur-
rent processes. The system loads a separate copy of an instance data
segment for each client process. When a process calls a function in the
dynamic-link library, the dynamic-link code accesses the copy of the
instance data segment reserved for this process. Since each client process
has a private copy of an instance data segment, such a segment is also
known as a nonshared data segment.

In contrast, the system loads only a single copy of a global data segment.
A dynamic-link function always accesses the same copy of this segment,
regardless of which process called the function. Since all processes use a
common copy of a global data segment, this type of segment is also known
as a shared data segment. Figure 5-1 illustrates these two types of
segments.

- The previous chapter showed how to create a dynamic-link library that
used only instance data. Creating one or more global data segments,
however, is an important means for sharing data among the separate

141

142 SOFTWARE TOOLS FOR 0S/2

client processes and for coordinating the activities of function instances
running under these separate processes.

This chapter begins by reviewing how to create dynamic-link libraries
that contain only instance data segments. It then goes on to discuss how
to create dynamic-link libraries that contain only global data segments.
Next, it describes creating dynamic-link libraries with both types of data
segments. Finally, it presents an example dynamic-link module that uses
both instance and global data to manage a shared device—the monitor.

Figure 5-1: Instance and global data segments.

PROCESS A PROCESS B PROCESS C
DYNAMIC-LINK
LIBRARY
FUNCTION
ADDRESSING AN INSTANCE ADDRESSING A GLOBAL
DATA SEGMENT DATA SEGMENT
’
COPY FOR A J—I 3
COPY FORB ‘ SINGLE COPY
SHARED BY
COPYFORC
PROCESSES
A, B,ANDC

SHARING DATA 143

Creating an Instance Data Segment

Figure 5-2 lists the C source code for a simple dynamic-link module that
serves to illustrate the essential differences between instance and global
data. This module defines the external variable Count, initializing it to
0. Note that the term external means that the variable is defined outside
the scope of a function. The C literature also describes such variables as
global. This book, however, reserves the term global to describe dynamic-
link library data that is located in a global data segment. The module also
contains the function PrintCount, which first increments Count and
prints the resulting value, and then pauses before returning control until
the user presses a key.

Figure 5-2

/*
Figure 5-2

A dynamic-link module illustrating the differences between instance and
global data items. ‘

*/

#define INCL_SUB

#include <0S2.H>

int _acrtused = 0; /* Define variable to avoid linking in C

/* startup code.

/* External data item placed in automatic data

]
o

int far Count

/* segment.

void pascal far _loadds PrintCount

(void)

*/
*/
*/
*/

144 SOFTWARE TOOLS FOR 0S/2

{
char Ch;

KBDKEYINFO Key;

Ch = (char) (++Count + ’0’);

VioWrtTTY
("Count = ",
8,

0);

VioWrtTTY (&Ch, 1, 0);

/*
/*
/*
/*
/*
/*
/*
/*
/*

Character value of 'Count’.

Structure to receive keyboard key.

Increment ‘'Count’ and convert to

a character.

Display message:

Teletype style output.
String to display.
Length of string.

Reserved value: must be 0.

VioWrtTTY ("\r\nPress any key to terminate program...", 39, 0);

KbdCharIn /* Read a character from keyboard.
(&Key, /* Address of receiving structure.
IO_WAIT, /* Wait until a key is pressed.
0); /* Default keyboard handle.

} /* end PrintCount */

*/

*/
*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

Figure 5-3 presents a module definition file that creates instance data
when linking the dynamic-link module of Figure 5-2. Figure 5-4 provides
a MAKE file for preparing the dynamic-link library as well as the

associated import library.

SHARING DATA 145

Figure 5-3

; Figure 5-3

; A module definition file for creating instance data when
; linking the module of Figure 5-2.

LIBRARY FIG5_2

PROTMODE

DATA MULTIPLE

EXPORTS
PRINTCOUNT e1

Figure 5-4

Figure 5-4

A MAKE file for preparing the dynamic-link module of Figure 5-2.
#

FIG5_2.0BJ : FIG5_2.C

cl /c /W2 /ASw /G2s /Zp FIG5_2.C

FIG5_2.DLL : FIG5_2.0BJ FIG5_3.DEF

link /NOI /NOD FIG5_2.0BJ, FIG5_2.DLL, FIG5_2.MAP, OS2.LIB, FIG5_3.DEF

FIG5_2.LIB : FIG5_3.DEF

implib FIG5_2.LIB FIG5_3.DEF
\

146 SOFTWARE TOOLS FOR 0S/2

Finally, Figure 5-5 lists a C program that calls the dynamic-link
function PrintCount and terminates. You can use the following two
commands to prepare this program:

cl /c /G2 FIG5_5.C
and:

link /NOI /NOD FIG5_5.0BJ,, NUL.LST, FIG5_2.LIB SLIBCE.LIB 0S2.LIB;

Figure 5-5

/*

Figure 5-5

A program that calls the dynamic-link function ’'PrintCount’, defined in
Figure 5-2.
*/

void pascal far _loadds PrintCount (void);

void main (void)
{

PrintCount ()

} /* end main */

Remember to substitute the actual name of your small-model
protected-mode C library file for SLIBCE.LIB, and the name of your OS/2
API import library for OS2.LIB.

Note that the definition file of Figure 5-3 contains the statement:

DATA MULTIPLE

SHARING DATA 147

As explained in Chapter 4, this statement causes the automatic data
segment to become an instance data segment (as you will see later in the
chapter, it causes any other data segments created by the compiler to be
instance segments by default). Since Count is contained in the automatic
data segment, PrintCount accesses a separate copy of Count for each client
process.

To demonstrate the properties of instance data, run the example
program of Figure 5-5 from the OS/2 prompt. The program will indicate
that Count has a value of 1 and it will pause for keyboard input. Count
equals 1 because it was initialized to 0 and is incremented immediately
before it is displayed. Before pressing a key to terminate the program,
however, go into another screen group and run a second instance of the
program. See the OS/2 user’s reference for information on starting new
screen groups, which are also known as sessions. The second instance
will likewise display a value of 1 for the variable Count, indicating that a
new copy of the automatic data segment was loaded when the second
client process was started. If the automatic data segment were shared,
Count would now be equal to 2.

Note that for small-data model C programs—the small and medium
memory models—all external data items (such as Count) are normally
placed in the automatic data segment. For large-data programs—that is,
the compact, large, and huge memory models—only initialized external
data and data items declared as static are placed in this segment.
Uninitialized data are placed in a separate segment. Later in the chapter,
you will see two ways to force the compiler to place data normally located
in the automatic data segment into an alternate data segment.

Also, remember that automatic data items, those defined within the
scope of a function without using the static or extern keywords, are not
placed in a data segment and are never shared among separate processes.
As you saw in Chapter 4, they are not shared even among separate
function invocations created by the threads of a single process.

The automatic data segment consists of a group of logical segments,
each one storing a specific type of data. For example, the logical segment
named DATA stores initialized external and static data, and _BSS stores
uninitialized static data. For application programs, the automatic data
segment also contains the program stack, which is placed in a logical

148 SOFTWARE TOOLS FOR 0S/2

segment named STACK. Dynamic-link libraries, however, do not reserve
an area for a stack since they use the stack belonging to the calling
program. This group of logical segments is named DGROUP.

When the dynamic-link library file is created, the linker combines all
of the logical segments contained in the automatic data segment into a
single physical segment. To access data within this segment, the DS
register is assigned the selector of the physical segment. Note, however,
that the client program and the dynamic-link module have separate
automatic data segments, since they were prepared separately by the
linker. Therefore, when a dynamic-link function is called by a client
program, it must first reload the DS register with the selector for the
module’s own automatic data segment, and it must restore the original
DS value before the function returns control to the client. Remember that
a function automatically performs the required reloading and restoring
of the DS register if it is declared with the _loadds keyword, or if it is
compiled with the /Au option.

Creating a Global Data Segment

Figure 5-6 lists a module definition file that contains the following DATA
statement:

DATA SINGLE

This statement causes the linker to mark the automatic data segment
as a global data segment (as you will see later in the chapter, it causes all
other data segments defined by the compiler to become global by default).
You can use this linker definition file to prepare the dynamic-link library
of Figure 5-2, rather than using the definition file in Figure 5-3. The
resulting dynamic-link file will have a global automatic data segment,
and; therefore, the variable Count will be shared among all client proces-
ses.

After you have prepared the new version of the dynamic-link library,
run the example client program as described in the previous section. The
example program is listed in Figure 5-5. You do not have to recompile or
relink this program since the dynamic-link calling interface has remained
unaltered. As before, the first instance of the program will indicate that

SHARING DATA 149

the value of Count is 1. However, when you run a second instance of the
program (before the first instance has terminated), you will see that the
value of Count has become 2, since all client processes now share a single
copy of the variable. If you start yet another instance of the program—
while one or both of the previous instances are still active—you will see
that Count becomes 3. As long as a single process using the dynamic-link
module remains active, Count will continue to be incremented with each
new instance. If, however, all processes that use the dynamic-link library
are terminated, the library is released from memory. When a subsequent
client process is run, the data segment will be reloaded from the disk and
Count will once again be initialized to 0.

Figure 5-6

Figure 5-6

A module definition file for creating global data when
linking the module of Figure 5-2.

LIBRARY FIG5_2

PROTMODE

DATA SINGLE

EXPORTS
PRINTCOUNT @1

At this point, you may wonder how OS/2 manages global and instance
data segments. Remember that a dynamic-link code segment is always
shared among all client processes; like most code segments, it generally
contains a set of hard-coded addresses of items in the data segment. To
answer the question how does a single data address access one segment

150 SOFTWARE TOOLS FOR 0S/2

when used by a given process, and another segment when used by a
different process, we must digress into the topic of virtual memory.

Virtual Memory

The term virtual memory refers to the logical address space that OS/2
maintains and makes available to protected-mode application programs.
The virtual memory mechanism allows OS/2 to provide an address space
that is larger than the amount of physical memory installed in the
machine. When physical memory is exhausted, the system automatically
swaps segments to the hard disk. It also permits the operating system to
maintain important information on each memory segment, which is used
to protect the integrity of the system.

To an application program, the virtual memory mechanism is largely
invisible; the program simply accesses the memory it has been allocated,
and the operating system automatically performs all the details of main-
taining segment information and swapping segments to the disk. The
program, however, must follow certain rules; for example, it cannot write
toa code segment. In the same manner as a real-mode program, a memory
location is addressed using a 16-bit segment value in combination with a
16-bit offset. Under the real-mode addressing method, the segment value
is the actual physical address of the base of the segment in memory. More
accurately, the physical address is obtained by multiplying the segment
value by 16.

In the virtual memory mechanism, however, the segment value is
known as a segment selector, and is an index into a table containing the
actual physical segment address as well other information on the seg-
ment. This table is known as a descriptor table, and the individual
entries for each segment are known as segment descriptors. Figure 5-7
illustrates the direct real-mode addressing scheme, and Figure 5-8 shows
the indirect addressing method used to support virtual memory.

SHARING DATA 151

Figure 5-7: The real-mode addressing method.

ADDRESS
IN CODE

SEGMENT
ADRESS

OFFSET

MEMORY
. BASE OF SEGMENT
OFFSET
TARGET
SEGMENT

TARGET LOGATION

—.__.*%7

The following are among the more important items of segment infor-
mation stored within a segment descriptor:

¢ Aflagindicating whether the segment is a code segment or a data
segment. The operating system will not allow an application to
write to a segment marked as a code segment; thus, separate
processes can safely share dynamic-link code segments without
danger of an aberrant process corrupting the common code.

e Aflag indicating whether the segment is present in memory or
has been swapped to the disk. This information allows the system
- to automatically fetch required segments.

152 SOFTWARE TOOLS FOR 0S/2

¢ The length of the segment. This field allows the system to prevent
programs from addressing beyond the end of an allocated segment.

Figure 5-8: The Virtual Memory addressing method.

DESCRIPTOR
TABLE
MEMORY
PHYSICAL
SEGMENT
plﬁ DCRO%SES ADRESS
EGMENT SEGMENT
SEGMENT /| romvaion| \meBASE OF SEGMENT
OFFSET OFFSET
TARGET
—*—————— SEGMENT
“TARGET LOCATION -

*—'

The operating system maintains two types of descriptor tables. First,
each process owns a private local descriptor table, which can be
accessed only by the operating system and by the process that owns it.
Second, the system maintains a single global descriptor table, which
can be accessed by any process. OS/2 places the descriptors for all
application segments, even those which refer to shared memory segments
within the local descriptor table. The term application segments refers
to the code and data segments defined within an executable program or

SHARING DATA 153

dynamic-link file, as well as segments dynamically allocated from the
operating system at runtime. The global descriptor table is used for
special-purpose segments, such as the global information segment,
which contains a variety of information pertaining to the entire system.
A program can obtain the selector of this segment by calling the API
function DosGetInfoSeg; this selector is an index into the global descrip-
tor table.

To grant a process access to an application segment, the system per-
forms the following two actions:

1. It sets up a descriptor for the segment in the local descriptor table
belonging to the process.

2. It provides the process a selector for this segment, which is an index
that points to the newly created segment descriptor in the local
descriptor table.

When the system runs the first process referring to a given dynamic-
link library, it loads all of the dynamic-link module’s code and data
segments into memory and grants the process access to these segments
using the above two steps. When the system runs a subsequent client
process, it loads new copies of all instance data segments and provides
access to these segments. For all code and global data segments, however,
it does not load new copies, rather it grants the process access to the
segments already in memory.

Consider an address, of a code or data location within the code belong-
ing to a dynamic-link function that is called by two client processes. When
executing this function, both processes see the same address value; each
process, however, uses the selector portion of the address as an index into
its own local descriptor table. If the target segment is an instance data
segment, each descriptor will point to (that is, contain the physical
address of) a distinct segment in memory. If, however, the target segment
is a code or global data segment, both descriptors will point to the same
segment in memory. This arrangement is illustrated in Figure 5-9.

For more information on how OS/2 assigns selectors for segments
defined by dynamic-link modules, see the discussion on the Disjoint
Descriptor Space in Chapter 8.

154 SOFTWARE TOOLS FOR 0S/2

Figure 5-9: Descriptors for nonshared and shared segments.

INSTANCE DATA SEGMENT

LDT OF LDT OF
PROCESS A PROCESS B
: FAR ADDRESS IN :
SEGMENT ADDR. | DLL CODE SEGMENT ADDR. ——
SEGMENT INFQ. ! ! SEGMENT INFO.
: SELECTOR : OFFSET :

COPY OF DATA COPY OF DATA
SEGMENT FOR SEGMENT FOR
PROCESS A PROCESS B

L THRGET LOCATIO

i

SHARED DATA SEGMENT

LDT OF LDT OF
PROCESS A PROCESS B
: FAR ADDRESS IN :
——{SEGMENT ADDR. DLL CODE SEGMENT ADDR. —
SEGMENT INFO. ! ! SEGMENT INFO.
. SELECTOR : OFFSET .

SINGLE
SHARED
DATA SEGMENT

EYMIGE! lOCMIO%

SHARING DATA 155

Creating Instance and Global Data Segments

The previous sections in this chapter have shown how to define the
instance attribute of the automatic data segment so that a program will
have only instance data or only global data. Typically an application that
uses a global data segment requires one or more instance segments for
storing information private to each client process. Fortunately, a single
dynamic-link library can have both instance and global data segments.

To create a dynamic-link module with both types of data segments, you
need to perform the following two basic steps:

1. You must create one or more segments in addition to the automatic
data segment, and make sure that specific data items are placed in
the correct segment.

2. You must specify for each segment whether it is an instance or a global
data segment.

The discussions in this chapter assume that instance data items are
more commonly required than global data items. Accordingly, the techni-
ques presented in this section are for creating a dynamic-link module with
an instance automatic data segment, and one or more additional seg-
ments that are global. Thus, most data items will automatically become
instance data; to create a global data item, you must explicitly assign it
to a global segment.

Creating additional data segments and assigning instance attributes
to these segments is more difficult in C than in assembly language. This
section, however, presents two strategies that can be used with Microsoft
C. The first strategy employs a separate program source file to define
shared data, and the second strategy defines both types of data within a
single C source file.

Using Two Source Files

Figures 5-10 through 5-13 provide a set of files for creating a simple
dynamic-link library containing both global and instance data. The
dynamic-link module is defined in two C source files, which are listed in

156 SOFTWARE TOOLS FOR 0S/2

Figures 5-10 and 5-11. Figures 5-12 and 5-13 provide a module definition
file and a MAKE file for preparing the example module.

The source file in Figure 5-10 defines the variable PrivateCount,
initializing it to 0. Like the variable Count in the program of Figure 5-2,
PrivateCount is placed in the automatic data segment. This source file
also contains the function PrintCount, which increments and prints the
resulting values of the variables PrivateCount and PublicCount.

Figure 5-10

/*
Figure 5-10

The primary source file for creating a dynamic-link library that
demonstrates both instance and global data.

*/

#define INCL SUB

#include <0S2.H>

int _acrtused = 0; /* Define variable to avoid linking in C */
/* startup code. *x/
extern int far PublicCount; /* Global data item in data segment JEROME; */

/* this variable is defined in the secondary */

/* source file of Figure 5-11. */

int PrivateCount = 0; /* Instance data item in automatic data segment*/

void pascal far _loadds PrintCount

(void)

{

SHARING DATA 157

char Ch; /* Holds character value of counters. */

KBDKEYINFO Key; /* Receives keyboard information. */

/*** Print value of instance data item ’'PrivateCount’ . **kkkkkkkkkkkhkkkkk /
VioWrtTTY ("PrivateCount = ", 15, 0);
Ch = (char) (++PrivateCount + '0’);

VioWrtTTY (&Ch, 1, 0);

/*** Print value of global data item ’'PublicCount’ . **¥xkkkkkkkkkkkkkkkkh%/
VioWrtTTY ("\r\nPublicCount = ", 16, 0);
Ch = (char) (++PublicCount + ’0’);

VioWrtTTY (&Ch, 1, 0);

/*** Pause before returning control. **kkkkkkkkkkkkkkkkkk Rk kXXX XA KX KKK /

VioWrtTTY ("\r\nPress any key to terminate program...", 39, 0);
KbdCharIn (&Key, IO _WAIT, 0);

} /* end PrintCount */

Figure 5-11

/*
Figure 5-11
A secondary source file for defining global data for the dynamic-link
library defined in Figure 5-10.

*/

int PublicCount = 0; /* Data item placed in the global data segment JEROME. */

158 SOFTWARE TOOLS FOR 0S/2

Figure 5-12

; Figure 5-12

; Module definition file for linking the module of Figures
; 5-10 and 5-11.

LIBRARY FIG5_10

PROTMODE

DATA MULTIPLE

SEGMENTS
JEROME CLASS ’'FAR_DATA’ SHARED
JEROME_CONST CLASS 'FAR _DATA’ SHARED
JEROME_BSS CLASS 'FAR DATA’ SHARED
EXPORTS
PRINTCOUNT e1
Figure 5-13

Figure 5-13
A MAKE file for preparing the dynamic-link module defined in Figures

5-10 and 5-11.

FIG5_10.0BJ : FIG5_10.C

cl /c /W2 /ASw /G2s /Zp FIG5_10.C

FIG5_11.0BJ : FIG5_l1l.C

cl /c /W2 /ASw /G2s /2Zp /ND JEROME FIG5 11.C

FIG5_10.DLL : FIG5_10.0BJ FIG5_11.0BJ FIG5_12.DEF

SHARING DATA 159

link /NOI /NOD FIG5_10 FIG5_11, FIG5_10.DLL, FIG5_10, 0S2, FIG5_12

FIG5_10.LIB : FIG5_12.DEF

implib FIG5 10.LIB FIG5_12.DEF

The variable PublicCount is defined (equal to 0) in the secondary source
file listed in Figure 5-11 so that it can be placed in a segment other than
the automatic data segment. Normally, the data defined in this file would
be located within the same automatic data segment as the data defined
in the main source file. However, the MAKE file (Figure 5-13) compiles
the secondary source file using the /ND option, as follows:

cl /c /W2 /ASw /G2s /2p /ND JEROME FIG5_ll.c

The /ND flag in this command causes the compiler to place all data
items normally included in the automatic data segment into a separate
segment named JEROME. Accordingly, the external variable Public-
Count is placed in the data segment JEROME, rather than in the
automatic data segment. Since uninitialized external data in a large-data
model program is not placed in the automatic data segment, it will not be
placed in the segment JEROME, even if defined within the secondary
source file.

The only tasks remaining are to make the automatic data segment an
instance segment, and to make the segment named JEROME a global
segment. This is done so that PrivateCount becomes an instance data
item, and PublicCount becomes a global data item. These tasks are
accomplished in the module definition file of Figure 5-12.

First, the following statement:

DATA MULTIPLE

makes the automatic data segment an instance segment. As you will
see in the following section, this statement also makes all other segments
instance segments by default. This default attribute; however, can be

160 SOFTWARE TOOLS FOR 0S/2

overridden for a specific segment by including a SEGMENTS command.
The example program overrides the default condition and makes
JEROME a global segment through the following statement:

SEGMENTS
JEROME CLASS 'FAR_DATA' SHARED
JEROME_CONST CLASS 'FAR_DATA' SHARED
JEROME_BSS CLASS 'FAR_DATA' SHARED

The SHARED keyword renders the specified segment a global segment
(the NONSHARED keyword would make it an instance segment). When
you specify a segment with the /ND flag, the compiler creates two
additional logical segments, which are given the suffixes _CONST and
_BSS. Since all three logical segments are placed in the same segment
group, and are therefore linked into a single physical segment, you must
include all three segments in the SEGMENTS command. You must
specify the segment class names (the class determines how segments are
ordered in memory). You can obtain the exact names of all segments and
classes that the compiler creates by consulting the map file generated by
the linker. When linking the dynamic-link library, simply specify a
filename other than NUL for the list file, which is the third main
parameter on the LINK command line. In the resulting dynamic-link
library, the variable PrivateCount is located in an instance data segment,
and the variable PublicCount is located in a global segment. PublicCount
is declared in the main program as follows:

extern int far PublicCount;

The extern keyword indicates that the variable is defined within a
separate source file, and the far keyword is necessary because the variable
is located in a segment other than the automatic data segment and
therefore must be accessed using a far address. In contrast, data in the
automatic data segment can be referenced through near addresses since
the DS register already contains the selector of this segment. Note that
this segment arrangement enhances the efficiency of accessing instance
data, generally the more common type of data. To test this dynamic-link
library, you can compile and link the program listed in Figure 5-5 using
the appropriate import library, as in the following commands:

SHARING DATA 161

cl /e /G2 FIG5_5.C

and:

link /NOI /NOD FIG5_5.0BJ,, NUL.LST, FIG5_10.LIB SLIBCE.LIB OS2.LIB;

When you call the function PrintCount from separate concurrent
processes, as described previously in the chapter, PrivateCount is reini-
tialized with each new client, whereas all processes access a single shared
copy of PublicCount.

Using a Single Source File

The listing in Figure 5-14 is the same as the listing in Figure 5-10
(described in the previous section), except that it defines both the instance
dataitem PrivateCount and the global data item PublicCount in the same
C source file. Accordingly, the program does not use an auxiliary source
file for defining global data. Figure 5-15 contains the module definition
file, and Figure 5-16 provides a MAKE script for preparing the dynamic-
link library.

The variable PublicCount is defined within the single source file as
follows:

int far PublicCount = 0;

Figure 5-14

/*

Figure 5-14

A dynamic-link module source file that defines both instance and global
data.

*/

162 SOFTWARE TOOLS FOR 0S/2

#define INCL_SUB

#include <0S/2.H>

int _acrtused = 0; /* Define variable to avoid linking in C */

/* startup code. */
int far PublicCount = 0; /* Global data item in a separate segment. */
int PrivateCount = 0; /* Instance data item in automatic data segment*/

void pascal far _loadds PrintCount

(void)

{

char Ch; /* Holds character value of counters. *x/
KBDKEYINFO Key; /* Receives keyboard information. */

/*** Print value of instance data item ’'PrivateCount’ . **kkkkkkkkkkkkxksk%/
VioWrtTTY ("PrivateCount = ", 15, 0);
Ch = (char) (++PrivateCount + ’0’);

VioWrtTTY (&Ch, 1, 0);

/*** Print value of global data item ’PublicCount’ . **kkkkkkkkkkkkkkkkkkk/
VioWrtTTY ("\r\nPublicCount = ", 16, 0);
Ch = (char) (++PublicCount + ’'0’);

VioWrtTTY (&Ch, 1, 0);

/*** Pause before returning CONtrol. *kkkkkkkk kX kAKX XKKKXKKKKAKKKKKRKRKK K /

VioWrtTTY ("\r\nPress any key to terminate program...", 39, 0);
KbdCharIn (&Key, IO_WAIT, O0);

} /* end PrintCount */

SHARING DATA 163

Figure 5-15

; Figure 5-15
; Module definition file for linking the module of Figure 5-14

LIBRARY FIG5_14

PROTMODE

DATA MULTIPLE SHARED

EXPORTS

PRINTCOUNT @1

Figure 5-16

Figure 5-16

A MAKE script for preparing the dynamic-link module of Figure 5-14
#

FIG5_14.0BJ : FIG5_14.C

cl /c /W2 /ASw /G2s /2Zp FIG5_14.C

FIG5_14.DLL : FIG5_14.0BJ FIG5_15.DEF

link /NOI /NOD FIG5_14.0BJ, FIG5_14.DLL, NUL.MAP, 0s2.LIB, FIG5_15.DEF

FIG5_14.LIB : FIG5_15.DEF

implib FIG5_14.LIB FIG5_15.DEF

164 SOFTWARE TOOLS FOR 0S/2

Using the far keyword forces the compiler to place this variable in a
segment other than the automatic data segment, such placement will
occur in any memory model.

The name of the segment containing PublicCount is unimportant,
because you can make the automatic data segment an instance segment
and make all other segments global, regardless of their names. The
assignment of segment attributes is achieved through the following DATA
statement in the module definition file of Figure 5-15: -

DATA MULTIPLE SHARED

This statement causes the linker to make the automatic segment an
instance segment, and to make all other segments global by default. The
DATA statement specifies values for two fields: the instance field and
the shared field. The instance field consists of either the SINGLE or the
MULTIPLE keyword and, in general, determines whether the automatic
data segment is global or instance. You can also specify NONE if there is
no automatic data segment. The shared field consists of the SHARED or
the NONSHARED keyword, and serves in general to specify whether all
segments other than the default data segment are to be global or instance.
Both of these fields are optional, and the values you specify (or omit)
interact in complex and mysterious ways. Table 5-1 shows the effect of
each possible combination.

Table 5-1: Instance and Shared Fields Effects

INSTANCE SHARED FIELD AUTOMATIC DATA OTHER SEG-
FIELD SEGMENT! MENTS?
<none>3 <none>* global global
<none> SHARED global global
<none> NONSHARED instance instance
SINGLE <none> global global
SINGLE SHARED global global

SINGLE NONSHARED global instance

SHARING DATA 165

Table 5-1: Instance and Shared Fields Effects

INSTANCE SHARED FIELD AUTOMATIC DATA OTHER SEG-
FIELD SEGMENT! MENTS?2
MULTIPLE <none> instance instance
MULTIPLE SHARED instance global
MULTIPLE NONSHARED instance instance

1. Cannot be overridden with a SEGMENTS statement.
2. Can be overridden with a SEGMENTS statement.

3. Neither SINGLE nor MULTIPLE is specified.

4. Neither SHARED nor NONSHARED is specified.

The global/instance status specified by the DATA statement for any
segment other than the automatic data segment can be overridden using
a SEGMENTS statement as described in the previous section. You cannot,
however, override the status specified for the automatic data segment. If
you give a contradictory value in a SEGMENTS statement for any logical
segment in the automatic data segment group, the compiler issues a
warning and ignores the attempted override.

As in the example given in the previous section, PrivateCount is placed
in the automatic data segment and is therefore an instance data item.
PublicCount, however, has been forced into a segment other than the
automatic data segment and is therefore a global data item.

You can test this version of the example dynamic-link library by
compiling and linking the program of Figure 5-5 with the current version
of the import library, as follows:

cl /e /G2 FIG5_5.C

and:

link /NOI /NOD FIG5_5.0BJ,, NUL.LST, FIG5_14.LIB SLIBCE.LIB OS2.LIB;

166 SOFTWARE TOOLS FOR 0S/2

When you run the resulting executable program, you will discover that
the dynamic-link library behaves in the same manner as the example
module given in the previous section.

Defining both global and instance data within a single source file seems
to be an equivalent, but easier, method than using separate source files
as described in the previous section. There is a difference in these two
methods, however, that may be important for certain dynamic-link
libraries. The two-file method makes all data segments instance segments
except for the segment specifically mentioned in the SEGMENTS state-
ment. Accordingly, uninitialized external data in large-data model
programs would automatically become instance data. Such data are
placed neither in the automatic data segment nor in the segment specified
by the /ND command.

In contrast, the single-file method makes all data segments global
except for the automatic data segment. Accordingly, uninitialized exter-
nal data in large-model programs would become global.

You can choose the method that suits the needs of your dynamic-link
library. Also, the methods explored in this chapter are only two of many
possible ways of combining instance and global data within a dynamic-
link library.

Using Instance and Global Data Segments

This final section presents a simple dynamic-link library that uses both
instance and global data. The module uses instance data to store infor-
mation specific to each client process, and it uses global data to control
access to a shared device—the monitor. Although the module performs
only a trivial task, it serves to illustrate the basic manner in which these
two types of data are used by an OS/2 subsystem, which is an integrated
set of functions that manage a device shared by multiple processes, such
as the Kbd, Mou, and Vio API services).

Figure 5-17 lists the source code for the example dynamic-link library,
and Figures 5-18 and 5-19 provide a module definition file and a MAKE
script respectively.

SHARING DATA 167

Figure 5-17

/*
Figure 5-17
An example dynamic-link module that uses both instance and global data,
and synchronizes messages written to the screen.

*/

#define INCL_BASE

#include <0S2.H>

/*** Global Data ***/

ULONG far Sem = 0; /* Semaphore: a global data item placed in a */
/* segment OTHER than the automatic data */
/* segment.

/*** Instance Data ***/

PIDINFO ProcessID = /* Structure for receiving process ID: an */
{0, 0, O}: /* instance data item in the auomatic data */

/* segment. */

/* Message to print to screen: an instance */

/* data item in the automatic data segment: */

char ProcessMessage [] = "* Hello from Process *\r\n";
int _acrtused = 0; /* Define variable to avoid linking in C */
/* startup code. */

/*** Private FUncCtions *X*kXxkkkkkkkkkk kAKX KA KAKKKAIKIKKKRKAK KA R AKX Ak Ik kkk k% /

168 SOFTWARE TOOLS FOR 0S/2

void PrintMessage (void);

/*

Prints a message on the screen.

void UShortToString (USHORT Source, char *Target); /* Converts an unsigned

void pascal far _loadds Message

(void)

{

/* integer to a string.

/*** Obtain current process ID when a process first calls this function.

if (ProcessID.pid == 0)

{

DosGetPID (&ProcessID);

/* Provides the process ID.

/* Convert numeric ID to a string:

UShortToString (ProcessID.pid, ProcessMessage+30);

}

DosSemRequest
(&Sem,

-1L);

DosSleep (500L);

PrintMessage ();

DosSemClear

(&Sem) ;

DosSleep (OL);

} /* end Message */

/*
/*
/*

/*

/*

/*
/*

/*

Wait for semaphore to clear and then set it.
Semaphore handle (its far address).

Wait flag: -1 means wait forever.

Create a 1/2 second pause.

Print a message box on the screen.

Clear the semaphore.

Handle to global semaphore ’Sem’.

Yield remainder of time slice.

*/
*/
*/

*/
*/

*/

*/

*/
*/

*/

SHARING DATA 169

void PrintMessage (void)

{

VioWrtTTY("***\r\n",49,0);
VioWrtTTY ("* *\r\n",49,0);
VioWrtTTY ("* *\r\n",49,0);
VioWrtTTY ("* *\r\n",49,0);
VioWrtTTY ("* *\r\n",49,0);

VioWrtTTY (ProcessMessage,49,0);

VioWrtTTY ("* *\r\n", 49,0);
VioWrtTTY ("* *\r\n", 49,0);
VioWrtTTY ("* *\r\n", 49,0);
VioWrtTTY ("* press Ctrl-C to terminate *\r\n", 49,0);

ViowrtTTY("***\r\n",49,0);

} /* end PrintMessage */

void UShortToString (USHORT Source, char *Target)

/*
This function converts the USHORT value ’Source’ to a string, which is
written to the buffer 'Target’. The resulting string is NOT NULL
terminated.

*/

{
register int i = 0;

char Temp [6];

do
{
Temp [i++] = (char) (Source % 10 + ’'0');

Source /= 10;

170 SOFTWARE TOOLS FOR 0S/2

}

while (Source);

do
{
*Target++ = Temp [--i];
}

while (i);

} /* end UShortToString */

Figure 5-18

; Figure 5-18
; A module definition file for linking the dynamic-link
; module of Figure 5-17.

LIBRARY FIGS5_17

PROTMODE

DATA MULTIPLE SHARED

EXPORTS

MESSAGE @1

The source file of Figure 5-17 defines the function Message, which
creates a pause and prints a message box on the screen in the same
manner as the example programs given in Chapter 1. The example
dynamic-link library defines both instance and global data items within
the single source file using the second of the two methods described in the
previous section.

SHARING DATA 171

Figure 5-19

Figure 5-19

A MAKE file for preparing the dynamic-link module of Figure 5-17.
#

FIGS5_17.0BJ : FIG5_17.C

cl /c /W2 /ASw /G2s /Zp FIG5_17.C

FIG5_17.DLL : FIG5_17.0BJ FIG5_18.DEF

link /NOI /NOD FIG5_17.0BJ, FIG5_17.DLL, NUL.MAP, 0S2.LIB, FIG5_18.DEF

FIG5_17.LIB : FIG5_18.DEF

implib FIG5_17.LIB FIG5_18.DEF

The source file defines two instance data items: the PIDINFO structure
ProcessID and the string ProcessMessage. Both of these items are
defined as simple external data so that they are placed within the
automatic data segment, which is made an instance segment through the
DATA command in the linker definition file.

The ProcessID structure (specifically, the pid field) is used to receive
the identification number of the current process from the API function
DosGetPID, the first time the function Message is called by a given
process. If the pid field of the ProcessID structure equals 0—its initial
value—the function knows that DosGetPID has not yet been called to
obtain the ID of the current process. Message then converts the numeric
process ID value to an ASCII string, which is written to the string
ProcessMessage. The conversion is performed by the private function
UShortToString, and the resulting message string, ProcessMessage, is
printed as one of the lines in the message box. The data items ProcessID

172 SOFTWARE TOOLS FOR 0S/2

and ProcessMessage are both made instance items because they are used
to store distinct values for each client process.

The dynamic-link module source file also defines the following global
data item:

ULONG far Sem;

As discussed in the previous section, the keyword far forces the com-
piler to place this item in a segment other than the automatic data
segment. Since the DATA command in the module definition file makes
all such segments global, Sem becomes a global data item. Sem is used as
a semaphore to prevent more than one process (or more than one thread
within a single process) from attempting to print a message box on the
screen at a given time. The methods for using a semaphore for this
purpose are discussed in Chapter 1, in the section on Adding Interprocess
Communication. The salient feature then is that Sem must be defined as
a global data item so that any process in the system can test and set its
value.

To test whether the dynamic-link function Message successfully
prevents more than one process from attempting to print a message box
on the screen at a given time, you must run two or more processes that
call this function within the same screen group, since all processes in a
given screen group share the same physical screen. OS/2 automatically
segregates screen output from processes within separate screen groups.

You can test the dynamic-link module by running the programs listed
in Figures 5-20 and 5-21 simultaneously within the same screen group.
Both of these programs repeatedly call the dynamic-link function Mes-
sage to print a series of message boxes containing the ID of the calling
process. Before calling Message, however, the program of Figure 5-20 calls
DosExecPgm to execute the program of Figure 5-21 as a child process
within the same screen group. Therefore, to run both programs within a
given screen group, you need only execute the program of Figure 5-20
from the OS/2 command prompt.

SHARING DATA 173

Figure 5-20

/*

Figure 5-20

A program that starts the program of Figure 5-21 as a child process, and

tests the dynamic-link function ’'Message’.

*/

#define INCL_BASE

#include <0S2.B>

void pascal far _loadds Message (void); /* Dynamic-link function defined in

void main (void)
{
CHAR FailName [13];

RESULTCODES Results;

DosExecPgm
(FailName,
sizeof (FailName),
EXEC_ASYNC,
o,
0,
&Results,

"FIG5_21.EXE");

for (;;)

Message ():

} /* end main */

/*
/*
/*
/*
/*
/*
/*
/*

/*

/* Figure 5-17.

/* Used by ’'DosExecPgm’.

/* Used by 'DosExecPgm’.

Run a program as a child process.

Receives name of file causing failure.

Length of ’'FailName’.

Execute child asynchronously.

No arguments.

Environment: O means use parent’s.

Receives process ID of child.

Executable file name of child process.

Call dynamic-link function.

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

174 SOFTWARE TOOLS FOR 0S/2

Figure 5-21

/*
Figure 5-21
A program that runs as a child process of the program defined in
Figure 5-20, and tests the dynamic-link function 'Message’ .

*/

void pascal far _loadds Message (void); /* Dynamic-link function defined in
/* Figure 5-17.
void main (void)
{
for (;;)

Message () /* Call dynamic-link function.

} /* end main */

*/
*/

*/

You should compile and link each of these programs separately, using
the appropriate import library. For example, the following two commands
can be used to prepare the program of Figure 5-20:

cl /e /G2 FI1G5_20.C
and:
link /NOI /NOD FIG5_20.0BJ,, NUL.LST, FIGS_17.LIB SLIBCE.LIB OS2.LIB;

When you run the program of Figure 5-21, you will see distinct message
boxes appearing alternately from each of the two processes.

CHAPTER 6

INITIALIZATION AND TERMINATION

This chapter introduces two additional options available to dynamic-link
libraries: initialization routines and termination routines. In general,
initialization and termination routines allow a dynamic-link module to
keep track of multiple client processes. They inform the module whenever
a new client process is started and whenever an existing client ter-
minates. Accordingly, they are especially useful for dynamic-link subsys-
tems—collections of routines that manage multiple processes sharing a
common device or other system resource.

A dynamic-link module can provide a normal dynamic-link function
that a client program calls before using the facilities of the module, and
another function that it calls when it has completed using the module.
For example, the Presentation Manager provides the functions Win-
Initialize and WinTerminate, explained in Chapter 2. The initializa-
tion and termination routines discussed in this chapter, however, are
quite different. These functions are not explicitly called by the client
program; rather, once they have been properly defined and installed, they
are called automatically by the system. An initialization routine is auto-
matically called before the client program even begins running, and a
termination routine is automatically called when the client terminates,
normally or abnormally.

175

176 SOFTWARE TOOLS FOR 0S/2

Initialization and termination routines thus allow a dynamic-link
module to smoothly manage the arrivals and departures of multiple client
processes, without depending upon these clients to explicitly call entry
and exit routines. Initialization and termination routines enhance the
ability of a dynamic-link library to maintain its integrity, and to continue
providing services to its client processes despite the misbehavior of an
individual client. This arrangement is in keeping with the general
philosophy of OS/2 that a single miscreant process should never be able
to sabotage its fellow processes.

Writing Initialization Routines

Figures 6-1 through 6-4 provide a set of files for creating a dynamic-link
module with an initialization routine that is called each time the module
is referenced by a new client program. These files illustrate the following
three basic steps for setting up an initialization routine:

1. Define the initialization entry point in an assembly language file.
2. Write the body of the initialization routine in the C source file.

3. Specify when the initialization routine is to be called in the module
definition file.

Define the Entry Point

Figure 6-1 lists an assembly language file that defines the initialization
entry point. Unlike a C source file, an assembly language source file can
specify an entry point through the END statement. All assembly language
files must be terminated with an END statement. This statement can
consist of the END keyword alone, or the END keyword followed by the
address of the entry point, which can be given as a code label or as the
name of a procedure. The specified entry point is ultimately written to
the executable file header.

For an application program, the entry point is the address that is first
given control when the program is run. For C application programs, an
END statement specifying the program entry point is contained in the C
startup source file—CRT0.ASM.

INITIALIZATION AND TERMINATION 177

For a dynamic-link library, the entry point is the starting address of
the initialization routine. When creating a dynamic-link module, specify-
ing an entry point is optional; if you do not specify one, the resulting
module will simply not have an initialization routine. Also, if more than
one assembly language file is linked together, only one of them may
specify an entry point.

Figure 6-1

; Figure 6-1

This file defines the initialization entry point for the dynamic-link
; module of Figures 6-1 and 6-2

.MODEL LARGE

.CODE

EXTRN _InitRoutine : FAR ;Initialization routine defined in the C

;source file of Figure 6-2

ENTRYPOINT PROC FAR

call _InitRoutine ;Call main initialization routine.

ret ;FAR return to the system.

ENTRYPOINT ENDP

END ENTRYPOINT ;Defines the initialization entry point.

178 SOFTWARE TOOLS FOR 0S/2

Figure 6-2

/*
Figure 6-2
This C source file defines the initialization routine ’InitRoutine’ and
the dynamic-link function ’'DynaFunc’.

*/

#define INCL_SUB

#include <0S2.H>

/*** Global data: **/

USHORT far ProcessCount = 0; /* Maintains a count of new client processes. */

/*** Instance data: Fdkd ke de ke kR kR kKA K A RI IR KR KRR KRR KR RA KA RARAKA KKK KA KRR Rk [

char *Message; /* Pointer to message displayed by
/* ’'InitRoutine’ . */
int _acrtused = 0; /* Define variable to avoid linking in C *x/
/* startup code. */

/*** Private function: e e L T T Ty

void UShortToString (USHORT Source, char *Target); /* Converts an unsigned */

/* integer to a string. */

/*** Initialization routine: HRKKKKKKKKKKKIERIRRKIAKRAARRKIRRKIRKIRKARKK KKKk Ak]

INITIALIZATION AND TERMINATION 179

int far InitRoutine

(void)
{
++ProcessCount; /* Increment count of new client *x/
/* processes. */
if (ProcessCount == 1) /* First client process to activate the */
/* initialization routine. */
{
Message =| " First call to initialization routine. I\z\n";
}
else ’ /* Not the first client process. */
{
Message =| " Call to initialization routine number: I\r\n";

UShortToString (ProcessCount, Message + 42);

}

VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);

VioWrtTTY (Message, 50, 0);

VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);

VioWrtTTY ("\r\n", 50, 0):;

return (1); /* Return value of 1 indicates that the */

/* initialization routine was successful. */

180 SOFTWARE TOOLS FOR 0S/2

/***

void

/***

void

/*

*/

} /* end InitRoutine */

Dynamic—link routine: ***/

pascal far _loadds DynaFunc (void)

{

KBDKEYINFO Key; /* Structure to receive keyboard key.*/

VioWrtTTY ("\r\n", 50, 0);

VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" Dynamic-link function called. \r\n", 50, 0);
VioWrtTTY (" \r\n", 50, 0);
VioWrtTTY (" v \r\n", 50, 0);
VioWrtTTY (" press any key to continue \r\n", 50, 0);

VioWrtTTY ("\r\n", 50, 0);
KbdCharIn (&Key, IO_WAIT, 0); /* Pause for keyboard input. */
} /* end DynaFunc */

Private function: ***/

UShortToString (USHORT Source, char *Target)

This function converts the USHORT value ’'Source’ to a string, which is
written to the buffer ’'Target’. The resulting string is NOT NULL

terminated.

INITIALIZATION AND TERMINATION 181

register int i = 0;

char Temp [6];

do
{
Temp [i++] = (char) (Source % 10 + '0');
Source /= 10;
}

while (Source);

do
{
*Target++ = Temp [--i];
y

while (i)

} /* end UShortToString */

Figure 6-1 contains the END statement:
END ENTRYPOINT

where ENTRYPOINT is the name of the procedure that the system is
to invoke as the initialization routine. This procedure calls the function
InitRoutine, which is defined in the C source code of Figure 6-2 and
contains the main body of the initialization routine. You could write the
entire initialization routine in assembler and not call a C function.

When control returns from the C function, the assembler procedure
returns to the system. Note that this procedure must return with a FAR
return instruction; such a return instruction is automatically generated
by declaring ENTRYPOINT as a FAR procedure, as follows:

ENTRYPOINT PROC FAR

182 SOFTWARE TOOLS FOR 0S/2

Figure 6-3

; Figure 6-3
; Module definition file for linking the dynamic-link module
; of Figures 6-1 and 6-2.

LIBRARY FIG6_1 INITINSTANCE

PROTMODE

DATA MULTIPLE SHARED

EXPORTS

DYNAFUNC @1

Figure 6-4

Figure 6-4

MAKE file for preparing the dynamic-link module defined in Figures 6-1 and
6-2.

#

FIG6_1.0BJ : FIG6_1.ASM

masm /MX FIG6_1.ASM;

FIG6_2.0BJ : FIG6_2.C

el /c /W2 /ASw /G2s /Zp FIG6_2.C

FIG6_1.DLL : FIG6_1.0BJ FIG6_2.0BJ FIG6_3.DEF

link /NOI /NOD FIG6_1.0BJ FIG6_2.0BJ,FIGG_I.DLL,NUL.MAP,OSZ.LIB,FIG6_3.DEF

FIG6_1.LIB : FIG6_3.DEF

implib FIG6_1.LIB FIG6_3.DEF

INITIALIZATION AND TERMINATION 183

The C initialization function is declared through the following line:
EXTRN _InitRoutine : FAR

The EXTRN keyword indicates that the function is defined in another
source file, and the FAR keyword indicates that it must be called with a
far call instruction. Also, InitRoutine must be defined in the C source file
as a far function, so that it returns with a far return instruction. In the
small-code models, InitRoutine could be declared and defined as a near
function since it is contained within the same code segment as the
procedure ENTRYPOINT; however, by explicitly defining it as far, you
can use the same assembly language file regardless of the C memory
model. The C compiler adds an underscore to the beginning of the function
name, InitRoutine, when it writes it to the object file, since this routine
is not declared as pascal.

As you will see in Chapter 7, you cannot install your own initialization
routine when using the C runtime library within a dynamic-link module,
since the library itself defines an initialization routine, and there can be
only one initialization entry point in a given module.

See Chapter 12 for more information on using assembly language.

Write the C Initialization Function

Figure 6-2 contains the C source code for the example dynamic-link
module. This file defines the main initialization function InitRoutine,
which is called from the assembly language entry procedure. InitRoutine
need not be defined with the _loadds keyword (or compiled with the /Au
flag) since the system automatically loads the DS register with the
selector of the module’s automatic data segment, before it calls the
initialization procedure.

InitRoutine first increments the process counter ProcessCount. Since
this global data item is initialized to 0 and since the initialization routine
is called once for each new client routine, ProcessCount maintains a count
of the total number of processes that have referenced the dynamic-link
library. ProcessCount does not necessarily contain the current number of
active client processes, since it is not decremented when a client ter-
minates. The example module presented in the second part of this chapter

184 SOFTWARE TOOLS FOR 0S/2

adds a termination routine and maintains a count of the current number
of active processes.

InitRoutine next prints one of two messages, depending upon whether
it was called from the first client process or from a subsequent client
process.

Finally, InitRoutine returns a value of 1 to indicate that the initializa-
tion routine was successful. When the assembly language initialization
procedure (ENTRYPOINT) returns control to the system, it must supply
a termination code in register AX. A nonzero value indicates that the
function was successful, and a zero value indicates that the function
failed. Conveniently, when a C function returns an integer value, it loads
this value into register AX; accordingly, the C function can simply return
the appropriate termination code and the assembler procedure need not
explicitly load register AX. If you return 0 to indicate an error, the client
program quietly dies; the OS/2 loader proceeds no further in running the
program. As you will see in Chapter 8, returning 0 also causes termination
of a client program that calls DosLoadModule to load the dynamic-link
library at runtime.

Like a normal dynamic-link function, the initialization routine runs as
part of the client process (specifically, the client process that just refer-
enced the module). Accordingly, this routine is free to allocate file handles,
memory segments, or other objects on behalf of the client. For example,
you could add an initialization routine to the dynamic-link module
presented in Chapter 4, which would open the printer device and obtain
a valid printer handle for each new client process. Using such an in-
itialization routine would eliminate the need for the functions in this
module to test whether the printer has been opened.

By the time the initialization routine receives control, the system has
allocated and initialized all global segments, as well as all instance data
segments belonging to the current client. The initialization routine there-
fore has full access to these segments.

Specify When the Routine is to be Called

Notice that the LIBRARY statement in the module definition file of Figure
6-3 contains the keyword INITINSTANCE. This keyword is one of the

INITIALIZATION AND TERMINATION 185

following two values that can be specified as the optional initialization
field of the LIBRARY statement:

INITGLOBAL The initialization routine is called only for the first client
process. This is the default condition.

INITINSTANCE The initialization routine is called for all client proces-
ses.

The example module is defined with the INITINSTANCE option since
the initialization routine is to be called each time the module is referenced
by a new client process. If you do not include either keyword, the initializa-
tion routine only will be called for the first client, since INITGLOBAL is
the default.

If your initialization routine performs a set of initialization tasks that
need to be performed only one time, and before any client program begins
running, then you should specify the INITGLOBAL keyword, or simply
do not specify an initialization value. For example, a subsystem that
manages the printer may need to initialize the printer once only, before
individual clients begin requesting printer services. Also, a screen
management module may need to make a single determination of the
current video configuration before client processes begin sending screen
output.

If, however, the module must perform a set of initialization tasks for
each client, or if it must keep track of the total number of client processes,
you should specify the INITINSTANCE keyword. For example, the task
of opening the printer in the module given in Chapter 4 would have to be
performed for each client process, because a device handle is valid only
within the process that obtained this handle from the system.

Typically, however, a module must perform both types of initialization
tasks: certain tasks are performed only once, and other tasks are per-
formed for each new client. You cannot install separate routines for each
type of task. Nevertheless, you can easily perform both types of tasks
within a single initialization routine that is called for each client (an
INITINSTANCE routine) by maintaining a flag (in a global data segment)
that indicates the first time the routine is called. For example, in the
example initialization routine of Figure 6-2, the counter Process-
Counter has a value of 1 (after it is incremented at the beginning of the

186 SOFTWARE TOOLS FOR 0S/2

routine) only for the first client. According to the value of this flag, the
routine branches either to a routine that is performed only for the first
client or to a routine that is performed for each subsequent client.

At what point during the processing of a client program is the initializa-
tion routine called? For a loadtime dynamic-link library, the initialization
routine is called immediately before the client program receives control,
as mentioned previously, it is called after the system has loaded and
initialized all global segments and instance segments belonging to the
client process. For a runtime dynamic-link library (discussed in Chapter
8), the client process explicitly loads the dynamic-link module through
the DosLoadModule function. In this case, the initialization routine is
called during the execution of DosLoadModule, which does not return
control to the client until the initialization routine has completed.

Testing the Initialization Routine

Figure 6-4 provides a MAKE file for preparing the example dynamic-link
library. The assembly language source file of Figure 6-1 is assembled
using the /MX flag, which causes the assembler to preserve the case of
public and external names. Normally, it converts these names to upper-
case). Accordingly, the C function InitRoutine is written in the assembler
file using uppercase and lowercase letters with a leading underscore.

Figure 6-5 lists a program you can use to test the dynamic-link module.
This program simply calls the dynamic-link function DynaFune, which
displays a message and pauses for keyboard input. When you run the
program, you will first see the message printed by the initialization
routine, followed by the message from DynaFunc. If you run more than
one instance of this program concurrently (by starting the program from
two or more screen groups as described in Chapter 5) you will see that
the initialization routine is called each time the program is loaded.

You can compile and link this program using the following two com-
mands:

cl /c /W2 /G2 /zZp FIG6_5.C
and:

link /NOI /NOD FIG6_5.0BJ,, NUL.LST, FIG6_1.LIB SLIBCE.LIB OS2.LIB;

INITIALIZATION AND TERMINATION 187

Figure 6-5

/*
Figure 6-5
A C program for testing the example dynamic-link modules given in
Chapter 6.

*/

void pascal far DynaFunc (void); /* Defined in dynamic-link module. */

void main (void)

{

DynaFunc (); /* Dynamic-link function. *x/

} /* end main */

Writing Termination Routines

Figures 6-6 through 6-9 list a set of files for building an example dynamic-
link library that has a termination routine in addition to an initialization
routine.

The assembly language file of Figure 6-7 defines the initialization entry
point in exactly the same manner as the listing of Figure 6-1, explained
in the previous section. As in the prior example, the body of the initializa-
tion routine is contained in the C function InitRoutine, defined in Figure
6-7. This function first increments the process counter, ProcessCount, and
then calls the API function DosExitList to install the termination
routine.

188 SOFTWARE TOOLS FOR 0S/2

Figure 6-6

; Figure 6-6

; This file defines the initialization entry point for the dynamic-link
; module of Figures 6-6 and 6-7.

.MODEL LARGE

.CODE

EXTRN _InitRoutine : FAR ;Initialization routine defined in the C

;source file of Figure 6-7.

ENTRYPOINT PROC FAR

call _InitRoutine ;Call main initialization routine.

ret ;FAR return to the system.

ENTRYPOINT ENDP

END ENTRYPOINT ;Defines the initialization entry point.

Figure 6-7

/*
Figure 6-7
This C source file defines the initialization routine ’InitRoutine’,
the termination routine ’'TermRoutine’ and the dynamic-link function
' DynaFunc’ .

*/

#define INCL_SUB

INITIALIZATION AND TERMINATION 189

f#define INCL DOSPROCESS

#include <0S2.H>

/*%% Global data: AX*kkkkkRKkRKAAKKKAKKKRKKARKAKKKARKAA KRR AR AKX II K AR K KR KA KK /

USHORT far ProcessCount = 0; /* Maintains a count of the current number of */

/* active client processes. *x/

/x%x*x Instance data: XXXk rKKXXIARXXXKARKKKARRKKK RN KIXARRKKKARRKIKKARKKR KR KK kK /

char *Messagel; /* Pointer to first message displayed by */
/* 'TermRoutine’ . */
/* Second message displayed by ’'TermRoutine’: */

char Message2 [] = "| remaining processes: I \r\n";

int _acrtused = 0; /* Define variable to avoid linking in C */
/* startup code. */

/*%* Termination FUNCLION: X*X*XAKKXKAKKKKAKKNKKKAKKXKARKKKXAXIKKRKK XK KK AR AKXk K /

void pascal far TermRoutine (USHORT TermCode);

/**%% Private function: ¥*AXXkXkxkkkkk kKA RXKARXAXKKARKARKKRR KX AK KKK KKK R KKK KKK KK /

\
void UShortToString (USHORT Source, char *Target); /* Converts an unsigned */

/* integer to a string. */

/*%% Initialization routine: X**xkxkkkkkAkXAXKKAKXAXKXANKKAKKARK KK AR KRR KRR KX KKK /

190 SOFTWARE TOOLS FOR 0S/2

int far InitRoutine

/***

void

(void)

{

++ProcessCount; /*

DosExitList /*
(EXLST_ADD, /*
TermRoutine) ; /*

return (1); /*

/*

} /* end InitRoutine */

Increment count of active clients. */

Install the termination routine. *x/
Code for desired service: add a routine*/

Address of termination routine to add. */

Return value of 1 indicates that the */

initialization routine was successful. */

Dynamic-1link function: *¥*XkkXkkkkkkkk kA kXX AAKKAKAKKIKKRKKKKK KKK KKK KKK KRN /

pascal far DynaFunc (void)

{

KBDKEYINFO Key;

VioWrtTTY ("\r\n", 48, 0);

VioWrtTTY ("

/* Structure to receive keyboard key.*/

\r\n"I 48, 0);

VioWrtTTY ("

\r\n"r 48, 0);

VioWrtTTY (" Dynamic-link function called. \r\n", 48, 0);

VioWrtTTY ("

VioWrtTry ("

\xr\n", 48, 0);

\r\n", 48, 0);

VioWrtTTY (" press any key to continue \r\n", 48, 0);

VioWrtTTY ("\r\n", 48, 0);

KbdCharIn (&Key, IO _WAIT, 0);

} /* end DynaFunc */

/*** Termination routine:

INITIALIZATION AND TERMINATION 191

/* Pause for keyboard input. *x/

**/

void pascal far TermRoutine (USHORT TermCode)

{

--ProcessCount;

switch (TermCode)

case

case

case

case

TC_EXIT:
Messagel = " |

break;

TC_HARDERROR:

Messagel "

break;

TC_TRAP:

Messagel

break;

TC_KILLPROCESS:

/* Decrement count of active clients.*/

/* Assign string to ’'Messagel’ based */

/* on cause of process termination. */

normal exit | \r\n";
critical error abort | \r\n";
trap operation I \r\n";

Messagel = " |process terminated through DosKillProcess | \r\n";

192 SOFTWARE TOOLS FOR 0S/2

/***

void

/*

break;
default:
Messagel = " | unknown cause of termination | \r\n";

break;

/* Write the number of remaining *x/
/* client processes to 'Message2’: *x/

UShortToString (ProcessCount, Message2 + 32);

/* Print the message. */

VioWrtTTY ("\r\n", 48, 0);
VioWrtTTY (" Termination Routine \r\n", 48, 0);
VioWrtTTY (" \r\n", 48, 0);
VioWrtTTY (Messagel, 48, 0);
VioWrtTTY (Message2, 48, 0);
VioWrtTTY (" \r\n", 48, 0);
VioWrtTTY (" \r\n", 48, 0);
VioWrtTTY ("\r\n", 48, 0);
DosExitList /* NOTIFY THE SYSTEM THAT TERMINATION*/

(EXLST_EXIT, /* PROCESSING IS COMPLETE. */

0);

} /* TermRoutine */

Private fUunNCtion: **AXAXAKAKARAKKAKAKRKRKRKKKRARAKAKAKKRKKKRKRKKKKKXAKA KRN /

UShortToString (USHORT Source, char *Target)

This function converts the USHORT value ’‘Source’ to a string, which is
written to the buffer ’'Target’. The resulting string is NOT NULL

terminated.

*/

INITIALIZATION AND TERMINATION

{
register int i = 0;

char Temp [6];

do

{
Temp [i++] = (char) (Source % 10 + '0');

Source /= 10;

}

while (Source);

do
{
*Target++ = Temp [--i];
}

while (i);

} /* end UShortToString */

193

Figure 6-8

’

Figure 6-8
Module definition file for linking the example

dynamic-link module of Figures 6-6 and 6-7.

LIBRARY FIG6_6 INITINSTANCE

PROTMODE

DATA MULTIPLE SHARED

EXPORTS

DYNAFUNC @1

194 SOFTWARE TOOLS FOR 0S/2

Figure 6-9

#
MAKE script for preparing the dynamic-link module defined in Figures
6-6 and 6-7.

#

FIG6_6.0BJ : FIG6_6.ASM

masm /MX FIG6_6.ASM;

FIG6_7.0BJ : FIG6_7.C

cl /c /W2 /ASu /G2s /Zp FIG6_7.C

FIG6_6.DLL : FIG6_6.0BJ FIG6_7.0BJ FIG6_8.DEF

link /NOI /NOD FIG6_6.0BJ FIG6_7.0BJ,FIG6_6.DLL, NUL.MAP, 0S2.LIB,FIG6_8.DEF

FIG6_6.LIB : FIG6_8.DEF

implib FIG6_6.LIB FIG6_8.DEF

The DosExitList function is summarized in Figure 6-10. You should
call this function from an initialization routine that is invoked for each
client process (an INITINSTANCE routine), although you could also call
it the first time a dynamic-link function is called by a new client. DosExit-
List installs the specified termination routine for the current client
process; therefore, you must call this function from each client process.

The initialization routine calls DosExitList as follows:

DosExitList
(EXLST_ADD,
TermRoutine) ;

INITIALIZATION AND TERMINATION 195

Figure 6-10: The DosExitList Function.

DosExitList

O Purpose: Installs or removes a function from the list of routines that are automat-
ically executed when the current process terminates; it is also called by a termina-
tion routine to notify the system that it has completed its termination processing.

O Prototype: USHORT APIENTRY DosExitList

(USHORT fFnCode One of the following codes indicating the
desired service:

Code Desired service

EXLST_ADD Add function to termination list.

EXLST_REMOVE Remove function from termination list.

EXLST_EXIT Call next function on termination list (this code is

supplied by a termination routine to indicate that it has
completed its termination processing).

PFNEXITLIST pfnFunction Address of the function to add or remove
from the termination list (if DosExitList is
called by the termination routine itself to
conclude processing, this value should be 0).
The definition of the type PFNEXITLIST is
given below.

[0 Type Definition: typedef VOID (PASCAL FAR *PFNEXITLISTYUSHORT);
O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:
ERROR_INVALID_DATA The function call specified an invalid value for
the first parameter (fFnCode).
ERROR_NOT_ENOUGH_MEMORY Insufficient free memory to add exit routine

The value passed as the first parameter, EXLST_ADD, indicates that
the specified routine should be added to the list of termination routines
for the current process. The second parameter, TermRoutine, gives the

196 SOFTWARE TOOLS FOR 0S/2

address of this routine. The system maintains a list of termination
routines for a given process. The client program can also install one or
more termination routines. When the current process terminates—for
any reason—the routines on this list are called one at a time, in an
unpredictable order.

The termination routine for the example module is the function Term-
Routine, defined in the C source code of Figure 6-7. This function first
decrements the process counter, ProcessCount. ProcessCount is initial-
ized to 0; it is then incremented by the initialization routine each time a
new client process begins, and it is decremented by the termination
routine each time a client process ends. Thus, it maintains a count of the
current number of active client processes. This variable must, of course,
be stored in a global data segment.

The system passes the termination routine a single parameter, which
contains a code indicating the cause for the process termination. Table
6-1 lists the possible codes:

Table 6-1: Parameter Values and Termination Causes

PARAMETER VALUE TERMINATION CAUSE

TC_EXIT Normal exit (the process called DosExit).

TC_HARDERROR Process was aborted through a critical-error hand-
ler.

TC_TRAP Process was terminated through a trap operation.

TC_KILLPROCESS Process was terminated due to another process

calling DosKillProcess.

TermRoutine prints a message that indicates the reason the process
terminated, and displays the number of active client processes remaining.
Finally, TermRoutine calls the DosExitList function, passing the value
EXLST_EXIT as the first parameter, which notifies the system that the
termination routine is complete. It passes a 0 as the second parameter,
since it is not installing or removing a termination routine. The termina-

INITIALIZATION AND TERMINATION 197

tion routine must call DosExitList to allow the system to continue ter-
minating the process. The routine must not issue a simple return instruc-
tion. The system passes control to the termination routine through a JMP
instruction rather than a CALL instruction; therefore, the stack does not
contain the return address required for a RET instruction.

Note that TermRoutine is declared as follows:

void pascal far TermRoutine (USHORT TermCode) ;

This declaration is necessary to conformto the type of the second
parameter passed to DosExitList, as it is declared in the OS/2 header files.

Like an initialization routine or a normal dynamic-link function, the
termination routine runs as part of the client process. The module can
take advantage of the termination routine to release any objects held for
the process in global data segments (such as data buffers, semaphores, or
lists of pending requests), and to perform any other required final duties.
The system automatically releases all instance segments belonging to the
process. The system also automatically frees all file handles, memory
blocks, or other objects dynamically allocated by the process. The termina-
tion routine, however, should flush any data buffers and properly close
any files it has opened for the client process to make sure that all file data
preserved.

When the termination routine receives control, the process is already
in a state of partial termination. For example, all process threads except
the one executing the termination routine have been ended. By the time
the termination routine is invoked, it is too late to resume the process.
The termination routine is not the appropriate point in the code to print
a statement such as "Are you sure you want to end the program?" Also,
you should not attempt to start new threads or processes from the
termination routine by calling DosCreateThread or DosExecPgm.

Finally, since the system cannot complete terminating the process until
the termination routine finishes, this routine should be as short as
possible. Usually, when the termination routine receives control, the user
is attempting to exit the program and is in no mood for a long delay.

The OS/2 function DosSetSigHandler allows you to install a routine
that is called under certain termination conditions. This function installs
ahandler for one of several types of signals that may be sent to the process;

198 SOFTWARE TOOLS FOR 0S/2

certain exit conditions, such as the user pressing Ctrl-C, result in specific
signals that can be processed by a signal handler. You should not, however,
use this function to install a general termination routine for a dynamic-
link library, for two reasons. First, the routine you install is not called for
a normal process termination, which occurs when the process calls Dos-
Exit—the most common means of ending a program. Second, unlike
DosExitList, DosSetSigHandler installs only a single routine per process
for a given type of signal; therefore, the routine you install would be
removed if the client later installs a routine for the same signal.

Testing the Termination Routine

You can test the termination routine using the client program listed in
Figure 6-5 which was employed in the previous section to test the
initialization routine. You can compile and link this program using the
following two command line instructions:

cl /c /W2 /G2 /Zp FIG6_5.C
and:
link /NOI /NOD FIG6_5.0BJ,, NUL.LST, FIG6_6.LIB SLIBCE.LIB 0S2.LIB;

When you run the program, you will see the message printed by the
termination routine immediately before the program returns to OS/2. End
the program both by pressing a key, and by typing Control-C, and notice
the different termination messages. By using separate screen groups, you
can also run multiple instances of the programs to test the counter of
client processes maintained by the dynamic-link module.

CHAPTER 7

USING THE C RUNTIME LIBRARY

Calls to functions in the C runtime library have been absent from many
of the example programs and all of the dynamic-link modules presented
so far in this book. As you have seen, the standard C runtime library has
two major limitations. First, most of the C library functions cannot be
called by more than one simultaneous thread within a single process and,
therefore, the C runtime library generally cannot be used by multiple-
thread programs or dynamic-link modules. Second, none of the C library
functions can be called from dynamic-link modules, even if the module
code is executed by only a single thread per process. Consequently, the
example multiple-thread programs and dynamic-link libraries given in
prior chapters have supplied their own supporting functions (such as
_StrLen in Figure 4-2 and UShortToString in Figure 5-17).

However, Microsoft C (beginning with version 5.1) supplies three
special versions of the runtime library that overcome these limitations.
Each of the three special runtime library versions is designed for use
within a specific programming environment; these library versions may
be summarized as follows: ’

1. A version for multiple-thread application programs (in the file
LLIBCMT.LIB).

199

200 SOFTWARE TOOLS FOR 0S/2

2. A version for single-thread dynamic-link libraries (in the file
LLIBCDLL.LIB).

3. Aversion for both multiple-thread dynamic-link libraries and multiple-
thread applications (in the file CRTLIB.DLL).

This chapter describes each of these libraries and presents the techni-
ques for using them in your programs and dynamic-link modules.

Calling your favorite C runtime functions does not come without a cost.
This chapter emphasizes the restrictions that apply when using each of
the special library versions, and its conclusion explains why you might
not want to use the special versions of the C runtime library when
developing a general purpose dynamic-link library. The chapter em-
phasizes basic techniques and general considerations for selecting and
using special versions of the C runtime library. As in the other chapters,
specific details and examples are based upon Microsoft C, version 5.1. Be
sure to consult your compiler documentation for the exact names of the
various files and for additional programming details, especially if you are
using a different compiler or compiler version.

Multiple-Thread Applications

One special version of the C runtime library supplied by Microsoft C (5.1)
is contained in the library file LLIBCMT.LIB. This library version has the
following four basic properties:

1. The functions in this library can be called only by application
programs; they cannot be called by dynamic- link libraries.

2. The library is statically linked to your program.
3. The functions can be called by multiple threads within a single process.
4. Only a large memory model version is supplied.

The remainder of this section elaborates on these four features and
illustrates them through an example program, which is listed in Figure
7-1. This program, like the example application in Figure 1-8, begins
several new program threads; each of the newly started threads repeated-

USING THE C RUNTIME LIBRARY 201

ly prints a message on the screen, while the original thread waits for a
keystroke and terminates the entire process when a key is pressed. Unlike
the program of Figure 1-8, however, the example program is linked with
a special C library version (LLIBCMT.LIB) and freely calls C library
functions. Figure 7-2 provides a MAKE script for preparing this program.

Figure 7-1

/*

Figure 7-1

This program demonstrates using the LLIBCMT.LIB C runtime library, which:

o is statically linked
o supports multiple-thread application programs
o can be called only by an application program; cannot be called by a

dynamic-link library
*/

#define INCL_DOSPROCESS /* Definition of ’'DosSleep’.

#include <0S/2.H>

#include <MT\STDIO.H> /* Include special multi-
#include <MT\CONIO.H> /* tasking versions of the C
#include <MT\PROCESS.H> /* header files.

#include <MT\STDDEF .H> /* Defines _threadid.

char StackArea [6144]; /* Space for 3 2K stacks.
void far NewThread (int far *Argument); /* Function executed by new

/* threads.

*/

*/
*/
*/
*/

*/

*/
*/

202 SOFTWARE TOOLS FOR 0S/2

void main (void)

{

int NewThreadCount = 0; /* Count of new threads started. */
char far *StackBase = StackArea; /* Points to base of each new */
/* thread’s stack. */
int ThreadID; /* Holds thread ID returned by */
/* ' _beginthread’. */
do

{

++NewThreadCount ; /* Increment count of new threads. */
/

ThreadID = _beginthread /* Start a new thread. */
(NewThread, /* Address of function to be */
/* executed by new thread. *x/
StackBase, /* Base of new thread’s stack. */
2048, /* Size of new thread’s stack. */
&NewThreadCount) ; /* Argument passed to new thread: */
/* address of new thread count. */
DosSleep (500L); /* 1/2 second pause between starting */
/* new threads. */
if (ThreadlID == -1) /* ID value of -1 indicates an error.*/

{

printf ("Error beginning new thread number %d\n",
NewThreadCount) ;

exit (1);

}

StackBase += 2048; /* Move pointer to next stack area. */

USING THE C RUNTIME LIBRARY 203

}
while (NewThreadCount 3);

getch () /* Pause for keyboard input. */

} /* end main */

void far NewThread (int far *Argument)

{
int ThreadID = *_threadid; /* Obtain ID of new thread from */

/* global pointer ’'_threadid’. */
for (;;)
{
printf ("Hello from new thread ID number %d. Number of new "

"threads started: %d\n", ThreadID, *Argument);

DosSleep (500L); /* Pause after printing message -- *x/

/* and yield remainder of time slice.*/

} /* end NewThread */

Figure 7-2

Figure 7-2

A MAKE file for preparing the example program of Figure 7-1
#

FIG7_1.0BJ : FIG7_1.C

cl /c /W2 /ALw /G2 /Zp FIG7_1.C

FIG7_1.EXE : FIG7_1.0BJ

link /NOI /NOD FIG7_1.0BJ,, NUL.LST, LLIBCMT.LIB 0S2.LIB;

204 SOFTWARE TOOLS FOR 0S/2

The main feature of the LLIBCMT library version is that it can be used
only by an application program and not by a dynamic-link module. The
other two library versions described in the chapter are designed to be used
by dynamic-link modules. :

The second feature is that the library is statically (that is, convention-
ally) linked to the application in the same manner as the standard C
runtime library. When linking the program, you simply specify the library
name LLMIBMT.LIB rather than the standard library name (for ex-
ample, LLIBCE.LIB). Since the compiler normally writes the name of the
standard library to the object file as a default search library, you must be
careful that you do not accidently link the program with a standard
version of the library. Accordingly, the MAKE script of Figure 7-2 includes
the /NOD switch, which prevents default library searches. Also, even if
your program makes no explicit calls to the OS/2 API, you must specify
the import library OS2.LIB (DOSCALLS.LIB on some systems) to resolve
the references to OS/2 API functions made by the C library.

The third significant feature allows you to call a given function in this
C library version from more than one simultaneous program thread.
Remember from Chapter 1 that most of the standard C library functions
are nonreentrant—they can be called by only one program thread at a
time—simultaneous instances of such functions will tend to corrupt each
other’s data. The functions in the LLIBCMT library, however, are
reentrant; accordingly, you can make full use of these C functions within
a multiple-thread application.

The example program of Figure 7-1 takes advantage of this freedom by
calling the C library function printf to print formatted messages from
each of the newly started threads, and by calling the C function getch to
pause for keyboard input within the main function, executed by the
original program thread.

When using a version of the C library that supports multiple-thread
programs—the versions discussed in this section and in the last section
in the chapter—the program must manage threads by using the special
C library functions _beginthread and _endthread, rather than the
standard OS/2 API functions DosCreateThread and DosExit. Dos-
CreateThread and DosExit were used by the example multiple-thread
applications presented in Chapter 1. If you use these functions in a

USING THE C RUNTIME LIBRARY 205

program that employs a special version of the C runtime library, the
results are unpredictable.

The C function _beginthread starts a new program thread; it differs
from DosCreateThread in two primary ways. First, you can supply
_beginthread a value (the fourth parameter) that it will pass as a
parameter to the function executed by the new thread. This parameter
has the size of a far pointer, and you can use it to pass a simple numeric
value, or the address of a string or other data item.

The example program begins three new threads; each of these threads
executes the same function, NewThread (thus creating three instances
of a single function). NewThread is declared as follows:

void far NewThread (int far *Argument);

The parameter Argument is used to pass each of the new threads the
far address of the variable NewThreadCount, which contains a count of
the total number of new threads started by the function main. The threads
print this value as part of the messages they send to the screen; as you
will see if you run the program, the value begins at 1 and quickly reaches
3, where it remains.

The parameter passed to the function executed by the new thread must
be declared as a far pointer to some data type in order to conform to the
declaration of the _beginthread function. However, if you want to pass a
simple numeric type, such as an unsigned integer, you can cast the
parameter to the appropriate type, as in the following code fragment:

void far NewThread (int far *Argument)

{
unsigned LocalUInt;

LocalUInt = (unsigned)Argument;

206 SOFTWARE TOOLS FOR 0S/2

The second difference between DosCreateThread and _beginthread is
that DosCreateThread is passed only the address of the top of the stack
reserved for the new thread (it does not need to know how large the stack
is). The function _beginthread, however, must be passed the address of
the bottom of the stack and the size of the stack. The C library uses the
stack size information to provide stack checking for each program thread,
just as the standard C library provides a stack check routine that is called
by the functions of a single-thread program. However, as you will see later
in this section, you must disable stack checking if you compile the program
under the small or compact memory model.

The example program reserves a 2-kilobyte stack area for each new
thread. If a thread executes one or more C runtime functions, it should
have a stack of at least 2 kilobytes. If it calls one or more OS/2 API
functions, its stack should be larger. The example program in Chapter 1
reserves a 3-kilobyte stack for each thread, since these threads invoke
API functions.

The C library function _endthread terminates a thread begun by
_beginthread (calling _endthread is analogous to calling DosExit, passing
it the value EXIT_THREAD). The _endthread function is not normally
required, since the thread will automatically be terminated if it returns
from the function it initially executed. The function _endthread would be
useful, however, for summarily aborting the current thread from within
a nested subroutine.

See your compiler documentation for the prototypes of these two
functions and for further information on their use.

The C runtime library supplies a global variable, _threadid (defined
in STDDEF.H), which is a far pointer holding the address of a location in
memory containing the identifier of the thread that is currently execut-
ing. This location is within the local information segment, which is
maintained by OS/2 and can also be accessed through the DosGetInfoSeg
function. The new threads in the example program print the identifier of
the current thread, which is obtained from the expression *_threadid.

Finally, because the program employs multiple threads, you must
compile it using the /Aw flag as explained in Chapter 1. When you use
this flag remember to specify the memory model; since the example

USING THE C RUNTIME LIBRARY 207

program is compiled under the large memory model, the MAKE file of
Figure 7-1 specifies the flag /ALw.

A final important feature of the LLIBCMT library is that only a large
memory model version is provided. The advantage of a large memory-
model library is that—with care—its functions can be called from any
memory model program.

A set of special header files facilitates calling the functions in this
library from programs compiled under memory models other than the
large or huge model. You must use these header files when employing
either of the two versions of the C runtime library that support multiple-
thread code (that is, the library versions discussed in this section and in
the last section of the chapter). These header files have the same names
as the standard C header files (such as STDIO.H and STDDEF.H), but
are normally placed in the MT subdirectory of the INCLUDE directory.
Accordingly, when including C header files, you must preface the header
filenames with the subdirectory designation. For example, the following
statement includes the multiple-thread version of the standard I/O
header file:

#include <\MT\STDIO.H>

Among the unique features of these header files are function declara-
tions using the far keyword; all functions—as well as all address
parameters passed to these functions—are explicitly declared as far.
Accordingly, when calling the functions from a small, compact, or medium
memory model program, the compiler will automatically perform most of
the required type conversions. However, if the function returns an ad-
dress, you must receive it in a far pointer. For example, if you call fopen
from a small or medium model program, the variable that receives the
FILE pointer must be explicitly declared far, as in the following code:

FILE far *fp

fp = fopen ("PRN","w");

208 SOFTWARE TOOLS FOR 0S/2

Also, consider the following function call:
printf ("hello, %s\n", "world");

It is left for the reader to puzzle why this call to a function in the
LLIBCMT version of the C library causes a protection fault if the program
is compiled under the small or medium memory model (even if you have
included the special header file MT\STDIO.H).

Finally, if you use the small or compact memory model, you must
disable stack checking (with the /Gs flag), since stack checking performed
by the LLIBCMT library requires a memory model that uses far function
calls. It is best to simply compile the program under the large memory
model. Accordingly, the MAKE file of Figure 7-2 specifies the large model.

Single-Thread Dynamic-Link Libraries

A second special version of the runtime library provided by Microsoft C
is contained in the file LLIBCDLL.LIB. It has the following features:

1. The functions in this library can be called only by dynamic-link
libraries; the library is not designed to be used by application
programs.

2. The library is statically linked to the dynamic- link module.

3. The library functions can be called by only one simultaneous program
thread; the library is not designed for multiple-thread code.

4. Only a large memory model version is supplied.

Figures 7-3 through 7-6 demonstrate the use of this version of the C
library. Figure 7-3 defines the dynamic-link function PrintMessage,
which prints a message on the screen using the C library function printf.
Figure 7-5 lists a client program that first prints its own message and
then calls PrintMessage to print a message from the dynamic-link library.
Note that the MAKE file of Figure 7-6 prepares both the dynamic-link
module and the client program.

USING THE C RUNTIME LIBRARY 209

Figure 7-3

/*
Figure 7-3
This is the source file for a dynamic-link library that demonstrates

using the LLIBCDLL.LIB C runtime library, which:

o is statically linked
o can be called by only one thread at a given time

o is designed to be called from a dynamic-link library
*/
#include <STDIO.H> /* Include single-tasking version of C header file. */

void pascal far _loadds PrintMessage
(void)

{
printf ("Hello from the dynamic-link library.\n");

} /* end PrintMessage */

Figure 7-4

; Figure 7-4

A module definition file for linking the dynamic-link module
of Figure 7-3.

LIBRARY FIG7_3

PROTMODE

DATA MULTIPLE

EXPORTS

PRINTMESSAGE @1

210 SOFTWARE TOOLS FOR 0S/2

Figure 7-5

/*
Figure 7-5

This program calls the dynamic-link library function 'PrintMessage’,
defined in Figure 7-3. The program is linked with the standard (single-
tasking, nondynamic-linked) version of the C runtime library.

*/
#include <STDIO.H> /* Include single-tasking header file. */
void pascal far _loadds PrintMessage (void);

void main (void)
{

printf ("Hello from the program.\n");
PrintMessage () /* Call the dynamic-link function. */

} /* end main */

The first feature of the LLIBCDLL library is that it is designed for use
only by dynamic-link modules. Consequently, client programs must use
another suitable runtime library version. The example dynamic-link
library uses the LLIBCDLL library, while the example client program
uses the standard C library.

The second feature of this version of the C library is that it is statically
linked to the calling dynamic-link module. Consequently, when linking
this module, you should specify the library file LLIBCDLL.LIB, and use
the /NOD option so that no other library version is inadvertently linked.
You must also specify the OS2.LIB (or DOSCALLS.LIB) import library to

USING THE C RUNTIME LIBRARY 211

resolve the references to OS/2 API functions made by the C library, and
possibly by your code.

Since the dynamic-link module and the C library code are statically
linked together, they share the same automatic data segment. As in
previous examples, you should define the automatic data segment as an
instance segment (using the DATA MULTIPLE statement in the module
definition file) so that each process has its own private copy of this
segment.

Figure 7-6

Figure 7-6

#
A MAKE file for preparing the dynamic-link module of Figure 7-3, and the
client program of Figure 7-5.

#

FIG7_3.0BJ : FIG7_3.C

cl /c /W2 /ALw /G2s /Zp FIG7_3.C

FIG7_3.DLL : FIG7_3.0BJ FIG7_4.DEF

link /NOI /NOD FIG7_3.0BJ, FIG7_3.DLL,, LLIBCDLL.LIB 0S2.LIB, FIG7_4.DEF

FIG7_3.LIB : FIG7_4.DEF

implib FIG7_3.LIB FIG7_4.DEF

FIG7_5.0BJ : FIG7_5.C

cl /c /W2 /G2 /zp FIG7_5.C

FIG7_5.EXE : FIG7_5.0BJ FIG7_3.LIB

link /NOI /NOD FIG7_5.0BJ,, NUL.LST, FIG7_3.LIB SLIBCE.LIB 0S2.LIB;

212 SOFTWARE TOOLS FOR 0S/2

If a dynamic-link module uses a special version of the C runtime library
(either the version discussed in this section or the one discussed in the
next section) you must link the module with the C startup code—unlike
the dynamic-link modules presented in previous chapters, which did not
use the C library. Consequently, you should not define the variable
_acrtused within the source file. If you do not define _acrtused, the linker
will automatically extract the startup code from the C library file, and
insert it into the resulting dynamic-link library.

The beginning of the C startup code is defined as the initialization entry
point. The object module containing the C startup routine includes an
END statement that specifies this routine as the module entry point.
Consequently, the C startup code is automatically executed when the
dynamic-link module is first referenced by an application program. In the
example dynamic-link modules supplied with the Microsoft C compiler,
the initialization routine is defined to be global. It is called only when the
module is referenced by the first client program; this option is selected by
leaving the initialization field of the LIBRARY statement in the module
definition file blank. The module definition file given in Figure 7-4
likewise defines the initialization routine as global.

As mentioned in Chapter 6, a dynamic-link module can define only one
initialization entry point. Consequently, if you use a special version of the
C runtime library within your dynamic-link module, you cannot define
your own initialization routine. If you define an initialization routine
using the END statement as described in Chapter 6, this routine will
replace the routine provided by the C library; C library functions will
subsequently fail, since this library requires its own initialization routine.

Athird feature of the LLIBCDLL C runtime library is that the functions
can generally be called by only a single process thread at a given time.
The dynamic-link module, therefore, cannot run multiple threads that
call Clibrary functions. Also, a client program must not call the dynamic-
link functions from more than one simultaneous program thread. Accord-
ingly, this version of the C library places a restriction not only on the
dynamic-link module itself, but also on all client programs that use the
module. The C library version described in the next section removes this
restriction.

USING THE C RUNTIME LIBRARY 213

You can call the LLIBCDLL library from multiple-thread code if you
explicitly serialize access to the C functions by using semaphores. Figure
7-7 lists a version of the dynamic-link module given in Figure 7-3, which
uses semaphores to serialize access to the C runtime library function
printf. This module version, therefore, could be called from more than one
simultaneous thread within a client program. The section on Adding
Interprocess Communication in Chapter 1 describes how to use
semaphores for this purpose.

Surrounding calls to C functions with invocations to semaphore
management functions is a clumsy solution. Abetter method is to use the
multiple-thread C library version described in the next section.

A fourth feature of the LLIBCDLL library is that, like the LLIBCMT
library described in the previous section, only a large memory model
version is provided. Since the LLIBCDLLlibrary is a single-thread library
version, you must use the standard header files rather than the special
multiple-thread header files (those in the MT subdirectory). Since the
declarations in the standard header files do not explicitly make all
functions and address parameters far, the compiler will not perform the
required type conversions when calling this library from small, medium,
or compact memory model programs. Consequently, you should use the
large (or huge) memory model when employing this library version.

Multiple-Thread DLLs and Applications

The third and final version of the C runtime/ library is contained in the
files CRTLIB.DLL (the library code itself) and CRTLIB.LIB (the import
library). The CRTLIB version of the library has the following features:

1. The functions in this library can be used by both application programs
and dynamic-link modules.

2. The library is dynamically-linked to the program or dynamic-link
module.

3. The library functions can be called by multiple threads within a single
process. :

4. Only a large memory model version is supplied.

214 SOFTWARE TOOLS FOR 0S/2

Figure 7-7

/*
Figure 7-7
This is the source file for a dynamic-link library that demonstrates

using the LLIBCDLL.LIB C runtime library, which:

o is statically linked
o can be called by only one thread at a given time

© is designed to be called from a dynamic-link library

This source file is the same as that given in Figure 7-3, except that it
uses a semaphore to serialize access to the CRT library, allowing the
function ’'PrintMessage’ to be called by more than one thread within a
single process at given time.

*/

#define INCL_DOSSEMAPHORES

#include <0S2.H>

#include <STDIO.H> /* Include single-tasking version of C header file. */
ULONG CRTSem = 0; /* Semaphore for serializing access to the CRT */
/* library. *x/

void pascal far _loadds PrintMessage

(void)

{

DosSemRequest /* Wait for semaphore to clear and then set it. */
(&CRTSem; /* Semaphore handle (its far address). */

-1L); /* Wait flag: -1 means wait forever. *x/

USING THE C RUNTIME LIBRARY 215

printf ("Hello from the dynamic-link library.\n");

DosSemClear /* Clear the semaphore.

(&CRTSem) ; /* Semaphore handle.

} /* end PrintMessage */

*/
*/

Figures 7-8 through 7-11 demonstrate the use of the CRTLIB library.
The dynamic-link module source code in Figure 7-8 defines the function
PrintMessage, which uses the C function printf to print a message on the
screen. PrintMessage is similar to the function defined in the dynamic-
link module of Figure 7-3. Because the module uses the CRTLIB version
of the C runtime library it can be called with impunity from a multiple-
thread client program. To demonstrate this ability, Figure 7-10 lists a
multiple-thread program. This program is the same as the one in Figure
7-11, except that rather than directly calling printf from each new thread,
it calls the dynamic-link function PrintMessage (which then calls printf).

The first feature of the CRTLIB C library version is that it can be used
by both normal application programs and by dynamic-link libraries. Since
this C library version is contained in a dynamic-link library file any
application program can use this library and benefit from the advantages
of the dynamic linking mechanism. If a dynamic-link module uses the
CRTLIB library, however, all of its client programs must also use the
CRTLIB version of the C runtime library. Unfortunately, a client program
is not free to select another runtime library version.

The CRTLIB runtime library is also packaged as a dynamic-link library
and is therefore dynamically linked to your programs and dynamic-link
modules. Thus, the C library functions are called and linked in the same
manner as the functions of the 0S/2 API. Figure 7-12 on page 221
illustrates the calling relationships among the dynamic-link module that
you write, the client programs that use this module, and the CRTLIB
dynamic-link library file shared by the module and all its clients.

216 SOFTWARE TOOLS FOR 0S/2

Figure 7-8

/*
Figure 7-8
This is the source file for a dynamic-link library that demonstrates
using the C runtime library contained in the files CRTLIB.DLL (the

function code) and CRTLIB.LIB (the import library). This library version:

o is dynamically linked

© can be called by multiple simultaneous threads within a single process

o must be used by both the dynamic-link library and the client program
*/

#define DLL /* Indicate dynamic-link version of CRT library. */

#include <MT\STDIO.H> /* Include multitasking version of C header file. */

void pascal far _loadds PrintMessage
(int ThreadID, int NumThread)
{
printf ("Hello from new thread ID number %d. Number of new "

"threads started: %d\n", ThreadID, NumThread);

} /* end PrintMessage */

Figure 7-9

; Figure 7-9
; A module definition file for linking the dynamic-1link

; module of Figure 7-8.

LIBRARY FIG7_8

PROTMODE

DATA MULTIPLE

EXPORTS

PRINTMESSAGE e1

USING THE C RUNTIME LIBRARY 217

Figure 7-10

/*

Figure 7-10

This program calls the multiple-thread dynamic-link function

'PrintMessage’, defined in Figure 7-8.

The program uses the dynamically-

linked version of the CRT library, contained in the files CRTLIB.DLL (the

function code) and CRTLIB.LIB (the import library).

*/

#define INCL DOSPROCESS

#include <0S2.H>

f#define DLL

#include <MT\STDIO.H>

#include <MT\CONIO.H>

#include <MT\PROCESS.H>

/*

/*
/*
/*
/*
/*

Definition of 'DosSleep’.

Indicate dynamic-link CRT
library is used.

Include special multi-
tasking versions of the C

header files.

*/

*/
*/
*/
*/
*/

218 SOFTWARE TOOLS FOR 0S/2

#include <MT\STDDEF.H>

void pascal far _loadds PrintMessage

(int ThreadID,

char StackArea [6144];

void far NewThread (int far *Argument);

void main (void)

{

int NumThread) ;

int NewThreadCount = 0;

char far *StackBase

int ThreadID;

do

{

++NewThreadCount ;

StackArea;

ThreadID = _beginthread

(NewThread,

StackBase,
2048,

&NewThreadCount) ;

DosSleep (500L)

’

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*

/*

/* Defines _threadid.

/* Dynamic-link function

/* defined in Figure 7-8.
/* Space for 3 2K stacks.

/* Function executed by new

/* threads.

Count of new threads started.
Points to base of each new
thread’s stack.

Holds thread ID returned by

' _beginthread’.

Increment count of new threads.

Start a new thread.
Address of function to be
executed by new thread.
Base of new thread’s stack.

Size of new thread’s stack.
Argument passed to new thread:

address of new thread count.

1/2 second pause between starting

new threads.

*/

*/
*/

*/

*/
*/

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/

USING THE C RUNTIME LIBRARY 219

if (ThreadID == -1) /* ID value of -1 indicates an error.*/

{

printf ("Error beginning new thread number %d\n",
NewThreadCount) ;

exit (1),

}

StackBase += 2048; /* Move pointer to next stack area. */

}

while (NewThreadCount 3);
getch (); /* Pause for keyboard input. */

} /* end main */

void far NewThread (int far *Argument)
{
for (;;)

{

PrintMessage (*_threadid, *Argument); /* Call the dynamic-link */
/* function defined in */
/* Figure 7-8. */
DosSleep (500L); /* Pause after printing message -- */

/* and yield remainder of time slice.*/

} /* end NewThread 7

220 SOFTWARE TOOLS FOR 0S/2

Figure 7-11

Figure 7-11

#
A MAKE file for preparing the dynamic-link module of Figure 7-8, and the
client program of Figure 7-10.

#

FIG7_8.0BJ : FIG7_8.C

cl /c /W2 /Alw /G2s /Zp FIG7_8.C

FIG7_8.DLL : FIG7_8.0BJ FIG7_9.DEF
link /NOI /NOD \PMSDK\LIB\CRTDLL.OBJ FIG7_8.0BJ, FIG7_8.DLL,, CRTLIB.LIB \

0S2.LIB, FIG7_9.DEF

FIG7_8.LIB : FIG7_9.DEF

implib FIG7_8.LIB FIG7_9.DEF

FIG7_10.0BJ : FIG7_10.C

cl /c /W2 /ALw /G2 /2Zp FIG7_10.C

FIG7_10.EXE : FIG7_10.0BJ FIG7_8.LIB
link /NOI /NOD \PMSDK\LIB\CRTEXE.OBJ FIG7_10.0BJ, FIG7_10.EXE, NUL.LST, \

FIG7_8.LIB CRTLIB.LIB 0S2.LIB;

The Microsoft C compiler does not simply provide a single dynamic-link
library file containing the entire C library. Rather, it provides the Clibrary
code as a collection of object modules contained in a library file,
CDLLOBJS.LIB. You can use these object modules to create a custom

USING THE C RUNTIME LIBRARY 221

dynamic-link library incorporating only the C functions required for your
dynamic-link module and client programs (or group of modules and client
programs). The compiler supplies complete, detailed instructions for
preparing such a custom dynamic-link C library file, as well as a batch
file MKMTDLL.CMD) for automating the preparation. When you have
completed building this library, you will have both a dynamic-link library
file (CRTLIB.LIB) and a corresponding import library (CRTLIB.LIB);
these two files are then used when creating programs and dynamic-link
modules.

Figure 7-12: Calling relationships among a dynamic-link module.

CLIENT CLIENT
PROGRAM A PROGRAM B

\C‘ALL CALL

CRTLIB.DLL
(DYNAMIC-LINK C
RUNTIME
LIBRARY)

CALL CALL CALL

MOD.DLL
(DYNAMIC-LINK |,
MODULE)

222 SOFTWARE TOOLS FOR 0S/2

As you can see in the MAKE file of Figure 7-11, both the dynamic-link
module and the client program are compiled with the usual set of flags,
specifying the custom memory model /ALw (the need for this model is
explained later in the section). Since both the dynamic-link module and
the client program are dynamically linked to the CRTLIB version of the
C library, you must specify the import library CRTLIB.LIB when linking
these files.

You also need to statically link your code with an appropriate C startup
routine. Accordingly, you must not define the variable _acrtused within
the dynamic-link module source file. Note that the CRTDLL library
supplies separate versions of the startup routine for programs and for
dynamic-link modules. These versions are contained in distinct object
modules. The startup routine for programs is contained in the file
CRTEXE.OBJ, and receives initial control when a program is run. The
startup routine for dynamic-link modules is contained in CRTDLL.OBJ,
and receives control as an initialization routine. As you can see in the
MAKE file of Figure 7-11, you must specify the appropriate object module
when linking the dynamic-link library and when linking the program.
Note that the module definition file of Figure 7-9 causes the startup code
within the dynamic-link module to be executed only for the first client
process (by leaving blank the initialization field of the LIBRARY state-
ment).

The C library module, CRTLIB.DLL, also contains its own startup
routine. Thus, the CRTLIB version of the C library employs three
separate startup routines! Furthermore, because the C startup routine
must be installed as the initialization routine for your module, you cannot
install your own initialization routine.

Because the CRTLIB C library is dynamically linked, the dynamic-link
module and all its client programs share a single copy of a dynamic-link
function such as printf. In contrast, when using the LLIBCDLL library
* (for a dynamic-link module) and the standard C library (for a client
program), the dynamic-link module and each of its client programs must
store a separate copy of the function on disk, and load a separate copy
into memory.

Finally, remember that when running the client program, both your
dynamic-link module and the C runtime dynamic-link library

USING THE C RUNTIME LIBRARY 223

(CRTLIB.DLL) must be in a directory specified by the LIBPATH con-
figuration command.

A third significant feature of the CRTLIB runtime library is that it can
be used by multiple-thread programs or dynamic-link libraries. Remem-
ber, however, that like the multiple-thread LLIBCMT library described
in the first section of the chapter, you must observe the following
guidelines:

* You must manage additional threads using the functions
_beginthread and _endthread rather than the OS/2 functions Dos-
CreateThread and DosExit.

e If a program uses multiple threads, you must compile it with the
/Aw flag (as you have seen, dynamic-link modules are always com-
piled with this flag or the /Au flag).

* You must use the special multiple-thread header files (normally
contained in the MT subdirectory) for both programs and dynamic-
link modules. Before including any of these header files, you must
define the symbolic constant DLL, as in the following line:

#define DLL

Defining this constant causes the compiler to include the appropriate
header information for dynamic-link libraries. If you are including these
header files in a program that uses the other multiple-thread C library
version, LLIBCMT, you must not define DLL.

Afinal feature of the CRTLIB library is that only a large memory model
version is supplied. Since programs using this library include the special
multiple-thread header files (containing explicit far declarations), you can
compile your programs and modules using the small, medium, or compact
memory models. See the section on the LLIBCMT library (in the first
section of the chapter) for a description of the possible pitfalls that can
occur when not compiling your code under the large (or huge) model. Also,
remember that you must disable stack checking if compiling a program
under the small or compact memory model. Stack checking should always
be disabled for a dynamic-link module.

224 SOFTWARE TOOLS FOR 0S/2

Conclusion

Table 7-1 summarizes the basic features of the standard C runtime library
and the three special library versions discussed in this chapter.

Table 7-1: Basic Features of C Runtime Library Versions

LIBRARY CODE LINKING PROGRAM MEMORY HEADER
VERSION THAT CAN METHOD THREADS MODELS FILES
USE SUP- SUPPORTED
LIBRARY PORTED
Standard programs static single small standard
medium
compact
large
huge
LLIBCMT programs static multiple large MT version
(don’t
define DLL)
LLIBCDLL dynamic- static simgle large standard
link
modules
CRTLIB programs dynamic multiple large MT version
and (define
dynamic- DLL)
link
modules

Table 7-1 indicates that the CRTLIB version of the C library provides
the best general resource for developing dynamic-link modules. Remem-
ber, however, that if you write a dynamic-link module using this version,
all client programs that call your module must also employ the same C
library version. This limitation may be unacceptable for developing
general-purpose dynamic-link modules. The user of a general-purpose
dynamic-link module should be able to call the functions it contains from
a wide variety of program environments—even from programs written in

USING THE C RUNTIME LIBRARY 225

languages other than C. A general-purpose dynamic-link module should
provide an extension to the basic OS/2 API, and the API functions
certainly do not constrain the type of runtime library that may be used
by the client program! Also, if you use the other library version that
supports dynamic-link modules (LLIBCDLL), client programs are limited
to those that run a single-program thread. Otherwise you must use
semaphores to explicitly serialize calls to the C functions within the
dynamic-link code.

Consequently, given the versions of the C runtime library that are
currently available, it is best to develop general-purpose dynamic-link
modules without using the C library functions. Modules that do not call
C functions are also free to provide their own initialization routines, since
the initialization privilege is no longer appropriated by the C startup code.
You might want initially to develop a general-purpose dynamic-link
library using the C library as a convenience, and then gradually replace
the C functions with custom routines as your module approaches its final
version.

CHAPTER 8

USING RUNTIME DYNAMIC LINKING

This chapter is not about creating dynamic-link libraries, but rather
about an alternative method for using dynamic-link libraries within
application programs.

All the example client programs that have been given so far have used
loadtime dynamic linking. As you have seen, under this method the
linking process is largely invisible to the client process. The program
simply calls a dynamic-link function as an external function; when the
program is executed, the system automatically loads the dynamic-link
library and supplies the function address.

Alternatively, when using runtime dynamic linking, the client pro-
gram explicitly calls the system to load the dynamic-link library and to
obtain the address of the desired dynamic-link function. This process can
be performed at any time during the execution of the program.

In general, a given dynamic-link library can be linked using either
loadtime or runtime dynamic linking. Although runtime dynamic linking
is more complex than loadtime dynamic linking, it is also a more flexible
mechanism, which can be used to save loading time and to reduce the
demand for memory.

This chapter first describes the basic steps required to perform runtime
dynamic linking, and then discusses the advantages of this method. Next

227

228 SOFTWARE TOOLS FOR 0S/2

there is a short technical digression on the topic of the disjoint descrip-
tor space; this section concludes the discussion on virtual memory begun
in Chapter 5. Finally, an example application illustrates several con-
venient methods for efficiently linking a program to a dynamic-link
library at runtime.

The Basic Steps
Runtime dynamic linking is performed through the following four basic
steps:

1. Call DosLoadModule to obtain a handle to the dynamic-link module.

2. Call DosGetProcAddr to obtain the address of each dynamic-link
function you want to call.

3. Call the dynamic-link functions using the addresses obtained in step 2.

4. Call DosFreeModule to release the module when the program has
completed using it.

Step 1

The first step is to call DosLoadModule to obtain a handle to the dynamic-
link module containing the desired functions. DosLoadModule is
described in Figure 8-1.

Figure 8-1: The DosLoadModule OS/2 function.

DosLoadModule

O Purpose: Loads a dynamic-link library into memory (if it has not already been
loaded) and supplies a handle to this module.

O Prototype: USHORT APIENTRY DosLoadModule
PSZ pszFailName, Address of a buffer that receives the name of

the dynamic-link module (if any) that caused
the function to fail.

USING RUNTIME DYNAMIC LINKING 229

USHORT cbFileName, Length of the buffer pointed to by pszFail-
Name.
PSZ pszModName, String containing the simple filename of the

dynamic-link library; the name may not in-
clude the file extension (.DLL), nor may it
specify a drive or directory path.

PHMODULE phmod); Address of the variable to receive the module
handle.

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_BAD_FORMAT

ERROR_FILE_NOT_FOUND

ERROR_INTERRUPT

ERROR_NOT_ENOUGH_MEMORY

The following call to DosLoadModule obtains a handle to the dynamic
module that is defined in Figure 4-2:

USHORT Error;
char FailName [13];
HMODULE ModuleHandle;

Error = DosLoadModule
FailName,
sizeof (FailName),
"FIG4_2",
&ModuleHandle) ;

if (Error)

230 SOFTWARE TOOLS FOR 0S/2

{

fprintf (stderr, "Error loading %s\n", FailName);
exit (1);

}

This function call loads the dynamic-link library FIG4_2.DLL into
memory—if necessary—and assigns a handle for this module to the
variable ModuleHandle. If the library has already been loaded for another
process, DosLoadModule loads only the instance data segments. The
handle will be used to refer to the module when making subsequent
system calls. If DosLoadModule cannot find the specified library file, it
returns a nonzero error code and writes the name of the missing module
to the buffer FailName. The name written to FailName is not necessarily
the name of the module specified in the call to DosLoadModule. If the
specified module references other modules, and if one of the other modules
cannot be found, the name of the missing module is written to FailName.

Obviously, when you call DosLoadModule you must know which
dynamic-link library file contains the desired function (or functions).
Remember from Chapter 4 that you can obtain a list of the names of the
functions defined in a particular dynamic-link library by using a utility
such as EXEHDR.EXE (from Microsoft). Accordingly, if you want to link
with an OS/2 API function at runtime, you could examine the dynamic-
link library files supplied with the system and determine which file
contains the desired function (you would discover, for example, that the
file VIOCALLS.DLL contains the Vio API functions).

The dynamic-link module’s initialization routine (if any) is executed
before DosLoadModule returns control to the client program. As men-
tioned in Chapter 6, if the initialization routine returns a value of zero to
indicate that it has failed, the system quietly terminates the program,
and DosLoadModule never returns.

Step 2

Once you obtain a handle to the dynamic-link module, the next step is to
call DosGetProcAddr to get the address of each function within this
module that you want to call. DosGetProcAddr is described in Figure 8-2.

USING RUNTIME DYNAMIC LINKING 231

Figure 8-2: The DosGetProcAddr OS/2 function.

DosGetProcAddr
O Purpose: Obtains the address of a dynamic-link function in memory.
O Prototype: USHORT APIENTRY DosGetProcAddr

(HMODULE hmod, Handle of the module containing the func-
tion you want to call; you can obtain a hand-
le by calling DosLoadModule (Figure 8-1).

PSZ pszProcName, Address of a string containing either the
entry point name of the function or the or-
dinal value of the function. If the string sup-
plies the ordinal value, it must begin with
the ‘# character followed by the ASCII digits
for the ordinal value. Alternatively, you can
specify an ordinal value by passing an ad-
dress with a selector value of zero and an of-
fset value equal to the ordinal number.

PPFN ppfnProcAddress); Address of the pointer variable to receive the
function address.

O] Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_INTERRUPT

ERROR_INVALID_HANDLE

ERROR_PROC_NOT_FOUND

For example, the following code fragment obtains the address of the
function PrtPosition, which is contained in the dynamic-link module
loaded in the previous example (FIG4_2.DLL):

unsigned (pascal far *PPrtPosition) (char far *, int, int);

232 SOFTWARE TOOLS FOR 0S/2

DosGetProcAddr
(ModuleHandle,
"PRTPOSITION",
&PPrtPosition);

A call to DosGetProcAddr gets the address of only a single function.
The example program given in the last section of the chapter shows an
efficient method for obtaining the addresses of an entire module of
functions.

The first parameter passed to DosGetProcAddr is the module handle
previously received from DosLoadModule. The second parameter
specifies the function entry name; because PrtPosition was declared as a
pascal function, you must write its name in all capital letters. You can
also specify the entry point by giving the ordinal value of the function;
this can be done in one of two ways. First, you can pass a string containing
a ‘# character followed by the ordinal number, as in the following function
call (like the call in the previous example, it obtains the address of
PrtPosition; recall that PrtPosition was assigned an ordinal value of 5 in
the module definition file of Figure 4-4):

DosGetProcAddr
(ModuleHandle,
"#5",
&PPrtPosition);

Second, you can specify the ordinal value by passing as the second
parameter a pointer that has a zero selector value and an offset value
equal to the ordinal number of the function. The zero selector value
notifies the system that the pointer does not contain a valid address
pointing to a string, but rather contains the ordinal value in the offset
portion of the address. The following function call is equivalent to the
previous call:

DosGetProcAddr
(ModuleHandle,

USING RUNTIME DYNAMIC LINKING 233

MAKEP (0, 5),
&PPrtPosition);

MAKEP is a macro defined in the OS/2 header files that creates a far
pointer from a selector value (the first argument) and an offset value (the
second argument). This method for specifying the ordinal entry point is
illustrated by the example program given in the last section of the chapter.

You must also declare a function pointer and pass its address as the
third parameter; the system assigns the address of the function in
memory to this pointer, and you can use the pointer to call the function
as described in the next section. You could declare a simple generic
pointer, such as in the following statement:

unsigned (pascal far *ProcAddr) ()’

Such a function pointer could be used for receiving the address of—and
for calling—any of the functions within the printer module (FIG4_2.DLL).
The example given at the beginning of this section, however, declares a
function pointer (PPrtPosition) that specifies all of the parameter types,
and is thus suitable for calling only the function PrtPosition. No other
function in the module has these same parameters. If you want to call
another function in the module, you have to declare another suitable
pointer. The following function pointer could be used to call PrtPutS:

unsigned (pascal far *pPrtPutS) (char far *);

In the next section, you will see the advantage of declaring a special
pointer for each function, which specifies the types of all parameters.
Step 3

Once you have received the address of a dynamic-link function in a
function pointer, you can use this pointer to call the function. For example,
the following statement calls PrtPosition:

(*PPrtPosition) ("Report Title", 1, 1);

234 SOFTWARE TOOLS FOR 0S/2

Since the pointer PPrtPosition was declared specifying the type of each
parameter, the compiler automatically checks the number and types of
the parameters in the function call. It also converts—if necessary —the
string address passed as the first parameter to the required far address.

In contrast, if you call a function using a simple generic pointer (one
that does not specify the parameter types), the compiler will not check
the number and types of the parameters, and it will not automatically
perform required type conversions. For example, if you received the
address of PrtPosition in the generic function pointer ProcAddr,
declared as shown in the last section, you might attempt to call this
function as follows:

(*ProcAddr) ("Report Title", 1, 1);

However, since the compiler does not know the parameter types for the
function that is being called, it will not convert the string address passed
as the first parameter to a far pointer. This conversion is required for
small and medium memory model programs; accordingly, for these
programs, this function call would generate a protection fault. If you
employ a generic function pointer, you can overcome this problem by using
appropriate cast operations as described in the last section of the chapter.

Step 4

When the program has completed using a module of dynamic-link func-
tions, it can call DosFreeModule to release the module. This function is
described in Figure 8-3. DosFreeModule does not actually release the
module from memory until it has been freed by the last client process.
Although the module may still be resident in memory, after calling
DosFreeModule the handle supplied by DosLoadModule can no longer be
used, and the program can no longer call functions within the module.
Calling a function would cause a protection fault.

Calling DosFreeModule is optional; when the process terminates, the
system automatically releases the module. However, if the program has
finished using a particular module before it terminates, calling DosFree-
Module may reduce memory needs during the remainder of the execution
of the program.

USING RUNTIME DYNAMIC LINKING 235

Figure 8-3: The DosFreeModule OS/2 function.

DosFreeModule
O Purpose: Releases a module previously loaded by DosLoadModule (Figure 8-1).
O Prototype: USHORT APIENTRY DosFreeModule

(HMODULE hmod); Module handle supplied by DosLoadModule.

[0 Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code. The following are the possible error codes:

ERROR_INTERRUPT
ERROR_INVALID_HANDLE

Advantages of Runtime Dynamic Linking

As you can see, using runtime dynamic linking is considerably more
complex than using loadtime dynamic linking. However, runtime
dynamic linking is a more flexible method and offers several advantages
important for certain types of applications.

First, under loadtime dynamic linking any module referenced by the
program is invariably loaded when the program is first run. Under
runtime dynamic linking, however, the program does not need to load a
module unless it is actually used. For instance, the example program
presented in the last section of this chapter loads the module of printer
functions only if the user chooses to print a report.

Second, when using runtime dynamic linking, the loading of a module
is postponed until the functions in the module are first required; in the
meantime, memory is conserved. Also, to save memory the program can
load and release one module at a time, so that only the module or modules
currently in use need to be stored in memory. This advantage would not
apply if the module is held in memory by another client program.

Third, under loadtime dynamic linking the name of the module is hard
coded into the executable file header. Under runtime dynamic linking,

236 SOFTWARE TOOLS FOR 0S/2

however, the program can load one of several alternative modules depend-
ing upon current requirements. For example, you might develop separate
versions of a library of video routines for different display systems; the
program would load the appropriate version depending upon the current
video configuration.

Finally, under loadtime dynamic linking the system automatically
aborts the process if it cannot find a referenced dynamic link library,
displaying the following message:

SYS1804 The system cannot find the file xxxx

In this message xxxx is the name of the missing module. Under runtime
dynamic linking, however, if the system cannot find a dynamic-link
library, DosLoadModule simply returns an error code and supplies the
name of the missing module. The program can then take appropriate
action, such as notifying the user that a particular set of functions is
unavailable, or attempting to load an alternative module.

The Disjoint Descriptor Space

This section presents a short technical digression into the topic of the
disjoint descriptor space, and completes the discussion on virtual memory
begun in Chapter 5. This subject is presented to enhance your theoretical
understanding of the dynamic-link mechanism, and is not required for
comprehending other material in the book.

When a program calls DosLoadModule, the dynamic-link module is
loaded using the same method employed under loadtime dynamiclinking.
Specifically, if the module has not already been loaded for another process,
the system loads all segments defined by the module and grants the
current process access to these segments. If, however, the module has
already been loaded, the system reloads only the instance data segments
(if any), and the current process shares all code and global data segments
already in memory. A dynamic-link code segment typically contains seg-
ment addresses referring to code or data segments belonging to the
module; for example, in the machine instruction:

MOV AX, DGROUP

USING RUNTIME DYNAMIC LINKING 237

the symbol DGROUP refers to the segment address of the automatic data
segment. When a code segment is loaded for the first client process, the
system writes the appropriate segment selector values to all segment
address references within the code. These selector values are not known
until runtime; the process of filling in the actual segment selector values
is known as relocation.

Once the segment values have been written to a code segment, these
values are never altered (in other words, relocation is performed only
when the code segment is loaded for the first client process). Accordingly,
when the second (or subsequent) client process begins sharing the code
segment, it sees the same selector values. As explained in Chapter 5 (in
the Virtual Memory section), these segment selectors serve as indices into
the local descriptor table (LDT) belonging to the current process. When
the second client process is executing a dynamic-link function and it
encounters a segment selector within the function code, the corresponding
entry in its local descriptor table must point to the appropriate segment
in memory. This segment can be global or instance; see Figure 5-9.

Therefore, when the second process calls DosLoadModule, the system
must assign the correct physical addresses to all of the process’s descriptor
table entries that are indexed by segment selectors already contained in
the dynamic-link code.

At this point you may see a potential problem. What if one or more of
these LDT entries has already been used to contain the descriptor for a
segment previously allocated to the second process? By the time a process
calls DosLoadModule it has already been allocated all of the segments
defined in the EXE file, as well as any segments obtained dynamically
from the system. Consequently, many of the slots in its local descriptor
table may be occupied. The answer to this question requires a short
explanation of the disjoint descriptor space.

The local descriptor table belonging to each process has alarge number
of potential entries. This discussion refers to these potential entires as
slots; a slot can hold a single segment descriptor. Under the 80286
processor, each LDT has 8,192 slots. OS/2 version 1.0 reserved ap-
proximately half of these slots for holding descriptors for the segments
defined by dynamic-link libraries; these reserved slots constitute the
disjoint descriptor space. The system also uses the disjoint descriptor

238 SOFTWARE TOOLS FOR 0S/2

space for shared segments in general; the allocation of shared segments,
however, is beyond the scope of this discussion.

Figure 8-4 illustrates how the disjoint descriptor space is used to assure
that the required LDT slots are available when a dynamic-link library is
loaded at runtime. Figure 8-4 depicts the loading of three processes: first
Process A, then Process B, and finally Process C. Process A defines three
segments: one code segment (ACODE1) and two data segments (ADATA1
and ADATA2). When the system loads Process A, it places the descriptors
for these segments within normal, non-disjoint slots of Process A’s LDT
(slots 0,1, and 2). Process A also references a dynamic-link library (DLL1),
which defines one code segment (DLL1 CODE1) and one data segment
(DLL1 DATA); the descriptors for these segments are placed within the
disjoint descriptor space portion of Process A’s LDT (slots a and b). The
system then marks these two slots as occupied (in the diagram, occupied
slots are marked with an X in the system’s record of occupied LDT slots).
Accordingly, no subsequently loaded process can use the corresponding
slots within its own LDT, except for referring to the same dynamic-link
segments.

The system then loads Process B, which defines two segments: the
system places the descriptors for these segments in slots 0 and 1 of Process
B’s LDT. Process B also references a dynamic-link module—DLL2—a
different dynamic-link library than that used by Process A. This module
defines three segments. As before, the system places the descriptors for
these segments within the disjoint descriptor space.

However, since slots a and b are marked as occupied, the system uses
three other slots (c, d, and e), and then marks these additional slots as
occupied. At this point, slots @ through e are all marked as occupied.
Remember that when the system loads the code belonging to the dynamic-
link library DLL2, it writes the appropriate selector value (c, d, or e) to
all segment address references within this code—it performs relocation,
since the code is being loaded for the first client process.

USING RUNTIME DYNAMIC LINKING 239

Figure 8-4: The use of the disjoint descriptor space.

SYSTEN'S RECORD OF
DCCURED LDT 5L0T3

SYSTEM'S REGORD OF
OCCUPIED LDT SLOTS

/,
g

\],]

SYSTEM'S REGORD OF
OGCUPIED LDT 5LOTS

PROCESS A ACODE1
LOADED o [ADDR1 ADATA1
1| ADDR? ADATA2
i ADDR3)
i
LDT OF N X [biLicooer
PROCESS A ~7T 4 ["aDORd DLL1 DATAT
b | ADDRS
DISJOINT €
DESCRIPTOR SPACE d
€
\K N
PROCESS B BCODET
LOADED [aoDRs BDATAI
1| _ADDR?
2
3
]
N N
LDT OF T 3
PROCESS B 2
b DLL2 CODET
DISJOINT € | ADDRS DLL2DATARE
DESCRIPTOR SPACE 9 | ADDRY [|DLL2DATAZ
¢ | ADDR1O -
T %
PROCESS C CCODE1
LOADED o | ADDR1 CDATA1
1 [ADDR12 - | coaTaz
2 | ADDRI3
3
]
N AN
LDT OF N
PROCESS C a
b
DISJOINT ¢ | ADDRS
DESCRIPTOR SPAGE d | ADDRY
e | ADDRIY

T3

DLLZ DATA2

240 SOFTWARE TOOLS FOR 0S/2

The system finally loads Process C, and as before it places the descrip-
tors for the segments defined by this process within the non-disjoint
portion of its LDT. Process C also references the same dynamic-link
library as Process B (DLL2). Since Process C shares the dynamic-link code
with Process B, and since the system has already performed address
relocation on this code, when Process C executes the dynamic-link code,
it may encounter the segment selector valuesc, d, ore. Consequently, slots
¢,d, and e within its own LDT must refer to the appropriate dynamic-link
segments. Fortunately, the system reserved these slots; therefore, it can
now place the appropriate segment descriptors within these slots. You can
see from Figure 8-4 that the segments named "DLL2 CODE1" and "DLL2
DATA1" are global segments, and the segment named "DLL2 DATA2" is
an instance segment.

An Example Application

Figure 8-5 lists a program that uses runtime dynamic linking to access
the module of printer functions defined in Figure 4-2. This program serves
to demonstrate the following techniques:

* Converting a program that uses loadtime dynamic linking to one
that uses runtime dynamic linking.

* Obtaining the addresses of an entire module of functions using a
simple program loop.

* Using #define statements to simplify calling functions dynamical-
ly linked at runtime.

The example program first displays a menu giving the user the choice
of printing a report or terminating the application. If the user chooses to
run the report, the program uses the module of dynamic-link printer
functions to print a simulated report. These are the same basic tasks
performed by the example program of Figure 8-5, which accesses the
printer module using loadtime dynamic linking. Note also that the two
functions in the program of Figure 8-5 that use the dynamic-link printer
functions (PrintReport and Header) are identical to the two functions
that perform the same tasks within the program of Figure 4-7.

USING RUNTIME DYNAMIC LINKING 241

Figure 8-5

/*

Figure 8-5

This program uses runtime dynamic linking to load and call the following

functions defined in the dynamic-link library of Figure 4-2:

PrtReady
PrtInit
PrtPuts
PrtNewPage

PrtPosition
The program can be built using the following commands:

cl /c /W2 /G2 /zp FIG8_5.C

link /NOI /NOD FIG8_5.0BJ,, NUL, SLIBCE.LIB OS2.LIB;
*/
#define INCL_DOS

#include <0S2.H>
#include <STDIO.H>
#include <CONIO.H>

#include <PROCESS.H>

/* The following declaration and definitions are used for runtime dynamic */

/* linking and replace the module header file of Figure 4-3. */

void (pascal far *PointerTable [7]) (); /* Holds the addresses of all */

242 SOFTWARE TOOLS FOR 0S/2

/* dynamic-link functions. */
/* The following definitions allow the dynamic-link */
/* functions linked at runtime to be called using the */

/* SAME calling protocol as functions linked at loadtime: */

#define PrtReady (*((unsigned (pascal far *) \

(unsigned char far *)) PointerTable [1]))

fdefine PrtInit (*((unsigned (pascal far *) \

(void)) PointerTable [2]))

#define PrtPutC (*((unsigned (pascal far *) \

(int)) PointerTable [3]))

#define PrtPuts (*((unsigned (pascal far *) \

(char far *)) PointerTable [4]1))

#define PrtPosition (*((unsigned (pascal far *) \

(char far *, int, int)) PointerTable [51))

#define PrtNewPage (*((unsigned (pascal far *) \

(unsigned)) PointerTable [6]1))

/* The following are the local functions and external variables used in */
/* the program: */
void LoadModule (void); /* Loads dynamic-link module. */
void PrintReport (void); /* Uses dynamic-link functions to print report.*/
HMODULE ModuleHandle; /* Handle to dynamic-link module. */

void main (void)

USING RUNTIME DYNAMIC LINKING 243

{

int Choice;

printf ("Programs Options:\n"); /* Display a menu. */
printf (" (1) Print Report\n");
printf (" (2) Terminate Program\n");

printf ("Select 1 or 2: "),

for (;;)
switch (getch () - '0’)

{

case 1:
LoadModule (); /* Load functions. *x/
PrintReport (); /* Use the functions. *x/
DosFreeModule (ModuleHandle); /* Release the module. */
case 2:
exit (0);

} /* end main */

/* LoadModule loads the dynamic-link module and obtains the addresses of the */

/* dynamic-link functions: */

void LoadModule (void)
{
USHORT Error; /* Receives API error code. */

char FailName [13]; /* Used by 'DosLoadModule’ . */

244 SOFTWARE TOOLS FOR 0S/2

int Ordinal; /*
Error = DosLoadModule /*
(FailName, /*
sizeof (FailName), /*
"FIG4_2", /*
&ModuleHandle) ; /*
if (Error)
{
printf ("Error loading
exit (1);

}

Ordinal values of dynamic-link functions.
Load the dynamic-link module.

Receives name of file causing failure.
Length of ’'FailName’ buffer.

Name of dynamic-link module.

Receives handle to dynamic-link module.

$s\n", FailName);

/* Obtain the address of each dynamic-link function and assign it to

/* 'PointerTable’ .

for (Ordinal = 1; Ordinal <=6>; ++Ordinal),

DosGetProcAddr
(ModuleHandle, /* Dynamic-link module handle.
MAKEP (0, Ordinal), /* Function ordinal value.
&PointerTable [Ordinall); /* Receives function address.

} /* end LoadModule */

/* Report printing data structures and functions:

static void Header (void);

static int Row;

void PrintReport (void)

{

/* Prints report headers.

/* NEXT row to be printed.

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/

*/
*/

USING RUNTIME DYNAMIC LINKING

unsigned ErrorCode; /* Saves error code.
int i; /* Loop index.
unsigned char FlagReady; /* Flag indicating printer ready.

/* Make sure that printer is ready:
while (! (ErxrorCode = PrtReady (&FlagReady)) && !FlagReady)
{
printf ("\nReady printer and press any key to continue ...");
getch ();
}
if (ErrorCode)

{

printf ("PrtReady error %d\n", ErrorCode);

exit (1);
}
printf ("\nPrinting report...");
ErrorCode = PrtInit (); /* Initialize printer.
/* Number of selected printer.
/* Send control code sequence for near
ErrorCode = PrtPutS$S /* letter quality (Okidata).
("\x1b\x49\x33"); /* Control code string.

if (ErrorCode)

{

printf ("PrtPutS error $d\n", ErrorCode) ;
exit (1),

}

245

*/
*/
*/

*/

*/
*/
*/
*/
*/

ErrorCode = PrtNewPage /* Initialize a new page without formfeed.*/

246 SOFTWARE TOOLS FOR 0S/2

(0);
if (ErrorCode)

{

/* Flag indicates NO formfeed.

printf ("PrtNewPage error %d\n",ErrorCode);

exit (1);

}

Header ();

for (i = 1; i <= 80; ++i)
{
if (Row > 55)
{
PrtNewPage (1);
Header ():;

}

/* Print first header.

/* Process 80 detail lines.

/* New page with a formfeed.

/* Print another header.

PrtPosition ("Field One",Row,1);

PrtPosition ("Field Two",Row, 23);

PrtPosition ("Field Three", Row, 44);

PrtPosition ("Field Four", Row++,67);

}

PrtPosition ("End of Report",++Row,1);

PrtNewPage (1);

} /* end PrintReport */

static void Header (void)

{

PrtPosition ("SAMP L E

/* Force out last page.

REPORT"1,27);

*/

*/

*/;

*/
*/

*/

USING RUNTIME DYNAMIC LINKING 247

PrtPosition ("Heading One",3,1);
PrtPosition ("Heading Two",3,23);
PrtPosition ("Heading Three", 3,44):;

PrtPosition ("Heading Four",3,67);

PrtPosition ("----------- ", 4,1);
PrtPosition ("----------- ", 4,23);
PrtPosition ("----—--===-=—-- ", 4,44);
PrtPosition ("-----—--===-- ", 4,67);
Row = 6;

} /* end Header */

The program in Figure 8-5 was created by modifying the program of
Figure 4-7 in such a way that it could use runtime dynamic linking
without changing the calling protocol for the dynamic-link functions.
Accordingly, the main body of code (contained in the functions Print-
Report and Header) is identical in both programs, simplifying the conver-
sion process. As you can confirm by comparing Figures 4-7 and 8-5, you
can convert a program that uses loadtime dynamic linking to one that
uses runtime dynamic-linking through the following three steps:

1. Replace the module header file (which contains declarations for the
dynamic-link functions and is listed in Figure 4-3 for the example pro-
gram) with: (1) the definition of an array of function pointers (Pointer-
Table), and (2) a #define statement for each function, which allows
you to call the function the using the conventional calling protocol.

2. Before using the dynamic-link functions, call a function (LoadModule)
that loads the dynamic-link module and places the address of each
function within the array of function pointers.

3. After using the dynamic-link functions, call DosFreeModule to release
the module from memory (this step is optional; the dynamic-link
library will automatically be released when the process terminates, un-
less another process is still using it).

248 SOFTWARE TOOLS FOR OS/z

Even if you are not converting an existing program that uses loadtime
linking, the techniques described in this section make it simpler to load
and call dynamic-link functions at runtime. Since you are using runtime
dynamic linking, when you link the program, you no longer need to specify
the module import library. You can use the following two commands to
prepare the program of Figure 8-5:

cl /c /W2 /G2 /Zp FIGS8.C

and:

Z!.ink /NOI /NOD FIG8.OBJ,, NUL, SLIBCE.LIB 0S2.LIB;

Figure 8-5’s program defines an array of function pointers, as follows:

void (pascal far *PointerTable [7]) ():;

This array is first used to receive the addresses of the functions
belonging to the dynamic-link module, and it is then used to call these
functions. The advantage of storing the dynamic-link function addresses
in an array is that the program can obtain the addresses for an entire set
of functions by calling DosGetProcAddr within a simple loop—see the
function LoadModule, in Figure 8-5. When calling DosGetProcAddr, the
functions are referenced by their ordinal entry point values; remember
that the functions in this module were assigned ordinal values 1 through
6 (in the definition file of Figure 4-4). The program uses only positions 1
through 6 in this array so that the index of an array entry will be the same
as the ordinal value of the function whose address is stored in this entry.

The base type of the array PointerTable is a generic function pointer
that specifies neither the function return type nor its parameters. If you
were to call a function directly through a member of this array, you would
have to employ an expression such as the following:

(*PointerTable [5]) ("Report Title", 1, 1);
This expression calls the function PrtPosition, which was assigned an

ordinal value of 5. However, there are two serious problems with such a
function call. First, any code already developed for loadtime dynamic

USING RUNTIME DYNAMIC LINKING 249

linking would have to be rewritten, replacing simple function calls with
awkward indirection operations on function pointers. Second, the com-
piler is unable to check the type and number of parameters, and will not
perform necessary parameter type conversions. The function call listed
here would cause a protection fault within a small or medium memory
model program. The solution to these two problems is to provide a #define
statement for each dynamic-link function, such as the following:

#define PrtPosition (*((unsigned (pascal far *) \
(char far *, int, int)) PointerTable [5]))

This definition not only allows you to call the function directly by name,
but also casts the generic function pointer to the exact type for the specific
function, specifying all parameters. The program can subsequently call
the function exactly as if it were linked at loadtime, and the compiler will
check the parameter types and perform all required type conversions. For
example, the function PrtPosition could be called as follows:

PrtPosition ("Report Title", 1, 1);

The program of Figure 8-5 illustrates an important advantage of
runtime dynamic linking: it does not load the dynamic-link module unless
the functions in this module are required. The module is loaded only if
the user chooses the "Print Report" menu item. In contrast, the program
of Figure 4-7 always loads the module when the program is first run,
regardless of whether the module is ever used. Amore complex application
could use runtime dynamic linking to load one of several alternative
modules, depending upon the program’s needs. For example, there might
be a separate dynamic-link module for managing each type of printer
supported by the application; once the program determines the type of
printer installed, it could load the required module version.

CHAPTER 9

REAL-MODE VERSION OF YOUR LIBRARY

All of the example programs you have seen so far in this book can be run
only in a protected-mode environment—either from the OS/2 command
prompt or within the Presentation Manager. If you attempt to run one of
these programs under MS-DOS, or within the DOS compatibility box of
0S/2, the system immediately prints an error message and terminates
the loading process.

Under 0S/2, however, you can develop a program with a special format
that allows it to be run under either protected mode or real mode. These
programs are termed dual-mode or bound applications, and can be run
within three distinct environments: MS-DOS, the 0S/2 DOS com-
patibility box, and an OS/2 protected-mode screen group. You may be able
to run a dual-mode program within a window of the Presentation
Manager; however, for reasons that will soon become obvious, a full
Presentation Manager application cannot be converted to the dual-mode
format.

Many applications can be made into dual-mode programs since the code
generated by the C compiler can generally be executed in either real or
protected mode. Most OS/2 programs, however, contain calls to dynamic-
link libraries, and dynamic linking is not supported within real mode.
Accordingly, to permit the creation of dual-mode programs, OS/2 provides

251

252 SOFTWARE TOOLS FOR 0S/2

special real-mode versions of most of the API functions. Through a process
that will be explained in this chapter, the real-mode routines can be
substituted for the dynamically linked, protected-mode versions when the
program is loaded under real mode.

You can also provide real-mode versions of the dynamic-link libraries
that you develop, so that you or other users of your library routines can
call these functions within dual-mode programs.

The first section of the chapter describes how to create dual-mode
programs. The next section explains the step-by-step procedures for
writing real-mode versions of your dynamic-link library functions. The
final section describes how to use these real-mode functions to create a
dual-mode program that calls your module.

Creating Dual-Mode Programs

The first step in creating a dual-mode program is to produce a standard
protected-mode application using the techniques described in this book.
Once you have generated the protected-mode executable file, you can then
run the OS/2 BIND utility to convert this file to the dual-mode format.

The following is an example of a command line invoking the BIND
utility:

bind PROG.EXE \LIB\OS2.LIB \LIB\API.LIB

This command causes BIND to convert the protected-mode program
PROG.EXE into a dual-mode executable file having the same name.
API.LIB is a conventional library file supplied with OS/2, which contains
real-mode versions of most of the OS/2 API functions (note that you must
supply the full path name of this file).

In the process of converting a protected-mode program to a dual-mode
program, the BIND utility adds the real-mode versions of all dynamic-link
functions called by the application; these functions are inserted into the
executable file header. BIND also inserts the code used for loading these
functions if the program is run under real mode. This code is known as
the stub loader).

REAL-MODE VERSION OF YOUR LIBRARY 253

You must also specify the import library, OS2.LIB (or DOSCALLS.LIB),
originally used for linking the program. The import library is needed
because the conventional library containing the real-mode API function
versions (API.LIB) identifies all functions by name. However, the
dynamic-link file header (specifically, the relocation table described in
Chapter 3) identifies these functions by ordinal value. The import library
tells BIND the name of the function corresponding to each ordinal value
in the file header. See the technical documentation for a full description
of the syntax of the BIND command and for an explanation of its other
options. Figure 9-1 illustrates a program before and after it has been
converted by BIND into the dual-mode format.

Notice in this figure the similarity between a protected- mode program
and a dual-mode program. Both types of programs begin with a standard
MS-DOS program header (the "Old EXE Header"). The header informa-
tion specific to OS/2 is found later in the file (the "New EXE Header").
Both files also have dual entry points: one that receives control under
protected mode (the "Initial Protected-Mode Entry Point") and one that
receives control under real mode (the "Initial Real-Mode Entry Point").

When either a protected-mode program or a dual-mode program is run
under protected mode, the loader first sees a standard MS-DOS ex-
ecutable file header. However, a field within this header indicates that
the file contains an OS/2 program—either protected mode or dual mode.
Specifically, in an OS/2 program the field at offset 18h within the old
header is set to 40h, a value that could never be found in a valid MS-DOS
program. If this field contains some other value, the OS/2 loader prints
an error message and terminates the process.

The loader next obtains the offset of the new portion of the header,
which is stored immediately beyond the end of the old header. It then
processes the many items of information found within the new header.
Among the other tasks it performs at this time, it loads all referenced
dynamic-link libraries and performs address relocation as described in
Chapter 3. When the system has completed loading the program and
preparing the executable image, it passes control to the address indicated
in the entry point field of the new file header (the "Initial Protected-Mode
Entry Point").

254 SOFTWARE TOOLS FOR 0S/2

Figure 9-1: A program before and after conversion by BIND.

OLD .EXE HEADER

OFFSET TO NEW .EXE HEADER

ENTRY POINT FIELD ———

PROTECTED-MODE

STUB PROGRAM
“CANNOT RUN UNDER DOS"
EXI

:l INITIAL REAL — MODE ENTRY POINT

PROGRAM

NEW .EXE HEADER

ENTRY POINT FIELD ———

AN

CODE AND DATA
SEGMENTS

AN

AN

] INITIAL PROTECTED — MODE ENTRY
POINT

-
-

DUAL-MODE
PROGRAM

BIND

\PILIB

OLD .EXE HEADER

OFFSET 10 NEW EXE HEADER

ENTRY POINT FIELD ———

STUB LOADER

U
REAL-MODE FUNCTIONS

NEW .EXE HEADER

%

ENTRY POINT FIELD ———

:I INITIAL REAL —MODE ENTRY POINT

A\

CODE AND DATA
SEGMENTS

AN

] INITIAL PROTECTED — MODE ENTRY
POINT

)
-

REAL-MODE VERSION OF YOUR LIBRARY 255

Likewise, if either a protected-mode or dual-mode program is run under
real mode (that is, under MS-DOS or the DOS compatibility box of 0S/2),
the loader first sees a standard MS-DOS file header. This header contains,
among other items of information, a pointer to the "Initial Real-Mode
Entry Point.” When the system has completed the loading procedure, it
passes control to the entry point indicated by this field. If this were an
MS-DOS program, the entry field would point to the main program entry
routine; for example, in an MS-DOS C program, the C startup code would
receive control. In an OS/2 program, initial control passes to a routine
known as a stub program.

The differences between a protected-mode program and a dual-mode
program lie in the actions performed by the stub program. In a protected-
mode program, the stub program simply prints the following error mes-
sage and terminates the futile attempt to run a protected-mode program
under real mode:

This program cannot be run in DOS mode.

When BIND converts a protected-mode program to a dual-mode pro-
gram, it replaces the normal stub program with a stub loader. Rather than
simply terminating the program, the stub loader performs the following
actions when the program is run under real mode:

e Tt loads the real-mode versions of all dynamic-link functions,
which are contained in the file header.

e It fills in the address field of each call instruction within the pro-
gram code that invokes a dynamic-link function. For each of these
call instructions, rather than supplying the address of a function
within a dynamic-link library, it supplies the address of the real-
mode version of this function that has just been loaded into
memory.

e It transfers control to the main program entry point (labeled the
"Initial Protected-Mode Entry Point" in Figure 9-1).

Thus, the main program entry point ultimately receives control in
either real or protected mode. In real mode, control first passes through
the stub loader, and in protected mode, control passes directly to the main

256 SOFTWARE TOOLS FOR 0S/2

entry point. Because the stub loader is bypassed in protected mode, the
real-mode versions of the dynamic-link functions are never loaded; thus,
in protected mode these routines consume neither loading time nor
memory space.

As already mentioned, the library file API.LIB (used by the BIND
utility) contains real-mode versions for most of the standard 0S/2 API
functions. The functions included in this library are known as the family
API subset of the full 0S/2 API. The functions included in the family API
are those that can easily be emulated under MS-DOS; accordingly, this
subset excludes functions that manage unique features of 0S/2, such as
multitasking and interprocess communication. The following groups of
functions are also excluded from the family API:

* All mouse subsystem functions (Mou routines). Note that under
real mode these services can be obtained through interrupt 33h.

* Functions specific to the Presentation Manager (for example, all
Gpi and Win functions). Thus, you cannot convert a Presentation
Manager application into a dual-mode program.

Although you can call functions in the family API from a program
destined to be converted to the dual-mode format, many of these functions
have limitations when called from real mode; the next section in this
chapter gives an example of such a limitation. The OS/2 programmer’s
reference states which functions belong to the family API, and also fully
documents any restrictions that apply when calling one of these functions
in real mode.

However, a dual-mode program can call an OS/2 API function that is
not in the family subset, provided that it conforms to two guidelines. First,
the program can call the function only if it is currently running in
protected mode. The OS/2 function DosGetMachineMode can be used
to determine whether the system is running in real or protected mode.

Second, when you create the dual-mode program with the BIND utility,
you must resolve the reference to the non-family function. A non-family
API function will not be resolved by APL.LIB, which contains only the
family subset of functions. However, by listing the name of a non-family
API function (or several such functions) following the /n command line
flag, you can cause BIND to resolve calls to the specified function with

REAL-MODE VERSION OF YOUR LIBRARY 257

the address of the routine BadDynLink. The code for BadDynLink is
inserted into the program header along with the other real-mode func-
tions. As a result, if the program inadvertently calls the non-family API
function under real mode, control passes to BadDynLink, which prints an
error message and terminates the program.

As an example, the following code calls the non-family API function
DosGetInfoSeg only if the program is running under protected mode:

BYTE ProtectedMode;
SEL GlobalsSeg;
SEL LocalSeg;

DosGetMachineMode (&ProtectedMode)

if (ProtectedMode)
DosGetInfoSeg
(&Globalseg,
&LocalSegq) ;

Assuming that DosGetInfoSeg is the only non-family API function in
this program, you could convert the program to the dual-mode format
using the following command:

bind PROG.EXE \LIB\OS2.LIB \LIB\API.LIB /n DOSGETINFOSEG

This command would resolve the call to the function DosGetInfoSeg
with the address of the routine BadDynLink. Accordingly, if through a
programming error the program attempted to call DosGetInfoSeg when
running in real mode, the function BadDynLink would receive control and
terminate the program after printing an error message, such as the
following:

The Application Program Interface (API) entered will only work in
IBM Operating System/2 mode.

258 SOFTWARE TOOLS FOR 0S/2

If you create a dual-mode program using the BIND commands il-
lustrated in this section, your program cannot call dynamic-link functions
other than the OS/2 family API functions. To allow a dual-mode program
to call the dynamic-link functions that you have developed, you must
prepare a conventional library file containing real-mode versions of your
functions, which would be analogous to the API.LIB library supplied with
05/2. You must then specify this library file—along with API. LIB—on the
BIND command line. The remaining sections of this chapter discuss how
to write and use such a library.

Writing a Real-Mode Version of a DLL

This section describes how to create real-mode versions of the functions
contained in your dynamic-link library, so that these functions can be
called from a dual-mode program. Figures 9-2 and 9-3 define real-mode
versions of the set of printer functions originally defined in the dynamic-
link module source file of Figure 4-2. Figure 9-2 is a C source file and
Figure 9-3 is an assembly language file. Once you have prepared a library
file containing the functions defined in Figures 9-1 and 9-2, you can write
a dual-mode client program that can call any of the functions in the
printer module.

Explaining the implementation details of the assembler functions in
Figure 9-3 is beyond the scope of this book. However, the comments in the
source file clarify many of the details; also, Chapter 10 provides further
information on using assembly language.

Figure 9-2

/*
Figure 9-2

This file contains the C functions belonging to the real-mode version of

the module of printer functions. The assembly language functions are

REAL-MODE VERSION OF YOUR LIBRARY 259

defined in Figure 9-3. The real-mode library can be prepared using the
MAKE file of Figure 9-4.

*/

#define INCL DOS

#include <0S2.H>

#include "FIG4_3.H" /* Module header file. */
#define PRTNAME "LPT1" /* Printer device name. */
int _acrtused = 0; /* Define variable to avoid linking in C */

/* startup code. */

/* External variables for storing printer state*/

unsigned char Opened = 0; /* Indicates whether printer has been opened. */
HFILE Handle; /* Handle for printer device. *x/
int CurRow = 1; /* Current row of printer head. */
int CurCol = 1; /* Current column of printer head. */

/* Private functions: */
USHORT _PrtOpen /* Opens the printer. */

(void) ;

USHORT _StrLen /* Calculates length of a string. */

(char far *String);

unsigned pascal far _loadds PrtPutC
(int Ch)
/*
This function sends character ’'Ch’ to the printer. If successful, it

returns zero; if an error occurs, it returns a nonzero API error code.

260 SOFTWARE TOOLS FOR 0S/2

Warning: Neither ’'PrtPutC’ nor 'PrtPutS’ should not be used in conjuntion
with 'PrtPosition’ unless the function is used to send a control code that
does NOT move the printer head (otherwise the internal record of the

current printer row and column maintained by the module would become

invalid) .

*/
{
USHORT ErrorCode; /* Stores the API error code. */
USHORT BytesWritten; /* Number of bytes successfully printed. */
if (!Opened) /* Open printer if necessary. */

{
ErrorCode = _PrtOpen ();
if (ErrorCode)

return (ErrorCode);

ErrorCode = DosWrite /* Send character to printer. *x/
(Handle, /* Printer device handle. */
&Ch, /* Address of char. to print. */
1, /* Number of bytes to print. */
&BytesWritten); /* Assigned bytes written. */

if (ErrorCode)

return (ErrorCode) ;

return (0);

} /* end PrtPutC */

unsigned pascal far _loadds PrtPuts

(char far *String)

REAL-MODE VERSION OF YOUR LIBRARY 261

/*
This function sends the NULL terminated string ’String’ to the printer.
See the warnings given for ’'PrtPutC’, which apply to 'PrtPutS’ as well.
If successful, it returns zero; if an error occurs, it returns a
nonzero API error code.

*/

{

USHORT ErrorCode; /* Stores the API error code.

USHORT BytesWritten; /* Number of bytes successfully printed.

if (!'Opened)
{

ErrorCode = _PrtOpen ();

/* Open printer if necessary.

if (ErrorCode)

return (ErrorCode) ;

ErrorCode = DosWrite /* Send string to printer.

unsigned pascal far _loadds PrtPosition

(Handle,

String,

_StrlLen (String),

&BytesWritten);
if (ErrorCode)

return (ErrorCode);
return (0);

} /* end PrtPuts */

(char far *String,

/*

/*
/*

Printer device handle.

Address of string to print.

Number of bytes to print.
Assigned bytes written.

*/
*/
*/
*/

/*

*/

262 SOFTWARE TOOLS FOR 0S/2

int Row,

int Col)

This function prints NULL terminated ’String’ beginning at the position
specified by 'Row’ and ’‘Column’. If successful, it returns zero; if an

error occurs, it returns one of the following error codes:

BADPOSITION The requested print position was to the left of

or above the current printer head position.
For all other errors, it returns the API error code.
The following rules must be observed:

o The string must NOT contain control characters (i.e., any characters
that do not advance the print head a single column). To send control
codes, use 'PrtPutC’ or ’'PrtPutS’.

o The string must not contain tab characters.

o The string must not contain newline characters. To advance to a new
line, use a subsequent call specifying the desired row. Do not send
more characters than can fit on the current line.

© To generate a new page and reset the row and column numbers, use
'PrtNewPage’. Do not send more lines than can fit on a single page.

o 'PrtPosition’ and 'PrtNewPage’ should be used by only a single thread

within a process at a given time.

{

USHORT ErrorCode; /* Stores the API error code. */

/*** Test for valid row and column. HRAKKKKIRIKRKRKKRKKKARKRKAR KKK KKA KKK /

REAL-MODE VERSION OF YOUR LIBRARY 263

if (Row < CurRow ||
Row == CurRow &&
Col < CurCol)

return (BADPOSITION)

/*** Print CR/LF pairs until reaching desired row. ***kkkkkkkkkkrkxkkkkkk/

while (Row - CurRow)
{
ErrorCode = PrtPutS ("\x0d\x0a");
if (ErrorCode)
return (ErrorCode);

++CurRow; /* Adjust record of printer position. *x/
CurCol = 1;

}

/%*** Print spaces until reaching desired column. KAKKKKRIKKIKKK KRR h Rk XK * /

while (Col - CurCol)

{
ErrorCode = PrtPutC (32);
if (ErrorCode)

return (ErrorCode);

++CurCol; /* Adjust record of current column. */

}

/*** Print the string. B T 2 2 e a i i a i i I R R R 2 22 22 R L2t Rt d

ErrorCode = PrtPutS (String);
if (ErrorCode)

return (ErrorCode);

CurCol += _StrLen (String); /* Adjust record of current column. */

264 SOFTWARE TOOLS FOR 0S/2

return (0);

} /* end PrtPosition */

unsigned pascal far _loadds PrtNewPage

/*

*/

(unsigned FlagFormFeed)

This function resets the internal row and column counters for the
position of the printer head; if ’'FlagFormFeed’ is nonzero, the
function also generates a formfeed. If successful, it returns zero;

if an error occurs, it returns a nonzero API error code.

{

USHORT ErrorCode; /* Stores the API error code.

if (FlagFormFeed)

{

*/

/*** Generate a carriage return and form feed. **XkkkkkkkkXkkkkkkkkkk/

ErrorCode = PrtPutS ("\x0d\xOc");
if (ErrorCode)

return (ErrorCode);

/*** Reset current row and COlumn. ****kkkkkkAkkARKXKKKKKKKKKKKK KKK KKK k% /

CurRow = CurCol = 1;

return (0);

} /* end PrtNewPage */

REAL-MODE VERSION OF YOUR LIBRARY 265

/*** Private functions: P e s 22 s s a2 2 TR R 2 2 L L L LA S S LSS S L

USHORT unsigned _PrtOpen

(void)
/%
This private function opens the printer device. If successful, it returns
zero; if an error occurs, it returns a nonzero API error code.
*/

{

USHORT ErrorCode; /* Stores the API error code. */

USHORT Action; /* Receives 'DosOpen’ action code. *x/

ErrorCode = DosOpen
(PRTNAME, /* Device name for printer. x/
&Handle, /* Receives printer device handle. */
&Action, /* Receives action code. *x/
oL, /* Initial allocation size: n/a. */
0, /* File attribute: n/a. */
1, /* Open flag: open file if it exists. *x/
0x0041, /* Open mode: write access and share. */
oL); /* Reserved: must be 0. *x/

if (ErrorCode)
return (ErrorCode):

Opened = 1; /* Set opened flag. */

return (0);

} /* end _PrtOpen */

266 SOFTWARE TOOLS FOR 0S/2

USHORT _StrLen
(char far *String)

/*
This private function returns the length of the NULL-terminated string
' String’ .

*/
{
USHORT Count = 0;

while (*String++)

++Count;

return (Count);

} /* end _StrLen */

Figure 9-3

H Figure 9-3

; This file defines the assembly language functions for the real-mode

; version of the module of printer functions. The C functions are defined
H in Figure 9-2. The real-mode library can be prepared using the MAKE file
H of Figure 9-4.

.MODEL LARGE

.CODE

EXTRN DOSSLEEP :FAR ;External declaration for DosSleep API function.

REAL-MODE VERSION OF YOUR LIBRARY 267

Frame equ [bp] ;Equate for accessing parameters.

PUBLIC PRTREADY

’

’

Prototype:
unsigned pascal far PrtReady

(unsigned char far *ptrFlagReady) ;

PRTREADY PROC FAR

prFrame ‘struc ;Template for accessing the parameters.
prBasePtr dw ?
prRetAd dd *?
prFlagAddr dd ? ;Parameter 'PtrFlagReady’.
prFrame ends
push bp ;Save base pointer.
mov bp, sp ;Set base pointer to access stack.
mov ah, 2 ;Invoke BIOS printer services function 2: read
mov dx, 0 ;status of printer port.
int 17h
and ah, 10h ;Results are returned in AH; mask all bits of

;status except ’'selected’ bit.

les bx, Frame.prFlagAddr ;Assign results to the memory location whose
mov byte ptr es:[bx], ah ;address was passed in the parameter

;' PtrFlagReady’ .

Xor ax, ax ' ;Set return value in AX to O.

268 SOFTWARE TOOLS FOR 0S/2

pop bp ;Restore base pointer.

ret 4 /FAR return / remove parameter from stack.

PRTREADY ENDP

PUBLIC PRTINIT

; Prototype:
H unsigned pascal far PrtInit
; (void)

PRTINIT PROC FAR

mov ah, 1 ;Invoke BIOS printer services function 1:
mov dx, O ;initialize printer port.
int 17h

/Generate a 1.5 second pause:
Xor ax, ax ;Push a value of 1500L on the stack.
push ax

mov ax, 1500

push ax

call DOSSLEEP ;Call API function DosSleep.
Xor ax, ax ;Set return value in AX to 0.
ret ;FAR return instruction.

PRTINIT ENDP

END

REAL-MODE VERSION OF YOUR LIBRARY 269

The definitions of the printer functions found in these two figures
illustrate the following general guidelines for developing real-mode ver-
sions of your dynamic-link functions:

1. Use the OS/2 family API functions.

2. Observe the real-mode restrictions on family API functions.

3. Do not use the C runtime library.

4. Write your code specifically for real mode.

5. Compensate for differences between real and protected modes.

These guidelines are now discussed individually.

Use the 0S/2 Family API Functions
The source file of Figure 9-2 defines the following public functions:

PrtPutC
PrtPutS
PrtPosition
PrtNewPage

Note that these functions are defined in the same manner as in the C
source file of Figure 4-2. You might think that when creating real-mode
versions of dynamic-link functions, you would have to eliminate all calls
to 0S/2 API services. Fortunately, however, this is not necessary since
your function code can take advantage of the real-mode versions of the
‘API functions (contained in APL.LIB) in the same manner as an applica-
tion program that is converted to the dual-mode format. Of course, you
must restrict your API calls to the family subset.

Observe Real-Mode Restrictions on Family API Functions

Two of the printer functions in the dynamic-link version of the printer
module of Figure 4-2—PrtReady and PrtInit—call the OS/2 function
DosDevIOCt] to send control information to the printer. Although
DosDevIOCt] is a member of the family APL, in real mode it does not
support the printer control functions (that is, the functions in category 5).

270 SOFTWARE TOOLS FOR 0S/2

Accordingly, the real-mode versions of these two functions had to be
rewritten to eliminate the use of DosDevIOCtl.

The new versions of these functions obtain the required printer services
by directly invoking the BIOS services provided in real mode through
interrupt 17h.

Do Not Use the C Runtime Library

Normally, a real-mode C program could invoke interrupt 17h through a
C library function such as int86. However, attempting to use the C
runtime library causes problems when processing your real-mode library
with the BIND utility.

You could include a real-mode version of the C library (such as SLIB-
CER.LIB) among the libraries processed by BIND (passing multiple
library files to BIND is explained in the next section). However, calling a
C library function creates an external reference to the function main,
which is normally not defined within your real-mode library or within any
of the other real-mode libraries processed by BIND. Also, by binding in C
library code you would be attempting to execute real-mode versions of the
C library functions without running the real-mode C startup code.

To avoid these problems, the example real-mode library eliminates the
need for C runtime functions by providing low-level assembly language
routines.

Write Your Code Specifically for Real Mode

As you saw when developing a dual-mode program, you must make sure
that your code can run in either real or protected mode. Consequently,
you must not include instructions that are prohibited in protected mode,
such as software interrupt instructions and accesses to absolute memory
locations outside of the segments allocated to the process unless you test
the machine mode and issue the instructions only if the machine is in real
mode.

In contrast, when developing real-mode versions of dynamic-link func-
tions, your code need run only in real mode. Consequently, the assembler
functions in Figure 9-3 freely invoke BIOS services through software
interrupt instructions.

REAL-MODE VERSION OF YOUR LIBRARY 271

Differences between Real and Protected Modes

Finally, there may be subtle differences in the behavior of the protected-
mode API functions and the equivalent real-mode functions. For example,
when attempting to write to a busy printer using the protected-mode
version of DosWrite, the system waits for a timeout period before generat-
ing a critical-error message. However, when using the real-mode version
of this function, the system immediately activates a critical error.

Consequently, the real-mode version of the PrtInit function in Figure
9-3 inserts a 1.5 second delay. This delay is required since the printer is
temporarily busy during a reset operation; if the calling program at-
tempted to write to the printer immediately after calling PrtInit, the
system would generate a critical-error message. Inclusion of the delay
allows the reset operation to complete before PrtInit returns control.

In general, you should thoroughly test your functions under both
protected and real modes to detect any differences in behavior between
these two modes.

Using Real-Mode Versions

Figure 9-4 provides a MAKE file that shows how to use the real-mode
versions of a module of dynamic-link functions to generate a dual-mode
application program. This MAKE file creates a dual-mode executable file
from the program given in Figure 4-7 (remember that when this program
was prepared in Chapter 4, the resulting file could be run only in protected
mode).

e The MAKE file generates the following primary files:

e The dynamic-link library containing the printer functions
(FIG4_2.DLL; from the module source code of Figure 4-2).

e The associated import library (FIG4_2.LIB).

e The library file containing real-mode versions of the dynamic-link
printer functions (FIG9_2.LIB; from the source code of Figure 9-2).

e The dual-mode executable program (FIG4_7.EXE; from the C pro-
gram of Figure 4-7).

272 SOFTWARE TOOLS FOR 0S/2

Figure 9-4

Figure 9-4
A MAKE script for preparing the following files:

#
#
#
1. The dynamic-link library file FIG4_2.DLL
2. The real-mode library FIGY9 2.LIB

#

3. The dual-mode application program FIG4_7.EXE.

Produce the dynamic-link library:
FIG4_2.0BJ : FIG4_2.C FIG4 3.H

cl /c /W2 /ASw /G2s /Zp FIG4_2.C

FIG4_2.DLL : FIG4_2.0BJ FIG4_4.DEF

link /NOI /NOD FIG4_2.0BJ, FIG4_2.DLL, NUL, 0OS2.LIB, FIG4_4.DEF

Produce the import library:
FIG4_2.LIB : FIG4_4.DEF

implib FIG4_2.LIB FIG4_4.DEF

Produce the real-mode library file:
FIG9_2.0BJ : FIGY9_2.C FIG4_3.H

el /c /W2 /Gs /2p FIGY9_2.C

FIG9_3.0BJ : FIG9_3.ASM

masm /MX FIG9_3.ASM;

FIGY9_2.LIB : FIG9_2.0BJ FIG9_3.0BJ

1ib FIG9_2.LIB -+FIG9_2.0BJ -+FIG9_3.O0BJ;

REAL-MODE VERSION OF YOUR LIBRARY 273

Produce the dual-mode client application:
FIG4_7.0BJ : FIG4_7.C FIG4_3.H

cl /c /W2 /Zp FIG4_7.C

FIG4_7.EXE : FIG4_7.0BJ FIG9_2.LIB
link /NOI /NOD FIG4_7 .0BJ,, NUL, FIG4_2.LIB SLIBCE.LIB 0S2.LIB;
bind FIG4_7.EXE \PMSDK\LIB\OS2.LIB FIG4_2.LIB \PMSDK\LIB\API.LIB \

FIG9_2.LIB

The relationships among the files processed by this MAKE script are
illustrated in Figure 9-5.

Note that when compiling the real-mode functions defined in Figure
9-2, the MAKE file does not include the /ASw flag (explained in Chapter
1). This flag is not needed since during the execution of the real-mode
functions—unlike their dynamic-link counterparts—the SS and DS
registers contain the same segment value.

Note also that the /G2 flag which allows the compiler to use instructions
specific to the ‘80286 and later-model processors is not included when
compiling the real-mode functions (FIG9_2.C) or the dual-mode program
(FIG4_7.C). This flag is eliminated since a dual-mode program can be run
under MS-DOS on a machine with an 8086 or 8088 processor.

Note finally that when invoking BIND, the MAKE file includes both
APLLIB (to supply real-mode versions of the OS/2 API functions) and
FIG4_2.LIB (to supply real-mode versions of the dynamic-link printer
functions). Also, it specifies the import library FIG4_2.LIB, originally
used to link the application program; the import library is required when
an application program identifies the dynamic-link functions by their
ordinal values. Remember that the EXPORT statement in the module
definition file of Figure 4-4 specified the ordinal value of each dynamic-
link function.

274 SOFTWARE TOOLS FOR 0S/2

Figure 9-5: Operations performed by the MAKE script of Figure 9-4.

REAL-MODE
FUNCTIONS
FIG9 2.C FIG9_3.ASM
(real-mode (real-mode
C source assembler
file) file)

|

LIB

FIG4_8.
DEF

FIG9_2.LIB
(real-mode

DUAL-MODE
APPLICATION

FIG4_7.C
(application
C source
file)

l

FIG4_7.EXE
(protected-
mode
executable)

function
library)

DYNAMIC-LINK

FIG4_4.
DEF

FUNCTIONS

FIG4_2.C
(DLL
module C
source file)

e

o)

BIND

FIG4_7.EXE
(dual-mode
executable)

FIG4_2.LI

(DLL import

library)

B

FIG4 2.DLL
(dynamic-link
function
library)

REAL-MODE VERSION OF YOUR LIBRARY 275

After you have entered the required source files and have processed
them with the MAKE script of Figure 9-4, you should be able to run the
resulting program (FIG4_7.EXE) within any of the following four environ-
ments:

e From the OS/2 command line of a protected-mode screen group.
e Within a window of the Presentation Manager.

e From the command line of the OS/2 DOS compatibility environ-
ment.

e Under MS-DOS.

CHAPTER 10

ASSEMBLY LANGUAGE DLLS

The OS/2 application program interface is strongly oriented toward
high-level languages. As you have seen, the dynamic linking mechanism
allows programs in high-level languages to call API functions using the
standard function calling protocol. Also, high-level compilers such as
Microsoft C automatically generate code that conforms to most of the
requirements of the protected mode (such as storing code and data in
separate segments and not writing to code segments).

In contrast, calling API functions from assembly language is somewhat
cumbersome. Also, the assembly language programmer must take care to
write code compatible with a protected-mode operating system; many of
the low-level tactics typically performed in assembly language are
prohibited in such a system.

Assembly language, however, is important for writing several types of
special-purpose routines under OS/2. Among these routines are the fol-
lowing:

¢ Initialization routines. As you saw in Chapter 6, you must write
an assembly language module to define the initialization entry
point.

277

278 SOFTWARE TOOLS FOR 0S/2

* Real-mode versions of dynamic-link functions. As described
in Chapter 9, you may need to write an assembly language routine
to replace an OS/2 service that is not supported in real mode.

* L/O privileged routines. You will see in this chapter that assemb-
ly language is required to develop privileged routines that access
I/O ports or control interrupts.

The first section of this chapter explains the basic techniques for
writing a dynamic-link module in assembly language; as an example, it
presents an assembly language version of the dynamic-link function
PrtPutC (which is defined in C in Figure 4-2). The second section explains
an important use for assembly language: writing dynamic-link functions
that execute with I/O privilege.

This chapter is not a primer on assembly language programming;
rather, it focuses on the special techniques required when using assembly
language to develop dynamic link libraries. For basic information on
programming in assembly language, see the documentation provided
with the Macro Assembler (now much improved), or the introductory book
by Lafore cited in the Bibliography. See also the Microsoft Mixed Lan-
guage Guide (included with the high-level language compilers) for more
information on interfacing assembly language routines and C programs.

General Guidelines for Assembly Language

Figure 10-1 provides an example of a dynamic link module written in
assembly language. This module defines a single dynamic-link function:
PrtPutC, which is an assembly language version of the PrtPutC function
defined in the C file of Figure 4-2. Figure 10-2 lists the module definition
file, and Figure 10-3 contains the C code for an example program that
calls PrtPutC. Figure 10-4 provides a MAKE script for preparing both the
dynamic-link library and the example application. Each of these files is
now discussed individually.

ASSEMBLY LANGUAGE DLLS 279

Figure 10-1

; This file defines an assembly language version of the function ’'PrtPutC’
; (the C version of this function is contained in Figure 4-2). You can use
; the MAKE script given in Figure 10-4 to prepare the dynamic-link library

; file, as well as the example client application of Figure 10-3.

.286 ;Allow 80286 instructions.

.MODEL LARGE ;Large memory model.

.DATA ;Begin automatic data segment.

Handle dw 0 ;File handle for printer received from ‘DosOpen’ .
Action dw 0 ;Receives action taken by ‘DosOpen’.

DevName db 'LPT1’,0 ;Device name for printer.

ByWritten dw 0 ;Receives bytes written by ‘DosWrite’.

.CODE ;Begin code segment.

;External declarations for 0S/2 API functions:
EXTRN DOSOPEN:FAR ; ‘DosOpen’ .
EXTRN DOSWRITE :FAR ; ‘DosWrite’ .

InitRout PROC FAR
;Push parameters for call to ‘DosOpen’:
push ds ;Address of device name string.

push offset DGROUP:DevName

push ds ;Address to receive device handle.

push offset DGROUP:Handle

push ds ;Address to receive code for action taken.
push offset DGROUP:Action

push 0 ;Initial allocation size (long value): n/a.

280 SOFTWARE TOOLS FOR 0S/2

push 0
push 0

push 1

push 0041h

push 0
push 0

call DosOpen

or ax, ax

jz iOK

xor ax, ax

ret

iOK:
mov ax, 1

ret

InitRout ENDP

;File attribute: n/a.

;Open flag: open file if it exists.

;Open mode: share/write-only.

;Reserved double word value: must be 0.

;Open the printer device.

;Test error status in AX.

;0 indicates ‘DosOpen’ was successful.

; ‘DosOpen’ failed, therefore return 0, which
;indicates that the initialization routine

;failed.

; ‘DosOpen’ was successful, therefore return
/1, indicating that the initialization

;routine was successful.

PUBLIC PRTPUTC ;Define the dynamic-link function ‘PrtPutC’.

’

;" Prototype:

; unsigned pascal far _loadds PrtPutC

; (int Ch);

PrtPutC PROC FAR

pcFrame struc ;Template for accessing the parameter.

pcBasePtr dw ?
pcRetAd dd ?

pcCh

pcFrame

Frame equ

push
mov

push

mov

mov

push

push
lea

push

push

push
push

call

pop
pop

ret

dw
ends
[bp]
bp
bp, sp
ds
ax, DGROUP
ds, ax
Handle
ss

ax, Frame.pcCh

ax

ds

;Parameter

ASSEMBLY LANGUAGE DLLS 281

‘Ch’ .

;Equate for accessing parameters.

;Save base pointer.

;Set base pointer to access stack.

;Save DS register.

;Assign to DS register the segment selector of

;the automatic data segment.

;Push parameters for call to ‘DosWrite’:

;Printer device handle.

;FAR address of ‘Ch’, which is on the stack.

;Length of the buffer (‘Ch’).

;Address to receive number of bytes written.

offset DGROUP:ByWritten

DosWrite

ds

bp
2

PrtPutC ENDP

END InitRout

;Send the character to the printer.

;Restore DS.

;Restore base pointer.

;FAR return instruction;

value returned in AX is

;the error code supplied by ‘DosWrite’; also

;remove parameter from stack.

;Terminate source file and define the

;initialization entry point.

282 SOFTWARE TOOLS FOR 0S/2

Figure 10-2

; Figure 10-2

; A module definition file for linking the dynamic-link
; library defined in Figure 10-1.

LIBRARY FIG10_1 INITINSTANCE

PROTMODE

DATA MULTIPLE

EXPORTS

PRTPUTCQR1

Figure 10-3

/*
Figure 10-3
This example client program calls the dynamic-link function 'PrtPutC’,
defined in the assembly language file of Figure 10-1. You can use the
MAKE file of Figure 10-4 to prepare this program, as well as the
dynamic-link library.

*/

#include <STDIO.H>

#include <CONIO.H>

ASSEMBLY LANGUAGE DLLS 283

#include <PROCESS.H>

unsigned pascal far _loadds PrtPutC /* Declare dynamic-link function. */

(int Ch);

void main (void)

{

int Ch;
printf ("Type characters to print ... Press Esc to quit.\n");
while ((Ch = getche ()) !'= ’'\xlb’)

if (PrtPutC (Ch))

{

fprintf (stderr, "\nError writing to printer.");
exit (1),

}

} /* end main */

Figure 10-4

Figure 10-4

A MAKE file for preparing the dynamic-link module of Figure 10-1, and the
client program of Figure 10-3.

#

Prepare the dynamic-link library and import library:
FIG10_1.0BJ : FIG10_1.ASM

masm /MX FIG10_1.ASM;

FIG10_1.DLL : FIG1l0_1.0BJ FIG10_2.DEF

link /NOI FIG10_1.0BJ, FIG10_1.DLL, NUL.MAP, 0S2.LIB, FIGl0_2.DEF

284 SOFTWARE TOOLS FOR 0S/2

FIG10_1.LIB : FIG10_2.DEF

implib FIG10_1.LIB FIG10_2.DEF

Prepare the client program:
FIG10_3.0BJ : FIG10_3.C

cl /c /W2 /G2 /2Zp FIG10_3.C

FIG10_3.EXE : FIG10_3.0BJ FIG10_1.LIB

link /NOI /NOD FIG10_3.0BJ,, NUL.MAP, FIG10_1.LIB SLIBCE.LIB 0S2.LIB;

The Assembly Language Source Code

The assembly language file of Figure 10-1 begins with the directive .286.
This directive allows you to use instructions unique to the 80286 proces-
sor. You can freely issue these instructions since OS/2 requires an 80286
or later-model processor. As an example, the 80286 processor allows you
to push immediate values on the stack, that is, you can specify constant
numeric values with the PUSH instruction; under the 8088 processor, you
must specify either a register or amemory variable. As you will see, calling
API functions from assembly language requires you to push many values
on the stack. The file next contains the directive:

.MODEL LARGE

This is one of several simplified segment directives offered by Microsoft
MASM beginning with version 5.0 (see the assembler documentation for
complete information on the use of the new simplified segment directives).
This directive instructs the assembler to use—by default—segment
names and other segment attributes that match those employed in a large
memory model Microsoft C (or other high-level language) program. It
replaces the ASSUME and GROUP statements required with former
versions of the assembler.

ASSEMBLY LANGUAGE DLLS 285

Since the example dynamic-link module contains only a single code
segment and a single data segment, the large memory model is not
required. In general, however, it is the most flexible memory model. Also,
under the large model, the compiler automatically generates the required
FAR return instructions. Even if you forget to specify the FAR attribute
when defining a procedure; remember that a dynamic-link function must
terminate with a FAR return instruction.

The assembly language file uses two additional simplified segment
directives: .DATA and .CODE (note that if you use these directives, the
.MODEL directive is required, and must be placed before the occurrence
of either .DATA or .CODE). These two directives replace the SEGMENT
and ENDS statements required under former versions of the assembler.

The .DATA directive defines the beginning of the data segment. Specifi-
cally, it causes the assembler to create a logical segment named _DATA,
which is normally used in Microsoft high-level languages for storing
initialized data. This logical segment is placed within the automatic data
segment described in Chapter 5. The assembly language module defines
several variables within this segment, which are used to exchange infor-
mation with OS/2 API functions. For example, the segment contains the
variable Handle, which stores the device handle to the printer. This
handle is obtained by the initialization routine and is then used to write
to the printer each time PrtPutC is called.

The .CODE directive defines the beginning of the module code segment.
This directive automatically closes the segment opened with the .DATA
directive (no ENDS statement is required). The code segment contains
the two procedures defined within the module: InitRout and PrtPutC.

InitRout is the dynamic-link library initialization routine (see Chapter
6 for a general description of initialization routines). InitRout is specified
as the module entry point by the END statement at the conclusion of the
file.

InitRout calls the 0S/2 API function DosOpen to open the printer device
and to obtain a valid device handle. A device (or file) handle is valid only
within the current process. Therefore, the initialization procedure must
be made an instance routine—it must be called when first referenced
by each new client process—and the variable used to store the handle
(Handle) must be contained in an instance data segment. As you will

286 SOFTWARE TOOLS FOR 0S/2

see, both of these instance attributes are set by the module definition file
of Figure 10-2.

Using an initialization routine to obtain a printer handle obviates the
need to test whether the printer has been opened each time PrtPutC is
called. Such a test is necessary in the C version of PrtInit in Figure 4-2,
since the module defined by this file does not have an initialization
routine.

The call to DosOpen in the initialization routine illustrates the follow-
ing four guidelines for calling an OS/2 API function from an assembly
language procedure (compare this function call with the call to DosOpen
in the C source file of Figure 4-2).

1. You must declare the API service as an external function that is in-
voked through a far call, as in this statement from Figure 10-1:

EXTRN DOSOPEN : FAR

Note that the name of the API function must be given in uppercase let-
ters; the reason for this requirement is explained later in the chapter
(in the section The MAKE File).

2. Immediately before calling the function, you must push each of the
parameters on the stack. Since the API functions use the Pascal call-
ing conventions, the parameters must be pushed on the stack in the
same order that they are listed in the function prototype. For example,
the following code from Figure 10-1 pushes the parameters and calls
DosOpen:

push ds ;Address of device name string.

push offset DGROUP:DevName

push ds ;Address to receive device handle.
push offset DGROUP:Handle

push ds ;Address to receive code for action taken.
push offset DGROUP:Action

push 0 ;Initial allocation size: n/a.
push 0

ASSEMBLY LANGUAGE DLLS 287

push 0 ;File attribute: n/a.

push 1 ;Open flag: open file if it exists.

push 0041h ;Open mode: share/write-only.

push 0 ;:Reserved double word value: must be 0.
push 0

call DosOpen ;Open the printer device.

When an initialization routine is invoked, register DS already contains
the selector of the automatic data segment (provided that the module
has defined such a segment). Thus, DS can be used to push the selec-
tor portion of the far addresses of variables contained within this seg-
ment (when passing a far address, you must first push the segment
value and then the offset). The assembler allows you to push immedi-
ate numeric values on the stack because of the .286 directive given at
the beginning of the file.

3. You do not have to restore the stack pointer after the API function
returns. Since these functions use the Pascal calling protocol, the func-
tions themselves restore the stack (using the RET n form of the return
instruction, explained later in the chapter).

4. The API functions return the error status in register AX. As you have
seen, if an API function is successful, it returns zero, and if it fails, it
returns a nonzero error code. Accordingly, if AX contains a nonzero
value after calling DosOpen, the initialization routine returns zero in
register AX, which notifies the system that the initialization routine
has failed, thus, the meaning of a zero return value from the initializa-
tion routine is the opposite of the meaning of a zero return value from
an API function. As mentioned in Chapter 6, when the system receives
a zero return value from the initialization routine, it summarily
aborts the loading procedure.

288 SOFTWARE TOOLS FOR 0S/2

Microsoft provides a set of OS/2 header files for code written in assemb-
ly language. These files have the .INC extension and can be incorporated
in the source file through the INCLUDE assembler directive. Among the
items contained in these files is a collection of macros that can simplify
calling API functions; when using these macros, the syntax for calling API
functions resembles calls made from high-level languages. In order to
illustrate basic programming techniques, the example assembly language
source files given in this book do not use these macros. See the technical
documentation and the INCLUDE files for information on using these
macros in your OS/2 assembly language code.

PrtPutC is the only public function defined in the assembly language
file of Figure 10-1. This function simply calls the API function DosWrite
to print the character that is passed as a parameter. This function call is
similar to the call to DosOpen. Note that PrtPutC—unlike its C counter-
part defined in Figure 4-2—does not need to test for a valid printer handle
(and open the printer if necessary), since the printer is always opened by
the initialization routine. The initialization routine, of course, always
receives control before PrtPutC can be called.

The definition of PrtPutC in Figure 10-1 illustrates the following six
important techniques for writing dynamic-link functions in assembly
language:

1. Declaring the function as public. To allow the function to be ex-
ported (that is, made available to client programs) the function name
is declared as a public symbol as follows:

PUBLIC PRTPUTC

When specified in a PUBLIC statement, the function name must be
written in all uppercase letters; the reason will be explained later in
the chapter (in the section The MAKE File).

2. Saving registers. PrtPutC saves the required register values. An as-
sembly language routine called by a Microsoft C function must
preserve the values of the following registers: SI, DI, SP, BP, DS, CS,
and SS. Of these registers, PrtPutC, modifies only BP, DS, and SP.
Therefore, it pushes BP and DS on the stack at the beginning of the
function and pops them back off the stack immediately before the func-
tion returns. The value of the stack pointer is automatically preserved

ASSEMBLY LANGUAGE DLLS 289

since there are an equal number of PUSH and POP instructions
during the execution of the function.

3. Accessing the stack. To access its parameter on the stack, PrtPutC
conforms to the standard practice of assigning the stack pointer value
(SP) to the base pointer register (BP) immediately after saving the
original value of BP on the stack. To facilitate addressing this
parameter, it also defines a structure (pcFrame) with an element cor-
responding to each item stored in the stack frame. This structure
merely serves as a template for accessing the stack; it does not reserve
memory. PrtPutC also defines the symbol Frame (equal to [bp]). As a
result, this function can access its parameter using the straightfor-
ward structure notation—Frame.phCh. This technique for accessing
the stack eliminates the need to calculate the position of each
parameter on the stack; it is especially valuable for functions that
have several parameters of various data types. If the function has
several parameters, these parameters should be listed in the structure
in the same order that they appear in the prototype for a normal C
function, and they should be listed in the reverse order that they ap-
pear in the prototype for a pascal function.

4. Loading DS. When a dynamic-link function receives control, the DS
register typically contains the selector of the client’s automatic data
segment. Therefore, to allow the function to access variables within its
own data segment, the DS register must be assigned the selector of
the module’s own data segment. This value is represented by the sym-
bol DGROUP. When using the simplified segment directives MODEL
and .DATA, the assembler automatically assigns the data segment to
the DGROUP segment group; the symbol DGROUP stands for the
selector value of the physical segment containing the logical segment
or segments belonging to this group. A C function loads the DS
register in this same manner when you define the function using the
_loadds keyword, or when you compile the program under the /Au flag.

5. Restoring the stack. The function should return with the RET n
form of the return instruction, where n is the number of bytes that
should be removed from the stack upon function return. This form of
the command is necessary for any dynamic-link function that is
defined as pascal. In contrast, when a non-pascal function is called,
the calling program is responsible for restoring the stack.

290 SOFTWARE TOOLS FOR 0S/2

6. Returning a value. An assembly language procedure returns an in-
teger value to a C function by assigning it to register AX. PrtPutC,
however, does not explicitly assign a value to AX; rather, when PrtPut-
C returns, AX contains the error code value that was assigned to this
register by DosWrite. Accordingly, PrtPutC (in the same manner as
the C version of this function) returns the error status supplied by Dos-
Write.

The Module Definition File

Figure 10-2 lists the module definition file used to link the example
dynamic-link library. This file specifies the INITINSTANCE option under
the LIBRARY statement, which defines the module entry point (IN-
ITROUT) as an instance initialization routine, that is activated for each
new client. The definition file also includes the DATA MULTIPLE state-
ment to make the data segment an instance segment. Finally, it exports
the dynamic- link function PrtPutC using the usual EXPORTS state-
ment.

The Client Program

Figure 10-3 lists a simple client program for demonstrating the use of the
dynamic-link function PrtPutC. This program acts as a typewriter; it calls
PrtPutC to print each character entered from the keyboard, until the user
presses Esc.

The MAKE File

Figure 10-4 provides a MAKE file for preparing both the dynamic-link
library defined in Figure 10-1 and the client program of Figure 10-3. In
addition to the usual set of flags, which have already been explained, the
MAKE file specifies the /MX flag in the assembler command line.

The /MX option causes the assembler to preserve the case in all names
specified in EXTERN and PUBLIC statements. These two statements list
the names that are referenced in other modules (for example, other
assembly languages or C source files). The EXTRN statement declares
names that are defined in other modules but are used in the current
module (such as DosOpen). The PUBLIC statement declares names that

ASSEMBLY LANGUAGE DLLS 291

are defined in the current module but are used in other modules, such as
PrtPutC.

By default, the assembler converts the names you list in these state-
ments to all uppercase letters. If, however, you specify the /MX option,
the case is preserved when the symbols are written to the object file. Since
the linker is instructed to distinguish upper and lowercase letters
(through the /NOI flag), the names you specify in PUBLIC and EXTRN
statements must match exactly—including the case of all letters—the
corresponding names contained in all other object modules. Consequently,
the names of all pascal functions (such as DosOpen and PrtPutC) must
be given in uppercase letters, while the names of normal C variables and
functions must be written with the exact combination of uppercase and
lowercase letters used in the C source file, with the addition of a leading
underscore character (as seen in Chapter 6).

Finally the LINK command line in this MAKE file—unlike those seen
previously—does not specify the /NOD option, since the assembler does
not normally insert the names of default search libraries into the object
files it generates.

I/0 Privileged Dynamic-Link Functions

Figure 10-5 lists an assembly language source file, which defines a
dynamic-link function that executes with I/O privilege. Figure 10-6 con-
tains the module definition file, and Figure 10-7 gives an example client
program. You can prepare both the dynamic-link library and the client
program using the MAKE file of Figure 10-8.

Figure 10-5 defines the dynamic-link function HercCard, which
reports whether a Hercules graphics card is installed in the machine. This
function has the following prototype:

unsigned pascal far HercCard
(int far *PPresent)

HercCard assigns the variable pointed to by the parameter PPresent
a nonzero value if a Hercules card is present, and zero if the card is not
present.

292 SOFTWARE TOOLS FOR 0S/2

Figure 10-5

; Figure 10-5

; This file defines the dynamic-link function ’'HercCard’, which reports
; whether a Hercules graphics card is installed in the machine. This
; function runs as an I/O privileged routine. The dynamic-link library can

; be prepared using the MAKE file of Figure 10-8.

.286 ;Allow 80286 instructions.

.MODEL LARGE ;Large memory model.

.CODE ;Begin code segment.

EXTRN DOSPORTACCESS:FAR ;08/2 ‘DosPortAccess’ function.

PUBLIC HERCCARD ;Define the dynamic-link function ‘HercCard’.
; Prototype:

H unsigned pascal far HercCard
; (int far *PPresent);

HercCard PROC FAR

hcFrame struc ;Template for accessing the parameters.
hcBasePtr dw ? -

hcRetAd dd 2

hcPPresent dd ? ;Parameter ‘PPresent’.

hcFrame ends

Frame equ [bp] ;Equate for accessing parameter.

push bp ;Save base pointer.

ASSEMBLY LANGUAGE DLLS 293

mov bp, sp ;Set base pointer to access stack.

;—-—-- Obtain port access. -—-————------- - - - — - ———— oo oo ———————————

;Push parameters for call to ‘DosPortAccess’.

push 0 ;Reserved value: must be 0.

push 0000h ;Desired function: grant access to port.

push 03bah ;First port in range: 0x03ba.

push 03bah ;Last port in range: 0x03ba.

call DosPortAccess ;Request port access.

xor ax, ax ;Test for error.

jz okl

jmp exit ;Error occurred; return error code in AX.
okl: ;No error.

;--- Test for presence of Hercules Graphics Card --------=——==-————------
;This routine supplied courtesy of

;Hercules Computer Technology.

mov dx, 03bah ;Display status port.
xor bl, bl ;Clear counter.
in al, dx ;Read port.
and al, 80h ;Mask off all bits except 7.
mov ah, al ;Save bit 7 in AH.
mov cx, 8000h ;Set loop counter.
all:
in al, dx ;Read port again.

and al, 80h ;Mask out bit 7.

294 SOFTWARE TOOLS FOR 0S/2

a02:

a03:

ok2:

je
inc
jb
mov

jmp

loop

Xxor

les

mov

push

push

push
push

call

Xor

jz
Jmp

al, ah ;Test if bit has changed.

a02 ;Bit not yet changed.

bl ;Bit changed, increment counter.
bl, 10 ;Want to see it change 10 times.
a02 ;Need to see more changes.

ax, 1 ;Yes, it is a HGC.

a03 ;Go to end.

a0l ;Continue testing for changes.
ax, ax ;Hercules card is not present.

;Write result in AX to memory location
;pointed to by the parameter ‘Present’.
bx, Frame.hcPPresent

es: [bx], ax

Release pOrt acCess ——————= - m o

;Push parameters for call to ‘DosPortAccess’.

0 ;Reserved value: must be 0.

0001h ;Desired function: release access to port.
03bah ;First port in range: 0x03ba.

03bah ;Last port in range: 0x03ba.
DosPortAccess ;Release port access.

ax, ax ;Test for error.

ok2

exit ;Error occurred; return error code in AX.

;No error.

ASSEMBLY LANGUAGE DLLS 295

:—-— Set return value and return to caller -------—-------------=--=o---

’

xor ax, ax ;Set error code returned in AX to 0 to indicate
;that function was successful.

exit:
pop bp ;Restore base pointer.

ret 4 ;FAR return / remove parameters from stack.

HercCard ENDP

END

Figure 10-6

; Figure 10-6

A module definition file for creating the dynamic-link

library defined in Figure 10-5.

LIBRARY FIG10_5

PROTMODE

CODE IOPL

EXPORTS

HERCCARD el 2

296 SOFTWARE TOOLS FOR 0S/2

Figure 10-7

/*
Figure 10-7

This example client program calls the dynamic-link function ’'HercCard’ to
determine whether a Hercules Graphics Card is installed in the machine.
"HercCard’ is defined as an I/O privileged routine in the assembly
language source file of Figure 10-5. You can use the MAKE script of
Figure 10-8 to prepare both the dynamic-link library and the program
defined in the present file.

*/

#include <STDIO.H>

#include <PROCESS.H>

unsigned pascal far HercCard /* Declare dynamic-link function. *x/

(int far *PPresent);

void main (void)
{

int Present;

if (HercCard (&Present))

{

fprintf (stderr, "Error calling the ’HercCard’ function.\n");
exit (1);

}

printf ("A Hercules Graphics Card is $spresent.\n", Present ? "" : "not");

} /* end main */

ASSEMBLY LANGUAGE DLLS 297

Figure 10-8

Figure 10-8

#
A MAKE file for preparing the dynamic-link module of Figure 10-4, and
the client program of Figure 10-7.

#

Prepare the dynamic-link library and import library:
FIG10_5.0BJ : FIGl0_5.ASM

masm /MX FIGl0_5.ASM;

FIG10_5.DLL : FIG10_5.0BJ FIG10_6.DEF

link /NOI FIGl0_5.0BJ, FIG10_5.DLL, NUL.MAP, 0S2.LIB, FIG10_6.DEF

FIG10_5.LIB : FIG10_6.DEF

implib FIG10_5.LIB FIG10_6.DEF

Prepare the client program:
FIG10_7.0BJ : FIGl0_7.C

cl /c /W2 /G2 /Zp FIGl1l0_7.C

FIG10_7.EXE : FIG10_7.0BJ FIG10_5.LIB

link /NOI /NOD FIG10_7.0BJ,, NUL.MAP, FIG10_5.LIB SLIBCE.LIB 0S2.LIB;

Following the conventions of the 0S/2 API, the function directly returns
the error status to the calling program. If the function is successful, it
returns zero; if it fails, it returns the nonzero error code returned by the
API function that caused the failure.

This function might be part of a dynamic-link library of video routines.
It determines the presence of a Hercules card by testing whether bit 7 of

298 SOFTWARE TOOLS FOR 0S/2

the display mode status port (I/O port number 0x03ba) changes atleast
10 times during the execution of a loop of 8000h repetitions. It is a unique
characteristic of the Hercules Graphics Card that this bit goes low with
each vertical retrace. The routine is based upon an algorithm supplied by
Hercules Computer Technology. The details of the routine are documented
in the listing; the important feature is that the function must read an /O
port. To be able to access a port, a routine must conform to the following
two general requirements:

1. The routine must be written in assembly language, since the protected-
mode version of the C runtime library does not provide functions for
reading or writing to ports. The C functions inp, inpw, outp, and
outpw are provided only in the real-mode version of the library).

2. The routine must execute with I/O privilege, which permits it to per-
form direct access to I/O ports.

A normal OS/2 application program is not allowed to execute the (0S/2
version 1.1) machine instructions listed here in Table 10-1:

Table 10-1: Machine Instructions

INSTRUCTION PURPOSE

IN Read a byte or word from an input port.
INS Read a string from an input port.

ouT Write a byte or word to an output port.
OUTS Write a string to an output port.

CLI Disable hardware interrupts.

STI Enable hardware interrupts.

Attempting to execute any of these instructions from a normal program
or dynamic-link library will cause a protection fault. However, a routine
that executes with I/O privilege—one contained in an I/O privileged code

ASSEMBLY LANGUAGE DLLS 299

segment is permitted to use any of these instructions. However, that
having I/O privilege does not allow a function to use all machine instruc-
tions provided by the processor. There is a set of restricted instructions
that can be issued only by the operating system kernel, and is off-limits
to both normal routines as well as I/O privileged code. Both normal and
1/O privileged routines are also prohibited from servicing hardware inter-
rupts and from executing software interrupt instructions.)

The example listings given in this section illustrate five basic require-
ments for creating a function that executes with I/O privilege. Although
the example I/O privileged routine contained in a dynamic-link library,
you can also follow these guidelines to grant /O privilege to a function
within an application program. The example module illustrates these
requirements as follows:

1. The module definition file (Figure 10-6) contains the statement:
CODE IOPL

which causes the linker to mark the dynamic-link module code seg-
ment (which contains the function HercCard) so that it will be ex-
ecuted with I/O privilege. Therefore, that I/O privilege is a property of
a given code segment. Any function contained in a code segment that
is designated as I/O privileged will execute with a privilege level that
allows it to use the restricted machine instructions listed above.

Also the CODE statement applies globally to all code segments in a
particular dynamic-link library or program. If your dynamic-link library
or program defines functions located in more than one code segment, you
can assign I/O privilege to a specific segment (or segments) using the
SEGMENTS command. For example, if a dynamic-link library contains
two code segments—named MOD1_TEXT and MOD2_TEXT—you can
grant I/O privilege only to MOD2_TEXT through the following statement:

SEGMENTS MOD2_TEXT IOPL

Note finally that a dynamic-link initialization routine (discussed in
Chapter 6) must not run with I/O privilege. If your dynamic-link module
defines an initialization routine, you can use the SEGMENTS statement
to grant I/0 privilege to a code segment other than the one containing the

300 SOFTWARE TOOLS FOR 0S/2

initialization code. In this case, do not use the CODE statement, which
would automatically grant I/O privilege to all code segments.

2. The dynamic-link function HercCard is declared as a pascal function
in the calling program of Figure 10-7, and the function definition in
Figure 10-5 conforms to the Pascal calling convention. It returns with
the RET 4 machine instruction to restore the stack). Two specific fea-
tures of the Pascal calling convention are required to be able to call an
I/O privileged routine from non-privileged code. First, the routine
must be passed a fixed number of parameters; second, the function it-
self must restore the stack. Both these features are required because a
function in an I/O privileged code segment is called from a non-
privileged segment through a call gate—as explained later in this sec-
tion.

3. HercCard is defined as a far function. A function contained in an /O
privileged segment that is called from a function in a non-privileged
segment must be defined as far. A far call is required because it is
called from a separate segment, and because the call passes through a
call gate. A function contained in an I/O privileged segment need be
declared as pascal far only if it is called from a non-privileged code seg-
ment. A local function, which is called only from other functions within
the same privileged code segment, can use standard C calling conven-
tions, provided that it is defined as near.

4. The module definition file of Figure 10-6 lists the total number of
words pushed on the stack as parameters when calling the privileged
function HercCard. This number is specified within the EXPORTS
statement, as follows:

EXPORTS
HERCCARD @1 2

As you have seen, the @1 assigns the dynamic-link function an ordinal
value of 1. The 2 specifies the total number of words contained in the
parameters passed to this function. Since HercCard is passed a single
double-word parameter (a far pointer), the value 2 must be specified.
Even if the I/O privileged routine is not a dynamic-link function, you must
provide an EXPORTS statement to specify the number of word

ASSEMBLY LANGUAGE DLLS 301

parameters passed to the function. If, however, the function is not passed
parameters, an EXPORTS statement is not needed.

5. Finally, the system will not run a process that executes I/O privileged
code unless the following command is given in the configuration file:

IOPL=YES

Under OS/2 version 1.1, the default state is IOPL=NO; therefore, you
must specify IOPL=YES if you want to run privileged code.

The function HercCard reads port number 0x03ba (with the IN instruc-
tion). Before reading this port, however, it calls the 0S/2 API function
DosPortAccess (described in Figure 10-9) to request access to this
specific port. After it has completed reading the port, it calls DosPort-
Access again to relinquish port access. Under 0S/2 version 1.1 DosPort-
Access does nothing. The function calls are included to provide
compatibility with the future 80386-specific version of OS/2 (the 80386
processor can restrict the ports a given process can access). Under OS/2
for the 80386, a process will have to call DosPortAccess to obtain access
to a specific port address (or range of port addresses) before an I/O
privileged routine, running under this process, can perform a port read
or write operation. Thus, even though a routine has I/O privilege, it will
not automatically be granted port access.

Under the 80386 version of 0S/2, calling DosPortAccess will also
automatically grant access to the CLI and STI instructions. If the process
uses the CLI or STI instruction, and if it does not call DosPortAccess, it
will be required to call the function DosCLIAccess (explained in Figure
10-10) to explicitly obtain access to these two instructions. Under OS/2
version 1.1, DosPortAccess and DosCLIAccess can be called from either
a privileged or a non-privileged routine within the process that requires
access to the privileged instructions. Under version 1.0, however, these
functions can be called only from a non-privileged routine. Ifa frequently
called dynamic-link function accesses a port, you could call DosPortAccess
once from an initialization routine to request port access and once from
a termination routine to release port access, rather than calling DosPort-
Access each time the dynamic-link function receives control.
(DosCLIAccess could likewise be called from an initialization routine.)

302 SOFTWARE TOOLS FOR 0S/2

Figure 10-9: The DosPortAccess OS/2 function.

DosPortAccess

U Purpose: Requests or relinquishes access to a range of I/O ports for the current
process (the routine that contains the actual port access instructions must run with
/O privilege). This function also grants access to the CLI and STI instructions.

O Prototype: USHORT APIENTRY DosPortAccess

(USHORT usReserved, Areserved value: you must pass a zero value.

USHORT fFunction, Type of access request: a value of 0x0000 re-
quests access to a range of ports, and a value
of 0x0001 relinquishes access to these ports.

USHORT usFirstPort, First port number in the range of ports.

USHORT usLastPort); Last port number in the range of ports (to
specify a single port, this value should be the
same as the usFirstPort parameter).

U Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code.

Figure 10-10: The DosCLIAccess OS/2 function.

DosCLIAccess

U Purpose: Grants permission to the current process to use the CLI machine instruc-
tion (for disabling hardware interrupts) and the STI machine instruction (for
enabling hardware interrupts). The routine that issues either of these instructions
must execute with I/O privilege.

O Prototype: USHORT APIENTRY DosCLIAccess

(VOID);

U Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code.

ASSEMBLY LANGUAGE DLLS 303

As mentioned in Chapter 3, under the protected mode of the 80286
processor, a program thread runs at one of four distinct privilege levels
(also known as rings, where ring 0 is the highest privilege level, and ring
3 is the lowest). The operating system kernel runs at ring 0 and a normal
program thread runs at ring 3. OS/2 is configured so that I/O privilege is
granted to a thread running at ring 2 (or at a higher privilege level); thus,
under 0S/2, an /O privileged routine is simply one that runs at ring 2.
Each code segment is assigned an inherent privilege level. The current
privilege level of a given thread is the privilege level of the code segment
it is currently executing. Exceptions are conforming code segments—
a topic beyond the scope of the present discussion.

Also when a program calls a function that runs at a higher privilege
level (that is, one contained in a code segment marked with a higher
privilege level), the call must pass through a call gate, which is a special
segment descriptor that points to the higher privileged function. Further-
more, the 80286 processor requires that code segments executing at
different privilege levels must have separate stacks. Thus, an 1/0
privileged dynamic-link function represents an exception to the rule that
a dynamic-link function uses the stack belonging to its client program.

Consequently, when a program running at ring 3 calls an I/O privileged
function, the system must copy the function’s parameters onto a new
stack. Since the system needs to know how many words to copy, you must
supply this value in the SEGMENTS statement as seen previously in the
chapter. The stack copying operation also demands that the number of
parameters be fixed and that the called function restores the stack with
the RET n instruction; thus, the privileged instruction must conform to
the Pascal calling conventions.

Under OS/2 version 1.1, the default size of the stack that the system
allocates for an I/O privileged code segment is 512 bytes. As you have seen,
however, a routine that calls an OS/2 API function should have a mini-
mum stack size of 2 kilobytes. Fortunately, you can increase the default
stack size for a privileged routine by calling the OS/2 function
DosR2StackRealloe, described in Figure 10-11 (this function is not
available in OS/2 version 1.0).

DosR2StackRealloc must be called from non-privileged code before the
privileged routine is executed (by the same thread that executes the

304 SOFTWARE TOOLS FOR 0S/2

privileged routine). If the privileged routine is in a dynamic-link library,
the library could provide a dynamic-link function in a non-privileged code
segment that is called by the client program. This function could call
DosR2StackRealloc to adjust the ring 2 stack size for the current thread
(if it has not already been adjusted) and then call the actual privileged
routine. Thus, the client program would not call the privileged routine
directly, but rather would call a non-privileged entry function.

Figure 10-11: The DosR2StackRealloc OS/2 function.

DosR2StackRealloc

O Purpose: Increases the size of a thread’s ring 2 stack (the stack used by an I/O
privileged routine executed by the thread) to the specified value.

O Prototype: USHORT APIENTRY DosR2StackRealloc

(USHORT usSize); The desired stack size in bytes; the re-
quested value must be larger than the cur-
rent size (the original default size is 512

bytes).

O Return Value: If successful, the function returns zero. If an error occurs, it returns
a nonzero error code.

DosR2StackRealloc is one of a large number of API functions that
cannot be called from an I/O privileged routine. Under OS/2 version 1.0,
none of the API functions can be called from I/O privileged code. Under
OS/2 version 1.1, however, a subset of the API functions, conforming
functions, can be called from I/O privileged code. The functions in this
subset are listed in Table 10-2 on the next page.

An T/O privileged routine cannot freely call functions in a non-
privileged code segment. The 80286 processor generally does not allow
code running at one privilege level to call code running at a lower privilege
level). Therefore, if a program or dynamic-link library consists of both
privileged and non-privileged code, a non-privileged routine can call a
privileged routine. The privileged routine, however, must return control
to the non-privileged code; it normally cannot directly call a non-

ASSEMBLY LANGUAGE DLLS 305

privileged function. OS/2 version 1.1, however, provides the function
DosCallback, which allows a privileged function to call certain routines
in non-privileged segments. A function called through DosCallback, how-
ever, suffers the severe constraint that it cannot be passed parameters on
the stack. See the OS/2 technical documentation for more information on
this function.

In general, because of the limited function calling ability of privileged
routines, you should limit the amount of code placed in such a routine.
The major portion of your code should be in non-privileged segments, and
only the sections of code that actually use privileged instructions should
be included in a privileged segment.

Finally, since /O privileged code typically accesses specific port ad-
dresses, it tends to be machine-specific. Such code is ideally placed in
dynamic-link libraries, where the machine-specific implementation
details are hidden from the client application. Also, the flexibility of the
dynamic-linking mechanism allows the programmer to easily update the
privileged code to support new devices, and to provide a set of alternative
routines to match the current hardware configuration.

Table 10-2: API Functions

DosAllocHuge DosLockSeg
DosAllocSeg DosMakePipe
DosAllocShrSeg DosMemAvail
DosBeep DosMkdir
DosBufReset DosMove
DosCallback DosMuxSemWait
DosChdir DosNewSize
DosChgFilePtr DosOpen
DosCliAccess DosOpenSem
DosClose DosPhysicalDisk
DosCloseSem DosPortaccess
DosCreateCSAlias DosQAppType
DosCreateSem DosQCurDir
DosCreateThread DosQCurDisk
DosCwait DosQFHandState

306 SOFTWARE TOOLS FOR 0S/2

Table 10-2: API Functions

DosDelete DosQFileInfo
DosDevConfig DosQFileMode
DosDevIOCtl DosQFSInfo
DosDupHandle DosQHandType
DosEnterCritSec DosQVerify
DosErrClass DosRead

DosError DosReadAsync
DosExecPgm DosReallocHuge
DosExit DosReallocSeg
DosExitCritSec DosResumeThread
DosExitList DosRmdir
DosFileLocks DosR2StackRealloc
DosFindClose DosScanEnv
DosFindFirst DosSearchPath
DosFindNext DosSelectDisk
DosFlagProcess DosSemClear
DosFreeModule DosSemRequest
DosFreeSeg DosSemSet

DosFSRamSemClear DosSemSetWait
DosFSRamSemRequest DosSemWait

DosGetCp DosSendSignal
DosGetDateTime DosSetCp
DosGetEnv DosSetDateTime
DosGetHugeShift DosSetFHandState
DosGetInfoSeg DosSetFileInfo

DosGetMachineMode DosSetVecDosSetFileMode
DosGetModHandle DosSetVerifyDosSetFSInfo

DosGetModName DosSizeSegDosSetMaxFH
DosGetPid DosSleepDosSetPrty
DosGetPPid DosSubAllocDosSetSigHandler
DosGetProcAddr DosSubfree

DosGetPrty DosSubSet

DosGetResource DosSuspendThread

ASSEMBLY LANGUAGE DLLS

307

Table 10-2: API Functions

DosGetSeg
DosGetShrSeg
DosGetVersion
DosGiveSeg
DosHoldSignal
DosKillProcess
DosLoadModule

DosTimerAsync
DosTimerStart
DosTimerStop
DosUnlockSeg
DosWrite
DosWriteAsync

GLOSSARY

310 SOFTWARE TOOLS FOR 0S/2

This glossary defines many of the technical terms that have been used in
this book, as well as other words you may encounter while working with
dynamic-link libraries and OS/2.

abstraction Creation of a function or new data type that can be used
without knowledge of the details of the function implementation or data
type structure. See also encapsulation.

alias A segment selector that references the same memory segment as
another selector (the corresponding segment descriptors will contain the
same physical address, but may contain different access rights).

anchor block handle A numeric value that identifies a process to the
Presentation Manager (returned by WinInitialize).

ANSI American National Standards Institute; a body that defines stand-
ards for the computer industry. For example, ANSI codes are a standard
set of escape sequences that can be embedded in video output to control
the console.

API The Application Program Interface; a set of services, implemented
as dynamic-link libraries, provided by OS/2 and the Presentation
Manager for application programs.

argument A value passed to an operating system command from the
command line, or passed to a function within a program; same as
parameter.

ASCII American Standard Code for Information Interchange; the encod-
ing scheme that represents the character set used by microcomputers.
The codes between 0 and 127 are standard among all computer manufac-
tures; in addition, IBM-compatible microcomputers employ the codes
between 128 and 255 to represent an extended set of characters.

asynchronous Two or more procedures are said to by asynchronous if
they occur concurrently, but without timing relationships. Specifically, if
two procedures are asynchronous, when a particular instruction is ex-

GLOSSARY 311

ecuted in one procedure it is not possible to predict which instruction is
currently being executed in the other procedure. See also synchronous.

atomic Indivisible; describes a sequence of processor operations that
cannot be interrupted, typically those required to execute a single
machine instruction.

automatic data segment The physical segment containing the initial-
ized, uninitialized, and constant data defined by a program or dynamic-
link library; for an application program, it also contains the program stack
and heap.

automatic variable A C program variable declared within the scope of
a function without using the static or extern keywords; automatic vari-
ables are private to each instance of a function, and are stored within the
function’s stack frame or machine registers.

background program A program executed through the RUN con-
figuration command, the DETACH command line instruction, or froma
parent process. The background program is not attached to a screen
group, and does not normally interact with the user.

batch file A file containing a sequence of instructions to be executed by
a command interpreter; these files have the .BAT extension in a real-mode
environment, and the .CMD extension in a protected-mode environment.

BIOS Basic Input-Output System; the low-level code that controls /O
devices, normally implemented in the read-only memory (ROM) supplied
with the computer. Usually, BIOS code can run only in real mode.

bitmap A Presentation Manager data structure contained in a file or in
memory that stores a graphic image as a sequence of on or off bits
indicating the actual pixel values used to create the image on the screen
or other output device. See also metafile.

312 SOFTWARE TOOLS FOR 0S/2

block To wait for an event without consuming processor cycles. For
example, a thread can block while waiting for a shared resource, and will
be released by the operating system when the resource is available.

boot disk The disk drive that contains the code used to initialize the
computer and load the operating system when the system is first reset or
powered on.

bound program Same as dual-mode program.

buffer An area in memory for temporarily storing data that is read or
written in blocks; used to increase the efficiency of data transfer opera-
tions.

busy waiting Creating a delay, or waiting for a computer event, by
executing a non-productive program loop.

cache A high speed storage area used to improve the efficiency of
accesses to a slower speed storage medium. For example, temporarily
storing data in a disk cache in random access memory can reduce the
number of accesses required to transfer contiguous blocks of disk data.

call gate A special type of segment descriptor that allows a process to
call a subroutine contained within a higher privileged code segment.

CGA Color Graphics Adapter; a standard video controller that provides
graphics with a maximum resolution of 640 by 200 pixels.

child process A process started by another process (its parent).

class A set of attributes, including the address of a window procedure,
that defines the behavior of a Presentation Manager window. A class can
be registered through the WinRegisterClass function, and every window
must be assigned to a class when it is created. A window is known as an
instance of the class to which it belongs.

click To rapidly press and release a mouse button.

GLOSSARY 313

client window The Presentation Manager window created by Win-
CreateStdWindow that is typically managed by the application program
and used to display program data; it is a child of and is owned by the frame
window.

client process A process that references a dynamic-link library.

clip To eliminate data written to the screen or other output device that
falls outside of a given boundary.

clipboard A Presentation Manager facility for transferring data within
a single application or among separate applications.

code page Atable used to define a character set for a particular country.

command processor A program that executes operating system com-
mands typed at a prompt. By default, the command processor for
protected-mode screen groups is CMD.EXE, and for the real-mode screen
group is COMMAND.COM.

compatibility box The OS/2 screen group for running real-mode MS-
DOS programs; also known as the 3.x box.

concurrency The simultaneous execution of two or more sequences of
machine instructions. See also multitasking.

configuration file The file CONFIG.SYS, which contains configuration
commands that are read and processed by OS/2 during system initializa-
tion.

control window A Presentation Manager window used to receive input
or perform a specific function, such as a scroll bar owned by the frame
window or a push button owned by a dialog box. Control windows typically
send messages to their owners to report user input or other relevant
events.

314 SOFTWARE TOOLS FOR 0S/2

cooked mode A state of a character device driver in which it processes
certain characters within the data stream as control codes; also known as
the ASCII mode. See also raw mode.

CPU The central processing unit, or the microprocessor belonging to a
microcomputer.

critical error A program error due to an external condition at runtime,
typically a condition that can be corrected by the user (such as an open
door on a disk drive or a printer that is turned off-line).

critical section A body of code accessing a program object (such as a
memory variable) that cannot be shared by more than one simultaneous
task.

cursor Ahighlighted area that marks a particular character position on
the screen, typically indicating the point at which new characters are
inserted into textual data. In some of the literature, this term refers to
the mouse pointer.

daemon (1) A supernatural being in Greek mythology that is inter-
mediate between man and the gods; (2) a background program that
performs a utility task without direct interaction with the user.

deadlock A situation in which one or more tasks are blocked, waiting
for an event that cannot occur.

declaration In C, a construct that specifies the name, data type, and
other attributes of a variable or function. See also definition.

definition In C, a construct that initializes and reserves storage for a
variable, or that specifies the name, return type, parameters, and body
(the actual code) of a function. See also declaration.

desktop window The entire Presentation Manager screen, which is the
parent of all top-level windows.

GLOSSARY 315

descriptor A structure in memory maintained by the operating system,
which contains the physical address of a segment as well as other
information regarding this segment.

descriptor table A table in memory containing a collection of segment
descriptors.

device context Under the Presentation Manager, the physical device
associated with a presentation space. See also presentation space.

device driver A program that translates operating system commands
into the device-specific code necessary to control a given device.

DGROUP The name of the group of logical segments that constitute the
automatic data segment.

dialog box A temporary Presentation Manager window that contains a
set of control windows for displaying data and obtaining information from
the user.

disjoint descriptor space A range of slots within all local descriptor
tables reserved for referencing dynamic-link library segments, as well as
shared data segments. :

DOS compatibility box Same as compatibility box.

double click To click a mouse button twice in rapid succession, while
the mouse pointer remains within the same screen area.

drag To press a mouse button and hold the button down while moving
the mouse.

dual-mode program A specially prepared program that can run under
MS-DOS, in the compatibility box of OS/2, or within a protected-mode
screen group; the same as a bound program.

dynamic linking A linking method in which the code and data belong-
ing to an external function are stored in a separate disk file and are not

316 SOFTWARE TOOLS FOR 0S/2

bound to the program until the program is executed. See also static
linking.

dynamic-link library A collection of subroutines stored in a disk file
(with the .DLL extension), which may be loaded into memory and called
by application programs.

EBCDIC Extended binary coded decimal interchange code; an 8-bit code
for character representation, typically used on IBM minicomputers and
mainframes.

EGA Enhanced Graphics Adapter; a standard video controller that
provides graphics with a maximum resolution of 640 by 350 pixels.

encapsulation Refers to hiding the details of the implementation of a
function or data structure. According to the ideal of code and data
encapsulation, the application programmer is free to call the function or
use the data structure, but does not have access to the inner details of the
code or data. See also abstraction.

entry point name The name of a dynamic-link function as it is listed
in the header of the dynamic-link library (and also within the header of
the client program, unless it is referenced by ordinal value). See also
external name.

entry table A list within the header of a dynamic-link library file con-
taining the entry point address of each dynamic-link function defined in
the library; this table is indexed by the ordinal values of the functions.

exception A processor error (such as an attempt to divide by 0) or other
internal processor condition, which generates an interrupt and transfers
control to a software routine designed to handle the event.

expanded memory Memory available to real-mode programs above the
normal 640-kilobyte limit. This memory is contained on special adapter
cards and is accessed through a hardware paging mechanism.

GLOSSARY 317

export To list a dynamic-link function under the EXPORTS statement
of the module definition file so that it can be called by a client program.

Extended Edition A version of OS/2 that contains operating system
extensions developed by IBM, such as a data base manager or a com-
munications manager.

extended memory Memory contained in 80286/80386 machines at ad-
dresses above 1 megabyte. This memory space can be directly accessed
only in protected mode.

external function In a C program, a function declared within the
current source file that is defined within another source module; it can
be statically or dynamically linked to the current module.

external name The name of a dynamic-link function used within the
client program source code.

external reference A record within an object module of the name of a
code or data item reference by the module but defined within another
module.

external variable A C program variable declared outside the scope of
a function.

family API The OS/2 API functions that can be called by dual-mode
programs when they are running in real mode; the family API functions
form a subset of the full API.

far address An address containing both a 16-bit segment selector (in
protected mode, or a segment address in real mode) and a 16-bit offset
from the beginning of this segment. See also near address.

fast-safe semaphore A special type of semaphore that allows a
dynamic-link library to synchronize the activities of multiple clients; this
form of semaphore offers the speed of a RAM semaphore, but can be

318 SOFTWARE TOOLS FOR 0S/2

cleared by a termination routine if the process terminates abnormally.
See also semaphore, RAM semaphore, and system semaphore.

file handle A number used to identify a file opened under OS/2.

focus window The Presentation Manager window to which the system
sends all keyboard messages.

frame window The top-level Presentation Manager window created by
WinCreateStdWindow, which owns and is the parent of the other windows
generated by this function.

gigabyte 230, or approximately one billion, bytes.

global data segment A data segment defined by a dynamic-link
module that is shared by all client processes. See also instance data
segment.

global descriptor table A table in memory containing segment
descriptors that can be accessed by all processes in the system. See also
local descriptor table.

global initialization Execution of a dynamic-link library initialization
routine only when the module is referenced by the first client process. See
also instance initialization.

handle A numeric value returned by many OS/2 and Presentation
Manager functions used to identify the owner of a program object (such
as an open file or a Presentation Manager window) when subsequent
function calls are made.

hardware interrupt A processor event triggered by an external device
(such as the keyboard) or by the processor itself, which temporarily
suspends the execution of the current process and causes branching to a
routine that provides an appropriate service.

header ﬁle Same as include file.

GLOSSARY 319

heap A block of memory out of which smaller blocks of memory are
dynamically allocated. In C, functions such as malloc allocate blocks of
memory from the C program heap.

Hercules Graphics Card (HGC) A video adapter (produced by Her-
cules Computer Technology) that supports the standard monochrome text
mode, as well as a high-resolution monochrome graphics mode (720 by
348 pixels).

hexadecimal A base-16 number system.

hotkey A keystroke that activates a background program (usually a
monitor), switches screen groups, or invokes the Task Manager.

hot spot Asingle, specially designated pixel within a mouse pointer; the
position of the mouse pointer is specified as the coordinates of the hot
spot.

huge memory allocation A block of allocated memory consisting of
more than one segment. The segments may not be contiguous in memory,
but the selectors for these segments differ numerically by a constant
amount.

icon A fixed-size graphic image that you can create and display within
a Presentation Manager application; also, an application window is
represented by an icon when it is minimized.

import library A library file that resolves references to dynamic-link
functions by supplying records that contain the module name and func-
tion entry point, but not the actual code.

include file A file that the preprocessor merges into a C program file in
response to the #include directive.

indirection In the C language, accessing the value of a variable or
calling a function through a pointer that contains the address of this
variable or function.

320 SOFTWARE TOOLS FOR 0S/2

instance data segment A data segment defined by a dynamic-link
library that is not shared by multiple client processes; the system loads
a separate copy of an instance data segment for each new client.

instance initialization Execution of a dynamic-link library initializa-
tion routine each time it is referenced by a new client process. See also
global initialization.

interprocess communication Sending signals or exchanging data
among separate threads or processes.

interrupt A software, hardware, or processor generated event that
passes control to a routine in memory, which provides a service or handles
a condition.

I/O privilege Permission granted to a specific code segment to issue
direct port I/O instructions or to enable or disable hardware interrupts.

kernel The core operating system code that operates at the highest
privilege level; also, the portion of the API exclusive of the Presentation
Manager and other operating system extensions.

kernel application A protected-mode program that calls only the basic
system services (the Dos, Kbd, Mou, and Vio functions); it does not use
the special services of the Presentation Manager or other operating
system extensions.

kilobyte 2'°, or 1024, bytes.

library file (.LIB file) A file that stores one or more object modules; it
is created and maintained by the Microsoft LIB utility. The LINK program
can extract referenced object modules directly from a library file. It is not
the same as a dynamic-link library (.DLL file).

loadtime dynamic linking A form of linking in which all dynamic-link
modules referenced by an executable file (a program or dynamic-link

GLOSSARY 321

library) are automatically read into memory when the file is loaded. See
also runtime dynamic linking.

local descriptor table A table in memory containing descriptors that
can be accessed by a specific process. See also global descriptor table.

logical segment A term used in this book to refer to a segment defined
by the compiler or assembler; if several logical segments are placed in a
segment group, the linker generates only a single physical segment
containing these logical segments. See also physical segment.

machine instruction A single binary instruction processed directly by
the CPU. In assembly language, a machine instruction is represented by
mnemonic symbol, such as MOV or JMP. A high-level language instruc-
tion ultimately generates one or more machine instructions.

MAKE A utility for preparing a program, which reads a script from a
text file (known as a MAKE file) and performs only those steps necessary
to build an updated version of the program.

maximize To enlarge a Presentation Manager window to its maximum
size, which fills most of the screen.

maximize box A Presentation Manager control window displaying an
upward pointing arrow; when the user clicks the mouse with the pointer
within this control, the owner (or parent) window is maximized.

MDA Monochrome Display Adapter; a video adapter that supports the
standard monochrome text mode (80 columns by 25 lines).

220, or approximately 1 million, bytes.

megabyte
memory model For a C program, the set of default address types (near
or far) used for variables, pointers, and functions, and the manner in
which segments are arranged in memory.. The memory model can be
small, medium, compact, large, or huge.

322 SOFTWARE TOOLS FOR 0S/2

menu A Presentation Manager control window used to display a list of
commands; the user issues a command by selecting the associated item
from the menu.

message box Atemporary Presentation Manager window that displays
a message and pauses for user input.

message queue A data structure associated with a Presentation
Manager program thread, which is used to store messages posted to any
of the windows created by that thread.

metafile A Presentation Manager data structure contained in a disk file
or in memory that stores a graphic image as the sequence of commands
required to create the image. See also bitmap.

minimize To reduce a Presentation Manager window to an icon on the
screen.

minimize box A Presentation Manager control window displaying a
downward pointing arrow; when the user clicks the mouse with the
pointer within this control, the owner (or parent) window is minimized.

module Aterm referring either to the object code generated from a single
source file (an .OBJ file or the contents of such a file within a .LIB file),
or to a dynamic-link library (a .DLL file).

module definition file A text file (with the .DEF extension) used to
specify a wide variety of features when generating a program or dynamic-
link library with the linker.

monitor An OS/2 program that processes the stream of characters
passing to or from a character device.

mouse An input device that the user moves on the desk surface, causing
a pointer to move on the screen; a mouse has 1 to 3 buttons that transmit
information to the program.

GLOSSARY 323

multiprocessing Simultaneous execution of code by more than one
processor in a single computer.

multitasking Simultaneous execution of more than one sequence of
machine instructions.

multiuser Refers to a single computer connected to more than one
terminal, which allows several users to share the same processor. OS/2 is
not a multiuser system.

name table A list within the header of a dynamic-link library file con-
taining the name and ordinal value of each dynamic-link function defined
in the file.

near address An address consisting of only a 16-bit offset. See also far
address.

nonshared data segment Same as an instance data segment.

object file A file containing the binary machine instructions and data
generated by the C compiler or the assembler from a single source file.

object window A Presentation Manager window used to receive mes-
sages; an object window is not displayed on the screen, does not receive
- input messages, and does not have a parent.

offset A 16-bit displacement that must be combined with a 16-bit seg-
ment value to access a memory location under the Intel microprocessor
architecture.

ordinal value A number that identifies the entry point of a function
within a dynamic-link library; it is an index into the entry table within
the header of the dynamic-link library.

over-commitment (of memory) Allocation of more memory than is
physically present in the machine; accomplished by swapping segments
between memory and secondary storage on a disk.

324 SOFTWARE TOOLS FOR 0S/2

parameter A value passed to an operating system command from the
command line, or passed to a function within a program; same as argu-
ment.

parent process A process that starts another process (its child).

parent window A Presentation Manager window within which one or
more child windows are displayed.

pascal conventions The naming and calling conventions used for a
function declared with the pascal keyword; namely, (1) parameters are
pushed on the stack in the same order that they are listed in the function
prototype; (2) the function removes the parameters from the stack; (3) the
function has a fixed number of parameters; (4) the function name is
converted to uppercase before being written to the object file.

path The complete specification of the location and name of a disk file,
including the drive, directory, and file name.

physical segment A term used in this book to refer to a code or data
segment allocated by the system and accessed through a segment selector;
a single physical segment may consist of several logical segments defined
by the compiler or assembler. See also logical segment.

pipe A form of interprocess communication under OS/2 that allows two
related processes to exchange a serial stream of data.

pixel Picture element; smallest unit on the screen that can be controlled
(turned on or off, or assigned a color or intensity).

point To place the hot spot of the mouse pointer on a given item or within
a given area.

pointer (1) A program variable that contains the address of another
variable or of a function; (2) a fixed-size graphic image that is moved on
the screen in response to movements of the mouse, or in response to
program function calls.

GLOSSARY 325

poll To test for the occurrence of a specific event; for example, an
inefficient program might repeatedly poll for the arrival of a character
rather than blocking.

port An address used to communicate with a peripheral device.
post To place a message in a Presentation Manager message queue.

pragma A statement within a C program that controls the operation of
the compiler.

preempt To take control away from a particular task in a multitasking
system (rather than letting the task voluntarily yield control). OS/2 is a
preemptive multitasking system.

Presentation Manager An operating system extension provided with
0S/2 versions 1.1 and later, which provides a windowed, graphics inter-
face similar to Microsoft Windows.

Presentation Manager application A program written specifically
for the Presentation Manager, which performs the necessary initializa-
tions and calls Presentation Manager API functions.

presentation space The abstract space onto which a Presentation
Manager application displays data; it must be associated with a physical
device (known as the device context). A presentation space is main-
tained as a data structure by the system, and is assigned device-inde-
pendent attributes, such as a current set of colors and a current font.

priority A value assigned to each thread in the system that allows the
scheduler to determine which thread among those ready to run should be
dispatched.

private function A term used in this book to refer to a function within
a dynamic-link library that can be called only by other functions within
the library, and cannot be called by client program. See also public
function.

326 SOFTWARE TOOLS FOR 0S/2

privilege level The set of permissions associated with a particular
segment. There are four privilege levels, numbered from 0 (the highest
level, reserved for the operating system) to 3 (the lowest level, for applica-
tion programs). A given privilege level is also known as a ring (such as
ring 3).

process A single instance of the execution of a program; under 0S/2, a
process is also the unit of ownership of objects such as memory segments
and file handles.

program A collection of code and data stored in an executable file and
loaded into memory at runtime.

protect To prevent a given process from corrupting other processes in a
multitasking system; OS/2 uses the hardware protection mechanisms
provided by the 80286 processor.

protected mode A processor state of the 80286/80386 processors that
allows the operating system to safely run multiple tasks and provide
virtual memory; same as virtual mode. See also real mode.

protection fault A processor exception generated when an application
attempts to violate the protection mechanisms enforced in the protected
mode. See also exception.

prototype In C, a function declaration that includes a list of the names
and types of the parameters.

public function A term used in this book to refer to a function within a
dynamic-link library that is exported and can therefore be called by a
client program. See also private function.

queue A form of interprocess communication provided by 0S/2; specifi-
cally, an ordered collection of messages that have been sent from one or
more processes to a single receiving process (not related to a Presentation
Manager message queue).

GLOSSARY 327

RAM Random access memory; the randomly addressable, volatile main
memory used to store code and data.

RAM semaphore A semaphore stored in a variable defined by a pro-
gram,; this type of semaphore is fast, but is suitable for use only within a
single process. See also semaphore, fast-safe semaphore, and system
semaphore.

raw mode A state of a character device driver in which it passes all
characters as literal values, and does not respond to control codes em-~
bedded in the data stream; also known as binary mode. See also cooked
mode.

real mode A processor state of the 80286/80386 processors that emu-
lates the operation of the 8086/8088 processors. See also protected
mode.

real-mode screen group Same as compatibility box.

reentrant A body of code is reentrant if it can be executed more than
once at a given time.

registers Locations used to store values within the processor; each
register has a label, such as AX and CS, and is used for a specific set of
purposes.

relocation A process performed when loading a program or dynamic-
link library, in which the actual addresses are written to all unresolved
address references within the program segments; the addresses may be
of code or data items within the current executable file or within a
dynamic-link library.

relocation record Arecord that allows the loader to supply the address
of a given object to all references to this object within a segment. Each
segment within a program or dynamic-link library has its own table of
relocation records; a given relocation record identifies the addressed
object (a code or data item within the current executable file, or a

328 SOFTWARE TOOLS FOR 0S/2

dynamic-link function) and contains a pointer to a list of all references to
this object within the segment.

resource A form of read-only data stored within a special segment in a
program file or dynamic-link library. This data is inserted directly into
the file by a resource compiler, and is loaded into memory when required
by an application.

resource compiler An OS/2 utility that translates a text script into
binary resource data, and inserts the data directly into a program file or
dynamic-link library.

resource script A text file that defines a set of OS/2 resources.

ring Same as privilege level.

ROM Read only memory; non-volatile memory supplied with microcom-
puters that normally contains code for controlling hardware devices.

runtime dynamic linking A form of linking in which dynamic-link
libraries are explicitly loaded by a program through the DosLoadModule
system service. See also loadtime dynamic linking.

runtime library A collection of functions that can be called by a pro-
gram, typically supplied by a compiler.

scan code A hardware-specific code emitted by the keyboard to indicate
the key that has been pressed or released.

scheduler The portion of the operating system that apportions CPU
time among multiple threads, and determines the priority of each thread.

screen group Acollection of processes that share a single virtual screen,
keyboard, and mouse; same as session.

GLOSSARY 329

scroll To move a block of data displayed within a Presentation Manager
window toward one of the four window borders.

scroll bar APresentation Manager control window used to scroll textual
data within a window. A horizontal scroll bar is typically located along the
lower edge of its parent and scrolls text horizontally; a vertical scroll bar
is typically located along the right edge of its parent and scrolls text
vertically.

segment A variable length block of allocated memory (under the 80286
processor, its maximum length is 64 kilobytes); in protected mode, each
segment has an associated set of access rights.

segment descriptor Same as descriptor.

selector The virtual address of a memory segment, which serves as an
index into a table containing the actual physical address (the descriptor
table); to address a segment, the corresponding selector is loaded into a
segment register such as DS.

semaphore A software flag used to synchronize the activities of two or
more threads of execution. See also fast-safe semaphore, RAM
semaphore, and system semaphore.

serialize To assure that a given object can be accessed by only one thread
at a time; access to an object is typically serialized by means of a
semaphore.

server The process that owns an OS/2 queue and receives the queue
messages.

session Same as a screen group.
session manager A system utility that manages switching among

screen groups; in OS/2 version 1.1, this task is performed by the Presen-
tation Manager.

330 SOFTWARE TOOLS FOR 0S/2

shared data segment Same as a global data segment.

sizing border A Presentation Manager control window that forms a
wide border around its parent window; it can be used to adjust the size of
the parent window with the mouse.

spooler Abackground program that stores printer output in temporary
files and prints these files in a given order.

stack A data structure in memory that holds the parameters and local
variables belonging to a function while the function is active. It is also
used for the temporary storage of register contents or memory variables.

stack frame The area of the stack containing the local variables, return
address, and parameters associated with a given function call.

static A C storage class; for a variable declared within the body of a
function, it causes the variable to retain its value between function calls;
for a variable or function declared outside a function, it renders the object
accessible within the portion of the current file following the declaration,
but not within other files.

static linking The conventional linking method, in which the code and
data belonging an external function are physically bound to the program
file by the linker. See also dynamic linking.

string In C, an array of characters terminated with a NULL character
(\0").

stub loader The routine within a dual-mode program that receives
initial control if the program is loaded under real mode; it loads the
real-mode versions of all dynamic-link functions and prepares the ex-
ecutable image to run under real mode.

stub program Aroutine within a protected-mode program that receives
control if the user attempts to load the program under real mode; it
typically prints an error message and terminates the process.

GLOSSARY 331

subsystem A set of dynamic-link functions that control a shared device
or other object, such as the OS/2 video management services (the Vio
functions).

swapping The temporary storage of memory segments on disk to make
room for other segments. This mechanism is useful when memory is
overcommitted.

synchronous Two procedures are said to be synchronous if their actions
occur in a specific order. For example, if one procedure waits at a given
point until a second procedure completes, these procedures are said to be
synchronous. See also asynchronous.

system semaphore A semaphore managed by the system that can be
accessed (through its name) by multiple processes; if a process terminates
while holding a system semaphore, it is automatically cleared. See also
semaphore, fast-safe semaphore, and RAM semaphore.

task Ageneral term referring to one of the concurrent threads or proces-
ses of a multitasking system.

Task Manager A Presentation Manager utility that allows the user to
switch to a selected program, to terminate a process, or to shut down the
system.

thread The basic dispatchable entity under OS/2; the execution of a
series of machine instructions within a program.

time slice The period of time that the scheduler allows a thread to run
before it grants CPU time to another thread of equal priority.

timeout To exhaust the designated waiting period for a given event; for
example, if the system is unable to write to the printer, it will generally
wait for a specified timeout period before returning an error code.

332 SOFTWARE TOOLS FOR 0S/2

title bar APresentation Manager control window typically located along
the top edge of its parent; the title bar contains a text title and is used for
moving the parent window with the mouse.

top-level window A Presentation Manager window that is the direct
child of the desktop window; also known as a main window.

virtual memory The allocatable memory space in protected mode,
which may exceed the amount of physical memory installed in the
machine. Segments within this space may be temporarily swapped to a
disk to make room for segments that are currently being accessed.

virtual mode Same as protected mode.

VGA Video Graphics Array; a standard video controller that normally
provides a maximum graphics resolution of 640 by 480 pixels.

window The fundamental object owned by a Presentation Manager
application, which can receive messages and is usually associated with a
rectangular area on the screen used to interact with the user.

window class See also class.

window procedure The function within a Presentation Manager ap-
plication that processes the messages sent to a given window (when a
message is sent, the system calls this procedure, passing the content of
the message as parameters).

word A two-byte data value; under Intel processors it is stored in
memory with the low-order byte first (that is, at the lower address),
followed by the high-order byte.

BIBLIOGRAPHY

334 SOFTWARE TOOLS FOR 0S/2

Comer, D. Operating System Design, the XINU Approach. Englewood
Cliffs, NJ: Prentice-Hall, 1984.

Cortesi, D. The Programmer’s Essential OS/2 Handbook. Redwood
City, CA: M & T Books, 1988.

Duncan, R. Advanced OS/2 Programming. Redmond, WA: Microsoft
Press, 1989.

Harbison, S. and Steele, G. C: A Reference Manual. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

IBM. IBM OS/2 Technical Reference Version 1.0 (part number
6280201). IBM Technical Directory, P.O. Box 2009, Racine, WI 53404-
3336: IBM Corporation, 1988.

Intel. 80286 and 80287 Programmer’s Reference Manual. Santa Clara,
CA: Intel, 1987.

Intel. 80286 Operating Systems Writer’s Guide. Santa Clara, CA: Intel,
1986.

Kernighan, B. and Ritchie, D. The C Programming Language, 2nd ed. v
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Lafore, R. Assembly Language Primer for the IBM PC & XT. New York,
NY: New American Library, 1984,

Letwin, G. Inside OS/2. Redmond, WA: Microsoft Press, 1988.

Microsoft. Mixed-Language Programming Guide. (supplied with high-
level language compilers) Redmond, WA: Microsoft Corporation, 1987.

Microsoft. Operating System /2 Programmer’s Toolkit, Programmer’s
Learning Guide and Programming Tools. Redmond, WA: Microsoft Cor-
poration, 1988.

Microsoft. Operating System /2 Programmer’s Toolkit, Programmer’s
Reference. Redmond, WA: Microsoft Corporation, 1988.

Microsoft. The Microsoft OS/2 Programmer’s Reference Library
(Volume 1, 2, and 3). Redmond, WA: Microsoft Corporation, 1989.

BIBLIOGRAPHY 335

Petzold, C. Programming the OS /2 Presentation Manager. Redmond,
WA: Microsoft Press, 1989.

Strauss, E. Inside the 80286. New York, NY: Prentice-Hall, 1986.

Young, Michael J. MS-DOS Advanced Programming. Alameda, CA:
SYBEX, 1988.

Young, Michael J. Programmer’s Guide to 0S /2. Alameda, CA: SYBEX,
1988.

Young, Michael J. Programmer’s Guide to the OS/2 Presentation
Manager. Alameda, CA: SYBEX, 1989.

INDEX

338 SOFTWARE TOOLS FOR 0S/2

.286 directive, 284

A
abstraction (of code and data), 89
_acrtused, 111, 212, 222
anchor block handle, 49, 55
API (application program inter-
face), 5
categories of, 6
using, 6-14
API.LIB, 252-258, 269-270
assembly language, 181, 277-305
for privileged routines, 291-
305
guidelines, 278-291
/ASu (compiler flag), 132, 223
/ASw (compiler flag), 19, 21,131,
223, 273
automatic data, 112
automatic data segment, 147-148

B

_beginthread (C library func-
tion), 204-208, 223

BIND utility, 252-258, 270

BIOS, 13

bound applications. See dual-
mode programs

C
/c (compiler flag), 15
C runtime libraries, 5, 16, 199-
225
and dual-mode programs,
270

for multiple-thread applica-
tions, 200-208
for multiple-thread DLLs
and applications, 213-223
for single-thread DLLs, 208-
213
summary of, 224
versions of, 199-200
See also library files
call gate, 87, 300
CALL instructions, 70, 73, 75-
79, 81-82, 87
class. See window class
client window, 55, 58
.CODE directive, 285
CODE statement (module defini-
tion file), 299
coding, guidelines, 109, 111-122
compiling, 14-15, 19-21, 28,
70-71
flags for, 15, 19, 21
CRTLIB.DLL, 213-223

D

data categories (in C), 112

.DATA directive, 285

DATA statement (module defini-
tion file), 127, 146-149, 290

declarations, 9-10, 122

descriptor table, 150-154

device sharing, 115

DGROUP, 289

disjoint descriptor space, 236-240

Dos functions, 6-7

DOSCALLS.LIB. See 0S2.LIB

DosCLIAccess (0S/2 function),
301-302

DosCreateThread (0S/2 func-
tion), 24-25, 204-206

DosDevIOCtl (OS/2 function),
13,120-121

DosExit (0S/2 function), 9, 204

DosExitList (OS/2 function), 194-
196

DosFreeModule (OS/2 function),
234-235

DosGetInfoSeg (0S/2 function),
257

DosGetMachineMode (OS/2 func-
tion), 256-257

DosGetProcAddr (OS/2 func-
tion), 230-233

DosLoadModule (0S/2 function),
228-230

DosOpen (0OS/2 function), 120,
286-287

DosPortAccess (0S/2 function),
301-302

DosR2StackRealloc (0S/2 func-
tion), 303-304

DosSemClear (0OS/2 function),
33-35

DosSemRequest (0S/2), 33-34

DosSetSigHandler (OS/2 func-
tion), 197-198

DosSleep (0S/2 function), 7, 36

DosWrite (OS/2 function), 121

DS register, 21, 131-132, 289

dual-mode programs, 252-258

INDEX 339

dynamic-link object record, 72,
74

E

END statement, 176,181, 212

_endthread (C library function),
204-208, 223

entry point (of program), 176-
177,181,183

error handling, 12, 287

for Presentation Manager,
54

exit list. See termination routines

EXPORTS keyword (module
definition file), 65-66, 127-128,
130-131, 290, 300

Extended Edition (of 0S/2), 88

extensions (to OS/2), 88

external functions, 2, 5-6, 70-71

EXTRN keyword, 183, 290

F

family API, 256-257, 269-270
far (C keyword), 116-117
fonts, 39

frame window, 56

G

global data segments, 80, 87,
112,148-154 ,

/G2 (compiler flag), 15, 273

global descriptor table (GDT),
152-174

Gpi functions, 50

340 SOFTWARE TOOLS FOR 0S/2

/Gs (compiler flag), 27, 132
/Gw (compiler flag), 66

H

handle, printer, 120

header files, 0S/2, 9-12, 65, 96,
122-124, 207
for assembly language, 288

HEAPSIZE statement (module
definition file), 65

Hercules graphics card, 291-298

I

IMPLIB utility, 97, 130, 133

import library. See library files

import record, 17

IMPORTS statement (module
definition file), 71-72, 74-75,
97, 138-139

include files. See header files

initialization of Presentation
Manager, 49

initialization routines (for
dynamic-link libraries), 81,
176-187, 212, 230

instance data segments, 80, 87,
112,127,143-148

interprocess communication, 28-
36. See also semaphores

interrupts, 5

I/O privileged routines, 13, 291 -
305 :

K ;
KbdCharlIn (OS/2 function), 8
KBDKEYINFO (structure), 11

L
LIB environment variable, 17
LIBPATH configuration com-
mand, 17, 78
library files, static, 71
import, 16-17, 71-72, 74, 97,
133, 204
See also C runtime libraries
LIBRARY statement (module
definition file), 96, 126-127,
184-186, 290
linking, static, 14-21, 28,
vs. dynamic, 71-77
LLIBCDLL.LIB, 208-213
LLIBCMT.LIB, 200-208
load on call segments, 81
loading programs, 78-83
loadtime dynamic linking, 70,
227
local descriptor table (LDT), 152,
237-240
_loadds (C keyword), 117

M

MAKE utility, 66-67

macro definitions, 12

menus (Presentation Manager),
56-57, 63-65

memory accesses, 13

memory models, 147

message queue (Presentation
Manager), 55, 58-60

messages (Presentation
Manager), 55, 58-60

.MODEL directive, 284, 289

module, 96

module definition files (DEF),
17-19, 65-66, 125-131, 138-
139, 290

multitasking, 19-28, 111-112, 215

/MX flag, 186, 290-291

N

NAME statement (module defini-
tion file), 18-19, 65, 96, 126-
127

/NOI (linker flag), 15-16

/NOD (linker flag), 16, 204

nonshared data segment. See in-
stance data segment

o

object modules, 71-73

ordinal values, 81-82,128-131,
140, 232-233

0S2.H (header file), 9-10,17

0S2.LIB, 16-17, 71-72, 97, 204

P
pascal (C keyword), 116
Pascal conventions, 66, 300
pointers to functions, 233-234,
247-249
ports, 13, 298, 301-302
preload segments, 81
Presentation Manager,
and dynamic linking, 38-39
architecture, 40
programs for, 37-67
presentation space, 62-63
printing, 115, 120-122
private functions, 115

INDEX 341

privilege levels, 86-87, 303. See
also I/O privileged routines

process, 27-28

protected-mode programs, 1-36

restrictions on, 13

PROTMODE keyword (module
definition file), 19

PUBLIC directive, 288, 290-291

public functions, 115

Q

queue, message. See message
queue (Presentation Manager)

R

real-mode memory addressing,
151

real-mode version of DLL, 251-
275. See also dual-mode
programs

guidelines for, 269-271
writing of a, 258-271

reentrant vs. nonreentrant code,
27, 204

registers, saving, 118, 288-289

relocation, 237

relocation record, 75-76, 78, 81-
82,130

resident functions, 87

resource compiler, 66-67

resources (OS/2 and Presenta-
tion Manager), 38-39, 64-65,
66-67

returning values (from assembly
language routines), 290

rings. See privilege levels

342 SOFTWARE TOOLS FOR 0S/2

runtime dynamic linking, 70,
227-249
advantages of, 235-236
basic steps for, 228-235
example of, 240-249

S

_saveregs (keyword), 118
screen groups, 28, 147
segment descriptors, 150-154
SEGMENTS statement (module
definition file), 299-300
selectors, 150
semaphores, 28-36, 114,172, 213
sessions, 28, 147
shared data segment. See global
data segment
sharing of data, 113-114, 141-
174. See also global data seg-
ments, instance data segments
SS register, 21, 131-132
stack, 21, 131-132
in assembly language, 289
for dynamic-link libraries,
147-148
for new threads, 25-27, 206
STACKSIZE keyword (module
definition file), 65
standard window, 55-58
startup code, 111
structure definitions, 11
stub loader, 252, 255-256
stub program, 255
subsystems, 9, 87
symbolic constants, 11-12, 122

T

termination routines, 85, 187-198
threads, 19-20

time slice, 27

type definitions, 11

U

unresolved references, 72

A\
VioWrtTTy (OS/2 function), 10
virtual memory, 150-154

w

/W2 (compiler flag), 15

windows

creating, 55-58

window class, 55, 59

window procedure, 55, 59-62

WINDOWAPI keyword (module
definition file), 65

WINDOWCOMPAT keyword
(module definition file), 18-19

Win functions, 50

WinBeginPaint (Presentation
Manager function), 50, 62

WinCreateMsgQueue (Presenta-
tion Manager function), 40, 50

WinCreateStdWindow (Presenta-
tion Manager function), 40, 50

WinDefWindowProc (Presenta-
tion Manager function), 51, 62

WinDestroyMsgQueue (Presenta-
tion Manager function), 51-52,
64

WinDestroyWindow (Presenta-
tion Manager function), 52, 64
WinDispatchMsg (Presentation
Manager function), 52
WinDrawText (Presentation
Manager function), 52, 62
WinEndPaint (Presentation
Manager function), 52, 63
WinGetLastError (Presentation
Manager function), 54
WinGetMsg (Presentation
Manager function), 53
WinlInitialize (Presentation
Manager function), 40, 49, 53
WinMessageBox (Presentation
Manager function), 53
WinQueryWindowRect (Presen-
tation Manager function), 53-
54, 62
WinRegisterClass (Presentation
Manager function), 40, 54-55
WinTerminate (Presentation
Manager function), 54, 64
WM_COMMAND (Presentation
Manager message), 61, 63, 65
WM_PAINT (Presentation
Manager message), 61-62

Z
/Zp (compiler flag), 15

INDEX 343

Unique Programmer’s Tools for MS-DOS and 0S/2
Developed by Michael J. Young

I am proud to offer the following high quality software tools for MS-DOS and 0S/2. These
tools represent the culmination of my efforts in developing many C applications and
writing seven advanced C programming books; all have proven their usefulness and
reliability. They greatly facilitate writing programs and serve as invaluable tools for

learning high-performance programming techniques and advanced features of MS-DOS
and 0S/2.

O Systems Tools for C (MS-DOS 2.0 and later)

Systems Tools for C is a comprehensive library of C functions providing virtually all the
tools you need to develop high-performance C programs, as well as memory resident
utilities. It includes a complete set of functions for managing screens and windows, for
controlling the keyboard and printer, for writing critical-error and interrupt handlers, for
accessing expanded memory, for creating a mouse interface, and for converting a C
program into a TSR activated with a hotkey. It also includes utility, file management, and
graphics functions, as well as an interactive screen designing program. The package
provides complete commented source code and supports the Borland Turbo C and the
Microsoft Optimizing and QuickC compilers. No royalties are required.

O PM/Edit (OS/2 1.1 and later)

Now you can write programs and other text files within a window of the Presentation
Manager. PM/Edit is a full-featured text editor written specifically for the Presentation
Manager. It provides the following features: an online help facility; cut, paste, and other
block operations; search and replace commands; running a compiler or printing a file
while editing; macros; an undo command; word processing features; and more. Complete
commented source code is available to allow you to fully customize this editor.

O OS/Tools (0S/2 1.0 and later)

08/ Tools is a set of software tools designed to give you a head start in writing OS/2 kernel
and Presentation Manager applications. It includes a comprehensive collection of
dynamic-link library functions, as well as a set of programmer’s utilities. The function
library is carefully tailored to the needs of the 0S/2 and PM programmer, and serves to
extend the OS/2 API and the standard C library. The utilities are designed to exploit
unique and interesting features of 0S/2; they include programs for designing text mode
screens and windows, for writing and executing keyboard macros, for copying data
between screen groups, and for capturing and printing data from OS/2 screens. All
functions and utilities are written in C and are provided with complete commented source
code.

Complete Documentation. Each of these three software products includes a complete
manual on disk, plus a convenient program for finding topics and reading the documen-
tation. If you wish, you can also print the manual on any printer.

Introductory Prices. Each of these products is being offered for the introductory price
of $49.50 (PM/Edit with source code is $99.50).

Ninety Day Trial Period. You can return any product, for any reason, within 90 days of
the date you receive it, for a full refund.

Free Brochure. Order any of these products now, or write or call for a free brochure
describing these and other unique programmer’s tools and books for MS-DOS and OS/2.

Copies of Systems Tools for C @ $49.50 each
Copies of PM/Edit @ $49.50 each
Copies of PM/Edit with source code @ $99.50 each
Copies of OS/Tools (version 1.1) @ $49.50 each
California residents: Add 6% sales tax
Shipping and Handling: Add $2.50 (85.00 for UPS
COD or foreign orders)
Total Order

[] 5-1/4" diskettes []31/2" diskettes
[| Please send me a brochure.
Name

Address
City/State/Zip

Please send a check for full payment or request UPS COD (no purchase orders or
bank cards; for foreign orders, plgase send an international money order in U.S.
dollars). Your software will be shipped immediately. Order from:

Young Software
20 Sunnyside Avenue, Suite A
Mill Valley, CA 94941
415/383-5354
AW01

IBM Programming/0S/2

> $22.-95 FPT USA

A BENCHMARK BOOK

SOFTWARE TOOLS FOR 08/2°

Creating Dynamic Link Libraries
Michael J. Young

Dynamic link libraries (DLLs) are one of 0S/2®'s most powerful features. DLLs are the
function libraries stored in a separate disk file that are bound to the application at load time or
execution. They allow you to incorporate library modules directly into applications, freeing you
from the task of writing and rewriting windowing, 1/0, and file handling functions. By using
0S/2’s dynamic link libraries, and by building your own DLLs, the true power and versatility
of 0S/2 will be at your command.

Software Tools for 0S/2: Creating Dynamic Link Libraries tells you how DLLs work, how
to use them, and how to create your own DLLs. After a concise review of 0S/2 and Presentation
Manager programming techniques, Michael Young presents a detailed discussion of how DLLs
actually work in the context of compiling, linking, loading, and terminating a program. Once the
techniques for writing a simple DLL are thoroughly investigated, the remaining chapters provide
detailed, hands-on coverage of DLL capabilities including:

= how to define both shared and non-shared data segments so that a DLL can either share
data among all programs or provide data privately to each program
= how to create DLL initialization and termination routines. These routines are especially
valuable for DLLs that manage resources shared by several programs
= how special versions of the C runtime library support multiple thread applications
and DLLs
= how a program can explicitly load a selected DLL at runtime
= how to provide a real-mode version of your DLL to be used by programs designed
to run under real or protected mode.
All examples are written in C, and Chapter 10 describes methods for writing DLLs in
assembly language.

Software Tools for 0S/2: Creating Dynamic Link Libraries provides an in-depth guide

to utilizing one of 0S/2's most impressive and important features.

Michael J. Young is a software engineering consultant, a developer of programmer’s tools,
and an experienced author. His previous books include MS-DOS Advanced Programming and
Programmer’s Guide to 0S/2.

Cover design by Doliber Skeffington

Addison-Wesley Publishing Company, Inc.

