

First Edition (January 1990)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

©Copyright International Business Machines Corporation 1990. All rights reserved.

Note to US Government Users — Documentation and programs related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation.

Operating System/2 is a trademark of International Business Machines Corporation.

0S/2 is a trademark of International Business Machines Corporation.

About This Book

This book describes the application programming interface (API) provided by the
IBM Operating System/2 Extended Edition Version 1.2 Local Area Network
Requester and IBM Operating System/2 Local Area Network Server Version 1.2
program (hereafter referred to as the OS/2 LAN Server), which is a separately
available program that works in conjunction with the LAN Requester component of
0S/2 Extended Edition Version 1.2 (hereafter referred to as the LAN Requester).
The API functions are the external functional interface for application program
development.

Who Should Use This Book

This book is intended for use by application programmers and system programmers
developing software for use in the IBM OS/2 Extended Edition 1.2 local area
network environment.

Before You Use This Book

To use this book effectively, it is recommended that you have a working knowledge
of the OS/2 program or some other multitasking operating system and that you are
familiar with application programming in IBM C/2™ language (hereafter referred to
as C language).

Note: The OS/2 LAN Requester/Server API functions work in essentially the same
way for both the IBM OS/2 and IBM DOS operating systems. However, this
reference specifically addresses the IBM OS/2 programming environment.

How This Book Is Structured

This book contains the following chapters:

Chapter 1, “Overview of OS/2 LAN Server APL,” provides an overview of the
0S/2 LAN Requester/Server API architecture.

Chapter 2, “Introducing the OS/2 LAN Server API Functions,” includes an
alphabetical listing of the OS/2 LAN Requester/Server API function categories,
with brief descriptions and a list of functions in each category.

Chapter 3, “API Function Descriptions,” describes the OS/2 LAN
Requester/Server API function categories and the functions in each category.
Categories and the functions within them are arranged alphabetically.

Appendix A, “Include Files,” lists each of the include files the OS/2 LAN
Requester/Server API provides.

Appendix B, “Function Libraries,” describes the dynamically linked libraries
that OS/2 LAN Requester/Server uses at link and run time.

Appendix C, “Return Codes,” describes the API function return codes.

Appendix D, “Creating OS/2 LAN Server Services,” provides information on
creating and using network service programs.

C/2 is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1990

About This Book 1iii

Appendix E, “OS/2 LAN Requester/Server API Support under IBM DOS,”
describes OS/2 LAN Requester/Server API functions supported by IBM DOS
along with any differences in their use from that described in Chapter 2.

Appendix F, “IBM C/2 Sample Program,” contains a sample program for the
0S/2 LAN Server application programming interface.

Appendix G, “PC LAN Program 1.3 Compatibility,” provides several function
calls for compatibility with applications currently supported by PCLP 1.3.

Appendix H,“LAN API Manifests,” lists the manifests associated with ASCIIZ
strings that are pointed to by data structure components used in the OS/2 LAN
APL

A glossary describes specialized terms used in this book.
An index is included at the back of the book.

Conventions
Throughout this book, the following conventions distinguish elements of text:
Text Element Use
bold Command names, switches, and literal

portions of syntax that must be written
exactly as shown are bold within text

paragraphs. (No text styles are applied
to elements within monospace entries.)

italics Variable text representing a type of text
to be entered rather than a literal series
of characters are in italics within text
paragraphs.

Italic type is also used to introduce new
terms and, occasionally, for emphasis.

monospace Data structures and function syntax
templates are monospace, as are any
sample program lines within text
sections.

CAPITALS File names and acronyms are in
capitals.

iv LAN Server Application Programmer’s Reference

Related Publications

The IBM OS/2 LAN Requester/Server documentation set includes other manuals
that may be helpful to you. For information on installing, using, or administering
0S/2 LAN Requester/Server, consult the following publications:

¢ IBM Operating System|2 Local Area Network Server Version 1.2 Getting Started

¢ IBM Operating System|2 Local Area Network Server Version 1.2 Network
Administrator’s Guide

o IBM Operating System/2 Local Area Network Server Version 1.2 User's Guide
e IBM Operating System|2 Programming Guide

o IBM Operating System|2 Technical Reference Version 1.2 Programming
Reference.

About This Book Vv

Vi LAN Server Application Programmer’s Reference

Contents

© Copyright IBM Corp. 1990

Chapter 1. Overview of OS/2 LAN Server API R
Organization of OS/2 LAN Server API Functions 1-1
API Verbs e 1-2
API Data Structures e 1-5
Structuring Levels of Detail 1-5
Sample Data Structures 1-6
Storing Fixed-Length and Variable-Length Data 1-6
API Security Scheme e e 1-7
Remote Protection 1-7
User Interface and Application Programming Interface 1-7
Protection Violations and Faults in the Dynamic Link Libraries 1-7
Local and Remote FunctionCalls 1-8
Administrative, Local, and Server APIs 1-8
DOS LAN Requester Considerations 1-8
Network Naming Conventions 19
Chapter 2. Introducing the OS/2 LAN Server API Functions 2-1
Function Categories 2-1
Access Permission 2-1
Alert . . e 2-2
Auditing e 2-2
Configuration e 2-2
Connection e 2-2
Domain e 2-3
Error Logging 2-3
File 2-3
GIroup e 2-3
Handle e e 2-4
Mailslot 2-4
Message e e e 2-5
Named Pipe 2-5
Remote Utility 2-7
Requester e 2-7
Serial Device e 2-7
Server e 2-8
Service 2-8
Session 2-8
Share e 2-9
Spooler 2-9
Statistics 2-10
Use . . o e 2-10
User . . . e 2-10
Chapter 3. API Function Descriptions 3-1
Format of API Reference Pages 3-1
Access Permission Category 3-2
Description 3-2
Data Structures 33
NetAccessAdd 3-6
NetAccessCheck 3-9
NetAccessDel 3-12
NetAccessEnum e 3-15

Contents Vil

NetAccessGetInfo 3-18

NetAccessGetUserPerms 3-22
NetAccessSetInfo 3-25
Alert Category e 3-29
Description 3-29
Data Structures 3-30
NetAlertRaise e 3-34
NetAlertStart e 3-37
NetAlertStop 3-40
Auditing Category 343
Description 3-43
Data Structures e 3-44
NetAuditClear 3-58
NetAuditRead 3-61
NetAuditWrite 3-66
Configuration Category 3-68
Description 3-68
NetConfigGet2 e 3-70
NetConfigGetAll2 e 3-73
Connection Category 3-76
Description 3-76
Data Structures 3-76
NetConnectionEnum 3-78
Domain Categoryt i i e e e 3-81
Description 3-81
NetGetDCName e 3-82
NetLogonEnum 3-85
Error Logging Category 3-88
Description 3-88
Data Structures 3-88
NetErrorLogClear 3-90
NetErrorLogRead 3-93
NetErrorLogWrite 397
File Category 3-99
Description 3-99
Data Structures 3-99
NetFileClose2 e 3-101
NetFileEnum?2 e 3-104
NetFileGetInfo2 3-107
Group Category 3-110
Description 3-110
Data Structures 3-111
NetGroupAdd 3-112
NetGroupAddUser 3-115
NetGroupDel 3-118
NetGroupDelUser 3-121
NetGroupEnum 3-124
NetGroupGetInfo 3-127
NetGroupGetUsers i 3-130
NetGroupSetInfo 3-133
NetGroupSetUsers e 3-136
Handle Category 3-139
Description 3-139
Data Structures 3-139
NetHandleGetInfo 3-140

NetHandleSetInfo 3-143

vili LAN Server Application Programmer’s Reference

Mailslot Category 3-146

Description L 3-146
DosDeleteMailslot 3-148
DosMailslotInfo 3-149
DosMakeMailslot 3-150
DosPeekMailslot 3-151
DosReadMailslot 3-152
DosWriteMailslot 3-154
Message Category 3-157
Description 3-157
Data Structures 3-159
NetMessageBufferSend 3-161
NetMessageFileSend 3-164
NetMessageLogFileGet 3-168
NetMessageLogFileSet 3-170
NetMessageNameAdd 3-173
NetMessageNameDel oo L 3-176
NetMessageNameEnum 3-179
NetMessageNameFwd 3-182
NetMessageNameGetInfo 3-185
NetMessageNameUnFwd 3-188
Named Pipe Category 3-191
Description 3-191
Remote Utility Category 3-196
Description e 3-196
Data Structures 3-196
NetRemoteCopy e 3-197
NetRemoteExec 3-200
NetRemoteMove e 3-203
NetRemoteTOD e 3-206
Requester Category 3-208
Description 3-208
Data Structures 3-209
NetWkstaGetInfo 3-225
NetWkstaSetInfo 3-227
NetWkstaSetUID2 3-231
Serial Device Category 3-238
Description 3-238
Data Structures 3-240
NetCharDevControl 3-243
NetCharDevEnum 3-246
NetCharDevGetInfo 3-248
NetCharDevQEnum 3-251
NetCharDevQGetInfo 3-254
NetCharDevQPurge 3-257
NetCharDevQPurgeSelf 3-260
NetCharDevQSetInfo 3-263
Server Category 3-267
Description 3-267
Data Structures 3-267
NetServerAdminCommand 3-284
NetServerDiskEnum 3-287
NetServerEnum2 3-289
NetServerGetInfo 3-292
NetServerSetinfo 3-295
Service Category 3-298

Contents iX

Description 3-298

Data Structures 3-300
NetServiceControl 3-310
NetServiceEnum e 3-314
NetServiceGetInfo 3-317
NetServicelnstall 3-320
NetServiceStatus 3-323
Session Category 3-324
Description 3-324
Data Structures e e 3-324
NetSessionDel 3-328
NetSessionEnum 3-331
NetSessionGetInfo 3-334
Share Category 3-337
Description 3-337
Data Structures 3-337
NetShareAdd 3-340
NetShareCheck e 3-344
NetShareDel e 3-347
NetShareEnum 3-350
NetShareGetInfo 3-353
NetShareSetInfo 3-356
Spooler Category 3-359
Description 3-359
Statistics Category 3-360
Description 3-360
Data Structures 3-360
NetStatisticsGet2 e 3-365
Use Category o v i i e e e e 3-368
Description 3-368
Data Structures e 3-369
NetUseAdd e 3-372
NetUseDel e 3-375
NetUseEnum e 3-378
NetUseGetInfo e 3-380
User CategOry v v e et e e e e e 3-382
Description 3-382
Data Structures 3-385
NetUserAdd e 3-397
NetUserDel e 3-401
NetUserEnum e 3-404
NetUserGetGroups . . . - . . o o v ot e e e e e e e e 3-407
NetUserGetInfo e 3-410
NetUserModalsGet 3-413
NetUserModalsSet e 3-416
NetUserPasswordSet 3-419
NetUserSetGroups i ittt e 3-423
NetUserSetInfo e 3-426
NetUserValidate2 e 3-431
Appendix A. Include Files A-1
Appendix B. Function Libraries B-1
Link-Time Libraries i e B-1
Run-Time Libraries B-4
Function Notes e B-4

X LAN Server Application Programmer’s Reference

Appendix C. ReturnCodes C-1

Successful Return Codes C-1
Redirector e C-1
Network Utilities e C-3
Spooler ... L e C-5
Service e e C-7
Requester C-8
Access, User,and Group C9
USe . . o C-12
MESSALCE e e e e C-12
SEIVEr . . . e C-14
Serial Device C-15
IO . e C-16
Audit Logand Error Log C-17
Remote Error C-17
Requester Redirector C-18
Appendix D. Creating OS/2 LAN Server Services D-1
Starting a Service D-1
Stopping a Service D-4
Appendix E. OS/2 LAN API Support under IBM DOS Requesters E-1
API Services Supported Under DOS, E-1
DOS API Libraries e E-1
Include Files E-2
Differences in Use Under DOS E-3
Access Permission E-3
Auditing E-3
Configuration E-4
Connection e E-4
Error Logging E-4
File . . . e E-4
GIOUP . o o o o E-4
Mailslot E-5
MESSAZE e E-5
Named Pipe e E-6
Remote Utility E-7
Requester E-7
Serial Device E-7
SEIVer . . e E-8
Service e E-8
SesSiON e E-8
Share E-9
Statistics E-9
UsSe . . e E-9
User . . . E-9
Appendix F. IBM C/2 Sample Program F-1
Appendix G. PC LAN Program 1.3 Compatibility G-1
Function Call Overview G-1
Function Call Descriptions G-1

0000H (INT 2AH) Installation Check G-2

0060H (INT 2AH) Network Print Stream Control G-3

0300H (INT 2AH) Check Direct /O G-5

0400H (INT 2AH) Execute NETBIOS (Error Retry) G-6

Contents Xi

0401H (INT 2AH) Execute NETBIOS (No Error Retry) G-7

0500H (INT 2AH) Get Network Resource Information G-8
7802H (INT 2AH) Get User ID and Logon Status G-9
B80OH (INT 2FH) DOS LAN Requester Installation Check G-10
B809H (INT 2FH) Network Version Check G-11
BSOFH (INT2FH) Get Start Parameters G-12
Appendix H. LAN API Manifests H-1
Glossary X-1
Index X-7

Xii LAN Server Application Programmer’s Reference

Chapter 1. Overview of OS/2 LAN Server API

This chapter introduces the OS/2 LAN Requester/Server 1.2 application
programming interface (API), which is a set of functions enabling application
programs to interact with and to control network operations and resources. In this
chapter, you will find information about:

¢ The organization of and naming conventions for OS/2 LAN Requester/Server
API functions

¢ The API data structures and the way they accept and return information
¢ The API security scheme

¢ The protection violations and faults in the dynamic link libraries

e The local and remote function calls

¢ The requirements for calling API functions

¢ The naming conventions for network names.

Note: The API functions shown are for use with C language.

Organization of 0S/2 LAN Server API Functions

The OS/2 LAN Requester/Server API provides access to the network functions
through a well-defined interface for high-level languages. This interface defines the
name of a function depending on the task that the function performs.

The OS/2 LAN Requester/Server API naming convention divides each function into
three parts:

¢ The Net, Dos, or Spl keyword identifies the function as an OS/2 LAN
Requester/Server API function or an OS/2-compatible function.

¢ A category identifier indicates the software area in which the function performs.
For example, User identifies functions that control user accounts.

This identifier may be compound, as in ServerDisk, which identifies the function
of server disk tasks. Generally, but not always, the identifier correlates to a
function category. The notable exception is the Named Pipe category, which
contains a broad category of OS/2 functions.

¢ A verb describes the action the function performs.

An optional fourth part in function names works somewhat as a direct object would
in the English language, identifying a particular object to be involved in the action.
For instance, NetCharDevQPurgeSelf deletes all pending requests waiting in a serial
device queue that were submitted by a particular computer, whereas
NetCharDevQPurge deletes all pending requests on a serial device queue.

© Copyright IBM Corp. 1990 Chapter 1. Overview of OS/2 LAN Server API 1-1

APl Verbs

Add Functions

Del Functions

The OS/2 LAN Requester/Server software defines a set of verbs for each category of
functions. The five most common verbs perform the following basic tasks:

Verb Action

Add Adds a resource

Del Deletes a resource

Enum Lists the names and data structures for
a resource

Getlnfo Retrieves parameters for a resource

SetInfo Modifies parameters for a resource

The less common verbs perform other tasks relating to specific resources, such as
starting a service (Install) or deleting pending requests on a queue (Purge).

The five most common OS/2 LAN Requester/Server API verbs use fairly standard
syntax and parameters. These operations, which are described in the following
sections, comprise the basic set of function tasks for most categories.

An Add function adds a resource to a particular set of items. Add functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleAdd (servername, level, buf, buflen)

char far * servername;
short level;
char far * buf;

unsigned short buflen;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

» Jevel specifies a data structure providing a particular level of detail of
information required to complete the operation.

* buf points to the data structure.

* buflen specifies the size (in bytes) of the buf memory area.

A Del function removes a resource from a particular set of items. Del functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleDel (servername)
char far * servername;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer:.

1-2 AN Server Application Programmer’s Reference

Enum Functions

Del functions do not require a pointer to a data structure since they do not accept or
return the kind of information commonly found in data structures.

An application must have administrative privileges to remotely execute most Del
functions.

The Enum functions list information about system resources. Enum functions
generally use some form of the following syntax:

unsigned far pascal
NetExampleEnum (servername, level, buf, bufien,
entriesread, totalentries)

char far * servername;
short level;

char far * buf;
unsigned short buflen;

unsigned short far * entriesread;
unsigned short far * totalentries;

where:

e servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

o Jevel specifies the level of detail for the returned data.
¢ buf points to the returned data structures.
¢ buflen specifies the size (in bytes) of the buf memory area.

* entriesread points to an unsigned short integer indicating the number of entries
returned to buf.

» totalentries points to an unsigned short integer indicating the number of entries
available.

If buf cannot store all returning data, the Enum function returns the
NERR_MORE_DATA error code. There is an entriesread number of items returned
in the buffer.

If the value of buflen is 0, the Enum function returns only a valid totalentries
parameter.

Some requests for high levels of detail by way of Enum functions require
administrative privileges at the remote server.

Enum functions are limited to 64KB per call.

Chapter 1. Overview of OS/2 LAN Server API 1-3

Getinfo Functions

Setinfo Functions

A GetlInfo function retrieves specific information about a resource not available to
an Enum function. These functions generally use some form of the following syntax:

unsigned far pascal
NetExampleGetInfo (servername, level, buf, buflen, totalavail)

char far * servername,
short Tevel;

char far * buf;
unsigned short buflen;

unsigned short far * totalavail;

where:

o servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

* level specifies the level of detail that the data structure is to return.
* buf points to the returned data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* totalavail points to an unsigned short integer indicating the number of bytes of
information available, given sufficient buflen.

If buf cannot store all returning fixed-length data, GetInfo returns the
NERR_BufTooSmall error code. In this case, all data in buf is not valid, but
totalavail is valid.

If buf can store all returning fixed-length data but not all available variable-length
data, GetInfo returns the ERROR_MORE_DATA error code. In this case, the
fixed-length data in buf is valid, with pointers to any incomplete variable-length data
set to NULL. If the value of buflen is 0, the GetInfo function returns only a valid
totalavail parameter.

Some requests for high levels of detail by way of GetInfo functions require
administrative privileges.

A SetlInfo function sets the parameters of a network resource. These functions
generally use some form of the following syntax:

unsigned far pascal .
NetExampleSetInfo (servername, level, buf, buflen, parmnum)
char far * servername;

short level;
char far * buf;
unsigned short buflen;
short parmnumg
where:

* servername points to an ASCIIZ string containing the name of the remote server
(preceded by a double backslash (\\) or a double forward slash (//)) on which the
function is to execute. A NULL pointer or string specifies a local computer.

* Jevel specifies the level of detail that the data structure is to provide.

1-4 LAN Server Application Programmer’s Reference

¢ buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

* buflen specifies the size (in bytes) of the buf memory area.

* parmnum determines whether an entire data structure or a single data structure
component is to be set. If the value is 0, a complete data structure must be
provided. Otherwise, parmnum should specify the ordinal position of a specific
data structure component to be set.

For information on the ordinal position of a component, see the appropriate
include file of the function.

Error Return Codes
In the functional description of each API, there is a list of possible return codes.
Following that is a list of low-level functions it calls from which errors might be
returned directly. If some errors from an API are ignored or mapped to other APIs,
the ignored error codes are listed in brackets [] with a minus sign, such as the
following:

DosOpen [- ERROR_FILE_NOT_FOUND]

This example indicates that DosOpen is called, and all error codes from DosOpen
are possibly returned to the caller, except for ERROR_FILE_NOT_FOUND, which
is returned by the network API.

The redirector is called by way of special IOCtls and FSCtls, which are represented
variously as follows:

redir.IOCTLCALLNAME
DosFSCt1(IOCTLCALLNAME)
DosIOCTL(IOCTLCALLNAME)

When an API is executed remotely without having the necessary permissions or
authorization, it results in the error code ERROR_ACCESS_DENIED. This is a
consistent error across all APIs for remote calls. An attempt to execute an API
remotely may return ERROR_NETWORK_ACCESS_DENIED, indicating that
there was some error in the transportation of the request, rather than an API
permission or authorization violation.

API Data Structures

Most API functions use one or more OS/2 LAN Requester/Server-defined data
structures to provide or return information defining a resource or reporting its state.

Distinct structures are defined for each category. They use the C language syntax
and are WORD-aligned.

Structuring Levels of Detail
The functions in the various API function categories provide different levels of
detail, each represented by a different data structure. The more detailed structures
usually include all the information in lower-level structures.

When an API function can provide or return more than one level of information, an
application must pass a level parameter (0, 1, 2, 3 or 10) to indicate the level of
detail requested. Level 0 is the least detailed (often a single component), with each
subsequent level calling for more detail.

Chapter 1. Overview of OS/2 LAN Server API 1-5

The related level parameter is included in the data structure name. For instance, the
NetShareGetInfo function uses the share_info_0, share_info_1, and share_info_2 data
structures for data detailed at the 0, 1, and 2 levels, respectively.

Many functions, particularly the SetInfo type, require a particular data structure
specified by a particular level value. If an unacceptable Jevel parameter is passed, the
function returns the ERROR_INVALID_LEVEL error code.

Sample Data Structures

The three data structures of the NetShareGetInfo function illustrate the levels of
detail an API function can provide. The share_info_0 data structure returns only the
netname of a particular resource. NetShareEnum returns a set of these structures—a
list containing the names of all resources shared on the server:

struct share_info_0 {
char shi0_netname [NNLEN+1] ;
}s

The share_info_1 data structure returns the name of the shared resource, parameters
indicating the type of resource, and an optional remark provided by way of the
NetShareSetInfo function when the share is added on the server (NetShareSetInfo,
for obvious reasons, requires a level 1 or 2 data structure).

NetShareEnum, at level 1, returns a set of share_info_1I structures—one for each
resource shared on the server:

struct share_info_1 {

char shil_netname[NNLEN+1];
char shil_padl;
unsigned short shil_type;

char far * shil_remark;

b

The share_info_2 data structure adds information on the permissions, path name,
number of current uses, and password for a share to the level 1 data structure:

struct share_info_2 {

char shi2_netname[NNLEN+1];
char shi2_padl;

unsigned short shi2_type;

char far * shi2_remark;

unsigned short shi2_permissions;
unsigned short shi2_max_uses;

unsigned short shi2_current_uses;
char far * shi2_path;

char shi2_passwd[SHPWLEN+1];
char shi2_pad2;

Storing Fixed-Length and Variable-Length Data

When the application is passing a data structure in a buffer to the AP, if the data
structure has pointers to variable-length data, the buffer length should be the length
of the fixed-length portion only. The fixed-length data and the variable-length data
do not have to be contiguous in the same memory region, even for remote calls.

When a data structure that defines a pointer to variable-length data (such as ASCIIZ
strings) is passed to or returned by a function, an application must provide a buffer

1-6 LAN Server Application Programmer’s Reference

large enough to store both the fixed-length and variable-length data. Otherwise, not
all of the data can be passed or returned.

If a buffer is too small to hold all variable-length data associated with a structure, an
application should notify the function that no variable-length data is being passed by
specifying NULL pointers to the variable-length data.

If an application calls a function that could return more variable-length data than
the buffer can store, the function returns as much data as possible, setting all
pointers to information that was not returned to NULL. In this case, the function
also returns the ERROR_MORE_DATA error code and the number of bytes
required to store all available data (the bytesavail value). If the buffer is too small
for the fixed-length data, the function returns NERR_BusTooSmall or
ERROR_MORE_DATA and the amount of data that can fit into the buffer.

API Security Scheme

The OS/2 LAN Server security scheme assigns privilege levels to users. Certain API
functions are designated admin or partially admin. These are available only to users
with administrative privileges. These APIs retrieve or set sensitive data or control
key network services. OS/2 LAN Requester/Server provides the following types of
protection at the API level:

¢ Administrative privilege

¢ Security for remote API function calls.

The access control subsystem (ACS) controls the domain-wide access of resources by
the users and groups. The users and groups management and resource access
control at the API level is called the user accounts subsystem (UAS) database.

Remote Protection
All of the APIs can be executed on a local system, provided that the required
software services are running. Ordinary users are treated as administrators locally
on the application programming interface.

The API calls to remote servers are subject to privilege checking. Many of the APIs
require administrative privilege to run on remote servers.

User Interface and Application Programming Interface
The OS/2 LAN Requester/Server provides user-level security. Share-level security is
not supported. The user is required to be logged on in order to run utilities,
applications, or user interface programs remotely.

Protection Violations and Faults in the Dynamic Link Libraries

The API functions probe the buffers passed to them and scan string parameters in an
attempt to ensure that the data is accessible. These probes may cause faults if the
pointers are incorrect (for example, if they are pointing beyond the end of a segment
or outside a permitted memory region).

If you get a fault within an OS/2 LAN Requester/Server dynamic link library,

attempt to trace the code through the call. By noting the values that are being tested,
you can usually recognize the parameter that is causing the problem. Also, check

Chapter 1. Overview of OS/2 LAN Server API 1-7

buffer sizes carefully, since the API functions probe the first and last byte of a buffer
even if the data returned or received does not fill the buffer.

If you get a stack overflow, extend the stack size. There is no hard and fast rule for
determining the depth of stack that an OS/2 LAN Requester/Server API function
requires. Generally, allow 4KB of free stack space for each function call.

Local and Remote Function Calls

All OS/2 LAN Requester/Server API functions can be executed on a local server.
Many functions can also be executed on a remote server or a local requester.
Functions that can be executed remotely supply the name of an accessible remote
server for the servername parameter. A NULL servername parameter (either a
NULL pointer or a NULL string) executes the function locally.

Administrative, Local, and Server APIs

Certain OS/2 LAN Requester/Server API functions can be called only at the
administrative, local, or server level. These requirements are noted in parentheses
after function titles in the following format:

NetExampleFunction ([partially] admin, local, Server, DOS [only])

These requirements have the following meanings:

API Requirement Meaning

admin Can execute remotely only if the calling
process has administrative privileges in
the domain.

partially admin Can execute with user privilege on

certain level of data structures or user’s
own information.

local Can execute only on the local computer.

server Can execute only on a computer
running server software.

DOS Can execute both under OS/2 and DOS
requesters.

When administrative privilege for an operation is inadequate, the function returns
the error message ERROR_ACCESS_DENIED.

DOS LAN Requester Considerations

When porting OS/2 LAN Requester/Server applications to run under DOS, note that
DOS, unlike the OS/2 program, does not support pointer checking, semaphores, or
shared memory segments. Also, note that all file names, directory names, or parts of
a path name, including UNC server and network names, must follow DOS naming
conventions.

1-8 LAN Server Application Programmer’s Reference

Network Naming Conventions

The OS/2 LAN Requester/Server API defines name formats (ASCIIZ strings) to
distinguish various parts of the network software. Thus, an API function can easily
distinguish the type of resource or device parameter that is being passed.

The server name must be preceded by a double back or forward slash (\\ or //).

The format and maximum length of each type of name are defined in the
NETCONS.H include file.

The OS/2 LAN Server Version 1.2 API supports OS/2 Extended Edition Version 1.2
file names. For OS/2 LAN Server version 1.2, the OS/2 program limits fully specified
paths to 260 characters, including the following:

¢ The drive letter
¢ The colon ()

¢ All of the characters in the path name, including all backslashes (\) and slashes

0]
¢ The file or directory name on the end of the path

¢ The null character on the end of the path.

For OS/2 LAN Server Version 1.2, the operating system limits component names
to 255 characters. A component name is a file name or directory name (or a
psuedo directory name). It is the part of a path between the two backslashes or
between a slash and the null character on the end of the path. The 255
characters include all of the characters in the component name, but do not
include the backslashes or the ending null character.

All characters can be used in network names except ASCII characters less than
hexadecimal 20 and the following:

YLl l<>+=3,

Spaces are not allowed in domain names.

Periods can be used; however, they cannot be the first character of a network name
or immediately follow another period in a name. For example,

work.sta.l

is valid because a period does not start the name and the second period does not
immediately follow the first use of a period. But

.work.sta.l

and

work..sta.l

are not valid because of a period at the beginning of a name and the two periods
used together.

Chapter 1. Overview of OS/2 LAN Server API 1-9

1-10 LAN Server Application Programmer’s Reference

Chapter 2. Introducing the 0S/2 LAN Server API Functions

This chapter contains a categorical list of the OS/2 LAN Requester/Server API
functions, giving a brief description of the action performed by each function.

For detailed descriptions of the OS/2 LAN Requester/Server API functions, see
Chapter 3, “API Function Descriptions.”

Function Categories

Twenty-four categories of API functions perform various OS/2 LAN
Requester/Server network tasks. For example, the Serial Device category contains
all functions that are used to control shared serial devices. In the descriptions that
follow, both the categories and the functions within each category are listed
alphabetically. The function name is followed by an italicized label in parentheses,
which describes when the function can be successfully called. For example, the
NetShareAdd function can be executed only by an application with administrative
privileges on a server.

Note: The function names are shown as they should be used in a C language
program, that is, the function names must be entered in uppercase and
lowercase letters.

Access Permission
The functions in the Access Permission category examine or modify user or group
access permission records for server resources.

Function Description

NetAccessAdd (admin, DOS) Creates an access permission record
assigning user and group permissions
for a new resource.

NetAccessCheck (local) Verifies a user’s or group’s permission
to access a particular resource.
NetAccessDel (admin, DOS) Deletes all access permission records for
a particular shared resource.
NetAccessEnum (admin, DOS) Enumerates all access permission
records for a particular server resource.
NetAccessGetlnfo (admin, DOS) Retrieves information about an access
permission record for a resource.
NetAccessGetUserPerms (partially Supplies a specified user or group
admin, DOS) permission for a resource.
NetAccessSetInfo (admin, DOS) Modifies an access permission record

for a resource.

© Copyright IBM Corp. 1990 Chapter 2. Introducing the OS/2 LAN Server API Functions 2-1

Alert

The functions in the Alert category provide a system for notifying network service
programs and applications of network events.

Function Description

NetAlertRaise (local) Notifies all clients registered in the alert
table that a particular event occurred.

NetAlertStart (Jocal) Registers a client to be notified of a

NetAlertStop (local)

particular type of network event.

Removes a client registration from an
alert table.

Auditing
The functions in the Auditing category control the audit log file, which contains an
audit trail of operations that occur on a server.
Function Description
NetAuditClear (admin, DOS) Clears (and optionally saves) the audit
log file of a server.
NetAuditRead (admin, DOS) Opens and returns an OS/2 file handle
to the audit log file of a server.
NetAuditWrite (local, server) Writes an audit trail entry to the local
audit log file.
Configuration
The functions in the Configuration category retrieve network configuration
information from the IBMLAN.INI file.
Function Description
NetConfigGet2 (admin, DOS) Retrieves a specified parameter value for
a given network component in the
IBMLANL.INI file from a remote
computer.
NetConfigGetAll2 (admin, DOS) Retrieves all parameter information for
a given network component in the
IBMLAN.INI file from a remote
computer.
Connection

The NetConnectionEnum function gives a listing of all connections made to a server
by a requester client or all connections made to the shared resource of a server.

Function

Description

NetConnectionEnum (admin, server,
DOS)

2-2 LAN Server Application Programmer’s Reference

Lists either all connections between
requesters and resources on a server or
all connections established within a
session.

Domain

Error Logging

File

Group

The functions in the domain category provide domain-wide information.

Function

Description

NetGetDCName (DOS)

NetLogonEnum (partially admin, DOS)

Obtains the name of the domain
controller.

Supplies information about logged on
users.

The functions in the Error Logging category control the error log file.

Function

Description

NetErrorLogClear (admin)
NetErrorLogRead (admin)

NetErrorLogWrite (local)

Clears (and optionally saves) an error
log file.

Opens and returns an OS/2 file handle
to the error log file of a computer.

Writes an entry to the error log file of a
computer.

The functions in the File category provide a system for monitoring the file, device,
and pipe resources that are opened on a server, and for closing one of these

resources if necessary.

Function

Description

NetFileClose2 (admin, server, DOS)

NetFileEnum?2 (admin, server, DOS)

NetFileGetInfo2 (admin, server, DOS)

Forces a resource closed when a system
error prevents a normal DosClose
function closing.

Allows the user to issue iterated calls to
get information about some or all open
files on a server.

Retrieves information about a particular
opening of a server resource.

The functions in the Group category control user groups in the user accounts

subsystem (UAS) database.

Function

Description

NetGroupAdd (admin, DOS)
NetGroupAddUser (admin, DOS)
NetGroupDel (admin, DOS)

NetGroupDelUser (admin, DOS)

Creates a new group account.
Adds a user to a group.

Removes a group account from the
UAS database.

Removes a user from a particular
group.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-3

Function

Description

NetGroupEnum (partially admin, DOS)

NetGroupGetlnfo (partially admin,
DOS)

NetGroupGetUsers (partially admin,
DOS)

NetGroupSetlnfo (admin, DOS)
NetGroupSetUsers (admin, DOS)

Lists all group accounts.

Obtains group-related information.
Lists the members of a particular group.
Sets group-related information.

Sets information about users who
belong to a group.

Handle
The functions in the Handle category obtain and set information on a per-handle
basis.
Function Description
NetHandleGetInfo (Jocal, server) Obtains handle-specific information.
NetHandleSetInfo (local, server) Sets information in the data structure of

a handle.

Mailslot
The functions in the Mailslot category provide one-way interprocess communication
IpC).
Function Description

DosDeleteMailslot (local, DOS)

DosMailslotInfo (local, DOS)
DosMakeMailslot (local, DOS)
DosPeekMailslot (local, DOS)

DosReadMailslot (local, DOS)

DosWriteMailslot (local, DOS)

2-4 LAN Server Application Programmer’s Reference

Deletes a mailslot, discarding all
messages, whether or not they have been
read.

Returns information about a particular
mailslot.

Creates a mailslot and returns its
handle.

Reads the next message in a mailslot
without removing any data.

Reads, then removes the most current
message from a mailslot (based on
priority).

Writes a message to a particular
mailslot.

Named Pipe

The functions in the Message category are used to send, log, and forward messages.

Function

Description

NetMessageBufferSend (admin, DOS)
NetMessageFileSend (admin, DOS)

NetMessageLogFileGet (admin, DOS)

NetMessageLogFileSet (admin, DOS)

NetMessageNameAdd (admin, DOS)

NetMessageNameDel (admin, DOS)

NetMessageNameEnum (admin, DOS)

NetMessageNameFwd (admin)

NetMessageNameGetInfo (admin, DOS)

NetMessageNameUnFwd (admin)

Sends a buffer of information to a
registered user on a particular computer.

Sends a file to a registered user on a
particular computer.

Retrieves the name of the message log
file and the current logging status (on or

off).

Specifies a file to log messages received
by registered users and enables or
disables logging.

Registers a user in the message-name
table.

Deletes a user name from a
message-name table.

Lists the user name entries in a
message-name table.

Modifies the message-name table to
forward a user’s messages to another
user.

Retrieves information about a user’s
message account.

Stops forwarding a user’s messages to
another user.

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes. These functions are provided by the base operating system and
supported by the OS/2 LAN Server across the network.

Function

Description

DosBufReset (local, DOS)
DosCallNmPipe (local, DOS)

DosClose (local, DOS)

DosConnectNmPipe (local)

DosDisconnectNmPipe (local)

DosDupHandle (local, DOS)

Clears the data buffer of a named pipe.

Opens a named pipe, performs a write
to the pipe followed by a read, and then
closes the pipe.

Closes a named pipe.

Waits for a client process to open an
instance of a named pipe.

Forces a named pipe to close, denying a
client process any further access to it.

Duplicates the handle to a named pipe.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-5

Function

Description

DosMakeNmPipe (local)

DosOpen (local, DOS)

DosPeekNmPipe (local, DOS)

DosQFHandState (Jocal, DOS)

DosQHandType (local, DOS)
DosQNmPHandState (local, DOS)

DosQNmPipelnfo (local, DOS)

DosQNmPipeSemState (local)

DosRead (local, DOS)

DosReadAsync (local)

DosSetFHandState (local, DOS)

DosSetNmPHandState (local, DOS)

DosSetNmPipeSem (local)

DosTransactNmPipe (local, DOS)

DosWaitNmPipe (local, DOS)

DosWrite (local, DOS)
DosWriteAsync (local)

2-6 LAN Server Application Programmer’s Reference

Creates a new named pipe or a new
instance of an existing named pipe and
returns its handle.

Opens the client process end of a named
pipe and returns a handle.

Reads the data in a named pipe without
removing it.

Retrieves information about whether the
handle of a named pipe is inheritable
and whether write-behind to remote
pipes is allowed.

Returns the type of a particular handle.

Returns information about the current
state of a named pipe.

Retrieves information about the sizes of
the incoming and outgoing buffers of a
named pipe and the number of instances
that are available.

Returns information about the status of
a semaphore associated with a named
pipe on a local computer.

Reads data from a named pipe.

Reads data from a named pipe
asynchronously, removing the data.

Modifies the open mode state of a
named pipe.

Modifies the read mode and blocking
mode state of a named pipe.

Associates a semaphore with the client
or server process of a local named pipe.

Writes a message to and then reads a
message from a named pipe.

Enables a client process to wait for an
available instance of a named pipe.

Writes data to a file or named pipe.

Writes data to a named pipe
asynchronously.

Remote Utility

Requester

Serial Device

The functions in the Remote Utility category enable applications to copy and move
remote files, remotely execute a program, and access the time-of-day information on

a remote server.

Function

Description

NetRemoteCopy (local, DOS)

NetRemoteExec (local, server)

NetRemoteMove (local, DOS)

NetRemoteTOD (DOS)

Copies one or more files from one
location to another.

Executes a program located on a remote
server.

Moves one or more files from one
location to another.

Returns time of day on a server.

The functions in the Requester category control the operation of requesters.

Function

Description

NetWkstaGetlnfo (partially admin,
DOS)

NetWkstaSetInfo (admin, DOS)
NetWkstaSetUID2 (admin, DOS)

Returns information about the
configuration components of a
requester.

Configures a requester.

Registers a user name and password
with the redirector to validate the user
account.

The functions in the Serial Device category control shared serial devices and their

associated queues.

Function

Description

NetCharDevControl (admin, server,
DOS)

NetCharDevEnum (admin, server, DOS)
NetCharDevGetlInfo (server, DOS)
NetCharDevQEnum (server, DOS)
NetCharDevQGetlInfo (server, DOS)
NetCharDevQPurge (admin, server,

DOS)
NetCharDevQPurgeSelf (server, DOS)

Forces a serial device to close.

Lists all serial devices in a shared serial
device queue on a server.

Retrieves information about a particular
serial device in a shared serial device
queue on a server.

Lists all serial device queues on a server.

Retrieves information about a particular
serial device queue on a server.

Deletes all unprocessed requests on a
serial device queue.

Deletes all pending requests waiting in a
serial device queue submitted by a
particular computer.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-7

Server

Service

Session

Function

Description

NetCharDevQSetInfo (admin, server,
DOS)

Modifies the state of a serial device
queue on a server.

The functions in the Server category enable remote administrative tasks to be

performed on a local or remote server.

Function

Description

NetServerAdminCommand (admin,
server, DOS)

NetServerDiskEnum (admin, DOS)
NetServerEnum2 (DOS)
NetServerGetlnfo (partially admin,

server, DOS)
NetServerSetInfo (admin, server, DOS)

Executes a command on a server.

Retrieves a list of local disk drives on a
computer.

Enumerates the set of all machine IDs
visible on the network.

Retrieves information at one of four
levels of detail about a particular server.

Sets the operating parameters for a
server.

The functions in the Service category start and control network service programs.

Function

Description

NetServiceControl (partially admin,
DOS)

NetServiceEnum (DOS)

NetServiceGetInfo

NetServicelnstall (admin, DOS)

NetServiceStatus

Controls the operations of network
services.

Retrieves information about all network
services started on a server or a
requester.

Retrieves information about a particular
started network service.

Starts a network service on a server.

Sets status and code information for a
network service.

The functions in the Session category control network sessions established between

requesters and servers.

Function

Description

NetSessionDel (admin, server, DOS)

NetSessionEnum (partially admin, server,
DOS)

2-8 LAN Server Application Programmer’s Reference

Ends a session between a requester and
a server.

Provides information on all current
sessions to a server.

Share

Spooler

Function

Description

NetSessionGetlnfo (partially admin,
server, DOS)

Retrieves information about a session
established between a particular
requester and server.

The functions in the Share category control shared resources.

Function

Description

NetShareAdd (admin, server, DOS)
NetShareCheck (server, DOS)

NetShareDel (admin, server, DOS)

NetShareEnum (partially admin, server,
DOS)

NetShareGetlInfo (partially admin,
server, DOS)

NetShareSetInfo (admin, server, DOS)

Creates a shareable resource.

Queries whether a server is sharing a
device.

Deletes a netname from shared
resources.

Retrieves share information about each
shared resource.

Retrieves information about a particular
shared resource.

Sets a new share parameter or
parameters for a shared resource.

The functions in the Spooler category provide applications access to spooler queue
manager operations. These functions are provided by the base operating system and
supported by the OS/2 LAN Server across the network.

Function Description

SplQmAbort Stops the generation of the spool files
and automatically closes the spooler
queue manager.

SplQmClose Closes the spooler queue manager.

SplQmEndDoc Ends a print job and returns a unique
job number.

SplQmOpen Opens the spooler queue manager for
generating a print job.

SplQmStartDoc Signifies the start of a print job.

SplQmWrite Writes a buffer to the spool file for the

print job.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-9

Statistics

The functions in the Statistics category retrieve and clear the operating statistics for

requesters and servers.

Function

Description

NetStatisticsGet2 (admin, DOS)

Use

Obtains and optionally clears the
operating statistics for a server.

The functions in the Use category examine or control connections (uses) between

requesters and servers.

Function

Description

NetUseAdd (admin, DOS)

NetUseDel (admin, DOS)

NetUseEnum (admin, DOS)

NetUseGetInfo (admin, DOS)

User

Establishes a connection between a local
or NULL device name and a shared
resource by redirecting the local or
NULL universal naming convention
(UNC) device name to the shared
resource.

Ends a connection between a local or
UNC device name and a shared
resource.

Lists all current connections between the
local requester and resources on a
remote server.

Retrieves information about a
connection between a local device and a
shared resource.

The functions in the User category control a user’s account in the UAS database.

Function

Description

NetUserAdd (admin, DOS)

NetUserDel (admin, DOS)

NetUserEnum (partially admin, DOS)

NetUserGetGroups (partially admin,
DOS)

NetUserGetlInfo (partially admin, DOS)

2-10 LAN Server Application Programmer’s Reference

Adds a user to the set of those
permitted to use the resources of a
server.

Removes a user’s account from the
UAS database, ending the user’s access
to the resources of the server.

Returns information about all user

accounts.

Lists all groups on a server to which a
particular user belongs.

Retrieves information about a particular
user account.

Function

Description

NetUserModalsGet (partially admin,
Dos)

NetUserModalsSet (admin, DOS)

NetUserPasswordSet (DOS)

NetUserSetGroups (admin, DOS)

NetUserSetInfo (partially admin, DOS)

NetUserValidate2 (Jocal)

Obtains global modals-related
information for all users and groups in
the UAS database.

Sets global modals-related information
for all users and groups in the UAS
database.

Changes the password in a user’s
account.

Sets the groups of which a user is
member.

Modifies permission information about
a particular user name.

Validates a user ID with its password
and verifies that the user can log on
based on logon restrictions defined for
the account.

Chapter 2. Introducing the OS/2 LAN Server API Functions 2-11

2-12 LAN Server Application Programmer’s Reference

Chapter 3. API Function Descriptions

This chapter provides detailed information about the syntax of each API function,
the tasks that the function performs, and data structures. and header files that it uses.
This chapter includes twenty-four reference sections, each representing one of the
twenty-four function categories outlined in Chapter 2, “Introducing the OS/2 LAN
Server API Functions.”

Format of APl Reference Pages

Each function category begins with an overview explaining how the functions
interrelate and how they work with the network software. Any data structures
common to several or all of the functions are then described. Each category
contains a separate reference section for each function. In the reference section,
syntax is described and parameters are defined. Error codes returned by the
function are listed and briefly described. In most cases, a discussion expanding on
function requirements or behaviors not previously covered is also included.

Both the function categories and the function reference sections within them are
ordered alphabetically.

The following subsections describe the type of information that can be found on the
individual API reference pages:

Title Briefly describes why, how, or when your application should
use the function. The function title is followed by a brief
description of the use of the function. A complete list of
function restrictions is described in Chapter 2, “Introducing
the OS/2 LAN Server API Functions.”

Syntax Describes the header files that must be included before your
application calls the function. In addition, it provides the
definition of the function and a detailed description of the
parameters of each function.

Return Codes Provides a list of the return codes the function is most likely
to return. This list is not exhaustive. Low-level operating
system conditions may return other codes. For a complete
listing of OS/2 LAN Requester/Server error codes, see
Appendix C, “Return Codes.”

Remarks Describes important details about the performance of the
function or any peculiarities or special behaviors of the
function that your application should take into consideration
in order to successfully call the function and efficiently use its
results.

Related Information References other sections or chapters in this or other manuals
in the OS/2 LAN Requester/Server document set that may
help you better understand or use the function.

© Copyright IBM Corp. 1990 Chapter 3. API Function Descriptions 3-1

Access Permission Category

Description

NetAccessAdd (admin, DOS)—See “NetAccessAdd” on page 3-6.

NetAccessCheck (Jocal)—See “NetAccessCheck” on page 3-9.

NetAccessDel (admin, DOS)—See “NetAccessDel” on page 3-12.

NetAccessEnum (partially admin, DOS)—See “NetAccessEnum” on page 3-15.
NetAccessGetInfo (partially admin, DOS)—See “NetAccessGetInfo” on page 3-18.

NetAccessGetUserPerms (partially admin, DOS)—See “NetAccessGetUserPerms” on
page 3-22.

NetAccessSetInfo (admin, DOS)—See “NetAccessSetInfo” on page 3-25.

The functions in the Access Permission category examine or modify user or group
access permission records for server resources. They are used with the ACCESS.H
and NETCONS.H include files.

In order for a user to access a shared resource, an access permission record must be
defined for that user. An access permission record defines how a user or group can
access a shared resource. It contains a set of permissions for each user or group.

Access permission records are created using the NetAccessAdd function. To delete
all access permission records associated with a particular shared resource, call
NetAccessDel.

An access permission record contains:
¢ The name of the resource
¢ A list of users or groups permitted to use the resource

¢ A list of access permissions granted to a particular user or group.

The NetAccessGetlInfo function can be called to return information on a particular
access permission record. To obtain information on all access permission records for
which the calling process has special permissions (ACCESS_PERM), call
NetAccessEnum.

The access permission record must be defined by a user or application that already
has administrative permissions , or has special permission (ACCESS_PERM) for the
resource being shared. Note that user permissions have precedence over group
permissions. If a user is not defined in the access list for the shared resource, the
user’s access permissions are the union of all groups to which the user belongs. For
more information on access control checking, see the IBM Operating System(2 Local
Area Network Server Version 1.2 Network Administrator’'s Guide. The
NetAccessCheck function can be called to verify whether a user has permission to
access a particular resource. If the user or group does not have access permission
and access permission is needed, the access permission record can be changed from
its original content with NetAccessSetInfo.

3-2 LAN Server Application Programmer’s Reference

DOS Considerations
Under DOS, these functions can be executed only on a remote server.
Administrative privilege must have been granted to execute the functions.

Attempting to execute the functions on a local requester returns
NERR_RemoteOnly.

Data Structures
The level parameter controls the level of information provided to or returned from
the NetAccessAdd, NetAccessEnum, NetAccessGetInfo, and NetAccessSetInfo
functions. These functions use either a level 0 or a level 1 data structure.

Access Permission Information (Level 0)

struct access_info_0 {
char far * accO_resource_name;
b

where:

* acc0_resource_name points to an ASCIIZ string containing the name of a
resource type. accO_resource_name uses the following formats:

Resource Type Name Format
Directory drive:pathname

File drive:pathname
Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue

Access Permission Information (Level 1)

struct access_info_1 {
char far * accl_resource_name;

short accl_attr;
short accl_count;
b
where:

® accl_resource_name points to an ASCIIZ string specifying the name of a
particular resource (see preceding discussion on acc0_resource_name).

* accl_attr specifies the attributes of accl_resource_name. The bits of accl_attr
are defined as follows:

Bit Meaning

0 Audit all. When this bit is set, all access attempts will be audited.
No other bits in the field can be set. It is an error to set any other
bits when bit 0 is set. When bit 0 is cleared, the remaining bits are
defined as described as follows in this table.

1-3 Reserved with a value of 0.

4 If 1, audit successful file opens.

Chapter 3. API Function Descriptions 3-=3

Bit Meaning

5 If 1, audit successful file writes and successful directory creates.

6 If 1, audit successful file deletes or truncates and successful
directory deletes.

7 If 1, audit successful file and directory ACL changes.

8 If 1, audit failed file opens.

9 If 1, audit failed file writes and failed directory creates.

10 If 1, audit failed file deletes or truncates and failed directory
deletes.

11 If 1, audit failed file and directory ACL changes.

12-15 Reserved with a value of 0.
Notes:

1. Other resources that can be accessed across the network,
including spooler queues, serial device queues, and pipes, are
audited using the FOR FILES bits.

2. A value of 0 for the accl_attr word means that there is no
auditing of resource accesses. A value of 1 means audit
everything. Other values indicate the auditing of specific
accesses.

3. When write auditing is enabled, the “write audit” record will
be generated when the file is successfully opened for write.
written. Only one “write audit” record is produced per open
instance of the file. If both write and open auditing are
enabled, two audit records may be produced.

4. File size changes (including truncation) are audited under the
control of auditing bits 5 and 9. Thus, access that is
controlled with the ACCESS_WRITE permission bits is
audited by way of auditing bits 5 and 9.

5. Bit 3 is used in conjunction with bit 4 to allow the auditor to
determine the duration of access. However, since this
information is not required, the generation of the close audit is
optional.

* accl_count specifies the number of access_list data structures following the
access_info_1 data structure.

In addition, the access_info_I data structure can be followed by zero or more (up to
a maximum of 64) access_list data structures. These structures are used to define
resource permissions for individual users or groups.

Resource Permissions

struct access_list {
char acl_ugname[UNLEN+1];
char acl_ugname_pad_1;
short acl_access;

|H

3-4 LAN Server Application Programmer’s Reference

where:

* acl_ugname is an ASCIIZ string specifying a particular user name or group

name.

* acl_ugname_pad_I WORD-aligns the data structure components.

* acl_access specifies permission of a user name or a group name. acl_access is
defined in ACCESS.H as follows:

Manifest Bit Meaning
Mask

ACCESS_READ 0x01 Permission to read data from a resource,
and by default execute the resource.

ACCESS_WRITE 0x02 Permission to write data to the resource.

ACCESS_CREATE 0x04 Permission to create an instance of the
resource (such as a file); data can be
written to the resource when creating it.

ACCESS_EXEC 0x08 Permission to execute the resource.

ACCESS_DELETE 0x10 Permission to delete the resource.

ACCESS_ATRIB 0x20 Permission to modify the attributes of a
resource (such as the date and time a file
was last modified).

ACCESS_PERM 0x40 Permission to modify the permissions
(read, write, create, execute, and delete)
assigned to a resource for a user or
application.

ACCESS_ALL 0x7F Permission to read, write, create,
execute, or delete a resource, or to
modify attributes or permissions.

ACCESS_GROUP 0x8000 Permission for a particular group; if

Related Information

returned, indicates that the entry is for a
group.

For information on include files, see Appendix A, “Include Files.”

Chapter 3. API Function Descriptions 3-5

NetAccessAdd

The NetAccessAdd (admin, DOS) function defines a user name or group name
access permission record for a new resource.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessAdd(servername, level, buf, buflen)

char far * servername;
short level;
char far * buf

unsigned short bufien;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

» Jevel specifies the level of detail (1) provided in the access_info_I data structure.

* buf points to the access_info_I data structure. The structure can be followed by
zero or more access_list data structures.

¢ buflen specifies the size (in bytes) of the buf memory area.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_BAD_NETPATH 53 The network path
cannot be found.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

3-6 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_ShareMem

NERR_RemoteOnly

NERR_ServerNotStarted

NERR_BufTooSmall

NERR_OS2IoctiError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_ACFNotFound

NERR_UserNotFound

NERR_ResourceNotFound

NERR_ResourceExists

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFileIOFail

2104

2106

2114

2123

2134

2138

2139

2140

2141

2142

2219

2221

2222

2225

2227

2228

2229

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has
not been started.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The Net. ACC file is
missing.

The user name cannot
be found.

The netname cannot be
found.

The resource
permission list already
exists.

The UAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-7

Manifest Value

Meaning

NERR_ACFTooManyLists 2230

NERR_InvalidComputer 2351

Too many lists were
specified.

The specified computer
name is invalid.

Other return codes may be returned from the following OS/2 functions:

¢ DosAllocSeg

e DosFreeSeg

¢ DosFsCitl

* DosFsCtIINETTRANSACTION)

¢ DosFsCtI(NULLTRANSACT)

* DosFsCtl(NetGetRdrAddr)

* DosFSRamSemClear

¢ DosGetShrSet[-ERROR_FILE_NOT _FOUND]
¢ DosOpen

¢ DosQFileMode

e DosSemClear.

Remarks

To define the access permissions for a new resource, the contents of buf must include
an access_info_I data structure specifying the name of a resource, attributes, and the
number of access_list data structures that are appended. Each access_list data
structure specifies a user name or group name and associated permissions to be

added to the access permission record of a resource.

Related Information
For information on:

¢ Add functions—See Chapter 1, “Overview of OS/2 LAN Server APL.”

¢ Deleting an access permission record—See “NetAccessDel” on page 3-12.

¢ Listing server permissions and resources—See “NetAccessEnum” on page 3-15.

3-8 LAN Server Application Programmer’s Reference

NetAccessCheck

The NetAccessCheck (local) function verifies that a user name has the supplied
permissions for a particular resource.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessCheck(reserved, uname, resource, operation, result)

char far * reserved;
char far * uname;

char far * resource;
unsigned short operation;

unsigned short far * result;
where:
¢ reserved is a NULL pointer.
¢ uname points to an ASCIIZ string containing a user name.

* resource points to an ASCIIZ string containing the local path name for the
resource type, as follows:

Type Format

Directory drive:pathname

File drive:pathname

Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue

* operation specifies the type of access operation requested. Any combination of
the following can be requested, as defined in ACCESS.H as follows:

Manifest Bit Meaning
Mask
ACCESS_READ 0x01 Permission to read data from a resource,
and by default execute the resource.
ACCESS_WRITE 0x02 Permission to write data to the resource.
ACCESS_CREATE 0x04 Permission to create an instance of the

resource (such as a file); data can be
written to the resource when creating it.

ACCESS_EXEC 0x08 Permission to execute the resource.
ACCESS_DELETE 0x10 Permission to delete the resource.
ACCESS_ATRIB 0x20 Permission to modify the attributes of a

resource (such as the date and time a file
was last modified).

Chapter 3. API Function Descriptions 3-9

Manifest Bit Meaning

Mask
ACCESS_PERM 0x40 Permission to modify the permissions
(read, write, create, execute, and delete)
assigned to a resource for a user or
application.
ACCESS_ALL 0x7F Permission to read, write, create,

execute, or delete a resource, or to
modify attributes or permissions.

¢ result points to an unsigned short integer specifying whether or not the operation
is permitted. result is only valid when the NetAccessCheck function returns the
NERR_Success return code. If result is 0, then the operation is permitted.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were encountered.
ERROR_ACCESS_DENIED 5 Administrative privilege is
required.
ERROR_SEEK 25 The seek is invalid.
ERROR_NOT_SUPPORTED 50 This request is not supported by
the network.
ERROR_INVALID_PARAMETER 87 The specified parameter is invalid.
NERR_ServerNotStarted 2114 The Server service has not been
started.
NERR_InternalError 2140 An internal error has occurred.
NERR_InvalidAPI 2142 The requested API is not
supported on the remote server.
NERR_ACFNotFound 2219 The Net.ACC file is missing.
NERR_UserNotFound 2221 The user name cannot be found.
NERR_ACFFilelOFail 2229 An error was encountered in
accessing the accounts database.
NERR_InvalidDatabase 2247 The UAS database file is
corrupted.

Other error return codes may be returned from the following functions:
¢ DosAllocSeg
¢ DosChgFilePtr
¢ DosFsCtl
¢ DosOpen
¢ DosRead.

3-10 LAN Server Application Programmer’s Reference

Remarks
If an access permission record cannot be found for the specified user name and the
specified resource, the NetAccessCheck function tries to find the proper access
permission record for the GUEST account, a special account set up for temporary
users of the resource. GUEST accounts are defined in the IBMLAN.INI file.

Related Information
For information on:

* Defining user or group access permissions—See “NetAccessAdd” on page 3-6.

¢ Guest accounts—See the IBM Operating System/2 Local Area Network Server
Version 1.2 Network Administrator's Guide.

e Listing all permissions and resources—See See “NetAccessEnum” on page 3-15.

Chapter 3. API Function Descriptions 3-11

NetAccessDel

Syntax

Return Codes

The NetAccessDel (admin, DOS) function deletes all access permission records for a

particular shared resource.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessDel (servername, resource)

char far * servername;
char far * resource;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local

computer.

* resource points to an ASCIIZ string containing the local path name for the

resource type, as follows:

Type Format
Directory drive:pathname
File drive:pathname
Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue
Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

3-12 LAN Server Application Programmer’s Reference

available, but the
buffer is too small.

Manifest

Value

Meaning

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_ACFNotFound

NERR_ResourceNotFound

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_InvalidComputer

2102

2104

2106

2123

2134

2138

2139

2140

2141

2219

2222

2227

2229

2351

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net. ACC file is
missing.

The netname cannot be
found.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFSRamSemClear

¢ DosFreeSeg

¢ DosFsCtl

¢ DosFsCtIINETTRANSACTION)
* DosFsCtIINULLTRANSACT)

Chapter 3. API Function Descriptions 3-13

DosFsctl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE NOT_FOUND]

¢ DosOpen

DosSemClear.

Related Information
For information on:

¢ Defining user name or group name access permissions—See “NetAccessAdd” on
page 3-6.

¢ Del functions—See Chapter 1, “Overview of OS/2 LAN Server AP1.”

¢ Listing all permissions and resources—See See “NetAccessEnum” on page 3-15.

3-14 LAN Server Application Programmer’s Reference

NetAccessEnum

Syntax

Return Codes

The NetAccessEnum (partially admin, DOS) function enumerates all access
permission records.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessEnum(servername, basepath, recursive, level,

buf, buflen, entriesread, totalentries)

char far * servername;
char far * basepath;
short Tevel;
short recursive;
char far * buf;
unsigned short bufien;

unsigned short far * entriesread;
unsigned short far * totalentries;

where:

servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

basepath points to an ASCIIZ string containing a base path name for the shared
resources. A NULL pointer or string means no basepath is to be used.

recursive enables or disables recursive searching. If recursive is 0,
NetAccessEnum returns entries only for the resource named as basepath. If
recursive is non-zero, NetAccessEnum returns entries for all access control
records whose resource matches basepath.

level specifies the level of detail (0 or 1) requested for the returned access_info
data structure.

buf points to the returned access_info data structure.
buflen specifies the size (in bytes) of the buf memory area.

entriesread points to an unsigned short integer indicating the number of entries
returned.

totalentries points to an unsigned short integer indicating the number of entries
available.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative

privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is

not available.

Chapter 3. API Function Descriptions 3-15

Manifest Value Meaning

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is
Lo available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
, NETWKSTA.EXE has
‘ not been started.
NERR_ShareMem ' 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
' occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
_ transactions.
NERR_ACFNotFound 2219 The Net.ACC file is
missing.
NERR_UserNotFound 2221 The user name cannot
be found.
NERR_ResourceNotFound 2222 The netname cannot be
found.
NERR_ACFNotLoaded 2227 The UAS database has
not been started.
NERR_ACFNoRoom 2228 There are too many

names in the access
control file.

3-16 LAN Server Application Programmer’s Reference

Manifest Value Meaning

NERR_ACFFilelOFail 2229 An error was
encountered in
accessing the accounts
database.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following functions:
¢ DosAllocSeg

* DosFsRamSemClear

¢ DosFreeSeg

¢ DosFscti(NETTRANSACTION)

e DosFsctiNULLTRANSACT)

¢ DosFsctl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

¢ DosOpen

* DosSemClear.

Remarks
The NetAccessEnum function can return entries for an application having only
ACCESS_PERM permissions. If the user does not have administrative privileges,
NetAccessEnum will not return ERROR_ACCESS_DENIED, but it will return
NERR_Success with zero entries. The basepath parameter limits the entries returned
by NetAccessEnum. If basepath is a non-NULL string, basepath serves as a prefix
for the path name. For example, if basepath is C:\PROG, NetAccessEnum returns
access permission records for resources that begin with C:\PROG.

The totalentries parameter indicates the number of entries available for the given
basepath and recursive parameters, not the total number of entries in the access file.

Therefore, NetAccessEnum returns information only for resources with non-default
settings below the root directory specified in the request. Note that this is
semantically consistent with a standard OS/2 LAN Requester/Server, which returns
only explicit permissions. In addition, it is highly recommended that the recursive
switch always be set to FALSE.

Related Information
For information on:

¢ Adding an access permission record—See “NetAccessAdd” on page 3-6.
¢ Enum functions—See Chapter 1, “Overview of OS/2 LAN Server AP1.”

¢ Retrieving information about a permissions of a resource—See
“NetAccessGetInfo” on page 3-18. '

o Verifying an access permission record of a resource—See “NetAccessCheck” on
page 3-9.

Chapter 3. API Function Descriptions 3-17

NetAccessGetinfo
The NetAccessGetInfo (partially admin, DOS) function retrieves information about
the access permission record of a resource.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessGetInfo(servername, resource, level, buf,

buflen, totalavail)

char far * servername;
char far * resource;
short level;

char far * buf;
unsigned short buflen;

unsigned short far * totalavail;

where:

servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

resource points to an ASCIIZ string containing the local path name for the
resource type, as follows:

Type Format

Directory drive:pathname

File drive:pathname

Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue

level specifies the level of detail (0 or 1) requested for the returned access_info
data structure.

buf points to the returned access_info data structure. On a successful return, buf
can contain an access_info_0 data structure or an access_info_l data structure
followed by zero or more access_list data structures. The number of access_list
data structures returned can be found in the accl_count component of the
access_info_I data structure.

buflen specifies the size (in bytes) of the buf memory area.

totalavail points to an unsigned short integer indicating the number of bytes of
information available.

3-18 LAN Server Application Programmer’s Reference

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_ACCESS_DENIED 5 Administrative

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2]octlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_ACFNotFound

NERR_ResourceNotFound

124

234

2102

2104

2106

2123

2134

2138

2139

2140

2141

2219

2222

privilege is required.

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net.ACC file is
missing.

The netname cannot be
found.

Chapter 3. API Function Descriptions 3-19

Manifest Value Meaning

NERR_ACFNotLoaded 2227 The UAS database has

not been started.

NERR_ACFFilelOFail 2229 An error was

encountered in
accessing the accounts
database.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosAllocSeg

DosFsRamSemClear

DosFreeSeg

DosFsctl

DosFsctiNETTRANSACTION)
DosFscti(NULLTRANSACT)
DosFsctl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosOpen

DosSemClear.

If the calling process does not have administrative privileges, NetAccessGetInfo can
be successfully called only by a process that has special permissions
(ACCESS_PERM) defined in the access permission record of the resource.

The specified resource must be a complete path name.

In specifying the queuename for a resource, use the name originally assigned to the
resource with the NetShareAdd function.

If level is 1, NetAccessGetInfo returns an access_info_I data structure followed by an
access_list data structure for each entry in the list of the resource. The number of
entries can be determined by examining the accl_count component in the
access_info_1 data structure.

If buf cannot hold all of the fixed-length and variable-length data (all access_list data
structures), NetAccessGetInfo returns the NERR_BufTooSmall error code, and not
the ERROR_MORE_DATA error code as most GetInfo functions do when there is
more data available.

The proper way to determine the size of buf is to first call NetAccessGetInfo with
level as 1 and buflen as 0. In this case, NetAccessGetInfo will return the number of
bytes required in totalavail. After obtaining this value, call NetAccessGetInfo with
level as 1, and specify the new buflen.

3-20 LAN Server Application Programmer’s Reference

Related Information
For information on:

¢ Getlnfo functions—See Chapter 1, “Overview of OS/2 LAN Server APL.”
¢ Listing all resources and permissions—See “NetAccessEnum” on page 3-15.

¢ Modifying the current permissions for a resource—See “NetAccessSetInfo” on
page 3-25.

Chapter 3. API Function Descriptions 3-21

NetAccessGetUserPerms
The NetAccessGetUserPerms (partially admin, DOS) function supplies a specified
user’s or group’s permission to a resource. The resource can be a file, directory,
drive or logical resource and can be specified remotely by a universal naming
convention (UNC) path as well as by a server name.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessGetUserPerms(servername, usergroupname, resource, permission)

char far * servername;
char far * usergroupname;
char far * resource;
short far * permission;
where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* usergroupname points to an ASCIIZ string containing the name of the user or
group to be inquired.

* resource points to an ASCIIZ string containing the path name for the resource
type which can be a directory, file, or drive, as follows:

Type Format

Directory drive:pathname

File drive:pathname

Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue

* permission points to a field where the permission bit field is to be returned.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_BAD_NETPATH 53 The network path

cannot be found.

3-22 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_NETWORK_ACCESS_DENIED

ERROR_INVALID_PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_ACFNotFound

NERR_UserNotFound

NERR_ResourceNotFound

NERR_ACFNotLoaded

65

87

124

234

2102

2104

2106

2123

2134

2138

2139

2140

2141

2219

2221

2222

2227

Network access is
denied.

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net.ACC file is
missing.

The user name cannot
be found.

The netname cannot be
found.

The UAS database has
not been started.

Chapter 3. API Function Descriptions 3-23

Manifest Value

Meaning

NERR_ACFFilelOFail 2229
NERR_InvalidDatabase 2247
NERR_InvalidComputer 2351

An error was
encountered in
accessing the accounts
database.

The UAS database file
is corrupted.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosAllocSeg

¢ DosChgFilePtr

¢ DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsctl

¢ DosFsctiNETTRANSACTION)
¢ DosFsctiNULLTRANSACT)
¢ DosFsctl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE NOT_FOUND]
¢ DosOpen

* DosRead

* DosSemClear.

Remarks

The resource can be specified remotely by a UNC path as well as by a server name.
The permissions returned are based on the user’s entry and the entry for any groups
to which the user belongs. Priority is always given to the user’s entry if one exists.

This API requires administrative privilege with the exception that users are always
allowed to request their own permissions to any resource. In addition, a user with
“P” permission to the resource can get the permissions for any user or group.

3-24 LAN Server Application Programmer’s Reference

NetAccessSetinfo

Syntax

The NetAccessSetInfo (admin, DOS) function changes an access permission record
for a resource.

t#include <netcons.h>
#include <access.h>

unsigned far pascal
NetAccessSetInfo(servername, resource, level,
buf, buflen, parmnum)

char far * servername;
char far * resource;
short level;
char far * buf;
unsigned short buflen;
short parmnum;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

® resource points to an ASCIIZ string containing the local path name for one of
the following resource types:

Type Format

Directory drive:pathname

File drive:pathname

Pipe \pipe\pipename
Spooler queue \print\queuename
Serial device queue \comm\chardevqueue

* Jevel specifies the level of detail (1) provided in the access_info_1 data structure.

* buf points to the data structure if parmnum is zero. Otherwise, buf points to the
specific data component that will be changed.

* buflen specifies the size (in bytes) of the buf memory area.

* parmnum specifies whether a specific component of the access_info_I data
structure is being set, or the entire data structure. If parmnum is zero, buf must
contain an access_info_l data structure followed by zero or more access_list data
structures. If parmnum is non-zero, only the accl_attr component in the
access_info_I data structure is set, and parmnum must pass the ordinal position
value (ACCESS_ATTR_PARMNUM) of the accl_attr component.

Chapter 3. API Function Descriptions 325

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_BAD NETPATH 53 The network path
cannot be found.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.
NERR_RemoteOnly 2106 This operation is not
supported on
workstations.
NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.
NERR_OS2IoctlError 2134 An internal error
occurred when calling
the workstation driver.
NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not

3-26 LAN Server Application Programmer’s Reference

configured for
transactions.

Manifest Value Meaning

NERR_ACFNotFound 2219 The Net. ACC file is
missing.
NERR_UserNotFound 2221 The user name cannot
be found.
NERR_ResourceNotFound 2222 The netname cannot be
found.
NERR_ACFNotLoaded 2227 The UAS database has
not been started.
NERR_ACFNoRoom 2228 There are too many

names in the access
control file.

NERR_ACFFilelOFail 2229 An error was
encountered in

accessing the accounts

database.
NERR_ACFTooManyLists 2230 Too many lists were
specified.
NERR_InvalidDatabase 2247 The UAS database file
is corrupted.
NERR_InvalidComputer 2351 The specified computer
name is invalid.
NERR_CanNotGrowUASFile 2456 It is not possible to

grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocSeg

* DosChgFilePtr

¢ DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsctl

¢ DosFsctiNETTRANSACTION)

¢ DosFsctiNULLTRANSACT)

¢ DosFsctl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosNewSize[-ERROR_DISK_FULL]

¢ DosOpen

Chapter 3. API Function Descriptions 3-27

DosQFileInfo
DosRead

L]

DosSemClear

DosWrite.

Remarks
The specified resource must be a complete path name. For example, file or directory
resources must include a drive letter.

A user or application that has ACCESS_PERM permissions for a particular resource
can change the access permission record for that resource and remove its permissions
for that resource.

The parmnum is used only to change the accl_attr field in the access_info_I data
structure. To change the user or group permissions through this API, call
NetAccessGetlnfo first. Otherwise, if the user or group list is not complete, the
information that is not included will be lost.

Related Information
For information on :

¢ Listing server resources and permissions—See “NetAccessEnum” on page 3-15.
e Retrieving permissions of a resource—See “NetAccessGetInfo” on page 3-18.

¢ SetInfo functions—See Chapter 1, “Overview of OS/2 LAN Server APL.”

3-28 LAN Server Application Programmer’s Reference

Alert Category

Description

NetAlertRaise (local)—See “NetAlertRaise” on page 3-34.
NetAlertStart (local)—See “NetAlertStart” on page 3-37.
NetAlertStop (local)—See “NetAlertStop” on page 3-40.

The functions in the Alert category provide a system for notifying network service
programs and applications of network events. They are used with the ALERT.H
and NETCONS.H include files.

An event is a particular instance of a process or state of hardware defined by an
application or by the OS/2 LAN Requester/Server software. The OS/2 LAN
Requester/Server sends out an alert, in the form of a message or the resetting of a
semaphore, when certain events occur. Other programs, network services, or internal
network components use the NetAlertRaise function to raise an alert, notifying
various applications or users when a particular type of event occurs.

The ALERT.H include file defines the following classes of events for the alerts that
are sent out:

¢ A print job has completed.

e A user or application received a broadcast message.
¢ An entry was added to an error log file.

¢ A network event required administrative assistance.

¢ A user accessed or used certain applications or resources.

Other classes of alerts can be defined for network applications as needed. For
example, if an application routinely writes large amounts of data to a disk drive,
running the risk of filling the disk, the user might want the event of no free disk
space to trigger an alert that notifies the application to pause or end the process
slowing the system.

An application or network service, known as a client, registers to be notified of an
event (or class of events) by calling the NetAlertStart function. Each registration
adds an entry to an alert table.

A client can receive alert messages through one of two delivery mechanisms:
¢ A mailslot (registered as \mailslot\name)

* A system semaphore (registered as \sem\name). If a program requires detailed
information about an event, it should be registered as a mailslot, since a
semaphore cannot transmit such information.

A client can be registered for one type of event or for several types by calling the
NetAlertStart function a number of times.

To discontinue alerts for a registered client, use the NetAlertStop function to remove
that entry of a client in the alert table for the particular class of event.

Chapter 3. API Function Descriptions 3-29

Data Structures

Header Structure

Event Structures

To change the internal size of the alert table (thus allowing more alerts to be
defined), a user or application must modify the numalert component in the
IBMLANL.INI file, and then restart the requester (by using the NET STOP RDR /y
and NET START RDR commands).

An application registered as a mailslot client receives information about each class of
event for which it is registered. This information consists of a fixed-length header
followed by variable-length information specific to the type of event, as defined in
the ALERT.H include file.

The fixed-length header contains the following data:

/* Standard event data structure */

struct std_alert {
long alrt_timestamp;
char alrt_eventname[ELVLEN+1];
char alrt_padl;
char alrt_servicename[SNLEN+1];

|5

where:
* alrt_timestamp indicates the time and date of the event.
* alrt_eventname is an ASCIIZ string indicating the alert class (type of event).
¢ alrt_padl WORD-aligns data structure components.

® alrt_servicename is an ASCIIZ string indicating the application that is raising the
alert.

The ALERT.H include file contains data structures for predefined alert classes.
These structures define only the fixed-length part of the information, not the ASCIIZ
strings that follow some of the structures. Each of the six structures is described in
the following sections.

3-30 LAN Server Application Programmer’s Reference

Print Request Completed

struct print_other_info {
short alrtpr_jobid;
short alrtpr_status;
long alrtpr_submitted;
long alrtpr_size;
}s
/* followed by consecutive ASCIIZ strings

char computername[];
char username[];

char queuename[];
char destname[];

char status_string[];

*/
where:
* alrtpr_jobid is the identification number of the print job.
* alrtpr_status indicates the status of the print job.
* alrtpr_submitted is a time stamp indicating when the print job was submitted.
* alrtpr_size indicates the size (in bytes) of the print job.

¢ computername is an ASCIIZ string indicating the requester or server that
submitted the print job.

® username is an ASCIIZ string indicating the user that requested the printing.
® queuename is an ASCIIZ string indicating the queue that handled the print job.
¢ destname is an ASCIIZ string indicating the printer that handled the job.

* status_string is information that the print processor returns. This string
corresponds to status_string in the printjob data structure for the print job.

Network Message Received: In this case, no data structure is defined; however, the
text from the received message is in the following format:

char msg_text [];

where:

* msg_text is an ASCIIZ string of message text.

Entry Made to Error Log File

struct errlog_other_info {
short alrter_errcode;
long alrter_offset;

}s
where:

* alrter_errcode is the error code that was logged.

* alrter_offset is the offset for the new entry in the error log file.

Chapter 3. API Function Descriptions 3-31

Notify Administrator of Network Event

struct admin_other_info {
short alrtad_errcode;
short alrtad_numstrings;

|5
/* followed by 0-9 consecutive ASCIIZ strings

char mergestrings [][];
*/

where:
* dalrtad_errcode is the error code for the new message in the message log file.

* alrtad_numstrings indicates the number (0 through 9) of consecutive ASCIIZ
strings that mergestrings contains.

® mergestrings is a series of consecutive ASCIIZ strings that comprise the error
message indicated by alrtad_errcode.

Notify User of an Event

struct user_other_info {
short alrtus_errcode;
short alrtus_numstrings;

|5
/* followed by the consecutive ASCIIZ strings

char mergestrings [1[];
char username[];
char computername(];

*/

where:
® alrtus_errcode is the error code for the new message in the message log file.

* alrtus_numstrings indicates the number (0 through 9) of consecutive ASCIIZ
strings that mergestrings contains.

* mergestrings is a series of consecutive ASCIIZ strings that comprise the error
message indicated by alrtus_errcode.

® username is the user name of the user or application that is being affected by the

alert.

® computername is the name of the computer that the user or application is
accessing.

3-32 LAN Server Application Programmer’s Reference

Related Information

The ALERT.H include file contains macros to simplify access to the variable-length

fields in the alert structure as follows:

Macro

Task

ALERT_OTHER_INFO,
ALERT_OTHER_INFO_F

ALERT VAR _DATA,
ALERT_VAR_DATA_F

For information on:

When given a pointer to the start of the
std_alert data structure, the
ALERT_OTHER_INFO macro resolves
to a pointer to the variable-length part
of the alert message (the information
specific to the alert class). Use
ALERT_OTHER_INFO_F when a far
pointer is required.

Works with the data structures defined
in ALERT.H. Given a pointer to the
beginning address of the data structure,
ALERT_VAR_DATA returns a pointer
to the first variable-length ASCIIZ
string. Use ALERT_VAR DATA_F
when a far pointer is required.

¢ TInclude files—See Appendix A, “Include Files.”

¢ Creating mailslots—See “Mailslot Category” on page 3-146.

Chapter 3. API Function Descriptions 3-33

NetAlertRaise
The NetAlertRaise (local) function notifies all clients registered in the alert table that
a particular event has occurred.

Syntax

#include <netcons.h>
#include <alert.h>

unsigned far pascal

NetAlertRaise(event, buf, buflen, timeout)
const char far * event;

const char far * buf;

unsigned short buflen;

unsigned long timeout;

where:

¢ event points to an ASCIIZ string indicating the type of alert to raise. The
ALERT.H include file defines the following classes of alerts:

Manifest ASCIIZ String Meaning
ALERT_ADMIN_EVENT “ADMIN” Notify an
administrator.
ALERT_ERRORLOG_EVENT “ERRORLOG” Entry added to
error log file.
ALERT_MESSAGE_EVENT “MESSAGE” User or
application
received a
message.
ALERT_PRINT_EVENT “PRINTING” Print job
completed or
print error.
ALERT _USER_EVENT “USER” Application or

resource used.

Other classes of events can be defined as necessary.
* buf points to the std_alert data structure followed by additional alert data.
* buflen specifies the size (in bytes) of the buf memory area.

o timeout specifies the number of milliseconds to wait for event information to be
written to the mailslot.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is

not available.

3-34 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID_PARAMETER

ERROR_INVALID_NAME

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_InvalidComputer

NERR_NoSuchAlert

123

124

234

2102

2104

2123

2134

2138

2139

2140

2141

2142

2351

2432

The specified
parameter is invalid.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The Alerter service has
not been started.

Chapter 3. API Function Descriptions 3-35

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosFsRamSemClear

DosFSRamSemRequest

DosFreeSeg

DosFsctiNETTRANSACTION)
DosFsctiINULLTRANSACT)
DosFsctl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosSemClear

DosSemRequest.

NetAlertRaise notifies all clients registered as semaphores or mailslots when a
particular system event takes place. Semaphores are cleared, and mailslots are sent
messages.

For mailslot clients, NetAlertRaise writes information from buf to clients registered
as mailslots by calling the DosWriteMailslot function.

All semaphore clients must be created with the NoExclusive option set and must be
called by a process that calls the DosMuxSemWait function on the semaphore. This
procedure informs the process of the state transition of the semaphore.

Related Information

For information on:

Creating a mailslot—See “DosMakeMailslot” on page 3-150.
Registering a client for an event—See “NetAlertStart” on page 3-37.
Ending event watching—See “NetAlertStop” on page 3-40.

3-36 LAN Server Application Programmer’s Reference

NetAlertStart

The NetAlertStart (local) function registers a client to be notified of a particular type
of network event.

Syntax

#include <netcons.h>
#include <alert.h>

unsigned far pascal

NetAlertStart(event, recipient, maxdata)
const char far * event;

const char far * recipient;

unsigned short maxdata;

where:

¢ event points to an ASCIIZ string indicating the type of event of which the client
is to be notified. The ALERT.H include file defines the following classes of

alerts:
Manifest ASCIIZ String Meaning
ALERT ADMIN_EVENT “ADMIN” Notify an
administrator.
ALERT_ERRORLOG_EVENT “ERRORLOG” Entry added to
error log file.
ALERT_MESSAGE_EVENT “MESSAGE” User or
application
received a
message.
ALERT PRINT_EVENT “PRINTING” Print job
completed or
print error.
ALERT USER_EVENT “USER” Application or

resource used.

Other classes of events can be defined as necessary.

® recipient points to an ASCIIZ string specifying the mailslot or semaphore client
to receive the alerts.

¢ maxdata specifies a limit (in bytes) to the information the mailslot client will
receive about events in that class.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is

not available.

Chapter 3. API Function Descriptions 3-37

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_NAME 123 There is an incorrect

character or incorrectly
formed file system

name.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_BufTooSmait 2123 The buffer is too small
for fixed-length data.
NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
transactions.
NERR_InvalidAPI 2142 The requested API is

not supported on the
remote server.

NERR_BadEventName 2143 The event name is
incorrectly formed.

NERR_InvalidComputer 2351 The specified computer
name is invalid.
NERR_AlertExists 2430 The specified client is

already registered for
the specified event.

NERR_TooManyAlerts 2431 The Alerter service
table is full.

3-38 LAN Server Application Programmer’s Reference

Remarks

Related Information

Manifest Value Meaning

NERR_BadRecipient 2433 The Alerter service
recipient is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosFsRamSemClear
¢ DosFSRamSemRequest
¢ DosFreeSeg
* DosFsctiINETTRANSACTION)
¢ DosFsctiNULLTRANSACT)
¢ DosFsctl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosSemClear

¢ DosSemRequest.

Event names are ASCIIZ strings stored in ALERT.H. Applications can define their
own events, specifying the name when calling the NetAlertStart and NetAlertRaise
functions. If you create an event data structure, be sure to choose a name that does
not duplicate a name used by another application.

If recipient is a semaphore, calling NetAlertRaise for the specified event opens,
clears, resets, and closes the system semaphore. The process owning the semaphore
must have created it with the NoExclusive option set; presumably such a process will
be executing a DosSemWait or DosMuxSemWait function on the semaphore and
will have the transition status of the semaphore.

Note that if NetAlertStart starts a particular alert, the alert will still exist (even when
a process is ended) until the NetAlertStop function is called to stop the alert.

For information on:
¢ Creating a mailslot—See “DosMakeMailslot” on page 3-150.

¢ Creating a semaphore—See DosCreateSem in the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference, Volume 1.

¢ Reading a mailslot—See “DosReadMailslot” on page 3-152.

¢ Ending the watch of a client for a class or type of event—See “NetAlertStop” on
page 3-40.

Chapter 3. API Function Descriptions 3-39

NetAlertStop

The NetAlertStop (local) function removes a registered client from the alert table.

Syntax

#include <netcons.h>
#include <alert.h>

unsigned far pascal
NetAlertStop(event, recipient)
const char far * event;

const char far * recipient;

where:

¢ event points to an ASCIIZ string specifying the class of alerts from which the
registered client is to be excluded. The ALERT.H include file defines the

following classes of alerts:

Manifest ASCIIZ String Meaning
ALERT_ADMIN_EVENT “ADMIN” Notify an
administrator.
ALERT_ERRORLOG_EVENT “ERRORLOG” Entry added to
error log file.
ALERT_MESSAGE_EVENT “MESSAGE” User or
application
received a
message.
ALERT_PRINT_EVENT “PRINTING” Print job
completed or
print error.
ALERT_USER_EVENT “USER” Application or

Other classes of events can be defined as necessary.

resource used.

¢ recipient points to an ASCIIZ string containing the user name of the client

whose registration is to be canceled.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were

encountered.
ERROR_ACCESS_DENIED 5 Administrative

’ privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is

not available.
ERROR_INVALID PARAMETER 87 The specified

parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is

3-40 LAN Server Application Programmer’s Reference

invalid.

Manifest

Value

Meaning

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_BufTooSmalil

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_InvalidComputer

NERR_NoSuchAlert

234

2102

2104

2123

2134

2138

2139

2140

2141

2142

2351

2432

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA .EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The Alerter service has
not been started.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFsRamSemClear

¢ DosFSRamSemRequest

¢ DosFreeSeg

* DosFsctiNETTRANSACTION)

DosFsctiNULLTRANSACT)
DosFsctl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosSemClear

DosSemRequest.

Chapter 3. API Function Descriptions 3-41

Related Information
For information on registering a client to watch for a particular event, see
“NetAlertStart” on page 3-37.

3-42 LAN Server Application Programmer’s Reference

Auditing Category

NetAuditClear (admin, DOS)—See “NetAuditClear” on page 3-58.
NetAuditRead (admin, DOS)—See “NetAuditRead” on page 3-61.
NetAuditWrite (local, server)—See “NetAuditWrite” on page 3-66.

The functions in the Auditing category control the audit log file, which contains an
audit trail of operations that occur on a server. They are used with the AUDIT.H
and NETCONS.H include files.

Description
Each time a user or application connects to or disconnects from resources on a
server, an audit entry can be generated to record the connection or disconnection.
Audit entries are stored in an ASCII file. The default audit log file is
\IBMLAN\LOGS\NET.AUD. All of the auditing functions perform their
operations on this file.

Note: The auditing functions only control changing the contents of the audit log
file. To read the audit log file, an application must first call the
NetAuditRead function to obtain the handle of the file. The DosRead
function can then be called to read the file. To close the file, an application
must call the DosClose function.

0S/2 LAN Requester/Server provides for the following types of audit entries:
¢ A change in a status of a server
¢ The beginning of a session
¢ The end of a session
* A password error
¢ The start of a connection
* A disconnection
¢ A rejected connection request
* An access made to a resource
¢ The rejection of an access
¢ The closing of a file, device, or pipe
» The change of service status code or text
¢ A modification of access control profile
* A modification of the UAS database
¢ The logon of a user
* The logoff of a user
¢ The denial of a logon

¢ The limit of account exceeded.

Chapter 3. API Function Descriptions 3-43

Applications can create additional types of audit entries with the NetAuditWrite
function.

The other two auditing functions open (NetAuditRead) and clear (NetAuditClear)
the audit log file.

Data Structures
All audit entries include a fixed-length header used in conjunction with
variable-length data specific to the type of entry. Because of the variable lengths
and structures of the ae_data portion of the audit entry (it is possible for ae_data to

be 0 bytes in length), only the fixed header is defined in the audit_entry data
structure.

The variable-length portion of the audit entry can also contain an offset to a
variable-length ASCIIZ string. The offset values are unsigned short integers. To
determine the value of the pointer to this string, add the offset value to the address
of the ae_data structure.

The following example illustrates this procedure. Assume that ap points to a buffer
containing a complete audit entry and that ae_type contains the value AE_CONNSTOP,
specifying the predefined ae_connstop data structure. To make the variable
computer_name point to the ASCIIZ string containing the name of the client whose
connection was stopped, an application would perform the following algorithm:

struct audit_entry * ap; /* fixed portion of audit entry */
struct ae_connstop * acp; /* variable-length structure */
char * computer_name; /* pointer to variable-length
string */
/* calculate offset to variable-length struct */
acp = (struct ae_connstop *) ((char *) ap + ap-> ae_data_offset);

/* calculate offset to computer name */

computer_name = (char *) acp + acp -> ae_cp_compname;

3-44 LAN Server Application Programmer’s Reference

The Fixed-Length Header
The format of the fixed portion of the audit entry is as follows:

struct audit_entry {

unsigned short ae_len;

unsigned short ae_reserved;

unsigned long ae_time;

unsigned short ae_type;

unsigned short ae_data_offset; /* offset from
beginning address of
audit_entry */

| }s

I /*

->

*/

variabie-length data specific to type of audit entry
char ae_data[];

unsigned short ae_len2;

where:

ae_len and ae_len2 specify the length of the audit entry. (Note that ae_len is
included both at the beginning and the end of the audit entry to enable both
backward and forward scanning of the file.) To calculate the entry size, add the
size of the audit_entry data structure to the size of the variable-length ae_data
and the size of an unsigned short integer, as follow:

totalsize = sizeof (struct audit_entry) +
sizeof (ae_data) + sizeof (unsigned short);

ae_reserved is 0.
ae_time is a time stamp indicating the time the audit file log entry was made.

ae_type indicates the type of audit entry. Type values ranging from 0x0000
through 0x07FF are reserved. The NETCONS.H include file defines the
following types of data entries:

Manifest Value Purpose
AE_SRVSTATUS 0 Status of server changed.
AE_SESSLOGON 1 Session logged on.
AE_SESSLOGOFF 2 Session logged off.
AF_SESSPWERR 3 Password error.
AE_CONNSTART 4 Connection started.
AE_CONNSTOP 5 Connection stopped.
AE_CONNREJ 6 Connection rejected.
AE_RESACCESS2 7 Access granted.
AE_RESACCESSREJ 8 Access rejected.
AE_CLOSEFILE 9 File, device, or pipe closed.
AE_SERVICESTAT 11 Service status code or text

changed.

Chapter 3. API Function Descriptions 3-45

Purpose

Manifest Value
AE_ACLMOD 12
AE_UASMOD 13
AE_NETLOGON 14
AE_NETLOGOFF 15
AE_NETLOGDENIED 16
AE_ACCLIMITEXCD 17

Access control list modified.

User account subsystems
database modified.

User logged on to the network.
User logged off of the network.
Network logon denied.

Account limit exceeded.

* ae_data_offset specifies the byte offset from the beginning of the audit entry to
the start of the variable-length portion (ae_data) of the audit entry. To calculate
the start of ae_data, add the value of ae_data_offset to the starting address of the

fixed-length portion of the entry.

® ae_data is the variable-length portion of the audit entry, which differs depending
on the type of entry specified by ae_type. The information starts at
ae_data_offset bytes from the top of the audit entry. See the following section
for information on the structure of each entry type that the OS/2 LAN

Requester/Server software defines.

ae_data Structures

The following data structures, specific to the ten types of audit entries, are defined in
the AUDIT.H include file. The structures follow (though not necessarily

immediately) the audit_entry header.

Server Status Changes

struct ae_srvstatus {
unsigned short ae_sv_status;

}s

where:

* ae_sv_status is one of four values indicating a status of the server. These values,

defined in AUDIT.H, mean the following:

Manifest Value Meaning
AE_SRVSTART 0 Server software started.
AE_SRVPAUSED 1 Server software paused.
AE_SRVCONT 2 Server software restarted.
AE_SRVSTOP 3 Server software stopped.

Session Begins

struct ae_sesslogon {
unsigned short ae_so_compname; /* offset */
unsigned short ae_so_username; /* offset */
unsigned short ae_so_privilege;

}s

3-46 LAN Server Application Programmer’s Reference

where:

* ae_so_compname is an offset (from the beginning address of the ae_sesslogon
data structure) to an ASCIIZ string indicating which requester established the
session.

* ae_so_username is an offset (from the beginning address of the ae_sesslogon data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_so_username and ae_so_compname are the same.

® ae_so_privilege is one of three values specifying the permission level assigned to
ae_so_username. These values, defined in AUDIT.H, have the following

meanings:

Manifest Value Privilege
AE_GUEST 0 Guest
AE_USER 1 User
AE_ADMIN 2 Admin

Chapter 3. API Function Descriptions 3-47

Session Ends

struct ae_sesslogoff {
unsigned short ae_sf_compname; /* offset */
unsigned short ae_sf_username; /* offset */
unsigned short ae_sf_reason;

b

where:

® ae_sf compname is an offset (from the beginning address of the ae_sesslogoff
data structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_sf username is an offset (from the beginning address of the ae_sesslogoff data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_sf username and ae_sf compname are the same.

® ae_sf reason is one of five values indicating why the session was disconnected.
These values, defined in AUDIT.H, mean the following:

Manifest Value Meaning

AE_NORMAL 0 Normal disconnection or user
name limit.

AE_ERROR 1 Error, session disconnect, or bad
password.

AE_AUTODIS 2 Auto-disconnect (time out),

share removed, or administrative
permissions required.

AE_ADMINDIS 3 Administrative disconnection
(forced).
AE_ACCRESTRICT 4 Forced off by account system

due to account restriction, such
as logon hours.

Password Error

struct ae_sesspwerr {
unsigned short ae_sp_compname; /* offset */
unsigned short ae_sp_username; /* offset */
b

where:

* ae_sp_compname is an offset-(from the beginning of the ae_sesspwerr data
structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_sp_username is an offset (from the beginning of the ae_sesspwerr data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_sp_username and ae_sp_compname are the same.

3-48 LAN Server Application Programmer’s Reference

Connection Started

struct ae_connstart {

unsigned short ae_ct_compname; /* offset */
unsigned short ae_ct_username; /* offset */
unsigned short ae_ct_netname; /* offset */
unsigned short ae_ct_connid;

|8

where:

* age_ct_compname is an offset (from the beginning address of the ae_connstart

data structure) to an ASCIIZ string indicating the requester that established the
session.

ae_ct_username is an offset (from the beginning address of the ae_connstart data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_ct_username and ae_ct_compname are the same.

® ae_ct_netname is an offset (from the beginning address of the ae_connstart data

structure) to an ASCIIZ string indicating the netname of the resource with which
the connection was made.

® ae_ct_connid is the connection identification number.

Connection Stopped

struct ae_connstop {

|H

unsigned short ae_cp_compname; /* offset */
unsigned short ae_cp_username; /* offset */
unsigned short ae_cp_netname; /* offset */
unsigned short ae_cp_connid;
unsinged short ae_cp_reason;

where:

® ae_cp_compname is an offset (from the beginning address of the ae_connstop data

structure) to an ASCIIZ string indicating the requester that established the
session.

ae_cp_username is an offset (from the beginning address of the ae_connstop data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_cp_username and ae_cp_compname are the same.

ae_cp_netname is an offset (from the beginning address of the ae_connstop data
structure) to an ASCIIZ string indicating the connected netname of the resource.

Chapter 3. API Function Descriptions . 3-49

® ae_cp_connid is the connection identification number.

® ae_cp_reason is one of three values indicating why the session was disconnected.
These values, defined in AUDIT.H, mean the following:

Manifest Value Meaning

AE_NORMAL 0 Normal disconnection, or user
name limit.

AE_SESSDIS 1 Error, session disconnect, or bad
password.

AE_UNSHARE 2 Autodisconnect (timeout), share

Connection Rejected

struct ae_connrej {

unsigned short ae_cr_compname; /* offset */
unsigned short ae_cr_username; /* offset */
unsigned short ae_cr_netname; /* offset */

unsigned short ae_cr_reason;
b

where:

removed, or administrative
permissions lacking.

* ae_cr_compname is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the requester that established the

session.

* age_cr_username is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_cr_username and ae_cr_compname are the same.

* ae_cr_netname is an offset (from the beginning address of the ae_connrej data
structure) to an ASCIIZ string indicating the desired netname of a resource.

* ge_cr_reason is one of four values indicating why the session was disconnected.
These values are defined in AUDIT.H, as follows:

Manifest Value Meaning

AE_USERLIMIT 0 Normal disconnection, or user
name limit.

AE_BADPW 1 Error, session disconnect, or bad
password.

AE_ADMINPRIVREQD 2 Autodisconnect (timeout), share
removed, or administrative
permissions lacking,

AE_NOACCESSPERM 3 No access permissions to shared

3-50 LAN Server Application Programmer’s Reference

resource.

Access Granted

struct ae_resaccess {
unsigned short ae_ra2_compname; /* offset */
unsigned short ae_ra2_username; /* offset */
unsigned short ae_ra2_resname; /* offset */
unsigned short ae_raZ_operation;
unsigned short ae_ra2_returncode;
unsigned short ae_ra2_restype;
unsigned short ae_ra2_fileid;

|5

where:
® ae_ra2_compname is an offset (from the beginning address of the ae_resaccess

data structure) to an ASCIIZ string indicating the requester that established the
session.

® ae_ra2_username is an offset (from the beginning address of the ae_resaccess
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_ra_username and ae_ra_compname are the same.

® ae_ra2_resname is an offset (from the beginning address of the ae_resaccess data
structure) to an ASCIIZ string indicating the name of the resource accessed.

* ae_ra2_operation is one of seven values indicating which operation was
performed. These values, defined in ACCESS.H, mean the following:

Manifest Bit Meaning
Mask
ACCESS_READ 0x01 Data was read or executed from
a resource.
ACCESS_WRITE 0x02 Data was written to a resource.
ACCESS_CREATE 0x04 An instance of the resource

(such as a file) was created; data
may have been written to the
resource when creating it.

ACCESS_EXEC 0x08 A resource was executed.

ACCESS_DELETE 0x10 A resource was deleted.

ACCESS_ATRIB 0x20 Attributes of a resource were
modified.

ACCESS_PERM 0x40 Permissions (read, write, create,

execute, and delete) of a
resource for a user or
application were modified.

® ae_ra_returncode gives the return code from the particular operation. If 0, the
operation was successful.

® ae_ra_restype gives the server message block (SMB) request function code.

* ae_ra_fileid gives the server identification number of a file.

Chapter 3. API Function Descriptions 3-51

Access Rejected

struct ae_resaccessrej {
unsigned short ae_rr_compname; /* offset */
unsigned short ae_rr_username; /* offset */
unsigned short ae_rr_resname; /* offset */
unsigned short ae_rr_operation;

}s
where:

* ae_rr_compname is an offset (from the beginning address of the ae_resaccessrej
data structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_rr_username is an offset (from the beginning address of the ae_resaccessrej
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_rr_username and ae_rr_compname are the same.

® ae_rr_resname is an offset (from the beginning address of the ae_resaccessrej
data structure) to an ASCIIZ string indicating the name of the resource to which
access was denied.

* ae_rr_operation is one of seven values indicating the operation requested. These
values are defined in ACCESS.H, as follows:

Manifest Bit Meaning
Mask
ACCESS_READ 0x01 Data was read or executed from
a resource.
ACCESS_WRITE 0x02 Data was written to a resource.
ACCESS_CREATE 0x04 An instance of the resource

(such as a file) was created; data
may have been written to the
resource when creating it.

ACCESS_EXEC 0x08 A resource was executed.

ACCESS_DELETE 0x10 A resource was deleted.

ACCESS_ATRIB 0x20 Attributes of a resource were
modified.

ACCESS_PERM 0x40 Permissions (read, write, create,

execute, and delete) of a
resource for a user or
application were modified.

Service Status Code or Text Changed: The audit log entry will be written when
service-status auditing is on, and a service performs a NetServiceStatus call that
updates the service status (sves_status). Only changes of status to one of the
following values cause an audit entry to be written:

¢ INSTALLED
* UNINSTALLED
¢ PAUSED

3-52 LAN Server Application Programmer’s Reference

CONTINUED (ACTIVE).

struct ae_servicestat {

}s

unsigned short ae_ss_compname; /* offset */
unsigned short ae_ss_username; /* offset */
unsigned short ae_ss_svcname; /* offset */
unsigned short ae_ss_status;

unsigned long ae_ss_code;

unsigned short ae_ss_text; /* offset */
unsigned short ae_ss_returnval;

where:

ae_ss_compname is an offset (from the beginning address of the ae_servicestat
data structure) to an ASCIIZ string indicating the requester that established the
session.

ae_ss_username is an offset (from the beginning address of the ae_servicestat data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_ss_username and ae_ss_compname are the same.

ae_ss_svcname is an offset (from the beginning address of the ae_servicestat data
structure) to an ASCIIZ string indicating the name of a service.

ae_ss_status is the service status being set.
ae_ss_code is the service code being set.
ae_ss_text is an offset to text being set.

ae_ss_returnval is the return value.

Access Control List Modification: The audit log entry will be written when an
existing access control list (ACL) record is modified or deleted.

struct ae_aclmod {

}s

unsigned short ae_am compname; /* offset */
unsigned short ae_am_username; /* offset */
unsigned short ae_am_resname; /* offset */
unsigned short ae_am_action;
unsigned long ae_am datalen;

where:

ae_am_compname is an offset (from the beginning address of the ae_aclmod data
structure) to an ASCIIZ string indicating the requester that established the
session.

ae_am_username is an offset (from the beginning address of the ae_acimod data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_am_username and ae_am_compname are the same.

ae_am_resname is an offset (from the beginning address of the ae_aclmod data
structure) to an ASCIIZ string that indicates the name of a resource that owns
the accessed files.

ae_am_action is the action performed on the ACL record, as follows:

Chapter 3. API Function Descriptions 3-53

Value Meaning

0 Modification
1 Delete
2 Add

® ae_am_datalen is the length of data following the fixed data structure. This is
always zero in records generated by the OS/2 LAN Requester/Server.

User Account Subsystem Modification: The audit log entry will be written when an
existing user accounts subsystem (UAS) record is modified or deleted, or the UAS
modals are modified.

struct ae_uasmod {
unsigned short ae_um_compname; /* offset */
unsigned short ae_um_username; /* offset */
unsigned short ae_um_resname; /* offset */
unsigned short ae_um_rectype;
unsigned short ae_um_action;
unsigned long ae_um_datalen;

|5

where:

* ae_um_compname is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_um_username is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the name of the user who initiated the
session. If 0, ae_um_username and ae_um_compname are the same.

* ae_um_resname is an offset (from the beginning address of the ae_uasmod data
structure) to an ASCIIZ string indicating the name of a resource that owns the
accessed files.

* ae_um_rectype is the type of UAS record, as follows:

Value Meaning

0 User record.

1 Group record.
2 UAS modals.

* ae_um_action is the action performed on the UAS record, as follows:

Value Meaning
0 Modification
1 Deletion
2 Addition

* ae_um_datalen is the length of data following the fixed data structure. This is
always zero in records generated by the OS/2 LAN Requester/Server.

3-54 LAN Server Application Programmer’s Reference

Network Logon Record: This record is written by the server that processes the
network logon of the user.

struct ae_netlogon {
unsigned short ae_no_compname; /* offset */
unsigned short ae_no_username; /* offset */
unsigned short ae_no_privilege;
unsigned short ae_no_authflags;

};

where:

* ae_no_compname is an offset (from the beginning address of the ae_netlogon data

structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_no_username is an offset (from the beginning address of the ae_netlogon data
structure) to an ASCIIZ string indicating the name of the user who initiated the

session. If 0, ae_no_username and ae_no_compname are the same.

* ae_no_privilege is the privilege of the user logging on, as follows:

Manifest Value
AE_GUEST 0
AE_USER 1
AE_ADMIN 2

* ae_no_authflags is a reserved field.

Network Logoff Record: This record is written by the server that processes the

network logoff of the user.

struct ae_netlogoff {
unsigned short ae_nf_compname; /* offset */
unsigned short ae_nf_username; /* offset */
unsigned short ae_nf_reason;
unsigned short ae_nf_subreason;

|

where:

* ae_nf compname is an offset (from the beginning address of the ae_netlogoff data

structure) to an ASCIIZ string indicating the requester that established the
session.

* ae_nf_username is an offset (from the beginning address of the ae_netlogoff data
structure) to an ASCIIZ string indicating the name of the user who initiated the

session. If 0, ae_nf_username and ae_nf_compname are the same.

® ae_nf _reason is the reason for logoff, as follows:

Manifest Value Meaning
AE_NORMAL 0 Normal logoff by user.
AE_ERROR 1 Disconnect due to error.

Chapter 3. API Function Descriptions

3-55

Manifest Value Meaning

AE_AUTODIS 2 Auto-disconnect (station down).
AE_ADMINDIS 3 Administrator disconnected user.
AE_ACCRESTRICT 4 Forced off by account system

due to account restriction, such
as logon hours.

* ae_nf_subreason is the details of reason for logoff. When nf reason is
AE_ACCRESTRICT, one of the following is true:

Manifest Value Meaning
AE_LIM_UNKNOWN 0 Unknown or unavailable.
AE_LIM_LOGONHOURS 1 Logon hours.
AE_LIM_EXPIRED 2 Account expired.

Otherwise, this value is zero.

Network Logon Denled: The audit log entry is written when the network logon

request is denied.

struct ae_netlogdenied {

unsigned short ae_nd_compname; /* offset */
unsigned short ae_nd_username; /* offset */
unsigned short ae_nd_reason;

unsigned short ae_nd_subreason;

b

where:

* ae_nd_compname is an offset (from the beginning address of the ae_netlogdenied
data structure) to an ASCIIZ string indicating the requester that established the

session.

* ae_nd_username is an offset (from the beginning address of the ae_netlogdenied
data structure) to an ASCIIZ string indicating the name of the user who
initiated the session. If 0, ae_nd_username and ae_nd_compname are the same.

* ae_nd_reason is the reason for denial of log on, as follows:

Manifest Value Meaning

AE_GENERAL 0 General access denied.
AE_BADPW 1 Incorrect password.
AE_ACCRESTRICT 4 Forced off by account system

3-56 LAN Server Application Programmer’s Reference

due to account restriction, such
as logon hours.

Related Information

¢ ae_nd_subreason is the details of reason for denial. When nd_reason is
AE_ACCRESTRICT, one of the following is true:

Manifest Value Meaning

AE_LIM_UNKNOWN 0
AE_LIM_LOGONHOURS 1
AE_LIM_EXPIRED
AE_LIM_INVAL_WKSTA
AE_LIM_DISABLED

S W N

Otherwise, this value is zero.

Unknown or unavailable.
Logon hours.

Account expired.
Requester ID not valid.
Account disabled.

Account Limit Exceeded: The audit log entry is written when users remain logged
on while their account limitations no longer permit them to be logged on.

struct ae_acclim {

unsigned short ae_al_compname; /* offset */
unsigned short ae_al_username; /* offset */
unsigned short ae_al_resname; /* offset */

unsigned short ae_al_limit;
}s

where:

* ae_al_compname is an offset (from the beginning address of the ae_acclim data
structure) to an ASCIIZ string indicating the requester that established the

session.

¢ age_al_username is an offset (from the
structure) to an ASCIIZ string indica

beginning address of the ae_acclim data
ting the name of the user who initiated the

session. If 0, ae_al_username and ae_al_compname are the same.

* ae_al_resname is the offset to the resource name.

* ae_al_limit is the limit that was exceeded, as follows:

Manifest Value Meaning
AE_LIM_UNKNOWN 0 Unknown or unavailable.
AE_LIM_LOGONHOURS 1 Logon hours.
AE_LIM_EXPIRED 2 Account expired.

For information on:

¢ 0S/2 LAN Requester/Server network

commands and IBMLAN.INI file—See the

IBM Operating System/2 Local Area Network Server Version 1.2 Network

Administrator’'s Guide.

* Permission levels—See “User Category” on page 3-382 and “Access Permission

Category” on page 3-2.

Chapter 3. API Function Descriptions 3-57

NetAuditClear

Syntax

Return Codes

The NetAuditClear (admin, DOS) function clears (and optionally saves) the audit
log file of a server.

#include <netcons.h>
#include <audit.h>

unsigned far pascal

NetAuditClear(servername, backupfile, reserved)
const char far * servername;

const char far * backupfile;

char far * reserved;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* backupfile points to an ASCIIZ string assigning a name for an optional backup
file. The calling application must have Write privileges for the path specified by
backupfile. The path name must also be accessible by the OS/2 DosMove
function. If the path name is relative, it is assumed relative to the
IBMLAN\LOGS directory.

A NULL pointer tells NetAuditClear not to save the audit log entries.
* reserved must be NULL.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_PATH_NOT_FOUND 3 The path was not
found.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_NOT_SUPPORTED 50 This request is not

supported by the
network.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is

denied.
ERROR_INVALID_PARAMETER 87 The specified

parameter is invalid.
ERROR_INVALID_NAME 123 There is an incorrect

character or incorrectly
formed file system
name.

3-58 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID LEVEL

ERROR_FILENAME_EXCED_RANGE

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2Ioct!Error

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_InvalidComputer

NERR_CantType

124

206

234

2102

2104

2106

2123

2134

2138

2139

2140

2141

2142

2351

2357

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-39

Other error return codes may be returned from the following OS/2 functions:
¢ DosDelete

* DosFsRamSemClear

® DosFreeSeg

¢ DosFsCtl

¢ DosFsCti(INETTRANSACTION)

¢ DosFsCtiIINULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosFsCtlNet.GetRdrAddr()

* DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
* DosMove

¢ DosOpen

¢ DosSemClear

¢ redir.GetlnitPath.

Remarks
NetAuditClear clears the audit log file of all entries and optionally saves the contents
to another file.

The NetAuditWrite function (see “NetAuditWrite” on page 3-66) issues an admin
alert when the audit log file reaches 80% capacity and again when the file reaches
100% capacity. At 100%, NetAuditWrite fails. Therefore, applications should
periodically clear the audit log file of outdated information.

To set a maximum size for the audit log file, use one of the following methods:

¢ Use the NET CONFIG command with the /MAXAUDITLOG option (see the
IBM Operating System|2 Local Area Network Server Version 1.2 Network
Administrator’s Guide for more information).

* Set the maxauditlog parameter in the IBMLAN.INI file (see the IBM Operating
System|2 Local Area Network Server Version 1.2 Network Administrator's Guide
for a description of IBMLAN.INI).

¢ Call the NetServerSetInfo function with the sv_maxauditsz parameter.

Related Information
For information on:

* Getting the status of audit log file capacity—See “NetAlertRaise” on page 3-34.
* Writing an entry to the audit log file—See “NetAuditWrite” on page 3-66.

3-60 LAN Server Application Programmer’s Reference

NetAuditRead

Syntax

The NetAuditRead (admin, DOS) function opens and returns an OS/2 file handle to
the audit log file of a server.

#include <netcons.h>
#include <audit.h>

unsigned far pascal

NetAuditRead (servername, reservedl, ploghndl, offset, reserved2,
reserved3, flags, buf, buflen, bytesread, bytesavail)

const char far * servername;
const char far * reservedl
HLOG far * ploghndl;
unsigned long offset;
unsigned short far * reserved2;
unsigned long reserved3;
unsigned long flags;
char far * buf;
unsigned short buflen;
unsigned short far * bytesread;

unsigned short far *

bytesavail;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

® reservedl must be NULL.
¢ ploghndl is the pointer to the returned log handle.

o offset is the record offset to begin read. The offset is ignored unless flags bit 1 is
set. If this bit is set, offset is taken as a zero-based offset based on record
number, not bytes, at which the data returned should begin. Note that the
record offset parameter is zero based from both directions, dependent upon the
direction of the read. If reading backwards is specified, then the Oth record is
the last record in the file. If reading forward, then the Oth record is the first
record in the file.

® reserved2 must be NULL.

® reserved3 must be zero.

* flags specifies the open flags, bitmapped as shown here.

* buf is the pointer to the buffer for returned data.

* buflen specifies the size (in bytes) of the buf memory area.

o bytesread points to an unsigned short integer indicating the number of bytes that
were read into the buffer.

® bytesavail points to an unsigned short integer indicating the number of bytes that
were available.

Chapter 3. API Function Descriptions 3-61

The bitmapped flags fields are as follows:

Bits Meaning

0 If 0, the file is read normally. If 1, the file is read backwards and
records are returned in the buffer in reverse-chron order (newest
records first).

1 If 0, read proceeds normally and sequentially. If 1, read proceeds from
the Nth record from the start of the file. “N” is the offset parameter.

2-31 Reserved; must be 0.

The offset is ignored unless flags bit 1 is set. If this bit is set, offset is taken as a
zero-based offset based on record number, not bytes, at which the data returned
should begin.

An application calling NetAuditRead for the first time must initialize the 128-bit log
handle as follows:

Bits Value
127(MSB)-64 0
63-0(LSB) 1

Where the LSB is the last (rightmost) bit. Thereafter, each call to NetAuditRead
must be given the value for the log handle that was returned by the previous call to
NetAuditRead.

Notes:

1. If bytesread is 0 and bytesavail is not 0, the buffer is too small to hold the next
record in the file.

2. Unlike other uses of bytesavail, in this case, the value may be 0xFFFF, which is
shorthand for “OxFFFF or more.” There can potentially be much more than
64KB data available. The application should continue to process entries until
this value is returned to 0.

The data is returned in the buffer. The application should use the bytesread value to
determine the end of valid data in the buffer.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.
ERROR_BAD_NETPATH 53 The network path

cannot be found.

3-62 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_NETWORK_ACCESS_DENIED

ERROR_INVALID PARAMETER

ERROR_NET_WRITE_FAULT

ERROR_OPEN_FAILED

ERROR_INVALID_NAME

ERROR_INVALID_LEVEL

ERROR_FILENAME_EXCED_RANGE

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

65

87

88

110

123

124

206

234

2102

2104

2106

2123

2134

2138

2139

2140

Network access is
denied.

The specified
parameter is invalid.

A network data fault
has occurred.

The open/created
failed due to explicit
fail command.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

Chapter 3. API Function Descriptions 3-63

Manifest Value Meaning

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.

NERR_InvalidComputer 2351 The specified computer
name is invalid.

NERR_CantType 2357 The type of input
cannot be determined.

NERR_LogFileChanged 2378 This log file has
changed between reads.

NERR_LogFileCorrupt 2379 This log file is corrupt.

NERR_InvalidLogSeek 2440 The log file does not

contain the requested
record number.

Other error return codes may be returned from the following OS/2 functions:
¢ DosChgFilePtr

® DosCLose

* DosDevIOCtl

¢ DosFSRamSemClear

¢ DosFreeSeg

* DosFsCti(NETTRANSACTION)

¢ DosFsCti(NULLTRANSACT)

* DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE NOT_FOUND]
¢ DosOpen

¢ DosRead

* DosSemClear

¢ redir.GetlnitPath.

Remarks
After NetAuditRead returns the handle of the audit log file, an application must call
the DosRead function to read the contents of the file. To close the file, an
application calls the DosClose function.

3-64 LAN Server Application Programmer’s Reference

Related Information
For information on:

¢ Clearing an audit log file—See “NetAuditClear” on page 3-58.

¢ Closing an audit log file—See DosClose in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1.

¢ Reading an audit log file—See DosRead in IBM Operating System|2 Technical
Reference Version 1.2 Programming Reference, Volume 1.

¢ Writing an entry to the audit log file—See “NetAuditWrite” on page 3-66.

Chapter 3. API Function Descriptions 3-65

NetAuditWrite

The NetAuditWrite (local, server) function writes an audit trail entry to the local
audit log file.

Syntax

#include <netcons.h>
#include <audit.h>

unsigned far pascal

NetAuditWrite(type, buf, buflen, reservedl, reserved2)
unsigned short type;

const char far * buf;

unsigned short buflen;

char far * reservedl;
char far * reserved?;
where:

* type specifies the type of entry to write to the file.
* buf points to the variable data of the data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* reservedl and reserved2 are NULL pointers to reserved ASCIIZ strings.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_BAD_NETPATH 53 The network path
cannot be found.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_NET_WRITE_FAULT 88 A network data fault
has occurred.
ERROR_CPSN_FAILED 110 The open/created

failed due to explicit
fail command.

3-66 LAN Server Application Programmer’s Reference

Manifest Value Meaning
NERR_NetNotStarted 2102 The redirector
NETWKSTA EXE has
not been started.
NERR_ServerNotStarted 2114 The Server service has
not been started.
NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_LogOverflow 2377 This log file exceeds

Remarks

the maximum defined
size.

NetAuditWrite issues an admin alert by calling the NetAlertRaise function when the
audit log file reaches 80% capacity and again when the file reaches 100% capacity.
At 100% audit log capacity, the NetAuditWrite function fails, returning the error

code NERR_LogOverflow.

To return successfully, the NetAuditWrite function requires that the auditing entry
in the IBMLAN.INI file be set to YES, as follows:

auditing = yes

Related Information
For information on:

¢ Closing the audit log file—See DosClose in IBM Operating System|2 Technical

Reference Version 1.2 Programming Reference, Volume 1.

¢ Retrieving size of the audit log file—See “NetServerGetInfo” on page 3-292.

¢ Setting the maximum size of the audit log file—See “NetServerSetInfo” on

page 3-295.

Chapter 3. API Function Descriptions 3-67

Configuration Category

Description

NetConfigGet2 (admin, DOS)—See “NetConfigGet2” on page 3-70.
NetConfigGetAll2 (admin, DOS)—See “NetConfigGetAll2” on page 3-73.

The functions in the Configuration category retrieve network configuration
information from the IBMLAN.INI file. The NetConfigGet2 function retrieves a
single parameter value for a given network component; NetConfigGetAll2 returns all
of the parameters for the given component. These functions are used with the
CONFIG.H and NETCONS.H include files.

The IBMLAN.INI file is an ASCII file containing the configuration information for
0OS/2 LAN Requester/Server services. User-defined services and applications also
store network configuration information in this file.

The IBMLAN.INI file consists of component lines, parameter lines, and comment
lines, in a format that enables the Configuration functions to easily browse through
and retrieve the information. The format is as follows:

¢ Component lines mark the start of information on a component, in the form:
[componentname]

¢ Parameter lines contain a parameter and a value, in the form:
parameter = value

The parameter value can consist of arbitrary text and is not processed by the
Configuration functions, except that leading and trailing spaces are stripped.
Interpretation of the value is left to the caller. No quotation marks are allowed
as part of the parameter value.

For any one component, if a parameter appears several times, NetConfigGetAll2
returns each occurrence; NetConfigGet2 returns only the first instance. The
same parameter name can be used under different components without affecting
the NetConfigGet2 return.

¢ Comment lines are any blank lines or lines in which the first nonblank character
is a semicolon (;).

An IBMLAN.INI requester component might contain the following information:

[requester]
3 define net_tool requester
computername = net_tool
charcount = 16

As shown, requester defines a computer name of net_tool and specifies that 16
bytes of characters must accumulate before a requester sends them to a serial
device queue.

3-68 LAN Server Application Programmer’s Reference

Note: The IBMLAN.INI file contains default values for network components.
These values may not reflect actual values passed to a network service. If
you notice inconsistencies between IBMLAN.INI entries and actual service
values, examine the manner in which you have defined these service values
within your application. To maintain consistency, it is a good idea to call
NetConfigGetAll2 and examine the returned values before setting new
parameter values for a given component.

DOS Considerations

These APIs cannot be called locally on a DOS requester to retrieve information from
the DOSLANL.INI file. However, these APIs can be called remotely on a DOS
requester to retrieve information from the IBMLAN.INI file.

Related Information
For information:

e The IBMLAN.INI file—see the IBM Operating System|2 Local Area Network
Server Version 1.2 Network Administrator’s Guide.

e The DOSLAN.INI file—see the IBM OS/2 DOS LAN Requester User's Guide.

Chapter 3. API Function Descriptions 3-69

NetConfigGet2

Syntax

Return Codes

The NetConfigGet2 (admin, DOS) function retrieves a specified parameter value
from the IBMLANL.INI file of a local computer or a remote server.

#include <netcons.h>
#include <config.h>

unsigned far pascal
NetConfigGet2(servername, reserved, component, parameter,

buf, buflen, parmlen)

char far * servername;
char far * reserved;
char far * component;
char far * parameter;
char far * buf;
unsigned short buflien;

unsigned short far * parmlen;

where:

servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

reserved must be NULL.

component points to an ASCIIZ string specifying the name of the component to
be searched.

parameter points to an ASCIIZ string specifying the parameter whose value is to
be returned.

buf points to the memory address where the value of a parameter is to be
returned.

buflen specifies the size (in bytes) of the buf memory area.

parmlen points to an unsigned short integer indicating the size (in bytes) of a
parameter.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_FILE NOT_FOUND 2 The file was not found.
ERROR_PATH_NOT_FOUND 3 The path was not
found.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.

3-70 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_CfgCompNotFound

NERR_CfgParamNotFound

124

234

2102

2104

2106

2123

2134

2138

2139

2140

2141

2142

2146

2147

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested APl is
not supported on the
remote server.

The program could not
find the specified
component in the
IBMLAN.INI file.

The program could not
find the specified
parameter in the
IBMLAN.INT file.

Chapter 3. API Function Descriptions 3-71

Remarks

Other error return codes may be returned from the following OS/2 functions:

DosChgFilePtr

DosDuphandle

DosFsRamSemClear

DosFreeSeg
DosFsCI(INETTRANSACTION)
DosFsCtI(INULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg
DosOpen[-ERROR_OPEN_FAILED]
DosRead

DosSemClear.

NetConfigGet2 returns the value (ASCIIZ string) for a single parameter of a
specified component in buf. This string is the entire value content of the
IBMLANL.INI line for the specified parameter, which is all text to the right of the
equal sign (=). Leading and trailing spaces are stripped from this text. No other
processing is performed on it.

3-72 LAN Server Application Programmer’s Reference

NetConfigGetAli2

Syntax

Return Codes

The NetConfigGetAll2 (admin, DOS) function retrieves all configuration
information for a given network component in the IBMLAN.INI file of a local
computer or a remote server.

#include <netcons.h>
#include <config.h>

unsigned far pascal
NetConfigGetA112(servername, reserved, component, buf, buflen,

bytesread, bytesavail)

char far * servername;
char far * reserved;
char far * component 3
char far * bufs
unsigned short bufleng
unsigned short far * bytesread;
unsigned short far * bytesavail;
where:

servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

reserved must be NULL.

component points to an ASCIIZ string specifying the name of the component to
search.

buf points to the memory address where the parameter values of a component
are to be returned.

buflen specifies the size (in bytes) of the buf memory area.

bytesread points to an unsigned short integer indicating the number of bytes
returned to buf.

bytesavail points to an unsigned short integer indicating the number of bytes of
data that were available.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_FILE_NOT_FOUND 2 The file was not found.
ERROR_PATH_NOT_FOUND 3 The path was not
found.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SHARING_VIOLATION 32 A sharing violation

occurred.

Chapter 3. API Function Descriptions 3-73

Manifest Value Meaning

ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA EXE has
not been started.

NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.
NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
transactions.
NERR_InvalidAPI 2142 The requested API is

not supported on the
remote server.

NERR_CfgCompNotFound 2146 The program could not
find the specified
component in the
IBMLAN.INI file.

NERR_LineTooLong 2149 A line in the
IBMLANL.INI file is
too long.

NERR_JobNotFound 2151 The print job does not
exist.

3-74 LAN Server Application Programmer’s Reference

Other error return codes may be returned from the following OS/2 functions:

DOS Considerations
This API can be called remotely on a DOS requester to retrieve information from
the IBMLAN.INI file.

Remarks

DosChgFilePtr

DosDuphandle
DosFsRamSemClear

DosFreeSeg
DosFsCtiNETTRANSACTION)
DosFsCtiIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg
DosOpen[-ERROR_OPEN_FAILED]
DosRead

DosSemClear.

NetConfigGetAll2 returns in buf a set of concatenated ASCIIZ strings, representing
configuration information for the specified component. Each string is ended by a
NULL byte (ASCII 0), and the whole buffer is ended by a NULL string.
Information is returned in the form parm=value. The parameter name (left of the =
sign) is in uppercase. bytesread and bytesavail are filled in as for GetInfo calls.

For example,

foo = Bar,1,long comment string "

in the IBMLAN.INI file is returned as:

"FO0=Bar,1,long comment string"

Chapter 3. API Function Descriptions 3-75

Connection Category

Description

Data Structures

NetConnectionEnum (admin, server, DOS)—See “NetConnectionEnum” on
page 3-78.

The NetConnectionEnum function lists all connections made to a server by a
requester client or all connections made to a shared resource of a server. The
function is used with the SHARES.H and NETCONS.H include files.

A requester accesses a shared resource. of a server by means of a connection. Thus,
a connection is the path between a redirected local device name of a requester and a
shared resource of a server. Using a NetUseAdd (UNC) name can establish a
connection without any local device name.

The NetConnectionEnum function returns data at a detail level of 0 or 1, using the
following data structures:

Connection Information (Level 0)

struct connection_info_0 {
unsigned short coni@_id;

}

where:

* coni0_id is the connection identification number.

Connection Information (Level 1)

struct connection_info_1 {
unsigned short conil_id;
unsigned short conil_type;
unsigned short conil_num_opens;
unsigned short conil_num_users;
unsigned long conil_time;

char far * conil_username;
char far * conil_netname;
}s
where:

* conil_id is the connection identification number.

* conil_type indicates the type of connection made from the local device name to
the shared resource. The SHARES.H include file defines the following types of

connection:

Manifest Value Meaning
STYPE_DISKTREE 0 Disk connection.
STYPE_PRINTQ 1 Spooler queue connection.
STYPE_DEVICE 2 Serial device connection.
STYPE_IPC 3 Interprocess communication

(IPC) connection.

3-76 LAN Server Application Programmer’s Reference

o conil_num_opens indicates the number of files that are currently open as a result
of the connection.

* conil_num_users indicates the number of users on the connection.
® conil_time indicates the number of seconds the connection has been established.

* conil_username points to an ASCIIZ string indicating the user that made the
connection.

¢ conil_netname points to an ASCIIZ string indicating either the netname of the
shared resource of the server or the computer name of the requester, depending
on which name was specified as the qualifier parameter of the
NetConnectionEnum function. The type of name supplied to conil_netname is
the inverse of the type supplied to the qualifier parameter.

Related information

For information on connecting a device name of a requester to a shared resource of
a server, see “NetUseAdd” on page 3-372.

Chapter 3. API Function Descriptions 3-77

NetConnectionEnum
The NetConnectionEnum (admin, server, DOS) function gives a listing of
connections made to a shared resource of a server, or of all connections established
from a particular computer to a server.

Syntax

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetConnectionEnum(servername, qualifier, level, buf,
buflen, entriesread, totalentries)

const char far * servername;
const char far * qualifier;
short level;

char far * buf
unsigned short buflien;

unsigned short far * entriesread;
unsigned short far * totalentries;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

¢ qualifier points to an ASCIIZ string specifying either the netname of the shared
resource whose connections will be listed or the client name of the requester
whose connections to the shared resource will be listed (qualifier cannot be a
NULL pointer or string).

¢ Jevel specifies the level of detail (0 or 1) for the returned connection_info data.
¢ buf points to the connection_info data structure.
¢ buflen specifies the size (in bytes) of the buf memory area.

® entriesread points to an integer indicating the number of entries that were
returned to buf.

* totalentries points to an integer indicating the number of entries that were

available.
Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is denied.

3-78 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID _PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_ServerNotStarted

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_NetNameNotFound
NERR_ClientNameNotFound

NERR_InvalidComputer

124

234

2102

2104

2106

2114

2134

2138

2139

2140

2141

2142

2310

2312

2351

The specified parameter is
invalid.

The Level parameter is
invalid.

Additional data is
available, but the buffer
is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The Server service has not
been started.

An internal error
occurred when calling the
workstation driver.

The Requester service has
not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is not
supported on the remote
server.

This shared resource does
not exist.

A session does not exist
with that computer name.

The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-79

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosFsRamSemClear

DosFreeSeg

DosFsCtINETTRANSACTION)
DosFsCtI(INULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE NOT_FOUND]

DosSemClear.

If qualifier specifies a requester, NetConnectionEnum returns a list of all connections
made between the requester and the specified server during the current session.

When qualifier specifies a shared resource, NetConnectionEnum returns a list of all
connections made to the shared resource.

Related Information

For information on:

Listing all available servers—See “NetServerEnum?2” on page 3-289.

Listing sessions on a server—See “NetSessionEnum” on page 3-331.

3-80 LAN Server Application Programmer’s Reference

Domain Category
NetGetDCName (DOS)—See “NetGetDCName” on page 3-82.

NetLogonEnum (partially admin, DOS)—See “NetLogonEnum” on page 3-85.

The functions in the Domain category deal specifically with the information of a
domain and are exclusive of other categories. They are used with the ACCESS.H
and NETCONS.H include files.

Description
The functions in this category deal with domain-specific information. The
NetGetDCName function obtains the name of the domain controller when provided
the name of the domain. The NetLogonEnum function enumerates the information
of logged-on users in a domain. The information is in the level 0, 1, or 2
user_logon_info data structures. See the data structure information under “User
Category” on page 3-382.

Chapter 3. API Function Descriptions 3-81

NetGetDCName

Syntax

Return Codes

Given a domain name, the NetGetDCName (DOS) function returns the name of the
domain controller if there is any. The NULL domain name is taken to mean obtain
the domain controller (DC) of the primary domain.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGetDCName (servername, domain, buf, buflen)

char far * servername;
char far * domaing
char far * buf;

unsigned short buflen;

where:

» servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

* domain points to an ASCIIZ string containing the name of the domain.
® buf points to the buffer for the name of the domain controller to be returned.

¢ buflen specifies the size (in bytes) of the buffer buf.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID NAME 123 There is an incorrect
character or incorrectly
formed file system
name.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector

NETWKSTA.EXE has
not been started.

3-82 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidComputer

NERR_DCNotFound

2104

2106

2123

2134

2138

2139

2140

2141

2351

2453

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

No domain controller
was found on this
domain.

Other error return codes may be returned from the following OS/2 functions:

¢ DosAllocSeg
¢ DosDeleteMailslot
. DostRamSeinClear

¢ DosFreeSeg

¢ DosFsCtINETTRANSACTION)
¢ DosFsCtIINULLTRANSACT)
¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg

¢ DosMakeMailslot[-ERROR_ALREADY_EXISTS]

¢ DosSemClear.

Chapter 3. API Function Descriptions 3-83

Remarks
If the return code is 0 (success), the buffer contains an ASCIIZ string representing
the name of the domain controller as a UNC name, for example, “\\server.”

Because NetGetDCName attempts to find the domain controller for the specified
.domain each time it is called, this function may affect the performance of
applications that call it often. However, since the domain controller of a domain
may change, applications should not cache the domain controller name for more
than a small set of operations. It is recommended that the application be written
without more than very local caching, unless performance tests indicate that calls to
NetGetDCName are the specific cause of poor performance.

Even then, the application should take care to refresh its internal cache by calling
this function when possible.

3-84 1AN Server Application Programmer’s Reference

NetLogonEnum

Syntax

Return Codes

The NetLogonEnum (DOS) function supplies information about logged-on users.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetLogonEnum(servername, level, buf,
buflen, entriesread, totalentries)

char far * servername;
short level;

char far * buf;

unsigned short bufieny
unsigned short far * entriesread;
unsigned short far * totalentries;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

o Jevel specifies the level (0 or 2) of detail supplied to the data structure.
¢ buf points to the user_logon_info data structures.

* buflen specifies the size (in bytes) of the user_logon_info data structure.
¢ entriesread contains the number of entries on return.

¢ totalentries contains the total entries available.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-85

Manifest

Value

Meaning

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_ACFNotFound

NERR_UserNotFound

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_InvalidComputer

NERR_InvalidUASOp

NERR_NetLogonNotStarted

3-86 LAN Server Application Programmer’s Reference

2102

2104

2106

2134

2138

2139

2140

2141

2142

2219

2221

2227

2229

2351

2451

2455

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The Net.ACC file is
missing.

The user name cannot
be found.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The specified computer
name is invalid.

This operation is not
permitted when the
Netlogon service is
running.

The Netlogon service
has not been started.

Manifest

Value

Meaning

NERR_CanNotGrowUASFile 2456

It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

DosAllocSeg

DosChgFilePtr

DosFsRamSemClear

DosFreeSeg
DosFsCtIINETTRANSACTION)
DosFsCtIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosNewSize[-ERROR_DISK_FULL]
DosQFilelnfo

DosRead

DosSemClear

DosWrite.

Chapter 3. API Function Descriptions 3-87

Error Logging Category

NetErrorLogClear (admin)—See “NetErrorLogClear” on page 3-90.
NetErrorLogRead (admin)—See “NetErrorLogRead” on page 3-93.
NetErrorLogWrite (local)—See “NetErrorLogWrite” on page 3-97.

The functions in the Error Logging category control the error log file. They are
used with the ERRLOG.H and NETCONS.H include files.

Description
Each time an error condition occurs during a network operation, an error log entry
can be generated by NetErrorLogWrite to record error information. The other two
functions enable opening (NetErrorLogRead) and clearing (NetErrorLogClear) of
the error log file (which stores the entries).

Error log entries are stored as ASCII text. The default error log file name is
\IBMLAN\LOGS\NET.ERR. All error logging functions perform their operations
on this file.

Note: The error logging functions control changes to the error log file only. To
read the error log file, an application must first call the NetErrorLogRead
function to obtain the handle of the file. The DosRead function can then be
called to read the file. To close the file, an application must call the
DosClose function.

The error log file contains information about the following types of errors:
* 0S/2 LAN Requester/Server software internal errors
e 0S/2 internal errors

e Network service errors.

Data Structures
The NetErrorLogWrite function uses the error_log data structure to write an entry to
the error log file. The entry consists of a fixed-length data structure optionally
followed by zero or more ASCIIZ strings (el_text) describing the error message and
a block of raw data (el_data) relating to the cause of the error. Because of the
variable lengths and structures of the el_data and el_text portions of the entry, only
the fixed-length data structure is defined in the error_log data structure.

3-88 LAN Server Application Programmer’s Reference

The fixed portion of the error log entry has the following format:

struct error_log {

unsigned short el_len;

unsigned short el_reserved;

unsigned Tong el_time;

unsigned short el_error;

char el_name[SNLEN+1];
----- unsigned short el_data_offset; /* offset from beginning

address of error_log */

unsigned short el_nstrings;

/* variable-length data specific to the error
message and block of data associated with error */

char el_text [1; /* error message */
- char el_data []; /* raw data - the number of bytes
used for raw data is equivalent to:
size = el_len - (el_data_offset
+ sizeof(el_len)); */
unsigned short el_len;

where:

¢ ¢l len indicates the length (in bytes) of the error log entry. (Note that el_len is
included at both the beginning and end of the entry to enable both forward and
backward scanning of the file.)

* el reserved is reserved.
* el _time indicates the time when e/_name submitted the error entry.

® el _error is the error code for the error. el_error can be used to obtain an error
message from the NET.MSG file.

® ¢l_name is an ASCIIZ string indicating the name of the network service or
application that returned the error entry.

¢ el _data_offset specifies the byte offset from the beginning of the error log entry
to the start of its variable-length portion (el_data).

® el _nstrings indicates the number of ASCIIZ strings the el_text portion of the
entry contains.

® ¢l _text points to.zero or more ASCIIZ strings describing the error.

* ¢l _data points to the raw data associated with the error.

Related Information
For information on error codes, see Appendix C, “Return Codes.”

Chapter 3. API Function Descriptions 3-89

NetErrorLogClear
The NetErrorLogClear (admin) function clears (and optionally saves) the error log
file of a computer.

Syntax

#include <netcons.h>
#include <errlog.h>

unsigned far pascal

NetErrorLogClear(servername, backupfile, reserved)
const char far * servername;

const char far * backupfile;

char far * reserved;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* backupfile points to an ASCIIZ string assigning a name for an optional backup
file. The calling application must have Write privileges for the path specified by
backupfile. The path name must also be accessible by the OS/2 DosMove
function. If the path name is relative, it is assumed relative to the
IBMLAN\LOGS directory.

A NULL pointer indicates that NetErrorLogClear is not to save the error log
entries.

¢ reserved is a NULL pointer.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_BAD_NETPATH 53 The network path
cannot be found.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_BAD_NET_NAME 67 This network name
cannot be found.
ERROR_INVALID_PARAMETER 87 The specified

parameter is invalid.

3-90 LAN Server Application Programmer’s Reference

Manifest Value Meaning
ERROR_NET_WRITE_FAULT 88 A network data fault
has occurred.

ERROR_INVALID_NAME

ERROR_INVALID_LEVEL

ERROR_FILENAME_EXCED_RANGE

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_InvalidComputer

NERR_CantType

123

124

206

234

2102

2104

2123

2134

2138

2139

2140

2141

2142

2351

2357

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA .EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The specified computer
name is invalid.

The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-91

Remarks

Related Information

Other error return codes may be returned from the following OS/2 functions:

DosDelete

DosFsRamSemClear

DosFreeSeg
DosFsCti(NETTRANSACTION)
DosFsCtI(NULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosNewSize[-ERROR_DISK _FULL]
DosMove

DosOpen

DosSemClear

redir.GetNetInitPath.

NetErrorLogClear fails if the error-log file is currently opened by another process: .
The NetErrorLogWrite function (see “NetErrorLogWrite” on page 3-97) issues an
admin alert when the error log file reaches 80% capacity and again when the file
reaches 100% capacity. At 100% error log file capacity, NetErrorLogWrite fails.
Therefore, applications should periodically clear the error log file of outdated
information.

To set a maximum size for the error log file, use one of the following methods:

Use the NET CONFIG command with the /MAXERRORLOG option (see the
IBM Operating System[2 Local Area Network Server Version 1.2 Network
Administrator’s Guide for more information).

Set the maxerrorlog parameter in the IBMLAN.INI file (see the IBM Operating
System[2 Local Area Network Server Version 1.2 Network Administrator’'s Guide
for a description of the IBMLAN.INI file).

Call the NetWkstaSetInfo function with the wki0_errlogsz parameter.

For information on writing an entry to the error log file, see “NetErrorLogWrite”
on page 3-97.

3-92 LAN Server Application Programmer’s Reference

NetErrorLogRead
The NetErrorLogRead (admin) function opens and returns an OS/2 file handle to
the error log file of a computer .

Syntax

#include <netcons.h>
#include <errlog.h>

unsigned far pascal

NetErrorLogRead (servername, reservedl, ploghndl, offset, reserved?,
reserved3, flags, buf, buflen, bytesread, bytesavail)

const char far * servername;
const char far * reservedl
HLOG far * ploghndl;
unsigned long offset;
unsigned short far * reserved?2;
unsigned Tong reserved3;
unsigned long flags;
char far * buf;
unsigned short buflen;
unsigned short far * bytesread;
unsigned short far * bytesavail;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the
local server.

¢ reservedl must be a NULL pointer.
¢ ploghndl is the pointer to the returned log handle.

* offset is the record offset to begin read. The offset is ignored unless flags bit 1 is
set. If this bit is set, offset is taken as a zero-based offset based on record
number rather than bytes, at which the data returned should begin. Note that
the record offset parameter is zero based from both directions, dependent upon
the direction of the read. If reading backwards is specified, then the Oth record
is the last record in the file. If reading forward, then the Oth record is the first
record in the file.

* reserved? must be a NULL pointer.

® reserved3 must be zero.

* flags specifies the open flags, bitmapped as shown here.

* buf is the pointer to the buffer for returned data.

* buflen specifies the size (in bytes) of the buf memory area.

* bytesread points to an unsigned short integer indicating the number of bytes read
into the buffer.

* bytesavail points to an unsigned short integer indicating the number of bytes
available.

Chapter 3. API Function Descriptions 3-93

The bitmapped flags fields are as follows:

Bits Meaning

0 If 0, the file is read normally. If 1, the file is read backwards and
records are returned in the buffer in reverse-chron order (newest
records first).

1 If 0, read proceeds normally and sequentially. If 1, read proceeds from
the Nth record from the start of the file. “N” is the offset parameter.
2-31 Reserved; must be 0.

The offset is ignored unless flags bit 1 is set. If this bit is set, offset is taken as a
zero-based offset based on record number, not bytes, at which the data returned
should begin.

An application calling NetErrorLogRead for the first time must initialize the 64-bit
log handle as follows:

Bits Value
127 (MSB)-64 0
63-0(LSB) 1

Where the least significant bit (LSB) is the last (rightmost) bit. Thereafter, each call
to NetErrorLogRead must be given the value for the log handle that was returned
by the previous call to NetErrorLogRead.

Note: If bytesread is 0 and bytesavail is not 0, the buffer is too small to hold the
next record in the file.

Unlike other API uses of bytesavail, in this case, the value may be 0xFFFF,
which is shorthand for “OxFFFF or more.” There can potentially be much
more than 64KB of data available. The application should continue to
process entries until this value is returned to 0.

The data is returned in the buffer. The application should use the bytesread value to
determine the end of valid data in the buffer.

Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

3-94 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_BAD_NET NAME

ERROR_INVALID_PARAMETER

ERROR_NET WRITE_FAULT

ERROR_INVALID NAME

ERROR_INVALID_LEVEL

ERROR_FILENAME_EXCED_RANGE

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidComputer

NERR_CantType

67

87

88

123

124

206

234

2102

2104

2123

2134

2138

2139

2140

2141

2351

2357

This network name
cannot be found.

The specified
parameter is invalid.

A network data fault
has occurred.

There is an incorrect
character or incorrectly
formed file system
name.

The Level parameter is
invalid.

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-95

Manifest Value Meaning

NERR_LogFileChanged 2378 This log file has
changed between reads.

NERR_LogFileCorrupt 2379 This log file is corrupt.

NERR_InvalidLogSeek 2440 The log file does not

contain the requested
record number.

Other error return codes may be returned from the following OS/2 functions:
¢ DosChgFilePtr

¢ DosClose

* DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsCtI(NETTRANSACTION)

¢ DosFsCti(NULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosOpen

¢ DosRead

¢ DosSemClear

¢ redir.GetNetlnitPath.
Remarks
After the NetErrorLogRead function returns the handle of the error log file , an

application calls the DosRead function to read the contents of a file. To close the
file, an application must call the DosClose function.

Related Information
For information on:

® Clearing an error log file—See “NetErrorLogClear” on page 3-90.

¢ Closing an error log file—See DosClose in the IBM Operating System|2 Technical
Reference Version 1.2 Programming Reference.

¢ Reading an error log file—See DosRead in the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference.

3-96 LAN Server Application Programmer’s Reference

NetErrorLogWrite

Syntax

Return Codes

The NetErrorLogWrite (local) function writes an entry to the error log file of a
computer.

#include <netcons.h>
#include <erriog.h>

unsigned far pascal

NetErrorLogWrite(reservedl, code, component, buf, buflen,
insbuf, nstrings, reserved2);

char far * reservedl;

unsigned short code;

const char far * component;

const char far * buf;

unsigned short buflen;

const char far * insbuf;

unsigned short nstrings;

char far * reserved?2;

where:
e reservedl must be a NULL pointer.
* code specifies the error code of the network error that occurred.

* component points to an ASCIIZ string specifying which software component
encountered the error. :

* buf points to the raw data associated with the error condition.

¢ buflen specifies the size (in bytes) of the buf memory area.

* insbuf points to the ASCIIZ strings containing the error message.

* nstrings indicates the number of concatenated ASCIIZ strings insbuf stores.

* reserved2 must be a NULL pointer.

Manifest Value Meaning.
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED S Administrative
privilege is required..
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTAEXE has
not been started.
NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_LogonNoUserPath 2211 The server is

configured without a
valid user path.

Chapter 3. API Function Descriptions 3-97

Manifest Value Meaning

NERR_LogOverflow 2377 This log file exceeds
the maximum defined
size.

Remarks
The NetErrorLogWrite function internally calls the appropriate OS/2 functions to
open and close the error log file.

The NetErrorLogWrite function issues an error log alert (with NetAlertRaise) each
time an entry is written to the error log file. Also, the NetErrorLogWrite function
issues an admin alert by calling the NetAlertRaise function when the error log file
reaches 80% capacity and again when the file reaches 100% capacity. At 100% error
log file capacity, NetErrorLogWrite fails, returning the error code
NERR_LogOverflow.

Related Information
For information on:

* (learing the error log file—See “NetErrorLogClear” on page 3-90.

¢ Closing the error log file—See DosClose in IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference.

¢ Error codes—See Appendix C, “Return Codes.”
¢ Limiting the size of the error log file—See “NetServerSetInfo” on page 3-295.

e Retrieving the size of the error log file—See “NetServerGetInfo” on page 3-292.

3-98 LAN Server Application Programmer’s Reference

File Category

Description

Data Structures

NetFileClose2 (admin, server, DOS)—See “NetFileClose2” on page 3-101.
NetFileEnum2 (admin, server, DOS)—See “NetFileEnum?2” on page 3-104.
NetFileGetInfo2 (admin, server, DOS)—See “NetFileGetInfo2” on page 3-107.

The functions in the File category provide a system for monitoring which file, device,
and pipe resources are opened on a server and for closing one of these resources if
necessary. They are used with the SHARES.H and NETCONS.H include files.

NetFileGetInfo2 returns information on one particular opening of a resource. Two
levels of detail are available, yielding only the identification number assigned to the
resource when it was opened (level 2) or additional data on permissions, file-locks,
and who opened the resource (level 3).

NetFileClose2 forces a resource closed when a system error prevents normal closure
by the DosClose function.

The level parameter for NetFileEnum2 and NetFileGetInfo2 specifies one of two
levels of information (2 or 3) to be returned. Both functions return data structured
as follows:

Opened Resources (Level 2)

struct file_info_2 {
unsigned long fi2_id;
}s

where:

® fi2 idis the identification number assigned to the resource at opening.

Opened Resources (Level 3)

struct file_info_3 {
unsigned long fi3_id;
unsigned short fi3_permissions;
unsigned short fi3_num_locks;

char far * fi3_pathname;
char far * fi3_username;
}s
where:

* fi3 id is the identification number assigned to the resource at opening.

Chapter 3. API Function Descriptions 3-99

- fi3 permissions indicates the access permissions of the opening application. The
bit mask of fi3_permissions is defined in SHARES.H as follows:

Manifest Bitmask Meaning

FILE_READ 0x1 Permission to read a resource,
and by default, execute the
resource.

FILE_WRITE 0x2 Permission to write to a
resource.

FILE_CREATE 0x4 Permission to create a resource;

data can be written when
creating the resource.

* fi3 num_locks indicates the number of file-locks on the file, device, or pipe.

* fi3 pathname points to an ASCIIZ string giving the path name of the opened
resource.

® fi3_username points to an ASCIIZ string indicating the user that opened the
resource.

3-100 1LAN Server Application Programmer’s Reference

NetFileClose2

Syntax

Return Codes

The NetFileClose2 (admin, server, DOS) function forces a resource closed when a
system error prevents a normal DosClose function closing.

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileClose2(servername, fileid)
const char far * servername;
unsigned long fileid;

where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

e fileid is the identification number assigned to the resource at opening.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID _LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has

not been started.

NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_ServerNotStarted 2114 The Server service has

not been started.

Chapter 3. API Function Descriptions 3-101

Manifest

Value

Meaning

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_FilelIdNotFound

NERR_InvalidComputer

NERR_NoSuchServer

2123

2134

2138

2139

2140

2141

2142

2314

2351

2460

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

There is not an open
file with that ID
number.

The specified computer
name is invalid.

The server ID is not
valid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFsRamSemClear

® DosFreeSeg

Remarks

DosFsCtiINETTRANSACTION)
DosFsCtIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

Normally, the DosClose function is used to close a resource opened by a call to the
DosOpen function. Use NetFileClose2 to force closed a resource opened by another
process.

3-102 LAN Server Application Programmer’s Reference

Related Information
For information on listing all open files and their identification numbers for a server,
see “NetFileEnum2” on page 3-104.

Chapter 3. API Function Descriptions 3-103

NetFileEnum2

The NetFileEnum2 (admin, server, DOS) function supplies information about some
or all open files on the server, allowing the user to supply a key to get the required
information through iterated calls to the API.

Syntax

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileEnum2(sc. -crname, basepath, username, level, flags, buf,

buflen, entriesread, totalentries, resume_key)

char far * servername;
char far * basepath;
char far * username;
short level;

char far * buf;

unsigned short buflen;
unsigned short far * entriesread;
unsigned short far * totalentries;
void far * resume_key;
where:

servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

basepath is the base path for enumeration. If non-NULL, basepath serves as a
qualifier to the enumeration. The entries returned are limited to those whose
name begins with the qualifier string. For example, a basepath of C:TMP would
enumerate only open files whose pathnames begin with C:TMP, including
C:TMPFILE and C:\TMP\DOCUMENT.

username points to an ASCIIZ string indicating the name of the user. If
non-NULL, username serves as a qualifier to the enumeration. The files
returned are limited to those whose opener username matches the qualifier.

level specifies the level of detail (2 or 3) in the file_info_ data structure.
buf points to the file_info_2 or file_info_3 data structure.
buflen specifies the size (in bytes) of the buf memory area.

entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf.

totalentries points to an unsigned short integer indicating the number of entries
that were available.

resume_key is a pointer to structure FRK (structure res_file_enum?2). This field is
used for continuing scanning.

3-104 1LAN Server Application Programmer’s Reference

Return Codes

Remarks

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ServerNotStarted 2114 The Server service has

not been started.

This API provides a way for the user to overcome the problem arising when the
information returned exceeds 64KB. To initialize the key resume_key, use the
macroinstruction FRK_INIT supplied in the file SHARES.H, which accepts a
structure FRK as an argument. The following is an example of an application code
segment:

FRK f3

FRK_INIT (f);
NetFileEnum2 (..., &f, ...);

When invoked with an initial resume key, if the supplied buffer is too small to return
all the requested information, the NetFileEnum?2 function returns the error code
ERROR_MORE_DATA and a resume_key suitable for retrieving the remaining
data. When invoked with a resume_key from a previous call, it resumes the
enumeration where indicated by *resume_key The user must not attempt to set this
key other than to initialize it. Other values of *resume_key supplied by the user
must have been returned by a preceeding call to NetFileEnum?2.

NetFileEnum?2 never returns an entry that has partial data; that is, a fixed-length
data record and all variable-length data is present for each returned item. Items that
cannot fit completely are not returned in the buffer. This differs from normal Enum
function calls, which return partial data for some entries, usually the last few, if the
buffer is too small. The reason that Enum?2 differs is because the entries can be
retrieved in full by subsequent calls (using the resume_key), and so partial data could
be misleading and is less useful than in normal Enum functions.

The username parameter, if not NULL, serves as a qualifier to the enumeration. The
files returned are limited to those whose opener user name matches the qualifier.

The basepath parameter, if not NULL, serves as a prefix to qualify the enumeration.
The entries returned are limited to those whose names begin with the qualifier string.

Chapter 3. API Function Descriptions 3-105

For example, a basepath of “C:\TMP” would enumerate only open files whose path
names begin with “C:\TMP,” including “C:\TMPFILE” and
“C\TMP\DOCUMENT.”

If both the username and the basepath parameters are specified, only the files
matching both the qualifying conditions are returned.

3-106 LAN Server Application Programmer’s Reference

NetFileGetinfo2

The NetFileGetInfo2 (admin, server, DOS) function retrieves information about a
particular opening of a server resource.

Syntax

#include <netcons.h>
#include <shares.h>

unsigned far pascal
NetFileGetInfo2(servername, fileid, level,
buf, buflen, totalavail)

const char far * servername;
unsigned long fileid;
short level;

char far * buf;
unsigned short bufien;

unsigned short far * totalavail;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

¢ fileid indicates the identification number assigned to the resource at opening.

¢ Jevel specifies the level of detail (2 or 3) to be returned by the file_info data
structure.

* buf points to the file_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID LEVEL 124 The Level parameter is
invalid.

Chapter 3. API Function Descriptions 3-107

Manifest Value Meaning

ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations:

NERR_ServerNotStarted 2114 The Server service has
not been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
transactions.
NERR_InvalidAPI 2142 The requested API is

not supported on the
remote server.

NERR _FileIdNotFound . 2314 There is not an open
file with that ID
number.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

3-108 LAN Server Application Programmer’s Reference

Other error return codes may be returned from the following OS/2 functions:

Related Information

DosFSRamSemClear

DosFreeSeg

DosFsCitl

DosFsCtiNETTRANSACTION)
DosFsCtiIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

For information on:

Closing a file, device, or pipe—See “NetFileClose2” on page 3-101.

Listing files, devices, or pipes open on a server—See “NetFileEnum2” on
page 3-104.

Chapter 3. API Function Descriptions

3-109

Group Category

Description

NetGroupAdd (admin, DOS)—See “NetGroupAdd” on page 3-112.
NetGroupAddUser (admin, DOS)—See “NetGroupAddUser” on page 3-115.
NetGroupDel (admin, DOS)—See “NetGroupDel” on page 3-118.

NetGroupDelUser (admin, DOS)—See “NetGroupDelUser” on page 3-121.
NetGroupEnum (partially admin, DOS)—See “NetGroupEnum” on page 3-124.
NetGroupGetInfo (partially admin, DOS)—See “NetGroupGetInfo” on page 3-127.
NetGroupGetUsers (partially admin, DOS)—See “NetGroupGetUsers” on page 3-130.
NetGroupSetInfo (admin, DOS)—See “NetGroupSetInfo” on page 3-133.
NetGroupSetUsers (admin, DOS)—See “NetGroupSetUsers” on page 3-136.

The functions in the Group category control user groups in the user accounts
subsystem (UAS) database. They are used with the ACCESS.H and NETCONS.H
include files.

A group is a set of users sharing common permissions in the UAS database. The
Group functions create or delete groups and review or adjust their membership.

Access permissions can be assigned for all members of a group by supplying the
group name to the NetAccessAdd function (see “Access Permission Category” on
page 3-2) instead of individually assigning each user an access permission record.

Note: The OS/2 LAN Requester/Server software maintains special groups to which
any user assigned USER or ADMIN privileges is added automatically. If an
application calls any of the Group functions in an attempt to modify the
group USERS, the group ADMIN, or their membership, the function returns
the NERR_SpeGroupOp error code.

To create a user group, an application calls the NetGroupAdd function, supplying a
group name. Initially, the group has no members. Members are assigned to the
group by calling NetGroupAddUser.

NetGroupDelUser removes the name of a specified user from a group, and
NetGroupDel disbands a group. (NetGroupDel works regardless of whether or not
the group has members.)

Two functions retrieve information about groups on a server. NetGroupEnum
produces a list of all groups. NetGroupGetUsers lists all members of a specified

group.

3-110 LAN Server Application Programmer’s Reference

Special Groups

Data Structures

There are three special groups: USERS, ADMINS, and GUESTS. Each user
account automatically belongs to one of these three special groups according to the
user’s privilege level. The members of these special groups must have one of the
following privilege levels:

¢ USER_PRIV_USER
¢ USER_PRIV_ADMIN
e USER_PRIV_GUEST.
Users cannot be deleted from these groups, nor can groups be deleted. An attempt

to delete groups or users in these groups causes the NERR_SpeGroupOp error code
to be returned.

Oanly three of the Group functions—NetGroupAdd, NetGroupEnum, and
NetGroupGetUsers—return structured data. The simple data structures that these
functions use are described following the syntax description for each function.

Group Information (Level 0 and Level 1)

The basic data structures for Group information are as follows:

struct group_info_0 {
char grpi0_name [GNLEN+1];
s

where:
* grpi0_name is the name of the group.

struct group_info_1 {

char grpil_name[GNLEN+1];
char grpil_pad_1;
char far * grpil_comment;

|H

where:

* grpil_name is the name of the group.
* grpil_pad_1 is for the WORD-alignment in the data structure.

® grpil_comment points to an ASCIIZ string containing the comment or remark of
the group. The string can be NULL.

Group Membership Information (Level 0)

The basic data structure for Group Membership information is as follows:

struct group_users_info 0 {
char grui®_name [UNLEN+1];
b

where:

e grpi0_name is the name of the user in the group.

All of these functions should be used with the ACCESS.H and NETCONS.H include
files.

Chapter 3. API Function Descriptions 3-111

NetGroupAdd

The NetGroupAdd (admin, DOS) function creates a new group account in the user
accounts subsystem (UAS) database.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGrounAdd (servername, level, buf, buflen)

char far * servername;
short level;
char far * buf;

unsigned short buflen;

where:

o servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
server.

¢ Jevel specifies the level of detail (0 or 1) for the group_info data structure.

* buf points to the group_info data structure.

When adding at level 0, the comment field is set to the empty string, since no
comment field is provided in the level 0 structure.

* buflen specifies the size (in bytes) of the buf memory area.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_BAD_NETPATH 53 The network path
cannot be found.
ERROR_NETWORK_ACCESS _DENIED 65 Network access is
denied.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

3-112 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_BadUsername

NERR_GroupExists
NERR_UserExists

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFilelOFail

2104

2106

2123

2134

2138

2139

2140

2141

2142

2202

2223

2224

2226

2227

2228

2229

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The user name or
group name parameter
is invalid.

The group name is
already in use.

The user account
already exists.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

There are too many
names. in the access
control file..

An error was
encountered in
accessing the accounts
database.

Chapter-3. API Function Descriptions 3-113

Manifest Value Meaning

NERR_InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosFsRamSemClear
¢ DosFreeSeg
* DosFsCtIINETTRANSACTION)
¢ DosFsCti(NULLTRANSACT)
* DosFsCtl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE NOT_FOUND]

¢ DosSemClear.

Remarks
NetGroupAdd will fail if the name already is used as a user name. User names and
group names must be unique.

Related Information
For information on:

* Adding a user to a group—See “NetGroupAddUser” on page 3-115.
¢ Assigning group permissions—See “NetAccessAdd” on page 3-6.
* Deleting a group account from a server—See “NetGroupDel” on page 3-118.

* Listing all groups on a server—See “NetGroupEnum” on page 3-124.

3-114 LAN Server Application Programmer’s Reference

NetGroupAddUser
The NetGroupAddUser (admin, DOS) function adds a user to a group in the user

Syntax

Return Codes

accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal

NetGroupAddUser(servername, groupname, username)

char far * servername;
char far * groupname;
char far * username;

where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local

SEIver.

* groupname points to an ASCIIZ string specifying the group the user will join.

® username points to an ASCIIZ string specifying the user to add to the group.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID NAME 123 There is an incorrect
character or incorrectly
formed file system
name.
ERROR_INVALID LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

Chapter 3. API Function Descriptions 3-115

‘Manifest

Value

Meaning

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_GroupNotFound

NERR_UserNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_SpeGroupOp

NERR_UserInGroup

NERR_InvalidDatabase

NERR_InvalidComputer

NERR_CanNotGrowUASFile

3-116 LAN Server Application Programmer’s Reference

2106

2123

2134

2138

2139

2140

2141

2142

2220

2221

2226

2227

2229

2234

2236

2247

2351

2456

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service

. has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The group does not
exist.

The user name cannot
be found.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

This operation is not
allowed on this special

group.
The user already
belongs to this group.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

[)

Remarks

DosAllocSeg

DosChgFilePtr

DosFsRamSemClear

DosFreeSeg
DosFsCtiINETTRANSACTION)
DosFsCt{NULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosNewSize[-ERROR_DISK_FULL]
DosQFilelnfo

DosRead

DosSemClear

DosWrite.

If any attempt is made to add a user name to the special groups (USERS, ADMINS,
or GUESTS), the NetGroupAddUser function returns the NERR_SpeGroupOp
error code.

Related Information

For information on:

Creating a new group—See “NetGroupAdd” on page 3-112.

Defining group access permission records—See “Access Permission Category” on
page 3-2.

Removing a user from a group—See “NetGroupDelUser” on page 3-121.

Retrieving a list of the members of a group—See “NetGroupGetUsers” on
page 3-130.

Setting the groups of which a user is a member—See “NetUserSetGroups” on
page 3-423.

Chapter 3. API Function Descriptions 3-117

NetGroupDel

Syntax

Return Codes

The NetGroupDel (admin, DOS) function removes a group account from the user

accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupDel(servername, groupname)
char far * servername;

char far * groupname;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local

Server.

* groupname points to an ASCIIZ string specifying which group to remove.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_FILENAME_EXCED_RANGE 206 The file name is longer
than 8 characters or
the extension is longer
than 3 characters.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error

3-118 LAN Server Application Programmer’s Reference

occurred—the network
cannot access a shared
memory segment.

Manifest

Value

Meaning

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_GroupNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_SpeGroupOp

NERR_InvalidDatabase

NERR_InvalidComputer

NERR_CanNotGrowUASFile

2106

2123

2134

2138

2139

2140

2141

2142

2220

2226

2227

2229

2234

2247

2351

2456

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The group does not
exist.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

This operation is not
allowed on this special
group.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the UAS file.

Chapter 3. API Function Descriptions 3-119

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosChgFilePtr

DosFsRamSemClear

DosFreeSeg

DosFsCtiI(INETTRANSACTION)
DosFsCtIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE NOT_FOUND]
DosNewSize[-ERROR_DISK_FULL]
DosSemClear

DosWrite.

It is not necessary to remove all members from a group before deleting the group
account.

Deleting a group account does not delete the individual accounts of its member
users.

Deleting a group deletes it from the access control profiles.

NetGroupDel returns the NERR_SpeGroupOp error code if any attempt is made to
remove the special groups (USERS, ADMINS, or GUESTS).

Related Information

For information on:

[]

Adding a group to the UAS database—See “NetGroupAdd” on page 3-112.
Listing all groups in the UAS database—See “NetGroupEnum” on page 3-124.
Removing a user from a group—See “NetGroupDelUser” on page 3-121.

Retrieving a list of members for a group—See “NetGroupGetUsers” on
page 3-130.

3-120 LAN Server Application Programmer’s Reference

NetGroupDelUser
The NetGroupDelUser (admin, DOS) function removes a user from a particular
group in the user accounts subsystem (UAS) database.

Syntax

Return Codes

#include <netcons.h>
#include <access.h>

unsigned far pascal

NetGroupDelUser(servername, groupname, username)

char far * servername;
char far * groupname;
char far * username;

where:

o servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local

Server.

¢ groupname points to an ASCIIZ string specifying the group to be altered.

® username points to an ASCIIZ string specifying which user to remove from the

group account.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
"ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.
NERR_RemoteOnly 2106 This operation is not

supported on
workstations.

Chapter 3. API Function Descriptions 3-121

Manifest

Value

Meaning

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_GroupNotFound
NERR_UserNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_SpeGroupOp

NERR_UserNotInGroup

NERR_InvalidDatabase

NERR_InvalidComputer

3-122 LAN Server Application Programmer’s Reference

2123

2134

2138

2139

2140

2141

2142

2220

2221

2226

2227

2229

2234

2237

2247

2351

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The group does not
exist.

The user name cannot
be found.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

This operation is not
allowed on this special
group.

The user does not
belong to this group.

The UAS database file
is corrupted.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocSeg

¢ DosChgFilePtr

¢ DosFsRamSemClear

¢ DosFreeSeg

* DosFsCti(INETTRANSACTION)

¢ DosFsCti(NULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

* DosGetShrSeg[-ERROR_FILE NOT_FOUND]
¢ DosNewSize[-ERROR_DISK _FULL]

¢ DosQFileInfo

e DosRead

¢ DosSemClear

¢ DosWrite.

Remarks
Removing a user from a group does not delete the user’s account in the system.

If an application tries to delete a user name from the special groups (USERS,
ADMINS, or GUESTS), NetGroupDelUser returns the NERR_SpeGroupOp error
code.

Related Information
For information on:

e Adding a user to a group—See “NetGroupAddUser” on page 3-115.
¢ Deleting a group—See “NetGroupDel” on page 3-118.

¢ Retrieving a list of members of a group—See “NetGroupGetUsers” on
page 3-130.

Chapter 3. API Function Descriptions 3-123

NetGroupEnum

Syntax

Return Codes

The NetGroupEnum (partially admin, DOS) function lists all group accounts on the
user accounts subsystem (UAS) database.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupEnum(servername, level, buf, buflen,
entriesread, totalentries)

char far * servername;
short level;

char far * buf;

unsigned short bufien;
unsigned short far * entriesread;
unsigned short far * totalentries;

where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
Server.

o Jevel specifies the level of detail (0 or 1) for the group_info data structure.
* buf points to the group_info data structure.
¢ buflen specifies the size (in bytes) of the buf memory area.

® entriesread points to an unsigned short integer indicating the number of entries
returned to buf.

® totalentries points to an unsigned short integer indicating the number of entries
available.

On successful returns, buf contains entriesread number of group_info data structures.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED S Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_BAD _NETPATH 53 The network path

cannot be found.

Network aceess is.
denied.

ERROR_NETWORK_ACCESS_DENIED 65

ERROR_INVALID_PARAMETER 87 The specified

parameter is invalid.

3-124 AN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_GroupNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFileIOFail

124

234

2102

2104

2106

2134

2138

2139

2140

2141

2142

2220

2226

2227

2228

2229

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The group does not
exist.

The UAS database is
replicant and will not
allow updates.

The TJAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-125

Manifest Value Meaning

NERR_InvalidDatabase 2247 The UAS database file
is corrupted.
NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosChgFilePtr

DosFsRamSemClear

DosFreeSeg

DosFsCtIINETTRANSACTION)
DosFsCtiINULLTRANSACT)
DosFsCitl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosRead

DosSemClear.

Only the group names can be retrieved with ordinary user’s privilege. With
administrative privilege, the comments can be returned.

Related Information

For information on:

e Adding a new group to the UAS database—See “NetGroupAdd” on page 3-112.

Removing a group from the UAS database—See “NetGroupDel” on page 3-118.

3-126 LAN Server Application Programmer’s Reference

NetGroupGetinfo
The NetGroupGetlnfo (partially admin, DOS) retrieves group-related information.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupGetInfo (servername, groupname, level, buf, buflen,

totalavail)
char far * servername;
char far * groupname;
short level;
char far * buf;
unsigned short buflen;

unsigned short far * totalavail;
where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

e groupname points to an ASCIIZ string specifying the group from which to get
information.

* Jevel specifies the level of detail (0 or 1) for the group_info data structure.
¢ buf points to the group_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* totalavail points to an unsigned short integer indicating the number of bytes of
information available.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-127

Manifest

Value

Meaning

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_GroupNotFound

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFileIOFail

NERR_SpeGroupOp

NERR_InvalidComputer

3-128 LAN Server Application Programmer’s Reference

2102

2104

2106

2123

2134

2138

2139

2140

2141

2220

2227

2228

2229

2234

2351

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The group does not
exist.

The UAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

This operation is not
allowed on this special
group.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocSeg
¢ DosFreeSeg
¢ DosFsCtiIINETTRANSACTION)
¢ DosFsCtIINULLTRANSACT)
* DosFsCtl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE NOT_FOUND]

* DosSemClear.
Remarks
A user without administrative privilege can call this API only with level 0 on a

remote call. Users cannot issue this function on the groups to which they do not
belong.

Chapter 3. API Function Descriptions. 3-129

NetGroupGetUsers
The NetGroupGetUsers (partially admin, DOS) function returns a list of members
of a particular group in the user accounts subsystem (UAS) database. Users can
perform this function on groups to which they belong.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupGetUsers(servername, groupname, level, buf, buflen,
entriesread, totalentries)

char far * servername;
char far * groupname;
short level;

char far * buf;
unsigned short bufien;

unsigned short far * entriesread;
unsigned short far * totalentries;

where:

® servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

¢ groupname points to an ASCIIZ string specifying the name of the group whose
members will be listed.

o Jevel specifies the level of detail (0) for the group_users_info_0 data structure.
* buf points to the group_users_info_0 data structure.
o buflen specifies the size (in bytes) of the buf memory area.

* entriesread points to an unsigned short integer indicating the number of entries
returned to buf.

* totalentries points to an unsigned short integer indicating the number of entries

available.
Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative
privilege is required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.

ERROR_SEEK 25 The seek is invalid.

ERROR_BAD_NETPATH 53 The network path
cannot be found.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is
denied.

3-130 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_INVALID _PARAMETER

ERROR_INVALID_LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_ACFNotFound

NERR_GroupNotFound

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFileIOFail

124

234

2102

2104

2106

2123

2134

2138

2139

2140

2141

2219

2220

2227

2228

2229

Chapter 3. API Function Descriptions

The specified
parameter is invalid.

The Level parameter is
invalid.

Additional data is
available, but the
buffer is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The Net. ACC file is
missing.

The group does not
exist.

The UAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

3-131

Manifest Value

Meaning

NERR_InvalidComputer 2351

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosAllocSeg

¢ DosChgFilePtr

¢ DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsCti(NETTRANSACTION)

* DosFsCtIINULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg

* DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
* DosRead

¢ DosSemClear.

Remarks

This is functionally equivalent to an Enum call because it enumerates the users in a
group. See “NetGroupEnum” on page 3-124. NetGroupGetUsers of the special

groups USERS, ADMINS, and GUESTS is an admin call.

Related Information
For information on:

¢ Listing all groups to which a user belongs—See “NetGroupGetUsers” on

page 3-130.

¢ Listing the names of groups in the UAS database—See “NetGroupEnum” on

page 3-124.

3-132 LAN Server Application Programmer’s Reference

NetGroupSetinfo

Syntax

Return Codes

The NetGroupSetInfo (admin, DOS) function sets group-related information.

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupSetInfo (servername, groupname, level, buf, buflen,

parmnum)
char far * servername;
char far * groupname;
short Tevel;
char far * buf;
unsigned short bufleng
short parmnum;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

* groupname points to an ASCIIZ string specifying the group to set the
information.

* Jevel specifies the level of detail (1) for the group_info data structure.

o buf points to the data structure if parmnum is zero. Otherwise, buf points to the
- specific data component that will be changed.

* buflen specifies the size (in bytes) of the buf memory area.

* parmnum determines whether buf contains a complete group_info data structure
or a single data structure component. If parmnum is 0, buf must contain the
group_info_1 data structure. The only settable field is comment.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-133

Manifest Value Meaning

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_RemoteOnly 2106 This operation is not
supported on
workstations.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
transactions.
NERR_InvalidAPI 2142 The requested API is

not supported on the
remote server.

NERR_GroupNotFound 2220 The group does not
exist.

NERR_UserNotFound 2221 The user name cannot
be found.

NERR_NotPrimary 2226 The UAS database is

replicant and will not
allow updates.

NERR_ACFNotLoaded 2227 The UAS database has
not been started.
NERR_ACFFileIOFail 2229 An error was

encountered in
accessing the accounts
database.

NERR_SpeGroupOp 2234 This operation is not
allowed on this special

group.

3-134 LAN Server Application Programmer’s Reference

Manifest Value Meaning

NERR_UserInGroup 2236 The user already
belongs to this group.

NERR_UserNotInGroup 2237 The user does not
belong to this group.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocSeg
¢ DosFreeSeg
¢ DosFsCtIINETTRANSACTION)
¢ DosFsCtIINULLTRANSACT)
¢ DosFsCtl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

¢ DosSemClear.

Chapter 3. API Function Descriptions 3-135

NetGroupSetUsers
The NetGroupSetUsers (admin, DOS) function sets information about users who
belong to a group.

Syntax

#include <netcons.h>
#include <access.h>

unsigned far pascal
NetGroupSetUsers (servername, groupname, level, buf, buflen, entries)

char far * servername;
char far * groupname;
short level;

char far * buf
unsigned short bufien;
unsigned short entries;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
server.

* groupname points to an ASCIIZ string specifying the group to set the users.
* Jevel specifies the level of detail (0) for the group_users_info data structure.
* puf points to the group_users_info data structure.

¢ buflen specifies the size (in bytes) of the buf memory area.

e entries is the number of entries supplied in the buffer.
Buffer Contents on Call (format for a single entry):
Level O contains a struct group_users_info_0, repeated entries times.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID _LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

3-136 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_NetNotStarted

NERR_ShareMem

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

- NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_GroupNotFound

NERR_UserNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFNoRoom

NERR_ACFFileIOFail

2102

2104

2106

2123

2134

2138

2139

2140

2141

2142

2220

2221

2226

2227

2228

2229

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

The group does not
exist.

The user name cannot
be found.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

There are too many
names in the access
control file.

An error was
encountered in
accessing the accounts
database.

Chapter 3. API Function Descriptions 3-137

Manifest Value

Meaning

NERR_SpeGroupOp 2234
NERR_InvalidDatabase 2247
NERR_InvalidComputer 2351
NERR_CanNotGrowUASFile 2456

This operation is not
allowed on this special
group.

The UAS database file
is corrupted.

The specified computer
name is invalid.

It is not possible to
grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

¢ DosAllocSeg

¢ DosChgFilePtr

¢ DosFsRamSemClear

¢ DosFreeSeg

* DosFsCtIINETTRANSACTION)

¢ DosFsCti(NULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosNewSize[-ERROR_DISK_FULL]
* DosQFilelnfo

¢ DosRead

® DosSemClear

¢ DosWrite.

Remarks

Trying to set the user membership of special group causes the NERR_SpeGroupOp

error code to be returned.

3-138 LAN Server Application Programmer’s Reference

Handle Category

Description

NetHandleGetInfo (Jocal, server)—See “NetHandleGetInfo” on page 3-140.

NetHandleSetInfo (local, server)y—See “NetHandleSetInfo” on page 3-143.

Two APIs are provided to get and set information on a per-handle basis. They are
used with CHARDEV.H and NETCONS.H include files.

Remote Serial Device and Named Pipe Handles

The APIs provide per-handle control over the communications parameters for
remote serial device and remote named pipe handles. These parameters are
described in detail in “Requester Category” on page 3-208, under fields
wki0_chartime and wkiO_charcount.

The values in the wksta_info_0 data structure are used as the default for each opened
handle. The NetHandle APIs allow those parameters to be inspected and tuned on a
per-handle basis.

Serving Side of Named Pipd Handles

Data Structures

Related Information

The NetHandleGetInfo API is used to identify the user of a particular instance of a
remote named pipe with multiple instances. If the named pipe has been opened
locally, the error ERROR_INVALID_PARAMETER is returned.

struct handle_info_1 {
unsigned long hd1il_chartime;
unsigned short hdl1il_charcount;

}s
where:

* hdlil_chartime is the amount of time (in milliseconds) the requester collects data
to send to a shared serial device queue or a named pipe.

® hdlil_charcount is the number of characters (in bytes) the requester stores before
sending data to a serial device queue or a named pipe.

struct handle_info_2 {
char far * hd1i2_username;

}s
where:

* hdli2_username is the user name of the user attached to a named pipe. It can be
applied to a handle of the serving side of a valid remote named pipe only.

For information on:

¢ Creating multiple queues for a particular serial device—See “Serial Device
Category” on page 3-238.

¢ Data structure architecture—See Chapter 1, “Overview of OS/2 LAN Server
APL”

¢ Include files—See Appendix A, “Include Files.”

Chapter 3. API Function Descriptions 3-139

NetHandleGetinfo

Syntax

Return Codes

The NetHandleGetInfo (local, server) function retrieves handle-specific information.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetHandleGetInfo(handle, level, buf, buflen, totalavail)

unsigned short handle;
short level;
char far * bufs

unsigned short buflen;

unsigned short far * totalavailj

where:

* handle is a unique identification of a communication device queue or a named
pipe.

» Jevel specifies the level of detail (1 or 2) to be returned in the handle_info data
structure.

¢ buf points to the handle_info_1 or handle_info_2 data structure.
¢ buflen specifies the size (in bytes) of the buf memory area.

* totalavail points to the unsigned short integer indicating the number of bytes of
information available.

Serial Device and Named Pipe Handles Information (Level 1)

Level 1 information is available for handles to remote serial devices and remote
named pipes. If Jevel is 1 and the return code is.0 (NERR_Success), the buffer
contains a handle_info_I data structure.

Named Pipe Handles Information (Level 2)

Level 2 information is available for named pipe handles. If level is 2 and the return
code is 0 (NERR_Success), the buffer contains a handle_info_2 data structure.

Under DOS, only level one is valid, and only on a handle to a remote named pipe.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not

v available.

ERROR_SHARING_VIOLATION 32 A sharing violation

occurred.

3-140 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_NOT_SUPPORTED

ERROR_INVALID_PARAMETER

ERROR_INVALID _LEVEL

ERROR_MORE_DATA

NERR_NetNotStarted

NERR_ShareMem

NERR_ServerNotStarted

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidComputer

50

124

234

2102

2104

2114

2123

2134

2138

2139

2140

2141

2351

This request is not
supported by the
network.

The specified parameter is
invalid.

The Level parameter is
invalid.

Additional data is
available, but the buffer
is too small.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The Server service has not
been started.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling the
workstation driver.

The Requester service has
not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosDevIOCt]

* DosFsRamSemClear

¢ DosRamSemRequest

¢ DosFsCtIINETTRANSACTION)
* DosFsCtiINULLTRANSACT)

Chapter 3. API Function Descriptions 3-141

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
* DosQNmPipelnfo |

¢ DosSemClear

¢ DosSemRequest.

Remarks
When level 1 is specified, the function has to be run on the requester. If the handle
is not to a remote serial device or remote named pipe, the error
ERROR_INVALID_PARAMETER is returned.

When level 2 is specified, this function has to be run on the server. On level 2, it is
used to identify the user of a particular instance of a remote named pipe with
multiple instances. If the handle is not to a named pipe that a remote client
currently has open, the error ERROR_INVALID PARAMETER is returned.

3-142 LAN Server Application Programmer’s Reference

NetHandleSetinfo

Syntax

Return Codes

The NetHandleSetInfo (local, server) function sets handle-specific information.

#include <netcons.h>
#include <chardev.h>

unsigned far pascal
NetHandleSetInfo(handle, ievel, buf, buflen, parmnum)

unsigned short handle;
short level;
char far * buf;
unsigned short buflen;
unsigned short parmnum;
where:

* handle is a unique identification of a communication device queue or a named
pipe.

¢ Jevel specifies the level of detail (1) to be returned in the handle_info data
structure.

¢ buf points to the handle_info_ldata structure or a single data structure
component.

* buflen specifies the size (in bytes) of the buf memory area.

* parmnum determines whether buf contains a complete handle_info data structure
or a single component. If parmnum is 0 and level is 1 then buf must contain a
complete handle_info_1 or handle_info_2 data structure. Otherwise, parmnum
must specify the ordinal position value for one of the following data structure
components, as defined in CHARDEV.H as follows:

Manifest Value Component
HANDLE_SET_CHAR_TIME 1 hdlil_chartime
HANDLE_SET CHAR_COUNT 2 hdlil_charcount

Serial Device and Named Pipe Handles Information (Level 1)

For this function, only level 1 information is valid. Level 1 is valid for handles to
remote serial devices and remote named pipes.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were
encountered.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.

Chapter 3. API Function Descriptions 3-143

Manifest Value Meaning

ERROR_INVALID PARAMETER 87 The specified parameter is
invalid.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is

available, but the buffer
is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.

NERR_ServerNotStarted 2114 The Server service has not
been started.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_OS2IoctlError 2134 An internal error

occurred when calling the
workstation driver.

NERR_WkstaNotStarted 2138 The Requester service has
not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR _InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

3-144 LAN Server Application Programmer’s Reference

Other error return codes may be returned from the following OS/2 functions:
¢ DosDevIOCtl

¢ DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsCtiINETTRANSACTION)

¢ DosFsCtiNULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

¢ DosSemClear.
Remarks
Because only level 1 is allowed in calling this function, it has to be run on a

requester. If the handle is not to a remote serial device or remote named pipe, the
error ERROR_INVALID_PARAMETER is returned.

Under DOS, only level 1 is valid, and only on a handle to a remote named pipe.

Chapter 3. API Function Descriptions 3-145

Mailslot Category

DosDeleteMailslot (local, DOS)—See “DosDeleteMailslot” on page 3-148.
DosMailslotInfo (Jocal, DOS)—See “DosMailslotInfo” on page 3-149.
DosMakeMailslot (local, DOS)—See “DosMakeMailslot” on page 3-150.
DosPeekMailslot (local, DOS)—See “DosPeekMailslot” on page 3-151.
DosReadMailslot (local, DOS)—See “DosReadMailslot” on page 3-152.
DosWriteMailslot (Jlocal, DOS)—See “DosWriteMailslot” on page 3-154.

The functions in the Mailslot category provide one-way interprocess communication
(IPC). They are used with the MAILSLOT.H and NETCONS.H include files.

Description
Through OS/2 LAN Requester/Server mailslots, data can be sent to either local or
remote applications on the network. The Mailslot functions create and delete
mailslots, retrieve information about a mailslot or a message in it, and write
messages to mailslots.

An application creates a mailslot on a local computer by calling the
DosMakeMailslot function and assigning the mailslot a name in the format:

\mailslot\name

where:

* name is a unique set of characters distinguishing the mailslot from other
mailslots on the computer.

The DosMakeMailslot function returns a handle to the mailslot. This handle can
then be used with DosPeekMailslot to read a message in a mailslot, with
DosReadMailslot to read and remove a message, with DosMailslotInfo to return
information on a mailslot, and with DosDeleteMailslot to delete a mailslot.

Any application can write messages to any mailslot on any computer on the network
by calling the DosWriteMailslot function. DosWriteMailslot accepts mailslot names
both in a local and remote format, as follows:

Format Type
\mailslot\name Local mailslot
\\computername\mailslot\name Remote mailslot

To write data to a mailslot on a remote computer, the name of the mailslot must
also include a computer name. This requirement enables multiple remote computers
to use the same mailslot name locally, but to have different names on the network
(the computer name must be unique).

An application can write the same message to all computers on the network that

have a mailslot of a particular name. Only the second-class delivery is provided. By
specifying an asterisk (*) for the computer name when calling NetWriteMailslot,

3-146 LAN Server Application Programmer’s Reference

*\mailslot\name

sends the same message to the named mailslot on every computer in the sender’s
primary domain that has the locally created mailslot. There is one limitation:
requesters can only receive second-class messages of up to 400 bytes in length.
Servers can receive first-class or second-class messages of any size.

Two classes of messages—first-class and second-class—can be sent to mailslots.

First-class messages, limited to mailslots on local computers and remote servers, are
guaranteed — the message will be delivered or the sender will be notified. If a
mailslot is full when a first-class message arrives, DosWriteMailslot waits until
DosReadMailslot reads and removes a message from the mailslot or until the
delivery time out expires (controlled by the timeout parameter in the
DosWriteMailslot function).

Second-class messages are simply sent; no return code informs the sender of an
unsuccessful delivery. This simpler delivery system tends to make second-class
messages faster than first-class messages.

Messages are stored in the mailslot according to when they were received and the
priority assigned them. Each message is assigned a priority from 0 (low) through 9
(high) by way of the priority parameter of the DosWriteMailslot function.

Generally, these priorities dictate the order in which messages are stored in a
mailslot. High-priority messages are placed ahead of previously stored messages
with the same or lower priority. However, since the OS/2 program is a multi-tasking
operating system, this scheme cannot be guaranteed at any one time.

Mailslot messages can be read only by the process that created the mailslot.

The DosReadMailslot function reads and then removes the most current (next
available) message. Since new messages may be placed in front of other messages due
to priority, a process cannot be guaranteed that a message read by DosReadMailslot
will be the same message seen earlier by DosPeekMailslot.

DOS Considerations
Under DOS, the functions can be executed on a local requester. Note that mailslots
can only be read or deleted by the process that created them. Mailslots created by a
process are deleted when that process ends.

Related Information

For information on interprocess communications (IPC), see “Named Pipe Category”
on page 3-191.

Chapter 3. API Function Descriptions 3-147

DosDeleteMaiislot
The DosDeleteMailslot (local, DOS) function deletes a mailslot, discarding all
messages, whether or not they have been read.

Syntax

#inélude <netcons.h>
#include <mailslot.h>

unsigned far pascal
DosDeleteMailslot(handle)
unsigned handle;

where:

* handle specifies the mailslot (by its handle) to delete.

Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.
ERROR_INVALID HANDLE 6 The specified handle is not valid.
NERR_NetNotStarted 2102 The redirector NETWKSTA.EXE

has not been started.

Remarks
Mailslots enable applications to create and store messages during execution.
Generally, these mailslots are deleted as the last step in the execution of a program.

A muailslot can be deleted only by the application that created it.

‘Related Information
For information on:

¢ Creating a mailslot—See “DosMakeMailslot” on page 3-150.

¢ Obtaining information on the status of a mailslot—See “DosMailslotInfo” on
page 3-149.

3-148 LAN Server Application Programmer’s Reference

DosMailslotinfo

Syntax

Return Codes

Related Information

The DosMailslotInfo (local, DOS) function retrieves information about a particular
mailslot.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal

DosMailsiotInfo(handle, messagesize, mailslotsize,
nextsize, nextpriority, msgcount)

unsigned handle;

unsigned short far * messagesize;

unsigned short far * mailslotsize;

unsigned short far * nextsize;

unsigned short far * nextpriority;

unsigned short far * msgcount;

where:
* handle specifies which mailslot (by its handle) to return information about.

* messagesize points to an unsigned short integer indicating the maximum size (in
bytes) of message that the mailslot can accept.

* mailslotsize points to an unsigned short integer indicating the size (in bytes) of
the mailslot. mailslotsize must equal or exceed messagesize.

* nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If 0, no message is available.

* nextpriority points to an unsigned short integer indicating the priority (0 theough
9) of the next message in the mailslot (undefined if nextsize is 0).

* msgcount points to an unsigned short integer indicating the number of messages
the mailsiot contains.

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.
ERROR_INVALID HANDLE 6 The specified handle is not valid.
NERR_NetNotStarted 2102 The redirector NETWKSTA.EXE

has not been started.

For information on:

¢ Creating (and obtaining the handle for) a mailslot—See “DosMakeMailslot” on
page 3-150.

e Writing a message to a mailslot—See “DosWriteMailslot” on page 3-154.

¢ Retrieving the most current message in a mailslot—See “DosReadMailslot” on
page 3-152.

Chapter 3. API Function Descriptions 3-149

DosMakeMailslot

The DosMakeMailslot (local, DOS) function creates a mailslot and returns its
handle.

Syntax

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal

DosMakeMailslot(name, messagesize, mailslotsize, handle)
char far * name;

unsigned short messagesize;

unsigned short mailslotsize;

unsigned far * handle;

where:

* name points to an ASCIIZ string assigning a name to the mailslot. Use the
format \mailslot\name.

* messagesize specifies the maximum message size (in bytes) that the mailslot can
accept. Generally, mailslots cannot accept messages larger than 65475 bytes.

* mailslotsize specifies the size (in bytes) of the mailslot. mailslotsize must equal or
exceed messagesize.

* handle points to an unsigned integer that is the returned handle for the mailslot.

Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_PATH_NOT_FOUND 3 The path was not found.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.

NERR_NetNotStarted 2102 The redirector
NETWKSTA EXE has not

been started.

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocShrSeg
¢ DosExitList.

Remarks

Mailslot names must be unique; no two mailslots on any one computer can have the
same name.

Mailslot handles cannot be passed to other processes by way of the OS/2
DosExecPgm function; however, mailslot handles can be shared among threads in a
single process. Thus, multiple threads can use the same handle to read or write data
to the mailslot.

3-150 LAN Server Application Programmer’s Reference

DosPeekMailslot

Syntax

Return Codes

Remarks

Related Information

The DosPeekMailslot (local, DOS) function reads the next available message in a
mailslot without removing it.

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal

DosPeekMailslot(handle, buf, bytesread, nextsize, nextpriority)
unsigned handle;

char far * buf;

unsigned short far * bytesread;

unsigned short far * nextsize;

unsigned short far * nextpriority;

where:
¢ handle specifies which mailslot (by its handle) is to be read.

* buf points to the returned message. buf must be as large as the messagesize
parameter passed to the DosMakeMailslot function.

e bytesread points to an unsigned short integer indicating the size (in bytes) of the
returned message. If no message is available, bytesread is 0.

® nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If the mailslot contains no other message, nextsize
is 0.

* nextpriority points to an unsigned short integer indicating the priority of the next
message in the mailslot (undefined if nextsize is 0).

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.
ERROR_INVALID HANDLE 6 The specified handle is not valid.
ERROR_BROKEN_PIPE 109 Write on pipe with no reader.
NERR_NetNotStarted 2102 The redirector NETWKSTA.EXE

has not been started.

Other error return codes may be returned from the DosSemRequest function.

If a higher-priority message arrives, there is no guarantee that a message previously
read by the DosPeckMailslot function will be the same message read by a
subsequent call to the DosReadMailslot function.

For information on;

¢ Reading and removing a message—See “DosReadMailslot” on page 3-152.

* Writing a message to a mailslot—See “DosWriteMailslot” on page 3-154.

Chapter 3. API Function Descriptions 3-151

DosReadMailslot

The DosReadMailslot (local, DOS) function reads, then removes the next available
message of a mailslot.

Syntax

#include <netcons.h>
#include <mailslot.h>

unsigned far pascal

DosReadMailslot(handle, buf, bytesread, nextsize,
nextpriority, timeout)

unsigned handle;

char far * buf;

unsigned short far * bytesread;

unsigned short far * nextsize;

unsigned short far * nextpriority;

Tong timeout;

where:
* handle specifies which mailslot (by its handle) to read from.

* buf points to the returned message. buf must be as large as the messagesize
parameter passed to the DosMakeMailslot function.

* bytesread points to an unsigned short integer indicating the size (in bytes) of the
returned message. If 0, no message is available.

* nextsize points to an unsigned short integer indicating the size (in bytes) of the
next message in the mailslot. If 0, the mailslot contains no more messages.

* nextpriority points to an unsigned short integer indicating the priority (0-9) of
the next message (undefined if nextsize is 0.)

* timeout points to an unsigned short integer indicating the number of milliseconds
to wait if a message is not available immediately. If 0, DosReadMailslot does
not wait; if -1, DosReadMailslot waits indefinitely.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were encountered.
ERROR_INVALID_HANDLE 6 The specified handle is not valid.
ERROR_INTERRUPT 95 A system call has been interrupted.
ERROR_BROKEN_PIPE 109 Write on pipe with no reader.
ERROR_SEM_TIMEOUT 121 A time out happened from the
semaphore API functions.
NERR_NetNotStarted 2102 The redirector NETWKSTA EXE

has not been started.

Other error return codes may be returned from the DosSemRequest function.

3-152 LAN Server Application Programmer’s Reference

Remarks
Messages are stored in a mailslot based on their priority (0-9). An incoming
message with a higher priority may be stored ahead of a previously stored message
with the same or lower priority. The message read and removed by
DosReadMailslot is always the next available.

Related Information
For information on:
¢ Reading a message without removing it—See “DosPeekMailslot” on page 3-151.

e Writing a message to a mailslot—See “DosWriteMailslot” on page 3-154.

Chapter 3. API Function Descriptions 3-153

DosWriteMailslot

The DosWriteMailslot (local, DOS) function writes a message to a particular
mailslot.

Syntax

#include <netcons.h>
#include <mailsiot.h>

unsigned far pascal

DosWriteMailslot(name, message, size, priority, class, timeout)
char far * name;

char far * message;

unsigned short size;

unsigned short priority;

unsigned short class;

long timeout;

where:

* name points to an ASCIIZ string containing the name of the mailslot to which
the message is to be written. For a local mailslot, use the format \mailslot\name.
Use the \\computername\mailslot\name format for a remote mailslot. Use
*\mailslot\name for all mailslots with the same name, but on different
computers in the primary domain.

* message points to an ASCIIZ string containing the message to be written to the
mailslot.

* size specifies the size (in bytes) of message.

* priority assigns a priority (0 through 9) to the message. High-priority messages
are generally placed ahead of previously stored messages with lower priority.

* class specifies the class of mail service to be provided.

— First-class mail (class is 1) forces DosWriteMailslot to wait until a mailslot
has enough room to accept message or until timeout expires. First-class mail
can be delivered only to remote servers or local computers.

— Second-class mail (class is 2) causes DosWriteMailslot to fail if there is not
enough room to write message in the mailslot. Second-class mail can be
delivered to requesters and servers.

* timeout specifies the number of milliseconds to attempt writing a message to a
mailslot. If 0, DosWriteMailslot attempts to write the message only once. If -1,
DosWriteMailslot attempts to write a message to a mailslot for an indefinite

time.
Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

ERROR_PATH_NOT_FOUND 3 The path was not found.

ERROR_ACCESS_DENIED 5 Administrative privilege is
required.

ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is not
available.

3-154 LAN Server Application Programmer’s Reference

Manifest Value Meaning
ERROR_BAD_FORMAT 11 The format is not valid.
ERROR_NOT_SUPPORTED 50 This request is not supported
by the network.
ERROR_NETWORK_BUSY 54 The network is busy.
ERROR_BAD NET_NAME 67 This network name cannot be
found.
ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.
ERROR_INTERRUPT 95 A system call has been
interrupted.
ERROR_BROKEN_PIPE 109 Write on pipe with no reader.
ERROR_BUFFER_OVERFLOW 111 The buffer passed to system
call is too small to hold return
data.
ERROR_SEM_TIMEOUT 121 A time out happened from the
semaphore API functions.
ERROR_INVALID_NAME 123 There is an incorrect character
or incorrectly formed file
system name.
ERROR_INVALID_LEVEL 124 The Level parameter is invalid.
ERROR_MORE_DATA 234 Additional data is available,
but the buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA EXE has not
been started.
NERR_ShareMem 2104 An internal error occurred—the
network cannot access a shared
memory segment.
NERR_BufTooSmall 2123 The buffer is too small for
fixed-length data.
NERR_OS2IoctlError 2134 An internal error occurred
when calling the workstation
driver.
NERR_WkstaNotStarted 2138 The Requester service has not
been started.
NERR_BrowserNotStarted 2139 The requested information is
not available.
NERR_InternalError 2140 An internal error has occurred.
NERR_BadTransactConfig 2141 The server is not configured for
transactions.
NERR_InvalidComputer 2351 The specified computer name is

Chapter 3. API Function Descriptions

invalid.

3-155

Other error return codes may be returned from the following OS/2 functions: .

¢ DosAllocSeg

* DosDevIOCitl

* DosFSCtl

¢ DosFsRamSemClear

e DosFreeSeg

¢ DosFsCtiIINETTRANSACTION)

¢ DosFsCtiIINULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosSemClear

¢ DosSemRequest

¢ redir.GetBiosInfo[-ERROR_NO_MORE_FILES]
¢ redir NETTRANSACTION 1

e redir. NIOCBIOSOPEN.

Remarks

To send a message to all computers on the primary domain that have a local
mailslot with the same name, an application must pass the name parameter
*\mailslot\name and the class parameter 2 to DosWriteMailslot.

Second-class messages must be 400 bytes or smaller when written to remote
requesters; they can be any size when written to local computers or remote servers.

Related Information
For information on:

¢ Creating a mailslot—See “DosMakeMailslot” on page 3-150.

¢ Reading a message—See “DosReadMailslot” on page 3-152.

3-156 LAN Server Application Programmer’s Reference

Message Category

Description

NetMessageBufferSend (admin, DOS)—See “NetMessageBufferSend” on page 3-161.
NetMessageFileSend (admin, DOS)—See “NetMessageFileSend” on page 3-164.
NetMessageLogFileGet (admin, DOS)—See “NetMessageLogFileGet” on page 3-168.
NetMessagel.ogFileSet (admin, DOS)—See “NetMessageLogFileSet” on page 3-170.
NetMessageNameAdd (admin, DOS)—See “NetMessageNameAdd” on page 3-173.
NetMessageNameDel (admin, DOS)—See “NetMessageNameDel” on page 3-176.

NetMessageNameEnum (admin, DOS)—See “NetMessageNameEnum” on
page 3-179.

NetMessageNameFwd (admin)—See “NetMessageNameFwd” on page 3-182.

NetMessageNameGetlnfo (admin, DOS)—See “NetMessageNameGetInfo” on
page 3-185.

NetMessageNameUnFwd (admin)—See “NetMessageNameUnFwd” on page 3-188.

The functions in the Message category are used to send, log, and forward messages.
The administrator can execute these functions remotely. They are used with the
MESSAGE.H and NETCONS.H include files.

A message is any file or buffer of data sent to a messaging name on the network. To
receive a message, a user or application must register a messaging name (using the
NetMessageNameAdd function) in the message name table of a computer. A
message name table contains a list of registered messaging names permitted to
receive messages and a list of users and applications to which a message can be
forwarded. Messaging names must be case-sensitive and unique on the physical
network, not just the domain.

Messaging names are deleted from the message name table using the
NetMessageNameDel function.

To list all the names stored in the table, an application can call the
NetMessageNameEnum function. For information on a particular user in the table,
an application can call the NetMessageNameGetInfo function.

All of the Message functions except NetMessageBufferSend and
NetMessageFileSend require that the local computer be running the messenger
service. The NetMessageBufferSend and the NetMessageFileSend functions only
require that the remote computer receiving a message be running the messenger
service.

To send a message to a user, an application can call either the NetMessageFileSend

function (to send a file) or tue NetBufferSend function (to send a buffer of
information).

Chapter 3. API Function Descriptions 3-157

All messages sent to a user on a particular computer can be forwarded to another
user on a different computer using the NetMessageNameFwd function. The
NetMessageNameUnFwd function is used to end message forwarding.

Applications can also send broadcast messages to all users on the network registered
in the message name table of each computer by passing the name parameter for the
NetMessageFileSend function or NetMessageBufferSend function as an asterisk (*).

To send to all users on a particular domain, pass the name parameter as “domain*.”

Users can receive messages in one of two ways (or both at the same time):
* The received message is logged to a message log file and looked at later.

¢ The message is displayed as a popup message on the screen. To receive a
popup, the netpopup service must be started. For more information on starting
the netpopup service, see “Service Category” on page 3-298.

If an application turns logging on (using NetMessageLogFileSet), all messages
received for a particular user are stored in a message log file. The
NetMessageLogFileGet function returns the name of a message log file of a
requester or server and indicates whether or not message logging is enabled. The
default message log file is \IBMLAN\LOGS\MESSAGES.LOG.

The message log file contains a message in the following format:

¢ A header specifying who sent the message, who received the message, and when
(time and date) the message was received

¢ A blank line

¢ The contents of the message

® A blank line

¢ A line containing four asterisks (*)
¢ A blank line.

For example, the following is the contents of the message log file containing two
messages:

Message from KRISCA to AJSCHEL on Aug 04, 1990, 14:05:20
Hello, this is a BUFFER message.

e e de e

Message from KRISCA to AJSCHEL on Aug 04, 1990, 14:11:48

Hello, this is a FILE message.

Note: Any process opening the message log file must open it in only the read-only
deny-none mode; otherwise, the messenger service fails when trying to log
incoming messages.

3-158 LAN Server Application Programmer’s Reference

DOS Considerations
Under DOS, the functions can be executed only on a local requester. Attempting to
execute the functions on a remote server returns ERROR_NOT_SUPPORTED.

Messages cannot be forwarded, unforwarded, or logged under DOS.

By default, the DOS LAN Requester accepts only two names in the message name
table—the name of the requester and of the user. To define more names, edit the
DOSLANL.INI file and change the value of the nmsg parameter for the messenger
component. For more information on the DOSLAN.INI file, see the DOS LAN
Requester User's Guide.

The maximum size of a message under DOS is 64KB.

Data Structures
The NetMessageNameEnum and NetMessageNameGetInfo functions can accept or
return data at a level 0 or level 1 of detail using the following data structures. None
of the other Message functions use a data structure.

Message Information (Level 0)

struct msg_info_0 {
char msgi0_name [CNLEN+1] ;
}s

where:

* msgi0_name is an ASCIIZ string specifying which messaging name to send the
message.

Message Information (Level 1)

struct msg_info_1 {

char msgil_name[CNLEN+1];
char msgil_forward_flag;
unsigned char msgil_padl;
char msgil_forward [CNLEN+1];
}s
where:

¢ msgil_name is an ASCIIZ string specifying which messaging name to send the
message.

* msgil_forward_flag specifies whether messages will be sent to a user or
application on the local computer, or forwarded to a user or application on a
remote computer. msgil_forward_flag can be defined as follows:

Bit Manifest Meaning

0-1 MSGNAME_NOT_FORWARDED Reserved; must be 0.

2 MSGNAME_FORWARDED_TO If 1, specifies a user
name on a remote
computer.

3 MSGNAME_NOT_FORWARDED Reserved; must be 0.

Chapter 3. API Function Descriptions 3-159

Bit Manifest Meaning

4 MSGNAME_FORWARDED_FROM If 1, specifies a user
name on the local
computer.

5-7 MSGNAME_NOT_FORWARDED Reserved; must be 0.

* msgil_padl WORD-aligns the data structure components.

* msgil_forward is an ASCIIZ string specifying the user name to which the
message will be sent, if messages are to be forwarded.

Related Information
For information on starting services and the messenger service see “Service
Category” on page 3-298.

3-160 LAN Server Application Programmer’s Reference

NetMessageBufferSend

Syntax

Return Codes

The NetMessageBufferSend (admin, DOS) function sends a buffer of information to
a registered messaging name.

#include <netcons.h>
#include <message.h>

unsigned far pascal

NetMessageBufferSend (servername, name, buf, buflen)
const char far * servername;

char far * name;

char far * buf

unsigned short buflen;

where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* name points to an ASCIIZ string indicating the name of the registered user or
application to receive the message. To broadcast a message to all requesters on
the LAN, have name point to an asterisk (*). To broadcast a message to a
domain, have name point to a domain name, followed by an asterisk.

¢ buyf points to the message.

* buflen specifies the size (in bytes) of the buf memory area.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA EXE has
not been started.
NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

Chapter 3. API Function Descriptions 3-161

Manifest

Value

Meaning

NERR_NoNetworkResource

NERR_BufTooSmall

NERR_RemoteErr

NERR_OS2IoctlError

NERR_NetworkError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NoComputerName

NERR_NameNotFound

NERR_AlreadyExists

NERR_TooManyNames

NERR_PausedRemote

NERR_BadReceive

NERR_NotLocalName

NERR_TruncatedBroadcast

NERR_DuplicateName

3-162 LAN Server Application Programmer’s Reference

2105

2123

2127

2134

2136

2138

2139

2140

2141

2270

2273

2276

2277

2281

2282

2285

2289

2297

A network resource
shortage occurred.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

A computer name has
not been configured.

The message alias
cannot be found on the
local area network.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

The message has been
sent but the reception
is currently paused.

The message was sent
but not received.

The name is not on the
local computer.

The broadcast message
was truncated.

A duplicate message
alias exists on the local
area network.

Manifest Value Meaning

NERR_InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosFsRamSemClear
¢ DosFreeSeg
¢ DosFsCti(NETTRANSACTION)
¢ DosFsCti(NULLTRANSACT)
¢ DosFsCtl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE_NOT FOUND]
¢ DosSemClear

e DosMailslot.

Remarks

For broadcast messages (name points to “*” or “domain (*)”), the message can be
no longer than 128 characters (and is not guaranteed to be delivered). For messages
sent to all computers in a domain, the limit is 128 bytes. Otherwise, the message can
be any length, provided it does not exceed the maximum receivable message size for
that computer, which is set with the sizmessbuf parameter in IBMLAN.INI. (The
sizmessbuf parameter in IBMLAN.INI cannot define a value larger than 64KB.)
The default value of sizmessbuf on any server is 4KB. Note that the total size of
sizmessbuf may be divided between different messages in its heap (if messages are
arriving at the same time), reducing the actual size of any one message that can be
received. And, note that the sizmessbuf parameter can accept only limited values.
For more information on the IBMLAN.INI file, see the IBM Operating System/2
Local Area Network Server Version 1.2 Network Administrator’s Guide.

NetMessageBufferSend does not require the messenger service to be started on a
local computer. The remote computer needs the messenger service to be started.

DOS Considerations
Under DOS, the name parameter cannot point to the name of the local requester or
to the user currently logged onto that requester.

Related Information
For information on:

¢ Adding a user to a message table—See “NetMessageNameAdd” on page 3-173.
¢ The messenger service—See “Service Category” on page 3-298.
¢ Sending a message file to a user—See “NetMessageFileSend” on page 3-164.

o Setting the sizmessbuf parameter of a server in IBMLAN.INI—See the /BM
Operating System/[2 Local Area Network Server Version 1.2 Network
Administrator’s Guide.

Chapter 3. API Function Descriptions 3-163

NetMessageFileSend
The NetMessageFileSend (admin, DOS) function sends a file to a registered
messaging name.

Syntax

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageFileSend (servername, name, filespec)
const char far * servername;

char far * name;
char far * filespec;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies the local
computer.

¢ name points to an ASCIIZ string specifying the registered user or application to
receive the file. To broadcast a file to all registered users and applications, pass
the name parameter as a pointer to the ASCII string “*.” To broadcast a
message to a domain, have name point to a domain name, followed by an
asterisk (*).

¢ filespec points to an ASCIIZ string [d:][\ path\]file[.ext] specifying the path
name of a file to send.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

3-164 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_NoNetworkResource

NERR_BufTooSmall

NERR_RemoteErr

NERR_OS2IoctlError

NERR_NetworkError
NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NoComputerName

NERR_NameNotFound

NERR_AlreadyExists

NERR_TooManyNames

NERR_PausedRemote

NERR_BadReceive

NERR_NotLocalName

NERR_TruncatedBroadcast

NERR_FileError

2105

2123

2127

2134

2136

2138

2139

2140

2141

2270

2273

2276

2277

2281

2282

2285

2289

2290

A network resource
shortage occurred.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

A computer name has
not been configured.

The message alias
cannot be found on the
local area network.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

The message has been
sent but the reception
is currently paused.

The message was sent
but not received.

The name is not on the
local computer.

The broadcast message
was truncated.

An error occurred in
reading the message
file.

Chapter 3. API Function Descriptions 3-165

Remarks

Manifest Value Meaning

NERR_InvalidComputer 2351 The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosChgFilePtr

* DosFsRamSemClear

¢ DosFreeSeg

¢ DosFsCti(NETTRANSACTION)

¢ DosFsCti(NULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosOpen

¢ DosRead

* DosSemClear

o DosWriteMailslot.

L)

For broadcast messages to the physical network (rame points to or “domain
(*)”), the message can be no longer than 128 characters (and is not guaranteed to be
delivered). For messages sent to all computers in a domain, the limit is 128 bytes.
Otherwise, the message can be any length, provided it does not exceed the maximum
receivable message size for that computer, which is set with the sizmessbuf parameter
in IBMLAN.INI. (The IBMLAN.INI sizmessbuf parameter cannot define a value
larger than 64KB.) The default value of sizmessbuf on any server is 4KB. Note that
the total size of sizmessbuf may be divided between different messages in its heap (if
messages are arriving at the same time), reducing the actual size of any one message
that can be received. And, note that the sizmessbuf parameter can also accept only
limited values. For more information on the IBMLAN.INI file, see the IBM
Operating System|2 Local Area Network Server Version 1.2 Network Administrator’s
Guide.

NetMessageFileSend does not require the messenger service to be started on a local
computer.

If any special characters (for example, Ctrl +Z) are sent in a file, no information is
omitted.

DOS Considerations

Under DOS, the name parameter cannot point to the name of the local requester or
to the user currently logged on to that requester.

3-166 LAN Server Application Programmer’s Reference

Related Information
For information on:

* The messenger service—See “Service Category” on page 3-298.

¢ Sending a buffer of information to a user—See “NetMessageBufferSend” on
page 3-161.

e Setting the sizmessbuf parameter of a server in IBMLAN.INI—See the IBM
Operating System/2 Local Area Network Server Version 1.2 Network
Administrator’s Guide.

Chapter 3. API Function Descriptions 3-167

NetMessagelLogFileGet

The NetMessageLogFileGet (admin, DOS) function retrieves the name of the

message log file and the current logging status (on or off).

Syntax
#include <netcons.h>
#include <message.h>

unsigned far pascal

NetMessagelLogFileGet (servername, buf, buflen, on)

const char far * servername;

char far * buf
unsigned short buflen;
short far * on;
where:

» servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local

computer.

* buf points to the returned message log file path name.

* buflen specifies the size (in bytes) of the buf memory area.

* on points to a short integer specifying whether or not logging is enabled. If zero,
message logging is disabled. If non-zero, message logging is enabled.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is
available, but the
buffer is too small.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.
NERR_BufTooSmali 2123 The buffer is too small

3-168 LAN Server Application Programmer’s Reference

for fixed-length data.

Manifest Value Meaning
NERR_RemoteErr 2127 A remote API error
has occurred.
NERR_OS2IoctlError 2134 An internal error
occurred when calling
the workstation driver.
NERR_WkstaNotStarted 2138 The Requester service
has not been started.
NERR_BrowserNotStarted 2139 The requested
information is not
available.
NERR_InternalError 2140 An internal error has
occurred.
NERR_BadTransactConfig 2141 The server is not
configured for
transactions.
NERR_MsgNotStarted 2284 The messenger service
has not been started.
NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ PosFsRamSemClear

¢ DosFreeSeg

¢ DosFsCtIINETTRANSACTION)
¢ DosFsCtI(INULLTRANSACT)
¢ DosFsCtl(NetGetRdrAddr)

¢ DosSemClear.

Remarks

NetMessageLogFileGet requires that the messenger service be started.

Related Information
For information on:

¢ The messenger service—See “Service Category” on page 3-298.

* Modifying the name and the logging status of the message log file—See
“NetMessageLogFileSet” on page 3-170.

Chapter 3. API Function Descriptions 3-169

NetMessagelLogFileSet
The NetMessageLogFileSet (admin, DOS) function specifies a file to log messages
received by registered users and enables or disables logging.

Syntax

#include <netcons.h>
#include <message.h>

unsigned far pascal

NetMessagelogFileSet (servername, filespec, on)
const char far * servername;

char far * filespec;

unsigned short on;

where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

¢ filespec points to an ASCIIZ string specifying the path name of the device
(LPTn or COMn) or file to which the messages are logged.

If filespec is passed as a NULL pointer, the name of the current message log file
does not change. If filespec points to a NULL string (””), no message file will be
used; in this case, the value of on must be 0.

If filespec points to a relative path, the path must be relative to the
IBMLAN\LOGS directory. All other path names must be fully qualified. If no
file name extension is provided, the .LOG file extension is appended.

* on is a short integer specifying whether or not logging is enabled. If zero,
message logging is disabled. If non-zero, message logging is enabled.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_NAME 123 There is an incorrect

character or incorrectly
formed file system

name.

ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.

ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

3-170 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

ERROR_FILENAME_EXCED_RANGE

ERROR_VIO_DETACHED

NERR_NetNotStarted

NERR_ShareMem

NERR_RedirectedPath

NERR_BufTooSmall
NERR_RemoteErr

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_MsgNotStarted
NERR_InvalidDevice
NERR_WriteFault
NERR_InvalidComputer

NERR_CantType

206

465

2102

2104

2117

2123

2127

2134

2138

2139

2140

2141

2284

2294

2295

2351

2357

The file name is longer
than 8 characters or
the extension is longer
than 3 characters.

The console is not
available for logging.

The redirector
NETWKSTA.EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

The operation is
invalid on a redirected
device.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.
This is an invalid
device.

A write fault has
occurred.

The specified computer
name is invalid.

The type of input
cannot be determined.

Chapter 3. API Function Descriptions 3-171

Other error return codes may be returned from the following OS/2 functions:
¢ DosAllocSeg

¢ DosChgFilePtr

* DosFsRamSemClear

¢ DosFreeSeg

* DosFsCti{NETTRANSACTION)

¢ DosFsCtiINULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR:FILE_ NOT_FOUND]
¢ DosOpen

¢ DosQHandType

* DosSemClear

* DosWrite

¢ redir.GetNetInitPath.

Remarks
NetMessageLogFileSet requires that the messenger service be started.

Related Information.
For information on:

* The messenger service—See “Service Category” on page 3-298.

* Retrieving the name and logging status of the message log file—See
“NetMessageLogFileGet” on page 3-168.

3-172 LAN Server Application Programmer’s Reference

NetMessageNameAdd

Syntax

Return Codes

The NetMessageNameAdd (admin, DOS) function registers a name in the message
name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameAdd (servername, name, fwd_action)
const char far * servername;

char far * name;
short fwd_action;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* name points to an ASCIIZ string specifying a name to add to the message name
table.

* fwd_action specifies the action to take if name is already forwarded. If
fwd_action is non-zero, the name is added to the message name table; a zero
value causes an error to be returned if the name has already been forwarded.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has

not been started.

NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

Chapter 3. API Function Descriptions 3-173

Manifest

Value

Meaning

NERR_BufTooSmall

NERR_RemoteErr

NERR_OS2IoctlError

NERR_NetworkError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NameNotFound

NERR_AlreadyForwarded

NERR_AddForwarded

NERR_AlreadyExists

NERR_TooManyNames

NERR_MsgNotStarted

NERR_DuplicateName

NERR_DeleteLater

NERR_InvalidComputer

3-174 LAN Server Application Programmer’s Reference

2123

2127

2134

2136

2138

2139

2140

2141

2273

2274

2275

2276

2277

2284

2297

2298

2351

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has -
occurred.

The server is not
configured for
transactions.

The message alias
cannot be found on the
local area network.

This message alias has
already been
forwarded.

This message alias has
been added but is still
forwarded.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

The messenger service
has not been started.

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:
¢ DosFSRamSemClear
¢ DosFreeSeg
¢ DosFsCtIINETTRANSACTION)
¢ DosFsCtiI(INULLTRANSACT)
* DosFsCtl(NetGetRdrAddr)
¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

¢ DosSemClear.

Related Information
For information on:

¢ Deleting a user name from a message name table—See “NetMessageNameDel”
on page 3-176.

¢ Forwarding messages—See “NetMessageNameFwd” on page 3-182.

e Listing the user names in a message name table—See “NetMessageNameEnum”
on page 3-179.

® Messenger service—See “Service Category” on page 3-298.

Chapter 3. API Function Descriptions 3-175

NetMessageNameDel
The NetMessageNameDel (admin, DOS) function deletes a name from a message
name table.

Syntax

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameDel (servername, name, fwd_action)
const char far * servername;

char far * name;
short fwd_action;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

® name points to an ASCIIZ string specifying the name to be removed.

* fwd_action specifies the action to take if the messages for name are being
forwarded to another name. If fwd_action is non-zero, the forwarded name is
deleted. A zero value prevents the name from being deleted.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA .EXE has
not been started.
NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.
NERR_BufTooSmall 2123 The buffer is too small

for fixed-length data.

3-176 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_RemoteErr

NERR_OS2IoctlError

NERR_NetworkError
NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NameNotFound

NERR_AlreadyForwarded

NERR_AlreadyExists

NERR_TooManyNames

NERR_DelComputerName

NERR_NamelnUse

NERR_MsgNotStarted

NERR_NotLocalName

NERR_DuplicateName

NERR_DeleteLater

2127

2134

2136
2138

2139

2140

2141

2273

2274

2276

2277

2278

2283

2284
2285

2297

2298

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The message alias
cannot be found on the
local area network.

This message alias has
already been
forwarded.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

The computer name
cannot be deleted.

The message alias is
currently in use—try
again later.

The messenger service
has not been started.

The name is not on the
local computer.

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

Chapter 3. API Function Descriptions 3-177

Manifest Value Meaning

NERR_IncompleteDel 2299 The message alias was

not successfully deleted
from all networks.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:

Remarks

DosFsRamSemClear

DosFreeSeg

DosFsCti(INETTRANSACTION)
DosFsCtiIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

NetMessageNameDel requires that the messenger service be started.

Related Information

For information on:

Adding a name to a message name table—See “NetMessageNameAdd” on
page 3-173.

Listing the names in a particular message name table—See
“NetMessageNameEnum” on page 3-179.

The messenger service—See “Service Category” on page 3-298.

3-178 LAN Server Application Programmer’s Reference

NetMessageNameEnum

Syntax

Return Codes

The NetMessageNameEnum (admin, DOS) function lists the name entries in a
message name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal
NetMessageNameEnum(servername, level, buf, bufien,
entriesread, totalentries)

const char far * servername;
short level;
char far * buf;
unsigned short buflen;

unsigned short far * entriesread;
unsigned short far * totalentries;

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* Jevel specifies the level of detail (0 or 1) to be returned in the msg_info data
structure.

* buf points to the msg_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* entriesread points to an unsigned short integer indicating the number of entries
that were returned to buf.

* totalentries points to an unsigned short integer indicating the number of entries
that were available.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

Chapter 3. API Function Descriptions 3-179

Manifest

Value

Meaning

NERR_NetNotStarted
NERR_ShareMem
NERR_RemoteErr
NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_MsgNotStarted

NERR_InvalidComputer

2102

2104

2127

2134

2138

2139

2140

2141

2284

2351

The redirector
NETWKSTA.EXE has
not been started.

-An internal error

occurred—the network
cannot access a shared
memory segment.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFsRamSemClear

* DosFreeSeg

Remarks

DosFsCti{NETTRANSACTION)
DosFsCti(NULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE NOT_FOUND]

DosSemClear.

NetMessageNameEnum requires that the messenger service be started.

3-180 LAN Server Application Programmer’s Reference

Related Information
For information on:

¢ Adding a name to a message name table—See “NetMessageNameAdd” on
page 3-173.

¢ Deleting a name from a message name table—See “NetMessageNameDel” on
page 3-176.

* The messenger service—See “Service Category” on page 3-298.

¢ Retrieving information about a user’s message account—See
“NetMessageNameGetInfo” on page 3-185.

Chapter 3. API Function Descriptions 3-181

NetMessageNameFwd

The NetMessageNameFwd (admin) function modifies the message name table to
forward messages to another messaging name.

Syntax
#include <netcons.h>
#include <message.h>

unsigned far pascal

NetMessageNameFwd (servername, name, forwardname, delfor)
const char far * servername;

const char far * name;

char far * forwardname;
short delfor;
where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* name points to an ASCIIZ string specifying the name receiving messages.

* forwardname points to an ASCIIZ string specifying the name to receive name’s
forwarded messages.

* delfor specifies the action to take if name forwards messages to another name. If
non-zero, then any previous forwarded user name is deleted; if 0, it is not deleted
and an error is returned.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error

occurred—the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

3-182 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_BufTooSmall
NERR_RemoteErr

NERR_OS2IoctlError

NERR_NetworkError
NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NameNotFound

NERR_AlreadyForwarded

NERR_AlreadyExists

NERR_TooManyNames

NERR_LocalForward

NERR_NamelnUse

NERR_MsgNotStarted

NERR_NotLocalName

NERR_RemoteFull

2123

2127

2134

2136

2138

2139

2140

2141

2273

2274

2276

2277

2279

2283

2284

2285

2287

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The message alias
cannot be found on the
local area network.

This message alias has
already been
forwarded.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

Messages cannot be
forwarded back to the
same workstation.

The message alias is
currently in use—try
again later.

The messenger service
has not been started.

The name is not on the
local computer.

The message alias table
on the remote station
is full.

Chapter 3. API Function Descriptions 3-183

Manifest Value Meaning

NERR_DuplicateName 2297 A duplicate message

alias exists on the local
area network.

NERR_DeleteLater 2298 This message alias will

be deleted later.

NERR_MultipleNets 2300 This operation is not

supported on machines
with multiple
networks.

NERR_InvalidComputer 2351 The specified computer

name is invalid.

Other error return codes may be returned from the following OS/2 functions:

°

Remarks

DosFsRamSemClear

DosFreeSeg

DosFsCtIINETTRANSACTION)
DosFsCtIINULLTRANSACT)
DosFsCti(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

NetMessageNameFwd requires that the messenger service be started.

Related Information

For information on:

Listing the entries in the message name table of a server—See
“NetMessageNameEnum” on page 3-179.

The messenger service—See “Service Category” on page 3-298.

Setting the sizmessbuf parameter for a server in IBMLAN.II{I—See the IBM
Operating System/2 Local Area Network Server Version 1.2 Network
Administrator’s Guide.

Stopping forwarding of a user’s messages—See “NetMessageNameUnFwd” on
page 3-188.

3-184 LAN Server Application Programmer’s Reference

NetMessageNameGetinfo

Syntax

Return Codes

The NetMessageNameGetInfo (admin, DOS) function retrieves information about a
user’s entry in the message name table.

#include <netcons.h>
#include <message.h>

unsigned far pascal

" NetMessageNameGetInfo(servername, name, level, buf,

buflen, totalavail)

const char far * servername;
const char far * names

short level;
char far * buf;
unsigned short buflen;

unsigned short far * totalavailj

where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

® name points to an ASCIIZ string specifying the name of the user of interest.

* Jevel specifies the level of detail (0 or 1) requested for the returned msg_info data
structure.

* buf points to the msg_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

® totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions 3-185

Manifest

Value

Meaning

NERR_ShareMem

NERR_BufTooSmall
NERR_RemoteErr

NERR_OS2IoctiError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_MsgNotStarted
NERR_NotLocalName

NERR_InvalidComputer

2104

2123

2127

2134

2138

2139

2140

2141

2284

2285

2351

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

A remote API error
has occurred.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The messenger service
has not been started.

The name is not on the
local computer.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFsRamSemClear

¢ DosFreeSeg

L]

L]

Remarks

DosFsCtI(INETTRANSACTION)
DosFsCtIINULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

Data returned at a level of 0 provides only the name of the user. A level 1 structure
provides the name of the user and whether or not message forwarding is available,
and if so, to whom the messages are forwarded.

NetMessageNameGetInfo requires that the messenger service be started.

3-186 LAN Server Application Programmer’s Reference

Related Information
For information on listing all user name entries in a message name table, see
“NetMessageNameEnum” on page 3-179.

Chapter 3. API Function Descriptions 3-187

NetMessageNameUnFwd

The NetMessageNameUnFwd (admin) function stops forwarding a user’s messages

Syntax

Return Codes

to another user.

#include <netcons.h>
#include <message.h>

unsigned far pascal

NetMessageNameUnFwd (servername, name)

const char far * servername;
const char far * name;

where:

s servername points to an ASCIIZ string containing the name of a remote server
on which the function is to execute. A NULL pointer or string specifies a local

computer.

¢ name points to an ASCIIZ string specifying the user name whose message

forwarding is to be canceled.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT _LIST 51 This remote computer
is not listening.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.
NERR_NoNetworkResource 2105 A network resource
shortage occurred.
NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.
NERR_RemoteErr 2127 A remote API error

3-188 LAN Server Application Programmer’s Reference

has occurred.

Manifest

Value

Meaning

NERR_OS2Ioct!Error

NERR_NetworkError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_NameNotFound

NERR_AlreadyExists

NERR_TooManyNames

NERR_NamelInUse

NERR_MsgNotStarted

NERR_NotLocalName

NERR_RemoteFull

NERR_NameNotForwarded

NERR_DuplicateName

NERR_DeleteLater

NERR_InvalidComputer

2134

2136

2138

2139

2140

2141

2273

2276

2277

2283

2284

2285

2287

2288

2297

2298

2351

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The message alias
cannot be found on the
local area network.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

The message alias is
currently in use—try
again later.

The messenger service
has not been started.

The name is not on the
local computer.

The message alias table
on the remote station
is full.

Messages for this alias
are not currently
forwarded.

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-189

Other error return codes may be returned from the following OS/2 functions:

[)
L]

Remarks

DosFsRamSemClear

DosFreeSeg

DosFsCti(NETTRANSACTION)
DosFsCti(NULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

DosSemClear.

NetMessageNameUnFwd requires that the messenger service be started.

Related Information

For information on:

Forwarding a user’s messages to another user—See “NetMessageNameFwd” on
page 3-182.

Listing the user name entries in a message name table—See
“NetMessageNameEnum” on page 3-179.

The messenger service—See “Service Category” on page 3-298.

3-190 LAN Server Application Programmer’s Reference

Named Pipe Category

Description

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes.

For information on the following functions, see the IBM Operating System/2

Technical Reference Version 1.2 Programming Reference.
DeosBufReset (local, DOS)
DosCallNmPipe (local, DOS)
DosClose (local, DOS)
DosConnectNmPipe (local)
DosDisConnectNmPipe (local)
DeosDupHandle (local, DOS)
DosMakeNmPipe (/ocal)
DeosOpen (local, DOS)
DosPeekNmPipe (local, DOS)
DosQFHandState (local, DOS)
DosQHandType (local, DOS)
DoesQNmPHandState (local, DOS)
DosQNmPipelnfo (local, DOS)
DosQNmPipeSemState (Jocal)
DosRead (local, DOS)
DeosReadAsync (Jocal)
DosSetFHandState (local, DOS)
DosSetNmPHandState (local, DOS)
DosSetNmPipeSem (/ocal)
DosTransactNmPipe (local, DOS)
DosWaitNmPipe (local, DOS)
DosWrite (local, DOS)
DeosWriteAsync (local).

The functions in the Named Pipe category control interprocess communication (IPC)
for named pipes. They are used with the OS2.H and NETCONS.H include files.

These functions are provided by the base operating system and supported by the
0S/2 LAN Server accross the network.

A named pipe is a bidirectional interprocess communication facility that allows two
processes, either local or remote, to communicate with each other over the network.
A process that creates a named pipe is known as a server process, and a process that
establishes a connection to a named pipe is known as a client process.

Chapter 3. API Function Descriptions 3-191

To create an instance of a named pipe on the local computer, an application must
call the DosMakeNmPipe function. This function specifies information that enables
the server process to control the named pipe and allows client processes to access the
named pipe. In order to create a named pipe, DosMakeNmPipe requires the
following:

¢ The name chosen for the named pipe—the format is \pipe\name for a local
named pipe.

¢ The directions (inbound, outbound, and full-duplex) that the named pipe can
send and receive data.

¢ An indication as to whether the handle of the named pipe can be passed to
spawned processes.

¢ The number of concurrent instances of the named pipe that can be created.

¢ The low-level parameters used by the OS/2 program.

An inbound or outbound named pipe (synonymous with anonymous pipes used with
other multi-tasking operating systems) allows a process only to read or write by way
of one handle. A full-duplex named pipe allows a process to both read and write
data by way of one handle.

In some applications (especially those that were developed before the OS/2 Version
1.1 program or those that emulate anonymous pipes), the handle of a named pipe
cannot be passed to a spawned process.

Each time DosMakeNmPipe is called with the same parameter information, another
instance of the named pipe is created. Each instance is associated with a unique
handle which is returned by DosMakeNmPipe. Thus, if DosMakeNmPipe is called
five times with the same information, five different instances (or handles) of the same
named pipe are created.

Other low-level operating system parameters such as the stream type and blocking
mode of the named pipe can be set. Even though a server process creates a named
pipe on a computer, client processes cannot access an instance of that named pipe
until the server process calls DosConnectNmPipe. This function informs the system
that a client process has permission to access an instance of the named pipe and also
returns a handle to the named pipe.

To become a client process, an application must open an instance of the named pipe
by calling the DosOpen function. DosOpen returns a handle to the client process
that can be passed to other named pipe reading and writing functions. If DosOpen
returns the ERROR_PIPE_BUSY error code (pipe currently being accessed by
another process), the client process should call DosWaitNmPipe to wait for the
named pipe to become available. DosWaitNmPipe can be configured to time out
after a particular period of time, or to wait indefinitely for an instance of the named

pipe.

When an instance of the named pipe becomes available, the DosWaitNmPipe
function is allowed to return to the waiting client process. At this point, the client
process can call DosOpen to open the named pipe. After a client process has opened
an instance of a named pipe, the client process can begin to read and write to the
named pipe. To perform these tasks, the client process should call the DosRead and
DosWrite functions. Both of these functions accept the handle returned by
DosOpen, and operate on the same thread of execution as the client process. If a
server or client process requires that the reading and writing of named pipes be

3-192 LAN Server Application Programmer’s Reference

executed on a separate thread, the process can call the DosReadAsync and
DosWriteAsync functions. Note that a remote named pipe can be written to by
specifying the pipe name as follows:

\\server\pipe\name

A process can also call the DosBufReset function to force all data to be written to a
named pipe; normally, data written to a named pipe is held temporarily in a data
buffer.

Note that output cannot be redirected to a named pipe.

Since a named pipe must be written to before it is read from, a process can call
DosPeekNmPipe to see if there is any data written to a named pipe.
DosPeekNmPipe reads the data in a named pipe but does not remove the data.

If necessary, either a server or client process can call DosDupHandle to replicate a
handle to a named pipe. DosDupHandle returns a new handle to the same instance
of a named pipe that an old handle represented. This handle can be passed to any
named pipe function that could use the old handle.

Two functions are provided that decrease the overhead involved in writing to and
reading from a named pipe. These two functions are DosTransactNmPipe and
DosCaliNmPipe. DosTransactNmPipe writes a message to and then reads a message
from an opened named pipe. DosCallNmPipe opens, writes to, reads from, and then
closes a named pipe. This four-in-one process is helpful when implementing a
remote procedure call (RPC) on the network.

When a client process no longer requires access to a named pipe, the DosClose
function can be called to close the named pipe.

When a server process no longer requires an instance of a named pipe, the server
process calls DosDisconnectNmPipe to remove that instance of the named pipe by
specifying its handle. If a client process is still accessing the named pipe,
DosDisconnectNmPipe forces the client process off.

Five functions are provided that enable server or client processes to obtain
information about a named pipe or its handle, as follows:

Function Purpose

DosQFHandState Determines whether the handle can be inherited
and if write-behind is allowed.

DosQHandType Returns the type of handle.

DosQNmPHandState Returns the low-level parameters associated with

a handle and the operating mode of the pipe;
declares the instance count.

DosQNmPipelnfo Returns the size of buffers and the number of
instances currently available.

DosQNmPipeSemState Returns the state of a semaphore associated with
a named pipe.

Chapter 3. API Function Descriptions 3-193

The OS/2 LAN Requester/Server software provides three functions that enable server
or client processes to set specific information about a named pipe that can be
queried. The functions and settable parameters are as follows:

Function Purpose

DosSetFHandState Sets whether a handle of a named pipe can be
inherited and if write-behind is allowed.

DosSetNmPHandState Sets low-level parameters associated with pipes
such as reading and writing mode.

DosSetNmPipeSem Sets the association of a semaphore to a named

pipe.

The transfer mode of a named pipe is set by either DosMakeNmPipe or
DosSetNmPHandState; a named pipe transfers data in byte-stream or
message-stream mode.

A named pipe operating in byte-stream mode operates like an anonymous pipe
where all data written is transferred without any special processing performed on it.
When operating in message-stream mode, a named pipe can distinguish between the
different messages (and size of each message) read from and written to that named
pipe.

Named pipes are designed so that a client process has no requirement for the type of
resource it is opening (pipe or file). Client processes use the DosOpen, DosRead,
and DosClose functions to open, read, and close both types of resources without
reference to one resource being a file and the other a named pipe.

The following table describes the transition state of a named pipe, based on the
action a server or client process indicates:

Current State Action/Process Next State

Pipe does not exist DosMakeNmPipe, NP_DISCONNECTED
server

NP_DISCONNECTED DosConnectNmPipe, NP_LISTENING
server

NP_LISTENING
NP_CONNECTED

NP_CONNECTED
NP_CLOSING

NP_CONNECTED

DosOpen, client

DosDisconnectNmPipe,
server

DosClose, client

DosDisconnectNmPipe,
server

DosClose, server

NP_CONNECTED
DISCONNECTED

NP_CLOSING
DISCONNECTED

NP_CLOSING

Note: The OS/2 DosChgFilePtr function (and other functions that perform seek
operations on files) does not work with named pipes.

3-194 LAN Server Application Programmer’s Reference

DOS Considerations
Under DOS, the functions can be executed only on a remote server that has
interprocess communication (IPC) shares.

DOS supports only client processes; a pipe must have already been created and
connected on a remote server. Child processes inherit the open file handles of a
parent process. DOS does not support asynchronous reading and writing of named
pipes.

Note: The Family API (FAPI) replacement library routine for DosOpen provides
support for DASD opens (open Mode Flag 0x8000). Since DOS does not
support this operation, pipe operations on this type of file handle will return
ERROR_INVALID_HANDLE rather than ERROR_BAD_PIPE.

DosBufReset works differently depending on which version of DOS you are
programming under. Under version 3.3 and 4.0, DosBufReset returns 0 after
resetting a closed named pipe. If the handle is to a named pipe that has already been
closed, DosBufReset returns ERROR_BROKEN_PIPE.

Under DOS 3.3 and 4.0, DosBufReset waits for the pipe to be emptied.

Related Information
For information on:

* Anonymous pipes, named pipes, or IPC—See the IBM Operating System/(2
Technical Reference Version 1.2 Programming Reference, Volume 1.

¢ For a detailed description of each function—See the IBM Operating System/2
Technical Reference Version 1.2 Programming Reference.

Chapter 3. API Function Descriptions 3-195

Remote Utility Category

Description

NetRemoteCopy (local, DOS)—See “NetRemoteCopy” on page 3-197.
NetRemoteExec (local, server)—See “NetRemoteExec” on page 3-200.
NetRemoteMove (local, DOS)—See “NetRemoteMove” on page 3-203.
NetRemoteTOD (DOS)—See “NetRemoteTOD” on page 3-206.

The functions in the Remote Utility category enable applications to copy and move
remote files, remotely execute a program, and access the time-of-day information on
a remote server. They are used with the REMUTIL.H and NETCONS.H include
files.

The NetRemoteCopy function performs optimized file copying. Files on a remote
server are copied without physically moving the files to and from the local requester.
The source and destination must be on the same server.

The NetRemoteMove function moves files or directories from one location to
another on a remote server without physically moving the data if the source and
destination are on the same drive. If source and destination are on different drives,
the move does not require shuffling the data to and from the local requester.

To execute a program on a remote server, an application calls the NetRemoteExec
function. NetRemoteExec performs the same tasks as the OS/2 DosExecPgm
function, but on another network server.

The NetRemoteTOD function returns time-of-day information from a remote server.

DOS Considerations

Data Structures

Under DOS, the functions in the Remote Utility category enable applications to
copy and move remote files and access the time-of-day information on a remote

server. Attempting to execute the functions on a local requester returns
NERR_RemoteOnly.

The function NetRemoteCopy uses data structure copy_info. The function
NetRemoteMove uses data structure move_info. The function NetRemoteTOD uses
data structure time_of day_info. These data structures are described following the
syntax descriptions in each function section.

NetRemoteExec does not use a data structure.

3-196 LAN Server Application Programmer’s Reference

NetRemoteCopy

Syntax

The NetRemoteCopy (local, DOS) function copies one or more files from one
location to another on a remote server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal

NetRemoteCopy (sourcepath, destpath, sourcepass, destpass,
openflags, copyflags, buf, buflen)

const char far * sourcepath;

const char far * destpath;

const char far * sourcepass;

const char far * destpass;

unsigned short openflags;

unsigned short copyflags;

char far * buf;

unsigned short buflen;

where:

* sourcepath points to an ASCIIZ string containing the path name of the files to
be copied (wildcards can be used). sourcepath must begin with either a
redirected drive or a UNC name.

* destpath points to an ASCIIZ string containing the path name to which
sourcepath is to be copied. For a wildcard sourcepath, destpath must be a
directory. destpath must begin with either a redirected drive or a UNC name.

® sourcepass is reserved and must be NULL.
o destpass is reserved and must be NULL.

* openflags specifies how destpath will be opened. openflags is defined as follows:

Bit Meaning

0-1 Used if destpath exists. If 0, the open fails. If 1, the file is
appended. If 2, the file is overwritten.

2-3 Reserved, with a value of 0.

4 Used if destpath does not exist. If 0, the open fails. If 1, the file is
created.

5-15 Reserved, with a value of 0.

* copyflags specifies how the file copy is done. copyflags is defined as follows:

Bit Meaning

0 If 1, destpath must be a file. If bit 0 is set, bit 1 must be 0.

1 If 1, destpath must be a directory. If bit 1 is set, bit 0 must be 0.

2 If 0, destpath is opened in binary mode. If 1, destpath is opened in
text mode.

3 If 0, sourcepath is opened in binary mode. If 1, sourcepath is

opened in text mode.

Chapter 3. API Function Descriptions 3-197

Bit Meaning

4 If 1, all writes are verified.

5-15 Reserved.

* buf points to the copy_info data structure.

o buflen specifies the size (in bytes) of the buf memory area.

Return Status of File Copy

NetRemoteCopy returns data in the following form:

struct copy_info {
unsigned ci_num_copied;
char ci_err_buf[1];

b

where:

® ci_num_copied indicates the number of files that were copied.

® ci_err_buf is a variable-length ASCIIZ string containing error information

pertaining to the file copy.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_FILE_NOT_FOUND 2 The file was not found.
ERROR_PATH_NOT_FOUND 3 The path was not
found.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NO _MORE_FILES 18 No more files are
available.
ERROR_SHARING_VIOLATION 32 A sharing violation
occurred.
ERROR_FILE_EXISTS 80 The file already exists.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.
NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.
NERR_OS2IoctlError 2134 An internal error
occurred when calling
the workstation driver.
NERR_WkstaNotStarted 2138 The Requester service

3-198 LAN Server Application Programmer’s Reference

has not been started.

Manifest Value Meaning

NERR_BadSource 2381 The source path is
illegal.

NERR_BadDest 2382 The destination path is
illegal.

NERR_DifferentServers 2383 The source and

destination paths are
on different servers.

Other error return codes may be returned from the following OS/2 functions:
e DosFSCitl
¢ DosDevIOCtI(NIOCNETCOPY1_1).

Remarks
Currently, the source and destination for the file copy must be on the same server or
an error results. The following cases are valid:

¢ The source and destination are both files. The source file is copied to the
destination file, subject to openflags and copyflags limitations.

¢ The source is a file or wildcard and the destination is a directory. The source
files are copied to the destination directory, subject to openflags and copyflags
limitations.

Related Information
For information on:

¢ Listing the shared resources of a server—See “NetShareEnum” on page 3-350.
¢ Moving remote files between servers—See “NetRemoteMove” on page 3-203.

¢ Share passwords—See “Share Category” on page 3-337.

Chapter 3. API Function Descriptions 3-199

NetRemoteExec
The NetRemoteExec (local, server) function executes a program located on a remote
server.

Syntax

#include <netcons.h>
#include <remutil.h>

unsigned far pascal

NetRemoteExec (reservedl, objnamebuf, objnamebufl, asyntraceflags,
argpointer, envpointer, returncodes, pgmpointer,
reserved?2, remexecflags)

char far * reservedl;

char far * objnamebuf;
unsigned objnamebufl;
unsigned asyntraceflags;

const char far * argpointer;
const char far * envpointer;

char far * returncodes;
const char far * pgmpointer;
char far * reserved?;

unsigned short remexecflags;
where:
* reservedl is a reserved pointer with the value of -1.

* objnamebuf points to the name of the object, such as a dynamic-link library.
The NetRemoteExec function copies a name to this buffer if it could not
successfully load and start the specified program.

* objnamebufl specifies the size (in bytes) of the objnamebuf memory area.

o asyntraceflags specifies the asynchronous and trace flags. asyntraceflags is
defined as follows:

Value Meaning

0 Synchronous process.

| Asynchronous process without result code.
2 Asynchronous process with result code.

* argpointer points to a set of ASCIIZ strings containing the arguments of the file
to be executed.

* envpointer points to a non-NULL ASCIIZ string specifying the environment for
the file to be executed.

® returncodes points to an OS/2 data structure containing the return codes
resulting from the file execution. This is the same data structure used with the
0S/2 DosExecPgm function. For more information on the return codes and the
DosExecPgm function, see the IBM Operating System/2 Technical Reference
Version 1.2 Programming Reference, Volume 2.

* pgmpointer points to an ASCIIZ string containing only the name and extension
of the file to be executed.

¢ reserved? is a reserved pointer with the value 0.

3-200 LAN Server Application Programmer’s Reference

Return Codes

* remexecflags specifies the remote executable flags that control program

execution. remexecflags is defined as follows:

Bit

Meaning

Manifest

0

3-15

Manifest

REM_PIPE_MODE

REM_WAIT MODE

REM_SIGL_MODE

If 0, a message mode pipe is
used for standard input. If 1, a
character mode pipe is used for
standard input.

If 0, the OS/2 DosCWait
function waits for the child
process to finish before
returning. If 1, DosCWait waits
for all spawned processes to
finish before returning.

If 0, map SIGINTR and
SIGBREAK to SIGKILL when
remoting standard signals. If 1,
the send signals as received. For
more information on OS/2
signals, see the IBM Operating
System|2 Technical Reference
Version 1.2 Programming
Reference, Volume 1.

Reserved, with a value of 0.

Value Meaning

NERR_SUCCESS

ERROR_INVALID_PARAMETER

NERR_InternalError

NERR_RunSrvPaused

NERR_ErrCommRunSrv

NERR_ErrConnRunSrv

NERR_ErrorExecingGhost

NERR_ShareNotFound

No errors were
encountered.

The specified
parameter is invalid.

2140 An internal error has

occurred.

2385 The run server you

requested using the
NET RUN command
is paused.

2389 An error occurred

when communicating
with a run server.

2390 An error occurred
when connecting to
run server.

2391 An error occurred

when starting a
background process.

2392 The shared resource

you are connected to
could not be found.

Chapter 3. API Function Descriptions 3-201

Remarks

Related Information

Manifest Value Meaning

NERR_PgmNotFound 2394 The program was not
found.

The NetRemoteExec function is a network extension of the OS/2 DosExecPgm
function.

The executed process is run on the computer connected to the current drive of the
caller. If the current drive of the caller is on a remote server, the child process is
executed on that server. If the current drive of the caller is a local drive, the child
process is executed locally.

The NetRemoteExec function requires that a remotely executed process inherit one
of the following handles:

Handle Meaning

0 Standard input (stdin)

1 Standard output (stdout)
2 Standard error (stderr)

When the NetRemoteExec function initiates an asynchronous process, the process
identification (PID) returned to the first word of the ReturnCodes data structure is a
valid local PID that represents the remote program. The PID can be passed to the
0S/2 DosFlagProcess function to:

¢ Send signals to the remote process
¢ Call the OS/2 DosCWait function to wait for the remote process to exit

e Call the OS/2 DosKillProcess function to end the process.

For information on:
¢ Listing resources of a server—See “NetShareEnum” on page 3-350.
¢ Listing the servers of a network—See “NetServerEnum2” on page 3-289.

¢ Executing a command on a server—See “NetServerAdminCommand” on
page 3-284.

¢ Executing a program—See OS/2 DosExecPgm (IBM Operating System/2
Technical Reference Version 1.2 Programming Reference, Volume 1).

¢ 0S/2 DosCWait—See OS/2 DosCWait (IBM Operating System/2 Technical
Reference Version 1.2 Programming Reference, Volume 1).

3-202 LAN Server Application Programmer’s Reference

NetRemoteMove
The NetRemoteMove (local, DOS) function moves one or more files from one
location to another on a server.

Syntax

#include <netcons.h>
#include <remutil.h>

unsigned far pascal

NetRemoteMove (sourcepath, destpath, sourcepass, destpass,
openflags, moveflags, buf, buflen)

const char far * sourcepath;

const char far * destpath;

const char far * sourcepass;

const char far * destpass;

unsigned openflags;
unsigned moveflags;
char far * buf;

unsigned short buflen;
where:

* sourcepath points to an ASCIIZ string containing the path name of the file to be
moved (wildcards can be used). sourcepath must begin either with a redirected
drive or a universal naming convention (UNC) name.

¢ destpath points to an ASCIIZ string containing the path name to which
sourcepath is to be moved. For a wildcard sourcepath, destpath must be a
directory. destpath must begin either with a redirected drive or a UNC name.

® sourcepass is reserved and must be NULL.
¢ destpass is reserved and must be NULL.

* openflags specifies how destpath will be opened. openflags is defined as follows:

Bit Meaning

0-1 Used if destpath exists. If 0, the open fails. If 1, the file is
appended. If 2, the file is overwritten.

2-3 Reserved, with a value of 0.

4 Used if destpath does not exist. If 0, the open fails. If 1, the file is
created.

5-15 Reserved, with a value of 0.

* moveflags establishes control for the file move. moveflags is defined as follows:

Bit Meaning

0 If 1, destpath must be a file, and bit 1 must be 0.

1 If 1, destpath must be a directory, and bit 0 must be 0.
2-15 Reserved; the value of these bits must be 0.

* buf points to the move_info data structure.

Chapter 3. API Function Descriptions 3-203

* buflen specifies the size (in bytes) of the buf memory area.

Return Status of File Move
The NetRemoteMove function returns data in the following form:

Return Codes

Remarks

struct move_info {
unsigned mi_num_moved;
char mi_err_buf[1];

b

where:

* mi_num_moved indicates the number of files that were moved.

* mi_err_buf is a variable-length ASCIIZ string containing error information

pertaining to the move operation.

Manifest Value Meaning
NERR_SUCCESS 0 No errors were encountered.
ERROR_FILE_NOT _FOUND 2 The file was not found.
ERROR_PATH_NOT_FOUND 3 The path was not found.
ERROR_ACCESS_DENIED 5 Administrative privilege is
required.
ERROR_NO_MORE_FILES 18 No more files are available.
ERROR_SHARING_VIOLATION 32 A sharing violation occurred.
ERROR_FILE_EXISTS 80 The file already exists.
ERROR_INVALID_PARAMETER 87 The specified parameter is
invalid.
NERR_BufTooSmall 2123 The buffer is too small for
fixed-length data.
NERR_BadSource 2381 The source path is illegal.
NERR_BadDest 2382 The destination path is illegal.
NERR_DifferentServers 2383 The source and destination

paths are on different servers.

If the source and destination files are in the same directory, NetRemoteMove
renames the source file. When the source and destination are on different drives,
NetRemoteMove moves sourcepath to destpath and then deletes sourcepath.

Currently, the source and destination path names (sourcepath and destpath) supplied
to the NetRemoteMove function must be on the same server. The following cases

are valid:

¢ The source and destination are both files. The source file is copied to the
destination file, subject to openflags and moveflags limitations.

* The source is a file or wildcard and the destination is a directory. The source
files are copied to the destination directory, subject to openflags and moveflags

limitations.

3-204 LAN Server Application Programmer’s Reference

Related Information
For information on:

¢ Copying a file from one network location to another—See “NetRemoteCopy” on
page 3-197.

* Determining if a driver letter is local or redirected to a remote server—See
“NetUseGetInfo” on page 3-380.

¢ Listing available resources on a server—See “NetShareEnum” on page 3-350.

Chapter 3. API Function Descriptions 3-205

NetRemoteTOD

Syntax

The NetRemoteTOD (DOS) function returns the time of day on a server.

#include <netcons.h>
#include <remutil.h>

unsigned far pascal
NetRemoteTOD(servername, buf, buflen)
const char far * servername;

char far * buf;

unsigned short buflen;

where:

o servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

¢ buf points to the time_of day_info data structure.

¢ buflen specifies the size of the buf memory area.
Return Time-of-Day Information on a Server

The NetRemoteTOD function returns data in the following form:

struct time_of_day_info {
unsigned long tod_elapsedt;
unsigned long tod_msecs;
unsigned char tod_hours;
unsigned char tod_mins;
unsigned char tod_secs;
unsigned char tod_hunds;
unsigned short tod_timezone;
unsigned short tod_tinterval;
unsigned char tod_day;
unsigned char tod_month;
unsigned short tod_year;
unsigned char tod_weekday;

b
where:

* tod_elapsedt indicates the number of seconds that have elapsed since January 1,
1970.

* tod_msecs indicates the current millisecond.

® tod_hours indicates the current hour.

* tod_mins indicates the current minute.

* tod_secs indicates the current second.

* tod_hunds indicates the current hundredths of a second.

* tod_timezone indicates the timezone of the server; calculated (in minutes) from
the greenwich mean time (GMT) zone.

* tod_tinterval indicates the time interval for each tick of the clock. Each integral
integer represents 0.0001 second.

3-206 LAN Server Application Programmer’s Reference

¢ tod_day (1 through 31) indicates the day of the month.
* tod_month (1 through 12) indicates the month.
* tod_year indicates the year, starting with 1980.

¢ tod_weekday indicates the day of the week (0 means Sunday, 6 means Saturday).

Return Codes

Manifest Value Meaning

NERR_SUCCESS 0 No errors were encountered.

NERR_BufTooSmall 2123 The buffer is too small for
fixed-length data.

NERR_WkstaNotStarted 2138 The Requester service has not been
started.

NERR_InvalidComputer 2351 The specified computer name is
invalid.

Related Information
For information on listing the servers of a network, see “NetServerEnum2” on
page 3-289.

Chapter 3. API Function Descriptions 3-207

Requester Category
NetWkstaGetlnfo (partially admin, DOS)—See “NetWkstaGetInfo” on page 3-225.

NetWkstaSetInfo (admin, DOS)—See “NetWkstaSetInfo” on page 3-227.
NetWkstaSetUID2 (DOS)—See “NetWkstaSetUID2” on page 3-231.

The functions in the Requester category control the operation of requesters. They
are used with the ACCESS.H, NETCONS.H, and WKSTA.H include files.

Description
The requester functions enable applications to:

¢ Log a user name onto a requester
* Log a user name off of a requester
e Execute a logon script on a logon server for a user name

¢ Control configuration of a requester.

To log a user name onto or off a requester or to execute a logon script for a user
name, an application calls the NetWkstaSetUID?2 function.

To configure a requester, an application calls the NetWkstaSetInfo function. The
NetWkstaGetlnfo function returns information about the configuration of a
requester.

Note: The domain name of the requester (the wki0_langroup component in the
wksta_info data structure) must not duplicate any computer name or user
name on the network.

Giving a domain the name of a computer causes startup problems for one of
two namesakes. If the like-named computer is started before the domain, no
other computer in the domain will be able to start. And, conversely, if any
computer in the like-named domain is started, the computer going by the
domain name will be unable to start.

For more information on domains, see the IBM Operating System/2 Local
Area Network Server Version 1.2 Network Administrator's Guide.

DOS Considerations
Under DOS, the functions in the Requester category control the operation of
requesters. They can be executed only on a local requester. Attempting to execute
the functions on a remote server returns ERROR_NOT_SUPPORTED.

Certain parameters are not used under DOS and therefore cannot be set. However,
validity checks are done on most of the unused parameters for future expansion.

3-208 LAN Server Application Programmer’s Reference

The following table describes the parameters that are used and whether validity
checks are perfomed on them:

Parameter Used Validity Checked
charwait No Yes
chartime Yes Yes
charcount Yes Yes
errlogsz No Yes
printbuftime No Yes
wrkheuristics No No

Data Structures

The NetWkstaGetInfo (level 0, 1, and 10) and NetWkstaSetInfo (level 0 and 1)
functions accept or return data at the specified level of detail, using the wksta_info

data structure.

Requester Information (Level 0)

struct wksta_info_0 {

short
Tong
*

unsigned
unsigned
char far
char far *
char far *
char far *
unsigned char
unsigned char
unsigned long
unsigned short
unsigned long
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
char far *
char far *
unsigned short

|H

wkiO_reserved_1;
wki0_reserved_2;
wkiO_root;
wki0_computername;
wki0_username;
wki0_langroup;
wkiO_ver_major;
wkiO_ver_minor;
wkiO_reserved_3;
wkiO_charwait;
wkiO_chartime;
wki0_charcount;
wkiO_reserved_4;
wki0_reserved_5;
wki0_keepconn;
wki0_keepsearch;
wki0_maxthreads;
wki0_maxcmds;
wkiO_reserved_6;
wki0_numworkbuf;
wki0_sizworkbuf;
wki0_maxwrkcache;
wki0_sesstimeout;
wkiO_sizerror;
wkiO_numalerts;
wkiO_numservices;
wki0_errlogsz;
wkiO_printbuftime;
wki0_numcharbuf;
wki0_sizcharbuf;
wki0_logon_server;
wkiO_wrkheuristics;
wki0_mailslots;

Chapter 3. API Function Descriptions

3-209

where:

wki0_reserved_l, wki0_reserved_2, wki0_reserved_3, wkiQ_reserved_4,
wkiO_reserved_5, and wki0_reserved_6 are reserved, and must be 0.

wki0_root points to an ASCIIZ string containing the path to the IBMLAN
directory of the computer (the recommended default path is \IBMLAN).

wki0_computername points to an ASCIIZ string containing the computer name
of the local requester being configured.

wki0_username points to an ASCIIZ string containing the user’s name logged on
the requester.

wki0_langroup points to an ASCIIZ string containing the name of the domain to
which the requester belongs.

wki0_ver_major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

wki0_ver_minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

wki0_charwait indicates the number of seconds the requester will wait for a
remote serial or communication device to become available.

wki0_chartime indicates the number of milliseconds the requester will wait to
collect data to send to a remote serial or communication device.

wki0_charcount indicates the number of bytes of information the requester will
send to a remote serial or communication device.

wki0_keepconn indicates the number of seconds that an inactive connection from
the requester to a resource of a server will be maintained.

wki0_keepsearch indicates the number of seconds that an inactive search will
continue.

wkil_maxthreads indicates the number of threads the requester can dedicate to
the network.

wki0_maxcmds indicates the number of simultaneous network device driver
commands that can be sent to the network.

wki0_numworkbuf indicates the number of internal buffers the requester has.
wki0_sizworkbuf indicates the size (in bytes) of each internal buffer.

Use the following formula to determine the maximum values for both
numworkbuf and the sizworkbuf parameters:

(sizworkbuf + 268) * numworkbuf < 65,515
Default value: 4096

Minimum value: 1024

Maximum value: 16384

wki0_maxwrkcache indicates the maximum size (in bytes) of an internal cache
buffer.

wki0_sesstimeout indicates the number of seconds that are waited before
disconnecting an inactive session between a requester and a server.

wkil_sizerror indicates the size (in bytes) of an internal error buffer.

3-210 LAN Server Application Programmer’s Reference

wki0_numalerts indicates the maximum number of clients that can receive alert
messages.

Note that each mailslot or semaphore registered by the NetAlertStart function is
a different client, and that the alerter service registers at least three clients when
it begins to run. For more information on alerts, see “Alert Category” on

page 3-29.

wki0_numservices indicates the number of services that can be started on the
requester at any time. For more information on services, see “Service Category”
on page 3-298.

wki0_errlogsz indicates the maximum size (in kilobytes) of the error log file of
the requester.

wki0_printbuftime indicates the number of seconds waited before closing inactive
compatibility-mode print jobs.

wki0_numcharbuf indicates the number of character pipe buffers and device
buffers the requester can have.

wki0_sizcharbuf indicates the maximum size (in bytes) of a character pipe buffer
and device buffer.

wki0_logon_server points to an ASCIIZ string indicating the name of the domain
controller of the requester. A NULL string indicates no logon servers are
available. If the string is *, any available logon server is queried.

wki0_wrkheuristics points to an ASCIIZ string of flags used to control a
requester’s operation. The heuristics default to values that are optimal for most
configurations and normally need not be changed.

The default value for wki0_wrkheuristics is defined as follows:
wrkheuristics = 11111111213111111100010110201110

The maximum value for wki0_wrkheuristics is defined in IBMLAN.INI as
follows:

wrkheuristics = 11221211223111111111519111213170

If a partial string is specified, the default values are used for the remaining
heuristics. If the string is NULL or is not present in the IBMLAN.INI file, the
default string is used.

If the values used are other than those listed (0 or 1 where no value is listed),
errors may occur.

The characters (from left to right) are defined as follows. Unless otherwise
defined, 0 turns off a heuristic feature, and 1 turns on the feature.

The parameters and their descriptions are as follows:
Parameter Description

sizworkbuf Sets the size of requester buffers, in bytes. Increase
sizworkbuf to transfer large groups of data, such as
database records, on the network. This value should be
a multiple of 512. It shouid be the same for every
requester on the network and equal to the sizreqbuf
value used by servers.

When the numworkbuf and sizworkbuf parameters are
used in the following formula, they should not be
greater than 64KB:

Chapter 3. API Function Descriptions 3-211

3-212

wrkheuristics

(sizworkbuf + 268) * numworkbuf < 65515
Default value: 4096

Minimum value: 1024

Maximum value: 16384

Sets a variety of requester fine-tuning options. Each
digit has an independent meaning. Missing digits are
assumed to be the defaults as described. Except where
noted, each is a binary digit where 0 means off or
inactive, while 1 means on or active. The following are
the meanings of the digits:

Digit Meaning

0 Request opportunistic locking of files. The
default is 1.

When this heuristic is active, it allows a file
opened in deny none sharing mode to be locked
by the server (provided there are no other access
requests), so that buffering can be used to
enhance performance. The Server service
assumes that the first requester is the only active
process using that file and will prevent a second
requester from accessing the file until buffer data
is flushed (written to disk).

1 Do performance optimization for batch files.
Heuristic 0 (opportunistic locking) must be set to
1. The default is 1.

When this heuristic is active (set to 1), a batch
file on the server executing on the requester is
kept in the requester’s buffer to prevent a request
across the LAN for each line of the batch file.
The batch file is opened and closed with each
line executed; when this heuristic is inactive (set
to 0), the close causes buffer data to be flushed.

2 Do asynchronous unlock and write unlock as
follows:

Value Meaning

0 Never

1 Always

2 Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

With this heuristic, files in the requester buffer
are unlocked in the buffer, and processing
continues without waiting for confirmation from
the server. Any errors occurring at the server are
reported later. Generally, the only errors that
might occur are hard media errors, such as disk
full or a loss of power to the server. (A virtual

LAN Server Application Programmer’s Reference

circuit in this discussion is a NETBIOS™ session
connection to another machine through a LAN.)

3 Do asynchronous close and write close as
follows:

Value Meaning

0 Never

1 Always

2 Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

This heuristic performs the same function in the
close operation as wrkheuristic 2 performs in the
unlock operation.

4 Buffer named pipes and serial devices. The
default is 1.

This heuristic directs named pipes and
communication devices through the requester’s
buffers.

5 Do combined lock read and write unlock as
follows:

Value Meaning

0 Never

1 Always

2 Only on an OS/2 LAN Server virtual
circuit.

The default is 1.
6 Use open and read. The default is 1.

When this heuristic is active, a request to open a
file also performs a read of size sizworkbuf from
the beginning of the file to the requester’s work
buffer. This action anticipates that the data is
subsequently read, saving an additional request
across the LAN.

7 Reserved. This must be set to 1.
8 Use the chain send NETBIOS NCB as follows:

Value Meaning

0 Never
i Do if server’s buffer is larger
2 Always (to avoid copy).

The default is 1.

When this heuristic is active, data packets larger
than the LAN’s transmit buffer size are chained
together, eliminating some packet transmissions
across the LAN.

NETBIOS is a trademark of International Business Machines Corporation.

Chapter 3. API Function Descriptions 3-213

10

11

3-214 LAN Server Application Programmer’s Reference

Buffer small read and write requests (reading and
writing a full buffer) as follows:

Value Meaning

0 Never

1 Always

2 Only on an OS/2 LAN Server virtual
circuit.

The default is 1.

When this heuristic is active and file access mode
allows, requests to read or write data smaller
than sizworkbuf are performed locally, in the
requester’s buffer, avoiding additional trips
across the LAN. The buffer is flushed when the
file is closed or when the buffer is needed to
satisfy other requests.

This heuristic may enhance performance for
applications that read, modify, and write back
small records.

Use buffer mode (assuming shared access is

granted) as follows:

Value Meaning

0 Always read buffer size if request is
smaller than buffer size.

1 Use full buffer if file is open for reading
and writing.

2 Use full buffer if reading and writing
sequentially.

3 Buffer all requests smaller than the

buffer size.
The default is 3.

Shared access means the file was opened in
sharing mode. These options allow selective
tuning of the buffer mode if any applications
handle data in a manner conflicting with
buffering.

Use raw read and write server message block
(SMB) protocols. The default is 1.

Raw read and write SMB protocols transfer data
across the LAN without SMB headers. These
protocols are used to transfer large files directly
between a big buffer in the server and a work
cache in the requester. When a large file transfer
initiates raw read and write SMB protocols, the
NETBIOS session involved exclusively uses the
LAN adapter cards on both the send and receive
stations until the request completes. Polling
ensures large buffers are available before the
transfer begins.

12

13

14

15

16
17

18

This heuristic may significantly improve
performance of large file transfers across the
LAN.

Use large raw read-ahead buffer. The default is
1.

This heuristic and heuristic 13 provide
independent control over using raw SMB
protocol for read-ahead and write-behind,
respectively. Both are active with default values,
but can be turned off to better suit a particular
environment.

Use large raw write-behind buffer. The default is
1.

See digits 11 and 12 for more information.

Use read multiplexing server message block
(SMB) protocols. The default is 1.

This SMB protocol is used for large read
requests if large buffers described in heuristic 11
are unavailable, or raw SMB protocol is inactive.
This protocol breaks transfers into buffer-size
chunks (usually 4KB) and chains them together
to satisfy the request. Exclusive use of LAN
adapter cards does not occur.

Use write multiplexing SMB protocols. The
default is 1.

This SMB protocol is used for large write
requests if large buffers described in heuristic 11
are unavailable, or raw SMB protocol is inactive.
This protocol divides transfers into buffer-size
chunks (usually 4KB) and chains them together
to satisfy the request. Exclusive use of LAN
adapter cards does not occur.

Reserved. This must be set to 1.

Use same size small read-ahead or to sector
boundary. The default is 1.

When this heuristic is active, requests to read
small data records cause read-ahead in multiples
of the data record size, so a full buffer is read
and sent to the requester. Because multiple
records may not fit evenly in the buffer, the last
record in the buffer may be incomplete.
However, no data is lost.

This heuristic is significant only if wrkheuristic 9
is inactive. The server will detect small data
records of the same size being read sequentially
and will establish the read-ahead operation.

Use same size small write-behind or to sector
boundary. The default is 0.

When this heuristic is active, requests to write

Chapter 3. API Function Descriptions 3-215

19
20

21

22

3-216 LAN Server Application Programmer’s Reference

small data records cause write-behind in
multiples of the data record size, so a full buffer
is written to the server. Because multiple records
may not fit evenly in the buffer, the last record
written may be incomplete. However, no data is
lost.

This heuristic is significant only if wrkheuristic 9
is inactive. The server will detect small data
records of the same size being written
sequentially and will establish the write-behind
operation.

Reserved. This must be set to 1.

Flush pipes and devices on DosBufReset or
DosClose as follows:

Value Meaning

0 Flush only files and devices opened by
the caller. Spin until flushed (wait for
confirmation before proceeding with
other tasks).

1 Flush only files and devices opened by
the caller. Flush only once.

2 Flush all files and all input and output
of short-term pipes and devices. Spin
until flushed.

3 Flush all files and all input and output
of short-term pipes and devices. Flush
only once.

4 Flush all files and all input and output

of pipes and devices. Spin until flushed.

5 Flush all files and all input and output
of pipes and devices. Flush only once.

The default is 0.

This heuristic gives the requester application
more flexibility as to which files, pipes, or
devices are flushed (written to disk) when
DosBufReset or DosClose is done.

Used to support OS/2 LAN Server encryption.
The default is 1.

Control log entries for multiple occurrences of an
error. A recurring error can fill up the error log;
use this heuristic to keep down the number of
log entries. If the value is other than 0, the first,
fourth, eighth, 16th, and 32nd occurrences of an
error are logged. After that, every 32nd further
occurrence is logged.

If the value is other than 0, it also defines the
size of an error table. The table is a record of
what errors have occurred. If an error does not

match an existing entry in the table, it replaces
the entry with the lowest number of occurrences.

Set the value as follows:

Value Meaning

0 Log all occurrences

1 Use error table, size 1
2 Use error table, size 2
3 Use error table, size 3
4 Use error table, size 4
5 Use error table, size 5
6 Use error table, size 6
7 Use error table, size 7
8 Use error table, size 8
9 Use error table, size 9.
The default is 0.

Buffer all files opened with deny-write sharing
mode. The default is 1.

When this heuristic is active, the server buffers
all files opened with deny-write sharing mode,
even if the access mode is not read-only.

This heuristic deactivates buffering on this
requester if an application does not work
correctly with it.

Buffer all files opened with read only access.
The default is 1.

‘When this heuristic is active, the server buffers
all files opened with read-only access mode, even
if the sharing mode is not deny-write.

This heuristic deactivates buffering on this
requester if an application does not work
correctly with it.

Chapter 3. API Function Descriptions 3-217

25

26

27

28

29

Read ahead when opening for execution.
Reading an executable file sequentially is usually,
but not always, faster. The default is 1.

This heuristic value should be 1 for many
executable files loaded across the LAN. For
example, DisplayWrite™ 4/2 load time decreases
by more than 50 percent. Experiment with your
particular program to determine which option is
better.

Handle Control-C (Ctrl+C) as follows:

Value Meaning

0 No interrupts allowed

1 Only allow interrupts on long-term
operations

2 Always allow interrupts.

The default is 2.

Force correct open mode when creating files on
a core server. (A core server is a DOS-based
LAN server, such as PC LAN Program 1.3.)
0S/2 LAN Server does not allow DOS-based
servers. The default is 0.

Use the NETBIOS NoAck mode (transferring
data without waiting for an acknowledgement)
as follows:

Value Meaning
0 NoAck is never used (disable NoAck)
1 NoAck on send only.

The default is 1.

Send data along with the server message block
write block raw requests. This may save time.
The default is 1.

When this heuristic is active, the requester sends
a requester buffer of data to the server with its
request for big buffers to use for large file
transfers. This action may save time if the server
has limited big buffers (numbigbufs) compared to
the number of requesters trying to send large
files.

DisplayWrite is a trademark of International Business Machines Corporation.

3-218 LAN Server Application Programmer’s Reference

30 Send a popup message to the screen when the
requester logs an error, as follows:

Value Meaning

0 Never
1 On write fault errors only (no timeout)
2 On write fault and internal errors only

(no timeout)

On all errors (no timeout)

Reserved.

On write fault errors only (timeout)
On write fault and internal errors only
(timeout)

7 On all errors (timeout).

The default is 1.

NN AW

Values other than 1 are normally used for debug
purposes only.

31 Reserved.

wrknets Lists names of networks the requester runs on. Names
of available networks are listed in the Networks section
of the IBMLANL.INI file. The OS/2 LAN Server
supports only a single network.

Required value: netl

wrkservices Specifies network services to start with the Requester
service. For example, the Messenger service, which
sends and receives network messages, can be started
with the Requester service. The options are Messenger
and Netpopup. This value is defined by the user at
installation.

* wki0_mailslots specifies the maximum number of mailslots allowed.

Chapter 3. API Function Descriptions 3-219

Requester Information (Level 1)

Requester information level 1 includes all the fields of wksta_info_0, plus

oth_domains and logon_domains.

struct wksta_info_1 {

}s

unsigned short wkil_reserved_l
unsigned Tong wkil_reserved_2
char far * wkil_root;
char far wkil_computername;
char far wkil_username;
char far wkil_langroup;
unsigned wkil_ver_major;
unsigned wkil_ver_minor;
unsigned wkil_reserved_3;
unsigned wkil_charwait;
unsigned wkil_chartime;
unsigned wkil_charcount;
unsigned wkil_reserved_4;
unsigned wkil_reserved_5;
unsigned wkil_keepconn;
unsigned wkil_keepsearch;
unsigned wkil_maxthreads;
unsigned wkil_maxcmds;
unsigned wkil_reserved_6;
unsigned wkil_numworkbuf;
unsigned wkil_sizworkbuf;
unsigned wkil_maxwrkcache;
unsigned wkil_sesstimeout;
unsigned wkil_sizerror;
unsigned wkil_numalerts;
unsigned wkil_numservices;
unsigned wkil_errlogsz;
unsigned wkil_printbuftime;
unsigned wkil_numcharbuf;
unsigned wkil_sizcharbuf;
char far wkil_logon_server;
char far wkil_wrkheuristics;
unsigned wkil_mailslots;
char far wkil_logon_domain;
char far wkil_oth_domains;
unsigned short wkil_numdgrambuf;

*
*
*

char

char

long

short
Tong

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

short
*

*
short
*
*

where:

wkil_reserved_l, wkil_reserved_2, wkil_reserved_3, wkil_reserved_4,
wkil_reserved_5, and wkil_reserved_6 are reserved, and must be 0.

wkil_root points to an ASCIIZ string containing the path to the IBMLAN
directory (the recommended default path is IBMLAN)) of a computer .

wkil _computername points to an ASCIIZ string containing the computer name

of the local requester being configured.

wkil_username points to an ASCIIZ string containing the user’s name logged on

the requester.

wkil_langroup points to an ASCIIZ string containing the name of the domain to

which the requester belongs.

3-220 LAN Server Application Programmer’s Reference

wkil_ver_major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

wkil_ver_minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

wkil_charwait indicates the number of seconds the requester will wait for a
remote serial device resource to become available.

wkil_chartime indicates the number of milliseconds the requester will wait to
collect data to send to a remote serial device resource.

wkil_charcount indicates the number of bytes of information the requester will
send to a remote serial device resource.

wkil _keepconn indicates the number of seconds an inactive connection from the
requester to the resource a server will be maintained.

wkil_keepsearch indicates the number of seconds an inactive search will
continue.

wkil_maxthreads indicates the number of threads the requester can dedicate to
the network.

wkil_maxcmds indicates the number of simultaneous network device driver
commands that can be sent to the network.

wkil_numworkbuf indicates the number of internal buffers the requester has.
wkil_sizworkbuf indicates the size (in bytes) of each internal buffer.

wkil_maxwrkcache indicates the maximum size (in bytes) of an internal cache
buffer.

wkil_sesstimeout indicates the number of seconds that are waited before
disconnecting an inactive session between a requester and a server.

wkil_sizerror indicates the size (in bytes) of an internal error buffer.

wkil _numalerts indicates the maximum number of clients that can receive alert
messages.

Note that each mailslot or semaphore registered by the NetAlertStart function is
a different client, and that the alerter service registers at least three clients when
it begins to run. For more information on alerts, see “Alert Category” on

page 3-29.

wkil_numservices indicates the number of services that can be started on the
requester at any time. For more information on services, see “Service Category”
on page 3-298.

wkil_errlogsz indicates the maximum size (in kilobytes) of the error log file of a
requester.

wkil_printbuftime indicates the number of seconds that are waited before closing
inactive compatibility-mode print jobs.

wkil_numcharbuf indicates the number of character pipe buffers and device
buffers the requester can have.

wkil_sizcharbuf indicates the maximum size (in bytes) of a character pipe buffer
and device buffer.

Chapter 3. API Function Descriptions 3-221

o wkil_logon_server points to an ASCIIZ string indicating the name of the
Domain Controller of a requester. A NULL string indicates no logon servers
are available. If the string is *, any available logon server is queried.

o wkil_wrkheuristics points to an ASCIIZ string of flags used to control a
requester operation. The heuristics default to values that are optimal for most
configurations and normally need not be changed. For character positions and
meanings, refer to “Requester Information (Level 0).”

* wkil_mailslots specifies the maximum number of mailslots allowed.

® wkil_logon_domains names the domain to which the user is logged on. It is
returned as NULL when no one is logged on.

o wkil_oth_domains field is an ASCIIZ string listing all domains on which the
machine is currently enlisted. This is a far pointer to an ASCIIZ string which is
a space-delimited list of domains. The oth_domains field is settable with
NetWkstaSetInfo.

* wkil_numdgrambuf is the number of buffers allocated for receiving datagrams.

3-222 LAN Server Application Programmer’s Reference

Requester Information (Level 10)
The wksta_info_10 data structure is supplied to fulfill the needs of remote users who
want to obtain certain information from a server. This data structure allows remote
users to discover what domain a server belongs to.

Since a remote NetWkstaGetInfo at levels 0 and 1 requires administrative privilege,
a remote user who does not have privilege level ADMIN cannot use those structures.
This new level provides the needed information.

struct wksta_info_10 {

char far * wkil0@_computername;
char far * wkilO_username;
char far * wkil0_langroup;

unsigned char wkilO_ver _major;
unsigned char wkilO_ver_minor;

char far * wki10_logon_domain;
char far * wkil0_oth_domains;
b
where:

o wkilO_computername points to an ASCIIZ string containing the computer name
of the requester being queried.

N wki]0__usemamé points to an ASCIIZ string containing the user’s name logged
on the requester.

* wkil0O_langroup points to an ASCIIZ string containing the name of the domain
to which the requester belongs.

* wkil0_ver_major specifies the major version number of the OS/2 LAN
Requester/Server software running on the computer.

* wkil0O_ver_minor specifies the minor version number of the OS/2 LAN
Requester/Server software running on the computer.

* wkil0_logon_domain names the domain that the user is logged on to. It is
returned as NULL when no one is logged on.

* wkil0_oth_domains field is an ASCIIZ string listing all domains on which the
machine is currently enlisted. This is a far pointer to an ASCIIZ string which is
a space-delimited list of domains.

DOS Considerations

For information on the DOS LAN Requester heuristics, see the DOS LAN Requester
User's Guide.

Chapter 3. API Function Descriptions 3-223

Related Information
For information on:

¢ Configuring requesters—See the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator’s Guide.

e The IBMLANL.INI file—See the IBM Operating System/2 Local Area Network
Server Version 1.2 Network Administrator’'s Guide.

¢ Domains—See the IBM Operating System/2 Local Area Network Server Version
1.2 Network Administrator’'s Guide.

e NCB architecture—See the IBM PC LAN Program 1.3 Application Programmer’s
Guide.

* wksta_info_0 components—See the IBM Operating System(2 Local Area Network
Server Version 1.2 Network Administrator’s Guide.

3-224 1AN Server Application Programmer’s Reference

NetWkstaGetinfo

The NetWkstaGetInfo (partially admin, DOS) function returns information about
the configuration components of a requester.

Syntax

#include <netcons.h>
#include <wksta.h>

unsigned far pascal
NetWkstaGetInfo(servername, level, buf, buflen, totalavail)

char far * servername;
short level;
char far * buf;
unsigned short bufien;

unsigned short far * totalavail;
where:

* servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

* Jevel specifies the level of detail (0, 1 or 10) to be returned in the wksta_info data
structure.

* buf points to the wksta_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

* totalavail points to an unsigned short integer indicating the number of bytes of
information that were available.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_INVALID_PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

Chapter 3. API Function Descriptions = 3-225

Manifest

Value

Meaning

NERR_ShareMem

NERR_BufTooSmall

NERR_OS2IoctlError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidComputer

2104

2123

2134

2138

2139

2140

2141

2351

An internal error
occurred—the network
cannot access a shared
memory segment.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The specified computer
name is invalid.

Other error return codes may be returned from the following OS/2 functions:

¢ DosFsRamSemClear

¢ DosFreeSeg

e DosFsCtIINETTRANSACTION)
e DosFsCtI(NULLTRANSACT)
¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]

¢ DosSemClear.

Remarks

The ordinary user can get information from the level 10 data structure.

Related Information

For information on modifying the configuration of a local requester, see

“NetWkstaSetInfo” on page 3-227.

3-226 LAN Server Application Programmer’s Reference

NetWkstaSetinfo

Syntax

The NetWkstaSetInfo (admin, DOS) function configures a requester.

#include <netcons.h>
#include <wksta.h>

unsigned far pascal
NetWkstaSetInfo(servername, level, buffer, buflen, parmnum)
char far * servername;

short level;
char far * buf
unsigned short bufien;
short parmnum;
where:

¢ servername points to an ASCIIZ string containing the name of the remote server
on which the function is to execute. A NULL pointer or string specifies a local
computer.

¢ Jevel specifies the level of detail (0 or 1) returned in the wksta_info data
structure.

* buf points to the wksta_info data structure.
* buflen specifies the size (in bytes) of the buf memory area.

¢ parmnum determines whether buf contains a complete wksta_info data structure
or a single data structure component. If parmnum is 0, buf must contain a

complete wksta_info data structure. Otherwise, parmnum must specify the
ordinal position value for one of the following wksta_info data structure
components, as defined as follows in WKSTA.H:

Manifest Value Component
WKSTA_CHARWAIT_PARMNUM 10 wkix_charwait
WKSTA_CHARTIME PARMNUM 11 wkix_chartime
WKSTA_CHARCOUNT _PARMNUM 12 wkix_charcount
WKSTA_ERRLOGSZ_PARMNUM 27 wkix_errlogsz
WKSTA_PRINTBUFTIME_PARMNUM 28 wkix_printbuftime
WKSTA_WRKHEURISTICS PARMNUM 32 wkix_wrkheuristics
WKSTA_OTHDOMAINS PARMNUM 35 wkix_oth_domains

Note: x = Qorl.

Chapter 3. API Function Descriptions 3-227

Return Codes

. Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID NAME 123 There is an incorrect

character or incorrectly
formed file system

name.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

available, but the
buffer is too small.

NERR_NetNotStarted 2102 The redirector
NETWKSTA.EXE has
not been started.

NERR_ShareMem 2104 An internal error
occurred—the network
cannot access a shared
memory segment.

NERR_NoNetworkResource 2105 A network resource
shortage occurred.

NERR_BufTooSmall 2123 The buffer is too small
for fixed-length data.

NERR_OS2IoctlError 2134 An internal error

occurred when calling
the workstation driver.

- NERR_WkstaNotStarted 2138 The Requester service
has not been started.

NERR_BrowserNotStarted 2139 The requested
information is not
available.

NERR_InternalError 2140 An internal error has
occurred.

NERR_BadTransactConfig 2141 The server is not
configured for
transactions.

3-228 LAN Server Application Programmer’s Reference

Manifest

Value

Meaning

NERR_InvalidAPI

NERR_NameNotFound

NERR_AlreadyExists

NERR_TooManyNames

NERR_DuplicateName

NERR_DeleteLater

NERR_InvalidComputer

2142

2273

2276

2277

2297

2298

2351

The requested API is
not supported on the
remote server.

The message alias
cannot be found on the
local area network.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

The specified computer
name is invalid.

Chapter 3. API Function Descriptions 3-229

Other error return codes may be returned from the following OS/2 functions:
* DosDevIOCitl

¢ DosFSCitl

¢ DosFsRamSemClear

¢ DosFreeSeg

* DosFsCti(NETTRANSACTION)

¢ DosFsCtIINULLTRANSACT)

¢ DosFsCtl(NetGetRdrAddr)

¢ DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
¢ DosSemClear

¢ redir.GetBiosInfo[-ERROR_NO_MORE_FILES]
¢ redir. NIOCBiosOpen.

Remarks

The fields wkiO_computername, wki0_langroup, are not settable by users or
administrators.

The values of the field oth_domains in the wksta_info data structure are separated by
spaces. An empty list is legal. As usual a NULL pointer means “do not modify this
field.” An empty element is not legal. When setting oth_domains, the API will reject
the request in the following cases:

¢ The name list was incorrect

* One of the names could not be added to the network adapters managed by OS/2
LAN Requester/Server.

Related Information

For information on retrieving the comfiguration of a local requester, see
“NetWkstaGetInfo” on page 3-225.

3-230 LAN Server Application Programmer’s Reference

NetWkstaSetUID2
The NetWkstaSetUID2 (DOS) function registers a user name and password with
the requester and validates the user account. It returns a structure with information
about the logon. This function takes an optional domain name argument. If it is
absent, it defaults to the primary domain (wki0_langroup) of the requester.

Syntax

#include <netcons.h>
#include <wksta.h>
#include <access.h>

unsigned far pascal
NetWkstaSetUID2(reserved,domainname, username, password, parms,
ucond, level, buf, buflen, totalavail)

char far * reserved;
char far * domainname;
char far * username;
char far * password;
char far * parms;
unsigned short ucond;
short level;
char far * bufs
unsigned short buflen;

unsigned short far * totalavail;
where:
® reserved is a reserved parameter, it must be NULL.

¢ domainname is the name of the domain to log on to. If this parameter is NULL
or if it points to a NULL string, the primary domain of the requester is used.

¢ username points to an ASCIIZ string containing the user name to be logged onto
the requester. Specifying a NULL string logs the user name off the requester.

* password points to an ASCIIZ string containing the password of the user name,
obtained by an application’s request to the user. A NULL pointer or string
indicates no password is needed. password becomes the default password for
requester and is used whenever the requester attempts to access a remote
resource.

* parms must be NULL and is reserved.

* ucond specifies what action to take if another user name is logged on the
requester. The WKSTA.H include file defines four values:
Manifest Value Meaning

WKSTA_NOFORCE 0 NetWkstaSetUID?2 fails, and the
user’s identification number
(UID) does not change.

WKSTA_FORCE 1 Logs the current user name off,
disconnecting any connections to
redirected resources.

Chapter 3. API Function Descriptions 3-231

Manifest Value

Meaning

WKSTA_LOTS_OF_FORCE 2

WKSTA_MAX_FORCE 3

Cancels any connections and
other pending activities
necessary. Fails if any
connection is used by a process
as the current drive.

Always succeeds—forces all
disconnections.

¢ Jevel level of data structure to return. It must be 1.

* buf is the pointer to the buffer user_logon_info_I or user_logoff _info_1 for return
data. See the data structures under “User Category” on page 3-382.

¢ buflen is the length of the buffer.

e totalavail is the total information available on return.

Return Codes

Manifest Value Meaning
NERR_SUCCESS 0 No errors were
encountered.
VALIDATED_LOGON 1 No errors were
encountered.
ERROR_ACCESS_DENIED 5 Administrative
privilege is required.
ERROR_NOT_ENOUGH_MEMORY 8 Sufficient memory is
not available.
ERROR_SEEK 25 The seek is invalid.
ERROR_NOT_SUPPORTED 50 This request is not
supported by the
network.
ERROR_REM_NOT_LIST 51 This remote computer
is not listening.
ERROR_INVALID_PASSWORD 86 The specified password
is invalid.
ERROR_INVALID PARAMETER 87 The specified
parameter is invalid.
ERROR_INVALID_NAME 123 There is an incorrect
character or incorrectly
formed file system
name.
ERROR_INVALID_LEVEL 124 The Level parameter is
invalid.
ERROR_MORE_DATA 234 Additional data is

3-232 LAN Server Application Programmer’s Reference

available, but the
buffer is too small.

Manifest

Value

Meaning

NERR_NetNotStarted

NERR_ShareMem

NERR_NoNetworkResource

NERR_RemoteOnly

NERR_BufTooSmall

NERR_OS2IoctiError

NERR_NetworkError

NERR_WkstaNotStarted

NERR_BrowserNotStarted

NERR_InternalError

NERR_BadTransactConfig

NERR_InvalidAPI

NERR_AlreadyLoggedOn
NERR_NotLoggedOn

NERR_BadUsername

NERR_BadPassword

NERR_UnableToAddName W

2102

2104

2105

2106

2123

2134

2136

2138

2139

2140

2141

2142

2200

2201

2202

2203

2204

The redirector
NETWKSTA .EXE has
not been started.

An internal error
occurred—the network
cannot access a shared
memory segment.

A network resource
shortage occurred.

This operation is not
supported on
workstations.

The buffer is too small
for fixed-length data.

An internal error
occurred when calling
the workstation driver.

A general network
error has occurred.

The Requester service
has not been started.

The requested
information is not
available.

An internal error has
occurred.

The server is not
configured for
transactions.

The requested API is
not supported on the
remote server.

This workstation is
already logged on.

This workstation has
not been logged on yet.

The user name or
group name parameter
is invalid.

The password
parameter is invalid.

The logon processor
did not add the
message alias.

Chapter 3. API Function Descriptions 3-233

Manifest

Value

Meaning

NERR_UnableToAddName_F

NERR_UnableToDelName W

NERR_UnableToDelName_F

NERR_LogonsPaused

NERR_LogonDomainExists

NERR_UserNotFound

NERR_NotPrimary

NERR_ACFNotLoaded

NERR_ACFFileIOFail

NERR_PasswordTooShort
NERR_InvalidDatabase

NERR_NameNotFound

NERR_AlreadyExists

NERR_TooManyNames

NERR_DuplicateName

NERR_DeleteLater

NERR_InvalidComputer

3-234 LAN Server Application Programmer’s Reference

2205

2206

2207

2209

2216

2221

2226

2227

2229

2245

2247

2273

2276

2277

2297

2298

2351

The logon processor
did not add the
message alias.

The logoff processor
did not delete the
message alias.

The logoff processor
did not delete the
message alias.

The network logons
are paused.

There is already a
logon domain for this
computer.

The user name cannot
be found.

The UAS database is
replicant and will not
allow updates.

The UAS database has
not been started.

An error was
encountered in
accessing the accounts
database.

The password is
shorter than required.

The UAS database file
is corrupted.

The message alias
cannot be found on the
local area network.

This message alias
already exists locally.

The maximum number
of added message
aliases has been
exceeded.

A duplicate message
alias exists on the local
area network.

This message alias will
be deleted later.

The specified computer
name is invalid.

Manifest Value Meaning
NERR_ActiveConns 2402 Active connections still
exist.
NERR_LastAdmin 2452 The last administrator
cannot be deleted.
NERR_LogonTrackingError 2454 Unable to set logon
information for this
user.
NERR_NetLogonNotStarted 2455 The Netlogon service
has not been started.
NERR_CanNotGrowUASFile 2456 It is not possible to

grow the UAS file.

Other error return codes may be returned from the following OS/2 functions:

DosAllocSeg

DosChgFilePtr

DosFsRamSemClear

DosFreeSeg

DosFsCtiINETTRANSACTION)
DosFsCtiINIOCGETUSERNAME)
DosFsCti(NIOCSETUSERNAME)
DosFsCti(NULLTRANSACT)
DosFsCtl(NetGetRdrAddr)
DosGetShrSeg[-ERROR_FILE_NOT_FOUND]
DosNewSize[-ERROR_DISK_FULL]
DosQFilelnfo

DosRead

DosSemClear

DosWrite

int2F[2F_NetSetUserName]/*DOS only*/
redir.GetBiosInfo[-ERROR_NO_MORE_FILES]
redir. NIOCBiosOpen

redir. NIOCGetUserName

redir. NIOCSetUserName.

Chapter 3. API Function Descriptions

3-235

Remarks
The NetWkstaSetUID2 function performs a range of duties, assisted by. internal
calls. It returns a structure with information about the logon (user_logon_info: 1) or
the logoff (user_logoff_info_1).

If a user name is already logged onto the requester (UID already in effect),
NetWkstaSetUID2 takes the action specified in ucond—either failing or forcing the -
user to log off.

A NULL user name is interpreted as a network logoff.

If the user’s logon is invalid, the API returns ERROR_ACCESS_DENIED. The
usrlogl_code code field in the user_logon_info_I data structure is valid even when the
API returns ERROR_ACCESS_DENIED. The other fields are valid only when the
return code is Validated Logon.

The values of the usrloglcode fields can be as follows:

Manifest Meaning
NERR_Success No errors were encountered.
NERR_PasswordExpired The user has an account, but the user’s

password has expired. No other
conditions of logon have been checked.

NERR_InvalidWorkstation The user was attempting to log on from
an invalid requester.

NERR_InvalidLogonHours: The user was attempting to log on at an
invalid time.

ERROR_ACCESS_DENIED Some condition of logon has not been
met.

NERR_StandaloneLogon No domain controller could be found to

validate the user. Script processing was
not performed.

NERR_NonValidatedLogon The logon server could not validate the
logon request.

NERR_LogonScriptError An error occurred while processing
logon script.

The following table defines the other fields that are valid in the user_logon_info_1
data structure for each code listed in the previous table:

Error Returned from Manifest Logon Valid
NetWkstaSetUID2 . Fields
NERR_Success NERR_Standalone None
NERR_UnableToAddName_ W NERR_NonValidatedLogon Computer
name,
Script
path
NERR_Success All

3-236 LAN Server Application Programmer’s Reference

Error Returned from Manifest Logon Valid
NetWkstaSetUID2 Fields
ERROR_ACCESS_DENIED NERR_PasswordExpired None
NERR_InvalidWorkstation None
NERR_InvalidLogonHours None
NERR_LogonScriptError None
ERROR_ACCESS_DENIED(**) None
All other errors None. Code is meaningless None

(**) For no account, account disable, and account expired, the password does not
match.

The following table defines fields for logging off:

Error Returned from Manifest Logon Valid
NetWkstaSetUID2 Fields
NERR_SuccesS NERR_StandaloneLogon None
NERR_UnableToDelName_W NERR_NonValidatedLogon None
NERR_Success All
All other errors None. Code is meaningless None

The ucond parameter has meaning only when the API is called to log someone off.
These meanings are as follows:

Related Information

Check all ucond=0 ucond =1 ucond =2 ucond =3
outstanding
conditions
1)Any drive Fail. Do no Fail. Do no Fail. Do no Force
current disconnects. disconnects. disconnects. disconnect
succeed.
2) Any drive Fail. Do no Fail. Do no Force closed, Force closed,
disconnects. disconnects. succeed. succeed.
3) Any in use Fail. Do no Disconnect, Disconnect, Disconnect,
(net use..) disconnects. Unuse, Unuse, Unuse,
succeed. succeed. succeed.
4) Anything Disconnect Disconnect Disconnect Disconnect
dormant and succeed. and succeed. and succeed. and succeed.

For information on configuring the local requester, see “NetWkstaSetInfo” on

page 3-227.

Chapter 3. API Function Descriptions

3-237

Serial Device Category
NetCharDevControl (admin, server, DOS)—See “NetCharDevControl” on page 3-243.

NetCharDevEnum (admin, server, DOS)—See “NetCharDevEnum” on page 3-246.
NetCharDevGetInfo (server, DOS)—See “NetCharDevGetInfo” on page 3-248.
NetCharDevQEnum (server, DOS)—See “NetCharDevQEnum” on page 3-251.
NetCharDevQGetInfo (server, DOS)—See “NetCharDevQGetInfo” on page 3-254.
NetCharDevQPurge (admin, server, DOS)—See “NetCharDevQPurge” on page 3-257.

NetCharDevQPurgeSelf (server, DOS)—See “NetCharDevQPurgeSelf” on
page 3-260.

NetCharDevQSetInfo (admin, server, DOS)—See “NetCharDevQSetInfo” on
page 3-263.

The functions in the Serial Device category control shared serial devices and their
associated queues. They are used with the CHARDEV.H and NETCONS.H include
files.

Description
In order for an application to communicate with a device such as a serial printer, the
application must be able to communicate directly and interactively. The
communication must allow commands to be submitted dynamically and protocols to
be changed as the application executes. The OS/2 LAN Requester/Server software
defines these types of communication devices as serial devices. This definition is not
limited to devices attached to a hardware serial ports.

The OS/2 LAN Requester/Server software can pool serial devices of the same type
into a serial device queue to which a requesting application makes its connection. A
serial device queue can contain one or more serial devices and simultaneously allow
multiple applications to individually connect to one of the available serial devices.
Serial device queues can pool serial devices only on a server.

Before an application can communicate with a serial device, the following must
occur:

¢ The server must have a serial device connected to one of its available LPT or
COM ports.

¢ A serial device queue must be created and shared on the network.

* A requesting application must explicitly redirect a local or NULL device name
to the shared serial device queue by calling NetUseAdd, or implicitly open the
serial device queue by calling DosOpen.

Note: S