

First Edition (January 1990)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

©Copyright International Business Machines Corporation 1990. All rights reserved.
Note to US Government Users - Documentation and programs related to restricted rights - Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation.

Operating System/2 is a trademark of International Business Machines Corporation.

OS/2 is a trademark of International Business Machines Corporation.

About This Book

This book describes the application programming interface (API) provided by the
IBM Operating System/2 Extended Edition Version 1.2 Local Area Network
Requester and IBM Operating System/2 Local Area Network Server Version 1.2
program (hereafter referred to as the OS/2 LAN Server), which is a separately
available program that works in conjunction with the LAN Requester component of
OS/2 Extended Edition Version 1.2 (hereafter referred to as the LAN Requester).
The API functions are the external functional interface for application program
development.

Who Should Use This Book
This book is intended for use by application programmers and system programmers
developing software for use in the IBM OS/2 Extended Edition 1.2 local area
network environment.

Before You Use This Book
To use this book effectively, it is recommended that you have a working knowledge
of the OS/2 program or some other multitasking operating system and that you are
familiar with application programming in IBM C/2™ language (hereafter referred to
as C language).

Note: The OS/2 LAN Requester/Server API functions work in essentially the same
way for both the IBM OS/2 and IBM DOS operating systems. However, this
reference specifically addresses the IBM OS/2 programming environment.

How This Book Is Structured
This book contains the following chapters:

Chapter 1, "Overview of OS/2 LAN Server API," provides an overview of the
OS/2 LAN Requester/Server API architecture.

Chapter 2, "Introducing the OS/2 LAN Server API Functions," includes an
alphabetical listing of the OS/2 LAN Requester/Server API function categories,
with brief descriptions and a list of functions in each category.

Chapter 3, "API Function Descriptions," describes the OS/2 LAN
Requester/Server API function categories and the functions in each category.
Categories and the functions within them are arranged alphabetically.

Appendix A, "Include Files," lists each of the include files the OS/2 LAN
Requester/Server API provides.

Appendix B, "Function Libraries," describes the dynamically linked libraries
that OS/2 LAN Requester/Server uses at link and run time.

Appendix C, "Return Codes," describes the API function return codes.

Appendix D, "Creating OS/2 LAN Server Services," provides information on
creating and using network service programs.

C/2 is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1990 About This Book iii

Conventions

Appendix E, "OS/2 LAN Requester/Server API Support under IBM DOS,"
describes OS/2 LAN Requester/Server API functions supported by IBM DOS
along with any differences in their use from that described in Chapter 2.

Appendix F, "IBM C/2 Sample Program," contains a sample program for the
OS/2 LAN Server application programming interface.

Appendix G, "PC LAN Program 1.3 Compatibility," provides several function
calls for compatibility with applications currently supported by PCLP 1.3.

Appendix H,"LAN API Manifests," lists the manifests associated with ASCIIZ
strings that are pointed to by data structure components used in the OS/2 LAN
APL

A glossary describes specialized terms used in this book.

An index is included at the back of the book.

Throughout this book, the following conventions distinguish elements of text:

Text Element

bold

italics

monos pace

CAPITALS

Use

Command names, switches, and literal
portions of syntax that must be written
exactly as shown are bold within text
paragraphs. (No text styles are applied
to elements within monospace entries.)

Variable text representing a type of text
to be entered rather than a literal series
of characters are in italics within text
paragraphs.

Italic type is also used to introduce new
terms and, occasionally, for emphasis.

Data structures and function syntax
templates are monospace, as are any
sample program lines within text
sections.

File names and acronyms are in
capitals.

iv LAN Server Application Programmer's Reference

Related Publications
The IBM OS/2 LAN Requester/Server documentation set includes other manuals
that may be helpful to you. For information on installing, using, or administering
OS/2 LAN Requester/Server, consult the following publications:

• IBM Operating System/2 Local Area Network Server Version 1.2 Getting Started

• IBM Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide

• IBM Operating System/2 Local Area Network Server Version 1.2 User's Guide

• IBM Operating System/2 Programming Guide

• IBM Operating System/2 Technical Reference Version 1.2 Programming
Reference.

About This Book V

vi LAN Server Application Programmer's Reference

Contents

©Copyright IBM Corp. 1990

Chapter 1. Overview of OS/2 LAN Server API . .
Organization of OS/2 LAN Server API Functions

API Verbs
API Data Structures

Structuring Levels of Detail .
Sample Data Structures
Storing Fixed-Length and Variable-Length Data

API Security Scheme•....
Remote Protection
User Interface and Application Programming Interface

Protection Violations and Faults in the Dynamic Link Libraries
Local and Remote Function Calls
Administrative, Local, and Server APis
DOS LAN Requester Considerations
Network Naming Conventions

Chapter 2. Introducing the OS/2 LAN Server API Functions
Function Categories .

Access Permission
Alert
Auditing
Configuration
Connection
Domain
Error Logging
File
Group
Handle
Mailslot
Message
Named Pipe
Remote Utility
Requester
Serial Device
Server .
Service
Session
Share
Spooler
Statistics
Use
User ..

Chapter 3. API Function Descriptions
Format of API Reference Pages
Access Permission Category

Description
Data Structures
NetAccessAdd .
NetAccessCheck
NetAccessDel
NetAccessEnum .

1-1
1-1
1-2
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-9

2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9

2-10
2-10
2-10

3-1
3-1
3-2
3-2
3-3
3-6
3-9

3-12
3-15

Contents vii

Neti\.ccessGetlnfo
N eti\.ccessGet U serPerms
N eti\.ccessSetlnfo

i\.lert Category
Description
Data Structures
N eti\.lertRaise
Neti\.lertStart
Neti\.lertStop

i\.uditing Category
Description
Data Structures
N eti\.uditClear
Neti\.uditRead .
Neti\.uditWrite

Configuration Category .
Description
NetConfigGet2
N etConfigGeti\.112

Connection Category
Description
Data Structures .
NetConnectionEnum ...

Domain Category
Description
NetGetDCName
NetLogonEnum

Error Logging Category
Description
Data Structures .
NetErrorLogClear
NetErrorLogRead
NetErrorLogWrite

File Category
Description
Data Structures .
NetFileClose2 ..
NetFileEnum2 . .
NetFileGetlnfo2

Group Category
Description
Data Structures .. .
NetGroupi\.dd
NetGroupi\.ddUser .
NetGroupDel
NetGroupDelUser
NetGroupEnum
NetGroupGetlnfo
NetGroupGetUsers
NetGroupSetlnfo .
N etGroupSetU sers

Handle Category . . .
Description
Data Structures . . .
NetHandleGetlnfo
N etHandleSetlnfo

viii LAN Server Application Programmer's Reference

3-18
3-22
3-25
3-29
3-29
3-30
3-34
3-37
3-40
3-43
3-43
3-44
3-58
3-61
3-66
3-68
3-68
3-70
3-73
3-76
3-76
3-76
3-78
3-81
3-81
3-82
3-85
3-88
3-88
3-88
3-90
3-93
3-97
3-99
3-99
3-99

3-101
3-104
3-107
3-110
3-110
3-111
3-112
3-115
3-118
3-121
3-124
3-127
3-130
3-133
3-136
3-139
3-139
3-139
3-140
3-143

Mailslot Category
Description
DosDeleteMailslot
DosMailslotlnfo
DosMakeMailslot
DosPeekMailslot
DosReadMailslot
DosWriteMailslot

Message Category
Description
Data Structures
NetMessageBufferSend
NetMessageFileSend
NetMessageLogFileGet
NetMessageLogFileSet
NetMessageNameAdd
NetMessageNameDel
NetMessageNameEnum
NetMessageNameFwd .
NetMessageNameGetlnfo . . .
NetMessageNameUnFwd ...

Named Pipe Category . . .
Description

Remote Utility Category
Description
Data Structures
NetRemoteCopy
NetRemoteExec
NetRemoteMove
NetRemoteTOD

Requester Category
Description
Data Structures
NetWkstaGetlnfo
NetWkstaSetlnfo
NetWkstaSetUID2

Serial Device Category
Description
Data Structures ..
NetCharDevControl
NetCharDevEnum
NetCharDevGetlnfo
NetCharDevQEnum
NetCharDevQGetlnfo
NetCharDevQPurge
NetCharDevQPurgeSelf
NetCharDevQSetlnfo

Server Category
Description
Data Structures
NetServerAdminCommand
NetServerDiskEnum
NetServerEnum2
NetServerGetlnf o
NetServerSetlnf o

Service Category ..

3-146
3-146
3-148
3-149
3-150
3-151
3-152
3-154
3-157
3-157
3-159
3-161
3-164
3-168
3-170
3-173
3-176
3-179
3-182
3-185
3-188
3-191
3-191
3-196
3-196
3-196
3-197
3-200
3-203
3-206
3-208
3-208
3-209
3-225
3-227
3-231
3-238
3-238
3-240
3-243
3-246
3-248
3-251
3-254
3-257
3-260
3-263
3-267
3-267
3-267
3-284
3-287
3-289
3-292
3-295
3-298

Contents ix

Description
Data Structures .
NetServiceControl
NetServiceEnum
NetService<Jetlnfo
NetServicelnstall
NetServiceStatus

Session Category . .
Description
Data Structures . .
NetSessionDel ...
NetSessionEnum
NetSession<Jetlnfo

Share Category
Description
Data Structures . .
NetShareAdd
NetShareCheck
N etShareDel
NetShareEnum
NetShare<Jetlnfo
N etShareSetlnfo

Spooler Category ..
Description

Statistics Category ..
Description
Data Structures . .
NetStatistics<Jet2 .

Use Category . . .
Description
Data Structures
NetUseAdd
NetUseDel ..
NetUseEnum
NetUse<Jetlnfo

User Category
Description
Data Structures . .
NetUserAdd
NetUserDel
NetUserEnum ...
Net U ser<Jet<Jroups
NetUser<Jetlnfo ..
Net User Modals<Jet
Net U serModalsSet
NetUserPasswordSet
NetUserSet<Jroups
Net U serSetlnfo
NetUserValidate2 .

Appendix A. Include Files

Appendix B. Function Libraries .
Link-Time Libraries .
Run-Time Libraries
Function Notes

X LAN Server Application Programmer's Reference

3-298
3-300
3-310
3-314
3-317
3-320
3-323
3-324
3-324
3-324
3-328
3-331
3-334
3-337
3-337
3-337
3-340
3-344
3-347
3-350
3-353
3-356
3-359
3-359
3-360
3-360
3-360
3-365
3-368
3-368
3-369
3-372
3-375
3-378
3-380
3-382
3-382
3-385
3-397
3-401
3-404
3-407
3-410
3-413
3-416
3-419
3-423
3-426
3-431

A-1

B-1
B-1
B-4
B-4

Appendix C. Return Codes . .
Successful Return Codes
Redirector
Network Utilities
Spooler
Service
Requester
Access, User, and Group .
Use .. .
Message
Server
Serial Device
1/0
Audit Log and Error Log
Remote Error
Requester Redirector

Appendix D. Creating OS/2 LAN Server Services
Starting a Service
Stopping a Service .

Appendix E. OS/2 LAN API Support under IBM DOS Requesters .
API Services Supported Under DOS
DOS API Libraries
Include Files
Differences in Use Under DOS
Access Permission .
Auditing
Configuration .
Connection .
Error Logging .
File · . · ·
Group
Mailslot
Message
Named Pipe
Remote Utility
Requester
Serial Device
Server
Service .
Session .
Share ..
Statistics
Use
User

Appendix F. IBM C/2 Sample Program

Appendix G. PC LAN Program 1.3 Compatibility
Function Call Overview
Function Call Descriptions

OOOOH (INT 2AH) Installation Check
0060H (INT 2AH) Network Print Stream Control
0300H (INT 2AH) Check Direct 1/0
0400H (INT 2AH) Execute NETBIOS (Error Retry) . .

C-1
C-1
C-1
C-3
C-5
C-7
C-8
C-9

C-12
C-12
C-14
C-15
C-16
C-17
C-17
C-18

D-1
D-1
D-4

E-1
E-1
E-1
E-2
E-3
E-3
E-3
E-4
E-4
E-4
E-4
E-4
E-5
E-5
E-6
E-7
E-7
E-7
E-8
E-8
E-8
E-9
E-9
E-9
E-9

F-1

G-1
G-1
G-1
G-2
G-3
G-5
G-6

Contents xi

0401H (INT 2AH) Execute NETBIOS (No Error Retry) G-7
0500H (INT 2AH) Get Network Resource Information G-8
7802H (INT 2AH) Get User ID and Logon Status G-9
B800H (INT 2FH) DOS LAN Requester Installation Check G-10
B809H (INT 2FH) Network Version Check G-11
B80FH (INT2FH) Get Start Parameters . G-12

Appendix H. LAN API Manifests H-1

Glossary . X-1

Index . X-7

xii LAN Server Application Programmer's Reference

Chapter 1. Overview of OS/2 LAN Server API

This chapter introduces the OS/2 LAN Requester/Server 1.2 application
programming interface (API), which is a set of functions enabling application
programs to interact with and to control network operations and resources. In this
chapter, you will find information about:

• The organization of and naming conventions for OS/2 LAN Requester/Server
API functions

• The API data structures and the way they accept and return information

• The API security scheme

• The protection violations and faults in the dynamic link libraries

• The local and remote function calls

• The requirements for calling API functions

• The naming conventions for network names.

Note: The API functions shown are for use with C language.

Organization of OS/2 LAN Server API Functions

© Copyright IBM Corp. 1990

The OS/2 LAN Requester/Server API provides access to the network functions
through a well-defined interface for high-level languages. This interface defines the
name of a function depending on the task that the function performs.

The OS/2 LAN Requester/Server API naming convention divides each function into
three parts:

• The Net, Dos, or Spl keyword identifies the function as an OS/2 LAN
Requester/Server API function or an OS/2-compatible function.

• A category identifier indicates the software area in which the function performs.
For example, User identifies functions that control user accounts.

This identifier may be compound, as in ServerDisk, which identifies the function
of server disk tasks. Generally, but not always, the identifier correlates to a
function category. The notable exception is the Named Pipe category, which
contains a broad category of OS/2 functions.

• A verb describes the action the function performs.

An optional fourth part in function names works somewhat as a direct object would
in the English language, identifying a particular object to be involved in the action.
For instance, NetCharDevQPurgeSelf deletes all pending requests waiting in a serial
device queue that were submitted by a particular computer, whereas
NetCharDevQPurge deletes all pending requests on a serial device queue.

Chapter 1. Overview of OS/2 LAN Server API 1-1

API Verbs

Add Functions

Del Functions

The OS/2 LAN Requester/Server software defines a set of verbs for each category of
functions. The five most common verbs perform the following basic tasks:

Verb

Add

Del

En um

Getlnfo

Setlnfo

Action

Adds a resource

Deletes a resource

Lists the names and data structures for
a resource

Retrieves parameters for a resource

Modifies parameters for a resource

The less common verbs perform other tasks relating to specific resources, such as
starting a service (Install) or deleting pending requests on a queue (Purge).

The five most common OS/2 LAN Requester/Server API verbs use fairly standard
syntax and parameters. These operations, which are described in the following
sections, comprise the basic set of function tasks for most categories.

An Add function adds a resource to a particular set of items. Add functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleAdd (servername, level, buf, buflen)
char far * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\ \) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

• level specifies a data structure providing a particular level of detail of
information required to complete the operation.

• bu/ points to the data structure.

• buflen specifies the size (in bytes) of the bu/ memory area.

A Del function removes a resource from a particular set of items. Del functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleDel (servername)
char far * servername;

where:

• servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

1-2 LAN Server Application Programmer's Reference

Enum Functions

Del functions do not require a pointer to a data structure since they do not accept or
return the kind of information commonly found in data structures.

An application must have administrative privileges to remotely execute most Del
functions.

The Enum functions list information about system resources. Enum functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleEnum (servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
bu fl en;
entriesread;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\ \) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

• level specifies the level of detail for the returned data.

• buf points to the returned data structures.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
available.

If buf cannot store all returning data, the Enum function returns the
NERR_MORE_DATA error code. There is an entriesread number of items returned
in the buffer.

If the value of buflen is 0, the Enum function returns only a valid totalentries
parameter.

Some requests for high levels of detail by way of Enum functions require
administrative privileges at the remote server.

Enum functions are limited to 64KB per call.

Chapter 1. Overview of OS/2 LAN Server API 1-3

Getlnfo Functions

Setlnfo Functions

A Getlnfo function retrieves specific information about a resource not available to
an Enum function. These functions generally use some form of the following syntax:

unsigned far pascal
NetExampleGetinfo (servername, level, buf, buflen, totalavail)
char far * servername,
short level;
char far * buf;
unsigned short buflen;
unsigned short far* totalavail;

where:

• servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash(\\) or a double forward slash(//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

• level specifies the level of detail that the data structure is to return.

• buf points to the returned data structure.

• bujlen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information available, given sufficient buflen.

If buf cannot store all returning fixed-length data, Getlnfo returns the
NERR_BufTooSmall error code. In this case, all data in buf is not valid, but
totalavail is valid.

If buf can store all returning fixed-length data but not all available variable-length
data, Getlnfo returns the ERROR_MORE_DATA error code. In this case, the
fixed-length data in buf is valid, with pointers to any incomplete variable-length data
set to NULL. If the value of buflen is 0, the Getlnfo function returns only a valid
totalavail parameter.

Some requests for high levels of detail by way of Getlnfo functions require
administrative privileges.

A Setlnfo function sets the parameters of a network resource. These functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleSetinfo (servername, level, buf, buflen, parmnum)
char far * servername;
short level;
char far * buf;
unsigned short buflen;
short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash(\\) or a double forward slash(//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

• level specifies the level of detail that the data structure is to provide.

1-4 LAN Server Application Programmer's Reference

Error Return Codes

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines whether an entire data structure or a single data structure
component is to be set. If the value is 0, a complete data structure must be
provided. Otherwise, parmnum should specify the ordinal position of a specific
data structure component to be set.

For information on the ordinal position of a component, see the appropriate
include file of the function.

In the functional description of each API, there is a list of possible return codes.
Following that is a list of low-level functions it calls from which errors might be
returned directly. If some errors from an API are ignored or mapped to other APis,
the ignored error codes are listed in brackets [] with a minus sign, such as the
following:

DosOpen [- ERROR_FILE_NOT_FOUND]

This example indicates that DosOpen is called, and all error codes from DosOpen
are possibly returned to the caller, except for ERROR_FILE_NOT_FOUND, which
is returned by the network API.

The redirector is called by way of special IOCtls and FSCtls, which are represented
variously as follows:

redir.IOCTLCALLNAME
DosFSCtl{IOCTLCALLNAME)
DosIOCTL{IOCTLCALLNAME)

When an API is executed remotely without having the necessary permissions or
authorization, it results in the error code ERROR_ACCESS_DENIED. This is a
consistent error across all APis for remote calls. An attempt to execute an API
remotely may return ERROR_NETWORK._ACCESS_DENIED, indicating that
there was some error in the transportation of the request, rather than an API
permission or authorization violation.

API Data Structures
Most API functions use one or more OS/2 LAN Requester/Server-defined data
structures to provide or return information defining a resource or reporting its state.

Distinct structures are defined for each category. They use the C language syntax
and are WORD-aligned.

Structuring Levels of Detail
The functions in the various API function categories provide different levels of
detail, each represented by a different data structure. The more detailed structures
usually include all the information in lower-level structures.

When an API function can provide or return more than one level of information, an
application must pass a level parameter (0, 1, 2, 3 or 10) to indicate the level of
detail requested. Level 0 is the least detailed (often a single component), with each
subsequent level calling for more detail.

Chapter 1. Overview of OS/2 LAN Server API 1-5

The related level parameter is included in the data structure name. For instance, the
NetShareGetinfo function uses the share_info_O, share_info_l, and share_info_2 data
structures for data detailed at the 0, 1, and 2 levels, respectively.

Many functions, particularly the Setlnfo type, require a particular data structure
specified by a particular level value. If an unacceptable level parameter is passed, the
function returns the ERROR_INVALID_LEVEL error code.

Sample Data Structures
The three data structures of the NetShareGetlnfo function illustrate the levels of
detail an API function can provide. The share_info_O data structure returns only the
netname of a particular resource. NetShareEnum returns a set of these structures-a
list containing the names of all resources shared on the server:

struct share_info_e {
char shi0_netname[NNLEN+l];

};

The share_info_l data structure returns the name of the shared resource, parameters
indicating the type of resource, and an optional remark provided by way of the
NetShareSetlnfo function when the share is added on the server (NetShareSetlnfo,
for obvious reasons, requires a level 1 or 2 data structure).

NetShareEnum, at level I, returns a set of share_info_J structures-one for each
resource shared on the server:

struct share_info_l {
char
char
unsigned short

char far *
};

shil_netname[NNLEN+l];
shil_padl;
shil_type;
shil_remark;

The share_info_2 data structure adds information on the permissions, path name,
number of current uses, and password for a share to the level 1 data structure:

struct share_info_2 {

};

char
char
unsigned short
char far *
unsigned short
unsigned short
unsigned short
char far *
char
char

shi2_netname[NNLEN+l];
shi2_padl;
shi2_type;
shi2_remark;
shi2_permissions;
shi2_max_uses;
shi2_current_uses;
shi2_path;
shi2_passwd[SHPWLEN+l];
shi2_pad2;

Storing Fixed-Length and Variable-Length Data
When the application is passing a data structure in a buffer to the API, if the data
structure has pointers to variable-length data, the buffer length should be the length
of the fixed-length portion only. The fixed-length data and the variable-length data
do not have to be contiguous in the same memory region, even for remote calls.

When a data structure that defines a pointer to variable-length data (such as ASCIIZ
strings) is passed to or returned by a function, an application must provide a buffer

1-6 LAN Server Application Programmer's Reference

large enough to store both the fixed-length and variable-length data. Otherwise, not
all of the data can be passed or returned.

If a buffer is too small to hold all variable-length data associated with a structure, an
application should notify the function that no variable-length data is being passed by
specifying NULL pointers to the variable-length data.

If an application calls a function that could return more variable-length data than
the buffer can store, the function returns as much data as possible, setting all
pointers to information that was not returned to NULL. In this case, the function
also returns the ERROR_MORE_DATA error code and the number of bytes
required to store all available data (the bytesavail value). If the buffer is too small
for the fixed-length data, the function returns NERR_BusTooSmall or
ERROR_MORE_DATA and the amount of data that can fit into the buffer.

API Security Scheme
The OS/2 LAN Server security scheme assigns privilege levels to users. Certain API
functions are designated admin or partially admin. These are available only to users
with administrative privileges. These APis retrieve or set sensitive data or control
key network services. OS/2 LAN Requester/Server provides the following types of
protection at the API level:

• Administrative privilege

• Security for remote API function calls.

The access control subsystem (ACS) controls the domain-wide access of resources by
the users and groups. The users and groups management and resource access
control at the API level is called the user accounts subsystem (UAS) database.

Remote Protection
All of the APis can be executed on a local system, provided that the required
software services are running. Ordinary users are treated as administrators locally
on the application programming interface.

The API calls to remote servers are subject to privilege checking. Many of the APis
require administrative privilege to run on remote servers.

User Interface and Application Programming Interface
The OS/2 LAN Requester/Server provides user-level security. Share-level security is
not supported. The user is required to be logged on in order to run utilities,
applications, or user interface programs remotely.

Protection Violations and Faults in the Dynamic Link Libraries
The API functions probe the buffers passed to them and scan string parameters in an
attempt to ensure that the data is accessible. These probes may cause faults if the
pointers are incorrect (for example, if they are pointing beyond the end of a segment
or outside a permitted memory region).

If you get a fault within an OS/2 LAN Requester/Server dynamic link library,
attempt to trace the code through the call. By noting the values that are being tested,
you can usually recognize the parameter that is causing the problem. Also, check

Chapter 1. Overview of OS/2 LAN Server API 1-7

buffer sizes carefully, since the API functions probe the first and last byte of a buffer
even if the data returned or received does not fill the buffer.

If you get a stack overflow, extend the stack size. There is no hard and fast rule for
determining the depth of stack that an OS/2 LAN Requester/Server API function
requires. Generally, allow 4KB of free stack space for each function call.

Local and Remote Function Calls
All OS/2 LAN Requester/Server API functions can be executed on a local server.
Many functions can also be executed on a remote server or a local requester.
Functions that can be executed remotely supply the name of an accessible remote
server for the servername parameter. A NULL servername parameter (either a
NULL pointer or a NULL string) executes the function locally.

Administrative, Local, and Server APls
Certain OS/2 LAN Requester/Server API functions can be called only at the
administrative, local, or server level. These requirements are noted in parentheses
after function titles in the following format:

NetExampleFunction ([partially] admin, local, Server, DOS [only])

These requirements have the following meanings:

API Requirement

ad min

partially admin

local

server

DOS

Meaning

Can execute remotely only if the calling
process has administrative privileges in
the domain.

Can execute with user privilege on
certain level of data structures or user's
own information.

Can execute only on the local computer.

Can execute only on a computer
running server software.

Can execute both under OS/2 and DOS
requesters.

When administrative privilege for an operation is inadequate, the function returns
the error message ERROR_ACCESS_DENIED.

DOS LAN Requester Considerations
When porting OS/2 LAN Requester/Server applications to run under DOS, note that
DOS, unlike the OS/2 program, does not support pointer checking, semaphores, or
shared memory segments. Also, note that all file names, directory names, or parts of
a path name, including UNC server and network names, must follow DOS naming
conventions.

1-8 LAN Server Application Programmer's Reference

Network Naming Conventions
The OS/2 LAN Requester/Server API defines name formats (ASCIIZ strings) to
distinguish various parts of the network software. Thus, an API function can easily
distinguish the type of resource or device parameter that is being passed.

The server name must be preceded by a double back or forward slash (\ \ or //).

The format and maximum length of each type of name are defined in the
NETCONS.H include file.

The OS/2 LAN Server Version 1.2 API supports OS/2 Extended Edition Version 1.2
file names. For OS/2 LAN Server version 1.2, the OS/2 program limits fully specified
paths to 260 characters, including the following:

• The drive letter

• The colon (:)

• All of the characters in the path name, including all backslashes(\) and slashes
(/)

• The file or directory name on the end of the path

• The null character on the end of the pa th.

For OS/2 LAN Server Version 1.2, the operating system limits component names
to 255 characters. A component name is a file name or directory name (or a
psuedo directory name). It is the part of a path between the two backslashes or
between a slash and the null character on the end of the path. The 255
characters include all of the characters in the component name, but do not
include the backslashes or the ending null character.

All characters can be used in network names except ASCII characters less than
hexadecimal 20 and the following:

"/ [J : I < > + = ; '

Spaces are not allowed in domain names.

Periods can be used; however, they cannot be the first character of a network name
or immediately follow another period in a name. For example,

work.sta.1

is valid because a period does not start the name and the second period does not
immediately follow the first use of a period. But

.work.sta.1

and

work •• sta.1

are not valid because of a period at the beginning of a name and the two periods
used together.

Chapter 1. Overview of OS/2 LAN Server API 1-9

1-10 LAN Server Application Programmer's Reference

Chapter 2. Introducing the OS/2 LAN Server API Functions

This chapter contains a categorical list of the OS/2 LAN Requester/Server API
functions, giving a brief description of the action performed by each function.

For detailed descriptions of the OS/2 LAN Requester/Server API functions, see
Chapter 3, "API Function Descriptions."

Function Categories
Twenty-four categories of API functions perform various OS/2 LAN
Requester/Server network tasks. For example, the Serial Device category contains
all functions that are used to control shared serial devices. In the descriptions that
follow, both the categories and the functions within each category are listed
alphabetically. The function name is followed by an italicized label in parentheses,
which describes when the function can be successfully called. For example, the
NetShareAdd function can be executed only by an application with administrative
privileges on a server.

Note: The function names are shown as they should be used in a C language
program; that is, the function names must be entered in uppercase and
lowercase letters.

Access Permission

© Copyright IBM Corp. 1990

The functions in the Access Permission category examine or modify user or group
access permission records for server resources.

Function

NetAccessAdd (admin, DOS)

NetAccessCheck (local)

NetAccessDel (admin, DOS)

NetAccessEnum (admin, DOS)

NetAccessGetlnfo (admin, DOS)

N etAccessGet U serPerms (partially
admin, DOS)

NetAccessSetlnfo (admin, DOS)

Description

Creates an access permission record
assigning user and group permissions
for a new resource.

Verifies a user's or group's permission
to access a particular resource.

Deletes all access permission records for
a particular shared resource.

Enumerates all access permission
records for a particular server resource.

Retrieves information about an access
permission record for a resource.

Supplies a specified user or group
permission for a resource.

Modifies an access permission record
for a resource.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-1

Alert

Auditing

Configuration

Connection

The functions in the Alert category provide a system for notifying network service
programs and applications of network events.

Function

NetAlertRaise (local)

NetAlertStart (local)

NetAlertStop (local)

Description

Notifies all clients registered in the alert
table that a particular event occurred.

Registers a client to be notified of a
particular type of network event.

Removes a client registration from an
alert table.

The functions in the Auditing category control the audit log file, which contains an
audit trail of operations that occur on a server.

Function

NetAuditClear (admin, DOS)

NetAuditRead (admin, DOS)

NetAuditWrite (local, server)

Description

Clears (and optionally saves) the audit
log file of a server.

Opens and returns an OS/2 file handle
to the audit log file of a server.

Writes an audit trail entry to the local
audit log file.

The functions in the Configuration category retrieve network configuration
information from the IBMLAN .INI file.

Function

NetConfigGet2 (admin, DOS)

NetConfigGetA112 (admin, DOS)

Description

Retrieves a specified parameter value for
a given network component in the
IBMLAN.INI file from a remote
computer.

Retrieves all parameter information for
a given network component in the
IBMLAN.INI file from a remote
computer.

The NetConnectionEnum function gives a listing of all connections made to a server
by a requester client or all connections made to the shared resource of a server.

Function

NetConnectionEnum (admin, server,
DOS)

Description

Lists either all connections between
requesters and resources on a server or
all connections established within a
session.

2-2 LAN Server Application Programmer's Reference

Domain

Error Logging

File

Group

The functions in the domain category provide domain-wide information.

Function

NetGetDCName (DOS)

NetLogonEnum (partially admin, DOS)

Description

Obtains the name of the domain
controller.

Supplies information about logged on
users.

The functions in the Error Logging category control the error log file.

Function

NetErrorLogClear (admin)

NetErrorLogRead (admin)

NetError LogW rite (local)

Description

Clears (and optionally saves) an error
log file.

Opens and returns an OS/2 file handle
to the error log file of a computer.

Writes an entry to the error log file of a
computer.

The functions in the File category provide a system for monitoring the file, device,
and pipe resources that are opened on a server, and for closing one of these
resources if necessary.

Function

NetFileClose2 (admin, server, DOS)

NetFileEnum2 (admin, server, DOS)

NetFileGetlnfo2 (admin, server, DOS)

Description

Forces a resource closed when a system
error prevents a normal DosClose
function closing.

Allows the user to issue iterated calls to
get information about some or all open
files on a server.

Retrieves information about a particular
opening of a server resource.

The functions in the Group category control user groups in the user accounts
subsystem (UAS) database.

Function

NetGroupAdd (admin, DOS)

NetGroupAddUser (admin, DOS)

NetGroupDel (admin, DOS)

NetGroupDelUser (admin, DOS)

Description

Creates a new group account.

Adds a user to a group.

Removes a group account from the
UAS database.

Removes a user from a particular
group.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-3

Handle

Mails lot

Function

NetGroupEnum (partially admin, DOS)

NetGroupGetlnfo (partially admin,
DOS)

NetGroupGetUsers (partially admin,
DOS)

NetGroupSetlnfo (admin, DOS)

NetGroupSetUsers (admin, DOS)

Description

Lists all group accounts.

Obtains group-related information.

Lists the members of a particular group.

Sets group-related information.

Sets information about users who
belong to a group.

The functions in the Handle category obtain and set information on a per-handle
basis.

Function

NetHandleGetlnfo (local, server)

NetHandleSetlnfo (local, server)

Description

Obtains handle-specific information.

Sets information in the data structure of
a handle.

The functions in the Mailslot category provide one-way interprocess communication
(IPC).

Function

DosDeleteMailslot (local, DOS)

DosMailslotinfo (local, DOS)

DosMakeMailslot (local, DOS)

DosPeekMailslot (local, DOS)

DosReadMailslot (local, DOS)

DosWriteMailslot (local, DOS)

Description

Deletes a mailslot, discarding all
messages, whether or not they have been
read.

Returns information about a particular
mailslot.

Creates a mailslot and returns its
handle.

Reads the next message in a mailslot
without removing any data.

Reads, then removes the most current
message from a mailslot (based on
priority).

Writes a message to a particular
mailslot.

2-4 LAN Server Application Programmer's Reference

Message

Named Pipe

The functions in the Message category are used to send, log, and forward messages.

Function

NetMessageBufferSend (admin, DOS)

NetMessageFileSend (admin, DOS)

NetMessageLogFileGet (admin, DOS)

NetMessageLogFileSet (admin, DOS)

NetMessageNameAdd (admin, DOS)

NetMessageNameDel (admin, DOS)

NetMessageNameEnum (admin, DOS)

NetMessageNameFwd (admin)

NetMessageNameGetlnfo (admin, DOS)

NetMessageName UnFwd (admin)

Description

Sends a buffer of information to a
registered user on a particular computer.

Sends a file to a registered user on a
particular computer.

Retrieves the name of the message log
file and the current logging status (on or
off).

Specifies a file to log messages received
by registered users and enables or
disables logging.

Registers a user in the message-name
table.

Deletes a user name from a
message-name table.

Lists the user name entries in a
message-name table.

Modifies the message-name table to
forward a user's messages to another
user.

Retrieves information about a user's
message account.

Stops forwarding a user's messages to
another user.

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes. These functions are provided by the base operating system and
supported by the OS/2 LAN Server across the network.

Function

DosBufR.eset (local, DOS)

DosCallNmPipe (local, DOS)

DosClose (local, DOS)

DosConnectNmPipe (local)

DosDisconnectNmPipe (local)

DosDupHandle (local, DOS)

Description

Clears the data buffer of a named pipe.

Opens a named pipe, performs a write
to the pipe followed by a read, and then
closes the pipe.

Closes a named pipe.

Waits for a client process to open an
instance of a named pipe.

Forces a named pipe to close, denying a
client process any further access to it.

Duplicates the handle to a named pipe.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-5

Function

DosMakeNmPipe (local)

DosOpen (local, DOS)

DosPeekNmPipe (local, DOS)

DosQFHandState (local, DOS)

DosQHandType (local, DOS)

DosQNmPHandState (local, DOS)

DosQNmPipelnfo (local, DOS)

DosQNmPipeSemState (local)

DosRead (local, DOS)

DosReadAsync (local)

DosSetFHandState (local, DOS)

DosSetNmPHandState (local, DOS)

DosSetNmPipeSem (local)

DosTransactNmPipe (local, DOS)

DosWaitNmPipe (local, DOS)

DosWrite (local, DOS)

DosWriteAsync (local)

2-6 LAN Server Application Programmer's Reference

Description

Creates a new named pipe or a new
instance of an existing named pipe and
returns its handle.

Opens the client process end of a named
pipe and returns a handle.

Reads the data in a named pipe without
removing it.

Retrieves information about whether the
handle of a named pipe is inheritable
and whether write-behind to remote
pipes is allowed.

Returns the type of a particular handle.

Returns information about the current
state of a named pipe.

Retrieves information about the sizes of
the incoming and outgoing buffers of a
named pipe and the number of instances
that are available.

Returns information about the status of
a semaphore associated with a named
pipe on a local computer.

Reads data from a named pipe.

Reads data from a named pipe
asynchronously, removing the data.

Modifies the open mode state of a
named pipe.

Modifies the read mode and blocking
mode state of a named pipe.

Associates a semaphore with the client
or server process of a local named pipe.

Writes a message to and then reads a
message from a named pipe.

Enables a client process to wait for an
available instance of a named pipe.

Writes data to a file or named pipe.

Writes data to a named pipe
asynchronously.

Remote Utility

Requester

Serial Device

The functions in the Remote Utility category enable applications to copy and move
remote files, remotely execute a program, and access the time-of-day information on
a remote server.

Function

NetRemoteCopy (local, DOS)

NetRemoteExec (local, server)

NetRemoteMove (local, DOS)

NetRemoteTOD (DOS)

Description

Copies one or more files from one
location to another.

Executes a program located on a remote
server.

Moves one or more files from one
location to another.

Returns time of day on a server.

The functions in the Requester category control the operation of requesters.

Function

NetWkstaGetlnfo (partially admin,
DOS)

NetWkstaSetlnfo (admin, DOS)

NetWkstaSetUID2 (admin, DOS)

Description

Returns information about the
configuration components of a
requester.

Configures a requester.

Registers a user name and password
with the redirector to validate the user
account.

The functions in the Serial Device category control shared serial devices and their
associated queues.

Function

NetCharDevControl (admin, server,
DOS)

NetCharDevEnum (admin, server, DOS)

NetCharDevGetlnfo (server, DOS)

NetCharDevQEnum (server, DOS)

NetCharDevQGetlnfo (server, DOS)

NetCharDevQPurge (admin, server,
DOS)

NetCharDevQPurgeSelf (server, DOS)

Description

Forces a serial device to close.

Lists all serial devices in a shared serial
device queue on a server.

Retrieves information about a particular
serial device in a shared serial device
queue on a server.

Lists all serial device queues on a server.

Retrieves information about a particular
serial device queue on a server.

Deletes all unprocessed requests on a
serial device queue.

Deletes all pending requests waiting in a
serial device queue submitted by a
particular computer.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-7

Server

Service

Session

Function

NetCharDevQSetlnfo (admin, server,
DOS)

Description

Modifies the state of a serial device
queue on a server.

The functions in the Server category enable remote administrative tasks to be
performed on a local or remote server.

Function

NetServerAdminCommand (admin,
server, DOS)

NetServerDiskEnum (admin, DOS)

NetServerEnum.2 (DOS)

NetServerGetlnfo (partially admin,
server, DOS)

NetServerSetlnfo (admin, server, DOS)

Description

Executes a command on a server.

Retrieves a list of local disk drives on a
computer.

Enumerates the set of all machine IDs
visible on the network.

Retrieves information at one of four
levels of detail about a particular server.

Sets the operating parameters for a
server.

The functions in the Service category start and control network service programs.

Function

NetServiceControl (partially admin,
DOS)

NetServiceEnum (DOS)

NetServiceGetlnfo

NetServicelnstall (admin, DOS)

NetServiceStatus

Description

Controls the operations of network
services.

Retrieves information about all network
services started on a server or a
requester.

Retrieves information about a particular
started network service.

Starts a network service on a server.

Sets status and code information for a
network service.

The functions in the Session category control network sessions established between
requesters and servers.

Function

NetSessionDel (admin, server, DOS)

NetSessionEnum (partially admin, server,
DOS)

Description

Ends a session between a requester and
a server.

Provides information on all current
sessions to a server.

2-8 LAN Server Application Programmer's Reference

Share

Spooler

Function

NetSessionGetlnfo (partially admin,
server, DOS)

Description

Retrieves information about a session
established between a particular
requester and server.

The functions in the Share category control shared resources.

Function

NetShareAdd (admin, server, DOS)

NetShareCheck (server, DOS)

NetShareDel (admin, server, DOS)

NetShareEnum (partially admin, server,
DOS)

NetShareGetlnfo (partially admin,
server, DOS)

NetShareSetlnfo (admin, server, DOS)

Description

Creates a shareable resource.

Queries whether a server is sharing a
device.

Deletes a netname from shared
resources.

Retrieves share information about each
shared resource.

Retrieves information about a particular
shared resource.

Sets a new share parameter or
parameters for a shared resource.

The functions in the Spooler category provide applications access to spooler queue
manager operations. These functions are provided by the base operating system and
supported by the OS/2 LAN Server across the network.

Function

SplQmAbort

SplQmClose

SplQmEndDoc

SplQmOpen

SplQmStartDoc

SplQmWrite

Description

Stops the generation of the spool files
and automatically closes the spooler
queue manager.

Closes the spooler queue manager.

Ends a print job and returns a unique
job number.

Opens the spooler queue manager for
generating a print job.

Signifies the start of a print job.

Writes a buffer to the spool file for the
print job.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-9

Statistics

Use

User

The functions in the Statistics category retrieve and clear the operating statistics for
requesters and servers.

Function

NetStatisticsGet2 (admin, DOS)

Description

Obtains and optionally clears the
operating statistics for a server.

The functions in the Use category examine or control connections (uses) between
requesters and servers.

Function

NetUseAdd (admin, DOS)

NetUseDel (admin, DOS)

NetUseEnum (admin, DOS)

NetUseGetlnfo (admin, DOS)

Description

Establishes a connection between a local
or NULL device name and a shared
resource by redirecting the local or
NULL universal naming convention
(UNC) device name to the shared
resource.

Ends a connection between a local or
UNC device name and a shared
resource.

Lists all current connections between the
local requester and resources on a
remote server.

Retrieves information about a
connection between a local device and a
shared resource.

The functions in the User category control a user's account in the UAS database.

Function

NetUserAdd (admin, DOS)

NetUserDel (admin, DOS)

NetUserEnum (partially admin, DOS)

NetUserGetGroups (partially admin,
DOS)

NetUserGetlnfo (partially admin, DOS)

Description

Adds a user to the set of those
permitted to use the resources of a
server.

Removes a user's account from the
UAS database, ending the user's access
to the resources of the server.

Returns information about all user
accounts.

Lists all groups on a server to which a
particular user belongs.

Retrieves information about a particular
user account.

2-10 LAN Server Application Programmer's Reference

Function

NetUserModalsGet (partially admin,
Dos)

NetUserModalsSet (admin, DOS)

NetUserPasswordSet (DOS)

NetUserSetGroups (admin, DOS)

NetUserSetlnfo (partially admin, DOS)

NetUserValidate2 (local)

Description

Obtains global modals-related
information for all users and groups in
the UAS database.

Sets global modals-related information
for all users and groups in the U AS
database.

Changes the password in a user's
account.

Sets the groups of which a user is
member.

Modifies permission information about
a particular user name.

Validates a user ID with its password
and verifies that the user can log on
based on logon restrictions defined for
the account.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-11

2-12 LAN Server Application Programmer's Reference

Chapter 3. API Function Descriptions

This chapter provides detailed information about the syntax of each API function,
the tasks that the function performs, and data structures and header files that it uses.
This chapter includes twenty-four reference sections, each representing one of the
twenty-four function categories outlined in Chapter 2, "Introducing the OS/2 LAN
Server API Functions."

Format of API Reference Pages

© Copyright IBM Corp. 1990

Each function category begins with an overview explaining how the functions
interrelate and how they work with the network software. Any data structures
common to several or all of the functions are then described. Each category
contains a separate reference section for each function. In the reference section,
syntax is described and parameters are defined. Error codes returned by the
function are listed and briefly described. In most cases, a discussion expanding on
function requirements or behaviors not previously covered is also included.

Both the function categories and the function reference sections within them are
ordered alphabetically.

The following subsections describe the type of information that can be found on the
individual API reference pages:

Title Briefly describes why, how, or when your application should
use the function. The function title is followed by a brief
description of the use of the function. A complete list of
function restrictions is described in Chapter 2, "Introducing
the OS/2 LAN Server API Functions."

Syntax Describes the header files that must be included before your
application calls the function. In addition, it provides the
definition of the function and a detailed description of the
parameters of each function.

Return Codes Provides a list of the return codes the function is most likely
to return. This list is not exhaustive. Low-level operating
system conditions may return other codes. For a complete
listing of OS/2 LAN Requester/Server error codes, see
Appendix C, "Return Codes."

Remarks Describes important details about the performance of the
function or any peculiarities or special behaviors of the
function that your application should take into consideration
in order to successfully call the function and efficiently use its
results.

Related Information References other sections or chapters in this or other manuals
in the OS/2 LAN Requester/Server document set that may
help you better understand or use the function.

Chapter 3. API Function Descriptions 3-1

Access Permission Category

Description

NetAccessAdd (admin, DOS)-See "NetAccessAdd" on page 3-6.

NetAccessCheck (local}-See "NetAccessCheck" on page 3-9.

NetAccessDel (admin, DOS)-See "NetAccessDel" on page 3-12.

NetAccessEnum (partially admin, DOS)-See "NetAccessEnum" on page 3-15.

NetAccessGetlnfo (partially admin, DOS)-See "NetAccessGetlnfo" on page 3-18.

NetAccessGetUserPerms (partially admin, DOS)-See "NetAccessGetUserPerms" on
page 3-22.

NetAccessSetlnfo (admin, DOS)-See "NetAccessSetinfo" on page 3-25.

The functions in the Access Permission category examine or modify user or group
access permission records for server resources. They are used with the ACCESS.H
and NETCONS.H include files.

In order for a user to access a shared resource, an access permission record must be
defined for that user. An access permission record defines how a user or group can
access a shared resource. It contains a set of permissions for each user or group.

Access permission records are created using the NetAccessAdd function. To delete
all access permission records associated with a particular shared resource, call
N etAccessDel.

An access permission record contains:

• The name of the resource

• A list of users or groups permitted to use the resource

• A list of access permissions granted to a particular user or group.

The NetAccessGetinfo function can be called to return information on a particular
access permission record. To obtain information on all access permission records for
which the calling process has special permissions (ACCESS_PERM), call
NetAccessEnum.

The access permission record must be defined by a user or application that already
has administrative permissions, or has special permission (ACCESS_PERM) for the
resource being shared. Note that user permissions have precedence over group
permissions. If a user is not defined in the access list for the shared resource, the
user's access permissions are the union of all groups to which the user belongs. For
more information on access control checking, see the IBM Operating System/2 Local
Area Network Server Version 1.2 Network Administrator's Guide. The
NetAccessCheck function can be called to verify whether a user has permission to
access a particular resource. If the user or group does not have access permission
and access permission is needed, the access permission record can be changed from
its original content with NetAccessSetinfo.

3-2 LAN Server Application Programmer's Reference

DOS Considerations

Data Structures

Under DOS, these functions can be executed only on a remote server.
Administrative privilege must have been granted to execute the functions.
Attempting to execute the functions on a local requester returns
NERR _RemoteOnly.

The level parameter controls the level of information provided to or returned from
the NetAccessAdd, NetAccessEnum, NetAccessGetlnfo, and NetAccessSetlnfo
functions. These functions use either a level 0 or a level 1 data structure.

Access Permission Information (Level 0)

struct access_info_e {
char far * acce_resource_name;

};

where:

• accO_resource_name points to an ASCIIZ string containing the name of a
resource type. accO_resource_name uses the following formats:

Resource Type

Directory

File

Pipe

Spooler queue

Serial device queue

Name Format

drive :pathname

drive :pathname

\pipe\pipename

\print\queuename

\comm\chardevqueue

Access Permission Information (Level 1)

struct access_info_l {
char far * accl_resource_name;
short accl_attr;
short accl_count;

};

where:

• accl_resource_name points to an ASCIIZ string specifying the name of a
particular resource (see preceding discussion on accO_resource_name).

• accl_attr specifies the attributes of accl_resource_name. The bits of accl_attr
are defined as follows:

Bit

0

1-3

4

Meaning

Audit all. When this bit is set, all access attempts will be audited.
No other bits in the field can be set. It is an error to set any other
bits when bit 0 is set. When bit 0 is cleared, the remaining bits are
defined as described as follows in this table.

Reserved with a value of 0.

If 1, audit successful file opens.

Chapter 3. API Function Descriptions 3-3

Bit

5

6

7

8

9

10

11

12-15

Meaning

If 1, audit successful file writes and successful directory creates.

If 1, audit successful file deletes or truncates and successful
directory deletes.

If 1, audit successful file and directory ACL changes.

If 1, audit failed file opens.

If 1, audit failed file writes and failed directory creates.

If 1, audit failed file deletes or truncates and failed directory
deletes.

If 1, audit failed file and directory ACL changes.

Reserved with a value of 0.

Notes:

1. Other resources that can be accessed across the network,
including spooler queues, serial device queues, and pipes, are
audited using the FOR FILES bits.

2. A value of 0 for the accl_attr word means that there is no
auditing of resource accesses. A value of 1 means audit
everything. Other values indicate the auditing of specific
accesses.

3. When write auditing is enabled, the "write audit" record will
be generated when the file is successfully opened for write.
written. Only one "write audit" record is produced per open
instance of the file. If both write and open auditing are
enabled, two audit records may be produced.

4. File size changes (including truncation) are audited under the
control of auditing bits 5 and 9. Thus, access that is
controlled with the ACCESS_ WRITE permission bits is
audited by way of auditing bits 5 and 9.

5. Bit 3 is used in conjunction with bit 4 to allow the auditor to
determine the duration of access. However, since this
information is not required, the generation of the close audit is
optional.

• accl_count specifies the number of access_list data structures following the
access_info_J data structure.

In addition, the access_info _] data structure can be followed by zero or more (up to
a maximum of 64) access_list data structures. These structures are used to define
resource permissions for individual users or groups.

Resource Permissions

struct access list {
char acl=ugname[UNLEN+l];
char acl_ugname_pad_l;
short acl_access;

};

3-4 LAN Server Application Programmer's Reference

Related Information

where:

• acl _ugname is an ASCIIZ string specifying a particular user name or group
name.

• acl_ugname_pad_l WORD-aligns the data structure components.

• acl_access specifies permission of a user name or a group name. acl_access is
defined in ACCESS.H as follows:

Manifest

ACCESS_READ

ACCESS_ WRITE

ACCESS_CREATE

ACCESS_EXEC

ACCESS_DELETE

ACCESS_ATRIB

ACCESS_PERM

ACCESS_ALL

ACCESS_GROUP

Bit
Mask

OxOl

Ox02

Ox04

Ox08

OxlO

Ox20

Ox40

Ox7F

Ox8000

Meaning

Permission to read data from a resource,
and by default execute the resource.

Permission to write data to the resource.

Permission to create an instance of the
resource (such as a file); data can be
written to the resource when creating it.

Permission to execute the resource.

Permission to delete the resource.

Permission to modify the attributes of a
resource (such as the date and time a file
was last modified).

Permission to modify the permissions
(read, write, create, execute, and delete)
assigned to a resource for a user or
application.

Permission to read, write, create,
execute, or delete a resource, or to
modify attributes or permissions.

Permission for a particular group; if
returned, indicates that the entry is for a
group.

For information on include files, see Appendix A, "Include Files."

Chapter 3. API Function Descriptions 3-5

NetAccessAdd

Syntax

Return Codes

The NetAccessAdd (admin, DOS) function defines a user name or group name
access permission record for a new resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessAdd(servername, level, buf, buflen)
char far * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (1) provided in the access_info_l data structure.

• buf points to the access _info _l data structure. The structure can be followed by
zero or more access _list data structures.

• buflen specifies the size (in bytes) of the buf memory area.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_BAD_NETPATH 53

ERROR_INVALID_PARAMETER 87

ERROR_INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR_NetN otStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

Network access is
denied.

The network path
cannot be found.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

3-6 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ServerNotStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_lnternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ResourceNotFound 2222 The netname cannot be
found.

NERR_ResourceExists 2225 The resource
permission list already
exists.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-7

Remarks

Related Information

Manifest Value

NERR_ACFTooManyLists 2230

NERR_InvalidComputer 2351

Meaning

Too many lists were
specified.

The specified computer
name is invalid.

Other return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosFreeSeg

• DosFsCtl

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosFSRamSemClear

• DosGetShrSet[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosQFileMode

• DosSemClear.

To define the access permissions for a new resource, the contents of bu/ must include
an access _info_ 1 data structure specifying the name of a resource, attributes, and the
number of access_list data structures that are appended. Each access_list data
structure specifies a user name or group name and associated permissions to be
added to the access permission record of a resource.

For information on:

• Add functions-See Chapter 1, "Overview of OS/2 LAN Server APL"

• Deleting an access permission record-See "NetAccessDel" on page 3-12.

• Listing server permissions and resources-See "NetAccessEnum" on page 3-15.

3-8 LAN Server Application Programmer's Reference

NetAccessCheck

Syntax

The NetAccessCheck (local) function verifies that a user name has the supplied
permissions for a particular resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessCheck(reserved, uname, resource, operation, result)
char far * reserved;
char far * uname;
char far * resource;
unsigned short operation;
unsigned short far * result;

where:

• reserved is a NULL pointer.

• uname points to an ASCIIZ string containing a user name.

• resource points to an ASCIIZ string containing the local path name for the
resource type, as follows:

Type

Directory

File

Pipe

Spooler queue

Serial device queue

Format

drive .pathname

drive :pathname

\pipe\pipename

\print\queuename

\colDBl\chardevqueue

• operation specifies the type of access operation requested. Any combination of
the following can be requested, as defined in ACCESS.H as follows:

Manifest

ACCESS_READ

ACCESS_ WRITE

ACCESS_ CREATE

ACCESS_EXEC

ACCESS_DELETE

ACCESS_ATRIB

Bit
Mask

OxOl

Ox02

Ox04

Ox08

Ox IO

Ox20

Meaning

Permission to read data from a resource,
and by default execute the resource.

Permission to write data to the resource.

Permission to create an instance of the
resource (such as a file); data can be
written to the resource when creating it.

Permission to execute the resource.

Permission to delete the resource.

Permission to modify the attributes of a
resource (such as the date and time a file
was last modified).

Chapter 3. API Function Descriptions 3-9

Return Codes

Manifest

ACCESS_PERM

ACCESS_ALL

Bit
Mask

Ox40

Ox7F

Meaning

Permission to modify the permissions
(read, write, create, execute, and delete)
assigned to a resource for a user or
application.

Permission to read, write, create,
execute, or delete a resource, or to
modify attributes or permissions.

• result points to an unsigned short integer specifying whether or not the operation
is permitted. result is only valid when the NetAccessCheck function returns the
NERR_Success return code. If result is 0, then the operation is permitted.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_ INV AUD _PARAMETER

NERR_ ServerN otStarted

NERR _InternalError

NERR_InvalidAPI

NERR_ACFNotFound

NERR_UserNotFound

NERR_ACFFileIOFail

NERR_InvalidDatabase

Value

0

5

25

50

87

2114

2140

2142

2219

2221

2229

2247

Meaning

No errors were encountered.

Administrative privilege is
required.

The seek is invalid.

This request is not supported by
the network.

The specified parameter is invalid.

The Server service has not been
started.

An internal error has occurred.

The requested API is not
supported on the remote server.

The Net.ACC file is missing.

The user name cannot be found.

An error was encountered in
accessing the accounts database.

The UAS database file is
corrupted.

Other error return codes may be returned from the following functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsCtl

• DosOpen

• DosRead.

3-10 LAN Server Application Programmer's Reference

Remarks

Related Information

If an access permission record cannot be found for the specified user name and the
specified resource, the NetAccessCheck function tries to find the proper access
permission record for the GUEST account, a special account set up for temporary
users of the resource. GUEST accounts are defined in the IBMLAN.INI file.

For information on:

• Defining user or group access permissions-See "NetAccessAdd" on page 3-6.

• Guest accounts-See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

• Listing all permissions and resources-See See "NetAccessEnum" on page 3-15.

Chapter 3. API Function Descriptions 3-11

NetAccessDel

Syntax

Return Codes

The NetAccessDel (admin, DOS) function deletes all access permission records for a
particular shared resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessDel(servername, resource)
char far * servername;
char far * resource;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• resource points to an ASCIIZ string containing the local path name for the
resource type, as follows:

Type

Directory

File

Pipe

Spooler queue

Serial device queue

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NETWORK_ACCESS_DENIED

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

ERROR_ MORE_ DATA

Format

drive :pathname

drive :pathname

\pipe\pipename

\print\queuename

\corD.Dl\chardevqueue

Value Meaning

0 No errors were
encountered.

5 Administrative
privilege is required.

8 Sufficient memory is
not available.

65 Network access is
denied.

87 The specified
parameter is invalid.

124 The Level parameter is
invalid.

234 Additional data is
available, but the
buffer is too small.

3-12 LAN Server Application Programmer's Reference

Manifest Value

NERR_ NetN otStarted 2102

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_BufTooSmall 2123

NERR _ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR_ BrowserNotStarted 2139

NERR _ InternalError 2140

NERR_ BadTransactConfig 2141

NERR_ACFNotFound 2219

NERR_ResourceNotFound 2222

NERR_ACFNotLoaded 2227

NERR_ACFFileIOFail 2229

NERR _InvalidComputer 2351

Meaning

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net.Ace file is
missing.

The netname cannot be
found.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFSRamSemClear

• DosFreeSeg

• DosFsCtl

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

Chapter 3. API Function Descriptions 3-13

Related Information

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosSemClear.

For information on:

• Defining user name or group name access permissions-See "NetAccessAdd" on
page 3-6.

• Del functions-See Chapter 1, "Overview of OS/2 LAN Server API."

• Listing all permissions and resources-See See "NetAccessEnum" on page 3-15.

3-14 LAN Server Application Programmer's Reference

NetAccessEnum

Syntax

Return Codes

The NetAccessEnum (partially admin, DOS) function enumerates all access
permission records.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessEnum(servername, basepath, recursive, level,

buf, buflen, entriesread, totalentries)
char far *
char far *
short
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
basepath;
level;
recursive;
buf;
buflen;
entries read;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• basepath points to an ASCIIZ string containing a base path name for the shared
resources. A NULL pointer or string means no basepath is to be used.

• recursive enables or disables recursive searching. If recursive is 0,
NetAccessEnum returns entries only for the resource named as basepath. If
recursive is non-zero, NetAccessEnum returns entries for all access control
records whose resource matches basepath.

• level specifies the level of detail (0 or I) requested for the returned access _info
data structure.

• buf points to the returned access_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
returned.

• totalentries points to an unsigned short integer indicating the number of entries
available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

Value

0

5

8

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

Chapter 3. API Function Descriptions 3-lS

Manifest Value Meaning

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ResourceNotFound 2222 The netname cannot be
found.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

3-16 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest Value

NERR_ACFFileIOFail 2229

NERR_InvalidComputer 2351

Meaning

An error was
encountered in
accessing the accounts
database.

The specified computer
name is invalid.

Other error return codes may be returned from the following functions:

• DosAllocSeg

• DosFsRamSemClear

• DosFreeSeg

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULLTRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosSemClear.

The NetAccessEnum function can return entries for an application having only
ACCESS_PERM permissions. If the user does not have administrative privileges,
NetAccessEnum will not return ERROR_ACCESS_DENIED, but it will return
NERR_Success with zero entries. The basepath parameter limits the entries returned
by NetAccessEnum. If basepath is a non-NULL string, basepath serves as a prefix
for the path name. For example, if basepath is C:\PROG, NetAccessEnum returns
access permission records for resources that begin with C:\PROG.

The totalentries parameter indicates the number of entries available for the given
basepath and recursive parameters, not the total number of entries in the access file.

Therefore, NetAccessEnum returns information only for resources with non-default
settings below the root directory specified in the request. Note that this is
semantically consistent with a standard OS/2 LAN Requester/Server, which returns
only explicit permissions. In addition, it is highly recommended that the recursive
switch always be set to FALSE.

For information on:

• Adding an access permission record-See "NetAccessAdd" on page 3-6.

• Enum functions-See Chapter 1, "Overview of OS/2 LAN Server API."

• Retrieving information about a permissions of a resource-See
"NetAccessGetlnfo" on page 3-18.

• Verifying an access permission record of a resource-See "NetAccessCheck" on
page 3-9.

Chapter 3. API Function Descriptions 3-17

NetAccessGetlnfo

Syntax

The NetAccessGetlnfo (partially admin, DOS) function retrieves information about
the access permission record of a resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessGetinfo(servername, resource, level, buf,

buflen, totalavail)
char far *
char far *
short
char far *
unsigned short
unsigned short far *
where:

servername;
resource;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• resource points to an ASCIIZ string containing the local path name for the
resource type, as follows:

Type

Directory

File

Pipe

Spooler queue

Serial device queue

Format

drive :pathname

drive :pathname

\pipe\pipename

\print\queuename

\comm.\chardevqueue

• level specifies the level of detail (0 or 1) requested for the returned access_info
data structure.

• buf points to the returned access_info data structure. On a successful return, buf
can contain an access_info_O data structure or an access_info_l data structure
followed by zero or more access_list data structures. The number of access_list
data structures returned can be found in the accl_count component of the
access_info_J data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information available.

3-18 LAN Server Application Programmer's Reference

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ResourceNotFound 2222 The netname cannot be
found.

Chapter 3. API Function Descriptions 3-19

Remarks

Manifest

NERR_ ACFNotLoaded

NERR_ ACFFileIOFail

NERR_)nvalidComputer

Value

2227

2229

2351

Meaning

The UAS database has
not been started.

An error was
encountered in
accessing the. accounts
database.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosFsRamSemClear

• DosFreeSeg

• DosFsctl

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULL TRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosSemClear.

If the calling process does not have administrative privileges, NetAccessGetlnfo can
be successfully called only by a process that has special permissions
(ACCESS_PERM) defined in the access permission record of the resource.

The specified resource must be a complete path name.

In specifying the queuename for a resource, use the name originally assigned to the
resource with the NetShareAdd function.

If level is 1, NetAccessGetlnfo returns an access_info_J data structure followed by an
access_list data structure for each entry in the list of the resource. The number of
entries can be determined by examining the accl_count component in the
access_info_l data structure.

If buf cannot hold all of the fixed-length and variable-length data (all access_list data
structures), NetAccessGetlnfo returns the NERR_BufTooSmall error code, and not
the ERROR_MORE_DATA error code as most Getlnfo functions do when there is
more data available.

The proper way to determine the size of buf is to first call NetAccessGetlnfo with
level as 1 and bu.fl.en as 0. In this case, NetAccessGetlnfo will return the number of
bytes required in totalavail. After obtaining this value, call NetAccessGetlnfo with
level as 1, and specify the new bu.fl.en.

3-20 LAN Server Application Programmer's Reference

Related Information
For information on:

• Getlnfo functions-See Chapter 1, "Overview of OS/2 LAN Server API."

• Listing all resources and permissions-See "NetAccessEnum." on page 3-15.

• Modifying the current permissions for a resource-See "NetAccessSetlnfo" on
page 3-25.

Chapter 3. API Function Descriptions 3-21

NetAccessGetUserPerms

Syntax

Return Codes

The NetAccessGetUserPerms (partially admin, DOS) function supplies a specified
user's or group's permission to a resource. The resource can be a file, directory,
drive or logical resource and can be specified remotely by a universal naming
convention (UNC) path as well as by a server name.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessGetUserPerms{servername, usergroupname, resource, permission)

char far *
char far *
char far *
short far *

where:

servername;
usergroupname;
resource;
permission;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• usergroupname points to an ASCIIZ string containing the name of the user or
group to be inquired.

• resource points to an ASCIIZ string containing the path name for the resource
type which can be a directory, file, or drive, as follows:

Type

Directory

File

Pipe

Spooler queue

Serial device queue

Format

drive :pathname

drive :pathname

\pipe\pipename

\print\queuename

\comm \chardevqueue

• permission points to a field where the permission bit field is to be returned.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_BAD_NETPATH

Value

0

5

8

25

53

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The network path
cannot be found.

3-22 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ResourceNotFound 2222 The netname cannot be
found.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

Chapter 3. API Function Descriptions 3-23

Remarks

Manifest Value

NERR_ACFFileIOFail 2229

NERR_InvalidDatabase 2247

NERR _InvalidComputer 2351

Meaning

An error was
encountered in
accessing the accounts
database.

The UAS database file
is corrupted.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsctl

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULLTRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosRead

• DosSemClear.

The resource can be specified remotely by a UNC path as well as by a server name.
The permissions returned are based on the user's entry and the entry for any groups
to which the user belongs. Priority is always given to the user's entry if one exists.

This API requires administrative privilege with the exception that users are always
allowed to request their own permissions to any resource. In addition, a user with
"P" permission to the resource can get the permissions for any user or group.

3-24 LAN Server Application Programmer's Reference

NetAccessSetlnfo

Syntax

The NetAccessSetlnfo (admin, DOS) function changes an access permission record
for a resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessSetlnfo(servername, resource, level,

buf, buflen, pannnum)
char far *
char far *
short
char far *
unsigned short
short

where:

servername;
resource;
level;
buf;
buflen;
pannnum;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• resource points to an ASCIIZ string containing the local path name for one of
the following resource types:

Type

Directory

File

Pipe

Spooler queue

Serial device queue

Format

drive :pathname

drive :pathname

\pipe\pipename

\print\queuename

\comm\chardevqueue

• level specifies the level of detail (1) provided in the access_info_l data structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum specifies whether a specific component of the access_info_l data
structure is being set, or the entire data structure. If parmnum is zero, buf must
contain an access_info_J data structure followed by zero or more access_list data
structures. If parmnum is non-zero, only the accl_attr component in the
access_info_l data structure is set, and parmnum must pass the ordinal position
value (ACCESS_ATTR_PARMNUM) of the accl_attr component.

Chapter 3. API Function Descriptions 3-25

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_ SEEK 25 The seek is invalid.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_ INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_ MORE_ DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuITooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

3-26 LAN Server Application Programmer's Reference

Manifest Value

NERR_ACFNotFound 2219

NERR_ UserNotFound 2221

NERR_ResourceNotFound 2222

NERR_ACFNotLoaded 2227

NERR_ACFNoRoom 2228

NERR_ACFFileIOFail 2229

NERR_ACFTooManyLists 2230

NERR_ InvalidDatabase 2247

NERR_ InvalidComputer 2351

NERR_ CanNotGrowUASFile 2456

Meaning

The Net.Ace file is
missing.

The user name cannot
be found.

The netname cannot be
found.

The UAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

Too many lists were
specified.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsctl

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULL TRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosOpen

Chapter 3. API Function Descriptions 3-27

Remarks

Related Information

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

The specified resource must be a complete path name. For example, file or directory
resources must include a drive letter.

A user or application that has ACCESS_PERM permissions for a particular resource
can change the access permission record for that resource and remove its permissions
for that resource.

The parmnum is used only to change the accl_attr field in the access_info_J data
structure. To change the user or group permissions through this API, call
NetAccessGetlnfo first. Otherwise, if the user or group list is not complete, the
information that is not included will be lost.

For information on:

• Listing server resources and permissions-See "NetAccessEnum" on page 3-15.

• Retrieving permissions of a resource-See "NetAccessGetlnfo" on page 3-18.

• Setlnfo functions-See Chapter 1, "Overview of OS/2 LAN Server API."

3-28 LAN Server Application Programmer's Reference

Alert Category

Description

NetAlertRaise (local)-See "NetAlertRaise" on page 3-34.

NetAlertStart (local)-See "NetAlertStart" on page 3-37.

NetAlertStop (local)-See "NetAlertStop" on page 3-40.

The functions in the Alert category provide a system for notifying network service
programs and applications of network events. They are used with the ALERT.H
and NETCONS.H include files.

An event is a particular instance of a process or state of hardware defined by an
application or by the OS/2 LAN Requester/Server software. The OS/2 LAN
Requester/Server sends out an alert, in the form of a message or the resetting of a
semaphore, when certain events occur. Other programs, network services, or internal
network components use the NetAlertRaise function to raise an alert, notifying
various applications or users when a particular type of event occurs.

The ALERT .H include file defines the following classes of events for the alerts that
are sent out:

• A print job has completed.

• A user or application received a broadcast message.

• An entry was added to an error log file.

• A network event required administrative assistance.

• A user accessed or used certain applications or resources.

Other classes of alerts can be defined for network applications as needed. For
example, if an application routinely writes large amounts of data to a disk drive,
running the risk of filling the disk, the user might want the event of no free disk
space to trigger an alert that notifies the application to pause or end the process
slowing the system.

An application or network service, known as a client, registers to be notified of an
event (or class of events) by calling the NetAlertStart function. Each registration
adds an entry to an alert table.

A client can receive alert messages through one of two delivery mechanisms:

• A mailslot (registered as \mailslot\name)

• A system semaphore (registered as \sem\name). If a program requires detailed
information about an event, it should be registered as a mailslot, since a
semaphore cannot transmit such information.

A client can be registered for one type of event or for several types by calling the
NetAlertStart function a number of times.

To discontinue alerts for a registered client, use the NetAlertStop function to remove
that entry of a client in the alert table for the particular class of event.

Chapter 3. API Function Descriptions 3-29

Data Structures

Header Structure

Event Structures

To change the internal size of the alert table (thus allowing more alerts to be
defined), a user or application must modify the numalert component in the
IBMLAN.INI file, and then restart the requester (by using the NET STOP RDR /y
and NET START RDR commands).

An application registered as a mailslot client receives information about each class of
event for which it is registered. This information consists of a fixed-length header
followed by variable-length information specific to the type of event, as defined in
the ALERT.H include file.

The fixed-length header contains the following data:

/* Standard event data structure */

struct std_alert {
long alrt_timestamp;
char alrt_eventname[ELVLEN+l];
char alrt_padl;
char alrt_servicename[SNLEN+l];

};

where:

• alrt_timestamp indicates the time and date of the event.

• alrt_eventname is an ASCIIZ string indicating the alert class (type of event).

• alrt_padl WORD-aligns data structure components.

• alrt_servicename is an ASCIIZ string indicating the application that is raising the
alert.

The ALERT.H include file contains data structures for predefined alert classes.
These structures define only the fixed-length part of the information, not the ASCIIZ
strings that follow some of the structures. Each of the six structures is described in
the following sections.

3-30 LAN Server Application Programmer's Reference

Print Request Completed

struct print_other_info {
short alrtpr_jobid;
short alrtpr_status;
long alrtpr_submitted;
long alrtpr_size;

};
/* followed by consecutive ASCIIZ strings

char computername[];
char username[];
char queuename[];
char destname[];
char status_string[];

*/
where:

• alrtpr _jobid is the identification number of the print job.

• alrtpr _status indicates the status of the print job.

• alrtpr _submitted is a time stamp indicating when the print job was submitted.

• alrtpr _size indicates the size (in bytes) of the print job.

• computername is an ASCIIZ string indicating the requester or server that
submitted the print job.

• username is an ASCIIZ string indicating the user that requested the printing.

• queuename is an ASCIIZ string indicating the queue that handled the print job.

• destname is an ASCIIZ string indicating the printer that handled the job.

• status_string is information that the print processor returns. This string
corresponds to status_string in the printjob data structure for the print job.

Network Message Received: In this case, no data structure is defined; however, the
text from the received message is in the following format:

char msg_text [];

where:

• msg_text is an ASCIIZ string of message text.

Entry Made to Error Log File

struct errlog_other_info {
short alrter_errcode;
long alrter_offset;

};

where:

• alrter _errcode is the error code that was logged.

• alrter _offset is the offset for the new entry in the error log file.

Chapter 3. API Function Descriptions 3-31

Notify Administrator of Network Event

struct admin_other_info {
short alrtad_errcode;
short alrtad_numstrings;

};

/* followed by 0-9 consecutive ASCIIZ strings

char mergestrings [][];

*/

where:

• alrtad_errcode is the error code for the new message in the message log file.

• alrtad_numstrings indicates the number (0 through 9) of consecutive ASCIIZ
strings that mergestrings contains.

• mergestrings is a series of consecutive ASCIIZ strings that comprise the error
message indicated by a/rtad_errcode.

Notify User of an Event

struct user_other_info {
short alrtus_errcode;
short alrtus_numstrings;

};

/* followed by the consecutive ASCIIZ strings

char mergestrings [][];
char username [];
char computername[];

*/

where:

• alrtus_errcode is the error code for the new message in the message log file.

• alrtus _ numstrings indicates the number (0 through 9) of consecutive ASCIIZ
strings that mergestrings contains.

• mergestrings is a series of consecutive ASCIIZ strings that comprise the error
message indicated by alrtus _ errcode.

• usemame is the user name of the user or application that is being affected by the
alert.

• computername is the name of the computer that the user or application is
accessing.

3-32 LAN Server Application Programmer's Reference

Related Information

The ALERT.H include file contains macros to simplify access to the variable-length
fields in the alert structure as follows:

Macro

ALERT_OTHER_INFO,
ALERT_OTHER_INFO_F

ALERT_ VAR_DATA,
ALERT_VAR_DATA_F

For information on:

Task

When given a pointer to the start of the
std_alert data structure, the
ALERT_ OTHER_INFO macro resolves
to a pointer to the variable-length part
of the alert message (the information
specific to the alert class). Use
ALERT_OTHER_INFO_F when a far
pointer is required.

Works with the data structures defined
in ALERT.H. Given a pointer to the
beginning address of the data structure,
ALERT_VAR_DATA returns a pointer
to the first variable-length ASCIIZ
string. Use ALERT_ VAR_DATA_F
when a far pointer is required.

• Include files-See Appendix A, "Include Files."

• Creating mailslots-See "Mailslot Category" on page 3-146.

Chapter 3. API Function Descriptions 3-33

NetAlertRaise

Syntax

Return Codes

The NetAlertRaise (local) function notifies all clients registered in the alert table that
a particular event has occurred.

#include <netcons.h>
#include <alert.h>

unsigned far pascal
NetAlertRaise(event, buf, buflen, timeout)
const char far * event;
const char far * buf;
unsigned short buflen;
unsigned long timeout;

where:

• event points to an ASCIIZ string indicating the type of alert to raise. The
ALERT .H include file defines the following classes of alerts:

Manifest ASCIIZ String

ALERT_ADMIN_EVENT "AD MIN"

ALERT_ERRORLOG_EVENT "ERRORLOG"

ALERT_MESSAGE_EVENT "MESSAGE"

ALERT_PRINT_EVENT "PRINTING"

ALERT_USER_EVENT "USER"

Other classes of events can be defined as necessary.

Meaning

Notify an
administrator.

Entry added to
error log file.

User or
application
received a
message.

Print job
completed or
print error.

Application or
resource used.

• buf points to the std_alert data structure followed by additional alert data.

• buflen specifies the size (in bytes) of the buf memory area.

• timeout specifies the number of milliseconds to wait for event information to be
written to the mailslot.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

3-34 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV ALID _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INV ALID _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_Buff ooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2IoctlError 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_lnvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

NERR_NoSuchAlert 2432 The Alerter service has
not been started.

Chapter 3. API Function Descriptions 3-35

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFSRamSemRequest

• DosFreeSeg

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULL TRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_ FILE_NOT _FOUND]

• DosSemClear

• DosSemRequest.

NetAlertRaise notifies all clients registered as semaphores or mailslots when a
particular system event takes place. Semaphores are cleared, and mailslots are sent
messages.

For mailslot clients, NetAlertRaise writes information from bu/ to clients registered
as mailslots by calling the DosWriteMailslot function.

All semaphore clients must be created with the NoExclusive option set and must be
called by a process that calls the DosMuxSemWait function on the semaphore. This
procedure informs the process of the state transition of the semaphore.

For information on:

• Creating a mailslot-See "DosMakeMailslot" on page 3-150.

• Registering a client for an event-See "NetAlertStart" on page 3-37.

• Ending event watching-See "NetAlertStop" on page 3-40.

3-36 LAN Server Application Programmer's Reference

NetAlertStart

Syntax

Return Codes

The NetAlertStart (local) function registers a client to be notified of a particular type
of network event.

#include <netcons.h>
#include <alert.h>

unsigned far pascal
NetAlertStart(event, recipient, maxdata)
const char far * event;
const char far * recipient;
unsigned short maxdata;

where:

• event points to an ASCIIZ string indicating the type of event of which the client
is to be notified. The ALERT.H include file defines the following classes of
alerts:

Manifest ASCIIZ String

ALERT_ADMIN_EVENT "ADMIN"

ALERT_ERRORLOG_EVENT "ERRORLOG"

ALERT_MESSAGE_EVENT "MESSAGE"

ALERT_PRINT_EVENT "PRINTING"

ALERT_USER_EVENT "USER"

Other classes of events can be defined as necessary.

Meaning

Notify an
administrator.

Entry added to
error log file.

User or
application
received a
message.

Print job
completed or
print error.

Application or
resource used.

• recipient points to an ASCIIZ string specifying the mailslot or semaphore client
to receive the alerts.

• maxdata specifies a limit (in bytes) to the information the mailslot client will
receive about events in that class.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

Value

0

5

8

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

Chapter 3. API Function Descriptions 3-37

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV ALID _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_ NetN otStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_BadEventName 2143 The event name is
incorrectly formed.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ AlertExists 2430 The specified client is
already registered for
the specified event.

NERR_ TooManyAlerts 2431 The Alerter service
table is full.

3-38 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest

NERR _BadRecipient

Value

2433

Meaning

The Alerter service
recipient is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFSRamSemRequest

• DosFreeSeg

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULLTRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosSemClear

• DosSemRequest.

Event names are ASCIIZ strings stored in ALERT.H. Applications can define their
own events, specifying the name when calling the NetAlertStart and NetAlertRaise
functions. If you create an event data structure, be sure to choose a name that does
not duplicate a name used by another application.

If recipient is a semaphore, calling NetAlertRaise for the specified event opens,
clears, resets, and closes the system semaphore. The process owning the semaphore
must have created it with the NoExclusive option set; presumably such a process will
be executing a DosSemWait or DosMuxSemWait function on the semaphore and
will have the transition status of the semaphore.

Note that if NetAlertStart starts a particular alert, the alert will still exist (even when
a process is ended) until the NetAlertStop function is called to stop the alert.

For information on:

• Creating a mailslot-See "DosMakeMailslot" on page 3-150.

• Creating a semaphore-See DosCreateSem in the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference, Volume 1.

• Reading a mailslot-See "DosReadMailslot" on page 3-152.

• Ending the watch of a client for a class or type of event-See "NetAlertStop" on
page 3-40.

Chapter 3. API Function Descriptions 3-39

NetAlertStop

Syntax

Return Codes

The NetAlertStop (local) function removes a registered client from the alert table.

#include <netcons.h>
#include <alert.h>

unsigned far pascal
NetAlertStop(event, recipient)
const char far * event;
const char far * recipient;

where:

• event points to an ASCIIZ string specifying the class of alerts from which the
registered client is to be excluded. The ALERT.H include file defines the
following classes of alerts:

Manifest ASCIIZ String

ALERT_ADMIN_EVENT "AD MIN"

ALERT_ERRORLOG_EVENT "ERRORLOG"

ALERT_MESSAGE_EVENT "MESSAGE"

ALERT_PRINT_EVENT "PRINTING"

ALERT_USER_EVENT "USER"

Other classes of events can be defined as necessary.

Meaning

Notify an
administrator.

Entry added to
error log file.

User or
application
received a
message.

Print job
completed or
print error.

Application or
resource used.

• recipient points to an ASCIIZ string containing the user name of the client
whose registration is to be canceled.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

3-40 LAN Server Application Programmer's Reference

Manifest Value

ERROR_MORE_DATA 234

NERR_NetNotStarted 2102

NERR_ShareMem 2104

NERR_BufTooSmall 2123

NERR_ OS2Ioct1Error 2134

NERR _ WkstaN otStarted 2138

NERR_BrowserNotStarted 2139

NERR _InternalError 2140

NERR _BadTransactConfig 2141

NERR_InvalidAPI 2142

NERR _InvalidComputer 2351

NERR_NoSuchAlert 2432

Meaning

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The Alerter service has
not been started.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFSRamSemRequest

• DosFreeSeg

• DosFsctl(NETTRANSACTION)

• DosFsctl(NULL TRANSACT)

• DosFsctl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR _ FILE_NOT _FOUND]

• DosSemClear

• DosSemRequest.

Chapter 3. API Function Descriptions 3-41

Related Information
For information on registering a client to watch for a particular event, see
"NetAlertStart" on page 3-37.

3-42 LAN Server Application Programmer's Reference

Auditing Category

Description

NetAuditClear (admin, DOS)-See "NetAuditClear" on page 3-58.

NetAuditRead (admin, DOS)-See "NetAuditRead" on page 3-61.

NetAuditWrite (local, server)-See "NetAuditWrite" on page 3-66.

The functions in the Auditing category control the audit log file, which contains an
audit trail of operations that occur on a server. They are used with the AUDIT.H
and NETCONS.H include files.

Each time a user or application connects to or disconnects from resources on a
server, an audit entry can be generated to record the connection or disconnection.
Audit entries are stored in an ASCII file. The default audit log file is
\IBMLAN\LOGS\NET.AUD. All of the auditing functions perform their
operations on this file.

Note: The auditing functions only control changing the contents of the audit log
file. To read the audit log file, an application must first call the
NetAuditRead function to obtain the handle of the file. The DosRead
function can then be called to read the file. To close the file, an application
must call the DosClose function.

OS/2 LAN Requester/Server provides for the following types of audit entries:

• A change in a status of a server

• The beginning of a session

• The end of a session

• A password error

• The start of a connection

• A disconnection

• A rejected connection request

• An access made to a resource

• The rejection of an access

• The closing of a file, device, or pipe

• The change of service status code or text

• A modification of access control profile

• A modification of the UAS database

• The logon of a user

• The logoff of a user

• The denial of a logon

• The limit of account exceeded.

Chapter 3. API Function Descriptions 3-43

Data Structures

Applications can create additional types of audit entries with the NetAuditWrite
function.

The other two auditing functions open (NetAuditRead) and clear (NetAuditClear)
the audit log file.

All audit entries include a fixed-length header used in conjunction with
variable-length data specific to the type of entry. Because of the variable lengths
and structures of the ae_data portion of the audit entry (it is possible for ae_data to
be 0 bytes in length), only the fixed header is defined in the audit_entry data
structure.

The variable-length portion of the audit entry can also contain an offset to a
variable-length ASCIIZ string. The offset values are unsigned short integers. To
determine the value of the pointer to this string, add the offset value to the address
of the ae_data structure.

The following example illustrates this procedure. Assume that appoints to a buffer
containing a complete audit entry and that ae_type contains the value AE_CONNSTOP,
specifying the predefined ae_connstop data structure. To make the variable
computer _name point to the ASCIIZ string containing the name of the client whose
connection was stopped, an application would perform the following algorithm:

struct audit_entry * ap; /* fixed portion of audit entry */
struct ae_connstop * acp; /* variable-length structure */
char * computer_name; /* pointer to variable-length

string */

/* calculate offset to variable-length struct */

acp = (struct ae_connstop *) ((char*) ap + ap-> ae_data_offset);

/* calculate offset to computer name */

computer_name = (char*) acp + acp -> ae_cp_compname;

3-44 LAN Server Application Programmer's Reference

The Fixed-Length Header
The format of the fixed portion of the audit entry is as follows:

struct audit_entry {
unsigned short ae_len;
unsigned short ae_reserved;
unsigned long ae_time;
unsigned short ae_type;

---- unsigned short ae_data_offset; /* offset from
I beginning address of
I audit_entry */
I } ;
I
I /* variable-length data specific to type of audit entry
I
-> char ae_data[];

unsigned short ae_len2;

*/
where:

• ae_len and ae_len2 specify the length of the audit entry. (Note that ae_len is
included both at the beginning and the end of the audit entry to enable both
backward and forward scanning of the file.) To calculate the entry size, add the
size of the audit_entry data structure to the size of the variable-length ae_data
and the size of an unsigned short integer, as follow:

totalsize = sizeof (struct audit entry) +
sizeof (ae_data) + sizeof (unsigned short);

• ae _reserved is 0.

• ae _time is a time stamp indicating the time the audit file log entry was made.

• ae_type indicates the type of audit entry. Type values ranging from OxOOOO
through Ox07FF are reserved. The NETCONS.H include file defines the
following types of data entries:

Manifest

AE_SRVSTATUS

AE_SESSLOGON

AE_SESSLOGOFF

AE_SESSPWERR

AE_CONNSTART

AE_CONNSTOP

AE_CONNREJ

AE_RESACCESS2

AE_RESACCESSREJ

AE_ CLOSEFILE

AE_SERVICESTAT

Value

0

2

3

4

5

6

7

8

9

11

Purpose

Status of server changed.

Session logged on.

Session logged off.

Password error.

Connection started.

Connection stopped.

Connection rejected.

Access granted.

Access rejected.

File, device, or pipe closed.

Service status code or text
changed.

Chapter 3. API Function Descriptions 3-45

ae_data Structures

--"··~--~~--

Manifest Value Purpose

AE_ACLMOD 12 Access control list modified.

AE_UASMOD 13 User account subsystems
database modified.

AE_NETLOGON 14 User logged on to the network.

AE_NETLOGOFF 15 User logged off of the network.

AE_NETLOGDENIED 16 Network logon denied.

AE_ACCLIMITEXCD 17 Account limit exceeded.

• ae_data_offset specifies the byte offset from the beginning of the audit entry to
the start of the variable-length portion (ae_data) of the audit entry. To calculate
the start of ae_data, add the value of ae_data_offset to the starting address of the
fixed-length portion of the entry.

• ae_data is the variable-length portion of the audit entry, which differs depending
on the type of entry specified by ae_type. The information starts at
ae_data_offset bytes from the top of the audit entry. See the following section
for information on the structure of each entry type that the OS/2 LAN
Requester/Server software defines.

The following data structures, specific to the ten types of audit entries, are defined in
the AUDIT.H include file. The structures follow (though not necessarily
immediately) the audit_entry header.

Server Status Changes

struct ae_srvstatus {
unsigned short ae_sv_status;

};

where:

• ae_sv_status is one of four values indicating a status of the server. These values,
defined in AUDIT.H, mean the following:

Manifest Value

AE_SRVSTART 0

AE_SRVPAUSED 1

AE_SRVCONT 2

AE_SRVSTOP 3

Session Begins

struct ae_sesslogon {

};

unsigned short ae_so_compname; /* offset */
unsigned short ae_so_username; /* offset */
unsigned short ae_so_privilege;

Meaning

Server software started.

Server software paused.

Server software restarted.

Server software stopped.

3-46 LAN Server Application Programmer's Reference

where:

• ae_so_compname is an offset (from the beginning address of the ae_sesslogon
data structure) to an ASCIIZ string indicating which requester established the
session.

• ae_so_username is an offset (from the beginning address of the ae_sesslogon data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_so_username and ae_so_compname are the same.

• ae _so _privilege is one of three values specifying the permission level assigned to
ae_so_username. These values, defined in AUDIT.H, have the following
meanings:

Manifest Value Privilege

AE_GUEST 0 Guest

AE_USER 1 User

AE_ADMIN 2 Admin

Chapter 3. API Function Descriptions 3-47

Session Ends

struct ae_sesslogoff {

};

unsigned short ae_sf_compname; /* offset */
unsigned short ae_sf_username; /* offset */
unsigned short ae_sf _reason;

where:

• ae_sf_compname is an offset (from the beginning address of the ae_sesslogoff
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_sf_username is an offset (from the beginning address of the ae_sesslogoff data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_sf_username and ae_sf_compname are the same.

• ae _sf_reason is one of five values indicating why the session was disconnected.
These values, defined in AUDIT.H, mean the following:

Manifest Value

AE_NORMAL 0

AE_ERROR 1

AE_AUTODIS 2

AE_ADMINDIS 3

AE_ACCRESTRICT 4

Password Error

struct ae_sesspwerr {
unsigned short ae_sp_compname; /* offset */
unsigned short ae sp username; /* offset */

}; - -

where:

Meaning

Normal disconnection or user
name limit.

Error, session disconnect, or bad
password.

Auto-disconnect (time out),
share removed, or administrative
permissions required.

Administrative disconnection
(forced).

Forced off by account system
due to account restriction, such
as logon hours.

• ae_sp_compname is an offset(from the beginning of the ae_sesspwerr data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_sp_username is an offset (from the beginning of the ae_sesspwerr data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If O, ae_sp_username and ae_sp_compname are the same.

3-48 LAN Server Application Programmer's Reference

Connection Started

struct ae_connstart {

};

unsigned short ae_ct_compname; /* offset */
unsigned short ae_ct_username; /* offset */
unsigned short ae_ct_netname; /* offset */
unsigned short ae_ct_connid;

where:

• ae_ct_compname is an offset (from the beginning address of the ae_connstart
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_ct_username is an offset (from the beginning address of the ae_connstart data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_ct_username and ae_ct_compname are the same.

• ae_ct_netname is an offset (from the beginning address of the ae_connstart data
structure) to an ASCIIZ string indicating the netname of the resource with which
the connection was made.

• ae_ct_connid is the connection identification number.

Connection Stopped

struct ae_connstop {

};

unsigned short ae_cp_compname; /* offset */
unsigned short ae_cp_username; /* offset */
unsigned short ae_cp_netname; /* offset */
unsigned short ae_cp_connid;
unsinged short ae_cp_reason;

where:

• ae_cp_compname is an offset (from the beginning address of the ae_connstop data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_cp_username is an offset (from the beginning address of the ae_connstop data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_cp_username and ae_cp_compname are the same.

• ae_cp_netname is an offset (from the beginning address of the ae_connstop data
structure) to an ASCIIZ string indicating the connected netname of the resource.

Chapter 3. API Function Descriptions 3-49

• ae_cp_connid is the connection identification number.

• ae_cp_reason is one of three values indicating why the session was disconnected.
These values, defined in AUDIT.H, mean the following:

Manifest Value

AE_NORMAL 0

AE_SESSDIS 1

AE_UNSHARE 2

Connection Rejected

struct ae_connrej {
unsigned short ae_cr_compname; /* offset */
unsigned short ae_cr_username; /* offset */
unsigned short ae_cr_netname; /* offset */
unsigned short ae er reason;

}; - -
where:

Meaning

Normal disconnection, or user
name limit.

Error, session disconnect, or bad
password.

Autodisconnect (timeout), share
removed, or administrative
permissions lacking.

• ae_cr _compname is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_cr _username is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_cr _username and ae_cr _compname are the same.

• ae_cr _netname is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the desired netname of a resource.

• ae_cr _reason is one of four values indicating why the session was disconnected.
These values are defined in AUDIT.H, as follows:

Manifest

AE _ USERLIMIT

AE_BADPW

AE_ADMINPRIVREQD

AE_NOACCESSPERM

3-50 LAN Server Application Programmer's Reference

Value

0

1

2

3

Meaning

Normal disconnection, or user
name limit.

Error, session disconnect, or bad
password.

Autodisconnect (timeout), share
removed, or administrative
permissions lacking.

No access permissions to shared
resource.

Access Granted

struct ae_resaccess {
unsigned short ae_ra2_compname; /* offset */
unsigned short ae_ra2_username; /* offset */
unsigned short ae_ra2_resname; /* offset */
unsigned short ae_ra2_operation;
unsigned short ae_ra2_returncode;
unsigned short ae_ra2_restype;
unsigned short ae ra2 fileid;

}; - -
where:

• ae_ra2_compname is an offset (from the beginning address of the ae_resaccess
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_ra2_username is an offset (from the beginning address of the ae_resaccess
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_ra_username and ae_ra_compname are the same.

• ae_ra2_resname is an offset (from the beginning address of the ae_resaccess data
structure) to an ASCIIZ string indicating the name of the resource accessed.

• ae_ra2_operation is one of seven values indicating which operation was
performed. These values, defined in ACCESS.H, mean the following:

Manifest

ACCESS_READ

ACCESS_ WRITE

ACCESS_CREATE

ACCESS_EXEC

ACCESS_DELETE

ACCESS_ATRIB

ACCESS_PERM

Bit
Mask

OxOl

Ox02

Ox04

Ox08

OxlO

Ox20

Ox40

Meaning

Data was read or executed from
a resource.

Data was written to a resource.

An instance of the resource
(such as a file) was created; data
may have been written to the
resource when creating it.

A resource was executed.

A resource was deleted.

Attributes of a resource were
modified.

Permissions (read, write, create,
execute, and delete) of a
resource for a user or
application were modified.

• ae_ra_returncode gives the return code from the particular operation. If 0, the
operation was successful.

• ae_ra_restype gives the server message block (SMB) request function code.

• ae_raJi.leid gives the server identification number of a file.

Chapter 3. API Function Descriptions 3-51

Access Rejected

struct ae_resaccessrej {

};

unsigned short ae_rr_compname; /* offset */
unsigned short ae_rr_username; /* offset */
unsigned short ae_rr_resname; /* offset */
unsigned short ae_rr_operation;

where:

• ae _rr _ compname is an offset (from the beginning address of the ae _resaccessrej
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_rr _username is an offset (from the beginning address of the ae_resaccessrej
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_rr _username and ae_rr _compname are the same.

• ae_rr _resname is an offset (from the beginning address of the ae_resaccessrej
data structure) to an ASCIIZ string indicating the name of the resource to which
access was denied.

• ae_rr _operation is one of seven values indicating the operation requested. These
values are defined in ACCESS.H, as follows:

Manifest

ACCESS_READ

ACCESS_ WRITE

ACCESS_ CREATE

ACCESS_EXEC

ACCESS_DELETE

ACCESS_ATRIB

ACCESS_PERM

Bit
Mask

OxOl

Ox02

Ox04

Ox08

OxlO

Ox20

Ox40

Meaning

Data was read or executed from
a resource.

Data was written to a resource.

An instance of the resource
(such as a file) was created; data
may have been written to the
resource when creating it.

A resource was executed.

A resource was deleted.

Attributes of a resource were
modified.

Permissions (read, write, create,
execute, and delete) of a
resource for a user or
application were modified.

Service Status Code or Text Changed: The audit log entry will be written when
service-status auditing is on, and a service performs a NetServiceStatus call that
updates the service status (svcs_status). Only changes of status to one of the
following values cause an audit entry to be written:

• INSTALLED

• UNINST ALLED

• PAUSED

3-52 LAN Server Application Programmer's Reference

• CONTINUED (ACTIVE).

struct ae_servicestat {

};

unsigned short ae_ss_compname; /* offset */
unsigned short ae_ss_username; /* offset */
unsigned short ae_ss_svcname; /* offset */
unsigned short ae_ss_status;
unsigned long ae ss code;
unsigned short ae=ss=text; /* offset */
unsigned short ae_ss_returnval;

where:

• ae_ss_compname is an offset (from the beginning address of the ae_servicestat
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_ss_username is an offset (from the beginning address of the ae_servicestat data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_ss_username and ae_ss_compname are the same.

• ae_ss_svcname is an offset (from the beginning address of the ae_servicestat data
structure) to an ASCIIZ string indicating the name of a service.

• ae _ss _status is the service status being set.

• ae_ss_code is the service code being set.

• ae _ss _text is an offset to text being set.

• ae_ss_returnval is the return value.

Access Control List Modification: The audit log entry will be written when an
existing access control list (ACL) record is modified or deleted.

struct ae_aclmod {

};

unsigned short ae_am_compname; /* offset */
unsigned short ae_am_username; /* offset */
unsigned short ae_am_resname; /* offset */
unsigned short ae_am_action;
unsigned long ae_am_datalen;

where:

• ae_am_compname is an offset (from the beginning address of the ae_aclmod data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_am_username is an offset (from the beginning address of the ae_aclmod data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_am_username and ae_am_compname are the same.

• ae_am_resname is an offset (from the beginning address of the ae_aclmod data
structure) to an ASCIIZ string that indicates the name of a resource that owns
the accessed files.

• ae_am_action is the action performed on the ACL record, as follows:

Chapter 3. API Function Descriptions 3-53

Value

0

2

Meaning

Modification

Delete

Add

• ae_am_datalen is the length of data following the fixed data structure. This is
always zero in records generated by the OS/2 LAN Requester/Server.

User Account Subsystem Modification: The audit log entry will be written when an
existing user accounts subsystem (UAS) record is modified or deleted, or the UAS
modals are modified.

struct ae_uasmod {

};

unsigned short ae_um_compname; /* offset */
unsigned short ae_um_username; /* offset */
unsigned short ae_um_resname; /* offset */
unsigned short ae_um_rectype;
unsigned short ae_um_action;
unsigned long ae_um_datalen;

where:

• ae_um_compname is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_um_username is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_um_username and ae_um_compname are the same.

• ae_um_resname is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the name of a resource that owns the
accessed files.

• ae_um_rectype is the type of UAS record, as follows:

Value

0

2

Meaning

User record.

Group record.

UAS modals.

• ae_um_action is the action performed on the UAS record, as follows:

Value

0

1

2

Meaning

Modification

Deletion

Addition

• ae_um_datalen is the length of data following the fixed data structure. This is
always zero in records generated by the OS/2 LAN Requester/Server.

3-54 LAN Server Application Programmer's Reference

Network Logon Record: This record is written by the server that processes the
network logon of the user.

struct ae_netlogon {
unsigned short ae_no_compname; /* offset */
unsigned short ae_no_username; /* offset */
unsigned short ae_no_privilege;
unsigned short ae no authflags;

}; - -

where:

• ae_no_compname is an offset (from the beginning address of the ae_netlogon data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_no_username is an offset (from the beginning address of the ae_netlogon data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_no_username and ae_no_compname are the same.

• ae_noyrivilege is the privilege of the user logging on, as follows:

Manifest

AE_GUEST

AE_USER

AE_ADMIN

• ae_no_authflags is a reserved field.

Value

0

2

Network Logoff Record: This record is written by the server that processes the
network logoff of the user.

struct ae_netlogoff {

};

unsigned short ae_nf_compname; /* offset */
unsigned short ae_nf_username; /* offset */
unsigned short ae_nf _reason;
unsigned short ae_nf _subreason;

where:

• ae_nf_compname is an offset (from the beginning address of the ae_netlogoff data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_nf_username is an offset (from the beginning address of the ae_netlogoff data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_nf_username and ae_nf_compname are the same.

• ae _ nf_reason is the reason for logo ff, as follows:

Manifest

AE_NORMAL

AE_ERROR

Value

0

1

Meaning

Normal logoff by user.

Disconnect due to error.

Chapter 3. API Function Descriptions 3-55

Manifest

AE_AUTODIS

AE_ADMINDIS

AE_ACCRESTRICT

Value

2

3

4

Meaning

Auto-disconnect (station down).

Administrator disconnected user.

Forced off by account system
due to account restriction, such
as logon hours.

• ae _ nf_subreason is the details of reason for logo ff. When nf_reason is
AE_ACCRESTRICT, one of the following is true:

Manifest

AE_LIM_UNKNOWN

AE_LIM_LOGONHOURS

AE_LIM_EXPIRED

Otherwise, this value is zero.

Value

0

1

2

Meaning

Unknown or unavailable.

Logon hours.

Account expired.

Network Logon Denied: The audit log entry is written when the network logon
request is denied.

struct ae_netlogdenied {

};

unsigned short ae_nd_compname; /* offset */
unsigned short ae_nd_username; /* offset */
unsigned short ae_nd_reason;
unsigned short ae_nd_subreason;

where:

• ae_nd_compname is an offset (from the beginning address of the ae_netlogdenied
data structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_nd_username is an offset (from the beginning address of the ae_netlogdenied
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_nd_username and ae_nd_compname are the same.

• ae_nd_reason is the reason for denial of log on, as follows:

Manifest

AB_ GENERAL

AE_BADPW

AE_ACCRESTRICT

3-56 LAN Server Application Programmer's Reference

Value

0

1

4

Meaning

General access denied.

Incorrect password.

Forced off by account system
due to account restriction, such
as logon hours.

Related Information

• ae_nd_subreason is the details of reason for denial. When nd_reason is
AE _ ACCRESTRICT, one of the following is true:

Manifest

AE_LIM_ UNKNOWN

AE_LIM_LOGONHOURS

AB_ LIM _EXPIRED

AE_LIM_INV AL_ WKSTA

AE_LIM_DISABLED

Otherwise, this value is zero.

Value

0

2

3

4

Meaning

Unknown or unavailable.

Logon hours.

Account expired.

Requester ID not valid.

Account disabled.

Account Limit Exceeded: The audit log entry is written when users remain logged
on while their account limitations no longer permit them to be logged on.

struct ae_acclim {

};

unsigned short ae_al_compname; /* offset */
unsigned short ae_al_username; /* offset */
unsigned short ae_al_resname; /* offset */
unsigned short ae_al_limit;

where:

• ae_al_compname is an offset (from the beginning address of the ae_acclim data
structure) to an ASCIIZ string indicating the requester that established the
session.

• ae_al_username is an offset (from the beginning address of the ae_acclim data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_al_username and ae_al_compname are the same.

• ae_al_resname is the offset to the resource name.

• ae_al_limit is the limit that was exceeded, as follows:

Manifest

AE_LIM_UNKNOWN

AE_LIM_LOGONHOURS

AE_LIM_EXPIRED

For information on:

Value

0

1

2

Meaning

Unknown or unavailable.

Logon hours.

Account expired.

• OS/2 LAN Requester/Server network commands and IBMLAN.INI file-See the
IBM Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide.

• Permission levels-See "User Category" on page 3-382 and "Access Permission
Category" on page 3-2.

Chapter 3. API Function Descriptions 3-57

NetAuditClear

Syntax

Return Codes

The NetAuditClear (admin, DOS) function clears (and optionally saves) the audit
log file of a server.

#include <netcons.h>
#include <audit.h>

unsigned far pascal
NetAuditClear(servername, backupfile, reserved)
const char far * servername;
const char far * backupfile;
char far * reserved;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• backupfile points to an ASCIIZ string assigning a name for an optional backup
file. The calling application must have Write privileges for the path specified by
backupfile. The path name must also be accessible by the OS/2 DosMove
function. If the path name is relative, it is assumed relative to the
IBMLAN\LOGS directory.

A NULL pointer tells NetAuditClear not to save the audit log entries.

• reserved must be NULL.

Manifest

NERR_SUCCESS

ERROR_PATH_NOT_FOUND

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_NETWORK_ACCESS_DENIED

ERROR_INVALID_PARAMETER

ERROR_ INV AUD _NAME

Value

0

3

5

8

50

65

87

123

Meaning

No errors were
encountered.

The path was not
found.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

Network access is
denied.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

3-58 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_FILENAME_EXCED _RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NE RR_ Invalid Computer 2351 The specified computer
name is invalid.

NERR _ CantType 2357 The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-59

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosDelete

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosFsCtlNet. GetRdrAddrO

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosMove

• DosOpen

• DosSemClear

• redir.GetlnitPath.

NetAuditClear clears the audit log file of all entries and optionally saves the contents
to another file.

The NetAuditWrite function (see "NetAuditWrite" on page 3-66) issues an admin
alert when the audit log file reaches 80% capacity and again when the file reaches
100% capacity. At 100%, NetAuditWrite fails. Therefore, applications should
periodically clear the audit log file of outdated information.

To set a maximum size for the audit log file, use one of the following methods:

• Use the NET CONFIG command with the /MAXAUDITLOG option (see the
IBM Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide for more information).

• Set the maxauditlog parameter in the IBMLAN.INI file (see the IBM Operating
System/2 Local Area Network Server Version 1.2 Network Administrator's Guide
for a description of IBMLAN.INI).

• Call the NetServerSetlnfo function with the sv_maxauditsz parameter.

For information on:

• Getting the status of audit log file capacity-See "NetAlertRaise" on page 3-34.

• Writing an entry to the audit log file-See "NetAuditWrite" on page · 3-66.

3-60 LAN Server Application Programmer's Reference

NetAuditRead

Syntax

The NetAuditRead (admin, DOS) function opens and returns an OS/2 file handle to
the audit log file of a server.

#include <netcons.h>
#include <audit.h>

unsigned far pascal
NetAuditRead (servername, reserved!, ploghndl, offset, reserved2,

reserved3, flags, buf, buflen, bytesread, bytesavail)
const char far * servername;
const char far * reserved!
HLOG far* ploghndl;
unsigned long offset;
unsigned short far * reserved2;
unsigned long reserved3;
unsigned long flags;
char far * buf;
unsigned short buflen;
unsigned short far * bytesread;
unsigned short far* bytesavail;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• reserved] must be NULL.

• ploghndl is the pointer to the returned log handle.

• offset is the record offset to begin read. The offset is ignored unless flags bit 1 is
set. If this bit is set, offset is taken as a zero-based offset based on record
number, not bytes, at which the data returned should begin. Note that the
record offset parameter is zero based from both directions, dependent upon the
direction of the read. If reading backwards is specified, then the 0th record is
the last record in the file. If reading forward, then the 0th record is the first
record in the file.

• reserved2 must be NULL.

• reserved3 must be zero.

• flags specifies the open flags, bitmapped as shown here.

• buf is the pointer to the buffer for returned data.

• buflen specifies the size (in bytes) of the buf memory area.

• bytesread points to an unsigned short integer indicating the number of bytes that
were read into the buffer.

• bytesavail points to an unsigned short integer indicating the number of bytes that
were available.

Chapter 3. API Function Descriptions 3-61

Return Codes

The bitmapped flags fields are as follows:

Bits Meaning

0 If 0, the file is read normally. If 1, the file is read backwards and
records are returned in the buffer in reverse-chron order (newest
records first).

1 If 0, read proceeds normally and sequentially. If l, read proceeds from
the Nth record from the start of the file. "N" is the offset parameter.

2-31 Reserved; must be 0.

The offset is ignored unless flags bit 1 is set. If this bit is set, offset is taken as a
zero-based offset based on record number, not bytes, at which the data returned
should begin.

An application calling NetAuditRead for the first time must initialize the 128-bit log
handle as follows:

Bits

127(MSB)-64

63-0(LSB)

Value

0

Where the LSB is the last (rightmost) bit. Thereafter, each call to NetAuditRead
must be given the value for the log handle that was returned by the previous call to
NetAuditRead.

Notes:

1. If bytesread is 0 and bytesavail is not 0, the buffer is too small to hold the next
record in the file.

2. Unlike other uses of bytesavail, in this case, the value may be OxFFFF, which is
shorthand for "OxFFFF or more." There can potentially be much more than
64KB data available. The application should continue to process entries until
this value is returned to 0.

The data is returned in the buffer. The application should use the bytesread value to
determine the end of valid data in the buffer.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SHARING_ VIOLATION 32 A sharing violation
occurred.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

3-62 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_NET_ WRITE_FAULT 88 A network data fault
has occurred.

ERROR_OPEN_FAILED 110 The open/created
failed due to explicit
fail command.

ERROR_INV AUD _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_FILENAME_EXCED _RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NE RR _Browser NotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

Chapter 3. API Function Descriptions 3-63

Remarks

Manifest

NERR _BadTransactConfig

NERR_ WkstaN otStarted

NERR_ InvalidComputer

NERR_ CantType

NERR_LogFileChanged

NERR_LogFileCorrupt

NERR_ InvalidLogSeek

Value

2141

2138

2351

2357

2378

2379

2440

Meaning

The server is not
configured for
transactions.

The Requester service
has not been started.

The specified computer
name is invalid.

The type of input
cannot be determined.

This log file has
changed between reads.

This log file is corrupt.

The log file does not
contain the requested
record number.

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosCLose

• DosDevlOCtl

• DosFSRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosRead

• DosSemClear

• redir.GetlnitPath.

After NetAuditRead returns the handle of the audit log file, an application must call
the DosRead function to read the contents of the file. To close the file, an
application calls the DosClose function.

3-64 LAN Server Application Programmer's Reference

Related Information
For information on:

• Clearing an audit log file-See "NetAuditClear" on page 3-58.

• Closing an audit log file-See DosClose in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1.

• Reading an audit log file-See DosRead in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1.

• Writing an entry to the audit log file-See "NetAuditWrite" on page 3-66.

Chapter 3. API Function Descriptions 3-65

NetAuditWrite

Syntax

Return Codes

The NetAuditWrite (local, server) function writes an audit trail entry to the local
audit log file.

#include <netcons.h>
#include <audit.h>

unsigned far pascal
NetAuditWrite{type, buf, buflen, reservedl, reserved2)
unsigned short type;
const char far * buf;
unsigned short buflen;
char far * reservedl;
char far * reserved2;

where:

• type specifies the type of entry to write to the file.

• buf points to the variable data of the data structure.

• buflen specifies the size (in bytes) of the bu/ memory area.

• reserved] and reserved2 are NULL pointers to reserved ASCIIZ strings.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_SHARING_ VIOLATION 32

ERROR_NOT_SUPPORTED 50

ERROR_BAD_NETPATH 53

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INV AUD _PARAMETER 87

ERROR_NET_ WRITE_FAULT 88

ERROR_\P~N_FAILED 110

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

A sharing violation
occurred.

This request is not
supported by the
network.

The network path
cannot be found.

Network access is
denied.

The specified
parameter is invalid.

A network data fault
has occurred.

The open/created
failed due to explicit
fail command.

3-66 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest Value

NERR_NetNotStarted 2102

NERR_ServerN otStarted 2114

NERR_ WkstaN otStarted 2138

NERR_LogOverflow 2377

Meaning

The redirector
NETWKSTA.EXE has
not been started.

The Server service has
not been started.

The Requester service
has not been started.

This log file exceeds
the maximum defined
size.

NetAuditWrite issues an admin alert by calling the NetAlertRaise function when the
audit log file reaches 80% capacity and again when the file reaches 100% capacity.
At 100% audit log capacity, the NetAuditWrite function fails, returning the error
code NERR_LogOverflow.

To return successfully, the NetAuditWrite function requires that the auditing entry
in the IBMLAN.INI file be set to YES, as follows:

auditing = yes

For information on:

• Closing the audit log file-See DosClose in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1.

• Retrieving size of the audit log file-See "NetServerGetlnfo" on page 3-292.

• Setting the maximum size of the audit log file-See "NetServerSetlnfo" on
page 3-295.

Chapter 3. API Function Descriptions 3-67

Configuration Category

Description

NetConfigGet2 (admin, DOS)-See "NetConfigGet2" on page 3-70.

NetConfigGetAil2 (admin, DOS)-See "NetConfigGetAll2" on page 3-73.

The functions in the Configuration category retrieve network configuration
information from the IBMLAN.INI file. The NetConfigGet2 function retrieves a
single parameter value for a given network component; NetConfigGetA112 returns all
of the parameters for the given component. These functions are used with the
CONFIG.H and NETCONS.H include files.

The IBMLAN.INI file is an ASCII file containing the configuration information for
OS/2 LAN Requester/Server services. User-defined services and applications also
store network configuration information in this file.

The IBMLAN.INI file consists of component lines, parameter lines, and comment
lines, in a format that enables the Configuration functions to easily browse through
and retrieve the information. The format is as follows:

• Component lines mark the start of information on a component, in the form:

[componentname]

• Parameter lines contain a parameter and a value, in the form:

parameter = value

The parameter value can consist of arbitrary text and is not processed by the
Configuration functions, except that leading and trailing spaces are stripped.
Interpretation of the value is left to the caller. No quotation marks are allowed
as part of the parameter value.

For any one component, if a parameter appears several times, NetConfigGetAll2
returns each occurrence; NetConfigGet2 returns only the first instance. The
same parameter name can be used under different components without affecting
the NetConfigGet2 return.

• Comment lines are any blank lines or lines in which the first nonblank character
is a semicolon (;).

An IBMLAN.INI requester component might contain the following information:

[requester]
; define net_tool requester
computername = net_tool
charcount = 16

As shown, requester defines a computer name of net _tool and specifies that 16
bytes of characters must accumulate before a requester sends them to a serial
device queue.

3-68 LAN Server Application Programmer's Reference

Note: The IBMLAN .INI file contains default values for network components.
These values may not reflect actual values passed to a network service. If
you notice inconsistencies between IBMLAN .INI entries and actual service
values, examine the manner in which you have defined these service values
within your application. To maintain consistency, it is a good idea to call
NetConfigGetA112 and examine the returned values before setting new
parameter values for a given component.

DOS Considerations

Related Information

These APls cannot be called locally on a DOS requester to retrieve information from
the DOSLAN.INI file. However, these APis can be called remotely on a DOS
requester to retrieve information from the IBMLAN .INI file.

For information:

• The IBMLAN.INI file-see the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator's Guide.

• The DOSLAN.INI file-see the IBM OS/2 DOS LAN Requester User's Guide.

Chapter 3. API Function Descriptions 3-69

NetConfigGet2

Syntax

Return Codes

The NetConfigGet2 (admin, DOS) function retrieves a specified parameter value
from the IBMLAN .INI file of a local computer or a remote server.

#include <netcons.h>
#include <config.h>

unsigned far pascal
NetConfigGet2(servername, reserved, component, parameter,

buf, buflen, parmlen)
char far *
char far *
char far *
char far *
char far *
unsigned short
unsigned short far *

where:

servername;
reserved;
component;
parameter;
buf;
buflen;
parmlen;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

• reserved must be NULL.

• component points to an ASCIIZ string specifying the name of the component to
be searched.

• parameter points to an ASCIIZ string specifying the parameter whose value is to
be returned.

• buf points to the memory address where the value of a parameter is to be
returned.

• buflen specifies the size (in bytes) of the buf memory area.

• parmlen points to an unsigned short integer indicating the size (in bytes) of a
parameter.

Manifest

NERR_SUCCESS

ERROR_FILE_NOT_FOUND

ERROR_PATH_NOT_FOUND

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_ SHARING_ VIOLATION

Value

0

2

3

5

8

32

Meaning

No errors were
encountered.

The file was not found.

The path was not
found.

Administrative
privilege is required.

Sufficient memory is
not available.

A sharing violation
occurred.

3-70 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuffooSmall 2123 The buff er is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR_ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ CfgCompN otF ound 2146 The program could not
find the specified
component in the
IBMLAN .INI file.

NERR_ CfgParamNotFound 2147 The program could not
find the specified
parameter in the
IBMLAN .INI file.

Chapter 3. API Function Descriptions 3-71

Remarks

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosDuphandle

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosOpen[-ERROR_OPEN_FAILED]

• DosRead

• DosSemClear.

NetConfigGet2 returns the value (ASCIIZ string) for a single parameter of a
specified component in buf This string is the entire value content of the
IBMLAN.INI line for the specified parameter, which is all text to the right of the
equal sign (=). Leading and trailing spaces are stripped from this text. No other
processing is performed on it.

3-72 LAN Server Application Programmer's Reference

NetConfigGetAll2

Syntax

Return Codes

The NetConfigGetA112 (admin, DOS) function retrieves all configuration
information for a given network component in the IBMLAN.INI file of a local
computer or a remote server.

#include <netcons.h>
#include <config.h>

unsigned far pascal
NetConfigGetA112(servername, reserved, component, buf, buflen,

bytesread, bytesavail)
char far *
char far *
char far *
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
reserved;
component;
buf;
bufl en;
bytes read;
bytesavail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

• reserved must be NULL.

• component points to an ASCIIZ string specifying the name of the component to
search.

• buf points to the memory address where the parameter values of a component
are to be returned.

• buflen specifies the size (in bytes) of the buf memory area.

• bytesread points to an unsigned short integer indicating the number of bytes
returned to buf

• bytesavail points to an unsigned short integer indicating the number of bytes of
data that were available.

Manifest

NERR_SUCCESS

ERROR_FILE_NOT_FOUND

ERROR_PATH_NOT_FOUND

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SHARING_ VIOLATION

Value Meaning

0 No errors were
encountered.

2 The file was not found.

3 The path was not
found.

5 Administrative
privilege is required.

8 Sufficient memory is
not available.

32 A sharing violation
occurred.

Chapter 3. API Function Descriptions 3-73

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2IoctlError 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ CfgCompN otF ound 2146 The program could not
find the specified
component in the
IBMLAN.INI file.

NERR_LineTooLong 2149 A line in the
IBMLAN.INI file is
too long.

NERR_J obNotFound 2151 The print job does not
exist.

3-74 LAN Server Application Programmer's Reference

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosDuphandle

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosOpen[-ERROR_OPEN_FAILED]

• DosRead

• DosSemClear.

DOS Considerations

Remarks

This API can be called remotely on a DOS requester to retrieve information from
the IBMLAN .INI file.

NetConfigGetA112 returns in buf a set of concatenated ASCIIZ strings, representing
configuration information for the specified component. Each string is ended by a
NULL byte (ASCII 0), and the whole buffer is ended by a NULL string.
Information is returned in the form pann=va l ue. The parameter name (left of the =

sign) is in uppercase. bytesread and bytesavail are filled in as for Getlnfo calls.

For example,
11 foo = Bar,1,long co11111ent string 11

in the IBMLAN.INI file is returned as:

"FOO=Bar,1,long co11111ent string"

Chapter 3. API Function Descriptions 3-75

Connection Category

Description

Data Structures

NetConnectionEnum (adm.in, server, DOS)-See "NetConnectionEnum" on
page 3-78.

The NetConnectionEnum function lists all connections made to a server by a
requester client or all connections made to a shared resource of a server. The
function is used with the SHARES.ff and NETCONS.H include files.

A requester accesses a shared resource of a server by means of a connection. Thus,
a connection is the path between a redirected local device name of a requester and a
shared resource of a server. Using a NetUseAdd (UNC) name can establish a
connection without any local device name.

The NetConnectionEnum function returns data at a detail level of 0 or 1, using the
following data structures:

Connection Information (Level O)

struct connection_info_e {
unsigned short coni0 id;

}; -

where:

• coniO_id is the connection identification number.

Connection Information (Level 1)

struct connection_info_l {
unsigned short conil_id;
unsigned short conil_type;
unsigned short conil_num_opens;
unsigned short conil_num_users;
unsigned long conil_time;
char far * conil_username;
char far * conil netname;

}; -

where:

• conil_id is the connection identification number.

• conil_type indicates the type of connection made from the local device name to
the shared resource. The SHARES.ff include file defines the following types of
connection:

Manifest

STYPE_DISKTREE

STYPE_PRINTQ

STYPE_DEVICE

STYPE_IPC

3-76 LAN Server Application Programmer's Reference

Value

0

1

2

3

Meaning

Disk connection.

Spooler queue connection.

Serial device connection.

Interprocess communication
(IPC) connection.

Related Information

• conil_num_opens indicates the number of files that are currently open as a result
of the connection.

• conil_num_users indicates the number of users on the connection.

• conil_time indicates the number of seconds the connection has been established.

• conil_username points to an ASCIIZ string indicating the user that made the
connection.

• conil_netname points to an ASCIIZ string indicating either the netname of the
shared resource of the server or the computer name of the requester, depending
on which name was specified as the qualifier parameter of the
NetConnectionEnum function. The type of name supplied to conil_netname is
the inverse of the type supplied to the qualifier parameter.

For information on connecting a device name of a requester to a shared resource of
a server, see "NetUseAdd" on page 3-372.

Chapter 3. API Function Descriptions 3-77

NetConnectionEnum

Syntax

Return Codes

The NetConnectionEnum (admin, server, DOS) function gives a listing of
connections made to a shared resource of a server, or of all connections established
from a particular computer to a server.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetConnectionEnum(servername, qualifier, level, buf,

buflen, entriesread, totalentries)
const char far *
const char far *
short

servername;
qualifier;
level;

char far * buf;
unsigned short buflen;
unsigned short far * entriesread;
unsigned short far * totalentries;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• qualifier points to an ASCIIZ string specifying either the netname of the shared
resource whose connections will be listed or the client name of the requester
whose connections to the shared resource will be listed (qualifier cannot be a
NULL pointer or string).

• level specifies the level of detail (0 or 1) for the returned connection_info data.

• bu/ points to the connection_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an integer indicating the number of entries that were
returned to buf.

• totalentries points to an integer indicating the number of entries that were
available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_NETWORK_ACCESS_DENIED 65

Meaning

No errors were
encountered.

Administrative privilege is
required.

Sufficient memory is not
available.

This request is not
supported by the
network.

Network access is denied.

3-78 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the buffer
is too small.

NERR_NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ServerNotStarted 2114 The Server service has not
been started.

NERR_ OS2IoctlError 2134 An internal error
occurred when calling the
workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service has
not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_ InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is not
supported on the remote
server.

NERR_NetNameNotFound 2310 This shared resource does
not exist.

NERR_ ClientNameNotFound 2312 A session does not exist
with that computer name.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-79

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

If qualifier specifies a requester, NetConnectionEnum returns a list of all connections
made between the requester and the specified server during the current session.

When qualifier specifies a shared resource, NetConnectionEnum returns a list of all
connections made to the shared resource.

For information on:

• Listing all available servers-See "NetServerEnum2" on page 3-289.

• Listing sessions on a server-See "NetSessionEnum" on page 3-331.

3-80 LAN Server Application Programmer's Reference

Domain Category

Description

NetGetDCName (DOS}-See "NetGetDCName" on page 3-82.

NetLogonEnum (partially admin, DOS}-See "NetLogonEnum" on page 3-85.

The functions in the Domain category deal specifically with the information of a
domain and are exclusive of other categories. They are used with the ACCESS.H
and NETCONS.H include files.

The functions in this category deal with domain-specific information. The
NetGetDCName function obtains the name of the domain controller when provided
the name of the domain. The NetLogonEnum function enumerates the inform,ation
of logged-on users in a domain. The information is in the level 0, 1, or 2
user _logon_info data structures. See the data structure information under "User
Category" on page 3-382.

Chapter 3. API Function Descriptions 3-81

NetGetDCName

Syntax

Return Codes

Given a domain name, the NetGetDCName (DOS) function returns the name of the
domain controller if there is any. The NULL domain name is taken to mean obtain
the domain controller (DC) of the primary domain.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGetDCName(servername, domain, buf, buflen)
char far * servername;
char far * domain;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• domain points to an ASCIIZ string containing the name of the domain.

• buf points to the buffer for the name of the domain controller to be returned.

• buflen specifies the size (in bytes) of the buff er buf.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INVALID _PARAMETER 87

ERROR_INVALID _NAME 123

ERROR_INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR NetNotStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

3-82 LAN Server Application Programmer's Reference

Manifest

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_ OS2IoctlError

NERR_ WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR _ BadTransactConfig

NERR _InvalidComputer

NERR_DCNotFound

Value

2104

2106

2123

2134

2138

2139

2140

2141

2351

2453

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

No domain controller
was found on this
domain.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosDeleteMailslot

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosMakeMailslot[-ERROR_ALREADY _EXISTS]

• DosSemClear.

Chapter 3. API Function Descriptions 3-83

Remarks
If the return code is 0 (success), the buffer contains an ASCIIZ string representing
the name ofthe domain controller as a UNC name, for example, "\\server."

Because NetGetDCName attempts to find the domain controller for the specified
.domain each time it is called, this function may affect the performance of
applications that call it often. However, since the domain controller of a domain
may change, applications should not cache the domain controller name for more
than a small set of operations. It is recommended that the application be written
without more than very local caching, unless performance tests indicate that calls to
NetGetDCName are the specific cause of poor performance.

Even then, the application should take care to refresh its internal cache by calling
this function when possible.

3-84 LAN Server Application Programmer's Reference

NetLogonEnum

Syntax

Return Codes

The NetLogonEnum (DOS) function supplies information about logged-on users.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetlogonEnum(servername, level, buf,

buflen, entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entries read;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level (0 or 2) of detail supplied to the data structure.

• buf points to the user _logon_info data structures.

• buflen specifies the size (in bytes) of the user _logon_info data structure.

• entriesread contains the number of entries on return.

• totalentries contains the total entries available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

Value

0

5

8

25

50

87

124

234

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-85

Manifest Value Meaning

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_ BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ ACFN otLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR _lnvalidComputer 2351 The specified computer
name is invalid.

NERR_InvalidUASOp 2451 This operation is not
permitted when the
Netlogon service is
running.

NERR_NetLogonNotStarted 2455 The Netlogon service
has not been started.

3-86 LAN Server Application Programmer's Reference

Manifest Value

NERR_ CanNotGrowUASFile 2456

Meaning

It is not possible to
grow the U AS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

Chapter 3. API Function Descriptions 3-87

Error Logging Category

Description

Data Structures

NetErrorLogClear (admin}-See "NetErrorLogClear" on page 3-90.

NetErrorLogRead (admin}-See "NetErrorLogRead" on page 3-93.

NetErrorLogWrite (local}-See "NetErrorLogWrite" on page 3-97.

The functions in the Error Logging category control the error log file. They are
used with the ERRLOG.H and NETCONS.H include files.

Each time an error condition occurs during a network operation, an error log entry
can be generated by NetErrorLogWrite to record error information. The other two
functions enable opening (NetErrorLogRead) and clearing (NetErrorLogClear) of
the error log file (which stores the entries).

Error log entries are stored as ASCII text. The default error log file name is
\IBMLAN\LOGS\NET.ERR. All error logging functions perform their operations
on this file.

Note: The error logging functions control changes to the error log file only. To
read the error log file, an application must first call the NetErrorLogRead
function to obtain the handle of the file. The DosRead function can then be
called to read the file. To close the file, an application must call the
DosClose function.

The error log file contains information about the following types of errors:

• OS/2 LAN Requester/Server software internal errors

• OS/2 internal errors

• Network service errors.

The NetErrorLogWrite function uses the error _log data structure to write an entry to
the error log file. The entry consists of a fixed-length data structure optionally
followed by zero or more ASCIIZ strings (el_text) describing the error message and
a block of raw data (el_data) relating to the cause of the error. Because of the
variable lengths and structures of the el_data and el_text portions of the entry, only
the fixed-length data structure is defined in the error _log data structure.

3-88 LAN Server Application Programmer's Reference

Related ·Information

The fixed portion of the error log entry has the following format:

struct error_log {

};

unsigned short el_len;
unsigned short el_reserved;
unsigned long el_time;
unsigned short el_error;
char el name[SNLEN+l];
unsigned short el=data_offset; /* offset from beginning

address of error_log */
unsigned short el_nstrings;

/* variable-length data ·specific to the error
message and block of data associated with error */

char el_text []; /*error message*/
--> char el_data []; /*raw data - the number of bytes

unsigned short el_len;

where:

used for raw data is equivalent to:
size = el_len - (el_data_offset

+ sizeof(el_len)); */

• el_len indicates the length (in bytes) of the error log entry. (Note that el_len is
included at both the beginning and end of the entry to enable both forward and
backward scanning of the file.)

• el _reserved is reserved.

• el_time indicates the time when el_name submitted the error entry.

• el_error is the error code for the error. el_error can be used to obtain an error
message from the NET.MSG file.

• el_name is an ASCIIZ string indicating thename of the network service or
application that returned the error entry.

• el_data_offset specifies the byte offset from the beginning of the error log entry
to the start of its variable-length portion (el_data).

• el_nstrings indicates the number of ASCIIZ strings the el_text portion of the
entry contains.

• el_text points to.zero or more ASCIIZ strings describing the error.

• el_data points to the raw data associated with the error.

For information on error codes, see Appendix C, "Return Codes."

Chapter 3. API Function Descriptions 3-89

NetErrorLogClear

Syntax

Return Codes

The NetErrorLogClear (admin) function clears (and optionally saves) the error log
file of a computer.

#include <netcons.h>
#include <errlog.h>

unsigned far pascal
NetErrorlogClear(servername, backupfile, reserved}
const char far * servername;
const char far * backupfile;
char far * reserved;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• backupfile points to an ASCIIZ string assigning a name for an optional backup
file. The calling application must have Write privileges for the path specified by
backupfile. The path name must also be accessible by the OS/2 DosMove
function. If the path name is relative, it is assumed relative to the
IBMLAN\LOGS directory.

A NULL pointer indicates that NetErrorLogClear is not to save the error log
entries.

• reserved is a NULL pointer.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_ SHARING_ VIOLATION

ERROR_NOT_SUPPORTED

ERROR_BAD_NETPATH

ERROR_NETWORK_ACCESS_DENIED

ERROR_BAD_NET_NAME

ERROR_INVALID_PARAMETER

Value

0

5

8

32

50

53

65

67

87

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

A sharing violation
occurred.

This request is not
supported by the
network.

The network path
cannot be found.

Network access is
denied.

This network name
cannot be found.

The specified
parameter is invalid.

3-90 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_NET_WRITE_FAULT 88 A network data fault
has occurred.

ERROR_INV ALID _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_ INVALID _LEVEL 124 The Level parameter is
invalid.

ERROR_FILENAME_EXCED _RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_ MORE_ DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_Buff ooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CantType 2357 The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-91

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosDelete

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosMove

• DosOpen

• DosSemClear

• redir.GetNetinitPath.

NetErrorLogClear fails if the error-log file is currently opened by another process;
The NetErrorLogWrite function (see "NetErrorLogWrite" on page 3-97) issues an
admin alert when the error log file reaches 80% capacity and again when the file
reaches 100% capacity. At 100% error log file capacity, NetErrorLogWrite fails.
Therefore, applications should periodically clear the error log file of outdated
information.

To set a maximum size for the error log file, use one of the following methods:

• Use the NET CONFIG command with the /MAXERRORLOG option (see the
IBM Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide for more information).

• Set the maxerrorlog parameter in the IBMLAN.INI file (see the IBM Operating
System/2 Local Area Network Server Version 1.2 Network Administrator's Guide
for a description of the IBMLAN.INI file).

• Call the NetWkstaSetlnfo function with the wkiO_errlogsz parameter.

For information on writing an entry to the error log file~ see "NetErrorLogWrite''
on page 3-97.

3-92 LAN Server Application Programmer's Reference

NetErrorLogRead

Syntax

The NetErrorLogRead (admin) function opens and returns an OS/2 file handle to
the error log file of a computer .

#include <netcons.h>
#include <errlog.h>

unsigned far pascal
NetErrorLogRead (servername, reservedl, ploghndl, offset, reserved2,

reserved3, flags, buf, buflen, bytesread, bytesavail)
const char far *
const char far *
HLOG far *
unsigned long
unsigned short far *
unsigned long
unsigned long
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
reservedl
ploghndl;
offset;
reserved2;
reserved3;
flags;
buf;
buflen;
bytes read;
bytesavail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the
local server.

• reserved] must be a NULL pointer.

• ploghndl is the pointer to the returned log handle.

• offset is the record offset to begin read. The offset is ignored unless flags bit 1 is
set. If this bit is set, offset is taken as a zero-based offset based on record
number rather than bytes, at which the data returned should begin. Note that
the record off set parameter is zero based from both directions, dependent upon
the direction of the read. If reading backwards is specified, then the 0th record
is the last record in the file. If reading forward, then the 0th record is the first
record in the file.

• reserved2 must be a NULL pointer.

• reserved3 must be zero.

• flags specifies the open flags, bitmapped as shown here.

• buf is the pointer to the buffer for returned data.

• buflen specifies the size (in bytes) of the bu:f memory area.

• bytesread points to an unsigned short integer indicating the number of bytes read
into the buffer.

• bytesavail points to an unsigned short integer indicating the number of bytes
available.

Chapter 3. API Function Descriptions 3-93

Return Codes

The bitmapped flags fields are as follows:

Bits Meaning

0 If 0, the file is read normally. If 1, the file is read backwards and
records are returned in the buffer in reverse-chron order (newest
records first).

1 If 0, read proceeds normally and sequentially. If 1, read proceeds from
the Nth record from the start of the file. "N" is the offset parameter.

2-31 Reserved; must be 0.

The offset is ignored unless flags bit 1 is set. If this bit is set, offset is taken as a
zero-based offset based on record number, not bytes, at which the data returned
should begin.

An application calling NetErrorLogRead for the first time must initialize the 64-bit
log handle as follows:

Bits Value

127 (MSB)-64 0

63-0(LSB) 1

Where the least significant bit (LSB) is the last (rightmost) bit. Thereafter, each call
to NetErrorLogRead must be given the value for the log handle that was returned
by the previous call to NetErrorLogRead.

Note: If bytesread is 0 and bytesavail is not 0, the buffer is too small to hold the
next record in the file.

Unlike other API uses of bytesavail, in this case, the value may be OxFFFF,
which is shorthand for "OxFFFF or more." There can potentially be much
more than 64KB of data available. The application should continue to
process entries until this value is returned to 0.

The data is returned in the buffer. The application should use the bytesread value to
determine the end of valid data in the buffer.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

3-94 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_BAD_NET_NAME 67 This network name
cannot be found.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_NET _ WRITE_FAULT 88 A network data fault
has occurred.

ERROR_INVALID_NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_FILENAME_EXCED _RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _ NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserN otStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CantType 2357 The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-95

Remarks

Related Information

Manifest

NERR_LogFileChanged

NERR_ LogFileCorrupt

NERR_InvalidLogSeek

Value

2378

2379

2440

Meaning

This log file has
changed between reads.

This log file is corrupt.

The log file does not
contain the requested
record number.

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosClose

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl{NETTRANSACTION)

• DosFsCtl{NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosRead

• DosSemClear

• redir. GetNetlnitPath.

After the NetErrorLogRead function returns the handle of the error log file , an
application calls the DosRead function to read the contents of a file. To close the
file, an application must call the DosClose function.

For information on:

• Clearing an error log file-See "NetErrorLogClear" on page 3-90.

• Closing an error log file-See DosClose in the IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference.

• Reading an error log file-See DosRead in the IBM Operating System/ 2
Technical Reference Version 1.2 Programming Reference.

3-96 LAN Server Application Programmer's Reference

NetErrorLogWrite

Syntax

Return Codes

The NetErrorLogWrite (local) function writes an entry to the error log file of a
computer.

#include <netcons.h>
#include <errlog.h>

unsigned far pascal
NetErrorLogWrite(reservedl, code, component, buf, buflen,

insbuf, nstrings, reserved2);
char far * reservedl;
unsigned short code;
const char far * component;
const char far * buf;
unsigned short buflen;
const char far * insbuf;
unsigned short nstrings;
char far * reserved2;

where:

• reserved] must be a NULL pointer.

• code specifies the error code of the network error that occurred.

• component points to an ASCIIZ string specifying which software component
encountered the error.

• bu/ points to the raw data associated with the error condition.

• buf/en specifies the size (in bytes) of the bu/ memory area.

• insbuf points to the ASCIIZ strings containing the. error message.

• nstrings indicates the number of concatenated ASCIIZ strings insbuf stores.

• reserved2 must be a NULL pointer.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_INV AUD _PARAMETER

NERR_NetNotStarted

NERR..;.. WkstaNotStarted

NERR_LogonNoUserPath

Value

0

5

87

2102

2138

2211

Meaning

No errors were
encountered.

Administrative
privilege is required.

The specified
parameter is invalid.

The redirector
NETWKSTA.EXE has
not been started.

The Requester service
has not been started.

The server is
configured without a
valid user path.

Chapter 3. API Function .Descriptions 3-97

Remarks

Related Information

Manifest

NERR_LogOverflow

Value

2377

Meaning

This log file exceeds
the maximum defined
size.

The NetErrorLogWrite function internally calls the appropriate OS/2 functions to
open and close the error log file.

The NetErrorLogWrite function issues an error log alert (with NetAlertRaise) each
time an entry is written to the error log file. Also, the NetErrorLogWrite function
issues an admin alert by calling the NetAlertRaise function when the error log file
reaches 80% capacity and again when the file reaches 100% capacity. At 100% error
log file capacity, NetErrorLogWrite fails, returning the error code
NERR_LogOverflow.

For information on:

• Clearing the error log file-See "NetErrorLogClear" on page 3-90.

• Closing the error log file-See DosClose in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference.

• Error codes-See Appendix C, "Return Codes."

• Limiting the size of the error log file-See "NetServerSetlnfo" on page 3-295.

• Retrieving the size of the error log file-See "NetServerGetlnfo" on page 3-292.

3-98 LAN Server Application Programmer's Reference

File Category

Description

Data Structures

NetFileClose2 (admin, server, DOS)-See "NetFileClose2" on page 3-101.

NetFileEnum2 (admin, server, DOS)-See "NetFileEnum2" on page 3-104.

NetFileGetlnfo2 (admin, server, DOS)-See "NetFileGetlnfo2" on page 3-107.

The functions in the File category provide a system for monitoring which file, device,
and pipe resources are opened on a server and for closing one of these resources if
necessary. They are used with the SHARES.Hand NETCONS.H include files.

NetFileGetlnfo2 returns information on one particular opening of a resource. Two
levels of detail are available, yielding only the identification number assigned to the
resource when it was opened (level 2) or additional data on permissions, file-locks,
and who opened the resource (level 3).

NetFileClose2 forces a resource closed when a system error prevents normal closure
by the DosClose function.

The level parameter for NetFileEnum2 and NetFileGetlnfo2 specifies one of two
levels of information (2 or 3) to be returned. Both functions return data structured
as follows:

Opened Resources (Level 2)

struct file_info_2 {
unsigned long fi2_id;
};

where:

• fi2_id is the identification number assigned to the resource at opening.

Opened Resources (Level 3)

struct file_info_3 {
unsigned long fi3_id;
unsigned short fi3_permissions;
unsigned short fi3_num_locks;
char far * fi3_pathname;
char far * fi3_username;

};

where:

• fi.3 _id is the identification number assigned to the resource at opening.

Chapter 3. API Function Descriptions 3-99

• fi3 _permissions indicates the access permissions of the opening application. The
bit mask of fi3 _permissions is defined in SHARES.H as follows:

Manifest

FILE_READ

FILE_ WRITE

FILE_ CREATE

Bitmask

Oxl

Ox2

Ox4

Meaning

Permission to read a resource,
and by default, execute the
resource.

Permission to write to a
resource.

Permission to create a resource;
data can be written when
creating the resource.

• fi3_num_locks indicates the number of file~locks on the file, device, or pipe.

• fi3_pathname points to an ASCIIZ·string giving the path name of the opened
resource.

• fi3;...username points to an ASCIIZ string indicating the user that opened the
resource.

3-100 LAN Server Application Programmer's Reference

NetFileClose2

Syntax

Return Codes

The NetFileClose2 (admin, server, DOS) function forces a resource closed when a
system error prevents a normal DosClose function closing.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileClose2(servername, fileid)
const char far * servername;
unsigned long fileid;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• fileid is the identification number assigned to the resource at opening.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

NERR_NetNotStarted 2102

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerNotStarted 2114

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
n0t been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

Chapter 3. API Function Descriptions 3-101

Remarks

Manifest Value

NERR_BuffooSmall 2123

NERR _ OS2Ioct1Error 2134

NERR_ WkstaN otStarted 2138

NERR_ BrowserN otStarted 2139

NERR_InternalError 2140

NERR_ BadTransactConfig 2141

NERR _InvalidAPI 2142

NERR_FileidN otF ound 2314

NERR_InvalidComputer 2351

NERR_N oSuchServer 2460

Meaning

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

There is not an open
file with that ID
number.

The specified computer
name is invalid.

The server ID is not
valid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Normally, the DosClose function is used to close a resource opened by a call to the
DosOpen function. Use NetFileClose2 to force closed a resource opened by another
process.

3-102 LAN Server Application Programmer's Reference

Related Information
For information on listing all open files and their identification numbers for a server,
see "NetFileEnum2" on page 3-104.

Chapter 3. API Function Descriptions 3-103

NetFileEnum2

Syntax

The NetFileEnum2 (admin, server, DOS) function supplies information about some
or all open files on the server, allowing the user to supply a key to get the required
information through iterated calls to the API.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileEnum2(sc. crname, basepath, username, level, flags, buf,

buflen, entriesread, totalentries, resume_key)
char far *
char far *
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *
void far *

where:

servername;
basepath;
username;
level;
buf;
bu fl en;
entriesread;
totalentries;
resume_ key;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• basepath is the base path for enumeration. If non-NULL, basepath serves as a
qualifier to the enumeration. The entries returned are limited to those whose
name begins with the qualifier string. For example, a basepath of C:TMP would
enumerate only open files whose pathnames begin with C:TMP, including
C:TMPFILE and C:\TMP\DOCUMENT.

• username points to an ASCIIZ string indicating the name of the user. If
non-NULL, username serves as a qualifier to the enumeration. The files
returned are limited to those whose opener username matches the qualifier.

• level specifies the level of detail (2 or 3) in thefile_info_ data structure.

• buf points to thefile_info_2 or file_info_J data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

• resume_key is a pointer to structure FRK (structure resfzle_enum2). This field is
used for continuing scanning.

3-104 LAN Server Application Programmer's Reference

Return Codes

Remarks

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_ INV AUD _PARAMETER

ERROR_INV ALID _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR _ServerN otStarted

Value

0

5

87

124

234

2102

2114

Meaning

No errors were
encountered.

Adnrinistrative
privilege is required.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not. been started.

The Server service has
not been started.

This API provides a way for the user to overcome the problem arising when the
information returned exceeds 64KB. To initialize the key resume_key, use the
macroinstruction FRK_INIT supplied in the file SHARES.H, which accepts a
structure FRK as an argument. The following is an example of an application code
segment:

FRK f;

FRK_INIT (f) ;
NetFileEnum2 (..• , &f, ••.);

When invoked with an initial resume key, if the supplied buffer is too small to return
all the requested information, the NetFileEnum2 function returns the error code
ERROR_MORE_DATA and a resume_key suitable for retrieving the remaining
data. Wheninvoked with a.resume_key from a previous call, it resumes the
enumeration where indicated by *resume_key The user must not attempt to set this
key other than to initialize it. Other values of *resume_key supplied by the user
must have been returned by a preceeding call to NetFileEnum2.

NetFileEnum2 never returns an entry that has partial data; that is, a fixed-length
data record and all variable-length data is present for each returned item. Items that
cannot fit completely are not returned in the buffer. This differs from normal Enum
function calls, which return partial data for some entries, usually the last few, if the
buffer is too small. The reason that Enum2 differs is because the entries can be
retrieved in full by subsequent calls (using the resume_key), and so partial data could
be misleading and is less useful than in normal Enum functions.

The username parameter, if not NULL, serves as a qualifier to the enumeration. The
files returned are limited to those whose opener user name matches the qualifier.

The basepath parameter, if not NULL, serves as a prefix to qualify the enumeration.
The entries returned are limited to those whose names begin with the qualifier string.

Chapter 3. API Function Descriptions 3-105

For example, a basepath of "C:\ TMP" would enumerate only open files whose path
names begin with "C:\TMP," including "C:\TMPFILE" and
"C:\TMP\DOCUMENT ."

If both the username and the basepath parameters are specified, only the files
matching both the qualifying conditions are returned.

3-106 LAN Server Application Programmer's Reference

NetfileGetlnfo2

Syntax

Return Codes

The NetFileGetlnfo2 (admin, server, DOS) function retrieves information about a
particular opening of a server resource.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileGetlnfo2(servername, fileid, level,

buf, buflen, totalavail)
const char far * servername;
unsigned long fileid;
short level;
char far * buf;
unsigned short buflen;
unsigned short far* totalavail;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• fileid indicates the identification number assigned to the resource at opening.

• level specifies the level of detail (2 or 3) to be returned by the file _info data
structure.

• buf points to the file _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INVALID _PARAMETER 87

ERROR_INV AUD _LEVEL 124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

Chapter 3. API Function Descriptions 3-107

Manifest Value Meaning

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations~

NERR_ServerNotStarted 2114 The Server service has
not been started.

NERR_BuffooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_lnvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_FileldNotFound. 2314 There is not an open
file with that ID
number.

NERR _InvalidComputer 2351 The specified computer
name is invalid.

3-108 · LAN Server Application Programmer's Reference

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFSRamSemClear

• DosFreeSeg

• DosFsCtl

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on:

• Closing a file, device, or pipe-See "NetFileClose2" on page 3-101.

• Listing files, devices, or pipes open on a server-See "NetFileEnum2" on
page 3-104.

Chapter 3. API Function Descriptions 3-109

Group Category

Description

NetGroupAdd (admin, DOS)-See "NetGroupAdd" on page 3-112.

NetGroupAddUser (admin, DOS)-See "NetGroupAddUser" on page 3-115.

NetGroupDel (admin, DOS)-See "NetGroupDel" on page 3-118.

NetGroupDelUser (admin, DOS)-See "NetGroupDelUser" on page 3-121.

NetGroupEnum (partially admin, DOS)-See "NetGroupEnum" on page 3-124.

NetGroupGetlnfo (partially admin, DOS)-See "NetGroupGetlnfo" on page 3-127.

NetGroupGetUsers (partially admin, DOS)-See "NetGroupGetUsers" on page 3-130.

NetGroupSetlnfo (admin, DOS)-See "NetGroupSetlnfo" on page 3-133.

NetGroupSetUsers (admin, DOS)-See "NetGroupSetUsers" on page 3-136.

The functions in the Group category control user groups in the user accounts
subsystem (UAS) database. They are used with the ACCESS.Hand NETCONS.H
include files.

A group is a set of users sharing common permissions in the UAS database. The
Group functions create or delete groups and review or adjust their membership.

Access permissions can be assigned for all members of a group by supplying the
group name to the NetAccessAdd function (see "Access Permission Category" on
page 3-2) instead of individually assigning each user an access permission record.

Note: The OS/2 LAN Requester/Server software maintains special groups to which
any user assigned USER or ADMIN privileges is added automatically. If an
application calls any of the Group functions in an attempt to modify the
group USERS, the group ADMIN, or their membership, the function returns
the NERR_SpeGroupOp error code.

To create a user group, an application calls the NetGroupAdd function, supplying a
group name. Initially, the group has no members. Members are assigned to the
group by calling NetGroupAddUser.

NetGroupDelUser removes the name of a specified user from a group, and
NetGroupDel disbands a group. (NetGroupDel works regardless of whether or not
the group has members.)

Two functions retrieve information about groups on a server. NetGroupEnum
produces a list of all groups. NetGroupGetUsers lists all members of a specified
group.

3-110 LAN Server Application Programmer's Reference

Special Groups

Data Structures

There are three special groups: USERS, ADMINS, and GUESTS. Each user
account automatically belongs to one of these three special groups according to the
user's privilege level. The members of these special groups must have one of the
following privilege levels:

• USER_PRIV_USER

• USER_PRIV _ADMIN

• USER_PRIV_GUEST.

Users cannot be deleted from these groups, nor can groups be deleted. An attempt
to delete groups or users in these groups causes the NERR_SpeGroupOp error code
to be returned.

Only three of the Group functions-NetGroupAdd, NetGroupEnum, and
NetGroupGetUsers-return structured data. The simple data structures that these
functions use are described following the syntax description for each function.

Group Information (Level 0 and Level 1)
The basic data structures for Group information are as follows:

struct group_info_e {
char grpi0_name[GNLEN+l];

};

where:

• grpiO _name is the name of the group.

struct group_info_l {
char grpil_name[GNLEN+l];
char grpil_pad_l;
char far* grpil_co11111ent;

};

where:

• grpil_name is the name of the group.

• grpil_pad_J is for the WORD-alignment in the data structure.

• grpil_comment points to an ASCIIZ string containing the comment or remark of
the group. The string can be NULL.

Group Membership Information (Level 0)
The basic data structure for Group Membership information is as follows:

struct group_users_info_e {
char gruie_name[UNLEN+l];

};

where:

• grpiO _name is the name of the user in the group.

All of these functions should be used with the ACCESS.H and NETCONS.H include
files.

Chapter 3. API Function Descriptions 3-111

NetGroupAdd

Syntax

Return Codes

The NetGroupAdd (adm.in, DOS) function creates a new group account in the user
accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGrou~Add (servername, level, buf, buflen)
char far * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0 or 1) for the group _info data structure.

• buf points to the group _info data structure.

When adding at level 0, the comment field is set to the empty string, since no
comment field is provided in the level 0 structure.

• buflen specifies the size (in bytes) of the buf memory area.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_BAD_NETPATH 53

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

ERROR MORE DATA 234 - -

NERR _ NetNotStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The network path
cannot be found.

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

3-112 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server;

NERR_BadUsername 2202 The user name or
group name parameter
is invalid.

NERR_ GroupExists 2223 The group name is
already in use.

NERR _ U serExists 2224 The user account
already exists.

NERR _NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in. the access
control file.

NERR _ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database;

Chapter·3. API Function Descriptions 3-113

Remarks

Related Information

Manifest Value

NERR_InvalidComputer 2351

Meaning

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

NetGroupAdd will fail if the name already is used as a user name. User names and
group names must be unique.

For information on:

• Adding a user to a group-See "NetGroupAddUser" on page 3-115.

• Assigning group permissions-See "NetAccessAdd" on page 3-6.

• Deleting a group account from a server-See "NetGroupDel" on page 3-118.

• Listing all groups on a server-See "NetGroupEnum" on page 3-124.

3-114 LAN Server Application Programmer's Reference

NetGroupAddUser

Syntax

Return Codes

The NetGroupAddUser (admin, DOS) function adds a user to a group in the user
accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupAddUser(servername, groupname, username)
char far * servername;
char far * groupname;
char far * username;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the group the user will join.

• username points to an ASCIIZ string specifying the user to add to the group.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _NAME

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

Value

0

5

8

25

87

123

124

234

2102

2104

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

Chapter 3. API Function Descriptions 3-115

•Manifest Value Meaning

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_Buff ooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has· not been started.

NERR _BrowserNotStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR _ ACFN otLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

NERR_ UserlnGroup 2236 The user already
belongs to this group.

NERR _ InvalidDatabase 2247 The UAS database file
is corrupted.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CanN otGrowUASFile 2456 It is not possible to
grow the U AS file.

3-116 LAN Server Application Programmer's Reference

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

If any attempt is made to add a user name to the special groups (USERS, ADMINS,
or GUESTS), the NetGroupAddUser function returns the NERR_SpeGroupOp
error code.

For information on:

• Creating a new group-See "NetGroupAdd" on page 3-112.

• Defining group access permission records-See "Access Permission Category" on
page 3-2.

• Removing a user from a group-See "NetGroupDelUser" on page 3-121.

• Retrieving a list of the members of a group-See "NetGroupGetUsers" on
page 3-130.

• Setting the groups of which a user is a member-See "NetUserSetGroups" on
page 3-423.

Chapter 3. API Function Descriptions 3-117

NetGroupDel

Syntax

Return Codes

The NetGroupDel (admin, DOS) function removes a group account from the user
accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupDel(servername, groupname)
char far * servername;
char far * groupname;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• groupname points to an ASCIIZ string specifying which group to remove.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR SEEK 25

ERROR_INV ALID _PARAMETER 87

ERROR_INVALID_LEVEL 124

ERROR_FILENAME_EXCED_RANGE 206

ERROR_MORE_DATA 234

NERR _ NetN otStarted 2102

NERR_ShareMem 2104

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

3-118 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

NERR_InvalidDatabase 2247 The UAS database file
is corrupted.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CanNotGrowUASFile 2456 It is not possible to
grow the U AS file.

Chapter 3. API Function Descriptions 3-119

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosSemClear

• DosWrite.

It is not necessary to remove all members from a group before deleting the group
account.

Deleting a group account does not delete the individual accounts of its member
users.

Deleting a group deletes it from the access control profiles.

NetGroupDel returns the NERR_SpeGroupOp error code if any attempt is made to
remove the special groups (USERS, ADMINS, or GUESTS).

For information on:

• Adding a group to the UAS database-See "NetGroupAdd" on page 3-112.

• Listing all groups in the UAS database-See "NetGroupEnum" on page 3-124.

• Removing a user from a group-See "NetGroupDelUser" on page 3-121.

• Retrieving a list of members for a group-See "NetGroupGetUsers" on
page 3-130.

3-120 LAN Server Application Programmer's Reference

NetGroupDelUser

Syntax

Return Codes

The NetGroupDelUser (admin, DOS) function removes a user from a particular
group in the user accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupDelUser(servername, groupname, username)
char far * servername;
char far * groupname;
char far * username;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the group to be altered.

• username points to an ASCIIZ string specifying which user to remove from the
group account.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

NERR_ NetN otStarted

NERR_ShareMem

NERR_RemoteOnly

Value

0

5

8

25

87

124

234

2102

2104

2106

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

Chapter 3. API Function Descriptions 3-121

Manifest Value Meaning

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS21oct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ ACFNotLoaded 2227 The UAS database has
not been started.

NER~ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

NERR_ UserNotlnGroup 2237 The user does not
belong to this group.

NERR_InvalidDatabase 2247 The UAS database file
is corrupted.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

3-122 LAN Server Application Programmer's Reference

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosQ File Info

• DosRead

• DosSemClear

• DosWrite.

Removing a user from a group does not delete the user's account in the system.

If an application tries to delete a user name from the special groups (USERS,
ADMINS, or GUESTS), NetGroupDelUser returns the NERR_SpeGroupOp error
code.

For information on:

• Adding a user to a group-See "NetGroupAddUser" on page 3-115.

• Deleting a group-See "NetGroupDel" on page 3-118.

• Retrieving a list of members of a group-See "NetGroupGetUsers" on
page 3-130.

Chapter 3. API Function Descriptions 3-123

NetGroupEnum

Syntax

Return Codes

The NetGroupEnum (partially admin, DOS) function lists all group accounts on the
user accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entries read;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• level specifies the level of detail (0 or 1) for the group _info data structure.

• buf points to the group_inf o data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
available.

On successful returns, buf contains entriesread number of group _info data structures.

Manifest Value. Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

3-124 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV ALID _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR _RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ OS21oct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR _ GroupNotFound 2220 The group does not
exist.

NERR _NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR __ ACFNotLoaded 2227 The U AS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-125

Remarks

Related Information

Manifest Value

NERR_InvalidDatabase 2247

NE RR_ Invalid Computer 2351

Meaning

The UAS database file
is corrupted.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosRead

• DosSemClear.

Only the group names can be retrieved with ordinary user's privilege. With
administrative privilege, the comments can be returned.

For information on:

• Adding a new group to the UAS database-See "NetGroupAdd" on page 3-112.

• Removing a group from the UAS database-See "NetGroupDel" on page 3-118.

3-126 LAN Server Application Programmer's Reference

NetGroupGetlnfo

Syntax

Return Codes

The NetGroupGetlnfo (partially admin, DOS) retrieves group-related information.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupGetlnfo (servername, groupname, level, buf, buflen,

total avail)

char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
groupname;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the group from which to get
information.

• level specifies the level of detail (0 or 1) for the group _info data structure.

• buf points to the group _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV ALID _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-127

Manifest Value Meaning

NERR _ NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

3-128 LAN Server Application Programmer's Reference

Remarks

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

A user without administrative privilege can call this API only with level 0 on a
remote call. Users cannot issue this function on the groups to which they do not
belong.

Chapter 3. API Function Descriptions 3-129

NetGroupGetUsers

Syntax

Return Codes

The NetGroupGetUsers (partially admin, DOS) function returns a list of members
of a particular group in the user accounts subsystem (UAS) database. Users can
perform this function on groups to which they belong.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupGetUsers(servername, groupname, level, buf, buflen,

entriesread, totalentries)
char far *
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
groupname;
level;
buf;
buflen;
entriesread;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the name of the group whose
members will be listed.

• level specifies the level of detail (0) for the group_users_info_O data structure.

• buf points to the group_users_info_O data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
available.

Manifest Value Meaninc

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

3-130 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV ALID _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV ALID _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR_NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuffooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ACFNotFound 2219 The Net.ACC file is
missing.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR _ ACFN otLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-131

Remarks

Related Information

Manifest Value

NERR_InvalidComputer 2351

Meaning

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosRead

• DosSemClear.

This is functionally equivalent to an Enum call because it enumerates the users in a
group. See "NetGroupEnum" on page 3-124. NetGroupGetUsers of the special
groups USERS, ADMINS, and GUESTS is an admin call.

For information on:

• Listing all groups to which a user belongs-See "NetGroupGetUsers" on
page 3-130.

• Listing the names of groups in the UAS database-See "NetGroupEnum" on
page 3-124.

3-132 LAN Server Application Programmer's Reference

NetGroupSetlnfo

Syntax

Return Codes

The NetGroupSetlnfo (admin, DOS) function sets group-related information.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupSetlnfo (servername, groupname, level, buf, buflen,

parmnum)

char far *
char far *
short
char far *
unsigned short
short

where:

servername;
groupname;
level;
buf;
buflen;
parmnum;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the group to set the
information.

• level specifies the level of detail (1) for the group_info data structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines whether buf contains a complete group _info data structure
or a single data structure component. If parmnum is 0, buf must contain the
group_info_l data structure. The only settable field is comment.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-133

Manifest Value Meaning

NERR_ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserN otStarted 2139 The requested
information is not
available.

NERR_ IntemalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ ACFN otLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

3-134 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_ UserlnGroup 2236 The user already
belongs to this group.

NERR_ UserNotlnGroup 2237 The user does not
belong to this group.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Chapter 3. API Function Descriptions 3-135

NetGroupSetUsers

Syntax

Return Codes

The NetGroupSetUsers (admin, DOS) function sets information about users who
belong to a group.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupSetUsers (servername, groupname, level, buf, buflen, entries)

char far *
char far *
short
char far *
unsigned short
unsigned short

where:

servername;
groupname;
level;
buf;
bufl en;
entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

• groupname points to an ASCIIZ string specifying the group to set the users.

• level specifies the level of detail (0) for the group_users_info data structure.

• buf points to the group _users_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entries is the number of entries supplied in the buffer.

Buffer Contents on Call (format for a single entry):

Level 0 contains a struct group_users_info_O, repeated entries times.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR SEEK 25 The seek is invalid.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

3-136 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuITooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group. does not
exist.

NERR_UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR _ACFN otLoaded 2227 The U AS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-137

Remarks

Manifest Value

NERR_SpeGroupOp 2234

NERR_InvalidDatabase 2247

NERR_InvalidComputer 2351

NERR_ CanNotGrowUASFile 2456

Meaning

This operation is not
allowed on this special
group.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the U AS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

Trying to set the user membership of special group causes the NERR_SpeGroupOp
error code to be returned.

3-138 LAN Server Application Programmer's Reference

Handle Category

Description

NetHandleGetlnfo (local, server)-See "NetHandleGetlnfo" on page 3-140.

NetHandleSetlnfo (local, server)-See "NetHandleSetlnfo" on page 3-143.

Two APis are provided to get and set information on a per-handle basis. They are
used with CHARDEV.H and NETCONS.H include files.

Remote Serial Device and Named Pipe Handles
The APis provide per-handle control over the communications parameters for
remote serial device and remote named pipe handles. These parameters are
described in detail in "Requester Category" on page 3-208, under fields
wkiO_chartime and wkiO_charcount.

The values in the wksta_info_O data structure are used as the default for each opened
handle. The NetHandle APls allow those parameters to be inspected and tuned on a
per-handle basis.

Serving Side of Named Pipd Handles

Data Structures

Related Information

The NetHandleGetlnfo API is used to identify the user of a particular instance of a
remote named pipe with multiple instances. If the named pipe has been opened
locally, the error ERROR_INVALID_PARAMETER is returned.

struct handle_info_l {
unsigned long hdlil_chartime;
unsigned short hdlil_charcount;

};

where:

• hdlil_chartime is the amount of time (in milliseconds) the requester collects data
to send to a shared serial device queue or a named pipe.

• hdlil_charcount is the number of characters (in bytes) the requester stores before
sending data to a serial device queue or a named pipe.

struct handle_info_2 {
char far* hdli2_username;

};

where:

• hdli2_username is the user name of the user attached to a named pipe. It can be
applied to a handle of the serving side of a valid remote named pipe only.

For information on:

• Creating multiple queues for a particular serial device-See "Serial Device
Category" on page 3-238.

• Data structure architecture-See Chapter 1, "Overview of OS/2 LAN Server
API."

• Include files-See Appendix A, "Include Files."

Chapter 3. API Function Descriptions 3-139

NetHandleGetlnfo

Syntax

Return Codes

The NetHandleGetlnfo (local, server) function retrieves handle~specific information.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetHandleGetlnfo(handle, level, buf, buflen, totalavail)
unsigned short handle;
short level;
char far * buf;
unsigned short buflen;
unsigned short far * totalavail;

where:

• handle is a unique identification of a communication device queue or a named
pipe.

• level specifies the level of detail (1 or 2) to be returned in the handle_info data
structure.

• buf points to the handle_info_l or handle_info_2 data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to the unsigned short integer indicating the number of bytes of
information available.

Serial Device and Named Pipe Handles Information (Level 1)

Level 1 information is available for handles to remote serial devices and remote
named pipes. If level is 1 and the return code is 0 (NERR_Success), the buffer
contains a handle _info_] data structure.

Named Pipe Handles Information (Level 2)

Level 2 information is available for named pipe handles. If level is 2 and the return
code is 0 (NERR_Success), the buffer contains a handle_info_2 data structure.

Under DOS, only level one is valid, and only on a handle to a remote named pipe.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS"' . .DENIED 5

ERROR-"NOT_ENOUGH_MEMORY 8

ERROR_ SHARING_ VIOLATION 32

Meaning

No errors were
encountered.

Administrative privilege is
required.

Sufficient memory is not
available.

A sharing violation
occurred.

3-140 LAN Server Application Programmer's Reference

Manifest

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INVALID _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_ServerN otStarted

NERR_Buff ooSmall

NERR_ OS2Ioct1Error

NERR _ WkstaN otStarted

NERR_BrowserN otStarted

NERR _InternalError

NERR _BadTransactConfig

NERR_InvalidComputer

Value

50

87

124

234

2102

2104

2114

2123

2134

2138

2139

2140

2141

2351

Meaning

This request is not
supported by the
network.

The specified parameter is
invalid.

The Level parameter is
invalid.

Additional data is
available, but the buffer
is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

The Server service has not
been started.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling the
workstation driver.

The Requester service has
not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosDevIOCtl

• DosFsRamSemClear

• DosRamSemRequest

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

Chapter 3. API Function Descriptions 3-141

Remarks

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosQNmPipelnf o

• DosSemClear

• DosSemRequest.

When level I is specified, the function has to be run on the requester. If the handle
is not to a remote serial device or remote named pipe, the error
ERROR_INVALID_PARAMETER is returned.

When level 2 is specified, this function has to be run on the server. On level 2, it is
used to identify the user of a particular instance of a remote named pipe with
multiple instances. If the handle is not to a named pipe that a remote client
currently has open, the error ERROR_INVALID_PARAMETER is returned.

3-142 LAN Server Application Programmer's Reference

NetHandleSetlnfo

Syntax

Return Codes

The NetHandleSetlnfo (local, server) function sets handle-specific information.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetHandleSetlnfo(handle, level, buf, buflen, parmnum)
unsigned short handle;
short level;
char far * buf;
unsigned short buflen;
unsigned short parmnum;

where:

• handle is a unique identification of a communication device queue or a named
pipe.

• level specifies the level of detail (1) to be returned in the handle_info data
structure.

• buf points to the handle_info_ldata structure or a single data structure
component.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines whether buf contains a complete handle _info data structure
or a single component. If parmnum is 0 and level is 1 then buf must contain a
complete handle_info_l or handle_info_2 data structure. Otherwise, parmnum
must specify the ordinal position value for one of the following data structure
components, as defined in CHARDEV.H as follows:

Manifest

HANDLE_ SET_ CHAR_ TIME

HANDLE_SET_CHAR_COUNT

Value

1

2

Component

hdlil _ chartime

hdlil _ charcount

Serial Device and Named Pipe Handles Information (Level 1)

For this function, only level 1 information is valid. Level 1 is valid for handles to
remote serial devices and remote named pipes.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

ERROR_SHARING_ VIOLATION 32 A sharing violation
occurred.

Chapter 3. API Function Descriptions 3-143

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the buffer
is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR _ServerN otStarted 2114 The Server service has not
been started.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling the
workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service has
not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

3-144 LAN Server Application Programmer's Reference

Remarks

Other error return codes may be returned from the following OS/2 functions:

• DosDevIOCtl

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Because only level 1 is allowed in calling this function, it has to be run on a
requester. If the handle is not to a remote serial device or remote named pipe, the
error ERROR_INV AUD _PARAMETER is returned.

Under DOS, only level 1 is valid, and only on a handle to a remote named pipe.

Chapter 3. API Function Descriptions 3-145

Mailslot Category

Description

DosDeleteMailslot (local, DOS)-See "DosDeleteMailslot" on page 3-148.

DosMailslotlnfo (local, DOS)-See "DosMailslotlnfo" on page 3-149.

DosMakeMailslot (local, DOS)-See "DosMakeMailslot" on page 3-150.

DosPeekMailslot (local, DOS)-See "DosPeekMailslot" on page 3-151.

DosReadMailslot (local, DOS)-See "DosReadMailslot" on page 3-152.

DosWriteMailslot (local, DOS)-See "DosWriteMailslot" on page 3-154.

The functions in the Mailslot category provide one-way interprocess communication
(IPC). They are used with the MAILSLOT.H and NETCONS.H include files.

Through OS/2 LAN Requester/Server mailslots, data can be sent to either local or
remote applications on the network. The Mailslot functions create and delete
mailslots, retrieve information about a mailslot or a message in it, and write
messages to mailslots.

An application creates a mailslot on a local computer by calling the
DosMakeMailslot function and assigning the mailslot a name in the format:

\mailslot\name

where:

• name is a unique set of characters distinguishing the mailslot from other
mailslots on the computer.

The DosMakeMailslot function returns a handle to the mailslot. This handle can
then be used with DosPeekMailslot to read a message in a mailslot, with
DosReadMailslot to read and remove a message, with DosMailslotlnfo to return
information on a mailslot, and with DosDeleteMailslot to delete a mailslot.

Any application can write messages to any mailslot on any computer on the network
by calling the DosWriteMailslot function. DosWriteMailslot accepts mailslot names
both in a local and remote format, as follows:

Format Type

\mailslot\name Local mailslot

\ \computername\mailslot\name Remote mailslot

To write data to a mailslot on a remote computer, the name of the mailslot must
also include a computer name. This requirement enables multiple remote computers
to use the same mailslot name locally, but to have different names on the network
(the computer name must be unique).

An application can write the same message to all computers on the network that
have a mailslot of a particular name. Only the second-class delivery is provided. By
specifying an asterisk(*) for the computer name when calling NetWriteMailslot,

3-146 LAN Server Application Programmer's Reference

*\ma;lslot\name

sends the same message to the named mailslot on every computer in the sender's
primary domain that has the locally created mailslot. There is one limitation:
requesters can only receive second-class messages of up to 400 bytes in length.
Servers can receive first-class or second-class messages of any size.

Two classes of messages-first-class and second-class-can be sent to mailslots.

First-class messages, limited to mailslots on local computers and remote servers, are
guaranteed - the message will be delivered or the sender will be notified. If a
mailslot is full when a first-class message arrives, DosWriteMailslot waits until
DosReadMailslot reads and removes a message from the mailslot or until the
delivery time out expires (controlled by the timeout parameter in the
DosWriteMailslot function).

Second-class messages are simply sent; no return code informs the sender of an
unsuccessful delivery. This simpler delivery system tends to make second-class
messages faster than first-class messages.

Messages are stored in the mailslot according to when they were received and the
priority assigned them. Each message is assigned a priority from 0 (low) through 9
(high) by way of the priority parameter of the DosWriteMailslot function.
Generally, these priorities dictate the order in which messages are stored in a
mailslot. High-priority messages are placed ahead of previously stored messages
with the same or lower priority. However, since the OS/2 program is a multi-tasking
operating system, this scheme cannot be guaranteed at any one time.

Mailslot messages can be read only by the process that created the mailslot.

The DosReadMailslot function reads and then removes the most current (next
available) message. Since new messages may be placed in front of other messages due
to priority, a process cannot be guaranteed that a message read by DosReadMailslot
will be the same message seen earlier by DosPeekMailslot.

DOS Considerations

Related Information

Under DOS, the functions can be executed on a local requester. Note that mailslots
can only be read or deleted by the process that created them. Mailslots created by a
process are deleted when that process ends.

For information on interprocess communications (IPC), see "Named Pipe Category"
on page 3-191.

Chapter 3. API Function Descriptions 3-147

DosDeleteMailslot

Syntax

Return Codes

Remarks

Related Information

The DosDeleteMailslot (local, DOS) function deletes a mailslot, discarding all
messages, whether or not they have been read.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosDeleteMailslot(handle)
unsigned handle;

where:

• handle specifies the mailslot (by its handle) to delete.

Manifest

NERR_SUCCESS

ERROR_JNV AUD _HANDLE

NERR_NetNotStarted

Value

0

6

2102

Meaning

No errors were encountered.

The specified handle is not valid.

The redirector NETWKSTA.EXE
has not been. started.

Mailslots enable applications to create and store messages during execution.
Generally, these mailslots are deleted as the last step in the execution of a program.

A mailslot can be deleted only by the application that created it.

For information on:

• Creating a mailslot-See "DosMakeMailslot" on page 3-150.

• Obtaining information on the status ofa mailslot-See "DosMailslotlnfo" on
page 3-149.

3-148 LAN Server Application Programmer's Reference

DosMailslotlnfo

Syntax

Return Codes

Related Information

The DosMailslotlnfo (local, DOS) function retrieves information about a particular
mailslot.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosMailslotlnfo{handle, messagesize, mailslotsize,

nextsize, nextpriority, msgcount)
unsigned
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

where:

handle;
far * messagesize;
far * mailslotsize;
far * nextsize;
far * nextpriority;
far * msgcount;

• handle specifies which mailslot (by its handle) to return information about.

• messagesize points to an unsigned short integer indicating the maximum size (in
bytes) of message that the mailslot can accept.

• mailslotsize points to an unsigned short integer indicating the size (in bytes) of
the mailslot. mailslotsize must equal or exceed messagesize.

• nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If 0, no message is available.

• nextpriority points to an unsigned short integer indicating the priority (0 theough
9) of the next message in the mailslot (undefined if nextsize is 0).

• msgcount points to an unsigned short integer indicating the number of messages
the mailslot contains.

Manifest

NERR_SUCCESS

ERROR_INVALID_HANDLE

NERR_NetN otStarted

For information on:

Value

0

6

2102

Meaning

No errors were encountered.

The specified handle is not valid.

The redirector NETWKST A.EXE
has not been started.

• Creating (and obtaining the handle for) a mailslot-See "DosMakeMailslot" on
page 3-150.

• Writing a message to a mailslot-See "DosWriteMailslot" on page 3-154.

• Retrieving the most current message in a mailslot-See "DosReadMailslot" on
page 3-152.

Chapter 3. API Function Descriptions 3-149

DosMakeMailslot

Syntax

Return Codes

Remarks

The DosMakeMailslot (local, DOS) function creates a mailslot and returns its
handle.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosMakeMailslot(name, messagesize, mailslotsize, handle)
char far * name;
unsigned short messagesize;
unsigned short mailslotsize;
unsigned far * handle;

where:

• name points to an ASCIIZ string assigning a name to the mailslot. Use the
format \mailslot\name.

• messagesize specifies the maximum message size (in bytes) that the mailslot can
accept. Generally, mailslots cannot accept messages larger than 654 7 5 bytes.

• mailslotsize specifies the size (in bytes) of the mailslot. mailslotsize must equal or
exceed messagesize.

• handle points to an unsigned integer that is the returned handle for the mailslot.

Manifest

NERR_SUCCESS

ERROR_PATH_NOT_FOUND

Value

0

3

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INVALID _PARAMETER 87

NERR_ NetN otStarted 2102

Meaning

No errors were encountered.

The path was not found.

Sufficient memory is not
available.

The specified parameter is
invalid.

The redirector
NETWKSTA.EXE has not
been started.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocShrSeg

• DosExitList.

Mailslot names must be unique; no two mailslots on any one computer can have the
same name.

Mailslot handles cannot be passed to other processes by way of the OS/2
DosExecPgm function; however, mailslot handles can be shared among threads in a
single process. Thus, multiple threads can use the same handle to read or write data
to the mailslot.

3-150 LAN Server Application Programmer's Reference

DosPeekMailslot

Syntax

Return Codes

Remarks

Related Information

The DosPeekMailslot (local, DOS) function reads the next available message in a
mailslot without removing it.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosPeekMailslot(handle, buf, bytesread, nextsize, nextpriority)
unsigned handle;
char far * buf;
unsigned short far * bytesread;
unsigned short far * nextsize;
unsigned short far * nextpriority;

where:

• handle specifies which mailslot (by its handle) is to be read.

• buf points to the returned message. buf must be as large as the messagesize
parameter passed to the DosMakeMailslot function.

• bytesread points to an unsigned short integer indicating the size (in bytes) of the
returned message. If no message is available, bytesread is 0.

• nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If the mailslot contains no other message, nextsize
is 0.

• nextpriority points to an unsigned short integer indicating the priority of the next
message in the mailslot (undefined if nextsize is 0).

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_ INV AUD _HANDLE 6 The specified handle is not valid.

ERROR_BROKEN_PIPE 109 Write on pipe with no reader.

NERR_NetNotStarted 2102 The redirector NETWKSTA.EXE
has not been started.

Other error return codes may be returned from the DosSemRequest function.

If a higher-priority message arrives, there is no guarantee that a message previously
read by the DosPeekMailslot function will be the same message read by a
subsequent call to the DosReadMailslot function.

For information on:

• Reading and removing a message-See "DosReadMailslot" on page 3-152.

• Writing a message to a mailslot-See "DosWriteMailslot" on page 3-154.

Chapter 3. API Function Descriptions 3-151

DosReadMailslot

Syntax

Return Codes

The DosReadMailslot (local, DOS) function reads, then removes the next available
message of a mailslot.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosReadMailslot(handle, buf, bytesread, nextsize,

nextpriority, timeout)
unsigned handle;
char far * buf;
unsigned short far * bytesread;
unsigned short far * nextsize;
unsigned short far * nextpriority;
long timeout;

where:

• handle specifies which mailslot (by its handle) to read from.

• buf points to the returned message. buf must be as large as the messagesize
parameter passed to the DosMakeMailslot function.

• bytesread points to an unsigned short integer indicating the size (in bytes) of the
returned message. If 0, no message is available.

• nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If 0, the mailslot contains no more messages.

• nextpriority points to an unsigned short integer indicating the priority (0-9) of
the next message (undefined if nextsize is 0.)

• timeout points to an unsigned short integer indicating the number of milliseconds
to wait if a message is not available immediately. If 0, DosReadMailslot does
not wait; if -1, DosReadMailslot waits indefinitely.

Manifest

NERR_SUCCESS

ERROR_INV AUD _HANDLE

ERROR_INTERRUPT

ERROR_BROKEN_PIPE

ERROR_SEM_TIMEOUT

NERR_NetNotStarted

Value

0

6

95

109

121

2102

Meaning

No errors were encountered.

The specified handle is not valid.

A system call has been interrupted.

Write on pipe with no reader.

A time out happened from the
semaphore API functions.

The redirector NETWKST A.EXE
has not been started.

Other error return codes may be returned from the DosSemRequest function.

3-152 LAN Server Application Programmer's Reference

Remarks

Related Information

Messages are stored in a mailslot based on their priority (0-9). An incoming
message with a higher ·priority may be stored ahead of a previously stored message
with the same or lower priority. The message read and removed by
DosReadMailslot is always the next available.

For information on:

• Reading a message without removing it-See "DosPeekMailslot" on page 3-151.

• Writing a message to a mailslot-See "DosWriteMailslot" on page 3-154.

Chapter 3. API Function Descriptions 3-153

DosWriteMailslot

Syntax

Return Codes

The DosWriteMailslot (local, DOS) function writes a message to a particular
mailslot.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosWriteMailslot(name, message, size, priority, class, timeout)
char far * name;
char far * message;
unsigned short size;
unsigned short priority;
unsigned short class;
long timeout;

where:

• name points to an ASCIIZ string containing the name of the mailslot to which
the message is to be written. For a local mailslot, use the format \mailslot\name.
Use the \\computername\mailslot\name format for a remote mailslot. Use
\ \ *\mailslot\name for all mailslots with the same name, but on different
computers in the primary domain.

• message points to an ASCIIZ string containing the message to be written to the
mail slot.

• size specifies the size (in bytes) of message.

• priority assigns a priority (0 through 9) to the message. High-priority messages
are generally placed ahead of previously stored messages with lower priority.

• class specifies the class of mail service to be provided.

- First-class mail (class is 1) forces DosWriteMailslot to wait until a mailslot
has enough room to accept message or until timeout expires. First-class mail
can be delivered only to remote servers or local computers.

Second-class mail (class is 2) causes DosWriteMailslot to fail if there is not
enough room to write message in the mailslot. Second-class mail can be
delivered to requesters and servers.

• timeout specifies the number of milliseconds to attempt writing a message to a
mailslot. If 0, DosWriteMailslot attempts to write the message only once. If -1,
DosWriteMailslot attempts to write a message to a mailslot for an indefinite
time.

Manifest

NERR_SUCCESS

ERROR_PATH_NOT_FOUND

ERROR_ACCESS_DENIED

Value

0

3

5

ERROR_NOT_ENOUGH_MEMORY 8

Meaning

No errors were encountered.

The path was not found.

Administrative privilege is
required.

Sufficient memory is not
available.

3-154 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_BAD _FORMAT 11 The format is not valid.

ERROR_NOT_SUPPORTED 50 This request is not supported
by the network.

ERROR_NETWORK_BUSY 54 The network is busy.

ERROR_BAD_NET_NAME 67 This network name cannot be
found.

ERROR_INV AUD _PARAMETER 87 The specified parameter is
invalid.

ERROR_INTERRUPT 95 A system call has been
interrupted.

ERROR_BROKEN_PIPE 109 Write on pipe with no reader.

ERROR_BUFFER_ OVERFLOW 111 The buff er passed to system
call is too small to hold return
data.

ERROR_SEM_TIMEOUT 121 A time out happened from the
semaphore API functions.

ERROR_INV ALID _NAME 123 There is an incorrect character
or incorrectly formed file
system name.

ERROR_INV AUD _LEVEL 124 The Level parameter is invalid.

ERROR_MORE_DATA 234 Additional data is available,
but the buffer is too small.

NERR_ NetN otStarted 2102 The redirector
NETWKSTA.EXE has not
been started.

NERR_ShareMem 2104 An internal error occurred-the
network cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buff er is too small for
fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error occurred
when calling the workstation
driver.

NERR _ WkstaNotStarted 2138 The Requester service has not
been started.

NERR _ BrowserNotStarted 2139 The requested information is
not available.

NERR _ InternalError 2140 An internal error has occurred.

NERR_BadTransactConfig 2141 The server is not configured for
transactions.

NERR _ InvalidComputer 2351 The specified computer name is
invalid.

Chapter 3. API Function Descriptions 3-155

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosDev IOCtl

• DosFSCtl

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• DosSemRequest

• redir.GetBioslnfo[-ERROR_NO_MORE_FILES]

• redir.NETTRANSACTION_l

• redir.NIOCBIOSOPEN.

To send a message to all computers on the primary domain that have a local
mailslot with the same name, an application must pass the name parameter
*\mailslot\name and the class parameter 2 to DosWriteMailslot.

Second-class messages must be 400 bytes or smaller when written to remote
requesters; they can be any· size when written to local computers or remote servers.

For information on:

• Creating a mailslot-See "DosMakeMailslot" on page 3-150.

• Reading a message-See "DosReadMailslot" on page 3-152.

3-156 LAN Server Application Programmer's Reference

Message Category

Description

NetMessageBufferSend (admin, DOS}-See "NetMessageBufferSend" on page 3-161.

NetMessageFileSend (admin, DOS}-See "NetMessageFileSend" on page 3-164.

NetMessageLogFileGet (admin, DOS}-See "NetMessageLogFileGet" on page 3-168.

NetMessageLogFileSet (admin, DOS}-See "NetMessageLogFileSet" on page 3-170.

NetMessageNameAdd (admin, DOS}-See "NetMessageNameAdd" on page 3-173.

NetMessageNameDel (admin, DOS}-See "NetMessageNameDel" on page 3-176.

NetMessageNameEnum (admin, DOS}-See "NetMessageNameEnum" on
page 3-179.

NetMessageNameFwd (admin)-See "NetMessageNameFwd" on page 3-182.

NetMessageNameGetlnfo (admin, DOS}-See "NetMessageNameGetlnfo" on
page 3-185.

NetMessageNameUnFwd (admin)-See "NetMessageNameUnFwd" on page 3-188.

The functions in the Message category are used to send, log, and forward messages.
The administrator can execute these functions remotely. They are used with the
MESSAGE.ff and NETCONS.H include files.

A message is any file or buffer of data sent to a messaging name on the network. To
receive a message, a user or application must register a messaging name (using the
NetMessageNameAdd function) in the message name table of a computer. A
message name table contains a list of registered messaging names permitted to
receive messages and a list of users and applications to which a message can be
forwarded. Messaging names must be case-sensitive and unique on the physical
network, not just the domain.

Messaging names are deleted from the message name table using the
NetMessageN ameDel function.

To list all the names stored in the table, an application can call the
NetMessageNameEnum function. For information on a particular user in the table,
an application can call the NetMessageNameGetlnfo function.

All of the Message functions except NetMessageBufferSend and
NetMessageFileSend require that the local computer be running the messenger
service. The NetMessageBufferSend and the NetMessageFileSend functions only
require that the remote computer receiving a message be running the messenger
service.

To send a message to a user, an application can call either the NetMessageFileSend
function (to send a file) or ti1e NetBufferSend function (to send a buffer of
information).

Chapter 3. API Function Descriptions 3-157

All messages sent to a user on a particular computer can be forwarded to another
user on a different computer using the NetMessageNameFwd function. The
NetMessageNameUnFwd function is used to end message forwarding.

Applications can also send broadcast messages to all users on the network registered
in the message name table of each computer by passing the name parameter for the
NetMessageFileSend function or NetMessageBufferSend function as an asterisk (*).

To send to all users on a particular domain, pass the name parameter as "domain*."

Users can receive messages in one of two ways (or both at the same time):

• The received message is logged to a message log file and looked at later.

• The message is displayed as a popup message on the screen. To receive a
popup, the netpopup service must be started. For more information on starting
the netpopup service, see "Service Category" on page 3-298.

If an application turns logging on (using NetMessageLogFileSet), all messages
received for a particular user are stored in a message log file. The
NetMessageLogFileGet function returns the name of a message log file of a
requester or server and indicates whether or not message logging is enabled. The
default message log file is \IBMLAN\LOGS\MESSAGES.LOG.

The message log file contains a message in the following format:

• A header specifying who sent the message, who received the message, and when
(time and date) the message was received

• A blank line

• The contents of the message

• A blank line

• A line containing four asterisks (*)

• A blank line.

For example, the following is the contents of the message log file containing two
messages:

Message from KRISCA to AJSCHEL on Aug 04, 1990, 14:05:20

Hello, this is a BUFFER message.

Message from KRISCA to AJSCHEL on Aug 04, 1990, 14:11:48

Hello, this is a FILE message.

Note: Any process opening the message log file must open it in only the read-only
deny-none mode; otherwise, the messenger service fails when trying to log
incoming messages.

3-158 LAN Server Application Programmer's Reference

DOS Considerations

Data Structures

Under DOS, the functions can be executed only on a local requester. Attempting to
execute the functions on a remote server returns ERROR_NOT_SUPPORTED.

Messages cannot be forwarded, unforwarded, or logged under DOS.

By default, the DOS LAN Requester accepts only two names in the message name
table-the name of the requester and of the user. To define more names, edit the
DOSLAN.INI file and change the value of the nmsg parameter for the messenger
component. For more information on the DOSLAN.INI file, see the DOS LAN
Requester User's Guide.

The maximum size of a message under DOS is 64KB.

The NetMessageNameEnum and NetMessageNameGetlnfo functions can accept or
return data at a level 0 or level 1 of detail using the following data structures. None
of the other Message functions use a data structure.

Message Information (Level 0)

struct msg_info_e {
char msgi0_name[CNLEN+l];

};

where:

• msgiO_name is an ASCIIZ string specifying which messaging name to send the
message.

Message Information (Level 1)

struct msg_info_l {
char msgil_name[CNLEN+l];
char msgil_forward_flag;
unsigned char msgil_padl;
char msgil_forward[CNLEN+l];

};

where:

• msgil_name is an ASCIIZ string specifying which messaging name to send the
message.

• msgilJorwardflag specifies whether messages will be sent to a user or
application on the local computer, or forwarded to a user or application on a
remote computer. msgil Jorward flag can be defined as follows:

Bit

0-1

2

3

Manifest

MSGNAME_NOT_FORWARDED

MSGNAME_FORWARDED_TO

MSGNAME_NOT_FORWARDED

Meaning

Reserved; must be 0.

If 1, specifies a user
name on a remote
computer.

Reserved; must be 0.

Chapter 3. API Function Descriptions 3-159

Related Information

Bit Manifest

4 MSGNAME_FORW ARDED _FROM

5-7 MSGNAME_NOT_FORWARDED

• msgil_yadl WORD-aligns the data structure components.

Meaning

If 1, specifies a user
name on the local
computer.

Reserved; must be 0.

• msgilJorward is an ASCIIZ string specifying the user name to which the
message will be sent, if messages are to be forwarded.

For information on starting services and the messenger service see "Service
Category" on page 3-298.

3-160 LAN Server Application Programmer's Reference

NetMessageBufferSend

Syntax

Return Codes

The NetMessageBufferSend (admin, DOS) function sends a buffer of information to
a registered messaging name.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageBufferSend (servername, name, buf, buflen}
const char far * servername;
char far * name;
char far * buf
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string indicating the name of the registered user or
application to receive the message; To broadcast a message to all requesters on
the LAN, have name point to an asterisk(*). To broadcast a message to a
domain, have name point to a domain name, followed by an asterisk.

• buf points to the message.

• buflen specifies the size (in bytes) of the buf memory area.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_REM_NOT_LIST

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _LEVEL

NERR _ NetNotStarted

NERR_ShareMem

Value

0

5

8

51

87

124

2102

2104

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

Chapter 3. APl Function Descriptions 3-161

Manifest Value Meaning

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserN otStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NoComputerName 2270 A computer name has
not been configured.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR _ AlreadyExists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_PausedRemote 2281 The message has been
sent but the reception
is currently paused.

NERR_BadReceive 2282 The message was sent
but not received.

NERR_NotLocalName 2285 The name is not on the
local computer.

NERR _ TruncatedBroadcast 2289 The broadcast message
was truncated.

NERR_DuplicateName 2297 A duplicate message
alias exists on the local
area network.

3-162 LAN Server Application Programmer's Reference

Remarks

Manifest Value

NERR _ InvalidComputer 2351

Meaning

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• DosMailslot.

For broadcast messages (name points to "*" or "domain(*)"), the message can be
no longer than 128 characters (and is not guaranteed to be delivered). For messages
sent to all computers in a domain, the limit is 128 bytes. Otherwise, the message can
be any length, provided it does not exceed the maximum receivable message size for
that computer, which is set with the sizmessbuf parameter in IBMLAN.INI. (The
sizmessbuf parameter in IBMLAN.INI cannot define a value larger than 64KB.)
The default value of sizmessbuf on any server is 4KB. Note that the total size of
sizmessbuf may be divided between different messages in its heap (if messages are
arriving at the same time), reducing the actual size of any one message that can be
received. And, note that the sizmessbuf parameter can accept only limited values.
For more information on the IBMLAN.INI file, see the IBM Operating System/2
Local Area Network Server Version 1.2 Network Administrator's Guide.

NetMessageBufferSend does not require the messenger service to be started on a
local computer. The remote computer needs the messenger service to be started.

DOS Considerations

Related Information

Under DOS, the name parameter cannot point to the name of the local requester or
to the user currently logged onto that requester.

For information on:

• Adding a user to a message table-See "NetMessageNameAdd" on page 3-173.

• The messenger service-See "Service Category" on page 3-298.

• Sending a message file to a user-See "NetMessageFileSend" on page 3-164.

• Setting the sizmessbuf parameter of a server in IBMLAN.INI-See the IBM
Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide.

Chapter 3. API Function Descriptions 3-163

NetMessageFileSend

Syntax

Return Codes

The NetMessageFileSend (admin, DOS) function sends a file to a registered
messaging name.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageFileSend (servername, name, filespec)
const char far * servername;
char far * name;
char far * filespec;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

• name points to an ASCIIZ string specifying the registered user or application to
receive the file. To broadcast a file to all registered users and applications, pass
the name parameter as a pointer to the ASCII string"*." To broadcast a
message to a domain, have name point to a domain name, followed by an
asterisk (*).

• filespec points to an ASCIIZ string [d:][\ path\]file[.ext] specifying the path
name of a file to send.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_REM_NOT_LIST 51

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

NERR _ NetN otStarted 2102

NERR_ShareMem 2104

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

3-164 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

NERR _BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR _RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ lnternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NoComputerName 2270 A computer name has
not been configured.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NE RR_ Already Exists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR _PausedRemote 2281 The message has been
sent but the reception
is currently paused.

NERR_BadReceive 2282 The message was sent
but not received.

NERR_NotLocalName 2285 The name is not on the
local computer.

NERR _ TruncatedBroadcast 2289 The broadcast message
was truncated.

NERR _ FileError 2290 An error occurred in
reading the message
file.

Chapter 3. API Function Descriptions 3-165

Remarks

Manifest

NERR_ InvalidComputer

Value

2351

Meaning

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosRead

• DosSemClear

• DosWriteMailslot.

For broadcast messages to the physical network (name points to "*" or "domain
(*)"), the message can be no longer than 128 characters (and is not guaranteed to be
delivered). For messages sent to all computers in a domain, the limit is 128 bytes.
Otherwise, the message can be any length, provided it does not exceed the maximum
receivable message size for that computer, which is set with the sizmessbuf parameter
in IBMLAN.INI. (The IBMLAN.INI sizmessbufparameter cannot define a value
larger than 64KB.) The default value of sizmessbuf on any server is 4KB. Note that
the total size of sizmessbuf may be divided between different messages in its heap (if
messages are arriving at the same time), reducing the actual size of any one message
that can be received. And, note that the sizmessbuf parameter can also accept only
limited values. For more information on the IBMLAN.INI file, see the IBM
Operating System/2 Local Area Network Server Version 1.2 Network Administrator's
Guide.

NetMessageFileSend does not require the messenger service to be started on a local
computer.

If any special characters (for example, Ctrl + Z) are sent in a file, no information is
omitted.

DOS Considerations
Under DOS, the name parameter cannot point to the name of the local requester or
to the user currently logged on to that requester.

3-166 LAN Server Application Programmer's Reference

Related Information
For information on:

• The messenger service-See "Service Category" on page 3-298.

• Sending a buffer of information to a user-See "NetMessageBufferSend" on
page 3-161.

• Setting the sizmessbufparameter of a server in IBMLAN.INI-See the IBM
Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide.

Chapter 3. API Function Descriptions 3-167

NetMessageLogFileGet

Syntax

Return Codes

The NetMessageLogFileGet (admin, DOS) function retrieves the name of the
message log file and the current logging status (on or off).

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessagelogFileGet (servername, buf, buflen, on)
const char far * servername;
char far * buf
unsigned short buflen;
short far * on;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• huf points to the returned message log file path name.

• huflen specifies the size (in bytes) of the buf memory area.

• on points to a short integer specifying whether or not logging is enabled. If zero,
message logging is disabled. If non-zero, message logging is enabled.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR_ NetN otStarted 2102

NERR_ShareMem 2104

NERR_ Buff ooSmall 2123

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKST A.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

The buff er is too small
for fixed-length data.

3-168 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest Value

NERR_RemoteErr 2127

NERR_ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR_BrowserNotStarted 2139

NERR _InternalError 2140

NERR_BadTransactConfig 2141

NERR_MsgNotStarted 2284

NERR_InvalidComputer 2351

Meaning

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosSemClear.

NetMessageLogFileGet requires that the messenger service be started.

For information on:

• The messenger service-See "Service Category" on page 3-298.

• Modifying the name and the logging status of the message log file-See
"NetMessageLogFileSet" on page 3-170.

Chapter 3. API Function Descriptions 3-169

NetMessageLogFileSet

Syntax

Return Codes

The NetMessageLogFileSet (admin, DOS) function specifies a file to log messages
received by registered users and enables or disables logging.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessagelogFileSet (servername, filespec, on)
const char far * servername;
char far * filespec;
unsigned short on;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• filespec points to an ASCIIZ string specifying the path name of the device
(LPTn or COMn) or file to which the messages are logged.

If filespec is passed as a NULL pointer, the name of the current message log file
does not change. If filespec points to a NULL string C"'), no message file will be
used; in this case, the value of on must be 0.

If filespec points to a relative path, the path must be relative to the
IBMLAN\LOGS directory. All other path names must be fully qualified. If no
file name extension is provided, the .LOG file extension is appended.

• on is a short integer specifying whether or not logging is enabled. If zero,
message logging is disabled. If non-zero, message logging is enabled.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INVALID_PARAMETER 87

ERROR_INV AUD _NAME 123

ERROR_ INVALID _LEVEL 124

ERROR_MORE_DATA 234

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

3-170 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_FILENAME_EXCED_RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_ VIO _DETACHED 465 The console is not
available for logging.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR _RedirectedPath 2117 The operation is
invalid on a redirected
device.

NERR_BuffooSmall 2123 The buff er is too small
for fixed-length data.

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _BrowserN otStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _MsgN otStarted 2284 The messenger service
has not been started.

NERR _InvalidDevice 2294 This is an invalid
device.

NERR_ WriteFault 2295 A write fault has
occurred.

NERR _InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CantType 2357 The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-171

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen

• DosQHandType

• DosSemClear

• DosWrite

• redir.GetNetlnitPath.

NetMessageLogFileSet requires that the messenger service be started.

For information on:

• The messenger service-See "Service Category" on page 3-298.

• Retrieving the name and logging status of the message log file-See
"NetMessageLogFileGet" on page 3-168.

3-172 LAN Server Application Programmer's Reference

NetMessageNameAdd

Syntax

Return Codes

The NetMessageNameAdd (admin, DOS) function registers a name in the message
name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameAdd(servername, name, fwd_action)
const char far * servername;
char far * name;
short fwd_action;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string specifying a name to add to the message name
table.

• fwd_action specifies the action to take if name is already forwarded. If
fwd_action is non-zero, the name is added to the message name table; a zero
value causes an error to be returned if the name has already been forwarded.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_REM_NOT_LIST

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

NERR_NetNotStarted

NERR_ShareMem

NERR_NoNetworkResource

Value

0

5

8

51

87

124

2102

2104

2105

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

A network resource
shortage occurred.

Chapter 3. API Function Descriptions 3-173

Manifest Value Meaning

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR_ AlreadyF orwarded 2274 This message alias has
already been
forwarded.

NERR_AddF orwarded 2275 This message alias has
been added but is still
forwarded.

NERR_AlreadyExists 2276 This message alias
already exists locally.

NERR_ TooMany Names 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_MsgNotStarted 2284 The messenger service
has not been started.

NERR_DuplicateName 2297 A duplicate message
alias exists on the local
area network.

NERR_Deletel,ater 2298 This message alias will
be deleted later.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

3-17 4 LAN Server Application Programmer's Reference

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFSRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on:

• Deleting a user name from a message name table-See "NetMessageNameDel"
on page 3-176.

• Forwarding messages-See "NetMessageNameFwd" on page 3-182.

• Listing the user names in a message name table-See "NetMessageNameEnum"
on page 3-179.

• Messenger service-See "Service Category" on page 3-298.

Chapter 3. API Function Descriptions 3-175

NetMessageNameDel

Syntax

Return Codes

The NetMessageNameDel (admin, DOS) function deletes a name from a message
name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameDel(servername, name, fwd_action)
const char far * servername;
char far * name;
short fwd_action;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string specifying the name to be removed.

• fwd_action specifies the action to take if the messages for name are being
forwarded to another name. If fwd_action is non-zero, the forwarded name is
deleted. A zero value prevents the name from being deleted.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_REM_NOT_LIST 51

ERROR_INVALID_PARAMETER 87

ERROR_INV AUD _LEVEL 124

NERR _ NetN otStarted 2102

NERR_ ShareMem 2104

NERR_NoNetworkResource 2105

NERR_BuffooSmall 2123

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

A network resource
shortage occurred.

The buff er is too small
for fixed-length data.

3-176 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _NetworkError 2136 A general network
error has occurred.

NERR _ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR _Already Forwarded 2274 This message alias has
already been
forwarded.

NERR _ AlreadyExists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR _DelComputerName 2278 The computer name
cannot be deleted.

NERR_NamelnUse 2283 The message alias is
currently in use-try
again later.

NERR_MsgNotStarted 2284 The messenger service
has not been started.

NERR _NotLocalName 2285 The name is not on the
local computer.

NERR_DuplicateName 2297 A duplicate message
alias exists on the local
area network.

NERR_DeleteLater 2298 This message alias will
be deleted later.

Chapter 3. API Function Descriptions 3-177

Remarks

Related Information

Manifest Value

NERR_IncompleteDel 2299

NERR_InvalidComputer 2351

Meaning

The message alias was
not successfully deleted
from all networks.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_ NOT_ FOUND]

• DosSemClear.

NetMessageNameDel requires that the messenger service be started.

For information on:

• Adding a name to a message name table-See "NetMessageNameAdd" on
page 3-173.

• Listing the names in a particular message name table-See
"NetMessageNameEnum" on page 3-179.

• The messenger service-See "Service Category" on page 3-298.

3-178 LAN Server Application Programmer's Reference

NetMessageNameEnum

Syntax

Return Codes

The NetMessageNameEnum (admin, DOS) function lists the name entries in a
message name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameEnum(servername, level, buf, buflen,

entriesread, totalentries)
canst char far *
short

servername;
level;
buf;
buflen;

char far *
unsigned short
unsigned short
unsigned short

far * entriesread;
far * totalentries;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (0 or 1) to be returned in the msg_inf o data
structure.

• buf points to the msg_inf o data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

Chapter 3. API Function Descriptions 3-179

Remarks

Manifest Value

NERR_ NetNotStarted 2102

NERR_ShareMem 2104

NERR_RemoteErr 2127

NERR_ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR_ BrowserNotStarted 2139

NERR_ IntemalError 2140

NERR_BadTransactConfig 2141

NERR_ MsgNotStarted 2284

NERR_InvalidComputer 2351

Meaning

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

NetMessageNameEnum requires that the messenger service be started.

3-180 LAN Server Application Programmer's Reference

Related Information
For information on:

• Adding a name to a message name table-See "NetMessageNameAdd" on
page 3-173.

• Deleting a name from a message name table-See "NetMessageNameDel" on
page 3-176.

• The messenger service-See "Service Category" on page 3-298.

• Retrieving information about a user's message account-See
"NetMessageNameGetlnfo" on page 3-185.

Chapter 3. API Function Descriptions 3-181

NetMessageNameFwd

Syntax

Return Codes

The NetMessageNameFwd (admin) function modifies the message name table to
forward messages to another messaging name.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameFwd(servername, name, forwardname, delfor)
const char far * servername;
const char far * name;
char far * forwardname;
short delfor;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string specifying the name receiving messages.

• f orwardname points to an ASCIIZ string specifying the name to receive name's
forwarded messages.

• delf or specifies the action to take if name forwards messages to another name. If
non-zero, then any previous forwarded user name is deleted; if 0, it is not deleted
and an error is returned.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_REM_NOT_LIST 51

ERROR_INVALID _PARAMETER 87

ERROR_INV AUD _LEVEL 124

NERR _ NetN otStarted 2102

NERR_ShareMem 2104

NERR_NoNetworkResource 2105

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

A network resource
shortage occurred.

3-182 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR _BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR _AlreadyF orwarded 2274 This message alias has
already been
forwarded.

NE RR_ Already Exists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_LocalForward 2279 Messages cannot be
forwarded back to the
same workstation.

NERR_NamelnUse 2283 The message alias is
currently in use-try
again later.

NERR_MsgNotStarted 2284 The messenger service
has not been started.

NERR _NotLocalName 2285 The name is not on the
local computer.

NERR _RemoteFull 2287 The message alias table
on the remote station
is full.

Chapter 3. API Function Descriptions 3-183

Remarks

Related Information

Manifest Value

NERR_DuplicateName 2297

NERR_DeleteLater 2298

NERR_MultipleNets 2300

NERR_ InvalidComputer 2351

Meaning

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

This operation is not
supported on machines
with multiple
networks.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

NetMessageNameFwd requires that the messenger service be started.

For information on:

• Listing the entries in the message name table of a server-See
"NetMessageNameEnum" on page 3-179.

• The messenger service-See "Service Category" on page 3-298.

• Setting the sizmessbufparameter for a server in IBMLAN.!NI-See the IBM
Operating System/2 Local Area Network Server Version 1.2 Network
Administrator's Guide.

• Stopping forwarding of a user's messages-See "NetMessageNameUnFwd" on
page 3-188.

3-184 LAN Server Application Programmer's Reference

NetMessageNameGetlnfo

Syntax

Return Codes

The NetMessageNameGetlnfo (admin, DOS) function retrieves information about a
user's entry in the message name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameGetlnfo(servername, name, level, buf,

buflen, totalavail)
const char far *
const char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
name;
level;
buf;
buflen;
totalavail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string specifying the name of the user of interest.

• level specifies the level of detail (0 or 1) requested for the returned msg_inf o data
structure.

• buf points to the msg_inf o data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR _ NetN otStarted

Value

0

5

8

87

124

234

2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKST A.EXE has
not been started.

Chapter 3. API Function Descriptions 3-185

Remarks

Manifest

NERR_ShareMem

NERR_Buff ooSmall

NERR_RemoteErr

NERR _ OS2Ioct1Error

NERR _ WkstaN otStarted

NERR _ BrowserN otStarted

NERR_ InternalError

NERR_ BadTransactConfig

NERR _ MsgN otStarted

NERR_NotLocalName

NERR _ InvalidComputer

Value

2104

2123

2127

2134

2138

2139

2140

2141

2284

2285

2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.

The name is not on the
local computer.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Data returned at a level of 0 provides only the name of the user. A level 1 structure
provides the name of the user and whether or not message forwarding is available,
and if so, to whom the messages are forwarded.

NetMessageNameGetlnfo requires that the messenger service be started.

3-186 LAN Server Application Programmer's Reference

Related Information
For information on listing all user name entries in a message name table, see
"NetMessageNameEnum" on page 3-179.

Chapter 3. API Function Descriptions 3-187

NetMessageNameUnFwd

Syntax

Return Codes

The NetMessageNameUnFwd (admin) function stops forwarding a user's messages
to another user.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameUnFwd(servername, name)
const char far * servername;
const char far * name;

where:

• servername points to an ASCIIZ string containing the name of a remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• name points to an ASCIIZ string specifying the user name whose message
forwarding is to be canceled.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_REM_NOT_LIST 51

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

NERR_ NetN otStarted 2102

NERR_ShareMem 2104

NERR_NoNetworkResource 2105

NERR_BuffooSmall 2123

NERR_RemoteErr 2127

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This remote computer
is not listening.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

A network resource
shortage occurred.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

3-188. LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR _ OS21oct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR _AlreadyExists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_NamelnUse 2283 The message alias is
currently in use-try
again later.

NERR _ MsgN otStarted 2284 The messenger service
has not been started.

NERR _NotLocalName 2285 The name is not on the
local computer.

NERR _RemoteFull 2287 The message alias table
on the remote station
is full.

NERR_NameNotForwarded 2288 Messages for this alias
are not currently
forwarded.

NERR _DuplicateName 2297 A duplicate message
alias exists on the local
area network.

NERR_DeleteLater 2298 This message alias will
be deleted later.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-189

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

NetMessageNameUnFwd requires that the messenger service be started.

For information on:

• Forwarding a user's messages to another user-See "NetMessageNameFwd" on
page 3-182.

• Listing the user name entries in a message name table-See
"NetMessageNameEnum" on page 3-179.

• The messenger service-See "Service Category" on page 3-298.

3-190 LAN Server Application Programmer's Reference

Named Pipe Category

Description

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes.

For information on the following functions, see the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference.

DosButReset (local, DOS)

DosCallNmPipe (local, DOS)

DosClose (local, DOS)

DosConnectNmPipe (local)

DosDisConnectNmPipe (local)

DosDupHandle (local, DOS)

DosMakeNmPipe (local)

DosOpen (local, DOS)

DosPeekNmPipe (local, DOS)

DosQFHandState (local, DOS)

DosQHandType (local, DOS)

DosQNmPHandState (local, DOS)

DosQNmPipelnfo (local, DOS)

DosQNmPipeSemState (local)

DosRead (local, DOS)

DosReadAsync (local)

DosSetFHandState (local, DOS)

DosSetNmPHandState (local, DOS)

DosSetNmPipeSem (local)

DosTransactNmPipe (local, DOS)

DosWaitNmPipe (local, DOS)

DosWrite (local, DOS)

DosWriteAsync (local).

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes. They are used with the OS2.H and NETCONS.H include files.

These functions are provided by the base operating system and supported by the
OS/2 LAN Server accross the network.

A named pipe is a bidirectional interprocess communication facility that allows two
processes, either local or remote, to communicate with each other over the network.
A process that creates a named pipe is known as a server process, and a process that
establishes a connection to a named pipe is known as a client process.

Chapter 3. API Function Descriptions 3-191

To create an instance of a named pipe on the local computer, an application must
call the DosMakeNmPipe function. This function specifies information that enables
the server process to control the named pipe and allows client processes to access the
named pipe. In order to create a named pipe, DosMakeNmPipe requires the
following:

• The name chosen for the named pipe-the format is \pipe\name for a local
named pipe.

• The directions (inbound, outbound, and full-duplex) that the named pipe can
send and receive data.

• An indication as to whether the handle of the named pipe can be passed to
spawned processes.

• The number of concurrent instances of the named pipe that can be created.

• The low-level parameters used by the OS/2 program.

An inbound or outbound named pipe (synonymous with anonymous pipes used with
other multi-tasking operating systems) allows a process only to read or write by way
of one handle. A full-duplex named pipe allows a process to both read and write
data by way of one handle.

In some applications (especially those that were developed before the OS/2 Version
1.1 program or those that emulate anonymous pipes), the handle of a named pipe
cannot be passed to a spawned process.

Each time DosMakeNmPipe is called with the same parameter information, another
instance of the named pipe is created. Each instance is associated with a unique
handle which is returned by DosMakeNmPipe. Thus, if DosMakeNmPipe is called
five times with the same information, five different instances (or handles) of the same
named pipe are created.

Other low-level operating system parameters such as the stream type and blocking
mode of the named pipe can be set. Even though a server process creates a named
pipe on a computer, client processes cannot access an instance of that named pipe
until the server process calls DosConnectNmPipe. This function informs the system
that a client process has permission to access an instance of the named pipe and also
returns a handle to the named pipe.

To become a client process, an application must open an instance of the named pipe
by calling the DosOpen function. DosOpen returns a handle to the client process
that can be passed to other named pipe reading and writing functions. If DosOpen
returns the ERROR_PIPE_BUSY error code (pipe currently being accessed by
another process), the client process should call DosWaitNmPipe to wait for the
named pipe to become available. DosWaitNmPipe can be configured to time out
after a particular period of time, or to wait indefinitely for an instance of the named
pipe.

When an instance of the named pipe becomes available, the DosWaitNmPipe
function is allowed to return to the waiting client process. At this point, the client
process can call DosOpen to open the named pipe. After a client process has opened
an instance of a named pipe, the client process can begin to read and write to the
named pipe. To perform these tasks, the client process should call the DosRead and
Dos Write functions. Both of these functions accept the handle returned by
DosOpen, and operate on the same thread of execution as the client process. If a
server or client process requires that the reading and writing of named pipes be

3-192 LAN Server Application Programmer's Reference

executed on a separate thread, the process can call the DosReadAsync and
DosWriteAsync functions. Note that a remote named pipe can be written to by
specifying the pipe name as follows:

\\server\pipe\name

A process can also call the DosBufReset function to force all data to be written to a
named pipe; normally, data written to a named pipe is held temporarily in a data
buffer.

Note that output cannot be redirected to a named pipe.

Since a named pipe must be written to before it is read from, a process can call
DosPeekNmPipe to see if there is any data written to a named pipe.
DosPeekNmPipe reads the data in a named pipe but does not remove the data.

If necessary, either a server or client process can call DosDupHandle to replicate a
handle to a named pipe. DosDupHandle returns a new handle to the same instance
of a named pipe that an old handle represented. This handle.can be passed to any
named pipe function that could use the old handle.

Two functions are provided that decrease the overhead involved in writing to and
reading from a named pipe. These two functions are DosTransactNmPipe and
DosCallNmPipe. DosTransactNmPipe writes a message to and then reads a message
from an opened named pipe. DosCallNmPipe opens, writes to, reads from, and then
closes a named pipe. This four-in-one process is helpful when implementing a
remote procedure call (RPC) on the network.

When a client process no longer requires access to a named pipe, the DosClose
function can be called to close the named pipe.

When a server process no longer requires an instance of a named pipe, the server
process calls DosDisconnectNmPipe to remove that instance of the named pipe by
specifying its handle. If a client process is still accessing the named pipe,
DosDisconnectNmPipe forces the client process off.

Five functions are provided that enable server or client processes to obtain
information about a named pipe or its handle, as follows:

Function

DosQFHandState

DosQHandType

DosQNmPHandState

DosQNmPipelnfo

DosQNmPipeSemState

Purpose

Determines whether the handle can be inherited
and if write-behind is allowed.

Returns the type of handle.

Returns the low-level parameters associated with
a handle and the operating mode of the pipe;
declares the instance count.

Returns the size of buffers and the number of
instances currently available.

Returns the state of a semaphore associated with
a named pipe.

Chapter 3. API Function Descriptions 3-193

The OS/2 LAN Requester/Server software provides three functions that enable server
or client processes to set specific information about a named pipe that can be
queried. The functions and settable parameters are as follows:

Function

DosSetFHandState

DosSetNmPHandState

DosSetNmPipeSem

Purpose

Sets whether a handle of a named pipe can be
inherited and if write-behind is allowed.

Sets low-level parameters associated with pipes
such as reading and writing mode.

Sets the association of a semaphore to a named
pipe.

The transfer mode of a named pipe is set by either DosMakeNmPipe or
DosSetNmPHandState; a named pipe transfers data in byte-stream or
message-stream mode.

A named pipe operating in byte-stream mode operates like an anonymous pipe
where all data written is transferred without any special processing performed on it.
When operating in message-stream mode, a named pipe can distinguish between the
different messages (and size of each message) read from and written to that named
pipe.

Named pipes are designed so that a client process has no requirement for the type of
resource it is opening (pipe or file). Client processes use the DosOpen, DosRead,
and DosClose functions to open, read, and close both types of resources without
reference to one resource being a file and the other a named pipe.

The following table describes the transition state of a named pipe, based on the
action a server or client process indicates:

Current State Action/Process Next State

Pipe does not exist DosMakeNmPipe, NP _DISCONNECTED
server

NP _DISCONNECTED DosConnectNmPipe, NP LISTENING
server

NP _LISTENING DosOpen, client NP_ CONNECTED

NP_ CONNECTED DosDisconnectNmPipe, DISCONNECTED
server

NP_ CONNECTED DosClose, client NP CLOSING

NP_CLOSING DosDisconnectNmPipe, DISCONNECTED
server

NP_ CONNECTED DosClose, server NP CLOSING

Note: The OS/2 DosChgFilePtr function (and other functions that perform seek
operations on files) does not work with named pipes.

3-194 LAN Server Application Programmer's Reference

DOS Considerations

Related Information

Under DOS, the functions can be executed only on a remote server that has
interprocess communication (IPC) shares.

DOS supports only client processes; a pipe must have already been created and
connected on a remote server. Child processes inherit the open file handles of a
parent process. DOS does not support asynchronous reading and writing of named
pipes.

Note: The Family API (F API) replacement library routine for DosOpen provides
support for DASD opens (open Mode Flag Ox8000). Since DOS does not
support this operation, pipe operations on this type of file handle will return
ERROR_INVALID_HANDLE rather than ERROR_BAD_PIPE.

DosBufR.eset works differently depending on which version of DOS you are
programming under. Under version 3.3 and 4.0, DosBufR.eset returns 0 after
resetting a closed named pipe. If the handle is to a named pipe that has already been
closed, DosBufR.eset returns ERROR_BROKEN_PIPE.

Under DOS 3.3 and 4.0, DosBufR.eset waits for the pipe to be emptied.

For information on:

• Anonymous pipes, named pipes, or IPC-See the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference, Volume 1.

• For a detailed description of each function-See the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference.

Chapter 3. API Function Descriptions 3-195

Remote Utility Category

Description

NetRemoteCopy (local, DOS}-See "NetRemoteCopy" on page 3-197.

NetRemoteExec (local, server)-See "NetRemoteExec" on page 3-200.

NetRemoteMove (local, DOS)-See "NetRemoteMove" on page 3-203.

NetRemoteTOD (DOS)-See "NetRemoteTOD" on page 3-206.

The functions in the Remote Utility category enable applications to copy and move
remote files, remotely execute a program, and access the time-of-day information on
a remote server. They are used with the REMUTIL.H and NETCONS.H include
files.

The NetRemoteCopy function performs optimized file copying. Files on a remote
server are copied without physically moving the files to and from the local requester.
The source and destination must be on the same server.

The NetRemoteMove function moves files or directories from one location to
another on a remote server without physically moving the data if the source and
destination are on the same drive. If source and destination are on different drives,
the move does not require shuffling the data to and from the local requester.

To execute a program on a remote server, an application calls the NetRemoteExec
function. NetRemoteExec performs the same tasks as the OS/2 DosExecPgm
function, but on another network server.

The NetRemoteTOD function returns time-of-day information from a remote server.

DOS Considerations

Data Structures

Under DOS, the functions in the Remote Utility category enable applications to
copy and move remote files and access the time-of-day information on a remote
server. Attempting to execute the functions on a local requester returns
NERR_RemoteOnly.

The function NetRemoteCopy uses data structure copy_info. The function
NetRemoteMove uses data structure move_info. The function NetRemoteTOD uses
data structure time_of_day_info. These data structures are described following the
syntax descriptions in each function section.

NetRemoteExec does not use a data structure.

3-196 LAN Server Application Programmer's Reference

NetRemoteCopy

Syntax

The NetRemoteCopy (local, DOS) function copies one or more files from one
location to another on a remote server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal
NetRemoteCopy (sourcepath, destpath, sourcepass, destpass,

openflags, copyflags, buf, buflen)
const char far * sourcepath;
const char far * destpath;
const char far * sourcepass;
const char far * destpass;
unsigned short openflags;
unsigned short c.opyflags;
char far * buf;
unsigned short buflen;

where:

• sourcepath points to an ASCIIZ string containing the path name of the files to
be copied (wildcards can be used). sourcepath must begin with either a
redirected drive or a UNC name.

• destpath points to an ASCIIZ string containing the path name to which
sourcepath is to be copied. For a wildcard sourcepath, destpath must be a
directory. destpath must begin with either a redirected drive or a UNC name.

• sourcepass is reserved and must be NULL.

• destpass is reserved and must be NULL.

• openflags specifies how destpath will be opened. openflags is defined as follows:

Bit l\1eaning

0-1 Used if destpath exists. If 0, the open fails. If 1, the file is
appended. If 2, the file is overwritten.

2-3 Reserved, with a value of 0.

4 Used if destpath does not exist. If 0, the open fails. If 1, the file is
created.

5-15 Reserved, with a value of 0.

• copyflags specifies how the file copy is done. copyflags is defined as follows:

Bit

0

1

2

3

l\1eaning

If 1, destpath must be a file. If bit 0 is set, bit 1 must be 0.

If 1, destpath must be a directory. If bit 1 is set, bit 0 must be 0.

If 0, destpath is opened in binary mode. If 1, destpath is opened in
text mode.

If 0, sourcepath is opened in binary mode. If 1, sourcepath is
opened in text mode.

Chapter 3. API Function Descriptions 3-197

Bit Meaning

4 If 1, all writes are verified.

5-15 R.eserved.

• buf points to the copy _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

Return Status of File Copy

Return Codes

NetR.emoteCopy returns data in the following form:

struct copy_info {
unsigned ci num copied;
char ci=err=buf[l];

};

where:

• ci_num_copied indicates the number of files that were copied.

• ci_err_bufis a variable-length ASCIIZ string containing error information
pertaining to the file copy.

Manifest Value

NER.R_SUCCESS 0

ER.R.OR._FILE_NOT _FOUND 2

ER.R.OR._PATH_NOT _FOUND 3

ER.R.OR._ACCESS_DENIED 5

ER.R.OR._NO _MOR.E_FILES 18

ER.R.OR._SHAR.ING_ VIOLATION 32

ER.R.OR._ FILE_ EXISTS 80

ER.R.OR._INV ALID _PAR.AMETER. 87

NER.R._ NetNotStarted 2102

NER.R._BufTooSmall 2123

NER.R._ OS2Ioct1Error 2134

NER.R._ WkstaN otStarted 2138

Meaning

No errors were
encountered.

The file was not found.

The path was not
found.

Administrative
privilege is required.

No more files are
available.

A sharing violation
occurred.

The file already exists.

The specified
parameter is invalid.

The redirector
NETWKSTA.EXE has
not been started.

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The R.equester service
has not been started.

3-198 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest Value Meaning

NERR _BadSource 2381 The source path is
illegal.

NERR_BadDest 2382 The destination path is
illegal.

NERR _DifferentServers 2383 The source and
destination paths are
on different servers.

Other error return codes may be returned from the following OS/2 functions:

• DosFSCtl

• DosDevIOCtl(NIOCNETCOPYl_l).

Currently, the source and destination for the file copy must be on the same server or
an error results. The following cases are valid:

• The source and destination are both files. The source file is copied to the
destination file, subject to openf/ags and copyf/ags limitations.

• The source is a file or wildcard and the destination is a directory. The source
files are copied to the destination directory, subject to openflags and copyflags
limitations.

For information on:

• Listing the shared resources of a server-See "NetShareEnum" on page 3-350.

• Moving remote files between servers-See "NetRemoteMove" on page 3-203.

• Share passwords-See "Share Category" on page 3-337.

Chapter 3. API Function Descriptions 3-199

NetRemoteExec

Syntax

The NetRemoteExec (local, server) function executes a program located on a remote
server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal
NetRemoteExec (reserved!, objnamebuf, objnamebufl, asyntraceflags,

argpointer, envpointer, returncodes, pgmpointer,
reserved2, remexecflags)

reserved!;
objnamebuf;
obj namebufl;
asyntracefl ags;

char far *
char far *
unsigned
unsigned
const char far * argpointer;
const char far * envpointer;
char far * returncodes;
const char far * pgmpointer;
char far * reserved2;
unsigned short remexecflags;

where:

• reserved] is a reserved pointer with the value of -1.

• objnamebuf points to the name of the object, such as a dynamic-link library.
The NetRemoteExec function copies a name to this buffer if it could not
successfully load and start the specified program.

• objnamebufl specifies the size (in bytes) of the objnamebuf memory area.

• asyntraceflags specifies the asynchronous and trace flags. asyntraceflags is
defined as follows:

Value

0

2

Meaning

Synchronous process.

Asynchronous process without result code.

Asynchronous process with result code.

• argpointer points to a set of ASCIIZ strings containing the arguments of the file
to be executed.

• envpointer points to a non-NULL ASCIIZ string specifying the environment for
the file to be executed.

• returncodes points to an OS/2 data structure containing the return codes
resulting from the file execution. This is the same data structure used with the
OS/2 DosExecPgm function. For more information on the return codes and the
DosExecPgm function, see the IBM Operating System/2 Technical Reference
Version 1.2 Programming Reference, Volume 2.

• pgmpointer points to an ASCIIZ string containing only the name and extension
of the file to be executed.

• reserved2 is a reserved pointer with the value 0.

3-200 LAN Server Application Programmer's Reference

Return Codes

• remexecjlags specifies the remote executable flags that control program
execution. remexecjlags is defined as follows:

Bit Meaning

0 REM_PIPE_MODE

l REM_WAIT_MODE

2 REM_SIGL_MODE

3-15

Manifest

NERR_SUCCESS

ERROR_INVALID_PARAMETER

NERR _ InternalError

NERR_RunSrvPaused

NERR_ErrCommRunSrv

NERR_ErrConnRunSrv

NERR_ErrorExecingGhost

NERR_ShareNotFound

Manifest

If 0, a message mode pipe is
used for standard input. If l, a
character mode pipe is used for
standard input.

If 0, the OS/2 DosCWait
function waits for the child
process to finish before
returning. If l, DosCWait waits
for all spawned processes to
finish before returning.

If 0, map SIGINTR and
SIGBREAK to SIGKILL when
remoting standard signals. If 1,
the send signals as received. For
more information on OS/2
signals, see the IBM Operating
System/2 Technical Reference
Version 1.2 Programming
Reference, Volume l.

Reserved, with a value of 0.

Value Meaning

0

87

2140

2385

2389

2390

2391

2392

No errors were
encountered.

The specified
parameter is invalid.

An internal error has
occurred.

The run server you
requested using the
NET RUN command
is paused.

An error occurred
when communicating
with a run server.

An error occurred
when connecting to
run server.

An error occurred
when starting a
background process.

The shared resource
you are connected to
could not be found.

Chapter 3. API Function Descriptions 3-201

Remarks

Related Information

Manifest Value Meaning

NERR_PgmNotFound 2394 The program was not
found.

The NetRemoteExec function is a network extension of the OS/2 DosExecPgm
function.

The executed process is run on the computer connected to the current drive of the
caller. If the current drive of the caller is on a remote server, the child process is
executed on that server. If the current drive of the caller is a local drive, the child
process is executed locally.

The NetRemoteExec function requires that a remotely executed process inherit one
of the following handles:

Handle Meaning

0

2

Standard input (stdin)

Standard output (stdout)

Standard error (stderr)

When the NetRemoteExec function initiates an asynchronous process, the process
identification (PID) returned to the first word of the ReturnCodes data structure is a
valid local PID that represents the remote program. The PID can be passed to the
OS/2 DosFlagProcess function to:

• Send signals to the remote process

• Call the OS/2 DosCWait function to wait for the remote process to exit

• Call the OS/2 DosKillProcess function to end the process.

For information on:

• Listing resources of a server-See "NetShareEnum" on page 3-350.

• Listing the servers of a network-See "NetServerEnum2" on page 3-289.

• Executing a command on a server-See "NetServerAdminCommand" on
page 3-284.

• Executing a program-See OS/2 DosExecPgm (IBM Operating System/2
Technical Reference Version 1.2 Programming Reference, Volume 1).

• OS/2 DosCWait-See OS/2 DosCWait (IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1).

3-202 LAN Server Application Programmer's Reference

NetRemoteMove

Syntax

The NetRemoteMove (local, DOS) function moves one or more files from one
location to another on a server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal
NetRemoteMove(sourcepath, destpath, sourcepass, destpass,

openflags, moveflags, buf, buflen)
const char far * sourcepath;
const char far * destpath;
const char far * sourcepass;
const char far * destpass;
unsigned openflags;
unsigned moveflags;
char far * buf;
unsigned short buflen;

where:

• sourcepath points to an ASCIIZ string containing the path name of the file to be
moved (wildcards can be used). sourcepath must begin either with a redirected
drive or a universal naming convention (UNC) name.

• destpath points to an ASCIIZ string containing the path name to which
sourcepath is to be moved. For a wildcard sourcepath, destpath must be a
directory. destpath must begin either with a redirected drive or a UNC name.

• sourcepass is reserved and must be NULL.

• destpass is reserved and must be NULL.

• openflags specifies how destpath will be opened. openflags is defined as follows:

Bit Meaning

0-1 Used if destpath exists. If 0, the open fails. If 1, the file is
appended. If 2, the file is overwritten.

2-3 Reserved, with a value of 0.

4 Used if destpath does not exist. If 0, the open fails. If 1, the file is
created.

5-15 Reserved, with a value of 0.

• moveflags establishes control for the file move. moveflags is defined as follows:

Bit Meaning

0 If 1, destpath must be a file, and bit 1 must be 0.

If 1, destpath must be a directory, and bit 0 must be 0.

2-15 Reserved; the value of these bits must be 0.

• buf points to the move _info data structure.

Chapter 3. API Function Descriptions 3-203

• buflen specifies the size. (in bytes) of the buf memory area.

Return Status of File Move

Return Codes

Remarks

The NetRemoteMove function returns data in the following form:

struct move_info {
unsigned mi num moved;
char mi=err=buf[l];

};

where:

• mi_num_moved indicates the number of files that were moved.

• mi_err _buf is a variable-length ASCIIZ string containing error information
pertaining to the move operation.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_FILE_NOT_FOUND 2 The file was not found.

ERROR_PATH_NOT_FOUND 3 The path was not found.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NO_MORE_FILES 18 No more files are available.

ERROR_SHARING_ VIOLATION 32 A sharing violation occurred.

ERROR_FILE_EXISTS 80 The file already exists.

ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.

NERR_BufTooSmall 2123 The buffer is too small for
fixed-length data.

NERR_BadSource 2381 The source path is illegal.

NERR_BadDest 2382 The destination path is illegal.

NERR _ DifferentServers 2383 The source and destination
paths are on different servers.

If the source and destination files are in the same directory, NetRemoteMove
renames the source file. When the source and destination are on different drives,
NetRemoteMove moves sourcepath to destpath and then deletes sourcepath.

Currently, the source and destination path names (sourcepath and destpath) supplied
to the NetRemoteMove function must be on the same server. The following cases
are valid:

• The source and destination are both files. The source file is copied to the
destination file, subject to openflags and moveflags limitations.

• The source is a file or wildcard and the destination is a directory. The source
files are copied to the destination directory, subject to openflags and moveflags
limitations.

3-204 LAN Server Application Programmer's Reference

Related Information
For information on:

• Copying a file from one network location to another-See "NetRemoteCopy" on
page 3-197.

• Determining if a driver letter is local or redirected to a remote server-See
"NetUseGetlnfo" on page 3-380.

• Listing available resources on a server-See "NetShareEnum" on page 3-350.

Chapter 3. API Function Descriptions 3-205

NetRemoteTOD

Syntax

The NetRemoteTOD (DOS) function returns the time of day on a server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal
NetRemoteTOD(servername, buf, buflen)
const char far * servername;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• bu/points to the time_of_day_info data structure.

• buflen specifies the size of the bu/ memory area.

Return Time-of-Day Information on a Server

The NetRemoteTOD function returns data in the following form:

struct time_of_day_info {
unsigned long tod_elapsedt;
unsigned long tod_msecs;
unsigned char tod_hours;
unsigned char tod_mins;
unsigned char tod_secs;
unsigned char tod_hunds;
unsigned short tod_timezone;
unsigned short tod_tinterval;
unsigned char tod_day;
unsigned char tod_month;
unsigned short tod_year;
unsigned char tod_weekday;
};

where:

• tod_elapsedt indicates the number of seconds that have elapsed since January 1,
1970.

• tod_msecs indicates the current millisecond.

• tod_hours indicates the current hour.

• tod_mins indicates the current minute.

• tod_secs indicates the current second.

• tod_hunds indicates the current hundredths of a second.

• tod_timezone indicates the timezone of the server; calculated (in minutes) from
the greenwich mean time (GMT) zone.

• tod_tinterval indicates the time interval for each tick of the clock. Each integral
integer represents 0.0001 second.

3-206 LAN Server Application Programmer's Reference

Return Codes

Related Information

• tod_day (1 through 31) indicates the day of the month.

• tod_month (1 through 12) indicates the month.

• todyear indicates the year, starting with 1980.

• tod_weekday indicates the day of the week (0 means Sunday, 6 means Saturday).

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

NERR_Buff ooSmall 2123 The buffer is too small for
fixed-length data.

NERR _ WkstaN otStarted 2138 The Requester service has not been
started.

NERR_InvalidComputer 2351 The specified computer name is
invalid.

For information on listing the servers of a network, see "NetServerEnum2" on
page 3-289.

Chapter 3. API Function Descriptions 3-207

Requester Category

Description

NetWkstaGetlnfo (partially admin, DOS)-See "NetWkstaGetlnfo" on page 3-225.

NetWkstaSetlnfo (admin, DOS)-See "NetWkstaSetlnfo" on page 3-227.

NetWkstaSetUID2 (DOS)-See "NetWkstaSetUID2" on page 3-231.

The functions in the Requester category control the operation of requesters. They
are used with the ACCESS.H, NETCONS.H, and WKST A.H include files.

The requester functions enable applications to:

• Log a user name onto a requester

• Log a user name off of a requester

• Execute a logon script on a logon server for a user name

• Control configuration of a requester.

To log a user name onto or off a requester or to execute a logon script for a user
name, an application calls the NetWkstaSetUID2 function.

To configure a requester, an application calls the NetWkstaSetlnfo function. The
NetWkstaGetlnfo function returns information about the configuration of a
requester.

Note: The domain name of the requester (the wkiO _langroup component in the
wksta_info data structure) must not duplicate any computer name or user
name on the network.

Giving a domain the name of a computer causes startup problems for one of
two namesakes. If the like-named computer is started before the domain, no
other computer in the domain will be able to start. And, conversely, if any
computer in the like-named domain is started, the computer going by the
domain name will be unable to start.

For more information on domains, see the IBM Operating System/2 Local
Area Network Server Version 1.2 Network Administrator's Guide.

DOS Considerations
Under DOS, the functions in the Requester category control the operation of
requesters. They can be executed only on a local requester. Attempting to execute
the functions on a remote server returns ERROR_NOT_SUPPORTED.

Certain parameters are not used under DOS and therefore cannot be set. However,
validity checks are done on most of the unused parameters for future expansion.

3-208 LAN Server Application Programmer's Reference

Data Structures

The following table describes the parameters that are used and whether validity
checks are perfomed on them:

Parameter Used Validity Checked

charwait No Yes

char time Yes Yes

char count Yes Yes

errlogsz No Yes

printbuftime No Yes

wrkheuristics No No

The NetWkstaGetlnfo (level 0, 1, and 10) and NetWkstaSetlnfo (level 0 and 1)
functions accept or return data at the specified level of detail, using the wksta _info
data structure.

Requester Information (Level 0)

struct wksta_info_O {

};

unsigned short wkiO_reserved_l;
unsigned long wkiO_reserved_2;
char far * wkiO_root;
char far * wkiO_computername;
char far * wkiO_username;
char far * wkiO_langroup;
unsigned char wkiO_ver_major;
unsigned char wkiO_ver_minor;
unsigned long wki0_reserved_3;
unsigned short wkiO_charwait;
unsigned long wkiO_chartime;
unsigned short wkiO_charcount;
unsigned short wkiO_reserved_4;
unsigned short wkiO_reserved_5;
unsigned short wkiO_keepconn;
unsigned short wkiO_keepsearch;
unsigned short wkiO_maxthreads;
unsigned short wkiO_maxcmds;
unsigned short wkiO_reserved_6;
unsigned short wkiO_numworkbuf;
unsigned short wkiO_sizworkbuf;
unsigned short wkiO_maxwrkcache;
unsigned short wkiO_sesstimeout;
unsigned short wkiO_sizerror;
unsigned short wkiO_numalerts;
unsigned short wkiO_numservices;
unsigned short wkiO_errlogsz;
unsigned short wkiO_printbuftime;
unsigned short wkiO_numcharbuf;
unsigned short wkiO_sizcharbuf;
char far * wkiO_logon_server;
char far * wkiO_wrkheuristics;
unsigned short wkiO_mailslots;

Chapter 3. API Function Descriptions 3-209

where:

• wkiO_reserved_J, wkiO_reserved_2, wkiO_reserved_3, wkiO_reserved_4,
wkiO_reserved_5, and wkiO_reserved_6 are reserved, and must be 0.

• wkiO _root points to an ASCIIZ string containing the path to the IBMLAN
directory of the computer (the recommended default path is \IBMLAN).

• wkiO_computername points to an ASCIIZ string containing the computer name
of the local requester being configured.

• wkiO_username points to an ASCIIZ string containing the user's name logged on
the requester.

• wkiO _langroup points to an ASCIIZ string containing the name of the domain to
which the requester belongs.

• wkiO _ver _major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkiO_ver _minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkiO _charwait indicates the number of seconds the requester will wait for a
remote serial or communication device to become available.

• wkiO _chartime indicates the number of milliseconds the requester will wait to
collect data to send to a remote serial or communication device.

• wkiO _charcount indicates the number of bytes of information the requester will
send to a remote serial or communication device.

• wkiO_keepconn indicates the number of seconds that an inactive connection from
the requester to a resource of a server will be maintained.

• wkiO _keepsearch indicates the number of seconds that an inactive search will
continue.

• wkiO _maxthreads indicates the number of threads the requester can dedicate to
the network.

• wkiO _maxcmds indicates the number of simultaneous network device driver
commands that can be sent to the network.

• wkiO _ numworkbuf indicates the number of internal buffers the requester has.

• wkiO _sizworkbuf indicates the size (in bytes) of each internal buffer.

Use the following formula to determine the maximum values for both
numworkbuf and the sizworkbuf parameters:

(sizworkbuf + 268) * numworkbuf ~ 65,515

Default value: 4096

Minimum value: I 024

Maximum value: 16384

• wkiO_maxwrkcache indicates the maximum size (in bytes) of an internal cache
buffer.

• wkiO _sesstimeout indicates the number of seconds that are waited before
disconnecting an inactive session between a requester and a server.

• wkiO_sizerror indicates the size (in bytes) of an internal error buffer.

3-210 LAN Server Application Programmer's Reference

• wkiO_numalerts indicates the maximum number of clients that can receive alert
messages.

Note that each mailslot or semaphore registered by the NetAlertStart function is
a different client, and that the alerter service registers at least three clients when
it begins to run. For more information on alerts, see "Alert Category" on
page 3-29.

• wkiO _numservices indicates the number of services that can be started on the
requester at any time. For more information on services, see "Service Category"
on page 3-298.

• wkiO _errlogsz indicates the maximum size (in kilobytes) of the error log file of
the requester.

• wkiO _printbuftime indicates the number of seconds waited before closing inactive
compatibility-mode print jobs.

• wkiO_numcharbuf indicates the number of character pipe buffers and device
buffers the requester can have.

• wkiO_sizcharbuf indicates the maximum size (in bytes) of a character pipe buffer
and device buffer.

• wkiO_logon_server points to an ASCIIZ string indicating the name of the domain
controller of the requester. A NULL string indicates no logon servers are
available. If the string is \ \ *, any available logon server is queried.

• wkiO_wrkheuristics points to an ASCIIZ string of flags used to control a
requester's operation. The heuristics default to values that are optimal for most
configurations and normally need not be changed.

The default value for wkiO _wrkheuristics is defined as follows:

wrkheuristics = 11111111213111111100010110201110

The maximum value for wkiO_wrkheuristics is defined in IBMLAN.INI as
follows:

wrkheuristics = 11221211223111111111519111213170

If a partial string is specified, the default values are used for the remaining
heuristics. If the string is NULL or is not present in the IBMLAN.INI file, the
default string is used.

If the values used are other than those listed (0 or 1 where no value is listed),
errors may occur.

The characters (from left to right) are defined as follows. Unless otherwise
defined, 0 turns off a heuristic feature, and 1 turns on the feature.

The parameters and their descriptions are as follows:

Parameter

sizworkbuf

Description

Sets the size of requester buffers, in bytes. Increase
sizworkbuf to transfer large groups of data, such as
database records, on the network. This value should be
a multiple of 512. It should be the same for every
requester on the network and equal to the sizreqbuf
value used by servers.

When the numworkbuf and sizworkbuf parameters are
used in the following formula, they should not be
greater than 64 KB:

Chapter 3. API Function Descriptions 3-211

wrkheuristics

(sizworkbuf + 268) * numworkbuf ::::; 65515

Default value: 4096

Minimum value: 1024

Maximum value: 16384

Sets a variety of requester fine-tuning options. Each
digit has an independent meaning. Missing digits are
assumed to be the defaults as described. Except where
noted, each is a binary digit where 0 means off or
inactive, while 1 means on or active. The following are
the meanings of the digits:

Digit Meaning

0 Request opportunistic locking of files. The
default is 1.

When this heuristic is active, it allows a file
opened in deny none sharing mode to be locked
by the server (provided there are no other access
requests), so that buffering can be used to
enhance performance. The Server service
assumes that the first requester is the only active
process using that file and will prevent a second
requester from accessing the file until buffer data
is flushed (written to disk).

Do performance optimization for batch files.
Heuristic 0 (opportunistic locking) must be set to
1. The default is 1.

When this heuristic is active (set to 1), a batch
file on the server executing on the requester is
kept in the requester's buffer to prevent a request
across the LAN for each line of the batch file.
The batch file is opened and closed with each
line executed; when this heuristic is inactive (set
to 0), the close causes buffer data to be flushed.

2 Do. asynchronous unlock and write unlock as
follows:

Value
0
1
2

Meaning
Never
Always
Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

With this heuristic, files in the requester buffer
are unlocked in the buffer, and processing
continues without waiting for confirmation from
the server. Any errors occurring at the server are
reported later. Generally, the only errors that
might occur are hard media errors, such as disk
full or a loss of power to the server. (A virtual

3-212 LAN Server Application Programmer's Reference

circuit in this discussion is a NETBIOS™ session
connection to another machine through a LAN.)

3 Do asynchronous close and write close as
follows:

Value
0
l
2

Meaning
Never
Always
Only on an OS/2 LAN Server virtual
circuit.

The default is l.

This heuristic performs the same function in the
close operation as wrkheuristic 2 performs in the
unlock operation.

4 Buffer named pipes and serial devices. The
default is l.

This heuristic directs named pipes and
communication devices through the requester's
buffers.

5 Do combined lock read and write unlock as
follows:

Value
0
1
2

Meaning
Never
Always
Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

6 Use open and read. The default is 1.

When this heuristic is active, a request to open a
file also performs a read of size sizworkbuf from
the beginning of the file to the requester's work
buffer. This action anticipates that the data is
subsequently read, saving an additional request
across the LAN.

7 Reserved. This must be set to 1.

8 Use the chain send NETBIOS NCB as follows:

Value Meaning
0 Never
l Do if server's buff er is larger
2 Always (to avoid copy).

The default is l.

When this heuristic is active, data packets larger
than the LAN' s transmit buffer size are chained
together, eliminating some packet transmissions
across the LAN.

NETBIOS is a trademark of International Business Machines Corporation.

Chapter 3. API Function Descriptions 3-213

9 Buffer small read and write requests (reading and
writing a full buffer) as follows:

Value
0
1
2

Meaning
Never
Always
Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

When this heuristic is active and file access mode
allows, requests to read or write data smaller
than sizworkbuf are performed locally, in the
requester's buffer, avoiding additional trips
across the LAN. The buffer is flushed when the
file is closed or when the buffer is needed to
satisfy other requests.

This heuristic may enhance performance for
applications that read, modify, and write back
small records.

IO Use buffer mode (assuming shared access is
granted) as follows:

Value Meaning

0 Always read buffer size if request is
smaller than buff er size.

Use full buff er if file is open for reading
and writing.

2 Use full buffer if reading and writing
sequentially.

3 Buffer all requests smaller than the
buffer size.

The default is 3.

Shared access means the file was opened in
sharing mode. These options allow selective
tuning of the buffer mode if any applications
handle data in a manner conflicting with
buffering.

11 Use raw read and write server message block
(SMB) protocols. The default is 1.

3-214 LAN Server Application Programmer's Reference

Raw read and write SMB protocols transfer data
across the LAN without SMB headers. These
protocols are used to transfer large files directly
between a big buff er in the server and a work
cache in the requester. When a large file transfer
initiates raw read and write SMB protocols, the
NETBIOS session involved exclusively uses the
LAN adapter cards on both the send and receive
stations until the request completes. Polling
ensures large buffers are available before the
transfer begins.

This heuristic may significantly improve
performance of large file transfers across the
LAN.

12 Use large raw read-ahead buffer. The default is
1.

This heuristic and heuristic 13 provide
independent control over using raw SMB
protocol for read-ahead and write-behind,
respectively. Both are active with default values,
but can be turned off to better suit a particular
environment.

13 Use large raw write-behind buffer. The default is
1.

See digits 11 and 12 for more information.

14 Use read multiplexing server message block
(SMB) protocols. The default is 1.

This SMB protocol is used for large read
requests if large buffers described in heuristic 11
are unavailable, or raw SMB protocol is inactive.
This protocol breaks transfers into buffer-size
chunks (usually 4KB) and chains them together
to satisfy the request. Exclusive use of LAN
adapter cards does not occur.

15 Use write multiplexing SMB protocols. The
default is 1.

This SMB protocol is used for large write
requests if large buffers described in heuristic 11
are unavailable, or raw SMB protocol is inactive.
This protocol divides transfers into buffer-size
chunks (usually 4KB) and chains them together
to satisfy the request. Exclusive use of LAN
adapter cards does not occur.

16 Reserved. This must be set to 1.

17 Use same size small read-ahead or to sector
boundary. The default is 1.

When this heuristic is active, requests to read
small data records cause read-ahead in multiples
of the data record size, so a full buffer is read
and sent to the requester. Because multiple
records may not fit evenly in the buffer, the last
record in the buffer may be incomplete.
However, no data is lost.

This heuristic is significant only if wrkheuristic 9
is inactive. The server will detect small data
records of the same size being read sequentially
and will establish the read-ahead operation.

18 Use same size small write-behind or to sector
boundary. The default is 0.

When this heuristic is active, requests to write

Chapter 3. API Function Descriptions 3-215

small data records cause write-behind in
multiples of the data record size, so a full buffer
is written to the server. Because multiple records
may not fit evenly in the buffer, the last record
written may be incomplete. However, no data is
lost.

This heuristic is significant only if wrkheuristic 9
is inactive. The server will detect small data
records of the same size being written
sequentially and will establish the write-behind
operation.

19 Reserved. This must be set to 1.

20 Flush pipes and devices on DosBufReset or
DosClose as follows:

Value Meaning

0 Flush only files and devices opened by
the caller. Spin until flushed (wait for
confirmation before proceeding with
other tasks).

Flush only files and devices opened by
the caller. Flush only once.

2 Flush all files and all input and output
of short-term pipes and devices. Spin
until flushed.

3 Flush all files and all input and output
of short-term pipes and devices. Flush
only once.

4 Flush all files and all input and output
of pipes and devices. Spin until flushed.

5 Flush all files and all input and output
of pipes and devices. Flush only once.

The default is 0.

This heuristic gives the requester application
more flexibility as to which files, pipes, or
devices are flushed (written to disk) when
DosBufReset or DosClose is done.

21 Used to support OS/2 LAN Server encryption.
The default is 1.

22 Control log entries for multiple occurrences of an
error. A recurring error can fill up the error log;
use this heuristic to keep down the number of
log entries. If the value is other than 0, the first,
fourth, eighth, 16th, and 32nd occurrences of an
error are logged. After that, every 32nd further
occurrence is logged.

3-216 LAN Server Application Programmer's Reference

If the value is other than 0, it also defines the
size of an error table. The table is a record of
what errors have occurred. If an error does not

match an existing entry in the table, it replaces
the entry with the lowest number of occurrences.

Set the value as follows:

Value
0
1
2
3
4
5
6
7
8
9

Meaning
Log all occurrences
Use error table, size 1
Use error table, size 2
Use error table, size 3
Use error table, size 4
Use error table, size 5
Use error table, size 6
Use error table, size 7
Use error table, size 8
Use error table, size 9.

The default is 0.

23 Buffer all files opened with deny-write sharing
mode. The default is 1.

When this heuristic is active, the server buffers
all files opened with deny-write sharing mode,
even if the access mode is not read-only.

This heuristic deactivates buffering on this
requester if an application does not work
correctly with it.

24 Buffer all files opened with read only access.
The default is 1.

When this heuristic is active, the server buffers
all files opened with read-only access mode, even
if the sharing mode is not deny-write.

This heuristic deactivates buffering on this
requester if an application does not work
correctly with it.

Chapter 3. API Function Descriptions 3-217

25 Read ahead when opening for execution.
Reading an executable file sequentially is usually,
but not always, faster. The default is 1.

This heuristic value should be 1 for many
executable files loaded across the LAN. For
example, DisplayWrite™ 4/2 load time decreases
by more than 50 percent. Experiment with your
particular program to determine which option is
better.

26 Handle Control-C (Ctrl + C) as follows:

Value
0
1

2

Meaning
No interrupts allowed
Only allow interrupts on long-term
operations
Always allow interrupts.

The default is 2.

27 Force correct open mode when creating files on
a core server. (A core server is a DOS-based
LAN server, such as PC LAN Program 1.3.)
OS/2 LAN Server does not allow DOS-based
servers. The default is 0.

28 Use the NETBIOS NoAck mode (transferring
data without waiting for an acknowledgement)
as follows:

Value Meaning
0 NoAck is never used (disable NoAck)
1 NoAck on send only.

The default is 1.

29 Send data along with the server message block
write block raw requests. This may save time.
The default is 1.

When this heuristic is active, the requester sends
a requester buffer of data to the server with its
request for big buffers to use for large file
transfers. This action may save time if the server
has limited big buffers (numbigbufs) compared to
the number of requesters trying to send large
files.

DisplayWrite is a trademark of International Business Machines Corporation.

3-218 LAN Server Application Programmer's Reference

wrknets

wrkservices

30 Send a popup message to the screen when the
requester logs an error, as follows:

Value
0
1
2

3
4
5
6

7

Meaning
Never
On write fault errors only (no timeout)
On write fault and internal errors only
(no timeout)
On all errors (no timeout)
Reserved.
On write fault errors only (timeout)
On write fault and internal errors only
(timeout)
On all errors (timeout).

The default is 1.

Values other than 1 are normally used for debug
purposes only.

31 Reserved.

Lists names of networks the requester runs on. Names
of available networks are listed in the Networks section
of the IBMLAN.INI file. The OS/2 LAN Server
supports only a single network.

Required value: netl

Specifies network services to start with the Requester
service. For example, the Messenger service, which
sends and receives network messages, can be started
with the Requester service. The options are Messenger
and Netpopup. This value is defined by the user at
installation.

• wkiO _mailslots specifies the maximum number of mailslots allowed.

Chapter 3. API Function Descriptions 3-219

Requester Information (Level 1)
Requester information level 1 includes all the fields of wksta_info_O, plus
oth_domains and logon_domains.

struct wksta_info_l {

};

unsigned short wkil_reserved_l;
unsigned long wkil_reserved_2;
char far * wkil_root;
char far * wkil_computername;
char far * wkil_username;
char far* wkil_langroup;
unsigned char wkil_ver_major;
unsigned char wkil_ver_minor;
unsigned long wkil_reserved_3;
unsigned short wkil_charwait;
unsigned long wkil_chartime;
unsigned short wkil_charcount;
unsigned short wkil_reserved_4;
unsigned short wkil_reserved_5;
unsigned short wkil_keepconn;
unsigned short wkil_keepsearch;
unsigned short wkil_maxthreads;
unsigned short wkil_maxcmds;
unsigned short wkil_reserved_6;
unsigned short wkil_numworkbuf;
unsigned short wkil_sizworkbuf;
unsigned short wkil_maxwrkcache;
unsigned short wkil_sesstimeout;
unsigned short wkil_sizerror;
unsigned short wkil_numalerts;
unsigned short wkil_numservices;
unsigned short wkil_errlogsz;
unsigned short wkil_printbuftime;
unsigned short wkil_numcharbuf;
unsigned short wkil_sizcharbuf;
char far * wkil_logon_server;
char far * wkil_wrkheuristics;
unsigned short wkil_mailslots;
char far* wkil_logon_domain;
char far * wkil_oth_domains;
unsigned short wkil_numdgrambuf;

where:

• wkil_reserved_J, wkil_reserved_2, wkil_reserved_3, wkil_reserved_4,
wkil_reserved_5, and wkil_reserved_6 are reserved, and must be 0.

• wkil_root points to an ASCIIZ string containing the path to the IBMLAN
directory (the recommended default path is IBMLAN\) of a computer.

• wkil_computername points to an ASCIIZ string containing the computer name
of the local requester being configured.

• wkil_username points to an ASCIIZ string containing the user's name logged on
the requester.

• wkil _langroup points to an ASCIIZ string containing the name of the domain to
which the requester belongs.

3-220 LAN Server Application Programmer's Reference

• wkil_ver_major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkil _ver _minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkil_charwait indicates the number of seconds the requester will wait for a
remote serial device resource to become available.

• wkil_chartime indicates the number of milliseconds the requester will wait to
collect data to send to a remote serial device resource.

• wkil_charcount indicates the number of bytes of information the requester will
send to a remote serial device resource.

• wkil _keepconn indicates the number of seconds an inactive connection from the
requester to the resource a server will be maintained.

• wkil_keepsearch indicates the number of seconds an inactive search will
continue.

• wkil_maxthreads indicates the number of threads the requester can dedicate to
the network.

• wkil_maxcmds indicates the number of simultaneous network device driver
commands that can be sent to the network.

• wkil _ numworkbuf indicates the number of internal buffers the requester has.

• wkil_sizworkbuf indicates the size (in bytes) of each internal buffer.

• wkil_maxwrkcache indicates the maximum size (in bytes) of an internal cache
buffer.

• wkil_sesstimeout indicates the number of seconds that are waited before
disconnecting an inactive session between a requester and a server.

• wkil_sizerror indicates the size (in bytes) of an internal error buffer.

• wkil _numalerts indicates the maximum number of clients that can receive alert
messages.

Note that each mailslot or semaphore registered by the NetAlertStart function is
a different client, and that the alerter service registers at least three clients when
it begins to run. For more information on alerts, see "Alert Category" on
page 3-29.

• wkil_numservices indicates the number of services that can be started on the
requester at any time. For more information on services, see "Service Category"
on page 3-298.

• wkil_errlogsz indicates the maximum size (in kilobytes) of the error log file of a
requester.

• wkil _printbuftime indicates the number of seconds that are waited before closing
inactive compatibility-mode print jobs.

• wkil_numcharbuf indicates the number of character pipe buffers and device
buffers the requester can have.

• wkil_sizcharbuf indicates the maximum size (in bytes) of a character pipe buffer
and device buffer.

Chapter 3. API Function Descriptions 3-221

• wkil_logon_server points to an ASCIIZ string indicating the name of the
Domain Controller of a requester. A NULL string indicates no logon servers
are available. If the string is \ \ *, any available logon server is queried.

• wkil_wrkheuristics points to an ASCIIZ string of flags used to control a
requester operation. The heuristics default to values that are optimal for most
configurations and normally need not be changed. For character positions and
meanings, refer to "Requester Information (Level O)."

• wkil_mailslots specifies the maximum number of mailslots allowed.

• wkil_logon_domains names the domain to which the user is logged on. It is
returned as NULL when no one is logged on.

• wkil_oth_domains field is an ASCIIZ string listing all domains on which the
machine is currently enlisted. This is a far pointer to an ASCIIZ string which is
a space-delimited list of domains. The oth_domains field is settable with
NetWkstaSetlnfo.

• wkil_numdgrambuf is the number of buffers allocated for receiving datagrams.

3-222 LAN Server Application Programmer's Reference

Requester Information (Level 10)
The wksta_info _10 data structure is supplied to fulfill the needs of remote users who
want to obtain certain information from a server. This data structure allows remote
users to discover what domain a server belongs to.

Since a remote NetWkstaGetlnfo at levels 0 and l requires administrative privilege,
a remote user who does not have privilege level ADMIN cannot use those structures.
This new level provides the needed information.

struct wksta_info_10 {
char far * wki10_computername;
char far * wki10_username;
char far * wki10_langroup;
unsigned char wki10_ver_major;
unsigned char wki10_ver_minor;
char far * wki10_logon_domain;
char far * wki10_oth_domains;

};

where:

DOS Considerations

• wkiJO _computername points to an ASCIIZ string containing the computer name
of the requester being queried.

• wkil 0 _username points to an ASCIIZ string containing the user's name logged
on the requester.

• wkilO_langroup points to an ASCIIZ string containing the name of the domain
to which the requester belongs.

• wkilO _ver _major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkilO_ver_minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

• wkilO_logon_domain names the domain that the user is logged on to. It is
returned as NULL when no one is logged on.

• wkiJO_oth_domains field is an ASCIIZ string listing all domains on which the
machine is currently enlisted. This is afar pointer to an ASCIIZ string which is
a space-delimited list of domains.

For information on the DOS LAN Requester heuristics, see the DOS LAN Requester
User's Guide.

Chapter 3. API Function Descriptions 3-223

Related Information
For information on:

• Configuring requesters-See the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator's Guide.

• The IBMLAN.INI file-See the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator's Guide.

• Domains-See the IBM Operating System/2 Local Area Network Server Version
1.2 Network Administrator's Guide.

• NCB architecture-See the IBM PC LAN Program 1.3 Application Programmer's
Guide.

• wksta_info_O components-See the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator's Guide.

3-224 LAN Server Application Programmer's Reference

NetWkstaGetlnfo

Syntax

Return Codes

The NetWkstaGetlnfo (partially admin, DOS) function returns information about
the configuration components of a requester.

#include <netcons.h>
#include <wksta.h>

unsigned far pascal
NetWkstaGetlnfo(servername, level, buf, buflen, totalavail)
char far * servername;
short level;
char far * buf;
unsigned short buflen;
unsigned short far* totalavail;

where:

• servername points to an ASCIIZ string containing. the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (0, 1 or 10) to be returned in the wksta_info data
structure.

• buf points to the wksta _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INV AUD _PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

Value

0

5

8

87

124

234

2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions 3-225

Remarks

Related Information

Manifest

NERR_ShareMem

NERR_BufTooSmall

NERR_ OS21oct1Error

NERR_ WkstaN otStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR _BadTransactConfig

NERR _InvalidComputer

Value

2104

2123

2134

2138

2139

2140

2141

2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

The ordinary user can get information from the level 10 data structure.

For information on modifying the configuration of a local requester, see
"NetWkstaSetlnfo" on page 3-227.

3-226 LAN Server Application Programmer's Reference

NetWkstaSetlnfo

Syntax

The NetWkstaSetlnfo (admin, DOS) function configures a requester.

#include <netcons.h>
#include <wksta.h>

unsigned far pascal
NetWkstaSetlnfo(servername, level, buffer, buflen, pannnum)
char far * servername;
short 1eve1 ;
char far * buf;
unsigned short buflen;
short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (0 or 1) returned in the wksta_info data
structure.

• buf points to the wksta_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines whether buf contains a complete wksta_info data structure
or a single data structure component. If parmnum is 0, buf must contain a
complete wksta_info data structure. Otherwise, parmnum must specify the
ordinal position value for one of the following wksta_info data structure
components, as defined as follows in WKST A.H:

Manifest

WKSTA_ CHARW AIT _PARMNUM

WKSTA_ CHARTIME_PARMNUM

WKST A_ CHARCOUNT _PARMNUM

WKST A_ERRLOGSZ_PARMNUM

WKSTA_PRINTBUFTIME_PARMNUM

WKSTA_ WRKHEURISTICS_PARMNUM

WKSTA_ OTHDOMAINS_PARMNUM

Note: x = 0 or 1.

Value

10

11

12

27

28

32

35

Component

wkix _ charwait

wkix_chartime

wkix_charcount

wkix_errlogsz

wkix_printbuftime

wkix _ wrkheuristics

wkix_oth_domains

Chapter 3. API Function Descriptions 3-227

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_REM_NOT_LIST 51 This remote computer
is not listening.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE~DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_ BrowserN otStarted 2139 The requested
information is not
available.

NERR_ InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

3-228 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR_AlreadyExists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_DuplicateName 2297 A duplicate message
alias exists on the local
area network.

NERR_DeleteI.,ater 2298 This message alias will
be deleted later.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-229

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosDev IOCtl

• DosFSCtl

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosSemClear

• redir.GetBioslnfo[-ERROR_NO _MORE_FILES]

• redir.NIOCBiosOpen.

The fields wkiO _computername, wkiO _langroup, are not settable by users or
administrators.

The values of the field oth_domains in the wksta_info data structure are separated by
spaces. An empty list is legal. As usual a NULL pointer means "do not modify this
field." An empty element is not legal. When setting oth_domains, the API will reject
the request in the following cases:

• The name list was incorrect

• One of the names could not be added to the network adapters managed by OS/2
LAN Requester/Server.

For information on retrieving the comfiguration of a local requester, see
"NetWkstaGetlnfo" on page 3-225.

3-230 LAN Server Application Programmer's Reference

NetWkstaSetUID2

Syntax

The NetWkstaSetUID2 (DOS) function registers a user name and password with
the requester and validates the user account. It returns a structure with information
about the logon. This function takes an optional domain name argument. If it is
absent, it defaults to the primary domain (wkiO_langroup) of the requester.

#include <netcons.h>
#include <wksta.h>
#include <access.h>

unsigned far pascal
NetWkstaSetUID2(reserved,domainname, username, password, parms,

ucond, level, buf, buflen, totalavail)
char far * reserved;
char far * domainname;
char far *
char far *
char far *
unsigned short
short
char far *
unsigned short
unsigned short

where:

username;
password;
parms;
ucond;
level;
buf;
buflen;

far* totalavail;

• reserved is a reserved parameter, it must be NULL.

• domainname is the name of the domain to log on to. If this parameter is NULL
or if it points to a NULL string, the primary domain of the requester is used.

• username points to an ASCIIZ string containing the user name to be logged onto
the requester. Specifying a NULL string logs the user name off the requester.

• password points to an ASCIIZ string containing the password of the user name,
obtained by an application's request to the user. A NULL pointer or string
indicates no password is needed. password becomes the default password for
requester and is used whenever the requester attempts to access a remote
resource.

• parms must be NULL and is reserved.

• ucond specifies what action to take if another user name is logged on the
requester. The WKSTA.H include file defines four values:

Manifest

WKSTA_NOFORCE

WKSTA_FORCE

Value

0

l

Meaning

NetWkstaSetUID2 fails, and the
user's identification number
(UID) does not change.

Logs the current user name off,
disconnecting any connections to
redirected resources.

Chapter 3. API Function Descriptions 3-231

Return Codes

Manifest Value

WKSTA_LOTS_ OF _FORCE 2

WKSTA_MAX_FORCE 3

Meaning

Cancels any connections and
other pending activities
necessary. Fails if any
connection is used by a process
as the current drive.

Always succeeds-forces all
disconnections.

• level level of data structure to return. It must be 1.

• buf is the pointer to the buffer user _logon _info_ 1 or user _logoff_inf o _ 1 for return
data. See the data structures under "User Category" on page 3-382.

• buflen is the length of the buffer.

• totalavail is the total information available on return.

Manifest

NERR_SUCCESS

VALIDATED _LOGON

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_REM_NOT_LIST

ERROR_INVALID_PASSWORD

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _NAME

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

Value

0

5

8

25

50

51

86

87

123

124

234

Meaning

No errors were
encountered.

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

This request is not
supported by the
network.

This remote computer
is not listening.

The specified password
is invalid.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

3-232 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR_ OS2loct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_NetworkError 2136 A general network
error has occurred.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR _AlreadyLoggedOn 2200 This workstation is
already logged on.

NERR_NotLoggedOn 2201 This workstation has
not been logged on yet.

NERR _BadUsername 2202 The user name or
group name parameter
is invalid.

NERR _BadPassword 2203 The password
parameter is invalid.

NERR_ UnableToAddName_ W 2204 The logon processor
did not add the
message alias.

Chapter 3. API Function Descriptions 3-233

Manifest Value Meaning

NERR_ UnableToAddName_F 2205 The logon processor
did not add the
message alias.

NERR_ UnableToDelName_ W 2206 The logoff processor
did not delete the
message alias.

NERR_ UnableToDelName_F 2207 The logoff processor
did not delete the
message alias.

NERR_LogonsPaused 2209 The network logons
are paused.

NERR _ LogonDomainExists 2216 There is already a
logon domain for this
computer.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR _ ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR _ PasswordTooShort 2245 The password is
shorter than required.

NERR_ InvalidDatabase 2247 The U AS database file
is corrupted.

NERR_NameNotFound 2273 The message alias
cannot be found on the
local area network.

NERR _ AlreadyExists 2276 This message alias
already exists locally.

NERR_TooManyNames 2277 The maximum number
of added message
aliases has been
exceeded.

NERR_DuplicateName 2297 A duplicate message
alias exists on the local
area network.

NERR _ DeleteLater 2298 This message alias will
be deleted later.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

3-234 LAN Server Application Programmer's Reference

Manifest Value

NERR_ActiveConns 2402

NERR_LastAdmin 2452

NERR_LogonTrackingError 2454

NERR_NetLogonNotStarted 2455

NERR_ CanNotGrowUASFile 2456

Meaning

Active connections still
exist.

The last administrator
cannot be deleted.

Unable to set logon
information for this
user.

The Netlogon service
has not been started.

It is not possible to
grow the U AS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCGETUSERNAME)

• DosFsCtl(NIOCSETUSERNAME)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize[-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite

• int2F[2F _NetSetUserName]/*DOS only*/

• redir.GetBioslnfo[-ERROR_NO_MORE_FILES]

• redir.NIOCBiosOpen

• redir.NIOCGetUserN ame

• redir.NIOCSetUserName.

Chapter 3. API Function Descriptions 3-235

Remarks
The NetWkstaSetUID2 function performs a range of duties, assisted byintemal
calls. It returns a structure with information about the logon(user_logon_info::._1) or
the logoff (user_logoff_info_l).

If a user name· is· already logged onto the requester (UID already in effect),
NetWkstaSetUID2 takes the action specified in ucond-either failing or forcing the
user to log off.

A NULL user name is interpreted as a network logoff.

If the user's logon is invalid, the API returns ERROR_ACCESS_DENIED. The
usrlogl_code code field in the .user _logon_info_l data structure is valid even when the
API returns ERROR_ACCESS_DENIED. The. other fields are valid only when the
return code is Validated Logon.

The values of the usrlog 1 code fields can be as follows:

Manifest

NERR_ Success

NERR _ PasswordExpired

NERR_ InvalidWorkstation

NERR _InvalidLogonHours

ERROR_ACCESS_DENIED

NERR _ StandaloneLogon

NERR _Non ValidatedLogon

NERR _ LogonScriptError

Meaning

No errors were encountered.

The user has an account, but the user's
password has expired. No other
conditions oflogon have been checked.

The user was attempting to log on from
an invalid requester.

The user was attempting to log on at an
invalid time.

Some condition of logon has not been
met.

No domain controller could be found to
validate the user. Script processing was
not performed.

The logon server could not validate the
logon request.

An error occurred while processing
logon script.

The following table defines the other fields that are valid in the user _logon_info _]
data structure for each code listed in the previous table:

Error Returned from
NetWkstaSetUID2.

NERR_Success

NERR_ UnableToAddName_ W

Manifest Logon

NERR_ Standalone

NERR_Non ValidatedLogon

NERR_ Success

Valid
Fields

None

Computer
name,
Script
path

All

3-236 LAN Server Application Programmer's Reference

Related Information

Error Returned from
NetWkstaSetUID2

ERROR_ACCESS_DENIED

All other errors

Manifest Logon

NERR_PasswordExpired

NERR _InvalidW orkstation

NERR_ InvalidLogonHours

NERR _ LogonScriptError

ERROR_ACCESS_DENIED(**)

None. Code is meaningless

Valid
Fields

None

None

None

None

None

None

(**)For no account, account disable, and account expired, the password does not
match.

The following table defines fields for logging off:

Error Returned from
NetWkstaSetUID2

NE RR_ Success

NERR_UnableToDelName_ W

All other errors

Manifest Logon

NERR _ StandaloneLogon

NERR_N on ValidatedLogon

NERR_Success

None. Code is meaningless

Valid
Fields

None

None

All

None

The ucond parameter has meaning only when the API is called to log someone off.
These meanings are as follows:

Check all
outstanding
conditions

l)Any drive
current

2) Any drive

3) Any in use
(net use ..)

4) Anything
dormant

ucond=O

Fail. Do no
disconnects.

Fail. Dono
disconnects.

Fail. Dono
disconnects.

Disconnect
and succeed.

ucond=l

Fail. Dono
disconnects.

Fail. Do no
disconnects.

Disconnect,
Un use,
succeed.

Disconnect
and succeed.

ucond=2 ucond=3

Fail. Do no Force
disconnects. disconnect

succeed.

Force closed, Force closed,
succeed. succeed.

Disconnect, Disconnect,
Un use, Un use,
succeed. succeed.

Disconnect Disconnect
and succeed. and succeed.

For information on configuring the local requester, see "NetWkstaSetlnfo" on
page 3-227.

Chapter 3. API Function Descriptions 3-237

Serial Device Category

Description

NetCharDevControl (admin, server, DOS)-See "NetCharDevControl" on page 3-243.

NetCharDevEnum (admin, server, DOS)-See "NetCharDevEnum" on page 3-246.

NetCharDevGetlnfo (server, DOS)-See "NetCharDevGetlnfo" on page 3-248.

NetCharDevQEnum (server, DOS)-See "NetCharDevQEnum" on page 3-251.

NetCharDevQGetlnfo (server, DOS)-See "NetCharDevQGetlnfo" on page 3-254.

NetCharDevQPurge (admin, server, DOS)-See "NetCharDevQPurge" on page 3-257.

NetCharDevQPurgeSelf (server, DOS)-See "NetCharDevQPurgeSelf' on
page 3-260.

NetCharDevQSetlnfo (admin, server, DOS)-See "NetCharDevQSetlnfo" on
page 3-263.

The functions in the Serial Device category control shared serial devices and their
associated queues. They are used with the CHARDEV.H and NETCONS.H include
files.

In order for an application to communicate with a device such as a serial printer, the
application must be able to communicate directly and interactively. The
communication must allow commands to be submitted dynamically and protocols to
be changed as the application executes. The OS/2 LAN Requester/Server software
defines these types of communication devices as serial devices. This definition is not
limited to devices attached to a hardware serial ports.

The OS/2 LAN Requester/Server software can pool serial devices of the same type
into a serial device queue to which a requesting application makes its connection. A
serial device queue can contain one or more serial devices and simultaneously allow
multiple applications to individually connect to one of the available serial devices.
Serial device queues can pool serial devices only on a server.

Before an application can communicate with a serial device, the following must
occur:

• The server must have a serial device connected to one of its available LPT or
COM ports.

• A serial device queue must be created and shared on the network.

• A requesting application must explicitly redirect a local or NULL device name
to the shared serial device queue by calling NetUseAdd, or implicitly open the
serial device queue by calling DosOpen.

Note: Serial device queues exist only while they are being shared. In contrast, a
spooled device queue (such as for a printer) exists from the time it is created
by calling the appropriate Add function to the time it is removed.

An application can explicitly redirect a local device name in order to connect to a
serial device queue by calling the NetUseAdd function, or implicitly connect by
calling the DosOpen function and specifying the name of a queue. An explicit

3-238 LAN Server Application Programmer's Reference

connection allows the application to refer to the serial device queue with a local
device name. Note however, that an explicit connection does not open a serial
device. For more information about redirecting a local device name to a shared
resource, see "Use Category" on page 3-368.

To illustrate how serial devices and queues work on the LAN, consider the following
scenario. Assume that there are four serial devices connected to the communication
ports of a server in the following manner:

Port

COMl, COM2, COM3

COM4

Device

Printers

Special

Once the serial devices are connected to the ports of a servers, an application can
create a serial device queue by calling the NetShareAdd function and specifying the
share type as a serial device queue. In this scenario, assume the NetShareAdd
function is called three times, creating the following three queues:

Queue name

SPLQ

PRINTQ

VIP PRINT

Priority

5

5

Device name

COM4

COMl, COM2, COM3

COM3

Note that the COM3 port is allocated for use by two different queues, PRINTQ and
VIP PRINT. After the NetShareAdd function is called to create a queue, a
parameter can be set assigning a priority to the queue by calling
NetCharDevQSetlnfo. The priority can be in the range from 1 (high) through 9
(low). Generally, the OS/2 LAN Requester/Server software allows requests to serial
device queues with a higher priority to access the pool of serial devices before other
queues with lower priorities.

At this point, an application can connect to the shared serial device queue and begin
communicating with one of the pooled serial devices in the queue.

If there happens to be more than one available serial device in a serial device queue,
the queue returns the first available serial device to the requesting application. If no
devices are currently available, the queue puts the request on a waiting list until a
serial device becomes available. Note that the queue will wait only as long as the
charwait parameter of a requester specifies. If the thread undergoes a time out while
waiting for a serial device to become available, the DosOpen function returns the
ERROR_BAD_NET_RESP error code.

An application can determine if a particular serial device is working by calling the
NetCharDevGetlnfo function or check all devices by calling the NetCharDevEnum
function. An application can also check to see if the queue is busy or where the
request of the application is on the queue waiting list by calling the
NetCharDevQGetlnfo function. To check all queues, call the NetCharDevQEnum
function.

Applications can call the NetCharDevQPurgeSelf function to eliminate all requests
submitted to a particular serial device queue from the requester of that application.
Or, all requests submitted by all applications can be removed from the queue by

Chapter 3. API Function Descriptions 3-239

Data Structures

calling NetCharDevQPurge. Note that a process that currently has a device open is
unaffected.

When the application no longer needs the device, it should call the DosClose
function to return control of the serial device to the serial device queue, allowing it
to be used by another application. If, for some reason, the application cannot
successfully call the DosClose function to close the serial device queue, the
NetCharDevControl function can be called to force the serial device queue closed.

Note that when an application successfully opens a remote serial device, the values
of the chartime and charcount components from the wksta_info data structure are
used to control how information flows across the network to other pertinent
requesters and servers. Any application modifying these values on the requester
where the open was performed should note the following:

• chartime and charcount affect all applications running on the requester

• Network efficiency, network response time, and network throughput may be
slowed.

For more information on requester parameters, see "Requester Category" on
page 3-208.

The level parameter controls the level of information provided to or returned from
the data structures used by the NetCharDevEnum, NetCharDevGetlnfo,
NetCharDevQEnum, NetCharDevQGetlnfo, and NetCharDevQSetlnfo functions.

Serial Device Information (Level 0)
The NetCharDevEnum and NetCharDevGetlnfo functions use the following data
structure when the level parameter is 0:

struct chardev_info_e {
char chG_dev[DEVLEN+l];

};

where:

• chO_dev is an ASCIIZ string containing the device name associated with the
serial device.

Serial Device Queues Information (Level 0)
The NetCharDevQEnum, NetCharDevQGetlnfo, and NetCharDevQSetlnfo
functions use the following data structure when the level parameter is 0:

struct chardevQ_info_e {
char cqG_dev[NNLEN+l];

};

where:

• cqO_dev is an ASCIIZ string containing the queue name for the serial device
queue.

3-240 LAN Server Application Programmer's Reference

Serial Device Information (Level 1)
The NetCharDevEnum and NetCharDevGetlnfo functions use the following data
structure when the level parameter is 1:

struct chardev info 1 {
char - chl_dev[DEVLEN+l];
char chl_padl;
unsigned short chl status;
char chl=username[UNLEN+l];
char chl_pad2;
unsigned long chl_time;

};

where:

• chl_dev is an ASCIIZ string specifying the devicename associated with the serial
device.

• chl _yadl WORD-aligns the data structure components.

• chl _status specifies the status of the device. chl _status is defined as follows:

Bit

0

2

Meaning

Reserved, with a value of 0.

If 0, the device is idle; if 1, the device is opened, and presumably
in use by some application.

If 0, the device has encountered no errors; if l, the device has
encountered an error.

3-15 Reserved, with a value of 0.

• chl_username is an ASCIIZ string specifying the current user of the device.

• chl _yad2 WORD-aligns the data structure components.

• chl _time specifies the number of seconds the current application has been
connected to the serial device.

Serial Device Queues Information (Level 1)
The NetCharDevQEnum, NetCharDevQGetlnfo, and NetCharDevQSetlnfo
functions use the following data structure when the level parameter is 1:

struct chardevQ info 1 {
char - cql=dev[NNLEN+l];

};

char cql_pad;
unsigned short cql_priority;
char far * cql_devs;
unsigned short cql_numusers;
unsigned short cql_numahead;

where:

• cq l _ dev is an ASCIIZ string specifying the queue name.

• cql_yad WORD-aligns the data structure components.

Chapter 3. API Function Descriptions 3-241

• cqlyriority specifies the queue priority. cqlyriority can be in the range from 1
through 9, where 1 has highest priority.

• cql_devs points to an ASCIIZ string containing the device names assigned to the
queue (such as COMl COM3).

• cql_numusers specifies the number of user names in the queue.

• cql_numahead specifies the number of user names in front of a particular user.
To find the number of users, specify username with the NetCharDevQEnum or
NetCharDEvQGetlnfo function. If cql_numahead is -1, then username is not
currently in the queue.

3-242 LAN Server Application Programmer's Reference

NetCharDevControl

Syntax

Return Codes

The NetCharDevControl (admin, server, DOS) function forces a serial device closed.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevControl(servername, devname, opcode)
char far * servername;
char far * devname;
short opcode;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• devname points to an ASCIIZ string specifying the device to modify.

• opcode specifies how to modify devname. opcode is defined in CHARDEV.H as
follows:

Manifest

CHARDEV _CLOSE

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INV AUD _PARAMETER

ERROR_SEM_TIMEOUT

ERROR_INV AUD _LEVEL

NERR_NetNotStarted

NERR_ShareMem

Value

0

Meaning

Closes the serial device

Value

0

5

8

87

121

124

2102

2104

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

A time out happened
from the semaphore
API functions.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been starteu.

An internal error
occurred-the network
cannot access a shared
memory segment.

Chapter 3. API Function Descriptions 3-243

Manifest Value Meaning

NERR_RemoteOnly .2106 This operation is not
supported on
workstations.

NERR_ServerNotStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_Dev InvalidOpCode 2331 The operation is
invalid for this device.

NERR_DevNotFound 2332 This device cannot be
shared.

NERR_DevNotOpen 2333 This device was not
open.

NERR_ NoCommDevs 2337 There are no shared
communication
devices.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

3-244 LAN Server Application Programmer's Reference

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFSRamSemClear

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• DosSemRequest.

Normally, a serial device is closed with a call to the DosClose function. If for some
reason the process that opened the device cannot close it, NetCharDevControl can
be called to force the device closed.

For information on:

• Modifying a serial device queue-See "NetCharDevQSetlnfo" on page 3-263.

• Retrieving information about a serial device-See "NetCharDevGetlnfo" on
page 3-248.

• Retrieving information about a serial device queue-See "NetCharDevQGetlnfo"
on page 3-254.

Chapter 3. API Function Descriptions 3-245

NetCharDevEnum

Syntax

Return Codes

The NetCharDevEnum (admin, server, DOS) function provides information on all
available serial devices pooled in shared serial device queues on a server.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entriesread;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0 or I) requested for the returned chardev _info
data structure.

• buf points to the chardev _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned.

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_ INV AUD _PARAMETER 87

ERROR_ INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR _ NetN otStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

3-246 LAN Server Application Programmer's Reference

Related Information

Manifest Value

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerNotStarted 2114

NERR _ OS2Ioct1Error 2134

NERR _ WkstaNotStarted 2138

NERR _BrowserN otStarted 2139

NERR _InternalError 2140

NERR _BadTransactConfig 2141

NERR_NoCommDevs 2337

NERR_InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

There are no shared
communication
devices.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on:

• En um functions-See Chapter 1, "Overview of OS/2 LAN Server API."

• Listing serial device queues on a server-See "NetCharDevQEnum" on
page 3-251.

Chapter 3. API Function Descriptions 3-247

NetCharDevGetlnfo

Syntax

Return Codes

The NetCharDevGetlnfo (server, DOS) function retrieves information about a
particular serial device in a shared serial device queue on a server.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevGetlnfo(servername, devname, level, buf,

buflen, totalavail)
char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
devname;
level;
buf;
buflen;
totalavail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• devname points to an ASCIIZ string containing the name of a serial device.

• level specifies the level of detail (0 or 1) requested for the returned chardev _info
data structure.

• buf points to the chardev _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

NERR _ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

3-248 LAN Server Application Programmer's Reference

Manifest Value

NERR_ShareMem 2104

NERR _RemoteOnly 2106

NERR _ ServerN otStarted 2114

NERR _BuITooSmall 2123

NERR _ OS21oct1Error 2134

NERR_ WkstaNotStarted 2138

NERR _ BrowserN otStarted 2139

NERR _ InternalError 2140

NERR_BadTransactConfig 2141

NERR _DevNotFound 2332

NERR_NoCommDevs 2337

NERR_ InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

This device cannot be
shared.

There are no shared
communication
devices.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT _FOUND]

• DosSemClear.

Chapter 3. API Function Descriptions 3-249

Remarks

Related Information

A device can belong to more than one queue.

For information on:

• Getlnfo functions-See Chapter I, "Overview of OS/2 LAN Server API."

• Listing all serial device queues-See "NetCharDevEnum" on page 3-246.

• Modifying the state of a serial device-See "NetCharDevControl" on
page 3-243.

3-250 LAN Server Application Programmer's Reference

NetCharDevQEnum

Syntax

Return Codes

The NetCharDevQEnum (server, DOS) function enumerates all serial device queues
on a server.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevQEnum(servername, username, level, buf,

buflen, entriesread, totalentries)
char far *
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
username;
level;
buf;
buflen;
entriesread;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• username points to an ASCIIZ string containing a user name. username can be
used to calculate how many requests are pending ahead in the queue by
examining the cql_numahead parameter.

• level specifies the level of detail (0 or 1) requested for the chardevQ_info data
structure.

• buf points to the returned chardevQ_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned.

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

Chapter 3. API Function Descriptions 3-251

Manifest Value

ERROR_MORE_DATA 234

NERR_NetNotStarted 2102

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerN otStarted 2114

NERR_ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR_BrowserNotStarted 2139

NERR_InternalError 2140

NERR_ BadTransactConfig 2141

NERR_NoCommDevs 2337

NERR_InvalidComputer 2351

Meaning

Additional data is
available, but the
buff er is too small.

The redirector
NETWKST A.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

There are no shared
communication
devices.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFSRamClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

3-252 LAN Server Application Programmer's Reference

Related Information
For information on:

• Deleting the contents of a serial device queue-See "NetCharDevQPurge" on
page 3-257.

• En um functions-See Chapter 1, "Overview of OS/2 LAN Server APL"

• Listing serial devices on a server-See "NetCharDevEnum" on page 3-246.

Chapter 3. API Function Descriptions 3-253

NetCharDevQGetlnfo

Syntax

Return Codes

The NetCharDevQGetlnfo (server, DOS) function retrieves information about a
particular serial device queue on a server.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevQGetlnfo(servername, queuename, username, level,

buf, buflen, totalavail)
char far *
char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
queuename;
username;
level;
buf;
buflen;
totalavail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• queuename points to an ASCIIZ string containing the name of the serial device
queue for which information is being requested.

• username points to an ASCIIZ string specifying the name of a user. username
can be used to calculate how many requests are pending ahead in the queue by
examining the cql_numahead parameter.

• level is a short integer specifying the level of detail (0 or l) requested for the
chardevQ_info data structure.

• buf points to the chardevQ_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

3-254 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_INV ALID _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ServerN otStarted 2114 The Server service has
not been started.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ IntemalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_BadUsername 2202 The user name or
group name parameter
is invalid.

NERR_NoCommDevs 2337 The user does not
belong to this group.

NERR_ QueueNotFound 2338 A queue does not exist
for this request.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-255

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_ NOT _FOUND]

• DosSemClear.

For information on:

• Getlnfo functions-See Chapter 1, "Overview of OS/2 LAN Server API."

• Listing serial device queues on a server-See "NetCharDevQEnum" on
page 3-251.

• Modifying the state of a serial device queue-See "NetCharDevQSetlnfo" on
page 3-263.

3-256 LAN Server Application Programmer's Reference

NetCharDevQPurge

Syntax

Return Codes

The NetCharDevQPurge (admin, server, DOS) function deletes all pending requests
on a serial device queue.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharOevQPurge(servername, queuename}
char far * servername;
char far * queuename;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• queuename points to an ASCIIZ string containing the name of the queue to
purge pending requests.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INV AUD _PARAMETER

ERROR_SEM_TIMEOUT

ERROR_INV AUD _LEVEL

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_ServerNotStarted

Value

0

5

8

87

121

124

2102

2104

2106

2114

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

A time out happened
from the semaphore
API functions.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

Chapter 3. API Function Descriptions 3-257

Remarks

Manifest

NERR_BufTooSmall

NERR _ OS2Ioct1Error

NERR_ WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR _BadTransactConfig

NERR_lnvalidAPI

NERR_NoCommDevs

NERR_ QueueNotFound

NERR _ InvalidComputer

Value

2123

2134

2138

2139

2140

2141

2142

2337

2338

2351

Meaning

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

There are no shared
communication
devices.

A queue does not exist
for this request.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• DosSemRequest.

The NetCharDevQPurge function deletes only requests that have not yet been
assigned to a device. A process that currently has a device open is unaffected. All
pending requests queued on queuename are canceled, returning the
ERROR_BAD_NET_RESP error code for each call to the DosOpen function. All
handles are still valid.

3-258 LAN Server Application Programmer's Reference

Related Information
For information on:

• Closing the current session of a serial device-See "NetCharDevControl" on
page 3-243.

• Deleting the contents of a serial device queue-See "NetCharDevQPurgeSelf' on
page 3-260.

• Listing a serial device queues of a server-See "NetCharDevQEnum" on
page 3-251.

• Modifying the state of a serial device queue-See "NetCharDevQSetlnfo" on
page 3-263.

Chapter 3. API Function Descriptions 3-259

·NetCharDevQPurgeSelf

Syntax

Return Codes

The NetCharDevQPurgeSelf (server, DOS) function deletes all pending requests
waiting in a serial device queue that were submitted by a particular computer.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevQPurgeSelf(servername, queuename, computername)
char far * servername;
char far * queuename;
char far * computername;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• queuename points to an ASCIIZ string containing the name of the queue to
purge queue requests.

• computername points to an ASCIIZ string specifying the name of a computer
whose requests are to be deleted from queuename.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_ INV AUD _PARAMETER 87

ERROR_SEM_TIMEOUT 121

ERROR_INV AUD _NAME 123

ERROR_INV AUD _LEVEL 124

NERR _ NetNotStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

A time out happened
from the semaphore
API functions.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

3-260 LAN Server Application Programmer's Reference

Manifest

NERR_ShareMem

NERR_RemoteOnly

NERR_ServerNotStarted

NERR_ItemNotFound

NERR_BufTooSmall

NERR_ OS2Ioct1Error

NERR _ WkstaN otStarted

NERR_BrowserNotStarted

NERR _ IntemalError

NERR_BadUsername

NERR_N oCommDevs

NERR_ QueueNotFound

NERR_InvalidComputer

Value

2104

2106

2114

2115

2123

2134

2138

2139

2140

2202

2337

2338

2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The device queue is
empty.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The user name or
group name parameter
is invalid.

There are no shared
communication
devices.

A queue does not exist
for this request.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

, DosSemRequest.

Chapter 3. API Function Descriptions 3-261

Remarks

Related Information

The NetCharDevQPurgeSelf function deletes all requests that the NetCharDevPurge
function specifies, except that only requests from computername are deleted. A
process that currently has a device open is unaffected.

Administrative permissions are required to delete requests from other computers
when NetCharDevQPurgeSelf is called remotely. Administrative permissions are not
required to delete requests made from the computer of an application.

For information on:

• Listing serial device queues on a server-See "NetCharDevQEnum" on
page 3-251.

• Modifying the state of a serial device queue-See "NetCharDevQSetlnfo" on
page 3-263.

• Deleting the contents of a serial device queue-See "NetCharDevQPurge" on
page 3-257.

3-262 LAN Server Application Programmer's Reference

NetCharDevQSetlnfo

Syntax

Return Codes

The NetCharDevQSetlnfo (admin, server, DOS) function modifies the state of a
serial device queue on a server.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetCharDevQSetlnfo(servername, queuename, level,

buf, buflen, parmnum)
char far * servername;
char far * queuename;
short level;
char far * buf;
unsigned short buflen;
short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• queuename points to an ASCIIZ string containing the name of the serial device
queue to set.

• level specifies the level of detail (1) supplied to the chardevQ_info data structure.

• buf points to the chardevQ_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines whether buf contains a complete chardevQ_inf o _] data
structure or a single data structure component. If parmnum is 0, then buf must
contain a chardevQ_info_l data structure. Otherwise, parmnum must specify the
ordinal position value for one of the following data structure components, as
defined in CHARDEV.H as follows:

Manifest

CHARDEVQ_PRIORITY_PARMNUM

CHARDEVQ_DEVICES_PARMNUM

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INVALID_PARAMETER

Value

0

5

8

87

Value Component

2

3

Meaning

cq 1 _yriority

cql_devs

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

Chapter 3. API Function Descriptions 3-263

Manifest Value Meaning

ERROR_SEM_TIMEOUT 121 A time out happened
from the semaphore
API functions.

ERROR_ INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ServerN otStarted 2114 The Server service has
not been started.

NERR _RedirectedPath 2117 The operation is
invalid on a redirected
device.

NERR_NoRoom 2119 The server is currently
out of the requested
resource.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

3-264 LAN Server Application Programmer's Reference

Manifest

NERR_ UseNotFound

NERR _ BadQueuePriority

NERR_NoCommDevs

NERR _ QueueNotFound

NERR _BadDevString

NERR_BadDev

NERR _In U seBySpooler

NERR _ InvalidComputer

Value

2250

2335

2337

2338

2340

2341

2342

2351

Meaning

The connection cannot
be found.

The queue priority is
invalid.

There are no shared
communication
devices.

A queue does not exist
for this request.

This list of devices is
invalid.

The requested device is
invalid.

This device is already
in use by the spooler.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosDevIOCtl

• DosFsRamSemClear

• DosFsRamSemRequest

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCrl(NIOCGETASGLIST)[-ERROR_NO_MORE_FILES]

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrg

• DosSemClear

• DosSemRequest

• redir.NIOCGETASGLISTl_l[-ERROR_NO_MORE_FILES].

Chapter 3. API Function Descriptions 3-265

Remarks

Related Information

The NetCharDevSetinfo can set the cql_yriority and the cql_devs components in the
chardevQ_info_J data structure.

For information on:

• Deleting the contents of a serial device queue-See "NetCharDevQPurge" on
page 3-257.

• Listing serial device queues on a server-See "NetCharDevQEnum" on
page 3-251.

• Setlnfo functions-See Chapter 1, "Overview of OS/2 LAN Server API."

3-266 LAN Server Application Programmer's Reference

Server Category
NetServerAdminCommand (admin, server, DOS)-See "NetServerAdminCommand"
on page 3-284.

NetServerDiskEnum (admin, DOS)-See "NetServerDiskEnum" on page 3-287.

NetServerEnum2 (DOS)-See "NetServerEnum2" on page 3-289.

NetServerGetlnfo (partially admin, server, DOS)-See "NetServerGetlnfo" on
page 3-292.

NetServerSetlnfo (admin, server, DOS)-See "NetServerSetlnfo" on page 3-295.

With the functions in the Server category, an application can perform remote
administrative tasks on a local or remote server. These functions are used with the
SERVER.Hand NETCONS.H include files.

DOS Considerations

Description

Data Structures

Under DOS, the functions in the server category enable remote administrative tasks
to be performed on a remote server. NetServerEnum can be executed on either a
local requester or remote server; all of the other server functions are executed on a
remote server. Attempting to execute NetServerAdminCommand or
NetServerGetlnfo on a local requester returns NERR_RemoteOnly.

Any user or application assigned administrative privileges on a local or remote server
can perform administrative tasks on that server, controlling its operation, user
access, and resource sharing. A user can be given such privilege or access by way of
the NetUserAdd and NetUserSetlnfo functions (see "User Category" on
page 3-382), or the NetShareAdd and NetShareSetlnfo functions (see "Share
Category" on page 3-337).

Certain low-level parameters affecting the operation of a server, defined in the
IBMLAN.INI file of the server, can be examined and modified by calling the
NetServerGetlnfo and N etServerSetlnfo functions.

Other changes in the operation of a server require execution of one of the NET
commands (such as NetUse or NetShare). To execute a Net command on a server,
an application calls the NetServerAdminCommand function. This function also
accepts any OS/2 command for execution on the server.

To obtain a list of servers available to perform remote administration, an application
calls the NetServerEnum2 function. The NetServerEnum2 function enumerates the
set of all servers visible on the network. The type of NetServerEnum2 matches the
bit mask in the field. To obtain a list of local drives, an application calls the
NetServerDiskEnum function.

To set up a server or to reconfigure an existing server, use server _info _J,
server _info _2, or server _info _3 with NetServerSetlnfo.

NetServerGetlnfo returns configuration information at four levels by way of
server_info_O (server name only), server_info_l, server_info_2. and server_info_3.

Chapter 3. API Function Descriptions 3-267

The lists of server information returned by NetServerEnum2 are limited to level 0 or
level l.

NetServerAdminCommand uses no data structure.

Server Information (Level 0)

struct server info e {
char sve_name[CNLEN + 1];

};

where:

• svO_name is an ASCIIZ string containing the name of a server.

Server Information (Level 1)
At level 1, NetServerEnum2, NetServerGetlnfo, and NetServerSetinfo use the
server _info_ 1 data structure.

struct server_info_l {
char svl_name[CNLEN + 1];
unsigned char svl_version_major;
unsigned char svl_version_minor;
unsigned long svl_type;
char far * svl comment;
}; -

where:

• svl_name is an ASCIIZ string containing the name of a server.

• svl_version_major is the major release version number of the OS/2 LAN
Requester/Server software.

• svl_version_minor is the minor release version number of the OS/2 LAN
Requester/Server software.

• svl_type indicates the type of software the computer is running, defined in
SERVER.Has follows:

Manifest Bit Mask Type of
Software

SV_TYPE_WORKSTATION l OxOOOOOOOl Requester.

SV _TYPE_SERVER 2 Ox00000002 Server.

SV_TYPE_DOMAIN_CTRL 4 Ox00000008 Domain
controller.

SV _TYPE_DOMAIN_BAKCTRL 5 OxOOOOOOlO Backup
domain
controller.

SV _TYPE_TIME_SOURCE 6 Ox00000020 Time server.

SV_TYPE_ALL All OxFFFFFFFF All types of
servers.

Only user and group information is replicated to the backup domain controller.

3-268 LAN Server Application Programmer's Reference

• svl_comment, which can be NULL, points to an ASCIIZ string containing a
comment describing the server.

Server Information (Level 2)

struct server_info_2 {
char sv2_name[CNLEN+l];
unsigned char sv2_version_major;
unsigned char sv2_version_minor;
unsigned long sv2_type;
char far * sv2_comment;
unsigned long sv2_ulist_mtime;
unsigned long sv2_glist_mtime;
unsigned long sv2_alist_mtime;
unsigned short sv2_users;
unsigned short sv2_disc;
char far * sv2_alerts;
unsigned short sv2_security;
unsigned short sv2_auditing;
unsigned short sv2_numadmin;
unsigned short sv2_lanmask;
unsigned short sv2_hidden;
unsigned short sv2_announce;
unsigned short sv2_anndelta;
char sv2_guestacct[UNLEN + 1];

};

unsigned char sv2_padl;
char far * sv2_userpath;
unsigned short sv2_chdevs;
unsigned short sv2_chdevq;
unsigned short sv2_chdevjobs;
unsigned short sv2_connections;
unsigned short sv2_shares;
unsigned short sv2_openfiles;
unsigned short sv2_sessopens;
unsigned short sv2_sessvcs;
unsigned short sv2_sessreqs;
unsigned short sv2_opensearch;
unsigned short sv2_activelocks;
unsigned short sv2_numreqbuf;
unsigned short sv2_sizreqbuf;
unsigned short sv2_numbigbuf;
unsigned short sv2_numfiletasks;
unsigned short sv2_alertsched;
unsigned short sv2_erroralert;
unsigned short sv2_logonalert;
unsigned short sv2_accessalert;
unsigned short sv2_diskalert;
unsigned short sv2_netioalert;
unsigned short sv2_maxauditsz;
char far * sv2_srvheuristics;

where:

• sv2_name is an ASCIIZ string containing the name of a server.

• sv2_version_major is the major release version number of the OS/2 LAN
Requester/Server software.

Chapter 3. API Function Descriptions 3-269

• sv2_version_minor is the minor release version number of the OS/2 LAN
Requester /Server software.

• sv2_type indicates the type of software the computer is running, defined in
SERVER.Has follows:

Manifest Bit Mask Type of
Software

SY _TYPE_ WORKSTATION OxOOOOOOOl Requester.

SV _TYPE_ SERVER 2 Ox00000002 Server.

SV_TYPE_DOMAIN_CTRL 4 Ox00000008 Domain
controller.

SV _TYPE_DOMAIN_BAKCTRL 5 OxOOOOOOlO Backup
domain
controller.

SV _TYPE_TIME_SOURCE 6 Ox00000020 Time server.

SV_TYPE_ALL All OxFFFFFFFF All types of
servers.

• sv2_comment, which can be NULL, points to an ASCIIZ string containing a
comment describing the server.

• sv2_ulist_mtime indicates the last time (in seconds from January 1,1970) the users
list was modified.

• sv2_glist_mtime indicates the last time (in seconds from January 1, 1970) the
groups list was modified.

• sv2_alist_mtime indicates the last time (in seconds from January 1, 1970) the
access control list was modified.

• sv2_users indicates the number of users that are allowed on the server.

• sv2_disc indicates the auto-disconnect time (in minutes). A session is
disconnected if it is idle longer than the time specified by sv2_disc. If sv2_disc is
-1, auto-disconnect is not enabled.

• sv2_alerts points to an ASCIIZ string containing the list of user names on the
alert table of the server. Spaces separate the names.

• sv2_security specifies the security type of the server. It is set to
SV _ USERSECURITY which is defined in SERVER.H.

• sv2_auditing indicates whether auditing is enabled on the server. If 0, auditing is
disabled. If non-zero, the server is auditing all OS/2 LAN Requester/Server
activities, as described in "Auditing Category" on page 3-43.

• sv2_numadmin indicates the number of administrators a server can accommodate.

• sv2 _lanmask determines the order in which the network device drivers are served.

3-270 LAN Server Application Programmer's Reference

• sv2_hidden determines whether the server is visible to other computers in the
same domain. sv2_hidden is defined in in SERVER.Has follows:

Manifest

SV_VISIBLE

SV_HIDDEN

Value

0

Meaning

Server.

Hidden server, not visible.

• sv2_announce specifies the network announce rate (in seconds), which determines
how often the server will be announced to other computers on the network.

• sv2_annde/ta specifies the random announce rate (in milliseconds) for
sv2_announce. The announce interval (sv2_announce) can vary by the amount
specified in sv2_anndelta (for example, it could vary from 9.99 seconds to 10.01
seconds instead of being exactly 10 seconds each time).

• sv2_guestacct is an ASCIIZ string containing the name of a server's reserved
GUEST user account.

• sv2_yadl WORD-aligns the data structure components.

• sv2_userpath points to an ASCIIZ string containing the path name to user
directories.

• sv2_chdevs indicates the number of serial devices that can be shared on the
server.

• sv2_chdevq indicates the number of serial device queues that can coexist on the
server.

• sv2_chdevjobs indicates the number of serial device jobs that can be pending on a
server.

• sv2_connections indicates the number of connections to netnames that are
allowed on a server.

• sv2_shares indicates the number of netnames a server can accommodate.

• sv2_openfiles indicates the number of files that can be opened at once.

• sv2_sessopens indicates the number of files that can be opened in one session.

• sv2_sessvcs indicates the maximum number of virtual circuits per client.

• sv2_sessreqs indicates the number of simultaneous requests that a client can
make on any virtual circuit.

• sv2_opensearch indicates the number of searches that can be opened at once.

• sv2_activelocks indicates the number of file locks that can be active.

• sv2_numreqbuf indicates the number of server buffers that are provided.

• sv2_sizreqbuf indicates the size (in bytes) of each server buffer.

• sv2_numbigbuf indicates the number of 64KB server buffers that are provided.

• sv2_numfiletasks indicates the number of processes that can access the operating
system at one time.

• sv2_alertsched indicates the alert interval (in seconds) for notifying an
administrator of a network event.

Chapter 3. API Function Descriptions 3-271

• sv2_erroralert indicates the number of entries that can be written to the error log
file during a sv2_alertsched interval before notifying an administrator.

• sv2 _logonalert indicates the number of invalid logon attempts to allow a user
before notifying an administrator.

• sv2_accessalert indicates the number of invalid file accesses to allow before
issuing an administrative alert.

• sv2_diskalert indicates the point at which (the number of kilobytes of free disk
space) an administrator must be notified that the free space of a disk is low.

• sv2_netioalert indicates the network I/O error ratio (in tenths of a percent) to
allow before notifying an administrator.

• sv2_maxauditsz indicates the maximum audit file size (in kilobytes).

• sv2_srvheuristics points to an ASCIIZ string of flags used to control the
operations of a server.

The heuristics default to values that are optimal for most configurations and
normally need not be changed. The default value for sv2_srvheuristics is defined
in IBMLAN.INI as follows:

srvheuristics=11118141111111811

The maximum value for sv2_srvheuristics is defined in IBMLAN.INI as follows:

srvheuristics = 12111191119119191

If a partial string is specified, the default values are used for the remaining
heuristics. If the string is NULL, or is not present in the IBMLAN.INI file, the
default string is used.

The result of using values other than those listed is undefined.

The characters in the string (from left to right) have the following meaning.
Unless otherwise defined, 0 turns off a heuristics feature, and 1 turns on the
feature.

The parameters and their descriptions are as follows:

Parameter

srvannounce

srvheuristics

Description

Specifies the rate, in seconds, at which the server announces
its presence on the network.

Default value: 60

Minimum value: 0

Maximum value: 65535

Sets a variety of server fine-tuning options. Each digit has
an independent meaning. Missing digits are assumed to be
the defaults as described. Except where noted, each is a
binary digit where 0 means off or inactive, while 1 means on
or active. The following are the meanings of the digits:

3-272 LAN Server Application Programmer's Reference

Digit Meaning

0 Use opportunistic locking when opening files. This
lets the Server service assume that the first requester
of the file is the only active process using that file.
The server service will buffer the file and prevent a
second requester from accessing the file until the
buffer data is flushed. The default is 1.

For opportunistic locking to occur, both this
heuristic and wrkheuristic 0 in the requester must be
active.

Use read-ahead (read additional data to try to guess
what the requester may want) when the requester is
performing sequential access, as follows:

Value Meaning
0 Do not use read-ahead
I Use single-thread read-ahead
2 Use asynchronous read-ahead thread.

The default is 1.

This heuristic pertains to reading ahead to the
server's buffers (big buffers and requester buffers)
from the file system and cache.

2 Use write-behind (tell the requester a write is
completed before actually performing the write). If
the write generates an error, the error appears on a
subsequent write. Files opened for write-through will
not use write-behind. The default is 1.

This heuristic pertains to writing behind from the
server's buffers (big buffers and requester buffers) to
the file system and cache.

3 Use chain sends. The default is 1.

For the chain send NETBIOS command to work,
both this heuristic and wrkheuristic 8 in the requester
must be active (set to 2, default).

4 Check all incoming server message blocks (SMBs) for
correct format. This is useful with mixed versions
and brands of network software on the LAN. The
default is 0.

To prevent wasted CPU cycles in an OS/2 LAN
Server environment, leave this heuristic at the
default.

5 Support file control block (FCB} opens (collapse all
FCB opens for a file to a single open). This is only
useful for DOS applications on the network. The
default is 0.

6 Set the priority for the server. Lists the possible
priority values (0 is the highest priority and 9 is the
lowest).

Chapter 3. API Function Descriptions 3-273

Table 3-1. Server Priority

Class of
Priority Priority Level of Class

0 3 31

1 3 23

2 3 15

3 3 7

4 3 0

5 2 31

6 2 23

7 2 15

8 2 7

9 2 0

The default is 4.

Server priority is set to allow other applications to
have CPU access also, if required.

7 Automatically allocate more memory for searches if
it runs out, up to 2048 searches. If DOS requesters
are on the network, set this to 1. The default is 1.

This heuristic pertains to directory searches
(DosFindFirst). Memory is allocated dynamically
instead of being locked up when it may not be
needed.

8 Write records to the audit trail only when the
scavenger wakes up. The scavenger is a high-priority
server thread that monitors the network for errors,
writes to the error log and audit trail, and sends
alerts

When this is set to 0, any write to the audit trail
wakes the scavenger. Heuristic 10 controls the
wake-up interval of the scavenger. The default is 1.

9 Do full buffering (as controlled by srvheuristics 1 and
2) when a file is opened with deny-write sharing
mode. When this is set to 0, deny write access has
no buffering for any requester using this server. The
default is 1.

If an application breaks using buffering of deny-write
opened files, use this heuristic to disable buffering for
all requesters.

10 Set the interval for the scavenger to wake up. The
scavenger is a thread of the server process that
performs the following tasks:

• Automatic disconnection of sessions

3-274 LAN Server Application Programmer's Reference

• Sending administrative alerts

• Writing to the audit trail file.

Set this entry as follows:

Value Meaning
0 5 seconds
1 10 seconds
2 15 seconds
3 20 seconds
4 25 seconds
5 30 seconds
6 35 seconds
7 40 seconds
8 45 seconds
9 50 seconds.

The default is 1. Heuristic 8 can cause the scavenger
to wake up at other times.

11 Allow compatibility-mode opens of certain types of
files by translating them to sharing mode opens with
deny-write. This is useful for sharing executable and
other types of files. The default is 2.

This heuristic controls how strictly the server
enforces compatibility opens for read only. In the
strictest sense of compatibility opening, if there is
any open of a file with a sharing mode set, or if
another session has the file open in compatibility
mode, a compatibility-mode open of that file fails.

The settings of this heuristic relax the strictness. The
first level allows different Dos Requester machines to
execute the same programs. The second level extends
to batch files. The highest level translates
compatibility-mode opens into a deny-none sharing
mode open for read/write. Not all applications
support this mode of operation.

Values for srvheuristic 11 include the following:

Value Meaning

0 Do not use soft-compatibility opens.

1 Use a deny-none sharing mode on .EXE and
.COM files.

2 Use a deny-none sharing mode on .EXE,
.COM, .IMG and .BAT files.

3 Use a deny-none sharing mode on all
compatibility-mode opens.

The default is 2.

12 Allow Dos Requester machines to use a second
virtual circuit when doing printer requests. If this is
not set, a second virtual circuit ends any previous
sessions set up for that Dos Requester machine. The
default is 1.

Chapter 3. API Function Descriptions 3-275

13 Set the number of 64KB buffers used for read-ahead.
Possible values are 0 to 9, where 0 means read-ahead
is disabled. If this is set to a value larger than
numbigbuf, then it is reset to the value of
numbigbuf-1.

Each 64KB buffer is divided into sixteen 4KB
read-ahead buffers. You might want more than one
big buffer allocated here if you are processing many
files simultaneously with small reads. The default is
1.

Using 64KB (big buffers) for read.,ahead involves a
tradeoff between large file transfers and small-record
read and write operations. Provided there are two
64KB buffers remaining in the server for each
requester doing concurrent large file transfers, you
can use the remaining 64KB buffers for read-ahead
without a penalty.

14 Convert incoming path specifications into the most
basic format that the OS/2 LAN Server understands.
This conversion includes changing lowercase
characters to uppercase, and slashes (used in path
names) to backslashes(/ to \). The default is 0.

15 Set the time the server waits before breaking an
opportunistic lock. You may want to set a longer
time when the network is subject to long delays.

3-276 LAN Server Application Programmer's Reference

Table 3-2 shows possible values:

Table 3-2. Opportunistic Lock Timeout

Value Time (seconds)

0 35

1 70

2 140

3 210

4 280

5 350

6 420

7 490

8 560

9 640

The default is 0.

If a second requester requests opening of a locked
file, the server notifies the first requester to flush
buffers and prepare for unlocking. If the first
requester does not respond within the time specified
here, the server closes the first requester's open of the
file.

The server can lock a file opened in deny-none
sharing mode (as long as there are no other requests
to access the file) so that buffering can be used to
enhance performance. The server provides exclusive
use of the file to the first requester, preventing the
second requester from accessing the file until buffer
data is flushed (written to disk). This heuristic
defines when the server breaks the lock and grants
access to the second requester.

16 Validate the input/output controls (IOCTLs) across
the network. When this is set to 1 (on), the server
accepts only generic device IOCTLs (categories OlH,
05H, and OBH). See IBM OS/2 Programming Tools
and Information for more information.

With this heuristic set to 0 (off), the server could
receive invalid IOCTL pointers because of differences
in device drivers between vendors. This can shut
down the server. You may need to set this heuristic
to 0 to use certain device drivers, such as
custom-built drivers.

The default is 1.

Chapter 3. API Function Descriptions 3-277

srvnets

srvpipes

srvservices

17 Determines how long the server maintains unused
dynamic big (64KB) buffers before freeing the
memory. This digit can range from 0 through 9,
with the following meanings:

Digit Timeout
0 0 seconds (immediately after use)
1 1 second
2 10 seconds
3 1 minute
4 5 minutes
5 10 minutes
6 20 minutes
7 40 minutes
8 1 hour
9 Maintain big buffers indefinitely.

Default value: 1 (1 second).

18 Determines how long the server waits after failing to
allocate a big (64KB) buffer before trying again.
This digit can be from 0 to 5, with the following
meanings:

Digit Timeout
0 0 seconds (immediately after use)
1 1 second
2 10 seconds
3 1 minute
4 5 minutes
5 10 minutes.

Default value: 3 (1 minute).

Lists names of the networks the server is to run on. Names
of available networks are listed in the Networks section of
the IBMLAN.INI file.

Required value: netl

Sets the maximum number of pipes that the server uses.
Increase this number if many users log on simultaneously.

Default value: 3

Minimum value: 1

Maximum value: 20

Specifies network services to start with the server service.
This value is defined by the user at installation.

3-278 LAN Server Application Programmer's Reference

Server Information (Level 3)

struct server info 3 {
char - sv3_name[CNLEN+l];
unsigned char sv3_version_major;
unsigned char sv3_version_minor;
unsigned long sv3_type;
char far * sv3_conunent;
unsigned long sv3_ulist_mtime;
unsigned long sv3_glist_mtime;
unsigned long sv3_alist_mtime;
unsigned short sv3_users;
unsigned short sv3_disc;
char far * sv3_alerts;
unsigned short sv3_security;
unsigned short sv3_auditing;
unsigned short sv3_numadmin;
unsigned short sv3_lanmask;
unsigned short sv3_hidden;
unsigned short sv3_announce;
unsigned short sv3_anndelta;
char sv3_guestacct[UNLEN + 1];

};

unsigned char sv3_padl;
char far * sv3_userpath;
unsigned short sv3_chdevs;
unsigned short sv3_chdevq;
unsigned short sv3_chdevjobs;
unsigned short sv3_connections;
unsigned short sv3_shares;
unsigned short sv3_openfiles;
unsigned short sv3_sessopens;
unsigned short sv3_sessvcs;
unsigned short sv3_sessreqs;
unsigned short sv3_opensearch;
unsigned short sv3_activelocks;
unsigned short sv3_numreqbuf;
unsigned short sv3_sizreqbuf;
unsigned short sv3_numbigbuf;
unsigned short sv3_numfiletasks;
unsigned short sv3_alertsched;
unsigned short sv3_erroralert;
unsigned short sv3_logonalert;
unsigned short sv3_accessalert;
unsigned short sv3_diskalert;
unsigned short sv3_netioalert;
unsigned short sv3_maxauditsz;
char far * sv3_srvheuristics;
unsigned short sv3_auditedevents;

where:

• sv3_name is an ASCIIZ string containing the name of a server.

• sv3_version_major is the major release version number of the OS/2 LAN
Requester /Server software.

• sv3_version_minor is the minor release version number of the OS/2 LAN
Requester /Server software.

Chapter 3. API Function Descriptions 3-279

• sv3 _type indicates the type of software the computer is running, defined in
SERVER.H as follows:

Manifest Bit Mask Type of
Software

SY _TYPE_ WORKSTATION 1 OxOOOOOOOl Requester.

SV _TYPE_SERVER 2 Ox00000002 Server.

SV_TYPE_DOMAIN_CTRL 4 Ox00000008 Domain
controller.

SV _TYPE_DOMAIN_BAKCTRL 5 Ox00000010 Backup
domain
controller.

SV _TYPE_TIME_SOURCE 6 Ox00000020 Time server.

SV _TYPE_ALL All OxFFFFFFFF All types of
servers.

• sv3_comment, which can be NULL, points to an ASCIIZ string containing a
comment describing the server.

• sv3_ulist_mtime indicates the last time (in seconds from January 1, 1970) the
users list was modified.

• sv3 _glist _ mtime indicates the last time (in seconds from January 1, 1970) the
groups list was modified.

• sv3_alist_mtime indicates the last time (in seconds from January 1, 1970) the
access control list was modified.

• sv3 _users indicates the number of users allowed on the server.

• sv3_disc indicates the auto-disconnect time (in minutes). A session is
disconnected if it is idle longer than the time specified by sv3 _disc. If sv3 _disc is
-1, auto-disconnect is not enabled.

• sv3 _alerts points to an ASCIIZ string containing the list of user names on the
alert table of the server. Spaces separate the names.

• sv3 _security specifies the security type of the server; the value is set to
SV _USERSECURITY.

• sv3 _auditing indicates whether auditing is enabled on the server. If 0, auditing is
disabled. If non-zero, the server is auditing all OS/2 LAN Requester/Server
activities, as described in "Auditing Category" on page 3-43.

• sv3_numadmin indicates the number of administrators that a server can
accommodate.

• sv3 _lanmask determines the order in which the network device drivers are served.

• sv3_hidden is set to SY_ VISIBLE which is defined in SERVER.H.

• sv3_announce specifies the network announce rate (in seconds), which determines
how often the server will be announced to other computers on the network.

• sv3_anndelta specifies the random announce rate (in milliseconds) for
sv3_announce. The announce interval (svJ_announce) can vary by the amount

3-280 LAN Server Application Programmer's Reference

specified in sv3_anndelta (for example, it could vary from 9.99 seconds to 10.01
seconds instead of being exactly l 0 seconds each time).

• sv3 _guestacct is an ASCIIZ string containing the name of the reserved GUEST
user account of a server.

• sv3 _padl WORD-aligns the data structure components.

• sv3_userpath points to an ASCIIZ string containing the path name to user
directories.

• sv3 _chdevs indicates the number of serial devices that can be shared on the
server.

• sv3 _chdevq indicates the number of serial device queues that can coexist on the
server.

• sv3 _chdevjobs indicates the number of serial device jobs that can be pending on
the server.

• sv3 _connections indicates the number of connections to netnames that are
allowed on a server.

• sv3 _shares indicates the number of netnames that a server can accommodate.

• sv3 _openfiles indicates the number of files that can be open at once.

• sv3 _sessopens indicates the number of files that can be open in one session.

• sv3 _sessvcs indicates the maximum number of virtual circuits per client.

• sv3 _sessreqs indicates the number of simultaneous requests that a client can
make on any virtual circuit.

• sv3_opensearch indicates the number of searches that can be opened at once.

• sv3 _activelocks indicates the number of file locks that can be active.

• sv3 _numreqbuf indicates the number of server buffers provided.

• sv3 _sizreqbuf indicates the size (in bytes) of each server buffer.

• sv3_numbigbuf indicates the number of 64KB server buffers provided.

• sv3 _numfiletasks indicates the number of processes that can access the operating
system at one time.

• sv3 _alertsched indicates the alert interval (in seconds) for notifying an
administrator of a network event.

• sv3 _erroralert indicates the number of entries that can be written to the error log
file during a sv3_alertsched interval before notifying an administrator.

• sv3 _logonalert indicates the number of invalid logon attempts to allow a user
before notifying an administrator.

• sv3 _accessalert indicates the number of invalid file accesses to allow before
issuing an administrative alert.

• sv3_diskalert indicates the point (number of kilobytes of free disk space) at
which an administrator must be notified that the free space of a disk is low.

• sv3 _netioalert indicates the network 1/0 error ratio (in tenths of a percent) to
allow before notifying an administrator.

• sv3 _maxauditsz indicates the maximum audit file size (in kilobytes).

Chapter 3. API Function Descriptions 3-281

• sv3 _srvheuristics points to an ASCIIZ string of flags used to control the
operations of a server. See the heuristics information under "Server Information
(Level 2)."

• sv3_auditedevents is the audit event control mask as follows:

Manifest

SVAUD _SERVICE

SVAUD_GOODSESSLOGON

SVAUD _BADSESSLOGON

SVAUD _SESSLOGON

SVAUD_GOODNETLOGON

SVAUD _BADNETLOGON

SVAUD _NETLOGON

SVAUD_LOGON

SVAUD_GOODUSE

SVAUD _BADUSE

SVAUD_USE

SVAUD_USERLIST

SY AUD _PERMISSIONS

SY AUD _RESOURCE

SVAUD_LOGONLIM

Meaning

Service state change.

Successful session logon requests.

Unsuccessful session logon requests.

All session logon and logoff requests.

Successful network logon requests.

Unsuccessful network logon requests.

All network logon and logoff requests.

All logon and logoff requests (network
and session).

Successful share requests.

Unsuccessful share requests.

All share requests, regardless of gooduse
or baduse switches.

Changes to the user or group account
database.

Changes to the access control list
database.

Resource access as defined by the
per-resource auditing options specified
in the access control list.

Logon limit violations.

Level 3 is not valid for the NetServerEnum2 call.

The new field sv3 _auditedevents is settable.

For details on sv3_auditedevents, see ae_type, audit type, in "Auditing Category" on
page 3-43.

3-282 LAN Server Application Programmer's Reference

Related Information
For information on:

• Domains-See the IBM Operating System/2 Local Area Network Server Version
1.2 Network Administrator's Guide.

• Remote administration of Net commands-See the IBM Operating System/2
Local Area Network Server Version 1.2 Network Administrator's Guide.

• Server heuristics-See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

Chapter 3. API Function Descriptions 3-283

NetServerAdminCommand

Syntax

Return Codes

The NetServerAdminCommand (admin, server, DOS) function executes a command
on a server.

#include <netcons.h>
#include <server.h>

unsigned far pascal
NetServerAdminC0111nand(servername, command, result, buf, buflen,

bytesread, totalavail)
char far *
char far *
short far *
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
command;
result;
buf;
buflen;
bytes read;
tota 1 avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• command points to an ASCIIZ string containing the command to execute;

• result points to the returned exit code of the executed command.

• buf points to the output of the returned command.

• buflen specifies the size (in bytes) of the bu/memory area.

• bytesread points to an unsigned short integer indicating the number of bytes of
information that were returned to buf.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ ACCESS_ DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INVALID_PARAMETER 87

ERROR_ INVALID _NAME 123

ERROR_INV ALID_LEVEL 124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

3-284 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_FILENAME_EXCED _RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NE RR_ Server NotStarted 2114 The Server service has
not been started.

NERR_NoRoom 2119 The server is currently
out of the requested
resource.

NERR_BuffooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR _ TmpFile 2316 A failure occurred
when opening a remote
temporary file.

Chapter 3. API Function Descriptions 3-285

Remarks

Related Information

Manifest Value

NERR_TooMuchData 2317

NERR _ InvalidComputer 2351

NERR_ CantType 2357

Meaning

The data returned
from a remote
administration
command has been
truncated to 64KB.

The specified computer
name is invalid.

The type of input
cannot be determined.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• redir.GetNetlnitPath.

The NetServerAdminCommand function is a remote form of the C language library
system() function.

When executed remotely, NetServerAdminCommand sets the environment of the
server as follows:

• The default drive and directory is c:\IBMLAN\NETPROG

• The PATH environment is not set (NULL).

If executed locally, NetServerAdminCommand sets the environment of the server as
follows:

• The current drive and directory of the caller are used

• The PATH environment is set to the user's default path.

For information on:

• Listing available servers-See "NetServerEnum2" on page 3-289.

• Executing a program on a remote server-See "NetRemoteExec" on page 3-200.

3-286 LAN Server Application Programmer's Reference

NetServerDiskEnum

Syntax

Return Codes

The NetServerDiskEnum (admin, DOS) function retrieves a list of disk drives on a
workstation.

#include <netcons.h>
#include <server.h>

unsigned far pascal
NetServerDiskEnum (servername, level, buf,

buflen, entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entriesread;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
workstation.

• level is a short integer that must be zero.

• buf points to the returned list of disk drive names.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is required.

ERROR_INV ALID_LEVEL 124 The Level parameter is invalid.

ERROR_MORE_DATA 234 Additional data is available, but the
buff er is too small.

NERR_ NetNotStarted 2102 The redirector NETWKST A.EXE
has not been started.

NERR _ ServerN otStarted 2114 The Server service has not been
started.

NERR_RemoteErr 2127 A remote API error has occurred.

NERR_InternalError 2140 An internal error has occurred.

NERR_ InvalidAPI 2142 The requested API is not supported
on the remote server.

NERR_InvalidComputer 2351 The specified computer name is
invalid.

Chapter 3. API Function Descriptions 3-287

Remarks

Related Information

The NetServerDiskEnum function returns a list of local drive names for the specified
workstation. The drive names in the list are consecutive strings, each containing a
drive letter, a colon(:), and a NULL string terminator (\0). For example, the
following can be returned for a server having two floppy drives (A: and B:), one
hard drive (C:), and one RAM drive (E:):

A:\0B:\0C:\0E:\0

For information on:

• Listing the shared resources of a server-See "NetServerEnum2" on page 3-289.

• Listing available servers-See "NetServerEnum2" on page 3-289.

3-288 LAN Server Application Programmer's Reference

NetServerEnum2

Syntax

The NetServerEnum2 (DOS) function enumerates the set of all servers visible on the
network. The type of NetServerEnum2 matches the bit mask in the field.

#include <netcons.h>
#include <server.h>

unsigned far pascal
NetServerEnum2(servername, level, buf, buflen,

entriesread, totalentries, type, domain)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *
unsigned long
char far *
where:

servername;
level;
buf;
buflen;
entriesread;
totalentries;
type
domain;

• servername points to an ASCIIZ string containing the name of a remote
computer on which the function is to execute. A NULL pointer or string
specifies a local computer.

• level is a short integer that specifies the level of detail (0 or 1) for the server _info
data structure.

Levels 2 and 3 are not valid for NetServerEnum2.

• buf points to the returned server _info data structure.

• buff.en specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

• type is the bit mask of types to find; defined as follows:

Manifest

SV_TYPE_WORKSTATION

SV _TYPE_SERVER

SV _TYPE_DOMAIN_CTRL

SV _TYPE_DOMAIN_BAKCTRL

SV_TYPE_TIME_SOURCE

SV_TYPE_ALL

Bit Mask

OxOOOOOOOl

Ox00000002

Ox00000008

OxOOOOOOIO

Ox00000020

OxFFFFFFFF

• domain points to the servers in this domain.

Chapter 3. APl Function Descriptions 3-289

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ServerNotStarted 2114 The Server service has
not been started.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ BrowserTablelncomplete 2319 The server table was
initialized incorrectly.

NERR_NotLocalDomain 2320 This domain is not
active on this
computer.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

3-290 LAN Server Application Programmer's Reference

Remarks

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosSemClear.

This function can obtain only level 0 and 1 data structures. The type parameter is
tested (nondestructive bitwise AND) against the svx_type field of each entry. Only
entries that match at least one of the specified bits are included in the entries
returned in the buffer and in the counts placed in entriesread and totalentries.

This API returns servers that are in the domain named in the domain argument.
The named domain must be the domain of the requester, one of the oth_domains of
the requester, or the logon_domains of the requester. If domain is NULL, the servers
in all domains listed above are returned. If the domain is not one of the above
values, the error NERR_NotLocalDomain is returned. If the domain argument is
not NULL, entriesread and totalentries reflect the entries in the named domain.

The restrictions on the value of domain apply to the computer on which the
NetServerEnum2 API is actually executed, that is, the local computer if the
servername argument is NULL, or the named server if the servername argument is
not NULL.

Chapter 3. API Function Descriptions 3-291

NetServerGetlnfo

Syntax

Return Codes

The NetServerGetlnfo (partially admin, server, DOS) function retrieves information
about a particular server.

#include <netcons.h>
#include <server.h>

unsigned far pascal
NetServergetinfo(servername, level, buf, buflen, totalavail)
char far * servername;
short level;
char far * buf;
unsigned short buflen;
unsigned short far* totalavail;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0, 1, 2, or 3) for the server _info data structure.

• buf points to the returned server _info data structure.

• bujlen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_INVALID _PARAMETER 87

ERROR_INVALID_LEVEL 124

ERROR_MORE_DATA 234

NERR_NetNotStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

3-292 LAN Server Application Programmer's Reference

Manifest Value

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerNotStarted 2114

NERR_BuffooSmall 2123

NERR_RemoteErr 2127

NERR_ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR _BrowserNotStarted 2139

NERR_InternalError 2140

NERR _BadTransactConfig 2141

NERR _InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Chapter 3. API Function Descriptions 3-293

Remarks

Related Information

Depending on the level of information requested (by way of the level parameter), the
NetServerGetlnfo function returns information ranging from the name of the server
to a description of the server heuristics, which control the manner in which the
server operates.

Level 0 and 1 information can be accessed remotely by ordinary users.

For information on:

• Configuring a server-See "NetServerSetlnfo" on page 3-295.

• Server heuristics-See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

3-294 LAN Server Application Programmer's Reference

NetServerSetlnfo

Syntax

The NetServerSetlnfo (admin, server, DOS) function sets operating parameters for a
server (individually or collectively).

#include <netcons.h>
#include <server.h>

unsigned far pascal
NetServerSetlnfo(servername, level, buf, buflen, parmnum)
char far * servername;
short level;
char far * buf;
unsigned short buflen;
short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (1, 2 or 3) to be provided in the server _info data
structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buff.en specifies the size (in bytes) of the buf memory area.

• parmnum determines whether buf contains a complete server _info data structure
or a single data structure component. If parmnum is 0, buf must contain a
server _info_ 1, server _info_ 2, or server _info _3 data structure. Otherwise, parmnum
must specify the ordinal position value for one of the following data structure
components, defined in SERVER.H as follows:

Manifest

SV _COMMENT _PARMNUM

SV _DISC_PARMNUM

SV _ALERTS_PARMNUM

SV _HIDDEN_PARMNUM

SV _ANNOUNCE_PARMNUM

SV_ANNDELTA_PARMNUM

SV _ALERTSCHED _PARMNUM

SV _ERRORALERT_PARMNUM

SV _LOGONALERT_PARMNUM

SV _ACCESSALERT _PARMNUM

SV _DISKALERT _PARMNUM

SV _NETIOALERT_PARMNUM

Value Component

5 svl_comment or
sv2_comment

10 sv2_disc

11 sv2_alerts

16 sv2_hidden

17 sv2_announce

18 sv2_anndelta

37 sv2_alertsched

38 sv2_erroralert

39 sv 2 _logonalert

40 sv2_accessalert

41 sv2_diskalert

42 sv2_netioalert

Chapter 3. API Function Descriptions 3-295

Manifest Value Component

SV _MAXAUDITSZ_PARMNUM 43 sv2_maxauditsz

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.

ERROR_ INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR _ NetN otStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ ServerN otStarted 2114 The Server service has
not been started.

NERR_NoRoom 2119 The server is currently
out of the requested
resource.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ RemoteErr 2127 A remote API error
has occurred.

NERR _ OS21oct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 r, requested
information is not
available.

3-296 LAN Server Application Programmer's Reference

Related Information

Manifest Value

NERR _InternalError 2140

NERR_BadTransactConfig 2141

NERR_InvalidAPI 2142

NERR_NetNameNotFound 2310

NERR _ InvalidComputer 2351

Meaning

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

This shared resource
does not exist.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on retrieving the configuration of a server, see "NetServerGetlnfo"
on page 3-292.

Chapter 3. API Function Descriptions 3-297

Service Category

Description

NetServiceControl (partially admin, DOS)-See "NetServiceControl" on page 3-310.

NetServiceEnum (DOS)-See "NetServiceControl" on page 3-310.

NetServiceGetlnfo-See "NetServiceGetlnfo" on page 3-317.

NetServicelnstall (admin, DOS)-See "NetServicelnstall" on page 3-320.

NetServiceStatus-See "NetServiceStatus" on page 3-323.

The functions in the Service category start and control network service programs.
All of these functions can be called on local machine with ordinary user's privilege.
For remote execution, administrative privilege is required except for the
NetServiceEnum function. The functions in this category are used with the
SERVICE.Hand NETCONS.H include files.

A service is a program of any size and function that other applications can use to
perform some set of tasks on the network. An application starts and controls the
operation of services with the functions in the Service category.

The OS/2 LAN Requester/Server software provides ten standard services. The two
most important of these are requester and server, which provide the majority of the
software required to operate a local area network. When booting the OS/2 LAN
Requester/Server software, the requester and server services are started first, then the
services defined in the service section of the IBMLAN.INI file are started, followed
by the server service. The netlogon service on the servers (primary domain controller,
backup domain controller, or member of a domain) are started after the server
service has been started.

The following are descriptions of the tasks performed by the network services:

Service

alerter

Description

This service provides a system for notifying registered clients of
certain classes of defined system events.

The alerter service registers itself to receive all print, errorlog, and
admin alerts, creating and registering a mailslot to receive alerts
triggered by these events. When the alerter service receives an
alert, it converts the information to text and sends a message to
all clients registered for that class of event by calling
NetMessageBufferSend. (Print alerts regarding an individual
print job are sent only to the user who submitted the print job.)
For admin or error log alerts, the alerter service sends a message
to all users listed in the sv2_alerts component of the server _info_2
data structure. (A list of these users can be retrieved by calling
the NetServerGetlnfo function.)

For more information on alert functions, see "Alert Category"
on page 3-29.

3-298 LAN Server Application Programmer's Reference

Service

requester

dlrinst

messenger

netlogon

netpopup

netrun

pcdosrpl

replicator

server

Description

This service is a primary one. It maintains most internal
information and activates the network device drivers. If the
requester service is paused, no redirection can be established to
printers or serial devices. All currently redirected and opened
devices can be used and closed, but not reopened, during a
requester pause. If an application calls DosOpen while the
requester service is paused, the function opens a local device of
the specified name instead of the intended redirected device.

The requester service cannot be removed while the server service
is started.

This service downloads the DOS LAN Requester code from the
server to the JOS LAN requesters.

This service enables the receiving and logging of messages sent
among requesters by calling the Message category functions (see
"Message Category" on page 3-157). The messenger service
receives messages sent from remote computers by way of
NetMessageBufferSend or NetMessageFileSend functions. For
more details, see the IBM Operating System/ 2 Local Area
Network Server Version 1.2 Network Administrator's Guide.

This service provides logon verification. The server service must
be started before netlogon can be started.

This service displays messages on-screen.

This service supports the remote execution of processes. If the
netrun service is paused, requests to remotely execute a program
are denied. When the service is removed, each process that the
service started is ended by the OS/2 DosKillProc function. The
server service must be started before the netrun service can be
started.

This service enables the server service to support remote initial
program load (remote IPL) of DOS requesters.

This service provides a file replication service.

This service provides the basic functionality needed to share local
resources over the network. If the server service is paused, all
further requests for resources are denied. However, all current
uses of shared resources continue.

Time Hints for Starting and Stopping a Service
For the services which take a long time to start or to stop, a mechanism is provided
to feedback or "hint" to the process that started or stopped them. This mechanism
allows the process to dynamically determine how long to wait for the service to
complete the startup or stop, and in fact to provide the estimated time to the user, if
determined by the application. The service can set the text field svci2_text as part of
its status information.

The services and programs that start or stop the services can use this mechanism to
communicate during the start and stop operations. The control completion pending
(CCP) code values are used when a service expects to take a long time to start or
stop. Any service that has a nontrial initialization or shutdown task can use this
method.

Chapter 3. API Function Descriptions 3-299

If a service is not using CCP codes, the code field should always be set to zero while
the service status is INSTALL_PENDING or UNINSTALL_PENDING.

The CCP codes divide the code field into fields as follows:

33322222 222221111 111111
21098765 432109876 54321098 76543210

xxxxxxxx xxxxxxxxH TTTTTTTT CCCCCCCC

x = not used (must be zero)
H = hint is given
T = time to wait
C = check point number

SERVICE_CCP_QUERY_HINT
SERVICE_CCP_WAIT_TIME
SERVICE_CCP_CHKPT_NUM

Bits that are not used must be set to zero.

Time to wait is the expected time to complete the current operation (start or stop),
in tenths of a second.

Check point number is a number that should be incremented, or at least changed to
a higher value, each time the service calls NetServiceStatus. A service should call
NetServiceStatus fairly often to keep updating this number, remembering that it is
an 8-bit quantity.

A controlling application that notes this check point value constantly changing will
assume the service is still active. For that reason, the code that calls
NetServiceStatus to update the CCP code should be in the main code path, and not
in some time-triggered thread that might continue even while the current operation
has halted due to an error.

The "Hint" bit informs the application controlling the service that the other (time
and count) information is valid. If this bit is set, the field svc2_text can contain an
ASCIIZ string that, when displayed to a user, provides some information about the
current state of the service. The service can continue to use a NULL string if it
wishes to provide no text. It is up to the controlling application to make use of the
text field, but it can assume that the text is suitable for display to the user.

DOS Considerations

Data Structures

Under DOS, the functions are executed on a local requester. Attemptjng to execute
the functions on a remote server returns ERROR_NOT_SUPPORTED.

Under DOS, the services cannot be completely stopped; however, they can be paused
and continued using NetServiceControl.

The functions in the Service category use two types of data structures, one type
containing basic status information, and the other containing different levels of
detail. The NetServiceControl and NetServicelnstall functions use the service_info_2
data structure. The Ne.tServiceEnum and NetServiceGetlnfo functions use the
service_info data structures (level 0, l or 2). The NetServiceEnum returns
information at three levels of detail (0 1, or 2); the level parameter controls the level
of information returned. The NetServiceStatus function uses the service_status data
structure.

3-300 LAN Server Application Programmer's Reference

Service Status
The NetServiceStatus function uses the following data structure:

struct service_status {
unsigned short svcs_status;
unsigned long svcs_code;
unsigned short svcs_pid;
char svcs_text[STXTLEN+l];

};

where:

• svcs_status specifies the status of the service. See svcil_status under Service
Information (Level 1) for the possible values of this field.

• svcs _code is the error code returned if the designated service stops or fails to
start properly.

• svcs_pid is the program identification number (PID) of a service.

• svcs _text is a NULL reserved ASCIIZ string, unless the service specified by
svcs_pid is stopped. In this case, svcs_text must specify a parameter string
related to the svcs_code component.

Service Information (Level 0)

struct service_info_e {
char svcie_name[SNLEN+l];

};

where svciO_name is an ASCIIZ string containing the name of the network service to
monitor.

Chapter 3. API Function Descriptions 3-301

Service Information (Level 1)

struct service_info_l {
char svcil_name[SNLEN+l];
unsigned short svcil_status;
unsigned long svcil_code;
unsigned short svcil_pid;
};

where:

• svcil_name is an ASCIIZ string containing the name of the network service to
monitor.

• svcil _status is a bit map that indicates the status of the network service. The
bits of svcil _status are defined as follows:

Manifest/Bit

SERVICE_INSTALL_STATE

Start State

SERVICE_ UNINSTALLED

SERVICE_INSTALL_PENDING

SERVICE_ UNINST ALL_ PENDING

SERVICE_INSTALLED

SERVICE_PAUSE_STATE

Pause State

SERVICE_ACTIVE

SERVICE_CONTINUE_PENDING

SERVICE_PAUSE_PENDING

SERVICE_PAUSED

Bit 4

Bit Setting

3-302 LAN Server Application Programmer's Reference

Bit
Mask

Ox03

Value

OxOO

OxOl

Ox02

Ox03

OxOC

Value

OxOO

Ox04

Ox08

OxOC

Value

Meaning

The service is
currently in one of
the following start
states:

Meaning

Service stopped.

Service start pending.

Service stop pending.

Service started.

The service is
currently in one of
the following pause
states:

Meaning

Service active.

Service continue
pending.

Service pause
pending.

Service pa used.

Indicates whether the
service can be
removed by an
application, as
indicated by one of
the following bit
settings:

Meaning

Manifest/Bit

SERVICE_NOT_UNINSTALLABLE

SERVICE_ UNINST ALLABLE

Bit 5

Bit Setting

SERVICE_PAUSABLE

SERVICE_NOT_PAUSABLE

Bit 6-7

Bit 8-10

Bit Setting

SERVICE_REDIR_PAUSED

SERVICE_REDIR_DISK_PAUSED

SERVICE_REDIR_PRINT_PAUSED

SERVICE_REDIR_COMM_PAUSED

Bit 11-15

Bit
Mask

OxOO

Ox IO

Value

Ox20

OxOO

Value

Ox700

OxlOO

Ox200

Ox400

Meaning

Service cannot be
removed.

Service can be
removed.

Indicates whether the
service can be pa used
by an application, as
indicated by one of
the following bit
settings:

Meaning

Service can be
paused.

Service cannot be
paused.

Reserved, with a
value of 0.

Indicates whether
particular tasks
within the requester
service have been
paused, as indicated
by one of the
following bit settings:

Meaning

Redirector paused.

Redirector for disks
paused.

Redirector for
spooled devices
paused.

Redirector for serial
devices paused.

Reserved.

• svcil_code specifies an error code when a service stops or fails to start properly.

For stopped services (SERVICE_UNINSTALL), the high word of svcil_code
defines primary error codes and the low word of svcil _code defines secondary
error codes. High-word values of svcil_code are defined as follows:

Primary Error Code Value Meaning

SERVICE_UIC_NORMAL 0 Normal.

Chapter 3. API Function Descriptions 3-303

Primary Error Code Value Meaning

SERVICE_UIC_BADPARMVAL 3051 Incorrect parameter value
specified.

SERVICE_ UIC _ MISSP ARM 3052 Missing parameter.

SERVICE_UIC_UNKPARM 3053 Unknown parameter
specified.

SERVICE_UIC_RESOURCE 3054 Insufficient resource.

SERVICE_UIC_CONFIG 3055 Configuration faulty.

SERVICE_ UIC _SYSTEM 3056 OS/2 program error.

SERVICE_UIC_INTERNAL 3057 Internal error encountered.

SERVICE_UIC_AMBIGPARM 3058 Ambiguous parameter name.

SERVICE_UIC_DUPPARM 3059 Parameter duplicated.

SERVICE_UIC_KILL 3060 Ended by NetServiceControl
when it did not respond.

SERVICE_UIC_EXEC 3061 Could not execute service
program file.

SERVICE_ UIC _ SUBSERV 3062 Subservice failed to start.

SERVICE_UIC_CONFLPARM 3063 Conflict in the value or use of
these parameters.

SERVICE_UIC_BADCOMPNAME 3064 Not a valid computer name.

Low-word values of svcil_code are defined as follows:

Secondary Error Code Value

SERVICE_UIC_M_NULL 0

SERVICE_UIC_M_MEMORY 3070

SERVICE_UIC_M_DISK 3071

SERVICE_UIC_M_THREADS 3072

SERVICE_UIC_M_PROCESSES 3073

SERVICE_UIC_M_SECURITY 3074

SERVICE_UIC_M_LANROOT 3075

SERVICE_UIC_M_REDIR 3076

SERVICE_ UIC_M_SERVER 3077

SERVICE_ UIC_M_SEC_FILE_ERR 3078

SERVICE_ UIC_M_FILES

SERVICE_UIC_M_LOGS

3-304 LAN Server Application Programmer's Reference

3079

3080

Meaning

Normal.

Insufficient memory.

Insufficient disk space.

Unable to create thread.

Unable to create process.

Security failure.

Incorrect or missing default
path.

Network software not started.

Server software not started.

Server could not access U AS
database.

Not supported.

Invalid IBMLAN\LOGS
directory.

Secondary Error Code Value

SERVICE_UIC_M_LANGROUP 3081

SERVICE_UIC_M_MSGNAME 3082

SERVICE_UIC_M_ANNOUNCE 3083

SERVICE_UIC_M_UAS 3084

Meaning

Domain specified could not
be used.

Computer name being used as
a message name on another
computer.

Requester failed to announce
the server name.

The UAS database is not
configured correctly.

For start or stop pending (SERVICE_INSTALL_PENDING,
SERVICE_UNINSTALL_PENDING) services, the bits of svcil_code are
defined in SERVICE.Has follows:

Start Pending Code Bit Mask

SERVICE_ CCP _NO _HINT OxO

SERVICE_CCP_CHKPT_NUM Ox FF

SERVICE_CCP _ WAIT_TIME OxFFOO

SERVICE_CCP_QUERY_HINT OxlOOOO

Meaning

No reason given for
start pending.

Checkpoint number
incremented each time
the service calls the
NetServiceStatus
function (installer
assumes incrementing
denotes a valid service).

Time to wait: expected
time (tenths of a second)
to start.

Reason given for start
pending.

• svcil_pid is a program identification number (PID) for a service.

Service Information (Level 2)

struct service info 2 {
char - svci2_name[SNLEN+l];
unsigned short svci2_status;
unsigned long svci2_code;
unsigned short svci2_pid;
char svci2_text[STXTLEN+l];
};

where:

• svci2 _name is an ASCIIZ string containing the name of the network service to
monitor.

• svci2_status specifies the status of svci2_name. The bits of svci2_status are
defined as follows:

Chapter 3. API Function Descriptions 3-305

Manifest/Bit Bit M~aning
Mask

SERVICE_INSTALL_STATE Ox03 The service is
currently in one of
the following start
states:

Start State Value Meaning

SERVICE_ UNINSTALLED OxOO Service stopped.

SERVICE_INSTALL_PENDING OxOl Service start pending.

SERVICE_ UNINST ALL_ PENDING Ox02 Service stop pending.

SERVICE_INSTALLED Ox03 Service started.

SERVICE_PAUSE_STATE OxOC The service is
currently in one of
the following pause
states:

Pause State Value Meaning

SERVICE_ACTIVE OxOO Service active.

SERVICE_CONTINUE_PENDING Ox04 Service continue
pending.

SERVICE_PAUSE_PENDING Ox08 Service pause
pending.

SERVICE_ PAUSED OxOC Service paused.

4 Indicates whether the
service can be
removed by an
application, as
indicated by one of
the following bit
settings:

Bit Setting Value Meaning

SERVICE_NOT_UNINSTALLABLE OxOO Service cannot be
removed.

SERVICE_ UNINST ALLABLE OxlO Service can be
removed.

5 Indicates whether the
service can be paused
by an application, as
indicated by one of
the following bit
settings:

Bit Setting Value Meaning

SERVICE_PAUSABLE Ox20 Service can be
paused.

3-306 LAN Server Application Programmer's Reference

Manifest/Bit

SERVICE_NOT_PAUSABLE

6-7

8-10

Bit Setting

SERVICE_REDIR_PAUSED

SERVICE_REDIR_DISK_PAUSED

SERVICE_REDIR_PRINT_PAUSED

SERVICE_REDIR_COMM_PAUSED

11-15

Bit
Mask

OxOO

Value

Ox700

OxlOO

Ox200

Ox400

Meaning

Service cannot be
paused.

Reserved, with a
value of 0.

Indicates whether
particular tasks
within the requester
service have been
paused, as indicated
by one of the
following bit settings:

Meaning

Redirector paused.

Redirector for disks
paused.

Redirector for
spooled devices
paused.

Redirector for serial
devices pa used.

Reserved.

• svci2_code specifies an error code when a service stops or fails to start properly.
For stopped services (SERVICE_UNINSTALL), the high word of svci2_code
defines primary error codes and the low word of svci2_code defines secondary
error codes. The high word values of svci2_code are defined as follows:

Primary Error Code Value Meaning

SERVICE_UIC_NORMAL 0 Normal.

SERVICE_UIC_BADPARMVAL 3051 Incorrect parameter value
specified.

SERVICE_UIC_MISSPARM 3052 Missing parameter.

SERVICE_UIC_UNKPARM 3053 Unknown parameter
specified

SERVICE_UIC_AMBIGPARM 3058 Ambiguous parameter
name.

SERVICE_UIC_DUPPARM 3059 Duplicated parameter.

SERVICE_UIC_RESOURCE 3054 Insufficient resource.

SERVICE_UIC_CONFIG 3055 Configuration faulty.

SERVICE_UIC_SYSTEM 3056 OS/2 program error.

SERVICE_UIC_INTERNAL 3057 Internal error encountered.

Chapter 3. API Function Descriptions 3-307

Primary Error Code

SERVICE_UIC_KILL

SERVICE_UIC_EXEC

SERVICE_UIC_SUBSERV

SERVICE_ UIC _ CONFLP ARM

SERVICE_ UIC_BADCOMPNAME

Value

3060

3061

3062

3063

3064

Meaning

Ended by the
NetServiceControl
function.

Could not execute service
program file.

Subservice did not start.

Conflict in the value or use
of these parameters.

Not a valid computer
name.

The low-word values of svci2_code are defined as follows:

Secondary Error Code Value Meaning

SERVICE_ UIC _ M_NULL 0 Normal.

SERVICE_UIC_M_MEMORY 3070 Insufficient memory.

SERVICE_UIC_M_DISK 3071 Insufficient disk space.

SERVICE_UIC_M_THREADS 3072 Unable to create thread.

SERVICE_UIC_M_PROCESSES 3073 Unable to create process.

SERVICE_UIC_M_SECURITY 3074 Security failure.

SERVICE_UIC_M_LANROOT 3075 Incorrect or missing default
path.

SERVICE_UIC_M_REDIR 3076 Network software not
started.

SERVICE_UIC_M_SERVER 3077 Server software not started.

SERVICE_UIC_M_SEC_FILE_ERR 3078 Server could not access
UAS database.

SERVICE_ UIC _ M_FILES 3079 Not supported.

SERVICE_UIC_M_LOGS 3080 Invalid IBMLAN\LOGS
directory.

SERVICE_UIC_M_LANGROUP 3081 Domain specified could not
be used.

SERVICE_UIC_M_MSGNAME 3082 Computer name being used
as a message name on
another computer.

SERVICE_UIC_M_ANNOUNCE 3083 Requester did not
announce the server name.

SERVICE_UIC_M_UAS 3084 The UAS database is not
configured correctly.

3-308 LAN Server Application Programmer's Reference

For start pending
(SERVICE_ INST ALL_ PENDING /SERVICE_ UNINST ALL _PENDING)
services, the bits of svci2_code are defined in SERVICE.Has follows:

Start Pending Code Bit
Mask

SERVICE_ CCP _NO _HINT OxO

SERVICE_CCP _CHKPT_NUM OxFF

Meaning

No reason given for start
pending.

Checkpoint number incremented
each time the service calls the
NetServiceStatus function
(installer assumes incrementing
denotes a valid service).

SERVICE_CCP _ WAIT_TIME OxFFOO Time to wait: expected time
(tenths of a second) to start.

SERVICE_CCP _QUERY_HINT OxlOOOO Reason given for start or stop
pending.

• svci2_pid specifies the program identification number of a service.

• svci2 _text is a NULL reserved ASCIIZ string, except for stopped services
(SERVICE_UNINSTALLED). In this case, svci2_text specifies a related
parameter string for the svci2_code component. svci2_text cannot be longer than
STXTLEN + 1 bytes in length.

Chapter 3. API Function Descriptions 3-309

NetServiceControl

Syntax

The NetServiceControl (admin, DOS) function controls the operations of network
services.

#include <netcons.h>
#include <service.h>

unsigned far pascal
NetServiceControl(servername, service, opcode,

arg, buf, buflen)
char far *
char far *
unsigned char
unsigned char
char far *
unsigned short

where:

servername;
service;
opcode;
arg;
buf;
buflen;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• service points to an ASCIIZ string containing the name of the network service
being controlled.

• opcode is a value indicating the action to perform on the service, defined in
SERVICE.H as follows:

Manifest/Bits

SERVICE_CTRL_INTERROGATE

SERVICE_CTRL_PAUSE

SERVICE_CTRL_CONTINUE

SERVICE_ CTRL_ UNINST ALL

4-255

Value

0

2

3

Meaning

Interrogate service
status.

Pause service.

Continue service.

Stop service.

Reserved.

• arg is a value that indicates the service-specific operation to perform. arg values
for each service are defined in SERVICE.H. The requester pause and continue
commands include the following options:

Manifest

SERVICE_CTRL_REDIR_DISK

SERVICE_CTRL_REDIR_PRINT

SERVICE_CTRL_REDIR_COMM

• buf points to the service_info_2 data structure.

Value

2

4

• buflen specifies the size (in bytes) of the buf memory area.

Meaning

Disk resource.

Print resource.

Serial device.

3-310 LAN Server Application Programmer's Reference

Return Codes
Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

NERR_NetNotStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NE RR_ Browser N otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR _ ServiceTableLocked 2180 The service does not
respond to control
actions.

NERR _ ServiceNotlnstalled 2184 The service has not
been started.

NERR _ ServiceCtlTimeout 2186 The service is not
responding to the
control function.

Chapter 3. API Function Descriptions 3-311

Remarks

Manifest Value

NERR_ ServiceCtlBusy 2187

NERR_ ServiceN otCtrl 2189

NERR_ ServiceKillProc 2190

NERR_ ServiceCtlN otValid 2191

NERR_ InvalidComputer 2351

Meaning

The service control is
busy.

The service cannot be
controlled in its
present state.

The service was ended
abnormally.

The requested pause or
stop is not valid for
this service.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFlagProcess

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetinfoSeg

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear

• DosSem Wait.

If the operation requested by the control opcode takes a long time to complete, the
status and code values that NetServiceControl returns may be intermediate. Thus,
for long-running operations, an application should issue successive calls to
NetServiceControl to verify that the operation has completed.

NetServiceControl acts only on services that are started. If a service is in the
UNINSTALLED, UNINSTALL_PENDING, or INSTALL_PENDING state,
NetServiceControl returns the NERR_ServiceCtlNotValid error code. There is one
exception to this rule. An application can pass the opcode parameter with the value
0 (interrogation) to query the last known state of a stopped service. (If a service has
never been started, NetServiceControl returns the NERR_ServiceNotlnstalled error
code.)

Services can be written to recognize a particular set of opcodes, as appropriate.

3-312 LAN Server Application Programmer's Reference

Related Information
For information on:

• Listing the services started on a server-See "NetServiceEnum" on page 3-314.

• Updating status and code information for a service-See "NetServiceStatus" on
page 3-323.

Chapter 3. API Function Descriptions 3-313

NetServiceEnum

Syntax

Return Codes

The NetServiceEnum (DOS) function retrieves information about all network
services that are started.

#include <netcons.h>
#include <service.h>

unsigned far pascal
NetServiceEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
bu fl en;
entries read;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (0, 1, or 2) requested for the service_info data
structure.

• bu/ points to the service_info data structure.

• bujlen specifies the size (in bytes) of the bu/ memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR_ N etN otStarted 2101

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The device driver is
not started.

3-314 LAN Server Application Programmer's Reference

Remarks

Manifest Value

NERR_ShareMem 2104

NERR_ OS2Ioct1Error 2134

NERR _ WkstaN otStarted 2138

NERR _BrowserN otStarted 2139

NERR_InternalError 2140

NERR_BadTransactConfig 2141

NERR_InvalidAPI 2142

NERR_ServiceTableLocked 2180

NERR_InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The service does not
respond to control
actions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

The NetServiceEnum function returns information only on services that are in the
start state.

Chapter 3. API Function Descriptions 3-315

Related Information
For information on updating the status and code information for a network service,
see "NetServiceStatus" on page 3-323.

3-316 LAN Server Application Programmer's Reference

NetServiceGetlnfo

Syntax

Return Codes

The NetServiceGetlnfo function retrieves information about a particular network
service that is started.

#include <netcons.h>
#include <service.h>

unsigned far pascal
NetServiceGetlnfo (servername, service, level,

buf, buflen, totalavail)
canst char far *
canst char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
service;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• service points to an ASCIIZ string containing the name of the network service
for which information is being requested.

• level specifies the level of detail (0, 1, or 2) requested for the returned service _info
data structure.

• buf points to the service _info data structure.

• buflen tells the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

NERR_NetNotStarted 2101 The device driver is
not started.

Chapter 3. API Function Descriptions 3-317

Manifest Value

NERR_ShareMem 2104

NERR_BufTooSmall 2123

NERR _ OS2Ioct1Error 2134

NERR _ WkstaN otStarted 2138

NERR_ BrowserN otStarted 2139

NERR_ InternalError 2140

NERR _ BadTransactConfig 2141

NERR_ InvalidAPI 2142

NERR_ServiceTableLocked 2180

NERR _ ServiceN otlnstalled 2184

NERR _InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The service does not
respond to control
actions.

The service has not
been started.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

3-318 LAN Server Application Programmer's Reference

Remarks

Related Information

The NetServiceGetlnfo function returns the NERR_Success code for services that
are not started (SERVICE_UNINSTALLED). If a service is stopped, an application
can examine the available data of a server using NetServiceControl.

NetServiceGetlnfo function is similar to the NetServiceControl function passed with
the INTERROGATE opcode. However, NetServiceGetlnfo does not interrogate the
service; it only retrieves the status that the service last posted.

For information on controlling the operations of a network service, see
"NetServiceControl" on page 3-310.

Chapter 3. API Function Descriptions 3-319

NetServicelnstall

Syntax

Return Codes

The NetServicelnstall (admin, DOS) function starts a network service.

#include <netcons.h>
#include <service.h>

unsigned far pascal
NetServiceinstall(servername, service, cmdargs, buf, buflen)
char far * servername;
char far * service;
char far * cmdargs;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• service points to an ASCIIZ string containing the name of the network service to
start.

• cmdargs points to an ASCIIZ string containing the command parameters for
service. cmdargs can be a NULL pointer or can point to a series of ASCIIZ
string parameters ended by a NULL ending character in one of the following
forms:

>- ASCIIZ parameter
>- ASCIIZ parameter
>- ASCIIZ parameter

param:value\0
param\O
param=value\0
\0 >- Null parameter ends list

cmdargs parameters are merged with service component parameters from the
IBM LAN .INI file and passed to the service program.

• buf points to the service_info_2 data structure.

• buflen specifies the size (in bytes) of the buf memory area.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_PATH_NOT_FOUND 3 The path was not found.

ERROR_ ACCESS_ DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

ERROR_ INV AUD _PARAMETER 87 The specified parameter is
invalid.

ERROR_ INVALID_ LEVEL 124 The Level parameter is
invalid.

3-320 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_Buff ooSmall 2123 The buff er is too small
for fixed-length data.

NERR_LanlniError 2131 An error occurred when
opening or reading the
IBM LAN .INI file.

NERR_ OS2loct1Error 2134 An internal error
occurred when calling the
workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service has
not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _lnternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is not
supported on the remote
server.

NERR_LineTooLong 2149 A line in the
IBMLAN.INI file is too
long.

NERR _ ServiceTableLocked 2180 The service does not
respond to control
actions.

NERR_ServiceTableFull 2181 The service table is full.

NERR _ Servicelnstalled 2182 The requested service. has
already been started.

NERR_ServiceEntryLocked 2183 The service does not
respond to control
actions.

NERR_BadServiceName 2185 The service name is
invalid.

NERR _ServiceCtlTimeout 2186 The service is not
responding to the control
function.

Chapter 3. API Function Descriptions 3-321

Remarks

Related Information

Manifest Value

NERR_ServiceCtlBusy 2187

NERR_BadServiceProgName 2188

NERR_lnvalidComputer 2351

Meaning

The service control is
busy.

The IBMLAN .INI file
contains an invalid
service program name.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocShrSeg-[ERROR_ALREADY _EXISTS]

• DosChgFilePtr

• DosExecPgm

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosOpen[-ERROR_OPEN_FAILED]

• DosRead

• DosSemClear

• DosSemWait-[ERROR_SEM_TIMEOUT]

• DosStartSession.

The name of the service is found in the IBMLAN.INI file. The executable file name
of the service is matched to a corresponding entry in the SERVICES component of
the IBMLAN.INI file. Any relative file path name supplied for service is assumed
relative to the OS/2 LAN Requester/Server root directory (\IBMLAN\).

For information on:

• Controlling network services-See "NetServiceControl" on page 3-310.

• Listing available servers-See "NetServerEnum2" on page 3-289.

3-322 LAN Server Application Programmer's Refercnce

NetServiceStatus

Syntax

Return Codes

Remarks

Related Information

The NetServiceStatus function sets status and code information for a network
service.

#include <netcons.h>
#include <service.h>

unsigned far pascal
NetServiceStatus(buf, buflen)
canst char far * buf;
unsigned short buflen;

where:

• buf points to the service _status data structure.

• buflen specifies the size (in bytes) of the buf memory area.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is required.

NERR_NetN otStarted 2101 The device driver is not started.

NERR_Buff ooSmall 2123 The buff er is too small for
fixed-length data.

NERR_ WkstaN otStarted 2138 The Requester service has not been
started.

NERR_ServiceTableLocked 2180 The service does not respond to
control actions.

NERR _ServiceNotlnstalled 2184 The service has not been started.

Other error return codes may be returned from the following OS/2 functions:

• DosGetlnfoSeg

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND].

Service applications must call NetServiceStatus to update their status and code tables
each time their status changes.

If a non-service application (one not started by a call to NetServicelnstall) calls
NetServiceStatus, then NetService returns the NERR_ServiceNotlnstalled error code.

For information on controlling the operation of a network service, see
"NetServiceControl" on page 3-310.

Chapter 3. API Function Descriptions 3-323

Session Category

Description

Data Structures

NetSessionDel (admin, server, DOS)-See "NetSessionDel" on page 3-328.

NetSessionEnum (partially admin, server, DOS)-See "NetSessionEnum" on
page 3-331.

NetSessionGetlnfo (partially admin, server, DOS)-See "NetSessionGetlnfo" on
page 3-334.

The functions in the Sessions category control network sessions established between
requesters and servers. They are used with the SHARES.H and NETCONS.H
include files.

A session is literally a path between a requester and a server. A requester begins a
session with a server the first time it requests to connect to a shared resource on the
server. Any further connections from the requester to the other shared resources on
the same server do not create another session; multiple connections can be serviced
on one session.

To end a session, an application calls the NetSessionDel function. This action
deletes all current connections between the requester and the server.

The NetSessionEnum function returns information about all sessions established
with a server.

To obtain information about a particular session, an application calls the
NetSessionGetlnfo function.

The level parameter controls the level of information that the NetSessionEnum and
NetSessionGetlnfo functions return.

Session Information (Level 0)

struct session_info_O {
char far * sesi0_cname;

};

where:

• sesiO_cname points to an ASCIIZ string containing the computer name of the
requester that established the session.

3-324 LAN Server Application Programmer's Reference

Session Information (Level 1)

struct session_info_l {

};

char far* sesil_cname;
char far * sesil_username;
unsigned short sesil_num_cons;
unsigned short sesil_num_opens;
unsigned short sesil_num_users;
unsigned long sesil_sess_time;
unsigned long sesil_idle_time;
unsigned long sesil_user_flags;

where:

• sesil_cname points to an ASCIIZ string containing the computer name of the
requester that established the session.

• sesil_username points to an ASCIIZ string containing the name of the user who
established the session.

• sesil_num_conns indicates the number of connections that have been made
during the session.

• sesil_num_opens indicates the number of files, devices, and pipes that have been
opened during the session.

• sesil_num_users specifies the number of sessions that are established between the
server and the requester.

• sesil_sess_time indicates the number of seconds a session has been active.

• sesil _idle _time indicates the number of seconds a session has been idle.

• sesil_user flags indicates the manner in which the user established the session.
The bit mask for sesil_user flags is defined in SHARES.Has follows:

Manifest

SESS_GUEST

SESS_NOENCRYPTION

Session Information (Level 2)

struct session_info_2 {

};

char far * sesi2_cname;
char far * sesi2_username;
unsigned short sesi2_num_conns;
unsigned short sesi2_num_opens;
unsigned short sesi2_num_users;
unsigned long sesi2_sess_time;
unsigned long sesi2_idle_time;
unsigned long sesi2_user_flags;
char far * sesi2_cltype_name;

where:

Value

2

Meaning

sesil _username established the
session using a GUEST account.

sesil_username established the
session without using password
encryption.

Chapter 3. API Function Descriptions 3-325

• sesi2_cname points to an ASCIIZ string containing the computer name of the
requester that established the session.

• sesi2_username points to an ASCIIZ string containing the name of the user who
established the session.

• sesi2_num_conns indicates the number of connections that have been made
during the session.

• sesi2_num_opens indicates the number of files, devices, and pipes that have been
opened during the session.

• sesi2_num_users specifies the number of sessions that are established between the
server and the requester.

• sesi2_sess_time indicates the number of seconds a session has been active.

• sesi2_idle_time indicates the number of seconds a session has been idle.

• sesi2_user _flags indicates the manner in which the user established the session.
The bit mask for sesi2_user _flags is defined in SHARES.Has follows:

Manifest Value

SESS_GUEST 1

SESS_NOENCRYPTION 2

Meaning

sesi2_username established the
session using a GUEST account

sesi2_username established the
session without using password
encryption.

• sesi2_cltype_name specifies the type of client that established the session. The
defined types are as follows:

Type

Down Level

DOS LM 1.0

DOS LM 2.0

OS/2 LS 1.0

OS/2 LS 1.2

Session Information (Level 10)

struct session_info_10 {

};

char far* sesi10_cname;
char far * sesi10_username;
unsigned long sesi10_sess_time;
unsigned long sesi10_idle_time;

where:

Meaning

Old clients; for example, PLCP

DOS LAN Manager 1.0 clients

DOS LAN Manager 2.0 clients

OS/2 LAN Server 1.0 clients

OS/2 LAN Server 1.2 clients

• sesiJO_cname points to an ASCIIZ string containing the computer name of the
requester that established the session.

• sesiJO _ username points to an ASCIIZ string containing the name of the user who
established the session.

3-326 LAN Server Application Programmer's Reference

• sesiJO_sess_time indicates the number of seconds a session has been active.

• sesiJO_idle_time indicates the number of seconds a session has been idle.

Chapter 3. API Function Descriptions 3-327

NetSessionDel

Syntax

Return Codes

The NetSessionDel (admin, server, DOS) function ends a session between a requester
and a server.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetSessionDel(servername, workstation, reserved)
char far * servername;
char far * workstation;
short reserved;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• workstation points to an ASCIIZ string containing the name of the requester
that established the session being discontinued.

• reserved must be 0.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

NERR_NetNotStarted

NERR_ShareMem

NERR_ RemoteOnly

Value

0

5

8

50

87

124

2102

2104

2106

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

3-328 LAN Server Application Programmer's Reference

Manifest

NERR _ ServerN otStarted

NERR _BufTooSmall

NERR _ OS2loct1Error

NERR _ WkstaN otStarted

NERR _BrowserNotStarted

NERR _ InternalError

NERR _BadTransactConfig

NERR _InvalidAPI

NERR _ InvalidComputer

NERR _NoSuchServer

NERR _ N oSuchSession

Value

2114

2123

2134

2138

2139

2140

2141

2142

2351

2460

2461

Meaning

The Server service has
not been started.

The buff er is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The server ID is not
valid.

The session ID is not
valid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl{NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetProcAddr

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosLoadModule

• DosSemClear.

Chapter 3. API Function Descriptions 3-329

Remarks

Related Information

All connections established by way of the session are disconnected when the session
is deleted, and any files that were opened by way of the session are closed. Data
may be lost if any process on the requester is communicating with the server when
NetSessionDel is called.

For information on retrieving the status of the session of a server, see
"NetSessionGetlnfo" on page 3-334.

3-330 LAN Server Application Programmer's Reference

NetSessionEnum

Syntax

Return Codes

The NetSessionEnum (partially admin, server, DOS) function provides information
on all current sessions to a server. Users with less than administrative privileges
receive session information at level 0 or level 10.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetSessionEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entriesread;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0, 1, 2 or 10) requested for the returned
session _info data structure.

• buf points to the returned data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _LEVEL

Value

0

5

8

50

87

124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The sp~cified
parameter is invalid.

The Level parameter is
invalid.

Chapter 3. API Function Descriptions 3-331

Manifest Value

ERROR_MORE_DATA 234

NERR_ N etN otStarted 2102

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerNotStarted 2114

NERR_ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR_BrowserN otStarted 2139

NERR_lnternalError 2140

NERR_ BadTransactConfig 2141

NERR_ lnvalidComputer 2351

Meaning

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

3-332 LAN Server Application Programmer's Reference

Related Information
For information on:

• Deleting a session-See "NetSessionDel" on page 3-328.

• Listing all sessions redirected to a resource-See "NetConnectionEnum" on
page 3-78.

Chapter 3. API Function Descriptions 3-333

NetSessionGetlnfo

Syntax

Return Codes

The NetSessionGetinfo (partially admin, server, DOS) function retrieves information
about a session established between a particular requester and server. Users with
less than administrative privileges receive session information at level 0 or level 10.

#include <netcons.h>
#include <shares.s>

unsigned far pascal
NetSessionGetlnfo(servername, workstation, level,

buf, buflen, totalavail)
char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
workstation;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• workstation points to an ASCIIZ string containing the name of the requester
whose session is to be monitored.

• level specifies the level of detail (0, 1, 2, or 10) requested for the returned
session_info data structure.

• buf points to the session_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_INVALID_PARAMETER 87

ERROR_ INV AUD _LEVEL 124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

3-334 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ ServerN otStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ ClientNameNotFound 2312 A session does not
exist with that
computer name.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-335

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on listing all sessions redirected to a resource, see
"NetConnectionEnum" on page 3-78.

3-336 LAN Server Application Programmer's Reference

Share Category

Description

NetShareAdd (admin, server, DOS)-See "NetShareAdd" on page 3-340.

NetShareCheck (server, DOS}-See "NetShareCheck" on page 3-344.

NetShareDel (admin, server, DOS}-See "NetShareDel" on page 3-347.

NetShareEnum (partially admin, server, DOS}-See "NetShareEnum" on page 3-350.

NetShareGetlnfo (partially admin, server, DOS}-See "NetShareGetlnfo" on
page 3-353.

NetShareSetlnfo (admin, server, DOS}-See "NetShareSetlnfo" on page 3-356.

The functions in the Share category control shared resources. They are used with
the SHARES.H, ACCESS.H, and NETCONS.H include files.

Share is the term applied to the local device of a server (such as a disk drive, print
device, or named pipe) that other applications on the network can access. A unique
netname is assigned to each shared resource to enable remote users and applications
to refer to the share, rather than the local device name of the share.

The first step for allowing remote users and applications to access a server resource
is to share the resource, giving it a netname. This is done with the NetShareAdd
function, which adds a share to a server. The function requires information about
the resource type.

On a server, NetShareAdd requires only a netname and a local device name to share
a resource. A user or application must have an account on the server to access the
resource. For information on setting up user accounts in the user accounts
subsystem (UAS) database, see "User Category" on page 3-382. For information on
assigning permissions, see "Access Permission Category" on page 3-2.

DOS Considerations

Data Structures

Under DOS, the functions can be executed only on a remote server. Attempting to
execute the functions on a local requester returns NERR_RemoteOnly.

Share information can be returned by the NetShareEnum and NetShareGetlnfo
functions at one of three levels of detail specified by the level parameter (values 0, 1,
or 2) NetShareAdd requires level 2 of detail. NetShareSetlnfo can be called with
level 1 or 2. NetShareCheck and NetShareDel do not use or return data structures.

The following data structures are associated with level values 0, 1, and 2.

Share Information (Level 0)

struct share info e {
char shiO_~etname[NNLEN+l];

};

where:

Chapter 3. API Function Descriptions 3-337

• shiO _netname is an ASCIIZ string containing the netname of a resource.

Share Information (Level 1)

struct share_info_l {
char shil_netname[NNLEN+l];
char shil_padl;
unsigned short shil_type;
char far* shil_remark;

};

where:

• shil_netname is an ASCIIZ string containing the netname of a resource.

• shil _padl WORD-aligns the data structure components.

• shil_type is one of four values indicating the type of share, as defined in
SHARES.H:

Manifest

STYPE_DISKTREE

STYPE_PRINTQ

STYPE_DEVICE

STYPE_IPC

Value

0

2

3

Share Type

Disk drive.

Spooler queue.

Serial device.

Interprocess comm uni ca ti on
(IPC).

• shil _remark points to an ASCIIZ string containing an optional comment about
the shared resource.

Share Information (Level 2)

struct share_info_2 {

};

char shi2_netname[NNLEN+l];
char shi2_padl;
unsigned short shi2_type;
char far * shi2_remark;
unsigned short shi2_permissions;
unsigned short shi2_max_uses;
unsigned short shi2_current_uses;
char far * shi2_path;
char shi2_passwd[SHPWLEN+l];
char shi2_pad2;

where:

• shi2_netname is an ASCIIZ string containing the netname of a resource.

• shi2_padl WORD-aligns the data structure components.

• shi2_type is one of four values indicating the type of share, as defined in
SHARES.H as follows:

3-338 LAN Server Application Programmer's Reference

Related Information

Manifest

STYPE_DISKTREE

STYPE_PRINTQ

STYPE_DEVICE

STYPE_IPC

Value

0

2

3

Meaning

Disk drive.

Spooler queue.

Serial device.

Interprocess communication
(IPC).

Note: The shi2_type value affects the requirements for certain other share_info_2
components when the NetShareAdd function is called. See "Remarks" in the
function reference section for details.

• shi2 _remark points to an ASCIIZ string containing an optional comment about
the shared resource.

• shi2 _yermissions is reserved.

• shi2_max_uses gives the maximum number of concurrent connections that the
shared resource can accommodate (unlimited if the shi2_max_uses value is -1).

• shi2_current_uses indicates the number of connections that are currently made to
the resource.

• shi2_yath points to an ASCIIZ string containing the local path name of the
shared resource. For disks, shi2_yath is the path being shared. For spooler
queues, shi2_yath is the name of the spooler queue being shared. For serial
device queues, shi2_yath is a string of one or more communication device names
separated by spaces (for example, COMl COM2 COM6).

• shi2 _yasswd is a reserved field and it must be NULL.

• shi2_yad2 WORD-aligns the data structure components.

For information on:

• User accounts-See "User Category" on page 3-382.

• Access permissions-See "Access Permission Category" on page 3-2.

Chapter 3. API Function Descriptions 3-339

NetShareAdd

Syntax

Return Codes

The NetShareAdd (admin, server, DOS) function shares the resource of a server.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareAdd(servername, level, buf, buflen)
char far * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (2) provided by the share_info_2 data structure.

• buf points to the share_info_2 data structure.

• buflen specifies the size (in bytes) of the bu/ memory area.

Manifest Value

NERR_SUCCESS 0

ERROR_ ACCESS_ DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_INVALID_PARAMETER 87

ERROR_INV AUD _NAME 123

ERROR_INV AUD _LEVEL 124

ERROR_FILENAME_EXCED _RANGE 206

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

3-340 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ UnknownServer 2103 The server cannot be
located.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ServerN otStarted 2114 The Server service has
not been started.

NERR_ UnknownDevDir 2116 The device or directory
does n9t exist.

NERR _RedirectedPath 2117 The operation is
invalid on a redirected
device.

NERR_DuplicateShare 2118 The name has already
been shared.

NERR_NoRoom 2119 The server is currently
out of the requested
resource.

NERR_ TooManyltems 2121 The requested add of
item exceeds maximum
allowed.

NERR_BuffooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR _BrowserN otStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_QNotFound 2150 The printer queue does
not exist.

Chapter 3. API Function Descriptions 3-341

Manifest Value

NERR_DeviceShareConflict 2318

NERR_ BadDevString 2340

NERR_BadDev 2341

NE RR_ In U seBySpooler 2342

NERR_ InvalidComputer 2351

NERR_ CantType 2357

Meaning

This device cannot be
shared as both a
spooled and a
non-spooled device.

This list of devices is
invalid.

The requested device is
invalid.

This device is already
in use by the spooler.

The specified computer
name is invalid.

The type of input
cannot be determined.

Other error return codes may be returned from the following OS/2 functions:

• DosDevIOCtl

• DosFsRamSemClear

• DosFsRamSemRequest

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCGET ASGLIST)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetProcAddr

• DosGetShrSeg

• DosLoadModule

• DosPrintDestGetlnfo[-NERR_ SpoolerNotLoaded,
NERR_DestNotFound,ERROR_MORE_DATA]

• DosSemClear

• DosSemRequest

• redir.GetNetinitPath

• redir.NIOCGET ASGLISTI 1.

3-342 LAN Server Application Programmer's Reference

Remarks

Related Information

Depending on the type of share specified by the value in the shi2_type component of
the share_info_2 data structure, other components in the data structure must be
specified as follows:

Manifest Value

STYPE_DISKTREE 0

STYPE_PRINTQ

STYPE_DEVICE 2

STYPE_IPC 3

Component Requirements

shi2_path must specify a file system
path name.

shi2_netname must specify the name
of an existing spooler queue. It is
recommended that the netname and
the path be the same; otherwise, the
result is unpredictable.

shi2_path must be passed as a
NULL pointer or point to a list of
print destinations, separated by
spaces. The list must be the same as
those specified for the spooler queue.

shi2_netname must specify a shared
interprocess communication
resource, and shi2 _path must point
to a NULL string.

NetShareAdd ignores the value specified in the shi2_current_uses component of
share _info _2.

For information on:

• Removing a list of shareable resources-See "NetShareDel" on page 3-347.

• Listing the shareable resources of a server-See "NetShareEnum" on page 3-350.

Chapter 3. API Function Descriptions 3-343

NetShareCheck

Syntax

Return Codes

The NetShareCheck (server, DOS) function queries as to whether a server is sharing
a device.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareCheck(servername, devname, type)
char far * servername;
char far * devname;
unsigned short far * type;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• devname points to an ASCIIZ string containing the name of the device to be
checked.

• type points to an unsigned short integer indicating the type of shared device, as
defined in SHARES.H as follows:

Manifest Value Meaning

STYPE_DISKTREE 0 Disk drive.

STYPE_PRINTQ I Spooler queue.

STYPE_DEVICE 2 Serial device.

STYPE_IPC 3 Interprocess communication
device.

The returned type value is valid only if NetShareCheck is successful.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_ INV AUD _PARAMETER

Value

0

5

8

50

87

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

3-344 LAN Server Application Programmer's Reference

Manifest Value

ERROR_INV AUD _LEVEL 124

NERR _NetN otStarted 2102

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_ServerNotStarted 2114

NERR_BufTooSmall 2123

NERR_RemoteErr 2127

NERR_ OS2Ioct1Error 2134

NERR _ WkstaN otStarted 2138

NERR _ BrowserN otStarted 2139

NERR _InternalError 2140

NERR_BadTransactConfig 2141

NERR_NetNameNotFound 2310

NERR _ DeviceN otShared 2311

NERR _ InvalidComputer 2351

Meaning

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

This shared resource
does not exist.

This device is not
shared.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

Chapter 3. API Function Descriptions 3-345

Remarks

Related Information

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

The NetShareCheck function returns successfully if a specified device is in the
routing list of a spooler queue or serial device queue.

For information on:

• Reconfiguring the shareable resource of a server-See "NetShareSetlnfo" on
page 3-356.

• Retrieving the status of a shared resource-See "NetShareGetlnfo" on
page 3-353.

3-346 LAN Server Application Programmer's Reference

NetShareDel

Syntax

Return Codes

The NetShareDel (admin, server, DOS) function deletes a net name from the list of
shared resources of a server.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareDel(servername, netname, reserved)
char far * servername;
char far * netname;
unsigned short reserved;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• netname points to an," SCIIZ string specifying the netname to be deleted.

• reserved is 0.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

Value

0

5

8

50

87

124

2102

2104

2106

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

Chapter 3. API Function Descriptions 3-347

Remarks

Manifest

NERR_ ServerN otStarted

NERR_BuITooSmall

NERR_RemoteErr

NERR_ OS21oct1Error

NERR_ WkstaN otStarted

NERR_ BrowserN otStarted

NERR_InternalError

NERR_ BadTransactConfig

NERR_NetNameNotFound

NERR_InvalidComputer

Value

2114

2123

2127

2134

2138

2139

2140

2141

2310

2351

Meaning

The Server service has
not been started.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

This shared resource
does not exist.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• Al tSrvShareDel

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetProcAddr

• DosGetShrSeg[-ERROR_FILE_ NOT _FOUND]

• DosLoadModule

• DosSemClear.

When the NetShareDel function deletes a netname, all connections to the shared
resource are disconnected.

3-348 LAN Server Application Programmer's Reference

Related Information
For information on:

• Adding a share on a server-See "NetShareAdd" on page 3-340.

• Listing all connections to a shared resource-See "NetConnectionEnum" on
page 3-78.

• Listing the shareable resources of a server-See "NetShareEnum" on page 3-350.

Chapter 3. API Function Descriptions 3-349

NetShareEnum

Syntax

Return Codes

The NetShareEnum (partially admin, server, DOS) function retrieves share
information about each shared resource on a server.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
level;
buf;
buflen;
entriesread;
total entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0, I, or 2) returned in the share_info data
structure.

• buf points to the share _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_INV AUD _PARAMETER

ERROR_ INVALID_ LEVEL

Value

0

5

8

50

87

124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

3-350 LAN Server Application Programmer's Reference

Manifest

ERROR_MORE_DATA

NERR_ NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_ServerN otStarted

NERR_RemoteErr

NERR _ OS2Ioct1Error

NERR_ WkstaNotStarted

NERR_BrowserN otStarted

NERR_InternalError

NERR_ BadTransactConfig

NERR_InvalidComputer

Value

234

2102

2104

2106

2114

2127

2134

2138

2139

2140

2141

2351

Meaning

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

Chapter 3. API Function Descriptions 3-351

Remarks

Related Information

If the level parameter of NetShareEnum is passed with the value 2, the calling
application must have administrative privileges on the server.

For information on retrieving information about a particular shared resource, see
"NetShareGetlnfo" on page 3-353.

3-352 LAN Server Application Programmer's Reference

NetShareGetlnfo

Syntax

Return Codes

The NetShareGetlnfo (partially admin, server, DOS) retrieves information about a
particular shared resource on a server.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareGetlnfo(servername, netname, level, buf,

buflen, totalavail)
char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
netname;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• netname points to an ASCIIZ string containing the name of the share of interest.

• level specifies the level of detail (0, 1, or 2) returned in the share_info data
structure.

• buf points to the share _info data structure.

• buff.en specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NOT_SUPPORTED

ERROR_INV AUD _PARAMETER

ERROR_ INV AUD _LEVEL

Value

0

5

8

50

87

124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Chapter 3. API Function Descriptions 3-353

Manifest

ERROR_MORE_DATA

NERR _ NetN otStarted

NERR_ShareMem

NERR_ RemoteOnly

NERR _ ServerN otStarted

NE RR_ Buff ooSmall

NERR_RemoteErr

NERR_ OS2Ioct1Error

NERR_ WkstaN otStarted

NERR _ BrowserN otStarted

NERR _ InternalError

NERR_ BadTransactConfig

NERR_ NetNameNotFound

NERR _ InvalidComputer

Value

234

2102

2104

2106

2114

2123

2127

2134

2138

2139

2140

2141

2310

2351

Meaning

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

This shared resource
does not exist.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

3-354 LAN Server Application Programmer's Reference

Remarks

Related Information

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

If the level parameter of NetShareGetlnfo is passed with the value 2, the calling
application must have administrative privileges on the server.

For information on reconfiguring a shareable server resource, see "NetShareSetlnfo"
on page 3-356.

Chapter 3. API Function Descriptions 3-355

NetShareSetlnfo

Syntax

Return Codes

The NetShareSetlnfo (admin, server, DOS) function sets the parameters of a shared
resource.

#include <netcons.h>
#include <shares.h>
#include <access.h>

unsigned far pascal
NetShareSetinfo(servername, netname, level, buf, buflen, parmnum)
char far * servername;
char far * netname;
short level;
char far * buf;
unsigned short buflen;
unsigned short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• netname points to an ASCIIZ string containing the netname of the resource to
be set.

• level specifies the level of detail (1 or 2) provided by the share_info data
structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum specifies whether a specific component of the share_info data structure
is being set, or the entire data structure. If parmnum is 0, then buf must contain
a complete share_info data structure. Otherwise, parmnum must pass the ordinal
position value for one of the following share_info_2 data structure components,
as defined in SHARES.Has follows:

Manifest Value

SHI_REMARK_PARMNUM 4

SHI_MAX_ USES_PARMNUM 6

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

Component

shil remark or
shi2 _remark

shi2 _max_ uses

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

3-356 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _NAME 123 There is an incorrect
character or incorrectly
formed file system
name.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ ServerNotStarted 2114 The Server service has
not been started.

NERR_NoRoom 2119 The server is currently
out of the requested
resource.

NERR_BuITooSmall 2123 The buff er is too small
for fixed-length data.

NERR_RemoteErr 2127 A remote API error
has occurred.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR _ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

Chapter 3. API Function Descriptions 3-357

Related Information

Manifest Value

NERR _ BadTransactConfig 2141

NERR_NameNotFound 2273

NERR_NetNameNotFound 2310

NERR _ InvalidComputer 2351

Meaning

The server is not
configured for
transactions.

The message alias
cannot be found on the
local area network.

This shared resource
does not exist.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

For information on retrieving the status of a shareable server resource, see
"NetShareGetlnfo" on page 3-353.

3-358 LAN Server Application Programmer's Reference

Spooler Category

Description

For information on the following functions, see the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference.

SplQmAbort

SplQmClose

SplQmEndDoc

SplQmOpen

SplQmStartDoc

SplQmWrite.

The functions in the Spooler category provide the application access to spooler
queue manager operations. These functions are provided by the base operating
system and supported by the LAN Server across the network.

For detailed descriptions of the above functions, refer to the IBM Operating
System/2 Technical Reference Version 1.2 Programming Reference.

Chapter 3. API Function Descriptions 3-359

Statistics Category

Description

Data Structures

NetStatisticsGet2 (admin, DOS)-See "NetStatisticsGet2" on page 3-365.

The functions in the Statistics category retrieve and clear the operating statistics for
requesters and servers. They are used with the NETSTATS.H and NETCONS.H
include files.

The OS/2 LAN Requester/Server accumulates a set of operating statistics for
requesters and servers from the time that a requester or server service is started. The
NetStatisticsClear function can be called to clear the statistics. To retrieve the
statistics, call the NetStatisticsGet2 function.

NetStatisticsGet2 function returns the statistics in the following data structures:

Data Structure of Requester Statistics
struct stat_workstation_0 {

unsigned long stw0_start;
unsigned long stw0_numNCB_r;
unsigned long stw0_numNCB_s;
unsigned long stw0_numNCB_a;
unsigned long stw0_fiNCB_r;
unsigned long stw0_fiNCB_s;
unsigned long stw0_fiNCB_a;
unsigned long stw0_fcNCB_r;
unsigned long stw0_fcNCB_s;
unsigned long stw0_fcNCB_a;
unsigned long stwe_sesstart;
unsigned long stwe_sessfailcon;
unsigned long stw0_sessbroke;
unsigned long stwe_uses;
unsigned long stwe_usefail;
unsigned long stwe_autorec;
unsigned long stw0_bytessent_r_high;
unsigned long stw0_bytessent_r_low;
unsigned long stw0_bytesrcvd_r_high;

. unsigned long stw0_bytesrcvd_r_low;
unsigned long stw0_bytessent_s_high;
unsigned long stw0_bytessent_s_low;
unsigned long stw0_bytesrcvd_s_high;
unsigned long stw0_bytesrcvd_s_low;
unsigned long stw0_bytessent_a_high;
unsigned long stw0_bytessent_a_low;
unsigned long stw0_bytesrcvd_a_high;
unsigned long stw0_bytesrcvd_a_low;
unsigned long stwe_reqbufneed;
unsigned long stw0_bigbufneed;

};

where:

• start is the time that statistics collection started. This field indicates the date or
time that the statistics were last cleared; that is, it indicates the time period over
which the returned statistics were collected.

3-360 LAN Server Application Programmer's Reference

• numNCB fields indicate the number of network control blocks (NCBs) issued
from each source and include failed NCBs. To get the total successful NCBs
issued it is necessary to subtract the numbers of failed NCBs. These numbers
are held as follows in the fiNCB and fcNCB fields:

numNCB_r is the number of NCBs issued (redirector)

numNCB_s is the number of NCBs issued (server)

numNCB _a is the number of NCBs issued (application).

• fiNCB fields indicate the number of NCBs that failed at the time they were
issued, for whatever reason. These NCBs are still included in the "total issued"
count, as follows:

fiNCB _r is the number of NCBs that failed issue (redirector)

fiNCB_s is the number of NCBs that failed issue (server)

fiNCB_a is the number of NCBs that failed issue (application).

• fcNCB fields indicate the number of NCBs that failed after issue, at or before
completion. These NCBs are still included in the "total issued" count, as
follows:

fcNCB _r is the number of NCBs that failed completion (redirector)

fcNCB_s is the number of NCBs that failed completion (server)

fcNCB_a is the number of NCBs that failed completion (application).

• sessstart is the number of requester sessions started.

• sessf ail con is the number of requester session failures to connect, except those
that failed due to "name not found."

• sessbroke is the number of failures of requester sessions, after the session was
established.

• uses is the number of requester uses.

• use/ ail is the number of requester use failures. This is a count of failed
tree-connects, when a server is found but the resources were not found.

• autorec is the number of requester auto-connects.

• The following 12 fields form six quad-WORDs, which contain very large
counters. The high DWORD of each is the value divided by r'32, while the low
DWORD is the value modulo 2"32. A quad-WORD is a data area with the size
twice as large as a double word.

These fields count total bytes in all NCBs sent and received for all three
categories. Server information is included to provide an accurate total.

Note: For all the NCB-related and bytes-count counters:

The suffix _r indicates redirector. These NCBs are issued by the
redirector as part of the normal process of maintaining remote network
connections.

Those with the suffix _s are server-related, sent by the redirector on
behalf of the server to maintain shared resource connections.

Chapter 3. API Function Descriptions 3-361

Those with the suffix _a are application-generated NCBs, which may be
caused by applications calling NetBiosSubmit, use of second-class
mailslots, server announcements (sending and receiving), and so on.

bytessent_r _hi is the number of requester bytes sent to the network (high
DWORD).

bytessent_r _lo is the number of requester bytes sent to the network (low
DWORD).

bytesrcvd_r _hi is the number of requester bytes received from the network
(high DWORD).

bytesrcvd_r _lo is the number of requester bytes received from the network
(low DWORD).

bytessent_shi is the number of server bytes sent to the network (high
DWORD).

bytessent_s_lo is the number of server bytes sent to the network (low
DWORD).

bytesrcvd_s_hi is the number of requester bytes received from the network
(high DWORD).

bytesrcvd_s_/o is the number of requester bytes received from the network
(low DWORD).

bytessent_a_hi is the number of application bytes sent to the network (high
DWORD).

bytessent_a_lo is the number of application bytes sent to the network (low
DWORD).

- bytesrcvd_a_hi is the number of application bytes received from the network
(high DWORD).

bytesrcvd_a_/o is the number of application bytes received from the network
(low DWORD).

• reqbufneed is the number of times that the requester required a request buffer
but failed to allocate one. This indicates that the parameters of the requester
may need adjustment.

• bigbufneed is the number of times the requester required a big buffer but failed
to allocate one. This indicates that the parameters of the requester may need
adjustment.

Note: A value of -1 or OxFFFFFFFF for any field means that information is not
available. A value of -2 or OxFFFFFFFE means that the field has
overflowed.

3-362 LAN Server Application Programmer's Reference

Data Structure of Server Statistics
struct stat_server_e {

};

unsigned long stse_start;
unsigned long stse_fopens;
unsigned long stse_devopens;
unsigned long stse_jobsqueued;
unsigned long stse_sopens;
unsigned long stse_stimedout;
unsigned long stse_serrorout;
unsigned long stse_pwerrors;
unsigned long stse_permerrors;
unsigned long stse_syserrors;
unsigned long stse_bytessent_high;
unsigned long stse_bytessent_low;
unsigned long stse_bytesrcvd_high;
unsigned long stse_bytesrcvd_low;
unsigned long stwe_avresponse;
unsigned long stwe_reqbufneed;
unsigned long stwe_bigbufneed;

where:

• start is the time statistics collection started. This field indicates the date and
time that the statistics were last cleared; that is, it indicates the time period over
which the returned statistics were collected.

• f opens is the number of server file opens. This includes opens of named pipes.

• devopens is the number of server device opens.

• jobsqueued is the number of server print jobs spooled.

• sopens is the number of server session starts.

• stimedout is the number of server session auto-disconnects.

• serrorout is the number of server sessions errored out.

• pwerrors is the number of server password violations.

• permerrors is the number of server access permission errors.

• syserrors is the number of server system errors.

• The following 4 fields form two quad-WORDs that contain very large counters.
The high DWORD of each is the value divided by 2"32, while the low DWORD
is the value modulo 2"32.

bytessent_high is the number of server bytes sent to the network (high
DWORD)

bytessent_low is the number of server bytes sent to the network (low
DWORD)

bytesrcvd_high is the number of server bytes received from the network (high
DWORD)

bytesrcvd_low is the number of server bytes received from the network (low
DWORD).

• avresponse is the average server response time in milliseconds.

Chapter 3. API Function Descriptions 3-363

• reqbufneed is the number of times the server required a request buffer but failed
to allocate one. This indicates that the parameters of the server may need
adjustment.

• bigbufneed is the number of times the server required a big buffer but failed to
allocate one. This indicates that the parameters of the server may need
adjustment.

Note: A value of -1 or OxFFFFFFFF for any field means that information is not
available. A value of -2 or OxFFFFFFFE means that the field has
overflowed.

3-364 LAN Server Application Programmer~s Reference

NetStatisticsGet2

Syntax

The NetStatisticsGet2 (admin, DOS) function retrieves and optionally clears
operating statistics for a service.

#include <netcons.h>
#include <netstats.h>

unsigned far pascal
NetStatisticsGet2(servername, servicename, reserved, level, options,

buf, buflen, totalavail)
char far *
char far *
unsigned long
short
unsigned long
char far *
unsigned short
unsigned short far *

where:

servername;
servicename;
reserved;
level;
options
buf;
buflen;
tota 1 avail ;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• servicename is the ASCIIZ service name for which to get the statistics.

For the OS/2 LAN Requester/Server version 1.2 program, only SERVER and
REQUESTER are allowed for the servicename. Other names will produce the
ERROR_NOT_SUPPORTED error code. If the server statistics are requested
and the server is not running, the error code returned is
NERR_ServiceN otlnstalled.

• reserved must be zero.

• level specifies the level of detail (0) returned by the stat_workstation_O or the
stat_server _O data structure.

The valid values for level depend on the value of servicename. The current valid
value for REQUESTER or SERVER is 0.

• options are the options flags.

The options parameter is bitmapped as follows:

Bit Mask Symbol

0 Oxl STATSOPT_CLR

1-31

Meaning

Clear statistics after
retrieval

Must be zero

The option to clear the statistics allows automatic Get and Clear operations,
which allows an atomic get and clear operation, which allows an application that
is compiling cumulative numbers to make sure that no data slips by in the time
between the Get operation and the Clear operation.

• buf points to the returned stat_workstation_O or the stat_server _O data structure.

Chapter 3. API Function Descriptions 3-365

Return Codes

• buflen specifies the size (in bytes) of buf

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_NETWORK_ACCESS_DENIED

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_ServerNotStarted

NERR_BuITooSmall

NERR _ OS2Ioct1Error

NERR _ WkstaN otStarted

NERR_BrowserNotStarted

NERR _InternalError

NERR_ BadTransactConfig

Value

0

5

8

65

87

124

234

2102

2104

2114

2123

2134

2138

2139

2140

2141

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKST A.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

The Server service has
not been started.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

3-366 LAN Server Application Programmer's Reference

Remarks

Manifest Value Meaning

NERR_ServiceNotlnstalled 2184 The service has not
been started.

NERR_BadServiceName 2185 The service name is
invalid.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosSemClear.

This API returns a full data structure. As with other Getlnfo calls, the error
NERR_BufffooSmall is returned if the supplied buffer is too small for the required
data.

If the service name specified is REQUESTER, then stat_workstation_O is returned to
buf If the service name specified is SERVER, then stat_server is returned to buf

Chapter 3. API Function Descriptions 3-367

Use Category

Description

NetUseAdd (admin, DOS)-See "NetUseAdd" on page 3-372.

NetUseDel (admin, DOS)-See "NetUseDel" on page 3-375.

NetUseEnum (admin, DOS)-See "NetUseEnum" on page 3-378.

NetUseGetlnfo (admin, DOS)-See "NetUseGetlnfo" on page 3-380.

The functions in the Use category examine or control connections (uses) between
requesters and servers. Administrative privilege is required to call them remotely.
They are used with the USE.H and NETCONS.H include files.

The NetUseAdd function establishes a connection between a local computer and a
resource shared on a server by redirecting a NULL or local device name to a shared
resource on that remote server. The following types of connections can be made:

• Device name connections, which can only be explicit

• Universal naming convention (UNC) connections, which can be explicit or
implicit.

To establish an explicit device name connection, NetUseAdd redirects a local device
name to the netname of a remote server resource(\ \servername\netname). Once a
device name connection is made, users or applications can use the remote resource
by specifying the local device name.

UNC connections can be explicit, created by the NetUseAdd function, or implicit,
made by way of an OS/2 function (responsible for the connection). Once a UNC
connection is established, users or programs can access the remote resource by
specifying just the netname of the resource.

To establish an explicit UNC connection, NetUseAdd redirects a NULL device
name to the netname of a remote server resource.

To establish an implicit UNC connection, an application passes the netname of the
resource to any one of the OS/2 functions that accept netnames (such as the
DosOpen function). The UNC name will be understood by the OS/2 function and a
connection will be made to the specified netname. All further requests on this
connection require the full netname.

Note: Connections are to be distinguished from sessions. A session is a path
between a requester and a server, established the first time a requester makes a
connection with one of the shared resources of the server. All further connections
between the requester and the server are part of this same session until ended by
calling the NetSessionDel function.

3-368 LAN Server Application Programmer's Reference

As an example of how the three types of connections work, consider the following
examples:

• Explicit device name connection. Assume an application redirected the local
device named: to the netname \\develop\srcdrv by calling the NetUseAdd
function as shown:

strncpy (buf.uil_local, 11 d: 11
, 3);

retcode = NetUseAdd (NULL, 1, buf, BUFLEN);

To access files on this resource, an application need only specify the redirected
device name and the name of the file, as shown:

retcode=system("type d:\\read.me");

• Explicit UNC connection. Assume an application redirected a NULL device
name to the remote resource \\develop\srcdrv by calling the NetUseAdd function,
as shown:

strncpy (buf.uil_local, 1111
, 3);

retcode = NetUseAdd (NULL, 1, buf, BUFLEN);

To display the contents of the READ.ME file on the resource \\develop\srcdrv,
an application can also just specify the name of the resource with the following
command:

retcode=system("type \\\\develop\\srcdrv\\read.me");

Note that this does not create a new connection to the resource, as an implicit
UNC connection would if no NetUseAdd function was called.

• Implicit UNC connection. An implicit connection is made by a call to an OS/2
function and by passing the remote netname as part of a parameter. For
example, the following call to DosOpen establishes an implicit UNC connection
to the remote resource \ \develop\srcdrv and opens file. I:

retcode = DosOpen ("\\\\develop
\\srcdrv\\file.1, ••• ");

A password must be supplied the first time a universal naming convention
(UNC) connection is made between a local or NULL device name and a remote
resource if the resource is on a server running in user-level security. Further
connections to the same server do not require a password because the password
is associated with the same session.

DOS Considerations

Data Structures

Under DOS, the functions can be executed only on a remote server. Attempting to
execute the functions on a local requester returns NERR_RemoteOnly.

The data structures used by the NetUseAdd, NetUseEnum, and NetUseGet
functions are described immediately following the syntax descriptions for each
function.

Use Information (Level 0)

struct use_info_0 {
char ui0_local[DEVLEN+l];
char ui0_pad_l;
char far * uie_remote;
};

Chapter 3. API Function Descriptions 3-369

where:

• uiO_local is an ASCIIZ string specifying the local device name (such as E:, LPTl,
or COMl) being redirected to the shared resource.

• uiO _yad_l WORD-aligns the data structure components.

• uiO_remote points to an ASCIIZ string containing the netname of the remote
resource being accessed. The string must be in the form \\servername\netname.

Use Information (Level 1)

sruct use_info_l {
char uil_local[DEVLEN+l];
char uil_pad_l;
char far * uil_remote;
char far * uil_password;
unsigned char uil_status;
unsigned char uil_asg_type;
unsigned char uil_refcount;
unsigned char uil usecount;
}; -

where:

• uil _local is an ASCIIZ string specifying the local device name being redirected
to the shared resource.

• uil_yad_l WORD-aligns the data structure components.

• uil _remote points to an ASCIIZ string specifying the UNC name of the remote
resource being accessed. The string must be in the form \\servername\netname.

• uil _password is a reserved field; it must be NULL.

• uil _status specifies the status of the connection. Seven possible values for
uil _status are defined in USE.H, as follows:

Manifest

USE OK

USE_PAUSED

USE_SESSLOST

USE_DISCONN

USE NETERR

USE_ CONN

USE_RECONN

Value

0

2

2

3

4

5

Meaning

Connection valid.

Paused by local requester.

Session removed.

Connection disconnected

Network error.

Connection being made.

Reconnecting.

• uil _asg_type specifies the type of remote resource being accessed. Five types of
resources are defined in USE.H, as follows:

3-370 LAN Server Application Programmer's Reference

Manifest

USE_ WILDCARD

USE_DISKDEV

USE_SPOOLDEV

USE_CHARDEV

USE_IPC

Value

-1

0

1

2

3

Meaning

Matches the type of the share of
the server (Wildcards are only
used when uil _local is a NULL
string).

Disk device.

Spooled printer.

Serial device.

Interprocess communication
(IPC).

The asg_type field indicates the sort of device to use the resource "as." It can be
any of the previously listed values under asg_type, or it can be set to
USE_WILDCARD (-1), only for a connection with a NULL local device. A
connection that maps a local device to the resource must use one of the other
four values defined in asg_type.

• uil_refcount indicates the number of files, directories, and other processes that
are open on the remote resource.

• uil_usecount indicates the number of explicit connections (redirection of a local
device name) or implicit UNC connections (redirection of a NULL local device
name) that are established with the resource.

If both an explicit and an implicit connection exists between a requester and a
resource, the usecount of the server is 1 and the usecount of the requester is 2.

Chapter 3. API Function Descriptions 3-371

NetUseAdd

Syntax

Return Codes

The NetUseAdd (admin, DOS) function establishes a connection between a local or
NULL device name and shared resource by redirecting the local or NULL (UNC)
device name to the shared resource.

#include <netcons.h>
#include <use.h>

unsigned far pascal
NetUseAdd(servername, level, buf, buflen)
char far * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• /eve/specifies the level of detail (1) for the use_info_l data structure.

• buf points to the use_info_l data structure.

• buflen specifies the size (in bytes) of the bu/memory area.

Manifest Value

NERR_SUCCESS 0

ERROR_ ACCESS_ DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_NOT_SUPPORTED 50

ERROR_BAD _DEV_ TYPE 66

ERROR_BAD_NET_NAME 67

ERROR_ALREADY _ASSIGNED 85

ERROR_INVALID_PASSWORD 86

ERROR_INVALID_PARAMETER 87

ERROR_INVALID _LEVEL 124

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

This request is not
supported by the
network.

This network device
type is incorrect.

This network name
cannot be found.

Duplicate redirection.

The specified password
is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

3-372 LAN Server Application Programmer's Reference

Manifest Value Meaning

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR _ NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ ServerN otStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR _RemoteErr 2127 A remote API error
has occurred.

NERR _ OS21oct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR _ UseNotFound 2250 The connection cannot
be found.

NERR _BadAsgType 2251 This asg_ type is
invalid.

NERR _ DevicelsShared 2252 This device is already
being shared.

NERR _ DeviceN otShared 2311 This device is not
shared.

NERR _InvalidComputer 2351 The specified computer
name is invalid.

NERR _ LocalDrive 2415 Drive in local use.

Chapter 3. API Function Descriptions 3-373

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosFsRamSemClear

• DosFsRamSemRequest

• DosFreeSeg

• DosFsAttach

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCSET ASGLIST)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg

• DosSemClear

• DosSemRequest

• redir.(NIOCSETASGLISTI_l).

A local device name can be redirected to only one shared resource at a time. To
establish a new direction for a redirected device, an application must first delete the
existing connection by calling the NetUseDel function.

A COM or LPT device can be redirected even if it is already opened. Redirecting
the device has no effect on the handle of the device if it is already open. However,
subsequent openings will return a handle to the remote device to which the local
device was redirected.

When a server is running user-level or share-level security, The uil_yassword needed
to access a shared resource can be provided in the following ways:

• A non-NULL string specifies the password

• A NULL pointer forces the OS/2 LAN Requester/Server software to use the
same password given to the logon function

• A NULL string indicates that no password is provided.

NetUseAdd ignores the uil_status, uil_refcount, and uil_usecount components in the
use_info_J data structure.

If a call to NetUseAdd duplicates an existing connection, the usecount component of
the use_info_l data structure is incremented and the function succeeds, returning
NERR_ Success.

For information on:

• Disconnecting a device from a shared resource-See "NetUseDel" on
page 3-375.

• Listing all devices redirected to a shared resource-See "NetUseEnum" on
page 3-378.

3-374 LAN Server Application Programmer's Reference

NetUseDel

Syntax

Return Codes

The NetUseDel (admin, DOS) function ends a connection between a local or UNC
device name and a shared resource.

#include <netcons.h>
#include <use.h>

unsigned far pascal
NetUseDel(servername, devicename, forceflag)
char far * servername;
char far * devicename;
short forceflag;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• devicename points to an ASCIIZ string indicating the local device name that was
redirected to the shared resource.

• f orceflag is one of three values specifying three types of disconnection. As
defined in USE.H, the following options are available:

Manifest

USE_NOFORCE

USE_FORCE

USE_LOTS_ OF _FORCE

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

Value

0

2

Meaning

Maintains the connection in a
dormant state, decrementing
usecount. A dormant s~ssion
can quickly be activated as soon
as reconnection is needed,
improving system performance.

Connection is removed only if
no file, directory, or drive is
opened. usecount is decremented
(for a local device name
connection) and forced to 0 (for
a UNC connection).

All files, directories, and drives
open on the connection are
forced closed.

Value Meaning

0

5

8

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

Chapter 3. API Function Descriptions 3-375

Manifest

ERROR_INV AUD _DRIVE

ERROR_NOT_SUPPORTED

ERROR_BAD _DEV _TYPE

ERROR_BAD_NET_NAME

ERROR_INVALID_PARAMETER

ERROR_PROTECTION_ VIOLATION

NERR_BufTooSmall

NERR_RemoteErr

NERR _ OS2Ioct1Error

NERR_ WkstaN otStarted

NERR_ InternalError

NERR _ BadTransactConfig

NERR _ InvalidComputer

NERR _ OpenFiles

Value

15

50

66

67

87

115

2123

2127

2134

2138

2140

2141

2351

2401

Meaning

The specified drive is
not valid.

This request is not
supported by the
network.

This network device
type is incorrect.

This network name
cannot be found.

The specified
parameter is invalid.

Incorrect user virtual
address.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

There are open files on
the connection.

Other error return codes may be returned from the following OS/2 functions:

• DosFsAttach

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCSET ASGLIST)

• DosFsCtl(NULLTRANSACT)

• redir.(NIOCSETASGLISTl_l).

3-376 LAN Server Application Programmer's Reference

Related Information
For information on:

• Listing all local device names redirected to a shared resource-See
"NetUseEnum" on page 3-378.

• Redirecting a local device name to a shared resource-See "NetUseAdd" on
page 3-372.

Chapter 3. API Function Descriptions 3-377

NetUseEnum

Syntax

Return Codes

The NetUseEnum (admin, DOS) function lists all current connections between the
local computer and resources on a remote server.

#include <netcons.h>
#include <use.h>

unsigned far pascal
NetUseEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far * servername;
short level;
char far * buf;
unsigned short buflen;
unsigned short far * entriesread;
unsigned short far * totalentries;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• level specifies the level of detail (0 or 1) returned by the use_info data structure.

• buf points to the use_info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INV AUD _DRIVE 15 The specified drive is
not valid.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

3-378 LAN Server Application Programmer's Reference

Related Information

Manifest Value

NERR _NetN otStarted 2102

NERR_BufTooSmall 2123

NERR RemoteErr 2127

NERR _ OS2Ioct1Error 2134

NERR_ WkstaNotStarted 2138

NERR _ BrowserNotStarted 2139

NERR _ InternalError 2140

NERR _ BadTransactConfig 2141

NERR _InvalidComputer 2351

Meaning

The redirector
NETWKSTA.EXE has
not been started.

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCSET ASGLIST)

• DosDevIOCtl(NIOCSET ASGLISTl _ l)

• DosFsCtl(NULLTRANSACT)

• redir.(NIOCSETASGLISTl_l).

For information on:

• Listing the shared resources of a server-See "NetShareEnum" on page 3-350.

• Retrieving the status of a local device name-See "NetUseGetlnfo" on
page 3-380.

Chapter 3. API Function Descriptions 3-379

NetUseGetlnfo

Syntax

Return Codes

The NetUseGetlnfo (admin, DOS) function retrieves information about a connection
between a local device name and a shared resource.

#include <netcons.h>
#include <use.h>

unsigned far pascal
NetUseGetlnfo(servername, netname, level,

buf, buflen, totalavail)
char far * servername;
char far * netname;
short level;
char far * buf;
unsigned short buflen;
unsigned short far* totalavail;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

• netname points to an ASCIIZ string containing the name of the redirected device
name or UNC name for the resource.

• level specifies the level of detail (0 or 1) returned in the use_info data structure.

• buf points to the use _info data structure.

• buff en specifies the size (in bytes) of the buf memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value

NERR_SUCCESS 0

ERROR_ACCESS_DENIED 5

ERROR_NOT_ENOUGH_MEMORY 8

ERROR_INV AUD _PARAMETER 87

ERROR_INV AUD _LEVEL 124

ERROR_MORE_DATA 234

NERR _ NetNotStarted 2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKST A.EXE has
not been started.

3-380 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest

NERR_BuffooSmall

NERR_RemoteErr

NERR _ OS2Ioct1Error

NERR_ WkstaNotStarted

NERR _BrowserNotStarted

NERR _ lnternalError

NERR _ BadTransactConfig

NERR_ UseNotFound

NERR_InvalidComputer

Value

2123

2127

2134

2138

2139

2140

2141

2250

2351

Meaning

The buff er is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The connection cannot
be found.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosDevIOCtl(NIOCGETASGLIATl_l)

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOCSETASGLIST)

• DosFsCtl(NULLTRANSACT)

• redir.NIOCSETASGLISTl_l [ERROR_NO_MORE_FILES].

The NetUseGetlnfo function returns the uil_password component as a NULL
pointer, so users or applications cannot determine the password of another user or
application.

For information on:

• Listing all connections to a shared resource-See "NetUseEnum" on page 3-378.

• Listing the shared resources of a server-See "NetShareEnum" on page 3-350.

Chapter 3. API Function Descriptions 3-381

User Category

Description

NetUserAdd (admin, DOS}-See "NetUserAdd" on page 3-397.

NetUserDel (admin, DOS}-See "NetUserDel" on page 3-401.

NetUserEnum (partially admin, DOS}-See "NetUserEnum" on page 3-404.

NetUserGetGroups (partially admin, DOS}-See "NetUserGetGroups" on page 3-407.

NetUserGetlnfo (partially admin, DOS}-See "NetUserGetlnfo" on page 3-410.

NetUserModalsGet (partially admin, DOS}-See "NetUserModalsGet" on
page 3-413.

NetUserModalsSet (admin, DOS}-See "NetUserModalsSet" on page 3-416.

NetUserPasswordSet (DOS}-See "NetUserPasswordSet" on page 3-419.

NetUserSetGroups (admin, DOS}-See "NetUserSetGroups" on page 3-423.

NetUserSetlnfo (partially admin, DOS}-See "NetUserSetlnfo" on page 3-426.

NetUserValidate2 (local)-See "NetUserValidate2" on page 3-431.

The functions in the User category control a user's account in the user accounts
subsystem (UAS) database. They are used with the ACCESS.Hand NETCONS.H
include files.

In the UAS, each user or application that accesses the resources must have a user
account in the system. The system uses this account to verify that the user or
application has permission to connect to any shared resource. A user's account is set
up by calling the NetUserAdd function. There are three types of information in a
user's account:

• One type can be set only by the administrator

• Another can be set by the owner of the account

• The third can be set only by the system.

The following user account information can be set by the administrator only:

• Account Name-The name used to log on (for example, JSMITH).
• Full Name Field-The full name of the user (for example, John Smith, Jr.). This

field can be up to MAXCOMMENTSZ + 1 bytes long. A NULL pointer is
treated as a null string.

• Comment-The comment associated with Fl.n account (for example, Vice
President). It can contain any text and can be up to MAXCOMMENTSZ +
bytes.

• Parms-The drive of the user's home directory.
• Home Directory-The network directory (absolute, UNC, or local path) for the

user's files. The field length can be up to PA TH LEN bytes.
• Account Disabled-When set, no one can log on using this account.

3-382 LAN Server Application Programmer's Reference

• Privilege Level-An account can have one of three levels of privilege: GUEST,
USER, or ADMIN. Privilege level affects the default rights of an account to
access resources and to call AP Is remotely.

• Logon Script Flag-Must be TRUE for this release.
• Logon Script Path-The path name of the user's logon script. It must be a

relative path, and the path is relative to the NETLOGON service SCRIPTS
path. This field can be up to P ATHLEN bytes long, and a NULL pointer is
treated as a null string. the script can be a .pro, a .cmd (or .bat), an .exe or a
.com, or it can have no extension which is defaulted to .cmd (or .bat) file.

• Account Expiration Date-Logon is disabled after specified date.
• List of Authorized Requesters-Account can only log on from listed PCs; the list

may include zero to eight stations. Zero stations means ALL.
• Logon Hours-1 hour granularity, hours specified for each day of the week. A

NULL pointer means ALL for NetUserAdd calls but means DONT_CHANGE
for NetUserSetlnfo calls.

• Home Directory Required-When this bit is set, UAS requires that the Home
Directory field must not be NULL.

• Password Not Required-When this bit is set, the account can have a NULL
password even if the Minumum Password Length for the system is greater than
0.

• Maximum Storage Allotment-Specifies the limit in KB on the home directory.
• User Can Not Change Password-This flag restricts the user from changing the

password on his account.
• Logon server-The name of the server which tracks logon and logoff for the

account. It should be NULL for this release. NULL means that the domain
controller validates the logon requests.

The following fields can be set by a user (or by an administrator) for the user's own
account only:

• Encrypted Password.
• User Comment-A user-settable comment. This field can be up to

MAXCOMMENTSZ + 1 bytes long. A NULL pointer is treated as a null
string.

• Parms-An ASCIIZ string for application use.
• Country Code-The OS/2 country code for the language choice of the user. This

is used by the OS/2 LAN Requester/Server software to generate messages in the
appropriate language whenever possible.

• Code Page-The code page of the OS/2 program for national language support.

The following fields are automatically set by the Accounts System and are not
directly set by an administrator or user:

• Date Password Last Changed.-This field is ignored by NetUserAdd and
NetUserSetlnfo calls.

• Recent Passwords-The eight most recent encrypted passwords for this account.

When a user or application requests access to any shared resource, the OS/2 LAN
Requester/Server software checks to see whether there is an appropriate account.
An application can do this by calling the NetUserValidate2 function to search for a
valid account with a particular user name and password combination.

If the account is found, the application then can check to see whether it is currently
enabled by calling the NetUserGetlnfo function and examining the flags that are set.

Chapter 3. API Function Descriptions 3-383

The OS/2 LAN Requester/Server software then checks the user's privilege level.
Depending on the parameter, the request to access a resource is immediately
accepted, if the user has been given administrative privileges, or processing
continues.

Administrative privileges grant the broadest access to the domain, giving permission
to execute all administrative functions, and complete access to the shared and
non-shared resources of a server.

If the user does not have administrative privileges, the OS/2 LAN Requester/Server
software checks the resource's access permission record to see whether the user has
the proper permissions to use that particular resource (see "Access Permission
Category" on page 3-2).

Each time an account that has either administrative or user privileges is established
by calling the NetUserAdd function, the OS/2 LAN Requester/Server software
automatically adds a new account to the special group. At this time, the user
inherits all permissions assigned to that special group.

An application can change a user's current privileges by calling the NetUserSetlnfo
function. Or it can change the user's permissions by modifying that user's group
accounts (see "Group Category" on page 3-110). Individually assigned user
permissions take precedence over group permissions assignments. An application
can verify which groups a user belongs to by calling the NetUserGetGroups
function. This function returns a list of group names.

To find out how to change individual permission settings for members of one of the
the special group, see "Access Permission Category" on page 3-2.

When a user account is no longer needed, the NetUserDel function can be called to
eliminate the account from the system. Once the account is removed, the user can
no longer access the system.

If an account does not have a password, any password (or none) is treated as a
match for account validation.

UAS modals can be used for global settings of password policy within the account
system database. None of the system-wide password characteristics are enforced for
accounts that do not require passwords.

It is recommended that passwords be entered in uppercase characters. The password
of a user account is case-sensitive at the API level, and lowercase characters in the
password makes the user ID unavailable at the command-line interface and through
the user profile management (UPM) full-screen interface.

The user's password is confidential and is not returned when the NetUserEnum or
NetUserGetlnfo function is called; a string of spaces is substituted for any password
that is requested. The password is initially assigned when NetUserAdd is called.
NetUserPasswordSet can be used by any user or application to change their own
password, if the current password can be supplied. To verify an existing user
account with a specified password, call NetUserValidate2. The NetUserSetlnfo
function can set the password and other components of a user account.

3-384 LAN Server Application Programmer's Reference

DOS Considerations

Data Structures

The NetUserPasswordSet function controls a user's password account in a domain.
NetUserPasswordSet can be executed only on a remote server. Attempting to
execute it on a local requester returns NERR_RemoteOnly.

There are three types of data structures in the User category: user account data
structures, user modal data structures, and user validation data structures. The first
is for user account information, the second is a user modal data structure, and the
third is a user validation data structure.

User Account Data Structures
The data structures described here represent levels of detail available for the
functions that define or return individual user accounts. The NetUserAdd,
NetUserEnum, NetUserGetlnfo, and NetUserSetlnfo functions use user _info _O,
user_info_l, user_info_2, user_info_JO or user_info_ll, depending on whether their
level parameter is 0, 1, 2, 10 or 11.

NetUserGetGroups returns a very simple group _info _O data structure, which is
described following the syntax section of the function.

User Account Information (Level 0)

struct user info e {
char usrie_name[UNLEN+l];

};

where:

• usriO _name specifies the name of the user.

User Account Information (Level 1)

struct user_info_l {
char usril_name[UNLEN+l];
char usril_pad_l;
char usril_password[ENCRYPTED_PWLEN];

};

long usril_password_age;
unsigned short usril_priv;
char far * usril_home_dir;
char far * usril_comment;
unsigned short usri'l_flags;
char far * usril_script_path;

where:

• usril_name specifies name of the user.

• usril_pad_l is for WORD-alignment of fields in the data structure.

• usril_password is the password of a usril_name. The NetUserEnum and
NetUserGetlnfo functions return a string of spaces to maintain password
security. The string can be NULL.

• usril_password_age indicates the number of seconds that have passed since
usril _password last changed.

Chapter 3. API Function Descriptions 3-385

• usril_yriv is one of three values indicating the level of privilege assigned
usril_name. The ACCESS.H include file defines these values as follows:

Manifest

USER_PRIV _GUEST

USER_PRIV _USER

USER_PRIV _ADMIN

Value

0

1

2

Privilege

Guest

User

Administrator

• usril_home_dir points to an ASCIIZ string containing the path name of the
user _name's home directory. The string can be NULL.

• usril_comment points to an optional ASCIIZ string containing an optional
comment or remark about the user. The string can be NULL.

• usrilflags is one of the following values that determine whether or not a logon
script is to be executed, and whether the user's account is enabled. usrilflags is
defined in ACCESS.H as follows:

Manifest Bit Meaning
Mask

UF_SCRIPT Oxl Must be 1. Logon
script enabled.

UF _ACCOUNTDISABLE Ox2 If 1, user's account
disabled.

UF _HOMEDIR_REQUIRED Ox8 If 1, home
directory required.

UF _PASSWD _NOTREQD Ox20 If 1, password not
required.

UF _PASSWD_CANT_CHANGE Ox40 If 1, user cannot
change password.

• usril_script_yath points to an ASCIIZ string indicating the path name of the
user's logon script (.cmd or .pro file). The string can be NULL.

3-386 LAN Server Application Programmer's Reference

User Account Information (Level 2): Information level 2 is needed to accomodate
additional information for the UAS database. It will be an extension of user_info_J
as shown in the following example:

struct user_info_2 {
char

};

char
char
long
unsigned short
char far *
char far *
unsigned short
char far *
unsigned long
char far *
char far *
char far *
char far *
long
long
long
unsigned long
unsigned short
unsigned char far *
unsigned short
unsigned short
char far *
unsigned short
unsigned short

where:

usri2_name[UNLEN+l];
usri2_pad_l;
usri2_password[ENCRYPTED_PWLEN];
usri2_password_age;
usri2_priv;
usri2_home_dir;
usri2_comment;
usri2_flags;
usri2_script_path;
usri2_auth_flags;
usri2_full_name;
usri2_usr_comment;
usri2_parms;
usri2_workstations;
usri2_last_logon;
usri2_last_logoff;
usri2_acct_expires;
usri2_max_storage;
usri2_units_per_week;
usri2_logon_hours;
usri2_bad_pw_count;
usri2_num_logons;
usri2_logon_server;
usri2_country_code;
usri2_code_page;

• usri2_name specifies name of the user.

• usri2_yad_l is for WORD-alignment of fields in the data structure.

• usri2_yassword is the password of a usril_name. The NetUserEnum and
NetUserGetlnfo functions return a string of spaces to maintain password
security. The string can be NULL.

• usri2_yassword_age indicates the number of seconds that have passed since
usril _yassword last changed.

• usri2_yriv is one of three values indicating the level of privilege assigned
usril_name. The ACCESS.H include file defines these values as follows:

Manifest

USER_PRIV _GUEST

USER_PRIV_USER

USER_PRIV _ADMIN

Value

0

2

Privilege

Guest

User

Administrator

• usri2_home_dir points to an ASCIIZ string containing the path name of the
user_ name's home directory. The string can be NULL.

• usri2_comment points to an optional ASCIIZ string containing an optional
comment or remark about the user. The string can be NULL.

Chapter 3. API Function Descriptions 3-387

• usri2Jlags is one of the following values that determine whether or not a logon
script is to be executed, and whether the user's account is enabled. usri2_Jlags is
defined in ACCESS.H as follows:

Manifest Bit Meaning
Mask

UF_SCRIPT Oxl Must be 1. Log on
script enabled.

UF _ACCOUNTDISABLE Ox2 If 1, user's account
disabled.

UF _HOMEDIR_REQUIRED Ox8 If 1, home
directory required.

UF_PASSWD_NOTREQD Ox20 If 1, password not
required.

UF_PASSWD_CANT_CHANGE Ox40 If 1, user cannot
change password.

• usri2_script_path points to an ASCIIZ string indicating the path name of the
user's logon script (.cmd or .pro file). The string can be NULL.

• au th flags is reserved.

• full_name points to an ASCIIZ string containing the full name of the user. The
string can be NULL.

• usr_comment points to an ASCIIZ string which is a user-settable field. The string
can be NULL.

• parms points to an ASCIIZ string containing the name of the user's home
directory. The string can be NULL.

• workstations is a list of requesters from which a user is permitted to log on. A
NULL string means all requesters are allowed. (To disallow logon, the account
disabled flag must be set.) Up to 8 requesters may be specified. The list of
requesters can include IBM NETBIOS permanent names, which are listed as
machine IDs, consisting of 12 hexidecimal digits. IBM NETBIOS permanent
names are entered in the requester as shown as follows:

16DF.02AC.7DE9

• last_logon is the time and date (seconds since 1/1/70) when the last logon
occurred. Zero means unknown. This field can be set only by the system.

• last_logoff is the time and date (seconds since 1/1/70) when the last logoff
occurred. Zero means unknown. This field can be set only by the system.

• acct_expires is the time and date (seconds since 1/1/70) when the account will
expire. An expired account is the equivalent of a disabled account. An entry of
OxFFFFFFFF means that the account will never expire.

• max_storage is a maximum storage allotted for the home directory. Units are K
bytes. An entry of OxFFFFFFFF means that the account will never expire.

• units_per _week is the number of equal-length time units into which the week is
divided. This value is used to compute the length of the bit string in
logon_hours. It must be UNITS_PER_ WEEK (168) for this release. This field is
ignored by NetUserAdd and NetUserSetinfo calls.

3-388 LAN Server Application Programmer's Reference

• logon_hours points to a 21-byte (168 bits) map, each bit representing a unique
hour in a week. The first bit (bit 0, word 0) is Sunday, 0:00 to 0:59. Bit 1, word
0 is Sunday, 1:00 to 1:59, and so on. If a bit is set in this bitmap, it means that
logon is allowed. If a bit is cleared, it means logon is not allowed.

Note: A NULL pointer permits access at all times.

• badyw_count is the number of attempts to validate a bad password. A value of
-1 means unknown. This field is ignored by NetUserAdd and NetUserSetlnfo
calls.

• num_logons is the number of instances of logons to the account. A value of -1
means unknown. This field is ignored by NetUserAdd and NetUserSetlnfo
calls.

• logon _server points to a NULL string.

• country_code is the OS/2 country code for the user's language choice. This is
used by the OS/2 LAN Requester/Server software to generate messages in the
appropriate language whenever possible.

• code yage is the OS/2 code page for the language choice of the user.

User Account Information (Level 10): The following structure is provided to allow
users to retrieve limited information about themselves.

struct user_info_le {

};

char usri10_name[UNLEN+l];
char usri10_pad_l;
char far * usri10_connnent;
char far * usri10_usr_connnent;
char far * usri10_full_name;

where:

• usriJO_name is the name of the user.

• usriJO yad_J is for WORD-alignment of fields in the data structure.

• usriJO_comment points to an ASCIIZ string which is for remarks or comments
and can contain any type of text. The string can be NULL.

• usr _comment points to an ASCIIZ string which a user-settable field. The string
can be NULL.

• usriJO Jull_name is the full name of user.

User Account Information (Level 11): The following structure is provided to allow
users to retrieve more information about other users.

Chapter 3. API Function Descriptions 3-389

struct user_info_ll {
char usrill_name[UNLEN+l];
char usrill_pad_l;
char far * usril_co111nent;
char far * usrill_usr_co111nent;
char far * usrill_full_name;
unsigned short usrill_priv;
unsigned long usrill_auth_flags;
long usrill_password_age;
char far * usrill_home_dir;
char far * usrill_parms;
long usrill_last_logon;
long usrill_last_logoff;
long usrill_bad_pw_count;
unsigned short usrill_num_logons;
char far * usrill_logon_server;
unsigned short usrill_country_code;
char far * usrill_workstations;
unsigned long usrill_max_storage;
unsigned short usrill_units_per_week;
unsigned char far * usrill_logon_hours;
unsigned short usrill_code_page;

};

where:

• usrill_name is the name of the user.

• usrill_pad_l is for WORD-alignment of fields in the data structure.

• usrill_comment is for remarks or comment; it can contain any type of text. The
string can be NULL.

• usr _comment points to an ASCIIZ string which is a user-settable comment field.
The string can be NULL.

• usrillJull_name points to an ASCIIZ string containing the full name of the
user. The string can be NULL.

• usrill_priv is the user's privilege level. It can be one of the following:

Manifest

USER_PRIV_GUEST

USER_PRIV _USER

USER_PRIV _ADMIN

• usrill_auth_flags is reserved.

Value

0

1

2

Privilege

Guest

User

Administrator

• usril l_password_age is the time (in seconds) since the password was last
changed.

• usrill_home_dir is the user's home directory. It can be a null string. The
absolute path can be local or UNC.

• usril 1 _parms points to an ASCIIZ string containing the name of the user's home
directory. The string can be NULL.

3-390 LAN Server Application Programmer's Reference

• usril l_last_logon is the time and date (seconds since 1/1/70) when the last logon
occurred. A value of zero means unknown.

• usrill_last_logoff is the time and date (seconds since 1/1/70) when the last logoff
occurred. A value of zero means unknown.

• usrill_bad_pw_count is the number of attempts to validate a bad password. A
value of -1 means unknown.

• usrill_num_logons is the number of instances oflogons to the account. A value
of -1 means unknown.

• usrill_logon_server is the computer to handle logon requests for a user.

• usrill_country_code is the OS/2 country code for the user's language choice.
This is used by the OS/2 LAN Requester/Server software to generate messages in
the appropriate language whenever possible.

• usrill_workstations is a list of requesters from which a user is permitted to log
on. A NULL string means all requesters are allowed. (To disallow logon, the
account disabled flag must be set.) Up to 8 requesters may be specified. The
list of requesters can include IBM NETBIOS permanent names, which are listed
as machine IDs, consisting of 12 hexidecimal digits. IBM NETBIOS permanent
names are entered in the requester as shown as follows:

16DF.02AC.7DE9

• usrill_max_storage is a maximum storage allotted for the home directory. Units
are K bytes. An entry of OxFFFFFFFF means that the account will never
expire.

• usrill_units_per _week is the number of equal-length time units into which the
week is divided. This value is used to compute the length of the bit string in
logon_hours. It must be UNITS_PER_WEEK (168) for this release.

• usril l_logon_hours is a 21-byte (168 bits) map, each bit representing a unique
hour in a week. The first bit (bit 0, word 0) is Sunday, 0:00 - 0:59. Bit 1, word
0 is Sunday, 1:00 - 1:59, and so on. If a bit is set in this bitmap, it means that
logon is allowed. If a bit is cleared, it means logon is not allowed.

• usrill_code_page is the OS/2 code page for the language choice of the user.

Note: A NULL entry permits access at all times.

User Models Data Structure
In order to control global modals, the following data structure is used.

User Models Information {Level O)

struct user_modals_info_e
{

};

unsigned short
unsigned long
unsigned long
unsigned long
unsigned short
unsigned short

usnnod0_min_passwd_len;
usnnod0_max_passwd_age;
usnnod0_min_passwd_age;
usnnod0_force_logoff;
usnnode_password_hist_len;
usnnod0_max_reservedl

Chapter 3. API Function Descriptions 3-391

where:

• rnin_passwd_len is the minimum password length. The range of values is 0 to
MAX_PASSWD_LEN.

• rnax_passwd_age is the maximum time (in seconds) since the password was last
changed, and for which the current password is valid. A value of OxFFFFFFFF
(TIMEQ_FOREVER) allows the password to be valid forever. The minimum
value is one day.

• rnin_passwd_age is the minimum time (in seconds) since the password was last
changed, before which the current password is allowed to be changed. A value
of 0 means there is no delay required between password updates.

• force_logoff is the length of time (in seconds) after the valid logon hours that the
user should be forced off the network. The user will never be forced off if the
value is TIMEQ_FOREVER (OxFFFFFFFF), or be forced off immediately if
the value is 0. Any value between these can also be used.

• password_hist_len is the length of the password history, that is, the number of
passwords in the history buffer that are scanned versus the new password in a
NetUserPasswordSet attempt. The new password may not match any of the
entries scanned. The history is of ENCRYPTED passwords. It can be 0 to
DEF _MAX_PWHIST (currently 8).

• max _reserved] is not used.

User Modals Information (Level 1)

struct user modals info 1
{ - - -

};

unsigned short
char far *

where:

usrmodl_role;
usrmodl_primary;

• role is the role of this database under a single system image (SSI). It can be one
of the following:

Manifest

UAS_ROLE_STANDALONE

UAS_ROLE_MEMBER

UAS_ROLE_BACKUP

UAS_ROLE_PRIMARY

Value

0

2

3

Meaning

Standalone database

Member database in the domain

Backup database in the domain

Primary data base in the domain

Without SSI, this field should always be set to ST AND ALONE.

• primary is the name of the primary domain to which this database belongs. It
should match the primary domain name of the requester software on the local
machine.

3-392 LAN Server Application Programmer's Reference

User Validation Data Structures

User Valldatlon Information (Requester)

struct user_logon_req_l {
char usrreql_name[UNLEN+l];
char usrreql_pad_l;
char usrreql_password[SESSION_PWLEN];
char far * usrreql_workstation;

};

where:

• usrreql_name is the account name to which the user is attempting to log on.

• usrreql_pad is for WORD-alignment of data fields.

• usrreql_password is the plain text ASCIIZ password.

• usrreql_workstation is the ASCIIZ string representing the requester from which
the user is logging on. Can be NULL for local; ((long) -1) for unknown.

User Valldatlon Information (Level 0): The following is the logon data structure:

struct user_logon_info_e {
char usrloge_eff_name[UNLEN+l];
char usrlog0_pad_l;

};

where:

• usrlogO_eff_name is the name of the account to which the user was logged on.

• usrlogO _pad is for WORD-alignment of the data structure.

User Valldatlon Information (Level 1)

struct user_logon_info_l {
unsigned short usrlogl code;
char usrlogl=eff_name[UNLEN+l];
char usrlogl_pad_l;
unsigned short usrlogl_priv;
unsigned long usrlogl_auth_flags;
unsigned short usrlogl_num_logons;
unsigned short usrlogl_bad_pw_count;
long usrlogl_last_logon;
unsigned long usrlogl_last_logoff;
unsigned long usrlogl_logoff_time;
unsigned long usrlogl_kickoff_time;
long usrlogl_password_age;
unsigned long usrlogl_pw_can_change;
unsigned long usrlogl_pw_must_change;
char far * usrlogl_computer;
char far * usrlogl_domain;
char far * usrlogl_script_path;
unsigned long usrlogl_reservedl;

};

where:

Chapter 3. API Function Descriptions 3-393

• usrlogl_code is the code explaining an action taken. The following are possible
values:

NERR_Success No problems were encountered.
NERR_PasswordExpired The user has an account, but the user's password

has expired. No other conditions of logon have
been checked.

NERR_InvalidWorkstation The user was attempting to log on from an
invalid requester.

NERR_InvalidLogonHours The user was attempting to log on at an invalid
time.

ERROR_ACCESS_DENIED Some condition of logon has not been met.
NERR_StandaloneLogon No domain controller could be found to validate

the user. Script processing was not performed.
NERR_NonValidatedLogon The logon request was serviced by a 1.X logon

server. Logon script processing was performed.
NERR_LogonScriptError An error occurred processing logon script.

The user _logon_info_J data structure is returned by both the NetUserValidate2
API and the NetWkstaSetUID2 API. The following codes may be returned by
NetwkstaSetUID2, but are never returned by NetUserValidate2.

NERR_StandaloneLogon
NERR_LogonScriptError

No DC could be found to validate the user.
An error occurred processing the logon script.

The other fields in the user _logon _info_ l data structure are valid only when the
API returns 0, and the code is VALIDATED_LOGON.

• usrlogl_eff_name is the name of the account to which the user was logged on.

• usrloglyad_J is for WORD-alignment of data fields.

• usrloglyriv is the user's privilege level. It can be one of the following:

Manifest

USER_PRIV _GUEST

USER_PRIV _USER

USER_PRIV _ADMIN

• usrlogl_auth_flags is reserved.

Value

0

2

Privilege

Guest

User

Administrator

• usrlogl_num_logons is the number of instances of logons to the account. A value
of -1 means unknown.

• usrlogl_badyw_count is the number of attempts to validate a bad password. A
value of -1 means unknown.

• usrlogl_last_logon is the time and date (seconds since 1/1/70) when the last logon
occurred. A value of zero means unknown.

• usrlogl_last_logoff is the time and date (seconds since 1/1/70) when the last
logoff occurred. A value of zero means unknown.

• usrlogl_logoff_time is the time (in seconds) and date (since 1/1/70) when the user
should log off. A value of ((long) -1) means never.

• usrlogl_kickoff_time is the time (in seconds) when the system (server,
communications manager, and so on.) should force the user to log off. This is

3-394 LAN Server Application Programmer's Reference

the sum of the logoff time and the grace period. A value of ((long) -1) means
never.

• usrloglyassword_age is the time (in seconds) since the password was last
changed.

• usrloglyw_can_change is the time (in seconds) and date (since 1/1/70) when the
user can change his password. A value of -1 prevents users from changing their
passwords.

• usrloglyw_must_change is the time (in seconds) and the date (since 1/1/70) when
the password must be changed.

• usrlogl_computer is the domain logged on by. It can be 0 for local.

• usrlogl_domain is the domain logged on by. It can be 0 for local.

• usrlogl_scriptyath is the relative path to the logon script of an account.

• usrlogl_reservedl is reserved for internal use only. Must be zero.

User Validation Information (Level 2)

struct user_logon_info_2 {
char usrlog2_eff_name[UNLEN+l];
char usrlog2_pad_l;
char * usrlog2_computer;
char* usrlog2_fullname;
char * usrlog2_usrcomment;
unsigned long usrlog2_logon_time;

}

where:

• usrlog2_ejf_name is the name of the account to which the user was logged on.

• usrlog2yad_l is for WORD-alignment of data fields.

• usrlog2_computer is the server logged on. Can be zero for local.

• usrlog2 Jullname is the full name of the user.

• usrlog2_comment points to an ASCIIZ string which is a user-settable field for
user comments. The string can be NULL.

• usrlog2_logon_time is the time and date (seconds since 1/1/70) when the user
logged on. ((long) -1 means not available.)

User Validation Information (Logoff}: The following is the logoff data structure:

struct user_logoff_info_l {
unsigned short usrlogl_code;
unsigned long usrlogfl_duration;
unsigned short usrlogfl_num_logons;

} ;

where:

• usrlogfl_code is dependent on the calling APL It is specified separately for each
API.

• usrlogfl_duration is the duration of a logon. Can be 0 for unknown.

Chapter 3. API Function Descriptions 3-395

Related Information

• usr/ogfl_num_logons is the number of logons by a user name. Can be -1 for
unknown.

For information on:

• Logon scripts-See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

• Share resource access permissions-See "Share Category" on page 3-337.

3-396 LAN Server Application Programmer's Reference

NetUserAdd

Syntax

Return Codes

The NetUserAdd (admin, DOS) function establishes an account for a user in the use
accounts subsystem (UAS) database and assigns a password and privilege level.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserAdd(servername, level, buf, buflen)
char fai' * servername;
short level;
char far * buf;
unsigned short buflen;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (1 or 2) provided by the user _info_] or
user_info_2 data structures.

• buf points to the user _info _1 or user _info _2 data structures.

• bujlen specifies the size (in bytes) of the buf memory area.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_INV AUD _PARAMETER

ERROR_INV ALID _LEVEL

ERROR_MORE_DATA

NERR _ NetN otStarted

Value

0

5

8

25

50

87

124

234

2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions 3-397

Manifest Value Meaning

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_lnvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_BadUsername 2202 The user name or
group name parameter
is invalid.

NERR_ACFNotFound 2219 The Net.ACC file is
missing.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ GroupExists 2223 The group name is
already in use.

NERR_ UserExists 2224 The user account
already exists.

NERR_NotPrimary 2226 The U AS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFNoRoom 2228 There are too many
names in the access
control file.

3-398 LAN Server Application Programmer's Reference

Remarks

Manifest Value

NERR_ACFFileIOFail 2229

NERR_PasswordTooShort 2245

NERR_InvalidDatabase 2247

NERR_BadAsgType 2251

NERR_DevicelsShared 2252

NERR_InvalidComputer 2351

Meaning

An error was
encountered in
accessing the accounts
database.

The password is
shorter than required.

The UAS database file
is corrupted.

This asg_ type is
invalid.

This device is already
being shared.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosDevIOCtl(IOC_ENCRYPT)

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOC_ENCRYPT)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

For add calls at level 1, the additional fields in the user _info_2 data structures are
initialized to appropriate default values. These can be set to the desired values by
subsequent NetUserSetlnfo calls. The default values are as follows:

usri2 Juli_ name

usri2_usr_comment

usri2 _parms

useri2 _name

None (NULL string)

None (NULL string)

Chapter 3. API Function Descriptions 3-399

Related Information

usri2 _workstations

usri2 _acct_ expires

usri2_max_storage

usri2 _logon _hours[]

usri2 _logon _server

usri2_country _code

usri2 _code _page

usri2_auth_flags

All (NULL string)

Never (OxFFFFFFFF)

Unlimited (OxFFFFFFFF)

Logon allowed anytime (each element OxFF; all bits set
to 1)

Domain controller (NULL string)

Current country code on the server

Current code page on the server

None (0).

The following fields must be set to 0:

usri2 _password_ age

reserved

For information on:

Set so that base time equals time of creation

All reserved fields.

• Listing user accounts on a server-See "NetUserEnum" on page 3-404.

• Logon scripts-See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

• Modifying a user account-See "NetUserSetlnfo" on page 3-426.

• Modifying a user's group memberships-See "Group Category" on page 3-110.

• Removing a user account-See "NetUserDel" on page 3-401.

3-400 LAN Server Application Programmer's Reference

NetUserDel

Syntax

Return Codes

The NetUserDel (admin, DOS) function removes an account from the user account
subsystem database, ending all access to the resources in the system.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserDel(servername, username)
char far * servername;
char far * username;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string containing the user name to be deleted.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ ShareMem

NERR_RemoteOnly

Value

0

5

8

25

50

87

124

234

2102

2104

2106

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

Chapter 3. API Function Descriptions 3-401

Manifest Value Meaning

NERR_ ServerN otStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaN otStarted 2138 The Requester service
has not been started.

NERR_ BrowserNotStarted 2139 The requested
information is not
available.

NERR_ lnternalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The U AS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_ InvalidDatabase 2247 The UAS database file
is corrupted.

NERR_ InvalidComputer 2351 The specified computer
name is invalid.

NERR_LastAdmin 2452 The last administrator
cannot be deleted.

NERR_ CanN otGrowUASFile 2456 It is not possible to
grow the UAS file.

3-402 LAN Server Application Programmer's Reference

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOC_ENCRYPT)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

Only a user or application with administrative privileges can delete another user's
account.

Deleting an account also deletes all references to that account in all resource
permission access records and from groups in the system.

If the account being deleted is the last account in the database with administrative
privilege, the error NERR _ LastAdmin is returned and the delete function fails.

For information on:

• Creating a user account of use of server resources-See "NetUserAdd" on
page 3-397.

• Listing user accounts on a server-See "NetUserEnum" on page 3-404.

• Modifying a user account-See "NetUserSetlnfo" on page 3-426.

Chapter 3. API Function Descriptions 3-403

NetUserEnum

Syntax

Return Codes

The NetUserEnum (partially admin, DOS) function returns information about all
accounts on a server.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserEnum(servername, level, buf, buflen,

entriesread, totalentries)
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *
where:

servername;
level;
buf;
buflen;
entriesread;
totalentries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0, 1, 2 or 10) returned in the user _info data
structure.

• buf points to the user _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_ SEEK

ERROR_INVALID_PARAMETER

ERROR_ INV AUD _LEVEL

ERROR_MORE_DATA

Value

0

5

8

25

87

124

234

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

3-404 LAN Server Application Programmer's Reference

Manifest

NERR _ NetN otStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_ OS2Ioct1Error

NERR _ WkstaN otStarted

NERR_BrowserNotStarted

NERR _InternalError

NERR _ BadTransactConfig

NERR_ UserNotFound

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_InvalidDatabase

NERR_BadAsgType

Value

2102

2104

2106

2134

2138

2139

2140

2141

2221

2227

2229

2247

2251

Meaning

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The user name cannot
be found.

The U AS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The UAS database file
is corrupted.

This asg_type is
invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULL TRANSACT)

Chapter 3. API Function Descriptions 3-405

Remarks

Related Information

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosRead

• DosSemClear.

A user without administrative privileges can call this API with levels 0 or 10 only.

NetUserEnum returns user_info_O, user_info_l, user_info_2, or user_info_JO,
components. If level is 1 or 2, the password component of each data structure will
contain a string of spaces to maintain password security.

For information on:

• Listing all groups to which a user belongs-See "NetUserGetGroups" on
page 3-407.

• Retrieving the status of a particular user account-See "NetUserGetlnfo" on
page 3-410.

3-406 LAN Server Application Programmer's Reference

NetUserGetGroups

Syntax

Return Codes

The NetUserGetGroups (partially admin, DOS) function lists the names of all
groups in the user accounts subsystem (UAS) database to which a particular user
belongs. Users can use the NetUserGetGroups function on their user names.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserGetGroups(servername, username, level, buf, buflen,

entriesread, totalentries)
char far *
char far *
short
char far *
unsigned short
unsigned short far *
unsigned short far *

where:

servername;
username;
level;
buf;
buflen;
entriesread;
totalentries;

• servemame points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string indicating the name of the user to search
for in each group account.

• level specifies the level of detail (0) returned in the group_info_O data structure
(described below).

• buf points to the group_info_O data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf.

• totalentries points to an unsigned short integer indicating the number of entries
that were available.

Group Membership (Level 0)

struct group_info_e {
char grpi0_name[GNLEN+l];

};

where:

• grpiO_name contains the names of the groups to which a user belongs.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

Value

0

5

Meaning

No errors were
encountered.

Administrative
privilege is required.

Chapter 3. API Function Descriptions 3-407

Manifest Value Meaning

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_INV AUD _PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buff er is too small.

NERR_ NetN otStarted 2102 The redirector
NETWKST A.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR_ InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR _ GroupExists 2223 The group name is
already in use.

NERR_ACFN otLoaded 2227 The U AS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_InvalidDatabase 2247 The U AS database file
is corrupted.

3-408 LAN Server Application Programmer's Reference

Remarks

Related Information

Manifest Value

NERR _InvalidComputer 2351

Meaning

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE _NOT _FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosRead

• DosSemClear.

NetUserGetGroups returns an array of group_info_O data structures, indicating the
names of all groups to which the user belongs.

This is functionally equivalent to an Enum call because it enumerates the groups of
which a user is a member.

For information on:

• Retrieving the status of a user account-See "NetUserGetlnfo" on page 3-410.

• Retrieving and setting information about groups and their members on a
server-See "Group Category" on page 3-110.

Chapter 3. API Function Descriptions 3-409

NetUserGetlnfo

Syntax

Return Codes

The NetUserGetlnfo (partially admin, DOS) function retrieves information about a
particular account on a server.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserGetlnfo(servername, username, level,

buf, buflen, totalavail)
char far *
char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
username;
level;
buf;
buflen;
total avail;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string indicating the user's account information
to retrieve.

• level specifies the level of detail (0, 1, 2, 10, 11) returned in the user _info data
structure.

• buf points to the user _info data structure.

• bujlen specifies the size (in bytes) of the bu/ memory area.

• totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_INVALID_PARAMETER

ERROR_ INVALID _LEVEL

ERROR_MORE_DATA

Value

0

5

8

25

87

124

234

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

3-410 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR _NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buff er is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR _ BrowserN otStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR _ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR _ ACFN otLoaded 2227 The UAS database has
not been started.

NERR _ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR _ InvalidDatabase 2247 The U AS data base file
is corrupted.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CanNotGrow UASFile 2456 It is not possible to
grow the UAS file.

Chapter 3. API Function Descriptions 3-411

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

NetUserGetlnfo can be used to retrieve information on the user's privileges, home
directory, and the status of an account. When level is 1 or 2, the password
component of the user _info data structure contains a string of spaces to maintain
password security.

A user without administrative privileges can call this API with levels 0, 10, and 11
only. Level 11 is available. only for the account to which the user is logged on.

For information on:

• Modifying a user's account-See "NetUserSetlnfo" on page 3-426.

• Retrieving a list of groups to which a user belongs-See "NetUserGetGroups"
on page 3-407.

• Retrieving information on all user accounts on a server-See "NetUserEnum" on
page 3-404.

3-412 LAN Server Application Programmer's Reference

NetUserModalsGet

Syntax

Return Codes

The NetUserModalsGet (DOS) function gets global modals-related information for
all users and groups in the user accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserModalsGet(servername, level, buf, buflen, totalavail)

char far *
short
char far *
unsigned short
unsigned short far *

where:

servername;
level;
buf;
buflen;
total avail ;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0 or 1) supplied to the user _modals_info data
structure.

• buf points the user_ modals _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• totalavail points to the unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_INV AUD _PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

NERR_NetN otStarted

Value

0

5

8

87

124

234

2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions 3-413

Manifest Value

NERR_ShareMem 2104

NERR_RemoteOnly 2106

NERR_BufTooSmall 2123

NERR_ OS2Ioct1Error 2134

NERR_ WkstaN otStarted 2138

NERR_BrowserNotStarted 2139

NERR_InternalError 2140

NERR_ BadTransactConfig 2141

NERR_ACFNotFound 2219

NERR_ UserNotFound 2221

NERR_ACFNotLoaded 2227

NERR_ACFFileIOFail 2229

NERR_InvalidComputer 2351

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net.ACC file is
missing.

The user name cannot
be found.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

3-414 LAN Server Application Programmer's Reference

Remarks

• DosRead

• DosSemClear.

This function can be called even when the UAS system is not active, provided a
valid UAS database exists.

A user without administrative privileges can call this API with level 0 only.

Chapter 3. API Function Descriptions 3-415

NetUserModalsSet

Syntax

Return Codes

The NetUserModalsSet (admin, DOS) function sets global modals-related
information for all users and groups in the user accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserModalsSet(servername, level, buf, buflen, parmnum)

char far *
short
char far *
unsigned short
short

where:

servername;
level;
buf;
bufl en;
parmnum;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• level specifies the level of detail (0 or 1) supplied to the user _modals_info data
structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

• buflen specifies the size (in bytes) of the buf memory area.

• parmnum determines which parameter to set. If parmnum is zero, level must be 0
and buff must contain the user _modals_info_O data structure.

All fields in the user _modals_info_O data structure, except accsys_status, are settable.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

3-416 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR _ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation i_s not
supported on
workstations.

NERR_BuITooSmall 2123 The buffer is too small
for fixed-length data.

NERR _ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ACFNotFound 2219 The Net.Ace file is
missing.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR _ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

NERR_InvalidUASOp 2451 This operation is not
permitted when the
Netlogon service is
running.

Chapter 3. API Function Descriptions 3-417

Remarks

Other error return codes may be returned from the following OS/2 functions:

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosRead

• DosSemClear

• DosWrite.

This function can be called even when the UAS system is not active, provided a
valid UAS database exists. Setlnfo with level 1 can be called only when the
accounts subsystem is inactive.

The accounts system must be inactive in order to change the name of the database
domain.

NETLOGON cannot be running when setting the role field.

3-418 LAN Server Application Programmer's Reference

NetUserPasswordSet

Syntax

Return Codes

The NetUserPasswordSet (DOS) function changes the password stored in a user's
account in the system.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserPasswordSet(servername, username, oldpasswd, newpasswd)
char far * servername;
char far * username;
char far * oldpasswd;
char far * newpasswd;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string containing the name of the user whose
password will be changed.

• oldpasswd points to an ASCIIZ string specifying the user's current password.

• newpasswd points to an ASCIIZ string specifying a new password for the user.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_INV AUD _PASSWORD

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

Value

0

5

8

25

86

87

124

234

2102

Meaning

No errors were
encountered.

Administrative
privilege is required.

Sufficient memory is
not available.

The seek is invalid.

The specified password
is invalid.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buff er is too small.

The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions 3-419

Manifest Value Meaning

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The. buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_ BrowserN otStarted 2139 The requested
information is not
available.

NERR _ InternalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_BadPassword 2203 The password
parameter is invalid.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_ ACFN otLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR _ AccountExpired 2239 The user account has
expired.

NERR_PasswordCantChange 2243 This password cannot
change.

NERR _ PasswordHistConflict 2244 This password cannot
be used now.

NERR _ PasswordTooShort 2245 The password is
shorter than required.

NERR _ PasswordTooRecent 2246 The password is too
recent to change.

3-420 LAN Server Application Programmer's Reference

Remarks

Manifest Value Meaning

NERR _ InvalidDatabase 2247 The U AS data base file
is corrupted.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CanNotGrowU ASFile 2456 It is not possible to
grow the U AS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosDevIOCtl(IOC_ENCRYPT)

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NIOC_ENCRYPT)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite

• RdrDESEncrypt(NIOC_ENCRYPT) (pseudo FsCtl).

Passwords are case-sensitive.

The password will be set to newpasswd only if the oldpasswd matches the current
password for the user and the newpasswd is not the same as the usrmodallO_phistlen
password. This call allows users to change their own password without
administrative privilege. Password update restrictions apply.

If users have administrative privilege and need to change a user's password, without
knowing their old password, they can use NetUserSetlnfo instead.

NetUserPasswordSet, if successful to the domain controller of a single system image
(SSI) domain to which the user is currently logged on, also sets the current "default"
password of the requester. This allows the user to connect to all servers in the
domain, since the new password should rapidly replicate throughtout the domain.

Chapter 3. API Function Descriptions 3-421

Related Information

Special Sener Actions

When used remotely, this API is handled in a special way. It must be allowed to
succeed even when the user's current password is expired. If the password of the
account has expired but the account could otherwise log on, the server permits a
NetUserPasswordSet to succeed.

The server does this by examining the session setup, and if the session setup is
followed by a PasswordSet transaction, the server will validate the session setup,
process the transaction, and then close the session.

For information on setting a password, see "NetUserSetlnfo" on page 3-426.

3-422 LAN Server Application Programmer's Reference

NetUserSetGroups

Syntax

Return Codes

The NetUserSetGroups (adm.in, DOS) function sets the groups of which a user is a
member.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserSetGroups{ servername, username, level, buf, buflen, entries)

char far *
char far *
short
char far *
unsigned short
unsigned short

where:

servername;
username;
level;
buf;
bufl en;
entries;

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string containing the name of the user whose
group is being set.

• level specifies the level of detail (0) supplied to the group_info_O data structure.

• buf points the group _info data structure.

• buflen specifies the size (in bytes) of the buf memory area.

• entries points to the unsigned short integer indicating the number of entries that
were supplied in the buffer.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEEK

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

Value Meaning

0 No errors were
encountered.

5 Administrative
privilege is required.

8 Sufficient memory is
not available.

25 The seek is invalid.

87 The specified
parameter is invalid.

124 The Level parameter is
invalid.

234 Additional data is
available, but the
buff er is too small.

Chapter 3. API Function Descriptions 3-423

Manifest Value Meaning

NERR_N etN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_ InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_ InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ GroupNotFound 2220 The group does not
exist.

NERR_ UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is
replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.

NERR_ACFFileIOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special
group.

3-424 LAN Server Application Programmer's Reference

Manifest Value Meaning

NERR_InvalidDatabase 2247 The UAS database file
is corrupted.

NERR _ InvalidComputer 2351 The specified computer
name is invalid.

NERR_ CanNotGrowUASFile 2456 It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCtl(NULLTRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite.

Chapter 3. API Function Descriptions 3-425

NetUserSetlnfo

Syntax

The NetUserSetlnfo (partially admin, DOS) function modifies a user's account in the
system.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserSetlnfo(servername, username, level,

buf, buflen, parmnum)
char far * servername;
char far * username;
short level;
char far * buf;
unsigned short buflen;
short parmnum;

where:

• servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

• username points to an ASCIIZ string specifying which user's account to modify.

• level specifies the level of detail (1 or 2) provided by the user _info data structure.

• buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

Settable Fields Admio Owner

name x

password x

priv x

home_dir x

comment x

flags x

script_path x

auth.flags x

full_name x

usr _comment x x

parms x x

workstations x

acct_ expires x

max _storage x

logon_hours x

logon_server x

3-426 LAN Server Application Programmer's Reference

Return Codes

Settable Fields

country _code

codeyage

Admin

x

x

• buflen specifies the size (in bytes) of the bu/ memory area.

Owner

x

x

• parmnum determines whether buf contains a complete user _info data structure or
a single component. If parmnum is 0, level can be 1 or 2, and bu/ must contain a
complete user_info_l or user_info_2 data structure. Otherwise, parmnum must
specify the ordinal position value for one of the following data structure
components, as defined in ACCESS.H, as follows:

Manifest

PARMNUM_NAME

PARMNUM_PASSWD

PARMNUM_PRIV

PARMNUM_DIR

PARMNUM_COMMENT

PARMNUM_USER_FLAGS

PARMNUM_SCRIPT_PATH

PARMNUM_AUTH_FLAGS

PARMNUM_FULL_NAME

PARMNUM_USR_COMMENT

PARMNUM_PARMS

PARMNUM_WORKSTATIONS

PARMNUM_ACCT_EXPIRES

PARMNUM_MAX_STORAGE

PARMNUM_UNITS_PER_WEEK

PARMNUM_LOGON_HOURS

PARMNUM_LOGON_SERVER

PARMNUM_COUNTRY_CODE

PARMNUM_CODE_PAGE

Note: x = 1or2.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

Value

1

3

5

6

7

8

9

25

10

11

12

13

16

17

24

18

21

22

25

Value

0

5

Component

usrix_name

usrix yassword

usrix yriv

usrix _home_ dir

usrix _comment

usrix_user _flags

usrix _script ya th

usri2_auth_flags

usri2 Juli_ name

usri2 _ usr _comment

usri2 yarms

usri2 _workstations

usri2_acct_expires

usri2 _max _storage

usri2_units_yer _week

usri2_logon_hours

usri2 _logon _server

usri2_country _code

usri2 _code _yage

Meaning

No errors were
encountered.

Administrative
privilege is required.

Chapter 3. API Function Descriptions 3-427

Manifest Value Meaning

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_ NOT_ SUPPORTED 50 This request is not
supported by the
network.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INV AUD _LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_ NetN otStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred-the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BuITooSmall 2123 The buffer is too small
for fixed-length data.

NERR_ OS2Ioct1Error 2134 An internal error
occurred when calling
the workstation driver.

NERR_ WkstaNotStarted 2138 The Requester service
has not been started.

NERR_ BrowserNotStarted 2139 The requested
information is not
available.

NERR_IntemalError 2140 An internal error has
occurred.

NERR_ BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidAPI 2142 The requested API is
not supported on the
remote server.

NERR_ACFNotFound 2219 The Net.ACC file is
missing.

NERR_ UserN otFound 2221 The user name cannot
be found.

3-428 LAN Server Application.Programmer's Reference

Manifest Value

NERR_NotPrimary 2226

NERR_ACFNotLoaded 2227

NERR _ACFFileIOFail 2229

NERR _PasswordTooShort 2245

NERR_InvalidDatabase 2247

NERR_BadAsgType 2251

NERR _DevicelsShared 2252

NERR _InvalidComputer 2351

NERR _LastAdmin 2452

Meaning

The UAS database is
replicant and will not
allow updates.

The U AS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The password is
shorter than required.

The U AS data base file
is corrupted.

This asg_ type is
invalid.

This device is already
being shared.

The specified computer
name is invalid.

The last administrator
cannot be deleted.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosDevIOCtl(IOC_ENCRYPT)

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NETTRANSACTION)

• DosFsCrl(NIOC_ENCRYPT)

• DosFsCtl(NULL TRANSACT)

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite

• RdrDESEncrypt (NIOC_ENCRYPT) (pseudo FsCtl).

Chapter 3. API Function Descriptions 3-429

Remarks

Related Information

NetUserSetlnfo can be called to change a user's password only by users or
applications having administrative privileges. Also note that the only restriction
enforced when called by an administrator is that the new password length must be
consistent with system modals.

Note that all settable fields can be set by a user with administrative privilege. Any
user may set the fields marked under "owner" for his own account. To do this, the
user must use the parmnum option and cannot pass the whole structure.
NULL_USERSETINFO_PASSWD must be used withparmnum 0 option if it is
desired that the password not be changed.

If this function is to change the privilege of or disable the last account in the
database with administrative privilege, the error NERR_LastAdmin is returned and
the function fails.

For information on a particular user name on a server, see "NetUserGetlnfo" on
page 3-410.

3-430 LAN Server Application Programmer's Reference

NetUserValidate2

Syntax

Return Codes

The NetUserValidate2 (local) function validates a user with its password. It checks
if the user can log on based on logon restrictions defined for the account.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetUserValidate2(reservedl, level, buf, buflen, reserved2, totalavail)

char far reservedl;
short level
char far * buf
unsigned short buflen;
unsigned short reserved2;
unsigned short far* totalavail;

where:

• reserved] must be NULL.

• level specifies the level of detail (1) supplied to the user _logon data structure.

• buf points to the user _logon data structure.

Buffer contents on call: A structure user _logon_req_J. The usrreql_password is a
plain text password.

Buffer contents on response: A structure user _logon _info_ l.

• buflen specifies the size (in bytes) of the buf memory area.

• reserved2 is reserved and must be zero.

• totalavail points to the unsigned short integer indicating the number of bytes of
information that were available.

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

ERROR_SEEK

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INV AUD _LEVEL

ERROR_MORE_DATA

Value

0

5

25

50

87

124

234

Meaning

No errors were
encountered.

Administrative
privilege is required.

The seek is invalid.

This request is not
supported by the
network.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-431

Manifest Value

NERR_ShareMem 2104

NERR_BrowserNotStarted 2139

NERR_ UserNotFound 2221

NERR_ GroupExists 2223

NERR_ACFNotLoaded 2227

NERR_ACFFileIOFail 2229

NERR_ InvalidDatabase 2247

NERR_lnvalidComputer 2351

NERR_ CanNotGrowUASFile 2456

Meaning

An internal error
occurred-the network
cannot access a shared
memory segment.

The requested
information is not
available.

The user name cannot
be found.

The group name is
already in use.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

• DosAllocSeg

• DosChgFilePtr

• DosFsRamSemClear

• DosFreeSeg

• DosFsCtl(NetGetRdrAddr)

• DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

• DosNewSize [-ERROR_DISK_FULL]

• DosQFilelnfo

• DosRead

• DosSemClear

• DosWrite

• RdrDESEncrypt(NIOC_ENCRYPT) (pseudo FsCtl).

3-432 LAN Server Application Programmer's Reference

Remarks
If the account named in usrreql_name has no password, then any value in the
password field will match.

The behavior of this API is undefined if the value of reserved] is not zero.

The code field in the user _logon_info_l data structure can have the following error
codes:

Manifest

NERR_SUCCESS

ERROR_ACCESS_DENIED

NERR_InvalidWorkstation

NERR_InvalidLogonHours

NERR_PasswordExpired

Value

0

5

2240

2241

2242

Meaning

No errors were
encountered.

Administrative
privilege is required.

The user is not allowed
to log on from this
requester.

The user is not allowed
to log on at this time.

The password has
expired.

The rest of the user _info_] structure is valid only when code is NERR_Success and
the API returned either NERR_Success or ERROR_MORE_DATA.

The bad password count field in the user's record is incremented if the password
failed to match. A successful match resets this field.

The behavior of this API is undefined if the value of reserved] is not zero.

This function works on the local system only. If there is a standalone U AS database
(NET.ACC) existing on the requester, this API, when executed, will validate against
the local UAS database instead of the UAS database of the domain.

Chapter 3. API Function Descriptions 3-433

3-434 LAN Server Application Programmer's Reference

Appendix A. Include Files

©Copyright IBM Corp. 1990

This appendix lists and describes each of the include files provided with the OS/2
LAN Requester/Server applications program interface (API). The include files
declare information such as constants, storage classes, and function parameter types
that the OS/2 LAN Requester/Server API functions require. Each include file
declares information pertinent to a particular category of functions described in
Chapter 3, "API Function Descriptions." All OS/2 LAN Requester/Server include
files are stored in the \IBMLAN\NETSRC\ff directory.

The API functions use the include files listed as follows:

API Category Include Files

All OS2.ff

NETCONS.ff

NE TERR.ff

Access Permission ACCESS.ff

Alert ALERT.ff

ALERTMSG.ff

Meaning

Declares structures,
constants, and functions in
the base operating system.

Note: The OS/2.ff include
file is not part of the
OS/2 LAN
Requester /Server
include files.

Declares constants used with
various components of OS/2
LAN Requester /Server.
Used with all OS/2 LAN
Requester /Server functions.

Declares error manifests for
LAN Server return codes.
Used with all OS/2 LAN
Requester/Server functions.

Declares structures,
constants, and functions that
extract information and
control the access privileges
for the shared resources of a
server. Used with functions
in the Access Permissions,
Groups, and User categories.

Declares message constants
used by the alerter service
program in conjunction with
functions in the Alert
category.

Declares structures,
constants, or functions that
wait for specific events to
occur, enabling the operation
of several network services.
Used with functions in the
Alert category.

Appendix A. Include Files A-1

API Category Include Files Meaning

Audit AUDIT.ff Declares structures and
constants used for adding
events to the audit log of a
requester or server. Used
with functions in the
Auditing category.

Configuration CONFIG.H Declares functions that
retrieve the parameter of a
particular component from
the IBMLAN.INI file. Used
with functions in the
Configuration category.

Connection SHARES.ff Declares structures,
constants, and functions that
list information about the
resources a server is sharing.
Used with functions in the
Connection, File, Session,
and Share categories.

Domain ACCESS.ff Declares structures,
constants, and functions that
extract information and
control the access privileges
for the shared resources of a
server. Used with functions
in the Access Permissions,
Groups, and User categories.

Error Logging ERRLOG.H Declares structures and
functions that clear, close,
log on to, open, or read the
error log file. Also declares
the constants that define the
error codes related to the
operating system or
redirector. Used with
functions in the Error
Logging category.

File SHARES.ff Declares structures,
constants, and functions that
list information about the
resources a server is sharing.
Used with functions in the
Connection, File, Session,
and Share categories.

Handle CHARDEV.H Declares structures,
constants, and functions used
to modify, list, retrieve, and
delete shared serial devices
and queues. Used with
functions in the Serial Device
category.

A-2 LAN Server Application Programmer's Reference

API Category Include Files Meaning

Group ACCESS.H Declares structures,
constants, and functions that
extract information and
control the access privileges
for the shared resources of a
server. Used with functions
in the Access Permissions,
Groups, and User categories.

Mailslot MAILSLOT.H Declares functions that
create, delete, read, and write
mailslots on a server. Used
with functions in the
Mailslot category.

Message MESSAGE.H Declares structures,
constants, and functions that
send one-way messages, read
messages, or log messages.
Used with functions in the
Message category.

Remote Utility REMUTIL.H Declares data structures,
constants, and functions used
by remote utilities. Used
with functions in the Remote
Utility category.

Requester WKSTA.H Declares structures,
constants, and functions that
control the working
environment of a requester.
Used with functions in the
Requester category.

ACCESS.H Declares structures,
constants, and functions that
extract information and
control the access privileges
for the shared resources of a
server. Used with functions
in the Access Permissions,
Groups, and User categories.

Serial Device CHARDEV.H Declares structures,
constants, and functions used
to modify, list, retrieve, and
delete shared serial devices
and queues. Used with
functions in the Serial Device
category.

Appendix A. Include Files A-3

API Category Include Files Meaning

Server SERVER.H Declares structures,
constants, and functions that
retrieve or set information
regarding a server. Used
with functions in the Server
category.

Service SERVICE.H Declares structures,
constants, and functions that
install or control network
service programs on a server.
Used with functions in the
Service category.

Session SHARES.H Declares structures,
constants, and functions that
list information about the
resources a server is sharing.
Used with functions in the
Connection, File, Session,
and Share categories.

Share SHARES.H Declares structures,
constants, and functions that
list information about the
resources a server is sharing.
Used with functions in the
Connection, File, Session,
and Share categories.

Spooler PMSPL.H Part of the OS/2
Presentation Manager™
include files which declare
structures, constants, and
functions used to print in
PM Spooler.

Statistics NETSTATS.H Declares structures,
constants, and functions that
clear or retrieve statistical
information about the
performance of a server.
Used with functions in the
Statistics category.

Use ACCESS.H Declares structures,
constants, and functions that
extract information and
control the access privileges
for the shared resources of a
server. Used with functions
in the Access Permission,
Group, and User categories.

A-4 LAN Server Application Programmer's Reference

API Category Include Files

User USER.H

Meaning

Declares structures,
constants, and functions that
retrieve or control user
information. Used with
functions in the User
category.

Presentation Manager is a trademark of International Business Machines Corporation.

Appendix A. Include Files A-5

A-6 LAN Server Application Programmer's Reference

Appendix B. Function Libraries

This appendix describes the different libraries that a program can be linked to when
calling a OS/2 LAN Requester/Server function. Programs link to standard libraries
(.LIB) and dynamically linked libraries (.DLL). Standard libraries provide
information such as the name of a dynamically linked run-time library to the
relocatable object code at link time. Dynamically linked libraries contain the actual
assembler code of a function and are executed at run time. In addition, this
appendix provides an alphabetical list of all OS/2 LAN Requester/Server functions
with each required library, other software required to execute each function, and
special notes.

Note: The function names are spelled in the uppercase and lowercase style required
for C language programs.

Link-Time Libraries

©Copyright IBM Corp. 1990

At link time, any program that calls a particular API function must be linked to a
library (.LIB) containing information about the function. Link-time libraries
provide information that allows the operating system to dynamically link the
appropriate dynamically linked library to a program at run time.

Any program calling any of the following functions must be linked to the
NETAPI.LIB library:

NetAccessAdd
NetAccessCheck
NetAccessDel
NetAccessEnum
NetAccessGetlnfo
NetAccessGetUserPenns
NetAccessSetlnfo
NetAlertRaise
NetAlertStart
NetAlertStop
NetAuditClear
NetAuditRead
NetAuditWrite
NetCharDevControl
NetCharDevEnum
NetCharDevGetlnfo
NetCharDevQEnum
NetCharDevQGetlnfo
NetCharDevQPurge
NetCharDevQPurgeSelf
NetCharDevQSetlnfo
NetConfigGet2
NetConfigGetA112
NetConnectionEnum
NetErrorlogClear
NetErrorlogRead
NetErrorlogWrite
NetFileClose2
NetFileEnum2
NetFileGetlnfo2
NetGetDCName

Appendix B. Function Libraries B-1

NetGroupAdd
NetGroupAddUser
NetGroupDel
NetGroupDelUser
NetGroupEnum
NetGroupGetl n fo
NetGroupGetUsers
NetGroupSetlnfo
NetGroupSetUsers
NetlogonEnum
NetHandleGetlnfo
NetHandleSetlnfo
NetMessagelogFileGet
NetMessagelogFileSet
NetMessageNameAdd
NetMessageNameDel
NetMessageNameEnum
NetMessageNameFwd
NetMessageNameGetlnfo
NetMessageNameUnFwd
NetRemoteCopy
NetRemoteExec
NetRemoteMove
NetRemoteTOD
NetServerAdminCommand
NetServerDiskEnum
NetServerGetlnfo
NetServerSetlnfo
NetServiceControl
NetServiceEnum
NetServiceGetlnfo
NetServicelnstall
NetServiceStatus
NetSessionDel
NetSessionEnum
NetSessionGetlnfo
NetShareAdd
NetShareCheck
NetShareDel
NetShareEnum
NetShareGetlnfo
NetSha re Seti n fo
NetStatisticsGet2
NetUseAdd
NetUseDel
NetUseEnum
NetUseGetlnfo
NetUserAdd
NetUserDel
NetUserEnum
NetUserGetGroups
NetUserGetlnfo
NetUserModalsGet
NetUserModalsSet
NetUserPasswordSet
NetUserSetGroups
NetUserSetl nfo
NetUserValidate2

B-2 LAN Server Application Programmer's Reference

NetWkstaGetlnfo
NetWkstaSetlnfo
NetWkstaSetUID2

Any program calling any of the following functions must be linked to the
NETOEM.LIB library:

NetMessageBufferSend
NetMessageFileSend
NetServerEnum2

Any program calling any of the following functions must be linked to the 082.LIB
library:

DosBufReset
DosCallNmPipe
DosClose
DosConnectNmPipe
DosDisconnectNmPipe
DosMakeNmPipe
Dos Open
DosPeekNmPipe
DosQNmPipelnfo
DosQNmPipeSemState
DosQNmPHandState
Dos Read
DosReadAsync
DosSetNmPipeSem
DosSetNmPHandState
DosTransactNmPipe
DosWaitNmPipe
DosWrite
DosWriteAsync
SplQmAbort
SplQmClose
SplQmEndDoc
SplQmOpen
SplQmStartDoc
SplQmWrite

Any program calling any of the following functions must be linked to the
MAILSLOT.LIB library:

DosDeleteMailslot
DosMailslotlnfo
DosMakeMailslot
DosPeekMailslot
DosReadMailslot
DosWriteMailslot

Appendix B. Function Libraries B-3

Run-Time Libraries

Function Notes

At run time, any program that calls a particular API function must be dynamically
linked to a library containing the executable binaries for that function. The OS/2
operating system automatically links the program and library together when a
particular function is called.

OS/2 LAN Requester/Server provides the following dynamically linked libraries:

Library

MAILSLOT.DLL

NETAPI.DLL

NETOEM.DLL

SPLlA.DLL

Contents

Mailslot API library.

Base network API library.

Reserved.

OS/2 LAN Requester/Server extension of the
Presentation Manager spooler library.

This section provides an alphabetical list of each OS/2 LAN Requester/Server API
function, and other software required at run time.

The following list denotes special requirements for each OS/2 LAN Requester/Server
API function:

W Requires requester service
M Requires messenger service
S Requires server service
R Can be remotely executed
A Requires administrative privileges (remote only)
L Has a local-only library available.

The following table lists each OS/2 LAN Requester/Server API function and its
associated requirements.

API Name

DosBufR.eset

DosCallNmPipe

DosClose

DosConnectNmPipe

DosDeleteMailslot

DosDisconnectNmPipe

DosDupHandle

DosMailslotlnfo

DosMakeMailslot

DosMakeNmPipe

DosOpen

Requirements (W M S R A L)

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

B-4 LAN Server Application Programmer's Reference

API Name

DosPeekMailslot

DosPeekNmPipe

DosQFHandState

DosQHandType

DosQNmPHandState

DosQNmPipelnfo

DosQNmPipeSemState

Dos Read

DosReadAsync

DosReadMailslot

DosSetFHandState

DosSetNmpHandState

DosSetNmPipeSem

DosTransactNmPipe

DosWaitNmPipe

Dos Write

DosWriteAsync

Dos W riteMailslot

NetAccessAdd

NetAccessCheck

NetAccessDel

NetAccessEnum

NetAccessGetlnfo

NetAccessGetlJserPertlls

NetAccessSetlnfo

NetAlert:R .. aise

NetAlertStart

NetAlertStop

NetAuditClear

NetAuditRead

NetAuditWrite

NetCharDevControl

NetCharDevEnum

NetCharDevGetlnfo

NetCharDevQEnum

NetCharDevQGetlnfo

Requirements (W M S R A L)

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WRA

WR

WRA

WRA

WRA

WRA

WSRA

w
w
w
WRA

WRA

ws
WSRA

WSR

WSR

WSR

WSR

Appendix B. Function Libraries B-5

API Name

NetCharDevQPurge

N etCharDevQPurgeSelf

NetCharDevQSetlnfo

NetConfigGet2

NetConfigGetAII2

NetConnectionEnum

NetErrorLogClear

N etErrorLogRead

NetErrorLogWrite

NetFileClose2

NetFileEnum.2

NetFileGetlnfo2

NetGetDCName

NetGroupAdd

NetGroupAddUser

NetGroupDel

NetGroupDelUser

NetGroupEnum

NetGroupGetlnfo

NetGroupGetUsers

NetGroupSetlnfo

NetGroupSetUsers

NetHandleGetlnfo

NetHandleSetlnf o

NetLogonEnum

NetMessageBufferSend

NetMessageFileSend

NetMessageLogFileGet

NetMessageLogFileSet

NetMessageNameAdd

NetMessageNameDel

NetMessageNameEnum

NetMessageNameFwd

NetMessageN ameGetlnfo

NetMessageNameUnFwd

N etRemoteCopy

B-6 LAN Server Application Programmer's Reference

Requirements (W M S R A L)

WSRA

WSR

WSRA

WRA

WRA

WSRA

WRA

WRA

ws
WSRA

WSRA

WSRA

WR

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRS

WRS

WR

WRA

WRA

WMRA

WMRA

WMRA

WMRA

WMRA

WMRA

WMRA

WMRA

WR

API Name

NetRemoteExec

NetRemoteMove

NetRemoteTOD

NetServerAdminCommand

NetServerDiskEnum

NetServerEnum2

NetServerCJetlnf o

NetServerSetlnf o

NetServiceControl

NetServiceEnum

NetServiceCJetlnfo

NetServicelnstall

NetServiceStatus

N etSessionDel

NetSessionEnum

N etSessionCJetlnfo

NetShareAdd

NetShareCheck

NetShareDel

NetShareEnum

NetShareCJetlnfo

NetShareSetlnfo

N etSta tisticsCJet2

NetUseAdd

NetUseDel

NetUseEnum

NetUseCJetlnfo

NetUserAdd

NetUserDel

NetUserEnum

Net U serCJetCJroups

NetUserCJetlnfo

NetU serModalsCJet

NetUserModalsSet

NetUserPasswordSet

Net U serSetCJroups

Requirements (WMS RA L)

WR

WR

WR

WSRA

WRA

WR

WSRA

WSRA

WRA

WR

WR

WRA

w
WSRA

WSRA

WSRA

WSRA

WSR

WSRA

WSR

WSR

WSRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WRA

WSRA

WRA

Appendix B. Function Libraries B-7

APIName Requirements (WMS RA L)

NetUserSetlnfo WRA

NetU serValidate2 w
NetWkstaGetlnfo WRA

Net WkstaSetlnfo WRA

NetWkstaSetUID2 w
SplQmAbort R

SplQmClose R

SplQmEndDoc R

SplQmOpen R

SplQmStartDoc R

SplQmWrite R

B-8 LAN Server Application Programmer's Reference

Appendix C. Return Codes

This appendix lists the identifiers and return codes for the OS/2 LAN
Requester/Server API functions defined in the NETERR.H include file.

For a function-by-function listing of return codes, see Chapter 3, "API Function
Descriptions."

Successful Return Codes

Redirector

© Copyright IBM Corp. 1990

An OS/2 LAN Requester/Server API function that encounters no error returns the
following code.

0 No errors were encountered.

Originator: NERR _SUCCESS

An OS/2 LAN Requester/Server API function returning error codes 51 to 79 or 230
to 249 encountered an error with the redirector.

51 This remote computer is not listening.

Originator: ERROR_REM _NOT _LIST

52 A duplicate name exists on the network.

Originator: ERROR_DUP _NAME

53 The network path cannot be found.

Originator: ERROR_BAD _NETPATH

54 The network is busy.

Originator: ERROR_NETWORK_BUSY

55 This device does not exist on the network.

Originator: ERROR_DEV _NOT_EXIST

56 The IBM NETBIOS command limit has been exceeded.

Originator: ERROR_TOO_MANY_CMDS

Appendix C. Return Codes C-1

57 A network adapter hardware error has occurred.

Originator: ERROR_ADAP _HOW _ERR

58 The network has responded incorrectly.

Originator: ERROR_BAD _NET_RESP

59 An unexpected network error has occurred.

Originator: ERROR_ UNEXP _NET _ERR

60 The remote adapter being used is incompatible.

Originator: ERROR_BAD _REM_ADAP

61 The print queue is full.

Originator: ERROR_PRINTQ_FULL

62 There is not enough memory available for the requested print file.

Originator: ERROR_NO_SPOOL_SPACE

63 The requested print file has been canceled.

Originator: ERROR_PRINT _CANCELLED

64 The network name was deleted.

Originator: ERROR_NETNAME_DELETED

65 Network access is denied.

Originator: ERROR_NETWORK_ACCESS_DENIED

66 This network device type is incorrect.

Originator: ERROR_BAD_DEV_TYPE

67 This network name cannot be found.

Originator: ERROR_BAD _NET _NAME

68 The network name limit has been exceeded.

Originator: ERROR_TOO_MANY_NAMES

C-2 LAN Server Application Programmer's Reference

69 The IBM NETBIOS sesmon limit has been exceeded.

Originator: ERROR_TOO _MANY _SESS

70 File sharing has been temporarily paused.

Originator: ERROR_SHARING_PAUSED

71 This request is not accepted by the network.

Originator: ERROR_REQ_NOT_ACCEP

72 Print or disk redirection is temporarily paused.

Originator: ERROR_REDIR_PAUSED

230 This is a non-existent pipe or an invalid operation

Originator: ERROR_BAD_PIPE

231 The specified pipe is busy.

Originator: ERROR_PIPE_BUSY

232 There is no data on a non-bloc.king read.

Originator: ERROR_NO_DATA

233 The pipe was disconnected by the server.

Originator: ERROR_PIPE_NOT_CONNECTED

234 Additional data is available, but the buffer is too small.

Originator: ERROR_MORE_DATA

240 The session was canceled.

Originator: ERROR_ VC_DISCONNECTED

Network Utilities
An OS/2 LAN Requester/Server API function returning error codes 2100 to 2140
encountered an error with a network utility.

2102 The redirector NETWKSTA.EXE has not been started.

Originator: NERR_NetNotStarted

Appendix C. Return Codes C-3

2103 The server cannot be located.

Originator: NERR_ UnknownServer

2104 An internal error occurred-the networkcannot access a shared memory
segment.

Originator: NERR_ ShareMem

2105 A network resource shortage occurred.

Originator: NERR NoNetworkResource

2106 This operation is not supported on workstations.

Originator: NERR _ RemoteOnly

2107 The device is not connected.

Originator: NE RR_ Dev N otRedirected

2108 Unknown local device.

Originator: NERR _ U nknownLocalDev

2114 The Server service has not been started.

Originator: NERR _Server N otStarted

2115 The device queue is empty.

Originator: NERR_ItemNotFound

2116 The device or directory does not exist.

Originator: NERR_ UnknownDevDir

2117 The operation is invalid on a redirected device.

Originator: NERR_ RedirectedPa th

2118 The name has already been shared.

Originator: NERR _ DuplicateShare

2119 The server is currently out of the requested resource.

Originator: NERR_NoRoom

C-4 LAN Server Application Programmer's Reference

Spooler

2121 The requested add of item exceeds maximum allowed.

Originator: NERR_TooManyltems

2123 The buffer is too small for fixed-length data.

Originator: NERR_BufTooSmall

2127 A remote API error has occurred.

Originator: NERR _RemoteErr

2131 An error occurred when opening or reading the IBMLAN.INI file.

Originator: NERR _ LanlniError

2134 An internal error occurred when calling the workstation driver.

Originator: NERR _ OS2Ioct1Error

2136 A general network error has occurred.

Originator: NERR _ NetworkError

2138 The Requester service has not been started.

Originator: NERR _ WkstaN otStarted

2139 The requested information is not available.

Originator: NERR _ BrowserN otStarted

2140 An internal error has occurred.

Originator: NERR _ InternalError

An OS/2 LAN Requester/Server API function returning error codes 2150 to 2179
encountered an error while modifying a network spooler.

2150 The printer queue does not exist.

Originator: NERR_ QNotFound

2151 The print job does not exist.

Originator: NERR_JobNotFound

Appendix C. Return Codes C-5

2152 The printer destination cannot be found.

Originator: NERR_ DestN otFound

2154 The printer queue already exists.

Originator: NERR_ QExists

2155 No more printer queues can be added.

Originator: NERR_ QNoRoom

2156 No more print jobs can be added.

Originator: NERR_JobNoRoom

2157 No more printer destinations can be added.

Originator: NERR _ DestN oRoom

2158 This printer destination is idle and cannot accept control operations.

Originator: NERR Destldle

2159 This printer destination request contains an invalid control function.

Originator: NERR_ DestlnvalidOp

2160 The printer processor is not responding.

Originator: NERR _ ProcN oRespond

2161 The spooler service has not been started.

Originator: NERR _ SpoolerN otLoaded

2163 This operation cannot be performed on the printer queue in its current
state.

Originator: NERR_ QlnvalidState

2164 This operation cannot be performed on the print job in its current state.

Originator: NERR_JoblnvalidState

2165 A spooler memory allocation failure has occurred.

Originator: NERR _ SpoolNoMemory

C-6 LAN Server Application Programmer's Reference

Service
An OS/2 LAN Requester/Server API function returning error codes 2180 to 2199
encountered an error with one of the network services.

2180 The service does not respond to control actions.

Originator: NERR _ ServiceTableLocked

2181 The service table is full.

Originator: NERR _ ServiceTableFull

2182 The requested service bas already been started.

Originator: NERR _ Servicelnstalled

2183 The service does not respond to control actions.

Originator: NERR _ ServiceEntryLocked

2184 The service bas not been started.

Originator: NERR _ ServiceN otlnstalled

2185 The service name is invalid.

Originator: NERR _ BadServiceN ame

2186 The service is not responding to the control function.

Originator: NERR _ ServiceCtlTimeout

2187 The service control is busy.

Originator: NERR _ ServiceCtlBusy

2188 The IBMLAN.INI file contains an invalid service program name.

Originator: NERR _ BadServiceProgName

2189 The service cannot be controlled in its present state.

Originator: NERR _ ServiceN otCtrl

2190 The service was ended abnormally.

Originator: NERR_ServiceKillProc

Appendix C. Return Codes C-7

Requester

2191 The requested pause or stop is not valid for this service.

Originator: NERR_ ServiceCtlN ot Valid

An OS/2 LAN Requester/Server API function returning error codes 2200 to 2219
encountered an error with a requester.

2200 This workstation is already logged on.

Originator: NERR_AlreadyLoggedOn

2201 This workstation has not been logged on yet.

Originator: NERR_ N otLoggedOn

2202 The user name or group name parameter is invalid.

Originator: NERR_BadUsername

2203 The password parameter is invalid.

Originator: NERR_ BadPassword

2204 The logon processor did not add the message alias.

Originator: NERR_ UnableToAddName_ W

2205 The logon processor did not add the message alias.

Originator: NERR_ UnableToAddN ame _ F

2206 The logoff processor did not delete the message alias.

Originator: NERR_ UnableToDelName_ W

2207 The logoff processor did not delete the message alias.

Originator: NERR_ UnableToDelName_F

2210 A centralized logon server conflict has occurred.

Originator: NERR_ LogonServerConflict

2211 The server is configured without a valid user path.

Originator: NERR_LogonNoUserPath

C-8 LAN Server Application Programmer's Reference

2212 Ao error occurred while loading or running. the logon script.

Originator: NERR _ LogonScriptError

2213 Unable to use resources.

Originator: NERR _ CentralLogonFailed

2214 The logon server was not specified-standalone logon will occur.

Originator: NERR_StandaloneLogon

2215 The logon server cannot be found.

Originator: NERR _ LogonServerN otF ound

2216 There is already a logon domain for this computer.

Originator: NERR _ LogonDomainExists

2217 The logon server could not validate the logon.

Originator: NERR _Non ValidatedLogon

Access, User, and Group
An OS/2 LAN Requester/Server API function returning error codes 2220 to 2249
encountered an error while requesting or modifying information concerning network
privileges.

2220 The group does not exist.

Originator: NERR _ GroupNotF ound

2221 The user name cannot be found.

Originator: NERR_ UserNotFound

2222 The netname cannot be found.

Originator: NERR _ ResourceN otF ound

2223 The group name is already in use.

Originator: NERR _ GroupExists

2224 The user account already exists.

Originator: NERR_ UserExists

Appendix C. Return Codes C-9

2225 The resource permis.sion list already exists.

Originator: NERR_ResourceExists

2226 The UAS database is replicant and will not allow updates.

Originator: NERR_ NotPrimary

2227 The UAS database has not been started.

Originator: NERR_ ACFNotLoaded

2228 There are too many names in the acces.s control file.

Originator: NERR_ACFNoRoom

2229 An error was encountered in accessing the accounts database.

Originator: NERR_ACFFileIOFail

2230 Too many lists were specified.

Originator: NERR_ACFTooManyLists

2231 Deleting a user with a session is not allowed.

Originator: NERR_ UserLogon

2232 The parent directory cannot be located.

Originator: NERR_ACFNoParent

2233 Unable to grow UAS ses.s cache segment.

Originator: NERR_ CanNotGrowSegment

2234 This operation is not allowed on this special group.

Originator: NERR_SpeGroupOp

2235 This user is not cached in UAS ses.s cache.

Originator: NERR_ N otlnCache

2236 The user already belongs to this group.

Originator: NERR_ UserlnGroup

C-10 LAN Server Application Programmer's Reference

2237 The user does not belong to this group.

Originator: NERR_ UserNotlnGroup

2238 The user account is undefined.

Originator: NERR_AccountUndefined

2239 The user account has expired.

Originator: NERR_AccountExpired

2240 The user is not allowed to log on from this requester.

Originator: NERR _InvalidWorkstation

2241 The user is not allowed to log on at this time.

Originator: NERR _InvalidLogonHours

2242 The password has expired.

Originator: NERR_PasswordExpired

2243 This password cannot change.

Originator: NERR_PasswordCantChange

2244 This password cannot be used now.

Originator: NERR_PasswordHistConflict

2245 The password is shorter than required.

Originator: NERR_PasswordTooShort

2246 The password is too recent to change.

Originator: NERR_PasswordTooRecent

2247 The UAS database file is cormpted.

Originator: NERR_lnvalidDatabase

2248 No updates are neccessary to this replicant.

Originator: NERR_Data2249UpToDate

Appendix C. Return Codes C-11

Use

Message

An OS/2 LAN Requester/Server API function returning error codes 2250 to 2269
encountered an error while trying to retrieve information about a resource or while
using a resource.

2250 The connection cannot be found.

Originator: NERR_ U seN otFound

2251 This asg_ type is invalid.

Originator: NERR _ BadAsgType

2252 This device is already being shared.

Originator: NERR_ DeviceisShared

An OS/2 LAN Requester/Server API function returning error codes 2270 to 2309
encountered an error while processing information about a server.

2270 A computer name has not been configured.

Originator: NERR_NoComputerName

2271 This message server has already been started.

Originator: NERR _ MsgAlreadyStarted

2272 The message server initialization request has failed.

Originator: NERR _ MsglnitFailed

2273 The message alias cannot be found on the local area network.

Originator: NERR_ N ameNotF ound

2274 This message alias has already been forwarded.

Originator: NERR_AlreadyForwarded

2275 This message alias has been. added but is still forwarded.

Originator: NERR_AddForwarded

C-12 LAN Server Application Programmer's Reference

2276 This message alias already exists locally.

Originator: NE RR _Already Exists

2277 The maximum number of added message aliases has been exceeded.

Originator: NERR_TooManyNames

2278 The computer name cannot be deleted.

Originator: NERR_DelComputerName

2279 Messages cannot be forwarded back to the same workstation.

Originator: NERR _ LocalF orward

2280 Error in domain message processor.

Originator: NERR _ GrpMsgProcessor

2281 The message has been sent but the reception is currently paused.

Originator: NERR_PausedRemote

2282 The message was sent but not received.

Originator: NERR _BadReceive

2283 The message alias is currently in use-try again later.

Originator: NERR_NamelnUse

2284 The messenger service has not been started.

Originator: NERR _ MsgN otStarted

2285 The name is not on the local computer.

Originator: NERR _ N otLocalName

2286 The forwarded message alias cannot be found on the network.

Originator: NERR _ N oF orwardN ame

2287 The message alias table on the remote station is full.

Originator: NERR _ RemoteFull

Appendix C. Return Codes C-13

Server

2288 Messages for this alias are not currently forwarded.

Originator: NERR_NameNotForwarded

2289 The broadcast message was truncated.

Originator: NERR_ TruncatedBroadcast

2290 An error occurred in reading the message file.

Originator: NERR _ FileError

2294 This is an invalid device.

Originator: NERR_ InvalidDevice

2295 A write fault has occurred.

Originator: NERR_ WriteFault

2297 A duplicate message alias exists on the local area network.

Originator: NERR_ DuplicateName

2298 This message alias will be deleted later.

Originator: NERR_DeleteLater

2299 The message alias was not successfully deleted from all networks.

Originator: NERR_ IncompleteDel

2300 This operation is not supported on machines with multiple networks.

Originator: NERR_MultipleNets

An OS/2 LAN Requester/Server API function returning error codes 2310 to 2329
encountered an error when processing information about a server.

2310 This shared resource does not exist.

Originator: NERR_NetNameNotFound

2311 This device is not shared.

Originator: NERR_ DeviceN otShared

C-14 LAN Server Application Programmer's Reference

Serial Device

2312 A session does not exist with that computer name.

Originator: NERR _ ClientN ameN otF ound

2314 There is not an open file with that ID number.

Originator: NERR_FileldNotFound

2315 A failure occurred when executing a remote administration command.

Originator: NERR_ExecFailure

2316 A failure occurred when opening a remote temporary file.

Originator: NERR_TmpFile

2317 The data returned from a remote administration command has been
truncated to 64KB.

Originator: NERR_TooMuchData

2318 This device cannot be shared as both a spooled and a non-spooled device.

Originator: NERR _DeviceShareConflict

2319 The server table was initialized incorrectly.

Originator: NERR_BrowserTablelncomplete

2320 This domain is not active on this computer.

Originator: NERR_N otLocalDomain

An OS/2 LAN Requester/Server API function returning error codes 2330 to 2349
encountered an error with a serial device.

2331 The operation is invalid for this device.

Originator: NERR_DevlnvalidOpCode

2332 This device cannot be shared.

Originator: NERR_DevNotFound

2333 This device was not open.

Originator: NERR_DevN otOpen

Appendix C. Return Codes C-15

1/0

2334 This device name string is invalid.

Originator: NERR_ BadQueueDevString

2335 The queue priority is invalid.

Originator: NERR_BadQueuePriority

2337 There are no shared communication devices.

Originator: NERR_NoCommDevs

2338 A queue does not exist for this request.

Originator: NERR_ QueueNotF ound

2340 This list of devices is invalid.

Originator: NERR_ BadDevString

2341 The requested device is invalid.

Originator: NERR _ BadDev

2342 This device is already in use by the spooler.

Originator: NERR _In U seBySpooler

2343 This device is already in use as a communications device.

Originator: NERR _ CommDevln Use

An OS/2 LAN Requester/Server API function returning error codes 2350 to 2369
encountered an error while processing input or output.

2351 The specified computer name is invalid.

Originator: NERR_ InvalidComputer

2354 The string and prefix specified are too long.

Originator: NERR _ MaxLenExceeded

2356 This path component is invalid.

Originator: NERR_ BadComponent

C-16 LAN Server Application Programmer's Reference

2357 The type of input cannot be determined.

Originator: NERR _ CantType

2362 The buffer for types is not big enough.

Originator: NERR_TooManyEntries

Audit Log and Error Log

Remote Error

An OS/2 LAN Requester/Server API function returning error codes 2377 to 2379
encountered an error writing or reading from the audit log file or error log file.

2377 This log file exceeds the maximum defined size.

Originator: NERR _ LogOverflow

2378 This log file has changed between reads.

Originator: NERR _ LogFileChanged

2379 This log file is corrupt.

Originator: NERR_LogFileCorrupt

An OS/2 LAN Requester/Server API function returning error codes 2380 to 2399
encountered an error while executing a remote process.

2380 The source path cannot be a directory.

Originator: NERR _ SourcelsDir

2381 The source path is illegal.

Originator: NERR _ BadSource

2382 The destination path is illegal.

Originator: NERR _ BadDest

2383 The source and destination paths are on different servers.

Originator: NERR _ Diff erentServers

2385 The run server you requested using the NET RUN command is paused.

Originator: NERR_RunSrvPaused

Appendix C. Return Codes C-17

2386 An error was detected while creating a thread.

Originator: NERR_ CreatingThread

2387 An error was detected while creating a pipe.

Originator: NERR_ErrorMakingPipe

2389 An error occurred when communicating with a mn server.

Originator: NERR_ErrComm.RunSrv

2390 An error occurred when connecting to mn server.

Originator: NERR_ErrConnRunSrv

2391 An error occurred when starting a background process.

Originator: NERR_ErrorExecingGhost

2392 The shared resource you are connected to could not be found.

Originator: NERR_ShareNotFound

Requester Redirector
An OS/2 LAN Requester/Server API function returning error codes 2400 to 2429
encountered an error with the requester redirector.

2400 The LAN adapter number is invalid.

Originator: NERR _InvalidLana

2401 There are open files on the connection.

Originator: NERR_ OpenFiles

2402 Active connections still exist.

Originator: NERR_ActiveConns

2403 This netname or password is invalid.

Originator: NERR_BadPasswordCore

2404 The device is being accessed by an active process.

Originator: NERR _ DevlnUse

C-18 LAN Server Application Programmer's Reference

2405 The drive letter is in use locally.

Originator: NERR_LocalDrive

2406 Cannot allocate sufficient memory to load requester software.

Originator: NERR_MemAllocMsg

2407 Error reading NETWORKS entry in the IBMLAN.INI file.

Originator: NERR_IniFilRdErr

2408 Too many NETWORKS entries in the IBMLAN.INI file.

Originator: NERR_MultNetsMsg

2409 NETWORKS entry in the IBMLAN.INI file is too long and is ignored

Originator: NERR_BadNetEntHdr

2410 Error opening a network device driver.

Originator: NERR_BadBiosMsg

2411 There has been an improper BiosLinkage response from a device driver.

Originator: NERR_BadLinkMsg

2412 Argument given to the function is not valid.

Originator: NERR_BadArgMsg

2413 Incorrect OS/2 version in use.

Originator: NERR_BadVerMsg

2414 A redirector is already started.

Originator: NERR_RdrlnstMsg

2415 Drive in local use.

Originator: NERR_LocalDrive

2416 Error starting the NETWKSTA.SYS.

Originator: NERR_ Version

Appendix C. Return Codes C-19

2430 The specified client is already registered for the specified event.

Originator: NERR_ AlertExists

2431 The Alerter service table is full.

Originator: NERR_ TooMany Alerts

2432 The Alerter service has not been started.

Originator: NERR_ N oSuchAlert

2433 The Alerter service recipient is invalid.

Originator: NERR_ BadRecipient

2440 The log file does not contain the requested record number.

Originator: NERR_ InvalidLogSeek

2450 The UAS data2450 is not configured correctly.

Originator: NERR_BadUasConfig

2455 The Netlogon service has not been started.

Originator: NERR_NetLogonN otStarted

2456 It is not possible to grow the UAS file.

Originator: NERR_ CanNotGrowUASFile

C-20 LAN Server Application Programmer's Reference

Appendix D. Creating OS/2 LAN Server Services

When designing a service to use with the OS/2 LAN Requester/Server software, keep
in mind the following requirements:

• An executable file of a service must be listed under the SERVICE component
section in the IBMLAN .INI file.

• A service must not call screen or keyboard functions; this can be done indirectly
by calling a pop-up function such as VioPopup (an OS/2 program function).

• A service must dynamically notify the OS/2 LAN Requester/Server software
about a change in its status by calling the NetServiceStatus function, so that
other applications can respond correctly to the change.

• A service must respond to any signal sent by an application, calling the
NetServiceControl function to change its current state of operation.

An IBMLAN.INI entry of a service must include the name of the service and a valid
path name of an executable file used to start the service, and can have additional
parameters supply other information. Applications requesting to use the service can
call the functions in the Configuration category to obtain the additional information.
For information on using the Configuration functions and a description of
IBMLAN.INI components, see "Configuration Category" on page 3-68.

Starting a Service

©Copyright IBM Corp. 1990

After a service is started on a computer, the service must:

1. Call the NetServicelnstall function to notify the OS/2 LAN Requester/Server
software that a service is being started.

2. Verify any command-line parameters passed to the service by the calling process.

3. Start a signal-handler to interpret opcodes that requesting applications pass.

4. Set its state to INSTALL_PENDING to notify any requesting applications that
it is not ready for use, by calling the NetServiceStatus function.

5. Complete any other initialization procedures previously defined by the service.

6. Notify the OS/2 LAN Requester/Server software that installation is complete by
calling the NetServiceStatus function and setting its state to INSTALLED.

NetServiceinstall executes the executable file specified in the IBMLAN.INI
component of the service by calling the OS/2 DosExecPgm function and passing the
string of parameters comprised of IBMLAN .INI parameters and information passed
to the cmdargs parameter of NetServiceinstall.

The DosExecPgm function executes the service in detached mode, preventing handles
from being passed to child processes and preventing screen- and keyboard-oriented
calls except through pop-up functions. A service inherits the environment of the
parent process-the NetServiceinstall function.

If a service includes more than one process, the process that DosExecPgm initially
executes, referred to as the main service process, is the only process that receives
standard signals from NetServiceControl. The main service process is the only one
that can issue calls to the NetServiceStatus function. A service can transfer the

Appendix D. Creating OS/2 LAN Server Services D-1

responsibilities of the main service process to another process by setting the pid
component of the service_status data structure (passed to NetServiceStatus) to the
process identification number (PID) of the main service process candidate.

After receiving control from the DosExecPgm function, a service validates the
parameters passed from the IBMLAN .INI file. If the parameters are invalid, a
service notifies the OS/2 LAN Requester/Server software by calling the
NetServiceStatus function and ending execution. Otherwise, the service installation
continues.

After verifying parameters, a service must start a signal-handler that communicates
with the NetServiceControl function. Using the signal-handler, a service specifies its
current state (such as INSTALL_PENDING or INSTALLED) for the OS/2 LAN
Requester/Server software to enable other applications to properly use the service.
The signal-handler must register a function for the FlagA signal, opcode
SERVICE_REC_SIG_FLAG by calling the DosSetSigHandler function.

The following pseudocode illustrates the general format for a signal-handler:

void far pascal
signal_handler (sig_arg, sig_no)
unsigned sig_arg;
unsigned sig_no;
{
struct service_status svci;

unsigned char opcode; /* opcode parameter from
the NetServiceControl function */

unsigned char arg; /* arg parameter from
the NetServiceControl function */

opcode= (unsigned char) (sig_arg & Oxff);
arg (unsigned char) ((sig_arg) >> 8) & Oxff);

/* set up default values for NetServiceStatus buffer */

svci.svcs_pid = O;
svci.svcs_status = SERVICE_INSTALLED I SERVICE_UNINSTALLABLE;
svci.svcs_code = OL;

switch (opcode) {

case SERVICE_CTRL_INTERROGATE

set_wksta_status (& svci);
break;

/* other opcodes as appropriate

*/

D-2 LAN Server Application Programmer's Reference

case SERVICE_CTRL_UNINSTALL :

svci.svcs_status = SERVICE_UNINSTALL_PENDING;
set_wksta_status = (& svci);

Terminate ();

default :

/* treat all unknown commands
as SERVICE_CTRL_INTERROGATE */

}

/* issue a 1 reset 1 for the signal */

DosSetSigHandler (0, e, e, SIG_RESET, sig_no);

return;

/*
Note that if the signal-handler is written in C, it must be

*/
}

compiled using the auto-load DS option (-A option).
Otherwise, the DS register will not be loaded to the
service•s default data segment when the signal-handler
is called, and the code in the handler may make incorrect
assumptions about the data•s location.

Signal-handlers must preserve registers as noted
in the OS/2 programming documentation.

After a service specifies its current state as INSTALLED, another application can
change or query the state of the service by calling NetServiceControl. With this
function, an application can pass an opcode specifying one of four actions to take,
as defined in SERVICE.H, as follows:

Manifest Value Meaning

SERVICE_CTRL_INTERROGATE 0 Request for general
information.

SERVICE_CTRL_PAUSE 1 Pause the service.

SERVICE_CTRL_CONTINUE 2 Continue a paused
service.

SERVICE_CTRL_UNINSTALL 3 Shut a service down.

A service can define its own set of valid opcodes. Invalid opcodes should default to
another opcode such as SERVICE_CTRL_INTERROGATE. The OS/2 LAN
Requester/Server software defines the following limits:

• A service that does not accept the SERVICE_UNINSTALL opcode cannot be
removed at any time.

Appendix D. Creating OS/2 LAN Server Services D-3

• While in the SERVICE_INSTALL_PENDING state, a service can receive only
the SERVICE_UNINSTALL opcode.

In the following pseudocode, an application and a service communicate by means of
a signal-handler and the OS/2 LAN Requester/Server software:

Application OS/2 LAN Requester/Server Service

application calls
NetServiceControl
specifying an
opcode to perform
a particular task
I
I opcode is sent
+--->>------ to the specified
service

I
I signal-handler
+---->>----- interprets opcode

I
performs the task
defined by the opcode
I

calls NetServiceStatus
to change the state of
the service, if required
I

updates service ---<<---+
information table
according to current
state of the service
I
I

NetServiceControl
returns with the -<<-+
appropriate information
about the service's
current state

If performing the task takes a long time (more than a few seconds), the service
should make intermediate calls to the NetServiceStatus function.

Stopping a Service
When a service is no longer needed, either the application using it or the service itself
should call NetServiceControl and specify the appropriate shut-down opcode. After
receiving a shut-down opcode, a service must again call NetServiceStatus to declare
SERVICE_UNINSTALL_PENDING status and then perform any other necessary
tasks, such as closing open resources. The final step is to call the OS/2 DosExit
function. Immediately before doing this, the service must again change its status,
this time to SERVICE_UNINSTALLED.

For an application to disable a service from processing any further requests, the
service performs the following steps:

D-4 LAN Server Application Programmer's Reference

• Call NetServiceStatus to set a SERVICE_ UNINSTALL_PENDING state

• Execute a cleanup routine, closing any open resources

• Notify the OS/2 LAN Requester/Server software that it has been removed by
calling NetServiceStatus and setting a SERVICE_UNINSTALLED state

• End program execution.

To obtain information about services started, an application calls NetServiceEnum.
To query the state of a service, retrieving its status and code information, an
application calls NetServiceStatus.

The following pseudocode illustrates how the alerter service communicates with
other services, applications, and the OS/2 LAN Requester/Server software:

spooler {print alerts) -->>---+
I
server (security alerts) ->>--+
I

NetAlertRaise -->>-+
I I
Other Services ------>>-------------+
I I
Other Applications ---->>------------+
I

local mailslot
I
text event I
NetMessageBufferSend -<<- ALERTER Service ---<<----+

I
I
+--------->>-----------+

Remote Messenger
Service

For information on the default OS/2 LAN Requester/Server services and the
functions used to control services, see "Service Category" on page 3-298.

Appendix D. Creating OS/2 LAN Server Services D-5

D-6 LAN Server Application Programmer's Reference

Appendix E. OS/2 LAN API Support under IBM DOS
Requesters

Chapter 3, "API Function Descriptions," contains detailed descriptions of the OS/2
LAN Requester/Server API functions. This appendix presents information
programmers should be aware of when using OS/2 LAN Requester/Server APls with
DOS Requester.

In this appendix, you will find information about:

• IBM DOS API services

• IBM DOS libraries, where they are stored, and which ones are needed

• API functions supported under IBM DOS and any differences in their use.

Note: When porting OS/2 LAN Requester/Server applications to run under DOS,
be aware that DOS, unlike the OS/2 program, does not support pointer checking,
semaphores, or shared memory segments. Also note that all file names, directory
names, or parts of a path name, including UNC server and share names, must follow
DOS naming conventions.

API Services Supported Under DOS
DOS Requester supports the following services:

Service

messenger

netpopup

requester

Purpose

Enables applications to send messages across the LAN.

Enables messages to be displayed as pop-up messages on the
screen.

Enables DOS computers (attached to the LAN) to be configured
as requesters, thus enabling them to access resources on remote
OS/2 LAN servers.

These services are installed during installation of the redirector program. Unlike the
OS/2 program, the services cannot be completely stopped once they are installed.
However, they can be paused and continued using the NetServiceControl function.

DOS API Libraries

© Copyright IBM Corp. 1990

The OS/2 program uses dynamically-linked libraries during run time; DOS does not.
Under DOS, link your application with either the DOSNET.LIB or WINNET.LIB
library and the SYSCALLO.LIB library.

The DOSNET .LIB and SYSCALLO.LIB libraries also serve as BIND libraries for
the OS/2 NETAPl.LIB, NAMEPIPE.LIB, MAILSLOT.LIB, and NETSPOOL.LIB
libraries (similar to the API.LIB library).

Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-1

Include Files

The following sample commands show which DOS libraries to link in with your
application to achieve the same functionality that NETAPI.LIB provides:

LINK mydosap.obj, mydosap.exe, mydosap.map /MAP,
c:\ibmlan.dos\netsrc\lib\dosnet.lib

BIND myos2ap.exe doscalls.lib c:\ibmlan.dos\netsrc\lib\netapi.lib
c:\ibmlan.dos\netsrc\lib\dosnet.lib
c:\ibmlan.dos\netsrc\lib\syscall0.lib api.lib

The SYSV ALLO.LIB library file supports networking functions when using the OS/2
F API system calls (DosOpen, DosBufReset, DosRead). If used, it must immediately
precede the API.LIB file name as shown in the preceding BIND command line.

The default storage location for dosnet.lib, sysca/10.lib, and winnet.lib is

c:\ibmlan.dos\netsrc\lib.

DOS Requester uses most of the OS/2 include files described in Appendix A,
"Include Files." The include files are stored by default in

c:\ibmlan.dos\netsrc\h.

The following include files are used under DOS:

API Category

Access
Permission

Configuration

Mailslot

Message

Session

Share

Use

Requester

Include Files

NETCONS.H
ACCESS.H

NETCONS.H
CONFIG.H

NETCONS.H
MAILSLOT.H

NETCONS.H
MESSAGE.H

NETCONS.H
SHARES.H

NETCONS.H

SHARES.H
ACCESS.H

NETCONS.H
USE.H

NETCONS.H

WKSTA.H
ACCESS.H

API Category

Profile

Remote
Utility

Server

Service

Named Pipe

User

Include Files

NETCONS.H
PROFILE.H

NETCONS.H
REMUTIL.H

NETCONS.H
SERVER.H

NETCONS.H
SERVICE.H

NETCONS.H
NMPIPE.H

NETCONS.H
ACCESS.H

E-2 LAN Server Application Programmer's Reference

Differences in Use Under DOS
DOS Requester supports a subset of the API functions described in Chapter 3, "API
Function Descriptions." Most of the DOS Requester API functions are executed on
a remote server. API functions that can be executed remotely must include a remote
server name parameter to identify where the function is to be executed. Attempting
to execute a remote only function on a local requester returns NERR _ RemoteOnly.

Those functions that can be executed on a local requester must be called with a
NULL server name parameter (defaults to local requester name) or the name
assigned the local requester in the format-computer name. Attempting to execute a
local only function on a remote server returns ERROR_NOT_SUPPORTED.

The following sections describe the API functions that DOS LAN Requester
supports. In the descriptions, both the categories and the functions within each
category are alphabetically listed along with any differences in their use from that
described in Chapter 3, "API Function Descriptions."

'

Access Permission

Auditing

The functions in the Access Permission category examine or modify user or group
access permission records for server resources. Under DOS, these functions can only
be executed on a remote server. Administrative privilege must have been granted to
execute the functions. Attempting to execute the functions on a local requester
returns NERR_RemoteOnly.

Function

NetAccessAdd (admin)

NetAccessDel (admin)

NetAccessEnum (partially
admin)

NetAccessGetlnfo (partially
admin)

NetAccessGetUserPerms
(partially admin)

Differences in Use

None

None

None

None

NetAccessSetlnfo (admin) None

Function Differences in Use

NetAuditClear (local) None

Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-3

Configuration

Connection

Error Logging

File

Group

The functions in the Configuration category cannot retrieve network configuration
information from the DOSLAN.INI file. However, these functions can be called
remotely on a DOS requester to retrieve information from the IBMLAN.INI file.

Function

NetConfigGet2 (admin, DOS)

N etConfigGetAll2 (admin,
DOS)

Function

N etConnectionEnum (local)

Function

NetErrorLogClear (local)

NetErrorLogRead (local)

Function

NetFileClose2 (local)

NetFileEnum2 (local)

NetFileGetlnfo2

Function

NetGroupAdd (local)

NetGroupAddUser (local)

NetGroupDel (local)

NetGroupDelUser (local)

N etGroupEnum (local)

N etGroupGet Users (local)

Differences in Use

Cannot be called locally on a DOS requester

Cannot be called locally on a DOS requester

Differences in Use

None

Differences in Use

None

Differences in Use

None

None

Differences in Use

None

None

None

None

None

None

E-4 LAN Server Application Programmer's Reference

Mailslot

Message

The functions in the Mailslot category provide one-way interprocess communication
(IPC). Under DOS, the functions can be executed on a local requester or remote
server.

Note that mailslots can only be read or deleted by the process that created them.
Mailslots created by a process are deleted when that process ends.

Function Differences in Use

DosDeleteMailslot None

DosMailslotlnfo None

DosMakeMailslot None

DosPeekMailslot None

DosReadMailslot None

DosWriteMailslot None

The functions in the Message category are used to send and receive messages. The
functions can be executed only on a local requester. Attempting to execute the
functions on a remote server returns ERROR_NOT_SUPPORTED.

Under DOS, messages cannot be forwarded, unforwarded, or logged.

By default, DOS LAN Requester accepts only two names in the message name table:
the name of the requester and the name of the user. To define more names, edit the
DOSLAN.INI file and change the value of the nmsg parameter for the messenger
component. For more information on the DOSLAN.INI file, see the DOS User's
Guide.

The maximum size of a message under DOS is 64KB.

Function

NetMessageBufferSend (local)

NetMessageFileSend (local)

NetMessageLogFileGet (local)

NetMessageLogFileSet (local)

NetMessageNameAdd (local)

NetMessageNameDel (local)

NetMessageN ameEnum (local)

NetMessageNameFwd (local)

Differences in Use

Under DOS, the name parameter cannot point
to the name of the local requester or to the users
currently logged on to that requester.

Under DOS, the name parameter cannot point
to the name of the local requester or to the users
currently logged on to that requester.

None

None

None

None

None

None

Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-5

Named Pipe

Function

NetlY.lessageNaID.e<Jetlnf o
(local)

NetlY.lessageN allle U nFwd
(local)

Differences in Use

None

None

The functions in the NaID.ed Pipe category control interprocess cotnlllunication (IPC)
for nallled pipes. The functions can be executed only on a reID.ote server which has
interprocess collllllunication shares.

DOS supports only client processes; a pipe lllust have already been created and
connected on a reID.ote server. Child processes inherit the open file handles of the
parent processes. DOS does not support asynchronous reading and writing of
naID.ed pipes.

Note: The F API replacelllent library routine for DosOpen provides support for
DASD opens (open lY.lode Flag Ox8000). Since DOS does not support this operation,
pipe operations on this type of file handle return ERROR_ INV AUD _HANDLE
rather than ERROR_BAD_PIPE.

Function

DosBufReset

DosCallNID.Pipe

DosClose

DosDupHandle

Dos Open

DosPeekNID.Pipe

DosQHandType

DosQNID.pHandState

DosQNID.Pipelnfo

DosRead

DosSetNID.pHandState

DosTransactNID.Pipe

Dos Write

Differences in Use

DosBufReset works differently depending on the
version of DOS you are programllling under.
Under versions 3.3 and 4.0, DosBufreset returns
0 after resetting a closed naID.ed pipe. If the
handle is to a naID.ed pipe that has already been
closed, DosBufReset returns
ERROR_BROKEN_PIPE.

Under DOS 3.3 and 4.0, DosBufReset waits for
the pipe to be elllptied before resetting it.

None

None

None

None

None

None

None

None

None

None

None

None

E-6 LAN Server Application Programmer's Reference

Remote Utility

Requester

Serial Device

The functions in the Remote Utility category enable applications to copy and move
remote files, and access the time-of-day information on a remote server. Attempting
to execute the functions on a local requester returns NERR_RemoteOnly.

Function

NetRemoteCopy (Server)

NetRemoteMove (Server)

NetRemoteTOD (Server)

Differences in Use

None

None

None

The functions in the Requester category control the operation of requesters. They
can be executed only on a local requester. Attempting to execute the functions on a
remote server returns ERROR_NOT_SUPPORTED.

Function

NetWkstaGetlnfo (local)

NetWkstaSetlnfo (local)

NetWkstaSetUID2 (local)

Differences in Use

None

None

None

Certain parameters are not used under DOS and therefore cannot be set. However,
validity checks are performed on most of the unused parameters for future
expansion. The following table describes the parameters that are used and indicates
whether validity checks are performed on them:

Parameter Used

charwait No

char time Yes

char count Yes

errlogsz No

printbuftime No

wrkheuris tics No

Function

NetCharDevControl (local)

NetCharDevEnum (local)

NetCharDevQEnum (local)

NetCharDevQGetlnfo (local)

NetCharDevQPurge (local)

Validity Checked

Yes

Yes

Yes

Yes

Yes

No

Differences in Use

None

None

None

None

None

Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-7

Server

Service

Session

Function

NetCharDevQPurgeSelf (local)

N etCharDevQSetlnfo (local)

Differences in Use

None

None

The functions in the Server category enable remote administration tasks to be
performed on a remote server. NetServerEnum can be executed on either a local
requester or remote server; all other server functions are executed on a remote server.
Attempting to execute NetServerAdminCommand or NetServerGetlnfo on a local
requester returns NERR_RemoteOnly.

Function

NetServerAdminCommand
(Server)

NetServerDiskEnum (Server,
local)

NetServerEnum2

NetServerGetlnfo (Server)

NetServerSetlnfo (Server)

Differences in Use

None

Usually called locally (same as the OS/2
program)

None

None

None

The functions in the Service category control network service programs. They are
executed on a local requester. Attempting to execute the functions on a remote
server returns ERROR_NOT_SUPPORTED.

Under DOS, the services cannot be completely stopped; however, they can be paused
and continued using NetServiceControl.

Function

NetServiceControl (local)

NetServiceEnum (local)

NetServiceGetlnfo (local)

NetServicelnstall (local)

Function

N etSessionDel

NetSessionEnum

N etSessionGetlnfo

Differences in Use

None

None

None

None

Differences in Use

None

None

None

E-8 LAN Server Application Programmer's Reference

Share

Statistics

Use

User

The functions in the Share category control shared resources. They can be executed
only on a remote server. Attempting to execute the functions on a local requester
returns NERR_RemoteOnly.

Function Differences in Use

NetShareAdd None

NetShareCheck None

NetShareDel None

NetShareEnum None

NetShareGetlnfo None

N etShareSetlnfo None

Function Differences in Use

NetStatisticsGet2 None

The functions in the Use category examine or control connections (uses) between
requesters and servers. They can be executed only on a remote server. Attempting to
execute the functions on a local requester returns NERR_RemoteOnly.

Function

NetUseAdd (local)

NetUseDel (local)

NetUseEnum (local)

NetUseGetlnfo (local)

Differences in Use

None

None

None

None

The NetUserPasswordSet function controls a user's password account on a server.
NetUserPasswordSet can be executed only on a remote server running user-level
security. Attempting to execute it on a local requester returns NERR_RemoteOnly.

Function Differences in Use

NetUserAdd None

NetUserDel None

NetUserEnum None

NetUserGetGroups None

NetU serGetlnfo None

Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-9

Function

NetUserPasswordSet

NetUserSetlnfo

E-10 LAN Server Application Programmer's Reference

Differences in Use

None

None

Appendix F. IBM C/2 Sample Program

©Copyright IBM Corp. 1990

The following is a sample IBM C/2 program for the OS/2 LAN Server Version 1.2
application programming interface.

/***
/* *
/* FILE NAME SHARENUM.C *
/* *
/* MODULE NAME= SHARENUM.C *
/* *
/* DESCRIPTIVE NAME= C SAMPLE PROGRAM FOR THE LAN SERVER 1.2 API *
/* *
/* *
/* COPYRIGHT: XXXXXXXXX (C) COPYRIGHT IBM CORP. 1989 *
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM *
/* ALL RIGHTS RESERVED *
/* *
/* *
/* NOTES= *
/* *
I
/**********************-END OF SPECIFICATIONS-************************
* SHARENUM.C
*
*
* Invocation:
*
*
*
*
*
*
*
*
*
* Output:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Functions:
*
*

Invoke this program from the OS/2 full-screen
command prompt by typing:

SHARENUM [\\SERVERNAME] LEVEL

Where SERVERNAME is the name of the remote server and LEVEL
is the level of the share_info data structure to be returned.
If SERVERNAME is not specified, the program will execute on
the local server. Valid values for LEVEL are a, 1, and 2.

The program outputs infonnation using the printf function,
depending on the level with which it is called:
LEVEL = 0

For each shared resource, the netname of the resource.
LEVEL = 1

For each shared resource:
the netname
the type
the remark

LEVEL = 2
For each shared resource:

the netname
the type
the remark
the maximum number of uses
the current number of uses
the directory path to the resource on the server

This program consists of two functions: main and InfoOut.
The main function parses the command line, then calls
NetShareEnum to find out how many shares are available.

Appendix F. IBM C/2 Sample Program F-1

*
*
*
*
*
*
*
*
*
*

The actual number of shares is then used to calculate the
buffer length, based on the level of information requested.
NetShareEnum is then called a second time with this buffer.
If no error is returned, main then calls InfoOut, passing
the level, a pointer to the buffer, and the number of shares
returned by the API.
The InfoOut function uses the printf function to output the
share information, based on the level.

*/

/*******************************
* Include Files *
*******************************/

#include <stdio.h> /* Declares the printf() function */
#include <stdlib.h> /* Declares the atoi() function */
#include <ctype.h> /* Declares the isdigit() function */
#include <process.h> /* Declares the exit() function */
#include <os2.h> /* Defines OS/2 constants and data structures
#include <neterr.h> /* Defines Network error codes
#include <netcons.h> /* Defines Network constants
#include <shares.h> /* Required by NetShareEnum
#include <access.h> /* Required by NetShareEnum

/** Forward Declaration of InfoOut **/
void InfoOut (int, char*, unsigned short);

/**
* main *
**/

main(argc, argv)
int argc;
char *argv [];
{

*/
*/
*/
*/

*/

int
char
char
short
unsigned short
unsigned short
unsigned short

rc=0;
*servername;
*buf;
level=0;
buflen=0;
entriesread=0;
totalentries=0;

/* API return code storage */
/* Pointer to ASCIIZ string */
/* Pointer to a buffer area */

/* Level of share info */
/* Size of buffer area */

/* Number of shares returned */
/* Number of shares available */

/**/
/*Begin command line parsing */

switch (argc)
{

case 1: /* Not enough arguments, return syntax */
printf (11 \nSyntax: sharenum [\\\\servername] level\n\n 11

);

printf ("Where servername is the name of the remote server\n 11
);

F-2 LAN Server Application Programmer's Reference

printf {11 and level is a digit (0, 1, or 2) specifying the\n 11
);

printf {11 level of share information. If \\\\servername is not\n 11
);

printf {11 specified, the call is executed locally.\n\n 11
);

exit (1);
break; /* case 1 */

case 2: /* Only 1 parameter is passed to sharenum; */
/* assume a null servername and test for a */
/*valid level. */

if { strlen{argv[l]) > 1) /* String must be of length 1 */
{

}

printf (11 Level must be an integer between 0 and 2.\n 11
);

exit{l);

else /* Test for a digit */
{

if (isdigit (argv[1][0]) == 0)
{

printf {11 level must be an integer between 0 and 2.\n 11
);

exit(l);
}
else
{

}

level = atoi(argv[l]);
servername = 11 \0 11

;

/* argv[l] is a digit */
/*Assign null servername */

} /* end else strlen */

break; /* case 2 */

case 3: /* Both servername and level are passed; */
/*test for a valid level. */

if (strlen{argv[2]) > 1) /* Level string must be of length 1 */
{

}

printf (11 Level must be an integer between 0 and 2.\n 11
);

exit(l);

else
{

if (isdigit {argv[2][0]) == 0)
{

/* Test for a digit */

printf (11 Level must be an integer between 0 and 2.\n 11
);

exit(l);
}

else
{

level = atoi(argv[2]);
servername = argv[l];

/* argv[2] is a digit */
/* argv[l] is the servername */

/*Note: servername MUST BEGIN WITH*/
}

Appendix F. IBM C/2 Sample Program F-3

} /* end else strlen */

break; /* case 3 */

} /* end switch(argc) */

if (1 eve l > 2) /* level must be 0, 1, or 2 */
{

}

printf ("Level must be an integer between e and 2.\n");
exit(l);

/* End command line parsing. */
/**/

/* First call NetShareEnum to find out how many shares are available.
The number of shares available will be given by the totalentries
parameter. */

buflen = 0; /* Zero buffer length should cause error */

re = NetShareEnum ((char far *) servername,
level,
(char far*) buf,
bufl en,
(unsigned short far *
(unsigned short far *

&entriesread,
&totalentries);

if (re == NERR_Success)
{

/* No shares on server */

}

printf (11 \nServername: %s 11
, servername);

printf ("Level: %d 11
, level);

printf ("Return code from Enum: %d\n 11
, re);

printf ("Entries read: %u 11
, entriesread);

printf ("Total entries: %u\n 11
, totalentries);

printf (11 \nNo resources are shared.\n\n");
exit (0);

else if (re != ERROR_MORE_DATA)
{

/* Some unexpected error */

}

printf (11 \nServername: %s 11
, servername);

printf ("Level: %d 11
, level);

printf ("Return code from Enum: %d\n 11
, re);

printf (11 \nCall to NetShareEnum failed.\n\n");
exit (2);

/* Now we know the total number of entries and can calculate buflen,
based on the level, as follows: */

switch (1 eve l)
{
case 0:

F -4 LAN Server Application Programmer's Reference

buflen = (sizeof(struct share_info_0)) * totalentries;
break;

case 1:

break;

buflen = ((sizeof(struct share info 1))
+ (MAXCOMMENTSZ + 1)) -
* totalentries;

case 2:

break;

buflen = ((sizeof(struct share_info_2))
+ (MAXCOMMENTSZ + 1)
+ (PATHLEN + 1))
* totalentries;

/* Level is not e, 1, or 2. Print error message. */

default:
printf ("Level must be an integer between e and 2.\n 11

);

exit(l);
break;

} /* end switch(level) */

/* Allocate the buffer */

buf = malloc(buflen);

/* A null pointer means insufficient memory */

if (buf == 1 \0 1
)

{

}

printf ("Insufficient memory to allocate share-info buffer.\n");
exit(2);

/* API call * /
re = NetShareEnum (char far *) servername,

level,
(char far*) buf,
buflen,
(unsigned short far *
(unsigned short far *

printf (11 \nServername: %s 11
, servername);

printf ("Level: %d 11
, level);

&entriesread,
&totalentries);

printf ("Return code from Enum: %d\n 11
, re);

printf ("Entries read: %u 11
, entriesread);

printf ("Total entries: %u\n\n 11
, totalentries);

/* If no error returned, call InfoOut to output the share info */
if (re == NERR_Success)

InfoOut(level,buf,entriesread);

/* Free the buffer */
free(buf);
exit(0);

Appendix F. IBM C/2 Sample Program F-5

/* Note: There is a slight possibility that a share could have been added
after the first API call such that totalentries would no longer
reflect the real state of the server. Thus, the buffer could
be too small at the time of the second API call. More error
checking could be added to cover this case. */

} /* end main */

/**************************************
* InfoOut *
**************************************/

void InfoOut(Level,Buf,EntriesRead)
int Level; /* Level of share info */

/* Pointer to a buffer area */
/* Number of shares returned */

char *Buf;
unsigned short EntriesRead;
{
int 1 oop;
struct share_info_e *BufPtre;
struct share_info_l *BufPtrl;
struct share_info_2 *BufPtr2;

switch (Level)
{

/* Pointer to level e data */
/* Pointer to level 1 data */
/* Pointer to level 2 data */

case 0: /* Output level e infonnation */

BufPtre = (struct share_info_e *) Buf; /* type cast */

for (loop = 1; loop <= EntriesRead; ++loop)
{

printf(11 %s \n", BufPtr0->shi0_netname);
Buf Ptre++;

} /* end for */

break; /* case e */

/* print the netname*/

case 1: /* Output level 1 information */

BufPtrl = (struct share_info_l *) Buf; /* type cast */

for (loop = 1; loop <= EntriesRead; ++loop)
{

/* Print the netname, type, and remark */

printf("Netname: %-12s ", BufPtrl->shil_netname);
printf("Type: %d \n", BufPtrl->shil_type);
printf("Remark: %s \n\n", BufPtrl->shil_remark);
BufPtrl++;

F-6 LAN Server Application Programmer's Reference

} /* end for */

break; /* case 1 */

case 2: /* Output level 2 infonnation */

BufPtr2 = (struct share_info_2 *) Buf; /* type cast */

for (loop = 1; loop <= EntriesRead; ++loop)
{

/* Print the netname, type, remark, maximum number of uses,
current number of uses, and the path to the resource on
the server. */

printf(uNetname: %s u, BufPtr2->shi2_netname);
printf(uType: %d \nu, BufPtr2->shi2_type);
printf(uRemark: %s \nu, BufPtr2->shi2_remark);
printf(uMax Uses: %u u, BufPtr2->shi2_max_uses);
printf(ucurrent Uses: %u\n 11

, BufPtr2->shi2_current_uses);
printf(ulocal Path Name: %s \n\n 11

, BufPtr2->shi2_path);
Buf Ptr2++;

} /* end for */

break; /* case 2 */

} /* end switch */

} /* end InfoOut */

Appendix F. IBM C/2 Sample Program F-7

F-8 LAN Server Application Programmer's Reference

Appendix G. PC LAN Program 1.3 Compatibility

The DOS LAN Requester with DOS provides several function calls that are not
described in the main body of this book. These function calls are described here and
are provided for compatibility with applications currently supported by the PC LAN
program.

Function Call Overview
The following DOS Interrupt function calls are supported by the DOS LAN
Requester.

INT Function Description

2AH 0000 Installation Check

2AH 0060 Network Print Stream
Control

2AH 0300 Check Direct I/O

2AH 0400 Execute NETBIOS (Error
Retry)

2AH 0401 Execute NETBIOS (No
Error Retry)

2AH 0500 Get Network Resource
Information

2AH 7802 Get user ID and logon
status

2FH B800 DOS LAN Requester
installation check

2FH B809 Network version check

2FH B80F Get Start parameter

Function Call Descriptions
The following pages contain descriptions of the function calls.

©Copyright IBM Corp. 1990 Appendix G. PC LAN Program 1.3 Compatibility G-1

OOOOH (INT 2AH)
Installation Check

&pgrule.

Checks to see if the interrupt 2AH interface is installed

Remarks

On Register
Entry Contents

AH 0

On Register
Return Contents

AH Installed Flag

Zero ; Not i nsta 11 ed
Non-Zero ; Installed

A program can verify whether the interrupt 2AH interface is loaded by calling
Interrupt 2AH Installation Check.

G-2 LAN Server Application Programmer's Reference

OO&OH (INT 2AH)
Network Print Stream Control

&pgrule.

Remarks

Controls the truncation and concatenation of print streams for network printers.

On Register
Entry Contents

AH 06

AL 01 ; Set print output into
; concatenation mode

02 ; Set print output into
; truncation mode

03 ; Truncate print stream

On Register
Return Contents

AX DOS error code if carry set.
None if carry flag not set.

DOS defines separate print streams for each of up to three redirected printers. These
printers are LPTl (or PRN), LPT2, and LPT3. These print streams are delimited by
the following events:

• End of program

• Open and close of the files LPTl, LPT2, or LPT3

• Making a transition from printing with the IBM PC BIOS function INT 17H
and printing with DOS (in both directions)

• Printing with INT 17H from different DOS processes (a process is created by the
DOS EXEC function).

DOS is normally in Truncation mode, which means the stream delimiters listed
above take effect. Concatenation mode (AL=Ol) causes DOS to ignore the stream
delimiters. In this mode, the streams are delimited only when a DOS command
returns to asking for user input. This is either when a single DOS command ends or
when a DOS Batch (.BAT) ends. This allows output from several commands to be
kept together if the commands are in a Batch file. Set Concatenation mode changes
the stream state for all redirected printers. It has no affect on nonredirected printers.

Set Truncation mode (AL= 02) returns DOS to Truncation mode. It is used to
cancel the Set Concatenation mode function. This call does not truncate streams,
the next stream delimiter will cause the truncation. Truncation mode is
automatically set at the end of all DOS batch files and at the end of any command
not in a batch file. Set Truncation mode changes the stream state for all redirected
printers. It has no affect on nonredirected printers.

Not all programs print output in such a way that DOS can determine when a print
stream ends. Printing using INT 17H is the most common occurance of this
situation. Truncate Print Stream (AL= 03) allows a program to indicate that the

Appendix G. PC LAN Program 1.3 Compatibility G-3

data currently printed is a complete stream and it should be ended and printed. This
function serves the same purpose as the Ctrl +Alt+ PrtSc key that is available to
users to end print streams. Truncate Print Stream truncates the streams for all
redirected printers. It has no affect on nonredirected printers. The DOS LAN
Requester program must be started for this function call to work.

G-4 LAN Server Application Programmer's Reference

0300H (INT 2AH)
Check Direct 1/0

Remarks

&pgrule.

Checks to see if an absolute disk access is allowed to the device.

On Register
Entry Contents

AX 0300H

DS:SI Pointer to ASCIIZ disk device name

On Register
Return Contents

Carry flag Set if absolute access is denied
Clear if access is allowed

The Check Direct I/O function call provides a check to see if a direct disk access is
allowed to the specified device. Direct disk access is the use of DOS interrupts 25H
and 26H or BIOS interrupt 13H. Use Check Direct I/O in programs that perform
direct disk access. If the device is redirected or this function returns with carry set,
then the program should not perform direct disk I/O.

Use Check Direct I/O to eliminate disk data integrity problems that can result from
multiple concurrent processes updating the DOS disk data structures.

The device pointed to by DS:SI must include the colon (:). The path may be a full
path or only the drive specifier.

Interrupt 2AH (Installation Check) should be done before the Check Direct I/O
function call. If Interrupt 2A is not installed (AH= 0), then absolute disk I/O is
allowed. Programs should not use the Check Direct I/O function call frequently
since it may take some time to run. If constant checks are needed, save the results of
the first check, and check the saved result.

Note: The DOS LAN Requester must be loaded for the function call to execute
properly.

Appendix G. PC LAN Program 1.3 Compatibility G-5

0400H (INT 2AH)
Execute NETBIOS (Error Retry)

&pgrule.

Remarks

Executes the specified NETBIOS function call with error retry support provided.

On Register
Entry Contents

AX 0400H

ES:BX Pointer to the network control block
(NCB)

On Register
Return Contents

AH=O, No error
AL=O

AH=l, NCB error occurred. AL contains the
AL=X error code X.

Execute NETBIOS is reserved for use to support additional functions by capturing
the intended function call and providing compatibility with extended functions. To
ensure hardware independence, use the interrupt 2AH function. Do not use the
interrupt SCH function provided by the network adapter.

This function call provides error retry support for the following NETBIOS errors:

09H - No Resource Available
12H - Session Open Rejected
21H - Interface Busy.

The DOS LAN Requester retries the NETBIOS command that caused the error a
number of times. To provide their own error recovery support, applications should
invoke the Execute NETBIOS (0401H) function call.

On entry, the ES:BX register pair points to an NCB.

Note: The DOS LAN Requester must be loaded for the function call to execute
properly.

G-6 LAN Server Application Programmer's Reference

0401 H (INT 2AH)
Execute NETBIOS (No Error Retry)

&pgrule.

Remarks

Executes the specified NETBIOS function call with no error retry support provided.

On Register
Entry Contents

AX 0401H

ES:BX Pointer to the network control block
(NCB)

On Register
Return Contents

AH=O, No error
AL=O

AH=l, NCB error occurred. AL contains the
AL=X error code X.

Execute NETBIOS is reserved for supporting additional functions by capturing the
intended function call and providing compatibility with extended functions. To
ensure hardware independence, use the interrupt 2AH function call. Do not use the
interrupt SCH function provided by the network adapter.

This function call does not provide error retry support. (Execute NETBIOS function
call 0400H provides error retry support.) Applications should provide their own
error recovery if needed.

On entry, the ES:BX register pair points to an NCB.

Note: The DOS LAN Requester must be loaded for the function call to execute
properly.

Appendix G. PC LAN Program 1.3 Compatibility G-7

OSOOH {INT 2AH)
Get Netwo.rk Resource Information

&pgrule.

Remarks

Returns the number of local network names, network commands, and network
sessions available to an application after the DOS LAN Requester has started.

On Register
Entry Contents

AX 0500H

On Register
Return Contents

AX Reserved

BX Number of network names available

ex Number of network commands available

DX Number of network sessions available

The get network resource information allows an application to determine how many
local network resources are available for use after the DOS LAN Requester starts.
The application should invoke the function call before using any network
commands. The application should maintain its own network resource count so that
it does not exceed the values returned from get network resource count. Failure to
comply with this requirement may cause unpredictable results from both the DOS
LAN Requester and the network application. ·

G-8 LAN Server Application Programmer's Reference

7802H (INT 2AH)
Get User ID and Logon Status

&pgrule.

Provides the user ID and logon status information for the current user of the DOS
LAN Requester program.

On Register
Entry Contents

AX 7802H

ES:DI Address of 8 byte buffer

On Register
Return Contents

AL Zero: No user logged on
Non-zero: User logged on

ES:DI Buffer contains user ID, ASCII, padded
with blanks.

Appendix G. PC LAN Program 1.3 Compatibility G-9

BSOOH (INT 2FH)
DOS LAN Requester Installation Check

&pgrule.

Remarks

MOV
INT
CMP
JE
TEST
JNZ
TEST
JNZ

Checks to see if the DOS LAN Requester is installed. If the program is installed,
Installation Check returns the installed network components.

On Register
Entry Contents

AX B800H

On Register
Return Contents

AL Network installed flag:

Zero ; Network not installed
Non-Zero ; Network is installed

BX Installed component flag (bit flags):

xxxxxxxx xxxxlxxx : Redirector
xxxxxxxx lxxxxxxx : Receiver

Note: The x represents an undefined value.

Assembler Usage

AX,B800H ;AX - function code
; Ca 11 function 2FH

AL,0 ;Is network installed?
NOT_INSTALLED
BX,RECEIVER_FLAG
RECEIVER_ STARTED
BX,REDIRECTOR_FLAG
REDIRECTOR_ STARTED

;No, network not installed
;Is Receiver installed?
;Yes, Receiver is installed
;Is Redirector installed?
;Yes, Redirector is installed

Use interrupt 2F (Installation Check) to determine if the DOS LAN Requester is
installed. If the program is installed, Installation Check returns the components of
the program that are installed. To determine which configuration the users specified
when they started the network, perform the component checks in the order specified
in the preceding assembler code. This order is required because a given
configuration may install more than one component.

G-10 LAN Server Application Programmer's Reference

8809H (INT 2FH)
Network Version Check

&pgrule.

Remarks

Returns the version level of DOS LAN Requester.

On Register
Entry Contents

AX B809H

On Register
Return Contents

AH Minor version number

AL Major version number

A network installation check (AX= B800H), should be performed first to determine
if the network has been installed.

The Network Version Check function returns the hexadecimal equivalent of the DOS
LAN Requester version.

Appendix G. PC LAN Program 1.3 Compatibility G-11

BSOFH (INT2FH)
Get Start Parameters

&pgrule.

Remarks

Provides to the DOS application information on the start parameter values that are
defined for the DOS LAN Requester.

On Register
Entry Contents

AX B80FH

ex Number of bytes to return

ES:DI Address of output buff er

On Register
Return Contents

AX Zero: Network started
Non-zero: Network not started

ex Number of bytes returned in buffer
unchanged if network not started

ES:DI Start parameter value in buffer (see
remarks)

The data representing the start parameter will be placed in the buffer in the
following format:

DB eIH
DB 00H

DB 15 DUP (I I)

DB 0
DB 9 DUP (0)
DB 0

Major Version
Minor Version
CONFIG Flags: If bit on, then the value was specified

when the network was started.
Bit 0 On = /NSV r 0
Bit 1 On = /NMS r 0
Bit 2 On = /API
Bit 3 On = /HIM
Bit 4 On = /LIM
Bit 5 On = /ENC
Bit 6 On = /POP
Bit 7 On = /EMS
Bit 8 On = /RPL
Bits 9 - 12 Reserved
Bit 13 On = RDR Started
Bit 14 On = RCV Started
Bit 15 On = User is currently logged on
NET START Machine Name - blank padded
ASCIIZ ended
NET START Domain Name - ASCIIZ ended
Word Align

G-12 LAN Server Application Programmer's Reference

The following items are described in the description of the NET START command
in the DOS LAN Requester User's Guide.:

DB 32 DUP (1 1
) /WRK ASCII numeric - blank padded

OW ? /SRV
OW ? /ASG
OW ? /NBC
OW ? /NBS
OW ? /BBC
OW ? /BBS
OW ? /PBC
OW ? /PBS
OW ? /PFS
OW ? /PFT
OW ? /PWT
OW ? /KUC
OW ? /KST
OW ? /NVS
OW ? /NMS
OW ? /NOB
OW ? /MBI
DB ? NETBIOS Machine Name Number
DB ? NETBIOS Group Name Number
OW ? Sessions Required for Configuration
OW ? Commands Required for Configuration
OW ? Names Required for Configuration
DB ?,': 1 NET START Path (LANROOT)
DB 127 OUP(1 ?1

) ASCIIZ ended

Appendix G. PC LAN Program 1.3 Compatibility G-13

G-14 LAN Server Application Programmer's Reference

Appendix H. LAN API Manifests

Manifest

CNLEN

©Copyright IBM Corp. 1990

This appendix lists the manifests associated with variable-length ASCIIZ strings that
are pointed to by data structure components used in the OS/2 LAN API. The items
listed under the Component column are either offsets to, or pointers to variable
length ASCIIZ strings. These ASCIIZ strings can be from 0 to some maximum
number of bytes long in most instances. The maximum length for the
variable-length ASCIIZ strings is a manifest, or constant, that is defined with a value
in the NETCONS.H header file.

The variable length ASCIIZ string should not be greater in length than its
manifest+ 1 bytes. The + 1 is to allow for the ending NULL character of the string.

The Manifest column lists the manifests defined in NETCONS.H.

The Component column lists the data structure components that act as a pointer or
are offset to a variable length ASCIIZ string.

The Data Structure column lists the data structure of which the component is a
member.

The Category column lists the category to which the data structure belongs.

The information is as follows:

Component Data Structure Category

computername print_ other _info Alert
computername user_other_info Alert
ae_so_compname ae _ sesslogon Auditing
ae_sf_compname ae_sesslogoff Auditing
ae_sp_compname ae _ sesspwerr Auditing
ae_ ct_ compname ae _ connstart Auditing
ae_cp_compname ae _ connstop Auditing
ae_cr_compname ae_connrej Auditing
ae_ra_compname ae_resaccess Auditing
ae _rr _ compname ae _ resaccessrej Auditing
ae _cf_ compname ae _close file Auditing
ae_am_compname ae_aclmod Auditing
ae_um_compname ae_uasmod Auditing
ae_no_compname ae_netlogon Auditing
ae _nd _ compname ae _ netlogondenied Auditing
ae_al_compname ae_acclim Auditing
coni 1 _ netname connection _info_ 1 Connection
wkiO _ computername wksta_info_O Requester
wkiO _logon _server wksta_info_O Requester
wkil_computername wksta_info_l Requester
wkil_logon_server wksta_info_l Requester
wki 1 O _ computername wksta_info_IO Requester
sesi 1 _ cname session_info_l Session
sesi2 _ cname session _info_ 2 Session
sesi 1 O _ cname session _info_ l 0 Session

Appendix H. LAN API Manifests H-1

Manifest Component Data Structure Category

usri2_1ogon_ server user_ info_ 2 User

usri 11 _logon _server user _info_ 11 User

usrreq I_ workstation user_logon_req_l User

usrreq2 _computer user _logon _req_ 2 User

usrlog2_computer user _logon _info_ 2 User
DEVLEN chO_dev chardev _info_ 0 Serial Device

chl_dev chardev _info_ I Serial Device

uiO_local use_info_O Use

uil_local use_info_l Use
DNLEN wkiO _langroup wksta_info_O Requester

wkil _logon_ domain wksta_info_l Requester

wki 10 _langroup wksta_info_lO Requester

wki 1 O _logon _domain wksta_info_lO Requester

usrlogl_domain user_logon_info_l User
MAXCOMMENTSZ grpil _comment group _info_ I Group

svl_comment server _info_ l Server

sv2_comment server_info_2 Server

sv3 _comment server _info_ 3 Server

shil_remark share _info_ I Share

shi2 _remark share _info_ 2 Share

usri 1 _comment user _info_ 1 User

usri2_comment user_info_2 User

usri 1 o _comment user_ info_ 10 User

usri 11 _comment user_info_l 1 User

usri2 _full_ name user _info_ 2 User

usri 1 O _full_ name user_ info_ 10 User

usri 11 _full_ name user _info_ 11 User

usri2 _ usr _comment user _info_ 2 User

usrlog2 _full_ name user_logon_info_2 User

usrlog2_ usrcomment user_logon _info_ 2 User
MAXDEVENTRIES * cql_devs chardevQ_info _ l Serial Device
(DEVLEN)
MAXWORKSTATIONS usri2 _workstations user_ info_ 2 User
* (CNLEN)

usril I_ workstations user_info_l 1 User
NNLEN ae _ct_ netname ae_connstart Auditing

ae _ cp _ netname ae _ connstart Auditing

ae _er_ netname ae_connrej Auditing

cqO_dev chardevQ_info _ O Serial Device

cql_dev chardevQ_info _ 1 Serial Device
PATHLEN accO _resource_ name access_ info_ 0 Access

ace I_ resource_ name access_ info_ I Access

ae _ ra _ resname ae _resaccess Auditing

ae _ rr _ resname ae _resaccessrej Auditing

ae _cf_ resname ae_closefile Auditing

ae_am_resname ae_aclmode Auditing

ae_um_resname ae_uasmode Auditing

ae _al_ resname ae_acclim Auditing

fi 1 _pathname file _info_ 1 File

fi3 _pathname file _info_ 3 File

H-2 LAN Server Application Programmer's Reference

Manifest Component Data Structure Category

wkiO_root wksta_info_O Requester

wkil_root wksta _info_ 1 Requester
sv2 _ userpa th server _info_ 2 Server

sv3 _ userpath server _info _3 Server

shi2_path share _info_ 2 Share

usri I_ home_ dir user _info_ I User

usri 1 _ script_path user _info_ 1 User

usri2 _home_ dir user _info_ 2 User

usri2 _ script_path user_info_2 User

usri 11 _home_ dir user_info_l 1 User

usri2 _parms user _info_ 2 User

usril l _parms user_info_l User

usrlogl_script_path user _logon _info_ I User
UN LEN username print_ other _info Alert

username user_ other _info Alert

ae _so_ usemame ae_sesslogon Auditing

ae _sf_ usemame ae_sesslogoff Auditing
ae _ sp _ usemame ae _ sesspwerr Auditing

ae _ct_ usemame ae _ connstart Auditing
ae _ cp _ username ae _ connstop Auditing

ae _cr _ username ae_connrej Auditing

ae _ra _ usemame ae_resaccess Auditing

ae _rr _ usemame ae _ resaccessrej Auditing

ae _cf_ usemame ae _close file Auditing
ae _ ss _ username ae_servicestat Auditing

ae_am_usemame ae_aclmod Auditing

ae_um_username ae_uasmod Auditing

ae _no_ username ae_netlogon Auditing

ae _nd _ usemame ae _ netlogondenied Auditing

ae _al_ usemame ae_acclim Auditing

conil _ usemame connection _info_ I Connection

fil _ username file _info_ 1 File

fi3 _ username file_info_3 File
wkiO _ username wksta_info_O Requester

wki 1 _ usemame wksta_info_l Requester

wki 1 O _ username wksta_info_lO Requester

sesil_usemame session _info_ I Session

sesi2 _ username session _info_ 2 Session

sesi l _ username session _info_ IO Session
RM LEN uiO_remote use_info_O Use

uil_remote use_info_l Use
SNLEN ae _ ss _ svcname ae_servicestat Auditing

WRKHEUR_COUNT wkiO _ wrkheuristics wksta_info_O Requester

sv2 _ srvheuristics server _info_ 2 Server

sv3 _ srv heuristics server _info _3 Server

Appendix H. LAN API Manifests H-3

H-4 LAN Server Application Programmer's Reference

Glossary

This glossary contains terms specific to the LAN Server
version 1.2 Application Programmer's Reference.
Additional information can be found in the IBM
Dictionary of Computing(SC20-1699).

access permission record. The information describing
how users or groups can access the shared resource of a
server. It contains the net name of the resource, user
names and group names, and permissions granted for
each user name and group name.

account. The record of a user on a server. A user must
first have an account on a server to use any of the
shared resources of the server.

admin. A function requirement specifying that the
calling process must have administrative privileges to
execute the function. This requirement is listed in
parentheses after each function with the requirement.

alert. A notification of registered clients of a system
event. OS/2 LAN Requester/Server provides a basic set
of alerts. To add to them, use the Alert functions.

alert table. A list of registered users and groups of
users, known as clients, to be notified each time a
defined system event occurs. Clients can be registered as
mailslots or semaphores.

Alerter service. See service.

anonymous pipe. A one-way data storage buffer
maintained in RAM and used for interprocess
communications (IPC). See named pipe.

API. See application programming interface.

application. A program or set of programs that
perform a task; for example, a payroll application. For
the OS/2 LAN Server, see private application and public
application.

application programming interface (API). A
formally-defined programming language interface
between an IBM system control program or a licensed
program and the user of a program.

ASCIIZ string. A null-ended (\0) ASCII string; a
common string type used with the C programming
language.

batch file. A file containing DOS commands organized
for sequential processing while in DOS mode; files that
are identified with a .BAT extension. For OS/2 mode,
see command file.

broadcast message. A message sent to all users on the
local area network (LAN).

©Copyright IBM Corp. 1990

centralized logon server. The server that verifies the
logon password of a user name in a centralized logon
security system.

client process. (1) A program that establishes a
connection to (opens) a named pipe. (2) In Presentation
Interface, a process that uses a service or dynamic link
library. A process is a client of the service or library.

command. (1) A request from a terminal for
performance of an operation or execution of a program.

command file. A file containing OS/2 commands
organized for sequential processing while in OS/2 mode;
files that have a .CMD file name extension. For DOS
mode, see batch file.

computer. For LAN purposes, a computer is either a
requester or a server. A computer can have only one
computer name by which it is known to OS/2 LAN
Requester /Server.

computer name. A name given a network requester or
server. A computer name can be no longer than
CNLEN bytes (as defined in the NETCONS.H include
file). An example is:

workstal

communication device. A device connected to a serial
communication port. When shared, a communication
device is known by the name of the communication
device queue to which it is connected. See also device
name.

configuration. (1) The task of defining the devices,
features, parameters, and programs for a system. (2)
The arrangement and relationship of the components in
a system or network.

connect. To redirect a local device name to a shared
resource on a server.

connection. A direct communication link from a local
device to a shared resource on a server.

continue. To restart a OS/2 LAN Requester/Server
service or resource that was paused. See also pause.

device. In OS\2 LAN Server, a drive (for files
resources) or port (for printers and serial devices) that is
assigned when a resource is used. See communication
device, disk device, and device driver.

device driver. The executable code needed to attach and
use a device such as a display, printer, plotter, or
communications adapter. See device

Glossary X-1

device name. A name assigned to identify a specific
printer, disk drive, or other peripheral device. A device
name can be no longer than DEVLEN bytes (as defined
in NETCONS.H include file). Examples include:

G:
LPTS

directory. A structure for organizing files into groups.
A directory can contain files and subdirectories of files
in the format \dir\ .. .Vilename.ext

disk device. A device assigned a device name that
stores information in the form of files.

distributed logon security. A security system in which
each server verifies user permissions.

domain. A set of servers that allocates shared network
resources within a single logical system.

event. A particular defined state of the network or of a
service (such as when a disk drive reaches its complete
disk capacity).

event name. A name of a particular type of system
event, limited to EVLEN bytes (as defined in
NETCONS.H). An example is:

TONEALERT

explicit connection. The establishing of a connection by
means of the NetUseAdd function, where a local device
name is redirected to the shared resource of a server.

file name. (1) The name used by a program to identify
a file. (2) The portion of the identifying name that
precedes the extension.

file handle. A binary value that represents an open file;
used in all 1/0 operations.

group. A logical organization of users that have IDs
according to activity or resource access authority.

group name. A name assigned to a particular set of
user names. A group name can be no longer than
GNLEN bytes (as defined in NETCONS.H). An
example is:

businessgrp

handle. An arbitrary integer value that the OS/2
program returns to a process to represent a system
resource so that the process can return the value to the
OS/2 program on subsequent calls to use the resource.

implicit connection. The establishing of a connection to
the shared resource of a server by specifying the UNC
name of the resource.

IPC. See interprocess communication.

X-2 LAN Server Application Programmer's Reference

interprocess communication (IPC). The ability of local
and remote processes to transfer data and messages
among themselves; used to offer services to and receive
services from other programs on the network.

LAN. See local area network.

LAN group. The set of computers to which a given
computer belongs. A requester can belong to only one
LAN group.

LAN path name. A computer name followed by one or
more directory names, then followed by a file name
(such as \ \print2\styles\info.zap).

local computer. The computer where a user is working.
See also remote.

local area network (LAN). (1) Two or more computing
units connected for local resource sharing. (2) A
network in which communications are limited to a
moderate-sized geographic area such as a single office
building, warehouse, or campus, and that do not extend
accross public rights-of-way.

local device. A device physically attached to the local
requester-that is, the drives in the computer and any
machinery connected to its parts. This is a contrast to a
remote device which the requester accesses with the
LAN software.

local device name. A name by which a device is known
(for example, C:\ or LPTI).

log. A file containing a historical list of information.
With OS/2 LAN Requester/Server, several kinds of logs
can be set up: an error log, statistical log, message log,
and audit log.

log off. To remove a user name and password from a
requester. See also log on.

log on. To enter a user name and password at a
requester to enable access to the LAN. The user must
log on at the beginning of each computer session. At the
end of a work session, the user should log off. See also
log off.

logon script. A set of commands executed when a user
logs on to a requester.

logon security. A security and permissions system
restricting who has access to the information, settings
and devices of a LAN.

mailslot. A buffer that can store or forward messages
to users or applications.

mailslot name. A name of a buffer that can receive
messages. Mailslot names must be preceded by
\mailslot\, as follows:

\mail sl ot\name

message. A buffer or file of data sent to a messaging
alias.

message forwarding. The ability to reroute messages
intended for a user or application on one computer to a
user or application on another computer.

message logging. The process of saving all incoming
messages to a file.

messaging alias. A registered name that is used to
receive messages.

messenger service. See service.

name. The label by which OS/2 LAN Requester/Server
knows a user, a shared device and so forth. In the OS/2
LAN Requester/Server documents there are references
to user name, computer name, net name, device name,
etc. In addition, most system directories require a
pathname parameter that identifies the drive, directory,
subdirectories and specific name that the LAN must
follow to get from the local requester to the device that
is to be accessed.

named pipe. A data storage buffer that is maintained in
RAM; used for interprocess communication (IPC). See
anonymous pipe.

netname. A name assigned a shared resource with
which remote users and processes establish connections.
A net name consists of a computer name and the path
name of where the resource is located. A net name can
be no longer than RMLEN bytes (as defined in
NETCONS.H). An example is:

\\serverl\tool s\excel

network. A configuration of data processing devices
and software connected for information interchange.

network-aware application. An application that is
implemented to use network resources to its benefit.

password. A word owned by a user or shared resource
to prohibit other users from accessing a specified
resource. User passwords can be no longer than
PWLEN bytes; Share passwords can be no longer than
SHPWLEN bytes (both parameters are defined in
NETCONS.H). Examples include:

My_password
JLD*BDP

path. The path is the route that one device on a LAN
takes to access a remote device. Path descriptions
usually include a drive specification; a directory name
(the root directory is specified with a backslash only (\));
and optional subdirectories, such as \bin\src).

path name. A file specification that describes the route
from the current directory on the local requester to the
file, in the following format:

devicename:\directory\subdirectory\ .•• \filename

A path name can be no longer than PA THLEN bytes
(as defined in the NETCONS.H include file). A
backslash (\) precedes each directory name and file
name. For example:

E:\BIN\USR\NETCONS.H

is the path name to the NETCONS.H file in the user
subdirectory of the bin directory on the E drive. To
specify a path name on the local drive, forgo the drive
name, beginning the path with \directory.

pause. To suspend a OS/2 LAN Requester/Server
service or function. See also continue.

permission. The permission setting on a shared resource
determines which users can use the resource. Permission
is also used to refer to the user's privileges. On the
LAN, certain levels of permission can be set, giving the
user various degrees of freedom in accessing devices and
in reading or changing information. See permission
levels.

permission levels. The degree to which a user can use a
shared resource. Three permission levels (Guest, User,
and Administrator) are provided in the OS/2 LAN
Requester/Server software.

pipe. See anonymous pipe, named pipe.

pipe name. The name given a buffer that allows two
processes to communicate serially with each other. A
pipe name must be preceded by \pipe\, as follows:

\pipe\buffername

print device. A device that copies data from a computer
onto paper. A print device is known to OS/2 LAN
Requester/Server by the name of the port to which it is
connected. See device names for more information
specifying a print device in a LAN routine.

private application. An application maintained by an
individual user and not available across a network.
Contrast with public application.

public application. An application maintained by the
network administrator and shared with users on a
network. Contrast with private application.

queue. An orderly list of elements waiting to be
processed. OS/2 LAN Requester/Server software
supports serial device queues and spooler queues.

raise. To notify a user or application of a particular
event.

Glossary X-3

raw read and write server message block (SMB)
protocol. The protocol used when an incoming or
outgoing packet contains only data and no SMB format
is used.

remote. A term describing any server, requester, or
resource that is not located on the local computer where
a process is executing.

remote administration. Conducting administrative tasks
such as sharing the resource of a server from a remote
computer.

requester. The computer from which a user or
application is accessing server resources.

resource. Any device, application, drive, or information
on a server that can be accessed by a requester.

separator page. A sheet of paper automatically added
between documents printed by way of a printer queue,
sometimes containing such information as name, date
and time of job.

serial device. Any hardware device that processes
ASCII characters (such as a printer, modem, or FAX
machine).

serial device queue. A pool of serial devices. With serial
device queues, an application communicates directly to
the device, instead of submitting a job to the queue (as
with spooled devices).

server. A computer on a local area network that
controls access to shared resources such as files,
printers, and modems.

server name. A name of a particular network server. A
server name can be no longer than CNLEN bytes (as
defined in NETCONS.H). An example is:

server!

service. The programs that perform the primary
functions of OS/2 LAN Requester/Server and related
software. The OS/2 LAN Requester/Server services are:

Service Purpose

replicator Provides for file replication

dlrinst Downloads code from servers to requesters

requester Basic OS/2 LAN software

server Software to perform administrative tasks
such as sharing resources or assigning
permissions and privileges

messenger Software to send messages

netpopup Software to receive incoming messages

alerter Software to notify of an event

netrun Software to remotely execute programs

X-4 LAN Server Application Programmer's Reference

netlogon Software for centralized-logon server

pcdosrpl Supports remote IPL of DOS requesters.

service name. A name of a network service. A service
name can be no longer than SNLEN bytes (as defined in
NETCONS.H). An example is:

NETPOPUP

session. A link between a requester and a server. A
session is established the first time a requester requests
to use the resource of a server.

share. To make a local resource available to remote
users or other processes. Only local resources can be
shared.

shared resource. The resource of a server that can be
accessed by a requester on the network.

SMB. See raw read and write server message block
protocol.

spool file data type name. A spool file data type defines
the type of print jobs that a printer queue can process.
A spool file data type name can be no longer than
DTLEN bytes (as defined in NETCONS.H). An
example is:

IBMQSTD

spooler. A program that intercepts the data going to a
device driver and writes it to disk. The data is later
printed or plotted when the required device is available.
A spooler prevents output from different sources from
being intermixed.

time stamp. A record of the time at which a system
event occurred. Time stamps are figured on the basis of
the LAN system clock as the number of seconds passed
since January 1, 1970. Time stamps are used for
statistics.

use. To establish a connection from a local device to a
shared resource.

user name. The unique name assigned to each person
granted access to a LAN system. To log onto a
requester, the person must enter a user name and a
self-assigned password (see also password). The system
uses the user name to keep track of who is performing
which operations.

A user name can be no longer than UNLEN bytes (as
defined in NETCONS.H). An example is:

shannong

UNC name. See Universal Naming Convention name.

Universal Naming Convention (UNC) name. A name
given to a device, computer, or resource under the UNC

to allow users and applications access to the resource
across the network. An example is:

\ \Server\dri ve\ fi 1 e. ext

Glossary X-S

X-6 LAN Server Application Programmer's Reference

Index

A
access operations 3-9
Access Permission category

access permission record 3-2
description 3-2
functions 3-2
NetAccessAdd 3-6
NetAccessCheck 3-9
NetAccessDel 3-12
NetAccessEnum 3-15
NetAccessGetlnfo 3-18
NetAccessGetUserPerms 3-22
NetAccessSetlnfo 3-25
recursive searching 3-15
resource permissions 3-4
resource types 3-9, 3-12, 3-18, 3-22, 3-25
types of access operations 3-9

access permission record, definition 3-2, X-1
Access Permissions category

data structures 3-3
functions 2-1
resource types 3-3

account
ADMIN 3-110
GUEST 3-11, 3-110
USER 3-110

account limit exceeded 3-57
account, definition X-1
admin, definition X-1
ae data structures

-access control list modification 3-53
access denied 3-52
access granted 3-51
account limit exceeded 3-57
connection rejected 3-50
connection started 3-49
connection stopped 3-49
network logoff record 3-55
network logon denied 3-56
network logon record 3-55
password error 3-48
server status changes 3-46
service status code or text changed 3-52
session begins 3-46
session ends 3-48
user accounts subsystem modification 3-54

Alert category
data structures

event 3-30
fixed-length header 3-30

description 3-29
functions 2-2
NetAlertRaise

alert classes 3-34

© Copyright IBM Corp. 1990

Alert category (continued)
N etAlertStart

alert classes 3-37
NetAlertStop 3-40

alert event structures
entry made to error log file 3-31
network message received 3-31
notify administrator of network event 3-32
notify user of event 3-32
print request completed 3-31

alert table
alert table, definitions X-1
changing the internal size 3-29

alert, definition 3-29, X-1
anonymous pipe 3-192
anonymous pipes 3-194
anonymous pipe, definition X-1
API data structures

levels of detail 1-5
sample data structures 1-6

API naming convention
category identifier 1-1
Net or DOS keyword 1-1
verb 1-1

API requirements
admin 1-8
DOS 1-8
local 1-8
partially admin 1-8
server 1-8

API security scheme
application programming interface 1-7
remote protection 1-7
user interface 1-7

API verbs
add 1-2
Del 1-2
Enum 1-3
Getlnfo 1-4
Setlnfo 1-4

API, definition X-1
application programming interface (API),

definition X-1
application, definition X-1
ASCIIZ string, definition X-1
asynchronous and trace flags 3-200
audit log file

setting maximum size 3-60
Auditing category

audit entry types 3-43, 3-45
audit log file 3-43, 3-60
data structures

ae_data 3-46
fixed-length header 3-44

Index X-7

Auditing category (continued)
description 3-43

B

functions 2-2
NetAuditClear

backup file 3-58
NetAuditRead 3-61
NetAuditWrite 3-66

batch file, definition X-1
broadcast messages 3-158, 3-163, 3-166, X-1

c
calls, function G-1
centralized logon server, definition X-1
client process, definition 3-191, X-1
client, definition 3-29
command file, definition X-1
command, definition X-1
communication device handles 3-139
communication device, definition X-1
computer name, definition X-1
computer, definition X-1
Configuration category

description 3-68
functions 2-2
IBMLAN.INI file 3-68
NetConfigGetA112 3-73
NetConfigGet2 3-70

configuration, definition X-1
Connection category

connection types 3-76
connection, definition 3-76
data structures 3-76
description 3-76
functions 2-2
NetConnectionEnum 3-78

connection status 3-370
connection types 3-76
connection, definition 3-76, X-1
C/2 sample program F-1

D
deny-none sharing mode 3-277
deny-write sharing mode

buffering for opened files 3-217, 3-274
errors 3-219
opening 3-275
wrkheuristic parameter 3-219

device driver, definition X-1
device name connections 3-368
device name, definition X-2
device, definition X-1
directory, definition X-2

X-8 LAN Server Application Programmer's Reference

disk device, definition X-2
distributed logon security, definition X-2
Domain category

description 3-81
functions 2-3
NetGetDCName 3-82
NetLogonEnum 3-85

domain, definition X-2
DOS LAN.INI file
DosDeleteMailslot 3-148
DosMailslotlnfo 3-149
DosMakeMailslot 3-150
DosPeekMailslot 3-151
DosReadMailslot 3-152
DosWriteMailslot 3-154
dynamic link libraries 1-7

E
encryption

buffering 3-217
controlling logging of errors 3-216
for opened files 3-217
OS/2 LAN Server 3-216

error codes
audit log C-17
error log C-17
I/O C-16
message server C-12
remote C-17
requester C-18
serial device C-15
server C-14
Use C-12

error log file
Error Logging category 3-88
setting maximum size 3-92, 3-98

Error Logging category
data structures 3-88
description 3-88
error log file 3-88
functions 2-3
N etError LogClear

backup file 3-90
NetErrorLogRead 3-93
NetErrorLogWrite 3-97

error types
network service 3-88
OS/2 internal 3-88
OS/2 LAN Requester/Server internal 3-88

event name, defintion X-2
event, definition 3-29, X-2
explicit connection, definition X-2

F
FCB

priority 3-273

FCB (continued)
searches 3-274
server 3-273
writing to 3-274

File category
data structures 3-99
description 3-99
functions 2-3
NetFileClose2 3-101
NetFileEnum2 3-104
NetFileGetlnfo 3-107

File Control Block (FCB) 3-273
file handle, definition X-2
file name, definition X-2
first-class mail 3-154
first-class messages 3-147
format of API reference pages 3-1
function calls

administrative, local, server 1-8
local vs remote 1-8

function categories
Access Permissions 2-1
Alert 2-2
Auditing 2-2
Configuration 2-2
Connection 2-2
Domain 2-3
Error Logging 2-3
File 2-3
Group 2-3
Handle 2-4
Mailslot 2-4
Message 2-5
Named Pipe 2-5
Remote Utility 2-7
Requester 2-7
Serial Device 2-7
Server 2-8
Service 2-8
Session 2-8
Share 2-9
Spooler 2-9
Statistics 2-10
Use 2-10
User 2-10

function libraries B-1
function requirements B-4

G
Group category

data structures 3-111
description 3-110
functions 2-3
NetGroupAdd 3-112
NetGroupAddUser 3-115
NetGroupDel 3-118
NetGroupDelUser 3-121

Group category (continued)
NetGroupEnum 3-124
NetGroupGetlnfo 3-127
NetGroupGetUsers 3-130
NetGroupSetlnfo 3-133
NetGroupSetUsers 3-136
special groups 3-110

group name, definition X-2
group, definition 3-110, X-2
GUEST account 3-11

H
Handle category

communication device handles 3-139
data structures 3-139
description 3-139
functions 2-4
named pipe handles 3-139
NetHandleGetlnfo 3-140
NetHandleSetlnfo 3-143

handle, definition X-2

I
IBMLAN.INI file

comment lines 3-68
component lines 3-68
definition 3-68
parameter lines 3-68

implicit connection, definition X-2
include files A-1
input/output controls (IOCTLs) 3-277

for large file transfers 3-278
large (64KB) 3-278

interprocess communication (IPC) 3-146, X-2
IPC, definition X-2

L
LAN group, definition X-2
LAN path name, definition X-2
LAN, definition
link-time libraries

MAILSLOT.LIB B-3
NAMPIPES.LIB B-3
NETAPI.LIB B-1
NETOEM.LIB B-3

local area network, definition X-2
local computer, definition X-2
local device name, definition X-2
local device, definition X-2
local mailslot 3-146
log off, definition X-2
log on, definition X-2
logon script, definition X-2
logon security, definition X-2

Index X-9

log, definition X-2

M
Mailslot category

description 3-146
DosDeleteMailslot 3-148
DosMailslotlnfo 3-149
DosMakeMailslot 3-150
DosPeekMailslot 3-151
DosReadMailslot 3-152
DosWriteMailslot 3-154
first-class mail 3-154
first-class messages 3-147
functions 2-4
local and remote mailslots 3-146
second-class mail 3-154
second-class messages 3-147, 3-156

mailslot name, definition X-2
mailslot, definition X-2
manifests
Message category

broadcast messages 3-158, 3-163, 3-166
data structures 3-159
description 3-157
functions 2-5
message log file 3-158
messenger service 3-157
NetMessageBufferSend 3-161
NetMessageFileSend 3-164
NetMessageLogFileGet 3-168
NetMessageLogFileSet 3-170
NetMessageNameAdd 3-173
NetMessageNameDel 3-176
NetMessageNameEnum 3-179
NetMessageNameFwd 3-182
NetMessageNameGetinfo 3-185
NetMessageNameUnFwd 3-188

message forwarding, definition X-3
message log file 3-158
message logging, definition X-3
message, definition 3-157, X-3
messaging alias, definition X-3
messenger service 3-157

N
Named Pipe category

anonymous pipes 3-194
description 3-191
functions 2-5
remote-procedure call (RPC) 3-193
transition states 3-194

named pipe handles 3-139
named pipes

buffering modes for read and write requests 3-214
description 3-213, 3-214 ·
for small read and write requests 3-214

X-10 LAN Server Application Programmer's Reference

named pipe, definition 3-191, X-3
name, definition X-3
NetAccessAdd 3-6
NetAccessCheck 3-9
NetAccessDel 3-12
NetAccessEnum 3-15
NetAccessGetlnfo 3-18
NetAccessGet U serPerms 3-22
NetAccessSetlnfo 3-25
NetAlertRaise 3-34
NetAlertStart 3-37
NetAlertStop 3-40
NetAuditClear 3-58
NetAuditRead 3-61
NetAuditWrite 3-66
NetCharDevControl 3-243
NetCharDevEnum 3-246
NetCharDevGetlnfo 3-248
NetCharDevQEnum 3-251
NetCharDevQGetlnfo 3-254
NetCharDevQPurge 3-257
NetCharDevQPurgeSelf 3-260
NetCharDevQSetlnfo 3-263
NetConfigGetA112 3-73
NetConfigGet2 3-70
NetConnectionEnum 3-78
NetErrorLogClear 3-90
NetErrorLogRead 3-93
NetErrorLogWrite 3-97
NetFileClose 3-101
NetFileEnum2 3-104
NetFileGetlnfo 3-107
NetGetDCName 3-82
NetGroupAdd 3-112
NetGroupAddUser 3-115
NetGroupDel 3-118
NetGroupDelUser 3-121
NetGroupEnum 3-124
NetGroupGetlnfo 3-127
NetGroupGetUsers 3-130
NetGroupSetinfo 3-133
NetGroupSetUsers 3-136
NetHandleGetlnfo 3-140
NetHandleSetlnfo 3-143
NetLogonEnum 3-85
NetMessageBufferSend 3-161
NetMessageFileSend 3-164
NetMessageLogFileGet 3-168
NetMessageLogFileSet 3-170
NetMessageNameAdd 3-173
NetMessageNameDel 3-176
NetMessageNameEnum 3-179
NetMessageNameFwd 3-182
NetMessageNameGetlnfo 3-185
NetMessageNameUnFwd 3-188
netname, definition X-3
NetRemoteCopy 3-197

NetRemoteExec 3-200
NetRemoteMove 3-203
NetRemoteTOD 3-206
NetServerAdminCommand 3-284
NetServerDiskEnum 3-287
NetServerEnum2 3-289
NetServergetinfo 3-292
NetServerSetlnfo 3-295
NetServiceControl 3-310
NetServiceEnum 3-314
NetServiceGetlnfo 3-317
NetServicelnstall 3-320
NetServiceStatus 3-323
NetSessionDel 3-328
NetSessionEnum 3-331
NetSessionGetlnfo 3-334
NetShareAdd 3-340
NetShareCheck 3-344
NetShareDel 3-347
NetShareEnum 3-350
NetShareGetlnfo 3-353
NetShareSetlnfo 3-356
NetStatisticsGet2 3-365
NetUseAdd 3-372
NetUseDel 3-375
NetUseEnum 3-378
NetUseGetlnfo 3-380
NetUserAdd 3-397
NetUserDel 3-401
NetUserEnum 3-404
NetUserGetGroups 3-407
NetUserGetlnfo 3-410
NetUserModalsGet 3-413
Net U serModalsSet 3-416
NetUserPasswordSet 3-419
NetWkstaGetlnfo 3-225
NetWkstaSetlnfo 3-227
NetWkstaSetUID2 3-231
network logoff record 3-55
network logon denied 3-56
network logon record 3-55
network name formats 1-9
network service status 3-302, 3-303, 3-305, 3-306,

3-307
network-aware application, definition X-3
network, definition X-3
numworkbuf parameter 3-211

0
opportunistic lock timeout 3-276
ordinal position 1-5

p
password error 3-48
password, definition X-3

path name, definition X-3
path, definition X-3
pause, definition X-3
permission levels, definition X-3
permission, definition X-3
pipe name, definition X-3
popup service 3-158
primary error codes 3-303, 3-307
print device, definition X-3
private application, definition X-3
process identification (PID) 3-202
protocols 3-214
public application, definition X-3

Q
queue, definition X-3

R
raise, definition X-3
raw read and write SMB protocol, definition X-4
read-ahead 3-215, 3-273
recursive searching 3-15
remote administration, definition X-4
remote executable flags 3-201
remote mailslot 3-146
remote resource types 3-370
Remote Utility category

asynchronous and trace flags 3-200
data structures 3-196
description 3-196
functions 2-7
handles 3-202
NetRemoteCopy 3-197
NetRemoteExec 3-200
NetRemoteMove 3-203
NetRemoteTOD 3-206
process identification (PID) 3-202
remote executable flags 3-201
return status of file move 3-204
source and destination files 3-204

remote-procedure call (RPC) 3-193
remote, definition X-4
Requester category

data structures 3-208
description 3-208, 3-211
functions 2-7
heuristics features 3-211
NetWkstaGetlnfo 3-225
NetWkstaSetlnfo 3-227
NetWkstaSetUID2 3-231

requester statistics 3-360
requester, definition X-4
resource, definition X-4
return codes

access C-9
group C-9

Index X-11

return codes (continued)
network utilities C-3
redirector C-1
requester C-8
service C-7
spooler C-5
successful C-1
user C-9

run-time libraries B-4

s
sample program

C/2 F-1
scavenger

buffering 3-274
for opened files 3-274

second-class mail 3-154
second-class messages 3-147, 3-156
secondary error codes 3-304, 3-308
separator page, definition X-4
Serial Device category

data structures 3-240
description 3-238
functions 2-7
NetCharDevControl 3-243
NetCharDevEnum 3-246
NetCharDevGetlnfo 3-248
NetCharDevQEnum 3-251
NetCharDevQGetlnfo 3-254
NetCharDevQPurge 3-257
NetCharDevQPurgeSelf 3-260
NetCharDevQSetlnfo 3-263
serial device, definition 3-238

serial device queue, definition X-4
serial device, definition 3-238, X-4
Server category

data structures 3-267
description 3-267
functions 2-8
heuristics features 3-272
NetServerAdminCommand 3-284
NetServerDiskEnum 3-287
NetServerEnum2 3-289
NetServergetinfo 3-292
NetServerSetlnfo 3-295

server message block (SMB) protocols 3-214, 3-273
server name, definition X-4
server process, definition 3-191
server services

creating D-1
starting D-1
stopping D-4

server statistics 3-363
server status changes 3-46
server, definition X-4
Service category

data structures 3-300
service status 3-300

X-12 LAN Server Application Programmer's Reference

Service category (continued)
description 3-298
functions 2-8
NetServiceControl 3-310
NetServiceEnum 3-314
NetServiceGetlnfo 3-317
NetServicelnstall 3-320
NetServiceStatus 3-323
network service status 3-302, 3-303, 3-305, 3-306,

3-307
primary error codes 3-303, 3-307
secondary error codes 3-304, 3-308
standard network services 3-298

service name, definition X-4
service status code 3-52
service, definition X-4
Session category

data structures 3-324
description 3-324
functions 2-8
NetSessionDel 3-328
NetSessionEnum 3-331
NetSessionGetlnfo 3-334

session, definition X-4
Share category

component requirements 3-343
data structures 3-337
description 3-337
functions 2-9
NetShareAdd 3-340
NetShareCheck 3-344
NetShareDel 3-347
NetShareEnum 3-350
NetShareGetlnfo 3-353
NetShareSetlnfo 3-356
share types 3-338

share types 3-338
shared resource, definition X-4
share, definition X-4
sizreq buf parameter

description 3-212
heuristics 3-212
heuristics (requester) 3-212
IBMLAN.INI fine-tuning options 3-212
locking 3-212
locking files 3-212
opening 3-212
Requester network service 3-212
size 3-211
tuning options 3-212

SMB
file transfers 3-214
LAN 3-214

SMB, definition X-4
spool file data type name, definition
Spooler category

description 3-359

Spooler function
functions 2-9

spooler, definition X-4
srvannounce parameter

description 3-272
heuristics 3-272
heuristics (server) 3-272
IBMLAN.INI fine-tuning options 3-272
Server network service 3-272
tuning options 3-272

srvnets parameter
networks running on 3-278

srvpipes parameter
maximum per server 3-278

srvservices parameter
other server running on 3-278
to start with server 3-278

stack size, extending 1-8
standard network services

alerter 3-298
messenger 3-298
netlogon 3-299
netpopup 3-299
netrun 3-299
requester 3-299
server 3-299

Statistics category
data structures 3-360
description 3-360
functions 2-10
NetStatisticsGet2 3-365
requester statistics 3-360
server statistics 3-363

storing fixed-length and variable-length data 1-6

T
thread 3-273
time stamp, definition X-4
time-of-day information 3-206
transferring files

u

for large file transfers 3-276
locking 3-276

universal naming convention (UNC) connections 3-368
Universal Naming Convention (UNC) name,

definition X-4
Use category

connection status 3-370
data structures 3-369
description 3-368
device name connections 3-368
disconnection types 3-375
functions 2-10
NetUseAdd 3-372
NetUseDel 3-375

Use category (continued)
NetUseEnum 3-378
NetUseGetlnfo 3-380
remote resource types 3-370
universal naming convention (UNC)

connections 3-368
user accounts subsystem modification 3-54
user accounts subsystem (UAS) 3-382
User category

data structures 3-385
description 3-382
DOS considerations 3-385
functions 2-10
NetUserAdd 3-397
NetUserDel 3-401
NetUserEnum 3-404
NetUserGetGroups 3-407
Net U serGetlnfo 3-410
NetUserModalsGet 3-413
NetUserModalsSet 3-416
NetUserPasswordSet 3-419
NetUserSetGroups 3-423
NetUserSetlnfo 3-426
NetUserValidate2 3-431
user accounts subsystem (UAS) 3-382

user name, definition X-4
use, definition X-4

v
virtual circuits

large (64KB) 3-276
named 3-213
named pipes 3-213
NETBIOS 3-212
number of 3-276
printer requests 3-275
serial devices 3-213
sessions 3-212
transfers 3-276

w
write-behind

chain send command 3-273
read-ahead 3-215
write-behind 3-215, 3-273

wrknets parameter
names of networks running on 3-219

wrkservices parameter
other services started with 3-219
to start with Requester service 3-219

Index X-13

