
o S / 2 PROGRAMMER'S

PROG......c

0

----'

CJ

I'N

I-

L..L.J

a...

UJ

L..L.J

----'

0::

«
::J::

c....J

.0 0

PROGRAMMING
THE OS/2
PRESENTATION
MANAGER

• • •
OS/2 PROGRAMMER'S LIBRARY

• • • • •

I ·
·
· . .
• • • • •

·
• • • • •

PROGRAMMING
THE OS/2
PRESENTATION
MANAGER

®

The MicrosoftlY Guide to Writing Applications for
the OS/2 Graphical Windowing Environment

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1989 by Charles Petzold
All rights reserved. No part ofthe contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Petzold, Charles, 1953-
Programming the OS/2 Presentation Manager.
Includes index.
1. OS/2 (Computer operating system) 2. Presentation Manager (Computer program)
3. Computer graphics. 4. C (Computer program language) I. Title.
QA 76.76.063P53 1989 005.4'469 88-27368
ISBN 1-55615-170-5

Printed and bound in the United States of America.

23456789 MLML 5432109

Distributed to the book trade in the United States
by Harper & Row.

Distributed to the book trade in Canada by General
Publishing Company, Ltd.

Distributed to the book trade outside the United States
and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
IBM® and PC/AT® are registered trademarks of International Business Machines Corporation.

Project Editor: Megan E. Sheppard Technical Editor: Mary B. Ottaway

Contents

Preface vii

SECTION ONE BASIC CONCEPTS

CHAPTER ONE OS/2 and the Presentation Manager 3

CHAPTER TWO Welcome to Presentation Manager
Programming 13

CHAPTER THREE More Fun with Windows 59

SECTION TWO PAINTING THE CLIENT WINDOW

CHAPTER FOUR An Exercise in Text Output 99

CHAPTER FIVE The Five GPI Primitives 153

CHAPTER SIX Bitmaps and Bitblts 235

CHAPTER SEVEN Advanced VIO: The Easy Way Out 291

SECTION THREE GETTING INPUT

CHAPTER EIGHT Tapping into the Keyboard 335

CHAPTER NINE Taming the Mouse 387

CHAPTER TEN Setting the Timer 437

CHAPTER ELEVEN Control Windows: Putting the
Children to Work 473

SECTION FOUR USING RESOURCES

CHAPTER TWELVE Bitmaps, Icons, Pointers, and Strings 527

CHAPTER THIRTEEN Menus and Keyboard Accelerators 571

CHAPTER FOURTEEN Dialog Boxes 619

SECTION FIVE MISCELLANEOUS TOPICS

CHAPTER FIFTEEN Cut, Copy, and Paste: The Clipboard 685

CHAPTER SIXTEEN Dynamic Link Libraries 731

CHAPTER SEVENTEEN Multithread Programming Techniques 775

Index 823

Preface

This book covers the basics of programming in C for the Presentation Man
ager, the graphical windowing environment included in OS/2 version 1.1.
The Presentation Manager combines a powerful protected mode multitask
ing operating system (OS/2) with the application architecture and user inter
face of Microsoft Windows version 2 and a sophisticated graphics system
from IBM.

The OS/2 Presentation Manager runs on IBM (and compatible) pes and
PS/2s that are based on the Intel 80286 and 80386 microprocessors. Although
the Presentation Manager was designed for OS/2, IBM intends to port it to
its minicomputers and mainframes, and Microsoft has announced plans to
help port the Presentation Manager to run under UNIX.

I'm writing this preface just 37 days after OS/2 1.1 was officially released.
Yet it already seems likely that the Presentation Manager will be the domi
nant application environment for small computers in the 1990s. Program
mers, of course, will be responsible for writing these applications. The
purpose of this book is to help aspiring Presentation Manager programmers
get started in that job.

My Assumptions About You
I assume that you know how to program in C. If you don't, programming
for the OS/2 Presentation Manager is probably not a good place to begin. I
suggest you learn C programming for a more conventional environment
such as the OS/2 kernel or DOS. You should have a comfortable familiarity
with C pointers and structures, as well as an understanding of the concepts
of "near" and "far" as they apply to the segmented-memory architecture
of the Intel microprocessors.

I'm also assuming that you have some experience using the Presentation
Manager. If not, take some time and play around with it.

vii

I do not assume that you have any experience with programming for other
graphical windowing environments such as' the Apple Macintosh or
Microsoft Windows. Experience with these environments might help with
some of the initial conceptual hurdles, but it's not necessary.

What You'll Need
To compile and run the programs in this book, you need the following soft
ware installed on your hard disk:

• IBM OS/2 1.1 (if you have an IBM PC or PS/2) or a version of MS OS/2 1.1
available from the manufacturer of your computer

• The Microsoft OS/2 Software Development Kit, or The Microsoft OS/2

Presentation Manager Toolkit 1.1, or The Microsoft OS/2 Presentation
Manager Softset

• The Microsoft C Compiler, version 5.1 (or later)

In addition, two of the programs shown in this book require the Microsoft
Macro Assembler, version 5.1, but you can skip these programs if you want.

Both the Microsoft OS/2 Software Development Kit and the Microsoft OS/2

Presentation Manager Toolkit 1.1 have the header files you'll need for Pre
sentation Manager programming, as well as the OS2.LIB import library, the
resource compiler, development utilities such as ICONEDIT and DLGBOX,
and technical documentation. Although Programming the OS/2 Presentation
Manager shows you how to use many of the Presentation Manager function
calls, it is not a replacement for the official technical documentation. Note
that the Microsoft OS/2 Presentation Manager Softset contains all of the
software listed above, but it does not contain technical documentation. You
can purchase the technical documentation from Microsoft Press (Microsoft
OS/2 Programmer's Reference. Microsoft Press, 1989).

You should be able to write and compile programs using the IBM OS/2 Pro
grammer's Toolkit 1.1, the IBM C/2 Compiler 1.1, and the IBM OS/2 Techni
cal Reference 1.1, but having not seen these packages, I can't verify this.
Eventually, C compilers from other manufacturers will be suitable for
compiling Presentation Manager programs. Check with the compiler
manufacturer.

The hardware you'll need to run these programs is the same hardware you
need to run OS/2 1.1. In addition, you should have a mouse. Although the
Presentation Manager does not require a mouse, some of the programs in
this book do.

viii PROGRAMMING THE OS/2 PRESENTATION MANAGER

Installing the C Compiler
The sample programs in this book generally use small model (that is, the
.EXE files are compiled and linked to contain one code segment and one
data segment). The "make files" for these sample programs assume that the
OS/2 C run-time library for small model is named SLIBCE.LIB.

If You've Already Installed the Compiler
If you have already installed Microsoft C 5.1 for both OS/2 and DOS, the in
stalled run-time libraries might be named SLIBCEP.LIB (for OS/2 protected
mode) and SLIBCER.LIB (for real mode DOS). This is the default when
you install the compiler for both OS/2 and DOS. In this case, rename
SLIBCEP.LIB to SLIBCE.LIB.

It's also conceivable that when you installed Microsoft C 5.1 for OS/2 and
DOS, you specified that you wanted to use the default library names for
DOS. In this case, the installed run-time libraries are named SLIBCEP.LIB
(for OS/2) and SLIBCE.LIB (for DOS). Rename SLIBCE.LIB to
SLIBCER.LIB, and rename SLIBCEP.LIB to SLIBCE.LIB.

If you have already installed Microsoft C 5.1 and you know that your
SLIBCE.LIB file is the OS/2 run-time library (rather than the DOS run-time
library), you're in good shape.

If You're Installing for the First Time
If you are installing Microsoft C 5.1 for the first time, run the SETUP pro
gram included with the compiler. The second screen you see will ask you to
make a number of decisions. You can choose the minimum configuration of
Microsoft C 5.1 required to compile the programs in this book by accepting
the defaults of five of the lines on this screen. You can handle the others as
you wish. The important defaults are

• Build combined libraries.

• OS/2 Protect Mode libraries only.

• Emulator math library.

• Small memory model.

• Use default library names for the OS/2 libraries.

This configuration builds a small-model C run-time library for OS/2 named
SLIBCE.LIB. Another question you're asked during the setup procedure is
whether or not to delete the library components. You can answer "Yes."

PREFACE ix

If you prefer to install Microsoft C 5.1 for both OS/2 and DOS, you can do
so. You should specify that you want to use the default library names for the
OS/2 libraries but do not want to use the default library names for the DOS
libraries. In this case, the OS/2 run-time library is named SLIBCE.LIB, and
the DOS run-time library is named SLIBCER.LIB.

Some programs and dynamic link libraries in the last two chapters of this
book do not use small model. These programs use special large-model li
braries that are designed for multithread programs and dynamic link librar
ies. These libraries are always installed when you install Microsoft C 5.1
for OS/2, so you needn't do anything special to get them.

Other Books of Interest
The OS/2 Presentation Manager is a very large system that includes about
500 function calls in addition to the 240 functions in OS/2 1.0. I cannot pre
tend to cover them all in this book. In particular, my coverage of the
Graphics Programming Interface (GPI) component of the Presentation
Manager is restricted to the basics. A second book has been planned, and it
will be dedicated to an in-depth discussion of GPI.

Before OS/2 1.1 there was OS/2 1.0, which is sometimes called the OS/2
kernel. Some of the programs in this book use OS/2 kernel functions.
Although I discuss these functions when necessary, you can find much more
information about the OS/2 kernel in Ray Duncan's Advanced OS/2 Pro
gramming (Microsoft Press, 1989).

Inter-Programmer Communication
If you'd like to get in touch with me, I can be reached through CompuServe
(72241,56) or MCI Mail (CPETZOLD or 143-6815).

I can also frequently be found in the Programming forum of PC MagNet,
PC Magazine's information service available on CompuServe. To use this
service, just type go pcmagnet at a CompuServe prompt and follow the
menus to the Programming forum.

x PROGRAMMING THE OS/2 PRESENTATION MANAGER

And Many Thanks
Programming the OS/2 Presentation Manager was begun in August 1987 (at a
time when the Presentation Manager was barely functional) and was fin
ished in early December 1988, about five weeks after the product had been
officially released.

This book would have been impossible to produce without the help of some
very fine people. I want to thank everyone at Microsoft Press who worked
on the book during these 16 months, all of whom bore with me as the chap
ters and sample programs went through several series of revisions.

A number of people at Microsoft also helped in various ways, by answering
questions, tracking down problems, offering suggestions and encourage
ment, pointing out the existence of a very useful function call that I had
overlooked, or telling me I was doing something completely wrong. In al
phabetic order, they are Steve Ballmer, Larry Barello, Mark Cliggett, Lori
Hoerth, Doug Hogarth, Michael Hyman, Lionel Job, Neil Konzen, Jonathan
Lazarus, Mike Leu, Mark Mackaman, Ron Murray, Tony Rizzo, Manny
Vellon, and Ralph Walden. Thank you all very much.

I'd also like to congratulate everyone else at IBM and Microsoft involved in
the design, development, and programming of the OS/2 Presentation Man
ager. You did a great job, and you did it by October 1988.

And many thanks to Jan and the Friday evenings that were my only refuge
from the world of windows, messages, and presentation spaces.

Char les Petzold
December 7, 1988

PREFACE xi

Special Offer
Companion Disk to

PROGRAMMING THE OS/2 PRESENTATION MANAGER

Microsoft Press has created companion disks for PROGRAMMING THE OS/2
PRESENTATION MANAGER: 5.25-inch format (one high density disk) and
3.5-inch format (two low density disks). The disk(s) contain over 300 files from
the book, which consist of the C source files, the MAKE files for compiling and
linking the programs, as well as the other necessary support files. They also in
clude the executable files for all programs in the book. And, the use of code frag
ments from the companion disks used for commercial or personal use does not
infringe on the copyright of the book. So, save time, avoid those inevitable typ
ing errors, and start using the source code in your programs right away!

If you have questions about the files on the disk, you can contact Charles
Petzold via CompuServe (user ID 72241,56) or MCI Mail (user name
CPETZOLD or 143-6815).

The Companion Disk to PROGRAMMING THE OS/2 PRESENTATION
MANAGER is available only from Microsoft Press.

Domestic Ordering Information:

To order, use the special reply card bound in the back of the book. If the
card has already been used please send $29.95, plus sales tax if applicable
(CA residents 5% plus local option tax, CT 8%, FL 6%, IL 5%, KY 5%, MA 5%,
MN 6%, MO 4.425%, NJ 6%, NY 4% plus local option tax, SC 5%, TX 6% plus
local option tax, WA state 7.8%), and domestic postage and handling charges:
$5.50 per disk set. Send your order to: Microsoft Press, Attn: Companion Disk
Offer, 21919 20th Ave S.E., Box 3011, Bothell, WA 98041-3011. Please specify
5.2S-inch or 3.5-inch format. Payment must be in U.S. funds. You may pay by
check or money order (payable to Microsoft Press) or by American Express,
VISA, or MasterCard; please include both your credit card number and the.
expiration date. Please allow 2 - 3 weeks for delivery.

Foreign Ordering Information (within the U.K., see below):

Please follow ordering procedures for domestic order and add $7.00 for
foreign postage and handling.

U.K. Ordering Information:

Send your order in writing along with £27.95 (including VAT) to:
Microsoft Press, 27 Wrights Lane, London W8 5TZ. You may pay by check or
money order (payable to Microsoft Press) or by American Express, VISA,
MasterCard, or Diners Club; please include both your credit card number and the
expiration date. Please specify 5.25-inch format or 3.5-inch format.

If any of these disks prove defective, please send them along with your
packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th Way, Box
97017, Redmond, WA 98073-9717.

SECTION ONE

I

BASIC
CONCEPTS

·
• • • • •

·
·
• • • • •

·
·
·
·

C HAP T E RON E

OS/2 AND THE
PRESENTATION
MANAGER

The Presentation Manager is the primary application environment under
OS/2. Programs designed to run under the OS/2 Presentation Manager share
the video display with other programs in a graphical windowing environ
ment. Presentation Manager programs are characteriz~d by a consistent user
interface involving menus, dialog boxes, scroll bars, and other visual de
vices that are accessible through either the keyboard or a pointing device
such as a mouse. Users generally find such an interface to be easily learned
and even mastered. Figure I-Ion the following page shows several pro
grams from this book running under the Presentation Manager.

The Presentation Manager user environment is reminiscent of systems de
veloped at the Xerox Palo Alto Research Center (PARe) in the 1970s and
early 1980s. In recent years, windowing environments have been pop
ularized by the Apple Macintosh and, under MS-DOS, by Microsoft Win
dows. The user interface of the OS/2 Presentation Manager is the same
interface used in Windows 2.0, Windows/286, and Windows/386.

For the program developer, the Presentation Manager has an extensive ap
plication program interface (API) that includes many high-level functions
for creating windows and implementing the user interface. This API is
largely derived from Microsoft Windows; although the two systems aren't
exactly the same, they have many structural and conceptual similarities.
The OS/2 Presentation Manager also includes the Graphics Programming
Interface (GPI), a sophisticated graphics system adapted from IBM's
Graphics Data Display Manager (GDDM) and the 3270 Graphics Control
Program (GCP), with some elements inherited from the Windows Graphics

3

_~I'fr
Welcome to the OS/2 Presentation Manager

==0 LlFE.EXE .() 'fr ==01 ClOCK FXF 1 ~ 1 'fr
Cell-Size Start! S~(l~l! SteR! Clear!

.. ", ... ~ ... ~

Generation 80 r~\
.... /'

•

• • • ==01 HEXCALC.EXE I'(} • • ••• • • • • (8985) • • • 0CD080
0®00m ==0 ORGAN.EXE .() 'fr 0000CJ

I ICNIDN FN IGN AN CNIDN FN 00000 l ClD E FlGIA 8 C DIE F GI

IGNIAN eNIDN FN GNIAN CN CD00®0
IA B clDIE F GIAIB C 0~(EqUals)

Figure 1-1. An OS/2 Presentation Manager screen.

Device Interface (GDI). Because the Presentation Manager runs under OS/2,
programs designed for the environment can also take advantage of preemp
tive, priority-based multitasking, 16 megabytes of physical memory, virtual
memory management, and interprocess communication.

This book shows you how to write programs for the OS/2 Presentation Man
ager. If you have some experience programming for Microsoft Windows or
the Apple Macintosh, you're in good shape. But if your programming ex
perience is limited to more conventional operating systems (such as MS
DOS, the OS/2 kernel, or UNIX), you need to put aside your preconceptions
of how programs work and brace yourself for some strange ideas. We're off
on a voyage to a new world.

The Big Picture
Developed by Microsoft and IBM as a successor to MS-DOS, OS/2 is an
operating system for small computers based on the Intel 80286 and 80386

microprocessors. OS/2 uses the protected mode of the 80286 microprocessor
to unleash the 16MB address space of the 80286 and implement efficient and
safe multitasking.

The introduction of OS/2 is a critical turning point for the entire industry
that has grown up around the IBM Pc. MS-DOS has proved unable to satisfy
the growing needs of users and program developers. To be tolerable,

4 SECTION ONE: BASIC CONCEPTS

MS-DOS now requires various add-on kludges such as bank-switched
memory or control programs based on the virtual-8086 mode of the 80386
microprocessor. OS/2 and the Presentation Manager give the IBM PC indus
try the opportunity to pull free of the MS-DOS quagmire and take a major
step forward. Some people at Microsoft say that OS/2 will establish the
foundations of PC operating systems for the next decade. That's a gutsy pre
diction. But considering that MS-DOS has lasted seven years already, it's
really not so difficult to believe.

The OS/2 Kernel
The initial version of OS/2 (OS/2 1.0), often called the OS/2 kernel, has been
available to programmers since June 1987. Microsoft released version 1.0 to
original equipment manufacturers (OEMs) in December 1987, and IBM
released it for retail sale the same month.

The OS/2 kernel is a traditional environment for both users and program
mers. The command line interface and most internal and external com
mands have been inherited from MS-DOS. From the programmer's
perspective, the functionality of the kernel resembles MS-DOS, UNIX, and
traditional minicomputer operating systems. The kernel handles file I/O,
memory management, and multitasking. The API includes facilities for key
board and mouse input and a fast full-screen character-mode video I/O
(VIO) system.

The OS/2 kernel supports multiple full-screen sessions (sometimes also
called "screen groups"). Each session runs one or more processes that use
the video display in either a teletype or full-screen fashion. A user can
switch between sessions by pressing the Alt-Esc key combination. One ses
sion is the MS-DOS compatibility mode session, which uses the real mode
of the 80286 microprocessor to run most existing programs written for
MS-DOS.

The OS/2 Presentation Manager
The Presentation Manager is part of OS/2 version 1.1, released in the last
quarter of 1988. In OS/2 1.1, one session runs in a graphics mode and is
devoted to the Presentation Manager. All Presentation Manager applica
tions (as well as a Task Manager and Start Programs window that are part
of the Presentation Manager shell) run in this session. The addition of the
Presentation Manager to OS/2 requires little in the way of changes to the
OS/2 kernel. Instead, the Presentation Manager is basically a collection of
dynamic link libraries (.DLL files) that extend the functionality of OS/2 to
include window management and graphics.

CHAPTER ONE: OS/2 AND THE PRESENTATION MANAGER 5

Although the Presentation Manager session is primarily for Presentation
Manager programs, many programs written for the OS/2 kernel can also run
in "text windows" in this session. However, these programs can't use
graphics or take advantage of menus, dialog boxes, and other aspects of the
user interface. OS/2 kernel programs that write directly to the video display
or that install video, keyboard, or mouse subsystems are prohibited from
running under the Presentation Manager. These programs must continue to
run in their own sessions.

Freedom of Choice
Programmers have a choice of developing applications for either the OS/2
kernel or the OS/2 Presentation Manager. Each environment has distinct ad
vantages and disadvantages.

For some applications, the OS/2 kernel is obviously preferable. For ex
ample, an existing MS-DOS character-mode text editor or word processor
that is known for its speed should probably be ported to the OS/2 kernel
rather than to the Presentation Manager. Because the Presentation Manager
runs in a graphics mode, a Presentation Manager version of the program
will run more slowly with existing video display adapters. The kernel is
also a better choice for developers who have designed a unique and well
known user interface for their MS-DOS programs and feel reluctant to
abandon it.

Developers who want to port their MS-DOS programs to OS/2 as quickly as
possible will find the kernel to be an easier path. Presentation Manager pro
grams are more difficult to develop and debug than traditionally structured
programs. Porting an existing MS-DOS program to the Presentation Man
ager often requires turning the program inside out to accommodate the Pre
sentation Manager architecture.

But for many sophisticated applications - particularly those that use
graphics - the Presentation Manager is clearly the better environment.
Let's see why.

The Graphical Environment
The proof is in the programs. Two of the more interesting MS-DOS applica
tions released in the past couple of years are Microsoft Excel and Aldus
PageMaker, both of which run under Microsoft Windows. That both of
these programs were originally developed for the Apple Macintosh indi
cates how a graphical windowing environment can inspire program devel
opers to create a radically new and exciting variation of an older concept (in
the case of Microsoft Excel) and even to create a whole new class of

6 SECTION ONE: BASIC CONCEPTS

software (in the case of PageMaker). The graphical environment of the Pre
sentation Manager is rich in functionality - programs can use graphics and
formatted text to convey a high density of information to the user.

A traditional program gets user input from the keyboard and displays output
to the screen. But with the addition of a mouse, the screen itself becomes a
potential source of user input. Logic within the Presentation Manager as
sists the application in obtaining user input from various controls on the
screen, such as menus, scroll bars, buttons, and dialog boxes. The interac
tion between the mouse and the screen narrows the gap between user
and program.

The Consistent User Interface
Because the menu and dialog box interface is built into the Presentation
Manager rather than into each individual application, the interface is consis
tent across applications. This means that a user with experience with one
Presentation Manager program (or with Microsoft Windows) can easily
learn a new Presentation Manager program. For example, the first time I
saw a beta version of Microsoft Excel for Windows, I had no documenta
tion, no help files, and no experience with the Macintosh version of
Microsoft Excel. But I did have experience with other Windows programs. I
knew how the menus and dialog boxes worked, and I was able to quickly
learn much of Microsoft Excel solely by experimentation.

Some people fear that a system such as the Presentation Manager will lead
to an undesirable uniformity of programs. Every program will look like ev
ery other program, they say, and designer creativity will be inhibited. To
counter this view, the best examples are, again, PageMaker and Microsoft
Excel. Although the menus and dialog boxes are certainly the most obvious
aspects of the user interface, much more important interaction between the
user and program occurs within the window itself. The programmer is lib
erated from worrying about the mundane aspects of the user interface and is
free to spend more time where it really counts.

Device-independent Graphics
The IBM PC was designed around the principle of open architecture. Third
party manufacturers have responded to this fact by developing many differ
ent-and often incompatible-graphics output devices. Under MS-DOS,

program developers have faced the problem of writing their own device
drivers for the CGA, the Hercules Graphics Card, the EGA, and the VGA, as
well as for a number of high-resolution video adapters. The problem of
printers is even worse: Some MS-DOS word-processing packages include
one or two disks containing nothing but small files, each supporting a dif
ferent printer.

CHAPTER ONE: OS/2 AND THE PRESENTATION MANAGER 7

With the Presentation Manager, this all goes away. The Graphics Program
ming Interface (GPI) of the Presentation Manager is device independent. An
application need not identify the output device in order to use it. If a Presen
tation Manager driver exists for the output device, then all Presentation
Manager programs can use the device. This also helps to protect programs
from obsolescence. Video technology is advancing very quickly, but Pre
sentation Manager programs written today will run without change on the
video adapters of the future.

The SAA Future
Aside from their important role in OS/2, the Presentation Manager user in
terface and API are also part of IBM's ambitious Systems Application Ar
chitecture (SAA). SAA attempts to correct a historical weakness in IBM's
line of computers and operating systems by setting user interface and API
standards. The Presentation Manager is one of the first products to be a part
of SAA. If the goals of SAA come to pass, then the Presentation Manager
user interface will become a common sight on IBM minicomputer and
mainframe terminals. Just as important for the program developer, it may
one day be possible to write a Presentation Manager program in a high-level
language and compile it to run on a variety of computers frorr... the IBM AT
to the IBM 370.

Of course, this isn't going to happen next month or even the month after
that. Porting Presentation Manager programs to other operating systems in
volves problems that PC programmers usually don't need to worry about
(such as filenames over 12 characters in length) and problems PC program
mers usually wish they didn't need to worry about (such as the segmented
architecture of Intel microprocessors). Nonetheless, SAA indicates the po
tential importance of the Presentation Manager in the future of the personal
computer and the not-quite-personal computers as well.

Presentation Manager Programming
At first glance, a typical Presentation Manager program seems to be written
in an unfamiliar programming language. The programs are full of upper
case identifiers and variable types, strange-looking variable names, nested

I

switch statements, and many calls to Presentation Manager functions. Those
odd-looking Presentation Manager programs are usually written in C.
Although it is possible to use other languages, C will probably remain the
preferred language for Presentation Manager programming, largely be
cause of its flexibility in pointer and structure manipulation. If you don't
know C, programming for the Presentation Manager is probably not a good

8 SECTION ONE: BASIC CONCEPTS

place to start learning the language. I recommend you learn C by program
ming for a more traditional environment, such as the OS/2 kernel. If your C
is a little rusty, brushing up on structures and pointers is a must.

The Header Files
C programs for the Presentation Manager require the use of header files
supplied with the Microsoft OS/2 Programmer's Toolkit. These are the
header files used in OS/2 kernel and Presentation Manager programs:

Header File

OS2.H
OS2DEF.H
BSE.H
BSEDOS.H
BSESUB.H
BSEERR.H
PM.H

PMWIN.H
PMSHL.H
PMGPI.H
PMDEY.H
PMAVIO.H
PMSPL.H

Description

Includes OS2DEF.H, BSE.H, and PM.H
Common type and macro definitions
Includes BSEDOS.H, BSESUB.H, and BSEERR.H
Dos functions and structures
Via, Mou, and Kbd functions and structures
Dos, Via, Mou, and Kbd error codes
Includes PMWIN.H, PMGPI.H, PMDEY.H, PMAVIO.H, and

PMSPL.H
Most Win functions and structures; and includes PMSHL.H
Win functions for session manager shell
Gpi functions and structures
Dev functions and structures
Via functions for Advanced VIO interface
Spl functions and structures

These header files are an important part of Presentation Manager documen
tation. You'll want to print out a copy for reference.

Many Presentation Manager functions require numeric constants as
parameters. You rarely need to remember the actual values of these con
stants, because the header files contain hundreds of #define statements that
define identifiers for the constants. These identifiers are in uppercase letters.
Most begin with a two-letter, three-letter, or four-letter prefix that indicates
a general group of identifiers. The header files also define identifiers for
most of the data types you use in your Presentation Manager programs, as
well as numerous data structures used in passing information between the
application and the Presentation Manager. I'll discuss these as we encounter
them in the chapters ahead.

Programmers working with the Presentation Manager often find helpful a
convention for naming variables that is known as "Hungarian notation," in
honor of its inventor, the legendary Microsoft programmer Charles
Simonyi. This convention adds a lowercase abbreviation of the data type to
the beginning of the variable name. Again, I'll discuss this system in con
text as we begin writing Presentation Manager programs.

CHAPTER ONE: OS/2 AND THE PRESENTATION MANAGER 9

All OS/2 and Presentation Manager functions available to an application
are declared in the header files. These function declarations provide type
checking during compilation. In some cases, the function templates also
help with pointer conversions. For example, whenever a pointer is passed as
a parameter to an OS/2 function, it must be a far (or long) 32-bit pointer.
However, you usually don't need to explicitly cast near (or short) 16-bit
pointers to far pointers. The function template in the header file lets the
compiler do this for you.

The OS/2 functions always begin with a three-letter prefix that identifies a
large group of functions. The header files are generally organized around
these groups of functions:

Prefix

Dos
Via
Kbd
Mou
Win
Gpi
Dev
Sp/

Function Group

Kernel file I/O, memory management, and tasking
Video I/O
Keyboard input in kernel programs
Mouse input in kernel programs
Presentation Manager windowing and user interface
Presentation Manager Graphics Programming Interface
Presentation Manager device context interface
Presentation Manager print spooler

The Kbd and Mou functions aren't used at all in Presentation Manager pro
grams. Vio functions are used only in a Presentation Manager output system
called "Advanced VIO," which I discuss in Chapter 7.

Message-based Architecture
Most traditional operating systems provide a set of functions that a program
calls for various system services. That is still the case in the Presentation
Manager, but a Presentation Manager program also gets information from
the operating system in a very different way - through "messages." For
example, in an OS/2 kernel program you use Kbd and Mou functions to ob
tain keyboard and mouse input. In the Presentation Manager, a program ob
tains keyboard and mouse input through messages that the Presentation
Manager sends to the program.

But it's not only simple keyboard and mouse input that is delivered to a pro
gram in the form of messages. Messages also inform a program when a user
has selected an item from a menu, when the program's window has been
resized, and even when the program should repaint part of its window. In
fact, Presentation Manager programs are largely message-driven. A pro
gram remains dormant most of the time until it receives a message; it thus

10 SECTION ONE: BASIC CONCEPTS

does little but process messages. Coming to terms with this message archi
tecture is a major hurdle of learning to program for the Presentation Man
ager. But don't worry about understanding this architecture right off the
bat. We'll spend most of this book learning how to process messages.

A Note to Windows Programmers
If you have experience with programming for Microsoft Windows, you're
already several steps ahead of everybody else in mastering the Presentation
Manager. But don't feel too complacent. The major concepts are the same,
but the details are different. For example, right now you're familiar with a
program's "client area." In the Presentation Manager we speak instead of a
"client window." All parts of the window that are "nonclient areas" under
Windows are separate windows in the Presentation Manager.

I found it relatively easy to go from Windows programming to Presentation
Manager programming. I also found it easy (in most cases) to convert exist
ing Windows programs to the Presentation Manager API. The best news for
Windows programmers, however, is that OS/2 is a more hospitable environ
ment for a windowing and multitasking system. Under MS-DOS, Windows
outclasses the operating system and has to compensate for the weaknesses
in MS-DOS. Windows is like stained-glass artwork in the wall of a log
cabin. Under OS/2, Windows (in the form of the Presentation Manager) has
finally found its proper home.

Easy or Hard?
Microsoft Windows has' the reputation of being a difficult system for pro
grammers to learn, and it's likely that the Presentation Manager will gain
the same reputation. I've already spoken of the hurdle of moving from a tra
ditional operating system to a message-based architecture. That's part of
the problem. The steep learning curve also results from the sheer bulk of
Presentation Manager function calls (about 500 of them). But what's the
alternative? Would you rather learn how to use the menu logic built into the
Presentation Manager, or would you prefer to write your own menu rou
tines? Would you rather learn how to draw circles using GPI functions, or
would you prefer to write your own circle-drawing routines and adapt them
for every video adapter and printer your program may encounter?

Out of necessity, application programs have become more complex in the
past few years, because the programs have been made easier to operate for
naive users and, at the same time, more powerful for sophisticated users. As

CHAPTER ONE: OS/2 AND THE PRESENTATION MANAGER 11

the user base expands to encompass less sophisticated users, the applica
tions, application program interfaces, and programmers .must become more
sophisticated. Program developers can no longer require users to spend
many hours reading manuals before they begin to use an application. The
application's interface must be obvious and intuitively clear. By program
ming for the Presentation Manager, you begin with an interface that is
already familiar to the user. In short, learning to program for the Presenta
tion Manager maybe hard, but it's easier than the alternative.

So enough of this. Let's start pounding out some code.

12 SECTION ONE: BASIC CONCEPTS

CHAPTER TWO

WELCOME TO
PRESENTATION
MANAGER
PROGRAMMING

Books that teach you how to program in C often begin with a "do-nothing"
program and proceed quickly to the traditional "Hello world" program.
The Presentation Manager analogue of the "Hello world" program isn't
quite as straightforward, so we'll spend this entire chapter creating it. We'll
begin with a "do-nothing" program called W and progressively build it
into a program called WELCOMEI that creates a window, displays a mes
sage in it, and (as a bonus) plays a little music.

W-The Do-Nothing Program
A Presentation Manager program is usually constructed from several files.
Figure 2-1 on the following page shows the three files that make up the
Wprogram:

• W (a make file)

• w.e (a program source code file)

• W.DEF (a module definition file)

As you will see, these three types of files are normal for all Presentation
Manager programs.

Because the W program itself does nothing interesting, we'll instead take a
moment to examine the mechanics of compiling and linking a Presentation
Manager program.

13

TheW File

11- - - - - - - - - - - - -
II W make file
1/- - - - -- - - - - - - -

w.obj : w.e
cl -e -G2 -W3 w.e

w.exe : w.obj w.def
link w. lalign:1fi, NUL, os2, W

TheW.C File

1*-----------------------------
w.e -- A Do-Nothing Program

- -*1

; n t rna i n (v 0; d)

(

return 0 ;

The W.DEF File

; W.DEF module definition file

NAME W WINDOWCOMPAT

DESCRl PTION
PROTMODE

'Welcome to PM -- Program No.1 (C) Charles Petzold. 1988'

HEAPSIZE 1024
STACKSIZE 2048

Figure 2-1. The W program.

The Make File
The first file is a "make file" named W. A make file is a text file that con
tains a series of commands to create a .EXE (executable) file from one or
more source code files.

By convention, a make file is given the same name as the program it creates
but with no extension. The MAKE.EXE program that is included with the

14 SECTION ONE: BASIC CONCEPTS

Microsoft C compiler reads this file and compares the date and time of the
"target" file (to the left of a colon) with the date and time of the "depen
dent" file or files (to the right of the colon). If any dependent file has been
changed more recently than the target file, the indented commands that fol
low are run. In the W make file, the C compiler (CL - the .EXE extension is
assumed) is run if the W.C source code file is more recent than the W.OBJ
object file. The linker (LINK - the .EXE extension is assumed) is run if
W.OBJ or W.DEF is more recent than W.EXE. Besides simplifying the crea
tion of .EXE files, the make file also serves as a form of documentation
about the program. It shows the various modules that contribute to the pro
gram and how they are combined into an executable file.

Assuming you have the OS/2 C compiler and associated files properly
installed, you can create W.EXE from W, W.C, and W.DEF by running the
MAKE program on the OS/2 CMD.EXE command line (either in a full
screen character-mode session or running in a window in the Presentation
Manager):

MAKE W

If MAKE, CL, or LINK reports errors, your system is probably not set up
correctly. You should have the OS/2 C compiler, LINK, and MAKE acces
sible through a directory listed in your PATH environment variable and the
C and OS/2 .LIB files in a directory listed in your LIB environment variable.
In particular, LINK needs to find the SLIBCE.LIB library file. (I explain in
the preface how to install Microsoft C 5.1 so that this file exists.)

Compiling
The following command line in the W make file compiles the W.C source
code file, creating the W.OBJ object code file:

cl -c -G2 -W3 w.c

The switches used in this compilation are as follows:
I,

The -c switch causes the C compiler to compile the program but not to link
it. The link is the second step in the make file.

The -G2 switch generates 80286 code during the compilation. Because the
OS/2 Presentation Manager runs only on an Int~l 80286 or 80386 micropro
cessor, you should always use this switch. It creates smaller and faster
programs.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 15

The -W3 switch stands for "warning level 3" and causes the C compiler to
display additional warning messages about potential problems in your pro
grams. This becomes particularly important when the program makes calls
to OS/2 or Presentation Manager functions. You should set as a goal that all
your Presentation Manager programs compile without any warning mes
sages when the -W3 switch is used.

Linking
If the compilation is successful, the following command in W links the
W.OBJ file to create an executable W.EXE file:

link w. /align:16. NUL. 052. w

The first parameter to LINK.EXE is the name of the W.OBJ object code file.
The .OBJ extension is assumed.

The second parameter is the name of the .EXE file. If this name isn't ex
plicitly listed (as it isn't here), LINK uses the name of the first .OBJ file and
adds a .EXE extension. The lalign:16 switch aligns segments in the .EXE file
on 16-byte boundaries. By default, LINK aligns segments on 512-byte
boundaries. For programs with small code and data segments, this switch
can appreciably reduce the size of the .EXE file.

The third parameter to LINK is the name of a map file. Specifying NUL
prevents the map file from being created.

The fourth parameter lists the names of the libraries to be linked with the
.OBJ file. (LINK also uses the C run-time library SLIBCE.LIB, but because
the C compiler embeds this name in the .OBJ file, you don't have to list it in
the LINK step.) OS2.LIB is an "import library" for OS/2 functions. This file
allows LINK to construct the .EXE file so that it contains dynamic link in
formation. When you run an OS/2 program, OS/2 uses this information in
the .EXE files to link calls to OS/2 functions within the program with the
functions themselves. Although W doesn't seem to make any OS/2 function
calls, the start-up code makes a few. The presence of these imported func
tions causes LINK to create a .EXE file in the "New Executable" format,
which is the OS/2 .EXE format.

The fifth parameter to LINK is the name of the program's "module defini
tion file," W.DEF. The .DEF extension is assumed.

16 SECTION ONE: BASIC CONCEPTS

The Module Definition File
Although it isn't strictly required for this simple do-nothing program, Pre
sentation Manager applications usually require a "module definition file."
This is a simple text file that LINK uses when constructing the program's
.EXE file. The module definition file commonly has the same name as the
program, but with a .DEF extension.

The W.DEF file shown in Figure 2-1 begins with a NAME statement. This
identifies the module as a program (rather than a dynamic link library) and
gives it a module name of W. This should be the same name as the pro
gram's .EXE file. The keyword WINDOWCOMPAT causes LINK to set a
flag in the W.EXE file. This flag tells OS/2 that although the program is not
a Presentation Manager program, it can be run in a text window within the
Presentation Manager session.

The text in the DESCRIPTION line is embedded by LINK in the header sec
tion of the .EXE file. This is an excellent place for a copyright notice or
other information about the program.

The PROTMODE keyword indicates that the program will be run only in
OS/2 protected mode. This often allows LINK to shorten the .EXE file.

The HEAPSIZE statement specifies an initial size of memory to be used for
a local heap. The local heap is located in the program's automatic data seg
ment. C library functions (such as maUoc) and some Presentation Manager
functions let you allocate memory from this heap.

The STACKSIZE statement specifies the size of the program's stack. The
recommended minimum stack size for OS/2 programs is 2 KB. The stack
size for Presentation Manager programs that create windows is 8 KB, so
we'll use a larger STACKSIZE later in this chapter.

We'll add another line to the module definition file before this chapter is
completed, but the general information shown in the W.DEF file will remain
about the same for most programs in this book.

Running W. EXE
After creating W.EXE, you can run the program in a variety of ways, most
easily by executing it from the OS/2 CMD.EXE prompt, either in a full
screen character-mode session or in a Presentation Manager window. You
can also run the program from the File System or install it to be run from
the Start Programs window. When installing it in the Start Programs win
dow, specify that it is not a Presentation Manager program. If you run
W.EXE from the File System or Start Programs window, a text window is
briefly created for it and then destroyed as the program terminates.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 17

WE - Obtaining an Anchor Block Handle
A Presentation Manager program makes many calls to Presentation Man
ager functions. But the very first Presentation Manager function that the
program must call is Winlnitialize. This function registers the program with
the system and returns the "anchor block handle." (The term "anchor
block" has origins in the mainframe world but has no significant meaning
in the context of OS/2 or the Presentation Manager.) Before the program ter
minates, it should call WinTerminate to free the anchor block handle. The
WE program in Figure 2-2 shows how this is done. WE is still basically a
do-nothing program, but it's now a do-nothing program that can use some
Presentation Manager functions.

The WE File

#- - - - - - - - - - - - - -
II WE make file
/1- - - - - - - - - - -- - -

we.obj : we.c
c1 -c -G2 -W3 we.c

we.exe : we.obj we.def
link we, /ali9n:16. NUL, os2, we

The WE.C File

/* -

WE.C -- A Program that Obtains an Anchor Block Handle
- -*/

lIinclude <os2.h>

int main (void)

hAB hab;

hab = Winlnitialize (0)

WinTerminate (hab) ;
return 0 ;

18 SECTION ONE: BASIC CONCEPTS

The WE.DEF File

; WE.DEF module definition file

NAME WE WINDOWCOMPAT

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE

'Welcome to PM -- Program No.2 (C) Charles Petzold. 1988'

1024
2048

Figure 2-2. The WE program.

You can create WE.EXE from the three files by executing

MAKE WE

You can run WE.EXE in the same way you run W.EXE. The program still
doesn't do much of anything.

In going from W to WE, the changes made to the three standard files at first
look innocuous. But you'll find when creating WE.EXE that the compilation
takes a little longer than it did previously. It's almost as if the compiler has
to digest several other files in addition to WE.C. As you'll see in the follow
ing discussion, that's exactly the case.

The Header Files
Near the top of WE.C is the preprocessor statement:

#include <os2.h>

OS2.H is a master header file that contains other #include statements for all
other OS/2 and Presentation Manager header files. All of these header files
should be located in a subdirectory listed in your INCLUDE environment
string. These header files are extremely important, and you should treat
them as primary documentation for the Presentation Manager, as I men
tioned in Chapter 1. Even for a program as simple as WE, these header files
supply function declarations and definitions of identifiers used in the pro
gram. Let's examine how the header files affect the compilation of WE.C.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 19

The WE.e program defines one variable (hab) and calls two Presentation
Manager functions, Winlnitialize and WinTerminate. These two functions are
located in the PMWIN.DLL dynamic link library that OS/2 links your pro
gram with when you run the program. The hab variable is defined within
the main function of WE.C:

HAB hab;

The data type of hab is HAB, which stands for "handle to an anchor
block." (I'll discuss what a handle is shortly.) This HAB type is defined by
a typedeJ statement in OS2DEF.H:

typedef lHANDlE HAB

The LHANDLE data type is defined like this:

typedef void far *lHANDlE ;

Thus the C compiler will treat the variable hab as a 32-bit far pointer.

The Winlnitialize and WinTerminate functions are declared in PMWIN.H:

HAB APIENTRY Winlnitialize (USHORT)
BOOl APIENTRY WinTerminate (HAB hab)

BOOL and USHORT are data types defined in OS2DEF.H:

typedef unsigned short BOOl ;
typedef unsigned short USHORT

Thus the Winlnitialize function takes an unsigned short parameter and
returns a 32-bit value of type HAB, a handle to an anchor block. The Win
Terminate function accepts an anchor block handle as a parameter and
returns an unsigned short. The program treats this return value as a BOOL,
which is a data type that is either 0 or 1.

The API ENTRY identifier is also defined in OS2DEF.H:

#define APIENTRY pascal far

This indicates that the two functions are far functions (that is, the compiler
must generate a far, or inter segment, call to these functions when compiling
the program) and that they have a "Pascal" calling sequence. Using the

20 SECTION ONE: BASIC CONCEPTS

Pascal calling sequence tells the C compiler two important facts about the
function:

• The parameters to the function are pushed on the stack from left to right,
rather than from right to left as is normal with C functions.

• The function itself adjusts the stack to remove the parameters. When the
function returns to the program, the parameters have already been
removed.

For the Intel 8086 family of microprocessors, the Pascal calling sequence is
slightly faster and more efficient than the C calling sequence. Because all
Presentation Manager functions are far functions that use the Pascal calling
sequence, they are all declared in the header files with the API ENTRY

identifier.

If you were to write WE.C without using the header files or any #define or
typedeJ statements, it would look like this:

void far * pascal far Winlnitialize (unsigned short)
unsigned short pascal far WinTerminate (void far *) ;

int main (void)

voi d far *hab

hab - Winlnitialize (0)

WinTerminate (hab) ;
return 0 ;

In one sense, this is easier to read, because it uses only data types that are
understood by the Microsoft C Compiler. However, in many ways this ver
sion is much more obscure than the version that uses the Presentation Man
ager header files.

For example, the WinTerminate function is declared in PMWIN.H as return
ing a BOOL (Boolean value), indicating that the function returns a 0 if the
function fails and a 1 if it succeeds. This fact could be important, and yet
it's not at all intuitive if the WinTerminate function is declared as returning
an unsigned short. Likewise, the return value of Winlnitialize isn't just any
old far pointer - it's a handle to an anchor block. It's not even important
for you to know that an anchor block handle is really a far pointer. All you
need to know is that it's an anchor block handle. You should use this value
only in other functions that accept an anchor block handle as a parameter,
such as WinTerminate.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 21

Although the far and pascal keywords are supported in Microsoft C, you
should keep in the back of your mind the possibility of one day recompiling
your Presentation Manager programs to run on systems other than the pc.
Because the far keyword is necessary only because of the segmented archi
tecture of the 8086 family of microprocessors, this keyword probably isn't
supported in C compilers on other systems. For this reason, many of the
more machine-specific keywords in Microsoft C are redefined with upper
case names, like this:

#define FAR far
#define PASCAL pascal

If you need to use the far or pascal keywords in your program, use these up
percase identifiers instead. This allows you to more easily port your pro
grams to another system, because you'll recompile the program with
different header files that define the identifiers as appropriate for the system.

The Proper Handling of Handles
When you program for the Presentation Manager, you're really engaged in
a form of "object-oriented programming." Many Presentation Manager
functions obtain information about an object, act on an object, or cause an
object to act on itself. A "handle" is a number that refers to an object.
Almost every Presentation Manager function call- one exception is
Winlnitialize - requires a handle as the first parameter.

NOTE: Although this requirement implies that every Presentation
Manager function acts on an object, this is really not the case. Presen
tation Manager function calls require a handle as the first parameter
because of the requirements of IBM's Systems Application Architecture
(SAA) , of which the Presentation Manager is a part. As you'll see,
some functions really don't need a handle to anything. Thesefunctions
sometimes require the anchor block handle as the first parameter.

The concept of a handle shouldn't be new to you. If you've done assembly
language programming under MS-DOS or the OS/2 kernel, or if you've ever
used the C file I/O functions open, read, write, and close, you're familiar
with file handles. Under the OS/2 kernel, a program can obtain a file handle
from the DosOpen function call. The open file is an object. The file handle
refers to this object. You use the handle when calling Dos Read, DosWrite, or
other functions that act on the open file. You eventually close the file using
Dos Close. After the DosClose call, the file handle is invalid. Although the

22 SECTION ONE: BASIC CONCEPTS

file handle is a number, the actual value of the handle returned from
DosOpen isn't important to your program. The value of the file handle is
meaningful only to the OS/2 kernel. Obviously, the OS/2 kernel maintains a
table of open files, and the file handle somehow references that table. But
your program doesn't need to know tbis. OS/2 hides this data from your
program.

The handles you use in the Presentation Manager are similar to file handles.
But in the Presentation Manager almost everything has a handle. Before
we're finished with this chapter, we'll have encountered a number of them:

• Anchor block handles

• Message queue handles

• Window handles

• System mouse pointer handles

• Presentation space handles

Every handle is obtained from a Presentation Manager function. You save
the handle in a variable. You then use this handle in other Presentation
Manager functions. At some point, you usually call a function that destroys
the resources connected with the handle. At that time the handle becomes
invalid.

Most handles are 32 bits long, but some are 16 bits long. Often, handles are
actually addresses to structures that are maintained internally by the Pre
sentation Manager. But your program doesn't access these structures di
rectly. You don't even have to know which handles are 32 bits long and
which are 16 bits long, because you use the data types defined in the header
files (such as HAB) to define variables to store the handles.

A handle with a value of 0 is called a NULL handle. (NULL is defined in
OS2DEF.H as 0.) Just as in C programming, where a NULL pointer is often
an invalid pointer, in Presentation Manager programming a NULL handle
returned from a function is usually an indication of an error. In some cases,
however, you can use a NULL handle as a default parameter to a function
that requires a handle. We'll examine these cases as they arise.

The anchor block handle is a peculiar handle. I've already mentioned that
handles refer to objects. The object to which the anchor block handle refers
is the program itself-the program that calls Winlnitialize. Let's be more
precise. What we call a program is usually the .EXE file. But the program
can be run multiple times. While a particular instance of a program is run
ning, it is called a process. The anchor block handle refers to the particular
process that calls Winlnitialize.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 23

Usually, a Presentation Manager program calls Winlnitialize when it begins
execution, so the program can then call other Presentation Manager func
tions. Right before the program is ready to terminate, it pulls up its anchor
with WinTerminate and departs.

Running WE.EXE
I have some bad news for you. Although we are gathered here to write Pre
sentation Manager programs, we're not there yet. You might think that call
ing the magic function Winlnitialize turns an ordinary OS/2 program into a
Presentation Manager program, but it's not so. Like W.EXE, WE.EXE is an
OS/2 kernel program. Although a call to Winlnitialize is necessary in a Pre
sentation Manager program, it isn't sufficient. You can call Winlnitialize
from an old-fashioned character-mode OS/2 program also. Getting that
anchor block handle lets you access some functions within the Presentation
Manager - the heap management and atom management functions - that
are not directly connected with the windowing or graphics facilities of the
Presentation Manager. But don't fret: Although we're not quite there yet,
the next step will get us there.

WEL-Creating a Message Queue
Calling Winlnitialize to get an anchor block handle is like getting a pass to
the pool. The next step - creating a message queue - is like jumping in.
(We'll soon be swimming laps.) As you know, OS/2 supports multiple ses
sions, one being the Presentation Manager session. A program that creates a
message queue is always run in the Presentation Manager session along
with other Presentation Manager programs. The WEL program in Figure 2-3
shows how to create this message queue.

TheWElFile

/1---------------
11 WEL make file
41- - - - - -- -- - - - - --

wel.obj : wel.c

c1 -c -G2s -W3 we1.c

wel.exe : wel.obj wel.def

link wel. lalign:16. NUL, os2. wel

24 SECTION ONE: BASIC CONCEPTS

The WEL.C File

/ * - - - - - -- - -- - - -- - -- - - - - - -.,.- - - - - - - -- - - - - - - - - - - --- - -- -
WEL.C -- A Program that Creates a Message Queue

--------------------------------:----------------*/

#include <os2.h>

int main (void)

HAS hab
HMQ hmq

hab = Winlnitialize (0)

hmq - WinCreateMsgQueue (hab. 0)

WinDestroyMsgOueue (hmq)
WinTerminate (hab)
return 0 ;

The WEL. DEF File

; WEL.DEF module definition file

NAME WEL WINDOWAPI

DESCRI PTION
PROTMODE

'Welcome to PM -- Program No.3 (C) Charles Petzold. 1988'

HEAPSIZE 1024
STACKSIZE 2048

Figure 2-3. The WEL program.

The Message Queue Difference
As you'll see, Presentation Manager programs are based on a message
driven input model. Programs receive all input in the form of messages.
We're not quite ready to look at this message system in detail, but after
working with it, you'll probably realize that this input model is almost a
necessary part of a windowing environment like the Presentation Manager.

Many messages that a program receives from the Presentation Manager are
stored in a message queue. This message queue must be created explicitly

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 25

by the program with a call to the Presentation Manager. This call estab
lishes the program as a Presentation Manager application.

Following the Winlnitialize call, WEL.C makes this call:

hmq = WinCreateMsgQueue (hab, 0) ;

This call (as the name implies) creates a message queue. Like most Presen
tation Manager functions, WinCreateMsgQueue requires a handle as the first
parameter. This is the anchor block handle, which is the only handle we
have so far. The second parameter indicates the size of the queue, where 0
means a default size sufficient for most programs. The value returned from
the function is the handle to the message queue. This is stored in a variable
named hmq of type HMQ. The program destroys the queue like this:

WinDestroyMsgQueue (hmq) :

Following this call, the hmq handle is invalid.

Message queues get a little more complex for programs with multiple
threads of execution. A message queue is always associated with a particu
lar thread - the thread that creates it. A thread can have only one message
queue. In a multithread program, some threads can create message queues,
but others don't have to.

When OS/2 is booted, the first program that calls WinCreateMsgQueue (nor
mally, the Presentation Manager shell) establishes a session as the Presenta
tion Manager session. It is during the WinCreateMsgQueue call that the
screen display is switched from character mode to graphics mode. Later pro
grams that call WinCreateMsgQueue-even if executed from the CMD.EXE
prompt in a character-mode session - are run in this same session.

Notice also that the WINDOWCOMPAT keyword in W.DEF and WE.DEF has
been changed to WINDOWAPI in WEL.DEF. This causes LINK to set a flag
in the WEL.EXE file to inform OS/2 that this is truly a Presentation Manager
program.

Inhibiting Stack Checks
Yet another switch, -Gs, has been added to the compile step. This switch is
combined with the -G2 switch and written as -G2s.

Normally, the C compiler inserts a call to the _chkstk function in the
prologue section of every function in your program. This _chkstk function
determines if the amount of space necessary for local variables in the func
tion will cause a stack overflow. If so, the function displays a message to the

26 SECTION ONE: BASIC CONCEPTS

standard error output device (the screen) using DosWrite and terminates the
program. In the Presentation Manager, however, this approach is ineffec
tive, because the Presentation Manager ignores output written to the display
through DosWrite. The -Gs switch removes the checks for stack overflow.
You should instead be sure that the stack size specified in the module defini
tion file is sufficient for the program's needs.

WELC-Creating a Standard Window
A program running in the Presentation Manager session occupies one or
more windows. In simple terms, a window is a rectangular area of the
screen that the program uses to receive input and display its output. A win
dow is like a virtual terminal. A user can move and resize the windows 9n
the screen and select one window (and hence one program) as the active, or
foreground, window. A Presentation Manager program must create the win
dow that the program uses. The WELC program in Figure 2-4 shows how
this is done.

The WELC File

ff- - - - - - - - - - - - - - --
it WELC rna ke fi 1 e
fp----------------

welc.obj : welc.c
cl -c -G2s -W3 welc.c

welc.exe : welc.obj welc.def
link welc, /align:16, NUL, os2. welc

The WELC.C File

/* -

WELC.C -- A Program that Creates a Standard Frame Window
-._---*/

#include <os2.h>

int main (void)

static ULONG flFrameFlags = FCF_TITLEBAR
FCF_SIZEBORUER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

(continued)

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 27

Figure 2-4. The WELC.C File. continued

HAB hab :
HMO hmq ;
HWND hwndFrame

hab = WinInitialize (O)
hmq = WinCreateMsgQueue (hab. 0)

hwndFrame = WinCreateStdWindow
HWND_DESKTOP,
WS_V lSI BLE.
&flFrameFlags,
NULl.
NULL,
OL.
NULL.
O.
NULl)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

The WELC.DEF File

: WELC.DEF module definition file

NAME WELC WINOOWAPI

/I Parent window handle
/I Style of frame window
/1 Pointer to control data
/1 Client window class name
II Title bar text
II Style of client window
/I Module handle for resources
II 10 of resources
II Pointer to client window handle

OEseRI PTION
PROTMOOE

'Welcome to PM -- Program No.4 ee) Charles Petzold, 1988'

HEAPSIZE 1024
STACKSIZE 8192

Figure 2-4. The WELC program.

28 SECTION ONE: BASIC CONCEPTS

WELC.EXE is the first version of the program that has a substantial, visible
result. When you run WELC, a window appears that looks much like the
windows of other programs running under the Presentation Manager. The
window contains a thick resizing border, a system menu box in the upper
left corner, a minimize and maximize box in the upper-right corner, and a
title bar across the top containing the name of the program, WELC.EXE.

Not bad- but not perfect. The problem is that this window disappears
almost immediately after it's created. We'll fix that problem in the next ver
sion of our program, but first, let's examine what we've done to get this far.

The WinCreateStdWindow Function
WELC.C calls two Presentation Manager functions in addition to those
introduced earlier: WinCreateStdWindow creates a window, and Win
DestroyWindow destroys it. WinCreateStdWindow is the function normally
used to create a main window for a Presentation Manager application. This
isn't the only way to create an application window, but it's certainly the
easiest. The WinCreateStdWindow function requires nine parameters, which
are identified with comments in WELC.C. (The double slashes are recog
nized by the Microsoft C Compiler as setting off single-line comments.) Six
of the parameters are set to 0 or NULL in this example. Certainly, we're not
yet taking advantage of WinCreateStdWindow's full potential.

WinCreateStdWindow creates a type of window known as a "frame win
dow." We'll examine what this means a little later. The function returns a
handle to the frame window. In WELC.C this handle is stored in a variable
named hwndFrame and defined as type HWND ("handle to a window").
This handle must be used in other Presentation Manager functions to refer
to the window. For example, in WELC.C this window handle is passed to
WinDestroyWindow to destroy the window, which means that the Presenta
tion Manager frees all the resources associated with the window and re
moves it from the screen. The window handle then becomes invalid.

The first parameter to WinCreateStdWindow is the identifier known as
HWND _DESKTOP (defined in PMWIN.H as 1), which specifies the
"parent" of the frame window. This concept will be explored in more
detail in the next chapter.

The second parameter specifies the style of the window. The parameter is
the identifier WS_ VISIBLE (which is defined in PMWIN.H as the value
Ox80000000L). The WS prefix stands for "window style." This value in
structs the WinCreateStdWindow function to make the window visible when
it is created.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 29

The third parameter is a pointer to the variable flFrameFlags. The "fl" pre
fix is an example of "Hungarian notation," which I alluded to in Chapter 1.
The "f" indicates that the variable is a series of flags, and the "I" indicates
that the flags are encoded in a 32-bit long data type. The flFrameFlags vari
able is defined as a ULONG (unsigned long). This "control data" parameter
tells WinCreateStdWindow what the standard window should include. I've
initializedjlFrameFlags like this:

static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU :
FCF_SIZEBORDER FCF_MTNMAX:
FCF_SHELLPOSITION FCF_TASKLIST;

The FCF ("frame creation flags") identifiers are defined in PMWIN.H.
Some of these identifiers are almost self-explanatory: FCF _TITLEBAR
means that we want a title bar across the top of the window;
FCF _SYSMENU, a system menu box to the left of the title bar;
FCF _SIZEBORDER, a thick sizing border around the window; and
FCF _MINMAX, a minimize and maximize box to the right of the title bar.
FCF~SHELLPOSITION instructs the Presentation Manager shell to give the
window a default size and position on the screen. FCF_TASKLIST installs
the program on the Task Manager.

Here's how these six identifiers are defined in PMWIN .H:

#define FCF_TITLEBAR
#define FCF_SYSMENU
#define FCF_SIZEBORDER
#define FCF-MINMAX

Ox00000001L
Ox00000002L
Ox00000008L
Ox00000030L

#define FCF_SHELLPOSITION Ox00000400L
#define FCF_TASKLIST Ox00000800L

Each identifier is a 32-bit constant with one or two bits set to 1 and the other
bits set to o. These identifiers are combined into one 32-bit number using the
C bitwise OR operator (:). Many identifiers defined in the header files work
this way.

A Larger Stack
You'll notice that the WELC.DEF file specifies a STACKSIZE value of 8192.
The earlier programs have a 2 KB stack. The 8 KB stack is required for any
program that creates a window, even if the window is displayed only
momentarily.

30 SECTION ONE: BASIC CONCEPTS

Of course, most windows created by Presentation Manager programs re
main on the screen longer than the window in WELC. Our first priority is to
fix that problem.

WELCO - Looping Through the Messages
The problem with WELC is that we don't have a chance to enjoy the won
derful window we've created. The program calls WinCreateStdWindow to
create the frame window but then calls WinDestroyWindow to blow it away.
Obviously, we have to insert some code between those two function calls to
keep the window up on the screen a little longer. If this were a conventional
OS/2 program, you might set up a little loop to call KbdCharln and then wait
for a keystroke before destroying the window. But the KbdCharln function
isn't allowed in Presentation Manager programs. Nor are any of the other
keyboard functions provided by the OS/2 kernel. What we can do instead is
add a "message loop." This message loop is something like a loop that
reads the keyboard, but it is much, much more. A program with a message
loop-WELCO-is shown in Figure 2-5.

The WELCe File

11- - - - - . - . - - - . - - - . -
II WELCO make file
If- - - - - -- - - - - - - - - - -

welco.obj : welco.c
c1 -c -G2s -W3 welco.c

welco.exe : welco.obj we1co.def
link welco, /align:16, NUL, os2. welco

The WELCe.C File

1* -
WELCO.C -- A Program with a Message Loop
--~/

/finclude <os2.h>

int main (void)

(continued)

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 31

Figure 2-5. The WELCO.C File. continued

static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU :
FCF_SIZEBORDER FC~_MINMAX

FCF_SHELLPOSITION FCF_TASKLIST;
HAB hab ;
HMO hmq ;
HW~O hwndFrarne
QMSG qmsg ;

hab - Winlnitialize (0)

hmq = WinCreateMsgQueue (hab. 0)

hwndFrame - WinCreateStdWindow
HWND_DESKTOP.
W $_ V I SIB L E.
&.clFr~meFlags.

NULL,
NULL,

OL.
NULL,

O.
NULl)

II Parent window handle
II Style of fra~e window
1/ Pointer to control data
II Client window class name
II Title bar text
II Style of client window
1/ Module handle for resources
II ID of resources
1/ Pointer to client window handle

while (WinGetMsg (hab, &qrnsg, NULL. 0, 0))

WinDispatchMsg (haJ, &qmsg)

WinOestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerwinate (hab) ;
return 0 :

The WELCO.DEF File

; WELCO.DEF module definition file

NAME WELCO WINOOWAPI

OESCRl PTION
PR::>TMODE

'Welcome to PM -- Program No.5 (C) Charles Petzold, 1988'

HEAPSIZE 1024
STACKSIZE 8192

Figure 2-5. The WELCO program.

32 SECTION ONE: BASIC CONCEPTS

When you run WELCO.EXE under the Presentation Manager, you'll be
treated to a real Presentation Manager window, as shown in Figure 2-6.
With this window you can

• Press the mouse button when the pointer is positioned over the title bar
and drag the window around the screen.

• Drag the sizing border to change the size of the window.

• Click on the maximize arrow and expand the window to full screen.

• Click on the minimize arrow and compress the window into a little
square.

• Use the mouse or keyboard to invoke the system menu.

• Size or move the window with the keyboard.

• Use Alt with a function key to invoke system menu options.

• Close the window, removing it from the screen.

= WELCO EXE l+11!1

Figure 2-6. A Presentation Manager window.

That's a considerable improvement, considering that only three lines were
added to the program.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 33

Anatomy of a Window
As we develop a Presentation Manager program in this chapter, we will en
counter three major concepts that are central to Presentation Manager
programming:

• Windows

• Messages

• Presentation spaces

These three concepts are closely related: A window receives input in the
form of messages and displays output to a presentation space. This entire
book is about receiving messages and writing to presentation spaces. The
window is at the center of it all.

Ear lier I said that a window is a rectangular area on the screen. That's too
easy. Sure, a window occupies an area on the screen, but that's what the
window looks like, not what it is. As you start programming for the Presen
tation Manager, windows seem to take on life. You will use anthro
pomorphic language when thinking and talking about windows. You will
say a window does something, a window responds in a certain way, and a
window has a style. A window has a parent and can also have children; a
window can talk to another window. And yes, a window occupies a rectan
gular area on the screen.

You'll find it helpful to think of windows in terms common in object
oriented programming. For example, you might now believe that some code
someplace in the Presentation Manager draws the sizing border, system
menu box, title bar, and minimize/maximize box so that they look the way
they do. Yes, but no - you're closer to reality if you think of the window as
drawing itself. The window itself determines how it will look.

This may become clearer if I discuss the WinCreateStdWindow function
more. I've been speaking about the window that WinCreateStdWindow
creates as if it were a single window. Actually, WinCreateStdWindow is a
high-level function that does the work of several other functions. As used in
WELC, WinCreateStdWindow causes four windows to be created:

• A frame window

• A title bar window

• A system menu window

• A minimize/maximize window

34 SECTION ONE: BASIC CONCEPTS

(A fifth window - the drop-down menu displayed from the system menu
is also created. But let's ignore that for this discussion.)

These are separate windows. They are certainly bound together into one
tidy unit, and they certainly have some relationship among themselves, but
in other ways these windows are distinct and independent.

The WinCreateStdWindow function creates the frame window, and the frame
window creates the other three windows. These three windows correspond
to the FCF _TITLEBAR, FCF _SYSMENU, and FCF _MINMAX flags set in the
flFrameFlags parameter that is passed to WinCreateStdWindow. Each of
these four windows has its own window handle. WinCreateStdWindow
returns only the window handle of the frame window, but the other handles
are available if you need them.

The frame window is like a base on which the other three windows are ar
ranged. Each of these four windows draws itself. The frame window draws
itself as a solid background surrounded by a sizing border. The title bar
window, system menu window, and minimize/maximize window are rela
tively small windows that sit on top of the frame window.

Each of these four windows is distinct in appearance because each window
draws itself in a unique way. Each window responds to input in a distinct
way because each window processes its own input. This input takes the
form of "messages."

Messages
In a conventional operating system, you must always ask for information. In
the Presentation Manager, information is delivered to your program in the
form of "messages." For example, in a conventional OS/2 kernel program,
you can determine the size of the screen display in units of characters or
pixels by calling the VioGetMode function. In a Presentation Manager pro
gram, the size of the screen is less important than the size of one of your
program's windows. The size of these windows can change. The window is
notified of such a change through messages. Messages are notifications of
user input and everything else that affects the program's windows.

A Presentation Manager program works by processing messages. In fact, it
does little else except process messages. We say that a Presentation Man
ager program is "message-driven."

A message is a data structure of type QMSG (queue message), which is de
fined in PMWIN.R as shown on the following page.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 35

typedef struct _OMSG
{

HWNO hwnd;
USHORT msg
MPARAM mpl ;
MPARAM mp2 :
ULONG time;
POINTL ptl
}

Qt1SG ;

A message is usually directed to a particular window. The handle of the in
tended recipient of a message is given in the hwnd field of the structure.

The msg field (defined as type USHORT, or unsigned short) identifies the
message. All messages have identifiers defined in PMWIN.H. Many of them
begin with the letters WM (' 'window message' '). Examples of these iden
tifiers are WM_CREATE, WM_SIZE, WM_CHAR, WM_MOUSEMOVE,

WM_PAINT, WM_DESTROY, and WM_QUIT. The mpJ and mp2 fields (de
fined as type MPARAM, which is a 32-bit far pointer) are' 'message parame
ters." They contain information connected with the particular message;
The time field is the time the message was sent, and ptl (a POINTL structure)
indicates the position of the mouse pointer at the time the message was sent.
The following table summarizes this information:

THE MESSAGE STRUCTURE

The message is addressed to
The message is
More detailed information is found in
The time of the message is
The mouse pointer was positioned at

hwnd
msg
mpJ andmp2
time
ptl

When a message is addressed to a particular window (the usual case), the
window processes the message. Everything a window does is the result of
processing messages.

The message queue is a place where messages are stored. After a thread
creates a message queue by calling WinCreateMsgQueue, the Presentation
Manager uses this queue to store messages to all windows created in that
thread. Not all messages are stored in the message queue (a distinction I'll
discuss a little later), but most messages relating directly to user input are
stored there. The message queue created by WELCO stores messages for the
frame window, the title bar window, the system menu window, and the
minimize/maximize window.

36 SECTION ONE: BASIC CONCEPTS

The Message Loop
After a thread creates a message queue, it can create windows. Messages for
the windows created in the thread are stored in the thread's message queue.
Messages are retrieved from the message queue in a two-line piece of code
called the' 'message loop. " The program first must define a variable of type
QMSG, the message structure:

QMSG qrnsg ;

After creating its windows. the program enters the message loop:

while (WinGetMsg (hab, &qrnsg, NULL. 0, 0»)
WinDispatchMsg (hab. &qrnsg) ;

Note that the last three parameters in the WinGetMsg call are set to NULL or
o. This is normal: It indicates that WinGetMsg should retrieve all messages
to all windows created in that thread.

WinGetMsg passes to the Presentation Manager a pointer to the QMSG mes
sage structure. The Presentation Manager fills the fields of the structure
with the next message from the queue and returns control to the program.
When WinGetMsg returns, the QMSG structure holds a valid message from
the message queue. The program then "dispatches" the message by calling
WinDispatchMsg. When WinDispatchMsg returns, the program again calls
WinGetMsg. If there are no messages in the queue, WinGetMsg waits until
one is available. For all messages except WM_QUIT, WinGetMsg returns a
nonzero value. WM_QUIT is a very special message. It causes WinGetMsg to
return a 0 value and fall out of the while loop. (The WM_QUIT message is
put into the queue when you select Close from the system menu.) The
program then makes calls to WinDestroyWindow, WinDestroyMsgQueue, and
WinT erminate and exits main, ending the program.

Do you find this message loop code a little peculiar? The program fetches a
message from the queue with WinGetMsg. That's OK. But the program is
seemingly not doing anything with the message. It's simply throwing the
message away by calling WinDispatchMsg. If the message is actually being
dispatched somewhere, who's getting it? Where does the message go? Well,
the message is addressed to a particular window, so obviously that window
gets the message. WinDispatchMsg sends a message to a window.

Perhaps this is still bothering you. Perhaps you're not quite comfortable
with the concept of a window getting messages - it's too abstract. Would it

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 37

make more sense if I said that WinDispatchMsg causes a function to be
called? And that the message being dispatched takes the form of parameters
to the function? And that this function interprets these parameters and does
something to process the message? Would you be more comfortable with
the idea that this function - in a very real sense - is the window?

The Window Procedure
Every window has an associated window procedure, which processes mes
sages for the window. The window procedure determines how the window
responds to input (in the form of messages) and what the window looks like.

WinGetMsg retrieves messages addressed to all windows that have been cre
ated in the thread of the process. During the WinDispatchMsg call, the Pre
sentation Manager determines the address of the window procedure for the
window whose handle is in the hwnd field of the message structure. It then
calls this window procedure. The window procedure processes the message
and returns control to the Presentation Manager, which then returns control
to the program that called WinDispatchMsg.

The window procedures for the four windows created in WELCO are lo
cated in PMWIN.DLL, one of the dynamic link library modules that con
stitute the Presentation Manager. For example, PMWIN.DLL contains a
function called WinTitlebarWndProc. This function is the window procedure
that processes messages for all title bars created by all programs currently
running under the Presentation Manager. The title bar window displays text
because that happens to be the way the window procedure draws the win
dow. The title bar changes color to indicate that the program (or more pre
cisely, the frame window) is active because the frame window sends the
title bar window a message telling it to change the color. The title bar win
dow responds to mouse input in its own specialized way to allow the win
dow to be repositioned on the screen, and it then sends a message to the
frame window informing it of the new position.

A typical window procedure is shown in Figure 2-7. Note that the four
parameters to the window procedure are the first four fields of the message
structure - the window handle, the message identifier, and the two
MPARAM values that provide message-specific information. When the
WinDispatchMsg function calls the window procedure, it extracts these four
fields from the structure to pass to the window procedure.

A window procedure generally processes messages using a switch and case
construction. For each type of message, the mpJ and mp2 parameters pro
vide additional information about the message.

38 SECTION ONE: BASIC CONCEPTS

MRESULT EXPENTRY DoodadWndProc (HWNO hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

[definitions of local variables]

switch (msg)
{

case WM_CREATE:

[do initialization]

return 0 ;

case WM_PAINT:
[paint the window]

return 0

case WM_CHAR:
[process keyboard messages]

return 0 ;

case WM_MOUSEMOVE:
[process mouse movement messages]

return 0 ;

case WM_DESTROY:
[clean up}

return 0 ;

return WinOefWindowProc (hwnd. msg. mpl. mp2)

Figure 2-7. A typical window procedure.

The value the window procedure returns depends on the message. Usually
it's a o. Any message the window doesn't process must be passed on to a
function called WinDefWindowProc. This function does default processing
of all messages that a window procedure chooses to ignore.

Why are we spending time looking at the structure of window procedures
that are internal to the Presentation Manager? Because not all window
procedures are inside the Presentation Manager. Presentation Manager pro
grams can also contain window procedures. In fact, they almost always do.
And that's why we will soon add a window procedure - and a new win
dow - to our program.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 39

WELCOM -Adding a Standard Icon
Before we add a new window to the program, let's address a little problem
in WELCO.

If you minimize WELCO, you'll see the program displayed at the bottom of
the screen as a small nondescript white rectangle. It should look more like a
normal Presentation Manager icon.

We can add a standard application icon to the program with a few lines of
code. The new version, called WELCOM, is shown in Figure 2-8.

The WELCOM File

If- - - - - - - - - - - - - - - - --
If WELCOM make file
11- - - - - - - - - - - - - - - - --

welcom.obj : welcom.c
c1 -c -G2sw -W3 we1com.c

welcom.exe : welcom.obj welcom.def
link welcom. /align:16. NUL, os2. we1com

The WELCOM.C File

/* -

WELCOM.C -- A Program that has a Standard Icon
- -*/

#define INCL_WIN
#include <os2.h>

int main (void)

static ULONG f1FrameF1ags = FCF_TITLEBAR
FCF_SIZEBORDER
FCF_SHELLPOSITION

HAB hab ;
HMO hmq ;
HWND hwndFrame
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0)

40 SECTION ONE: BASIC CONCEPTS

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

(continued)

Figure 2-8. The WELCOM.C File. continued

hwndFrame = WinCreateStdWindow
HWND_DESKTOP.
WS_VISIBLE.
&flFrameFlags.
NULL.
NULL.
OL.
NULL.
O.
NULl)

WinSendMsg (hwndFrame. WM_SETICON.

II
II
II
II
II
II
II
II
II

Parent window handle
Style of frame window
Pointer to control data
Client window class name
Title bar text
Style of client window
Module handle for resources
ID of resources
Pointer to client window handle

WinOuerySysPointer (HWND_DESKTOP, SPTR_APPICON, FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0))
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

The WELCOM.DEF File

._-------- ... -------------------------.
; WELCOM.OEF module definition file

NAME WELCOM WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE

'Welcome to PM -- Program NO.6 (C) Charles Petzold. 1988'

1024
8192

Figure 2-8. The WELCOM program.

Many Presentation Manager programs use customized icons to identify the
program when it is minimized and displayed at the bottom of the screen.
We'll begin doing this in Chapter 12. Until then, we'll use a standard icon
that is defined within the Presentation Manager.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 41

The frame window must display an icon when the window is minimized .
. We have to tell the frame window what icon to use for this. I've been

discussing messages, and here we can see an example of one. A program
can tell the frame window which icon to use by sending the frame window a
WM_SETICON message. You do this by calling the WinSendMsg function:

WinSendMsg (hwndFrame, WM_SETICO~,

WinQuerySysPointer (HWND_DESKTOP, SPTR_APPICON, FALSE),
NULL) ;

You'll recall that a window procedure has four parameters: the window
handle, the message identifier, and two message parameters. WinSendMsg
has these same four parameters. The first is hwndFrame, the handle of the
window to which we're sending the message. The second parameter,
WM_SETICON, identifies the message. The last two parameters to Win
SendMsg correspond to the mpJ and mp2 parameters of the window pro
cedure. These provide information unique to the WM_SETICON message.

For WM_SETICON, mp2 is not used and can be set to NULL. The mpJ
parameter is a handle to a pointer. (The word "pointer," as used here, gen
erally refers to the mouse pointer that you move on the screen using your
mouse. But as you'll discover in Chapter 12, icons and mouse pointers are
closely related and interchangeable in many cases.) This handle is obtained
from the WinQuerySysPointer function call. The first parameter of this
handle is HWND_DESKTOP, which is required for this function. The
SPTR_APPICON identifier (the SPTR prefix stands for "system pointer")
refers to a simple icon that looks like a little window if you use your
imagination.

The last parameter to WinQuerySysPointer is set to FALSE to indicate that we
do not want the Presentation Manager to make a copy of this icon. All we
want is the handle to it. This is one case where you don't call a function to
destroy the resources connected with the handle. You don't need to save the
handle returned from WinQuerySysPointer; you just pass it to the Win
SendMsg function.

You'll notice that I've added the following line to the top of WELCOM.C:

#define INCL_WIN

This line appears before the #include statement for OS2.H. The declaration
for the WinQuerySysPointer function and the definition of the SPTR_APPI
CON identifier in PMWIN.H (as well as a number of other functions and
identifiers) are not included by default. Defining INCL_ WIN causes them to
be included.

42 SECTION ONE: BASIC CONCEPTS

WELCOME -Creating a Client Window
The four windows in WELCOM seem to get along OK. But it's like a party
taking place in your house to which you weren't invited. After WELCOM
creates the four windows, all it does is retrieve messages from the message
queue and dispatch them to window procedures located somewhere in
PMWIN.DLL. Let's get in on this action. In the WELCOME version of our
program, shown in Figure 2-9, I've changed the WinCreateStdWindow call
slightly so that it creates a fifth window. This window will fill that large
area between the title bar and the visible parts of the sizing border, covering
the still-visible part of the frame window. This fifth window is our win
dow - we process the messages to it.

The WELCOME File

/1- - - - - - - - - - - - - - - - - --
/I WELCOME make file
fI- - - _. - - - - - - - - - - - - --

welcome.obj : welcome.c
cl -c -G2sw -W3 welcome.c

welcome.exe : welcome.obj welcome.def
link welcome. lalign:16. NUL. os2, welcome

The WELCOME.C File

1* -
WELCOME.C -- A Program that Creates a Client Window

- -- -- - - - - - - -- - - - -- - - - -- -- - - - -- - -- - - - -- -- - - - - -- --- - -- -* 1

/ldefine INCl_WIN
/linclude <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

i n t rna i n (v 0 i d)

static CHAR szC11entClass [] = "Welcome" ;
static ULONG flFrameFlags = FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

(continued)

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 43

Figure 2-9. The WELCOME.C File. continued

HAB hab ;
HMO hmq ;
HWNO hwndFrame, hwndClip.nt
QMSG qmsg ;

hab = WinInitialize (0)
hmq = WinCreateMsgQueue (hab. 0)

W~nRegisterClass (

hwndFrame

hab,
szClientClass,
ClientWndProc,
OL,
a) ;

- WinCreateStdWindow
HWND_DESKTOP,
WS_V1SIBLE,
&flFrameFlags.
szClientClass,
NULL,
OL,
NULL,
0,

&hwndClient)

WinSendMsg ChwndFrame, WM_SETICON,

II Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

II Parent window handle
II Stylp. of frame window
II Pointer to control data
II Client window class name
II Tit 1 e ba r text
II Style of client w~ndow
II Module handle for resources
II 10 of resources
II Pointer to client window handle

WinQuerySysPointer (HWNO_DESKTOP, SPTR_APPICON, FALSE),
NULL) ;

while (WinGetMsg (hab, &qm~g, NULL, 0, 0»
WinOispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

return WinDefWindowProc (hwnd, msg. mpl. mp2) ;

44 SECTION ONE: BASIC CONCEPTS

The WELCOME.DEF File

; WELCOME.DEF module definition file

NAME WELCOME WINDOWAPI

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Welcome to PM -- Program No.7 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 2-9. The WELCOME program.

This new window is called a "client window." Messages for this client
window are stored in the message queue just like messages for the other four
windows created in WinCreateStdWindow. The messages are retrieved from
the queue with WinGetMsg and dispatched to the appropriate window pro
cedure with WinDispatchMsg. But the window procedure for the client
window is not in PMWIN.DLL. This window procedure is located in
WELCOME itself.

Registering a Window Class
Every window has an associated window procedure. More precisely, every
window is based on a particular "window class." It's the window class that
defines the window procedure used to process messages for all windows
created based on that class.

The Presentation Manager has nine predefined window classes. (One of
them, for example, is the class called WC_TITLEBAR, using the PMWIN.H
identifier.) Each of these window classes has a window procedure located in
PMWIN.DLL. (The window procedure for the WC_TITLEBAR class is
WinTitlebarWndProc.) When WinCreateStdWindow was called in previous
versions of the program, it created four windows based on four of these pre
defined window classes. Messages to these windows go to the window pro
cedure for the window class.

If you want WinCreateStdWindow to create a client window with a window
procedure in your own program, you must first register a new window
class that identifies this window procedure. You do this by calling
WinRegisterClass, as shown in the WELCOME.C program. The second and
third parameters to WinRegisterClass are the most important: They specify

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 45

the name of the window class and the address of the window procedure for
that class. The window procedure processes messages to all windows that
are based on that class.

The predefined window classes in PMWIN.DLL are "public" window
classes: They can be used by all programs running under the Presenta
tion Manager. When your program contains a window procedure and you
register a class for it, that is a "private" class that can be used only by
your program.

The name of a private window class registered in a program is generally a
character string that either is the name of the program or is derived from the
name of the program, but it can really be anything you want. In
WELCOME, the class name is the character string "Welcome" stored in the
array szClientClass. (The sz prefix indicates that the variable is a string ter
minated by a zero byte.) The window procedure is the function named
ClientWndProc, which in WELCOME is located after the main function. You
can name the window procedure whatever you like. The window procedure
is declared near the top of the program with the following statement:

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM) ;

Declaring ClientWndProc before main is mandatory: This lets the C com
piler recognize ClientWndProc as a function when compiling code for the
WinRegisterClass call.

The EXPENTRY identifier stands for "exported entry point" and indicates
that the function is called from outside the program. It is defined in
OS2DEF.H in the same way as APIENTRY:

#define EXPENTRY far pascal

All window procedures must be defined as EXPENTRY functions.

The New WinCreateStdWindow Call
The next step is to change some of the parameters to WinCreateStdWindow
so that it creates a client window in addition to the other five windows. The
fourth parameter to WinCreateStdWindow (previously set to NULL) is now
set to the name of the client window class, which is the character array
szClientClass. The last parameter to WinCreateStdWindow is a pointer to a
variable that will receive the handle of the client window when
WinCreateStdWindow creates it. This variable is named hwndClient and de
fined as type HWND.

46 SECTION ONE: BASIC CONCEPTS

WinCreateStdWindow now creates five windows, four of them based on pre
defined window classes and the fifth - the client window - based on the
"Welcome" class. WinCreateStdWindow returns the window handle of the
frame window, but it also stores the window handle of the client window in
the variable pointed to by its last parameter.

Processing the Messages
The ClientWndProc window procedure in WELCOME is called only from
the Presentation Manager, from outside the program's code segment, using
the Pascal calling sequence, which is why it's defined as an EXPENTRY
function. The window procedure returns an MRESULT (a 32-bit far pointer)
to the Presentation Manager. ClientWndProc receives messages only for the
client window. Whenever ClientWndProc is called, the hwnd parameter is
the window handle of the client window. This is the same window handle
stored in the hwndClient variable in main.

ClientWndProc doesn't yet process any messages itself. Any message a
window procedure doesn't process must be passed on to the WinDef
WindowProc function in the Presentation Manager. The value returned from
WinDefWindowProc is then returned from the window procedure.

NOTE: That ClientWndProc doesn't process any messages causes a
little problem: The client window isn't painted. If you experiment with
WELCOME in the Presentation Manager, you'll find that the client
window displays whatever was underneath it when it is created or
resized! Of course, we'llfix this problem shortly.

The Stream of Processing
With the client window procedure in place, you can now get a good sense of
how Presentation Manager programs are structured and how they operate.
The main function first performs initialization. At the very least, this in
volves calls to WinInitialize, WinCreateMsgQueue, WinRegisterClass, and
WinCreateStdWindow. It then enters the message loop. When it exits the
message loop, it cleans up with WinDestroyWindow, WinDestroyMsgQueue,
and WinTerminate and exits main, terminating the program.

In the message loop, the program calls WinGetMsg, which retrieves the next
message from the program's message queue. These messages include user
input from the keyboard and mouse. The program passes the message back
to the Presentation Manager by calling WinDispatchMsg. The Presentation
Manager determines the address of the window procedure for the particular

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 47

window that must receive the message, and it then calls the window pro
cedure. This is either a predefined window procedure within the Presen
tation Manager or a window procedure within the program (such as
C lientWndProc).

The window procedure either processes the message or calls WinDef
WindowProc. The window procedure then returns control to the Presenta
tion Manager (still in the WinDispatchMsg call), which returns control to
the program's message loop.

This is a considerably more complex interaction between a program and an
operating system than is typical in a more conventional operating system
such as the OS/2 kernel. In the Presentation Manager, programs have a more
intimate connection with the operating system and (potentially) other pro
grams running under the Presentation Manager. It's the use of messages
that makes the difference. Messages are the means of communication be
tween the Presentation Manager and windows, and between windows
themselves.

Queued and Nonqueued Messages
I've been discussing how messages get from the message queue to a window
procedure. However, not all messages originate in the message queue. Win
dow procedures can also be called directly from the Presentation Manager.

When a message is placed in a program's message queue, retrieved with
WinGetMsg, and dispatched to the window procedure with WinDispatchMsg,
that message is said to be a "queued message." Many of the messages
relating to user input (such as the WM_CHAR keyboard message and the
WM_MOUSEMOVE mouse message) are "queued" messages. Timer mes
sages are queued, as are menu messages (which signal a window procedure
that a menu item has been chosen). But many other messages are sent to the
window procedure directly without first being placed in the message queue.
For example, the WM_CREATE message - which is the first message that a
window procedure receives - is sent to the window at the same time the
Presentation Manager is executing the WinCreateStdWindow function. The
WM_DESTROY message is sent to a window procedure as part of the Pre
sentation Manager's processing of the WinDestroyWindow call. These are
"nonqueued" messages.

48 SECTION ONE: BASIC CONCEPTS

Whether a message is sent directly to a window procedure or dispatched to
the window procedure after being retrieved from the message queue is gen
erally not very important. The window procedure is "message central" -
it gets all messages to the window. It usually doesn't matter what route the
messages took to get to the window procedure.

A window can also "post" or "send" messages to other windows. The
WinPostMsg function places a message in the message queue associated with
a particular window and returns immediately. The WinSendMsg function
(which I used to send the frame window a WM_SETICON message) causes
the Presentation Manager to call the window procedure directly. Win
SendMsg returns after the window procedure has processed the message.
(The WinDispatchMsg call used in the message loop is similar to the Win
SendMsg call.)

In short, post means to put the message in the mail box; send means to hand
deliver the message to the recipient. A message that is posted becomes a
queued message; a message that is sent becomes a nonqueued message. As I
said, from the perspective of the window procedure, the distinction is
usually not very important. When speaking about messages, the term send
is often used for convenience even when the message is actually posted. In
the chapters ahead, I'll discuss whether a message is queued or nonqueued
when necessary, but otherwise I'll tend to use this convenient terminology.

Messages sometimes generate other messages. This can happen when a win
dow procedure declines to process a message and passes the message to
WinDefWindowProc. WinDefWindowProc sometimes does default process
ing of a message by sending the window procedure another message. Call
ing Presentation Manager functions also sometimes results in the window
procedure being sent a message.

This means that the window procedure must be recursive. Generally, this
fact doesn't cause any problems, but you should keep it in the back of your
mind. If you encounter a strange bug (a static local variable in your window
procedure changing when you call a Presentation Manager function, for ex
ample), perhaps your window procedure is changing the variable itself
while processing another message generated by the call to the Presentation
Manager function. You should also keep at a reasonable level the size of lo
cal automatic variables in main and in the window procedures. The recur
sive use of window procedures is the primary reason for the minimum
recommended 8 KB stack size in Presentation Manager programs. Feel free
to increase it if you use large automatic variables in a window procedure.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 49

Special Treatment of Window Procedures
Window procedures require some special attention when you compile and
link the program. First, for any program that contains a window procedure,
the compiler requires yet another switch: -Gw. (The w stands for "win
dow.") This switch is combined with the -G2 and -Gs switches to make the
-G2sw switch. Second, the window procedure must be mentioned in an
EXPORTS statement in the module definition file:

EXPORTS ClientWndProc

With this statement you're "exporting" the window procedure so that it
can be called from another module (specifically, from the Presentation
Manager).

The -Gw compiler switch and the EXPORTS statement are very closely re
lated and involve some manipulation on the machine-code level when con
trol passes between the Presentation Manager and your program. When a
program calls a Presentation Manager function (such as WinDispatchMsg) ,
that function generally uses its own data area, which is a data segment
associated with the dynamic link library that contains the function. In
assembly-language terms, the function must push the current DS register
(which points to the data segment of the program making the function call)
on the stack and set DS to its own data segment. Before returning to the pro
gram, it pops the original DS off the stack. However, in the course of the
WinDispatchMsg function call, the dynamic link library might need to call
the program's window procedure. The DS value associated with the window
procedure isn't directly available. Thus the window procedure would be un
able to access its own data segment.

The -Gw switch adds a special prologue and epilogue to the window pro
cedure to save the value of DS (the dynamic link library'S DS) on entry to
the window procedure and restore it on exit. Exporting the window pro
cedure directs OS/2 to add some code to this prologue to set DS to the
program's data segment. Thus the window procedure can be called from the
dynamic link library without problems.

WELCOME1 - Painting the Client Window
Now that we have a client window with its very own window procedure that
processes messages to the window, we are ready to process a few messages
and paint the client window. The final WELCOME program in this chapter,
WELCOMEl, is shown in Figure 2-10.

50 SECTION ONE: BASIC CONCEPTS

The WELCOME1 File

11- - - - - - - - - - - - - - - - - - --
WELCOMEI make file
/1- - - - - - - -- - -- - - - -- - --

welcomel.obj : welcomel.c
cl -c -G2sw -W3 welcomel.c

welcomel.exe : welcomel.obj welcomel.def
link welcomel. lalign:l6. NUL. os2. welcomel

The WELCOME1.C File

/*- --
WELCOMEl.C -- A Program that Writes to its Client Window

------------------.-------------------------.--------- ----*1

#define INCL~WIN
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
(

static CHAR szClientClass [] - "Welcomel"
static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU :

FCF_SIZEBORDER
FCF_SHELlPOSITION

FCF_MINMAX
FCF_TASKLIST ;

HAB hab ;
HMO hmq ;
HWND hwndFrame, hwndClient
QMSG qrnsg :

hab - Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0)

WinRegisterClass (
hab,
szClientClass,
ClientWndProc.
CS_SIZEREDRAW,
0) :

II Anchor block handle
II Name of class being registered
(I Window procedure for class
1/ Class style
II Extra bytes to reserve

(continued)

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 51

Figure 2-10. The WELCOME1.C File. continued

hwndFrame - WinCreateStdWindow
HWND_DESKTOP,
WS_VISIBlE,
&flFrameFlags,
szClientClass,
NULl,

OL.
NUll,
0,
&hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.

II Parent window handle
II Style of frame window
II Pointer to control data
II Client window class name
II Title bar text
II Style of client window
/1 Module handle for resources
/1 ID of resources
II Pointer to client window handle

WinQuerySysPointer (HWND_DESKTOP, SPTR_APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg, NULL. O. 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate Chab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND rwnd, USHORT msg. MPARAM mp1. MPARAM mp2)
{

static CHAR szText [] = "Welcome to the OS/2 Presentation Manager" :
HPS hps;
RECTl rcl

switch (msg)

case WM_CREATE :
DosBeep (261. 100)
Dos Beep <330. 100)
Dos Beer:> (392, 100)
Dos Beep (523. 500)
return 0 ;

case WfLPAINT:
hps = WinBeginPaint (hwnd. NULL. NULL)

(continued)

52 SECTION ONE: BASIC CONCEPTS

Figure 2-10. The WELCOME1.C File. continued

WinQueryWindowRect (hwnd. &rcl) ;

WinDrawText (hps. -1. szText. &rcl, CLR_NEUTRAL. CLR-BACKGROUND.
DT_CENTER : DT_VCENTER : DT_ERASERECT) ;

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
DosBeep (523, 100)
DosBeep (392, 100)
DosBeep (330, 100)
Dos Beep (261. 500)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The WELCOME1.DEF File

; WELCOMEl.DEF module definition file

NAME

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

WELCOMEl WINDOWAPI

'Welcome to PM -- Program No.8 (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 2-10. The WELCOME] program.

WELCOMEl.EXE displays the text "Welcome to the OS/2 Presentation
Manager" in the center of its client window as shown in Figure 2-11 on the
following page.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 53

~ WELCOME1 EXE It1If1

Welcome to the OS/2 Presentation Manager

Figure 2-11. The WE!-COMEl display.

Processing Messages
The ClientWndProc window procedure in WELCOMEl shows the typical
switch and case construction used to process messages. The msg parameter
to the window procedure identifies the message. ClientWndProc processes
three messages: WM_CREATE, WM_PAINT, and WM_DESTROY. In most
cases, a window procedure returns OL when it processes a message. Any
message not processed must be passed on to WinDefWindowProc, and
the value turned from WinDefWindowProc must be returned from the
window pli cedure.

The WM_ REATE message is the first message that a window procedure
receives. I is sent directly to the window procedure during the
WinCreateStd In -£all. A window procedure can perform some window
initialization during the WM_CREATE message. In WELCOMEl, Client
WndProc calls the OS/2 DosBeep function to play the notes of a C-major
chord to indicate that the client window has arrived.

The WM_DESTROY message is the last message a window procedure
receives. The Presentation Manager sends this message to the window
procedure during the WinDestroyWindow call. Although window proce
dures can do some "cleanup" during the WM_DESTROY message,
ClientWndProc again calls DosBeep a few times as a swan song to indicate
that the client window is being destroyed.

54 SECTION ONE: BASIC CONCEPTS

The WM_PAINT Message
One of the most important messages that a window procedure receives is
WM_PAINT, which tells the window procedure when to display something
on the window. "What?" you say. "The Presentation Manager is telling me
when I can display something on my window? I have to be given permis
sion? What kind of fascist operating system is this?" Cool down. The
WM_PAINT message is simply the Presentation Manager's way of telling
you that a portion of your window is "invalid" -that is, that part of the
window's visible area contains garbage or perhaps nothing at all. The
WM_PAINT message tells the window function that the window is due
for a paint job.

How does the window become invalid? When a window is first created, the
entire window is invalid. In fact, one of the first queued messages the client
window receives is WM_PAINT. The window function can take this oppor
tunity to display something in the window. Now suppose you minimize the
window and then restore it to the original size. The Presentation Manager
doesn't save the contents of the window when the window is minimized. In
a graphical environment it's simply too much data. Thus when the window
is restored after being minimized, the window is invalid, and a WM_PAINT
message is placed in the message queue. If you start rearranging several
windows on the display, a window may overlap others. The Presentation
Manager generally won't save the area of a window covered by another
window. When the window is uncovered, the previously hidden area is in
valid, and a WM_PAINT message goes into the message queue.

This is probably quite different from the way you usually think about using
the video display. Under a conventional operating system, your program can
display something on the screen whenever it wants and not worry about
something on the screen mysteriously disappearing. Under the Presentation
Manager, you can still-if you want-display something on a window
whenever you want. But it makes more sense to do painting only when the
window function receives the WM_PAINT message. The program must re
tain what it needs to recreate the appearance of the window, because it can
receive a WM_PAINT message at almost any time. If the window function
displays something on the window while processing a message other than
WM_PAINT, it must also execute the same painting code when it gets
a WM_PAINT message.

Normally, if you resize a window to make it smaller, the window procedure
doesn't receive a WM_PAINT message. The Presentation Manager simply
cuts off the edges of the window that previously extended past the new

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 55

size. You'll note, however, that in WELCOME 1 the fourth parameter to
WinRegisterClass is set to CS_SIZEREDRAW. This is a class style. It causes
the Presentation Manager to· invalidate the entire window and post a
WM_PAINT message to the client window whenever the size of the win
dow changes.

When you get a WM_PAINT message, you can obtain the coordinates of the
invalid area of the window. You need update only that part of the window.
We'll explore this and other aspects of the WM_PAINT message more in
upcoming chapters. Right now all you have to know is that WM_PAINT
informs the window procedure that it's time to update the appearance
of the window.

Processing WM_PAINT
The code that processes the WM_PAINT message in a window function
must begin with a call to WinBeginPaint and end with a call to WinEndPaint.
When WinEndPaint is called, the Presentation Manager validates the entire
area of the window. Using a simple form of the WinBeginPaint call, the code
looks like this:

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NULL)

[paint the window]

WinEndPaint (hps) ;
return 0 ;

If your program doesn't process WM_PAINT messages (as WELCOME

doesn't), they are passed to WinDefWindowProc. WinDefWindowProc sim
ply calls WinBeginPaint and WinEndPaint (with nothing in between) to vali
date the entire area of the client window. This is a good example of how
WinDefWindowProc takes care of chores a program chooses to ignore. If
WinBeginPaint and WinEndPaint aren't called during a WM_PAINT message,
an area of the window remains invalid, and the WM_PAINT message isn't
removed from the message queue.

The handle returned from the WinBeginPaint call is a handle to a presenta
tion space. The handle is stored in a variable named hps of type HPS. You
need this handle to the presentation space to draw on the surface of the cli
ent window. The presentation space handle is the first parameter to all the
Graphics Programming Interface (GPI) drawing functions.

The presentation space is essentially a data structure that defines an abstract
display surface. The presentation space is associated with a "device con
text, " which defines a particular physical display medium. In the form of

56 SECTION ONE: BASIC CONCEPTS

the WinBeginPaint call used here, the presentation space for which we get a
handle is associated with a device context for the video display - in par
ticular, the part of the display that the client window occupies. This form of
the WinBeginPaint call (with the second parameter set to NULL) implies that
we're using a subset of GPI that is called the "cached micro-PS."

Painting WELCOME1 '5 Client Window
After the WinBeginPaint call, WELCOMEI obtains the dimensions of the
client window by using this function:

WinQueryWindowRect (hwnd, &rcl) :

The first parameter is hwnd, the handle to the client window. The reZ vari
able is a structure of type RECTL (rectangle). The RECTL structure has four
fields: xLeft, yBottom, xRight, and yTop. WinQueryWindowRect fills the fields
of the reZ structure with the current coordinates of the client window. These
coordinates are relative to the lower-left corner of the window; hence the
xLeft and yBottom fields are set to O. The xRight field is actually the width of
the window in pixels, and yTop is the height of the window in pixels.

The WinDrawText function is used to display the string "Welcome to the
OS/2 Presentation Manager" in the center of the client window. It uses the
reZ rectangle structure and the parameter DT_CENTER : DT_ VCENTER :
DT _ERASERECT to specify that the string is to be horizontally and ver
tically centered within the rectangle and that the rectangle (the entire win
dow) is to be erased before the text is displayed. The CLR_NEUTRAL and
CLR_BACKGROUND parameters specify the text color and background
color. I'll discuss these two "colors" in Chapter 5.

Too Much Overhead?
This has been a long journey to write a simple program that displays some
text and plays a tune. But we've basically covered all the facets of the Pre
sentation Manager. You've learned about windows. You've learned about
messages. You've learned about presentation spaces. That's it. Everything
that follows is just detail.

CHAPTER TWO: WELCOME TO PRESENTATION MANAGER PROGRAMMING 57

C HAP T E R T H R E E

MORE FUN
WITH WINDOWS

In Chapter 2, our rush to create a functional window required that we ig
nore some details and finer points of the art of window creation. Here we'll
explore variations on the basic theme.

Exploring the Standard Window
The WinCreateStdWindow function creates one or more windows. In the fi
nal version of WELCOMEl, shown in Chapter 2, WinCreateStdWindow
creates five windows-the frame, title bar, system menu, minimize/maxi
mize window, and the client window. The term "standard window" refers
to this collection of windows organized around the frame window. All but
one of the windows that make up the standard window are created based on
window classes already registered by the Presentation Manager. Messages
to these windows come through the program's message queue but are dis
patched to the particular window procedure in PMWIN.DLL that is defined
by the window class. The client window, on the other hand, is generally
based on a window class that the program itself registers, and it uses a win
dow procedure within the program (called ClientWndProc in WELCOME!)
to process its messages.

The windows that make up the standard window receive messages from the
Presentation Manager (often initiated by user input) but can also send mes
sages to one another. They essentially carryon a family conversation.

59

The Family of Windows
Windows created in the Presentation Manager usually have a parent-child
relationship. In the standard window, the frame window is the parent, and
the other windows (including the client window) are the children of the
frame window. Thus we can define the term standard window as "a frame
window and its children." Windows with a common parent are called "sib
ling windows." A window can have many children but only one parent. A
window's children, its children's children, and so forth are called the win
dow's "descendants."

The grand matriarch of Presentation Manager windows is the "desktop
window." The desktop window occupies the entire screen. Although it ap
pears to be simply a background color, the desktop window is a real win
dow with a window procedure in PMWIN.DLL named WinDesktopWndProc
that processes its messages. Every other window is a descendant of the desk
top window. (This isn't quite true. Some windows, called "object win
dows, " have no parent. Like other windows, an object window can send and
receive messages, but an object window isn't visible on the screen and
doesn't receive user input. When I discuss windows in this book I'm usually
talking about nonobject windows.)

A child of the desktop window is called a "top-level window." Virtually
every program that runs under the Presentation Manager creates at least
one top-level window. When a program such as WELCOMEl calls
WinCreateStdWindow to create the application's main window, the frame
window is a top-level window. The other windows created by the function
are children of the frame window and are not top-level windows. The
family tree for the WELCOMEl program is shown in Figure 3-1.

A child window is affected by its parent in several ways:

• A child window is always displayed within the area of the screen oc
cupied by its parent. We say that the child is "clipped" on the area of its
parent. This is fairly obvious in the case of the desktop window and the
frame window because the desktop window encompasses the entire
screen. The children of the frame window also appear within the area
occupied by the frame. If the frame window tried to position part of the
title bar window outside of the area that is occupied by the frame, the
part of the title bar outside the frame window would not be visible.

• Child windows remain in the same position relative to the parent unless
explicitly moved. When you move the frame window around the screen,
the children follow. This happens automatically: When the frame win
dow wants to move itself (usually because it has received a message

60 SECTION ONE: BASIC CONCEPTS

from the title bar window that the user has moved the window), it need
only tell the Presentation Manager to move the frame. The Presentation
Manager takes care of moving the children.

• When a parent window is hidden, minimized, or destroyed, all of its
children (and, by extension, all its descendants) are also hidden,
minimized, or destroyed. This should be partly obvious in WELCOMEl.
If you minimize the frame window, all the children of the frame win
dow are also removed from the screen. When the frame window is
destroyed by the call to WinDestroyWindow after WELCOMElleaves the
message loop, all the children of the frame window (including the client
window) are also destroyed. ClientWndProc receives a WM_DESTROY
message at that time .

• Sibling windows can overlap on the screen. We'll see examples of over
lapping siblings in the WELCOME2 and WELCOME3 programs in this
chapter.

The Presentation Manager includes a function, WinQueryWindow, that you
can use to determine a window's parent:

hwndParent = WinOueryWindow (hwnd, OW_PARENT, FALSE) ;

The variable hwndParent is set to the handle of the parent window of hwnd.
For example, after the WinCreateStdWindow function returns control to your
program, the following call obtains the frame window handle:

hwndFrame = WinOueryWindow (hwndClient, OW_PARENT, FALSE) ;

This will be the same window handle returned from WinCreateStdWindow.

Desktop
window

I
Frame

window
(hwndFrame)

I
Title Client System
bar window menu

window (hwndClient) window

Figure 3-1. The WELCOME1 family tree.

Minimize/
maximize
window

Standard
window

CHAPTER THREE: MORE FUN WITH WINDOWS 61

If hwndFrame is a top-level window, you can obtain the desktop window
handle by calling

hwndDesktop = WinOueryWindow (hwndFrame. OW_PARENT. FALSE) ;

Or you can use the function specifically designed for this purpose:

hwndDesktop - WinOueryDesktopWindow (hab. NULL) ;

In many Presentation Manager functions, the HWND _DESKTOP identifier is
used to refer to the desktop window. Usually you pass HWND_DESKTOP as
the first parameter to WinCreateStdWindow. This makes the frame a top
level window. The application often has no choice-but to do this: The frame
window must have a parent, but the application doesn't know about any
other windows except the desktop window. The desktop is thus the only
possible parent.

If the program calls WinCreateStdWindow a second time, it has a choice:
The second frame window could be another top~level window, or it could be
a child of one of the windows created in the first WinCreateStdWindow call
(most likely a child of the first client window). Let's look at an example of
the first approach.

Creating Multiple Top-Level Windows
The WELCOME2 program, shown in Figure 3-2, creates two top-level
standard windows. The program contains two window procedures
(ClientlWndProc and Client2WndProc) , registers two window classes
("Welcome2.1" and "Welcome2.2"), and calls WinCreateStdWindow twice.
Note that the EXPORTS section of WELCOME2.DEF lists both window
procedures.

The WELCOME2 File

#--------------------
WELCOME2 make file
11- - - - --- - - - - - -- - - -- --

welcome2.obj : welcome2.c
cl -c -G2sw -W3 wel come2. c

welcome2.exe : welcome2.obj welcome2.def
link welcome2. lalign:16. NUL. os2. welcome2

62 SECTION ONE: BASIC CONCEPTS

The WELCOME2.C File

/* -

WElCOME2.C -- A Program that Creates Two Top-level Windows
- -*1

#define INCL_WIN
#include <os2.h>

MRESUlT EXPENTRY ClientlWndProc (HWND. USHORT, MPARAM, MPARAM)
MRESULT EXPENTRY Client2WndProc (HWND, USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClassl [] - "Welcome2.1",
szClientClass2 [] - "Welcome2.2"

static ULONG flFrameFlags - FCF_TITlEBAR
FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

HAB hab :
HMO hmq ;
HWND hwnd~ramel. hwndFrame2. hwndClientl. hwndClient2
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab. 0)

WinRegisterClass (
hab.
szClientClassl.
Cl i entlWndProc.
CS_SIZEREDRAW.
0) ;

WinRegisterClass (
hab,
szClientClass2,
Client2WndProc.
CS_SIZEREDRAW,
0) :

hwndFramel - WinCreateStdWindow
HWND_DESKTOP.
WS_V I SI BlL
&fl FrameFl ags.

// Anchor block handle
II Name of class being registered
/1 Window procedure for class
1/ Class style
II Extra bytes to reserve

II Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
// Extra bytes to reserve

// Parent window handle
II Style of frame window
II Pointer to control data

(conrinued)

CHAPTER THREE: MORE FUN WITH WINDOWS 63

Figure 3-2. The WELCOME2.C File. continued

hwndFrame2

szClientClassl.
NULL,
OL.
NULL,
0,
&hwndClientl)

- WinCreateStdWindow
HWNO_OESKTOP,
WS_VISIBLE.
&flFrameFlags,
szClientClass2.
.. - Window No.2",
Ol.
NUll.
0,
&hwndClient2)

WinSendMsg (hwndFramel. WM_SETICON.

// Client window class name
// Title bar text
// Style of client window
// Module handle for resources
// 10 of resources
// Pointer Lo client window handle

// Parent window handle
II Style of frame window
II Pointer to control data
II Client window class name
II Title bar text
/1 Style of client window
/1 Module handle for resources
II 10 of resources
II Pointer to client window handle

WinQuerySysPointer (HWNO_DESKTOP. SPTR-APPICON, FALSE),
NULl) ;

WinSendMsg (hwndFrame2, WM_SETICON.
WlnQuerySysPointer (HWNO_OESKTOP. SPTR-APPICON, FALSE),
NULl) ;

while (WinGetMsg Chab. &qmsg. NULL, O. 0»
WinOispatchMsg (hab, &qmsg)

WinOestroyWindow (hwndFramel)
WinDestroyWindow (hwndFrame2)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY Client1WndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static CHAR szText [] - "Welcome to Window No.1" ;
HPS hps
RECTL rcl

switch (msg)

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL. NULL)

(continued)

64 SECTION ONE: BASIC CONCEPTS

Figure 3-2. The WELCOME2.C File. continued

WinQueryWindowRect (hwnd. &rcl) :

WinDrawText (hps. -1. szText. &rcl. ClILNEUTRAL'. CLILBACKGROUND.
DT_CENTER : DT_VCENTER : DT_ERASERECT) :

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

MRESULT EXPENTRY Client2WndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szText [] - "Welcome to Window No.2" ;
HPS hps
RECTL rcl

switch (msg)
{

case WM_PAINT;
hps - WinBeginPaint (hwnd, NULL, NULL)

WinOueryWindowRect (hwnd, &rcl) ;

WinDrawText (hps. -1. szText, &rcl. CLR_NEUTRAL, CLR_BACKGROUND.
DT_CENTER : DT_VCENTER : DT_ERASERECT) ;

WinEndPaint (hps) ;
return 0 ;

case WM_CLOSE:
return 0 :

return WinDefWindowProc (hwnd. msg, mpl, mp2)
}

The WELCOME2.DEF File

; WELCOME2.DEF module definition file

NAME WELCOME2 WINDOWAPI

(continued)

CHAPTER THREE: MORE FUN WITH WINDOWS 65

Figure 3-2. The WELCOME2.DEF File. continued

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSlZE
EXPORTS

'Creates Two Top-Level Windows (C) Charles Petzold. 1988'

1024
8192
ClientlWndProc
Client2WndProc

Figure 3-2. The WELCOME2 program.

The first parameter in the WinCreateStdWindow call is the parent of the
frame window. In both function calls, this parameter is set to HWND
_DESKTOP. The two frame windows in WELCOME2 share the same parent
and are thus siblings. The WELCOME2 family tree is shown in Figure 3-3.

When you run WELCOME2 (as shown in Figure 3-4), you'll find that the
two top-level windows function independently, almost as if they were cre
ated in different programs. Both windows are listed on the Task Manager.
Because all top-level windows are siblings, top-level windows overlap.
Only one top-level window is "active" at any time. You can switch be
tween the two windows (as you can switch among all top-level windows
listed on the Task Manager) using the Alt-Esc or Alt-Tab key combinations.

Desktop
window

Title

I
Frame

window
(hwndFrame 1)

Client System Minimize/
bar window menu maximize

window (hwnd- window window
Client1)

I

Figure 3-3. The WELCOME2 family tree.

66 SECTION ONE: BASIC CONCEPTS

Title

I
Frame
window

(hwndFrame2)

Client System Minimize/
bar window menu maximize

window (hwnd- window window
Client2)

WELCOMEZ.EXE

Welcome to Window No. 1

== WELCOME2 EXE . Window No 2 mm

Welcome to Window No. Z

Figure 3-4. The WELCOME2 display.

To simplify this demonstration, I have both window functions in
WELCOME2 perform approximately the same task (display some text in the
client window). However, the two window functions could perform entirely
different tasks from one another. For example, it's not difficult to imagine a
Presentation Manager CAD (computer-assisted design) program organized
into two top-level windows. One window could be an ASCII text editor and
allow you to enter and edit a series of drawing commands. The other win
dow could display the graphical representation of these commands. When
you change one of the commands in the editor window, the change could be
reflected in the graphics window; likewise, if you change the drawing itself
(perhaps using the mouse), the change could be reflected in the correspond
ing text command in the editor window. The two client window procedures
would communicate these changes to each other with messages. You would
store the two client window handles returned from the WinCreateStdWindow
calls in global variables so that they could be accessed by both window
procedures.

What messages would the two client windows send to each other? That's up
to you. PMWIN.H defines the identifier WM_ USER specifically for the pur
pose of creating your own messages. Within a program, you can define pri
vate messages that use values of WM_USER or above.

CHAPTER THREE: MORE FUN WITH WINDOWS 67

#define WM_MYMESSAGEO (WM_USER + 0)
#define WM_MYMESSAGE1 (WM_USER + 1)
#define WM_MYMESSAGE2 (WM_USER + 2)

If ClientlWndProc needs to send a WM_MYMESSAGEI message to
Client2WndProc, it can do so:

WinSendMsg (hwndClient2. WM_MYMESSAGEI. MPFROMLONG (lDatal).
MPFROMLONG (lData2» ;

IDatal and IData2 are long integers with message-specific data. The
MPFROMLONG macros convert a long integer to an MPARAM data type.
The message would be processed within Client2WndProc like this:

case WM_MYMESSAGEl:
[process message)

return 0 ;

Keep in mind that the two MPARAM values that accompany messages can
be far pointers to structures or to big blocks of memory, so the amount of
data passed in the message can be very large. The value returned from
WinSendMsg is the value that the window procedure returns once it has pro-'
cessed the message. This is defined as an MRESULT, which is also a
far pointer.

Title Bar Text
Notice that in Figure 3-4 the first window's title bar contained the text
"WELCOME2.EXE" and the second had "WELCOME2.EXE-Window
No.2." This is what you'll see when you run the program from the
CMD.EXE prompt or the Presentation Manager File System. If you install
WELCOME2 in the Start Programs window and run the program that way,
you'll see the program title specified in Start Programs in place of
"WELCOME2.EXE" on the title bar of each of the windows.

This is part of what the FCF_TASKLIST flag does. The title bar text (and the
Task Manager entry) is the name under which the program was started,
concatenated with the title bar text specified in the WinCreateStdWindow
function. For most programs in this book, I use NULL for the
WinCreateStdWindow parameter that indicates the title bar text. This causes
the title bar to display only the .EXE filename or the program title from
Start Programs. For the second window in WELCOME2, however, I used
"-Window No.2" in WinCreateStdWindow, so this text also appears in
the title bar and on the Task Manager.

68 SECTION ONE: BASIC CONCEPTS

Terminating a Presentation Manager Program
I've written WELCOME2 so that you cannot terminate the program by
selecting "Close" from the second window's system menu. This requires a
little explanation of how Presentation Manager programs terminate. When
you select Close from the system menu, the client window procedure
receives a WM_CLOSE message. If the window procedure passes
WM_CLOSE to WinDefWindowProc, the Presentation Manager posts a
WM_QUIT message to the message queue. This causes WinGetMsg to return
o when the WM_ QUIT message is retrieved from the queue, and the
program exits the message loop. If a window procedure simply traps
WM_CLOSE messages and returns from the window procedure without call
ing WinDefWindowProc, then nothing happens. This is how Client2WndProc
essentially disables the Close option on its system menu. (However, you can
terminate the program by closing either of the two windows from the Task
Manager. The Task Manager simply posts a WM_QUIT message to the
message queue. I describe how to process this WM_QUIT message in
Chapter 13.)

WELCOME2 is somewhat unorthodox. A Presentation Manager program
usually creates only one top-level main window. Any other top-level win
dows created in the program (such as dialog boxes) exist for only short
periods of time.

Creating Children of the Client
A more common approach to creating multiple standard windows is demon
strated in the WELCOME3 program, shown in Figure 3-5.

The WELCOME3 File

If- - - - - - - - - - - - - - - - - - --
If WELCOME3 make file
41- --- - -- - - - -- - -- - -- --

welcome3.obj : welcome3.c
c1 -c -G2sw -W3 wel come3. c

welcome3.exe : welcome3.obj welcome3.def
link welcome3, /align:16, NUL, os2. welcome3

CHAPTER THREE: MORE FUN WITH WINDOWS 69

The WELCOME3.C File

1*-- -------
WELCOME3.C -- Creates a Top-level Window and Two Children

- -* I

#define INCL_WIN
ttinclude <os2.h>

MRESUlT EXPENTRY C11entWndProc (HWND. USHORT. MPARAM. MPARAM)
MRESULT EXPENTRY ChildWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] - "Welcome3",
szChildClass [] - "Welcome3.Child"

static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU
FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKlIST

HAB hab ;
HMO hmQ :
HWND hwndFrame. hwndChildFramel. hwndChildFrame2.

hwndClient. hwndChildClientl. hwndCh11dClient2
QMSG qmsg :

hab = Winlnitialize (0)
hmq = WinCreateMsgQueue (hab. 0)

WinRegisterClass (
hab.
szClientClass.
ClientWndProc.
CS_SIZEREDRAW.
0) :

WinRegisterClass (
hab.
szChildClass.
ChildWndProc.
CS_SIZEREORAW.
sizeof (PVOID»

70 SECTION ONE: BASIC CONCEPTS

II Anchor block handle
II Name of CldSS being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

II Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

(continued)

Figure 3-5. The WELCOME3.C File. continued

1* -
Create top-level window

-------------------------*1

hwndFrame - WinCreateStdWindow
HWND_OESKTOP.
WS_V I S ISLE.
&flFrameFlags.
szClientClass.
NUll,
Ol.
NULL.
0,
&hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.

II Parent window handle
/I Style of frame window
II Pointer to control data
II Client window class name
II Title bar text
/I Style of client window
/I Module handle for resources
II 10 of resources
/I Pointer to client window handle

WinQuerySysPointer (HWNO_DESKTOP. SPTR-APPICON, FALSE).
NULL) :

1*- --
Create two child windows

- - - - - - - - - _. - - - - - - - - - - - - - - -*1

flFrameFlags &- -FCF_TASKLIST ;

hwndChildFramel ~ WinCreateStdWindow (
hwndClient. II Parent window handle
WS_VISIBlE. II Style of frame window
&flFrameFlags,
szChildClass.
nChil d No. 1".

OL.
NULL.

II Pointer to control data
II Client window class name
II Title bar text
II Style of client window
II Module handle for resources

0, I I 10 of resources
&hwndChildClientl) ;11 Pointer to client window handle

hwndChildFrame2 - WinCreateStdWindow (
hwndClient. II Parent window handle
WS_VISIBLE. II Style of frame window
&flFrameFlags.
szChildClass.
"Child No.2".
OL.
NULL.

II Pointer to control data
II Client window class name
II Title bar text
II Style of client window
II Module handle for resources

0, I I 10 of resources
&hwndChildClient2) ;11 Pointer to client window handle

(continued)

CHAPTER THREE: MORE FUN WITH WINDOWS 71

Figure 3-5. The WELCOME3.C File. continued

WinSendMsg (hwndChildFramel, WM_SETICON,
WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON, FALSE).
NULL> :

WinSendMsg (hwndChildFrame2. WM_SETICON,
WinOuerySysPointer (HWND_OESKTOP, SPTR-APPICON, FALSE),
NULl) ;

/*---
Set reserved area of window to text string pOinters

---*/

WinSetWindowPtr (hwndChildClientl, OWL_USER, "I'm a child ... ")
WinSetWindowPtr (hwndChildClient2, OWL_USER, n ••• Me too!") ;

while (WinGetMsg (hab. &qmsg, NULL, 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static CHAR szText [] - "I'm the parent of two children" ;
HPS hps
RECTl rcl

switch (msg)

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, NULL)

WinOueryWindowRect (nwnd. &rcl) ;

WinDrawText (hps, -1. szText, &rcl, CLR-NEUTRAL, CLR-BACKGROUND,
DT_CENTER : OT_VCENTER : DT_ERASERECT) ;

WinEndPairt (hps) ;
return 0 ;

return WinDefWindowProc (hwnd, msg, mpl, mp2)

72 SECTION ONE: BASIC CONCEPTS

(continued)

Figure 3-5. The WELCOME3.C File. continued

MRESULT EXPENTRY ChildWndProc (HWND hwnd, USHORT msg. MPARAM mp1. MPARAM mp2)
{

HPS hps
RECTL rcl

swi tch (msg)
{

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)

WinOueryWindowRect (hwnd, &rcl) ;

WinDrawText (hps. -1. WinOueryWindowPtr (hwnd. OWL_USER). &rcl.
CLR-NEUTRAL. CLR_BACKGROUND.
DT_CENTER : DT_VCENTER : DT_ERASERECT) ;

WinEndPaint (hps) ;
return 0 ;

case WM_ClOSE:

}

WinDestroyWindow (WinOueryWindow (hwnd, OW_PARENT. FALSE»
return a ;

return WinDefWindowProc (hwnd. msg, mp1, mp2)

The WELCOME3.DEF File

; WELCOME3.DEF module definition file
.. - .. -----------------------------------,

NAME

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

WELCOME3 WINDOWAPI

'Creates Top-Level and Two Children (C) Charles Petzold, 1988'

1024
8192
ClientWndProc
ChildWndProc

Figure 3-5. The WELCOME3 program.

CHAPTER THREE: MORE FUN WITH WINDOWS 73

WELCOME3 makes three calls to WinCreateStdWindow. The first call
creates a top-level window. The second and third calls create child standard
windows of the first client window. For these children, the first parameter to
WinCreateStdWindow is hwndClient - the client window handle returned
from the first call. The second and third standard windows are siblings.
Both client windows of these children are based on the same window class
("We1come3.Child") and thus share the same window procedure,
ChildWndProc, but they could easily be based on different window classes.
Figure 3-6 shows the WELCOME3 family tree, and Figure 3-7 shows the
program running under the Presentation Manager.

Title
bar

window

Frame
window

(hwndChildFrame 1)

Desktop
window

I
Frame
window

(hwndFrame)

I
Client

window
(hwndClient)

Title Client System Minimize/
bar window menu maximize

window (hwnd- window window
Child-

Client 1)

Figure 3-6. The WELCOME3 family tree.

74 SECTION ONE: BASIC CONCEPTS

System Minimize/
menu maximize

window window

Frame
window

(hwndChildFrame2)

Title Client System Minimize/
bar window menu maximize

window (hwnd- window window
Child-

Client2)

== WELCOME3 EXE l+l1!1

== Child No 1 ItJI!1

I'm 8 child ...

I'm the parent of two children

Child No.2

... Me too!

Figure 3-7. The WELCOME3 display.

This is the more common technique for creating multiple windows within a
program and is the basis for the Multiple Document Interface (MDI) con
vention used by the File System program. The top-level window is the ap
plication's main window. The client window of this top-level standard
window is the application's work space. Several other child windows can
exist within this work space.

You'll notice that the two child standard windows obey the rules for child
windows discussed earlier: They can be displayed only within the area oc
cupied by their parent; because they are siblings, they can overlap; they fol
low the parent when the parent is moved around the screen; and they are
minimized when the parent is minimized. You can also independently
minimize these two children - their windows will still appear within the
area of the parent. This is analogous to the organization and display of top
level windows relative to the desktop window.

Although you can use the Alt-Esc or Alt-Tab key combination to move
between the top-level windows in the Presentation Manger, there is no auto
matic keyboard interface for moving between windows that are not top
level windows. The program would have to provide this keyboard interface.
However, you can bring a particular child standard window to the top by
clicking on its window with the mouse.

CHAPTER THREE: MORE FUN WITH WINDOWS 75

The two child windows are not listed on the Task Manager. Only top-level
windows can be listed there. Before creating these child windows, WEL
COME3 removes the FCF_TASKLIST flag fromjlFrameFlags:

flFrameFlags & = -FCF_TASKLIST ;

This also causes the title bar text for the child windows to be exactly what is
specified in the WinCreateStdWindow function.

WELCOME3 uses a little trick that allows the two child standard windows
to display different text in their client windows. When the program registers
the "We1come3.Child" window class, it specifies that 4 bytes (the size of a
PVOID or far pointer) are to be reserved for use by the program for every
window created based on this class. This is indicated by the fifth parameter
to WinRegisterClass:

WinRegisterClass (
hab.
szChildClass,
ChildWndProc,
CS_SIZEREORAW,
sizeof (?VOID);

II Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

After the two child standard windows are created, WELCOME3 uses
WinSetWindowPtr to store something in that area:

WinSetWindowPtr (hwndChildClientl, OWL_USER, "I'm a child ... n)

WinSetWindowPtr (hwndChildClient2, OWL_USER, n ••• Me too!") ;

What is stored in this space is actually the long (or far) address of the static
text strings "I'm a child ... " and" ... Me too!" In ChildWndProc, these
addresses are retrieved during processing of the WM_PAINT message and
passed to the WinDrawT ext function:

WinOrawText (hPS, -1. WinOueryWindowPtr (hwnd, OWL_USER), &rcl.
CLR-NEUTRAL, CLR-BACKGROUNO,
DT_CENTER : OT_VCENTER : DT_ERASERECT) ;

Thus the window procedure doesn't have to figure out which child window
is receiving the WM_PAINT message. Although this is a somewhat unusual
application of the technique, storing window-specific data in the reserved
area is often quite handy when two or more windows share the same win
dow procedure.

76 SECTION ONE: BASIC CONCEPTS

The processing of the WM_CLOSE message in ChildWndProc destroys the
window being closed but doesn't terminate the program:

case WM_CLOSE:
WinDestroyWindow (WinOueryWindow (hwnd, OW_PARENT. FALSE»
return 0 ;

WinQueryWindow obtains the parent of the client window (which is its
frame window); destroying that frame window also destroys the client
window.

The program can be terminated only from the main window. After leaving
the message loop, WELCOME3 destroys the program's top-level frame win
dow as usual:

WinDestroyWindow (hwndFrame) ;

If one or both of the two child standard windows still exist, they, too, will
be destroyed as a result. All windows in WELCOME3 are descendants of
hwndFrame, so the one WinDestroyWindow call destroys all the windows in
the program.

Controls and Their Owners
The frame window is the parent of all other windows created in the
WinCreateStdWindow function. The frame window is also the "owner"
of these other windows. A window is always displayed to the foreground
of its owner (if it has one). However, it is not clipped to the surface of its
owner. As with the parent/child relationship, when a window is hidden,
minimized, or destroyed, the windows it owns are also hidden, minimized,
or destroyed.

The owner relationship also affects how messages are sent between the win
dows. The title bar, system menu, and minimize/maximize windows are
often called "control windows." Control windows usually have a relatively
simple appearance and function. The primary job of a control window is to
receive user input (keystrokes and mouse activity) in the form of messages
and then send notification messages to the window's owner. The owner of
the control window (which in all the examples so far is a frame window)
then acts on the notification message.

For example, when you click on the maximize icon with the mouse, the
minimize/maximize window sends a WM_SYSCOMMAND message to its

CHAPTER THREE: MORE FUN WITH WINDOWS 77

owner-the frame window. The frame window then begins the process of
maximizing the window. Likewise, the title bar window notifies the frame
window of a new window position.

Although every window (except object windows and the desktop window
itself) has a parent, windows do not need owners. The frame window
created in WinCreateStdWindow has no owner. The frame window is the
owner of the client window, but the client window doesn't really need an
owner either.

You can determine the owner of a window by calling WinQueryWindow:

hwndOwner = WinOueryWindow (hwnd, OW_OWNER, FALSE) :

A window can be assigned a new owner:

WinSetOwner (hwnd, hwndNewOwner) :

The hwndNewOwner parameter can be set to NULL. This causes the win
dow whose handle is hwnd to have no owner.

Registering the Window Class
Let's back up a little and examine in more detail some of the functions in
volved in creating a standard window. The standard window usm~lly in
cludes a client window. A preliminary step in creating a client window is
the registering of a class for that window. The call to WinRegisterClass in
WELCOME1.C from Chapter 2 looks like this:

WinRegisterClass (
hab,
szClientClass,
ClientWndProc,
CS_SIZEREDRAW,
0;

/1 Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

Of these five parameters, the second and third are the most important. The
second parameter is the name of the window class being registered. The
name is a zero-terminated character string generally derived from the name
of the program. In WELCOMEl the class name is "Welcomel." The third
parameter is the address of the window procedure for the class. This win
dow procedure processes all messages to all windows that are later created
based on this class.

78 SECTION ONE: BASIC CONCEPTS

The class style parameter is a 32-bit unsigned long integer that sets certain
characteristics of all windows later created based on the class. You can set
the class style parameter to OL for a default class style. Or you can use one
or more identifiers beginning with the letters CS ("class style") defined in
PMWIN.H to specify a nondefault class style. You combine these identifiers
with the C bitwise OR operator (:). Each identifier sets one bit in the class
style. For this reason, the identifiers are sometimes called "class style bits."
Ten class style bits are defined in PMWIN.H and are shown in Figure 3-8 in
a diagram that indicates how each identifier contributes to the resultant
32-bit window style.

These class styles are described in the documentation that accompanies the
Microsoft OS/2 Programmer's Toolkit. Most of them are not commonly
used. For the programs in this book, I use only CS_SIZEREDRAW and
CS_SYNCPAINT. The CS_SIZEREDRAW bit affects how the Presentation
Manager should invalidate a window (and hence cause the window to
receive a WM_PAINT message) when it is resized by the user. If the
CS_SIZEREDRAW bit is not set and the window is reduced in size, the Pre
sentation Manager does not need to invalidate the window. The part of the
window outside the new size can be simply erased. When the
CS_SIZEREDRAW bit is set, the entire window is invalidated when it is
resized. CS_SIZEREDRAW should be used for all windows whose ap
pearance depends on the size of the window. Because we have been display
ing centered text in our client windows, CS_SIZEREDRAW is proper for the
window class.

\31 \30 \29\28\27\26\25\ ... \ 5 \ 4 \ 3 \ 2 \ 1 \ 0 \

CS_MOVENOTIFY

1..-___ CS_SIZEREDRAW

L-.. ____ CS_HITTEST

'--------- CS_PUBLIC

L-..-------CS_FRAME

,---------- CS_SYNCPAINT

'-------------- CS_SAVEBITS

L-.. ____________ CS_PARENTCLIP

'--------------- CS_CLlPSIBLINGS

L-______________ CS_CLlPCHILDREN

Figure 3-8. The window class style bits.

CHAPTER THREE: MORE FUN WITH WINDOWS 79

When CS_SYNCPAINT is set, WM_PAINT messages are sent directly to a
window procedure when part of the window becomes invalid. When this bit
is not set, WM_PAINT messages are posted to the message queue and
retrieved later. The CS_SYNCPAINT bit is used mostly with small control
windows that must be repainted immediately.

The parameter to WinRegisterClass labeled "extra bytes to reserve"
reserves a block of memory associated with each window created based on
this class. You put data into this area using WinSetWindowUShort,
WinSetWindowULong, and WinSetWindowPtr; you retrieve it by using Win
QueryWindowUShort, WinQueryWindowULong, and WinQueryWindowPtr.
You can do whatever you want with this memory. As you saw in
WELCOME3, it's a handy place to store data unique to each window. Here's
the general rule: When a variable defined in a window procedure is needed
only during the processing of a message, use an automatic variable. To re
tain information from message to message, use static variables. However, if
two or more windows share the same window procedure, use static vari
ables only for data that can be shared among all windows. Use the reserved
area for data unique to each window.

Creating the Standard Window
The WinCreateStdWindow call from last chapter's WELCOMEl program
looks like this:

hwndFrame = WinCreateStdWindow
HWND_DESKTOP,
WS_VISIBLE,
&flFrameFlags,
szClientClass,
NULL,
OL,

NULL.
0,

&hwndClient)

//

//
//

//

/I
//
/I
//
/1

Parent window handle
Style of frame window
Pointer to control data
Client window class nome
Titl e bar text
Style of client window
Module handle for resources
ID of rescurces
Pointer to client window handle

Two parameters in the WinCreateStdWindow function are "window styles":
The second parameter is the window style of the frame window, and the
sixth parameter is the window style of the client window. A window style is
a 32-bit unsigned long integer. Like the class style discussed previously, the
window style sets certain characteristics of the window. But although
the class style applies to all windows based on the class, the window style
applies only to the particular window being created.

80 SECTION ONE: BASIC CONCEPTS

The PMWIN.H header file contains identifiers (sometimes called "window
style bits") to set bits in the window style when the identifiers are combined
with the C bitwise OR operator (:).

The high 16 bits of the window style are defined in the same way for all
window classes. The identifiers begin with WS ("window style"). These
are shown in Figure 3-9.

Like the control style flags, many of these are rather rare. The WS_SYNC
PAINT, WS_SAVEBITS, WS_PARENTCLIP, WS_CLIPSIBLINGS, and
WS_CLIPCHILDREN bits have the same purpose as the equivalent class
style bits. Thus you can create a window class without these styles but then
create windows based on that class that use these .styles. The only window
style from Figure 3-9 that we've used so far for the frame window is the
WS_ VISIBLE bit. By default, a window is invisible when it's created.
Specifying WS_ VISIBLE overrides that default. Alternatively, you can ex
dude WS_ VISIBLE from the frame window style when creating the window
and later call WinSetWindowPos and WinShowWindow. The WS_ VISIBLE bit
isn't required for the client window style, because the Presentation Manager
specifically makes the client window visible.

The WS_GROUP and WS_TABSTOP style bits are used only for control
windows (such as buttons) within dialog boxes. (Chapter 14 is devoted to
dialog boxes.)

/31 /30/29/28/27/26/25/24/23/22/21 /20/19/18/17/16/

L

Figure 3-9. The high window style bits.

WS_GROUP

WS_TABSTOP

WS_MAXIMIZED

WS_MINIMIZED

WS_SYNCPAINT

WS_SAVEBITS

WS_PARENTCLIP

WS_CLlPSIBLINGS

WS_CLlPCHILDREN

WS_DISABLED

WS_VISIBLE

CHAPTER THREE: MORE FUN WITH WINDOWS 81

The WS_MAXIMIZED bit causes a window to be maximized when the win
dow is first displayed. Similarly, the WS_MINIMIZED bit causes the
window to be initially displayed as an icon.

If the WS_DISABLED bit is set, the window can't receive mouse input and is
generally inert. The window can be subsequently enabled by a call to
WinEnableWindow.

The low 16 bits of the window style have different meanings, depending on
the window class. The window procedure for the class interprets these bits.
We'll see examples of this in the WELCOME4 program coming up shortly.

The Frame Creation Flags
The third parameter to WinCreateStdWindow is a pointer_to a ULONG that
indicates what child windows should be created in the standard window.
The frame creation flags you use for this are shown in Figure 3-10. The
PMWIN.H header file also defines FCF_STANDARD to be the-same as

FCF_TITLEBAR i FCF_SYSMENU i FCF_MENU i
FCF_SIZEBORDER FCF_MINMAX i FCF_ICON i
FCF_ACCELTABLE i FCF_SHELLPOSITION i FCF_TASKLIST

The FCF _MINMAX identifier is the same as

FCF_MINBUTTON i FCF_MAXBUTTON

You can experiment with the WELCOME1, WELCOME2, or WELCOME3
program (within limits) by removing some of the frame creation flags and
putting in others. For example, you can exclude FCF _SYSMENU by using

flFrame Flags = FCF_TITLEBAR i FCF_SIZEBORDER i
FCF_MINMAX i FCF_SHELLPOSITION
FCF_TASKLIST

In this case, the system menu window isn't created, and the title bar extends
to the left to fill the space. You'll have to exit the program from the Task
Manager.. If you exclude FCF _MINMAX, then the minimize/maximize
window isn't created, and the title bar again fills the space. The Minimize
and Maximize options are also disabled on the system menu. You can use
FCF _MINBUTTON or FCF _MAXBUTTON to include one option but not
the other.

If you exclude FCF _TITLEBAR, the title bar isn't created, and the Presenta
tion Manager ignores the "title bar text" parameter of WinCreateStd
Window. The system menu and minimize/maximize box are created (if

82 SECTION ONE: BASIC CONCEPTS

11911s11711611s1141131 12 111110191sJ 7161sJ 4131211 101

L

Figure 3-10. The frame creation flag bits.

FCF _ TITLEBAR

FCF _SYSMENU

FCF_MENU

FCF _SIZEBORDER

FCF _MINBUTTON

FCF _MAXBUTTON

FCF _ VERTSCROLL

FCF _HORZSCROLL

FCF _DLGBORDER

FCF_BORDER

FCF _SHELLPOSITION

FCF _ TASKLIST

FCF _NOBYTEALIGN

FCF _NOMOVEWITHOWNER

FCF_ICON

FCF _ACCEL TABLE

FCF _SYSMODAL

FCF -,SCREENALIGN

FCF _MOUSEALIGN

FCF _SYSMENU and FCF _MINMAX are specified) and displayed in the nor
mal places. But the area normally occupied by the title bar is not part of the
client window. You can't move the window, because that is a function of
the title bar.

If you exclude FCF _SIZEBORDER, the sizing border window isn't created.
Without the sizing border, the window not only looks a little naked, but
the user can change the size of the window only by minimizing or max
imizing it from the system menu or from the minimize/maximize box.
You'll probably want to use FCF_BORDER to draw a thin black border
around the naked window. If you use both FCF _SIZEBORDER and
FCF _BORDER, FCF _BORDER is ignored.

CHAPTER THREE: MORE FUN WITH WINDOWS 83

The FCF _DLGBORDER frame creation flag bit causes a wide border to be
drawn. This is more commonly seen on dialog boxes. Like the title bar,
the dialog border uses color to indicate if the window is active. If you
use both FCF _DLGBORDER and FCF _SIZEBORDER for the window,
FCF _DLGBORDER is ignored.

You can include FCF _ VERTSCROLL or FCF _HORZSCROLL or both in the
frame creation flags. The window will then include scroll bars. The vertical
scroll bar appears to the right of the client window, and the horizontal scroll
bar is on the bottom. We'll start using scroll bars in the next chapter.

At the moment you can't use the FCF_MENU, FCF_ICON, or FCF_ACCEL

TABLE bits in the frame creation flags. These bits cause the Presentation
Manager to attempt to load a menu, icon, or keyboard accelerator table from
the module (a .EXE or .DLL file) whose module handle is indicated in the
seventh parameter of the WinCreateStdWindow function. Menus, icons, and
accelerator tables are known as "resources." Every resource has an ID
number. The ID number for all three of these resources must be the same
and is specified as the eighth parameter in WinCreateStdWindow.

Note that some frame creation flags - specifically the FCF _TITLEBAR,
FCF _SYSMENU, FCF _MENU, FCF _MINBUTTON, FCF _MAXBUTTON,
FCF _ VERTSCROLL, and FCF _HORISCROLL flags - cause windows to be
created; others (such as FCF _SIZEBORDER, FCF _BORDER, and FCF _DLG

BORDER) affect only the appearance and functionality of the frame window.

The WinCreateWindow Function
The WinCreateStdWindow function creates several windows organized
around a frame window. Within the Presentation Manager, each window is
created by a call to WinCreateWindow. This function is available for use by
your programs also. It looks like this:

hwnd = WinCreateWindow (
hwndParent.
szClassName,
szText,
ws_ ...•
xStart. yStart,
xSize, ySize.
hwndOwner.
hwndOrder,
idChild,
pControlData.
pPresParams) ;

// Parent window handle
If Window class
// Window text
// Window style
// Initial position of window
/1 Initial size of window
// Owner window handle
/1 Placement window handle
/1 Child window ID
// Control data
/1 Presentation parameters

84 SECTION ONE: BASIC CONCEPTS

The parameters to this function indicate the full array of information re
quired to create a window, and they show how WinCreateStdWindow makes
the job of creating a standard window in your program a whole lot simpler.

You'll note here that each window has a "window text." But many control
windows (such as the system menu window, sizing border window, and
minimize/maximize window) don't display this text. The Presentation
Manager uses the "title bar text" parameter to WinCreateStdWindow (con
catenated to the name under which the program was started) as the "win
dow text" parameter to WinCreateWindow only when it is creating the
title bar window. The title bar window procedure displays that text in
its window.

Each window also has a position and size. The position is relative to the
lower-left corner of the window's parent. We haven't been worrying about
this. The Presentation Manager gives the frame window a default position
and size and then organizes the other windows within that.

The Predefined Window Classes
In the WinCreateStdWindow call, only one window class parameter is re
quired-the window class of the client window. However, the Presentation
Manager needs to specify a window class in each WinCreateWindow call it
makes when creating the standard window. For the windows other than the
client window, the Presentation Manager uses predefined window classes.
These have identifiers in PMWIN.H and are shown in the following table:

Predefined
Window Class

WC_FRAME
WC_BUTTON
WC_MENU

WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITLEBAR

Type of Window

Standard frame window (including dialog boxes)
Push button, check box, and so on
Menu (including system menu & minimize/maximize

window)
Text field, static rectangle
Text editing field
List box
Scroll bar
Standard title bar

Each of these window classes has a corresponding window procedure in
PMWIN.DLL.

In the WinCreateStdWindow calls made in the various WELCOME programs,
the Presentation Manager creates windows based on the WC_FRAME,
WC_MENU, and WC_TITLEBAR styles. Perhaps it will be instructive to
call WinCreateWindow ourselves in a program and see how this works.

CHAPTER THREE: MORE FUN WITH WINDOWS 85

Creating Child Control Windows
The WELCOME4 program, shown in Figure 3-11, creates one standard win
dow and three control windows as children of the client window. These
three control windows are created using WinCreateWindow and are based
on the predefined window classes of WC_BUTTON, WC_SCROLLBAR,
and WC_ENTRYFIELD.

The WELCOME4 File

ff- - - - - - - - - - - - - - - - - - --
WELCOME4 make file
/1- - - - - - - - - - - - - - - - - - --

welcome4.obj : welcome4.c
c1 -c -G2sw -W3 welcome4.c

welcome4.exe : we1come4.obj we1come4.def
link we1come4. /align:16. NUL. os2. welcome4

The WELCOME4.C File

/* -

WELCOME4.C -- Creates a Top-Level Window and Three Children
---*/

#define INCL_WIN
ffinclude <os2.h>

#define ID_BUTTON 1
#define ID_SCROLL 2
#define ID_ENTRY 3

MKESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

int main (void)

static CHAR szClientClass [] - "Welcome4"
static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU

HAS
HMQ

hab ;
hmq ;

FCF_BOROER FCF-MINBUTTON
FCF_SHELLPOSITION FCF_TASKLIST;

HWND hwndFrame. hwndClient
QMSG qmsg ;
RECTL rcl ;

86 SECTION ONE: BASIC CONCEPTS

(continued)

Figure 3-ll. The WELCOME4.C File. continued

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0)

WinRegisterClass (
hab,
szClientClass,
ClientWndProc,
CS_SIZEREDRAW.
0) ;

hwndFrame - WinCreateStdWindow
HWND_DESKTOP,
WS_VISIBLE.
&flFrameFlags.
szClientClass,
NULL,
OL,
NULL,
0,
&hwndClient)

WinSendMsg (hwndFrame, WM-SETICON.

II Anchor block handle
II Name of class being registered
II Window procedure for class
II Class style
II Extra bytes to reserve

1/ Parent window handle
II Style of frame window
II Pointer to control data
II Client window class name
II Title bar text
II Style of client window
II Module handle for resources
1/ ID of resources
II Pointer to client window handle

WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON, FALSE),
NULl) ;

1* -

Find dimensions of client window for sizes of children
--.- --*1

WinQueryWindowRect (hwndClient. &rcl) ;
rcl.xRight 1- 3 :

1* -

Create push button window
-- -- - -- -- - - -- - -- -- - - -- --- - -* I

WinCreateWindow (
hwndClient.
WC_BUTTON,
"Big Button",
WS_VISIBLE

: BS_PUSHBUTTON,
10,

II Divide width in thirds

II Parent window handle
II Window class
II Window text
II Window style

II Window position

(continued)

CHAPTER THREE: MORE FUN WITH WINDOWS 87

Figure 3-11. The WELCOME4.C File. continued

10.
(SHORT) rcl.xRight - 20.
(SHORT) rcl.yTop - 20.
hwndClient.
HWNO_BOTTOM.
ID_BUTTON,
NULL,
NULL) ;

1* -
Create scroll bar window

--------------------------*1

WinCreateWindow (
hwndClient,
WCSCROLLBAR,
NULL.
WS_VISIHLE

: SBS_VERT,
(SHORT) rcl .xRight + 10.
10,
(SHORT) rcl.xRight 20,
(SHORT) rcl.yTop - 20.
hwndClient,
HWNO_BOTTOM,
ID_SCROLL,
NULL,
NULL) ;

1* --
Create entry field w1ndow

---------------------------*1

WinCreateWindow (
hwndClient,
WC_ENTRYFIELD,
NULL.
WS_VISIBLE

: ES_MARGIN
: ES_AUTOSCROLL,

II Window size

II Owner window handle
II Placement window handle
// Chil d wi ndow 10
// Control data
1/ Presentation parameters

II Parent window handle
/1 Window class
// Window text
/1 Window styl e

/I Window position

// Window size

// Owner window handle
/1 Placement window handle
1/ Child window 10
// Control data
II Presentation parameters

1/ Parent window handle
II Window class
/1 Window text
1/ Window style

2 ~ (SHORT) rcl .xRight + 10. II Window position
10.
(SHORT) rcl.xRight - 20,
(SHORT) rcl.yTop - 20.
hwndClient,
HWNO_BOTl OM.

88 SECTION ONE: BASIC CONCEPTS

II Window size

// Owner window handle
II Placement window hancle

(continued)

Figure 3-ll. The WELCOME4.C File. continued

ID_ENTRY,
NULL,
NULl) :

while (WinGetMsg (hab. &qmsg, NULL. 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 :

II Child window ID
II Control data
II Presentation parameters

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

switch (msg)
{

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case ID_BUTTON:

break ;

WinAlarm (HWND_DESKTOP. WA_NOTE)
return 0 ;

case WM_ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd, msg, mp1, mp2)

The WELCOME4.DEF File

; WELCOME4.DEF module definition file

NAME

DEseRI PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

WELCOME4 WINDOWAPI

'Creates Top-Level and 3 Children (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 3-ll. The WELCOME4 program.

CHAPTER THREE: MORE FUN WITH WINDOWS 89

The standard window in WELCOME4 uses FCF _BORDER rather than
FCF _SIZEBORDER and has no maximize icon. The window is shown in
Figure 3-12.

After creating the standard window, WELCOME4 makes a call to Win
QueryWindowRect to obtain the rectangle structure that defines the size of
the client window:

WinQueryWindowRect (hwndClient. &rcl) ;

The xRight field of this structure is the width of the client area in pixels.
WELCOME4 divides it by 3 to be used in the three WinCreateWindow calls.

The first WinCreateWindow call creates the window based on the
WC_BUTTON class:

WinCreateWindow (
hwndClient.
WCBUTTON.
"Big Button".
WS_VIS1BLE

10.
10.

: BS_PUSHBUTTON.

(SHORT) rcl.xRight - 20.
(SHORT) rcl.yrop - 20.
hwndClient.
HWND_BOTTOM.
ID_BUTTON.
NULL,
NULL) ;

II Parent window handle
/I Wi ndow cl ass
II Window text
/I Wi ndow styl e

II Window position

II Initial size of window

II Owner window handle
II Placement window handle
II Child window 1D
II Control data
II Presentation parameters

This call creates a large push button (such as those that appear in dialog
boxes) in the left third of the client window. The text inside the button is
"Big Button." Both the parent and owner are set to the hwndClient window
handle returned from the original WinCreateStdWindow call. The window
style uses WS_ VISIBLE and BS_PUSHBUTTON. Identifiers beginning with
BS ("button style") are class-specific window styles for buttons. The initial
position of the window is relative to the lower-left corner of the client win
dow. These two parameters are both set to 10 pixels to provide a small
margin around the push button. The size of the window is set to one-third
the width of the client window and to the height of the client window, minus
20 pixels from each dimension.

90 SECTION ONE: BASIC CONCEPTS

r= WELCOME4 EXE If)

Figure 3-12. The WELCOME4 display.

The second WinCreateWindow call creates a vertical scroll bar in the middle
third of the client window:

WinCreateWindow (
hwndClient,
WCSCROLLBAR,
NULL,
WS_VISIBLE

: SBS_VERT,
(SHORT) rcl .xRight + 10.
10.
(SHORT) rcl.xRight - 20.
(SHORT) rcl.yTop - 20.
hwndClient.
HWND_BOTTOM.
ID_SCROLL.
NULL,
NULl) ;

II
II
II
II

/I

II

/I
II
II
II
II

Parent window handle
Window class
Window text
Window style

Wi ndow pos it ion

Window size

Owner window handle
Placement window handle
Child window 10

Control data
Presentation parameters

The class is WC_SCROLLBAR, and the class-specific window style is
SBS_ VERT. SBS stands for "scroll-bar style," and VERT indicates a verti
cal scroll bar.

CHAPTER THREE: MORE FUN WITH WINDOWS 91

The third WinCreateWindow call creates a text entry field window:

WinCreateWindow (
hwndClient.
WC_ENTRYFIELO.
NULL.
WS_VISIBLE.

: ES_MARGIN
: ES_AUTOSCROLL

2 * (SHORT) rcl .xRight + 10.
10.
(SHORT) rcl.xRight - 20.
(SHORT) rcl.yTop - 20.
hwndClient.
HWNO_BOTTOM,
IO_ENTRY.
NULL.
NULL) ;

II Parent window handle
II Window class
1/ Window text
/I Window style

II Window position

1/ Window siLe

1/ Owner window handle
II Placement window handle
II Child window 10
II Control data
II Presentation parameters

The class is WC_ENTRYFIELD and the style bits are ES_MARGIN (to draw
a border around the window) and ES_AUTOSCROLL (to scroll text horizon
tally within the window).

All three WinCreateWindow calls return the handle to the window they
create, but WELCOME4 doesn't save these handles.

Although WELCOME4' s button and scroll bar may appear to be somewhat
grotesque, they are still functional. When you click on the button with the
mouse, it flashes. When you click on various parts of the scroll bar, they,
too, flash. (You can't move the scroll bar slider-that's a program's
responsibility, as you'll see in the next chapter.) You can even click on the
text entry field and type in some text.

These three control windows created in WELCOME4 send "notification
messages" to their owner (which is the client window) when they receive
user input. For example, the push button sends its owner a WM_COMMAND
message when the button is clicked with the mouse. ClientWndProc receives
this message and beeps by calling WinAlarm. Likewise, the control windows
that make up the standard window notify their owner (the frame window) of
user input. The WELCOME4 family tree is shown in Figure 3-13. This
family tree shows the parent-child relationship; the owner-owned relation
ship is identical to this, except that the desktop window doesn't own the
frame window.

92 SECTION ONE: BASIC CONCEPTS

Title
bar

window

Button
window

Desktop
window

I
Frame
window

(hwnrme)

Client
window

(hwndClient)

I

Scroll bar
window

Figure 3-13. The WELCOME4 family tree.

Child window IDs

System
menu

window

Minimize/
maximize
window

Text
entry

window

When the Presentation Manager (or your program) creates child windows
using the WinCreateWindow function, each child is assigned a "child win
dow ID" that is specified as the eleventh parameter to WinCreateWindow.
In WELCOME4, these ID numbers are set to ID_BUTTON, ID_SCROLL, and
ID_ENTRY, which are defined at the top of the program as 1,2, and 3. The
control window uses this ID to identify itself to its owner when it sends a
notification message. For example, in the WM_COMMAND notification
message that push buttons send, the mpJ parameter contains this ID. Thus a
window can contain many push buttons or other control windows, each
with a different ID. (We'll examine this in greater detail in Chapters 11, 13,
and 14.)

When the frame window creates its children, each of them is assigned an ID
number. As shown in the following table, these are fixed values defined in
PMWIN.H, and have identifiers beginning with the letters FID (which
stands for "frame ID").

CHAPTER THREE: MORE FUN WITH WINDOWS 93

FID

FID_SYSMENU
FID _TITLEBAR
FID_MINMAX
FID_MENU
FID _ VERTSCROLL
FID _HORZSCROLL
FID_CLIENT

Type of Child Window

System menu
Title bar
Minimize/maximize box
Program's menu
Vertical scroll bar
Horizontal scroll bar
Client window

A program can determine the window handle of a child· window based on
the parent window handle and the child ID:

hwndChild = WinWindowFromID (hwndParent. idChild)

If you need to know the window handle of the system menu window (for ex
ample), you can easily obtain it:

hwndSysMenu = WinWindowFromID (hwndFrame. FID_SYSMENU) ;

Why wO\lld you need this information? Well, you might want to send the
system menu window a message. Improbable? Not at all-we'll do it in
Chapter 13.

You can also determine a window's ID from its window handle:

idChild = WinOueryWindowUShort (hwnd. OWS_ID) ;

The WinQueryWindowUShort, WinQueryWindowULong, and WinQuery
WindowPtr functions also let you obtain a window's message queue handle,
its sty Ie, and the address of the window procedure, as well as the reserved
areas specified in the window class.

Styles, Classes, and IDs
By now you've seen similar identifiers connected with various parts of the
standard window used in various ways. For the title bar, for example,
you've seen identifiers named FCF_TITLEBAR, WC_TITLEBAR, and
FID_TITLEBAR. This may all be a little confusing. Here's a table that can
help you keep the identifiers straight.

94 SECTION ONE: BASIC CONCEPTS

The Frame
Creation Flag:

FCF _TITLEBAR
FCF _SYSMENU
FCF_MENU
FCF_MINMAX
FCF _ VERTSCROLL
FCF _HORZSCROLL

Causes the Frame Window
to Create a Child of Class:

WC_TITLEBAR
WC_MENU
WC_MENU
WC_MENU
WC_SCROLLBAR
WC_SCROLLBAR

With a Child
Window ID Of:

FID _TITLEBAR
FID _SYSMENU
FID_MENU
FID_MINMAX
FID _ VERTSCROLL
FID _HORZSCROLL

The FCF identifiers are used in the WinCreateStdWindow call to specify the
window style of the frame window. Within the Presentation Manager, a call
to the WinCreateWindow function creates each of the control windows. The
window class is one of the wc identifiers, and the child window ID is an
FID identifier.

CHAPTER THREE: MORE FUN WITH WINDOWS 95

SECTION TWO

I

PAINTING THE
CLIENT WINDOW

·
·
·
·
·
·
·
·
·

CHAPTER FOUR

AN EXERCISE
IN TEXT OUTPUT

The Presentation Manager is a graphical environment, and yet for many ap
plications the display of text and numbers is more important than pictures.
Although it might be nice to write a database program that can include bit
mapped images of employees' faces, the fact remains that the employees'
names, addresses, and social security numbers are still the most important
data. This chapter covers the basic concepts involved with displaying plain
vanilla text in the client window. Although the chapter touches on keyboard
and mouse input, these subjects are discussed in more depth in Chapters 8
and 9.

When programming for the Presentation Manager, you don't use OS/2
kernel functions such as DosWrite and VioWrtTTY or C functions such as
print[and puts to write text to the screen. Instead, you use functions pro
vided by the Graphics Programming Interface (GPI) component of the Pre
sentation Manager. (Exceptions do exist: Several high-level drawing
functions such as WinDrawText aren't really part of GPI. Also, we'll see in
Chapter 7 how you can use the VioWrtTTY function in Presentation Man
ager programs.) GPI functions begin with the prefix Gpi. Although this
chapter covers only text output, many of the concepts examined here are
applicable to graphics also.

Displaying Text on the Client Window
As a case study, let's write a Presentation Manager program that displays
all of the information obtainable from the WinQuerySysValue function.

You can use WinQuerySysValue in a program to obtain the height and width
of the screen as well as 46 other interesting pieces of information, mostly

99

concerning the sizes of various windows created by the Presentation Man
ager. The first parameter to the function is the identifier HWND_DESKTOP,

and the second parameter is one of the identifiers defined in PMWIN.H with
the letters SV (' 'system value' '). For example, the following call returns the
height of the title bar in pixels:

WinQuerySysValue (HWND_DESKTOP. SV_CYTITLEBAR)

Like many of the values that WinQuerySysValue returns, this value depends
on the resolution of the video display on which the Presentation Manager is
running. In later c!tapters we'll use WinQuerySysValue for various purposes.
Here we merely want to look at all the values. We'll display this informa
tion in the client window. The 48 items will be displayed, one per line, in
three columns: the SV identifier passed to WinQuerySysValue, a description
of the item, and the value returned from the function. The first version of
the program to display these values is called SYSVALSI and is shown in
Figure 4-1.

The SYSVALS1 File

,--------------------
, SYSVALSI make file
1f- - - - - - - - - - - - - - - - - - --

sysvalsl.obj : sysvalsl.c sysvals.h
cl -c -G2sw -W3 sysval s1. c

sysvalsl.exe : sysvalsl.obj sysvalsl.def
link sysvalsl, lalign:16. NUL, os2. sysvalsl

The SYSVALS.H File

1* ----------- ---- -------- --------- ---------- --- -
$YSVALS.H -- System values display structure

--*1

#define NUMLINES (sizeof sysvals / sizeof sysvals [0])

struct
{

SHORT sIndex
CHAR *szIdentifier
CHAR *szDescription ;
}

100 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-1. The SYSVALS.H File. continued

sysva1s [] -
{

SV_SWAPBUTTON,
SV_DBLCLKTIME,
SV_CXDBLCLK,
SV_CYDBLCLK,
SV_CXSIZEBORDER,
SV_CYSIZEBORDER,
SV_ALARM,

"SV_SWAPBUTTON",
"SV_DBLCLKTIME",
"SV_CXDBLCLK",
"SV_CYDBLCLK",
"SV_CXSIZEBORDER",
"SV_CYSIZEBORDER",
"SV_ALARM",

"Mouse buttons swapped flag",
"Mouse double click time in msec",
"Mouse double click area width",
"Mouse double click area height",
"Sizing border width",
"Sizing border height",
"Alarm enabled flag",

SV_CURSORRATE, "SV_CURSORRATE", "Cursor blink rate",
SV_FIRSTSCROLLRATE,"SV_FIRSTSCROLLRATE","Scroll bar time until repeats",
SV_SCROLLRATE, "SV_SCROLLRATE", "Scroll bar scroll rate",
SV_NUMBEREDLISTS, "SV_NUMBEREDLISTS", "Flag for numbering of lists",
SV_WARNINGFREO, "SV_WARNINGFREO", "Alarm frequency for WA-WARNING",
SV_NOTEFREO, "SV_NOTEFREO", "Alarm frequency for WA_NOTE",
SV_ERRORFREQ, "SV_ERRORFREO", "Alarm frequency for WA_ERROR",
SV_WARNINGDURATION,"SV_WARNINGDURATION","Alarm duration for WA_WARNING",
SV_NOTEDURATION, "SV_NOTEDURATION", "Alarm duration for WA_NOTE" ,
SV_ERRORDURATION, "SV_ERRORDURATION", "Alarm duration for WA_ERROR",
SV_CXSCREEN,
SV_CYSCREEN.
SV_CXVSCROLL,
SV_CYHSCROLL,
SV_CYVSCROLLARROW,
SV_CXHSCROLLARROW,
SV_CXBORDER,
SV_CYBORDER,
SV_CXDLGFRAME,
SV_CYDLGFRAME,
SV_CYTITLEBAR,
SV_CYVSLIDER,
SV_CXHSLIDER,
SV_CXMINMAXBUTTON,
SV_CYMINMAXBUTTON,
SV_CYMENU,
SV_CXFULLSCREEN,
SV_CYFULLSCREEN,
SV_CXICON,
SV_CYICON,
SV_CXPOINTER.
SV_CYPOINfER,
SV_DEBUG,
SV_CMOUSEBUTTONS,
SV_POINTERLEVEL,
SV_CURSORLEVEL,

"SV_CXSCREEN",
"SV_CYSCREEN",
"SV_CXVSCROLL",
"SV_CYHSCROLL",
"SV_CYVSCROLLARROW",
"SV_CXHSCROLLARROW".
"SV_CXBORDER",
"SV_CYBORDER",
"SV_CXDLGFRAME",
"SV_CYDLGFRAME",
"SV_CYTITLEBAR",
"SV_CYVSLI DER" ,
"SV_CXHSLI DER" •
"SV_CXMINMAXBUTTON",
"SV_CYMINMAXBUTTON",
"SLCYMENU",
"SV_CXFULLSCREEN",
"SV_CYFULLSCREEN",
"SLCXICON",
"SV_CYICON" ,
"SV_CXPOINTER",
"SV_CYPOINTER",
"SV_DEBUG",
"SV_CMOUSEBUTTONS",
"SV_POINTERLEVEL",
"SV_CURSORLEVEL",

"Screen width in pixels",
"Screen height in pixels",
"Vertical scroll bar width",
"Horizontal scroll bar height",
"Vertical scroll arrow height",
"Horizontal scroll arrow width",
"Border width",
"Border height",
"Dialog window frame width",
"Dialog window frame height",
"Title bar height",
"Vertical scroll slider height",
"Horizontal scroll slider width",
"Minimize/Maximize button width",
"Minimize/Maximize button height",
"Menu bar height",
"Full screen client window width",
"Full screen client window height",
"Icon width",
"Icon height",
"Pointer width",
"Pointer height",
"Debug version flag",
"Number of mouse buttons",
"Pointer display count",
"Cursor display count",

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 101

Figure 4-1. The SYSVALS.H File. continued

SV_TRACKRECTLEVEL. "SV_TRACKRECTLFVEL". "Tracking rectangle display count".
SV_CTIMERS. "SV_CTIMERS", "Number of available timers",
SV_MOUSEPRESENT. "SV_MOUSEPRESENT", "Mouse present flag".
SLCXBYTEALIGN. "SV_CXBYTEALIGN". "Horizontal pixel alignment value".
SLCYBYTEALIGN.
} ;

"SV_CYBYTEALIGN". ~Vertical pixel alignment value"

The SYSVALS1.C File

1*---
SYSVALSl.C -- System Values Display Program No.1

--- ---- ----------- ------- ------ ---------- -------- --* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include "sysvals.h"

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClas$ [] = "SysValsl"
static UlONG flFrameFlags = FCF_TITlEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHElLPOSITION

HWND hwndFrame. hwndClient
OMSG qmsg ;

hab = WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZfREDRAW, 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBlE.
&flFrameFlags. szClientClass. NULL,
Ol. NULL. O. &hwndClient) :

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULL) ;

(continued)

102 SECTION TWO: PAINTING THE CLIENT WINDOW

Figure 4-1. The SYSVALS1.C File. continued

while (WinGetMsg (hab, &qms9, NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
W1nOestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1. MPARAM mp2)
{

static SHORT
CHAR
FONTMETRICS
HPS

cxChar. cxCaps.
szBuffer [10] ;

fm :
hps ;

cyChar. cyOesc, cxClient. cyClient ;

POINTL ptl ;
SHORT sLine

swi tch (msg)
{

case WM_CREATE:
hps - WinGetP$ (hwnd) :
GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)

cxChar - (SHORT) fm.1AveCharWidth ;
cxCaps - (SHORT) fm.1EmInc ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc - (SHORT) fm.1MaxDescender

WinReleasePS (hps) :
return 0

case WM_SIZE:
cxClient = SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM-PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

for (sLine - 0 sLine < NUMLINES sLine++)
{

ptl.x = cxCaps ;
ptl.y = cyClient - cyChar * (sLine + 1) + cyOesc

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 103

Figure 4-1. The SYSVALS1.C File. continued

GpiCharStringAt (hps. &ptl.
(LONG) strlen (sysvals[sLine].szIdentifier),
sysvals[sLine].szIdentifier)

ptl.x += 20 * cxCaps :
GpiCharStringAt (hps, &ptl,

(LONG) strlen (sysvals[sLine].szOescription).
sysvals[sLine].szDescription)

ltoa (WinQuerySysValue (HWNO_DESKTOP.
sysvals[sLine].sIndex). szBuffer. 10)

ptl.x +- 38 * cxChar :
GpiCharStringAt (hps, &ptl, (LONG) strlen (szBuffer).

szBuffer) ;

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)
}

The SYSVALS1.DEF File

; SYSVALSI.DEF module definition file

NAME SYSVALSI WINDOWAPI

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'System Values Display No.1 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 4-1. The SYSVALSI program.

The SYSVALS.H header file defines a structure named sysvals that contains
all the system value identifiers and text descriptions that SYSVALSI needs
to obtain and display the information from WinQuerySysValue. The same
SYSVALS.H file will be used in the subsequent versions of the program in
this chapter. Notice that the SYSVALSI make file recompiles the program
whenever the SYSVALS1.C or SYSVALS.H file is altered.

104 SECTION TWO: PAINTING THE CLIENT WINDOW

The definition of the INCL_ WIN and INCL_GPI identifiers near the top of
SYSVALSl.C is required in order to include sections of the OS/2 header files
that are omitted by default.

The SYSVALS1 window is shown in Figure 4-2. You might have already
noticed that SYSVALS1 is seriously flawed. Never fear; we'll hammer away
at it until we get it right. Despite its flaws, SYSVALS1 illustrates many of
the basic concepts involved in displaying text on your client window.

= SYSVALSl EXE mm
SV SWAPBunON
SV - DBLCLKTIME
SV - CXDBLCLK
SV-CYDBLCLK
SV=CXSIZEBORDER
SV CYSIZEBORDER
SV-ALARM
SV - CURSORRATE
SV - FIRSTSCROLLRATE
SV-SCROllRATE
SV - NUMBEREDLISTS
SV - WARNINGFREO
SV-NOTEFREO
SV=ERRORFREO
SV WARNINGDURATION
SV - NOTE DURATION
SV=ERRORDURATION
SV CXSCREEN
SV - CYSCREEN
SV = CXVSCROLL
SV CYHSCROlL
SV-CYVSCROlLARROW
SV-CXHSCROlLARROW
SV - CXBORDER
SV-CYBORDER
SV=CXDLGFRAME

Mouse buttons swapped flag
Mouse double click time in msec
Mouse double click area width
Mouse double click area height
Sizing border width
Sizing border height
Alarm enabled flag
Cursor blink rate
Scroll bar time until repeats
Scroll bar scroll rate
Flag for numbering of lists
Alarm frequency for warning
Alarm frequency for note
Alarm frequency for error
Alarm duration for warning
Alarm duration for note
Alarm duration for error
Screen width in pixels
Screen height in pixels
Vertical scroll bar width
Horizontal scroll bar height
Vertical scroll arrow height
Horizontal scroll arrow width
Border width
Border height
D~alog w~ndow frame wi~th

o
500
6
6
4
4
1
500
200
50
o
880
1760
440
50
100
100
640
350
17
15
16
20
1
1
5

Figure 4-2. The SYSVALSl display.

Device-independent Programming
One primary purpose of the Presentation Manager is to provide a "device
independent" environment for your applications. This means that your pro~
grams should run without change or special drivers on any machine - and
in particular, with any video display adapter-on which the Presentation
Manager itself runs. Some programmers who have experience with
Microsoft Windows are already aware of the deep and satisfying pleasure
that results from seeing their programs run without change on everything
from the IBM Color/Graphics Adapter (with 640 pixels horizontally by 200

scan lines vertically) to high-resolution video adapters of 1664 by 1200. In
the years to come, programmers who write applications for the Presentation
Manager can experience the same pleasure in seeing their programs run on
video displays of even higher resolution.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 105

Because a display driver is one of the dynamic link libraries in the Presenta
tion Manager, Presentation Manager applications don't require their own
video display drivers. The application makes various GPI calls, the Presen
tation Manager calls the display driver dynamic link library, and the dis
play driver handles the hardware screen output. Of course, you do your
part by writing Presentation Manager programs that can easily adapt them
selves to different environments. This involves one basic rule: Don't
assume anything.

But with the Presentation Manager, there's really no need for assump
tions: All the information you need concerning the video display can be ob
tained through various Presentation Manager functions. For example,
WinQuerySysValue can tell you the width and height of the video display in
pixels. Just about the only guarantee you have is that the video display can
accommodate at least 80 text characters across and 24 text lines down when
you use the standard default "system font" (which I'll discuss shortly). Of
course, this doesn't mean you necessarily have access to the entire screen.
Normally, your application must share the display with other programs
(which explains why the results of your program should be designed to be
functional in both maximized and nonmaximized windows).

Most Presentation Manager programs have a sizing border that lets the user
change the size of your program's window. This has a profound conse
quence: Not only can you not make any assumptions about the size of your
program's client window, but you can't even assume that the size will re
main constant while your program is running. So the first job we'll tackle is
how a program can determine the size of its client window.

The Size of the Client Window
The programs presented in Chapters 2 and 3 obtained the size of the client
window by calling

WinQueryWindowRect (hwnd. &rcl) :

The rei variable is a structure of type RECTL with four fields - xLeft,
yBottom, xRight, and yTop. The WinQueryWindowRect function fills in these
fields by setting the xLeft and yBottom fields to 0 and the xRight and yTop
fields to the pixel width and height of the client window. This function was
convenient in the earlier programs because they used WinDrawText to dis
play centered text in the client window and could simply pass the RECTL

pointer directly to DrawText.

106 SECTION TWO: PAINTING THE CLIENT WINDOW

But SYSVALSI doesn't use the WinDrawText function. WinDrawText works
well for displaying text within a rectangle, but it's less suitable for display
ing multiple lines of text, as SYSVALS 1 does. Instead, SYSVALS 1 uses the
GPI function GpiCharStringAt to display the text, and GpiCharStringAt
doesn't use the RECTL structure.

Moreover, the approach used in the previous programs required that
the WinQueryWindowRect function be called when processing every
WM_PAINT message. It's more efficient to obtain the size of the client win
dow only when the size changes. How do you know when the size of the cli
ent window changes? Simple - the Presentation Manager sends a message
to the client window procedure. That message is WM_SIZE.

The window procedure receives the first WM_SIZE message during the
WinCreateStdWindow call. Thereafter, the window procedure receives a
WM_SIZE message whenever the user changes the window's size, either by
using the sizing border or by maximizing or minimizing the window. The
mpJ and mp2 parameters that accompany a WM_SIZE message indicate the
previous size of the client window and the new size of the window. The
width and height of the window are given in pixels. These values are en
coded in mpJ and mp2 as shown in Figure 4-3.

WM_SIZE is a good example of a message that encodes two unsigned short
integers (the USHORT type) in a 32-bit far pointer (the MPARAM type). To
help you extract the two USHORTs from the MPARAM, the PMWIN.H
header file contains two macros: SHORTIFROMMP and SHORT2FROMMP.
These are defined as follows:

#define SHORT1FROMMP(mp) «USHORT) (ULONG) (mp»
#define SHORT2FROMMP(mp) «USHORT) «ULONG) mp » 16»

mp1 131 130 1291 ... 1181171161151141131 ... 1 2 1 1 1 0 1
, A)

Y v
Previous Previous
height width

in pixels in pixels

mp2 131 130 1291 ... 1181171161151141131 ... 1 2 1 1 1 0 1
\ A)

y v
New New

height width
in pixels in pixels

Figure 4-3. The WM_SIZE mpl and mp2 parameters.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 107

For example, you can obtain the new height of the client window with

SHORT2FROMMP (mp2)

You should use these macros rather than your own code to extract the
USHORT values. On some future implementations of the Presentation Man
ager, the two USHORT values might be -encoded in the MPARAM in a differ
ent way. The macros insulate you from the implementation.

Processing the WM_SIZE message is simple. In the client window pro
cedure. you define two static variables named cxClient and cyClient (for ex
ample) to store the width and height of the client window:

static SHORT cxClient. cyClient :

An x prefix to a variable name usually indicates a horizontal. position; a y
prefix indicates a vertical position. The c prefix stands for "count." and
when combined with x indicates a width and with y a height. Here's how the
SYSVALSI program processes the WM_SIZE message:

case WM_SIZE:

cxClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

The cxClient and cyClient variables must be defined as static because they
are used later when processing other messages. After the first WM_SIZE
message, the window procedure always has access to a valid client window
size. In most cases you won't need to store or use the previous window size.
You'll find similar WM_SIZE processing in most of the programs in this
book. (Although the SHORTIFROMMP and SHORT2FROMMP macros ex
tract unsigned short integer values from mpJ and mp2, the values are stored
in cxClient and cyClient, which are defined as signed short integers. As
you'll see, the cxClient and cyClient are often used in arithmetic manipula
tions for which the SHORT definition is safer.)

The Presentation Space
To write to the client window, you need a handle to a "presentation space."
(A presentation space is a data structure that describes an abstract display
surface.) The presentation space handle is the first parameter to virtually all
GPI functions and is your permission slip to use the various GPI drawing
functions. The presentation space contains certain "attributes" that deter
mine how the GPI functions work. These attributes all have default values

108 SECTION TWO: PAINTING THE CLIENT WINDOW

when the presentation space is first created. You can change these attributes
with GPI functions, but often the defaults are the most convenient attributes.

For example, in SYSVALSI we probably want to display black text on a
white background. These colors are attributes defined in the presentation
space, and the defaults are black text on a white background. (Actually, the
default colors are a little more complex than simply black and white, but I'll
discuss that in Chapter 5.) We want the text to run from left to right rather
than right to left or top to bottom or bottom to top; this also is defined by the
default presentation space. We want the letters of the text string to be posi
tioned top side up and not tilted in some way; the default presentation space
attributes define the characters to be displayed like this. The presentation
space also defines the font used to display text. In the default presentation
space, this is a font known as the "system font," which is the same font that
the Presentation Manager uses for text in title bars, menus, message boxes,
and dialog boxes. The system font is a "proportionally spaced" Helvetica
font. This means that characters have different widths. For example, a W is
about three and one-half times wider than an I. Working with a propor
tionally spaced font certainly adds a layer of complexity to text output, but
nothing insurmountable.

In this book, I'll most often use the type of presentation space called the
"cached micro-PS." The cached micro-PS gives a program access to only a
subset of the GPI functions, but it is often easier to use in small programs.

Because a presentation space defines an abstract drawing surface, it isn't
very useful by itself (unless, of course, you own an abstract display or an
abstract printer). This is why a presentation space is usually "associated
with" a particular "device context." The device context refers to a device
driver and the physical output device, such as the video display, a printer, or
a plotter. (A device context can also describe an output device that isn't
quite real, such as a "memory device context," in which a block of
memory mimics a real display surface, or a "metafile device context," in
which the graphics drawing functions are collected in a file.) Here's a sim
plified description of the relationship between a presentation space and a
device context:

• The presentation space describes an abstract drawing surface.

• The device context describes a physical output device.

• When the presentation space is associated with the device context, what
you draw on the presentation space by calling GPI functions will appear
on the device.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 109

The cached micro-PS, however, is always associated with the device context
for the video display. More specifically, the cached micro-PS applies only to
a particular window on the video display, typically your client window.
When you obtain a handle to a cached micro-PS, you can't draw outside this
window. It's n~t an error if you try to do so-the Presentation Manager
simply ignores the attempt.

Getting a Handle to a Presentation Space
In using a cached micro-PS, you obtain the handle to the presentation space
when you need to draw, and you "release" the handle when you finish
drawing. After you release the handle, it's no longer valid. You have to ob
tain a new handle when you want to draw again. You should obtain and
release the presentation space handle while processing a single message.
You should not obtain the handle while processing one message and release
it while processing another. Each time you obtain the handle, all attributes
of the presentation space are set to default values. Changes you make to
these attributes are lost when you release the handle.

In your window procedure, you define a variable (usually called hps) that is
of type HPS, a handle to a presentation space:

HPS hps ;

There are two methods for obtaining a cached micro-PS handle for your cli
ent window. The SYSVALSI program uses both methods.

Method one: during processing of the WM_PAINT message
The first way to obtain a cached micro-PS handle is while processing the
WM_PAINT message:

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL, NULL)

[call GPI functions]

WinEndPaint (hps) :
return 0 ;

You should always call WinBeginPaint and WinEndPaint as a pair. Don't call
WinBeginPaint and WinEndPaint while processing messages other than
WM_PAINT. By setting the second parameter of WinBeginPaint to NULL,
you request a cached micro-PS handle. Otherwise, you would set this
parameter to the noncached presentation space handle you obtain from
GpiCreatePS (a function I'll touch on in Chapters 6 and 7).

110 SECTION TWO: PAINTING THE CLIENT WINDOW

The window procedure receives a WM_PAINT message only when part of
the window is invalid and must be repainted. For example, if part of your
program's client window is partly off the screen and the user then moves
the window so it is entirely within the screen, the area previously off the
screen is marked as invalid. The Presentation Manager posts a WM_PAINT
message in the window procedure's message queue.

The third parameter to WinBeginPaint is an optional pointer to a RECTL
structure to obtain the coordinates of the rectangle encompassing the in
valid area. (We'll use this in the SYSVALS3 version of the program.) The
presentation space handle you obtain from WinBeginPaint allows you to
draw only within this rectangle. When you call WinEndPaint, the Presenta
tion Manager validates the entire area of the window.

Method two: during processing of other messages
You can also obtain a cached micro-PS handle while processing messages
other than WM_PAINT:

hps - WinGetPS (hwnd) ;
[call GPI functions]

WinReleasePS (hps) :

You should always call WinGetPS and WinReleasePS as a pair. With the
handle from WinGetPS, you can draw on any part of the client window.
However, unlike WinEndPaint, WinReleasePS doesn't validate any part of
the window. SYSVALSI calls WinGetPS and WinReleasePS while processing
the WM_CREATE message. I'll describe shortly what the program does dur
ing that message.

The Coordinate System
Parameters to GPI functions often specify coordinate positions and sizes.
Several attributes of the presentation space define the coordinate system in
effect when you draw; that is, they determine how the coordinate positions
and sizes you specify in GPI functions are translated and mapped to the pix
els of the output device. By default, coordinates and sizes for a cached
micro-PS are specified in units of pixels, and coordinates are relative to the
lower-left corner of the window, regardless of where the window is posi
tioned on the sCreen. Values on the horizontal (or x) axis increase to the
right; values on the vertical (or y) axis increase going up.

The notation (x, y) is often used to indicate a particular point in x and y
coordinates. The point (0, 0) is the lower-left corner of the client window. If

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 111

you set variables cxClient and cyClient while processing the WM_SIZE mes
sage, the upper-right of the client window is (cxClient -1, cyClient - 1). The
coordinate system for a cached micro-PS is shown in Figure 4-4.

=1 Title bar

y = (cyClient -1) ------+

y = 0 ------+

L.....---

r
-------.--'1

x=o x = (cxClient -1)

Figure 4-4. The cached micro-PS default coordinate system.

The Size of a Character
Because this coordinate system has an origin at the lower-left corner of the
client area, it is somewhat inconvenient for displaying text, which most of
us read from the top down. But that's a relatively simple adjustment you can
make when it comes time to display the text. The OPI function used in
SYSVALSI to display text is GpiCharStringAt. This function requires the x
and y coordinates of the starting position of the text. SYSVALSI calls
GpiCharStringAt three times-once for each of the three columns to be dis
played. Thus, to properly space successive lines and columns of text,
SYSVALSI needs to know the height and width of the characters in pixels.

When you obtain a handle to a cached micro-PS, the default presentation
space includes a font. Unless you change that font, the Presentation Man
ager uses that font for all text you write to the presentation space. The
default font is called the "system font." This is the proportionally spaced
font used for normal text in the Presentation Manager. You can obtain char
acter dimensions of the current font in the presentation space by calling
GpiQueryFontMetrics. You first define a structure of type FONTMETRICS:

FONTMETRICS fm ;

112 SECTION TWO: PAINTING THE CLIENT WINDOW

Then you call the function:

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm);

The second parameter is the size of the structure in bytes, and the last
parameter is a pointer to the structure.

On the function's return, the fields of the fm structure describe many of the
basic characteristics of the font. Figure 4-5 shows the fields that describe the
dimensions of characters. Obviously, these fields represent much more in
formation than you need right now, but they give you a sense of just how
much information is available.

All these values are LONG (32-bit) integers, as indicated by the "1" prefix.

• • • ••• • • •• • •• • • ••••• • •••• ••••••• • • • • • • • • • • • • ••••• • •••• I I •
lEmInc • • • •••

IA veCharWidth
or

IMaxCharInc

-

IXHeight
(average)

-

ILowerCase-
lEmHeight Ascent
(average)

lLowerCase-
Descent

-

= lExtemalLeading
_ IIntemalLeading

IMaxAscender

(Baseline)

IMaxDescender

IMaxBaselineExt

Figure 4-5. The character dimension fields from GpiQueryFontMetrics.

Character width
For a proportionally spaced font like the system font, the FONTMETRICS

structure provides two fields that are valuable. The IAveCharWidth field is
the weighted average width of lowercase letters based on the frequency of
these letters in English. The IEmInc field is a weighted average width of up
percase letters. (The FONTMETRICS structure also includes a field called
IMaxCharInc, which is the width of the widest character.) In all cases the
width includes intercharacter spacing.

Character height
When it comes to character heights, the FONT METRICS structure provides
more detailed information. The IXHeight value is the average height above
the baseline of a lowercase letter without ascenders, and IEmHeight is the

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 113

average height of an uppercase letter. Depending on the typeface, the
ILowerCaseAscent value could be less than IEmHeight, greater than
IEmHeight, or the same. The lInternalLeading field is the space reserved for
diacritics. For some fonts, it could be zero. The IExternalLeading field is the
amount of white space recommended by the designer of the font to be added
between lines of text. For some fonts, this also can be zero.

Interline spacing
For spacing successive lines of text, use the value returned in the
IMaxBaselineExt field. You can also use IMaxBaselineExt less IExternalLead
ing if you want to get more lines of text into a smaller space. Earlier I noted
that the Presentation Manager requires the screen to display at least 24
lines of 80 characters. For some low-resolution displays that holds true
only if you space lines of text using the IMaxBaselineExt values minus
IExternalLeading.

The size of the system font won't change during the time your program is
running, so you need to obtain the character sizes only once. An excellent
time to do this is while processing the WM_CREATE message, which is the
approach that SYSVALSI uses. SYSVALSI defines four static variables to
hold the average lowercase width, average uppercase width, total height,
and descender height of a character:

static SHORT cxChar. cxCaps. cyChar. cyDesc. cxClient. cyClient ;

While processing WM_CREATE, SYSVALSI obtains a handle to the presen
tation space, calls WinQueryFontMetrics, and saves the values of the
IAveCharWidth, IMaxBaselineExt, and IMaxDescender fields:

case WM_CRtATE:
hps = WinGetPS (hwnd) ;

GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)

cxChar - (SHORT) fm.1AveCharWidth ;
cxCaps - (SHORT) fm.1EmInc :
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc = (SHORT) fm.1MaxDescender

WinReleasePS (hps) :
return 0 ;

Like the processing of the WM_SIZE message, this is fairly standard code;
you'll see it frequently in Presentation Manager programs that work with
simple text.

114 SECTION TWO: PAINTING THE CLIENT WINDOW

During the WM_CREATE message, SYSVALSI obtains a handle to the pre
sentation space only to obtain information. Attempting to draw during the
WM_CREATE message is unwise, because the window isn't yet displayed on
the screen. (And be forewarned that the FONTMETRICS structure is over
200 bytes long. For purposes of clarity, I've definedfm as a local variable in
ClientWndProc. In most programs, the definition of fm and the GpiQuery
FontMetrics call should probably be moved to a subroutine so the structure
doesn't take up stack space whenever the window procedure is called.)

The WM_PAINT Message
WM_PAINT is an extremely important message. The window procedure
receives a WM_PAINT message when an area of the window becomes in
valid. This can happen frequently as the user moves and resizes various
windows on the screen. Your Presentation Manager programs should be
structured so that they can entirely update the client window on receipt of a
WM_PAINT message. In many cases, this means the program can be most
efficient if it draws on the client window only during the WM_PAINT

message.

This certainly isn't a hard-and-fast rule. Obviously, the program can access
a presentation space by calling WinGetPS and paint on the client window at
almost any time. But the program must be able to entirely repaint the client
window when it receives the WM_PAINT message anyway, so any drawing
it does during other messages has to be duplicated during WM_PAINT

processing. Often, however, a window procedure will determine during a
message other than WM_PAINT that part of the client window should be
changed. We'll see examples of how programs can themselves generate
WM_PAINT messages in the SYSVALS2 and SYSVALS3 programs presented
in this chapter.

The GpiCharStringAt Function
SYSVALSI uses the GpiCharStringAt function to write text to the client area.
The At part of the function name indicates that the function requires
specific coordinates for where the text is to begin. The general syntax of
GpiCharStringAt is

GpiCharStringAt (hps. &ptl. lCount. pchString) ;

The first parameter is a handle to the presentation space. That's the case for
virtually all GPI functions. The last parameter is a pointer to a character
string (as indicated by the "pch" prefix). The third parameter is a LONG
value of the number of characters in the string. Unlike WinDrawText,
GpiCharStringAt do~sn't recognize zero-terminated character strings.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 115

The second parameter to GpiCharStringAt is a pointer to a structure of type
POINTL (which stands for "a point with LONG coordinates"). The defini
tion of the POINTL structure in OS2DEF.H looks like this:

typedef struct _POINTL
{

LONG x
LONG y
}

POINTL

It's simply a structure that specifies a point in terms of x and y coordinates.
You can define a variable (the name ptl is standard) of type POINTL in your
window procedure:

POINTL ptl

You then set the x and y fields of this structure before you call
GpiCharStringAt. These x and y values indicate the starting position of the
string, specifically the point corresponding to the baseline of the left side of
the first character. If you use GpiCharStringAt with the string "go", for ex
ample, it's displayed relative to the lower-left corner of the client window,
as shown in Figure 4-6.

••••• • ••• • • • • . .. '. ptl.y -+--------, ••••• • ••• • • • • •••
pt/.x

Figure 4-6. A character string with starting coordinates set by the GpiCharStringAt
function.

116 SECTION TWO: PAINTING THE CLIENT WINDOW

The use of the baseline for the y coordinate can be a little tricky. For ex
ample, to display the string "go" in the lower-left corner of the client win
dow, you might want to use code like this:

ptl .x - 0
ptl .y - 0

GpiCharStringAt (hps, &ptl. (LONG) 2, "go") :

But the descender on the g won't be visible. Instead, you need to adjust the y
coordinates for the length of the descender:

gpt.y - cyOesc ;

Numeric Formatting
If you felt disheartened when I announced at the beginning of this chapter
that printj can't be used in Presentation Manager programs, cheer up and
take a look at sprint/. Like print/, sprintj formats numbers and text based on
a formatting string. However, rather than writing the resultant formatted
text to standard output, sprintj stores it in a character buffer that you pro
vide. The general syntax is

iLength - sprintf (szBuffer, szForrnat, ...) ;

where iLength is the integer length of the zero-terminated output string that
sprintj stores in szBuJJer.

When you use sprintj in a Presentation Manager program, include the
STDIO.H header file at the top of the C source code file:

#include <stdio.h)

You must also define a buffer large enough for the formatted text. For
example:

CHAR szBuffer [80] ;

You can then use sprintjwith GpiCharStringAt like this:

iLength - sprintf (szBuffer, "The sum of %d and &d is %d",
iNurn!, iNum2, iNurn! + iNum2) :

GpiCharStringAt (hps. &pll, (LONG) iLength, szBuffer)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 117

Or you can dispense with the iLength variable and combine both statements
into one:

GpiCharStringAt (nps. &ptl.
(LONG) sprintf (szBuffer, "The sum of %d and %d is %d",

iNum!, iNum2, iNuml + iNum2),
szBuffer) ;

This may look ugly, but it's a common construction in Presentation Man
ager programs.

But sprint/is overkill for SYSVALSI. Instead, the program can display text
strings by passing them directly as the last parameter to GpiCharStringAt
and using strlen to find the length of each string (required for the third
parameter to GpiCharStringAt). For formatting the value returned from Win
QuerySysValue, SYSVALSI can use the C ltoa function.

At this point, the processing of the WM_PAINT message in SYSVALSI
should be almost comprehensible:

case WM_PAINT:
nps = WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

for (sLine = 0 sLine < NUMLINES sLine++)
{

ptl .x = cxCaps ;
ptl.y = cyClient - cyChar * (sLine + 1) + cyDesc

GpiCharStringAt (hps, &ptl,
(LONG) strlen (sysvals[sLine].szIdentifier).
sysvals[sLine].szIdentifier)

ptl.x += 20 * cxCaps ;
GpiCharStringAt (hps. &ptl,

(LONG) strlen (sysvals[sLine].szOescription).
sysvals[sLine].szOescription)

ltoa (WinOuerySysValue (HWND_OESKTOP.
sysvals[sLine].sIndex), szBuffer. 10)

ptl .x += 38 * cxChar :
GpiCharStringAt (hps. &ptl. (LONG) strlen (szBuffer).

szBuffer) :

WinEndPaint (hps)
return 0 ;

118 SECTION TWO: PAINTING THE CLIENT WINDOW

Between the WinBeginPaint and WinEndPaint calls is a call to GpiErase
(which erases the invalid rectangle) and a simple for loop. The NUMLINES
id~ntifier is defined in SYSVALS.H.

The x field of the POINTL structure is initially set to cxCaps. Thus every
line is indented one character width from the left side of the client window.
For the first line (sLine equals 0), the y field is set to (cyClient - cyChar +
cyDesc), the top line of the client window. Each successive line begins
yChar pixels below the previous line. The first GpiCharStringAt call
displays the szIdentifier field of the sysvals structure (for example,
SV _SWAPBUTTON). For the second GpiCharStringAt call, the x field of the
POINTL structure is increased by 20 times the average width of an
uppercase letter:

ptl .x +- 20 * cxCaps

The szDescription field is then displayed. SYSVALSI converts the value ob
tained from WinQuerySysValue by calling Itoa. It moves the x field of the
POINTL structure to the right of the description column:

ptl.x +- 38 * cxChar ;

It then displays the value.

The Problem with SYSVALS1
SO that's it-SYSVALSI obtains the width and height of a system font char
acter while processing the WM_CREATE message, obtains the width and
height of the client window from the WM_SIZE message, and paints the cli
ent window using this information during WM_PAINT. It's simple, and it's
wrong - on most standard video displays, there's not enough room to dis
play all 48 values obtained from WinQuerySysValue. SYSVALSI always
displays the values starting at the top of its client window and has no way to
bring the hidden lines into view. That's a problem. But it's nothing a scroll
bar can't fix.

Adding Scroll Bars
Scroll bars are an important part of the consistent user interface in the Pre
sentation Manager. For users, scroll bars are easy to learn and to use, and
they provide good visual feedback. Scroll bars are usually thought of as
controlling the view of a document, as in a word-processing program, but
they can be used in any program that has more to display than can fit in the
client window. A vertical scroll bar, like the one shown in Figure 4-7 on the
following page, is normally positioned to the right of the client window.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 119

Click here to move
up one line ---+ f

Click here to move
up one page ---+

Drag the slider to
scroll to position ---+

Click here to move
down one page ---+

Click here to move
down one line ---+ !

Figure 4-7. A vertical scroll bar and the actions it performs.

A click on the arrow at the top of the scroll bar moves the view one line
toward the beginning of the document. (This is called "scrolling up" in
keeping with the user's perspective, even though the document actually
scrolls down relative to the window.) Similarly, a click on the bottom arrow
moves the view one line toward the end of the document.

Between the two arrows is a long area containing the moveable scroll-bar
slider. Clicking above the slider moves the view one page toward the begin
ning of the document; clicking below the slider moves the view one page
toward the end. The slider indicates the approximate position within the en
tire document of the portion displayed on the screen. You can move to a
position in the document by dragging the slider to the relative spot in the
slider area. For example, you can move to the beginning of the document by
dragging the slider to the top of the slider area.

Horizontal scroll bars (normally positioned at the bottom of a client win
dow) are used in a similar fashion to scroll documents left and right.

Creating the Scroll Bar
The first step in adding a scroll-bar interface involves changing a parameter
to the WinCreateStdWindow call. You simply include the necessary frame
creation flag identifier (FCF _HORZSCROLL, FCF _ VERTSCROLL, or both) in

120 SECTION TWO: PAINTING THE CLIENT WINDOW

the flFrameFlags variable. The Presentation Manager creates the scroll-bar
windows as children of the frame window. With only this change, the scroll
bars don't seem to do very much. The scroll bar colors itself with a reverse
video flash when you click on it, but that's about it.

Looks are deceiving. When you click on a scroll bar, the scroll-bar window
procedure (located in the Presentation Manager) receives a mouse message.
The scroll bar then posts a notification message to its owner, which is the
frame window. This notification message contains information about the
action of the mouse on the scroll bar. The frame window graciously sends
this message to the client window procedure, which is in your program. The
notification messages are WM_HSCROLL for a horizontal scroll bar and
WM_ VSCROLL for a vertical scroll bar.

Your client window procedure can also send messages to the scroll-bar win
dow. These messages set the "range" and current "position" of the scroll
bar slider. To send these messages, you need to know the window handle of
the scroll bar. When the Presentation Manager creates the scroll bars as part
of the standard window, they are assigned predefined child ID numbers of
FID_HORZSCROLL and FID_ VERTSCROLL. Thus you can obtain the win
dow handle of horizontal and vertical scroll bars by calling

hwndHscroll - WinWindowFromID (hwndFrame. FID_HORZSCROLL)
hwndVscrol1 = WinWindowFromID (hwndFrame. FID_VERTSCROLL)

The scroll bars' parent is hwndFrame. The frame window is also the parent
of the client window, so you can also obtain these handles within your cli
ent window procedure by using only the hwnd parameter passed to the pro
cedure. You'll probably do this while processing the WM_CREATE
message:

hwndHscrol1 - WinWindowFromID
WinQueryWindow (hwnd. OW_PARENT. FALSE).
FID_HORZSCROLL)

hWndVscroll - WinWindowFromID (
WinOueryWindow (hwnd. OW_PARENT. FALSE).
FID_VERTSCROLL) ;

Within a client window procedure, these window handles should be stored
in static variables of type HWND.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 121

The Range and Position
After obtaining the window handle of a scroll bar, the program can initial
ize the scroll bar to a range and slider position. When first created, a scroll
bar has a default range of 0 to 100. The position of the scroll-bar slider is
always a discrete integral value within this range:

• If the slider is at the top (or left) of the scroll bar, the position is o.
• If the slider is at the bottom (or right) of the scroll bar, the position

is 100.

If that 0 to 100 range isn't appropriate for your program, you can set a dif
ferent range by sending the scroll bar an SBM_SETSCROLLBAR message.
SBM_SETSCROLLBAR, like other messages that begin with SBM (' 'scroll
bar message"), is a message understood only by scroll bars. Set the mpJ
parameter of this message to the initial position of the scroll-bar slider. Set
mp2 to contain the range of the scroll bar, with the minimum value in the
low half of mp2 and the maximum value in the high half. You can convert
these values to an MPARAM data type using the MPFROM2SHORT macro.
For example, suppose you want to set the vertical scroll-bar range to 10

through 40 and the initial position to 15. Here's the code:

sMinPos = 10 ;
sMaxPos = 40 ;
sPosition - 15

WinSendMsg (hwndVscroll, SRM_SETSCROLlBAR,
MPFROM2SHORT (sPosition, 0),
MPFROM2SHORT (sMinPos, sMaxPos)

If you ever need to obtain the range from the scroll bar, you can do so by
sending the scroll bar an SBM_QUERYRANGE message:

mr = WinSendMsg (hwndVscroll, SBM_QUERYRANGE, NULL, NULL)

The minimum and maximum range positions are encoded in mr (a variable
of type MRESULT) and can be extracted using the SHORT1FROMMR and
SHORT2FROMMR macros:

sMinPos = SHORTIFROMMR (mr)
sMaxPos - SHORT2FROMMR (mr)

122 SECTION TWO: PAINTING THE CLIENT WINDOW

Receiving Notification Messages from the Scroll Bar
Scroll bars post notification messages to their owner (the frame window)
when the various parts of the scroll bar are clicked on or dragged. The
frame window sends these messages to the client window. For vertical
scroll bars, the notification message is WM_ VSCROLL; for horizontal scroll
bars, it's WM_HSCROLL.

Messages from Vertical Scroll Bars
The low half of mpJ (which you can obtain using the SHORTIFROMMP
macro) contains the child window ID. For a vertical scroll bar created as
part of the standard window, this is FID_ VERTSCROLL. You need to ex
amine this value only if you create multiple vertical scroll bars as children
of your client window. The high half of mp2 indicates the action of the
mouse on the scroll bar. The value corresponds to an identifier defined in
PMWIN.H that begins with the letter SB. Figure 4-8 shows how these values
identify the mouse actions on the vertical scroll bar. The low half of mp2 is
the current position of the slider for SB_SLIDERTRACK and SB_SLIDER

POSITION actions.

Press button: SB_LlNEUP ---+/ 1
Release button: SB_ENDSCROLL

Press button: SB_PAGEUP
Release button: SB_ENDSCROLL

Press and drag: SB_SLlDERTRACK
Release button: SB_SLlDERPOSITION

Press button: SB_PAGEDOWN
Release button: SB_ENDSCROLL

Press button: SB_LlNEDOWN
Release button: SB_ENDSCROLL

Figure 4-8. Vertical scroll-bar action identifiers.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 123

Within your client window procedure, you process the WM_ VSCROLL mes
sage with code that looks like this:

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2)

{

case SB_LI NEUP:
[process line lip action]

break ;

case SB_PAGEUP:
[process page up action]

break ;

[and so forth]

Messages from Horizontal Scroll Bars
Horizontal scroll bars generate messages in the same way vertical scroll
bars do: The notification message is WM_HSCROLL, the child window ID is
FID _HORZSCROLL, and the identifiers indicating the mouse actions are
those shown in Figure 4-9.

SB_L1NELEFT
SB_ENDSCROLL

SB_SLlDERTRACK
SB_SLlDERPOSITION

SB_L1NERIGHT
SB_ENDSCROLL

SB_PAGELEFT
SB_ENDSCROLL

SB_PAGERIGHT
SB_ENDSCROLL

I I
Figure 4-9. Horizontal scroll-bar action identifiers.

Processing Scroll-Bar Messages
You have some options in how you handle scroll-bar messages. When the
user clicks on the arrows or the slider area, you receive at least two
WM_ VSCROLL or WM_HSCROLL messages. You get the first message
when the mouse button is pressed. The action identifier is SB_LINEUP,

124 SECTION TWO: PAINTING THE CLIENT WINDOW

SB_PAGEUP, SB_LINEDOWN, or SB_PAGEDOWN for vertical scroll bars
or one of the similar identifiers for horizontal scroll bars. When the button
is released, you receive a WM_ VSCROLL or WM_HSCROLL message with
the SB_ENDSCROLL action identifier. As a general rule, you process the
various "button down" messages and ignore SB_ENDSCROLL.

However, if your program requires a lot of time to process these actions,
you might want to delay the processing until the mouse button is released.
You can simply track how many messages you receive and do something
that affects the client window only when you get SB_ENDSCROLL. This ap
proach requires more complex logic and provides less feedback to the user,
but it is an alternative.

The SB_SLIDERTRACK and SB_SLIDERPOSITION actions can be some
what troublesome. As the user drags the slider up and down the scroll bar,
your window procedure receives many SB_SLIDERTRACK actions.

• If your program is fast enough, you should process SB_SLIDERTRACK
actions and ignore SB_SLIDERPOSITION.

• If yout"program has a hard time keeping up, you should process
SB_SLIDERPOSITION and ignore SB_SLIDERTRACK.

(These two approaches are illustrated later in the chapter: SYSVALS2,is a
slow, simple program that processes SB_SLIDERPOSITION; SYSVALS3 is
optimized sufficiently to process SB_SLIDERTRACK actions on the vertical
scroll bar.)

Setting the New Slider Position
The scroll-bar window itself never changes the position of the scroll-bar
slider unless you tell it to. To change the position of the slider, you send the
scroll bar a message. Assume the variable sPosition contains the new posi
tion of the vertical scroll bar. You send the scroll bar an SBM_SETPOS mes
sage in which mpJ is the new position:

WinSendMsg (hwndVscroll, SBM_SETPOS, MPFROMSHORT (sPosition). NULL) ;

You typically send the scroll bar the SBM_SETPOS message while process
ing the WM_ VSCROLL or WM_HSCROLL notification message from the
scroll bar.

If you need to obtain the current position of the scroll-bar slider, you can
send the scroll bar an SBM_QUERYPOS message:

sPosition = SHORTIFROMMR (WinSendMsg (hwndVScroll.
SBM_QUERYPOS, NULL, NULL»

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 125

The Implementation
Now we're ready to look at the SYSVALS2 program, shown in Figure 4-10.
You'll need the SYSVALS.H header file from Figure 4-1 to compile the
program.

The SYSVALS2 File

11- - - - - - - - - - - - - - - - - - - -
SYSVALS2 make file
11- - - - - -- - - - -- - - - - - - --

sysvals2.obj : sysvals2.c sysvals.h
c1 -c -G2sw -W3 sysvals2.c

sysvals2.exe : sysvals2.obj sysvals2.def
link sY5vals2. /align:16. NUL. 052, sysvals2

The SYSVALS2.C File

1* -
SYSVALS2.C -- System Values Display Program No.2

- -*/

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#inc1ude <string.h>
#include "sysva1s.h"

MRESULT EXPENTRY C1ientWndProc (HWND. USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] = "SysVals2"
static UlONG f1FrameFlags - FCF_TITLEBAR FCF_SYSMENU

HAB hab ;
HMO hmq :

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_VERTSCROLL :

HWND hwndFrame, hwndClient
OMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCredteMsgQueue (hab. 0)

126 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-10. The SYSVALS2.C File. continued

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_OESKTOP. WS-VISIBLE.
&flFrameFlags. szClientClass. NULL.
Ol. NUll. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_OESKTOP. SPTR-APPICON, FALSE),
NULl) ;

while (WinGetMsg (hab. &qrnsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
W1nDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;
}

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

stati c HWNO hwndVscro 11 ;
static SHORT cxChar. cxCaps, cyChar, cyDesc,

sVscrollPos. cxClient. cyClient
CHAR szBuffer [10] ;

FONTMETRICS fm;
HPS hps ;
POINTL ptl ;
SHORT sline

switch (msg)
{

case WM _CREATE:
hps - WinGetPS (hwnd) ;
GpiOueryFontMetrics (hps. (LONG) sizeof fm. &fm)

cxChar - (SHORT) fm.1AveCharWidth ;
cxCaps - (SHORT) fm.1Emlnc ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyOesc - (SHORT) frn.1MaxDescender

WinReleasePS (hps) ;

hwndVscrol1 - WinWindowFromIO
WinQueryWindow (hwnd. OW_PARENT. FALSE).
FIO_VERTSCROll) ;

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 127

Figure 4-10. The SYSVALS2.C File. continued

WinSendMsg (hwndVscroll, SBM_SETSCROLLBAR,
MPFROM2SHORT (sVscrollPos, 0),
MPFROM2SHORT (0, NUMLINES - 1»

return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
sVscrollPos
break ;

case SB_LI NEDOWN:
sVscrollPos
break :

case SB_PAGEUP:
sVscrollPos
break :

case SB_PAGEDOWN:

+=

-= cyClient I cyChar

sVscrollPos +- cyClient I cyChar
break :

case SB_SLIDERPOSITION:
sVscrollPos - SHORTIFROMMP (mp2)
break ;

sVscrollPos - max (0, min (sVscrollPos, NUMLINES - 1» ;

if (sVscrollPos 1= SHORTIFROMMR (WinSendMsg (hwndVscroll.
SBM_QUERYPOS, NULL, NULL»)

WinSendMsg (hwndVscroll, SBM_SETPOS.
MPFROMSHORT (sVscrollPos), NULL)

WinlnvalidateRect (hwnd, NULL. FALSE) ;

return 0 :

128 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-10. The SYSVALS2.C File. continued

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
Gp1Erase (hps)

for (sLine - 0 sLine < NUMLINES sLine++)
{

ptl.x - cxCaps :
ptl.y - cyClient - cyChar * (sLine + 1 - sVscrollPos)

+ cyDesc :

GpiCharStringAt (hps. &ptl.
(LONG) strlen (sysvals[sLine].szIdentifier).
sysvals[sLine].szIdentifier)

ptl .x +- 20 * cxCaps ;
Gp1CharStringAt (hps. &ptl.

(LONG) strlen (sysvals[sLine].szDescription).
sysvals[sLine].szOescription)

ltoa (WinQuerySysValue (HWND_DESKTOP,
sysvals[sLine].sIndex). szBuffer. 10)

ptl.x +- 38 * cxChar ;
GpiCharStringAt (hps. &ptl, (LONG) strlen (szBuffer).

szBuffer) ;

WinEndPaint (hps)
return 0 :

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The SYSVALS2.DEF File

; SYSVALS2.DEF module definition file

NAME

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

SYSVALS2 WINDOWAPI

'System Values Display No.2 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 4-10. The SYSVALS2 program.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 129

The SYSVALS2 window with the vertical scroll bar is shown in Figure 4-11.

== SYSVALS2 EXE ItJI!1
SY CXSIZEBORDER
SY - CYSIZEBORDER
SY=ALARM
SY CURSORRATE
SY - FIRSTSCROLLRATE
SY-SCROLLRATE
SY - NUMBEREDLISTS
SY - WARNINGFREQ
SY-NOTEFREQ
SY - ERRORFREQ
SY -WARNINGDURATION
SY-NOTEDURATION
SY-ERRORDURATION
SY-CXSCREEN
SY-CYSCREEN
SY - CXVSCROLL
SY-CYHSCROLL
SY-CYVSCROLLARROW
SY-CXHSCROLLARROW
SY=CXBORDER
SY_CYBORDER
SY CXDLGFRAME
SY - CYDLGFRAME
SY - CYTITLEBAR
SY - CYVSLlDER
SY = CXHSLlDER

Sizing border width
Sizing border height
Alarm enabled flag
Cursor blink rate
Scroll bar time until repeats
Scroll bar scroll rate
Flag for numbering of lists
Alarm frequency for warning
Alarm frequency for note
Alarm frequency for error
Alarm duration for warning
Alarm duration for note
Alarm duration for error
Screen width in piKels
Screen height in piKels
Yertical scroll bar width
Horizontal scroll bar height
Yertical scroll arrow height
Horizontal scroll arrow width
Border width
Border height
Dialog window frame width
Dialog window frame height
Title bar height
Yertical scroll slider height
Horizontal scroll slider width

Figure 4-11. The SYSVALS2 display_

4
4
1
500
200
50
o
880
1760
440
50
100
100
640
350
17
15
16
20
1
1
5
5
15
18
20

t

The only change in main is that the flFrameFlags variable now includes the
identifier FCF _ VERTSCROLL. This causes the Presentation Manager to
create a vertical scroll bar as part of the standard window. ClientWndProc
contains two new variables: hwndVscroll, which stores the handle of the
scroll-bar window, and sVscroliPos, which stores the current position of
the scroll-bar slider.

While processing the WM_CREATE message, the program obtains the win
dow handle of the scroll bar:

hwndVscroll - WinWindowFromID (
WinOueryWindow (hwnd. OW_PARENT. FALSE).
FID_VERTSCROLL) ;

The program then initializes the range and slider position by sending the
scroll bar a message:

WinSendMsg (hwndVscroll. SBM_SETSCROLLBAR.
MPFROM2SHORT (sVscrollPos. D),

MPFROM2SHORT (0. NUMLINES - 1)

130 SECTION TWO: PAINTING THE CLIENT WINDOW

The range (in mp2) is set to a minimum position of 0 and a maximum posi
tion of NUMLINES - 1. Thus the scroll bar has as many positions as there
are lines of text. The initial value of sVscrollPos is 0 (because it is defined as
a static variable but not explicitly initialized), so the slider is set to the
topmost position.

SYSVALS2 uses the position of the vertical scroll-bar slider to determine
how it displays the lines of text in the client window. The value of the slider
position corresponds to the line that appears at the top of the client window,
as shown in the following table:

Slider Position

o (top)
1
2

NUMLINES -1 (bottom)

Line at Top of Client Window

First
Second
Third

Last

The processing of the WM_ VSCROLL message begins with the sVscrollPos
variable being incremented or decremented, depending on the particular ac
tion of the mouse on the scroll bar:

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case S8_LINEUP:
sVscrollPos .- 1
break ;

case SB_LINEDOWN:
sVscrollPos +- 1
break ;

case SB_PAGEUP:
sVscrollPos .- cyClient / cyChar
break ;

case SB_PAGEOOWN:
sVscrollPos +- cyClient I cyChar
break ;

case SB_SLIDERPOSITION:
sVscrollPos - SHORTIFROMMP (mp2)
break ;

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 131

• For SB_LINEUP and SB_LINEDOWN, sVscroliPos is simply decre
mented or incremented by 1 for a change of one line.

• For SB_PAGEUP and SB_PAGEDOWN, the variable is decreased or in
creased by cyClient / cyChar, which is the number of lines that can fit in
the client window.

• For the SB_SLIDERPOSITION action, the low USHORT encoded in mp2
is the new slider position after the slider has been dragged and released.

SYSVALS2 ignores the SB_ENDSCROLL and SB_SLIDERTRACK actions.

It's possible that the new value of sVscroliPos is outside the range of the
scroll bar. For example, the scroll-bar slider could have been at the top of
the scroll bar when the user clicked the up arrow. This statement uses the
min and max macros defined in STDLIB.H to bring sVscroliPos within the
scroll bar range:

sVscrollPos = max (0, min (sVscrollPos, NUMLINES - 1» ;

After this adjustment, it's possible that sVscroliPos hasn't changed at all. To
determine this, the value of sVscroliPos is checked against the real position
of the slider, which is determined by sending an SBM_QUERYPOS message
to the scroll-bar window:

if (sVscrollPos !- SHORTIFROMMR (WinSendMsg (hwndVscroll,
SBM_QUERYPOS, NULL, NULL»)

If sVscroliPos has changed, then the slider is set to the new position by send
ing it the SBM_SETPOS message:

WinSendMsg (hwndVscroll, SBM_SETPOS,
MPFROMSHORT (sVscrollPos), NULL) :

Finally, SYSVALS2 must update its client window to reflect the change. It
must get a presentation space handle, erase the entire client window, rewrite
all the lines of text, and then release the presentation space handle. It does
this by calling

WinlnvalidateRect (hwnd, NULL, FALSE) :

What's this? This one WinlnvalidateRect statement does all that? It sure
does, because this statement invalidates the entire client window and causes

132 SECTION TWO: PAINTING THE CLIENT WINDOW

the Presentation Manager to post a WM_PAINT message in SYSVALS2's
message queue. The repainting actually occurs during the WM_PAINT
message.

Earlier I discussed the idea of structuring your programs so that all drawing
on the client window occurs during the WM_PAINT message. The
WinlnvalidateRect function is one of the tools that help you achieve this
goal. The second parameter to WinlnvalidateRect can be a pointer to a
RECTL structure to specify that only a small rectangular area of the win
dow is to be invalidated. Specifying NULL invalidates the whole window.

WM_PAINT Processing in SYSVALS2
Now let's look at the WM_PAINT processing. If you compare it with the
WM_PAINT logic in SYSVALS1, you'll find only one changed statement.
SYSVALSI used the following statement to set the y field of the POINTL
structure passed to GpiCharStringAt:

ptl.y - cyClient - cyChar * (sLine + 1) + cyOesc

SYSVALS2, on the other hand, uses this statement:

ptl.y ~ cyClient - cyChar * (sLine + 1 - sVscrollPos) + cyOesc

When the scroll-bar slider is at the top of the bar, sVscroliPos is 0, and ptl.y is
set to the same value as in SYSVALSI. The first line of text is displayed at
the top of the client window. When sVscroliPos is 1, then ptl.y is set to
(cyClient + cyDesc), which means that the first line of text is displayed right
above the client window, which means that it isn't displayed at all. The sec
ond line of text (when sLine equals 1) occupies the top line of the client win
dow. Thus SYSVALS2 calls GpiCharStringAt for all 48 lines of text, but the
program begins writing these lines either at the top of the client window
(when sVscroliPos is 0) or somewhere above the client window. The Presen
tation Manager obligingly clips everything that falls outside the window.

This isn't very efficient WM_PAINT processing. It may not be too bad for 48
lines of text, but what if there were several hundred lines? The painting
should really be restricted only to what's needed. So let's not be satisfied
that we got the program working. Anybody can do that. Let's take a crack at
making it better.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 133

Optimizing the Code
The new and improved SYSVALS3 program is displayed in Figure 4-12. In
addition to faster vertical scroll-bar processing and repainting, this version
also includes a horizontal scroll bar for left and right scrolling. The
flFrameFlags variable in main includes the frame creation flag identifiers
FCF _HORZSCROLL and FCF _ VERTSCROLL.

The SYSVALS3 File

1/- - - - - - - - - - - - - - - - - - - -
SYSVAlS3 make file
11- - - ---- --- -- - - - - -- - -

sysvals3.obj : sysvals3.c sysvals.h
cl -c -G2sw -W3 sysvals3.c

sysvals3.exe : sysvals3.obj sysvals3.def
link sysvals3, lalign:16, NUL, 052. sysvals3

The SYSVALS3.C File

1* -
SYSVALS3.C -- System Values Display Program No.3

- -* I

#define INCL_WIN
#define INCL_GPI
1/include <os2.h>
1/include <stdlib.h>
#include (string.h>
1/include "sysvals.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

statiC CHAR szClientClass [] - "SysVals3"
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_VERTSCROLL FCF_HORZSCROLL

HAB hab :
HMO hmq ;
HWND hwndFrame, hwndClient
QMSG qmsg ;

134 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-12. The SYSVALS3.C File. continued

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0)

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL, NULL, O. &hwndClient) :

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

LONG RtJustCharStringAt (HPS hps. POINTL *pptl, LONG lLength. CHAR *pchText)
{

POINTl aptlTextBox[TXTBOX_COUNT] ;

GpiQueryTextBox (hps. lLength. pchText. TXTBOX_COUNT. aptlTextBox)

pptl->x -- aptlTextBox[TXTBOX_CONCAT].x

return GpiCharStringAt (hps. pptl. lLength. pchText)

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
(

static HWND hwndHscroll. hwndVscroll
static SHORT sHscrollMax. sVscrollMax. sHscrollPos. sVscrollPos.

cxChar. cxCaps. cyChar. cyDesc. cxClient. cyClient.
cxTextTota 1 ;

CHAR
FONTMETRI CS
HPS
POINTL
SHORT
RECTl

szBuffer [10] ;

fm ;
hps ;
ptl ;
sLine. sPaintBeg. sPaintEnd. sHscrollInc. sVscrolllnc
rclInvalid ;

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 135

Figure 4-U. The SYSVALS3.C File. continued

switch (ms g)
{

case WM_CREATE:
hps - WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)

cxChar = (SHORT) fm.1AveCharWidth ;
cxCaps - (SHORT) fm.1EmInc ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc = (SHORT) fm.1MaxDescender

WinReleasePS (hps)

cxTextTotal - 28 * cxCaps + 38 * cxChar

hwndHscroll - WinWindowfromID (
WinQueryWindow (hwnd. OW_PARENT. FALSE),
FID_HORZSCROLL)

hwndVscroll = WinWindowFromID (

return 0

case WM_SIZE:

WinQueryWindow (hwnd, OW_PARENT, FALSE).
FID_VERTSCROLL) ;

cxClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)

sHscrollMax ... max (0. cxTextTotal - cxClient) ;
sHscrollPos = min (sHscrollPos. sHscrollMax)

WinSendMsg (hwndHscroll. SBM_SETSCROLLBAR.
MPFROM2SHORT (sHscrollPos. 0),
MPFROM2SHORT (a, sHscrollMax»

WinEnableWindow (hwndHscroll. sHscrollMax TRUE: FALSE)

sVscrollMax = max (0. NUMLINES - cyClient cyChar)
sVscrollPos ... min (sVscrollPos, sVscrollMax)

WinSendMsg (hwndVscroll, SBM_SETSCROLLBAR,
MPFROM2SHORT (sVscrollPos. 0),
MPFROM2SHORf (0. sVscrollMax»

WinEnableWindow (hwndVscroll. sVscrollMax ? TRUE: FALSE)
return 0 ;

136 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-U. The SYSVALS3.C File. continued

case WM_HSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINELEFT:
sHscrolllnc - -cxCaps
break ;

case SB_LINERIGHT:
sHscrolllnc - cxCaps
break ;

case SB_PAGELEFT :
sHscrolllnc - -8 * cxCaps
break ;

case SB_PAGERIGHT:
sHscrolllnc - 8 * cxCaps
break ;

case SB_SLIDERPOSITION:
sHscrolllnc - SHORTIFROMMP (mp2) - sHscrollPos;
break

default :
sHscrollInc - 0
break ;

sHscrollInc - max (-sHscrollPos.
min (sHscrolllnc, sHscrollMax - sHscrollPos»

if (sHscrollInc !- 0)
{

sHscrollPos += sHscrolllnc
WinScrollWindow (hwnd. -sHscrolllnc. O.

NULL. NULL. NULL. NULL. SW_INVALIDATERGN)

WinSendMsg (hwndHscroll. SBM_SETPOS.
MPFROMSHORT (sHscrollPos), NULL)

return 0 ;

case WM_VSCROLl:
switch (SHORT2FROMMP (mp2»

{

case S8_LINEUP:
sVscrolllnc - -1
break ;

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 137

Figure 4-12. The SYSVALS3.C File. continued

case SB_LINEDOWN:
sVscrolllnc =
break ;

case SB_PAGEUP:
sVscrolllnc - min (-1. -cyClient / cyChar)
break ;

case SB_PAGEDOWN:
sVscrollInc - max (1. cyClient / cyChar)
break ;

case SB_SLIOERTRACK:
sVscrollInc - SHORTIFROMMP (mp2) - sVscrollPos;
break

default:
sVscrol1Inc - 0
break ;

sVscrolllnc - max (-sVscrollPos.
min (sVscrollInc. sVscrollMax - sVscrol1Pos»

if (sVscroll Inc != 0)
(

sVscrollPos += sVscrolllnc
WinScrollWindow (hwnd. O. cyChar * sVscrollInc,

NULL. NUll, NULL. NULL. SW_INVALIDATERGN)

WinSendMsg (hwndVscroll. SSM_SETPOS,
MPFROMSHORT (sVscrollPos), NULL)

WinUpdateWindow (hwnd) :
}

return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. &rcllnvalid)
GpiErase (hps) ;

sPaintBeg = max (0. sVscrollPos +
(cyClient - (SHORT) rclInvalid.yTop) / cyChar)

sPaintEnd - min (NUMLINES. sVscrollPos +

(cyClient - (SHORT) rcllnvalid.yBottom)
/ cyChar + 1) ;

138 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-12. The SYSVALS3.C File. continued

for (sLine - sPaintBeg ; sLine < sPaintEnd sLine++)
{

ptl.x - cxCaps - sHscrollPos ;
ptl.y - cyClient - cyChar * (sLine + 1 - sVscrollPos)

+ cyDesc ;

GpiCharStringAt (hps, &ptl.
(LONG) strlen (sysvals[sLine].szIdentifier),
sysvals[sLine].szIdentifier)

ptl.x +- 20 * cxCaps ;
GpiCharStringAt (hps. &ptl.

(LONG) strlen (sysvals[sLine].szDescription),
sysvals[sLine].szDescription)

ltoa (WinQuerySysValue (HWND_DESKTOP,
sysvals[sLine].sIndex). szBuffer. 10)

ptl .x +- 38 * cxChar + 6 * cxCaps ;
RtJustCharStringAt (hps. &ptl. (LONG) strlen (szBuffer),

szBuffer) ;

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd, msg, mpl. mp2)

The SVSVALS3.DEF File

: SYSVALS3.DEF module definition file

NAME

OESeR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

SYSVALS3 WINDOWAPI

'System Values Display No.3 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 4-12. The SYSVALS3 program.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 139

The SYSVALS3 window is shown in Figure 4-13.

~ SYSVALS3 EXE mit]
SV CXBORDER
SV - CYBORDER
SV-CXDLGFRAME
SV-CYDLGFRAME
SV = CYTITLEBAR
SV CYVSLlDER
SV - CXHSLlDER
SV - CXMINMAXBUTTON
SV - CYMINMAXBUTTON
SV=CYMENU
·sv CXFULLSCREEN
SV - CYFULLSCREEN
SV-CXICON
SV-CYICON
sv -CXPOINTER
SV-CYPOINTER
SV-DEBUG
SV-CMOUSEBUTTONS
SV-POINTERLEVEL
sv -CURSORLEVEL
SV-TRACKRECTLEVEL
SV-CTIMERS
sv -MOUSEPRESENT
sv -CXBYTEALIGN
sv = CYBYTEALIGN ..

Border width
Border height
Dialog window frame width
Dialog window frame height
Title bar height
Vertical scroll slider height
Horizontal scroll slider width
Minimize/Maximize button width
Minimize/Maximize button height
Menu bar height
Full screen client window width
Full screen client window height
Icon width
Icon height
Pointer width
Pointer height
Debug version flag
Number of mouse buttons
Pointer display count
Cursor display count
Tracking rectangle display count
Number of available timers
Mouse present flag
Horizontal pixel alignment value
Vertical pixel alignment value

Figure 4-13. The SYSVALS3 display.

Right-justified Text

1
1
5
5

15
18
20
52
14
14

640
335

32
32
32
32

262206
2
o
1
1

36
1
8
1

t

You'll notice I've also prettied up the display a little. In SYSVALSI and
SYSVALS2, the values returned from WinQuerySysValue were displayed be
ginning at the same horizontal pixel position. Columns of numbers are
commonly displayed right justified. In SYSVALS3, the RtJustCharStringAt
function results in right-justified text. '

LONG RtJustCharStringAt (HPS hps, POINTL *pptl, LONG lLength, CHAR *pchText)
{

POINTL aptlTextBox[TXTBOX_COUNT] ;
GpiOueryTextBox (hps, lLength, pchText. TXTBOX_COUNT, aptlTextBox)
pptl->x -= aptlTextBox[TXTBOX_CONCAT].x
return GpiCharStringAt (hps. pptl, lLength, pchText) ;

This function is defined with the same parameters as GpiCharStringAt, but
when the function is called, the x field of the POINTL structure should be set
to the pixel position where the text should end rather than begin. This func
tion uses the identifiers TXTBOX_COUNT and TXTBOX_CONCAT, defined

140 SECTION TWO: PAINTING THE CLIENT WINDOW

in PMGPI.H. They are used when working with the GpiQueryTextBox func
tion, which obtains an array of POINTL structures that give the coordinates
of the four corners of a text string, assuming that the text begins at the point
(0,0). The TXTBOX_CONCAT element of the aptl structure contains the
coordinates of the end of the string (where more text would follow). So
when the x coordinate of TXTBOX_ CONCAT is subtracted from the x field
of the POINTL structure passed to RtJustCharStringAt, the resulting value is
the x coordinate that will result in right-justified text.

Changing the Range Based on Window Size
Another change incorporated in SYSVALS3 is that the scroll-bar range and
slider position are no longer set during processing of the WM_CREATE mes
sage. Instead, a new range and position are set during each WM_SIZE
message.

The primary goal is to have the last line of text be visible at the bottom of
the client window. So during the WM_SIZE message, the maximum posi
tion of the vertical scroll-bar slider is calculated based on the total number
of text lines and the number of lines that can fit in the client window:

sVscrollMax = max (0, NUMLINES - cyClient / cyChar) :

The existing value of sVscrollPos could be outside this new range, so
sVscrollPos is adjusted using the min macro:

sVscrollPos = min (sVscrollPos, sVscrollMax)

Then the new range and position are set by sending the scroll bar a message:

WinSendMsg (hwndVscroll. SBM_SETSCROLLBAR.
MPFROM2SHORT (sVscrollPos, 0),
MPFROM2SHORT (0. sVscrollMax»

If all the text fits in the client window, then sVscrollMax equals 0, and there
is no need for a working scroll bar. To enable or disable the scroll bar, call
WinEnableWindow based on the value of sVscrollMax:

WinEnableWindow (hwndVscroll. sVscrollMax ? TRUE: FALSE)

A disabled scroll bar is made partly invisible and beeps if you click on it.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 141

Scrolling the Window
Rather than immediately altering the value of sVscroliPos, the new
WM_ VSCROLL processing sets a variable named sVscrolllnc to the incre
mental change in the slider position indicated by the mouse action:

case WM_VSCROll:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
sVscrollInc = -1
break ;

case SB_lINEDOWN:
sVscro 11 Inc"" 1
break ;

case SB_PAGEUP:
sVscrolllnc ~ min (-1, -cyClient / cyChar)
break :

case SB_PAGEDOWN:
sVscrollInc = max (1, cyClient / cyChar)
break ;

case SB_SlICERTRACK:
sVscrollInc - SHORTIFROMMP (mp2) - sVscrollPos;
break

default :
sVscrollInc = 0
break ;

SYSVALS3 processes the SB_SLIDERTRACK action rather than
SB_SLIDERPOSITION. This allows the program to change the client win
dow while the user is dragging the slider with the mouse rather than after
the dragging action is completed.

Next, sVscrolllnc is adjusted based on the position of the slider and the range
maximum:

iVscrolllnc = max (-sVscrollPos.
min (sVscrollInc. sVscrollMax - sVscrollPos»;

142 SECTION TWO: PAINTING THE CLIENT WINDOW

If sVscrolllnc is still nonzero, processing continues with the calculation of a
new slider position:

sVscrollPos +- sVscrolllnc

In SYSVALS2, the entire window was redrawn whenever the scroll-bar posi
tion was changed. SYSVALS3 attempts to preserve part of the window by
scrolling the contents of the window:

WinScrollWindow (hwnd. O. cyChar * sVscrolllnc.
NULL, NULL. NULL, NULL, SW_INVALIOATERGN)

This function can scroll a rectangular area of a window up, down, left, or
right. Here we're specifying that the contents of the entire window move up
by cyChar * sVscrolllnc pixels. Thus, if the action is SB_LINEDOWN, then
sVscrolllnc is 1, and the contents of the window move up cyChar pixels. This
means that only the last line at the bottom of the window has to be redrawn.
Including SW _INVALIDATERGN as the last parameter of WinScrollWindow
tells the Presentation Manager to invalidate the area uncovered by the
scroll- the bottom line of the client window. A WM_PAINT message is
placed in SYSVALS3's message queue.

Normally, SYSVALS3 would retrieve the WM_PAINT message from its mes
sage queue and repaint the window. If the scroll bar is busy receiving and
processing mouse messages, however, this won't happen immediately. We
can force the client window to be repainted right away with this function:

WinUpdateWindow (hwnd) ;

This causes the Presentation Manager to call ClientWndProc with the
WM_PAINT message.

Painting Only the Invalid Rectangle
When the window procedure receives a WM_PAINT message, it's likely that
only a small rectangular part of the client window is invalid and needs to be
repainted. When a program obtains a presentation space handle from
WinBeginPaint, it can paint only within that rectangular invalid area. The
Presentation Manager must clip all screen output that falls outside the in
valid area. But for optimum efficiency, the program itself shouldn't make
any GPI calls that will eventually be ignored by the Presentation Manager.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 143

To speed up the painting, SYSVALS3 obtains the coordinates of the rectan
gular invalid area. It does this in the WinBeginPaint function:

hps = WinBeginPaint (hwnd. NULL. &rcllnvalid) ;

The Presentation Manager fills in the fields of the RECTL structure named
rclInvalid with the coordinates of this rectangle.

SYSVALS3 then uses the yTop and yBottom fields of the RECTL structure to
determine the range of lines that must be repainted:

sPaintBeg - max (0. sVscrollPos +
(cyClient - (SHORT) rcllnvalid.yTop) I cyChar) ;

sPaintEnd = min (NUMLINES. sVscrollPos +
(cyClient - (SHORT) rcllnvalid.yBottom) I cyChar + 1)

The for loop encompasses only this range:

for (sLine = sPaintBeg ; sLine < sPaintEnd ; sLine++)

The improved efficiency in processing the WM_ VSCROLL and WM_PAINT

messages allows SYSVALS3 to move the contents of the window during
SB_SLIDERTRACK actions from the vertical scroll bar.

Adding a Keyboard Interface
Of course, if you don't have a mouse, you haven't been able to scroll
SYSVALS2 or SYSVALS3 at all. So let's make one final change to the pro
gram to allow the mouseless among us to scroll the window using the cursor
movement keys.

Scroll bars understand keyboard messages. However, the Presentation Man
ager posts keyboard messages to only one window - the window with the
"input focus" (as you'll see in Chapter 8, when we examine the keyboard
in more depth). If your program is active, then the window with the input
focus is generally the client window rather than the scroll-bar window.

Earlier I mentioned that the frame window is the initial recipient of
notification messages from the scroll bar and that the frame window sends
these messages to the client window. This raises an interesting question: If
the frame window passes scroll bar messages to the client window, why
can't the client window pass keyboard messages to the scroll-bar window?
Let's do it.

144 SECTION TWO: PAINTING THE CLIENT WINDOW

The keyboard message is called WM_CHAR. For the cursor movement keys,
the high USHORT of mp2 is a "virtual key code" (more on this in Chapter
5) that identifies the key. The PMWIN.H header file has a macro called
CHARMSG that lets you extract this code. You probably want the Up Ar
row, Down Arrow, Page Up, and Page Down keys to control the vertical
scroll bar and the Left Arrow and Right Arrow keys to control the horizon
tal scroll bar. Here's the code to be added to the window procedure:

case WM_CHAR:
switch (CHARMSG (&msg) ->vkey

{

case VICLEFT:
case VICRIGHT:

return WinSendMsg (hwndHscroll, msg, mpl, mp2)
case VICUP:
case VICDOWN:
case VICPAGEUP:
case VICPAGEDOWN:

return WinSendMsg (hwndVscroll, msg, mpl. mp2)

break ;

Simple enough, wouldn't you say? With this addition, I declare the program
finished. The name of the final version is simply SYSVALS without any
degrading numeric suffix; the program is shown in Figure 4-14.

The SYSVALS File

fI- - - - - - - - - - - - - - - - - - --
SYSVALS make file
11- - - - - - - - - - - - - - - - - - - -

sysvals.obj : sysvals.c sysvals.h
cl -c -G2sw -W3 sysvals.c

sysvals.exe : sysvals.obj sysvals.def
link sysvals. /align:16. NUL, os2. sysvals

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 145

The SYSVALS.C File

1*--
SYSVALS.C -- System Values Display Program

--*1

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#include <string.h)
#include "sysvals.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] - "SysVals" ;
static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU

hab ;
hmq ;

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKlIST
FCF_VERTSCROLL FCF_HORZSCROLL

HAB
HMO
HWND
OMSG

hwndFrame. hwndClient
qmsg

hab - Winlnitialize (0)

hmq = WinCreateMsgOueue (hab. 0) ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrdmeFlags. szClientClass. NULL.
OL. NULL. 0, &hwndClient) :

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) :

while (WioGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

146 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-14. The SYSVALS.C File. continued

LONG RtJustCharStringAt (HPS hps. POINTL *pptl, LONG lLength. CHAR *pchText)
{

POINTL aptlTextBox[TXTBOX_COUNT] ;

GpiQueryTextBox (hps. lLength. pchText. TXTBOX_COUNT, aptlTextBox)

pptl->x -- aptlTextBox[TXTBOX_CONCAT].x ;

return GpiCharStringAt (hps, pptl. lLength. pchText)
}

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static HWND hwndHscroll. hwndVscroll
static SHORT sHscrollMax. sVscrollMax. sHscrollPos. sVscrollPos.

cxChar, cxCaps. cyChar. cyDesc. cxClient. cyClient,
cxTextTota 1 ;

CHAR slBuffer [10] ;

FONTMETRI CS fm ;
hps ;
ptl ;

HPS
POINTL
SHORT
RECTL

sLine, sPaintBeg. sPaintEnd. sHscrollInc. sVscrolllnc
rclInvalid ;

switch (msg)
{

case WM_CREATE:
hps - WinGetPS (hwnd) ;

GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)

cxChar - (SHORT) fm.1AveCharWfdth ;
cxCaps - (SHORT) fm.1Emlnc ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc - (SHORT) fm.1MaxDescender

WinReleasePS (hps) ;

cxTextTotal = 28 * cxCaps + 38 * cxChar

hwndHscroll - WinWindowFromIO (
WinOueryWindow (hwnd. OW_PARENT, FALSE),
FIO_HORZSCROLL) ;

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 147

Figure 4-14. The SYSVALS.C File. continued

hwndVscroll - WlnWindowFromID

return 0

case WM_SlZE:

WinQueryWindow (hwnd, QW_PARENT; FALSE).
FID_VERTSCROLL) ;

cxClient = SHORTIFROMMP (mp2)
cyCl1ent - SHORT2FROMMP (mp2)

sHscrollMax == max (0, cxTextTotal - cxClient) :
sHscrollPos = min (sHscrollPos. sHscrollMax)

WinSendMsg (hwndHscroll, SBM_SETSCROLLBAR,
MPFROM2SHORT (sHscrollPos, 0).
MPFROM2SHORT (0. sHscrollMax»

WinEnableWindow (hwndHscroll, sHscrollMax ? TRUE: FALSE)

sVscrollMax - max (0. NUMLINES - cyClient I cyChar)
sVscrollPos - min (sVscrollPos. sVscrollMax)

WinSendMsg (hwndVscroll. SBM_SETSCROLLBAR.
MPFROM2SHORT (sVscrol1Pos, 0),

MPFROM2SHORT (0, sVscrollMax»

WinEnableWindow (hwndVscroll. sVscrollMax ? TRUE: FALSE)
return 0 :

case WM_HSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINELEFT:
sHscrolllnc - -cxCaps
break ;

case SB_LINERIGHT:
sHscrolllnc - cxCaps
break :

case SB_PAGELEFT:
sHscrolllnc = -8 * cxCaps
break ;

case SB_PAGERIGHT:
sHscrolllnc = 8 * cXCaps
break ;

148 SECTION TWO:· PAINTING THE CLIENT WINDOW

(continued)

Figure 4·14. The SYSVALS.C File. continued

case SB_SLIDERPOSITION:
sHscrollInc - SHORT1FROMMP (mp2) - sHscrollPos;
break

default :
sHscrolllnc - 0
break :

sHscrollInc - max (-sHscrollPos,
min (sHscrolllnc. sHscrollMax - sHscrollPos»

if (sHscrollInc 1- 0)
{

sHscrollPos +- sHscrol1 Inc
WinScrollWindow (hwnd. -sHscrollInc, O.

NULL, NULL, NULL, NULL, SW_INVALIDATERGN)

WinSendMsg (hwndHscrol1, SBM_SETPOS,
MPFROMSHORT (sHscrollPos), NULL)

return 0 :

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
sVscrolllnc - -1
break ;

case SB_LINEDOWN:
sVscrollInc -
break :

case SB_PAGEUP:
sVscrollInc - min (-1. -cyClient I cyChar)
break ;

case SB_PAGEDOWN:
sVscrol1Inc - max (1. cyClient I cyChar)
break :

case SB_SLIDERTRACK:
sVscrol1Inc - SHORTIFROMMP (mp2) - sVscrol1Pos;
break ;

(continued)

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 149

Figure 4-14. The SYSVALS.C File. continued

default:
sVscrollInc = 0
break ;

sVscrollInc - max (-sVscrollPos,
min (sVscrolllnc, sVscrollMax - sVscrollPos»

if (sVscrollInc !- 0) ;
{

sVscrollPos +- sVscrolllnc
WinScrollWindow (hwnd. O. cyChar * sVscrollInc.

NULL. NULL. NULL, NULL. SW_INVALIDATERGN)

WinSendMsg (hwndVscroll. SSM_SETPOS.
MPFROMSHORT (sVscrollPos), NULL)

WinUpdateWindow (hwnd) ;
}

return 0

case WM_CHAR:
switch (CHARMSG(&msg)-)vkey)

{

case VILLEFT:
case VILRIGHT:

return WinSendMsg (hwndHscroll. msg. mpl. mp2)
case VK_UP:
case VK_DOWN:
case VILPAGElJP:
case VILPAGEOOWN:

return WinSendMsg (hwndVscroll, msg, mpl. mp2)

break ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL, &rcllnvalid)
GpiErase (hps) ;

sPaintBeg = max (0. sVscrollPos +
(cyClient - (SHORT) rcllnvalid.yTop) / cyChar)

sPaintEnd - min (NUMLINES. sVscrollPos +
(cyClient - (SHORT) rcllnvalid.yBottom)

/ cyChar + 1) ;

150 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 4-14. The SYSVALS.C File. continued

for (sLine - sPaintBeg ; sLine < sPaintEnd sLine++)
{

ptl.x - cxCaps - sHscrollPos ;
ptl.y - cyClient - cyChar * (sLine + 1 - sVscrollPos)

+ cyDesc :

GpiCharStringAt (hps. &ptl.
(LONG) strlen (sysvals[sLine].szIdentifier).
sysvals[sLine].szIdentifier)

ptl .x +- 20 * cxCaps ;
GpiCharStringAt (hps. &ptl.

(LONG) strlen (sysvals[sLine].szDescription).
sysvals[sLine].szDescription)

ltoa (WinQuerySysValue (HWND_DESKTOP.
sysvals[sLine].sIndex). szBuffer. 10)

ptl .x +- 38 * cxChar + 6 * cxCaps ;
RtJustCharStringAt (hps. &ptl. (LONG) strlen (szBuffer).

szBuffer) ;

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

The SYSVALS.DEF File

: SYSVALS.DEF module definition file
._--------- ----- .. --_ _---------,

NAME

OEseRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

SYSVALS WINDOWAPI

'System Values Display (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 4-14. The final SYSVALS program.

CHAPTER FOUR: AN EXERCISE IN TEXT OUTPUT 151

CHAPTER FIVE

THE FIVE GPI
PRIMITIVES

The world of computer graphics is often separated into two large categories:
"raster" graphics and "vector" graphics. These terms refer both to
graphics output devices and to the way that an application program draws
graphics objects on these devices. Raster output devices display images that
are made up of dots called pixels or "pels" (picture elements). Video dis
plays, dot-matrix printers, and laser printers are all raster devices. Vector
output devices - such as plotters - display images made up of lines and
filled areas.

NOTE: The distinction between raster and vector devices gets a little
fuzzy with devices such as the IBM 85141A video display adapter and
PostScript laser printers: Although these devices are technically raster
devices, they contain a high-level graphics interface that understands
and interprets vector drawing commands.

The OS/2 Graphics Programming Interface (one of the two major compo
nents of the Presentation Manager, the other being the windowing and user
interface) is fundamentally, but not exclusively, a vector graphics system:
Presentation Manager programs draw graphics in terms of lines and filled
areas. This approach works for every type of graphics output device - the
drawing commands need only be translated by a device driver into a format
the device can understand: vector drawing commands for vector output de
vices and pixels for raster devices.

OPI also has several functions for working with raster graphics. These func
tions allow a program to draw individual pixels (or, more commonly, col
lections of pixels called "bitmaps") on an output device. However, these

153

functions are useful only with raster devices: Vector devices cannot ade
quately draw individual dots.

Vectors and rasters each have their place in the world of graphics. An
architectural drawing is obviously a job for vector graphics, whereas the
reproduction of a digitized photograph requires raster graphics. Accord
ingly, vector and raster graphics each have their place in this book: I cover
vector graphics in this chapter and raster graphics in the next chapter.

The following sections describe the five GPI primitives that form the basis
of the GPI vector graphics system: lines, patterned areas, text, marker sym
bols, and images.

I

GPI Primitive 1: Lines
When drawing text in Chapter 4 we specified the starting point of a text
string using a POINTL structure. You also use the POINTL structure for
drawing lines. POINTL is defined in OS2DEF.H like this:

typedef struct _POINTL
{

LONG x
LONG y
}

POINTL

The two fields x and y define a point in terms of GPI coordinates. For a
cached micro-PS, these coordinates are in units of pixels relative to the
lower-left corner of the presentation space, which corresponds to the lower
left corner of the window. For convenience, I'll sometimes use the notation
(x,y) to refer to a point in the presentation space. The point (0,0) is the lower
left corner of the window. The x (horizontal) coordinates increase to the
right and the y (vertical) coordinates increase going up.

A structure variable of type POINTL is usually given a prefix of ptl. If you
need only one POINTL structure variable, you can name it ptl and define it
like this:

POINTL ptl

You can define an array of POINTL structures like this:

POINTL aptl[5] ;

154 SECTION TWO: PAINTING THE CLIENT WINDOW

and define a pointer to a POINTL structure like this:

POINTL *pptl ;

Simple Straight Lines
To draw a straight line, you must specify the two points that indicate the be
ginning and end of the line. Let's assume that cxClient and cyClient have
been set to the width and height of the client window. Suppose you want to
draw a diagonal line from the upper-left corner of the client window to the
lower-right corner.

After obtaining a handle to a cached micro-PS from the WinGetPS or
WinBeginPaint function, you set the two fields of a POINTL structure to the
beginning of the line: the point (O,cyClient). You then call GpiMove:

ptl .x - 0 ;
ptl.y - cyClient
GpiMove (hps. &ptl)

GpiMove does not draw anything. Instead, it sets the "current position"
(defined shortly) to the specified point.

You then set the two fields of the structure to the second point and call
GpiLine:

ptl.x - cxClient
ptl .y '"" 0 ;
GpiLine (hps, &ptl)

GpiLine draws the line from (O,cyClient) to (cxClient,O).

Initially, it may seem annoying that drawing a single line requires four
assignment statements and two function calls. The syntax of the GpiMove
and GpiLine functions is defined in this way to be consistent with the
GpiPolyLine and GpiQueryCurrentPosition functions discussed later in this
chapter. In actual practice, it's usually not as inconvenient as it first
appears to be.

The Current Position
We've just seen how the GpiMove function does not draw anything itself.
Instead, it affects the operation of a subsequent call to GpiLine. The
GpiMove function is said to set an "attribute" of the presentation space. In
one sense, the presentation space is simply a data structure internal to GPI.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 155

This data structure identifies the output device associated with the presenta
tion space and also retains all the attributes of the presentation space.

The GpiMove function sets the current position to the point specified in the
function. The current position is used by most OPI drawing functions as a
starting position when drawing a graphics object such as a line.

When you first obtain a handle to a cached micro-PS by calling WinGetPS
or WinBeginPaint, all the attributes are set to default values. The default cur
rent position is the point (0,0). When you release a presentation space handle
by calling WinReleasePS or WinEndPaint, any changes you've made to the
attributes are lost.

The GpiLine function uses the current position as a starting point for the
line it draws and then sets the current position to the end of the line - the
point specified in the GpiLine function. Thus, you can draw another line
connected to the first by calling GpiLine again with a new point.

For example, suppose you want to draw a big "V" in your client window.
This job requires just one call to GpiMove and two calls to GpiLine:

ptl .x = 0 ;
ptl.y = cyClient
GpiMove (hps. &ptl)

ptl.x = cxClient / 2 ;
pt1.y = 0 ;

GpiLine (hps. &ptl)

ptl.x = cxClient ;
ptl.y = cyClient :
GpiLine (hps. &ptl)

If you enjoy typing long function names, you can use the GpiSetCurrent
Position function rather than GpiMove:

GpiSetCurrentPosition (hps. &ptl) ;

When using a cached micro-PS there is no diff~rence between GpiMove and
GpiSetCurrentPosition. You can also obtain the current position by using this
function:

GpiQueryCurrentPosition (hps. &ptl) ;

Note that all four functions covered have had the same parameter syntax.

156 SECTION TWO: PAINTING THE CLIENT WINDOW

Some graphics programming languages have a function that draws a line
from the current position to a point relative to the current position. GPI does
not include such a function, but it's easy enough to write one:

LONG LineRelative (HPS hps. POINTL *pptlRelative)
{

POINTL ptl ;

GpiQueryCurrentPosition (hps. &ptl)
ptl.x +- pptlRelative->x :
ptl.y +- pptlRelative->y ;
return GpiLine (hps. &ptl)
}

The pptl prefix of pptlRelative stands for' 'pointer to a POINTL structure."

Throughout this chapter, we will work mostly with three types of GPI func
tions: functions that draw (like GpiLine), functions that set an attribute of
the presentation space (like GpiMove and GpiSetCurrentPosition), and func
tions that query a presentation space attribute (like GpiQueryCurrent
Position). Most basic GPI functions fall into one of these three categories.

Drawing Multiple Lines
The current position stored in the presentation space allows you to draw a
series of connected lines by making one call to GpiMove and multiple calls
to GpiLine. However, for jobs of that type it is more efficient to use the
GpiPolyLine function:

GpiPolyLine (hps. lCount. aptl) ;

The aptl parameter is an array of POINTL structures. The function draws
lCount lines-the first from the current position to aptl[O], the second from
aptl[O] to aptl[1], and so forth. The lCount parameter also indicates the
number of points in the aptl array. When the function returns, the current
point is set to the end of the last line it draws, the point aptl[lCount -1].

GpiPolyLine is functionally equivalent to the following:

for (lIndex = 0 ; 1 Index < lCount 1 Index++)
GpiLine (hps. aptl + lIndex)

(Newcomers to C who are not yet entirely comfortable with the equivalence
between array names and pointers might prefer the notation &aptl[lIndex]
rather than aptl+lIndex.) However, any looping that GpiPolyLine performs

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 157

occurs deep within a device driver. When drawing many connected lines,
GpiPolyLine is much faster than multiple GpiLine calls.

The STARS program in Figure 5-1 shows how to draw a five-pointed star
using GpiMove and GpiPolyLine.

The STAR5 File

1/- - - - - - - - - - - - - - - - -
STAR5 make file
fI- - - - - - - - - - - - - - - - -

star5.obj : star5.c
cl -c -G2sw -W3 star5.c

star5.exe : star5.obj star5.def
link starS. /align:16, NUL. os2, star5

The STAR5.C File

/* -

STAR5.C -- Draws 5-Pointed Star
- -* /

#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND, USHORT. MPARAM, MPARAM)

i n t rna i n (v 0 i d)

{

static CHAR szClientClass [] = "Star5" ;
static ULONG flFrameFlags = FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrameFlags. szClientClass, NULL.
OL. NULL, O. &hwndClient) ;

158 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-1. The STAR5.C File. continued

while (WinGetMsg (hab. &qmsg. NULL. 0, 0»
WinDispatchMsg (hab, &qmsg)

WinOestroyW1ndow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static POINTL aptlStar[5] - {-59,-Sl, 0,100, 59,-S1. -95.31. 95.31 } ;
static SHORT cxClient, cyClient ;
HPS hps ;
POINTL aptl[5] :
SHORT sIndex ;

switch (msg)
{

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyC11ent - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:

}

hps - WinBeginPaint (hwnd, NULL. NULL)
GpiErase (hps) ;

for (sIndex - 0 : sIndex < 5 : sIndex++)
{

aptl[slndex].x - cxClient 2 + cxClient *
aptlStar[sIndex].x 200

aptl[sIndex].y - cyClient / 2 + cyClient *
aptlStar[sIndex].y 200

GpiMove (hps. apt' + 4) ;
Gp1Polyline (hps, 5L. aptl)

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1, mp2)
}

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 159

The STARS.DEF File

; STAR5.0EF module definition file

NAME STARS WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Draws 5-Pointed Star (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5-1. The STAR5 program.

The aptlStar array contains the five POINTL structures that define the star.
These are specified in "virtual" coordinates, that is, a coordinate system
that I fabricated. The point (0,0) is the center of the star, and the star extends
100 units in all four directions. STARS must convert these points so that the
star fills the client window, as shown in Figure 5-2.

Figure 5-2. The STAR5 display.

160 SECTION TWO: PAINTING THE CLIENT WINDOW

STARS converts the virtual coordinates to client window coordinates during
the WM _PAINT message. The x fields of the POINTL structures are
multiplied by cxClient and divided by 200. This adjusts for the window
width. Then half of cxClient is added to move the center of the star to the
center of the client window. The y fields are adjusted similarly, and the
resultant points are stored in the aptl array.

Notice how STARS calls GpiMove and GpiPolyLine to draw the star. First, it
sets the current position to the last point in the array:

GpiMove (hps. aptl + 4) :

(The expression aptl + 4 is equivalent to &aptl[4J.) The GpiPolyLine func
tion then draws five lines starting with a line to the first point in the array:

GpiPolyLine (hps. 5L. aptl) :

The five lines that GpiPolyLine draws are as follows:

Line Begin Point EndPoint

1 apt1[4] aptl[O]
2 apt1[O] apt1[1]
3 apt1[l] apt1[2]
4 aptl[2] apt1[3]
5 apt1[3] apt1[4]

It's necessary to initially set the current position to the last point in the ar
ray when the array defines a closed figure (like a star) and does not dupli
cate the first point. An alternative is to define an array of six POINTL
structures, where the last point is the same as the first. In this case, you can
draw the star by calling

GpiMove (hps. aptl) :
GpiPolyLine (hps. 5L. aptl + 1) :

STARS is the first program in this book that looks good when minimized
and displayed as an icon at the bottom of the screen. For that reason, I've re
moved the logic that tells the frame window to use the SPTR_APPICON for
the minimized state. To STARS, the minimized state is simply a very small
client window. When the window is minimized, ClientWndProc receives a
WM_SIZE message with the size of this tiny window and then receives a
WM_PAINT message.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 161

Drawing Curves with GpiPolyUne
The GpiPolyLine function is deceptive. The function seems to draw a series
of straight lines, and it can certainly be used for that purpose. But
GpiPolyLine has a more important role, which is to draw curves. To do this,
simply call GpiPolyLine with a POINTL array that defines many tiny lines.

Don't hesitate to call GpiPolyLine with an array of hundreds-or even
thousands - of points. That's the purpose of the function. Because
GpiPolyLine is interpreted by the device driver, it is very fast. The maxi,;;
mum number of points currently allowed for a GpiPolyLine call is 8000.
This limit is based on the size of a POINTL structure (8 bytes) and the max
imum size of the memory segment under the 80286 microprocessor (64 KB).

Any curve that you can define mathematically you can draw as a series of
straight lines using GpiPolyLine. For example, suppose you want to draw
one cycle of a sine curve in your client window. You can define an array of
100 POINTL structures and set the points to define the sine curve:

#include <math.h>

POINTL aptl[lOO]
SHORT sIndex ;

II for sin declaration

for (sIndex = 0 ; sIndex < 100 ; sIndex++)
{

aptl[sIndex].x = (LONG) sIndex * cxClient I 100 ;
aptl[sIndex].y = (LONG) (cyClient I 2 * (1 + sin (sIndex * 6.28 I 100»)
}

The x fields of the POINTL structures range from 0 to cxClient. The y field is
the value of the sin function over one period, scaled to the height of the cli
ent window.

To draw the sine curve, begin by setting the current position to the first
point as follows:

GpiMove (hps. aptl)

You then use the GpiPolyLine function to draw 99 lines beginning at the sec
ond point:

GpiPolyLine (hps. 99L. aptl + 1)

162 SECTION TWO: PAINTING THE CLIENT WINDOW

Curves and Parametric Equations
The sine curve is relatively easy because the y coordinate is a simple func
tion of the x coordinate. In general, however, this is not the case. There
might be multiple y values for each value of x. A more generalized approach
to drawing curves uses "parametric" equations.

In parametric equations, both the x and y coordinates of every point are
calculated from functions based on a third variable, often called t. In
tuitively, you can think of t as time or as some other abstract index neces
sary to define the entire curve. When you draw a curve using OPI functions,
the values of t will range from ° to the number of points that are in the
POINTL array.

For example, suppose you want to draw an ellipse that fills your client win
dow. You can start with parametric equations that define a unit circle:

x(t) = cos(t)

y(t) = sin(t)

For t ranging from 0 degrees to 2 x 1t radians, these equations define a circle
around the point (0,0) with a radius of 1. The ellipse is defined similarly:

x(t) = RX cos(t)

yet) = RY sin(t)

The two axes of the ellipse are parallel to the horizontal and vertical axes.
The horizontal ellipse axis is 2 x RX in length; the vertical ellipse axis is
2 x RY. The ellipse is still centered around (0,0). To center it around the
point (CX,CY), the formulas are

x(t) = cx + RX cos(t)

y(t) = CY + RY sin(t)

Here's the code to draw an ellipse centered in the client window:

#include <math.h>

double dAngle
POINTL aptl[lOO]
SHORT sIndex

II for sin and cos declaration

for (sIndex - a ; sIndex <= 100 ; sIndex ++)
{

dAngle = sIndex * 6.28 / 100

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 163

continued

aptl[sIndex].x = (LONG) (cxClient / 2 * (1 + cos (dAngle»)
aptl[sIndex].y - (LONG) (cyClient / 2 * (1 + sin (dAngle»)
}

GpiMove (hps. aptl) :
GpiPolyLine (hps. 99L. aptl + 1) :

In this case, both RX and ex are equal to cxClientl2, and RY and CY are
equal to cyClientl2.

The SPIRAL program shown in Figure 5-3 uses a variation of these formulas
to draw a spiral in its client window.

The SPIRAL File

/1- - - - - - - - - - - - - - - - --
/I SPIRAL make file
It- - - - - - - - - - - - - - - - - -

spira1.obj : spiral.e
c1 -c -G2sw -W3 spi ral .e

spiral.exe : spiral.obj spiral.def
link spiral. /align:16. NUL. os2. spiral

The SPIRAL.C File

/*--------------------------------
SPIRAL.C -- GPI Spiral Drawing

---------------------------------*/

#include <os2.h>
#include <math.h>

#define NUMPOINTS 1000
#define NUMREV 20
#define PI 3.14159

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM. MPARAM)

164 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-3. The SPIRAL.C File. continued

int main (void)
{

static CHAR szClientClass [] - "Spiral" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame, hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szClientClass, ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags, szClientClass, NULL,
OL, NULL, 0, &hwndClient) ;

while (WinGetMsg (hab, &qmsg, NULL, 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

static SHORT cxClient, cyClient
double dAngle, dScale :
HPS hps ;
PPOINTL pptl ;
SEL
SHORT

sel ;
sIndex

switch (msg)

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 165

Figure 5-3. The SPIRAL.C File. continued

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps) :

if (!DosAllocSeg (NUMPOINTS * sizeof (POINTL), &sel. 0»
(

pptl = MAKEP (sel. 0) :

for (sIndex = a ; sIndex < NUMPOINTS : sIndex ++)
{

dAngle - sIndex * 2 * PI / (NUMPOINTS / NUMREV)
dScale = 1 - (double) sIndex / NUMPOINTS

pptl[sIndex].x - (LONG) (cxClient / 2 *
(1 + dScale * cos (dAngle»)

pptl[sIndex].y = (LONG) (cyClient / 2 *
(1 + dScale * sin (dAngle»)

GpiMove (hps, pptl) ;
GpiPolyLine (hps. NUMPOINTS - lL, pptl + 1)

DosFreeSeg (sel)
}

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd. msg, mpl, mp2)

The SPIRAL. DEF File

: SPIRAL.OEF module definition file

NAME

DESCRIPTION
PROHlODE
HEAPSIZE
STACKSIZE
EXPORTS

SPIRAL WINDOWAPI

'GPI Spiral Using a Polyline (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 5-3. The SPIRAL program.

166 SECTION TWO: PAINTING THE CLIENT WINDOW

In effect, SPIRAL draws 20 ellipses but uniformly decreases the length of
the axes to create a spiral as shown in Figure 5-4.

Figure 5-4. The SPIRAL display.

SPIRAL uses 1000 points to describe this figure. The program allocates a
block of memory for this array by calling the OS/2 DosAUocSeg function.
This function returns a selector (segment address) to the memory block,
which is stored in the variable sel. The MAKEP macro makes a far (32-bit)
pointer from sel and stores it in pptl. Note that pptl is not defined as a
POINTL variable, but as a PPOINTL. PPOINTL is defined in OS2DEF.H as
a far pointer to a POINTL structure:

typedef POINTL FAR *PPOINTL ;

The segment is freed after the drawing is finished.

You can also use the C maUoc and free functions for allocating memory to
store arrays of POINTL structures, in which case you would want to define
the pptl pointer like this:

POINTL *pptl ;

Whether pptl is a far pointer or near pointer now depends on what memory
model you specify when compiling the program. This will be compatible
with the pointer returned from maUoc and passed to free.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 167

The Line Type
Up until now all the lines we have drawn have been solid lines. You can
also draw lines composed of various dots and dashes. This is called the
"line type attribute" and you set it with the GpiSetLineType function:

GpiSetLineType (hps, 1LineType) ;

The ILineType parameter is one of the following identifiers defined in
PMGPI.H:

LINETYPE_DEFAULT
LINETYPE_DOT
LINETYPE_SHORTDASH
LINETYPE_DASHDOT
LINETYPE_DOUBLEDOT

LINETYPE_LONGDASH
LINETYPE_DASHDOUBLEDOT
LINETYPE_SOLID
LINETYPE_INVISIBLE
LINETYPE_ALTERNATE

These identifiers are fairly self-explanatory. The LINETYPE_DEFAULT

identifier (defined as OL) has the same effect as LINETYPE_SOLID. The
LINETYPE_ALTERNATE style draws every other pixel, giving the ap
pearance of a gray line.

The line type is an attribute of the presentation space. When you set the line
type, it affects all subsequent lines you draw until you change the line type
again or release the presentation space.

You can determine the current line type by calling

lLineType = GpiQueryLineType (hps) ;

However, if you call GpiQueryLineType for a new presentation space
without first calling GpiSetLineType, the function returns an identifier of
LINETYPE_DEFAULT rather than LINETYPE_SOLID.

The LINETYPE program (Figure 5-5) displays lines drawn with each of
these line types so that you can see what they look like.

The LlNETYPE File

,--------------------
, LINETYPE make file
,--------------------

linetype.obj : lin~type.c
c1 -c -G2sw -W3 linetype.c

(continued)

168 SECTION TWO: PAINTING THE CLIENT WINDOW

Figure 5-5. The LINETYPE File. continued

linetype.exe : linetype.obj linetype.def
link linetype. /align:16, NUL, os2, linetype

The LlNETVPE.C File

1* - - - - - - - - - - - - - - • - - - - - - - - - - - - - - -

LINETYPE.C -- GPI Line Types
- -*1

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <string.h>

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "LineType"
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame, hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq = WinCreateMsgOueue (hab, 0) :

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szClientClass, ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass. NULL,
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON,
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULL) ;

while (WinGetMsg (hab, &qmsg, NULL. 0, 0»
WinDispatchMsg (hab. &qmsg) ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 169

Figure 5-5. The LINETYPE.C File. continued

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 :

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static struct
LONG 1 Li neType ;

CHAR *szLineType
}

show [] =

LINETYPE_DEFAULT
LINETYPLDOT
LINETYPE_SHORTDASH
LINETYPE_DASHDOT
LINETYPE_DOUBLEOOT
LINETYPE_LONGDASH

· "LINETYPE_DEFAULT"
· "LINETYPE_DOT"
• "LINETYPE_SHORTOASH"
· "LINETYPE_OASHDOT"
· "LINETYPE_DOUBLEDOT"
· "LINETYPE_LONGOASH"

LINETYPE_DASHOOUBLEDOT • "LINETYPE_DASHDOUBLEDOT" •
LINETYPLSOLID
LINETYPE_INVISIBLE
LINETYPE_AlTERNATE
} ;

· "LINETYPE_SOLID"
· "LINETYPE_INVISIBLE"
• "LINETYPE_AlTERNATE"

static SHORT cxClient. cyClient. cxCaps. cyChar. cyDesc,
sNumTypes = sizeof show / sizeof showED] ;

FONTMETRICS fm;
r.PS hps ;
POI NTl ptl ;
SHORT sIndex

switch (msg)

case WM_CREATE:
hps - WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps, (LONG) sizeof fm. &fm)
cxCaps = (SHORT) fm.1EmInc ;
cyChar = (SHORT) fm.1MaxBaselineExt
cyOesc - (SHORT) fm.1MaxDescender
WinReleasePS (hps) ;
return 0 ;

170 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-5. The LINETVPE.C File. continued

case WM_SIZE:
cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;

for (sIndex - 0 : sIndex < sNumTypes ; sIndex ++)
{

GpiSetLineType (hps. show [sIndex].lLineType)

ptl .X - cxCaps
ptl.y - cyClient - 2 * (sIndex + 1) * cyChar + cyDesc

GpiCharStringAt (hps. &ptl.
(LONG) strlen (show [sIndex].szLineType).
show [sIndex].szLineType)

if (cxClient > 25 * cxCaps)
{

ptl.x - 24 * cxCaps
ptl.y += cyChar / 2 - cyDesc
GpiMove (hps. &ptl)

ptl.x - cxClient - cxCaps
GpiLine (hps. &ptl) ;
}

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 171

The LlNETYPE. DEF File

; LINETYPE.DEF module definition file
. -- - - -- - - - - - -- - - - - - - - - -- - - - -- - - - - - - ---,

NAME LINETYPE WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'GPI Line Types (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5-5. The LINETYPE program.

The results are shown in Figure 5-6.

== LlNETYPE EXE mm
LlNETYPE_DEFAULT

LlNETYPE_DOT

LlNETYPE_SHORTDASH

LlNETYPE_DASHDOT

LlNETYPE_DOUBLEDOT

LlNETYPE_LONGDASH

LlNETYPE_DASHDOUBLEDOT -

LlNETYPE_SOLID

LlNETYPE_INVISIBLE

LlNETYPE_ALTERNATE

Figure 5-6. The LINETYPE display.

Each line type is a short sequence of dots or dashes that is repeated over the
length of the line. You can use these line types when drawing multiple lines
(even very short ones) with GpiPolyLine. When drawing each line, the de
vice driver keeps track of which part of the short sequence it drew in the
last line. The next line picks up where the last line ended. You can also use
the line types with successive GpiLine calls. However, the device driver
resets its position to the beginning of the sequence when you call GpiMove,
GpiSetCurrentPosition, or GpiSetLineType.

172 SECTION TWO: PAINTING THE CLIENT WINDOW

Boxes and a Simple Ellipse
Probably the most common closed figure is a rectangle. You can draw a
rectangle with one GpiMove and four GpiLine calls, or you can use the func
tion that OPI provides:

GpiBox (hps. lOption. &ptl. OL. OU ;

The GpiBox function draws a rectangle with sides parallel to the x and y
axes. The position and size of the rectangle are defined by any two opposite
corners of the rectangle. GpiBox uses the current position for one corner and
the POINTL structure passed to the function for the opposite corner. GpiBox
does not change the current position.

The IOption parameter can be one of the following identifiers defined in
PMOPI.H:

DRO_FILL
DRO_OUTLINE
DRO _ OUTLINEFILL

DRO_FILL causes the rectangle to be filled. The DRO_OUTLINE option
directs OPI to draw only the outline of the rectangle. DRO_OUTLINEFILL
draws the outline and fills the rectangle. OPI uses the current line type for
drawing the outline. How OPI fills the interior of the rectangle is discussed
in the following section on patterned areas.

Suppose cxClient and cyClient are the width and height of your client win
dow. You want to draw an unfilled rectangle that is one half that width and
height and centered in the client window. Here's the code:

ptl.x = xClient / 4
ptl.y - yClient / 4
GpiMove (hps. &ptl)

ptl.x *- 3 ;
ptl.y *- 3 ;
GpiBox (hps. DRO_OUTLINE, &ptl. OL, OL) ;

You can set the last two parameters of GpiBox to values greater than 0 to
draw a rectangle with rounded corners. The general syntax of GpiBox is

GpiBox (hps. lOption. &ptl. cxEllipseAxis. cyEllipseAxis) ;

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 173

The last two parameters define the width and height of an ellipse. (These
dimensions must be less than or equal to the width and height of the rect
angle being drawn.) You can visualize GPI cutting this ellipse into four
quadrants and using each quadrant of the ellipse as a corner of the box.

If cxEllipseAxis and cyEllipseAxis are set equal to the width and height of the
rectangle being drawn, then GpiBox draws an ellipse. Here's a simple
ellipse function that calculates the last two parameters of GpiBox:

#include <stdlib.h> II For labs declaration

LONG Ellipse (HPS hps, LONG lOption. POINTL *pptl)
{

POINTL ptlCurrent

GpiQueryCurrentPosition (hps. &ptlCurrent) :

return GpiBox (hps, lOption, pptl. labs (pptl->x - ptlCurrent.x),
labs (pptl->y - ptlCurrent.y»

Like GpiBox, this Ellipse function draws a figure with axes parallel to the
sides of the window. GPI provides even more versatile ellipse drawing facili
ties with the GpiSetArcParams, GpiFullArc, GpiPointArc, and GpiPartialArc
functions. Other GPI functions that draw curves are GpiPolySpline,
GpiPolyFillet, and GpiPolyFilletSharp.

Pixels and Device Independence
Until now, we've been working in a coordinate system based on units of
pixels. To some people familiar with other graphics programming lan
guages, the idea of working in units of pixels may seem a contradiction to
the goal of writing device-independent programs. After all, what can be
more device-dependent than pixels?

Pixels certainly have problems. The first is resolution. Almost every
graphics output device has a different pixel resolution. A IOO-pixel-high im
age on an IBM Color Graphics Adapter will encompass half the height of
the screen. On a 300-dots-per-inch laser printer, it will be 1/3 inch high. Sec
ond, many video display adapters and dot-matrix printers use different hori
zontal and vertical resolutions.

Let's examine some ways to deal with these problems.

174 SECTION TWO: PAINTING THE CLIENT WINDOW

Simple Techniques
If you draw in units of pixels, you can use pixels in a device-independent
manner. One simple technique (used in the SYSVALS programs in Chapter
4 and the LINETYPE program earlier in this chapter) involves basing all
coordinates and dimensions on the size of the standard system font
characters.

This technique is particularly useful when a program combines text with
some rudimentary graphics. For example, suppose you want to write a
simple database program using an index card metaphor. Each record is dis
played in a simulated 3 x 5-inch index card on the screen. How large are the
index cards in pixels? Think of a typewriter. A typewriter with a pica type
face types 10 characters per inch horizontally with 6 lines to the inch ver
tically. Thus a 3 x 5 card can fit 18 rows of 50 characters each. If cxChar
and cyChar are the average width and height of a system font character, then
each card is (50 x cxChar) pixels wide and (18 x cyChar) pixels high.

Sometimes you need to display only graphics in your window and you want
the size of the objects to be based on the size of the window. In this case,
you can use the technique shown earlier in the STAR5 program. The five
pointed star in that program is defined in a virtual coordinate system cen
tered around the point (0,0) with a width of 200 units and a height of 200
units. Before drawing the object, the program scales these units to the size
of the client window and translates the points so that (0,0) corresponds to
the center of the window.

Of course, for some applications these approaches are not satisfactory at all.
For example, how do you draw a square with sides of equal length? If the
output device has different horizontal and vertical resolutions, then the hori
zontal and vertical dimensions of the object must be scaled differently.

The Device Context and Its Capabilities
You'll recall from Chapter 4 that a "device context" refers to a graphics
output device (such as a video display or a printer) and its device driver. A
presentation space is associated with a particular device context. A cached
micro-PS is always associated with the device context for the video display.

A program can obtain lots of interesting information about an output
device - including everything it needs to accurately scale graphics ob
jects-by calling the DevQueryCaps ("query capabilities") function. To
use DevQueryCaps for the video display, you first need a handle to the video
display device context. You can obtain this easily during WM_CREATE
processing by calling WinOpenWindowDC as shown on the next page.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 175

static HOC hdc

hdc ~ WinOpenWindowDC (hwnd) ;

Or, you can obtain a handle to the device context associated with a presenta
tion space by calling

hdc = GpiOueryOevice (hps) ;

The PMDEV.H header file defines 39 identifiers, each beginning with the
word CAPS, that you use with DevQueryCaps. Each identifer obtains a par
ticular item that describes the device. Although you can obtain information
about multiple items, it's easier to use DevQueryCaps for only one item
at a time:

LONG lCapsValue

DevOueryCaps (hdc. CAPS ..•. lL, &lCapsValue) ;

The DEVCAPS program shown in Figure 5-7 obtains all the information
available from DevQueryCaps and displays it in a simple two-column
format.

The DEVCAPS File

11- - - - -- - - - - - - - - - - - --
II DEVCAPS make file
fj- - - - - - - - - - - - - - - - - --

devcaps.obj : devcaps.c d~vcaps.h
cl -c -G2sw -W3 devcaps.c

devcaps.exe : devcaps.obj devcaps.def
link devcaps. lalign:16. NUL, os2. devcaps

176 SECTION TWO: PAINTING THE CLIENT WINDOW

The DEVCAPS.C File

/*--
DEVCAPS.C -- Device Capabilities Display Program

--*/

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include "devcaps.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] - "DevCaps" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab :
HMO hmq ;

FCF_SIZEBORDER
FCF_SHEllPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientCla~s. ClientWndProc. Ol. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass, NULL.
Ol. NUll. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg. NUll. O. 0»
WinDispatchMsg (hab. &qmsg) ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 177

Figure 5-7. The DEVCAPS.C File. continued

WinoestroyWindow (hwndFrame)
WinoestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

LONG RtJustCharStringAt (HPS hps. POINTL *pptl, LONG 1 Length. CHAR *pchText)
{

POINTL aptlTextBox[TXTBOX_COUNT] :

GpiQueryTextBox (hps. lLength. pchText. TXTBOX_COUNT, aptlTextBox)

pptl->x -- aptlTextBox[TXTBOX_CONCAT].x ;

return GpiCharStringAt (hps. pptl. lLength. pchText)

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static HOC hdc;
static SHORT cxClient, cyClient. cxCaps, cyChar, cyoesc
CHAR szBuffer [12] ;
FONTMETRICS fm;
LONG lValue
POINTL ptl ;
HP$ hps ;
SHORT sLine

switch (msg)
{

case WM_CREATE:
hps - WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)
cxCaps - (SHORT) fm.1Emlnc :
cyChar - (SHORT) fm.1MaxBaselineExt
cyoesc = (SHORT) fm.1Maxoescender
WinReleasePS (hps) ;

hdc = WinOpenWindowoC (hwnd)
return 0

case WM_SIZE:
cxClient = SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

178 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-7. The DEVCAPS.C File. continued

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

for (sLine - 0 sLine < NUMLINES sLine++)

ptl .x = cxCaps ;
ptl.y - cyClient - cyChar '" (sLine + 2) + cyOesc

if (sLine >- (NUMLINES + 1) / 2)
{

ptl.x +- cxCaps '" 35 ;
ptl.y +- cyChar '" (NUMLINES + 1) / 2
}

DevOueryCaps (hdc. devcaps[sLine].lIndex. lL. &lValue)

GpiCharStringAt (hps. &ptl.
(LONG) strlen (devcaps[sLine].szIdentifier).
devcaps[sLine].szIdentifier)

ptl.x +- 33 * cxCaps ;
RtJustCharStringAt (hps. &ptl.

(LONG) strlen (ltoa (lValue. szBuffer. 10»,

szBuffer)

WinEndPaint (hps) ;
return 0 ;

return WinDefWindowProc (hwnd. msg, mpl. mp2)

The DEVCAPS.H File

/* -

OEVCAPS.H header file
----------_._----------*/

#define NUMLINES (sizeof devcaps / sizeof devcaps [0])

struct

LONG lIndex

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 179

Figure 5-7. The DEVCAPS.H File. continued

CHAR *szIdentifier
}

devcaps [] =

{

CAPS_FAMILY
CAPS_IO_CAPS
CAPS_TECPNOLOGY
CAPS_DRIVER_VERSION
CAPS_HEIGHT
CAPS_WIDTH
CAPS_HEIGHT_IN_CHARS
CAPS_WIDTH_IN_CHARS
CAPS_VERTICAL_RESOLUTION
CAPS_HORIZONTAL_RESOLUTION
CAPS_CHAR_HEIGHT
CAPS_CHAR_WIDTH
CAPS_SMALL_CHAR-HEIGHT
CAPS_SMALLCHA~ WIDTH
CAPS_COLORS
CAPS_COLOR-PLANES
CAPS_COLOR-BITCOUNT
CAPS_COLOR_TABLE_SUPPORT
CAPS_MOUSE_BUTTONS

• "CAPS_FAMILY"
• "CAPS_10_CAPS"
• "CAPS_TECHNOLOGY"
• "CAPS_DRIVER_VERSION"
• "CAPS_HEIGHT"
• "CAPS_WIDTH"
• "CAPS_HEIGHT_IN_CHARS"
• "CAPS_WIDTH_IN_CHARS"
• "CAPS_VERTICAL_RESOLUTION"
• "CAPS_HORIZONTAL_RESOLUTION"
• "CAPS_CHAR_HEIGHT"
• "CAPS_CHA~ WIDTH"
• "CAPS_SMALL_CHAR_HEIGHT"
• "CAPS_SMALL_CHAR-WI DTH"
• "CAPS_COLORS"
• "CAPS_COLOR-PLANES"
• "CAPS_COLOR_BITCOUNT"
· "CAPS_COLOR_TABLE_SUPPORT"
• "CAPS_MOUSE_BUTTONS"

CAPS_FOREGROUND_MI LSUPPORT • "CAPS_FOREGROUND_M I LSUPPORT" •
CAPS_BACKGROUND_MIX_SUPPORT • "CAPS_BACKGROUND_MILSUPPORT" •
CAPS_V IO_LOADABLLFONTS • "CAPS_V IO_LOADABLLFONTS"
CAPS_WINDOW_BYTE_ALIGNMENT . "CAPS_WINDOW_BYTE_ALIGNMENT"
CAPS_BITMAP_FORMATS , "CAPS_BITMAP_FORMATS"
CAPS_RASTER-CAPS . "CAPS_RASTER-CAPS"
CAPS_MARKER_HEI GHT . "CAPS_MARKER_HE IGHT"
CAPS_MARKER_WIDTH , "CAPS_MARKER-WIDTH"
CAPS_DEV I CEJONTS . "CAPS_DEV ICLFONTS"
CAPS_GRAPH I CS_SUBSET . "CAPS_GRAPH I CS_SUBSET"
CAPS_GRAPHICS_VERSION • "CAPS_GRAPHICS_VERSION"
CAPS_GRAPHI CS_VECTOR-SUBSET • "CAPS_GRA PHI CS_VECTOR_SUBSET" .
CAPS_DEVICE_WINDOWING • "CAPS_DEVICE_WINDOWING"
CAPS_ADDITIONAL_GRAPHICS . "CAPS_ADDITIONAL_GRAPHICS"
CAPS_PHYS_COLORS . "CAPS_PHYS_COLORS"
CAPS_COLOR_INDEX . "CAPS_CaLOR_INDEX"
CAPS_GRAPH I CS_CHAR-W I DTH . "CAPS_GRAPHI CS_CHAR_W 10TH"
CAPS_GR.APH I CS_CHAR_H EIGHT . "CAPS_GRAPH I CS_CHAR-H EIGHT"
CAPS_HORIZONTAL_FONT_RES • "CAPS_HORIZONTAL_FONT_RES"
CAPS_VERTICAL_FONLRES . "CAPS_VERTICAL_FONLRES"
} ;

180 SECTION TWO: PAINTING THE CLIENT WINDOW

The DEVCAPS.DEF File

: DEVCAPS.DEF module definition file

NAME DEVCAPS WINDOWAPI

DESCRI PTION 'Device Capabil iti es (C) Charles Petzold. 1988'
PROTMODE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 5-7. The DEVCAPS program.

When the Presentation Manager is running on an IBM Enhanced Graphics
Adapter, DEVCAPS returns the information shown in Figure 5-8.

= DEVCAPS EXE DJm
CAPS FAMILY 5 CAPS BACKGROUND MIX SUPPORT 18
CAPS-IO CAPS 2 CAPS-VIO LOADABLE- FONTS 0
CAPS-TECHNOLOGY 2 CAPS-WINDOW BYTE ALIGNMENT 0
CAPS-DRIVER VERSION 256 CAPS-BITMAP FORMATS 2
CAPS-HEIGHT- 350 CAPS-RASTER CAPS 49
CAPS-WIDTH 640 CAPS-MARKER-HEIGHT 9
CAPS-HEIGHT IN CHARS 24 CAPS-MARKER-WIDTH 9
CAPS-WIDTH IN CHARS 80 CAPS-DEVICE FONTS 0
CAPS-VERTICAL RESOLUTION 2000 CAPS-GRAPHics SUBSET 0
CAPS-HORIZONTAL RESOLUTION 2667 CAPS-GRAPHICS-VERSION 0
CAPS-CHAR HEIGHT 12 CAPS:GRAPHICS:VECTOR_SUBSET 0
CAPS -CHAR-WIDTH 8 CAPS DEVICE WINDOWING 0
CAPS-SMALL CHAR HEIGHT 8 CAPS-ADDITIONAL GRAPHICS 40
CAPS-SMALL-CHAR-WIDTH 8 CAPS-PHYS COLORS 64
CAPS-COLORS - 16 CAPS-COLOR INDEX 63
CAPS-COLOR PLANES 1 CAPS-GRAPHICS CHAR WIDTH 9
CAPS-COLOR - BITCOUNT 4 CAPS-GRAPHICS -CHAR-HEIGHT 12
CAPS-COLOR-TABLE SUPPORT 0 CAPS-HORIZONTAL FONT RES 96
CAPS:MOUSE-='BUTTONS 0 CAPS:VERTICALJONT_RE-S 72
CAPSJOREGROUND_MIX_SUPPORT 123

Figure 5-8. The DEVCAPS display.

Some information is encoded in bits in the return values. You'll need the
Presentation Manager documentation and the PMDEV.H header file in order
to decode it. For now, we'll look at four items: CAPS_HEIGHT and
CAPS _ WIDTH give the pixel dimensions of the output device (in this

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 181

case the video display). CAPS_ VERTICAL_RESOLUTION and CAPS
_HORIZONTAL_RESOLUTION give the resolution of the output device in
the rather ungainly units of pixels per meter.

Thus, you can determine the physical dimensions of the output device (in
meters) by dividing CAPS_HEIGHT by CAPS_VERTICAL_RESOLUTION
and CAPS_WIDTH by CAPS_HORIZONTAL_RESOLUTION. (In most
cases, these quotients will be less than 1, so you'll probably want to calcu
late physical dimensions in something other than meters.) You now have
enough information to adjust horizontal and vertical sizes in order to draw
square squares and round circles.

The CLOCK program in Chapter 10 shows how to use the CAPS_ VERTI
CAL_RESOLUTION and CAPS_HORIZONTAL_RESOLUTION values to
draw round graphics objects regardless of the different resolutions of the
video display. The clock displayed by this program adjusts its size to fit the
window but remains round.

Using Metric Units
You may also want to draw graphic objects in specific sizes, such as units of
a fraction of an inch or millimeters. These are called "metric units. "

There are a couple of ways to do this. The easy approach (described in the
next section) lets GPI do most of the work. But you may prefer to retain con
trol over metric scaling entirely within your program. For example, suppose
you want to work in units of IjlO inch. (These units are called "Low
English" because they use English measurements. "High English" units
are IjlOOO inch.)

You first need to obtain the horizontal and vertical resolution of the device:

static LONG cxPixelsPerMeter, cyP;xelsPerMeter :

DevQueryCaps (hdc, CAPS-HORIZONTAL_RESOLUTION, 1L, &cxPixelsPerMeter)
DevQueryCaps (hdc, CAPS_VERTICAL_RESOLUTION, 1L.&cyP;xelsPerMeter) ;

There are 2.54 centimeters to the inch and 100 centimeters to the meter.
Thus you can calculate pixels per inch by using the following method:

static LONG cxP;xelsPerlnch, cyPixelsPerlnch :

cxPixelsPerlnch - (cxPixelsPerMeter * 254 + 5000) 10000
cyPixelsPerInch = (cyPixelsPerMeter * 254 + 5000) I 10000

182 SECTION TWO: PAINTING THE CLIENT WINDOW

The addition of 5000 before the division gives a rounded result.

If you want to set the current position 3 inches from the left and 1'/2 inches
from the bottom of your client window, you start by setting ptl.x and ptl.y to
these values in units of ljlOO inch:

ptl .x - 300
ptl.y - 150

Now convert these coordinates to pixels:

ptl.x - ptl.x * cxPixelsPerInch 100
ptl.y - ptl.y * cyPixelsPerlnch 100

Then call the GpiMove function.

You can also translate a pixel size or position to Low English units. For ex
ample, suppose you want to save exClient and eyClient in these units. Here's
the new WM_SIZE code:

case WM_SIZE:
cxClient - SHORT1FROMMP (mp2) * 100 / cxPixelsPerInch
cyClient - SHORT2FROMMP (mp2) * 100 / cyPixelsPerInch
return a

Page Units
Rather than do your own translation between metric units and pixels, you
can have GPI translate points for you. This requires that you use a function
called GpiSetPS to set "presentation page units," which are the units you
specify in GPI functions. GPI converts these page units into "device units,"
the normal coordinate system in units of pixels relative to the lower-left
corner of the window.

To use GpiSetPS, you first define a structure of type SIZEL:

SIZEL s; zl ;

The SIZEL structure has two fields named ex and ey. For our purposes, you
can set both of these fields to zero:

sizl.ex -- 0
si zl . cy = 0

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 183

You then call GpiSetPS:

GpiSetpS (hps. &sizl. lPageUnits);

The last parameter specifies the page units. It can be any of the following
seven identifiers:

Page Units Identifier

PU_PELS
PU _ARBITRARY
PU _LOMETRIC
PU _HIMETRIC
PU _LOENGLISH
PU _HIENGLISH
PU_TWIPS

Units

Pixels
, 'Square" Pixels
0.1 millimeter
0.01 millimeter
0.01 inch
0.001 inch
1/1440 inch

By default, page units are set to PU_PELS. Page units of PU_ARBITRARY
result in an adjustment so that horizontal units you specify in GPI functions
are the same as vertical units. This is a compromise between PU_PELS and
the five metric page units. The word "twips" stands for "twentieths of a
point," and refers to a printer's point size, approximately Ijn inch. Thus Ij20

point is Ij1440 inch.

Be careful with GpiSetPS: The function resets all attributes of the presenta
tion space to default values. Thus, if you use GpiSetPS, it's best to call it im
mediately after you obtain a presentation space handle using WinBeginPaint
or WinGetPS.

The RULER program in Figure 5-9 shows how to use GpiSetPS to draw
using Low English units.

The RULER File

It- - - - - - - - - - - - - - - - -
RULER make file
11 - - - - - - - - - - - - - - - - -

ruler.obj : ruler.c
cl -c -G2sw -\\3 ruler.c

ruler.exe : ruler.obj ruler.def
link ruler, lalign:16, NUL. os2, ruler

184 SECTION TWO: PAINTING THE CLIENT WINDOW

The RULER.C File

1* -
RULER.C -- Draw a Ruler

-------------------------*1

Iidefi ne INCL_WIN
tldefine INCL_GPI
#include <os2.h>
#include <stdio.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. ~PARAM)

int main (void)
{

static CHAR szClientClass [] - "Ruler" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab :
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
OMSG qmsg :

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegoisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

WinSendMsg {hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR_APPICON. FALSE).
NULL) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 185

Figure 5-9. The RULER.C File. continued

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static SHORT sTick[16] - { 100, 25, 35, 25. 50, 25, 35, 25.
70. 25, 35. 25, 50, 25, 35, 25 }

static SHORT cxClient. cyClient. cxChar, cyChar. cyOesc ;
static SIZEL sizl ;
CHAR szBuffer [4] ;
FONTMETRICS fm;
HPS hps ;
POINTL ptl :
SHORT sIndex

switch (msg)

case WM_CREATE:
hps = WinGetPS (hwnd)
GpiSetpS (hps. &sizl, PU_LOENGLISH)

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm)
cxChar = (SHORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc = (SHORT) fm.1MaxOescender

WinReleasePS (hps) ;
return 0

case WM_SIZE:
ptl .x - SHORTIFROMMP (mp2)
ptl .y - SHORT2FROMMP (mp2)

hps = WinGetPS (hwnd) ;
GpiSetPS (hps. &sizl. PU_LOENGLISH)
GpiConvert (hps. CVTC_DEVICE, CVTC_PAGE, lL, &ptl)
WinReleasePS (hps)

cxClient = (SHORT) ptl.x
cyClient = (SHORT) ptl.y
return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL, NULL)
GpiSetPS (hps, &sizl, PU_LOENGLISH) ;
GpiErase (hps) ;

186 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-9. The RULER.C File. continued

for (sIndex - 0 sIndex < 16 * (SHORT) cxClient / 100
sIndex ++)

ptl.x - 100 * sIndex I 16
pt1.y - a ;
GpiMove (hps, &ptl) ;

ptl.y - sTick [sIndex % 16]
Gpi Line (hps, &pt 1) ;

if (sIndex % 16 -- 0)
{

ptl.x -- cxChar I (sIndex > 160 ? 2)
ptl.y +- cyDesc
GpiCharStringAt (hps, &ptl,

(LONG) sprintf (szBuffer, "%d", sIndex / 16),
szBuffer) ;

WinEndPaint (hps)
return 0 :

return WinDefWindowProc (hwnd, msg. mp1, mp2)

The RULER.DEF File

; RULER.OEF module definition file

NAME RULER WINDOWAPI

DESCRIPTION 'Draw a Ruler (e) Charles Petzold, 1988'
PROTMODE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 5-9. The RULER program.

RULER draws a ruler with tick marks every 1/16 inch along the bottom of its
client window, as shown in Figure 5-10 on the following page.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 187

= RULER EXE mil!)

2 3 4 5 6 7 9

Figure 5-10. The RULER display.

In RULER, the sizl structure is defined as a static variable and implicitly ini
tialized to zero. ClientWndProc calls GpiSetPS with the PU_LOENGLISH
parameter whenever it obtains a presentation space handle, which it does
three times: during the WM_CREATE, WM_SIZE, and WM_PAINT
messages.

During the WM_CREATE message, the program obtains font metrics from
the GpiQueryFontMetrics function. Because page units have been set to Low
English, these font metrics are in units of 1j100 inch.

The Low English page units don't affect nongraphics functions. For ex
ample, the WM_SIZE message will continue to report the window size in
device units (pixels). For this reason, RULER must convert the window size
to Low English units before saving the values in cxClient and cyClient. First,
the new window size is saved in a POINTL structure:

ptl .x = SHORTIFROMMP (mp2)
ptl .y = SHORT2FROMMP (mp2)

Next, RULER gets a presention space handle and sets the page units:

hps - WinGetPS (hwnd)
GpiSetPS (~ps. &sizl. PU-LOENGLISH)

188 SECTION TWO: PAINTING THE CLIENT WINDOW

The coordinates of the POINTL structure are converted to page units using
GpiConvert, and the presentation space is released:

GpiConvert (hps. CVTC_DEVICE, CVTC_PAGE, lL. &ptl) ;
WinReleasePS (hps) :

The second parameter to GpiConvert indicates that the POINTL structure
(the last parameter) is in device units. The third parameter is the units to
which the POINTL structure should be converted. (You can switch these
two parameters to convert from page units to device units.) The fourth
parameter is the number of POINTL structures to be converted, passed as
the last parameter. Finally, cxClient and cyClient are saved from the con
verted points as follows:

cxClient - (SHORT) ptl.x
cyClient - (SHORT) ptl.y

Thus, by the time the WM_PAINT message is processed, everything the pro
gram needs to draw the RULER (the size of the client window and the font
metrics) is in units of IjlOO inch. The sTick array (which has the lengths of the
ruler tick marks) has also been initialized in Low English units.

This discussion of page units only scratches the surface of GPI's various
transformation functions. The points you specify in GPI functions are ac
tually in a coordinate system called "world space" and are translated to
"model space," then to page units, and then to device coordinates. The
GpiSetModelTransJormMatrix and GpiSetDeJaultViewMatrix functions allow
you to perform translation, scaling, and rotation on world coordinates for
more complex drawing.

GPI Primitive 2: Patterned Areas
The second GPI primitive is a pattern that fills an enclosed area. You define
the area with a series of lines, and GPI fills it. The GpiBox function also uses
a pattern to fill the box interior.

Area filling under GPI is not implemented as a "flood fill," such as that
available with the PAINT statement in Microsoft's QuickBASIC. In a flood
fill, you specify a point that is bounded by one or more existing lines. The
graphics system fills the area with a pattern by searching for the boundary
lines. Flood fills are possible only on raster output devices that allow the

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 189

graphics system to read (as well as write) individual pixels. Instead, OPI ac
cumulates the lines that you specify as boundaries to the area and then
algorithmically fills the enclosed areas defined by these lines.

If you have already experimented with the DRO_FILL and DRO_OUT

LINEFILL options of GpiBox, you will have noticed that OPI simply fills the
box, with a solid color. But that's only because the default area pattern is a
solid pattern. Let's look at the other available patterns and the various ways
of defining and filling an area under OP!.

Selecting the Pattern
To select the pattern that OPI uses to fill an area, you call

GpiSetPattern (hps. lPattern) ;

The [Pattern parameter can be anyone of the following 19 identifiers begin
ning with the prefix PATSYM ("pattern symbol "):

PATSYM_DEFAULT
PATSYM_DENSEI
PATSYM_DENSE2
PATSYM_DENSE3
PATSYM_DENSE4
PATSYM_DENSE5
PATSYM_DENSE6
PATSYM_DENSE7
PATSYM_DENSE8

PATSYM_ VERT
PATSYM_HORIZ
PATSYM_DIAG 1
PATSYM_DIAG2
PATSYM_DIAG3
PATSYM_DIAG4
PATSYM_NOSHADE
PATSYM_SOLID
PATSYM_HALFTONE
PATSYM_BLANK

The PATSYM_DEFAULT and PATSYM_SOLID identifiers have the same '
effect; so do PATSYM_NOSHADE and PATSYM_BLANK. PATSYM_DIAO 1

and PATSYM_DIA02 are patterns composed of diagonal lines from lower
left to upper right. For PATSYM_DIA03 and PATSYM_DIA04, the diagonal
lines go from upper left to lower right.

The various PATSYM_DENSE identifiers result in shaded patterns:
PATSYM_DENSEI has the highest color density, and PATSYM_DENSE8

has the lowest color density. You can get a 50 percent shading using
PATSYM_HALFTONE, which (depending on the output device) mayor may
not be the same as PATSYM_DENSE4 or PATSYM_DENSE5.

The PATTERNS program shown in Figure 5-11 uses the GpiBox function to
draw all 19 patterns in its client window.

190 SECTION TWO: PAINTING THE CLIENT WINDOW

The PATTERNS File

#- - - - - - - - - - - - - - - - - - --
PATTERNS make file
11- - - -- - - - - - - - - - - - - - - -

patterns.obj : patterns.c
c1 -c -G2sw -W3 patterns.c

patterns.exe : patterns.obj patterns.def
link patterns, lallgn:16. NUL, 052. patterns

The PATTERNS.C File

1* -

PATTERNS.C -- GPI Area Patterns
- -* I

Hdef1ne INCL_WIN
Iidefi ne INCL_GPI
#include <os2.h>
#lnclude (string.h)

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szC11entCla5S [] - "Patterns"
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab :
HMO hmq ;

FCF_SlZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
OMSG qmsg :

hab - Winlnitialize (0)

hmq - WlnCreateMsgOueue (hab. 0) :

FCF_SYSMENU :
FCF_MINMAX :
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 191

Figure 5-11. The PATTERNS.C File. continued

WinSendMsg (hwndFrame, WM_SETICON,
WinOuerySysPointer (HWND_DESKTOP, SPTR-APPICON, FALSE),
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

static struct
LONG 1 Pattern Symbol ;
CHAR *szPatternSymbol
}

show [] =

{

PATSYM_DEFAULT
PATSYM_DENSEI
PATSYM_DENSE2
PATSYM_DENSE3
PATSYM_DENSE4
PATSYM_DENSE5
PATSYM_DENSE6
PATSYM_DENSE7
PATSYM_DENSE8
PATSYM_VERT
PATSYM_HORIZ
PATSYM_DIAGI
PATSYM_DIAG2
PATSYM_DIAG3
PATSYM_OIAG4
PATSYM_NOSHADE
PATSYM_SOll 0

· "PATSYM_DEFAULT"
, "PATSYM_DENSEl"
, "PATSYM_DENSE2"
, "PATSYM_D~NSE3"
, "PATSYM_DENSE4"
, "PATSYM_DENSE5"
, "PATSYM_DENSE6"
, "PATSYM_DENSE7"
, "PATSYM_DENSE8"
, "PATSYtLVERT"
, "PATSYM_HORIZ"
· "PATSYM_DIAGl"
· "PATSYM_DIAG2"
· "PATSYM_DIAG3"
· "PATSYM_DIAG4"
• "PATSYM_NOSHADE"
, "PATSYM_SOLID"

PATSYM_HALFTONE . "PATSYM_HALFTONE" •
PATSYM_BLANK
} :

· "PATSYM_BLANK"

static SHORT cxClient, cyClient, cxCaps. cyChar. cyDesc.
sNumTypes = sizeof show I sizeof show[O] ;

FONTMETRICS fm:

192 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-11. The PATTERNS.C File. continued

HPS
POINTL
SHORT

hps ;
ptl :
sIndex

switch (msg)

case WM_CREATE:
hps - WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)
cxCaps - (SHORT) fm.1EmInc ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc - (SHORT) fm.1MaxDescender
WinReleasePS (hps) ;
return 0

case WM_SIZE:
cxClient - SHORT1FROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;

for (sIndex = 0 ; sIndex < sNumTypes ; sIndex ++)
{

GpiSetPattern (hps. show [sIndex].lPatternSymbol)

ptl.x - (sIndex < 10 ? 1 : 33) * cxCaps ;
ptl.y - cyClient - (sIndex % 10 * 5 + 4) * cyChar I 2

+ cyDesc ;

GpiCharStringAt (hps. &ptl.
(LONG) strl en (show [s Index]. szPatternSymbol).

show [sIndex].szPatternSymbol) ;

ptl.x - (sIndex < 10 ? 20 : 52) * cxCaps ;
ptl.y -= cyDesc + cyChar I 2 ;
GpiMove (hps, &ptl) :

ptl.x +- 10 * cxCaps ;
ptl.y += 2 * cyChar ;
GpiBox (hps, ORO_FILL. &ptl. OL. OL)
}

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 193

Figure 5-11. The PATTERNS.C File. continued

WinEndPaint (hps) ;
return 0 ;

return WinDefWindowProc (hwnd, msg, mp1. mp2)

The PATTERNS.DEF File

; PATTERNS.OEF module definition file

NAME PATTERNS WINOOWAPI

DESCRIPTION 'GPI Area Pat terns (C) Charles Petzold. 1988'
PROTMODE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 5-11. The PATTERNS program.

The various patterns drawn by this program are shown in Figure 5-12.

~ PAlTERNS EXE D11!1
PATSYM_DEFAULT - PATSYM_HORIZ

PATSYM_DENSEl - PATSYM_DlAGl ..
PATSYM_DENSE2 - PATSYM_DlAG2 ~
PATSYM_DENSE3 - PATSYM_DlAG3 ..
PATSYM_DENSE4 - PATSYM_DlAG4 ~
PATSYM_DENSE5 - PATSYM_NOSHADE

PATSYM_DENSE6 IIIB > , PATSYM_SOLID -PATSYM_DENSE7 PATSYM_HALFTONE

PATSYM_DENSE8 PATSYM_BLANK

PATSYM_VERT
11111111111111111111111

Figure 5-12. The PATTERNS display.

194 SECTION TWO: PAINTING THE CLIENT WINDOW

A pattern is really only a small rectangular bitmap that is repeated horizon
tally and vertically to fill an area. In the next chapter I'll show you how to
create your own patterns for area filling.

Defining an Area
Area filling is not limited to the GpiBox function. You can define any area
to be filled by. simply drawing a series of lines between the GpiBeginArea
and GpiE.ndArea functions:

GpiBeginArea (hps. lAreaFlags) ;

[draw lines to define the area]

Gp1EndArea (hps) :

This is known as an "area bracket." GPI does not fill the area until you call
the GpiEndArea function.

For example, suppose you want to draw a large filled triangle in your client
window. If cxClient and cyClient are the dimensions of the client window,
here's the code:

GpiBeginArea (hps. OL)

pt1.x - 0 ;
ptl .y - 0 ;
GpiMove (hps. &ptl) ;

ptl.x - cxClient / 2 ;
ptl.y - cyClient :
GpiLine (hps. &ptl)

ptl.x - cxClient ;
ptl.y "" 0 ;

GpiLine (hps. &ptl)

ptl.x .. 0 :

ptl.y .. 0 ;
GpiLine (hps. &ptl)

GpiEndArea (hps) ;

The last GpiLine call, which closes the triangle, is not required. If you do
not close the figure, GPI will close it for you by drawing a straight line to the
starting point.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 195

Only a subset of GPI functions are allowed within an area bracket. All line
drawing and line attribute functions are allowed, but little else. If you call
GpiBox within an area bracket, it should be with the DRO_OUTLINE option.
If you want to use a nonsolid pattern, call GpiSetPattern before calling
GpiBeginArea.

You can define more than one filled area within a single area bracket. When
you call GpiMove in an area bracket, GPI closes the previous figure (if nec
essary) and starts a second figure. For example, the following code draws
two filled triangles side by side in the window:

GpiBeginArea (hps. au.;

ptl. x = a ;
ptl.y = a :
GpiMove (hps. &ptl) ;

ptl.x = cxClient / 4 ;
ptl.y = cyClient ;
Gpiline (hps. &ptl) :

ptl.x = cxClient / 2 :
ptl.y = 0 ;
GpiLine (hps. &ptl)

GpiMove (hps. &ptl)

ptl.x = 3 * cxClient I 4

ptl.y = cyClient ;
GpiLine (hps. &ptl)

ptl.x = cxClient ;
ptl.y = 0 ;
Gpiline (hps. &ptl)

GpiEndArea (hps) :

In this case I'm letting GPI close the two triangles. The GpiMove call in
the middle of this area bracket marks the beginning of the second tri
angle, which is the same as the third point of the first triangle. As part of
area bracket processing, GPI closes the first triangle with a line from
(cxClient/2,0) to (0,0). Similarly, the GpiEndArea call causes GPI to con
struct a boundary line from (cxClient,O) to (cxClient/2,0).

In the preceding examples, the boundary lines are not actually drawn by
GPI. GPI uses the lines you specify solely for defining the enclosed area.

196 SECTION TWO: PAINTING THE CLIENT WINDOW

Whether OPI draws the boundary lines or not is governed by the second
parameter to GpiBeginArea. It can be one of the following identifiers:

BA_NOBOUNDARY
BA_BOUNDARY

The BA_NOBOUNDARY identifier is equal to zero, so no boundary line is
drawn in the preceding examples. You can also combine these identifiers by
using the C bitwise OR operator with one of the following identifiers:

BA_ALTERNATE
BA_WINDING

The BA_ALTERNATE identifier is equal to zero, so that is the default if you
use neither identifier. These identifiers govern whether OPI uses "alternate"
or "winding" mode to fill areas.

Alternate and Winding Modes
When you draw a series of lines to define a filled area, the lines can cross
each other, and the enclosed area can actually comprise several smaller sub
areas. You may not want all of these areas to be filled. The classic example
is a five-pointed star that you draw with five lines. The points of the star and
the interior pentagon are all sub-areas. You can have OPI fill that interior
pentagon by specifying winding mode or leave it unfilled by specifying
alternate mode. This is illustrated in the STARFILL program in Figure 5-13.

The STARFILL File

41- - - ~ - - • - - - - - - - - - - - - -
STARFILL make file
fl- - - - - - - - - - - - - - - - - - - -

starfill.obj : starfill.c
cl -c -G2sw -W3 starfill. c

starfill.exe : starf;ll.obj starfill.def
link starfill, ialign:16, NUL, os2. starf;ll

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 197

The STARFILL. C File

/*---
STARFILL.C -- Alternate and Winding Modes

--*/

#define INCL_GPI
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND, USHORT. MPARAM, MPARAM)

int main (void)

static CHAR szClientClass [] - "StarFill"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

HAS hab ;
HMO hmq :
HWND hwndFrame. hwndClient
OMSG qmsg ;

hab = Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0) :

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_OESKTOP. WS_VISIBLE,
&flFrameFlags, szClientClass.

Alternate and Winding",
OL. NULL, 0, &hwndClient) ;

while (WinGetMsg (hab, &qmsg. NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl. MPARAM mp2)
{

static POINTL aptlStar[5] = {-59,-81. 0,100, 59.-81, -95,31, 95.31 } :
static SHORT cxClient, cyClient ;
HPS hps :

198 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-13. The STARFILL.C File. continued

POINTL
SHORT

aptl[5] :
sIndex ;

switch (msg)
{

case WM_SIZE:
cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;
GpiSetPattern (hps. PATSYM_HALFTONE)

/* -
Alternate Fill Mode

- -*/

for (sIndex = 0 ; sIndex < 5 ; sIndex++)
{

aptl[slndex].x - cxClient 14+ cxClient *
aptlStar[sIndex].x I 400

aptl[sIndex].y - cyClient I 2 + cyClient *
aptlStar[sIndex].y I 200

GpiBeginArea (hps. BA_NOBOUNDARY : BA-ALTERNATE)
GpiMove (hps. aptl) ;
GpiPolyLine (hps. 4L. aptl + 1) ;
GpiEndArea (hps) ;

1* - - - - - - - - - - - - - - - - - - -

Winding Fill Mode
- - - - - - - - - - - - - - - - - - -* /

for (sIndex - 0 ; sIndex < 5 ; sIndex++)
aptl[sIndex].x +- cxClient I 2 ;

GpiBeginArea (hps. BA_NOBOUNDARY : BA_WINDING)
GpiMove (hps. aptl) ;
GpiPolyLine (hps. 4L. aptl + 1) ;
GpiEndArea (hps) :

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 199

Figure 5-13. The STARFILL.C File. continued

WinEndPaint (hps) ;
return 0 :

return WinDefWindowProc (hwnd, msg. mp1. mp2)
}

The STARFILL. DEF File

; STARFILL.DEF module definition file

NAME

OESeR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

STAR~Ill WINOOWAPI

'Alternate and Winding Modes (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5-13. The STARFILL program.

As you can see in Figure 5-14, the center of the five-pointed star is filled in
winding mode but not in alternate mode.

Figure 5-14. The STARFILL display.

200 SECTION TWO: PAINTING THE CLIENT WINDOW

At first, the difference between alternate and winding modes seems rather
simple. For alternate mode, you can imagine a line drawn from a point in
an enclosed area to infinity. The enclosed area is filled only if that imagi
nary line crosses an odd number of boundary lines. This is why the points
of the star are filled but the center is not.

The example of the five-pointed star makes winding mode seem simpler
than it actually is. When you're drawing a single object in an area bracket,
in most cases winding mode will cause all enclosed areas to be filled. But
there are exceptions.

To determine whether an enclosed area is filled in winding mode, you again
imagine a line drawn from a point in that area to infinity:

• If the imaginary line crosses an odd number of boundary lines, the area
is filled, just as in alternate mode.

• If the imaginary line crosses an even number of boundary lines, the
area can be either filled or not filled. The area is filled if the number
of boundary lines going in one direction (relative to the imaginary line)
is not equal to the number of boundary lines going in the other direction.

For example, consider the object shown in Figure 5-15.

--"'
r

2

"

1 4
Ir

5

3

Figure 15-15. A figure in which winding mode does not fill all interior areas.

The arrows on the lines indicate the direction in which the lines are drawn.
Both winding mode and alternate mode will fill the three enclosed
L-shaped areas numbered 1 through 3. The two smaller interior areas, num
bered 4 and 5, will not be filled in alternate mode. But in winding mode,
area number 5 is filled because you must cross two lines going in the same
direction to get from the inside of that area to the outside of the figure. Area
number 4 is not filled. You must again cross two lines, but the two lines go
in opposite directions.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 201

Is GPI really smart enough to figure this out? Sure it is, and the ALTWIND
program shown in Figure 5-16 demonstrates it.

The ALTWIND File

11- - - - - - - - - - - - - - - - - - -
ALTWIND make file
11- - - - - -- - - - - - - - - - - - -

altwind.obj : altwind.c
cl -c -G2sw -W3 altwind.c

altwind.exe : altw~nd.obj altwind.def
link altwind. lalign:16, NUL. os2, altwind

The ALTWIND.C File

1*--
ALTWIND.C -- Alternate and Winding Modes

---*1

#define I~CL_GPI
#include <os2.h>

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] - "AltWind" :
static ULONG flFrameFlags = FCF_TITLEBAR

HAB hab ;

HMO hmq :
HWNO hwndFrame.
OMSG qmsg ;

~ab - Winlnitialize (O)

FCF_SIZEBORDER
FCF_SHElLPOSITION

hwndClient

hmq = WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST :

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWNO_OESKTOP. WS_VISIBLE,
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

202 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-16. The ALTWIND.C File. continued

while (WinGetMsg (hab. &qmsg. NULL. 0, 0»
WinOispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;
}

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
(

static POINTL aptlFigure[lO] - { 10.30. 50.30. 50.90. 90.90. 90.50.
30.50. 30.10. 70,10. 70.70. 10.70 }

static SHORT cxClient, cyClient
HPS hps :
POINTL aptl [10]
SHORT sIndex ;

switch (msg)
{

case WM_SIZE:
cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 :

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;
GpiSetPattern (hps. PATSYM_HALFTONE)

/*---------------------
Alternate Fill Mode

---------------------*/

for (sIndex - 0 ; sIndex < 10 ; sIndex++)
{

aptl[sIndex].x = cxClient * aptlFigure[sIndex].x / 200
aptl[sIndex].y - cyClient * aptlFigure[sIndex].y / 100
}

GpiBeginArea (hps. BA_BOUNDARY : BA-ALTERNATE)
GpiMove (hps, aptl) ;
GpiPolyLine (hps, 9L. aptl + 1) ;
GpiEndArea (hps) ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 203

Figure 5·16. The ALTWIND.C File. continued

1* - - - - - - - - - - - - - - - - - - -
Winding Fill Mode

-------------------*1

for (sIndex - 0 ; sIndex < 10 ; sIndex++)
aptl[sIndex].x +- cxClient I 2 ;

GpiBeginArea (hps. BA_BOUNDARY : SA-WINDING)
GpiMove (hps. aptl) ;
GpiPolyline (hps. 9L. aptl + 1) ;
GpiEndArea (hps) ;

WinEndPaint (hps) ;
return 0 :

return WinDefWindowProc (hwnd. msg. mpl. mp2)
}

The ALTWIND.DEF File

; ALTWIND.OEF module definition file

NAME ALTWIND WINDOWAPI

DESCRIPTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

'Alternate and Winding Modes (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5·16. The ALTWIND program.

Figure 5-17 shows the ALTWIND display.

If you use GpiBox with the DRO _ OUTLINE option within an area bracket,
you need to know how GPI draws the box in order to anticipate how the in
tersection of the box and other closed objects will be filled in winding
mode. GPI begins drawing the box at the current position. The first line it
draws is horizontal, and then the box is continued from there. Thus, if the
current position is the lower-left or upper-right corner of the box, the box is
drawn counterclockwise.

204 SECTION TWO: PAINTING THE CLIENT WINDOW

== ALTWIND EXE IfJm

Figure 5-17. The ALTWIND display.

Color and Mix
All text, lines, and areas we've drawn have appeared on the window in
black on a white background. Or maybe not: If you have set different' 'win
dow. background" and "window text" colors using the Presentation Man
ager Control Panel program, OPI uses these colors for the background of the
window and the color of text, lines, areas, and other primitives.

The Color Index
You specify a color by calling the GpiSetColor function:

GpiSetColor (hps. lColorIndex) ;

The color is an attribute of the presentation space. The color you set with
GpiSetColor affects all subsequent OPI primitives until you change the color
again or release the presentation space.

Generally, the lColorlndex value will be one of the following identifiers:

CLR_BACKGROUND
CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_NEUTRAL

CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARKRED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_BROWN
CLR_PALEGRAY

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 205

Each of these color index identifiers is self-explanatory, with the exception
of CLR_BACKGROUND and CLR_NEUTRAL:

• CLR_BACKGROUND is the color you set in the Presentation Manager
Control Panel program as the "window background" color. By default,
this is white. The GpiErase function erases a window using this
CLR_BACKGROUND color .

• CLR_NEUTRAL is the "window text" color you set in the Control Panel
Program; by default, CLR_NEUTRAL is black. For a new presentation
space, all GPI primitives you draw will use the CLR_NEUTRAL color.
GPI also recognizes the CLR_DEFAULT identifier, which has the same
effect as CLR_NEUTRAL when used with GpiSetColor.

In one sense, these interpretations of the CLR_BACKGROUND and the
CLR_NEUTRAL identifiers are convenient for the programmer. The user
has selected these colors as his or her personal preferences for window
background and foreground colors. A Presentation Manager program uses
these colors by default. A user's preference, however, can sometimes defeat
a feature of a program. For example, if your program uses CLR_RED text
for emphasis, the text won't stand out if the user has selected red as the nor
mal window text color.

Therefore, GPI lets you override the user's preferences and explicitly set all
colors used by the program. GPI provides two additional color indexes for
specifying black and white:

CLR_WHITE

Another pair of color indexes is more appropriate for use with bitmaps:

On a video display, CLR_FALSE has the same effect as CLR_BLACK, and
CLR_TRUE has the same effect as CLR_ WHITE; on a printer, this relation
ship is reversed because video displays are black background devices and
printers are white background devices.

You may be familiar with the IRGB (Intensity-Red-Green-Blue) color en
coding of the IBM CGA, EGA, and VGA video adapters. The table on the
next page shows how it corresponds to the GPI color indexes.

206 SECTION TWO: PAINTING THE CLIENT WINDOW

I R

o 0
o 0
o 0
o 0
o
o
o
o 1

o
o
o
o

G

0
0

1
0
0

1
0
0

1
0
0

B

0
1
0
1
0
'1
0
1
0
1
0
1
0
1
0

IRGB Color Name Equivalent Color Index

Black CLR_BLACK
Blue CLR_DARKBLUE
Green CLR_DARKGREEN
Cyan CLR_DARKCYAN
Red CLR_DARKRED
Magenta CLR_DARKPINK
Brown CLR_BROWN
Light Gray CLR_PALEGRAY
Dark Gray CLR_DARKGRAY
Light Blue CLR_BLUE
Light Green CLR_GREEN
Light Cyan CLR_CYAN
Light Red CLR_RED
Light Magenta CLR_PINK
Yellow CLR_YELLOW
White CLR_WHITE

In literature about the IBM video adapters, "magenta" is often used to de
scribe the color known as "pink" in GPL In technical literature on the
CGA, EGA, and VGA boards, colors with the I (intensity) bit set are tradi
tionally referred to as "light" colors; by contrast, in GPI, most colors
without the I bit set are "dark" or "pale" colors.

The COLORS program shown in Figure 5-18 displays the colors available
with all 21 CLR identifiers:

The COLORS File

If- - - - - - - - - - - - - - - - - -
If COLORS make file
II· - - - - - - - - - - - - - - - - -

co1ors.obj : colors.c
c1 -c -G2sw -W3 co1ors.c

colors.exe : colors.obj co1ors.def
link colors, /align:16. NUL, os2, colors

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 207

The COLORS.C File

/*-----------------------------------
COLORS.C -- GPI Foreground Colors

-- -------- ------------- ----- -- -----* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <string.h>

MRESULT EXPENTRY ClientWndProc (HWNO. USHORT. MPARAM. MPARAM)

i n t rna i n (v 0 i d)
{

static CHAR szClientClass [] = "Colors" ;
static ULONG flFrameFlags = FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SlZEBORDER
FCF_SHElLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hrnq = WinCreateMsgQueue (hdb. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. OL. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

208 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-18. The COLORS.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. M?ARAM mp2)
{

static struct

static SHORT

FONTMETRICS
HPS
POINTL
SHORT

swi tch (msg)

LONG lColorIndex ;
CHAR *szColorlndex
}

show [] -
{

CLR_FALSE
CLR_TRUE
CLR_OEFAULT
CLR_WHlTE

• "CLR_FALSE"
· "CLILTRUE"
· "CLILDEFAULT"
• "CLILWHITE"

CLILBLACK • "CLILBLACK"
CLILBACKGROUND • "CLR_BACKGROUNO" •
CLR_BLUE "CLILBLUE"
CLILREO · "CLR_RED"
CLR_PINK • "CLR_PINK"
CLILGREEN • "CLILGREEN"
CLR_CYAN • "CLR_CYAN"
CLR_YELLOW "CLILYELLOW"
CLR_NEUTRAL , "CLR_NEUTRAL"
CLR_DARKGRAY • "CLILDARKGRAY"
CLR_DARKBLUE · "CLILDARKBLUE"
CLILDARKRED • '''CLR_DARKRED''
CLR_DARKPINK · "CLILDARKPINK"
CLILDARKGREEN · "CLR_DARKGREEN"
CLR_DARKCYAN "CLILDARKCYAN"
CLILBROWN · "CLILBROWN"
CLILPALEGRAY , "CLILPALEGRAY"
} ;

cxClient. cyClient. cxCaps. cyChar. cyDesc.
sNumColors - sizeof show I sizeof showEO] ;
fm :
hps ;
ptl ;
sIndex

case WM_CREATE:
hps = WinGetPS (hwnd) :
GpiQueryFontMetrics (hps. (LONG) sizeof fm, &fm)
cxCaps = (SHORT) fm.l~mlnc ;
cyChar = (SHORT) fm.1MaxBaselineExt :

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 209

Figure 5-18. The COLORS.C File. continued

cyDesc = (SHORT) fm.1MaxDescender
WinReleaseP$ (hps) ;
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 :

case WM_PAINT:
hps = WinBeginPaint (hwnd. NUll. NUll)
GpiErase (hps) :

for (sIndex - 0 ; sIndex < sNumColors ; sIndex ++)
{

ptl.x = (sIndex < 11 ? 1 : 33) * cxCaps ;
ptl.y - cyClient - (sIndex % 11 * 5 + 4) * cyChar I 2

+ cyDesc ;

GpiCharStringAt (hps. &ptl.
(lONG) strlen (show [sIndex].szColorlndex).

show [sIndex].szColorlndex) ;

ptl.x - (sIndex < 11 ? 20 : 52) * cxCaps
ptl.y -= eyDesc + eyChar I 2 ;
GpiMove (hps. &ptl)

GpiSavePS (hps) ;
GpiSetColor (hps. show [sIndex].lColorlndex)

ptl .x +- 10 * cxCaps ;
ptl.y +- 2 * cyChar ;
GpiBox (hps. DRO_FILL. &ptl. OL. Ol)

GpiRestorePS (hps. -1l) ;
}

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl, mp2)
}

210 SECTION TWO: PAINTING THE CLIENT WINDOW

The COLORS.DEF File

; COLORS.DEF module definition file

NAME COLORS WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'GPI Foreground Colors (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5-18. The COLORS program.

This program sets the color by calling GpiSetColor and then calls the
GpiBox function to draw a solid rectangle using that color.

The GpiSetColor function sets the color for all GPI primitives, including
text. How does COLORS prevent the text from appearing in color? Very
simple: COLORS calls the GpiSavePS function before calling GpiSetColor
and calls GpiRestorePS after calling GpiBox. The GpiSavePS function saves
all the attributes of the presentation space and GpiRestorePS restores them.
If you remove these two functions from COLORS, you'll find that the text
displayed by GpiCharStringAt will also appear in various colors.

I could have simplified COLORS a little by using the WinFillRect function:

WinFillRect (hps, &rcl, lColorlndex) ;

The second parameter is a pointer to a RECTL structure. The function fills
that rectangle with the specified color. The WinFillRect function is useful
for coloring the background of a client window without calling GpiErase:

WinQueryWindowRect (hps. &rcl) ;
WinFillRect (hps. &rcl. CLR_CYAN)

WinFillRect is one of the few drawing functions that begins with a Win
prefix rather than Gpi. (You encountered another of these functions
WinDrawText-in Chapter 2.) These are high-level drawing functions that
do the work of several GPI functions. They are often convenient but can be
used only on a video display. Another useful high-level drawing function is
WinDrawBorder.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 211

Foreground Mix Mode
The use of color may seem fairly straightforward, but it's not. In general,
OPI does not simply draw a color on the display. Instead, GPI performs a
bitwise operation between the foreground color of the image you're draw
ing (the source color) and the color already on the surface of the display
(the destination color). This operation is called the "mix mode" or simply
the' 'mix."

Let's approach this by thinking about a monochrome video display that is
capable of two colors: black and white. Each pixel on the display can be
represented by either 0 (black) or 1 (white).

You want to draw a pixel on this display. This source pixel can be 0 or 1.
The surface of the display where you want to draw this pixel (the destina
tion) can also be either 0 or 1. The resultant color of the drawn pixel is
defined by the mix mode.

There are 16 possible mix modes. These are represented by identifiers de
fined in PMGPI.H that begin with FM ("foreground mix"). The following
table uses C notation to show the bitwise combinations of pixels:

Source (SRC): 0 0
Destination
(DEST): 0 1

Result: 0
0
0
0
0
0
0
0

o
o
o
o

1
o
o
o
o

1 1

0 1

0 0
0 1
1 0
1
0 0
0 1

0
1 1
0 0
0 1

0
1 1
0 0
0 1

0

Operation Mix Mode

0 FM_ZERO
SRC&DEST FM_AND
SRC&-DEST FM_MASKSRCNOT
SRC FM_OVERPAINT
-SRC&DEST FM_SUBTRACT
DEST FM_LEAVEALONE
SRCADEST FM_XOR
SRC: DEST FM_OR
-(SRC : DEST) FM_NOTMERGESRC
-(SRC A DEST) FM_NOTXORSRC
-DEST FM_INVERT
SRC: -DEST FM_MERGESRCNOT
-SRC FM_NOTCOPYSRC
-SRC: DEST FM_MERGENOTSRC
-(SRC & DEST) FM_NOTMASKSRC
1 FM_ONE

You can change the mix mode by calling the following function:

GpiSetMix (hps, lMixMode)

212 SECTION TWO: PAINTING THE CLIENT WINDOW

where IMixMode is one of the FM identifiers shown in the table. The default
mix mode is FM_OVERPAINT, which transfers the color specified by the
GpiSetColor to the destination regardless of the color of the destination.
This is what we intuitively expect to happen. The PMGPI.H header file also
includes the identifier FM_DEFAULT, which has the same effect as
FM_OVERPAINT.

If the mix mode is set to FM_XOR, the resulting pixel will be white (1) only
if either the source and destination pixels (but not both) were also white.
That is, the FM_XOR mix mode causes source pixels of 1 to invert the desti
nation and source pixels of 0 to leave it unchanged:

• If you set color to CLR_BLACK and the mix mode to FM_XOR, any
lines you draw on a black background will be black, and any lines you
draw on a white background will be white.

• If you set color to CLR_ WHITE and the mix mode to FM_XOR, any
lines you draw on a black background will be white; any lines you draw
on a white background will be black.

With color, the situation gets just a little more complex. Consider the EGA
and VGA display adapters in high-resolution graphics mode. These adapters
use 4 bits (intensity, red, green, and blue) for each pixel. The mix mode
works on each of these bits individually. For example, if a window is col
ored with CLR_RED, the surface of the window has its intensity and red bits
set to 1 and its blue and green bits set to o. If you set color to CLR_BLUE,
the intensity and blue bits are set to 1, and the green and red bits are set to O.
You use the FM_XOR mix mode and display a line. The text is displayed in
CLR_DARKPINK. The resultant red and blue bits are set to 1, and the inten
sity and green bits are set to o.
The FM_ZERO mix mode causes the GPI primitive you draw to be dis
played in black regardless of the destination color a~d the color you set with
GpiSetColor. Similarly, FM_ONE causes a GPI primitive to be displayed in
white. The FM_LEAVEALONE mix causes the GPI primitive to be invisible.

The FM_INVERT mix mode causes a GPI primitive to invert the color of the
destination regardless of the color you set. For example, text drawn on a
CLR_RED destination is displayed as CLR_DARKCYAN. FM_INVERT is
useful for drawing and erasing an object. When you draw the same object a
second time, the destination reverts to its original color. This technique is
used in the WEB program in Chapter 9.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 213

The Background Color and Mix
GPI also has two functions for setting the background color and mix:

GpiSetBackColor (hps. lColorlndex) ;

and

GpiSetBackMix (hps. lMixMode) ;

Use of the CLR_DEFAULT as a parameter to GpiSetBackColor has the same
effect as CLR_BACKGROUND. For the lMixMode parameter to GpiSet
BackMix, you use identifiers beginning with BM ("background mix")
rather than FM. Not all mix modes are supported for background mixing.
The supported background mixes are shown in the following table:

Source (SRC): 0 0 1 1
Destination
(DEST): 0 1 0 1 Operation Mix Mode

Result: 0 0 SRC BM_OVERPAINT
0 0 1 DEST BM_LEAVEALONE
0 0 SRCADEST BM_XOR
0 SRC: DEST BM_OR

The default background mix is BM_LEAVEALONE. (BM_DEFAULT pro
vides the same result.) If you want to use a background color, you'll have to
change the background mix to something other than BM_LEAVEALONE.

Otherwise, GPI will ignore the background color.

The background color and mix don't affect lines, but do affect patterns.
You'll note that many of the patterns are composed of lines or dots. These
lines and dots are drawn on the display using the foreground color and fore
ground mix mode. The area between the lines and dots is drawn on the dis
play using the background color and background mix mode.

For example, suppose you make the following series of function calls:

GpiSetColor (hps. CLR_BLUE) ;
GpiSetMix (hps. FM_OVERPAINT)
GpiSetBackColor (hps. CLR_REO) ;
GpiSetBackMix (hps. BM_OVERPAINT)
GpiSetPattern (hps. PATSYM_VERT) ;

When you call GpiBox with an option of DRO _FILL or DRO _ OUT

LINEFILL, the pattern will have blue vertical lines on a red background,
regardless of the original color of the display.

214 SECTION TWO: PAINTING THE CLIENT WINDOW

GPI Primitive 3: Text
Text is the most common OPI primitive yet potentially the most complex
because of the use of various fonts. OPI allows you to enumerate all the
fonts available on the system and choose different fonts for the display of
text. Many of these fonts (such as the default system font) contain characters
of varying widths. In addition, you can alter the default spacing of charac
ters to achieve such effects as justified text.

The Text Output Functions
OPI has four text output functions:

• GpiCharStringAt

• GpiCharString

• GpiCharStringPos

• GpiCharStringPosAt

The GpiChar5tringAt and GpiChar5tring Functions
Perhaps the most common text output function is the function introduced in
Chapter 4:

GpiCharStringAt (hps, &ptl, lLength, &cString) ;

The last parameter is a character array or a pointer to a character string. The
[Length parameter is the length of this string. The POINTL structure indi
cates the starting position of the text. This is usually the baseline of the left
side of the first character. (We'll look at an exception to this rule shortly.)

You can also use the GpiCharString function to display text:

GpiCharString (hps, lLength, &cString) ;

It is the same as GpiCharStringAt, except that the text begins at the current
position. The GpiCharStringAt function is equivalent to

GpiMove (hps, &ptl)
GpiCharString (hps, lLength, &cString) ;

Following the GpiCharString and GpiCharStringAt calls, the current position
is usually set to the baseline of the right side of the last character. (Again,
there are exceptions.) Therefore, you can call GpiCharString again to con
tinue a line of text.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 215

The GpiCharStringPos and GpiCharStringPosAt Functions
Two other text output functions have some additional parameters:

GpiCharStringPos (hps, &rcl. lOptions, lLength, &cString, allncrement)
GpiCharStringPosAt (hps, &ptl. &rcl, lOptions. lLength, &cString, allncrement)

The GpiCharStringPos function begins the text at the current position; the
GpiCharStringPosAt function begins the string at the POINTL structure
passed as the second parameter. Information in the following discussion of
GpiCharStringPos also applies to GpiCharStringPosAt.

The simplest form of GpiCharStringPos results from setting the &rcl and
alIncrement parameters to NULL and the [Options parameter to 0:

GpiCharStringPos (hps, NULL, OL, lLength, &cString. NULL) ;

In this form, the function is equivalent to GpiCharString. Nonzero [Option
values cause some different results.

You can set the [Option parameter to CHS_LEAVEPOS:

GpiCharStringPos (hps, NULL, CHS_LEAVEPOS, lLength. &cString, NULL) ;

On return from the function, the current position will be set at the begin
ning of the string rather than the end. That is, the GpiCharStringPos func
tion leaves the current position unchanged, but GpiCharStringPosAt sets the
current position to the POINTL structure passed to the function.

If you include the &rcl parameter (a pointer to a RECTL structure), you can
use the CHS_CLIP option:

GpiCharStringPos (hps, &rcl, CHS_CLIP, lLength, &cString, NULL) ;

In this case the character string will be clipped to the interior of the rect
angle. Any part of the text string falling outside the rectangle will not be
di~played. The &rcl parameter is also required for the CHS_ OPAQUE op
tion, as follows:

GpiCharStringPos (hps, &rcl, CHS_OPAQUE, lLength, &cString, NULL) ;

In this case the rectangle is colored with the current background color
before the text is displayed. GPI temporarily;, sets the background mix to
BM_OVERPAINT before coloring the rectangle.

216 SECTION TWO: PAINTING THE CLIENT WINDOW

The fourth and final option is CHS_ VECTOR. This function requires that
the last parameter be an array of LONG integers:

Gpi CharStri ngPos (hps. NULL. CHS_VECTOR. lLength. &cStri ng. alIncrement) :

The alIncrement array contains lLength LONG values. GPI uses this array to
position the successive characters in the string, thereby overriding the
default spacing. The CHS_ VECTOR option is the reason for the Pos
("position") part of the GpiCharStringPos and GpiCharSt~ingPosAt func
tion names.

You can use any combination of the CHS_OPAQUE, CHS_VECTOR,
CHS_LEAVEPOS, and CHS_CLIP identifiers by combining them with the C
bitwise OR operator. The RECTL structure passed as the second parameter
is required only for CHS_OPAQUE or CHS_CLIP. The array of LONG incre
ment values passed as the last parameter is required only when you use
CHS_VECTOR.

Text Color
The color and mix mode affect the display of characters in the text string.
We've already seen how the CHS_OPAQUE option in GpiCharStringPos and
GpiCharStringPosAt functions can cause GPI to use the background color to
color a rectangle before displaying the text.

You can also use the background color and background mix with other
forms of the text output functions. If you set the background mix to some
thing other than BM_LEAVEALONE, the background color is used to color
the small rectangular character cells that surround each character. You
might want to do this if you are displaying text over some existing graphics
and want the text to be more distinct. (Some GPI fonts are "outline" fonts
and will not be affected by the background color and mix.)

Font Files
The subject of fonts is quite complex, yet we must attack it. As you
discovered in Chapter 4, the default system font is proportionally spaced.
Although we have been successful in working with this font, it is not appro
priate for all applications. For example, a programmer's text editor or a
communications program should probably use a fixed-pitch font, in which
every character has the same width. We at least want to be able to switch·to
a fixed-pitch font. The ability to use boldface and italic versions of fonts
would be nice also.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 217

GPI supports fonts in two very different formats: "Image" fonts are stored
as small bitmaps with 0 bits for the background of the character and 1 bits
for the character itself. "Vector" fonts are stored as a series of straight lines
and curves. This discussion is limited to image fonts.

The OS/2 Presentation Manager includes three files that contain collections
of image fonts in various point sizes for various output devices. These files,
and the image fonts they contain, are shown in the following table:

Font File Font Face Name Point Sizes

COURIER.FON "Courier" 8, 10, 12
HELV.FON "Helv" 8,10,12,14,18,24
TIMES.FON "TmsRmn" 8, 10, 12, 14, 18,24

NOTE: These three font files are stored in the C:\OS2\DLL directory on
your hard disk. To use the fonts in these flies, you must install the fonts
from the Presentation Manager Control Panel. It is only necessary to
install onefontfrom eachfile. The Control Panel writes information to
the OS2.lNI file to load the fonts for use whenever you use the Presen
tation Manager.

The default system font is stored in DISPLAY.DLL, the dynamic link library
for the video display. It has a font face name 'of "System Proportional" and
a point size of 12.

Each font is identified by a face name and a point size. The "Courier" font
is a fixed-pitch font similar to that produced by a typewriter. The "Helv"
(Helvetica) and "Tms Rmn" (Times Roman) fonts are both proportional
fonts. "Helv" is a sans serif font, which means that it does not have small
lines finishing off the strokes of the characters. "Tms Rmn" has serifs and
is commonly used for text in magazines and books.

The point size refers to the maximum height of the characters. One point is
approximately 1jn inch. However, if you set page units to Low English,
High English, or Twips, the size of the fonts will not necessarily agree with
the GPI page units. For example, a 24-point font will not be 480 twips high.
The size of the fonts is based on an ideal "font resolution" for the device.
You can obtain this font resolution from DevQueryCaps using the
CAPS_HORIZONTAL_FONT _RES and CAPS_ VERTICAL_FONT _RES. As
you can see from Figure 5-8, these values for the EGA are set to 96 pixels
and 72 pixels. This is greater than the actual resolution of the device, to
allow fonts as small as 8 points to be legible on the screen.

218 SECTION TWO: PAINTING THE CLIENT WINDOW

The EASYFONT System
Working with fonts can be difficult, but I've attempted to make it a little
easier for you. Figure 5-19 shows two files named EASYFONT.H and EASY

FONT.C that can greatly assist you in working with fonts in your Presenta
tion Manager programs.

The EASYFONT.H File

/*- --
EASYFONT.H header file for EASYFONT.C

- - -- - - - -- - - - - - - - -- - - --- - - -- - - -- - -- - - - - -* I

BOOl EzfOueryFonts (HPS hps)
lONG EzfCreateLogFont (HPS hps, LONG lcid. USHORT idFace. USHORT idSize.

USHORT fsSelection) ;

/tdefine FONTFAC£_SYSTEM 0
/ldefine FONTFACLCOUR
f!define FONTFACE_HELV 2
fidefine FONTFACE_TIMES 3

f/defi ne FONTSIZE_8 0
/ldefine FONTSIZE_IO 1

fidefine FONTSIZE_12 2
fidef;ne FONTSIZE_14 3
fldefine FONTSIZL18 4
fidefine FONTSIZE_24 5

The EASYFONT.C File

1* -
EASYFONT.C -- Routines for Using Image Fonts

- - - - _. -*/

fidefine INCl_GPI
iii ncl ude <os2. h>
fiinclude <stdlib.h>
#include <string.h)
,include "easyfont.h"

static SHORT sFontSize[6] = { 80. 100, 120. 140, 180. 240 } ;
static CHAR *szFacenarne[4] - { "System Proportional",

"Courier". "Helv". "Tms Rmn" } ;
static LONG alMatch[4][6] ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 219

Figure 5-19. The EASYFONT.C File. continued

BOOl EzfOueryFonts (HPS hps)
{

FONTMETRICS *pfm ;
HDC hdc ;
lONG
SHORT

lHorzRes, lVertRes. lRequestFonts, lNumberFonts
sIndex, sFace, sSize

hdc = GpiOueryDevice (hps)
DevOueryCaps (hdc. CAPS_HORIZONTAL_FONT_RES. 1L, &lHorzRes)
DevOueryCaps (hdc. CAPS_VERTICAL_FONT_RES, lL. &lVertRes)

for (sFace = 0 ; sFace < 4 ; sFace++)
{

lRequestFonts - 0
lNumberFonts - GpiOueryFonts (hps, OF_PUBLIC, szFacename[sFace].

&lRequestFonts, Ol. NUll) ;
if (lNumberFonts == 0)

continue ;

if (lNumberFonts * sizeof (FONTMETRICS))= 65536l)
return FALSE ;

pfm = malloc «SHORT) lNumberFonts * sizeof (FONTMETRICS»

if (pfm == NULL)
return FALSE

GpiQueryFonts (hps. OF_PUBLIC, szFacename(sFace],
&lNumberFonts. (lONG) sizeof (FONTMETRICS), pfm)

for (sIndex = 0 ; sIndex < (SHORT) lNumberFonts ; sIndex++)
if (pfm[sIndex].sXDeviceRes -= (SHORT) lHorzRes &&

pfm[sIndex].sYDev;ceRes -= (SHORT) lVertRes &&
Cpfm[sIndex].fsDefn & 1) =- 0)

{

for (sSize = 0 ; sSize < 6 ; sSize++)
if (pfm[sIndex].sNominalPointSize == sFontSize[sSize])

break

if (sSize !- 6)
alMatch[sFace][sS;ze] pfm[sIndex].lMatch

free (pfm) ;

(continued)

220 SECTION TWO: PAINTING THE CLIENT WINDOW

Figure 5-19. The EASYFONT.C File. continued

return TRUE ;

LONG EzfCreateLogFont (HPS hps. LONG lCid. USHORT idFace. USHORT idSize.
USHORT fsSelection)

static FATTRS fat

if (idFace > 3 :: idSize > 5 :: alMatch[idFace][idSize] - 0)
return FALSE

fat.usRecordLength - sizeof fat ;
fat.fsSelection - fsSelection ;
fat.1Match - alMatch[idFace][idSize]

strcpy (fat.szFacename. szFacename[idFace]) ;

return GpiCreateLogFont (hps. NULL. lcid. &fat)

Figure 5-19. The EASYFONT program.

EASYFONT.H contains declarations of the two functions in EASYFONT.C.
These are EzJQueryFonts and EzfCreateLogFont ("create logical font"). In
addition, EASYFONT.H contains a collection of identifiers you use as
parameters to EzJCreateLogFont.

To use EASYFONT, include the EASYFONT.H header file in your .C source
code file:

'include "easyfont.h"

Then compile and link EASYFONT.C with your program.

In a window procedure that uses fonts, obtain a handle to a presentation
space during the WM_CREATE message and call EzfQueryFonts:

hps = WinGetPS (hwnd)
EzfQueryFonts (hps) ;
WinReleasePS (hps) ;

This performs all necessary initialization. Later on, whenever you need to
use a non-default font, obtain a handle to a presentation space and call
EzJCreateLogFont:

EzfCreateLogFont (hps. lcid. idFace. idSize. fsSelection)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 221

The lcid parameter is a "local ID." It can be any number between 1 and
254. The idFace parameter can be any of the FONTFACE identifiers defined
in EASYFONT.H. The idSize parameter is one of the FONTSIZE identifiers
also defined in EASYFONT.H.

Not all sizes are available for all font face names. In particular, the
FONTFACE_SYSTEM identifier can only be used with FONTSIZE_12. The
FONTFACE_COUR identifier can only be used with FONTSIZE_8, FONT
SIZE_lO, and FONTSIZE_12. EzfCreateLogFont returns TRUE if the font ex
ists and FALSE otherwise. You should check the return value before
attempting to use the logical font you asked for.

The fsSelection parameter can be anyone of the following identifiers de
fined in OS2DEF.H:

Identifier

FATTR_SEL_ITALIC
FATTR_SEL_UNDERSCORE
FATTR_SEL_STRIKEOUT
FATTR_SEL_BOLD

Meaning

Italic font
Underlined font
Line drawn through characters
Boldface font

Use 0 if you want a normal font without any attributes.

EzfCreateLogFont creates a logical font associated with a local ID. To use
this font, you pass the local ID to GpiSetCharSet:

GpiSetCharSet (hps. lcid) ;

After this call, you can use GpiQueryFontMetrics to get the dimensions of
the new font. Any text you draw will be displayed with the new font. Before
releasing the presentation space, go back to the default font:

GpiSetCharSet (hps. LCID_DEFAULT)

Then delete the local ID you used:

GpiDeleteSetld (hps. lcid) ;

You can call EzfCreateLogFont multiple times to create different logical
fonts, each associated with a unique local ID. You then use GpiSetCharSet to
use anyone of these fonts for text output. Be sure to set the default font and
delete all local IDs before releasing the presentation space.

222 SECTION TWO: PAINTING THE CLIENT WINDOW

The EzfQueryFonts function in EASYFONT.C first obtains the horizontal
and vertical font resolution of the output device from DevQueryCaps. This
is necessary because the font files contain image fonts for various output de
vices. For each of the four font faces, the function calls GpiQueryFonts to
determine how many fonts are present and then allocates memory to store
that number of FONTMETRICS structures. GpiQueryFonts is called again to
obtain the FONTMETRICS structures for all the available fonts. Each font is
checked against the device resolution and the desired point sizes. The func
tion saves a field of the FONTMETRICS structure named [Match in a static
array. This value is used in the GpiCreateLogFont call in EzfCreateLogFont.

Figure 5-20 shows a program called FONTS, which uses EASYFONT to dis
play all of the fonts available for use.

The FONTS File

11- - - - - - - - - - - - - - - - -
H FONTS make file
,-----------------

fonts.obj : fonts.c easyfont.h
cl -c -G2sw -W3 fonts.c

easyfont.obj : easyfont.c
c1 -c -G2sw -W3 easyfont.c

fonts.exe : fonts.obj easyfont.obj fonts.def
link fonts easyfont. /align:16. NUL. os2, fonts

The FONTS.C File

/*----------------------------
FONTS.C -- GPI Image Fonts

- -*/

!/defi ne INC L_W IN
'define INCL_GPI
'include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include "easyfont.h"

#define lCID_MYFONT lL

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 223

Figure 5-20. The FONTS.C File. continued

int main (void)
{

static CHAR szClientClass (J = "Fonts" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_VtRTSCROlL FCF_HORZSCROLl

HAB hab ;
HMQ hmq ;
HWND hwndFrame. hwndClient
QMSG qmsg :

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0) ;

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass, NULL.
OL. NULL, O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg, NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
W;nDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1. MPARAM mp2)
{

static CHAR *szFace[] = "System". "Courier",

static CHAR
static CHAR

static CHAR

""Helv". "Tms Rmn" }
*szSlze[] - { "S", "10", "12". "14", "ISH, "24" } ;
*szSel(] = { "Normal", "Italic", "Underscore",

"Strike-out", "Bold" } ;
szBuffer[80]

static HWND hwndVscroll. hwndHscroll ;
static USHORT idFace[] = { FONTFACE_SYSTEM. FONTFACE_COUR.

FONTFACE_HELV, FONTFACE_TIMES

224 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-20. The FONTS.C File. continued

static USHORT idSize[] - FONTSIZE_8. FONTSIZE_I0. FONTSIZE_12.
FONTSIZE_14, FONTSIZE_18. FONTSIZE_24 }

static USHORT afsSel[] - 0, FATTR-SEL_ITALIC, FATTR-SEL_UNDERSCORE,
FATTR-SEL-STRIKEOUT, FATTR-SEL_BOLD } ;

static SHORT sVscrollMax - sizeof idFace / sizeof idFace[O] - I,
sHscrollMax - sizeof afsSel / sizeof afsSel[O] - I,
cxC11ent, cyClient. sHscrollPos, sVscrollPos ;

FONTMETRICS
HPS

fm ;
hps;
hwndFrame
ptl ;
sIndex ;

HWND
POINTL
SHORT

switch (msg)

case WtLCREATE:
hps - WinGetPS (hwnd)
EzfOueryFonts (hps) ;
WinReleasePS (hps) ;

hwndFrame - WinQueryWindow (hwnd. OW_PARENT. FALSE).
hwndVscroll - WinWindowFromID (hwndFrame. FID_VERTSCROLL)
hwndHscrol1 = WinWindowFromID (hwndFrame, FID_HORZSCROLL)

WinSendMsg (hwndV sero 11 . SBM_SETSCROLLBAR.
MPFROM2SHORT (sVscrollPos. 0),

MPFROM2SHORT (0. sVscrollMax»

WinSendMsg (hwndHscro11, SBM_SETSCROLLBAR,
MPFROM2SHORT (sHscro11Pos. 0),

MPFROM2SHORT (0, sHscro11Max»
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 :

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
case S!LPAGlUP:

sVscro11Pos = max (0, sVscrollPos - 1)
break ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 225

Figure 5-20. The FONTS.C File. continued

case SB_LINEDOWN:
case SB_PAGEDOWN:

sVscrollPos = min (sVscrollMax. sVscrollPos + 1)
break ;

case SB_SLIDERPOSITION:
sVscrollPos = SHORT1FROMMP (mp2)
break

default:
return 0 ;

WinSendMsg (hwndVscroll. SBM_SETPOS.
MPFROM2SHORT (sVscrollPos. 0). NULL)

WinlnvalidateRect (hwnd. NULL, FALSE) ;
return 0 :

case WM_HSCROLL:
switch (SHORT2FROMMP (mpZ»

{

case SB_LINELEFT:
case SB_PAGELEFT:

sHscrollPos - max (0, sHscrollPos - 1)
break ;

case SB_LINERIGHT:
case SB_PAGERIGHT:

sHscrollPos = min (sHscrollMax. sHscrollPos + 1)
break ;

case SB_SLIDERPOSITION:
sHscrollPos - SHORTIFROMMP (mp2)
break

default :
return 0 :

WinSendMsg (hwndHscroll. SBM_SETPOS.
MPFROM2SHORT (sHscrollPos, 0), NULL)

WinlnvalidateRect (hwnd, NULL. FALSE) :
return 0

case WtLCHAR:
switch (CHARMSG(&msg)->vkey)

226 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 5-20. The FONTS.C File. continued

case VK-LEFT:
case VlLRIGHT:

return WinSendMsg (hwndHscroll, msg, mpl, mp2)
case VILUP:
case VK-DOWN:
case VILPAGEUP:
case VILPAGEDOWN:

}

break :

case WM_PAINT;

return WinSendMsg (hwndVscroll, msg, mpl, mp2)

hps - WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps)

ptl.x - 0 ;
ptl.y - cyClient

for (sIndex - 0 ; sIndex < 6 ; sIndex++)
if (EzfCreateLogFont (hps. LCIO_MYFONT,

idFace[sVscrollPos],
idSize[sIndex],
afsSel[sHscrollPos]»

GpiSetCharSet (hps, LCID_MYFONT)
GpiQueryFontMetrics (hps, (LONG) sizeof fm. &fm)

ptl.y -= fm.1MaxBaselineExt

GpiCharStringAt (hps, &ptl,
(LONG) sprintf (szBuffer, "Is, %s point, %s",

szFace[sVscrollPos].
szSize[sIndex],
szSel[sHscrollPos]),

szBuffer) ;

GpiSetCharSet (hps, LCIO_DEFAULT)
GpiOeleteSetId (hps, LCIO_MYFONT)
}

WinEndPaint (hps)
return 0 ;

return WinDefWfndowProc (hwnd, msg, mpl, mp2)
}.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 227

The FONTS.DEF File
t _________________________________ _

,
; FONTS.DEF module definition file
t _________ ... __ .. ____________________ _

,

NAME FONTS WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Displays GPI Image Fonts (e) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 5-20. The FONTS program.

Several programs in upcoming chapters (KEYLOOK and TYPEAWAY in
Chapter 8 and HEAD in Chapter 14) use EASY FONT to obtain a fixed-pitch
Courier font for text output.

You'll notice that the FONTS make file also compiles EASYFONT.C and
links EASYFONT.OBJ with the program. FONTS.C includes EASYFONT.H
for the function declarations and definitions of the FONT FACE and FONT
SIZE identifiers.

Each screen in FONTS shows all the available font sizes for a particular face
name and fsSelection attribute (such as italics). You change the fsSelection
attribute using the horizontal scroll bar and the face name using the vertical
scroll bar. The "Tms Rmn" italic fonts are shown in Figure 5-21.

GPI Primitive 4: Marker Symbols
"Markers" are small symbols about the same size as a system font charac
ter. (To determine the size of a marker, call DevQueryCaps with the
CAPS_MARKER_ WIDTH and CAPS_MARKER_HEIGHT identifiers.) You
can use markers as bullets or data points on a line graph.

228 SECTION TWO: PAINTING THE CLIENT WINDOW

~ FONTS EXE mit]
ll!!iBI1~~ $j..m/t /t.Jk
7htJ Rmn, III pain! !filic
Tms Rmn. 12 poim. Italic
Tms R01ll, 14pOBlt, Italic
TJlJS RJlJJ1, 18 poiJJ(, Italic

TnlS Rnl~, 24 point Italic

Figure 5-21. The FONTS display.

Drawing a Marker
You can draw a marker by calling the following function:

GpiMarker (hps. &ptl) ;

t

GPI draws the marker with its center at the point specified in the POINTL
structure. The current position is also set to that point.

You can also draw a series of markers:

GpiPolyMarker (hps. 1 Number. aptl) ;

The aptl parameter is an array of lNumber POINTL structures. Like
GpiPolyLine, GpiPolyMarker is more efficient than multiple GpiMarker calls
because the repetition occurs within the device driver. The current position
is set to the last point.

If you use markers to indicate data points on a line graph, you can use the
same array of POINTL structures for drawing the line and drawing the
markers. For example, suppose aptl contains sNum data points for the graph.
This code will draw the line and the markers:

GpiMove (hps. aptl) :
GpiPolyLine (hps. sNum - 1L. aptl + 1)
GpiPolyMarker (hps. (LONG) sNum. aptl)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 229

Selecting a Different Marker Symbol
The default marker has the appearance of a small x and has the name
MARKSYM_CROSS. You can use the GpiSetMarker function to select a dif
ferent marker:

GpiSetMarker (hps. lSymbol) ;

The ISymbol parameter can be any of the following identifiers:

MARKSYM_DEFAULT
MARKSYM_CROSS
MARKSYM_PLUS
MARKSYM_DIAMOND
MARKSYM_SQUARE
MARKSYM_SIXPOINTSTAR

MARKSYM_EIGHTPOINTSTAR
MARKSYM_SOLIDDIAMOND
MARKSYM_SOLIDSQUARE
MARKSYM_DOT
MARKSYM_SMALLCIRCLE
MARKSYM_BLANK

The MARKSYM_DEFAULT identifier has the same effect as MARK

SYM_CROSS.

The marker is drawn using the current color and mix. The background of
the rectangle that encompasses the marker is drawn using the current back
ground color and background mix.

GPI Primitive 5: Images
I began this chapter by noting that OPI is fundamentally a vector graphics
system. But this final OPI primitive looks like it belongs more to the realm
of raster graphics. An "image" is a collection of bytes whose bits define a
little picture. Each bit corresponds to a display pixel.

You display an image by calling

GpiImage (hps. OL. &sizl. lLength. abData) ;

The last parameter is an array of bytes that is ILength bytes long. This is the
image data. The third parameter is a pointer to a SIZEL structure. The
SIZEL structure is similar to the POINTL structure except that the fields are
named ex and ey. This structure defines the width and height of the image
in pixels.

The data in abData is organized with the top row of bits first. The first byte
contains the 8 leftmost bits of this row. The most significant bit of the first
byte is the leftmost pixel. Each row of bits must begin with a new byte; if
the width of the image is not a multiple of 8, the last few bits of the last byte

230 SECTION TWO: PAINTING THE CLIENT WINDOW

of each row are not used. Thus you can calculate lLength using the follow
ing formula:

1 Length - (sizl .ex + 7) 1 8 * sizl .ey :

The leftmost pixel of the top row is displayed at the current position.
Gpilmage does not change the current position. The 1 bits are displayed
with the current foreground color and mix, and the 0 bits are displayed with
the current background color and mix.

The IMAGECAT program shown in Figure 5-22 uses the Gpilmage function
to draw a little cat in the center of the client window.

The IMAGECAT File

ft- - - - - - - - - - - - - - - - - - - -
IMAGECAT make file
fl- - - - - - - - - - - - - - - - - - - -

imageeat.obj : imageeat.c
c1 -e -G2sw -W3 imagecat.c

imagecat.exe : imagecat.obj imageeat.def
link imageeat. lal1gn:16. NUL. 052. imagecat

The IMAGECAT.C File

1*- --

IMAGECAT.C -- Cat drawn using Gpilmage
- -*1

Ifdefi ne I NCLW I N
#define INCLGPI
//i ncl ude <os2. h>
#inc1ude <stdlib.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "lmageCat"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX :
FCF_TASKLIST ;

(continued)

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 231

Figure 5·22. The IMAGECAT.C File. continued

HAB hab :
HMO hmq :
HWNO hwndFrame, hwndClient
QMSG qmsg ;

hab - W1nlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0) :

WinReg;sterClass (hab, szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_OESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL, O. &hwndCl i ent) ;

while (WinuetMsg (hab, &qmsg. NULL, O. D»
WinDispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)_:
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static BYTE abCat [] ... (

OxOl. OxFS, OxIF. Ox80. OxOl, Dx04. Ox20, Ox80.
OxOO. Ox8F. OxFl, OxOO. OxOO. Ox48. Ox12. OxOO.
OxOO, Ox28. Ox14. OxOO. OxOO. OxlA, Ox58. OxOO.
DxOD. OxD8. OxIO. OxOD. OxOO. OxFC. Ox3F. OxOO.
OxOO. Ox09. Ox90, OxOO. OxOC, OxFC. Ox3F. OxOO.
OxOO. OxOS. OxIO. OxOO. OxOO. OxOl, OxEO. OxOO,
OxOD. Ox08. OxIO. OxOO, DxOO. OxOS, OxlO. oxeo.
OxOO. Ox08, OxIO. Ox20. OxOO, OxIO. Ox08. DxIO.
OxOO, OxIO. Ox08, Ox08. oxoa. OxIO, OxD8. Ox04,
OxOO, Ox20, Ox04. Ox04, OxOO. Ox20, Ox04. Ox04.
Dxoa. Ox20, Ox04, Ox04. OxOO, Ox40, Ox02, Ox04.
OxOO, Ox40, Ox02, Ox04. OxOO. Ox40. Ox02, Ox04.
OxOO, oxeo, Ox03, Ox04. OxOO. Ox9C, Ox39. Ox08,
OxOO, OxA2. Ox45. Ox08, OxOO. OxA2, Ox45. OxIO,
OxOO. OxA2. Ox45, OxEO, OxOD, OxA2. Ox45. OxOO.
OxOO, OxA2. Ox45. OxOO, OxOO. OxFF. OxFF. OxOO }

static SHORT cxClient. cyClient ;
HPS hps :
POINTL ptl ;

SIZEL si71 ;

(continued)

232 SECTION TWO: PAINTING THE CLIENT WINDOW

Figure 5-22. The IMAGECAT.C File. continued

swi tch (msg)
{

ease WM_SIZE:
cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NUll)
GpiErase (hps) ;

ptl.x - cxClient / 2 - 16
ptl.y - cyClient I 2 + 16
GpiMove (hps, &ptl)

sizl.ex - 32 ;
s i zl . cy - 32 ;
Gpilmage (hps, Ol, &sizl. (lONG) sizeof abCat. abCat)

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd. msg, mp1, mp2)

The IMAGECAT.DEF File

; IMAGECAT.DEF module definition file

NAME

OEseR I PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

IMAGECAT WINDOWAPI

'Cat Drawn Using Gpilmage (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 5-22. The IMAGECAT program.

The cat is 32 pixels high and 32 pixels wide. It will look a little different on
various output devices. Figure 5-23 on the following page shows what it
looks like on an EGA.

CHAPTER FIVE: THE FIVE GPI PRIMITIVES 233

== IMAGECAT EXE HI!]

Figure 5-23. The IMAGECAT display.

The Gpilmage function is easy to use but extremely limited. For example,
the function cannot alter the size of the displayed image to accommodate
various output devices. If Gpilmage were the only way to display bitmapped
data in GPI, it would be important despite its limitations.

Fortunately, Gpilmage pales in comparison to the WinDrawBitMap and
GpiBitBlt functions, which are the subject of the next chapter. Among other
things, we'll use these functions to stretch that little cat to fill the entire
client window.

234 SECTION TWO: PAINTING THE CLIENT WINDOW

CHAPTER SIX

BITMAPS
AND BITBLTS

GPI is fundamentally a vector graphics drawing system and can display
graphics on both vector and raster output devices. For output to a vector
device, the GPI drawing commands are translated into commands the output
device understands. For output to a raster device, which displays an image
composed of color dots called pixels or pels, the device driver must trans
late the GPI drawing commands into displayable pixels. If GPI were based
on a raster model, then output to a vector device would be nearly
impossible.

But GPI is not limited to vector graphics. A Presentation Manager program
can also draw pixels on a raster output device. Of course, drawing pixels
one at a time can be very slow: The IBM Video Graphics Array (VGA)
adapter running in its 640-by-480 graphics mode displays 307,200 pixels on
the screen. A laser printer with 300-dots-per-inch resolution requires about 8
million pixels to define an 81f2-by-ll-inch page.

Instead, a Presentation Manager program that draws pixels usually works
with "bitmaps." A bitmap is an array of data organized into rows and col
umns in which the bits correspond to pixels on the raster output device.

A bitmap can represent either a monochrome or a color image:

• In a monochrome bitmap, each bit corresponds to one pixel. When a
monochrome bitmap is displayed, a 0 bit usually corresponds to the
background color and a 1 bit is the foreground color.

• In a color bitmap, each pixel requires multiple bits to represent color.

This chapter is generally restricted to monochrome bitmaps but will touch
on color when necessary.

235

Bitmaps are most suitable for small objects that must be frequently
redrawn. For example, the mouse pointer you see on the Presentation Man
ager screen is stored as two bitmaps. Each time you move the mouse, the
Presentation Manager must redraw the two bitmaps on the display.

Bitmaps are highly device dependent. Because a bitmap represents an ob
ject as a series of pixels, it is usually designed for a particular device. A bit
map designed for the 640-by-350 resolution of the IBM Enhanced Graphics
Adapter (EGA) will be distorted when displayed on a VGA. (You can com
pensate for this by stretching the bitmap, but this introduces other
distortions.)

Moreover, not all output devices are raster devices. Although every
graphics output device attached to the Presentation Manager can handle
vector graphics, only a raster output device can handle bitmaps. In short,
don't expect to display a bitmap on a plotter. Even if the device driver could
translate the bitmap into approximate plotter commands, the plotter would
take a very long time to draw it.

The Bit-Block Transfer
You can think of the entire video display as one big bitmap. The pixels you
see on the screen are represented by bits stored in memory on the video dis
play adapter board. Any rectangular area of the video display is also a bit
map. Each bitmap has a size - the number of rows and columns of pixels it
contains.

Let's begin our journey into the world of bitmaps by copying a bitmap from
one area of the video display to another. This is a job for the powerful
GpiBitBlt function.

Bitblt (pronounced "bit blit") stands for "bit-block transfer." The term
was first used in graphics in connection with the SmallTalk system de
signed at Xerox Palo Alto Research Center (PARe). In SmallTalk, all
graphics output operations are based around the bitblt. Among program
mers, "bIt" is often used as a verb, as in: "BIt the bitmap on the screen."

The GpiBitBlt function is a pixel-mover, or (more vividly) a raster-blaster.
As you'll see, the term "transfer" doesn't entirely do justice to the
GpiBitBlt function. The function actually performs a bitwise operation on
pixels and can result in some interesting effects.

236 SECTION TWO: PAINTING THE CLIENT WINDOW

Simple Use of GpiBitBlt
The MINMAXI program shown in Figure 6-1 uses the GpiBitBlt function to
copy the program's minimize-maximize menu (located in the upper-right
corner of the frame window) to its client window.

The MINMAX1 File

fl- - - - - - - - - - - - - - - - - - -
MINMAXI make file
11- - - - - - - - - - - - - - - - - --

minmaxl.obj : minmaxl.c
c1 -c -G2sw -W3 minmaxl.c

minmaxl.exe : minmaxl.obj minmaxl.def
link minmaxl. /align:16. NUL. os2. minmaxl

The MINMAX1.C File

/*---
MINMAXl.C -- Bitblt of Minimize-Maximize Menu

---*/

f!define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szC1ientClass [] - "MinMaxl" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAS hab ;
HMQ hmq :

FCF_SIZESORDER
FCF_SHElLPOSITION

HWND hwndFrame, hwndClient
QMSG qrnsg :

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0) :

FCF_SY$MENU :
FCF_MINMAX
FCF_TASKLIST :

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 237

Figure 6-1. The MINMAXl.C File. continued

hwndFrame - WinCreateStdWindow (HWND_DlSKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULL) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static LONG cxMinMax. cyMinMax
static SHORT cxClient. cyClient
HPS hps ;
POINTL aptl[3] :
LONG 1 Row. 1 Co 1

switch (msg)

{

case WM_CREATE:
cxMinMax - WinOuerySysValue (HWND_OESKTOP. SV_CXMINMAXBUTTON)
cyMinMax - WinOuerySysValue (HWND_DESKTOP, SV_CYMINMAXBUTTON)
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NULL)

GpiErase (hps) ;

238 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-1. The MINMAXl.C File. continued

for (lRow - 0 ; lRow <- cyClient I cyMinMax : 1 Row++)
for (lCol - 0 ; lCo1 <- cxC1ient 1 cxMinMax ; lC01++)

{

aptl[O].x - leol * cxMinMax
aptl[O].y - 1 Row * cyMinMax

aptl[l].x - aptl[O].x + cxMinMax
aptl[l].y - aptl[O].y + cyMinMax

aptl[2].x - cxClient - cxMinMax ;
aptl[2].y - cyClient

II target
/I lower 1 eft

II target
II upper right

II source
/I lower 1 eft

GpiBitBlt (hps. hps. 3L. aptl. ROP_SRCCOPY, BBO_AND)
}

WinEndPaint (hps) ;
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The MINMAX1.DEF File

. _ -_ ... --_ ... -_ -- --- --- ---_ ... __ ... ------.
: MINMAX1.DEF module definition file

NAME MINMAXI WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Bitblt of Min-Max Menu (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 6-1. The MINMAXl program.

But why stop at one bitblt? In fact, MINMAXI fills its client window with
multiple copies of the minimize-maximize window, as shown in Figure 6-2
on the following page. GpiBitBlt transfers pixels from a rectangular area on
one presentation space (called the "source") to a rectangular area on an
other presentation space (the "target," or "destination"). In MINMAXl,
the two presentation spaces are the same: the cached micro-PS associated
with the program's client window. The source rectangle is the minimize
maximize menu; the destination is various rectangles on the client window.

CHAPTER SIX: BITMAPS AND BITBLTS 239

...... ~
~ ~ ~ ~ ~ ~ >
~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ >

~ ~ ~

> ~

~ , ~ >
~ , ~ > >

i ,
~ > ~ ,

~
,~ , , ,

, ,

, >
,> ~ , > , ,

, , , , ,>
, , , ,

Figure 6-2. The MINMAXI display.

MINMAXl's minimize-maximize menu is outside the program's client
window, so you may be surprised that GpiBitBlt can access that area of the
display. When you're using a cached micro-PS, GPI only prohibits writing
outside the window. GPI does indeed allow GpiBitBlt to access an area out
side the window's limits. However, if MINMAXI tries to repaint its client
window when part of the minimize-maximize menu is off the screen or par
tially obscured, the image within the client window will reflect that by dis
playing random data. GpiBitBlt is reading from the screen - if the image
isn't on the screen, the function can't read it.

MINMAXI calls the GpiBitBlt function during the WM_PAINT message
based on informat~on obtained during WM_CREATE and WM_SIZE. Dur
ing the WM_CREATE message, MINMAXI calls WinQuerySysValue to get
the size of the minimize-maximize menu. It saves the dimensions in
cxMinMax and cyMinMax. During the WM_SIZE message, MINMAXI saves
the size of the dient window in cxClient and cyClient, as usual. MINMAXI
uses these variables to determine the number of times it calls GpiBitBlt dur
ing the WM_PAINT message.

As used in MINMAXl, the GpiBitBlt function requires an array of three
POINTL structures. This array is defined in ClientWndProc like this:

POINTL aptl [3] ;

240 SECTION TWO: PAINTING THE CLIENT WINDOW

During the WM_PAINT message, MINMAXI sets the three POINTL struc
tures with the coordinates (relative to the lower-left corner of the client win
dow) of both the source and destination rectangles, as shown in the
following table:

POINTL
Structure

aptl[O]
aptl[l]
aptl[2]

Meaning

Target (or destination) of lower-left corner of bitmap
Target (or destination) of upper-right corner of bitmap
Lower-left corner of source bitmap

For each copy of the minimize-maximize menu that MINMAXI draws,
aptlf2} is set to the lower-left corner of the source rectangle (that is, the
lower-left corner of the minimize-maximize menu) relative to the lower-left
corner of the client window:

aptl[2].x = cxClient - cxMinMax :
aptl[2].y - cyClient

For the first GpiBitBlt call during the WM_PAINT message, MINMAXI sets
aptlfO} to the point (0,0), which is the lower-left corner of the client window.
The aptl[l} structure indicates the width and height of the destination rect
angle relative to aptlfO}. This is shown in Figure 6-3.

=1 MinMax

1
aptl[2] = (cxClient - cxMinMax, cyClient)

~ 1 fr 1-- aptl[1] = (cxMinMax, cyMinMax)

L aptl[O] = (0,0)

Figure 6-3. The aptl array coordinates for the first GpiBitBlt call in MINMAX1.

CHAPTER SIX: BITMAPS AND BITBLTS 241

For the subsequent GpiBitBlt calls in MINMAXl, aptl[O] and aptl[J] are the
lower-left corner and upper-right corner of the target rectangle. This may be
a little confusing: aptl[J] is documented as the upper-right corner of the des
tination rectangle, but in MINMAXI it really indicates the size of the source
bitmap. (We'll see why it's specified this way in this next section.)

MINMAXI passes the aptl array to GpiBitBlt:

GpiBitBlt (hps. hps. 3L. aptl. ROP_SRCCOPY. BBO_AND)

The general syntax of GpiBitBlt is as follows:

Gpi Bi tBl t (hpsDest. hpsSource. 1 NumPoi nts. aptl. 1 RasterOp.
lCompressionType) ;

In the case of MINMAXl, the source presentation space (hpsSource) and the
destination presentation space (hpsDest) are the same. The INumPoints
parameter indicates the number of POINTL structures passed as the fourth
parameter, in this case three. I'll discuss the last two parameters later in
this chapter.

Stretching the Bitmap
The third parameter to GpiBitBlt, INumPoints, indicates the number of
POINTL structures in the array passed as the fourth parameter.

• If you want the copy of the bitmap to be the same size and orientation as
the source bitmap (as is the case in MINMAXl), set the INumPoints
parameter to 3L.

• If you want to change the size of the bitmap as it is copied, you can use a
fourth POINTL structure in the array and specify INumPoint as 4L. This
is illustrated in the MINMAX2 program shown in Figure 6-4.

The MINMAX2 File

/I- - - - - - - - - - - - - - - - - --
/1 MINMAX2 make file
11- - - - - - - - - - - - - - - - - - -

minmax2.obj : minmax2.c
cl -c -G2sw -W3 minmax2.c

minmax2.exe : minmax2.obj minmax2.def
link minmax2. /align:16. NUL. os2. minmax2

242 SECTION TWO: PAINTING THE CLIENT WINDOW

The MINMAX2.C File

1* -
MINMAX2.C -- Bitblt of Minimize-Maximize Menu

---*/

#define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

1nt main (void)
{

static CHAR szClientClass [] - "M1nMax2" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg :

hab = WinInitialize (0)
hmq - WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_ TASKLI ST :

WinRegisterClass (hab, szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags, szClientClass. NULL.
Ol, NULL, 0, &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndframe)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) :
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl. MPARAM mp2)
{

static LONG cxMinMax. cyMinMax
static SHORT cxClient, cyClient

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 243

Figure 6-4. The MINMAX2.C File. continued

HPS
POINTL

hps ;
aptl[4] ;

sw; tch (msg)

case WM_CREATE:
cxMinMax = WinQuerySysValue (HWND_DESKTOP, SV_CXMINMAXBUTTON)
cyMinMax = WinOuerySysValue (HWND_DESKTOP. SV_CYMINMAXBUTTON)
return 0

case WM_SIZE:
cxClient = SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps) ;

aptl[O].x = 0 II target lower left
aptl[O].y = 0

aptl[l].x = cxClient II target upper right
aptl[l].y - cyClient

aptl[2].x = cxClient - cxMinMax II source lower left
aptl[2].y = cyClient

aptl [3].x = cxClient II source upper right
aptl[3].y = cyClient + cyMinMax ;

GpiBitBlt (hps, hps, 4L, aptl, ROP_SRCCOPY, BBO_AND)

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd, msg, mpl, mp2)

244 SECTION TWO: PAINTING THE CLIENT WINDOW

The MINMAX2.DEF File

; MINMAX2.DEF module definition file

NAME MINMAX2 WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Bitblt of Min-Max Menu (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 6-4. The MINMAX2 program.

MINMAX2 calls GpiBitBlt only once during the WM_PAINT message, but it
does so in style: The minimize-maximize menu is stretched to fill the entire
client window, as shown in Figure 6-5.

Figure 6-5. The MINMAX2 display.

When you use an array of four POINTL structures in the GpiBitBlt function,
they are interpreted as shown on the next page.

CHAPTER SIX: BITMAPS~ AND BITBLTS 245

POINTL
Structure

aptl[O]
aptl[l]
aptl[2]
aptl[3]

Meaning

Target (or destination) of lower-left corner of bitmap
Target (or destination) of upper-right corner of bitmap
Lower-left corner of source bitmap
Upper-right corner of source bitmap

In MINMAX2, the destination points are the lower-left and upper-right cor
ners of the client window. The two source points are the lower-left and the
upper-right corners of the minimize-maximize window. This is shown in
Figure 6-6.

aptl[3] = (cxClient, cyClient + cyMinMax)

~

1--=---J...� ___ Mi_nMax __ ----L�_~_'_I___t~ .- apt111] =

t (cxMinMax,
I cyMinMax)

aptl[2] = (cxClient - cxMinMax, cyClient)

L aptl[O] = (0,0)

Figure 6-6. The aptl array coordinates for the GpiBitBlt call in MINMAX2.

Now you can see that aptl[l] really indicates the upper-right corner of the
target rectangle rather than the size of the bitmap.

Flipping the Bitmap
The aptl[O] and aptl[l] elements of the POINTL array specify the points of
the destination rectangle that correspond to the lower-left corner and lower
right corner of the source bitmap. The MINMAX2 program in Figure 6-4
sets aptl[O] and aptl[l] as shown on the next page.

246 SECTION TWO: PAINTING THE CLIENT WINDOW

aptl[O].x - 0
aptl.[O].y - 0

aptl[l].x - cxClient
aptl[l].y - cyClient

But these two points do not have to be the lower-left corner and lower-right
corner of the destination rectangle. You can use any two opposite points for
a variety of effects. For example, if yo~' d like to turn the image upside
down, use

aptl[O].x-O;
aptl[O].y - cyClient

aptl[l].x - cxClient
apt 1 [1] . y - 0 ;

The lower-left corner of the source bitmap is copied to aptlfO], which is now
the upper-left corner of the client window. The upper-right corner of the
source bitmap is copied to aptl[l], the lower-right corner of the client
window.

To display the minimize-maximize menu flipped around the vertical
axis, use

aptl[O].x - xClient
aptl[O].y = 0

aptl[l].x - 0
aptl[l].y - yClient

To display the minimize-maximize menu flipped on both axes, use

aptl[O].x - cxClient
aptl[O).y - cyClient

aptl[l].x = 0

aptl [1].y - 0

When you flip a bitmap around the horizontal or vertical axis, you must
specify four points in the aptl array, even if the bitmap is not being altered
in size. The rule is simple: Use three points in the aptl array when you do
not wish to change the size or orientation of the source bitmap. Use four
points otherwise.

CHAPTER SIX: BITMAPS AND BITBLTS 247

Different Presentation Spaces
The preceding examples use the same presentation space for both the source
and the target. You can modify the MINMAX2.C source code file to use dif
ferent presentation spaces. The destination presentation space is still the
cached micro-PS for the client window, but the source presentation space
can be the cached micro-PS for the minimize-maximize menu.

To use this approach, you need another variable of type HPS to store the
source presentation space handle:

HPS hpsMinMax;

During the WM_PAINT message, you can obtain hpsMinMax like this:

hpsMinMax = WinGetPS (
WinWindowFromID

WinOueryWindow (hwnd. OW_PARENT. FALSE).
FID_MINMAX) ;

The WinQueryWindow function obtains the handle of the frame window
(which is the parent of the client window), WinWindowFromID returns the
handle to the minimize-maximize menu window, and WinGetPS obtains a
cached micro-PS for this window.

NOTE: At first, it seems rude to get a presentation space handle for a
window that does not belong to your program. But the window really is
part of your program. You created the minimize-maximize window by
calling WinCreateStdWindow. Although the window procedure for
this window is within the Presentation Manager, the window belongs
to your program. You can do what you want with it.

The aptl[O] and aptl[l] structures are set to the same values shown in
MINMAX2.C. But the coordinates of the source bitmap are now relative to
the lower-left corner of the source presentation space:

aptl[2].x - 0
aptl[2].y = 0

aptl[3].x - cxMinMax
aptl[3].y = cyMinMax

The GpiBitBlt call specifies hpsMinMax as the source presentation space:

GpiBitBlt (hps. hpsMinMax. 4L. aptl. ROP-SRCCOPY. BBO_AND) ;

248 SECTION TWO: PAINTING THE CLIENT WINDOW

Remember to release the presentation space handle of the minimize
maximize menu when you're finished with it:

WinReleasePS (hpsMinMax)

The Raster Operations
In MINMAXI and MINMAX2, the source bitmap is simply copied from
one area of the screen to another. This is the result of specifying
ROP _SRCCOPY as the fifth parameter - the raster operation - to
GpiBitBlt. ROP _SRCCOPY is only 1 of 256 raster operations you can use
in GpiBitBlt. Let's experiment with a few others in MINMAX2 and then in
vestigate the raster operations more methodically.

Try replacing ROP _SRCCOPY with ROP _NOTSRCCOPY. As the name sug
gests, this raster operation inverts the colors of the bitmap as it is copied:
On the client window, the black area of the minimize-maximize menu
becomes white, and white becomes black. Try ROP _ZERO: The entire client
window is painted black. ROP _ ONE causes the entire client window to be
painted white.

Now try replacing the GpiBitBlt call in MINMAX2 with the following two
statements:

GpiSetPattern (hps. PATSYM_HALFTONE) ;
GpiBitBlt (hps. hps, 4L. aptl. ROP_MERGECOPY. BBO_AND) ;

In this case, the black area of the minimize-maximize menu remains black
when copied to the client window, but the white area is displayed as the
PATSYM_HALFTONE pattern. Here's another one:

GpiSetPattern (hps. PATSYM_HORIZ) ;
GpiBitBlt (hps. hps. 4L. aptl. ROP_PATCOPY. BBO_AND) :

This simply fills the entire client window with the PATSYM_HORIZ pattern.
Now try adding two more statements so that you call GpiSetPattern and
GpiBitBlt twice:

GpiSetPattern (hps. PATSYM_HORIZ)
GpiBitBlt (hps. hps. 4L. aptl. ROP_PATCOPY. BBO_AND) ;
GpiSetPattern (hps. PATSYM_VERT) ;
GpiBitBlt (hps. hps, 4L. aptl. ROP_PATPAINT. BBO-AND) ;

CHAPTER SIX: BITMAPS AND BITBLTS 249

This one (shown in Figure 6-7) is strange: The black area of the minimize
maximize menu is now copied as white, and the white area is a pattern of
black dots which (if you think about it) appears to be an "intersection" of
the horizontal and vertical line patterns.

== MINMAX2 EXE If)I!1

Figure 6-7. The MINMAX2 display with a different raster operation.

Just what on earth is going on here?

As I mentioned earlier, the GpiBitBlt function is not simply a bit-transfer
function. It actually performs a bitwise operation between the following
three bitmaps:

• Source: The source bitmap, expanded or compressed (if necessary) to be
die same size as the destination rectangle.

• Destination: The destination rectangle before the GpiBitBlt call.

• Pattern: The current pattern of the destination presentation space, re
peated horizontally and vertically to be the same size as the destination
rectangle.

The result of this bitwise operation is copied to the destination rectangle.

The raster operations are conceptually similar to the mix modes we encoun
tered in Chapter 5. The mix modes govern the way in which a graphics ob
ject (such as a line) is combined with a destination. You'll recall that there
were 16 foreground mix modes - all the unique results obtained when Os
and 1 s in the object are combined with Os and 1 s in the destination.

250 SECTION TWO: PAINTING THE CLIENT WINDOW

The raster operations used in GpiBitBlt involve a combination of three ob
jects, and this results in 256 raster operations. There are 256 ways to com
bine a source bitmap, a destination bitmap, and a pattern. Fifteen of these
raster operations are common enough to be given names (some of them
rather obscure) in PMGPI.H. The raster operation identifiers all begin with
the prefix ROP. If you examine how they're defined in PMGPI.H, you'll see
that each is defined as a number (which also seems rather obscure):

#define ROP_NOTSRCCOPY OxOO33L
#define ROP_SRCCOPY OxOOCCL
#define ROP_PATCOPY OxOOFOL

Those numbers have real meaning. They define how the source, destination,
and pattern bitmaps are combined.

Figure 6-8 shows the 15 raster operations that have names.

Pattern: 1 1 1 1 0 0 0 0
Source: 1 1 0 0 1 1 0 0
Destination: 1 0 1 0 1 0 1 0 Operation Value Identifier

Result: 0·0 0 0 0 0 0 0 0 OxOO ROP_ZERO
0 0 0 1 0 0 0 -(S : D) Ox 11 ROP _NOTSRCERASE
0 0 1 1 0 0 1 1 -S Ox33 ROP _NOTSRCCOPY
0 1 0 0 0 0 0 S&-D Ox44 ROP _SRCERASE
0 0 0 1 0 1 -D Ox55 ROP _DSTINVERT
0 1 0 1 0 1 0 PAD Ox5A ROP _PATINVERT
0 1 1 0 0 1 1 0 SAD Ox66 ROP _SRCINVERT

0 0 0 1 0 0 0 S&D Ox88 ROP_SRCAND
0 1 1 1 0 1 1 -S: D OxBB ROP _MERGEPAINT

0 0 0 0 0 0 P&S OxCO ROP _MERGECOPY
0 0 1 1 0 0 S OxCC ROP _SRCCOPY

0 1 1 0 S: D OxEE ROP _SRCPAINT
0 0 0 0 P OxFO ROP _PATCOPY

0 P: -S: D OxFB ROP _PATPAINT
1 1 OxFF ROP_ONE

Figure 6·8. The 15 raster operations that have names defined in PMGPI.H.

This is an extremely important table, so let's spend a little time exam
ining it.

The numeric values of the ROP identifiers are listed in the second-to-Iast
column. These numbers are the hexadecimal representations of the
"result" bits shown in the first eight columns. These bits are the result of a
bitwise operation between the pattern, source, and destination bits shown at

CHAPTER SIX: BITMAPS AND BITBLTS 251

the top. The Operation column uses C syntax to show how the pattern,
source, and destination are combined.

To begin understanding this table, it's easiest to assume that you're dealing
with a monochrome system in which 0 is black and 1 is white. The result of
the ROP _ZERO operation is all zeros regardless of the source, destination,
and pattern, so the destination will be colored black. Similarly, ROP_ONE

always causes the destination to be colored white.

Let's take another look at these four lines of code shown earlier:

GpiSetPattern (hps. PATSYM_HORIZ) ;
GpiBitBlt (hps. hps, 4L. aptl. ROP_PATCOPY, SBO_AND) :
GpiSetPattern (hps. PATSYM_VERT) ;
GpiBitBlt (hps, hps. 4L. aptl. ROP_PATPAINT, BBO-AND) ;

This code was responsible for the display in Figure 6-7. As you can see from
the table in Figure 6-8, ROP _PATCOPY causes the result bits to be the same
as the pattern bits. The source and destination bitmaps are essentially ig
nored. In other words, ROP _PATCOPY simply copies the current pattern to
the destination rectangle.

The ROP _PATPAINT raster operation involves a more complex operation.
The result is equal to

P : -s : 0

When the source bitmap is black (a 0 bit), the result is always white (a 1 bit).
Figure 6-7 verifies this. When the source is white (1), the result is also white
if either the pattern or the destination is white. In other words, the result
will be black only if the source is white and both the pattern and the desti
nation are black. Again, Figure 6-7 verifies this. Black dots appeared in the
. white area of the source bitmap where the lines of the pattern that were
already on the destination intersected the lines of the current pattern.

When a raster operation does not require a source bitmap, you can set the
second parameter of GpiBitBlt (the handle to the source presentation space)
to NULL and the third parameter (the number of POINTL structures in the
array) to 2L. This will speed up the drawing. The preceding example can
also be written as

GpiSetPattern (hps, PATSYM_HORIZ)
GpiBitBlt (hps. NULL, 2L, aptl, ROP_PATCOPY. SS~_AND)

GpiSetPattern (hps. PATSYM_VERT) ;
GpiBitBlt (hps, hps, 4L, aptl. ROP_PATPAINT, BSO_AND)

252 SECTION TWO: PAINTING THE CLIENT WINDOW

You don't need to use one of the predefined identifiers for the raster opera
tion parameter to GpiBitBlt. You can use any number between 0 and 255.
The hard part is determining what number to use for a particular effect.
Here are some examples:

Suppose you want to copy the white area of a source bitmap as white, but
you want to display the PATSYM_HALFTONE pattern where the bitmap is
black. You set up a little table similar to the one shown at the top of Figure
6-8 and work out the bits:

Pattern:
Source:
Destination:

Result:

1 1 1 1 0 0 0 0
1 1 001 1 0 0
1010101 0

o 0

Value

OxFC

When the source is I (white), the result is also 1. When the source is 0
(black), the result is the pattern. Thus the raster operation is OxFC. Here's
the code:

GpiSetPattern (hps. PATSYM_HALFTONE)
GpiBitBlt (hps. hps. 4L. aptl. OxFC. BBO_AND)

Simple, right?

Let's try another. Where the source is white, you want the result to be col
ored with horizontal lines, and where the source is black, you want vertical
lines. First, color the destination area using PATSYM_HORIZ and then set
the pattern to PATSYM_ VERT:

GpiSetPattern (hps. PATSYM_HORIZ) ;
GpiBitBlt (hps. NULL. 2L. aptl. ROP_PATCOPY. BBO_AND)
GpiSetPattern (hps. PATSYM_VERT) ;

Now all you need is a raster operation that does the following: When the
source is 1 (white), the result is the destination; when the source is 0 (black),
the result is the pattern. Here's the table:

Pattern:
Source:
Destination:

Result:

1 1 1 1 0 0 0 0
1 1 001 1 0 0
1010101 0

o 000

Value

OxB8

CHAPTER SIX: BITMAPS AND BITBLTS 253

And here's the GpiBitBlt function that uses this raster operation:

GpiBitBlt (hps. hps. 4L. aptl. OxB8L. BBO_AND) ;

Raster Operations and Color
As I discussed in Chapter 5, a color display uses multiple bits for each pixel.
For example, the EGA and VGA in high-resolution modes use 4 bits per
pixel and can display 16 colors simultaneously. Although both the EGA and
VGA can map these 4 bits to anyone of 64 possible colors on the EGA (or
262,144 possible colors on the VGA), the mapping is usually defined so that
the 4 bits represent an IRGB (lntensity-Red-Green-Blue) color scheme.

Like the mix mode in Chapter 5, the GpiBitBlt function performs the bitwise
operation between each of these color bits separately. For example, if the
destination is CLR_RED (intensity and red bits set to 1) and the source is
CLR_PALEBLUE (blue bit set to 1), then an ROP _SRCPAINT raster opera
tion will color the destination as CLR_PINK (intensity, red, and blue
bits set to 1).

If you are using a color display, and you have used the Presentation Man
ager Control Panel to set your window background and window text colors
to something other than white and black, the preceding descriptions of
some raster operations probably did not agree with your observations. In
stead, you saw results that included the CLR_BACKGROUND and
CLR_NEUTRAL colors.

Here's why: When the GpiBitBlt function performs a bitwise operation on a
source, destination, and pattern, all three bitmaps must have the same color
format. GpiBitBlt performs the operation on the color bits separately.

Patterns are stored as monochrome bitmaps. They have 1 bit per pixel. Dur
ing GpiBitBlt the pattern must be converted to a color bitmap. That is, on the
EGA and VGA, each bit of the pattern must be converted to 4 bits so that
they can be combined with the source and destination. GPI does this by con
verting the 1 bits to the 4 IRGB bits that describe the current presentation
space foreground color (the CLR_NEUTRAL color by default) and the 0 bits
to the 4 IRGB bits for the current presentation space background color
(CLR_BACKGROUND by default).

I guarantee this will be confusing at first. By default, CLR_NEUTRAL is
black and CLR_BACKGROUND is white. This means that 1 bits in the pat
tern become black and 0 bits become white, which is exactly the opposite of
the interpretation of bits in a monochrome system.

254 SECTION TWO: PAINTING THE CLIENT WINDOW

For example, the PATSYM_ VERT pattern is mostly 0 bits except for the ver
tical lines, which are 1 bits. In a monochrome system, for example,
PATSYM_ VERT would have white lines on a black background. But when
the pattern is converted to a color bitmap (as it must be for GPI to display it
on a color screen), the pattern appears as CLR_NEUTRAL lines on a
CLR_BACKGROUND background, or black on white by default.

Bitblt Compression
I haven't yet discussed the last parameter to GpiBitBlt. This parameter
governs how a source bitmap is altered when it is compressed to a smaller
destination. Three options are available: BBO_OR, BBO_AND, and
BBO_IGNORE.

If you considered the problem of stretching or compressing a bitmap, you
probably assumed that GPI simply duplicates rows and columns of pixels to
stretch a bitmap. This is correct. You may also have assumed that GPI

simply eliminates rows and columns of pixels to compress a bitmap. But
that's only one of the three options-the one you get when you use
BBO_IGNORE, which is often not satisfactory.

For example, suppose you have a source bitmap that has a white background
and a I-pixel-wide outline of a square in black. When GPI compresses the
bitmap, the rows and columns of the bitmap containing the black lines
could be the rows and columns that GPI eliminates. The result will be
entirely white.

When you have a bitmap with a black image on a white background, use
BBO_AND. GPI will not eliminate whole rows and columns but instead will
combine adjacent rows and columns of the bitmap with a bitwise AND

operation. A result pixel will be white only if both adjacent pixels are also
white. With a white image on a black background, use BBO_OR. Adjacent
rows and columns are combined with a bitwise OR operation so that a result
will be black only if adjacent pixels are black.

BBO_IGNORE is for use with color bitmaps. For color bitmaps, BBO_OR

and BBO_AND can result in the creation of colors not in the original bit
map, even when you're using ROP _SRCCOPY.

Bitmap Handles and Bitmap Drawing
We've been bIting bitmaps around the video display but we haven't really
gotten our hands on a bitmap, and it's not quite clear what we could do with
one anyway.

CHAPTER SIX: BITMAPS AND BITBLTS 255

Let's temporarily abandon the GpiBitBlt function and approach bitmaps
from another direction. We'll first try getting a handle to a bitmap and
drawing the bitmap on the video display. After we nail down a couple of ad
ditional concepts, we can again bring GpiBitBlt into our collection of tools.

The System Bitmaps
If you've been exploring the Presentation Manager programming utilities,
you may have discovered that ICON EDIT can create a file containing a
monochrome bitmap. In ICONEDIT you color in the black and white pixels
with a mouse and then save the bitmap as a file with the extension .BMP. In
Chapter 12, you'll see how you can use that bitmap as a "resource" in a
program, load it into memory, and display it on the screen.

But you needn't jump ahead that far yet. The Presentation Manager and the
File System program themselves use bitmaps occasionally. These are called
"system bitmaps." These bitmaps are stored as resources in DISPLAY.DLL,

the device driver for the video display. As I mentioned earlier, bitmaps are
very device dependent and must often be different sizes for different video
display drivers. Accordingly, the bitmaps are stored in the video display
device driver.

In preparation for getting your hands on a bitmap, you must define a vari
able to store a bitmap handle. A bitmap handle is of type HBITMAP:

HBITMAP hbm ;

An HBITMAP variable begins with hbm by convention. Now you can call
WinGetSysBitmap:

hbm = WinGetSysBitmap (HWND_DESKTOP, idSysBitmap) ;

This function returns a handle to a copy of a system bitmap. The idSys
Bitmap parameter is one of the identifiers defined in PMWIN.H that begins
with SBMP.

When you've finished using the bitmap, you should delete it:

GpiDeleteBitmap (hbm) ;

It's okay to delete a bitmap you obtain from WinGetSysBitmap. You're not
deleting the system bitmap itself, only the copy that was made for you.

256 SECTION TWO: PAINTING THE CLIENT WINDOW

Drawing a Bitmap
If you look over the identifiers beginning with SBMP, you'll find
SBMP _MINBUTTON and SBMP _MAXBUTTON. Of course! The Presenta
tion Manager has to draw the minimize-maximize menu somehow. What it
uses are these system bitmaps.

This can only mean that you're not yet done with the MINMAX series of
programs. It's time for MINMAX3, which is shown in Figure 6-9.

The MINMAX3 File

Jf- - - - - - - - - - - - - - - - - - -
MINMAX3 make file
1;- - ------------ -----

minmax3.obj : minmax3.c
cl -c -G2sw -W3 minmax3.c

minmax3.exe : minmax3.obj minmax3.def
link minmax3. lalign:16. NUL. os2. minmax3

The MINMAX3.C File

1* -

MINMAX3.C -- Minimize-Maximize Bitmap
- -*1

#define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "MinMax3" ;
static ULONG flFrameFlags = FCF_TITLEBAR

HAB hab ;
HMO hrnq :

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
OMSG qrnsg ;

hab = Winlnitialize (0)
hmq = WinCreateMsgQueue (hab. 0)

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST :

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 257

Figure 6-9. The MINMAX3.C File. continued

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL,
Ol, NUll. O. &hwndClient) ;

while (WinGetMsg (hab. &qmsg, NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static SHORT cxClient. cyClient
HBITMAP hbmMin. hbmMax
HPS hps :
POINTL aptl [2] ;

switch (msg)

case WM_SIZE:
cxClient = SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL) :

hbmMin = WinGetSysBitmap (HWND_DESKTOP, SBMP_MINBUTTON)
hbmMax = WinGetSysBitmap (HWND_DESKTOP. SBMP_MAXBUTTON)

aptl[O].x -= 0 : II Target lower 1 eft
aptl[O].y = 0 ;
aptl[l].x - cxClient I 2 II Target upper right
aptl[l].y = cyClient

WinDrawBitmap (hps, hbmMin, NULL. aptl.
CLR-NEUTRAL. CLR-BACKGROUND, DBM_STRETCH)

aptl[O].x = cxClient I 2 ;
aptl[l].x = cxClient

II Target 1 eft
II Target right

258 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-9. The MINMAX3.C File. continued

WinDrawBitmap (hps. hbmMax. NULL. aptl.
CLR-NEUTRAL. ClR-BACKGROUND. DBM_STRETCH)

}

GpiDeleteBitmap (hbmMin)
GpiDeleteBitmap (hbmMax)

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd, msg. mp!. mp2)
}

The MINMAX3.DEF File

._--------------------------------_ ,
: MINMAX3.DEF module definition file

NAME MINMAX3 WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSlZE
EXPORTS

'Min-Max Bitmap (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 6-9. The MINMAX3 program.

~ MINMAX3 EXE It1I!1

Figure 6-10. The MINMAX3 display.

CHAPTER SIX: BITMAPS AND BITBLTS 259

While processing. the WM_PAINT message, MINMAX3 obtains handles to
the minimize and maximize bitmaps by calling WinGetSysBitmap twice. It
stores the· handles in hbmMin and hbmMax. The program then draws the
two bitmaps on its client window by calling WinDrawBitmap and deletes the
bitmaps using GpiDeleteBitmap. The MINMAX3 display is shown in
Figure 6-10.

The WinDrawBitmap Function
As you can tell by the Win prefix, WinDrawBitmap is a high-level drawing
function. It is certainly convenient and will be welcomed by Microsoft
Windows programmers. (Windows had no comparable function.) But you'll
soon see that GPI offers a better approach to drawing bitmaps.

The general syntax of WinDrawBitmap is

WinDrawBitmap (hps, hbm, &rclSource, &ptlDest, clrForeground,
clrBackground, fsOptions) :

The third parameter, &rclSource, is a pointer to a RECTL structure defining
a rectangular area of the bitmap you want to draw. If you set this parameter
to NULL (as MINMAX3 does), WinDrawBitmap draws the entire bitmap.

The fourth parameter specifies the destination coordinates. If you do not in
clude DBM_STRETCH in the options, this parameter points to a POINTL
structure specifying the lower-left corner of the destination. If you use
DBM_STRETCH, the parameter is an array of two POINTL structures
specifying the lower-left corner and upper-right corner. Alternatively, you
can use a pointer to a RECTL structure for this parameter and cast it to a
PPOINTL (a pointer to a POINTL structure).

You specify two colors for the bitmap, clrForeground and clrBackground.
The clrForeground is used for the 1 bits of the bitmap and clrBackground
is used for the 0 bits. (MINMAX3 uses both CLR_NEUTRAL and
CLR_BACKGROUND.) If you have not changed the window background
and window text colors in the Presentation Manager Control Panel, the
minimize and maximize bitmaps are drawn as black arrows on a white
background. Alternatively, you can use the DBM_IMAGEATTRS option in
the final parameter to use the colors currently selected for drawing images.

260 SECTION TWO: PAINTING THE CLIENT WINDOW

The fsOptions parameter can be a combination (using the C bitwise OR

operator) of the following identifiers:

Identifier

DBM_NORMAL
DBM_INVERT
DBM_HALFTONE
DBM_STRETCH
DBM_IMAGEATTRS

Meaning

Draw the bitmap normally
Invert the colors of the bitmap
Draw only every other bit of the bitmap
Stretch the bitmap to fit the target area
Use the image attributes for color

The DBM_NORMAL identifier is defined as 0, so that is the default when
ever you use a 0 as the last parameter. Both the DBM_INVERT and
DBM_HALFTONE flags allow you to use a small subset of the 256 raster
operations to draw the bitmap. WinDrawBitmap uses the bitmap as the
source and temporarily sets the current pattern to PATSYM_HALFTONE

(which consists of alternating 0 and 1 bits). The last parameter to
WinDrawBitmap is equivalent to the following raster operations:

WinDrawBitmap Parameter

DBM_NORMAL
DBM_INVERT
DBM_HALFTONE
DBM_INVERT : DBM_HALFTONE

Raster Operation

ROP _SRCCOPY
ROP _NOTSRCCOPY
OxFC (P : S)
Ox30 (P & -S)

Remember that OPI converts both the source and pattern to a color bitmap
before performing the logical operation on each set of color bits. Thus,
when you use ROP_NOTSRCCOPY, the 1 bits in the bitmap are colored with
the inverse of the ROP _NEUTRAL color and the 0 bits are colored with the
inverse of ROP _BACKGROUND.

Getting Bitmap Information
We managed to obtain handles to system bitmaps and draw them on the
MINMAX3 client window without knowing the size of the bitmaps. If you
need this information, you can obtain it. First you define a variable of type
BITMAPINFOHEADER:

BITMAPINFOHEADER bmp ;

CHAPTER SIX: BITMAPS AND BITBLTS 261

The recommended prefix for structures of this type is bmp, which actually
stands for "bitmap parameters." The BITMAPINFOHEADER structure is
defined in PMGPLH:

typedef struct _BITMAPINFOHEADER
{

UlONG ebFix
USHORT ex ;
USHORT ey :
USHORT ePlanes
USHORT cBitCount
}

BITMAPINFOHEADFR

You first set the ebFix field as the size of the structure, which is 12 bytes.
Then you pass a pointer to this structure to GpiQueryBitmapParameters:

GpiQueryBitmapParameters (hbm, &bmp) ;

On return from the function, the ex and ey fields will contain the width and
height of the bitmap in pixels. For a monochrome bitmap (such as all the
system bitmaps), the ePlanes and eBitCount fields are 1. For color bitmaps,
these two fields describe how the bitmap is organized to represent color.

You also use the BITMAPINFOHEADER structure when creating a bitmap.
Let's get to it.

Working with Bitmaps
I mentioned earlier that you can create a bitmap using the ICONEDIT pro
gram and store that bitmap as a resource in your program. This is certainly
an easy approach to creating a bitmap and using it. But we'll wait for Chap
ter 12 to see how that is done. Meanwhile, it is instructive to create bitmaps
and work with them directly in a program.

The Bitmap Bits
What do you need to create a bitmap that represents an image? One major
requirement is obviously the bits themselves. In a program, these bits are
usually stored as an array of BYTE (unsigned character) values. For a
monochrome bitmap, this array is organized as follows:

• The array begins with the bottom row of bits.

• The first byte in each row is the leftmost eight pixels.

262 SECTION TWO: PAINTING THE CLIENT WINDOW

• The most significant bit in each byte is the leftmost pixel.

• The number of bits in each row must be a multiple of the size of a
ULONG (32 bits). If the bitmap width is not a multiple of 32, the row
must be padded at the right.

• A 1 bit represents the foreground color (by default, black), and a 0 bit
represents the background color (by default, white).

For example, suppose you want to create a small bitmap that contains the
word "HELLO." You want the letters to be colored with the foreground
color (black, by default). The background will be white (by default). You
can picture such a bitmap like this:

This is a "21-by-7" bitmap, with 7 rows of 21 bits each. You can represent
the bitmap as a string of bits where the background bits are 0 and the fore
ground bits are 1:

a 0 a a a a 0 a a 0 a a a a a 0 a a 000
o 1 o 1 0 1 1 a 1 a a a a 0 a 1 1 1 0
a 1 0 a o a a a 0 0 1 0 o a 1 a a
0 1 0 loa 000 1 0 o a 0 1 a
a 1 0 0 000 a 0 a 1 0 a a a 1 0
a 1 0 0 1 1 101 1 101 1 1 0 1 0
a a a 0 0 a a a 0 a a a 0 a a a a a a a a

Group each set of 8 bits into a byte. The leftmost bits are most significant.
Each row must be padded at the right for a multiple of 4 bytes per row. It
doesn't matter whether you pad the rows with Os or Is:

axoo axao OxOO axoo
Ox57 Ox44 ax70 oxaa
Ox 54 Ox44 ax50 axoo
Ox76 Ox44 Ox5a oxoa
Ox54 Ox44 Ox5a oxoa
Ox57 Ox77 Ox7a axoo
oxoa axoo OxOO OxOO

CHAPTER SIX: BITMAPS AND BITBLTS 263

Now reverse the order of the rows so that the array begins with the bottom
row. You can define the resultant array in a program like this:

static BYTE abHell0 [] - { OxOO. OxOO, OxOO, OxOO.
Ox57. Ox77 • Ox70. OxOO,
Ox54. Ox44. Ox5O, OxOO.
Ox76, Ox44. Ox50. OxOO.
Ox54. Ox44. Ox50. OxOO.
Ox57. Ox44. Ox70, OxOO.
OxOO, OxOO. OxOO. OxOO }

Bitmap Creation and Initialization
To create a bitmap based on an array of bits, you use the GpiCreateBitmap
function. This function returns a handle to the bitmap that you store in a
variable of type HBITMAP.

Before calling GpiCreateBitmap, you need two structures that are very simi
lar: BITMAPINFO and BITMAPINFOHEADER. You've already seen the
BITMAPINFOHEADER structure:

typedef struct _BITMAPINFOHEADER
{

ULONG cbFix
USHORT ex :
USHORT cy ;
USHORT cPlanes
USHORT cBitCount
}

BITMAPINFOHEADER

The prefix for a BITMAPINFOHEADER structure is bmp.

The first five BITMAPINFO fields are the same as BITMAPINFOHEADER,
but a sixth field, an array of one RGB structure, is added:

typedef struct _BITMAPINFO
{

UlONG cbFix
USHORT ex :
USHORT ey ;
USHORT cPlanes
USHORT eBitCount
RGB argbColor[l]
}

BITMAP INFO ;

264 SECTION TWO: PAINTING THE CLIENT WINDOW

By convention, a BITMAPINFO structure variable begins with bmi. The
ROB structure defines a color as a combination of red, green, and blue
bytes:

typedef struct _RGB
{

BYTE bBlue ;
BYTE bGreen
BYTE bRed
}

RGB ;

Each byte can range from 0 through OxFF (255). When all 3 bytes are set to
0, the color is black. When all 3 bytes are set to 255, the color is white. You
need one ROB structure for each color in the bitmap. For example, if the bit
map has 4 color bits per pixel, you need an array of 16 ROB structures, one
for each of the 16 possible colors. These structures indicate to OPI what real
color corresponds to each combination of 4 bits. For a monochrome bitmap
(which we'll be creating), you need an array of two ROB structures.

In both structures, the cbFix field is set to the fixed size of the structure,
which in both cases is 12 bytes. The ex and ey fields specify the size of the
bitmap in bits. The cPianes and cBitCount fields indicate how bits in the bit
map are organized to represent color. For a monochrome bitmap, these two
fields are set to 1.

So, to create a bitmap to contain the abHelio array of bits, first define a
BITMAPINFOHEADER structure variable and set the fields like this:

BITMAPINFOHEADER bmp

bmp.cbF1x - sizeof bmp
bmp.cx == 21 ;
bmp.cy ... 7 ;
bmp.cPlanes '"' 1
bmp.cBitCount - 1

The BITMAPINFO structure is set up similarly, but it needs two ROB values
that define how the 0 and 1 bits are interpreted. For a monochrome bitmap,
the three fields of the first ROB structure should be set to 0, and the three
fields of the second structure should be set to 255.

And now we have a little problem. We need to define values of
argbCoior[O] and argbCoior[l], but the definition of the BITMAPINFO
structure is large enough to accommodate only one ROB structure. We need

CHAPTER SIX: BITMAPS AND BITBLTS 265

a BITMAPINFO structure large enough for two RGB structures. Here's one
way to do it. Don't define a structure of type BITMAPINFO like this:

BITMAPINFO bmi ;

Instead, define a pointer to a BITMAPINFOstructure:

BITMAPINFO *pbmi ;

Then use malloc to allocate enough local memory for the structure:

pbmi = malloc (sizeof (BITMAPINFO) + sizeof (RGB» ;

The cbFix field is set equal to the size of the BITMAPINFO structure exclud
ing the argbC%r field, so you can set the fields of the structure like this:

pbmi->cbFix = sizeof bmp
pbmi->cx = 21 ;
pbmi->cy = 7
pbmi->cPlanes - 1
pbmi-)cBitCount -
pbmi->argbColor[O].bBlue = 0
pbmi-)argbColor[O].bGreen = 0
pbmi-)argbColor[O].bRed = 0
pbmi->argbColor[I].bBlue = 255
pbmi->argbColor[l].bGreen = 255
pbmi->argbColor[I].bRed - 255

Now we're ready to call GpiCreateBitmap using the abHello array and these
two structures:

hbm = GpiCreateBitmap (hps. &bmp. CBM_INIT. abHello. pbmi) ;

The first parameter to GpiCreateBitmap is a handle to a presentation space.
For bitmaps to be displayed on the screen, you can use the handle returned
from WinGetPS. If possible, GPI will use part of the video memory to store
the bitmap. Even if the bitmap is stored in system memory, it is always
associated with a particular device. The CBM_INIT identifier indicates that
we want the bitmap to be initialized with the abHello data after the bitmap
is created.

After you call GpiCreateBitmap, you want to free the memory used for the
BITMAPINFO structure:

free (pbmi) ;

266 SECTION TWO: PAINTING THE CLIENT WINDOW

When your program is finished using a bitmap, the bitmap should be
deleted:

GpiDeleteBitmap (hbm) ;

You can also create a bitmap without initializing it. In this case, the bitmap
initially contains random data. If we simply wanted to create an un
initialized 21-by-7 bitmap, the GpiCreateBitmap function would be

hbm - GpiCreateBitmap (hps. &bmp. OL. NULL. NULL) ;

Notice that only the BITMAPINFOHEADER structure is required for this
variation of the GpiCreateBitmap call. You don't need to tell GPI how to in
terpret color information when creating the uninitialized bitmap.

The Bit Cat
Now that we have some of the concepts down, let's look at a program that
creates and displays a bitmap. Rather than the simple "HELLO" bitmap de
scribed previously, this program uses a more interesting bitmap. Remember
the cat we displayed in Chapter 5 using Gpilmage? We'll now display that
cat as a bitmap. BITCAT1 is shown in Figure 6-11.

The BITCAT1 File

11- - - - - - - - - - - - - - - - - --
BITCATl make file
fl- - - - - - - - - - - - - - - - - - -

bitcatl.obj : bitcatl.c bitcat.h
cl -c -G2sw -W3 bitcat1.c

bitcatl.exe : bitcatl.obj bitcatl.def
link bitcatl. /align:16. NUL. os2. bitcatl

The BITCAT1.C File

/*--
BITCATl.C -- Bitmap Creation and Display

- -* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#include "bitcat.h"

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 267

Figure 6-11. The BITCATl.C File. continued

MRESUlT EXPENTRY ClientWndProc (HWNO. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] = "BitCdtl" ;
static UlONG flFrameFlags - FCF_TITlEBAR

HAB hab :
HMO hmq ;

FCF_SIZEBORDER
FCF_SHEllPOSITION

HWND hwndFrame, hwndClient
QMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKlIST :

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP. WS_VISIBlE.
&flFrameFlags. szClientClass. NUll.
Ol, NUll. 0, &hwndClient) :

while (WinGetMsg (hab. &qmsg. NUll. O. 0»
WinDispatchMsg (hab, &qmsg)

WinOestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

static HBITMAP hbm;
BITMAPINFO *pbmi
BITMAPINFOHEADER bmp
HPS hps
RECTl rcl

switch (msg)

case WM_CREATE:

/* - . - - - - - - -

Create 32-by-32 monochrome bitmap
-----------------------------------*/

268 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-ll. The BITCAT1.C File. continued

bmp.cbFix
bmp.cx
bmp.cy
bmp.cPlanes

- sizeof bmp
- 32 ;
- 32 ;
- 1

bmp.cBitCount - 1 ;

pbmi - malloc (sizeof (BITMAPINFO) + sizeof (RGB»

pbmi-)cbFix
pbmi->cx
pbmi-)cy

- sizeof bmp ;
- 32 ;
- 32 ;

pbmi->cPlanes - 1 ;
pbmi->cBitCount - 1;

pbmi->argbColor[O].bBlue - 0
pbmi->argbColor[O].bGreen - 0
pbmi->argbColor[O].bRed - 0
pbmi->argbColor[I].bBlue - OxFF
pbmi-)argbColor[I].bGreen - OxFF
pbmi->argbColor[l].bRed - OxFF

hps - WinGetPS (hwnd)
hbm - GpiCreateBitmap (hps. &bmp. CBM_INIT. abBitCat. pbmi)

WinReleasePS (hps)
free (pbmi)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)

WinQueryWindowRect (hwnd. &rcl) ;

WinOrawBitmap (hps. hbm. NULL. (PPOINTL) &rcl.
CLR-NEUTRAL. CLR-BACKGROUND. DBM_STRETCH)

WinDrawBitmap (hps. hbm, NULL. (PPOINTL) &rcl,
CLR-NEUTRAL. CLR-BACKGROUND. DBM_NORMAL)

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
GpiOeleteBitmap (hbm)
return 0 :

return WinOefWindowProc (hwnd, msg. mp1. mp2)

CHAPTER SIX: BITMAPS AND BITBLTS 269

The BITCAT.H File

1*----------------------
BITCAT.H header file

----------------------*/

static BYTE abBitCat[] = {OxOD, OxFF. OxFF • OxOO. OxOO. OxA2. Ox45. OxOO.
OxOO. OxA2. Ox45. OxOO. OxOO. OxA2. Ox45. OxEO,
OxOO. OxA2. Ox45, OxIO. OxOO, OxA2, Ox45. OxOS,
OxOO, Ox9C. Ox39, OxOS, OxOO, OxCO, Ox03. Ox04,

Oxoo, Ox40. Ox02. Ox04. Oxoo, Ox40, Ox02. Ox04,
Oxoo, Ox40. Ox02, Ox04, OxOO, Ox20, Ox04. Ox04.
OxOO, Ox20, Ox04, Ox04. OxOO, Ox20. Ox04, Ox04,
OxOO, OxIO, OxOS, Ox04. OxOO, OxIO, Ox08, Ox08.

OxOO, OxIO, ax08, OxIO. Oxoo. OxOS, OxIO, Ox20,
OxOO, Ox08. OxIO. oxeo. OxOO, oxoa, OxIO. OxOO,
OxOO, Ox07. OxEO, OxOO. Oxoo. Ox08. OxIO. OxOO,
Oxoo, OxFC. Ox3F. OxOO. Oxoo, Ox09, Ox90, OxOO,

OxOO, OxFC. Ox3F, Oxoo, OxOO. Ox08, OxIO. oxoa,
oxoa. OxIA. Ox58, OxOO, OxOO, Ox28, Ox14, OxOO,
OxOO. Ox48, OxI2, OxOO. OxOO. Ox8F. OXFl. Oxoo,
OxOl, Ox04. Ox20. Ox80, OxOl, OxF8, OxlF , Ox80 }

The BITCAT1.DEF File

; SITCATl.OEF module definition file

NAME BITCATI WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Bitmap Creation and Display (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 6-ll. The BITCATI program.

The abBitCat array in BITCAT.H contains the bytes that define the picture of
the cat. Note that the rows are in reverse order from the rows used in
Gpilmage. (Gpilmage requires the top row first.) The BITCATI program

270 SECTION TWO: PAINTING THE CLIENT WINDOW

creates the 32-by-32 bitmap during the WM_CREATE message and deletes it
during the WM_DESTROY message.

During the WM_PAINT message, BITCATI draws the bitmap twice using
the WinDrawBitmap function. The first call draws the bitmap to fill the
entire client window. The second call draws the bitmap in the lower-left
corner of the client window in its actual pixel size. This is shown in
Figure 6-12.

Figure 6-12. The BITCATI display.

Bitmaps and Bitblts
I mentioned earlier that the WinDrawBitmap function is convenient but that
GPI has a better way to draw a bitmap using our old friend, the GpiBitBlt
function. This will be demonstrated shortly in the BITCAT2 program.

You may resist this new method at first because BITCAT2.C is longer than
BITCATl.C and somewhat more complex. However, this method unleashes
all the power available in the GpiBitBlt function when drawing a bitmap.
This is where bitmaps and bitblts come together as two related tools.

You'll recall that GpiBitBlt transfers a bitmap from one presentation space
to another, possibly combining it with the current pattern set in the destina
tion presentation space. There doesn't seem to be any place in the function
for a handle to a bitmap. To use the GpiBitBlt function to draw a bitmap, we
must first make the bitmap part of a presentation space. This requires a
concept that is very important for working with bitmaps: the memory
device context.

CHAPTER SIX: BITMAPS AND BITBLTS 271

The Memory Device Context
In Chapter 5 we worked briefly with the device context for the video dis
play. "Device context" is a term used to describe the combination of an
output device and its device driver. A presentation space is associated with a
device context. When you call GPI drawing functions for a particular pre
sentation space, GPI draws the objects on the device context associated with
the presentation space.

We're going to create a device context that exists only in memory. This de
vice context is not a real output device. It is called the memory device con
text. To create this device context, you call DevOpenDC with a second
parameter set to the identifier aD_MEMORY and the other parameters as
shown here:

hdcMemory = DevOpenDC (hab, OD_MEMORY, "*", Ol, NUll, NUll) ;

You then create a presentation space associated with this memory device
context by calling GpiCreatePS:

hpsMemory - GpiCreatePS (hab, hdcMemory, &sizl,
PU_PElS GPIF_DEFAUlT
GPIT_MICRO : GPIA_ASSOC) ;

This presentation space is associated with the memory device context. The
third parameter is a pointer to a structure of type SIZEL with two fields
named ex and cy. Before calling GpiCreatePS, you set these two fields to o.
Here comes the crucial step: You call GpiSetBitmap to set a bitmap in this
presentation space:

GpiSetBitmap (hpsMemory, hbm) ;

This function seems a little strange at first. Near the beginning of this chap
ter I said that you could imagine the entire video display as one big bitmap.
The video adapter board contains a large block of memory that contains (in
one form or another) the digital representation of the image on the screen.

When you call GpiSetBitmap, the bitmap becomes the display surface of the
memory device context associated with the presentation space. You can then
use this presentation space as a source (or destination) with functions such
as GpiBitBlt. Moreover, anything you draw on this presentation space is ac
tually drawn on the bitmap.

272 SECTION TWO: PAINTING THE CLIENT WINDOW

When you are finished using the presentation space, the memory device
context, and the bitmap, you destroy them in this order:

GpiDestroyPS (hpsMemory)
DevClo5eDC (hdcMemory) ;
GpiDeleteBitmap (hbm) ;

Now let's look at BITCAT2, which uses this approach. The program is
shown in Figure 6-13.

The BITCAT2 File

fl- - - - - - - - - - - - - - - - - - -
BITCAT2 make file
fl- - - - - - - - - - - - - - - - - - -

bitcat2.obj : bitcat2.c bitcat.h
cl -c -G2sw -W3 bitcat2.c

bitcat2.exe : bitcat2.obj bitcat2.def
link bitcat2, lalign:16. NUL, 052. bitcat2

The BITCAT2.C File

1* -

BITCAT2.C -- Bitmap Creation and Display
- -* /

#defi ne INCLWIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>
#include "bitcat.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClienlClass [] - "BitCat2" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST

HMO hmq ;
HWND hwndFrame. hwndClient ;

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 273

Figure 6-13. The BITCAT2.C File. continued

QMSG qmsg :

hab = Winlnitialize (0)
hmq = WinCreateMsgQueue (hab, 0) ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREORAW, 0)

hwndFrame - WinCreateStdWindow (HWNO_OESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass. NULL,
Ol. NULL. O. &hwndClient) ;

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinOispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY C1ientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static HBITMAP hbm;
static HOC hdcMemory
static HPS hpsMemory
static SHORT cxClient. cyClient
BITMAPINFO *pbmi
BITMAPINFOHEAOER bmp ;
HPS hps :
POINTL aptl [4]

SIZEL si zl ;

switch (msg)
{

case WM _CREATE:

1* -

Open memory DC and create PS associated with it
- -*1

hdcMemory = DevOpenOC (hab. OD_MEMORY. "*". OL. NULL. NULL) ;

sizl .ex - 0
sizl .cy - 0

274 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-13. The BITCAT2.C File. continued

hpsMemory - GpiCreatePS (hab. hdcMemory. &siz1.
PU-PElS GPIF_DEFAUlT
GPIT_MICRO l GPIA_ASSOC) :

/*------------------------
Create 32 by 32 bitmap

- - - ~ -*/

bmp.cbFix - sizeof bmp ;
bmp.cx - 32 :
bmp.cy - 32 :
bmp.cPlanes - 1
bmp.cBitCount - 1 ;

hbm - GpiCreateBitmap (hpsMemory. &bmp. Ol. NULL. NULL)

/*- --
Select bitmap into memory PS

- -* /

GpiSetBitmap (hpsMemory. hbm) :

/*-------------------------------------
Set bitmap bits from abBitCat array

- -*/

pbmi = mal10c (sizeof (BITMAPINFO) + sizeof (RGB» ;

pbmi-)cbFix ... sizeof bmp :
pbmi->cx - 32 ;
pbmi->cy - 32 ;
pbmi-)cP1anes = 1
pbmi-)cBitCount - 1 ;

pbmi->argbCo1or[O].bB1ue - 0
pbmi-)argbColor[O].bGreen = 0
pbmi->argbColor[O].bRed - a
pbmi-)argbCo1or[1].bBlue - OxFF
pbmi->argbColor[l].bGreen = OxFF
pbmi->argbCo1or[1].bRed = OxFF

GpiSetBitmapBits (hpsMemory. OL. 32l. abBitCat. pbmi)

free (pbmi)
return 0 ;

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 275

Figure 6-13. The BITCAT2.C File. continued

case \tiM_SIZE:
cxClient = SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return a :

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NULL) ;

aptl[O].x = 0
aptl[O].y - 0

aptl[l].x = cxClient
aptl[l].y - cyClient

apt1[2].x - 0

aptl[2].y = 0

aptl[3].x - 32
aptl[3].y'" 32

II target lower left·

1/ target upper right

1/ source lower left

II source upper right

GpiBitBlt (hps, hpsMemory. 4l. aptl. ROP_SRCCOPY. BBO_AND)

aptl[l] = aptl[3] ; 1/ target upper right

GpiBitBlt (hps, hpsMemory, 3L. aptl. ROP_SRCCOPY. BBO-ANU)

WinEndPaint (hps) ;
return 0 ;

case \tiM_DESTROY:
GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory) ;
GpiDeleteBitmap (hbm) ;
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

276 SECTION TWO: PAINTING THE CLIENT WINDOW

The BITCAT2.DEF File

; BITCAT2.DEF module definition file

NAME BITCAT2 WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Bitmap Creation and Display (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 6-13. The BITCAT2 program.

The BITCAT2 program also requires the BITCAT.H header file from Figure
6-11. As you can see from Figure 6-14, the program shows the same output
as BITCAT1:

Figure 6-14. The BITCAT2 display.

During the WM_CREATE message, BITCAT2 opens a memory device con
text and creates a presentation space associated with that device context.
BITCAT2 creates an initialized 32-by-32 bitmap exactly like BITCAT1. But
then it calls GpiSetBitmap to set the bitmap in the presentation space.

CHAPTER SIX: BITMAPS AND BITBLTS 277

During the WM_PAINT message, BITCAT2 uses the GpiBitBlt function to
draw the bitmap on the display. The source presentation space is simply the
presentation space associated with the memory device context. Although
BITCAT2 uses ROP _SRCCOPY, it could also select a nondefault pattern in
the destination presentation space and use GpiBitBlt with all 256 raster
operations.

For drawing bitmaps, GPI also provides a function similar to GpiBitBlt
called GpiWCBitBlt. (The WC stands for "world coordinates.' ') The second
parameter is a handle to a bitmap rather than a handle to a source presenta
tion space.

Drawing on the Memory Device Context
I said earlier that the bitmap is the display surface of the memory device
context. Thus, when you use normal GPI functions to draw on the presenta ...
tion space associated with this memory device context, you're actually
drawing on the bitmap. This is one reason why you can create a bitmap
without initializing it. You can create an image on the bitmap by simply
drawing on the presentation space.

This is shown in the HELLOBIT program in Figure 6-15.

The HELLOBIT File

fl- - - - - - - - - - - - - - - - - - --
HlLLOBIT make file
ff- - - - - - - - - - - - - - - - - - - -

hellobit.obj : hellobit.c
cl -c -G2sw -W3 hellobiLc

hellobit.exe : hellobit.obj hellobit.def
link hellobit. /align:16. NUL, os2. hellobit

The HELLOBIT.C File

/* -

HELLOBIT.C -- "Hello, world" Bitmap
-------------------------------------*/

#defire INCL_WIN
#define INCL_GPI
#include <os2.h>

,

(continued)

278 SECTION TWO: PAINTING THE CLIENT WINDOW

Figure 6-15. The HELLOBIT.C File. continued

MRESUlT EXPENTRV ClientWndProc (HWNO. USHORT. MPARAM. MPARAM)

HAS hab

int main (void)

static CHAR szClientClass [] - "HelloBit"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELlPOSITION

HMO hmq ;
HWNO hwndFrame. hwndClient :
OMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST :

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL, O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE),
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinOispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 :
}

MRESULT EXPENTRY ClientWndProc (HWNO hwnd, USHORT msg. MPARAM mpl, MPARAM mp2)
{

static CHAR
stati c HBITMAP
static HOC
static HP$

slHello [] - " Hello. world" ;
hbm ;
hdcMemory
hpsMemory

static SHORT cxClient. cyClient. cxString. cyString
BITMAPINFOHEADER bmp :
HPS hps ;
POINTL aptl [4]. ptl

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 279

Figure 6-15. The HELLOBIT.C File. continued

SHORT
SIZEL

switch (msg)
{

x. y

si zl :

case 'WM_CREATE:

/* -

Open memory DC and create PS associated with it
- -*j

hdcMemory = DevOpenDC (hab. OD_MEMORY. n*". OL. NULL. NULL) ;

sizl.cx = 0 ;

sizl .cy = 0 :
hpsMemory = GpiCreatePS (hab. hdcMemory. &sizl.

PU_PELS GPIF_DEFAULT
GPIT_MICRO : GPIA_ASSOC)

/*-------------------------------------
Determine dimensions of text string

- -*/

GpiQueryTextBox (hpsMemory. sizeof szHell0 - IL.
szHello. 4L. aptl) ;

cxString - (SHORT) (aptl [TXTBOX_TOPRIGHT].x -
aptl [TXTBOX_TOPLEFT].x)

cyString - (SHORT) (aptl [TXTBOX_TOPLEFT].y -
aptl [TXTBOX_BOTTOMLEFT].y)

/*---

bmp.cbFix
bmp.cx
bmp.cy
bmp.cPlanes

Create bitmap and set it in the memory PS
- -*/

- sizeof bmp
-= cxString
= cyString

I
bmp.cBitCount = 1 ;

hbm = GpiCreateBitmap (hpsMemory. &bmp. Ol. OL. NULL)

GpiSetBitmap (hpsMemory. hbm) :

280 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-15. The HELLOBIT.C File. continued

1*--
Write the text string to the memory PS

- -- -*1

ptl.x ... 0
ptl.y - - aptl [TXTBOX_BOTTOMLEFT].y

GpiSetColor (hpsMemory. CLR-TRUE) ;
GpiSetBackColor (hpsMemory, CLR_FALSE)
GpiSetBackMix (hpsMemory, BM_OVERPAINT) ;
GpiCharStringAt (hpsMemory, &ptl, sizeof szHello - IL,

szHello) ;
return 0

case WM_SIZE:
cxClient ... SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NULL) ;

for (y ... 0 ; Y <- cyClient I cyString ; y++)
for (x ... 0 ; x <= cxClient I cxString x++)

{

aptl[O].x ... x * cxString II target lower left
aptl[O].y = y * cyString

aptl[l].x ... aptl[O].x + cxString II upper right
aptl[l].y ... aptl[O].y + cyString

aptl[2].x ... 0 II source lower left
aptl[2].y - 0

GpiBitBlt (hps. hpsMemory, 3L. aptl. ROP_SRCCOPY,
BBO_AND) ;

WinEndPaint (hps)
return 0 ;

case WM_DESTROY:
GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory) ;
GpiOeleteBitmap (hbm) ;
return 0 ;

return WinOefWindowProc (hwnd, msg. mpl. mp2)

CHAPTER SIX: BITMAPS AND BITBLTS 281

The HELLOBIT.DEF File

; HELLOBIT.DEF module definition file

NAME HELLOBIT WINDOWAPI

DEseRI PTION
PROTMODE
HEAPSIZ£
STAeKSIZE
EXPORTS

'"Hello. world" Bitmap (e) Charles Petzold. 1988'

1024
8192
elientWndProc

Figure 6-15. The HELLOBIT program.

HELLOBIT creates a memory device context and a presentation space
associated with this memory device context during the WM_CREATE mes
sage. Then it determines the dimension of the text "Hello, world" by call
ing GpiQueryTextBox. The program creates a bitmap of these dimensions
and sets the bitmap in the memory device context.

HELLOBIT then writes the text string on the presentation space by calling
GpiCharStringAt. The bitmap is monochrome, so the foreground color is set

==.HELL~BIT. E~Em
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He
Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world Hello, world He

Figure 6-16. The HELLOBIT display.

282 SECTION TWO: PAINTING THE CLIENT WINDOW

to CLR_TRUE (1 bits), and the background color to CLR_FALSE (0 bits).
These are the best color values to use with monochrome bitmaps.
HELLOBIT also sets the background mix to BM_ OVERPAINT so that the
background is filled in with 0 bits.

During the WM_PAINT message, HELLOBIT covers the window with
copies of this bitmap by calling GpiBitBlt. This is shown in Figure 6-16.

As in BITCAT2, the presentation space, device context, and bitmap are
destroyed during the WM_DESTROY message.

You might want to try a variation of HELLOBIT that uses WinDrawBitmap
during the WM_PAINT message. In this case, you don't need the memory
device context or presentation space after you initialize the bitmap by call
ing GpiCharStringAt. You can destroy them after that call:

GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory) ;

During the WM_DESTROY message you need only destroy the bitmap.
Thus the memory device context and presentation space serve simply as a
mold to draw on the bitmap. You can then destroy the mold (calling
GpiDestroyPS and DevCloseDC), leaving the bitmap behind.

One common use of a memory device context is for a "shadow bitmap."
You create a bitmap large enough to encompass the client window and
select that into a presentation space associated with a memory device con
text. Whenever you draw on the window, you also draw on the presentation
space. During the WM_PAINT message, you can update the client window
with a simple GpiBitBlt call. This approach is shown in the SKETCH pro
gram in Chapter 9.

When a bitmap is set in a presentation space assoCiated with a memory de
vice context, you can set the bitmap bits with an array of data using GpiSet
BitmapBits. This is yet another way to initialize a bitmap. You can also
obtain the bitmap bits and store them in an array by calling
GpiQueryBitmapBits.

Customized Patterns
Another use for bitmaps is to create your own customized patterns for area
filling. A pattern is based on an 8-by-8 bitmap. When a pattern is used to fill
an area, the bitmap is simply repeated horizontally and vertically.

For example, suppose you want to use a pattern that looks like a brick wall.
,Assuming you want the brick itself to be the foreground color (1 bits) and

CHAPTER SIX: BITMAPS AND BITBLTS 283

the cement between the bricks to be the background color (0 bits), the bit
map that you begin with might look like this:

These bits (padded at the right so each row is 32 bits) are stored in the
abBrick array in the BRICKS program in Figure 6-17.

The BRICKS File

ii- ------ -----------
iI BRICKS make file
11- - - - - - - - - - - - - - - - --

bricks.obj : bricks.c
cl -c -G2sw -W3 bricks.c

bricks.exe : bricks.obj bricks.def
link bricks, /align:16, NUL, os2. bricks

The BRICKS.C File

/* -

BRICKS.C -- Customized Pattern from Bitmap
- -*/

IIdefine INCL_WIN
IIdefine INCL-GPI
Iii nc 1 ude <os2. h>
lIinclude <stdlib.h>

#define LCIO_BRICKS_BITMAP lL

MRESULT EXPENTRY ClientWndProc (HWNO, USHORT, MPARAM, MPARAM)

int main (void)

284 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-17. The BRICKS.C File. continued

static CHAR szClientClass [] - "Bricks" ;
static UlONG flFrameFlags - FCF_TITlEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

HAB hab ;
HMO hmq ;
HWND hwndFrame. hwndClient
QMSG qmsg :

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) :

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. ~zClientClass. NULL.
Ol. NULL. O. &hwndClient) ;

while (WinGetMsg (hab. &qmsg, NUll. 0, 0»
WinDispatchMsg (hab. &qrnsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 :

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM rnp2)
{

static BYTE abBri ck [] == {

OxOO. OxOO. OxOO, OxOO.
OxF3. OxOO. OxOO. OxOO.
OxF3, OxOO. OxOO, OxOO,
OxF3. OxOO. OxOO. OxOO,
OxOQ, OxOO. OxOO. OxOO,
Ox3F, OxOO. OxOO. OxOO,
Ox3F. OxOO. OxOO. OxOO.
Ox3F, OxOO. OxOO, OxOO
} :

static HBITMAP hbm:
stati c POINTL aptl [2]

BITMAPINFO *pbmi
BITMAPINFOHEADER bmp
HPS hps :

(continued)

CHAPTER SIX: BITMAPS AND BITBLTS 285

Figure 6-17. The BRICKS.C File. continued

switch (msg)
{

case WM_CREATE:
1*----------------------

Create 8-by-8 bitmap
----------------------*1

bmp.cbFix - sizeof bmp ;
bmp.cx - 8
bmp.cy = 8
bmp.cPlanes = 1

bmp.cBitCount - 1

pbmi = malloc (sizeof (BITMAPINFO) + sizeof (RGB»

pbmi-)cbF;x
pbmi-)cx
pbmi-)cy
pbmi->cPlanes

- sizeof bmp ;
... 8
= 8
... I

pbmi->cBitCount - I

pbmi->argbColor[O).bBlue
pbmi->argbColor[O).bGreen
pbmi-)argbColor[O).bRed
pbmi->argbColor[I).bBlue
pbmi->argbColor[I).bGreen
pbmi-)argbColor[I).bRed

hps ~ WinGetPS (hwnd)

= 0
= 0
- 0
... OxFF
... OxFF
- OxFF

hbm ... GpiCreateBitmap (hps. &bmp. CBM_INIT. abBrick. pbmi)

WinReleasePS (hps)
free (pbmi)
return 0

case WM_SIZE:
aptl[I).x'" SHORTIFROMMP (mp2)
aptl[I].y = SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NULL) ;

GpiSetBitmapld (hps. hbm. LCID_BRICKS_BITMAP)
GpiSetPatternSet (hps. LCID_BRICKS_BITMAP) ;

286 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 6-17. The BRICKS.C File. continued

GpiBitBlt (hps. NULL. 2L. aptl. ROP_PATCOPY. BBO_AND)

GpiSetPatternSet (hps, LCID_OEFAULT) ;
GpiDeleteSetId (hps, LCID_BRICKS_BITMAP)

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:

}

GpiDeleteB1tmap (hbm)
return 0 ;

return WinOefWindowProc (hwnd. msg. mp1. mp2)
}

The BRICKS.DEF File

._-----------------_ .. _--------------.
: BRICKS.OEF module definition file
._--------_ ... - _ _- __ .. _ _--,

NAME BRICKS WINOOWAPI

OESCRI PTION
PROTMODE
HEAP$IZE
STACKSIZE
EXPORTS

'Customized Pattern from Bitmap (c) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 6-17. The BRICKS program.

During the WM_CREATE message, BRICKS creates an 8-by-8 bitmap ini
tialized with these bits. During the WM_PAINT message, the bitmap is first
tagged with an ID number:

GpiSetBitmapld (hps, hbm. LCIO_BRICKS_BITMAP)

The LCID_BRICKS_BITMAP is defined in BRICKS.C as 1. (LCID stands for
"local id.") The bitmap is now an available pattern. You can use the
GpiSetPatternSet function to make this pattern the current pattern:

GpiSetPatternSet (hps. LCID_BRICKS_BITMAP) ;

CHAPTER SIX: BITMAPS AND BITBLTS 287

Notice that this is the GpiSetPatternSet function rather than the GpiSet
Pattern function normally used for selecting a pattern.

BRICKS uses the GpiBitBlt function with the ROP _PATCOPY raster opera
tion to fill the window with the bitmap, as shown in Figure 6-18.

= BRICKS EXE HI!)

Figure 6-18. The BRICKS display.

The program could also have used GpiBox with the DRO_FILL or
DRO _ OUTLINEFILL option to display the bricks pattern. After BRICKS
uses the pattern, the current pattern set is established as the default pattern
set (containing all predefined patterns):

GpiSetPatternSet (hps. LCID_DEFAULT) ;

The LCID_DEFAULT identifier is defined in PMGPI.H. BRICKS then deletes
the local ID:

GpiDeleteSetId (hps. LCID_BRICKS_BITMAP) ;

You can define up to 254 customized patterns using local IDs ranging from 1
through 254. When you want to use a customized pattern, you call GpiSet
PatternSet with the local ID. When you want to use a predefined pattern,
you first call GpiSetPatternSet with LCID_DEFAULT and then use GpiSet
Pattern with a PATSYM identifier.

288 . SECTION TWO: PAINTING THE CLIENT WINDOW

The local IDs for these customized patterns become part of the presentation
space. Before releasing a cached micro-PS by calling WinReleasePS or
WinEndPaint, you should setthe pattern to the default and delete all the IDs.
A bitmap cannot be deleted while it has a local ID. You can obtain the bit
map handle tagged with a local ID by calling GpiQueryBitmapHandle:

hbm = GpiQueryBitmapHandle (hps. lcid) :

You'll recall from the last chapter that you use local IDs when creating
fonts. You cannot use the same local ID for both a bitmap and a pattern at
the same time. Also keep in mind that the GpiSetPS function deletes all
local IDs.

Drawing Pixels
Finally, OPI has two functions that might seem important when you first
begin programming for the OS/2 Presentation Manager. The GpiSetPel
function sets an individual pixel to the current foreground color:

Gpi Setpel (hps. &ptl) :

The GpiQueryPel function obtains the color of an individual pixel:

lColor = GpiQueryPel (hps. &ptl) :

These two functions are used so infrequently in Presentation Manager pro
gramming that you can just about ignore them.

CHAPTER SIX: BITMAPS AND BITBLTS 289

C HAP T E R S EVE N

ADVANCED VIO:
THE EASY WAY OUT

When OS/2 1.0 was first released, many programmers were favorably im
pressed by the collection of VIO ("video input/output") functions included
in the operating system. These VIO functions gave character-mode OS/2 ap
plications a fast, high-level interface to the video display. Unlike DOS appli
cations, OS/2 1.0 applications can achieve good video performance without
directly accessing the video display hardware.

The Presentation Manager is not a character-mode environment. It uses
other functions (such as GpiCharStringAt) to display text on a window. But
the OS/2 VIO functions are too good to abandon entirely. After all, some ap
plications don't need graphics. It seems reasonable that the Presentation
Manager allow such applications to write to their client window as if the
window were a character-mode device. The AVIO (,'Advanced VIO")-an
enhancement to the OS/2 1.0 VIQ interface, designed specifically for Presen
tation Manager programs - allows them to do just that.

The Presentation Manager intercepts all VIO calls from all applications
running in the Presentation Manager session. This serves two purposes.
First, it allows many character-mode programs originally written for OS/2
1.0 to run in a window. The Presentation Manager intercepts the VIO calls
and routes the output to the program's window. Although they cannot take
advantage of Presentation Manager features (such as graphics, menus, and
dialog boxes), these OS/2 1.0 programs are accessible to users because they
run in a window in the Presentation Manager session. (Character-mode pro
grams running in other sessions continue to use the normal, unintercepted
VIO interface.)

291

Second, the Presentation Manager also intercepts VIO calls from Presenta
tion Manager programs that use Advanced VIO for displaying text. The text
output is converted to graphics and displayed on the window that the pro
gram creates.

In general, using AVIO is easier than using GPI. Rather than specifying a
coordinate position where a text string is to begin, the program specifies a
character row and column position relative to the upper-left corner of the
client window. The big disadvantage of AVIO is that precise placement of
text is not possible. Each character you display is placed in a character cell.
All character cells are the same width and height. Proportional spacing and
techniques such as subscripting are not possible. However, a Presentation
Manager program using AVIO can also display graphics (including text) on
the same window by using the normal GPI interface.

AVID Mechanics
Let's begin by examining a simple program called AVIOI (Figure 7-1) that
uses several AVIO functions to display the first paragraph of Lewis Carroll's
Alice in Wonderland in its client window.

The AVI01 File

11- - - - - - - - - - - - - - - - -
AVIOI make file
11- - - - - - - - - - - - - - - - -

aviol.obj : aviol.c
cl -c -G25w -W3 avio1.c

aviol.exe : aviol.obj aviol.def
link aviol. /align:16. NUL, 052. aviol

The AVI01. C File

/* -

AVIOl.C -- Advanced VIa Display of Text
---*/

lldefine INCL-WIN
#define INCL_VIO
#define INCL_AVIO
#include <os2.h>
#include <string.h>

292 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 7-1. The AVIOI.C File. continued

#define VIOEOWIDTH 40

MRESULT IXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] - "Avio!" ;
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SlZEBORDER
FCF_SHEllPOSITION

HMO hmq ;
HWND hwndFrame. hwndClient ;
OMSG qmsg :

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU
FCF_MINMAX
FCF_TASKLIST

WinReg;sterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBlE.
&flFrameFlags. szClientClass. NUll.
Ol. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
~inOuerySysPointer (HWNO_DESKTOP. SPTR-APPICON. FALSE).
NULL) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 :

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR *aszAlice [] -
"Alice was beginning to get very tired of",
"sitting by her sister on the bank and of".
"having nothing to do: once or twice she".
"had peeped; nto the book her si ster was", •

(continued)

CHAPTER SEVEN: . ADVANCED VIO 293

Figure 7-1. The AVIOI.C File. continued

"reading, but it had no pictures or ",
"conversations in it, \"and what is the".
"use of a book,\" thought Alice. \"without".
"pictures or conversations?\""

static HPS hps;
static HVPS hvps :

} ;

static SHORT sNumLines sizeof aszAlice I sizeof aszAlice[O]
HOC hdc ;
SHORT
SIZEL

sRow
sizl ;

switch (msg)

case WM_CREATE:
hdc ~ WinOpp.nWindowDC (hwnd)

sizl .cx - sizl .cy = 0
hps - GpiCreatePS (hab. hdc, &sizl. PU_PELS

GPIT_MICRO
GPIF_OEFAULT :
GPIA_ASSOC)

VioCreatePS (&hvps, sNumLines. VIDEOWIDTH. 0, 1. NULL) ;
VioAssociate (hdc. hvps) ;

for (sRow = 0 ; sRow < sNumLines ; sRow++)
VioWrtCharStr (aszAlice[sRow],

return 0

case WM_SIZE:

strlen (aszAlice[sRow]).
sRow. O. hvps) ;

WinDefAVioWindowProc (hwnd. msg. mp1. mp2)
return 0 ;

case WM_PAINT:
WinBeginPaint (hwnd, hps. NULL)
GpiErase (hps)

VioShowBuf (0. 2 * sNumLines * VIDEOWIOTH. hvps)

WinEndPaint (hps) ;
return 0 :

case WM_DESTROY:
VioAssociate (NULL. hvps)

294 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 7-1. The AVI01.C File. continued

VioDestroyPS (hvps)
GpiDestroyPS (hps) ;
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The AVI01. DEF File

.... _-------_ ... _----------------------.
; AVI01.DEF module definition file

NAME AVIOl WINDOWAPI

DESeR! PTION
HEAPSIZE
STACKSIZE
EXPORTS

'Advanced VIO Display of Text (C) Charles Petzold, 1988'
1024
8192
ClientWndProc

Figure 7-1. The AVI01 program.

The AVIOI window is shown in Figure 7-2.

Figure 7-2. The AVI01 display.

CHAPTER SEVEN: ADVANCED VIO 295

You'll notice a little problem with AVI01: The text displayed by the pro
gram appears as light gray letters on a black background. This is, of course,
the default for text in a character-mode session. However, the rest of the
window has a white background (or whatever color you set for the window
background in the Presentation Manager Control Program). We'll take care
of this problem later.

You'll notice that the AVI01.e file begins with the definition of two
identifiers:

#define INCl_VIO
#define INCL-AVIO

The first identifier enables the declaration of OS/2 1.0 VIO functions and
structures in the BSESUB.H header file. The second identifier causes the
PMAVIO.H header file to be included; this file declares the additional func
tions supported by the Presentation Manager AVIO interface.
i

Creating and Destroying
To use AVIO, a program first creates an AVIO presentation space by calling
VioCreatePS. A program that uses AVIO for most of its window output will
probably create the presentation space while processing the WM_CREATE
message in the window procedure. The general syntax of VioCreatePS is

VioCreatePS (&hvps. cyDisplay. cxDisplay. O. cbAttrs. 0) ;

NOTE: In the initial release of the Presentation Manager, the fourth
and last parameters must be set to O.

The first parameter is a pointer to a variable of type HVPS ("handle to a
VIO presentation space"), which you can define like this:

HVPS hvps ;

The VioCreatePS function stores the handle to the AVIO presentation space
in this variable. You use the hvps handle with the VIO functions in the same
way that you use the hps handle with the GPI functions, except that hvps is
the last parameter to the VIO functions rather than the first parameter.

When you create an AVIO presentation space, the Presentation Manager
creates a "virtual display buffer" for you. This is simply a block of
memory organized into rows and columns of characters. You specify the
dimensions of this virtual display buffer by using the parameters cxDisplay
(number of characters per row) and cyDisplay (number of rows).

296 SECTION TWO: PAINTING THE CLIENT WINDOW

The ebAttrs parameter must be either 1 or 3. This specifies the number of
"attribute" bytes associated with each character. When ebAttrs is set to 1,
each character has 1 attribute byte. Within the virtual display buffer, the
character and attribute bytes alternate (character first and then attribute).
The attribute is compatible with the attribute byte used in character modes
of the IBM Color Graphics Adapter (CGA) , Enhanced Graphics Adapter
(EGA), and Video Graphics Array (VGA). The attribute byte indicates the
foreground and background colors of the character. (I'll discuss the alterna
tive use of 3 attribute bytes later in this chapter.)

The total number of bytes required for the AVIO virtual display buffer is the
product of ex Display, eyDisplay, and the number of bytes associated with
each character (2 if ebAttrs is set to 1, or 4 if ebAttrs is set to 3). The total
size· of the AVIO virtual display buffer cannot exceed 65,536 bytes. Once
you create an AVIO presentation space, you cannot change the dimensions
or number of attribute bytes.

When first created, the virtual display buffer is cleared to simulate a blank
screen. The character bytes are set to spaces, and the attribute bytes are set
to 7, which is light gray text on a black background.

The AVIOI program in Figure 7-1 needs to display only sNumLines rows of
text with a maximum width of VIDEOWIDTH (defined in the beginning of
the AVIOl.C file). Thus the program creates a presentation space just large
enough for this output:

VioCreatePS (&hvps, sNumLines, VIDEOWIDTH, 0, 1, NULL) ;

You'll notice that the VioCreatePS function has no parameter to specify the
window for which the AVIO presentation space is to be used. After a pro
gram, creates an AVIO presentation space, it must "associate" the presenta
tion space with a screen device context for a particular window. As you saw
in Chapter 5, you can obtain a device context for a window by calling

hdc = WinOpenWindowDC (hwnd) ;

You then associate the AVIO presentation space with this device context:

VioAssociate (hdc, hvps) ;

Before your program terminates, it should disassociate the AVIO presenta
tion space from the device context:

VioAssociate (NULL, hvps) ;

CHAPTER SEVEN: ADVANCED VIO 297

and destroy the presentation space:

VioDestroyPS (hvps) ;

You'll probably do this during the WM_DESTROY message.

AVIOI also creates a micro-PS during the WM_CREATE message. This pre
sentation space is associated with the same device context as the AVIO pre
sentation space:

hps = GpiCreatePS (hab. hdc. &sizl. PU_PELS : GPIF_DEFAULT :
GPIT_MICRO : GPIA_ASSOC)

This micro-PS is also destroyed during the WM_DESTROY message:

GpiDestroyPS (hps) ;

Creating this micro-PS is not strictly required, but it helps out during
WM_PAINT processing.

Writing to the Presentation Space
OS/2 1.0 has seven VIO functions that let you display text on the screen. A
Presentation Manager program can use these same seven functions to dis
play text on the AVIO virtual display buffer. The function used in AVI01.C
is VioWrtCharStr. (The other functions are discussed later in this chapter.)

The general syntax of VioWrtCharStr is

VioWrtCharStr (&chString. cbString. usRow. usCol. hvps) ;

The first parameter is a pointer to a character string; the second parameter is
to the length of this string. The usRow and usCol parameters indicate the
character row and column in which the first character of the string will be
displayed. The top row is row 0; the leftmost column is column o.
You can write to the AVIO virtual display buffer any time after you create
it. (Because the text in AVIOl's window does not change, AVIOI does this
during the WM_CREATE message.) However, when you write to the AVIO
virtual display buffer during the WM_CREATE message, the text is not dis
played on the program's window because the window is not yet visible. You
must still update the window during the WM_PAINT message.

298 SECTION TWO: PAINTING THE CLIENT WINDOW

Updating the Window
To display text on the window, you must update the window from the AVIO

virtual display buffer. Two functions do this: VioShowBuf, which was in
cluded in OS/2 1.0, and VioShowPS, which is new with the Presentation
Manager.

The AVIOI program uses VioShowBuf, which has a general syntax as
follows:

VioShowBuf (usByteOffset. usLength. hvps) ;

The function updates usLength bytes beginning at the usByteOffset from the
start of the virtual display buffer.

When the window is visible, you can call VioShowPS or VioShowBuf at any
time to update the window. However, as you saw in previous chapters, it's
often best to organize your programs so they write to the window only dur
ing the WM_PAINT message. Here's how AVIOI does it:

case WM_PAINT:
WinBeginPaint (hwnd. hps. NULL) ;
Gpi Erase (hps) ;
VioShowBuf (0, 2 * sNumLines*VIDEOWIDTH, hvps)
WinEndPaint (hps) :

return 0 ;

Note that the second parameter to WinEndPaint is the micro-PS handle ob
tained during WM_CREATE. The presentation space handle is associated
with the device context for the window. The AVIO presentation space is also
associated with the same device context. This ensures that any updating of
the window affects only the invalid area. Note that you can also display
graphics to the window by using the hps handle in GPI calls.

If you want to restrict the VioShowBuf call to the invalid rectangle of the
window (which is often more efficient), you can pass a pointer to a RECTL

structure as the last parameter of WinBeginPaint. You must then convert the
pixel coordinates of this rectangle into character rows and columns before
calling VioShowBuf (As I'll discuss later in this chapter, you can obtain the
dimensions of the AVIO character cell by calling VioGetDeviceCeliSize.)

CHAPTER SEVEN: ADVANCED VIO 299

Processing WM_SIZE Messages
Every window procedure that uses an AVIO presentation space must pass
the WM_SIZE message to WinDefAVioWindowProc. You can do your own
WM_SIZE processing before or after this call:

case WILSIZE:

WinDefAVioWindowProc (hwnd. msg, mpl. mp2)

return 0 ;

The AVIO Presentation Space
When you first encountered the GPI presentation space, the concept may
have been somewhat difficult to grasp. You eventually saw how the presen
tation space is associated with a device context and how it stores various at
tributes that affect how the GPI functions work on the device.

The AVIO presentation space is conceptually much simpler. The most im
portant part of the AVIO presentation space is the virtual display buffer that
you write on when you call VIO functions. The presentation space also
includes a current cursor position, cursor shape, and origin, as well as other
information.

The Virtual Display Buffer
When you create an AVIO presentation space, you define the row and col
umn dimensions of a display surface and the number of attribute bytes
associated with each character. The Presentation Manager allocates a block
of memory to use for the virtual display buffer.

You can think of this virtual display buffer as comprising a series of cells.
Each cell is either 2 or 4 bytes long and comprises a character and 1 or 3 at
tribute bytes, depending on the cbAttrs parameter in the VioCreatePS
function.

For example, an AVIO presentation space of 5 rows and 10 columns has a
virtual display buffer either 100 or 200 bytes long. The buffer begins with
the cell in the upper-left corner (row 0 and column 0) and continues with the
cells in the first row. The other rows follow. This organization is shown in
Figure 7-3.

300 SECTION TWO: PAINTING THE CLIENT WINDOW

o

R

o 2
w

3

4

o

0

10

20

30

40

2

1 2

11 12

21 22

31 32

41 42

Col u m n

3 4 5

3 4 5

13 14 15

23 24 25

33 34 35

43 44 45

6 7 8 9

6 7 8 9

16 17 18 19

26 27 28 29

36 37 38 39

46 47 48 49

Figure 7-3. Organization of cells in the AVIO virtual display buffer that has 5 rows
and 10 cells per row.

Character and Attributes
When creating the presentation space, you have a choice of using 1 or 3 at
tribute bytes per cell.

The option of 1 attribute byte provides compatibility with character modes
of the IBM CGA, EGA, and VGA. Hence, the organization of the virtual dis
play buffer is familiar to any programmer who has worked with character
mode video output on PC compatibles under MS-DOS or OS/2. Each cell is 2
bytes long. The first byte is the character, and the second is the attribute.
This is shown in Figure 7-4. The byte offset is measured from the beginning
of the virtual display buffer.

Byte offset: 0 2 3 4 5

Figure 7-4. The organization of characters and attributes when using 1 attribute byte.

The attribute byte comprises two 4-bit color codes, as shown in Figure 7-5.
The lower 4 bits indicate the character color, and the upper 4 bits indicate
the background color.

7 6 5 4 3 2 o
~------r-----~I~I ______ ~------~

'----- Character color
'--------------- Background color

Figure 7-5. The AVIO attribute byte.

CHAPTER SEVEN: ADVANCED VIO 301

These 4-bit color values describe a color based on an IRGB (lntensity-Red
Green-Blue) encoding as shown in Figure 7-6.

AVIOColors
Traditional

I R G B Value Color Names Equivalent GPI Color

0 0 0 0 0 Black CLR_BLACK
0 0 0 1 Blue CLR_BLUE
0 0 0 2 Green CLR_DARKGREEN
0 0 1 3 Cyan CLR_DARKCYAN
0 0 0 4 Red CLR_DARKRED
0 0 1 5 Magenta CLR_DARKPINK
0 0 6 Brown CLR_BROWN
0 1 1 1 7 Light gray CLR_PALEGRAY

0 0 0 8 Dark gray CLR_DARKGRAY
0 0 1 9 Light blue CLR_BLUE
0 0 10 Light green CLR_GREEN
0 1 11 Light cyan CLR_CYAN

0 0 12 Light red CLR_RED
0 1 13 Light magenta CLR_PINK

0 14 Light yellow CLR_YELLOW
1 15 White CLR_WHITE

Figure 7-6. The color values used in the AVIO attribute byte.

For example, an attribute byte of OxlE is yellow text (14 or OxE) on a blue
background (1). These color values do not correspond to the values of the
GPI color identifiers, so don't use GPI color indices (like CLR_BLUE) for
attribute bytes.

NOTE: Programmers familiar with character-mode programming will
note that the interpretation of the attribute is not exactly the same as
in the default operation of the eGA, EGA, and VGA. By default, these
video boards interpret the high bit of the attribute as a "blinking" bit
rather than as an intensity of the background color. Advanced VIO

does not support blinking characters.

When you set the cbAttrs parameter in VioCreatePS to 3, each cell has 4
bytes. The first byte is the character, the second is the normal attribute de
scribed above, and the third is an extended attribute byte. This is shown in
Figure 7-7. The fourth byte of each cell is used internally by the Presenta
tion Manager for double-byte character set support.

302 SECTION TWO: PAINTING THE CLIENT WINDOW

Byte offset: 0 2 3 4 5 6 7

Char Attr Ext. Char Attr Ext.
0 0 Attr 1 1 Attr

0 1

Figure 7-7. The organization of characters and attributes with the use of 3 attribute
bytes.

The extended attribute byte is shown in Figure 7-8.

7 6 5 4 3

IT
Font ID (0 for default font)

L.....-_________ 1 for transparent background

'----------------- 1 for reverse video

'---------------- 1 for underscore

Figure 7-8. The AVIO extended attribute byte.

When you set bit 4 to 1, the background of the character cell is not colored
by the background color. Whatever was there remains there. (This is useful
when you mix AVIO text and graphics.) When bit 6 is set to 1, foreground
and background colors are switched for the charactet. Bit 7 underlines the
character.

Writing Directly to the Buffer
When you call functions such as VioWrtCharStr to display text on an AVIO

presentation space, the text is stored in the virtual display buffer and, if pos
sible, displayed on the window.

You can also write directly on the virtual display buffer. To do this, you
must first obtain a far pointer to the beginning of the buffer by calling
VioGetBuf. Your program can then write on the buffer using normal C
pointer manipulation. But this text will not automatically be displayed on
the window. You must update the window from the buffer with VioShowPS
or VioShowBuf.

You need to define a few variables in preparation for calling VioGetBuf:

PCHAR pVideoBuffer ;
ULONG ulVideoBuffer
ULONG usVideoLength :

CHAPTER SEVEN: ADVANCED VIO 303

You call VioGetBuf like this:

VioGetBuf (&ulVideoBuffer, &usVideoLength, hvps) ;

On return from the function, ulVideoBuffer is a far pointer to the beginning
of the logical video buffer stored as a ULONG integer. The returned value of
usVideoLength is the length of the buffer in bytes. You already know this
length: It's the number of rows times the number of columns times the num
ber of bytes per cell (2 or 4).

The first parameter to VioGetBuf is declared in the BSESUB.H header file as
a pointer to a ULONG value, but it's really a pointer to a PCHAR (which it
self is a far pointer to CHAR), so you can cast it into PCHAR like this:

pVideoBuffer = (PCHAR) ulVideoBuffer ;

Let's assume that cxDisplay is the width of the AVIO presentation space and
cbAttrs is the number of attribute bytes. If you wanted to write the letter A
in the sRow and sCol position of the virtual display buffer, you would use
the following syntax:

*(pVideoBuffer + sRaw * cxDisplay * (cbAttrs + 1) + seal) ='A' ;

Of course, this syntax is somewhat clumsy for general use. You will proba
bly want to define a macro that makes the code a little clearer.

Or, you could use the approach shown in the AVI02 program in Figure 7-9.

The AVI02 File

fI- - - - - - - - - - - - - - - - -
fI AVI02 make file
ffo- - - - - - - - - - - - - - - - -

avio2.obj : avio2.c
cl -c -G2sw -W3 avio2.c

avio2.exe : avio2.obj avi02.def
link avio2. /align:16. NUL, os2, avio2

304 SECTION TWO: PAINTING THE CLIENT WINDOW

The AVI02.C File

/* -

AVI02.C -- Advanced VIO Display of Text
-------------------------------_._-------*/

#define INCl_WIN
#define INCl_VIO
#define INCL-AVIO
#include <os2.h>

#define VIDEOWIDTH 40

typedef struct
{

CHAR ch ;
CHAR attr
}

VIDEO [][VIDEOWIDTH]

typedef VIDEO FAR *PVIDEO

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR
static ULONG

szClientClass [] - "Avio2" :
flFrameFlags - FCF_TITlEBAR

FCF_SIZEBORDER
FCF_SYSMENU :
FCF_MINMAX

FCF_SHELlPOSITION FCF_TASKLIST;
HMO
HWND
OMSG

hmq ;
hwndFrame. hwndClient ;
qmsg

hab = Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0) ;

WinRegisterClass (hab, szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBlE.
&flFrameFlags. szClientClass. NULL.
Ol. NULL. O. &hwndClient) ;

(continued)

CHAPTER SEVEN: ADVANCED VIO 305

Figure 7·9. The AVI02.C File. continued

WinSendMsg (hwndFrame, WM_SETICON,
WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

~inOestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mpZ)
{

static CHAR *aszAlice [] =

static HPS
static HVPS
static PVIDEO
static SHORT
static USHORT
HOC
RECTL
SHORT
SIZEL
ULONG

hps ;
hvps ;
pvideo

"Alice was beginning to get very tired of",
"sitting by her sister on the bank and of",
"having nothing to do: once or twice she",
"had peeped into the book her sister was",
"reading, but it had no pictures or",
"conversations in it, \"and what is the",
"use of a book.\" thought Alice. \"without",
"pictures or conversations?\""
} ;

sNumLines - sizeof aszAlice / sizeof aszAlice[O]
usVideoLength
hdc ;
rcl ;
sRow. seal ;
s i z1 ;
ulV1deoBuffer

switch (msg)
{

case WM_CREATE:
hdc - WinOpenWindowDC (hwnd)

sizl .ex - sizl.cy - 0
hps - GpiCreatePS (hab. hdc, &s1z1, PU_PELS

GPIT_MICRO

306 SECTION TWO: PAINTING THE CLIENT WINDOW

GPIF_DEFAULT :
GPI.LASSOC)

(continued)

Figure 7-9. The AVI02.C File. continued

VioCreatePS (&hvps. sNumLines. VIDEOWIDTH. O. 1. NULL)
VioAssociate (hdc. hvps) ;

VioGetBuf (&u1VideoBuffer. &usVideoLength. hvps)
pvideo - (PVIDEO) u1VideoBuffer ;

for (sRow - 0 ; sRow < sNumLines ; sRow++)
for (sCol - 0 ; sCol < VIDEOWIDTH ; sCo1++)

(*pvideo) [sRow)[sCol).attr - '\xlE'

for (sRow - 0 ; sRow < sNumLines ; sRow++)
for (seol - 0 ; aszA11ce [sRow)[sCol) ; sCo1++)

(*pvideo) [sRow)[sCol).ch - aszAlice [sRow)[sCo1)

return 0

case WM_SIZE:
WinDefAVioWindowProc (hwnd. msg. mpl. mp2)
return 0 ;

case WM_PAINT:
WinBeginPaint (hwnd, hps. NULL)

WinQueryWindowRect (hwnd. &rcl)
WinFillRect (hps, &rcl. CLR-DARKBLUE)

VioShowBuf (0, usVideoLength, hvps) :

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
VioAssociate (NULL, hvps)
VioDestroyPS (hvps) ;
GpiOestroyPS (hps) :
return 0 ;

return WinDefWindowProc (hwnd. msg, mpl. mp2)

CHAPTER SEVEN: ADVANCED VIO 307

The AVI02.DEF File

: AVI02.DEF module definition file

NAME AVI02 WINDOWAPI

DESCRIPTION
HEAPSIZE
STACKSIZE
EXPORTS

'Advanced VIa Display of Text (C) Charles Petzold. 1988'
1024
8192
ClientWndProc

Figure 7-9. The AVI02 program.

The method shown here works only when the width of the AVIO presenta
tion space is a constant and is known during compilation of the program.

If you're using 1 attribute byte and VIDEOWIDTH is the width of the AVIO

presentation space, you can define a new data type called VIDEO like this:

typedef struct
{

CHAR ch ;

CHAR attr
}

VIDEO [][VIOEOWIDTH]

The data type VIDEO is a two-dimensional array of structures. The first
dimension is the row, and the second is the column. Define another new data
type called PVIDEO that is a far pointer to VIDEO:

typedef VIDE~ FAR *PVIDEO ;

Within the window procedure, you define the variable pvideo as a PVIDEO

(a pointer to a VIDEO array of structures):

static PVIDEO pvideo ;

The VioGetBuf call is the same as shown above, but now cast ulVideoBuffer
into pvideo:

pvideo = (PVIDEO) ulVideoBuffer

308 SECTION TWO: PAINTING THE CLIENT WINDOW

To store an 'A' in the sRow row and sCol column, you use

(*pv;deo)[sRow][sCol].ch - 'A' ;

To set the attribute to OxlE (yellow text on a blue background), use

(*pv;deo)[sRow][sCol].attr - '\xlE' ;

AVI02 initializes the virtual display buffer using two sets of for loops. The
first sets all the attributes of the virtual display buffer to \xlE. The second
transfers the text into the character positions of the buffer.

Before updating the window during the WM_PAINT message, AVI02 erases
the background of its window using WinFillRect rather than GpiErase:

WinQueryWindowRect (hwnd. &rcl) ;
WinFillRect (hps. &rcl. CLR......DARKBLUE)

Thus the background of the window is the same as the background of the
character cells. This is one way to take care of the color difference between
AVIO and GPI.

The Size of the Display Buffer
Before calling VioCreatePS, you must determine the row and column
dimensions of the virtual display buffer. The entire size of this buffer (rows
times columns times number of bytes per cell) cannot exceed 65,536 bytes.

You'll probably find that an application using AVIO fits into one of the fol
lowing four categories:

1. Programs that require a virtual display buffer smaller than the size of
the screen and that probably use a fixed-size window to display the en
tire buffer at all times. AVIOI and AVI02 are examples of this type of
program, although the window is not a fixed size. (Fixed-size windows
are demonstrated in the FREEMEM and DIGCLOCK programs shown in
Chapter 10.)

2. Programs that require a buffer of a constant size that may be larger than
the size of the screen. The SYSVALS4 program, shown later in this chap
ter, is of this type. The program provides a facility to scroll the
presentation space within the window.

CHAPTER SEVEN: ADVANCED VIO 309

3. Programs that use a virtual display buffer to display part of a document.
The buffer should be large enough to encompass the entire client win
dow when the window is maximized. The output is adjusted to the
window size. A character-mode word-processing or spreadsheet program
fits this category.

4. Programs that use a teletype output mode to display character data. This
category might include modem communications programs.

For categories I and 2, the size of the presentation space can be easily deter
mined by the program before it calls the VioCreatePS function. Category 3
programs must determine the number of character rows and columns
that can be displayed when the window is maximized. You can do this
by calling WinQuerySysValue with both the CV _CXFULLSCREEN and
SV _CYFULLSCREEN parameters to get the pixel dimensions of the max
imized client window, and dividing by the AVIO character cell width and
height· that you obtain by calling VioGetDeviceCellSize (described later in
this chapter).

With a category 4 program (such as a modem communications program),
you probably want a width of 80 columns and a maximum number of lines.
(With the I-byte attributes, the AVIO presentation space can be 409 lines
long.) This lets you retain and scroll back information that has scrolled past
the top of the window.

Other Presentation Space Data
Besides the virtual display buffer, the AVIO presentation space retains other
data, including

• The origin (the character row and column displayed in the upper left
corner of the window)

• The row and column cursor position

• The cursor size and whether it's displayed or hidden

• The dimension in pixels of the character cell

• The code page (or character set)

• Font information

You can query or change these attributes using various VIO and AVIO func
tions that I'll describe in the next section.

310 SECTION TWO: PAINTING THE CLIENT WINDOW

The VIO and AVIO Functions
Advanced VIO supports only a subset of the OS/2 1.0 VIO functions. These
are listed in Figure 7-10 along with additional AVIO functions available
under the Presentation Manager.

OS/21.0 VIO Functions Usable in
a Presentation Manager Program

VioGetAnsi VioSetAnsi
V ioGetBuf VioSetCp
VioGetConfig VioSetCurPos
VioGetCp VioSetCurType
VioGetCurPos VioShowBuf
VioGetCurType VioWrtCellStr
VioReadCellStr VioWrtCharStr
VioReadCharStr VioWrtCharStrAtt
VioScrollDn VioWrtNAttr
VioScrollLf VioWrtNCell
VioScrollRt VioWrtNChar
VioScrollUp VioWrtTTY

Additional Presentation
Manager AVIO Functions

VioAssociate
VioCreateLogFont
VioCreatePS
VioDeleteSetId
VioDestroyPS
VioGetDeviceCellSize
VioGetOrg
VioQueryFonts
VioQuerySetlds
VioSetDeviceCellSize
VioSetOrg
VioShowPS

Figure 7-10. VIO functions available to a Presentation Manager program.

The following sections describe how the VIO functions work in the AVIO
presentation space. The functions are grouped according to purpose:

• Cursor Position and Size Functions

• Output Functions

• ANSI Control Sequences

• Input Functions

• Scrolling Functions

• Origin Functions

• Cell Size Functions

• Virtual Display Buffer Functions

• Miscellaneous VIO Functions

Except for the VioCreatePS function, all VIO functions require the hvps
handle as the last parameter.

CHAPTER SEVEN: ADVANCED VIO 311

Cursor Position and Size Functions
AVIO displays a cursor only if the program calls VioWrtTTY (described
shortly). When you first create an AVIO presentation space, the cursor is
positioned at the upper-left corner (row 0, column 0). You can change the
cursor position by calling

VioSetCurPos CusRow, usCol, hvps) ;

You do not need to call VioShowBuj or VioShowPS to display the new cursor
position.

To obtain the current position of the cursor, call

VioGetCurPos C&usRow, &usCol, hvps) ;

Note that this function requires two pointers to variables that receive the
row and column position. For example, to move the cursor back one posi
tion (but not to the left of column 0), you can use the following code:

USHORT usRow, usCol ;

VioGetCurPos C&usRow, &usCol, hvps)

if (usCol > 0)
VioSetCurPos (usRow, --usCol, hvps) ;

The only other VIO function that changes the position of the cursor is
VioWrtTTY.

By default, the cursor is an underline similar to the hardware cursor sup
ported by most video boards in character modes. Unlike the hardware cur
sor, the AVIO cursor does not blink. You can change the size of the cursor or
make it invisible using VioSetCurType. This function requires a structure of
type VIOCURSORINFO defined in BSESUB.H:

typedef struct _VIOCURSORINFO
{

USHORT yStart
USHORT cEnd
USHORT ex ;
USHORT attr
}

VIOCURSORINFO

312 SECTION TWO: PAINTING THE CLIENT WINDOW

By convention, a structure of type VIOCURSORINFO begins with the prefix
vioci. You define such a variable like this:

• VIOCURSORINFO vioei :

To obtain the current VIOCURSORINFO settings, use

VioGetCurType (&vioei, hvps) :

To set new values, use

VioSetCurType (&vioei, hvps) :

You don't need to make a call to VioShowBufor VioShowPS after you change
the cursor size.

The height of the cursor is specified by the yStart and cEnd fields, which are
in units of pixels measured from the top of a character, starting with O. (To
determine the height of a character in pixels, you use the VioGetDeviee
CellSize function described under "Cell Size Functions.") The eEnd field
must be greater than or equal to the yStart field. If the two fields are equal,
the cursor is 1 pixel high.

For example, suppose that characters are 10 pixels high. To create a box cur
sor the full height of the character, you can use the following code:

VioGetCurType (&vioei, hvps) ;

vioei.yStart - 0
vioei.cEnd - 9 ;

VioSetCurType (&vioci, hvps) :

The Presentation Manager displays the cursor in reverse video, so the char
acter is still visible.

The width of the cursor is specified by ex. Because the cursor can be only 1
character wide, you can only set this field equal to 1 (which indicates the
cursor is 1 character wide) or 0 (which indicates a default width, again 1
character wide).

You can set the attr field to -1 to hide the cursor, or to any other value to
display the cursor. The function on the next page hides the cursor.

CHAPTER SEVEN: ADVANCED VIO 313

VOID HideCursor (HVPS hvps)
{

VIOCURSORINFO vioei ;

VioGetCurType (&vioc;. hvps)
vioei .attr "" -1 ;
VioSetCurType (&vioci. hvps)
}

If a program does not use VioWrtTTY for displaying output (as in AVIOl),
the cursor will be hidden anyway. This function shows the cursor again:

VOID ShowCursor (HVPS hvps)
{

VIOCURSORINFO vioe; ;

VioGetCurType (&vioei, hvps)
vioei.attr'" 0 ;
VioSetCurType (&v;oei. hvps)
}

As you'll learn in Chapter 8, it's a good practice to hide a cursor when a
program loses the input focus and to display the cursor when the program
gains the input focus. The presence of the cursor indicates to the user when
the program can accept keyboard input.

Output Functions
Seven VIO functions let you display text or attributes on the virtual display
buffer. The first six of these functions require parameters to specify the row
and column position where the text or attributes begin.

You've already seen how the VioWrtCharStr function works in AVI01.e:

VioWrtCharStr C&chCharString, cbCharString, usRow. usCol, hvps)

This function requires a pointer to a character string and the length of the
string. The function does not affect the attributes already set for the cells.

You can also write a string of cells. Each cell is a character followed by 1 at
tribute byte or 3 attribute bytes:

VioWrtCellStr C&chCellString, cbCellString, usRow, usCol, hvps)

The cbCellString parameter is the number of bytes in the string: an even
number for single attribute bytes and a mUltiple of 4 for extended attributes.

314 SECTION TWO: PAINTING THE CLIENT WINDOW

In practice, this function is rather awkward to use. It makes most sense
when used in conjunction with VioReadCellStr (described under "Input
Functions") .

You can also write a character string that uses the same attribute for all
characters in the string:

VioWrtCharStrAtt (&chCharString, cbCharString, usRow, usCol, &bAttr, hvps)

The &bAttr parameter is a pointer to I byte or 3 bytes. For example, suppose
you want to display the text "Hello" at row 0 and column 1. You're using 3
attribute bytes and you want underlined yellow letters on a blue back
ground. The statement is

VioWrtCharStrAtt ("Hello", 5, 0, I, "\xlE\x80\O", hvps) ;

The following three functions display the same character, the same at
tribute, or the same cell repeated a specified number of times:

VioWrtNChar (&chChar, cbRepetition, usRow, usCol, hvps)
VioWrtNAttr (&bAttr, cbRepetition, usRow, usCol, hvps)
VioWrtNCell (&bCell, cbRepetition, usRow, usCol, hvps)

The &chChar parameter in VioWrtNChar points to a I-byte string. The
&bAttr parameter in VioWrtNAttr points to a 1-byte or 3-byte string.
The &bCell parameter in VioWrtNCeli points to a 2-byte or 4-byte string.

For example, suppose cxDisplay is the width of the AVID presentation space
in characters, cyDisplay is the height in rows, and you're using the I at
tribute byte option. You can set the entire AVID virtual display buffer to
yellow asterisks on a blue background by calling

VioWrtNCell ("*\x1E", cxDisplay * cyDisplay, 0, 0, hvps) ;

The VioWrtNAttr function is useful for highlighting (or un-highlighting) a
text string already in the virtual display buffer.

None of these six functions changes the cursor position: Output that con
tinues past the end of a line wraps to the next line; output that exceeds the
length of the virtual display buffer is ignored. Control codes, such as tabs
and carriage returns, are displayed as characters - they are not interpreted.

The seventh, and highest-level, text-output function is VioWrtTTY:

VioWrtTTY (&chCharString, cbCharString, hvps) ;

CHAPTER SEVEN: ADVANCED VIO 315

The first parameter is a pointer to a text string, and the second parameter is
the number of characters in the string. VioWrtTTY displays the text string
starting at the current cursor position and leaves the cursor at the next posi
tion following the end of the text.

As with the first six output functions, text displayed by VioWrtTTY wraps at
the end of a line. However, VioWrtTTY doesn't ignore text that exceeds the
length of the virtual display buffer. Instead, it scrolls the contents of the vir
tual display buffer up one line to continue displaying the text on the last
line. The first line in the virtual display buffer is lost.

VioWrtTTYalso recognizes and interprets five control codes. These charac
ters are not displayed:

Control Character

Bell ('\a')
Backspace ('\b')

Tab ('\t')

Linefeed ('\n')

Carriage return ('\r')

Action

Beeps the speaker.
Moves the cursor back one position without deleting,

but not beyond column O.
Inserts spaces to the next coh,lmn position that is a

multiple of 8.
Moves the cursor down one line (and possibly scrolls

the contents of the virtual display buffer).
Moves the cursor to the beginning of the current line.

VioWrtTTY also recognizes ANSI control sequences if ANSI processing is
enabled.

ANSI Control Sequences
The AVIO version of VioWrtTTY supports a small subset (Figure 7-11) of
control sequences defined by American National Standards document
X3.64-1979, "Additional Controls for Use with American National Standard
Code for Information Interchange [ASCII]." These are commonly referred
to as "ANSI control sequences." You can mix ANSI control sequences with
text strings that you pass to VioWrtTTY. These control sequences let you set
the cursor position and foreground and background colors.

NOTE: Some ANSI control sequences recognized by the character
mode VIO interface are not recognized by AVIO.

316 SECTION TWO: PAINTING THE CLIENT WINDOW

ANSI Sequence

"\33[2J"

"\33[K"

"\33 [row;coIH"
"\33 [row;colf "
"\33[nA"
"\33[nB"
"\33[nC"
"\33[nD"
"\33[s"
"\33[u"
"\33[x; ... ;xm"

Action

Erases screen with current attribute and sets the cursor
to the upper-left corner.

Erases line starting from current cursor position using
current attribute.

Sets cursor to row and col.
Sets cursor to row and col.
Moves cursor up n rows.
Moves cursor down n rows.
Moves cursor forward n columns.
Moves cursor backward n columns.
Saves current cursor position.
Restores cursor position from saved value.
Sets attributes.

Figure 7·11. ANSI control sequences recognized by the AVIO version ojVioWrtTTY.

Keep the following points in mind as you work with the control sequences:

• The first character of the control sequence is always an ASCII escape
character (\33 in octal or \xlB in hexadecimal). The second character is
always a left bracket.

• The two control sequences that set a cursor position use row and column
values starting at 1 rather than o. (Thus the upper-left corner of the vir
tual display buffer is row 1 and column 1.)

• The four functions that move the cursor n positions do not move the cur-
sor past the boundaries of the virtual display buffer.

• The functions that save and restore the cursor position cannot be nested.

The last control sequence shown in Figure 7-11 sets colors that are used for
text displayed after the control sequence and for erasing the virtual display
buffer. x can be one or more of the numbers shown in Figure 7-12.

Color

Black
Red
Green
Yellow
Blue
Magenta
Cyan
White

Foreground

30
31
32
33
34
35
36
37

Background

40
41
42
43
44
45
46
47

Figure 7·12. Values used in setting attributes using ANSI. (continued)

CHAPTER SEVEN: ADVANCED VIO 317

Figure 7-12. continued

Other Attributes

Reset attributes to default:
Bold (light) foreground:
Reverse video:
Hide characters:

Value

o
1
7
8

For example, if you want to use yellow (light brown) characters on a blue
background, you can set that attribute and clear the virtual display buffer
using the following statement:

VioWrtTTY ("\33[33;44;lm\33[2J", 14, hvps) ;

By default, ANSI processing is enabled. You can disable ANSI processing by
calling the following function:

VioSetAnsi (ANSI_OFF, hvps) ;

You can enable it again by calling

VioSetAnsi (ANSI_ON, hvps) ;

The only reasons for disabling ANSI processing are to display the character
associated with the ASCII escape code or to implement another terminal
emulation protocol that uses the escape code. You can determine whether
ANSI processing is enabled or disabled by calling

VioGetAnsi (&usAnsiState, hvps) :

On return from the function, the variable usAnsiState is set to· either
ANSI_ON or ANSI_OFF.

Using C Output Functions
You may be aware that three "console" output functions included in the
Microsoft C libraries use VioWrtTTY to write to the screen. These functions
are putch (display a character), cputs (display a zero-terminated string), and
cprintj (display a formatted string similar to print/). The cputs and cprintj
functions call putch for each character they display. The functions are
declared in the CONIO.H header file.

At first it may seem possible to use these functions to write on an AVIO pre
sentation space. But that's not so. The simple reason: The putch function in
cluded in the C libraries calls VioWrtTTY with the last parameter set to 0

318 SECTION TWO: PAINTING THE CLIENT WINDOW

rather than to hvps. The zero parameter is the value that OS/2 character
mode applications use.

However, in your program you can define a new version of putch that uses
hvps as the last parameter to VioWrtTTY. To do this you need to define hvps
as a global variable:

#include <conio.h> II declaration of putch

HVPS hvps II handle to AVIO PS must be global!

int putch (char ch)
{

return VioWrtTTY (&ch. 1. hvps)

If you do this, then cputs and cprintfboth write output to the AVIO virtual
display buffer. Unlike puts, cputs does not append a newline character to the
string, so you'll want to use "\r\n" to move the cursor to the next line.
Unlike print[, cprintf does not translate the C newline character (\n) into a
carriage return and linefeed sequence, so you'll probably want to use \r\n to
go to the beginning of the next line rather than just \n.

But keep in mind that cputs and cprintf will be somewhat slow because they
call VioWrtTTY for each character individually. It is much more efficient
to call VioWrtTTY for a whole string of characters. If you want to use cputs,
you'll get better performance by defining a new version of the function:

#1nclude <conio.h> II declaration of cputs
#include <string.h) II declaration of strlen

HVPS hvps II handle to AVIO PS must be global!

int cputs (char *psz)
{

return VioWrtTTY (psz. strlen (psz), hvps)

CHAPTER SEVEN: ADVANCED VIO 319

A more efficient version of cprint[is slightly more difficult but certainly not
impossible. It uses the vsprint[function, which is similar to sprint[but with
an important difference: The vsprint[function accepts a pointer to the items
to be formatted rather than accepting the items themselves. This allows
arguments passed on a stack to be used by the vsprint[function. The
va_start, va_arg, and va_end macros defined in STDARG.H help in creating
this new cprint[function:

#include <conio.h>
#include <stdio.h>
#include <stdarg.h>

II declaration of cprintf
II declaration of vsprintf
1/ declaration of va_start. etc.

#define MAX LENGTH 80 /1 maximum length of formatted string

HVPS hvps /1 handle to AVIO PS must be global!

int cprintf (char *szFormat. . ..)
{

CHAR chBuffer [MAXLENGTH]
SHORT sLength ;
va-list pArguments ;

va_start (pArguments. szFormat) ;
sLength = vsprintf (chBuffer. szFormat, pArguments)

VioWrtTTY (chBuffer. sLength. hvps) ;

va_end (pArguments)
return sLength ;

Input Functions
Two VIO functions can read from the virtual display buffer:

VioReadCellStr (&chCellString. &cb. usRow. useol. hvps)
VioReadCharStr (&chCharString. &cb. usRow. useol. hvps)

320 SECTION TWO: PAINTING THE CLIENT WINDOW

In both cases, the first parameter is a pointer to a buffer that receives the cell
string or character string. The second parameter is a pointer to a USHORT

variable that you set to the number of bytes you want to read. On return
from the function, the cb parameter indicates the number of bytes actually
read. This could be fewer than the number you specified if the count ex
ceeds the size of the virtual display buffer.

The VioReadCellStr function can be used to save an area of the virtual dis
play. You restore the area with VioWrtCellStr. (You can use VioReadCharStr
and VioWrtCharStr instead if you don't need to save and restore the at
tributes.) You can also use VioReadCellStr in conjunction with VioWrtCellStr
to alter part of the virtual display. For example, suppose you use the 3-
attribute option and you want to alter a 20-character string by setting
reverse video. Here's the code:

BYTE bCellBuffer [20][4] ;
USHORT i, cb :

cb .. 20 * 4

VioReadCellStr (bCellBuffer. &cb. usRow. usCol, hvps)

for (i .. 0 : i < 20 : i++)

bCellBuffer [;][2] :- '\x40' :

VioWrtCellStr (bCellBuffer, cb. usRow, usCol. hvps)

Scrolling Functions
Four VIO functions scroll a rectangular area of the virtual display buffer
up, down, left, and right. You specify upper-left and lower-right character
positions, the number of lines to scroll, and the cell that is used to fill the
area left uncovered by the scroll.

The most common scrolling function is the one that scrolls a rectangular
area up:

VioScrollUp (usTopRow. usLeftCol. usBottomRow. usRightCol,
cbL i nes, &bCell, hvps) ;

The scrolled area is a rectangle that includes the usTopRow and
usBottomRow rows and the usLeftCol and usRightCol columns.

CHAPTER SEVEN: ADVANCED VIO 321

• usTopRow must be less than or equal to usBottomRow.

• usLeftCol must be less than or equal to usRightCol.

The cbLines parameter indicates the number of lines to scroll. (The function
doesn't do anything if cbLines is 0.) The area at the bottom of the rectangle
left uncovered by the scroll is filled with the cell specified as the pointer
to bCel!.

If your values for usBottomRow, usRightCol, or cbLines exceed the maxi
mum, they are set to the maximum. Thus, it is customary to use -1 (equiva
lent to 65,535 when interpreted as an unsigned value) when you want to use
the maximums. For example, to scroll the entire contents of the virtual
buffer up one line, use

VioScrollUp (0, 0, -I, -I, I, " \7", hvps) ;

The top line of the virtual buffer is lost. The last line is filled with blanks
with the attribute 7 (the default light gray on black color). If you were using
3 attributes, the cell string would be \7\0\0.

To blank the entire virtual buffer, set the cbLines parameter to a maxi
mum value:

VioScrollUp (0, 0, -I, -I, -I, " \xlE", hvps) ;

The function to scroll a rectangular area down has the same syntax:

VioScrollDn (usTopRow, usLeftCol, usBottomRow, usRightCol, cbLines,
&bCell, hvps) ;

The lines on the bottom are lost. The lines on top are filled with bCel!.

The following two functions scroll an area left or right:

VioScrolllf (usTopRow. usLeftCol, usBottomRow, usRightCol, cbColumns. &bCell, hvps)
VioScrollRt (usTopRow, usleftCol. usBottomRow. usRightCol. cbColumns. &bCell. hvps)

The syntax is the same as that used in the other two scrolling functions ex
cept that the fifth parameter is the number of columns rather than the num
ber of lines. These functions will have no effect if the cbColumns parameter
is set to O.

Keep in mind that these scrolling functions move the contents of the virtual
display buffer and result in one or more lines or columns being lost from
the buffer. You may prefer to use VioSetOrg to move the virtual display
buffer relative to the window rather than to move cells within the buffer.

322 SECTION TWO: PAINTING THE CLIENT WINDOW

Origin Functions
Normally the upper-left corner of the virtual display buffer (row 0 and col
umn 0) is displayed in the upper-left corner of the window. You can change
that through use of the VioSetOrg function:

VioSetOrg (sRow, sCol, hvps) ;

After this call, the sRow and sCol position in the virtual display buffer is
displayed in the upper-left corner of the window. The SYSVALS4 program
shown later in this chapter uses this function to shift data within the win
dow. You can obtain the current origin by calling

VioGetOrg (&sRow, &sCol, hvps) ;

Cell Size Functions
When using OPI functions for character output, you obtain the dimensions
of a character by calling GpiQueryFontMetrics. With AVIO, you use
VioGetDeviceCeliSize:

VioGetDeviceCellSize (&cyChar, &cxChar, hvps) ;

On return from the function, cyChar and cxChar will be set to the height
and width, in pixels, of the character cell.

You can also set a new cell size by calling

VioSetDeviceCellSize (cyChar, cxChar, hvps)

However, this function is more limited than you may initially assume. The
AVIO interface supports (at most) two cell sizes: a large cell size and a
small cell size. Initially, the cell size is large, roughly approximating the
size of characters in a character-mode session. When a program's window
is maximized, the client window can display at least 25 rows of 80 charac
ters using this cell size.

You can switch to the smaller cell size by calling VioSetDeviceCeliSize with
very low values:

VioSetDeviceCellSize (1, 1, hvps) ;

You then use VioGetDeviceCeliSize to determine what size the character cells
really are.

CHAPTER SEVEN: ADVANCED VIO 323

You can also obtain this information by using DevQueryCaps. The
CAPS_CHAR_HEIGHT and CAPS_CHAR_ WIDTH parameters report
the large cell size, and the CAPS_SMALL_CHAR_HEIGHT and CAPS
_SMALL_CHAR_ WIDTH parameters report the small cell size. (You may
want to run the DEVCAPS program from Chapter 5 to see what these sizes
are for your particular display adapter.) If DevQueryCaps returns 0 for the
CAPS_SMALL_CHAR_HEIGHT and CAPS_SMALL_CHAR_ WIDTH pa
rameters, then a small cell size is not available.

When the Presentation Manager runs an OS/2 1.0 program in a window, it
includes the "Small Font" option on the program's system menu. This lets
the user select a small cell size if one is available. After switching to the
small cell size, the system menu allows switching back with the "Large
Font" option. You may want to provide a similar facility for your Presenta
tion Manager programs that use AVIO.

Virtual Display Buffer Functions
As you saw in AVI02, a program can obtain a pointer to the virtual display
buffer and write to it directly. The VioGetBuf function returns a pointer to
the buffer as a ULONG value. The size of the buffer in bytes is returned in
usVideoLength:

VioGetBuf (&ulVideoBuffer. &usVideoLength. hvps) ;

When writing directly to the buffer, you need to update the window from
the buffer by calling VioShowBuf or VioShowPS. The various VioWrt func
tions write text and attributes to the buffer and (if possible) to the window.

Two functions update the window from the virtual display buffer. The first
is a VIO function included in OS/2 1.0:

VioShowBuf (usByteOffset. usLength. hvps)

The usByteOffset parameter is an offset in bytes from the beginning of the
virtual display buffer. The usLength parameter indicates the number of
bytes to update.

The second function is an AVIO function:

VioShowPS (sHeight. sWidth. sCellOffset. hvps) ;

This updates a rectangle of cells that is sHeight characters high and sWidth
characters wide with the upper-left corner at the sCellOffset character. Note

324 SECTION TWO: PAINTING THE CLIENT WINDOW

that this function always updates complete cells. The sCeliOffset is the num
ber of character cells from the beginning of the buffer; the usByteOffset
parameter in VioShowBuf specifies a starting position in bytes.

For example, suppose your virtual display buffer is 10 characters wide and
has 1 attribute byte. Each row has 10 cells (20 bytes). You want to update the
second and third rows. The VioShowBuf call is

VioShowBuf (20. 40. hvps)

The VioShowPS call is

VioShowPS (2. 10. 10. hvps)

You should call one of these two functions during the WM_PAINT message
to update the invalid area of the window.

Miscellaneous VIC Functions
Three other OS/2 1.0 VIO functions are supported under the Presentation
Manager AVIO interface.

The VioGetConfig uses a structure of type VIOCONFIGINFO:

struct _VIOCONFIGINFO
{

USHORT cb ;
USHORT adapter
USHORT display
ULONG cbMemory
}

VIOCONFIGINFO ;

You define a structure of type VIOCONFIGINFO, set the cb field to the size
of the structure, and pass a pointerto the structure to VioGetConfig:

VIOCONFIGINFO vioin

vioin.cb = sizeof VIOCONFIGINFO

V;oGetConfig (0, &vioin. hvps) ;

CHAPTER SEVEN: ADVANCED VIO 325

The first parameter of VioGetConfig must be set to O. On return from the
function, the adapter and display fields contain codes that identify the video
adapter and display. The cbMemory field is not available under the AVIO in
terface. It's unlikely that this function provides meaningful information to a
Presentation Manager program.

The Return of SYSVALS
After enduring several versions of the SYSVALS program in Chapter 4, you
may have thought we were done with it. No such luck. SYSVALS is back!
The AVIO version is called SYSVALS4 and is shown in Figure 7-13.

The SYSVALS4 File

If -
SYSVALS4 make file
ff- - - - - - - - - - - - - - - - - - --

sys~als4.obj : sysvals4.c sysvals.h
cl -c -G2sw -W3 sysvals4.c

sysvals4.exe : sysvals4.obj sysvals4.def
link sysvals4, /align:16. NUL. os2. sysvals4

The SYSVALS4.C File

/*--
SYSVALS4.C -- System Values Display Program using AVIO

--*/

ftdefine INCLWIN
#define INCL_GPI
#define INCL-VIO
#define INCL_AVIO
Uinclude <os2.h>
Uinclude <stdio.h>
Uinclude <stdlib.h>
Uinclude "sysvals.h"

Udefine MAXWIDTH 60

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM. MPARAM)

HAB hab ;

326 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 7-13. The SYSVALS4.C File. continued

int main (void)
{

BYTE

static CHAR szClientClass [] - "SysVals4"
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_VERTSCROLL FCF_HORZSCROlL

HMO hmq ;
HWND hwndFrame, hwndClient ;
OMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0) ;

WinRegisterClass (hab, szClientClass, ClientWndProc, OL. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags, szClientClass, NULL,
OL, NULL, 0, &hwndClient) ;

WinSendMsg (hwndFrame, WM_SETICON,
WinOuerySysPointer (HWND_DESKTOP, SPTR-APPICON, FALSE),
NUll) ;

while (WinGetMsg (hab, &qmsg, NULL, 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) :
return 0 :

RgbToVioColor (COLOR clrRgb)
{

BYTE bIrgb
RGB rgb ;

rgb - MAKETYPE (clrRgb. RGB)

if (rgb.bBlue >- Ox80) blrgb
if (rgb.bGreen >- Ox80) blrgb
if (rgb. bRed >- Ox8D) blrgb

:

I '\xOI' I-

I '\x02' 1-

I '\x04' ,=

(continued)

CHAPTER SEVEN: ADVANCED VIO 327

Figure 7-13. The SYSVALS4.C File. continued

if (rgb.bBlue)- OxCO l: rgb.bGreen >- oxeo :: rgb.bRed)- Oxeo)
blrgb :- 8 ;

if (blrgb -- 0 && rgb.bBlue)- Ox40 && rgb.bGreen >- Ox40 &&
rgb.bRed >- Ox40)

bIrgb - 8

return bI rgb ;

BYTE ConstructOefaultAttribute (VOID)
{

return RgbToVioColor (
WinQuerySysColor (HWND_OESKTOP. SYSClR-WINOOW. Ol» « 4 :

RgbToVioColor (
WinQuerySysColor (HWND_OESKTOP, SYSClR-WINDOWTEXT. Ol» ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static BYTE
static HVPS
static HWNO
static HPS
static SHORT

CHAR
HOC
SIZEl
USHORT

switch (msg)
{

bBl ankCell [2] - ;

hvps ;
hwndHscroll, hwndVscroll
hps :
sHscrollPos, sVscrollPos,
cxChar. cyChar. cxClient, cyClient
szBuffer [80] :

hdc ;
sizl ;
usRow :

case WM_CREATI:.:
hdc - WinOpenWindowOC (hwnd)

sizl.cx = sizl .cy - 0
hps - GpiCreatePS (hab, hdc. &sizl. PU_PElS

GPIT _MICRO
GPIF_DEFAUlT :
GPIA_ASSOC)

VioCreatePS (&hvps, NUMLINES, MAXWIDTH, 0, 1. NULL)
VioAssociate (hdc. hvps) ;
VioGetOeviceCellSize (&cyChar, &cxChar. hvps)

328 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 7-13. The SYSVALS4.C File. continued

bBlankCell[l] - ConstructOefaultAttribute () ;
VioScrollUp (0. 0, -1. -1. -1. bBlankCell, hvps)

for (usRow - 0 ; usRow < NUMlINES ; usRow++)
VioWrtCharStr (szBuffer,

sprintf (szBuffer, "%-20s%-35s%51d".
sysvals[usRow].szIdentifier.
sysvals[usRow].szDescription,
WinOuerySysValue (HWNO_DESKTOP,
sysvals[usRow].sIndex»,

usRow, O. hvps)

hwndHscroll - WinWindowFromID
WinQueryWindow (hwnd, OW_PARENT. FALSE).
FID_HORZSCROLL) ;

WinSendMsg (hwndHscroll, SBM_SETSCROLlBAR.
MPFROM2SHORT (sHscrollPos, 0),
MPFROM2SHORT (0, MAXWIOTH - 1»

hwndVscrol1 - WinWindowFromIO (
WinOueryWindow (hwnd, OW_PARENT, FALSE),
FID_VERTSCROLl) ;

WinSendMsg (hwndVscroll, SBM_SETSCROLLBAR,

return 0

case WM_SIZE:

MPFROM2SHORT (sVscrollPos, 0),
MPFROM2SHORT (0. NUMLINES - 1»

cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

WinDefAVioWindowProc (hwnd, msg, mpl. mp2)
return 0 ;

case WM_HSCROLl:
switch (SHORT2FROMM~ (mp2»

{

case SB_LINElEFT:
sHscrollPos 1
break ;

case SB_lINERIGHT:
sHscrol1Pos += 1
break ;

(continued)

CHAPTER SEVEN: ADVANCED VIO 329

Figure 7-13. The SYSVALS4.C File. continued

case SB_PAGELEFT:
sHscrollPos -- 8
break ;

case SB_PAGERIGHT:
sHscrollPos +~ 8
break ;

case SB_SLIDERPOSITION:
sHscrollPos - SHORTIFROMMP (mp2)
break ;

sHscrollPos = max (0. min (sHscrollPos. MAXWIDTH - 1» :

if (sHscrollPos !- SHORTIFROMMR (WinSendMsg (hwndHscroll.
SBM_QUERYPOS. NULL, NULL»)

VioSetOrg (sVscrollPos. sHscrollPos. hvps) ;

WinSendMsg (hwndHscroll, SBM_SETPOS.
MPFROM2SHORT (sHscrollPos. 0), NULL)

return 0 :

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
sVscrollPos 1
break ;

case SB_LI NEDOWN:
sVscrollPos +- 1
break ;

case SB_PAGEUP:
sVscrollPos -- cyClient I cyChar
break ;

case SB_PAGEDOWN:
sVscrollPos +- cyClient I cyChar
break ;

330 SECTION TWO: PAINTING THE CLIENT WINDOW

(continued)

Figure 7-13. The SYSVALS4.C File. continued

case SS_SLIDERPOSITION:
sVscrollPos - SHORTIFROMMP (mp2)
break ;

}

sVscrollPos - max (0, min (sVscrol1Pos, NUMLINES - 1» :

if (sVscrollPos 1- SHORTIFROMMR (WinSendMsg (hwndVscrol1,
SBM_QUERYPOS, NULL, NULL»)

VioSetOrg (sVscrollPos, sHscrol1Pos, hvps) ;

WinSendMsg (hwndVscroll, SSM_SETPOS,
MPFROM2SHORT (sVscrollPos. 0), NULL)

return 0

case WM_CHAR:
switch (CHARMSG(&msg)->vkey)

{

case VK_LEFT:
case VICRIGIH:

return WinSendMsg (hwndHscroll, msg. mpl, mp2)
case VICUP:
case VK_DOWN:
case VICPAGEUP:
case VICPAGEDOWN:

return WinSendMsg (hwndVscroll. msg. mpl, mp2)

break ;

case WM_PAINT:
WinSeginPaint (hwnd. hps, NULL)
GpiErase (hps)

VioShowBuf (0, MAXWIDTH * NUMLINES * 2. hvps)

WinEndPaint (hps) :
return 0 ;

case WM_DESTROY:
VioAssociate (NULL. hvps)
VioDestroyPS (hvps) :
GpiDestroyPS (hps) ;
return 0 ;

return WinDefWindowProc (hwnd, msg. mpl, mp2)

CHAPTER SEVEN: ADVANCED VIO 331

The SYSVALS4.DEF File

... --_ ... --.., .. ----_ ... - ... -_ -... -_ -.
; SYSVALS4.0EF module definition file
... ---- -------- -- ----- -------- --- -----.
NAME SYSVALS4 WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'System Values Display using AVIO (C) Charles Petzold. 198B'

1024
8192
ClientWndProc

Figure 7-13. The SYSVALS4 program.

To compile this program you'll also need the SYSVALS.H header file from
Chapter 4.

SYSVALS4 calculates an attribute that provides the same window back
ground and window text colors that the user selected in the Presentation
Manager Control Panel program. This requires a little work. The Construct
DefaultAttribute function first calls WinQuerySysColor to obtain the window
background and text colors. These are returned in ULONG values in which
red, green, and blue bytes (each ranging from 0 to 255) are encoded. The
RgbToVioColor function converts these RGB values into the 4-bit IRGB en
coding. These two 4-bit values are combined into 1 byte in the Construct
DefaultAttribute routine. ClientWndProc then uses this attribute with the
VioScroliUp function to clear the AVIO virtual display buffer. The text is
written to the AVIO buffer using VioWrtCharStr.

Processing the WM_HSCROLL and WM_ VSCROLL messages is fairly
straightforward. SYSVALS4 simply uses the current scroll-bar positions to
set the new origin. The Presentation Manager then updates the window
from this new origin without any additional code.

WM_PAINT processing is similarly straightforward. SYSVALS4 simply
calls VioShowBuj to update the entire window.

332 SECTION TWO: PAINTING THE CLIENT WINDOW

SECTION THREE

I

GETTING
INPUT

• • • • •

• • • • •
·
·
• • • • •

·
·
• • • • •

• • • • •

CHAPTER EIGHT

TAPPING INTO
THE KEYBOARD

Despite the sophisticated user interface of the Presentation Manager (in
cluding the mouse, menus, and dialog boxes), the keyboard is still the pri
mary means of user input in most applications. Even if you write a
Presentation Manager program that makes extensive use of the mouse, you
should also include a keyboard interface that duplicates the mouse func
tions. As you probably know, many users still simply refuse to allow a
mouse anywhere near their desk. The Presentation Manager doesn't require
a mouse, so your programs shouldn't either.

A Presentation Manager program receives keyboard input in the form of
messages. You process these keyboard messages in the same way you
process other messages. In fact, because user input is closer to one's intui
tive concept of a message, working with these keyboard messages should be
easier in some ways than handling other types of messages.

As you've seen in previous programs, the Presentation Manager itself
handles a large part of keyboard processing. The keystrokes involved in
choosing an item from the system menu are handled outside the client win
dow procedure, as are the keyboard accelerators that duplicate system menu
options. Many child window controls (discussed in Chapter 11) have their
own keyboard interface. The Presentation Manager also takes care of key
board processing in a program's menu (Chapter 13) and dialog boxes
(Chapter 14). But this isn't to say that keyboard handling is easy. The Pre
sentation Manager delivers a lot of information to your program with the
keyboard message. You need to recognize what is important and what you
can safely ignore.

Keyboard processing becomes more complex if you want to ensure that
your programs can survive the transition to a system with a foreign key
board. By "foreign keyboard" I mean any type of keyboard that is different

335

from the one you have on your desk. This includes a variety of European
keyboards, keyboards used in Far Eastern countries that generate double
byte character codes, and even keyboards for non-PC computers that might
someday run versions of the Presentation Manager. The Presentation Man
ager has a device-independent keyboard interface, but-as is the case with
other device-independent interfaces-you have to help. You can even
design your Presentation Manager programs so that they can be recompiled
for a system with a keyboard that generates codes in the EBCDIC (Extended
Binary Coded Decimal Interchange Code) character set used on IBM
mainframes and minicomputers.

The Keyboard and Cades
A keyboard always generates numeric codes of various sorts. Within a pro
gram, you make an implicit assumption about how these codes relate to the
keys that generate them.

You can think of the keyboard in one of two ways - as a collection of dis
tinct physical keys or as a means of generating character codes. When you
treat the keyboard as a collection of keys, any code generated by the key
board must identify the key and indicate whether the key is being pressed or
released. When you treat the keyboard as a character input device, a code
generated by a particular keystroke identifies a unique character in a char
acter set. For a U.S. keyboard on the PC, this character set is ASCII. For a
European keyboard, however, it is an extended ASCII character set that in
cludes accented letters and other symbols not in the standard ASCII charac
ter set. For a keyboard on an IBM mainframe, it is the EBCDIC character set.
If you obtain a character code from the keyboard and echo it to the display,
it should look the same as the character printed on the top of the key. That
is, the visual appearance of the character on the screen shouldn't surprise
the user. This requires that the keyboard driver and display driver are work
ing with the same character set or "codepage."

Because many of the keys on the keyboard aren't associated with character
codes, you must usually treat the keyboard as both a collection of keys and
a character generator. You can divide the keyboard into four general groups
of keys:

• Toggle keys -The Caps Lock, Num Lock, and Scroll Lock keys and
possibly the Insert key. Pressing the key turns the state of the key on;
pressing it again turns the state off.

• Shift keys -The Shift, Ctr!, and Alt keys. The shift keys affect the in
terpretation of other keys.

336 SECTION THREE: GETTING INPUT

• Noncharacter keys -The function keys, the cursor movement keys,
Pause, Escape, Delete, and possibly the Insert key. These keys aren't
associated with characters but instead often direct a program to carry
out a particular action.

• Character keys -The letter, number, and symbol keys, the Spacebar, the
Tab key, Backspace, and Enter. (The Tab, Backspace, and Enter keys can
also be treated as noncharacter keys.)

Often a single physical key can generate different character codes depend
ing on the shift keys. For example, the A key generates a lowercase a or an
uppercase A depending on the Shift key. Sometimes two different physical
keys (such as the two Enter keys on an IBM enhanced keyboard) can gener
ate the same character code.

The Presentation Manager handles the keyboard somewhat differently from
other PC keyboard interfaces with which you may be more familiar. To put
this into perspective, let's examine these other keyboard interfaces.

Pre-OS/2 Keyboard Processing
The hardware of the keyboard on a PC generates a "hardware scan code."
This is an 8-bit code that identifies the physical key and indicates whether
the key is being pressed or released. Hardware scan codes are usually num
bered sequentially across the rows of keys.

In the world of real mode and MS-DOS, the PC BIOS processes each key
stroke through its Interrupt 09H handler. For hardware scan codes corre
sponding to shift keys and toggle keys, the Interrupt 09H handler stores the
current state of the key. For character keys, the hardware scan code is con
verted into an ASCII character code based on the state of the shift and
toggle keys and is stored in a small buffer. For noncharacter keys, the hard
ware scan code is converted into an "extended keyboard code" and also
stored in the buffer.

A program running under MS-DOS can obtain keystrokes from the buffer
through various MS-DOS function calls or the BIOS Interrupt 16H. For char
acter keys, Interrupt 16H returns the ASCII character code and the hardware
scan code. For noncharacter keys, the extended keyboard code is returned,
and the ASCII code is set to o.
In summary, the PC BIOS works with three types of codes:

• Hardware scan code - Generated from keyboard hardware.

• Extended keyboard code - Identifies noncharacter keys in combination
with the Shift, Ctrl, or Alt key.

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 337

• ASCII character code - Identifies character keys based on the Shift,
Ctrl, or Caps Lock key.

The OS/2 Kernel and the Keyboard
When OS/2 is running, the keyboard is handled by the OS/2 kernel rather
than the PC BIOS. However, the OS/2 keyboard interface closely mimics the
operation of the BIOS. A program running under the OS/2 kernel obtains
keyboard input by calling the DosRead, KbdCharln, or KbdStringln func
tion. The KbdCharln function is the most general and is similar to Interrupt
16H. The keyboard information from KbdCharln is stored in a structure of
type KBDKEYINFO.

Two fields of KBDKEYINFO identify the key. The chChar field contains an
ASCII character code. If this field is 0, the chScan field contains an extended
keyboard code. (Despite the name of this field, and the OS/2 kernel docu
mentation, this field does not contain a hardware scan code.) The fsState
field is a 16-bit integer with flags that identify the current state of the shift
and toggle keys.

Enter the Presentation Manager
Rather than use DosRead or the Kbd functions to obtain keyboard input, a
Presentation Manager program receives keyboard information in the form
of messages. These messages contain more information about keyboard ac
tivity than is available from the OS/2 KbdCharln function. When a key is
pressed or released, the Presentation Manager decodes the key and stores
the information about the keystroke in a system message queue. This key
board message is later routed to the message queue of the window with the
input focus (a concept discussed later in this chapter) and then retrieved
by the program.

Where the Presentation Manager differs from other PC keyboard interfaces
is mostly in the treatment of the noncharacter keys. The Presentation Man
ager doesn't use the extended keyboard codes because they are too depen
dent on the specific hardware of the PC and would make little sense for
versions of the Presentation Manager adapted for different hardware. In
stead, an attempt has been made to virtualize the codes for noncharacter
keys. A fourth type of keyboard code has been introduced - the "virtual
key code." Like the hardware scan code, the virtual key code generally
identifies a physical key and isn't dependent on a particular shift state.
(There are a couple of exceptions.)

Armed with this historical perspective, let's examine the Presentation Man
ager keyboard message.

338 SECTION THREE: GETTING INPUT

The WM_CHAR Message
In most cases a Presentation Manager program can obtain all the informa
tion it needs about keyboard input by processing the WM_CHAR message in
the client window procedure. The information encoded in the mpJ and mp2
parameters is shown in Figure 8-1.

mp1 131 1301 .. ·1251241231221 .. · 1171161151141.·· 1 1 0 1
\.. A A)

y

a-bit
hardware
scan code
(scancode)

y

a-bit
repeat
count

(cRepeat)

mp2 131 130 1 ... 1171161151141 ... 1 1 1 0 1
\.. A)

y y

16-bit 16-bit
virtual character

key code code
(vkey) (chr)

Figure 8-1. The WM_CHAR mpl and mp2 parameters.

y

16-bit
flags
('s)

You can use a variety of macros defined in PMWIN.H-such as SHORT1-
FROMMP and CHAR3FROMMP - to extract each of these fields. Or you
can use a macro called CHARMSG designed specifically for processing
WM_CHAR messages. You use CHARMSG like this:

CHARMSG (&msg) -> identifier

where identifier is one of the identifiers in parentheses shown in Figure 8-1.
This macro references the mpJ and mp2 parameters to the window pro
cedure from the stack.

NOTE: If you want to use CHARMSG in a subroutine called from the
window procedure, you must pass msg, mpl, and mp2 to the subrou
tine (in that order), and the subroutine must be defined as PASCAL.

The lower 16 bits of mpJ contain a series of flags that further describe the
keyboard message. The individual flags can be extracted using identifiers
beginning with the letters KC defined in the PMWIN.H header file. These
flags are shown in Figure 8-2 on the following page.

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 339

115114113112111 110 1 9 1 8 1 7 1 6 1 5 1 4 1 3 I 2 I 1 1 a
L

'----

Meaning if Bit Is Set

KC_CHAR Valid ASCII character code

KC_VIRTUALKEY Valid virtual key code

KC_SCANCODE Valid hardware scan code

KC_SHIFT Shift key is down

KC_CTRL Ctrl key is down

KC_AL T Alt key is down

KC_KEYUP Key is being released

KC_PREVDOWN Key was previously down

KC_LONEKEY The only key pressed

is being released

Key is a dead key

Key is a composite

using a diacritic

KC_INVALIDCOMP Key is an invalid

composite

KC_TOGGLE Identifies toggle state

KC_INVALIDCHAR Key is not an invalid

Figure 8-2. Flags defined in the WM_CHAR mpl parameter.

You can test these flags with one of two expressions:

SHORTIFROMMP (mpl) & KC_SHIFT

or

CHARMSG (&msg) -> fs & KC_SH 1FT

Both expressions return a nonzero value if the KC_SHIFT flag is set (mean
ing the Shift key is down) or 0 if the flag is 0 (meaning the Shift key is up).

Looking at the K~ys
As I discuss the various codes and flags in the mpJ and mp2 parameters, you
may find it helpful to observe what the Presentation Manager actually gives
your program in the WM_CHAR message when you press a particular key.
To do this, you can use the KEYLOOK program, shown in Figure 8-3.

340 SECTION THREE: GETTING INPUT

The KEYLOOK File

11- - - - - - - - - - - - - - - - - - -
KEYLOOK make file
11- - - - - - - - - - - - - - - - - - -

key1ook.obj : key1ook.c
c1 -c -G2sw -W3 key1ook.c

easyfont.obj : easyfont.c
c1 -c -G2sw -W3 easyfont. c

keylook.exe : key1ook.obj easyfont.obj key1ook.def
link keylook easyfont, lalign:16. NUL, 052. keylook

The KEYLOOK.C File

1*--
KEYLOOK.C -- Displays WM_CHAR Messages

- -*/

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#inc1ude <stdio.h>
#include ~easyfont.hh

#define LCID_FIXEDFONT lL
#define MAX_KEYS 100

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM. MPARAM)

CHAR szClientClass [) - hKeyLook" ;
HAB hab

i n t rna; n (v 0 i d)

static ULONG flFrameFlags = FCF_TITLEBAR
FCF_SIZEBORDER
FCF_SHlLLPOSITION

HMO hmq ;
HWND hwndFrame. hwndClient ;
QMSG qmsg :

hab - Winlnitialize (0)
hmq = WinCreateMsgQueue (hab, 0)

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 341

Figure 8-3. The KEYLOOK.C File. continued

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREORAW. 0)

hwndFrame = WinCreateStdWindow (HWND_OESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient) :

if (hwndFrame !- NULL)
{

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_OESKTOP. SPTR-APPICON, FALSE),
NULL) ;

while (WinGetMsg (hab. &qmsg. NULL. 0, 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
}

WinDestroyMsgQueue (hmq)
WinTerminate (hab)
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mp!. MPARAM mp2)
{

static CHAR szHeader [] - "Scan Rept IN TG IC CM OK LK PO KU"
" Al CT SH SC VK CH Virt Char" ;

static CHAR szUndrLn [] - "---- -- -- -- -- -- -- -- --.,
_ ... --" ;

static CHAR szFormat [] - "%4X %4dx %2d %2d %2d %2d %2d %2d %2d %2d"
" %2d %2d %2d %2d %2d %2d %4X %4X %c"

static SHORT exChar. eyChar. cyOese. cxClient. eyClient. sNextKey ;
static struet {

CHAR
FONTMETRICS
HPS
POTNTL
RECTL
SHORT

MPARAM mp! ;
MPARAM mp2 ;
BOOL fValid
}

key [MAX_KEYS] ;
szBuffer [80] ;
fm ;
hps ;
ptl :
rel. rel Inval id
sKey. sIndex. sFlag

342 SECTION THREE: GETTING INPUT

(continued)

Figure 8-3. The KEYLOOK.C File. continued

switch (msg)
{

case WM_CREATE:
hps - WinGetPS (hwnd)
EzfOueryFonts (hps) :

if (IEzfCreateLogFont (hps. LCID_FIXEDFONT. FONTFACE_COUR.
FONTSIZE_10. 0»

WinReleasePS (hps) :

WinMessageBox (HWND_DESKTOP, HWND_DESKTOP.
"Cannot find a fixed-pitch font. Load the Courier"
"fonts from the Control Panel and try again.".
szClientClass, O. MB_OK : MB_ICONEXCLAMATION) :

return 1 ;

GpiSetCharSet (hps. LCID_FIXEDFONT) ;

GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)
cxChar - (SHORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyOesc - (SHORT) fm.1MaxDescender

GpiSetCharSet (hps. LCID_DEFAULT)
GpiDeleteSetld (hps. LCIO_FIXEDFONT)
WinReleasePS (hps) :
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0

case WM_CHAR:
key [sNextKey].mp1 - mp1
key [sNextKey].mp2 - mp2
key [sNextKey].fValid - TRUE

sNextKey - (sNextKey + 1) % MAX_KEYS

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 343

Figure 8-3. The KEYLOOK.C File. continued

WinSetRect (hwnd, &rcl.
O. 2 * cyChar, cxClient. cyClient - 2 * cyChar)

WinScrollWindow (hwnd, 0, cyChar, &rcl, &rcl, NULL, NULL,
SW_INVAlIDATERGN)

WinUpdateWindow (hwnd)
return 0 :

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, &rcllnvalid) ;
GpiErase (hps) ;
EztcreatelogFont (hps, lCID_FIXEDFONT, FONTFACE_COUR,

FONTSIZLIO, 0)
GpiSetCharSet (hps, LCID_FIXEDfONT) ;

ptl.x = cxChar :
ptl .y = cyDesc ;
GpiCharStringAt (hps, &ptl, sizeaf szHeader - n, szHeader)

ptl .y += cyChar
GpiCharStringAt (hps, &ptl, sizeof szUndrLn - lL. szUndrLn)

for (sKey = 0 ; sKey < MAX_KEYS ; sKey++)
{

ptl .y += cyChar

sIndex - (sNextKey - sKey - 1 + MAX_KEYS) % MAX_KEYS

if (ptl.y > rclInva 1 i d .yTop ::
ptl.y> cyClient - 2 * cyChar II

Jkey [sIndex].fValid)
break ;

mpl - key [sIndex].mpl
mp2 - key [sIndex].mp2

sFlag - CHARMSG(&msg)->fs

GpiCharStringAt (hps, &ptl.
(LONG) sprintf (szBuffer, szFormat,

CHARMSG(&msg)->scancode,
CHARMSG(&msg)->cRepeat,
sFlag & KC_INVALIDCHAR ? 0,
sFlag & KC_TOGGLE 1 0,

344 SECTION THREE: GETTING INPUT

(continued)

Figure 8-3. The KEYLOOK.C File. continued

sFlag & KC_INVALIDCOMP
sFlag & KC_COMPOSITE
sFlag & KC_DEADKEY
sFlag & KC_LONEKEY
sFlag & KC_PREVDOWN
sFlag & KC_KEYUP
sFlag & KC_ALT
sFlag & KC_CTRL
sFlag & KC_SHIFT
sFlag & KC_SCANCOOE
sFlag & KC_VIRTUALKEY
sFlag & KC_CHAR
CHARMSG(&msg)->vkey.
CHARMSG(&msg)->chr,

? O.
? 0,

? 0,

? 1 0,
t

? 1 O.
? O.
? 1 O.
? 1 0,

? O.
? 1 0,

? 1 O.
? 1 0.

sFlag & KC_CHAR ? CHARMSG(&msg)->chr . '),
szBuffer) ;

ptl.y - cyClient - cyChar + cyOesc
GpiCharStringAt (hps, &ptl. sizeof szHeader - 1L, szHeader)

ptl.y -- cyChar
GpiCharStringAt (hps, &ptl, sizeof szUndrLn - 1L. szUndrLn)

GpiSetCharSet (hps, LCID_DEFAULT) ;
GpiDeleteSetld (hps. LCID_FIXEDFONT)
WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd, msg. mp1. mp2)
}

The KEYLOOK.DEF File

; KEYLOOK.DEF module definition file

NAME

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

KEY LOOK WINOOWAPI

'Key Look Program (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 8-3. The KEYLOOK program .

. CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 345

Compiling KEYLOOK also requires the EASYFONT.C and EASYFONT.H

files from Chapter 5. KEYLOOK uses a fixed-pitch Courier font to ease the
display of WM_CHAR information in the window. If a Courier font is not
available, KEYLOOK displays a message box and returns 1 from the
WM_CREATE message. This aborts creation of the program's window and
causes the WinCreateStdWindow cell in main to return NULL. Figure 8-4

shows KEYLOOK running under the Presentation Manager after the word
Keyboard has been typed.

== KEYLOOK EXE mit]
Scan Rept IN TG IC CM OK LK PO KU AL CT SH SC VK CH Virt Char

2A lx 0 1 0 0 0 0 0 0 0 0 1 1 0 9 0
25 lx 0 0 0 0 0 0 0 0 0 0 1 0 1 0 4B K
25 lx 0 0 0 0 0 1 0 1 0 0 1 0 0 0 254B
2A lx 0 1 0 0 0 0 0 1 0 0 0 1 0 9 0
12 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 65 e
12 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1265
15 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 79 Y
15 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1579
30 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 62 b
30 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 3062
18 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6F 0
18 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 186F
lE lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 61 a
lE lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 lE61
13 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 72 r
13 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1372
20 lx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 64 d
20 lx 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2064

-- -- -- -- -- -- -- -- -- -- -- -- -- --
Scan Re t IN TG IC CM OK LK PO KU AL CT SH SC VK CH Virt Char

Figure 8-4. The KEYLOOK display.

KEYLOOK displays the contents of each WM_CHAR message it receives,
starting with the high fields of mpJ and working down. The heading in
KEYLOOK uses abbreviations to identify this information:

Heading Description

Scan Hardware scan code in hexadecimal
Rept Repeat count in decimal
IN KC_INVALIDCHAR flag (0 or 1)
TG KC_TOGGLE flag
IC KC_INVALIDCOMP flag
CM KC_COMPOSITE flag
DK KC_DEADKEY flag
LK KC_LONEKEY flag
PD KC_PREVDOWN flag

(continued)

346 SECTION THREE: GETTING INPUT

Heading

KU
AL
CT
SH
SC
VK
CH
Virt
Char

Description

KC_KEYUP flag
KC_ALTflag
KC_CTRL flag
KC_SHIFT flag
KC_SCANCODE flag
KC_ VIRTUALKEY flag
KC_CHAR flag
Virtual key code in hexadecimal
ASCII character code in hexadecimal

Following the hexadecimal representation of the character code, KEYLOOK
also displays the character itself.

The Three Keyboard Codes
The mpJ and mp2 parameters accompanying the WM_CHAR message con
tain three codes that identify the key or character. These are the hardware
scan code, the virtual key code, and the character code.

Hardware Scan Code
If the KC_SCANCODE bit is set, the upper 8 bits of mpJ contain a valid
hardware scan code. The KC_SCANCODE bit is set for all WM_CHAR mes
sages you receive in a window procedure. The hardware scan code can be
extracted with the expression

CHAR4FROMMP (mpl)

or

CHARMSG (& msg) -> scancode

Presentation Manager programs usually ignore this code. The hardware
scan codes will be quite different for non-PCs running a future version of
the Presentation Manager. Using this code will guarantee that you'll have to
modify your programs to run on these machines. You're on your own here.
There is no support in the header files for using these codes; you'll have to
do some research on scan code values in the PC technical reference
manuals. (But that won't prevent me from using the scan code in the
ORGAN program shown at the end of this chapter.)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 347

Virtual Key Code
If the KC_ VIRTUALKEY bit is set, the upper 16 bits of mp2 contain a valid
virtual key code. The virtual key code can be extracted with the expression

SHORT2FROMMP (mp2)

or

CHARMSG (&msg) -) vkey

If the KC_ VIRTUALKEY flag is 0, the upper 16 bits of mp2 are also set to O.
The virtual key code is used for keys that don't generate characters. The
code generally identifies the key being pressed or released independent of
the shift states. (The major exception is for the keyboard number pad.) I'll
discuss the virtual key codes in detail later in this chapter.

Character Code
If the KC_CHAR flag is set, the lower 16 bits of mp2 contain a valid charac
ter code. A character code is present in the WM_CHAR message only when
the key is being pressed (that is, the KC_KEYUP flag is 0) and the key gen
erates a character. While processIng the WM_CHAR message, you can ob
tain the character code with the expression

SHORTIFROMMP (mp2)

or

CHARMSG (&msg) -) chr

The character code reflects the state of the Shift key at the time the key is
pressed. On IBM PCs and compatibles, this character code is usually from
the ASCII character set. For European keyboards, however, the character
code could have a value of 128 or above for letters and symbols not present
in the ASCII character set. You can better code your programs for easy
adaptation to other implementations of the Presentation Manager by making
no assumptions about the character set.

If you run KEYLOOK and type a letter key in combination with the Ctrl
key, you'll notice that the Presentation Manager sets neither KC_VIR
TUALKEY nor KC_CHAR flag to 1 for the letter key.

This presents a problem for programs that need to recognize Ctrl-Ietter key
combinations, such as modem communications programs that need to
recognize Ctrl-Ietter combinations typed at the keyboard in order to send

348 SECTION THREE: GETTING INPUT

the ASCII control code to the communications port. For example, when the
user types Ctrl-S to suspend incoming data, the program needs to convert
that key combination to an ASCII code of Ox13 (known as XOFF).

These Ctrl-Ietter keys have to be handled as a special case: If the
KC_VIRTUALKEY, KC_CHAR, and KC_KEYUP flags are set to 0, the
KC_CTRL flag is set to 1, and if the character code is not 0, the character
code is the ASCII code of the letter being typed. You can convert that char
acter code to an A,SCII control code with this expression:

(CHARMSG(&msg)-)chr) & Ox1F

Processing Virtual Keys and Characters
The processing of a WM_CHAR message in a window procedure is often
divided into two parts: processing character keys and processing non
character keys. For a few keys (Enter, Backspace, Space, and Tab) both the
KC_ VIRTUALKEY and KC_CHAR flags are set. You can process these keys
as virtual keys or character keys. The number pad generates both virtual
codes and character codes if Num Lock is on. I'll discuss the number
pad shortly.

The easiest approach is to examine the KC_CHAR flag first and process the
character keys if the flag is set. You can then check the KC_VIRTUALKEY

and process noncharacter keys. The code looks something like this:

case WM_CHAR:
[other program lines]

if (CHARMSG (&msg) -> fs & KC_CHAR)
{

switch (CHARMSG (&msg) -> chr)

{process character keys]

else if (CHARMSG (&msg) -> fs & KC_VIRTUALKEY)
(

switch (CHARMSG (&msg) -) vkey)
{

[process nancharacfer keys]

[other program lines]

return 1:

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 349

The two sections marked "process character keys" and "process non
character keys" each have a series of case statements for processing par
ticular keys or characters.

A Closer Look at Virtual Key Codes
When processing a virtual key, you use a switch and case construction to
compare the virtual key code to identifiers beginning with VK defined in
the PMWIN.H header file. The virtual key codes defined in PMWIN.H fall
into several categories. Here is the group of identifiers for the function keys:

VK_Fl VK_F7 VK_F13 VK_F19
VK_F2 VK_FS VK_F14 VK_F20
VK_F3 VK_F9 VK_F15 VK_F21
VK_F4 VK_FlO VK_F16 VK_F22
VK_F5 VK_Fll VK_F17 VK_F23
VK_F6 VK_F12 VK_F18 VK_F24

A machine that runs the Presentation Manager is required to have only the
first ten function keys on the keyboard. The others are optional. The func
tion keys don't generate character codes. The FlO key invokes the menu in
Presentation Manager programs, so VK_MENU is defined to be the same
as VK_FlO.

The cursor movement keys generate the following virtual key codes:

VK_PAGEUP
VK_PAGEDOWN

The Insert and Delete keys generate the following virtual key codes:

VK_DELETE
VK_INSERT

The IBM enhanced keyboard has a set of dedicated cursor movement keys
and Insert and Delete. These keys always generate the virtual key codes just
shown. The KC_CHAR flag is O.

The number pad on IBM keyboards can be used for either typing numbers
or for cursor movement, or for Insert or Delete. If Num Lock is toggled off,
the number pad generates virt.ual key codes and not character codes. If Num
Lock is toggled on, the number pad generates the virtual key codes as well
as character codes for numbers and the decimal point. For this reason, it's
best to process character keys before virtual keys.

The Shift key reverses the meaning of Num Lock for the number pad keys.
The virtual key codes for the number pad are important only if your pro
gram needs to differentiate between characters from the number pad and
the same characters generated otherwise.

350 SECTION THREE: GETTING INPUT

The Spacebar, Tab, Enter, and Backspace keys generate both virtual codes
and character codes. Their virtual key codes are as follows:

VK_SPACE
VK_TAB
VK_BACKSPACE

VK_NEWLINE
VK_ENTER

The VK_NEWLINE code is generated from the Enter key on the main key
board, and VK_ENTER is generated from the Enter key on the number pad
of the IBM enhanced keyboard. You can process any of these five keys as
virtual keys or character keys.

One slightly problematic key combination is Shift-Tab. This combination
generates a virtual key code of VK_BACKTAB. But the character code is the
same as for an unshifted Tab key. If you differentiate between a Tab and a
Shift-Tab, you'll want to process the VK_BACKTAB virtual key before
processing character keys. Or you can check the state of the KC_SHIFT flag
while processing Tab as a character key.

Although an ASCII character code is defined for Escape, the Escape key
generates only a virtual key code: VK_ESC.

The following virtual key code identifiers are for the shift and toggle keys:

VK_SHIFT
VK_CTRL
VK_ALT
VK_CAPSLOCK

VK_NUMLOCK
VK_SCRLLOCK
VK_ALTGRAF

The VK_ALTGRAF key is the right Alt key on some European versions of
the IBM enhanced keyboard.

Certain key combinations generate these virtual key codes:

VK_BREAK
VK_PAUSE

VK_PRINTSCRN
VK_SYSRQ

Although the Presentation Manager does nothing with these key combina
tions, you may want to process them.

Finally, there are three virtual key codes that you never receive with a
WM_CHAR message:

These refer to mouse buttons. I discuss how to use these identifiers in the
next chapter.

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 351

Going Down, Going Up
If the user simply presses and releases a key, the window procedure usually
receives two WM_CHAR messages. The KC_KEYUP flag in the WM_CHAR

mpJ parameter indicates whether the message signals a key press or release.

Key is pressed
Key is released

o

For character keys, the KC_CHAR flag is set (and the character code is
valid) for key presses. For the Alt key, the window procedure receives only
one WM_CHAR message, for the key press. The frame window uses the
release of the Alt key to activate the program's window. For the Fl and FlO
keys, the window procedure receives a WM_CHAR message only for the
release. The window procedure receives a WM_HELP message for the Fl

key press.

Often the key-down and key-up WM_CHAR messages come in pairs with
nothing in between, but that's not always the case. For example, when the
user presses the Shift key and a letter and then releases the letter and the
Shift key, the program receives four WM_CHAR messages in this order:

KC_KEYUP Virtual Key Character

Press Shift 0 VK_SHIFT 0
Press A key 0 0 A
Release A key 1 0 A
Release Shift 1 VK_SHIFT 0

For most purposes, you can ignore these WM_CHAR messages when the
KC_KEYUP bit is set to 1. Thus the processing of the WM_CHAR message
can include logic like this:

case WM_CHAR:

[other program lines]

if (CHARMSG (&msg) -> fs &KC_KEYUP)
return 0;

[other program lines]

352 SECTION THREE: GETTING INPUT

If the user presses the key and holds it down, the program receives a series
of WM_CHAR messages because of the typematic action of the key. This is
indicated by the KC_PREVDOWN flag:

Key is pressed
Key is held down
Key is released

o
o

o

o

You receive one WM_CHAR message when the key is initially pressed, a
series of messages as the key is held down, and a final WM_CHAR message
when the key is released. A program can use the KC_PREVDOWN flag to
distinguish between an initial key press and a typematic repeat of a key.
Note that the KC_PREVDOWN flag is not set when the key is released, even
though the key was previously down.

The mpJ parameter also contains an 8-bit repeat count that you can extract
with the expression

CHAR3FROMMP (mpl)

or

CHARMSG (&msg) -) cRepeat

Most often, this value is 1. It can be greater than 1 only for a typematic
repeat, when the KC_KEYUP flag is 0 and KC_PREVDOWN is 1. A repeat
count greater than 1 indicates that· the keyboard hardware generated a
typematic repeat of a keystroke while a WM_CHAR message for the same
key was still in the message queue. What it really indicates is that your pro
gram can't keep up with the pace of typematic key repeats.

How you handle the repeat count requires some thought. We've all ex
perienced the nuisance of "overscrolling" a word-processing document or
spreadsheet. By ignoring the repeat count, you avoid this problem. But you
probably always want to use the repeat count when processing character in
put. This usually involves a simple for loop in the WM_CHAR processing:

for (sRepeat = 0 ; sRepeat < CHARMSG (&msg) -) cRepeat: sRepeat++)
{

[process key]

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 353

The KC_LONEKEY flag is set only for a key release. It indicates that no
other key was pressed between the time the key was pressed and released.
You can ignore the KC_LONEKEY flag unless you think of a particular ap
plication for it.

The Shift States
The KC_SHIFT, KC_CTRL, and KC_ALT flags in the WM_CHAR mpJ
parameter indicate the state of the Shift, Ctrl, and Alt keys at the time a key
was pressed or released. When the flag is set to 1, it means that the shift key
was pressed. You can also use the WinGetKeyState function (discussed later
in this chapter) to obtain this information. When you process a character
key, you don't have to look at the KC_SHIFT flag because the character
code itself is based on the current state of the Shift key. The shift-state in
formation is most useful during WM_CHAR messages for noncharacter
keys, particularly the cursor movement keys.

The KC_TOGGLE flag is most useful for the Caps Lock, Num Lock, and
Scroll Lock keys if your program displays the current state of these keys.
The KC_TOGGLE flag is set if the keystroke is turning on the lock state.
However, you can treat any key as a toggle key by examining this flag.

The KC_DEADKEY, KC_COMPOSITE, and KC_INVALIDCOMP flags are
used with "dead keys" generated from some European keyboards. I'll
discuss these flags in reference to the upcoming TYPEAWAY program.

Other Keyboard Messages and Functions
Although processing the WM_CHAR message is the most important part of
keyboard handling, it's not the only part: Several other important concepts,
messages, and functions relate to the keyboard. We'll look at these and then
apply this information in a program that illustrates several aspects of key
board handling.

Active Windows and Focus Windows
The keyboard must be shared among all applications running under the
Presentation Manager. When a keyboard event occurs, the Presentation
Manager stores the information about the event in its own system message
queue. The Presentation Manager later converts this event to a WM_CHAR

message posted to a particular program message queue for a particular win
dow. The window that gets the WM_CHAR message is the window with the
"input focus," sometimes also called the' 'focus window. "

354 SECTION THREE: GETTING INPUT

The concept of input focus is closely related to the concept of "active win
dow." The active window is always a top-level window, that is, a child of
the desktop window. The active window is positioned above all other top
level windows on the screen. A standard window frame indicates that it is
active by highlighting its title bar. A dialog box indicates that it is active by
highlighting its border. The user generally controls which window is active
by using the Alt-Esc or Alt-Tab key combinations to switch from one win
dow to another or by clicking on a particular window with the mouse.

The focus window (if any) is always the active window itself or a de
scendant of the active window. The Presentation Manager posts WM_CHAR
messages to the focus window. When a program first creates a standard
window, the frame window is the active window, and the client window is
the focus window.

Thus in a standard window without any additional child windows, the client
window procedure always receives WM_CHAR messages when the frame
window is active. (If the program creates some children of the client win
dow, these child windows can get the input focus. We'll examine this sub
ject more in Chapter 11.) If a particular descendant of the active window
has the input focus when the user changes the active window by pressing
Alt-Esc or A It-Tab , the same descendant regains the input focus when the
frame window again becomes active.

The Presentation Manager sends a WM_SETFOCUS message to a window
procedure when the window is gaining the input focus or losing the input
focus. A program can determine which window has the input focus by call
ing the WinQueryFocus function. We'll use this message and function in the
TYPEAWAYprogram coming up soon.

I mentioned at the beginning of this section that the Presentation Manager
first stores keyboard messages in a system message queue. It does this be
cause one of these messages (an Alt-Tab key combination, for instance)
could change the active window and hence the window with the input focus.
The messages for the keys that follow the Alt-Tab must go to a different pro
gram. This wouldn't work properly if the messages were posted in a
program's message queue when the keystrokes occurred.

Getting Keyboard States
A program can obtain the state of a particular key at any time by calling

sKeyState = WinGetKeyState (HWND_DESKTOP, sVirtKey) ;

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 355

The sVirtKey parameter can be any of the virtual key identifiers beginning
with VK. The sKeyState return value has the high bit set if the key is down.
Because WinGetKeyState returns a signed short integer, you can determine
if a key is down by simply testing if the return value is negative. The low bit
is set if the key is toggled on. The low bit has little meaning for keys other
than toggle keys, but it can allow you to treat any key as a toggle key.

WinGetKeyState is synchronized with the WM_CHAR messages. It reports
that a particular key is pressed or released only if the WM_CHAR message
for the press or release has already been retrieved from the message queue.
This synchronization is to your advantage: If you call WinGetKeyState dur
ing processing of a WM_CHAR message, it reports the state of keys at the
time of the keyboard action that resulted in the message. If you need to
know the state of a key "right now" rather than as of the most recent
WM_CHAR message, you can call the WinGetPhysKeyState function instead.

Using a Cursor
When you process keystrokes, you often echo characters to the client win
dow. To indicate where the next character will appear in the client window,
a program can create a cursor.

NOTE: The terminology used in Microsoft Windows is different from
the Presentation Manager terminology. The small bitmap on the
screen that you move with the mouse is called the "pointer." In Win
dows it is called the cursor. The Presentation Manager cursor is a
small blinking box or line generally indicating an entry point for key
board input. In Windows this is called the "caret." There are no
carets in the Presentation Manager. You point with the mouse and
curse with the keyboard.

You create a cursor using the function

WinCreateCursor (hwnd. xPos. yPos. cxWidth. cyHeight. fsFlags. &rclClip) ;

The xPos and yPos parameters indicate where the lower-left corner of the
cursor is to appear relative to the lower-left corner of hwnd. Generally, the
lower-left corner of the cursor corresponds to the lower-left corner of a
character cell.

The cxWidth and cyHeight parameters are the size of the cursor. You can use
o for either of the two parameters to set the size equal to the width of a thin

356 SECTION THREE: GETTING INPUT

border. These are the most common combinations of cxWidth and cyHeight
(based on cxChar and cyChar character dimensions):

cxWidth cyHeight Cursor Form

cxChar cyChar Box
cxChar 0 Underline
0 cyChar Vertical line

The box and underline cursors most closely mimic cursors in nongraphics
programs. The vertical line cursor is the best suited for use with a font with
variable character widths because you can position the vertical line be
tween two adjacent characters. If you use a box or underline cursor with a
variable-pitch font, you have to change the width of the cursor as it's moved
over the characters. This requires that you destroy and recreate the cur
sor-a nuisance for you, and an annoyance to the user, who would be faced
with a pulsating cursor.

The fsFlags parameter can be CURSOR_SOLID (which equals 0, so it's the
default) for a solid cursor or CURSOR_HALFTONE for a cursor with only
half the bits present. You can use the C bitwise OR operator to include the
CURSOR_FLASH flag and make a blinking cursor. If you create a box cur
sor, you can include the CURSOR_FRAME flag to draw only the frame of
the cursor and not the interior.

The last parameter to WinCreateCursor is a pointer to a RECTL structure,
which defines a clipping region relative to hwnd. The cursor won't be vis
ible outside this rectangle. Specifying NULL for this parameter sets the
clipping region equal to the entire area of the window at the time of the
WinCreateCursor call.

When the cursor is first created, it is invisible. You can show it by calling

WinShowCursor (hwnd. TRUE) ;

You can hide the cursor by calling

WinShowCursor (hwnd. FALSE) ;

You need to hide the cursor when you write to the screen during a message
other than WM_PAINT.

After the cursor is created, you can change the position with another call to
WinCreateCursor:

WinCreateCursor (hwnd. xPos. yPos. O. O. CURSOR-SETPOS. NULL)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 357

This is a special version of the WinCreateCursor call. The size and clipping
region parameters are ignored. The only flag you can use is CURSOR
_SETPOS. (Do not, however, use CURSOR_SETPOS when you are creating
the cursor.)

Finally, to destroy the cursor, you call

WinDestroyCursor (hwnd) ;

When using a cursor, you must remember this very important rule: Only
one cursor can be present in the Presentation Manager at any time. Do not
create a cursor during the WM_CREATE message and destroy it during
WM_DESTROY. Instead, you create the cursor when the window gets the
input focus and destroy the cursor when the window loses th~ input focus.
And take note of this: If the clipping region of the cursor depends on the
size of the window (as it does if you specify NULL as the last parameter to
WinCreateCursor when you create the cursor), you should destroy and recre
ate the cursor when you receive a WM_SIZE message. This is the only way
to change the clipping region of the cursor.

The cursor logic can be tricky, so let's look at the code involved with main
taining a cursor in the context of a program that also does other keyboard
handling.

Sample Keyboard Processing
The TYPEAWAY program, shown in Figure 8-5, demonstrates several of the
concepts covered in this chapter. When TYPEAWAY's window first appears,
the cursor is positioned in the upper-left corner of the client window. To use
the program, simply type away. What you type is what you see.

The TYPEAWAY File

ff- - - - - - - - - - - - - - - - - - --
ff TYPEAWAY make file
/1- - - - - - - - - - - - - - - - - - --

typeaway.obj : typeaway.c
c1 -c -G2sw -W3 typeaway. c

easyfont.obj : easyfont.c
c1 -c -G2sw -W3 easyfont.c

typeaway.exe : typeaway.obj easyfont.obj typeaway.def
link typeaway easyfont. /align:16. NUL. os2. typeaway

358 SECTION THREE: GETTING INPUT

The TYPEAWAY.C File

/*------------------------------
TYPEAWAY.C -- Typing Program

------------------------------*/

#define INCL_WIN
#define INCL_GPI
Iii ncl ude <os2. h>
#include <stdio.h>
#include <stdlib.h>
#include "easyfont.h"

#define LCID_FIXEDFONT lL
#define BUFFER(x.y) (*(pBuffer + y * xMax + x»

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

CHAR szClientClass [] - "TypeAway" :
HAS hab

int main (void)

static ULONG flFrameFlags - FCF_TITLEBAR
FCF_SIZEBORDER
FCF_SHElLPOSITION

HMQ hmq ;
HWND hwndFrame. hwndClient ;
OMSG qmsg :

hab - Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCLMINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.

OLe NULL. O. &hwndClient) :
if (hwndFrame != NULL)

{

WinSendMsg (hwndFrame, WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 359

Figure 8-5. The TYPEAWAY.C File. continued

while (WinGetMsg (hab. &qmsg. NUll. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
}

WinDestroyMsgQueue (hmq)
WinTerminate (hab)
return 0 ;

VOID GetCharXY (HPS hps. SHORT *pcxChar, SHORT +pcyChar. SHORT *pcyDesc)
{

FONTMETRICS fm

GpiQueryFontMetrics (hps, (lONG) sizeof fm. &fm)
*pcxChar - (SHORT) fm.1AveCharWidth ;
*pcyChar - (SHORT) fm.1MaxBaselineExt
*pcyOesc = (SHORT) fm.1MaxOescender ;
}

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static Baal flnsertMode - FALSE
static CHAR *pBuffer ;
static SHORT cxClient. cyClient, cxChar. cyChar. cyOesc.

BOOl
CHAR
HPS
POINTl
RECTL
SHORT

switch (msg)
{

xCursor. yCursor. xMax. yMax;
fProcessed ;
szBuffer [20J ;
hps
ptl ;
rcl :
sRep. s

case WM_CREATE:
hps = WinGetPS (hwnd)
EzfQueryFonts (hps) ;

if (!EzfCreateLogFont (hps. lCID_FIXEDFONT. FONTFACE_COUR.
FONTSIZE_IO. 0»

WinReleasePS (hps)

360 SECTION THREE: GETTING INPUT

(continued)

Figure 8-5. The TYPEAWAY.C File. continued

WinMessageBox (HWND_DESKTOP. HWND_DESKTOP.
"Cannot find a fixed-pitch font. Load the Courier"
"fonts from the Control Panel and try again.".
szClientClass. O. MB_OK : MB_ICONEXCLAMATION) ;

return 1 ;

GpiSetCharSet (hps. LCID_FIXEDFONT) ;

GetCharXY (hps, &cxChar, &cyChar. &cyDesc)

GpiSetCharSet (hps. LCID_DEFAULT)
GpiDeleteSetld (hps. LCID_FIXEDFONT)
WinReleasePS (hps) ;
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

xMax = min (255. cxClient / cxChar)
yMax - min (255, cyClient / cyChar - 2)

if (pBuffer !- NULL)
free (pBuffer) ;

if (NULL -- (pBuffer - mal lac (xMax * yMax + 1»)
{

else

WinMessageBox (HWND_DESKTOP. hwnd.
"Cannot allocate memory for text buffer.\n"
"Try a smaller window.". szClientClass. O.
MB_OK : MB_ICONEXCLAMATION)

xMax ... yMax - 0
}

for (s = 0 ; s < xMax * yMax BUFFER (s++. 0) = • .)

xCursor - 0
yCursor ... 0
}

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 361

Figure 8-5. The TYPEAWAY.C File. continued

if (hwnd == WinQueryFocus (HWND_DESKTOP, FALSE»
{

WinDestroyCursor (hwnd) ;

WinCreateCursor (hwnd, O. cyClient - cyChar,
cxChar. cyChar,
CURSOR-SOLID: CURSOR-FLASH, NULL)

WinShowCursor (hwnd, xMax > 0 && yMax) 0) ;

return 0 ;

case WM_SETFOCUS:
if (SHORTIFROMMP (mp2»

{

WinCreateCursor (hwnd, cxChar * xCursor.
cyClient - cyChar * (1 + yCursor),
cxChar. cyChar,
CURSOR_SOLID: CURSOR-FLASH. NULL)

WinShowCursor (hwnd, xMax > 0 && yMax > 0) ;

else
WinDestroyCursor (hwnd)

return 0

case WM_CHAR:
if (xMax = 0 :: yMax ~ 0)

return 0

if (CHARMSG(&msg)-)fs & KC_KEYUP)
return 0 ;

if (CHARMSG(&msg)->fs & KC_INVAL1DCHAR)
return 0 ;

if (CHARMSG(&msg)-)fs & KC_INVALIDCOMP)
(

xCursor - (xCursor + 1) % xMax ;
if (xCursor -- 0)

II Advance cursor

yCursor = (yCursor + 1) % yMax

WinAlarm (HWND_DESKTOP, WA-ERROR) ; II And beep

(continued)

362 SECTION THREE: GETTING INPUT

Figure 8·5. The TYPEAWAY.C File. continued

for (sRep - 0 : sRep < CHARMS£(&msg)->cRepeat sRep++)
{

fProcessed - FALSE ;

ptl .x - xCursor * cxChar
ptl.y - cyClient - cyChar * (yCursor + 1) + cyDesc

/*- --

Process some virtual keys
---------------------------*/

if (CHARMSG(&msg)->fs & KC_VIRTUALKEY)
{

fProcessed - TRUE ;

switch (CHARMSG(&msg}->vkey)

/*---------------
Backspace key

---------------*/

case VK-BACKSPACE:
if (xCursor > 0)

{

WinSendMsg (hwnd, WM_CHAR.
MPFROM2SHORT (KC_VIRTUALKEY. 1),
MPFROM2SHORT (0. VK_lEFT»

WinSendMsg (hwnd. WM_CHAR.
MPFROM2SHORT CKC_VIRTUALKEY. 1).
MPFROM2SHORT (0. VK_DELETE»

break :

/*--------
Tab key

---------*1

case VK-TAB:
s = min (8 - xCursor % 8. xMax - xCursor)

WinSendMsg (hwnd. WM_CHAR.
MPFROM2SHORT (KC_CHAR. s).
MPFROM2SHORT « USHORT) • • 0»

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 363

Figure 8-5. The TYPEAWAY.C File. continued

break

1*-------------------------
Backtab (Shift-Tab) key

-------------------------*/

case VK-BACKTAB:
if (xCursor > 0)

{

s = (xCursor - 1) % 8 + 1 ;

WinSendMsg (hwnd. WM_CHAR.
MPFROM2SHORT (KC_VIRTUALKEY, 5),

MPFROM2SHORT (0, VK-LEFT» :

break ;

1* -
Newline and Enter keys

- - - - - - - - - -: - - - - - - - - - - - - -* I

case VK-NEWLINE:
case VICENTER:

xCursor = 0
yCursor = (yCursor + 1) % yMax
break

default:
fProcessed - FALSE
break :

1* -
Process character keys

------------------------*1

if (!fProcessed && CHARMSG(&msg)->fs & KC_CHAR)
{

II Shift line if flnsertMode
if (flnsertMode)

for (s - xMax - 1 : s > xCursor ; s--)
BUFFER (5, yCursor) -

BUFFER (s - 1. yCursor)

364 SECTION THREE: GETTING INPUT

(continued)

Figure 8-5. The TYPEAWAY.C File. continued

II Store character in buffer

BUFFER (xCursor. yCursor) -
(CHAR) CHARMSG(&msg).>chr

II Display char or new line

WinShowCursor (hwnd. FALSE)
hps - WinGetPS (hwnd) ;

EzfCreateLogFont (hps. LCID_FIXEDFONT.
FONTFACE_COUR, FONTSIZE_IO. 0)

GpiSetCharSet (hps. LCIO_FIXEDFONT)
GpiSetBackMix (hps. BM_OVERPAINT) :

if (fInsertMode)
GpiCharStringAt (hps, &ptl.

(LONG) (xMax - xCursor).
& BUFFER (xCursor, yCursor»

else
GpiCharStringAt (hps. &ptl. lL.

(CHAR *) & CHARMSG(&msg)->chr)

GpiSetCharSet (hps. LCID_DEFAULT) ;
GpiDeleteSetId (hps. LCID_FIXEDFONT)
WinReleasePS (hps) :
WinShowCursor (hwnd. TRUE) :

II Increment cursor

if (!(CHARMSG(&msg)->fs & KC_DEADKEY»
if (0 -- (xCursor - (xCursor + 1) % xMax»

yCursor - (yCursor + 1) % yMax :

fProcessed - TRUE
}

1* - - - - - -- -- - - -- - - -- -- -- - -- - -- - - - --
Process remaining virtual keys

--------------------------------*1

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 365

Figure 8-5. The TYPEAWAY.C File. continued

if (!fProcessed && CHARMSG(&msg)->fs & KC_VIRTUALKEY)
{

fProcessed - TRUE ;

switch (CHARMSG(&rnsg)->vkey)

/*----------------------
Cursor movement keys

----------------------*/

case VLLEFT:
xCursor - (xCursor - 1 + xMax) % xMax

if (xCursor == xMax - 1)
yCursor = (yCursor - 1 + yMax) % yMax

break ;

case VLRIGHT:
xCursor = (xCursor + 1) % xMax

if (xCursor == 0)
yCursor = (yCursor + 1) % yMax

break ;

case VLUP:
yCursor = max (yCursor - 1. 0)
break :

case VK_DOWN:
yCursor = min (yCursor + 1. yMax - 1)
break

case VLPAGEUP:
yCursor - 0
break

case VIC PAGEDOWN:
yCursor - yMax - 1
break ;

case VLHOME:
xCursor - 0
break ;

366 SECTION THREE: GETTING INPUT

(continued)

Figure 8-5. The TYPEAWAY.C File. continued

case VLEND:
xCursor - xMax - 1
break :

1*------------
Insert key

------------*1

case VICINSERT:
fInsertMode - fInsertMode ? FALSE TRUE
WinSetRect (hab. &rcl. O. O.

cxClient. cyChar) :
WinInvalidateRect (hwnd. &rcl. FALSE)
break ;

1*------------
Delete key

------------*1

case VLDELETE:
for (s - xCursor : s < xMax - 1 ; s++)

BUFFER (s. yCursor) =
BUFFER (s + 1. yCursor)

BUFFER (xMax. yCursor) - .. ;

WinShowCursor (hwnd, FALSE) ;
hps - WinGetPS (hwnd) ;
EzfCreateLogFont (hps. LCID_FIXEDFONT,

FONTFACE_COUR, FONTSIZE_I0, 0)
GpiSetCharSet (hps, LCID_FIXEOFONT)
GpiSetBackMix (hps, BM_OVERPAINT)

GpiCharStringAt (hps. &ptl,
(LONG) (xMax - xCursor).
& BUFFER (xCursor. yCursor»

GpiSetCharSet (hps. LCID_DEFAULT) ;
GpiOeleteSetld (hps. LCID_FIXEDFONT)
WinReleasePS (hps) ;
WinShowCursor (hwnd. TRUE) ;
break :

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 367

Figure 8-5. The TYPEAWAY.C File. continued

default:
fProcessed - FALSE
break ;

WinCreateCursor (hwnd. cxChar * xCursor.
cyClient - cyChar * (1 + yCursor).
O. O. CURSOR-SETPOS. NULL) :

return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps) ;
EzfCreateLogFont (hps, LCIO_FIXEOFONT. FONTFACE_COUR.

GpiSetCharSet (hps. LCIO_FIXEOFONT) ;

ptl.x - cxChar ;
ptl.y = cyDesc :
GpiCharStringAt (hps. &ptl.

FONTSIZL10. 0)

(LONG) sprintf (szBuffer. "Insert Mode: Is".
flnsertMode ? "ON" : "OFF"),

szBuffer) ;

pt 1. x = 0 ;
ptl.y = 3 * cyChar I 2
GpiMove (hps. &ptl)

ptl.x = cxClient ;
GpiLine (hps, &ptl)

if (xMax > 0 && yMax > 0)
{

for (s - 0 ; s < yMax s++)
(

ptl.x = 0
ptl.y - cyClient - cyChar * (s + 1) + cyDesc

GpiCharStrirgAt (hps. &ptl. (LONG) xMax.
& BUFFER (0, s»

368 SECTION THREE: GETTING INPUT

(continued)

Figure 8-5. The TYPEAWAY.C File. continued

GpiSetCharSet (hps. LCIO_DEFAULT) ;
GpiDeleteSetld (hps. LCID_FIXEDFONT)
WinEndPaint (hps) :
return 0 :

case WM_DESTROY:
if (pBuffer !- NULL)

free (pBuffer) :
break ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

The TYPEAWAY.DEF File

; TYPEAWAY.DEF module definition file

NAME

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

TYPEAWAY WINDOWAPI

'Typing Program (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 8-5. The TYPEAWAY program.

TYPEAWAY uses a fixed-pitch Courier font and requires the EASYFONT.C

EASYFONT.H files shown in Chapter 5.

You can move the cursor to any position within the client window using the
cursor movement keys. They work as follows:

Key

Right Arrow
Left Arrow
Down Arrow
UpArrow

Cursor Movement

One character right (wraps to next line)
One character left (wraps to previous line)
One line down
One line up

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 369

Key

Home
End
Page Up
Page Down

Cursor Movement

Beginning of line
End of line
Top line (same column position)
Bottom line (same column position)

TYPEAWAY also processes the following keys:

Key

Insert
Delete
Return
Tab
Shift-Tab
Backspace

Action

Turn Insert mode on and off
Delete character at cursor position, move rest of line to left
Move cursor to beginning of next line
Move cursor to next tab position based on 8-column increments
Move cursor to previous tab position
Delete character to left of cursor, move rest of line to left

The characters you type are stored in a block of memory allocated using
maUoc. This allows TYPEAWAY to re-create the client window when the
window procedure receives a WM_PAINT message. TYPEAWAY frees this
memory block and allocates a new one whenever the size of the window
changes. This means that the contents of the buffer aren't preserved follow
ing a WM_SIZE message.

Let's first isolate the cursor logic, because that is perhaps the trickiest to
deal with. Cursor creation and destruction occur during processing of the
WM_SETFOCUS message:

case WM_SETFOCUS:
if (SHORTIFROMMP (mp2)

{

else

WinCreateCursor (hwnd. cxChar * xCursor.
cyClient - cyChar * (1 + yCursor.
cxChar. cyChar.
CURSOR-SOLID: CURSOR-FLASH. NULL)

WinShowCursor (hwnd. xMax) 0 && yMax > 0) :
}

WinDestroyCursor (hwnd)
return 0 :

370 SECTION THREE: GETTING INPUT

The mp2 parameter is nonzero if the window is getting the input focus and 0
if it's losing the input focus. These two types of WM-,-SETFOCUS messages
are equally balanced during the lifetime of a window. This ensures that the
program doesn't attempt to create a second cursor or destroy a nonexistent'
cursor. The window loses the input focus before it's destroyed, at which
time the cursor will also be destroyed.

When the TYPEAWAY client window receives the input focus, it creates a
solid blinking cursor and positions it based on the size of the client area, the
size of a character, and the cursor position (in terms of a row and column)
stored in the variables xCursor and yCursor. The Win Show Cursor function
normally requires TRUE as the second parameter to display the cursor. The
xMax and yMax variables are the number of character columns and rows in
the client window, so this code displays the cursor only if the client window
can fit at least one character.

The cursor is also destroyed and re-created during processing of the
WM_SIZE message. This is necessary to change the clipping region of the
cursor when the window size changes. But note that TYPEAWAY does this
only if the client window has the input focus. Otherwise, the cursor doesn't
exist and will be re-created during the next WM_SETFOCUS message.

if (hwnd -- WinQueryFocus (HWND_DESKTOP. FALSE))
{

WinDestroyCursor (hwnd) ;

WinCreateCursor (hwnd. 0, cyClient - cyChar.
cxChar. cyChar.
CURSOR_SOLID: CURSOR-FLASH, NULL)

WinShowCursor (hwnd, xMax > 0 && yMax > 0) ;
}

The cursor is automatically hidden during a WM_PAINT message. This pre
vents a program from writing over the cursor. However, if you write on the
window during messages other than WM_PAINT (as TYPEAWAY does), you
must hide and show the cursor. TYPEAWAY writes 9n the window during
WM_CHAR. Before calling WinGetPS, the cursor is hidden:

WinShowCursor (hwnd. FALSE) ;

After a call to WinReleasePS, the cursor is shown again:

WinShowCursor (hwnd. TRUE) ;

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 371

After the key has been processed and the character (if any) written to the
client window, the cursor is repositioned:

WinCreateCursor (hwnd. cxChar * xCursor.
cyClient - cyChar * (1 + yCursor).
O. O. CURSOR-SETPOS, NULL) ;

The processing of the WM_CHAR message is fairly straightfoward and easy
to follow because of the switch and case structure. The program first checks
to see that at least one character can fit in the client window:

if (xMax - 0 :: yMax - 0)
return 0

It then checks to see that the message is for a key press:

if (CHARMSG (&msg) -) fs & KC_KEYUP)
return 0 ;

Most of the key processing logic is repeated based on the repeat count:

for (sRep = 0 ; sRep < CHARMSG (&msg) -) cRepeat : sRep++)
{

TYPEAWAY also throws away WM_CHAR messages whenever the KC

_INVALIDCHAR flag is set. (This is rarely the case.)

I've chosen to process some virtual keys first. These are the Backspace,
Tab, Shift-Tab, and Enter keys, which also generate character codes.

The Backspace, Tab, and Shift-Tab keys are processed by sending the win
dow function other WM_CHAR messages. This simplifies the logic for these
keys. The character keys are processed next by displaying the character at
the current cursor position. Then, the remaining virtual keys (cursor move
ment keys, Insert, and Delete) are processed.

Dead Keys and Foreign Language Keyboards
TYPEAWAY shows the correct processing of "dead keys" and "composite
keys. " These keys are generated on some foreign language keyboards to
create characters containing diacritics (sometimes called accent marks).
These characters require two keystrokes. The first keystroke is the diacritic

372 SECTION THREE: GETTING INPUT

itself and is called a "dead key." The second keystroke is a letter and is
called a "composite key. " The letter is combined with the diacritic mark to
form a composite character.

You can process dead keys and composite keys using the KC_DEADKEY,
KC_COMPOSITE, and KC_INVALIDCOMP flags that accompany the
WM_CHAR message. This will allow your program to be converted more
easily to a foreign language. If foreign language conversion is not of con
cern to you, you can ignore these flags. A compromise approach is to throw
away WM_CHAR messages when the KC_DEADKEY flag is set. Near the
beginning of your WM_CHAR processing. you'd have

if (CHARMSG(&msg)->fs & KC_DEADKEY)
return 0 :

But this doesn't give good feedback to the user or provide error processing
of incorrect combinations of dead keys and letters.

If you add dead-key logic to your program, you'll need to test the logic. You
must make the Presentation Manager believe that it is running on a foreign
language keyboard that uses dead keys (for example, the German key
board). You can do this by adding (or changing) the following statements in
your CONFIG.SYS file:

COUNTRY - 049
CODEPAGE - 850. 437
DEVINFO - KBD. GR. [path] KEYBOARD.DCP
DEVINFO - SCR. EGA. [path] VIOTBL.DCP

[path] is the path where the KEYBOARD.DCP and VIOTBL.DCP files are lo
cated. If you have a VGA rather than an EGA, use VGA in the second
DEVINFO statement.

After you reboot your system, you'll probably find that using this German
keyboard is not easy. The Y and Z keys are reversed, and all the symbols
are in different places. You can switch to the U.S. keyboard and codepage
using the following OS/2 commands:

KEYB us
CHep 437

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 373

When you want to switch to German for running KEYLOOK or TYPEAWAY

or to test one of your own programs, run

KEYB GR
CHer 850

Here's how dead keys work: A German user who wishes to type a letter
with a diacritic first presses the dead key. The key corresponding to the +
and = key on the U.S. keyboard generates dead keys on the German key
board. When unshifted, the dead key is an acute diacritic (6). When shifted,
the dead key is a grave diacritic (e). A Presentation Manager program
should display this diacritic but not advance the cursor.

The user then follows this dead key with an uppercase or lowercase A, E, I,
0, or U. The resultant character is the letter with the diacritic. The program
displays this character and advances the cursor. If the user wants to type the
acute or grave mark by itself, he or she follows the dead key by pressing the
Spacebar. A dead key followed by any other key is considered an error, and
the program should indicate this by beeping. In this case, your program
should advance the cursor past the diacritic and display the new key any
way, just as if the dead key were followed by the Spacebar and then
the new key.

The code in TYPEAWAY that is necessary to correctly handle dead-key
combinations is not very large. You can consider three cases:

Case 1: If the KC_CHAR and KC_DEADKEY flags are set, the character
code is the code for the diacritic. You display this character, but do not ad
vance the cursor. In TYPEAWAY, this is handled at the end of the section
that processes character keys. The character is stored in the buffer and dis
played, but the cursor is advanced only if the KC_DEADKEY flag is not set.

Case 2: If the KC_CHAR and KC_COMPOSITE flags are set, the character
accompanying the message will be the composite character. (If the dead
key is followed by a Spacebar, the character code accompanying the
WM_CHAR message for the Spacebar is the previous dead-key character.)
You display the character and advance the cursor. This is exactly how you
process a normal character key, so you do not need to check the KC_COM

POSITE flag. TYPEAWAY ignores it.

Case 3: If the KC_INVALIDCOMP flag is set, the dead key was followed by
a character or virtual key that cannot be combined with the dead key. You
advance the cursor past the dead key and beep the speaker to indicate an er
ror. Then you process the WM_CHAR message as usual. In TYPEAWAY,

this is done near the beginning of the WM_CHAR message processing.

374 SECTION THREE: GETTING INPUT

Code Pages and Character Sets
If you've had some earlier programming experience with the PC and you're
familiar with the PC's extended character set, you may be wondering where
some of these composite characters come from, because not all of them are
supported by the PC character set.

By default, the Presentation Manager does not use the PC character set for
text written to the window using GPI functions. The "old PC" character set
is codepage 437. The default codepage for GPI is called the "new PC" char
acter set, and is codepage 850. In codepage 850 some of the line-drawing
characters are replaced with composite characters.

Under AVIO, the situation is a little different: AVIO will use the system
default codepage (which is 437) unless the CONFIG.SYS file has a
CODEPAGE statement. In this case, AVIO uses the first codepage in
the CODEPAGE statement and can be switched to the other using the
VioSetCp function. The OS/2 CHCP (change codepage) command affects the
AVIO codepage but not the GPI codepage.

If you need to convert a text string to upper case, do not use the C functions
available for this purpose. These functions will work only with ASCII codes
under 128. Instead, use the WinUpper and WinUpperChar functions and use
WinCompareStrings for sorting.

Reading Character Strings
Because a program gets WM_CHAR messages one at a time, there doesn't
seem to be anything in the Presentation Manager that corresponds to the
KbdStringln function to read an entire character string. In the Presentation
Manager you do this a little differently. You create a child window control
of the predefined WC_ENTRYFIELD class. This window accepts typed in
put, understands cursor movement keys, and can even scroll the input left
and right if it's too long to fit in the window. We'll create such a child win
dow control in Chapter 14.

Breaking the Rules
Presentation Manager programming often seems to involve so many rules
that it can feel good to break a few. The final program in this chapter does
just that. Earlier I warned you against using the scan code that accompanies
the WM_CHAR message. For reasons I'll discuss shortly, this final program
uses the scan code.

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 375

The Presentation Manager programs we've written so far have used the
hardware of the PC (such as the video display) only through the software in
terface provided by OS/2 and the Presentation Manager. But this program
directly accesses the PC hardware to control the speaker. Perhaps even more
shocking is the fact that part of the program is written in assembly language
rather than C.

Playing Music on the Keyboard
The ORGAN program shown in Figure 8-6 lets you play your keyboard as if
it were a 7 -octave organ.

The ORGAN File

If- - - - - - - - - - - - - - - - -
, ORGAN mdke file ,- - - - - -- - - - - - - - - - -

organ.obj : organ.c organ.h
c1 -c -G2sw -W3 organ.c

speaker.obj : speaker.asm
IT'asm speaker ;

organ.exe : organ.obj speaker.obj organ.def
link organ speaker. /align:16. NUL. os2. organ

The ORGAN.C File

/* -

ORGAN.C -- Play Organ from Keyboard
- - -- -*/

'define INCL_DOS
'define INCL_WIN
'define INCL_GPI
Ifi n c 1 u d e < 0 s 2 . h >
'include "organ.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)
VOID EXPENTRY Speaker (USHORT usFreq) ;

SHORT xOffset, yOffset. cxCaps, cyChar ;
USHORT usLastScan ;

376 SECTION THREE: GETTING INPUT

(continued)

Figure 8-6. The ORGAN.C File. continued

int main (void)
{

static CHAR szClientClass [] - "Organ" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMQ hmq :

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

if (DosPortAccess (0. O. Ox42. Ox61» II Don't run if port access fails
return 1 :

hab - Winlnitialize (0)

hmq - WinCreateMsgQueue (hab. 0) :

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_OESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass. NULL,
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispalchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq) :
WinTerminate (hab) ;
DosPortAccess (0, 1. Ox42. Ox61)
return 0 ;

VOID DrawKey (HPS hps, USHORT usScanCode. BOOl fInvert)
{

RECTL rcl

rcl.xLeft - 3 * cxCaps * key[usScanCode).xPos 2 + xOffset
rcl .yBottom - 3 * cyChar * key[usScanCode].yPos I 2 + yOffset

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 377

Figure 8-6. The ORGAN.C File. continued

rcl.xRight - rcl.xLeft + 3 * cxCaps
rcl.yTop - rcl.yBottom + 3 * cyChar / 2 ;

WinOrawlext (hps, -1. key[us$canCode].szKey. &rcl.
CLR-NEUTRAL. CLR-BACKGROUND.
DT_CENTER : Dl_VCENTER : DT_ERASERECT)

if (fInvert)
WinInvertRect (hps. &rcl) ;

WinDrawBorder (hps. &rcl. 1, 1. CLR-NEUTRAL. CLR-BACKGROUND.
DB_STANDARD) ;

VOID ProcessKey (HPS hps. USHORl usScanCode. USHORT fsFlags)
{

static USHORT ausOctFreq [] = 262. 277. 294. 311. 330. 349.
370. 392, 415. 440. 466. 494 }

USHORT usOct, usFreq

if (usScanCode >= NUMSCANS)
return :

1/ No scan codes over 53

if «usOct = key[usScanCode).sOctave) -- -1)
return

if (fsFlags & KC_KEYUP)
{

if (usLastScan == usScanCode)
{

Speaker (0) :
DrawKey (hps. usScanCode, FALSE)
usLastScan = 0 :
}

return

if (fsFlags & KC_PREVDOWN)
return

usFreq = ausOctFreq [key[usScanCode].sNote)

if (fsFlags & KC_SHIFT)
usOct += fsFlags & KC_ALl ? 2

else if (fsFlags & KC_ClRL)
usOct -= fsFlags & KC_ALT 2

378 SECTION THREE: GETTING INPUT

/1 Non-music key

1/ For key up

II If that's the note

II turn off speaker
II and redraw key

II Ignore typematics

/1 Get frequency

/1 Higher octave

/1 Lower octave

(continued)

Figure 8-6. The ORGAN.C File. continued

if (usOct > 4)
usFreq «- (usOct - 4)

else if (usOct < 4)
usFreq »- (4 - usOct)

Speaker (usFreq) ;

II Shift frequency
II for octave

II Turn on speaker
DrawKey (hps. usScanCode, TRUE) II Draw the inverted key

if (usLastScan !- 0)
DrawKey (hps. usLastScan. fALSE)

usLastScan - usScanCode ;
II Redraw previous key
II Save scan code

}

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl, MPARAM mp2)
{

FONTMETRICS fm ;
HPS hps ;
SHORT cxClient. cyClient
USHORT usScanCode

switch (msg)
{

case WM_CREATE:
hps - WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps. (LONG) sizeof fm. &fm)
cxCaps - (SHORT) fm.1Emlnc ;
cyChar - (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps) ;
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

xOffset - (cxClient - 25 * 3 * cxCaps / 2) I 2
yOffset - (cyClient - 6 * cyChar) I 2 ;
return 0

case WM_CHAR:
if (!(CHARMSG(&msg)->fs & KC_SCANCODE»

break ;

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 379

Figure 8-6. The ORGAN.C File. continued

hps = WinGetPS (hwnd)
ProcessKey (hps. CHARMSG(&msg)->scancode. CHARMSG(&msg)->fs)
WinReleasePS (hps) ;
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps) ;

for (us$canCode - 0 ; usScanCode < NUMSCANS : usScanCode++)
if (key[usScanCode].xPos 1- -1)

DrawKey (hps. usScanCode. usScanCode == uslastScan)

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg, mpl. mp2)

The ORGAN.H File

/* -

ORGAN.H header file
- -*1

Itdefi ne NUMSCANS (sizeof key I sizeof key[O])

struct

SHORT sOctave
SHORT sNote :
SHORT yPos ;
SHORT xPos ;

CHAR *szKey
}

key [] =

{

-1 • -1. -1. -1,
-1 , -1, -1. -1.
-1. -1. 3, O.
4. 1, 3. 2.

1/ Scan
1/

NULL, /I 0
NULL, 1/ 1

II 2

"cit" . 1/ 3

380 SECTION THREE: GETTING INPUT

Char Oct

None
Esc

1
2 4

Note

ell

(continued)

Figure 8-6. The ORGAN." File. continued

4, 3, 3, 4, "0'",
-I, -I, 3, 6,
4, 6, 3, 8, "FI",
4, 8, 3, 10, "G/I",
4, 10, 3, 12. "A'",

-1. -1. 3, 14,
5, 1. 3, 16, "C''',
5, 3, 3, 18, "0/1".

-1. -1. 3, 20,
5, 6, 3, 22. "F,",

-I, -I, -1. -1. NULL,

-1. -I, -1. -I, NULL.
4, 0, 2, 1. "C",
4. 2, 2, 3, "0",
4, 4. 2. 5. "E".
4, 5, 2. 7, "F",
4, 7 • 2, 9. "G",
4, 9. 2, 11. "A",
4. II, 2. 13. "8",
5. O. 2. 15, "CH,
5, 2. 2, 17. "0",
5, 4, 2, 19, "Eh.
5. 5, 2, 21, "F",
5, 7. 2, 23, "G",

-1, -I, -1. -1, NULL,

-1. -1. -1. -I, NULL,
2. 8, 1. 2. "G'",
2. 10. 1. 4. "A'",

-1, -1. 1. 6.
3, 1, I, 8, "e#",
3. 3, I, 10, "0''',

-1, -I, 1. 12,
3. 6, 1, 14, nF#",
3, 8. I, 16, "GI",
3,10. 1.18. "All",

-1. -1, 1. 20.
4. I, I, 22. "CI",

-1. -1. -1, -1. NULL,

-1, -1, -1. -1. NULL.
-I, -I, -1. -I, NULL,
2. 9. O. 3, "A",

// 4
/I 5
/I 6
/1 7
/I 8
/I 9
1/ 10
/I 11
/1 12
/I 13
/I 14

/I 15
/I 16
/I 17
/I 18

// 19
/1 20
/I 21
/I 22
/I 23
II 24
/I 25
II 26
/ I 27
/1 28

1/ 29
II 30
II 31
II 32
II 33
/1 34
1/ 35
II 36
/I 37
1/ 38
// 39
/I 40
// 41

// 42

// 43
II 44

3
4
5
6
7

8
9
o

Back

Tab

4

4
4
4

5
5

5

q 4
w
e
r
t
y

4

4

4
4
4

u 4
5

o 5
p 5
[5
] 5

Ent

Ctrl
a 2

2

d
f 3
9 3
h
j 3
k 3

Shift
\

3

4

z 2

D/I

F/I
G/I
All

ell
D/I

F/I

C
o
E
F
G
A
B
C
D
E
F
G

GI
All

ell
011

Fit
G/t
Ail

eft

A

(continued)

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 381

Figure 8-6. The ORGAN.H File. continued

2. 11. O. 5. "B". /I 45 x 2

3. O. O. 7. "C"_ II 46 c 3
3, 2, O. 9. no,· , 1/ 47 V 3
3. 4. O. 11. uEn. II 48 b 3
3, 5, O. 13. "F". /I 49 n 3
3, 7. O. 15. "G", II 50 m 3
3, 9. O. 17. "A" • /I 51 3
3, 11. 0, 19, u8", 1/ 52 3
4, 0, 0, 21. "C" /I 53 I 4

} :

The SPEAKER.ASM File

; SPEAKER.ASM -- Ring 2 routine for ORGAN program
(Accesses Intel 8255 Timer chip)

PUBLIC Speaker
.286
.MODEL MEDIUM • PASCAL

. DATA
ClockFreq dd 1193180

.CODE SPEAKER-TEXT
Speaker PROC FAR Frequency:WORD

eli

Mov BX. Frequency
Or BX. BX
Jz TurnOff

Mov AL. 10110110b
Out 43h. AL

Mov AX, WORD PTR [ClockFreq]
Mov OX, WORD PTR [ClockFreq + 2J
Div ax

Out 42h. AL
Jmp $ + 2

382 SECTION THREE: GETTING INPUT

B
C
D
E
F
G
A
B
C

Disable interrupts

Get parameter from stack
Check if it's zero
If so, turn off sound

Set flags for programming

Calculate timer frequency

Output low byte
Delay

(continued)

Figure 8·6. The SPEAKER.ASM File. continued

Mov AL, AH
Out 42h, AL
Jmp $ + 2

In AL. 61h
Jmp $ + 2

Or AL. OOOOOOllb
Out 61h. AL
Jmp Return

TurnOff: In AL. 61h
Jmp $ + 2
And AL, 1l1l1lOlb
Out 61h. AL

Return: Sti
Ret

Speaker ENDP
END

The ORGAN.DEF File

; ORGAN.OEF module definition file . __ ... _----_ __ .. _----------------- .. -,

NAME ORGAN WINOOWAPI

Output high byte

Delay

Get 8255 bits
Delay

Set bits for speaker
Set 8255 bits

Get 8255 bits
Delay
Set bits for no speaker
Set 8255 bits

Enable interrupts

OEseRI PTION
PROTMODE

'Play Organ from Keyboard (C) Charles Petzold, 1988'

HEAPSIZE 1024
STACKSIZE 8192
SEGMENTS
EXPORTS

SPEAKER-TEXT IOPL
ClientWndProc
Speaker

Figure 8·6. The ORGAN program.

To run ORGAN, you'll need the following line in your CONFIG.SYS file:

IOPL-YES

If this line is not in CONFIG.SYS, edit the file to include the line and reboot.

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 383

The program displays part of the keyboard in the window, as shown in
Figure 8-7.

= ORGAN EXE mm

Figure 8-7. The ORGAN display.

The keys are labeled with the notes they generate. When you press any key,
the key is displayed in reverse video as the note is played. The note stops
when you release the key. You can shift up one octave by pressing the Shift
key before you press the note key, and you can shift up two octaves by
pressing Shift and Alt together. Pressing Ctrl shifts down one octave; Ctrl
and Alt shift down two octaves. Due to the limitations of the PC's sound
generation hardware, you can play only one note at a time.

When Scan Codes Are Important
The ORGAN.H header file contains a structure called key that maps scan
codes into note and octave combinations. The yPos and xPos fields of this
structure are used within ORGAN.C to draw the keyboard on the screen.

All the keys that play notes generate character codes, but I decided to use
scan codes to allow ORGAN to be used with European keyboards. For
example, the letter key in the lower-left corner of the keyboard is a Z on a
u.s. keyboard but a Y on a German keyboard. Moreover, many of the
symbol keys on foreign language keyboards are different than those on the
u.s. keyboards.

384 SECTION THREE: GETTING INPUT

The scan codes, however, are the same for U.S. keyboards and foreign lan
guage keyboards. The scan code for the lower-left-letter key is always a 44
regardless whether the key generates a Z or a Y. This allows ORGAN to be
used on a wider variety of keyboard~. Just don't expect to be able to simply
recompile ORGAN for versions of the Presentation Manager that may some
day run on non-PC hardware. ORGAN is very much dependent on the PC.

Using IOPL Segments
When you press a key in ORGAN, the note sounds and continues to sound
until you release the key. The only mechanisms for generating sounds in
OS/2 are the DosBeep function supported in the OS/2 kernel and the
WinAlarm function. Both of these functions make a tone for a specified
period of time.

But in ORGAN the length of this tone depends on how long the key is
pressed. Therefore, I had to use a different approach. This required writing
a function that directly accesses the hardware of the PC's speaker. This
function is called Speaker and is in the SPEAKER.ASM file. It takes one
2-byte parameter, which is the frequency in tiertz. A zero parameter turns
the speaker off.

Under OS/2, functions that access the hardware of the PC must be placed in
special segments called IOPL ("I/O privilege level") segments. These seg
ments run in priority level 2 rather than the normal priority level 3. IOPL
segments must be identified as such in the module definition file. This is in
dicated in the SEGMENTS statement:

SEGMENTS SPEAKER-TEXT IOPL

The Speaker function is in a segment called SPEAKER_TEXT, and the IOPL
keyword tells LINK to flag this segment as an IOPL segment. The entry
point to the Speaker function must also be listed in the EXPORTS section of
the module definition file along with ClientWndProc:

EXPORTS ClientWndProc
Speaker

The 1 that follows the Speaker function name indicates the number of
WORD parameters to the function.

I wrote the Speaker function in assembly language because it is not nor
mally possible to call functions located in a ring 3 segment from a function
in a ring 2 segment. Because the rest of ORGAN runs in ring 3, the Speaker

CHAPTER EIGHT: TAPPING INTO THE KEYBOARD 385

function can't make calls to C library functions. However, Speaker needs to
make a 32-bit divide; if Speaker were written in C, that would require a C
library function call.

Otherwise, the program is fairly straightforward. The DrawKey function
is responsible for drawing the keys on the window, and ProcessKey is re
sponsible for determining what frequency to use for a particular key
board message.

Of course, you might not like the idea of directly accessing the PC hardware
in a Presentation Manager program, and I tend to agree. But still, it's nice
to know that if you want to, you can.

386 SECTION THREE: GETTING INPUT

C HAP T ERN I N E

TAMING THE MOUSE

All user input to a Presentation Manager program comes from the keyboard
and the mouse. The keyboard is adequate for alphanumeric input and rudi
mentary cursor movement. The mouse provides a more intimate connection
between the user and the objects on the screen. As an extension of the user's
fingers, the mouse can point, grab, and move. As you've seen in the sample
programs from previous chapters, the Presentation Manager takes care of
all mouse input involving menus, scroll bars, and the moving and sizing of
windows. Your programs will be concerned mostly with mouse activity that
occurs within the client·window.

When you program for the Presentation Manager, however, the mouse must
be viewed as secondary to the keyboard - the Presentation Manager
doesn't require a mouse. Obviously, some programs (drawing programs and
page-composition programs) become awkward when controlled solely from
the keyboard, so in those cases you might feel justified in not providing a
keyboard interface that duplicates all the mouse functions. That's up to you.
Just be aware that if your program requires a mouse, it won't be usable by
all Presentation Manager users.

The Presentation Manager supports a mouse that has one, two, or three but
tons. You must decide how many mouse buttons you'll use in your program.
The easiest approach is to go for the lowest common denominator and use
only one mouse button.

387

Mouse and Pointer Basics
Let's begin with a few simple definitions, starting with the distinction
between the mouse and the pointer. The mouse is the object that sits on
the desk. The pointer is a small bitmapped picture on the screen. When
you move the mouse with your hand, the Presentation Manager moves
the pointer.

Clicking the mouse is pressing and releasing a mouse button. Double
clicking is pressing and releasing the mouse button twice in succession. To
qualify as a double click, both clicks must occur within a fixed period of
time (by default, half a second) and with the pointer in approximately the
same area of the screen (within an area of about half a system font charac
ter). Dragging the mouse is holding down the mouse button and moving the
mouse. For example, you drag the mouse when you change the position or
size of a window.

More About the Pointer
The Presentation Manager moves the pointer in response to mouse move
ments. The Presentation Manager includes several predefined pointer
shapes, with the most familiar being the arrow pointer used by default on
most windows. Four other predefined pointers (double-headed arrows of
various types) are used on the sizing border. You can also create your own
customized pointers, as described in Chapter 12.

The displayed size of the mouse pointer is dependent on the resolution of
the video display. For example, on the IBM EGA a pointer is 32 pixels wide
and 32 pixels high. On an IBM CGA a pointer is only 16 pixels high because
the vertical resolution is lower. (A program can obtain the dimensions
of the pointer from WinQuerySysValue using the SV _CXPOINTER and
SV_CYPOINTER parameters.) Every pointer has a "hot spot," which is a
single pixel position within the pointer bitmap. For the standard arrow
pointer, the hot spot is the tip of the arrow. The Presentation Manager uses
the hot spot as the position of the pointer.

The Pointer Position
Programs that use the mouse for input must often determine the position of
the pointer or, more precisely, the coordinates of the pointer's hot spot.
Such programs can make this determination in three ways: by calling
WinQueryPointerPos; by calling WinQueryMsgPos; or by processing WM

_MOUSEMOVE messages.

388 SECTION THREE: GETTING INPUT

The WinQueryPointerPos Function

This function fills in the x and y fields of the POINTL structure with the cur
rent pointer position in screen coordinates, relative to the lower-left corner
of the screen:

WinQueryPointerPos (HWND_DESKTOP. &ptl)

You can call this function at any time.

The WinQueryMsgPos Function

You can use the second method, the WinQueryMsgPos function, while
processing a message in a window procedure. This function reports the
screen coordinates of the pointer at the time a message was last placed in
the program's message queue:

WinQueryMsgPos (hab. &ptl) ;

If the window procedure calls this function while processing a nonqueued
message, this pointer position could be long out of date. The pointer posi
tion obtained from WinQueryMsgPos is originally part of the QMSG struc
ture that the Presentation Manager fills in when you retrieve a message
from the message queue with WinGetMsg. However, the pointer position
isn't passed to the window procedure along with the more important QMSG

fields (the window handle, message number, mpJ, and mp2). You use
WinQueryMsgPos to get this field. This function is sometimes useful when
you need to determine the pointer position at the time a key on the key
board was pressed.

Both WinQueryPointerPos and WinQueryMsgPos return the pointer coordi
nates relative to the lower-left corner of the screen, but the functions don't
necessarily return the same value. WinQueryPointerPos returns the pointer
position at the time the function is called, whereas WinQueryMsgPos returns
the position at the time the message currently being processed was posted in
the message queue.

Processing the WM_MOUSEMOVE Message

The third way to obtain the pointer position is by processing the
WM_MOUSEMOVE message in the window procedure. The pointer coordi
nates are stored in mpJ. You can extract the x (horizontal) coordinate with
the expression

xPointer = SHORTIFROMMP (mpl)

CHAPTER NINE: TAMING THE MOUSE 389

and extract the y (vertical) coordinate using

yPointer = SHORT2FROMMP (mpl) ;

NOTE: The PMWIN.H header file also includes a MOUSEMSG macro
that is similar to the CHARMSG macro discussed in Chapter 8. You
can use MOUSEMSG to obtain the pointer position like this:

case WM_MOUSEMOVE:
xPointer - MOUSEMSG (&msg) -> x
yPointer = MOUSEMSG (&msg) -) y

Unlike the pointer position obtained from WinQueryPointerPos and Win
QueryMsgPos, the pointer position in the WM_MOUSEMOVE message is in
window coordinates relative to the lower-left corner of the window receiv
ing the message. Under normal circumstances, a window procedure
receives WM_MOUSEMOVE messages only when the pointer is positioned
over the window. Thus the coordinates in mpJ won't be negative. (The ex
ception is when a program "captures the mouse," a technique I'll discuss
later in this chapter.)

You'll recall from Chapter 8 that a window procedure receives WM_CHAR
messages when the window has the input focus. The mouse is handled dif
ferently - a window procedure receives WM_MOUSEMOVE messages
when the pointer is positioned over the window, regardless of the active
window and the focus window. If the mouse pointer is positioned over over
lapping windows, the topmost window receives the WM_MOUSEMOVE

message.

Processing WM_MOUSEMOVE messages is generally the easiest way for a
program to determine the pointer position, for two reasons:

• The message notifies a window procedure when the mouse has moved.

• The coordinates of the pointer position are relative to the window rather
than the screen.

WM_MOUSEMOVE Message Default Processing
After processing most messages, the window procedure returns a o. Any
message that a window procedure does not process must be passed to Win
DefWindowProc for default processing.

But WM_MOUSEMOVE messages should be handled a little differently.
The Presentation Manager documentation recommends that a window pro
cedure return 1 if it processes a WM_MOUSEMOVE message and 0 if it does

390 SECTION THREE: GETTING INPUT

not. But this is just a convention. The value you return from the window
procedure is not used for anything important - it is simply returned from
the WinDispatchMsg call that originally dispatched the WM_MOUSEMOVE

message to the window procedure.

Rather than return a 0 or 1 from the window procedure, you'll probably
want to conclude your WM_MOUSEMOVE processing with a break state
ment. This will cause WinDefWindowProc to be called for the same mes
sage. WinDefWindowProc processes WM_MOUSEMOVE messages by set
ting the pointer shape to the default tilted arrow.

If you had the source code to WinDefWindowProc, you'd find that it looked
something like this:

MRESULT APIENTRY WinDefWindowProc (HPS hps. USHORT msg, MPARAM mpl. MPARAM mp2)
{

swi tch (msg)

case WM_MOUSEMOVE:

return 0

Win$etPointer (HWND_DESKTOP,
WinQuerySysPointer (HWND_DESKTOP. SPTR-ARROW, FALSE»

return 0

The WinQuerySysPointer function returns a handle to a system pointer. The
SPTR_ARROW identifier refers to the tilted arrow pointer. The Win Set
Pointer call uses that pointer handle to set the pointer shape.

If you want a different pointer shape when the pointer is positioned on
your client window, you can call WinSetPointer while you are processing
WM_MOUSEMOVE and return from the window procedure without calling
WinDefWindowProc. You can set the pointer to any of the system pointers
(obtained from WinQuerySysPointer using the SPTR identifiers) or to a cus
tomized pointer (discussed in Chapter 12).

If you do not call WinSetPointer while processing the WM_MOUSEMOVE
message, you should call WinDefWindowProc so the tilted arrow pointer is

CHAPTER NINE: TAMING THE MOUSE 391

set. Otherwise, you may find that the pointer used by another window (for
example, the double-headed arrows used by the sizing border window) con
tinues to be used when the pointer is inside the client window.

Processing WM_MOUSEMOVE Messages
The WEB program, shown in Figure 9-1, processes WM_MOUSEMOVE
messages. Whenever this program receives a WM_MOUSEMOVE message,
it draws a series of lines from the pointer position encoded in mpJ to the
four corners and four sides of the client window. The pattern looks like a
web (Figure 9-2). As you move the mouse around the window, the center of
the web follows. When you move the mouse outside the client window, the
client window stops receiving WM_MOUSEMOVE messages; thus the web
stops changing shape.

The WEB File

,---------------
11 WEB make file
fl- - - - - - - - - - - - - - -

web.obj : web.c
c1 -c -G2sw -W3 web.c

web.exe : web.obj web.def
link web, /align:16, NUL, os2, web

The WEB.C File

/*--------------------------------------
WEB.C -- Mouse Movement Demo Program

--------------------------------------*/

#define INCL-WIN
'define INCL-GPI
'include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "Web" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_$YSMENU :

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST;

392 SECTION THREE: GETTING INPUT

(continued)

Figure 9-1. The WEB.C File. continued

HAS hab ;
HMO hmq ;
HWND hwndFrame. hwndClient
OMSG qmsg :

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass. ClientWndProc,
CS_SIZEREDRAW : CS_SYNCPAINT. 0) ;

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass. NULL.
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE),
NULl) ;

while (WinGetMsg (hab, &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyHsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

VOID DrawWeb (HPS hps. POINTL *pptlPointerPos. POINTL *pptlClient)
{

POINTL ptl :

ptl.x - 0 :
ptl.y - 0 ;
GpiMove (hps. &ptl) ;
GpiLine (hps. pptlPointerPos)
GpiLine (hps, pptlClient) :

ptl.x == 0 ;
ptl.y - pptlClient-)y
GpiMove (hps. &ptl) ;
GpiLine (hps, pptlPointerPos)

ptl.x - pptlClient-)x
ptl.y = 0 :
GpiL i ne (hps. &pt 1) ;

II Lower Left --) Pointer --) Upper Right

II Upper Left --) Pointer --) Lower Right

II Lower Center --) Pointer --) Upper Center

(continued)

CHAPTER NINE: TAMING THE MOUSE 393

Figure 9-1. The WEB.C File. continued

ptl.x = pptlClient->x I 2 ;
ptl.y = 0 ;
GpiMove (hps. &ptl) ;
GpiLine (hps. pptlPointerPos)

ptl.y ... pptlClient-)y
GpiLine (hps. &ptl) ;

II Left Center --> Pointer --) Right Center
ptl .x ... 0 ;
ptl.y - pptlClient->y I 2 ;
GpiMove (hps. &ptl) ;
GpiLine (hps. pptlPointerPos)

ptl.x'" pptlClient->x
GpiLine (hps. &ptl) ;
}

MRESULT EXPENrRY ClientWndProc (HWNO hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

static POINTL ptlClient. ptlPointerPos ;
HP$ hps :

switch (msg)

case WM __ SIZE:
ptlClient.x = SHORTIFROMMP (mp2)
ptlClient.y ... SHORT2FROMMP (mp2)
return 0 ;

case WM_MOUSEMOVE:
hps - WinGetPS (hwnd) ;
GpiSetMix (hps. FM_INVERT)

DrawWeb (hps, &ptlPointerPos. &ptlClient)

ptlPointerPos.x = MOUSEMSG(&msg)->x
ptlPointerPos.y ... MOUSEMSGC&msg)->y

DrawWeb (hps. &ptlPointerPos. &ptlClient)

WinReleasePS (hps) :
break :

case WM_PAINT:

II do default processing

hps ... WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;
GpiSetMix (hps. FM_INVERT)

394 SECTION THREE: GETTING INPUT

(continued)

Figure 9·1. The WEB.e File. continued

OrawWeb (hps. &ptlPointerPos, &ptlClient)

WinEndPaint (hps) ;
return 0 ;

return WinOefWindowProc (hwnd. msg, mpl. mp2)

The WEB.DEF File

--------------- .. -----------------.
: WEB.OEF module definition file
---------------------_ ... ----------.
NAME WEB WINOOWAPI

OESeR! PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

'Mouse Movement Demo Program (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 9·1. The WEB program.

Figure 9·2. The WEB display.

CHAPTER NINE: TAMING THE MOUSE 395

Erasing and Redrawing
WEB draws lines using a series of GpiMove and GpiLine calls in the
DrawWeb function. When WEB receives a WM_MOUSEMOVE message, it
must erase the lines previously drawn and draw new lines based on the new
mouse position. One way to erase the old lines is to write over them using a
different mix mode. The default mix mode, called FM_OVERPAINT, causes
any object you draw to overpaint whatever was previously in the client win
dow. You can instead set a mix mode ofFM_INVERT:

GpiSetMix (hps. FM_INVERT) ;

This causes the Presentation Manager to draw the lines by inverting the
color of the client window background. Thus if you set the mix mode to
FM_INVERT and draw over the old lines, the lines are effectively erased.

The WM_MOUSEMOVE code first sets the mix mode to FM_INVERT and
then calls DrawWeb to erase the previous web:

case WM_MOUSEMOVE:
hps - WinGetPS (hwnd) :
GpiSetMix (hps. FM_INVERT)

DrawWeb (hps. &ptlPointerPos. &ptlClient) ;

The new position of the pointer is stored in ptlPointerPos, and the program
calls DrawWeb again to draw the new web:

ptlPointerPos.x = MOUSEMSG (&msg) -) x
ptlPointerPos.y - MOUSEMSG (&msg) -> y

DrawWeb (hps. &ptlPointerPos. &ptlClient)

WinReleasePS (hps) ;
break :

But there's a bug in this web. Both WM_MOUSEMOVE and WM_PAINT are
queued messages. The WM_PAINT message is a low-priority message. If
both a WM_MOUSEMOVE message and a WM_PAINT message are in the
message queue, WM_MOUSEMOVE is retrieved first.

396 SECTION THREE: GETTING INPUT

If the pointer is positioned over a window when the window is first created,
the Presentation Manager places an initial WM_MOUSEMOVE message in
the program's message queue even if the mouse isn't moving during that
time. This is often the first queued message the window procedure receives.
The WM_PAINT message is usually the second queued message. But the
code in WEB assumes that the window procedure receives a WM_PAINT
message (and draws an initial web) before the first WM_MOUSEMOVE
message (which begins by erasing the previous web). The fix for this is rela
tively easy. The window class is given a CS_SYNCPAINT style:

WinRegisterClass (hab. szClientClass. ClientWndProc.
CS_SIZEREDRAW : CS_SYNCPAINT. 0) ;

This class style makes WM_PAINT messages nonqueued. The window pro
cedure receives a WM_PAINT message immediately whenever part of the
window is invalid. The first WM_PAINT message then precedes the first
WM_MOUSEMOVE message.

If you move the mouse quickly within WEB's client area, you'll notice a lag
between the position of the pointer and the center of the web. This results
from the delay between the time the WM_MOUSEMOVE message is posted
and the time it is actually processed. You can force the web to follow the
movement of the mouse more closely by replacing the following two
statements:

ptlPointerPos.x - MOUSEMSG (&msg) -> x
ptlPointerPos.y - MOUSEMSG (&msg) -) y

with the following code:

WinOueryPointerPos (HWND_OESKTOP. &ptlPointerPos) ;
WinMapWindowPoints (HWND_DESKTOP, hwnd. &ptlPointerPos. 1) ;

The WM_MOUSEMOVE message continues to notify the window procedure
of a change in the pointer position, but the program obtains a more up-to
date pointer position from the WinQueryPointerPos function. The position
must be converted from screen coordinates to client window coordinates
with WinMapWindowPoints.

CHAPTER NINE: TAMING THE MOUSE 397

You'll notice with both methods that no matter how quickly you move the
mouse around the client window, the program never has to "catch up" to a
stream of unprocessed WM_MOUSEMOVE messages. That's because the
Presentation Manager doesn't fill up your message queue with a lot of
WM_MOUSEMOVE messages - it posts them only as quickly as you can
process them. If the queue already contains a WM_MOUSEMOVE message
when a new WM_MOUSEMOVE message is ready, the Presentation Man
ager replaces the message currently in the queue. Therefore, only one
WM_MOUSEMOVE message exists at a time in the message queue.

Mouse Buttons and Hit-Testing
A mouse can have one, two, or three buttons. A program can obtain the
number of mouse buttons from WinQuerySysValue:

lNumButtons = WinQuerySysValue (HWND_DESKTOP. SV_CMOUSEBUTTONS)

If the return value is 0, no mouse is installed. A program can check for the
presence of a mouse in this manner or by calling WinQuerySysValue with the
SV _MOUSEPRESENT parameter.

The PMWIN.H header file defines several identifiers you use in button
related functions and messages. These identifiers contain the words
BUTTONl, BUTTON2, and BUTTON3 to refer to the three buttons. The fol
lowing table shows how these identifiers normally correspond to the actual
buttons on the mouse:

Number oj Identifier
Mouse Buttons BUTTONl BUTTON2 BUTTON3

One Center
Two Left Right
Three Left Center Right

You can write your programs for a three-button mouse and then include
special logic to mimic the third button for a two-button mouse and the sec
ond and third buttons for a one-button mouse. But the easiest approach is to
assume that the mouse has only one button and to work entirely with the
functions and messages that pertain to BUTTONl. The Presentation Man
ager's own window procedures for the menu, scroll bar, sizing border, title
bar, push buttons, and so forth all work this way.

398 SECTION THREE: GETTING INPUT

Left-handed users often prefer to use their index finger for the first button.
For this reason, the Presentation Manager Control Panel allows the user to
switch the orientation of the buttons, like this:

Number of Identifier
Mouse Buttons BUTTONl BUTTON2 BUTTON3

One Center
Two Right Left
Three Right Center Left

This swapping of the mouse buttons is invisible to your program; you
needn't worry about it. The user knows which physical button is the first
button, and that's all that's important. (But if you're writing a training pro
gram that draws a mouse on the screen and labels the buttons, you can
determine if the mouse buttons have been swapped by calling Win
QuerySysValue with the SV _SWAPBUTTON parameter.)

A program can determine whether a mouse button is currently pressed or
released by calling WinGetKeyState, the function used in Chapter 8 to deter
mine the state of keys on the keyboard:

sKeyState = WinGetKeyState (HWND_DESKTOP. VK_BUTTONl) ;

The high bit of sKeyState is set (sKeyState is negative) if the first mouse but
ton is currently down. You can use the VK_BUTTON2 and VK_BUTTON3

identifiers to determine the state of the second and third buttons.

Button Messages
A window procedure is notified of button presses and releases by messages:

Button

2
3

Pressed

WM_BUTTONIDOWN
WM_BUTTON2DOWN
WM_BUTTON3DOWN

Released

WM_BUTTONI UP
WM_BUTTON2UP
WM_BUTTON3UP

If the user presses and releases the mouse button twice to qualify as a
double click, the window procedure receives the two messages shown above
for the first click and the following pair of messages for the second click:

Button

1
2
3

Pressed Again

WM_BUTTONIDBLCLK
WM_BUTTON2DBLCLK
WM_BUTTON3DBLCLK

Released

WM_BUTTONI UP
WM_BUTTON2UP
WM_BUTTON3UP

CHAPTER NINE: TAMING THE MOUSE 399

The Presentation Manager routes these messages to window procedures in
the same way it routes the WM_MOUSEMOVE message: The window under
neath the pointer at the time of the button action determines the window
procedure that receives the message. The pointer position is stored in the
mpJ parameter, just as it is in the WM_MOUSEMOVE message.

WinDefWindowProc performs some important default ,processing of button
down messages:

case WM_BUTTONIDOWN:
case WM_BUTTON200WN:
case WM_BUTTON300WN:

WinSetActiveWindow (HWNO_OESKTOP. hwnd) ;

hwndOwner = WinOueryWindow (hwnd. OW_OWNER, FALSE) ;

if (hwndOwner != NULL)
return W;nSendMsg (hwndOwner, msg, mpl. mp2)

else
return 0 ;

The WinSetActiveWindow call sets the active window to hwnd. If hwnd is not
a top-level window, then hwnd is a descendant of a top-level window and
that top-level window becomes active. This allows the user to bring a win
dow to the foreground by clicking the client area with the mouse. You
should either include a call to WinSetActiveWindow in your button down
processing or call WinDefWindowProc.

WinDefWindowProc also sends the message to the window's owner, under
the assumption that, if the window is not interested in the message, the win
dow's owner might be.

Hit-Testing
When you draw graphic figures or text on the screen, you determine the
coordinates of each object (whether figure or text) and call the appropriate
GPI functions to draw it. Often a program uses a mouse interface to allow a
user to point to and manipulate these graphic objects. But that means your
program must work backward from the pointer coordinates to determine
which of these objects the mouse is pointing to. This process is called' 'hit
testing." Hit-testing can be complex, particularly if your client window
contains figures that overlap or contains text in a variable-pitch font. To
help out, GPI includes a built-in facility to draw a series of objects and then

400 SECTION THREE: GETTING INPUT

determine which object coincides with a particular point. You'll want to use
this facility for complex hit-testing, but for simple hit-testing, you can use
the old-fashioned techniques, which I'll discuss in this section.

Simple Hit-Testing
The CHECKER! program, shown in Figure 9-3, demonstrates some simple
hit-testing logic. The program draws 25 rectangles in a 5-by-5 grid. When
you click within one of these rectangles, CHECKER! draws an X in the
rectangle. When you click again, the X disappears.

The CHECKER1 File

11- - - - - - - - - - - - - - - - - - - -
CHECKERl make file
11- - - - - - - - - - - - - - - - - - --

checkerl.obj : checkerl.c
c1 -c -G2sw -W3 checkerl.c

checkerl.exe : checkerl.obj checkerl.def
link checkerl, /a1ign:]6, NUL, os2, checker!

The CHECKER1.C File

/* -

CHECKERl.C -- Mouse Hit-Test Demo Program
---*/

#define INCL_WIN
/Jinc1ude <os2.h>

#define DIVISIONS 5

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM. MPARAM)

int main (void)
{

static CHAR szClientC1ass [] - "Checkerl"
static ULONG flFrameFlags = FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame, hwndC1ient
OMSG qmsg ;

FCF-SYSMENU :
FCF_MINMAX :
FCF_TASKLIST ;

(continued)

CHAPTER NINE: TAMING THE MOUSE 401

Figure 9-3. The CHECKERl.C File. continued

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBlE.
&flFrameFlags, szClientClass. NULL.
Ot. NULL, O. &hwndCl i ent) ;

w~ile (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (nab) ;
return 0 ;

VOID Drawline (HPS hps. LONG xl, LONG yl. LONG x2. lONG y2)

P0INTL ptl

ptl.x = xl
ptl .x - x2
}

ptl.y = yl
ptl.y -= y2

GpiMove (hps, &ptl)
GpiLine (hps, &ptl)

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
(

static BOOl fBlockState [DIVISIONS) [DIVISIONS) ;
static SHORT xBlock. yBlock ;
HPS hps ;
RECTL rcl ;
SHORT x, y ;

switch (msg)
{

case WM_SIZE:
xBlock = SHORTIFROMMP (mp2) / DIVISIONS
yBlock - SHORT2FROMMP (mp2) I DIVISIONS
return 0 ;

case WM_BUTTONIDOWN:
case WM_BUTTON1DBlClK:

if (xBlock > 0 && yBlock > 0)
{

x - MOUSEMSG(&msg)->x
y = MOUSEMSG(&msg)->y

402 SECTION THREE: GETTING INPUT

xBlock
yBlock

(continued)

Figure 9-3. The CHECKER1.C File. continued

else

if (x < DIVISIONS && y < DIVISIONS)
{

else

fBlockState ExlEy] - !fBloekState [x][y]

rcl.xRight - xBlock + (rel .xLeft - x * xBloek)
rel.yTop - yBloek + (rel .yBottom - y * yBloek)

WinInvalidateRect (hwnd. &rcl. FALSE) ;
}

WinAlarm (HWND_DESKTOP. WA_WARNING)

WinAlarm (HWND_OESKTOP. WA_WARNING) ;

break ; II do default processing

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps)

if (xBlock > 0 && yBlock > 0)
for (x = 0 ; x < DIVISIONS ; x++)

for (y = 0 ; Y < DIVISIONS y++)
{

rcl .xRight = xBlock + (rcl .xLeft = x * xBlock);
rel.yTop - yBloek + (rcl.yBottom - y * yBloek):

Wi nDrawBorder (hps. &rcl. I, 1.
CLR_NEUTRAL. CLR_BACKGROUND.
DB_STANDARD : DB_INTERIOR) ;

if (fBloekState [x][y])
{

WinEndPaint (hps)
return 0 ;

DrawLine (hps. rcl.xLeft. rcl.yBottom.
rcl.xRight. rel.yTop)

DrawLine (hps. rcl.xLeft. rel.yTop.
rcl.xRight. rcl.yBottom)

return WinOefWindowProc (hwnd. msg. mpl. mp2)

CHAPTER NINE: TAMING THE MOUSE 403

The CHECKER1.DEF File

; CHECKER1.DEF module definition file

NAME CHECKER! WINDQWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Mouse Hit-Test Program No.1 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 9-3. The CHECKER1 program.

The CHECKER! display is shown in Figure 9-4.

~ CHECKERl EXE II)

Figure 9-4. The CHECKER1 display.

Each rectangle in CHECKER! has the same width and height. The program
determines the dimensions of the rectangles during the WM_SIZE message
by dividing the client window width and height by 5. These dimensions are
stored in xBlock and yBlock. The jBlockState array stores the state (checked
or not checked) of each block. The state is TRUE if the rectangle contains
an X and FALSE if it doesn't. The WM_PAINT message code tests the
values in this array to determine if it should draw the Xs in the rectangles.

404 SECTION THREE: GETTING INPUT

The WM_BUTTONlDOWN code must work backward from the pointer
coordinates to determine the particular block being cliCked on. Because all
the blocks are the same height and width, this task is fairly trivial, requiring
only that the pointer coordinates be divided by the rectangle size:

x - MOUSEMSG (&msg) -> x I xBlock
y - MOU$EMSG (&msg) -) y I yBlock

The values of x and y can range from 0 to 4, identifying the rectangle that
the user clicked on. The value of JBlockState for that rectangle is inverted:

fBlockState [x][y] - !fBlockState [x][y] ;

The rectangle is then invalidated to generate a WM_PAINT message. If the
width or height of the client window isn't equally divisible by 5, the pro
gram leaves a strip across the right or top of the window that isn't covered
by any of the rectangles. If the user clicks on that area, the x or y value
(calculated as shown above) will be greater than 4, in which case
CHECKERl beeps to indicate the error.

Before we proceed to a more sophisticated hit-testing technique, let's add a
keyboard interface to this program.

Emulating the Mouse with the Keyboard
I said at the outset of this chapter that you should write your Presentation
Manager programs so they are usable with either a mouse or the keyboard.
So far, I've been shamelessly ignoring that rule in order to concentrate on
mouse logic. The CHECKER2.program, shown in Figure 9-5, adds a" key
board interface to CHECKERl. You can use the cursor movement keys to
move the pointer from rectangle to rectangle. The Spacebar or Enter key
draws an X or removes the X in the rectangle under the pointer.

The CHECKER2 File

ff- - - - - - - - - - - - - - - - - - - -
CHECKER2 make file
#--------------------

checker2.obj : checker2.c
cl -c -G2sw -W3 checker2.c

checker2.exe : checker2.obj checker2.def
link checker2. lalign:16. NUL, os2, checker2

CHAPTER NINE: TAMING THE MOUSE 405

The CHECKER2.C File

1* -

CHECKER2.C -- Mouse Hit-Test Demo Program with Keyboard Interface
---* I

#define INCL_WIN
#include <os2.h>
#include <stdlib.h>

#define DIVISIONS 5

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [J = "Checker2"
static UlONG flFra~eFlag5 - FCF_TITLEBAR

HAB hab ;
HMO hmq :

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq = WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FC~_MINMAX

FCF _TASKLI ST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass, NULL,
Ol, NULL, 0, &hwndClient) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab, &qmsg)

WinOestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

VOID DrawLine (HPS hps, lONG xl, LONG yl. LONG x2, LONG y2)

POINTL ptl ;

406 SECTION THREE: GETTING INPUT

(continued)

Figure 9-5. The CHECKER2.C File. continued

ptl.x - xl
ptl.x - x2
}

ptl.y - y1 GpiMove (hps, &ptl)
ptl.y - y2; GpiLine (hps. &ptl)

MRESUlT EXPENTRY ClientWndProe (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static BOOl fBlockState [DIVISIONS] [DIVISIONS] ;
static SHORT xBlock. yBlock ;
HPS hps
POINTL ptl :
RECTl rel ;

SHORT x, y ;

swi tch (msg)
{

case WM_SIZE:
xBlock - SHORTIFROMMP (mp2) DIVISIONS
yBlock - SHORT2FROMMP (mp2) I DIVISIONS
return 0 :

case WM_BUTTON1DOWN:
case WM_BUTTONIDBlClK:

if (xBlock > 0 && yBloek > 0)
{

else

x = MOUSEMSG(&msg)->x I xBlock
y - MOUSEMSG(&msg)->y I yBlock

if (x < DIVISIONS && y < DIVISIONS)
{

else

fBlockState [x][y] - !fBlockState [x][y] ;

rcl.xRight - xBlock + (rcl .xLeft = x '" xBlock)
rcl.yTop - yBlock + (rcl .yBottom - y * yBlock)

WinlnvalidateRect (hwnd, &rcl, FALSE) ;
}

WinAlarm (HWNO_DESKTOP. WA_WARNING)

WinAlarm (HWND_DESKTOP, WA_WARNING) ;

break ; II do default processing

case WM_SETFOCUS:
if (WinQuerySysValue (HWND_DESKTOP. SV_MOUSEPRESENT) == 0)

(continued)

CHAPTER NINE: TAMING THE MOUSE 407

Figure 9·5. The CHECKER2.C File. continued

WinShowPointer (HWND_DESKTOP.
SHORTIFROMMP (mp2) ? TRUE FALSE)

return 0

case WM_CHAR:
if (xBlock == 0 :: yBlock == 0)

break ;

if (CHARMSG(&msg)-)fs & KC_KEYUP)
brea k ;

if (!(CHARMSG(&msg)-)fs & KC_VIRTUALKEY»
break ;

WinQueryPointerPos (HWND_DESKTOP. &ptl)
WinMapWindowPoints (HWND_DESKTOP, hwnd, &ptl. 1) ;

x = max (0, min (DIVISIONS
y - max (0. min (DIVISIONS

switch (CHARMSG(&msg)->vkey)
{

case VLLEFT:
x - - ;
break ;

case VLRIGHT:
x++ ;

break ;

case VICDOWN:
y - - ;

break ;

case VICUP:
y++ ;

break ;

case VLHOME:
x '" 0 ;

y = DIVISIONS
break ;

408 SECTION THREE: GETTING INPUT

- 1

1, (SHORT) ptl.x
1. (SHORT) ptl.y

xBlock»
yBlock»

(continued)

Figure 9-5. The CHECKER2.C File. continued

case VICEND:
x - DIVISIONS - 1
y - 0
break :

case VICNEWLINE:
case VK_ENTER:
case VICSPACE:

WinSendMsg (hwnd. WM_BUTTONIDOWN.
MPFROM2SHORT (x * xBlock. y * yBlock). NULL)

break

default :
return 0 ;

x - (x + DIVISIONS) % DIVISIONS
y - (y + DIVISIONS) % DIVISIONS

ptl.x - x * xBlock + xB10ck / 2
pt1.y = y * y810ck + yBlock / 2

Wi nMapWi ndowPoi nls (hwnd, HWND_DESKTOP. &pt1. 1) :
WinSetPointerPos (HWND_DESKTOP, (SHORT) pt1.x. (SHORT) ptl.y)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

if (xBlock > 0 && yBlock > 0)
for (x - 0 ; x < DIVISIONS : x++)

for (y - 0 ; y < DIVISIONS y++)
{

rcl.xRight - xB10ck + (rcl.xLeft = x * xBlock):
rcl.yTop - yBlock + (rel .yBottom - y * yB10ck);

Wi nDrawBorder (hps. &rcl, 1. 1.
CLR_NEUTRAL. CLR-BACKGROUND.
DB_STANDARD : DB_INTERIOR) ;

if (fBlockState [x][y])
{

DrawLine (hps. rcl.xLeft. rcl.yBottom.
rcl.xRight, rc1.yTop) :

(continued)

CHAPTER NINE: TAMING THE MOUSE 409

Figure 9-5. The CHECKER2.C File. continued

WinEndPaint (hps)
return 0 ;

DrawLine (hps, rcl.xLeft. rcl.yTop.
rcl.xRight. rcl.yBottom)

return WinDefWindowProc (hwnd, msg, mp1. mp2)

The CHECKER2.DEF File

: CHECKER2.DEF module definition file

NAME CHECKER2 WINDOWAPI

DESCRI PTI ON
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Mouse Hit-Test Program No.2 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 9-5. The CHECKER2 program.

The first problem to be solved in a program like this involves the pointer it
self. If no mouse is installed, how can the program use the pointer? Well,
it's easier than you may think. Even if a mouse isn't installed, the pointer
still exists and has a position on the display. You can determine that posi
tion from WinQueryPointerPos and set the position by calling Win Set
PointerPos. If there's no mouse, calling WinSetPointerPos is the only way to
move the pointer. Obviously, a user without a mouse would be annoyed to
have a pointer sitting in the center of the display, so the Presentation Man
ager hides the pointer to make it invisible.

The Presentation Manager maintains a value called the "pointer level,"
which determines whether the pointer is visible. Initially, the pointer level
is set to 0 if a mouse is installed and to 1 if a mouse isn't installed. To decre
ment the pointer level, call

WinShowPointer (HWND_DESKTOP, TRUE) ;

The Presentation Manager will not decrement the pointer level below zero.
To increment the pointer level, make the following call:

410 SECTION THREE: GETTING INPUT

WinShowPointer (HWND_DESKTOP. FALSE) ;

The Presentation Manager displays the pointer only if the pointer level is
equal to O. (You can obtain the current pointer level from WinQuerySysValue
with the SV_POINTERLEVEL parameter.)

CHECKER2 shows how this works in practice. The program calls WinShow
Pointer in only one place - while processing the WM_SETFOCUS message:

case WM_SETFOCUS:
if (WinQuerySysValue (HWND_DESKTOP. SV_MOUSEPRESENT) -- 0)

WinShowPointer (HWND_DESKTOP.
SHORTIFROMMP (mp2) ? TRUE: FALSE) ;

return 0 ;

You'll recall from the discussion of WM_SETFOCUS in Chapter 8 that mp2
is TRUE if the window is gaining the input focus and FALSE if the window
is losing the input focus.

If a mouse isn't installed (indicated by a 0 value returned from Win
QuerySysValue with the SV_MOUSEPRESENT parameter), the initial pointer
level is l, and the pointer is hidden. When CHECKER2 gets the input focus,
it decrements the pointer level to O. The pointer becomes visible. When
CHECKER2 loses the input focus, the pointer level is incremented back to 1
to hide the pointer again.

This logic thus allows CHECKER2 to display the pointer whenever it has the
input focus. Normally, input focus has nothing to do with the pointer. But
CHECKER2 uses the keyboard to mimic the action of the mouse. It only
makes sense, to display the pointer when CHECKER2 has the input focus,
because that's when CHECKER2 gets WM_CHAR messages.

The button and repainting logic in ClientWndProc is the same as that in
CHECKERl. The bulk of the new code is the addition of WM_CHAR
processing. When CHECKER2 receives a WM_CHAR message, it obtains
the position of the pointer in screen coordinates and converts the position to
client window coordinates:

WinQueryPointerPos (HWND_DESKTOP. &ptl)
WinMapWindowPoints (HWND_DESKTOP, hwnd. &ptl. 1) ;

The pointer could be outside the client window entirely. The program deter
mines the values of x and y (ranging from 0 to 4) that identify the rectangle
closest to the pointer:

x - max (0. min (DIVISIONS
y = max (0. min (DIVISIONS

1. (SHORT) ptl.x I xBlock»';
1. (SHORT) pt1.y I yBlock» ;

CHAPTER NINE: TAMING THE MOUSE 411

(The identifier DIVISIONS is defined as 5 near the top of the program.)
These values of x and yare then incremented or decremented depending on
the particular cursor movement key being pressed. The VK_NEWLINE,
VK_ENTER, and VK_SPACE keys are processed by sending the window a
WM_BUTTONIDOWN message to simulate a mouse button action.

The new x and y values must then be converted back to a pointer position.
The following formulas calculate a point in window coordinates at the cen
ter of the rectangle identified by x and y:

ptl.x - x * xBlock + xBlock / 2
ptl.y = y * yBlock + yBlock / 2

CHECKER2 then converts that point to window coordinates and sets the
new pointer position:

WinMapWindowPoints (hwnd. HWND_DESKTOP. &ptl. 1) ;
WinSetPointerPos (HWND_DESKTOP. (SHORT) ptl.x. (SHORT) ptl.y)

Hit-Testing with Children
Now let's try a different approach to hit-testing-one that involves creat
ing child windows that process WM_BUTTONIDOWN messages themselves.
The CHECKER3 program is shown in Figure 9-6.

The CHECKER3 File

ff- - - - - - - - - - - - - - - - - - - -
If CHECKER3 make file
If- - - - - - - - - - - - - - - - - - --

checker3.obj : checker3.c
cl -c -G2sw -W3 checker3.c

checker3.exe : checker3.obj checker3.def
link checker3, /align:16. NUL. os2. checker3

The CHECKER3.C File

/*--
CHECKER3.C -- Mouse Hit-Test Demo Program with Child Windows

- -*/

#define INCL_WIN
#include <os2.h>

412 SECTION THREE: GETTING INPUT

(continued)

Figure 9-6. The CHECKER3.C File. continued

#define DIVISIONS 5

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)
MRESULT EXPENTRY ChildWndProc (HWND, USHORT, MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] - "Checker3"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

HMO hmq ;
HWND hwndFrame. hwndClient ;
OMSG qmsg :

hab - WinInitialize (0)
hmq - WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass. NULL,
OL. NULL. O. &hwndClient) ;

while (WinGetMsg (hab. &q~sg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) :
return 0 ;

VOID DrawLine (HPS hps. LONG xl, LONG yl. LONG x2, LONG y2)
{

POINTL ptl

ptl.x - xl
ptl.x - x2
}

ptl.y - yl
ptl.y ""' y2

GpiMove (hps. &ptl)
GpiLine (hps. &ptl)

(continued)

CHAPTER NINE: TAMING THE MOUSE 413

Figure 9-6. The CHECKER3.C File. continued

MRESl)LT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

414

static CHAR szChildClass [] - "Checker3.Child"
static HWND hwndChild [DIVISIONS][DIVISIONS]
SHORT xBlock. yBlock, x, y ;

switch (msg)

case WM_CREATE:
WinRegisterClass (hab, szChildClass, ChildWndProc.

CS_SIZEREDRAW. sizeof (USHORT» :

for (x - 0 : x < DIVISIONS : x++)
for (y = 0 ; Y < DIVISIONS y++)

hwndChild ExlEy] -
WinCreateWindow

hwnd, II Parent window
szChildClass. /I Window class
NULL, II Window text
WS_V lSI BLE. II Window style
O. O. 0, O. II Position & size
hwnd.
HWND_BOTTOM.
y « 8 : x,

NULL.
NULL) ;

return 0

case WM_SIZE:
xBlock - SHORTIFROMMP (mp2) DIVISIONS
yBlock = SHORT2FROMMP (mp2) DIVISIONS

for (x = 0 ; x < DIVISIONS : x++)
for (y = 0 ; Y < DIVISIONS ; y++)

/I Owner window
II Placement
II Chil d wi ndow
II Control data
II Pres. Params

WinSetWindowPos (hwndChild Exley], NULL.

return 0 ;

x * xBlock. y * yBlock. xBlock. yBlock,
SWP_MOVE : SWP_SIZE) ;

case WM_BUTTONIDOWN:
case WM_BUTTONIDBLCLK:

WinAlarm (HWND_DESKTOP, WA_WARNING)
break; II do default processing

SECTION THREE: GETTING INPUT

ID

(continued)

I

i:

Figure 9·6. The CHECKER3.C File. continued

case WM-ERASEBACKGROUND:
return 1 :

return WinDefWindowProc (hwnd. msg. mp!. mp2)
)

MRESULT EXPENTRY ChildWndProc (HWNO hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

HPS hps
RECTL rel

switch (msg)
{

case WM_CREATE:
WinSetWindowUShort (hwnd. O. 0)
return 0 ;

case WM-BUTTONIDOWN:
case WM_BUTTONIDBLCLK:

WinSetActiveWindow (HWND_DESKTOP. hwnd) ;
WinSet~indowUShort (hwnd. O. lWinQueryWindowUShort (hwnd. 0»
WinlnvalidateReet (hwnd. NULL, FALSE) ;
return 0 :

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)

WinQueryWindowRect (hwnd. &rel)

WinDrawBorder (hps. &rel, 1. 1. CLR-NEUTRAL, CLR-BACKGROUND,
DB_STANDARD : DB_INTERIOR)

if (WinQueryWindowUShort (hwnd. 0))

{

DrawLine (hps,

DrawLi ne (hps,

WinEndPaint (hps)
return 0 ;

rcl.xLeft, rel.yBottom.
rel.xRight. rcl.yTop) :
rcl.xLeft, rcl.yTop,
rcl.xRight, rel.yBottom)

return WinDefWindowProc (hwnd. msg, mpl, mp2)

CHAPTER NINE: TAMING THE MOUSE 415

The CHECKER3.DEF File

; CHECKER3.DEF module definition file

NAME CHECKER3 WINDOWAPI

OESCRI PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

'Mouse Hit-Test Program No.3 (C) Charles Petzold, 1988'

1024
8192
ClientWndProc
ChildWndProc

Figure 9-6. The CHECKER3 program.

While processing the WM_CREATE message, ClientWndProc registers an
other window class named "Checker3.Child." Windows that are created
based on the "Checker3.Child" class use the ChildWndProc window pro
cedure for message processing. CHECKER3 then creates 25 child windows
based on the "Checker3.Child" class:

for (x - 0 ; x < DIVISIONS ; x++)
for (y -,0 ; Y < DIVISIONS y++)

hwndChild [x] [y] -
WinCreateWindow

hwnd,
szChildClass,
NULL.
loiS_VISIBLE.
O. 0, O. O.
hwnd.
HWND_BOTTOM.
y « 8 : x,
NULL.
NULl) ;

1/ Parent wi ndow
II Window class
II Window text
II Window style
II Position & size
II Owner window
II Placement
II Child window 10
II Control data
II Pres. Params

You've seen WinCreateWindow before. I used it in the WELCOME4 program
in Chapter 3 to create three child windows based on predefined windo~
classes. CHECKER3 uses WinCreateWindow to create windows based on the
"Checker3.Child" class.

416 SECTION THREE: GETTING INPUT

In the WinCreateWindow function, the size and position parameters for these
25 child windows are all set to o. The windows must be sized and positioned
based on the size of CHECKER3's client window. The sizing and position
ing occur during the WM_SIZE message:

case WM_SIZE:
xBlock - SHORTIFROMMP (mp2) / DIVISIONS
yBlock - SHORT2FROMMP (mp2) / DIVISIONS

for (x - 0 : x < DIVISIONS ; x++)
for (y - 0 ; Y < DIVISIONS ; y++)

return 0 :

WinSetWfndowPos (hwndChild [x] [y], NULL,
x * xBlock, y * yBlock, xBlock, yBlock,
SWP_MOVE : SWP_SIZE) ;

Each child window is set to one-fifth the height and one-fifth the width of
CHECKER3's client window. Basically, instead of drawing 25 rectangles,
CHECKER3 creates 25 child windows of the same size and position as the
rectangles in CHECKERI and CHECKER2. ClientWndProc doesn't do much
else except call WinAlarm when it receives a WM_BUTTONIDOWN mes
sage. ClientWndProc receives this message only if the mouse is clicked in an
area of the client window not covered by one of the children.

Messages to the 25 child windows are processed in ChildWndProc. When
CHECKER3 registers the "Checker3.Child" window class, it reserves 2
bytes of additional space (the size of a USHORT) for each window created
based on that class:

WinRegisterClass (hab, szChildClass. ChildWndProc,
CS_SIZEREDRAW, sizeof (USHORT» ;

ChildWndProc can access that USHORT by calling the WinSetWindowUShort
and WinQueryWindowUShort functions. It uses the space to store the current
state (X or no X) of the window. ChildWndProc initializes the reserved
USHORT to 0 (meaning no X) when it receives a WM_CREATE message:

case WM_CREATE:
WinSetWindowUShort (hwnd. 0, 0)
return 0 ;

CHAPTER NINE: TAMING THE MOUSE 417

ChildWndProc actually receives 25 WM_CREATE messages, 1 for each of
the 25 child windows. For each WM_CREATE message, the value of hwnd is
different. A different reserved USHORT is initialized to 0 with each
message.

Each of the 25 child windows also receives a WM_PAINT message. Each
window paints itself. The logic is somewhat simpler than in CHECKERI
and CHECKER2because the rectangle and the lines encompass the entire
area of the child window. For example, to paint the rectangle around the
window, the child need only obtain its window rectangle from WinQuery
WindowRect and use that RECT structure directly in WinDrawBorder:

WinQueryWindowRect (hwnd. &rcl)

WinDrawBorder (hps. &rcl. 1. 1. CLR-NEUTRAL. CLR-BACKGROUNO.
DB_STANDARD : DB_INTERIOR) ;

The processing of the WM_BUTTONIDOWN message is also quite simple:

case WM_BUTTON1DOWN:
case WM_BUTTON1DBLCLK:

418

WinSetActiveWindow (HWND_DESKTOP. hwnd) ;
WinSetWindowUShort (hwnd. O. lWinQueryWindowUShort (hwnd. 0»
WinlnvalidateRect (hwnd. NULL. FALSE) ;
return 0 ;

A particular child window receives a WM_BUTTONIDOWN message when
the child is underneath the pointer when the button was clicked. The code
here obtains the value stored in the reserved USHORT using WinQuery
WindowUShort, inverts it, and then stores it again using WinSetWin
dowUShort. The entire area of the child window is then invalidated to
generate a WM_PAINT message for that child.

CHECKER3.C is longer than CHECKER1.C. My explanation of CHECKER3
is longer than my explanation of CHECKERl. Despite that, I claim that
CHECKER3 is simpler than CHECKERl. The reason? There's no real hit
testing in this program. If the child gets hit with a mouse click, it changes
the state of itself without even examining the pointer position. If the rect
angles in CHECKERI were all different sizes, the hit-testing in that pro
gram would obviously be much more complex. But if the child windows in
CHECKER3 were all different sizes, the logic in ChildWndProc wouldn't
have to be changed at all.

SECTION THREE: GETTING INPUT I~
I

II.

Just as you use subroutines to modularize your programs, you can use child
windows to modularize the area of the client window and simplify mouse
message processing.

Tracking and Capturing
So far we've seen a program that processes WM_MOUSEMOVE messages
and a series of three programs that process WM_BUTTONIDOWN mes
sages. However, often you'll have to use a combination of mouse movement
and mouse button messages. You begin an action when a button is pressed,
follow the movement of the mouse around the window, and then finish up
when the button is released. This is sometimes called "tracking" the
mouse, and some complexities are involved.

Simple Mouse Tracking
The BLOKOUTI program in Figure 9-7 uses simple mouse tracking logic.

The BLOKOUT1 File

If- - - - - - - - - - - - - - - - - - - -
BLOKOUTI make file
il- - - - - - - - - - - - - - - - - - - -

blokoutl.obj : blokoutl.c
cl ·c -G2sw -W3 blokoutl.c

blokoutl.exe : blokoutl.obj blokoutl.def
link blokoutl. lalign:16. NUL, os2. blokoutl

The BLOKOUT1.C File

1* - - • - • -
BLOKOUTl.C -- Mouse Button Demo Program

---*/

#define INCL-WIN
#define INCL_GPI
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)

(continued)

CHAPTER NINE: TAMING THE MOUSE 419

Figure 9-7. The BLOKOUT1.C File. continued

static CHAR szClientClass [] - "BlokOutl"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

HAB hab ;
HMO hmq ;
HWND hwndFrame. hwndClient
QMSG qmsg :

hab - Winlnitialize (0)
hmq = WinCreateMsgOueue (hab, 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szC11entClass. ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrameFlags. szClientClass, NULL.
OL, NULL. 0, &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE),
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinOispalchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 :

VOID DrawBoxOutline (HWND hwnd. POINTL *pptlStart, POINTL *pptlEnd)
{

HPS hps ;

hps = WinGetPS (hwnd) ;
GpiSetMix (hps, FM_INVERT)

GpiMove (hps. pptlStart) ;
GpiBox (hps, ORO_OUTLINE, pptlEnd, OL. OL)

420 SECTION THREE: GETTING INPUT

(continued)

Figure 9-7. The BLOKOUT1.C File. continued

WinReleasePS (hps) ;
}

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl, MPARAM mp2)
{

static BOOL fButtonDown. fValidBox :
static POINTL ptlStart, ptlEnd, ptlBoxStart, ptlBoxEnd
HPS hps :

switch (msg)
{

case WM_BUTTONIOOWN:
ptlStart.x - ptlEnd.x - MOUSEMSG(&msg)->x
ptlStart.y - ptlEnd.y - MOUSEMSG(&msg)->y

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd)

fButtonOown - TRUE
break ;

case WM_MOUSEMOVE:
if (fButtonDown)

{

II do default processing

DrawBoxOutline (hwnd, &ptlStart, &ptlEnd)

ptlEnd.x - MOUSEMSG(&msg)->x
ptlEnd.y - MOUSEMSG(&msg)->y

DrawBoxOutline (hwnd, &ptlStart, &ptlEnd) :
}

break ;

case WM_BUTTONIUP:
if (fButtonOown)

{

II do default processing

DrawBoxOutline (hwnd, &ptlStart, &ptlEnd)

ptlBoxStart = ptlStart ;
ptlBoxEnd.x - MOUSEMSG(&msg)->x
ptlBoxEnd.y - MOUSEMSG(&msg)->y

fButtonDown - FALSE ;
fValidBox - TRUE:
WinlnvalidateRect (hwnd, NULL, FALSE)
}

return 0 ;

(continued)

CHAPTER NINE: TAMING THE MOUSE 421

Figure 9-7. The BLOKOUT1.C File. continued

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NUll)
GpiErase (hps)

if (fValidBox)
{

GpiMove (hps. &ptlBoxStart) ;
GpiBox (hps. DRO_OUTLINEFILL. &ptlBoxEnd. Ol. Ol)
}

if (fButtonDown)
{

GpiSetMix (hps. FM_INVERT)

GpiMove (hps. &ptlStart) ;
GpiBox (hps. DRO_OUTlINE. &ptlEnd, Ol. Ol)
}

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The BLOKOUT1.DEF File

; BlOKOUTl.DEF module definition file

NAME

DESCRIPTION
PROTMODE
HE16.PSI ZE
STACKSIZE
EXPORTS

BlOKOUT1 ~INDOWAPI

'Mouse Button Demo Program (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 9-7. The BLOKOUTl program.

You can use this program to block out a rectangular area within the client
window. When you press button 1, BLOKOUTI saves the pointer position
and uses it as one corner of a rectangle. You then move the mouse with the
button pressed. The curr,ent position of the pointer is the opposite corner of

422 SECTION THREE: GETTING INPUT

the rectangle. As you move the mouse, BLOKOUTI displays the rectangle
outline. When you release the mouse button, the program draws the filled
rectangle.

Figure 9-8 shows one rectangle already drawn and another rectangle in
progress.

~ BLOKOUT1 EXE ml!1

Figure 9-8. The BLOKOUTl display.

When ClientWndProc receives a WM_BUTTONIDOWN message, it saves the
position of the pointer in two static POINTL structures:

ptlStart.x - ptlEnd.x - MOUSEMSG(&msg) -) x
ptlStart.y - ptlEnd.y = MOUSEMSG(&msg) -> y

It then calls the function DrawBoxOutline to draw a rectangle using GpiBox
with the FM_INVERT mix mode between these two points. (The rectangle
will be only one pixel after this first call to DrawBoxOutline.) The JButton
Down variable is set to TRUE so that the program knows the button is down
during subsequent messages.

The WM_MOUSEMOVE message is processed only if fButtonDown is
TRUE. DrawBoxOutline is called again to erase the previous box, the new
pointer position is stored in ptlEnd, and the new rectangle outline is drawn.

The WM_BUTTONIUP message is also processed only if fButtonDown is
TRUE. ClientWndProc first erases the previous rectangle and then saves the

CHAPTER NINE: TAMING THE MOUSE 423

two opposite corners in the POINTL structures ptlBoxStart and ptlBoxEnd.
The [ButtonDown variable is set to FALSE and the client window is invali
dated. The WM_PAINT processing draws a filled rectangle based on these
two points.

At first, nothing seems to be wrong with this program. But a problem
does exist.

The Problem
Try this: What happens if you press the mouse button within BLOKOUTI 's
client window but then move the pointer outside the window? BLOKOUTI
will stop receiving the WM_MOUSEMOVE messages. Now you release the
mouse button. BLOKOUTI doesn't get that WM_BUTTONIUP message be
cause the pointer is outside the client window.

Now move the mouse pointer back within BLOKOUTl's client window.
ClientWndProc still thinks the mouse button is pressed because fButton

Down is set to TRUE! This is clearly not good. The program doesn't know
what's going on.

An alternative is to dispense with the [ButtonDown variable and use
WinGetKeyState to test the state of the button during the WM_MOUSEMOVE
message. But this is also a problem. What happens if you press the mouse
button outside of BLOKOUTI 's client window and then move the pointer in
side? WinGetKeyState will report that the mouse button is pressed, but
BLOKOUTI will not have a valid starting point for the rectangle because
the button was pressed outside the client window.

How about using a combination of the [ButtonDown logic and the
WinGetKeyState function? You're welcome to try, but think a bit about what
you really want to do here. You want the ability to follow the mouse pointer
even when it ventures outside the client window. You want to process all of
the WM_MOUSEMOVE messages between WM_BUTTONIDOWN and
WM_BUTTONIUP, regardless of whether the mouse is inside or outside the
client window.

You can do this. It's called "capturing the mouse."

The Solution -Capturing the Mouse
Capturing the mouse is simpler than baiting a mousetrap. You simply call

WinSetCapture (HWND_DESKTOP. hwnd) ;

.. After you call WinSetCapture, all mouse messages will be directed to
hwnd's window procedure regardless of where the pointer is positioned.

424 SECTION THREE: GETTING INPUT

(Note that the coordinates of the pointer will still be relative to the lower
left corner of the window, so they could be negative.) To release the mouse,
use the following call:

WinSetCapture (HWND_DESKTOP, NULL) ;

A window that has captured the mouse is called the "capture window."
Only one window can be the capture window at any time. You can obtain
the window handle of the capture window by calling WinQueryCapture. The
function returns NULL if there is no capture window, as is usually the case.

The BLOKOUT2 program, shown in Figure 9-9, demonstrates how to cap
ture the mouse.

The BLOKOUT2 File

/1- - - - - - - - - - - - - - - - - _. -
BlOKOUT2 make file
/1- - - - - - - - - - - - - - - - - - - -

blokout2.obj : blokout2.c
cl -c -G2sw -W3 blokout2.c

blokout2.exe : blokout2.obj blokout2.def
link blokout2. lalign:16, NUL, 052, blokout2

The BLOKOUT2.C File

1*· -
BLOKOUT2.C -- Mouse Button & Capture Demo Program

- - -- - - -- - -- - - - -- - - -- - - - - - - - - - - -- - - - - -- - - -- - -- - - - -- -* I

#define INCL_WIN
#define INCL_GPI
#include <052.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "BlokOut2"
static ULONG flFrameFlags - FCF_TITLEBAR

HAB
HMO

hab
hmq

FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

(continued)

CHAPTER NINE: TAMING THE MOUSE 425

Figure 9-9. The BLOKOUT2.C File. continued

HWNO hwndFrame. hwndClient
QMSG qmsg :

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) :

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREORAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_OESKTOP. WS_VISIBLE,
&flFrameFlags, szClientClass, NULL,
OL. NULL, O. &hwndClient) :

WinSendMsg {hwndFrame. WM_SETICON.
WinQuerySysPointer (HWNO_DESKTOP. SPTR-APPICON. FALSE).
NULL) ;

while (WinGetMsg (hab. &qmsg, NULL, O. 0»
WinOispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

VOID OrawBoxOutline (HWND hwnd. POINTl *pptlStart, POINTl *pptlEnd)
{

HPS hps ;

hps = WinGetPS (hwnd) ;
GpiSetMix (hps. FM_INVERT)

GpiMove (hps. pptlStart) ;
GpiBox (hps. ORO_OUTLINE. pptlEnd. Ol. OL)

WinReleasePS (hps) ;
}

MRESUlT EXPENTRY ClientWndProc (HWNO hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static BOOl fCapture. fValidBox ;
static POINTl ptlStart, ptlEnd, ptlBoxStart. ptl~oxEnd
HPS hps ;

swi tch (msg)

(continued)

426 SECTION THREE: GETTING INPUT I.

Figure 9-9. The BLOKOUT2.C File. continued

case WM_BUTTONIDOWN:
ptlStart.x - ptlEnd.x - MOUSEMSG(&msg)->x
ptlStart.y - ptlEnd.y - MOUSEMSG(&msg)->y

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd)

WinSetCapture (HWND_OESKTOP. hwnd) ;
fCapture - TRUE
break; II do default processing

case WM_MOUSEMOVE:
if (fCapture)

{

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd)

ptlEnd.x - MOUSEMSG(&msg)->x
ptlEnd.y - MOUSEMSG(&msg)->y

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd) ;
}

break ;

case WM_BUTTONIUP:
if (fCapture)

(

1/ do default processing

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd)

ptlBoxStart = ptlStart :
ptlBoxEnd.x - MOUSEMSG(&msg)->x
ptlBoxEnd.y - MOUSEMSG(&msg)->y

WinSetCapture (HWND_DESKTOP. NULL)
fCapture - FALSE ;
fValidBox - TRUE;
WinInvalidateRect (hwnd. NULL, FALSE)

return 0

case WM_CHAR:
if (fCapture && CHARMSG(&msg)-)fs & KC_VIRTUALKEY &&

!(CHARMSG(&msg)->fs & KC_KEYUP) &&
CHARMSG(&msg)->vkey -- VK-ESC)

DrawBoxOutline (hwnd. &ptlStart. &ptlEnd)

WinSetCapture (HWND_DESKTOP. NULL) ;

(continued)

CHAPTER NINE: TAMING THE MOUSE 427

Figure 9-9. The BLOKOUT2.C File. continued

fCapture = FALSE
}

return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

if (fValidBox)
{

GpiMove (hps. &ptlBoxStart) :
GpiBox (hps, DRO_OUTLINEFILL. &ptlBoxEnd. Ol. Ol)
}

if (fCapture)
{

GpiSetMix (hps. FM_INVERT) :
GpiMove (hps. &ptlStart) :
GpiBox (hps. ORO_OUTLINE. &ptlEnd. OL. OL)
}

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

The BLOKOUT2.DEF File

; BlOKOUT2.0EF module definition file
....... - -- -- --- ------- -- ------ -- ------.
NAME

OESCR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

BLOKOUT2 WINOOWAPI

'Mouse Button & Capture Demo Program (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 9·9. The BLOKOUT2 program.

BLOKOUT2 captures the mouse on a WM_BUTTONIDOWN message.
Rather than using the [ButtonDown variable from BLOKOUTl, BLOKOUT2
uses an/Capture variable that it sets to TRUE when the mouse is captured.

428 SECTION THREE: GETTING INPUT

If the size of the BLOKOUT2 window is less than the full screen, you'll
notice that BLOKOUT2 continues to receive WM_MOUSEMOVE messages
even when you move the pointer outside the client window. When you
release the button (either while the pointer is inside or outside the client
window), BLOKOUT2 releases the mouse.

BLOKOUT2 also processes the WM_CHAR message. If you press the Escape
key while blocking out a rectangle, the program erases the rectangle you've
been drawing and releases the mouse. This is how you can cancel the block
out. Otherwise, much of BLOKOUT2 is exactly the same as BLOKOUTI.
Capturing the mouse adds very little overhead to mouse processing and
helps out a lot in many cases.

The Presentation Manager WinTrackRect function is also a big help in jobs
that require a rectangle to be stretched or moved using the mouse and key
board, particularly when the rectangle must be displayed outside the pro
gram's window. The title bar window and sizing border window use
WinTrackRect to let you move and resize the standard window. I'll show you
how to use WinTrackRect in the BLOWUP program in Chapter 15.

The SKETCH Program
You've heard of CAD programs? You've heard of paint programs? The pro
gram in Figure 9-10 is neither of these. It's called SKETCH and is just about
the most primitive drawing program possible.

The SKETCH File

11- - - - - - - - - - - - - - - - --
11 SKETCH make file
fl- - - - - - - - - - - - - - - - - -

sketch.obj : sketch.c
cl -c -G2sw -W3 sketch.c

sketch.exe : sketch.obj sketch.def
link sketch, /dlign:16. NUL. 052. sketch

The SKETCH.C File

/*- --

SKETCH.C -- Mouse Sketching Program
- -*/

1Idefine INCL_WIN

(continued)

CHAPTER NINE: TAMING THE MOUSE 429

Figure 9-10. The SKETCH.C File. continued

#define INCL_GPI
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWNO. USHORT. MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] - "Sketch" :
static ULONG flFrameFlags - FCF_TITlEBAR

FCF_SIZEBOROER
FCF_SHELLPOSITION

HMO hmq :
HWNO hwndFrame. hwndClient ;
OMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass, NULL,
OL. NULL. O. &hwndClient) :

if (hwndFrame -- NUll)

else

WinMessageBox (HWND_DESKTOP. HWND_DESKTOP.
"Not enough memory to create the "
"bitmap used for storing images.",
szClientClass, O. MB_OK : MB_ICONEXClAMATION)

WinSendMsg (hwndFrame, WM_SETICON.
WinQuerySysPointer (HWND_OESKTOP. SPTR-APPICON. FALSE).
NUll) ;

430

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame) ;
}

WinOestroyMsgQueue (hmq)
WinTerminate (hab)
return 0 ;

SECTION THREE: GETTING INPUT

(continued)

I,

I'

Ii:

Figure 9-10. The SKETCH.C File. continued

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static BaOl fButtonlDown. fButton2Down ;
static HBITMAP hbm;
static HOC hdcMemory :
static HPS hpsMemory ;
static POINTL ptlPointerPos, aptl [3]
BITMAPINFOHEADER bmp ;
HPS hpsWindow ;
LONG cxFullScrn, cyFu]lScrn
SIZEL sizl ;

switch (msg)
{

case WM_CREATE:
cxFullScrn - WinQuerySysValue (HWND_DESKTOP. SV_CXFULLSCREEN)
cyFullScrn - WinQuerySysValue (HWND_DESKTOP, SV_CYFUlLSCREEN)

/*-------------------------
Create Memory DC and PS

- - - _. -*/

hdcMemory - DevOpenDC (hab. OD_MEMORY.

si zl . ex - a ;
sizl .cy - 0 ;

n*" Ol. NULL. NULl)

hpsMemory - GpiCreatePS (hab, hdeMemory, &sizl.

bmp.cbFix
bmp.cx
bmp.cy

PU_PELS GPIF_DEFAUlT
GPIT_MICRO : GPIA_ASSOC) ;

/*--
Create monochrome bitmap. return 1 if cannot

--- - - - - - --- - ---- --- ----- --- -- - - - - - - -- - - --- - - - -*/

= sizeof bmp :
- (SHORT) cxFul1Scrn
- (SHORT) cyFullScrn

bmp.cPlanes - 1 ;
bmp.cBitCount - 1 :
hbm - GpiCreateBitmap (hpsMemory. &bmp. OL. OL. NULL)

if (hbm == NULl)
{

GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory) ;
return 1 ;

(continued)

CHAPTER NINE: TAMING THE MOUSE 431

Figure 9-10. The SKETCH.C File. continued

1* -
Set bitmap in memory PS and clear it

- -* I

GpiSetBitmap (hpsMemory, hbm) :

aptl[l].x - cxFullScrn ;
aptl[l].y = cyFullScrn ;
GpiBitBlt (hpsMemory. NULL. 2L. aptl, ROP_ZERO, BBO_OR)
return 0 ;

case WM_BUTTONIDOWN:
if (!fButton2Down)

WinSetCapture (HWND_DESKTOP. hwnd)

ptlPointerPos.x - MOUSEMSG(&msg)-)x
ptlPointerPos.y - MOUSEMSG(&msg)->y

fButtonlDown = TRUE :
break :

case WM_BUTTONIUP:
if (!fButton2Down)

II do default processing

WinSetCapture (HWND_DESKTOP. NULL)

fButtonlDown = FALSE :
return 0 :

case WM_BUTTON2DOWN:
if (!fButtonlDown)

WinSetCapture (HWND_DESKTOP. hwnd)

ptlPointerPos.x = MOUSEMSG(&msg)->x
ptlPointerPos.y = MOUSEMSG(&msg)->y

fButton2Down = TRUE ;
break :

case WM_BUTTON2UP:
if (!fButtonlDown)

II do default processing

WinSetCapture (HWND_DESKTOP, NULL)

432 SECTION THREE: GETTING INPUT

(continued)

I

I

Figure 9-10. The SKETCH.C File. continued

fButton2Down - FALSE ;
return 0 ;

case WM_MOUSEMOVE:
if (!fButtonlDown && !fButton2Down)

break ;

hpsWindow - WinGetPS (hwnd) :

GpiSetColor (hpsMemory. fButtonlOown ? CLR-TRUE : CLR-FALSE)
GpiSetColor (hpsWindow.

fButtonlDown ? CLR_NEUTRAL : CLR-BACKGROUND) :

GpiMove (hpsMemory. &ptlPointerPos)
GpiMove (hpsWindow. &ptlPointerPos)

ptlPointerPos.x - MDUSEMSG(&msg)-)x
ptlPointerPos.y - MOUSEMSG(&msg)->y

GpiLine (hpsMemory. &ptlPointerPos)
GpiLine (hpsWindow, &ptlPointerPos)

WinReleasePS (hpsWindow) ;
break ;

case WM_PAINT:

II do default processing

hpsWindow - WinBeginPaint (hwnd. NULL. (PRECTL) aptl)

aptl[2] = aptl[O] ;

GpiBitBlt (hpsWindow, hpsMemory, 3L. aptl. ROP_SRCCOPY.
BBO_OR) :

WinEndPaint (hpsWindow)
return 0 :

case WM_DESTROY:
GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory) :
GpiDeleteBitmap (hbm) ;
return 0 ;

return WinDefWindowProc (hwnd. msg, mpl. mp2)

CHAPTER NINE: TAMING THE MOUSE 433

The SKETCH.DEF File

; SKETCH.DEF module definition file

NAME SKETCH WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Mouse Sketching Program (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 9-10. The SKETCH program.

To draw in SKETCH, you press button 1 and move the mouse. To erase (or,
more precisely, to draw in the background color) you press button 2 and
move the mouse. To clear the entire window, you Well, you have to end
the program, load it again, and start all over. (I said that this is a primitive
program.) Figure 9-11 shows the SKETCH program with the word "Hello"
drawn on the window, an homage to those early advertisements for the
Apple Macintosh.

~ SKETCH EXE mm

-------------------~

Figure 9-11. The SKETCH display.

434 SECTION THREE: GETTING INPUT

During the WM_CREATE message, SKETCH creates a monochrome bitmap
the size of the maximized window. If this is not possible, SKETCH returns 1

from the WM_CREATE message. Returning 1 from WM_CREATE causes
the creation of the standard window to be aborted. In main, SKETCH checks
the value of hwndFrame to see if WinCreateStdWindow was successful. If
not, SKETCH displays a message box informing the user of the problem.

This bitmap is used in a memory device context for saving any drawing you
do and updating the window during the WM_PAINT message. A bitmap
used in this way is sometimes called a "shadow bitmap." Whenever
SKETCH draws something on the window, it also draws the same thing on
the bitmap. Consequently, WM_PAINT processing is very simple. All that's
required is a GpiBitBlt call to update the window from the bitmap.

CHAPTER NINE: TAMING THE MOUSE 435

C HAP T E R TEN

SETTING THE TIMER

The Presentation Manager timer is a form of input that periodically notifies
a window procedure when a specified amount of time has elapsed. Your
program specifies this time in the WinStartTimer function. The Presentation
Manager then periodically posts WM_TIMER messages to the program's
window procedure.

A clock is the most obvious application for a timer. The WM_TIMER mes
sages signal the program to update the clock display. (Later in this chapter
we'll write two clock programs that use the timer.) You can also use the
timer to periodically update a status report (as is done in the FREEMEM

program also shown in this chapter) or to pace screen activity for animation
or computer-aided instruction.

Why the Timer Is Necessary
In previous chapters you've seen how the Presentation Manager provides
alternatives to several categories of OS/2 kernel, functions. For example, a
Presentation Manager program doesn't use the OS/2 kernel VIO functions to
write to the display (unless, of course, the application uses the Advanced
VIO facility). Instead, the program writes to the screen using the Presenta
tion Manager GPI functions. Similarly, a Presentation Manager program
doesn't use the OS/2 kernel KBD or MOD functions for keyboard or mouse
input. Instead, the program processes keyboard and mouse input in the form
of messages.

The Presentation Manager timer is also a substitute for OS/2 kernel func
tions - specifically those functions that involve suspending a thread of exe
cution. For example, if you were to write a clock program for the OS/2

kernel, you would probably use the DosSleep function to suspend the thread
for a set period of time. On return from DosSleep, the program updates the
clock and calls DosSleep again. But in a single-thread Presentation Manager

437

program, DosSleep would suspend, the normal processing of messages in
that thread - even messages for such basic tasks as moving and resizing the
window or selecting an item from the program's system menu. It's clear
that for the Presentation Manager, which requires threads to process mes
sages as quickly as possible (window procedures should take no longer than
one-tenth of a second to process a message), you shouldn't call functions
such as DosSleep or DosSemSetWait in a message queue thread if you want
optimum performance. That's why the Presentation Manager includes the
timer. Message queue threads use the timer to regain periodic control in the
absence of user input and other messages to the thread's windows. Chapter
17 discusses some alternatives to this use of the timer, including the use of
multiple threads of execution.

Timer Basics
The timer is a fairly simple facility involving two functions and one mes
sage. The Presentation Manager defines two ways to set a timer. Both use
the same WinStartTimer function but in a somewhat different format. The
first method is by far the most common.

The Common Method of Using a Timer
The BEEPER 1 program, shown in Figure 10-1, shows how to start a timer,
process WM_TIMER messages, and stop the timer. BEEPERI sets the timer
to go off once every second. The window procedure responds to a
WM_TIMER message by beeping and changing the color of its client win
dow, alternating between red and blue.

The BEEPER1 File

41- - --- - - -- - - -- - - - -- -
BEE PERl make file
tt- ------------------

beeperl.obj : beeperl.c
cl -c -G2sw -W3 beeperl. c

beeperl.exe : beeperl.obj beeperl.def
link beeper!. /align:16. NUL. 052. beeperl

438 SECTION THREE: GETTING INPUT

The BEEPER1.C File

1*---------------------------------------
BEEPERl.C -- Timer Demo Program No.1

---------------------------------------*1

Hdefine INCL_WIN
f/include <os2.h>

Hdefine ID_TIMER 1

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static char szClientClass [] - "Beeperl" :
static ULONG flFrameFlags - FCF_TITLEBAR

HAS hab :
HMO hmq ;

FCF_SIZESORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. 5zClientClass, ClientWndProc. OL. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient)

WinStartTimer (hab. hwndClient. IO_TIMER, 1000)

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qrnsg) ;

WinStopTimer (hab, hwndClient. IO_TIMER)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 ;

(continued)

CHAPTER TEN: SETTING THE TIMER 439

Figure 10-1. The BEEPERl.C File. continued

MRESUlT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg. MPARAM mp!. MPARAM mp2)
{

static Baal fFlipFlop
HPS hps
RECTl rcl

switch (msg)
{

case WM_TIMER:
WinAlarm (HWND_DESKTOP. WA_NOTE) ;
fFlipFlop - !fFlipFlop :
Wi~InvalidateRect (hwnd. NULL. FALSE)
return 0 :

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)

WinQueryWindowRect (hwnd. &rcl) ;
WinFillRect (hps, &rcl, fFlipFlop ? CLR_BLUE CLR-RED)

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd, msg, mp!, mp2)

The BEEPER1. DEF File

; BEEPERl.DEF module definition file

NAME

OEseRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

BEEPERl WINOOWAPI

'Timer Demo Program No. 1 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 10-1. The BEEPER1 program.

440 SECTION THREE: GETTING INPUT

The general syntax of the WinStartTimer function is

WinStartTimer (hab, hwnd, idTimer, usMsecInterval)

The hwnd parameter is the window handle that designates which window
function receives the WM_TIMER messages. The idTimer parameter is a
number you select to identify this particular timer. The usMsecInterval
parameter specifies a time interval in milliseconds (msec). This is the rate
at which the Presentation Manager posts the WM_TIMER messages in the
message queue. The value can range from 0 (which delivers WM_TIMER
messages as fast as the computer's hardware clock) to 65,535 msec, or a
little more than a minute.

BEEPER! starts a timer in main immediately following the WinCreateStd
Window call:

WinStartTimer (hab, hwndClient, ID_TIMER, 1000) ;

This tells the Presentation Manager to post a WM_TIMER message to
hwndClient once every 1000 msec. The ID_TIMER identifier is defined near
the top of the program:

#define ID_TIMER 1

The low USHORT of the mpJ parameter that accompanies the WM_TIMER
message is this ID number.

BEEPER! processes the WM_TIMER messages in ClientWndProc:

case WM_TIMER:
WinAlarm (HWND_DESKTOP. WA_NOTE) ;
fFlipFlop - !fFlipFlop ;
WinlnvalidateRect (hwnd, NULL, FALSE)
return 0 ;

The code simply beeps the speaker, inverts the value of the static BOOL
variable fFlipFlop, and calls WinlnvalidateRect to invalidate the entire client
window and generate a WM_PAINT message. During the WM_PAINT mes
sage, BEEPER! uses the JFlipFlop variable to determine the color (blue or
red) used to paint the client window:

WinQueryW~ndowRect (hwnd. &rcl) ;
WinFillRect (hps, &rcl. fFlipFlop ? CLR-BLUE: CLR-RED)

CHAPTER TEN: SETTING THE TIMER 441

The window procedure receives WM_TIMER messages during the entire
time the window exists. Only when BEEPER! exits the message queue in
main on receipt of a WM_ QUIT message does the program stop the timer:

WinStopTimer (hab. hwndClient. ID_TIMER)

BEEPER! then terminates normally.

A program doesn't need to start and stop the timer in main. If the program
doesn't need a timer for the entire duration of the program, it can start or
stop the timer from the window procedure. Although BEEPER! causes its
client window to be repainted once a second by calling WinlnvalidateRect, a
program can also call WinGetPS to do some painting while processing the
WM_TIMER message. The CLOCK program shown later in this chapter
paints during the WM_TIMER message.

Timer Imprecision
If you can tolerate the program's incessant beeping, you can learn a lot
about the timer by experimenting with BEEPER! while running other Pre
sentation Manager programs. The first discovery is that the timer is not a
precise and regular clock tick. There are several reasons for this.

The resolution of the timer depends on the resolution of the hardware clock
in the computer. Under OS/2, the hardware clock generates an interrupt ev
ery 31.25 msec, or 32 times per second. The rate of the WM_TIMER mes
sages on a PC is always an integral multiple of 32 msec. You can't receive
WM_TIMER messages more frequently than 32 msec.

The WM_TIMER message isn't sent directly to the window procedure but is
instead placed in the program's message queue. (Actually, the Presentation
Manager handles WM_TIMER messages a little differently than it does
other queued messages: WM_TIMER messages are not actually placed in the
queue. Programs needn't worry about this, however.) WM_TIMER mes
sages are low priority - WinGetMsg retrieves other queued messages (ex
cept WM_PAINT) before WM_TIMER messages. There can be a delay
between the time the message is placed in the queue and the time the win
dow procedure gets it. However, the Presentation Manager doesn't load a
message queue with multiple WM_TIMER messages if the program can't
process them. The message queue never contains more than one timer mes
sage of a particular timer ID.

442 SECTION THREE: GETTING INPUT

Limited Availability of Timers
The Presentation Manager allows only a limited number of timers to be set
throughout the system. (The initial release of the Presentation Manager is
limited to 40 timers.) A program can determine how many timers are still
available in the Presentation Manager by calling

lAvailTimers - WinQuerySysValue (HWND_DESKTOP, SV_CTIMERS)

However, it's often easier to simply call WinStartTimer. If WinStartTimer
returns 0, then no timer was available.

If your program can't work properly without a timer (as is obviously the
case for a clock application), then the program has no choice but to termi
nate if no timer is available. You should display a message box informing
the user of this problem. If you set the timer in main after the WinCreateStd
Window call, here is one way of dealing with the lack of an available timer:

hwndFrame - WinCreateStdWindow (...) :

if (WinStartTimer (hab. hwndClient. ID_TIMER. 1000»
{

else

while (WinGetMsg (hab. &qmsg. NULL. 0, 0»
WinDispatchMsg (hab. &qmsg) ;

WinStopTimer (hab, hwndClient. IO_TIMER)
}

WinMessageBox (HWND_DESKTOP. hwndClient.
"Too many clocks or timers".
"Program Name". 0, MB_OK : MB_ICONEXCLAMATION)

WinDestroyWindow (hwndFrame) ;

If WinStartTimer returns a nonzero value, the program enters the message
loop and later calls WinStopTimer when it exits the message loop. Other
wise, the program displays a message box, destroys the frame window, and
terminates normally. You should perform this check in every program you
write that uses a timer.

A One-Shot Timer
In some applications you may not need a timer that repeatedly sends
WM_TIMER messages. Instead, you may want to send only one
WM_TIMER message after a specified period of time. In this case you can

CHAPTER TEN: SETTING THE TIMER 443

set the timer normally and call WinStopTimer during processing of the
WM_TIMER message:

case WtLTIMER:
[otlier program lines]

WinStopTimer (hab, hwnd, ID_TIMER)
return 0 ;

Calling WinStopTimer not only stops future WM_TIMER messages but also
clears the message queue of any pending WM_TIMER messages. You'll
never receive a stray WM_TIMER message after you call WinStopTimer.

A Timer Over 651/2 Seconds
The maximum timer interval is 65,535 msec, or 65lj2 seconds. If you need a
timer interval greater than this (for example, 30 minutes), you can first set a
static variable that contains the duration in minutes:

usMinuteWait = 30 ;

You then set a timer for 1 minute:

WinStartTimer (hab, hwnd, ID_TIMER. 60000) ;

During WM_TIMER processing you decrement and test usMinuteWait:

case WM_ TIMER:

444

if (--usMinuteWait -- 0)
{

[other program lines]

return 0

An alternative method is to call DosGetDateTime to get the current time
when you first start the timer. During the WM_TIMER message you can call
DosGetDateTime again to determine if 30 minutes have elapsed.

The WinGetCurrentTime function can also be helpful here. This function
returns the elapsed time in milliseconds since OS/2 was first booted. This
is a ULONG value that rolls over to 0 every 49 days. Let's assume again
that you want to set a 30-minute timer interval. First, define a static
ULONG variable:

static ULONG ulStartTime

SECTION THREE: GETTING INPUT , .

I'

Then call WinGetCurrentTime and WinStartTimer:

ulStartTime - WinGetCurrentTime (hab) ;
WinStartTimer (hab, hwnd. ID_TIMER. 60000)

During the WM_TIMER message, check to see if 30 minutes have elapsed:

case WM_TlMER:
if (WinGetCurrentTime (hab) - ulStartTime > 30 * 60 * 1000)

{

[other program lines]

return 0

Resetting the Timer Time
You may need to change the interval of the WM_TIMER messages. For ex
ample, you may have originally set the timer for one-second intervals:

WinStartTimer (hab. hwnd. IO_TIMER. 1000) :

If you later need to change that to five-second intervals, you can simply call
WinStartTimer again with the same timer ID and a different elapsed time:

WinStartTimer (hab. hwnd. IO_TIMER. 5000) :

Using Multiple Timers
If you want, you can set multiple timers in your program. Suppose you want
one timer for one-second intervals and another timer for one-minute inter
vals. You first define two IDs:

#define ID_SECTIMER 1
#define ID_MINTIMER 2

To start the timers, make two WinStartTimer calls:

WinStartTimer (hab, hwnd. IO_SECTIMER, 1000) ;
WinStartTimer (hab. hwnd. IO_MINTIMER. 60000) ;

CHAPTER TEN: SETTING THE TIMER 445

The processing offhe WM_TIMER message can use a switch and case con
struction to do different processing based on the timer ID stored in mpJ:

case WM_TIMER:
switch (SHORTIFROMMP (mpl»

{

case ID_SECTIMER:
[once-per-second processing]

return 0 ;

case ID_MINTIM[R:

break ;

[nnce-per-minute processing]

return 0 ;

Before your program terminates, it stops both timers:

WinStopTimer (hab, hwnd, ID_SECTIMER)
WinStopTimer (hab, hwnd. ID_MINTIMER)

But considering that the Presentation Manager makes available only a
limited number of timers, you should feel a little guilty about hogging sys
tem resources like this. A better approach is to set only one timer (the one
with the shortest interval) and then derive longer intervals from that.

The Timers You Don't Set
Even if you never call WinStartTimer in your program, WM_TIMER mes
sages may still be posted through your message queue and even dispatched
to your client window procedure. Sometimes you need to make special pro
visions for these messages.

You'll recall that the TYPEAWAY program in Chapter 8 creates a blinking
cursor. The blink is controlled by a timer. Because the client window pro
cedure in TYPEAWAY doesn't explicitly process WM_TIMER messages, the
messages are passed on to WinDefWindowProc. That's where the cursor
blinking logic is. If you add the following lines to TYPEAWAY's client win
dow procedure, the cursor won't blink:

case WM_ TIMER:
return 0 ;

446 SECTION THREE: GETTING INPUT

Child window scroll bars and edit fields (discussed in Chapters 11 and 14)
also use the timer to blink their cursors. If you create a scroll bar or edit
window, the WM_TIMER messages come through the program's message
queue but are dispatched to the window procedure associated with the
child window.

If you set a timer in a program that also creates a blinking cursor, you
should process only those WM_TIMER messages with the ID number you
use (for example, ID_TIMER). All other WM_TIMER messages should be
passed on to WinDefWindowProc. The logic looks like this:

case WM_TIMER:
if (SHORTIFROMMP (mpl) -- ID_TIMER)

{

[process timer message]

return 0 :

break :

If you set multiple timers, you can use switch and case statements and break
for the default case.

The IDs for the cursor, scroll bar, and flashing window timers are defined
in PMWIN.H using the identifiers TID_CURSOR, TID_SCROLL, and
TID_FLASHWINDOW. These are set equal to OxFFFF, OxFFFE, and
OxFFFD, so you should avoid using those IDs for any other timers.

The Uncommon Method of Using a Timer
The examples in all of the preceding sections of this chapter use the follow
ing form of the WinStartTimer call:

WinStartTimer (hab. hwnd. idTimer. usMseclnterval)

where idTimer is a predefined constant.

The second form of theWinStartTimer function requires that you first define
a variable to store the timer ID:

USHORT idTimer :

You then call the WinStartTimer function like this:

idTimer - WinStartTimer (hab. NULL. O. usMseclnterval)

CHAPTER TEN: SETTING THE TIMER 447

The second parameter (normally set to the window handle) is set to NULL

in this form of WinStartTimer. The Presentation Manager ignores the third
parameter and instead returns a timer ID (or 0 if no timer was available)
from the function. You use this ID when stopping the timer:

WinStopTimer (hab, NUll, idTimer) ;

This form of WinStartMessage requires that the WM_TIMER message be
handled in a special way. Although the message is posted to the message
queue associated with the thread, the window handle of the message is set to
NULL. This means that the message won't be dispatched to a window pro
cedure. Instead, it must be processed immediately after it is retrieved from
the message queue. The BEEPER2 program, shown in Figure 10-2, shows
how this is done.

The BEEPER2 File

11- -- - - - - - - - - - - - - - - - -
II BEEPER2 make file
/1- - - - - - - - - - - - - - - - - --

beeper2.obj : beeper2.c
cl -c -G2sw -W3 beeper2.c

beeper2.exe : beeper2.obj beeper2.def
link beeper2. /align:16. NUL. 052, beeper2

The BEEPER2.C File

/* -
BEEPER2.C -- Timer Demo Program No.2

- -'II /

IIdefine INCl_WIN
lIinclude <os2.h>

MRE$UlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM, MPARAM)

BOOl fFlipFlop ;

448 SECTION THREE: GETTING INPUT

(continued)

I

I"

iii,

Figure 10-2. The BEEPER2.C File. continued

int main (void)
{

static char szClientClass (] - uSeeper2u :
static ULONG flFrameFlags - FCF_TITLEBAR

HAS hab ;
HMO hmq :
HWND hwndFrame,
OMSG qmsg ;
USHORT idTirner ;

hab = Winlnitialize (0)

FCF_SIZEBORDER
FCF_SHELLPOSITION

hwndClient

hmq - WinCreateMsgQueue (hab, 0) :

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szClientClass, ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. O. &hwndClient)

idTimer - WinStartTimer (hab. NULL. O. 1000)

while (WinGetMsg Chab. &qrnsg. NULL, O. 0»
{

if (qmsg.msg -- WM_TIMER && SHORTIFROMMP (qmsg.mpl) -- idTimer)
{

else

WinAlarm (HWND_DESKTOP, WA_NOTE) ;
fFlipFlop - !fFlipFlop ;
WinlnvalidateRect (hwndClient. NULL. FALSE)
}

WinDispatchMsg (hab. &qmsg)

WinStopTimer (hab. NULL, idTirner)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

(continued)

CHAPTER TEN: SETTING THE TIMER 449

Figure 10-2. The BEEPER2.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

HPS hps
RECTL rcl

switch (msg)
{

case WM_PAINT:
hps - WinBeg1nPaint (hwnd. NULL. NULL)

WinQueryWindowRect (hwnd. &rcl) ;
WinFillRect (hps. &rcl. fFlipFlop ? CLR-BLUE CLR-RED)

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd, msg. mpl, mp2)

The BEEPER2.DEF File

; BEEPER2.DEF module definition file

NAME

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

BEEPER2 WINDOWAPI

'Timer Cemo Program No.2 (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 10-2. The BEEPER2 program.

450

BEEPER2 doesn't process the WM_TIMER message in its client window
procedure but instead has the timer logic within the message loop, as shown
on the next page.

SECTION THREE: GETTING INPUT I'

i.

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
(

if (qmsg.msg -- WH-TIMER && SHORTIFROMMP (qmsg.mpl) -- idTimer)
{

else

WinAlarm (HWNO_OESKTOP. WA_NOTE) :
fFlipFlop - If FlipFlop :
WinlnvalidateRect (hwndClient. NULL. FALSE)
}

WinOispatchMsg (hab. &qmsg)

BEEPER2 checks to see if the msg field of the QMSG structure is equal to
WM_TIMER and if the low USHORT of the mpJ parameter is equal to the
timer ID returned from WinStartTimer. If the check is successful, BEEPER2
proceeds like BEEPER 1 when it received a WM_TIMER message. If not,
BEEPER2 dispatches the message to the window procedure. This form of the
WinStartTimer function might be appropriate for a program that creates sev
eral threads of execution and needs a timer in a thread that doesn't create
any windows.

If you move or resize BEEPER2' s window, or invoke the system menu,
you'll notice that the WM_TIMER messages seemingly stop. These opera
tions involve the use of a different message loop than the one in your pro
gram, so any WM_TIMER message in the queue is ignored.

Three Timer Programs
Now let's put what we've learned into practice by writing three useful pro
grams - a free memory display and two clocks (one digital, one analog).

A Free Memory Display
The FREEMEM program, shown in Figure 10-3 on the following pages, is
the Presentation Manager version of a program that I originally wrote for
Microsoft Windows (Programming Windows, Microsoft Press, 1988). Some
Windows programmers have found FREEMEM useful as a simple debug
ging aid. The program creates a tiny window and positions it at the lower
left corner of the display. The window displays, in bytes, the amount of free
memory in OS/2. The display is updated every second-that's where the
timer helps out.

CHAPTER TEN: SETTING THE TIMER 451

The FREEMEM File

,-------------------
FREEMEM make file
11- - - - - - - - - - - - - - - - - - -

freemem.obj : freemem.c
cl -c -G2sw -W3 freemem.c

freemem.exe : freemem.obj freemem.def
link freemem. /align:16. NUL. os2. freemem

The FREEMEM.C File

1* -
FREEMEM.C -- Free Memory Display

- -*/

'define INCL_WIN
#define INCL_GPI
#define INCL_DOS
'include <os2.h>
'include <string.h)

'define ID_TIMER

MRESULT EXPENrRY ClientWndProc (HWND, USHORT. MPARAM. MPARAM)
VOID SizeTheWindow (HWND) :

int main (void)
(

static CHAR szClientClass[] - "FreeMem"
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_BORDER FCF_TASKLIST
HAB hab ;
HMO hmq ;
HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq - WinCreateMsgOueue (hab, 0) ;

WinRegisterClass (hab, sLClientClass, ClientWndProc, OL. 0)

452 SECTION THREE: GETTING INPUT

(continued)

Figure 10-3. The FREEMEM.C File. continued

hwndFrame - WinCreateStdWindow (HWND_OESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL, NULL. O. &hwndClient) ;

SizeTheWindow (hwndFrame) :

if (WinStartTimer (hab. hwndClient. IO_TIMER, 1000»
{

else

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinOispatchMsg (hab. &qmsg) ;

WinStopTimer (hab. hwndClient. IO_TIMER)
}

WinMessageBox (HWNO_DESKTOP, hwndClient,
"Too many clocks or timers".
szClientClass. 0, MB_OK : MB_ICONEXCLAHATION)

WinOestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 :

VOID SizeTheWindow (HWND hwndFrame)
{

static CHAR szText [] = "1.234.567.890 bytes"
HPS hps :
POINTL aptl[TXTBOX_COUNT]
RECTL rcl ;

hps = WinGetPS (hwndFrame)
GpiOueryTextBox (hps. sizeof szText - 1L, szText. TXTBOX_COUNT, aptl)
WinReleasePS (hps)

rcl .yBottom - 0 ;
rcl.yTop = 3 * (aptl[TXTBOX_TOPLEFT].y -

aptl[TXTBOX_BOTTOMLEFT].y) / 2 :
rcl.xLeft - 0 ;
rcl.xRight (s;zeof szText + IL) * (aptl[TXTBOX_BOTTOMRIGHT].x -

aptl[TXTBOX_BOTTOMLEFT].x) / (s;zeof szText - 1L)

WinCalcFrameRect (hwndFrame. &rcl. FALSE)

(continued)

CHAPTER TEN: SETTING THE TIMER 453

Figure 10-3. The FREEMEM.C File. continued

WinSetWindowPos (hwndFrame. NULL, (SHORT) rcl.xLeft, (SHORT) rcl.yBottom.
(SHORT) (rcl.xRight - rcl.xleft).
(SHORT) (rel.yTop - rcl .yBottom). SWP_SIZE I SWP_MOVE) :

VOID FormatNumber (CHAR *pchResult. ULONG ulValue)

Baal fDisplay = FALSE;
SHORT sDigit :
UlONG ulQuotient. ulDivisor - lOOOOOOOOOl

for (sDigit ~ 0 ; sDigit < 10 ; sDigit++)
{

ulQuotient = ulValue / ulDivisor ;

if (fDisplay :: ulQuotient > 0 :: sDigit == 9)
{

fDisplay = TRUE;

*pchResult++ - (CHAR) ('0' + ulQuotient)

if «sDigit % 3 == 0) && sDigit !- 9)
*pchResul t++ - '.' ;

ulValue -= ulQuotient * ulOivisor
ulOivisor /= 10

*pchResult = '\0'
}

MRESUlT EXPENTRY ClientWndProe (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static RECTl rcl ;
static ULONG ulFreeMem. ulPrevMem
CHAR szBuffer [24] ;
HPS hps;

switch (msg)

case WM_SIZE:
WinQueryWindowRect (hwnd. &rcl)
return 0 ;

case WM_TIMER:
DosMemAvail (&ulFreeMem)

454 SECTION THREE: GETTING INPUT

(continued)

I

1-

Figure 10-3. The FREEMEM.C File. continued

if (ulFreeMem 1- ulPrevMem)
{

WinlnvalidateRect (hwnd, NULL. FALSE)
ulPrevMem - ulFreeMem
}

return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL. NULL)

FormatNumber (szBuffer, ulFreeMem)
strcat (szBuffer. " bytes") ;

WinDrawText (hps. -1. szBuffer. &rcl,
CLILNEUTRAL, CLILBACKGROlJND.
DT_CENTER : DT_VCENTER : DT_ERASERECT)

WinEndPaint (hps) :
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

The FREEMEM.DEF File

._-_ ... -- ... - --------------------------.
; FREEMEM.DEF module definition file

NAME FREEMEM WINDOWAPI

DEseRI PTION
PROTMODE
HEAPSIZE
STAeKSIZE
EXPORTS

'Free Memory Display (e) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 10-3. The FREEMEM program.

FREEMEM starts the timer in main and displays a message box if WinStart
Timer returns O. The processing of the WM_TIMER message in Client
WndProc is simple, as shown on the next page.

CHAPTER TEN: SETTING THE TIMER 455

case WM_TIMER:

456

DosMemAvail (&ulFreeMem) ;

if (ulFreeMem 1= ulPrevMem)
{

WinlnvalidateRect (hwnd. NULL. FALSE)
ulPrevMem - ulFreeMem
)

return 0 :

DosMemAvail is an OS/2 kernel function that returns the size of the largest
contiguous block of free memory, which isn't necessarily the same as total
free memory. For example, if you specify that the DOS compatibility box is
less than 640 KB (or if you run a protected mode-only session), the lower
640 KB of memory won't be included in the value reported by DosMem
Avail, because that memory isn't contiguous with memory above 1 MB. Nor
will DosMemAvail show memory that could become available by swapping
or discarding memory segments or by compacting free memory.

FREEMEM saves the previous free memory size in ulPrevMem. Only if that
size differs from the current value returned from DosMemAvail will
FREEMEM invalidate the window to generate a WM_PAINT message. The
WM_PAINT processing calls the function FormatNumber to convert the
memory size into a text string with comma separators.

FREEMEM creates a window of a fixed size positioned in a set area of the
display, so it is worthwhile to take a closer look at how this is done. The
WinCreateStdWindow function in FREEMEM uses frame creation flags of
FCF_TITLEBAR, FCF_SYSMENU, FCF_BORDER, and FCF_TASKLIST. The
FCF _SIZEBORDER, FCF _MINMAX, and FCF _SHELLPOSITION flags are
not used.

Because the window doesn't contain the minimize/maximize menu, the
Minimize and Maximize options on the system menu are grayed and
disabled.

A program that does not use the the FCF_SHELLPOSITION flag when creat
ing the standard window must call WinSetWindowPos to give the frame win
dow a size and position. This is done in FREEMEM's SizeTheWindow
function. Because the size of the client window must be based on the size of
the text string it displays, the function first calls GpiQueryTextBox for a
maximum possible string length. SizeTheWindow then defines the screen
coordinates of a RECTL structure that contains the position and size of this
client window.

SECTION THREE: GETTING INPUT
I

I

I!

The positioning of the client window at the lower-left corner of the screen is
indicated by the yBottom and xLeft fields. To allow a little margin around
the text, the client window rectangle is set to 11/z times the height of the text
box with a width sufficient for the string plus a slight margin.

That RECTL structure is the position and size of the client window. The
WinCalcFrameRect function converts this rectangle to a frame window posi
tion and size:

WinCalcFrameRect (hwndFrame. &rcl. FALSE) ;

SizeTheWindow can then set the position and size of the frame window:

WinSetWindowPos (hwndFrame. NULL. (SHORT) rel.xLeft. (SHORT) rcl.yBottom.
(SHORT) (rel.xRight - rel.xLeft).
(SHORT) (rel .yTop - rel .yBottom). SWP_SIZE : SWP_MOVE) ;

This window won't be the active window. Because the program's purpose is
to display some information, FREEMEM needn't be the active window
when it is first displayed. If we wanted FREEMEM to be the active win
dow when it is first displayed, we could include SWP_ACTIVATE among the
last pa,rameters to WinSetWindowPos.

Figure 10-4 shows FREEMEM running in the lower-left corner of the Pre
sentation Manager.

Figure 10-4. The FREEMEM display.

A Digital Clock
Figure 10-5, on the following pages, shows the DIGCLOCK program, a digi
tal clock that occupies a small window positioned at the lower-right corner
of the display. The clock displays the day of the week, the date (month/day/
year), and the time. It is updated (with help from the Presentation Manager
timer) every second.

CHAPTER TEN: SETTING THE TIMER 457

The DIGCLOCK File

/1- - - - - - - - - - - - - - - - - - --
/I DIGCLOCK make file
#- - - - - - - - - - - - - - - - - - --

digclock.obj : digclock.c
cl -c -G2sw -W3 digclock.c

digclock.exe : digclock.obj digclock.def
link digclock. /align:16. NUL. os2. digclock

The DIGCLOCK. C File

/* - . -

DIGCLOCK.C .- Digital Clock
_. - - - .. -*/

#define INCL_WIN
#define INCL_GPI
f/defi ne INC LDOS
#include <os2.h>
f/include <stdio.h>

#define ID_TIMER

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)
VOID SizeTheWindow (HWND) ;

int main (void)
{

static CHAR szClientClass[] = "DigClock" ;
static ULONG flFrameFlags FCF_TITLEBAR FCF_SYSMENU

FCF_BORDER : FCF_TASKLIST
HAB hab ;
HMO hmq :
HWND hwndFrame. hwndClient
QMSG qmsg :

hab = Winlnitialize (0)
hmq = WinCreateMsgQueue (hab, 0) :

WinRegisterClass (hab. szClientClass. ClientWndProc. OL. 0)

458 SECTION THREE: GETTING INPUT

(continued)

Figure 10-5. The DIGCLOCK.C File. continued

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrameFlags, szClientClass, NULL.
Ol, NULL. 0, &hwndClient) ;

Si~eTheW;ndow (hwndFrame) :

if (WinStartTimer (hab. hwndClient. ID_TIMER. 1000»
{

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab, &qmsg) ;

WinStopTimer (hab. hwndClient. ID_TIMER)
}

else
WinMessageBox (HWND_DESKTOP, hwndClient.

"Too many clocks or timers".
szClientClass. 0, MB_OK : MB_ICONEXCLAMATION)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 :

VOID SizeTheWindow (HWND hwndFrame)
{

FONTMETRICS fm :
HPS hps
RECTL rcl ;

hps = WinGetPS (hwndFrame)
GpiQueryFontMetrics (hps. (lONG) sizeof fm, &fm)
WinReleasePS (hps)

rcl .yBottom = 0 ;
rcl.yTop = 11 * fm.1MaxBaselineExt 14:
rcl.xRight - WinQuerySysValue (HWND_DESKTOP. SV_CXSCREEN)
rel.xLeft - rcl.xRight - 16 * fm.1Emlnc

WinCaleFrameRect (hwndFrame, &rel. FALSE)

WinSetWindowPos (hwndFrame. NULL, (SHORT) rcl.xleft. (SHORT) rcl.yBottom,
(SHORT) (rel.xRight - rcl.xleft).
(SHORT) (rel.yTop - rel.yBottom). SWP_SIZE : SWP_MOVE) :

(continued)

CHAPTER TEN: SETTING THE TIMER 459

Figure 10-5. The DIGCLOCK.C File. continued

VOID UpdateTime (HWND hwnd, HPS hps)
{

static BOOL
static CHAR

fHaveCtrylnfo = FALSE ;
*szDayName [] - { "Sun", "Mon", "Tue", "Wed",

"Thu", "Fri", "Sat" } ;
static CHAR szOateFormat [] - "%s %d%s%02d%s%02d" :
static COUNTRYCOOE ctryc - { 0, 0 }
static COUNTRYINFO ctryi :
CHAR szBuffer [20] :
DATETIME dt ;
RECTl
USHORT

rcl :
usDataLength

/* -
Get Country Information, Date, and Time

--*/

if (!fHaveCtrylnfo)
{

DosGetCtrylnfo (sizeof ctryi, &ctryc. &ctryi, &usDataLength)
fHaveCtrylnfo - TRUE
}

OosGetOateTime (&dt)
dt. year %- 100

/*-------------
Format Date

-------------*/

if (ctryi .fsDateFmt -- 0)

/*-----------------
mm/dd/yy format

-----------------*/

sprintf (szBuffer. szOateFormat. szDayName [dt.weekday],
dt.month, ctryi.szDateSeparator,
dt.day. ctryi .szDateSeparator, dt.year)

/* - - - - - - - - - - - - - - - - -

dd/mm/yy format
-----------------*/

else if (ctryi.fsDateFmt -= 1)

460 SECTION THREE: GETTING INPUT

(continued)

I

,i

Figure 10-5. The DIGCLOCK.C File. continued

else

sprintf (szBuffer, szDateFormat, szDayName [dt.weekday],
dt.day. ctryi.szDateSeparator,
dt.month. ctryi.szDateSeparator. dt.year)

1*-----------------
yy/mm/dd format

- - - - - - - - - - - - - - - - -*1

sprintf (slBuffer. szDateFormat, szDayName [dt.weekday],
dt.year, ctryi.szDateSeparator.
dt.month, ctryi.szDateSeparator, dt.day)

/* - - - - - - - - - - - - - -

Display Date
--------------*/

WinQueryWindowRect (hwnd. &rcl)
rcl .yBottom +- 5 * rcl.yTop / 11 :
WinDrawText (hps. -1, szBuffer. &rcl, CLR-NEUTRAL. CLR-BACKGROUND.

DT_CENTER : DT_VCENTER)

/*-------------
Format Time

-------------*/

1* - - - - - - - - - - - - - - - -
12-hour format

----------------*/
if «ctryi .fsTimeFmt & 1) -- 0)

sprintf (szBuffer. " %d%s%02d%s%02d Scm ".
(dt.hours + 11) % 12 + 1. ctryi.szT1meSeparator.
dt.minutes. ctryi .szTimeSeparator.
dt.seconds. dt.hours / 12 ? 'p' : 'a') :

1* - - - - - - - - - - - - - - - -
24-hour format

----------------*/
else

sprintf (szBuffer, " %02d%s%02d%s%02d ".
dt. hours. ctryi .szTimeSeparator.
dt.minutes. ctry; .szTimeSeparator. dt.seconds)

(continued)

CHAPTER TEN: SETTING THE TIMER 461

Figure 10-5. The DIGCLOCK.C File. continued

/*--------------
Display Time

--------------*/

WinQueryWindowRect (hwnd. &rcl)
rcl.yTop -= 5 * rcl.yTop / 11 ;
WinDrawText (hps. -1. szBuffer. &rcl. CLR-NEUTRAL, CLR-BACKGROUND.

DT_CENTER : DT_VCENTER) ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

HPS hps;

switch (msg)
{

case WM_ TIMER:
hps - WinGetPS (hwnd) ;
GpiSetBackMix (hps. BM_OVERPAINT)

UpdateTime (hwnd. hps)

WinReleasePS (hps) ;
return 0 ;

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) :

UpdateTime (hwnd. hps)

WinEndPaint (hps)
return 0 :

return WinDefWindowProc (hwnd. msg. mpl. mp2)

462 SECTION THREE: GETTING INPUT

The DIGCLOCK.DEF File

: DIGCLOCK.DEF module definition file

NAME DIGCLOCK WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Digital Clock (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 10-5. The DIGCLOCK program.

To position and size the window, DIGCLOCK uses a technique similar to
that used in FREEMEM. To allow a little margin around the two lines of
text, I made the client window 23/4 times the height and 16 times the width of
an average system font uppercase letter:

rcl.yBottom = 0 :
rcl.yTop - 11 * fm.1MaxBaselineExt I 4 :
rcl.xRight - WinQuerySysValue (HWND_DESKTOP. SV_CXSCREEN)
rcl.xLeft = rcl.xRight - 16 * fm.1EmInc ;

DIGCLOCK processes its WM_TIMER message by invalidating the client
window. The WM_PAINT message calls the UpdateTime function to display
the date and time. UpdateTime makes use of two OS/2 kernel functions
DosGetDateTime to obtain the date and time and DosGetCtrylnJo to obtain
information about the format of the date and time applicable for the country
specified in the user's CONFIG.SYS file. Thus the format of the date and
time in DIGCLOCK looks much like the format used in the OS/2 DATE,
TIME, and DIR commands. The UpdateTime function is mostly a collec
tion of various sprint! statements that format the date and time for display.
The function writes the two lines of text to its client window using
WinDrawText.

Figure 10-6 on the following page shows DIGCLOCK running in the lower
right corner of the Presentation Manager.

CHAPTER TEN: SETTING THE TIMER 463

Figure 10-6. The DIGCLOCK display.

An Analog Clock
An analog clock program doesn't have to worry about different date and
time formats, but the complexity of the graphics more than outweighs that
convenience. The analog CLOCK program is shown in Figure 10-7. Most of
the code in this program is devoted to displaying the face and hands of the
clock, so that's what I'll discuss in this section.

The CLOCK File

/1- - - - - - - - - - - - - - - - -
/I CLOCK make file
#- - - - - - - - - - - - - - - - -

clock.obj : clock.c
cl -c -G2sw -W3 clock.c

clock.exe : clock.obj clock.def
link clock. /align:16. NUL, os2. clock

The CLOCK.C File

/* -

CLOCK.C -- Analog Clock
- -* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdlib.h>

#define ID_TIMER

typedef struct
{

464

SHORT cxClient
SHORT cyClient
SHORT cxPixelOiam

SECTION THREE: GETTING INPUT

(continued)

Figure 10-7. The CLOCK.C File. continued

SHORT cyPixelDiam
}

WINDOWINFO ;

typedef WINDOWINFO *PWINDOWINFO

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass[] - "Clock" :
static UlONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHEllPOSITION

HWND hwndFrame. hwndClient
OMSG qmsg ;

hab - Winlnitial;ze (0)
hmq = WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinReg;sterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags, szClientClass. NUll,
Ol. NUll. 0, &hwndClient)

if (WinStartTimer (hab. hwndClient. ID_TIMER. 1000»
{

else

while (WinGetMsg (hab. &qmsg. NUll, 0, 0»
WinOispatchMsg (hab. &qmsg) :

WinStopTimer (hab. hwndClient. ID_TIMER)
}

WinMessageBox (HWND_DESKTOP. hwndClient.
"Too many clocks or timers",
szClientClass, 0, MB_OK : MB_ICONEXClAMATION)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

(continued)

CHAPTER TEN: SETTING THE TIMER 465

Figure 10-7. The CLOCK.C File. continued

VOID RotatePoint (POINTL aptl[]. SHORT sNum. SHORT sAngle)
{

static SHORT 5$in [60] =

O. 105. 208. 309. 407.
866. 914, 951, 978. 995.
866. 809. 743. 669. 588.

O. -104. -207. -308. - 406.
-865. -913. -950, -977 • -994.
-865, -808. -742. -668, -587.
} ;

POINTL ptlTemp
SHORT slndex :
for (sIndex = 0 ; sIndex < sNum ; sIndex++)

{

500. 588.
1000. 995,

500. 407.
-499. -587.
-999, -994.
-499. - 406.

669.
978.
309.

-668.
-977 •
-308.

ptlTemp.x = (aptl[sIndex].x * s$in [(sAngle + 15) % 60] +
aptl[sIndex].y * s$in [sAngle]) / 1000 :

ptlTemp.y = (aptl[sIndex].y * s$in [(sAngle + 15) % 60] -
aptl[sIndex].x * s$;n [sAngle]) / 1000 ;

aptl[sIndex] = ptlTemp
}

VOID ScalePoint (POINTL aptl[], SHORT sNum. PWINOOWINFO pw;)
{

SHORT sIndex ;

for (sIndex = 0 ; sIndex < sNum ; sIndex++)
{

}

aptl[sIndex].x = aptl[sIndex].x * pwi->cxP;xelOiam / 200
aptl[sIndex].y = aptl[sIndex].y * pwi->cyP;xelDiam 200
}

VOID TranslatePoint (POINTL aptl[]. SHORT sNum. PWINDOWINFO pwi)
{

SHORT sIndex ;

466 SECTION THREE: GETTING INPUT

743. 809.
951. 914,
208. 105.

-742. -808.
-950, -913.
-207. -104

(continued)

Figure 10-7. The CLOCK.C File. continued

for (sIndex - 0 ; sIndex < sNum ; sIndex++)
{

aptl[sIndex].x +- pWi->cxClient / 2
aptl[sIndex].y +- pwi->cyClient / 2
}

VOID DrawHand (HPS hps. POINTL aptlIn[]. SHORT sNum, SHORT sAngle,
PWINDOWINFO pwi)

POI NTL aptl [5]
SHORT sIndex ;

for (sIndex - 0 ; sIndex < sNum ; sIndex++)
aptl [sIndex] - aptlIn [sIndex] ;

RotatePoint (aptl. sNum. sAngle)
ScalePoint (aptl. sNum. pwi)
TranslatePoint (aptl. sNum. pwi) ;

GpiMove (hps, aptl) ;
GpiPolyLine (hps, sNum - lL. aptl + 1)
}

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1, MPARAM mp2)
{

static DATETIME
static HOC
static LONG

dtPrevious ;
hdc ;
xPixelsPerMeter,

static POINTL aptlHour [5]-
aptlMinute [5]

aptlSecond [2]
static WINDOWINFO wi ;
DATETIME dt ;
HPS hps ;
POINTL aptl [3]
SHORT sDiamMM, sAngle

switch (msg)

case WM_CREATE:

yPixelsPerMeter ;

(0,-15. 10,0, 0,60,
{ 0, -20. 5,0, 0.80.
{ 0, 0, 0.80 } ;

hdc - WinOpenWindowDC (hwnd) ;

OevOueryCaps (hdc. CAPS_VERTICAL_RESOLUTION.
lL, &yPixelsPerMeter) ;

-10,0, O. -15 },

- 5,0, O. -20 },

(continued)

CHAPTER TEN: SETTING THE TIMER 467

Figure 10-7. The CLOCK.C File. continued

DevOueryCaps (hdc. CAPS_HORIZONTAL_RESOLUTION.
ll. &xPixelsPerMeter)

DosGetDateTime C&dtPrevious) ;
dtPrevious.hours - (dtPrevious.hours * 5) % 60 +

dtPrevious.minutes I 12 ;
return 0

case WM_SIZE:
wi .cxClient = SHORTlFROMMP (mp2)
wi .cyClient = SHORT2FROMMP (mp2)

sDiamMM = (SHORT) min (wi .cxClient * lOOOl I xPixelsPerMeter.
wi .cyClient * lOOOl I yPixelsPerMeter)

wi .cxPixelDiam - (SHORT) (xPixelsPerMeter * sDiamMM 1000)
wi .cyPixelDiam = (SHORT) (yPixelsPerMeter * sDiamMM 1000)
return 0 ;

case WM_TIMER:
DosGetDateTime (&d~)

dt.hours = (dt.hours * 5) % 60 + dt.minutes I 12

hps = WinGetPS (hwnd) ;
GpiSetColor (hps. ClR_BACKGROUND)

DrawHand (hps. aptlSecond. 2. dtPrevious.seconds. &wi)

if (dt.hours != dtPrevious.hours ::
dt.minutes != dtPrevious.minutes)

OrawHand (hps. aptlHour. 5, dtPrevious.hours. &w1)
OrawHand (hps. aptlMinute. 5. dtPrevious.minutes, &wi)
}

GpiSetColor (hps. ClR-NEUTRAl) ;

DrawHand (hps. aptlHour. 5. dt.hours. &wi)
OrawHand (hps. aptlMinute. 5. dt.minuLes. &wi)
DrawHand (hps. aptlSecond, 2. dt.seconds. &wi)

WinReleasePS (hps)
dtPrevious = dt ;
return 0 ;

468 SECTION THREE: GETTING INPUT

(continued)

Figure 10-7. The CLOCK.C File. continued

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;

for (sAngle - 0 ; sAngle < 60 sAngle++)
{

aptl[O].x - 0 ;
aptl[O].y - 90

RotatePoint (aptl. 1. sAngle)
ScalePoint (aptl. 1. &wi)
TranslatePoint (aptl. 1. &w;) ;

aptl[2].x - aptl[2].y - sAngle % 5 ? 2 10

ScalePoint (aptl + 2. 1. &w;)

aptl[O].x
aptl[O].y

aptl[2].x 2
aptl[2].y 2

aptl[l].x - aptl[O].x + aptl[2].x
aptl[I].y - aptl[O].y + aptl[2].y

Gpi Move (hps. aptl) ;
GpiBox (hps. ORO_OUTLINEFILL. aptl + 1.

aptl[2].x, aptl[2].y~

DrawHand (hps, aptlHour. 5, dtPrevious.h9urs. &w;)
DrawHand (hps. aptlMinute. 5. dtPrevious.minutes. &w;)
DrawHand (hps. aptlSecond, 2. dtPrevious.seconds, &w;)

WinEndPaint (hps) ;
return 0 :

return WinDefWindowProc (hwnd, msg. mpl. mp2)

CHAPTER TEN: SETTING THE TIMER 469

The CLOCK.DEF File

; CLOCK.OEF module definition file

NAME CLOCK WINDOWAPI

OESeR! PTION
PROTMODE
HEAPSIZE
STACKSlZE
EXPORTS

'Analog Clock (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 10-7. The CLOCK program.

Figure 10-8 shows CLOCK dominating the full Presentation Manager
session.

CLOCK.EXE

..

• • .
. . • • . .
. . • • . .

• •• . • ••.

Figure 10-8. The CLOCK display.

To draw a round clock face, CLOCK defines its own coordinate system. The
center of the clock (which is positioned in the center of the client window) is
the point (0, 0) in this coordinate system. The horizontal and vertical axes
both range from -100 to +100.

470 SECTION THREE: GETTING INPUT

While processing the WM_CREATE message, CLOCK obtains two values
from DevQueryCaps that report the horizontal and vertical resolution of the
display in pixels per meter:

OevOueryCaps (hdc. CAPS_VERTICAL-RESOLUTION. lL. &yPixelsPerMeter) ;
DevOueryCaps (hdc. CAPS_HORIZONTAL_RESOLUTION. lL. &xPixelsPerMeter)

During the WM_SIZE message, the diameter of the clock face in millime
ters is calculated based on the width and height of the client window:

sDiamMM - (SHORT) min (wi.cxClient * 1000l / xP;xelsPerMeter.
wi.cyClient * 1000L / yPixelsPerMeter)

This value is then converted to a diameter in pixels for both the horizontal
and vertical axes:

wi.cxPixelDiam - (SHORT) (xP;xelsPerMeter * sDiamMM / 1000)
wi .cyPixelDiam - (SHORT) (yPixelsPerMeter * sDiamMM / 1000)

As I noted above, CLOCK defines its own coordinates to range from -100 to
+ 100 on the horizontal and vertical axes. Thus, on the horizontal axis, the
width in pixels of the clock face is cxPixelDiam, but this corresponds to 200
units in CLOCK's coordinate system.

CLOCK has two functions to translate one or more POINTL structures from
its own coordinate system to the window coordinates used in the GPI func
tions: ScalePoint and TranslatePoint.

ScalePoint uses the relationship between these two coordinate systems to
convert a point in CLOCK's coordinate system to pixels:

aptl[sIndex].x - aptl[sIndex).x * pw;-)cxPixelDiam 200
aptl[sIndex].y - aptl[sIndex].y * pw;->cyPixelDiam 200

CLOCK's coordinate system defines (0, 0) as the center of the client win
dow. The point (0, 0) in window coordinates is the lower-left corner of the
window. TranslatePoint converts the point accordingly:

aptl[sIndex].x +- pwi->cxClient / 2
aptl[sIndex).y +- pwi-)cyClient / 2

CHAPTER TEN: SETTING THE TIMER 471

The more complex aspect of CLOCK involves the rotation of points around
the clock face. Let's look at an example. The hour hand of the clock is de
fined as an array of POINTL structures that specify a starting position and
four line segments:

static POINTL aptlHour [5J - { 0,-15, 10,0. 0,60, -10,0. 0,-15 }

But these are the coordinates only when the hour hand points straight up, at
midnight or noon. What are the coordinates of the hour hand at 3:00? To get
those coordinates, the points have to be rotated 90 degrees clockwise around
a circle. Time for a trigonometry refresher: If the original point is (x, y) and
the clockwise angle of rotation is U, then the new point (x', y') is calculated
with the following formulas:

x' = x COS a + y SIN a

y' = y COS a - x SIN a

This is done in the RotatePoint function. Because a clock face is divided into
60 increments, all that's needed are 60 sine and cosine values in increments
of 6 degrees. The cosines can be derived from the sines by offsetting the
angle by 90 degrees.

To avoid introducing floating-point math in CLOCK (which would increase
the CLOCK.EXE size considerably), the sSin array in RotatePoint contains
the 60 required sine values scaled by a factor of 1000. The rotation formulas
in RotatePoint are

ptlTemp.x = (aptl[sIndex].x * sSin [(sAngle + 15) % 60] +
aptl[sIndex].y * sSin [sAngle]) I 1000 ;

ptlTemp.y - (aptl[sIndex].y * sSin [(sAngle + 15) % 60] -
aptl[sIndex].x * sSin [sAngle]) I 1000 ;

aptl[sIndex] = ptlTemp ;

The DrawHand function in CLOCK is passed an array· of points that define a
clock hand at 12:00. It calls the RotatePoint, ScalePoint, and the Translate
Point functions to rotate the points and convert them from CLOCK's coordi
nate system to window coordinates. DrawHand then calls GpiMove and
GpiPolyLine to draw the hand. During processing of the WM_PAINT mes
sage, CLOCK draws the face of the clock and the three hands at the current
time. Processing during the WM_TIMER message updates the position of
the clock hands based on the new time obtained from DosGetDateTi11)e.

472 SECTION THREE: GETTING INPUT
I

I'

I

I,

I

C HAP T ERE LEV E N

CONTROL WINDOWS:
PUTTING THE
CHILDREN TO WORK

Control windows (sometimes called "child window controls" or simply
"controls") are child windows that take the form of objects such as buttons,
scroll bars, list boxes, and text entry fields. A control window processes
mouse and keyboard input and notifies its owner of significant input events.
Although the input originates with the keyboard and the mouse, it is filtered
through the control, so you can treat control windows as additional means
of input to your program.

For example, in a spreadsheet program you might want to display a small
push button labeled "Recalculate" on your client window. You can do this
in one of two ways. The first way requires the program itself to draw the
push button on the client window. The client window procedure then has to
process mouse messages and do some hit-testing to determine when the user
clicks on the push button. But an easier approach is to create a push button
control window that is a child of your client window. The window pro
cedure for the push button window is inside the Presentation Manager.
That window procedure draws the button, processes the mouse messages,
and sends your client window a message when the button is clicked. By put
ting child windows to work, your program can delegate the drawing and the
mouse hit-testing jobs.

We've already explored some of the concepts involved in creating and
using control windows. The WELCOME4 program in Chapter 3 created a
push button, scroll bar, and text-entry field based on preregistered window
classes. Creating each control window required only one WinCreateWindow

473

call. (The only problem was that WELCOME4 didn't know quite what to do
with these control windows after it created them.)

Although the control windows in WELCOME4 were based on preregistered
window classes, you can also create your own classes of control windows.
For example, the CHECKER3 program in Chapter 9 created 25 child win
dows on the surface of its client. These child windows processed mouse
clicks by drawing or erasing an X mark on the child window. The child
windows added a layer of processing between the user and CHECKER3' s
client window that simplified mouse input processing.

CHECKER3 's client window was ignorant of the state (X or no X) of each
of the 25 child windows. But it's not difficult to imagine each of the child
windows sending messages to the client window whenever the child win
dow was checked or unchecked. We might also have added a facility that
allowed the client window to send the child window a message requesting
information about the state of a particular rectangle. Had we done this in
CHECKER3, the child windows would have been sophisticated enough to
qualify as control windows.

Control windows appear most often in dialog boxes. You'll discover in
Chapter 14 that defining the position and size of control windows in a dialog
box is simplified by using a dialog box template. The dialog box logic
within the Presentation Manager also assists greatly in much of the over
head involved with using controls, including shifting the keyboard input
focus between the windows. However, it's a good exercise to create a few
control windows yourself to get a better understanding of dialog boxes and
a greater appreciation for the work the Presentation Manager assumes when
you use dialog boxes.

Control Window Basics

474

Using control windows involves three major jobs:

• You create a control window by calling WinCreateWindow. Most often,
the window class has been preregistered by the Presentation Manager,
which means that the window procedure for the class is in the Presenta
tion Manager PMWIN.DLL dynamic link library. You specify the style,
position, and size of the control window, and WinCreateWindow returns
a handle to the window. The program can later adjust the position and
size of the control by calling the WinSetWindowPos function.

SECTION THREE: GETTING INPUT

;\

• Your program can send messages to the control window using Win
SendMsg. These messages can either set the state of a control or query
the current state. The identifiers for the messages you send to controls
begin with a prefix that indicates the type of control window that re
sponds to the message. For example, messages that begin with BM are
messages you send to button controls, and messages that begin with SBM

are messages you send to scroll-bar controls .

• You receive notification messages from the control window when a sig
nificant input event occurs. This usually results from the user clicking
on the control window with the mouse or - if the control window has
the input focus - pressing a key that affects the control. The notification
messages are usually WM_COMMAND and WM_CONTROL messages
for most control windows and WM_ VSCROLL and WM_HSCROLL mes
sages for scroll bars.

Creating the Window
You create a control window by calling the WinCreateWindow function,
which generally looks like this:

hwnd - WinCreateWindow (
hwndParent.
szClass.
szText.
ws_
xPosition.
yPosition.
cxWidth.
cyHeight.
hwndOwner,
hwndPlacement.
i d.
pCtrlData,
pPresParams)

II Parent window
II Window class
II Text
II Window style
II Position

/1 Width
II Height
/I Owner window
/I Placement
/I Child ID
// Ctrl data
/1 Pres params

When you create a control window based on a preregistered window class,
the last two parameters (far pointers to control data and presentation
parameters) are often set to NULL. The other parameters are described in
the following paragraphs.

CHAPTER ELEVEN: CONTROL WINDOWS 475

The Predefined Window Classes
In the CHECKER3 program in Chapter 9, the window class parameter in
WinCreateWindow was a text string identifying a window class that the pro
gram . registered. For control windows based on a preregistered window
class, this parameter is an identifier beginning with the letters WC. These
identifiers are as follows:

Preregistered Window Class

WC_FRAME
WC_BUTTON
We_MENU

WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITLEBAR

Type of Window

Standard frame window
Push button, check box, and so forth
Menu (including system menu and

minimize/maximize menu)
Static text string and rectangle
Text entry field
List box
Scroll bar
Standard title bar

The WC_FRAME identifier isn't commonly used in the WinCreateWindow
function because WinCreateStdWindow creates a frame window. The
WC_MENU and WC_TITLEBAR identifiers refer to windows that are
usually part of the standard window created with WinCreateStdWindow.
Excluding those identifiers leaves us with the five most common control
window classes, which are WC_BUTTON, WC_STATIC, WC_ENTRYFIELD,
WC_LISTBOX, and WC_SCROLLBAR. The sample programs throughout
this chapter create controls of the WC_BUTTON, WC_STATIC, and
WC_SCROLLBAR classes.

The Window Style
The window style parameter of WinCreateWindow is one or more identifiers
that define the appearance and functionality of the window. The style iden
tifiers you use depend on the window class. For example, when creating a
scroll-bar control window, you specify either SBS_ VERT or SBS_HORZ, de
pending on whether you want a vertical or horizontal scroll bar. When you
create a button control, the window style identifies the button as a push but
ton, a radio button, or a check box. The identifier WS_ VISIBLE usually is in
cluded in the window style. If you omit it, the window is created but not
displayed. You must later call WinShowWindow to display the window.

Some control windows (such as buttons) display text, which you specify in
the text parameter to WinCreateWindow. You can later change the text using
the WinSetWindowText function. The position parameters give the coordi
nates of the lower-left corner of the control relative to the lower-left corner

476 SECTION THREE: GETTING INPUT

of its parent window. The size parameters specify the control's width and
height. You can change the position and size using the WinSetWindowPos
function.

The Owner and the Parent
When you create a child window, you assign it both a parent window and an
owner window. The parent window determines where the control is posi
tioned. The position parameters in WinCreateWindow specify the coordi
nates of the control window relative to the lower-left corner of the control's
parent. If the parent window is moved, the child window is moved also.
Like all child windows, a control window is clipped on the surface of its
parent. It can't appear outside the area its parent occupies.

The control window sends notification messages not to its parent but to its
owner. The window procedure associated with the owner window is respon
sible for interpreting these notification messages. Usually, the same window
serves as both the parent and the owner of the control. For example, if you
create a control window on the surface of your client window, the client
window is usually both the parent and the owner of the control window. You
can specify a different parent and owner if you want the notification
messages to be processed by a window other than the one on which the con
trol is located.

A third window handle can be passed to the WinCreateWindow function
to specify how overlapping siblings appear on the screen. (This is iden
tified as hwndPlacement in the WinCreateWindow call on page 475.) This
parameter must be either a window handle of a sibling, HWND_TOP,
or HWND_BOTTOM. The terminology often becomes confusing: An
HWND_BOTTOM window obscures an HWND_TOP window if the two win
dows overlap. If you specify a handle of a sibling window, that sibling will
be obscured by the new window if the windows overlap. If you create sev
eral sibling windows using HWND_TOP, the most recently created window
will be obscured by the others. Specifying HWND_BOTTOM for several
siblings causes the most recently created window to obscure the siblings
that it overlaps.

If your child windows do not overlap, you can use either HWND_TOP or
HWND_BOTTOM for all of them.

The Child ID
The child ID is a very important parameter of the WinCreateWindow func
tion. This ID number should be unique for each child of a particular win
dow. The control window uses the ID to identify itself when it sends the

CHAPTER ELEVEN: CONTROL WINDOWS 477

owner a notification message. You can use any number you want for a child
ID, but it's safest to use numbers less than 32,768 so as not to conflict with
predefined IDs used by the frame window. If you create many control win
dows, you should choose IDs that let you conveniently determine which
control is sending you a notification message and what you do with informa
tion from the control. For example, the sample programs in this chapter
often use the IDs as indexes to arrays.

Although the WinCreateWindow function returns a handle to the child win
dow, it's not essential that you save it. You can always determine the child
window handle from the child ID by using the following function:

hwndChild = WinWindowFromID Chwnd, id) ;

The hwnd parameter is the window handle of the parent of hwndChild. The
id parameter is the ID you specify when creating the child window.

Knowing the handle of a child window, you can also obtain the ID:

id = WinQueryWindowUShort (hwndChild, QWS_ID) ;

The Button Class

478

Let's begin with buttons, which are almost the simplest type of control win
dow. (Static control windows are actually simpler because they don't
process input at all.) When you create a button control window, you
specify the WC_BUTTON window class in the WinCreateWindow func
tion. The window style indicates the type of button. The most common
button window styles are BS_PUSHBUTTON, BS_CHECKBOX, and
BS_RADIOBUTTON.

A push button is a rounded rectangle that contains text. When you click on
the button with the mouse or - if the button has the input focus - press the
Spacebar, the button flashes and sends a notification message to its owner.
Push buttons generally signal simple actions: "Do this."

A check box is a small square (about the height of a character) followed by a
text string. Clicking the button with the mouse causes an X to appear in the
box; clicking it again removes the X. A program often uses check boxes for
various program options.

A radio button is a small circle followed by text. Like a check box, a radio
button can be either checked or unchecked. Clicking on the radio button
checks it, but clicking again doesn't uncheck it. Generally, a group of radio
buttons is used to indicate mutually exclusive options. When the user

SECTION THREE: GETTING INPUT ,

"
I

I,

I'

checks one button, the program unchecks all the other buttons in the same
group, just as the buttons on a car radio do.

A Push Button Demonstration Program
The BUTTONS1 program, shown in Figure 11-1, creates two push buttons
labeled "Smaller" and "Larger." These buttons appear in the center of the
client window. When you click with the mouse on the button labeled
"Smaller," the program's window decreases in size by 10 percent. When
you click on "Larger," the window size increases by 10 percent.

The BUTTONS1 File

fl- - - - - - - - - - - - - - - - - - - -
BUTTONSl make file
11- - - - - - - - - - - - - - - - - - - -

buttonsl.obj : buttonsl.c
cl -c -G2sw -W3 buttons1.c

buttonsl.exe : buttonsl.obj buttonsl.def
link buttonsl. /align:l6, NUL. 052, buttonsl

The BUTTONS1.C File

/* -
BUTTONS1.C -- Push Button Demonstration

-- ------- -- ---- -- -- --- ----- ------ --- -----* /

#define INCl_WIN
!Idefine INCLGPI
#include <os2.h>

MRESUlT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass[] = "Buttonsl" ;
static UlONG flFrameFlags - FCF_TITlEBAR

HAS hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELlPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg :

FCF _SYSMENU :
FCF_MINMAX :
FCF_TASKLIST :

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 479

Figure 11-1. The BUTTONS1.C File. continued

hab - Winlnitialize (0) :
hmq = WinCreateMsgQueue (hab, 0) :

WinRegisterClass (hab, szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass, NULL,
OL, NULL, O. &hwndClient) ;

WinSendMsg (hwndFrame, WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE),
NULl) ;

while (WinGetMsg (hab, &qmsg, NULL. 0, 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl, MPARAM mp2)
{

480

static CHAR *szButtonLabel[] - { "Smaller", "Larger" } ;
static HWND hwndFrame. hwndButton[2] ;
static SHORT cxClient, cyClient. cxChar, cyChar :
FONTMETRICS fm;
HPS hps ;
SHORT id ;
RECTL rcl :

switch (msg)
{

case WM_CREATE
hwndFrame = WinOueryWindow (hwnd. OW_PARENT. FALSE)

hps - WinGetPS (hwnd) ;
Gp;QueryFontMetrics (hps. (LONG) sizeof fm, &fm)
cxChar = (S~ORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps) :

SECTION THREE: GETTING INPUT

(continued)

,I
I

Figure 11-1. The BUTTONS1.C File. continued

for (1 d - 0 ; i d < 2 ; i d++)
hwndButton[1d] - WinCreateWindow

return 0 ;

case WM_SIZE :

hwnd.
We_BUTTON.
szButtonLabel[id].
WS_VISIBLE :

BS_PUSHBUTTON.
0, 0,

12 * cxChar,
2 * cyChar.
hwnd,
HWND_BOTTOM,
id.
NULL,
NULL)

cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

for (id - 0 ; id < 2 ; id++)
WinSetWindowPos (hwndButton[id]. NULL.

// Parent
// Class
// Text
// Style

// Position
// Width
/1 Height
1/ Owner
// Placement
II ID
// Ctrl data
II Pres params

cxClient I 2 + (14 * id - 13) * cxChar.
(cyClient - 2 * cyChar) I 2,
0, 0, SWP_MOVE) ;

return 0 ;

case WM_COMMAND:
WinQueryWindowRect (hwnd, &rcl) :
WinMapWindowPoints (hwnd, HWND_DESKTOP. (PPOINTL) &rcl, 2)

switch (COMMANOMSG(&msg)->cmd)
{

case 0:
rcl.xLeft +- cxClient / 20

rcl.xRight .- cxClient I 20
rcl .yBottom +- cyClient 20
rcl .yTop
break ;

-- cyClient I 20

II Child 10

1/ "Smaller"

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 481

Figure 11-1. The BUTTONS1.C File. continued

case 1 : /1 "Larger"
rcl.xLeft -- cxCl1ent / 20
rcl.xRight +- cxClient I 20
rcl.yBottom -- cyClient / 20
rcl.yTop +- cyClient I 20
break :

WinCalcFrameRect (hwndFrame. &rcl. FALSE)

WinSetWindowPos (hwndFrame. NULL,
(SHORT) rcl.xLeft. (SHORT) rcl.yBottom.
(SHORT) rcl.xRight - (SHORT) rcl.xLeft.
(SHORT) rcl.yTop - (SHORT) rcl.yBottom.
SWP_MOVE : SWP_SIZE)

return 0 ;

case WM_ERASEBACKGROUND:
return 1 :

return WinDefWindowProc (hwnd. msg. mp1, mp2)

The BUTTONS1.DEF File

; BUTTONS1.DEF module definition file

NAME

OESeR! PTION
PROTMODE
HEAPS! ZE
STACKSIZE
EXPORTS

BUTTONS1 WINDOWAPI

'Push Button Demo (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 11-1. The BUTTONS1 program.

482

Figure 11-2 shows BUTTONSl running under the Presentation Manager. The
"Larger" button is in the process of being triggered by the mouse.

SECTION THREE: GETTING INPUT

~ BUnONSl EXE mit]

Figure 11·2. The BUTTONS1 display.

BUTTONS 1 creates these two push buttons during processing of the
WM_CREATE message in ClientWndProc:

for (i d - 0 ; i d < 2 ; i d++)
hwndButton rid] - WinCreateWindow

hwnd,
WCBUTTON.
szButtonLabel [id],
WS_VISIBlE :

BS_PUSHBUTTON.
0, 0,
12 * cxChar,
2 * cyChar.
hwnd,
HWND_BOTTOM,
id.
NUll,
NULL)

1/ Parent
// Class
/1 Text
// Style

II Pos iti on
// Width
1/ Height
1/ Owner
1/ Placement
II 10
// Ctrl data
/1 Pres params

The window handles are saved in the hwndButton array. The two IDs are set
to 0 and 1, as are the indexes to this array. The szButtonLabel array contains
the two text strings that appear inside the buttons.

The height of the buttons is set to 2 times the height of a character, which is
a standard height for push buttons. The width of a push button should be at

CHAPTER ELEVEN: CONTROL WINDOWS 483

least the length of the text string inside the button plus two additional char
acter widths. Twelve times the width of a character is adequate for the two
buttons in this program.

The position parameters of WinCreateWindow are set to O. Because the but
tons will be positioned in the center of the client window, the position can
be determined only when the program knows the size of the client win
dow. This requires that ClientWndProc call WinSetWindowPos during the
WM_SIZE message:

for (i d = 0 ; i d < 2 ; i d++)
WinSetWindowPos (hwndButton [idJ, NUll,

cxClient / 2 + (14 * id - 13) * cxChar,
(cyClient - 2 * cyChar) / 2,
0, 0, SWP_MOVE) ;

The third and fourth parameters give the position of the control relative to
the lower-left corner of the client window. These messy-looking formulas
place the buttons side by side in the center of the client window. (Such for
mulas disappear when you work with controls in dialog boxes.)

Push buttons send WM_COMMAND messages to their owners when they
are clicked on. The following mpJ and mp2 parameters accompany the
WM_COMMAND message:

WM_COMMAND Parameter

SHORTIFROMMP (mpl)
SHORTIFROMMP (mp2)
SHORT2FROMMP (mp2)

Meaning

ChildID
CMDSRC_PUSHBUTTON
Nonzero for mouse input; 0 for keyboard

input

The CMDSRC_PUSHBUTTON identifier indicates that the WM_COMMAND

message is sent by a push button. (As you'll see in Chapter 13, menus and
keyboard accelerators also send WM_COMMAND messages to the client
window. In these cases the low USHORT of mp2 is either CMDSRC_MENU

or CMDSRC_ACCELERATOR.) The only way to identify the push button
sending the message is to examine the child ID in the low USHORT of mpJ,
which is why it's so important to give each push button a unique ID.

PMWIN.H contains a COMMANDMSG macro that you can use like the
CHARMSG and MOUSEMSG macros. The following expression returns the
child window ID:

COMMANDMSG (&msg) -) cmd

484 SECTION THREE: GETTING INPUT

I

I

The following expression identifies the source of the message:

COMMANDMSG (&msg) -) source

The following expression is TRUE if the mouse was used:

COMMANDMSG (&msg) -) fMouse

In the BUTTONSl program, the push button on the left (containing the text
"Smaller") has an ID of O. The push button with the text "Larger" has an
ID of 1. The processing of the WM_COMMAND message in BUTTONS1.C is
structured like this:

case WM_COMMAND:
[other program lines]

switch (COMMANDMSG (&msg) -) cmd)
{

case 0:
[process message from' 'Smaller" push button]

break

case 1:
[process message from' 'Larger" push button]

break ;

[other program lines]

return 0 ;

When ClientWndProc receives a WM_COMMAND message, it must alter the
size of the program's window. The program first obtains the client win
dow's rectangle from WinQueryWindowRect and then translates the coordi
nates to window coordinates using WinMapWindowPoints. Depending on the
ID of the push button that sent the message, BUTTONS 1 adjusts the four
fields of the rectangle to increase or decrease the size. It then determines
the frame rectangle that corresponds to this client rectangle by calling
WinCalcFrameRect. BUTTONS 1 then sets the new size and position of the
frame rectangle by calling WinSetWindowPos.

When BUTTONS 1 calls WinSetWindowPos, the client window procedure
receives a WM_SIZE message. As I've mentioned, BUTTONS 1 responds to
this by calling WinSetWindowPos to set the new position of the push button
controls. Because the frame window is resized equally in all four directions
and the push button controls are always positioned in the center of the
window, the push buttons remain in the same position relative to
the screen.

CHAPTER ELEVEN: CONTROL WINDOWS 485

Controls and Keyboard Input Focus
When you click on one of the push buttons in BUTTONS l, the push button
obtains the input focus, as indicated by a dotted line around the text of the
button. Whenever a push button has the input focus, you can also press
the Spacebar to trigger the button. However, this is the only· keystroke that
the push button responds to in a meaningful way. When a dialog box con
tains push buttons and other controls, you can move the input focus between
controls by using the Tab key and, sometimes, the cursor movement keys.
The dialog box logic in the Presentation Manager adds this additional key
board interface - it isn't part of the keyboard logic in individual control
windows. In the COLORSCR program shown later in this chapter, we'll ex
amine a way to add a keyboard interface to move the input focus between
control windows.

Radio Buttons to Indicate Choices
The BUTTONSl program created two push button control windows. Now
let's go a little further and write a program that has a few more controls.
The DRAWLINE program, shown in Figure 11-3, creates 26 control win
dows - 24 radio buttons and two group boxes.

The DRAWLINE File

1f- - - -- - - - - - - - - - - - - - - -
ORAWLINE make file
#- - - - - - - - - - - - - - - - - - --

drawline.obj : drawline.c
cl -c -G2sw -W3 drawline.c

drawline.exe : drawline.obj drawline.def
link drawline, /align:16. NUL, os2, drawline

The DRAWLlNE.C File

/*--
ORAWLINE.C -- Draw line from radio buttons

- -* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>

486 SECTION THREE: GETTING INPUT

(continued)

I'
I

II

Figure 11-3. The DRAWLINE.C File. continued

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass[] - "Drawline" :
static UlONG flFrameFlags - FCF_TITlEBAR

HAB hab ;
HMQ hmq ;

FCF_SIZEBORDER
FCF_SHEllPOSITION

HWND hwndFrame, hwndClient
OMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab, 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab, szClientClass, ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags, szClientClass, NULL.
Ol. NULL, 0, &hwndClient) ;

WinSendMsg (hwndFrame, WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON, FALSE).
NULl) :

while (WinGetMsg (hab. &qmsg, NULL. 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mp!, MPARAM mp2)
{

static CHAR
static CHAR

*szGroupText[] - ("Color", "Type") ;
*szColorText[] - { "Background", "Blue",

"Pink",
"Yellow",
"Dark Blue",

"Green",
"Neutral",
"Dark Red",

"Red",
"Cyan",
"Dark Gray",
"Oark Pink",

"Dark Green", "Dark Cyan", "Brown",
"Pale Gray" }

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 487

Figure 11-3. The DRAWLINE.C File. continued

static CHAR *szTypeText [] - { "Dot", "Short Dash",

488

"Dash Dot". "Double Dot".
"Long Dash", "Dash Double Dot",
"Solid", "Invisible" } ;

static HWND hwndGroup[2], hwndRadioColor[8J, hwndRadioType[8] ;
static POINTL aptl[5] ;
static SHORT sCurrentColor - 7. II Neutral

sCurrentType - 6; II Solid
FONTMETRICS fm:
HPS
SHORT

switch (msg)
{

hps ;
s. id. cxChar, cyChar

case WM_CREATE
hps - WinGetPS (hwnd) ;
GpiQueryFonlMetrics (hps. (LONG) sizeof fm, &fm)
cxChar = (SHORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps)

for (s - 0 : s < 2 s++)

hwndGroup[s] = WinCreateWindow
hwnd,
WC_STATIC.
szGroupText[s].
WS_VISIBLE :

SS_GROUPBOX,

II Parent
II Class
II Text
II Styl e

(8 + 42 * s) * cxChar,
4 * cyChar, II Position
(26 + 12 * (I - s» *

cxChar. II Width
14 * cyChar. II Height
hwnd. II Owner
HWND_TOP. II Placement
s + 24. II 10
NULl. II Ctrl data
NULl) II Pres params

for (s ... 0 s < 16 s++)

SECTION THREE: GETTING INPUT

(continued)

I

i

I'I

Figure 11-3. The DRAWLINE.C File. continued

hwndRadioColor[s) - WinCreateWindow
hwnd, II Parent
WC_BUTTON, II Class
szColorText[s), II Text
WS_VISIBLE : II Style

BS_RAOIOBUTTON,
(10 + (s > 7 ? 18 : 0»

* cxChar, II X Position
(31 - 3 * (s % 8»

* cyChar I 2, II Y Positi on
16 * cxChar, II Width
3 * cyChar I 2, II Height
hwnd, /I Owner
HWNO_BOTTOM, /I Placement
s, II 10

NULL, II Ctrl data
NULl) II Pres params

for (s - 0 : s < 8 ; s++)

hwndRadioType[s] - WinCreateWindow
hwnd, II Parent
WC_BUTTON, II Class
szTypeText[s), II Text
WS_VISIBlE : /I Style

BS_RAOIOBUTTON,
52 * cxChar. I I Position
(31 - 3 * s) * cyCha r I 2,
22 * cxChar, /I Wi dth
3 * cyChar I 2, II Height
hwnd, II Owner
HWNO_BOTTOM, II Placement
s + 16, /I 10

NULL, II Ctrl data
NULL) ; II Pres params

WinSendMsg (hwndRadioColor[sCurrentColor),
BM_SETCHECK, MPFROMSHORT (1), NULL)

WinSendMsg (hwndRadioType[sCurrentType],
BM_SETCHECK, MPFROMSHORT (1), NULL) ;

aptl[O].x - aptl[3).x - aptl[4].x - 4 * cxChar ;
aptl[I).x = aptl[2).x - 80 * cxChar ;

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 489

Figure 11-3. The DRAWLINE.C File. continued

aptl[O].y = aptl[I].y - aptl[4].y = 2 * cyChar
aptl[2].y - aptl[3].y = 20 * cyChar ;

return 0 ;

case WM_CONTROL:
id - SHORTIFROMMP (mp1)

if (id < 16)
{

II Color IDs

WinSendMsg (hwndRadioColor[sCurrentColor].
BM_SETCHECK. MPFROMSHORT (0). NULL)

sCurrentColor - id ;

WinSendMsg (hwndRadioColor[sCurrentColor],
BM_SETCHECK. MPFROMSHORT (1). NULL)

else if (id < 24)
{

II Line Type IDs

WinSendMsg (hwndRadioType[sCurrentType].
BM_SETCHECK. MPFROMSHORT (0). NULL)

sCurrentType = id - 16 ;

WinSendMsg (hwndRadioType[sCurrentType].
BM_SETCHECK. MPFROMSHORT (1). NULL)

WinInvalidateRect (hwnd. NULL, TRUE) ;
return 0 ;

Cdse WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;

GpiSetColor (hps. (LONG) sCurrentColor) :
GpiSetLineType (hps. sCurrentType + LINETYPE_DOT)
GpiMove (hps. aptl) ;
GpiPolyLine (hps, 4L. aptl + 1) ;

WinEndPaint (hps)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

490 SECTION THREE: GETTING INPUT

The DRAWLlNE.DEF File

: DRAWLINE.OEF module definition file

NAME DRAWlINE WINDOWAPI

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Draw Line from Radio Buttons (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 11-3. The DRAW LINE program.

DRAWLINE displays two groups of mutually exclusive radio buttons. You
specify a line color with one group and a line type (dotted, dashed, solid,
and so forth) with the other group. DRAWLINE responds by drawing four
line segments (using the GpiPoiyLine function) based on the color and line
type you choose. Each group of radio buttons is enclosed in a "group box,"
which is a control window of the WC_STATIC class. A group box looks like
a box with some text at the top. The group box doesn't process keyboard
and mouse input and doesn't send messages to its owner.

As in BUTTONSl, DRAWLINE creates the control windows in Client
WndProc during processing of the WM_CREATE message. The IDs for the
first sixteen radio buttons (those that specify the line color) are 0 through 15.
The IDs for the eight line-type radio buttons are 16 through 23. The two
group boxes have IDs of 24 and 25. DRAWLINE avoids processing the
WM_SIZE message by positioning these control windows relative to the
lower-left corner of the client window. This allows the position to be speci
fied in the original WinCreateWindow function. When you first execute
DRA WLINE, you may have to increase the size of the window to see all
the controls. The DRAWLINE window is shown in Figure 11-4 on the fol
lowing page.

After DRA WLINE creates the sixteen radio buttons, it sends BM_SET
CHECK messages to two radio buttons:

WinSendMsg (hwndRadioColor [sCurrentColor].
BM_SETCHECK, MPFROMSHORT (I), NULL)

WinSendMsg (hwndRadioType [sCurrentType],
BM_SETCHECK, MPFROMSHORT (I), NULL)

CHAPTER ELEVEN: CONTROL WINDOWS 491

~ DRAWLINE EXE l+1m

- -- - -- ---- -- - -- - -- - -- - -- - --- ----- - -- - -----j

Color Type
o Background o Dark Gray o Dot

o Blue o Dark Blue o Short Dash

o Red o Dark Red o Dash Dot

o Pink o Dark Pink o Double Dot

o Green o Dark Green o Long Dash

o Cyan o Dark Cyan ~!:~:::::~:~:~:~I~:::~:~~
o Yellow o Brown

@Neutral o Pale Gray o Invisible

Figure 11-4. The DRAW LINE display.

The BM_SETCHECK message tells a radio button to check or uncheck it
self, depending on the value of mpJ. These two statements cause a check to
appear in the default radio button in each group - the buttons labeled
"Neutral" and "Solid." The program keeps track of which radio button is
checked in each group with the two static variables sCurrentColor and
sCurrentType. When the program begins, the two variables are initialized to
7 and 6, which are the values of CLR_NEUTRAL and LINETYPE_SOLID.

When a radio button control is clicked, the control window sends its owner a
WM_CONTROL message (not the WM_COMMAND message a push button
sends its owner). The mpJ and mp2 parameters for radio buttons are:

WM_CONTROL Parameter

SHORT1FROMMP (mp1)
SHORT2FROMMP (mp 1)
mp2

Meaning

ChildID
Notification code
Control window handle

As in the WM_COMMAND message, the control window identifies itself
by the child ID in the low USHORT of mpJ. (Although the mp2 parameter
also identifies the control because it contains the control's window handle,
some controls that send their owners WM_CONTROL messages use mp2 for
other purposes.)

The high USHORT of mpJ is a notification code. Radio buttons send
WM_CONTROL messages to their owners to indicate one of two occur
rences, as shown on the next page.

492 SECTION THREE: GETTING INPUT

Notification Code

BN_CLICKED
BN _DBLCLICKED

Meaning

Clicked with mouse
Double-clicked with mouse

DRAWLINE ignores the notification code and accepts either a single click or
a double click.

DRAWLINE processes the WM_CONTROL message by first obtaining the ID
number from mpJ:

case WM_CONTROL:
id - SHORT1FROMMP (mpl) ;

If the ID number is from 0 to 15, the radio button being clicked is in the first
group of buttons - those that specify the line color. DRAWLINE must
uncheck the currently checked radio button in the group and then check the
radio button that has sent it the WM_CONTROL message:

if (id < 16)
{

II Color IDs

WinSendMsg (hwndRadioColor [sCurrentColor],
BM_SETCHECK. MPFROMSHORT (0). NULL)

sCurrentColor - id ;

WinSendMsg (hwndRadioColor [sCurrentColor],
BM_SETCHECK, MPFROMSHORT (1), NULL)

Notice that the ID number is used as an array index and as the value stored
in sCurrentColor. If the ID is from 16 to 23, the radio button is in the second
group (line type):

else if (id < 24)
{

II Line type IDs

WinSendMsg (hwndRadioType [sCurrentType],
BM_SETCHECK, MPFROMSHORT (0), NULL)

sCurrentType = id - 16 ;

WinSendMsg (hwndRadioType [sCurrentType].
BM_SETCHECK, MPFROMSHORT (1), NULL)

CHAPTER ELEVEN: CONTROL WINDOWS 493

Here the ID must be adjusted by subtracting 16 before it's used as an array
index and saved in sCurrentType. In either case, the client window is invali
dated to generate a WM_PAINT message:

WinlnvalidateRect (hwnd, NULL, TRUE) ;

During processing of WM_PAINT, DRAWLINE uses the sCurrentColor and
sCurrentType variables to set the color and line type:

GpiSetColor (hps. (LONG) sCurrentColor) ;
GpiSetLineType (hps. sCurrentType + LINETYPE_DOT)

It then draws the line in the specified color and type.

The Scroll-Bar Class
A program uses scroll bars to allow a user to specify a single value from a
continuous range of integer values (even though the user may not think of
the scroll bar in quite this way). As you saw in the series of SYSVALS pro
grams in Chapter 4, you can add a vertical and a horizontal scroll bar to the
standard window by including the frame creation flags FCF _ VERTSCROLL
and FCF _HORZSCROLL in the WinCreateStdWindow function. The vertical
scroll bar is always positioned to the right of the client window, and the
horizontal scroll bar is always positioned below the client window. (They
are children of the frame window rather than the client window.) The scroll
bars send messages to their owner (the frame window), which then passes
the messages to the client window. You can also create vertical or horizon
tal scroll-bar control windows anywhere on your client window. These
scroll bars send messages to their owner, which most often is the client.

The COLORSCR program, shown in Figure 11-5, shows how this is done.
This program creates three vertical scroll bars-labeled "Red," "Green,"
and "Blue" -in the left half of its client window. Each has a range from 0
to 255. As you move the slider on each scroll bar, the right half of the client
window uses the WinFillRect function to color itself with the composite
color based on the red, green, and blue values.

494 SECTION THREE: GETTING INPUT

The COLORSCR File

1/- - -- -- - -- - - -- - - -- - --
COLORSCR make file
f/- - - - - - - - - - - - - - - - - - - -

colorscr.obj : colorscr.C
cl -c -G2sw -W3 colorscr.c

colorscr.exe : colorscr.obj colorscr.def
link colorscr. /align:16, NUL. os2, col orser

The COLORSCR.C File

/* -

COLORSCR.C -- Color Scroll using child window controls
- -*/

#define INCLWIN
Hdefine INCLGPI
l/inelude <os2.h>
#include <stdlib.h>

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM)
MRESULT EXPENTRY ScrollProc (HWND, USHORT, MPARAM. MPARAM) ;

HWND hwndSeroll[3], hwndFocus
PFNWP pfnOldScroll[3]

int main (void)
{

static CHAR szClientClass[] - "ColorScr" :
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab :
HMO hmq ;

FCF_SlZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame, hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq - WinCreateMsgOueue (hab, 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST :

WinRegisterClass (hab. szClientClass, ClientWndProc, CS_SIZEREORAW, 0)

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 495

Figure 11-5. The COLORSCR.C File. continued

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBlE,
&flFrameFlags. szClientClass, NUll,
Ol, NUll. 0, &hwndClient)

WinSetFocus (HWND_DESKTOP, hwndFocus = hwndScroll[O]) ;

WinSendMsg (hwndFrame, WM_SETICON,
WinQuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg, NUll. 0, 0))

WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl, MPARAM mp2)
(

496

static CHAR *szColorLabel[] = { "Red", "Green". "Blue" } :
static HWND hwndLabel[3], hwndValue[3]
static SHORT cyChar. sColor[3]
static RECTL rclRightHalf
CHAR szBuffer[10]
FONTMETRICS fm;
HPS hps ;
SHORT s. id. cxClient. cyClient

switch (msg)

case WM_CREATE
hps - WinGetPS (hwnd) ;
GpiOueryFontMetrics (hps. (lONG) sizeof fm, &fm)
cyChar = (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps)

for (s = 0 ; s < 3 s++)
(

hwndScroll[s] = WinCreateWindow
hwnd.
WC_SCROllBAR,

SECTION THREE: GETTING INPUT

II Parent
II Class

(continued)

II

Figure 11-5. The COLORSCR.C File. continued

NULL,
WS_VISIBlE

SBS_VERT,
O. 0,
0, 0,
hwnd,
HWND_BOTTOM,
s,
NULL,
NULl)

I!
I!

II
II
II
I!
II
I!
II

Text
Style

Position
Size
Owner
Placement
10
Ctrl data
Pres params

hwndLabel[s] - WinCreateWindow
hwnd.
We_STATIC,

II Parent
I! C1 ass

szColorlabel[s]. II Text
WS_VISIBLE : II Style

SS_TEXT DT_CENTER,
O. O. II POsition
0, 0,
hwnd,
HWND_BOTTOM,
s + 3,
NULL.
NULL) ;

I!
/1
/1
I!
I!
I!

Size
Owner
Placement
10
Ctrl data
Pres params

hwndValue[s] - WinCreateWindow
hwnd, I! Parent
WC_STATIC, I! Class
"0". /1 Text
WS_VISIBLE I! Style

55_TEXT DT_CENTER,
0, 0, /I Position
0, 0, /1 Size
hwnd, I! Owner
HWND_BOTTOM, /1 Placement
s + 6, /1 10
NULL, /1 Ctrl data
NULl) ; /1 Pres params

pfnOldScroll[s] -
WinSubclassWindow (hwndScroll[sJ, ScrollProc)

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 497

Figure U-S. The COLORSCR.C File. continued

WinSendMsg (hwndScroll[sJ. SBM_SETSCROLlBAR.
MPFROM2SHORT (0. 0). MPFROM?SHORT (0. 255»

return 0 ;

case WM_SIZE :
cxClient - SHORT1FROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)

for (s = 0 : s < 3 ; s++)
{

WinSetWindowPos (hwndScroll[s]. NUll.
(2 * s + 1) * cxClient I 14. 2 * cyChar,
cxClient / 14. cyClient - 4 * cyChar,
SWP_SIZE : SWP_MOVE)

WinSetWindowPos (hwndLabel[s], NUll,
(4 * s + 1) * cxClient I 28,

cyClient - 3 * cyChar I 2.
cxClient 7. cyChar.
SWP_SIZE SWP_MOVE)

WinSetWindowPos (hwndValue[s]. NUll,
(4 * s + 1) * cxClient 28. cyChar I 2,
cxClient I 7. cyChar.
SWP_SIZE : SWP_MOVE) :

WinQueryWindowRect (hwnd. &rclRightHalf)
rclRightHalf.xleft = rclRightHalf.xRight I 2
return 0 :

case WM_VSCROLL
id - SHORT1FROMMP (mpl) ;

switch (SHORT2FROMMP (mp2»
{

case SB_lINEDOWN :

1/ ID of scroll bar

sColor[id] - min (255. sColor[id] + 1)
break ;

case SB_LINEUP
sColor[id] = max (0. sColor[id] - 1)
break ;

498 SECTION THREE: GETTING INPUT

(continued)

Figure 11-5. The COLORSCR.C File. continued

case SB_PAGEDOWN :
sColor[id] - min (255, sColor[id] + 16)
break :

case SB_PAGEUP
sColor[id] - max (0, sColor[id] - 16)
break :

case SB_SlIDERTRACK
sColor[id] - SHORT1FROMMP (mp2)
break

default :
return 0 :

WinSendMsg (hwndScroll[id]. SBM_SETPOS,
MPFROM2SHORT (sColor[id]. 0), NUll)

WinSetWindowText (hwndValue[id],
itoa (sColor[id], szBuffer. 10»

WinlnvalidateRect (hwnd. &rclRightHalf, FALSE) ;
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL) ;

GpiCreateLogColorTable (hps. LCOl_RESET. lCOlF_RGB.
OL. OL. NULl) ;

WinFil1Rect (hps. &rclRightHalf. (UlONG) sColor[O] « 16
(ULONG) sColor[1]« 8
(ULONG) sColor[2]) ;

W;nEndPaint (hps)
return 0 ;

case WM_ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd. msg. mp1, mp2)

MRESULT EXPENTRY ScrollProc (HWND hwnd. USHORT msg. MPARAM mp1, MPARAM mp2)
{

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 499

Figure ll-S. The COLORSCR.C File. continued

USHORT id ;

id ~ WinQueryWindowUShort (hwnd. QWS_ID)

switch (msg)
{

case WM_CHAR:

II ID of scroll bar

if (!(CHARMSG(&msg)->fs & KC_VIRTUALKEY»
break ;

switch (CHARMSG(&msg)->vkey)
{

case VI<-TAB:
if (!(CHARMSG(&msg)->fs & KC_KEYUP»

{

hwndFocus = hwndScroll[(id + 1) % 3] ;
WinSetFocus (HWND_DESKTOP. hwndFocus) ;

return 1 ;

case VK_BACKTAB:
if (!(CHARMSG(&msg)->fs & KC_KEYUP»

{

hwndFocus = hwndScroll[(id + 2) % 3] ;
WinSetFocus (HWND_OESKTOP. hwndFocus) ;
}

return 1 ;

default:
break

break ;

case WM_BUTTONIDOWN:
WinSetFocus (HWND_DESKTOP. hwndFocus - hwnd)
break ;

return pfnOldScroll[id] (hwnd. msg. mpl. mp2)

500 SECTION THREE: GETTING INPUT

The COLORSCR.DEF File

; COLORSCR.DEF module definition file

NAME COLORSCR WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Color Scroll (C) Charles Petzold, 1988'

1024
8192
ClientWndProc
$crollProc

Figure 11-5. The COLORSCR program.

COLORSCR creates nine control windows - three scroll-bar windows and
six static text windows. Three static text windows are positioned on top of
the scroll bars and display the labels "Red," "Green," and "Blue." The
text windows on the bottom of each scroll bar display the current position (0
through 255) of the scroll bar. These values correspond directly to the red,
green, and blue values used to create the composite color. The COLORSCR

window is shown in Figure 11-6.

Figure 11-6. The COLORSCR display.

CHAPTER ELEVEN: CONTROL WINDOWS 501

The nine windows are created during processing of the WM_CREATE mes
sage in ClientWndProc. The child IDs and the arrays the program uses for
storing the window handles are as follows:

Window Type

Scroll bar
Static text
Static text

ChildID

Oto 2
3 to 5
6 to 8

Window Handle Array

hwndScroll
hwndLabel
hwndValue

The three scroll bars have the window class WC_SCROLLBAR and the win
dow style WS_VISIBLE : SBS_VERT. The SBS_VERT style indicates that
the scroll bars are vertical. COLORSCR gives the six static text windows the
window style WS_ VISIBLE: SS_TEXT : DT _CENTER. The SS_TEXT iden
tifier is one of several window styles available for windows of the
WC_STATIC class. The DT_CENTER identifier is normally used with the
WinDrawText function, but you can also use it as a window style with
SS_TEXT to center the text within the width of the window. The position
and size parameters are set to 0 in the WinCreateWindow call. Client
WndProc positions and sizes the windows during the WM_SIZE message.

When you include scroll bars as part of the standard window, vertical scroll
bars always have a standard width, and horizontal scroll bars always have
a standard height. You can obtain these standard widths and heights
from the WinQuerySysValue function using the SV _CXVSCROLL and
SV_CYHSCROLL parameters. However, when you create scroll bars using
the WinCreateWindow function, the scroll bars can be any size you want.
You can make long, thin scroll bars or short, pudgy scroll bars. COLORSCR
always sets the width of the three vertical scroll bars at IJ14 the width of
the client window. This is done while processing the WM_SIZE message. If
you want to use standard widths and heights for the scroll bars you create in
your programs, get the values from WinQuerySysValue.

After creating the scroll bars during the WM_CREATE message,
COLORSCR sends them a SBM_SETSCROLLBAR message to set the range
and current position:

WinSendMsg (hwndScroll [s]. SBM_SETSCROLLBAR.
MPFROM2SHORT (0, 0), MPFROM2SHORT (0. 255» :

The SYSVALS programs in Chapter 4 use this same message.

502 SECTION THREE: GETTING INPUT

Processing the Scroll-Bar Messages
The scroll bars in COLORSCR send WM_ VSCROLL messages to the client
window. WM_ VSCROLL and WM_HSCROLL messages are accompanied by
mpJ and mp2 parameters as follows:

WM_xSCROLL Parameter

SHORT1FROMMP (mp1)
SHORT2FROMMP (mp 1)
SHORT1FROMMP (mp2)
SHORT2FROMMP (mp2)

Meaning

ChildID
o
Slider position (for some commands)
Command

This is the same information used for scroll bars created in a standard win
dow. The SYSVALS program didn't look at the control ID, because the pro
gram had only one vertical scroll bar and one horizontal scroll bar. If you
include scroll bars as part of the standard window and then create addi
tional scroll bars using WinCreateWindow, you can differentiate the scroll
bars by examining the ID number. The scroll bars that are part of the
standard window have the predefined IDs FID_VERTSCROLL and
FID _HORZSCROLL.

COLORSCR defines a static array named sCalar to store the current position
of each of the three scroll bars. The index to this array is the same as the
scroll-bar ID. The processing of the WM_ VSCROLL message thus begins by
obtaining the ID number from mpJ:

case WM_VSCROLL :
id - SHORTIFROMMP (mpl) ;

COLORSCR then alters the appropriate value stored in sCalar based on the
scroll-bar command in the high USHORT of mp2:

switch (SHORT2FROMMP (mp2»
{

case SB_LINEDOWN :
sColor rid] - min (255. sColor rid] + 1)
break ;

case SB_LINEUP
sColor rid] - max (0. sColor rid] - 1)
break ;

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 503

continued

case SB_PAGEDOWN
sCalar rid] - min (255, sColor rid] + 16)
break :

case SB_PAGEUP
sColor rid] - max (0, sColor rid] - 16)
break ;

case SB_SLIDERTRACK
sColor rid] - SHORTIFROMMP (mp2)
break

default:
return 0

The program sets a new position of the scroll-bar slider by sending it an
SBM_SETPOS message. The window handle of the scroll bar is stored in the
hwndScroll array that is also indexed by the ID number:

WinSendMsg (hwndScroll rid], SBM_SETPOS.
MPFROM2SHORT (sColar rid]. 0), NULL) ;

COLORSCR must also change the text in the static control window displayed
at the bottom of the scroll bar. It does this by first converting the number
to its ASCII value using the C function itoa and then calling Win Set
WindowText. The window handles are stored in the hwndValue array:

WinSetWindowText (hwndValue rid].
itoa (sColor rid]. szBuffer. 10»

The right half of the client window is then invalidated to generate a
WM_PAINT message:

WinlnvalidateRect (hwnd, &rclRightHalf. FALSE) ;

The rclRightHalfRECTL structure contains the coordinates of the right half
of the client window. These are set during the WM_SIZE message.

504 SECTION THREE: GETTING INPUT

The WM_PAINT processing is fairly simple. COLORSCR first calls
GpiCreateLogColorTable to specify that color indexes are to be interpreted
as 32-bit RGB values:

GpiCreateLogColorTable (hps. LCOl_RESET. LCOLF_RGB.
OL. OL. NULl) :

The program then combines the current red, green, and blue color values
stored in the sColor array into one ULONG and calls WinFillRect to color
the right half of the client window with that color:

WinFillRect (hps. &rclRightHalf. (ULONG) sColor [0] « 16
(ULONG) sColor [1]« 8
(ULONG) sColor [2]) ;

Changing the Keyboard Input Focus
Unlike BUTTONSl and DRAWLINE, COLORSCR has a complete keyboard
interface and doesn't require a mouse. You can move the position of the
scroll-bar slider using the cursor movement arrow keys, and you can move
the keyboard input focus from one scroll bar to another using the Tab and
Shift-Tab keys.

As you saw in the SYSVALS program in Chapter 4, the scroll bars include
their own keyboard interface for the cursor movement keys. Once a scroll
bar window has the keyboard input focus, it can understand and interpret
these keys. That's not the problem. The problem is that once a control win
dow gets the input focus, it doesn't properly interpret the Tab key. We need
to find a way to give a scroll bar the input focus (so that it uses the cursor
movement keys) and then be able to take away the input focus when the Tab
key is pressed. But how can ClientWndProc know that the Tab key is pressed
when the scroll bar is getting all the WM_CHAR messages?

The solution involves a technique called "window subclassing." Essen
tially, this technique allows your program to get first dibs on all messages
sent to a particular window created by your program (but not windows cre
ated by other programs). You can process some of these messages and then
allow the window's normal window procedure to process the others. You
can prevent the normal window procedure from receiving some messages,
or you can alter messages before they get to the window procedure.

Let's look at COLORSCR to see how this works in practice. Toward the end
of COLORSCR.C is a function called ScrollProc that is defined as if it were a

CHAPTER ELEVEN: CONTROL WINDOWS 505

normal window procedure. It is an EXPENTRY function, has a return value
of MRESULT, and accepts the four parameters normally passed to window
procedures. ScroliProc is also included in the EXPORTS section of the
COLORSCR.DEF module definition file:

EXPORTS ClientWndProc
ScrollProc

Don't forget to do this!

After creating the three scroll-bar windows during processing of the
WM_CREATE message, COLORSCR calls WinSubclassWindow to specify
that all messages to these three scroll-bar windows should be sent to
ScroliProc instead:

pfnOldScroll[s] -

506

WinSubclassWindow (hwndScroll[s], ScrollProc) ;

The pfnOldScroli array is a global variable defined near the top of
COLORSCR.C:

PFNWP pfnOldScroll[3]

This array holds the addresses of the original window procedures for the
three scroll bars.

Now let's look at ScroliProc. When a message is sent to any of the three
scroll bars, ScroliProc gets the message rather than the normal scroll-bar
window procedure. ScroliProc obtains the control ID associated with the
scroll-bar window receiving the message:

id = WinQueryWindowUShort (hwnd, QWS_ID)

ScroliProc then checks to see if the message is WM_CHAR, if the message
contains a valid virtual key code, if the key is being pressed, and if the vir
tual key is VK_TAB or VK_BACKTAB.

For VK_TAB, ScroliProc determines the window handle that is to receive the
input focus:

hwndFocus = hwndScroll[(id + 1) % 3]

SECTION THREE: GETTING INPUT
i~

I

The new focus window is the scroll bar with the next highest ID. ScroliProc
then uses this hwndFocus variable to set the new focus window:

WinSetFocus (HWND_DESKTOP. hwndFocus) ;

ScrollProc also sets the focus to one of the scroll bars when it receives a
WM_BUTTONIDOWN message.

ScrollProc sends all messages (except the VK_TAB and VK_BACKTAB key
strokes) to the old scroll-bar window procedure stored in pjnOldScroll:

return pfnOldScroll [id] (hwnd. msg. mpl. mp2) ;

This allows the normal processing in the scroll-bar window procedure to
occur.

Of course, we must make sure that the first scroll bar gets the input focus
when the program starts up. Following the WinCreateStdWindow call in
main, COLORSCR sets the input focus to the first window:

Wi nSetFocus (HWND_DESKTOP. hwndFocus - hwndScroll [0]) ;

Without this statement, the first scroll bar wouldn't get the input focus until
it was clicked.

Creating Your Own Controls
In Chapter 9's CHECKER3 program you created child windows that helped
simplify mouse processing. These child windows were not really control
windows because they had two deficiencies: They had no keyboard interface
and they did not notify their owner when they were toggled. Now let's try
something similar, but this time let's make the children full-fledged control
windows.

In this exercise, we're going to reinvent the push button. While we're at it,
we're going to make our push buttons look a little prettier than the ones
built into the Presentation Manager. This new push button will be square
and (through use of color) will have a 3-D appearance.

Mouse Capture and Input·Focus
You may want to experiment with BUTTONSI (and other programs that
create control windows based on the predefined window classes) to help you
understand what is going on in the window procedure for the control.

CHAPTER ELEVEN: CONTROL WINDOWS 507

For example, you'11 find in BUTTONS 1 that triggering the button with the
mouse requires that you both press and release the mouse button while the
pointer is positioned within the control. If you press the mouse button when
the pointer is within the control, the control is inverted. If you move the
mouse pointer outside the control with the mouse button pressed, the control
returns to normal. Moving the pointer back within the button causes the
button colors to be inverted again.

Obviously the window procedure is capturing the mouse (a concept dis
cussed in Chapter 9). This is the only way the window procedure can detect
that the mouse pointer has moved outside the control window.

Clicking the push button with the mouse causes a dotted outline to appear
around the text. This indicates that the control has the input focus and re
quires that the window procedure give itself the input focus when the button
is clicked. When the push button has the input focus, you can also trigger
the button by pressing the Spacebar. This requires that the window pro
cedure for the control also process some keystrokes.

The Square Button Window Procedure
Let's look first at the SQBTN.C file shown in Figure 11-7.

/*--
SOBTN.C -- Contains window procedure for square 30 push button

--_.----------*/

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <malloc.h>
#include <string.h)

#define LCID_ITALIC lL

/* - - - - - - - - - - - - - - - - - . - - - - - - - . - . - - - - - - - - - - - .. - - - - - - - - -

typedef struct
{

PSZ pszText

Structure for storing data unique to each window
- -* /

BOOl fHaveCapture
BOOl fHaveFocus ;
BOOl flnsideRect ;
BOOl fSpaceDown :
}

508 SECTION THREE: GETTING INPUT

(continued)

I

I',

Figure 11-7. continued

SOBTN :

typedef SOBTN FAR *PSQBTN ;
MRESULT EXPENTRY SqBtnWndProc (HWND. USHORT. MPARAM, MPARAM)
VOID DrawButton (HWND. HPS. PSOBTN) :

HAB hab

j*-- --_.
Reg1sterSqBtnClass function available to other modules

- -* /

BaOL RegisterSqBtnClass (HAB habIn)
{

hab - habIn :

return WinRegisterClass (hab. "SqBtn". SqBtnWndProc.
CS_S I ZERE_DRAW. s i zeof (PSOBTN»

I*-------------------------~-----------------
String functions that accept far pointers

-- ---- ----- -------- ---- ----- ---------------* /

USHORT fstrlen (PCHAR pch)
{

USHORT usLen ;
for (uslen - 0 pch[usLen] usLen++)
return usLen :

PCHAR fstrcpy (PCHAR pchDst. PCHAR pchSrc)
{

USHORT usIndex :
for (uslndex - 0 pchDst[uslndex] - pchSrc[uslndex] uslndex++)
return pchDst :
}

/* -
SqBtnWndProc window procedure

- -*/

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 509

Figure 11-7. continued

MRESULT EXPENTRY SqBtnWndProc (HWND hwnd. USHORT msg, MPARAM mpl, MPARAM mp2)
{

BOOl
HPS

fTestlnsideRect
hps ;

PCREATESTRUCT pcrst ;
POINTL ptl ;
PSQBTN pSqBtn :
PWNDPARAMS
RECTL

pwprm
rcl ;

pSqBtn - WinQueryWindowPtr (hwnd, 0)

switch (msg)
{

case WM_CREATE:
pSqBtn - _fmalloc (s;zeof (SOBTN»

II Initialize structure

pSqBtn->fHaveCapture - FALSE
pSqBtn->fHaveFocus - FALSE
pSqBtn->flnsideRect - FALSE
pSqBtn->fSpaceDown - FALSE

/1 Get window text from creation structure

pcrst - (PCREATESTRUCT) PVOIDFROMMP (mp2) :

pSqBtn->pszText - _fmalloc (1 + fstrlen (pcrst-)pszText»
fstrcpy (pSqBtn->pszText. pcrst->pszText)

WinSetWindowPtr (hwnd. O. pSq6tn) ;
return 0 :

case WM_SETWINDOWPARAMS:
pwprm - (PWNDPARAMS) PVOIDFROMMP (mpl) ;

II Get window text from window parameter structure

if (pwprm->fsStatus & WPM_TEXT)
{

_ffree (pSqBtn->pszText) :
pSqBtn->pszText - _fmalloc (1 + pwprm->cchText)

510 SECTION THREE: GETTING INPUT

(continued)

II
I

Figure 11-7. continued

fstrcpy (pSqBtn->pszText, pwprm->pszText)
}

return 1 ;

case WM_QUERYWINDOWPARAMS:
pwprm -- (PWNDPARAMS) PVOIDFROMMP (mpl) :

II Set window parameter structure fields

if (pwprm-)fsStatus & WPM_CCHTEXT)
pwprm->cchText - fstrlen (pSqBtn->pszText)

if (pwprm-)fsStatus & WPM-TEXT)
fstrcpy (pwprm->pszText. pSqBtn->pszText)

if (pwprm-)fsStatus & WPM_CBPRESPARAMS)
pwprm->cbPresParams - 0 :

if (pwprm->fsStatus & WPM_PRESPARAMS)
pwprm->pPresParams - NULL ;

if (pwprm->fsStatus & WPM_CBCTLDATA)
pwprm->cbCtlData - 0 ;

if (pwprm->fsStatus & WPM_CTLDATA)
pwprm->pCtlData - NULL;

return 1 :

case WM_BUTTONIDOWN:
WinSetFocus (HWND_DESKTOP, hwnd) ;
WinSetCapture (HWND_DESKTOP, hwnd)
pSqBtn->fHaveCapture - TRUE :
pSqBtn->flnsideRect - TRUE ;
WinlnvalidateRect (hwnd. NULL, FALSE)
return 0 :

case WM_MOUSEMOVE:
if (!pSqBtn->fHaveCapture)

break ;

WinQueryW;ndowRect (hwnd, &rcl)
ptl.x - MOUSEMSG(&msg)->x
ptl.y - MOUSEMSG(&msg)->y :

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 511

Figure 11-7. continued

512

II Test if mouse pOinter is still in window

fTestInsideRect - WinPtInRect (hab. &rcl. &ptl)

if (pSqBtn->flnsideRect !~ fTestInsideRect)
{

pSqBtn-)flnsideRect - fTestlnsideRect
WinInvalidateRect (hwnd. NULL. FALSE)
}

break ;

case WM_BUTTONIUP:
if (!pSqBtn->fHaveCapture)

break ;

WinSetCapture (HWND_DESKTOP. NULL)
pSqBtn->fHaveCapture = FALSE
pSqBtn-)flnsideRect - FALSE :

WinOueryWindowRect (hwnd. &rcl)
ptl.x - MOUSEMSG(&msg)->x
ptl.y = MOUSEMSG(&msg)->y ;

II Post WM_COMMAND if mouse pointer is in window

if (WinPtInRect (hab. &rcl. &ptl»
WinPostMsg (WinQueryWindow (hwnd. OW_OWNER. FALSE).

WM_COMMAND.
MPFROMSHORT (WinQueryWindowUShort (hwnd. OWS_ID»,
MPFROM2SHORT (CMDSRC_OTHER. TRUE»

WinlnvalidateRect (hwnd. NULL. FALSE)
return 0 :

case WM_ENABLE:
WinlnvalidateRect (hwnd, NULL. FALSE)
return 0 ;

case WM_SETFOCUS:
pSqBtn->fHaveFocus = SHORTIFROMMP (mp2)
WinlnvalidateRect (hwnd. NULL, FALSE) ;
return 0 :

SECTION THREE: GETTING INPUT

(continued)

I

Figure 11-7. continued

case WM_CHAR:
if (!(CHARMSG(&msg)->fs & KC_VIRTUALKEY) ::

CHARMSG(&msg)->vkey !- VK_SPACE : :
CHARMSG(&msg)->fs & KC-.PREVOOWN)

break ;

1/ Post WM_COMMAND when space bar is released

if (!(CHARMSG(&msg)->fs & KC_KEYUP»
pSqBtn->fSpaceDown - TRUE

else

pSqBtn->fSpaceDown - FALSE
WinPostMsg (WinQueryWlndow (hwnd. OW_OWNER, FALSE),

WM_COMMAND.

}

MPFROMSHORT (WinQueryWindowUShort (hwnd. OWS_IO».
MPFROM2SHORT (CMDSRC_OTHER. FALSE»

WinlnvalidateRect (hwnd. NULL. FALSE)
return 0 ;

case WM_PAINT:
hps - WinBeginPalnt (hwnd. NULL, NULL)
OrawButton (hwnd, hps. pSqBtn) ;
WinEndPaint (hps) ;
return 0 ;

case WM_OESTROY:
_ffree (pSqBtn->pszText)
_ffree (pSqBtn)
return 0 :

return WinDefWindowProc (hwnd, msg. mpl, mp2)

/* -
Draws filled and outlined polygon (used by DrawButton)

--*/

VOID Polygon (HPS hps. LONG lPoints, POINTL aptl[]. LONG lColor)
{

1/ Draw interior ;n specified color

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 513

Figure 11-7. continued

GpiSavePS (hps)
GpiSetColor (hps. lColor) ;

GpiBeginArea (hps. BA-NOBOUNDARY [BA-ALrERNATE)
GpiMove (hps, aptl) :
GpiPolyLine (hps. lPoints - 1. aptl + 1) ;
GpiEndArea (hps) ;

Gpi RestorePS (hps. -1l) :

II Draw boundary in default color

GpiMove (hps. aptl + lPoints - 1) ;

GpiPolyLine (hps. lPoints. aptl) ;
}

1*---------------------
Draws square button

---------------------*1

VOID DrawButton (HWND hwnd. HPS hps. PSQBTN pSqBtn)
{

514

FATTRS fat ;
FONTMETRICS fm ;
HDC hdc :
LONG
POINTL
RECTL

lColor. lHorzRes. lVertRes. cxEdge, cyEdge ;
aptl[lOJ, aptlTextBox(TXTBOX_COUNT]. ptlShadow, ptlText
rcl :

/1 Find 2 millimeter edge width in pixels

hdc - GpiOueryDevice (hps) ;
DevQueryCaps (hdc, CAPS_HORIZONTAL_RESOLUTION, lL. &lHorzRes)
DevQueryCaps (hdc. CAPS_VERTICAL_RESOLUTION. lL, &lVertRes)

cxEdge - lHorzRes I 500
cyEdge - lVertRes I 500

II Set up coordinates for drawing the button

WinQueryWindowRect (hwnd. &rcl)

aptl[O].x - 0 :
aptl[I].x - cxEdge
aptl[2].x - rcl.xRight - cxEdge

SECTION THREE: GETTING INPUT

aptl[O].y - 0 ;
aptl[l].y - cyEdge
aptl[2].y - cyEdge

(continued)

i
I,

I'

Figure 11-7. continued

aptl[3].x - rcl.xRight - 1 :
aptl[4].x - rcl.xRight - 1 ;
aptl[5].x - rcl.xR1ght - cxEdge
aptl[6].x - cxEdge
apt1[7].x - 0 :
apt1[8].x - 0 ;
aptl[9].x - cxEdge

aptl[3].y - 0 :
aptl[4].y - rcl.yTop - 1 ;
aptl[5].y - rcl.yTop - cyEdge
aptl[6].y - rcl.yTop - cyEdge
aptl[7].y - rcl.yTop - 1 ;

aptl[8].y - 0 :
aptl[9].y - cyEdge

II Paint edges at bottom and right side

GpiSetColor (hps. ClR-BLACK) ;
lColor - (pSqBtn->flns1deRect :: pSqBtn->fSpaceDown) ?

CLR-PALEGRAY : CLR-DARKGRAY
Polygon (hps. 4L. aptl + O. lColor)
Polygon (hps. 4L. aptl + 2. leolor)

II Paint edges at top and left side

lColor - (pSqBtn->flnsideRect :: pSqBtn->fSpaceDown) ?

CLR-DARKGRAY : CLR_WHITE :
Polygon (hps. 4L. aptl + 4. leolor)
Polygon (hps, 4L. aptl + 6. lColor)

II Paint interior area

GpiSavePS (hps) :
GpiSetColor (hp5. (pSqBtn->fInsideRect :: pSqBtn->fSpaceDown) ?

CLR-OARKGRAY : CLR-PALEGRAY)
GpiMove (hps. aptl + 1) :
GpiBox (hps. ORO_FILL. aptl + 5, OL. OL) :
GpiRestorePS (hps. -lL) ;
GpiBox (hps. ORO_OUTLINE. aptl + 5. OL. OL)

II If button has focus. use italic font

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm) :

if (pSqBtn->fHaveFocus)
{

fat.usRecordLength
fat.fsSelection
fat. 1 Match
fat. idRegi stry
fat.usCodePage

- sizeof fat;
= FATTR-SEL_ITALIC
.,. 0 ;
= fm.idRegistry
- fm.usCodePage

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 515

Figure 11·7. continued

516

fat. lMaxBaselineExt - fm.1MaxBaselineExt
fat.1AveCharWidth - fm.1AveCharWidth
fat.fsType = 0 ;
fat.fsFontUse - 0
strcpy (fat.szFacename. fm.szFacename)

GpiCreateLogFont (hps. NULL. LCID_ITALIC. &fat)
GpiSetCharSet (hps. LCID_ITALIC)
}

II Calculate text position

GpiQueryTextBox (hps. (LONG) fstrlen (pSqBtn->pszText). pSqBtn->pszText.
TXTBOX_COUNT. aptlTextBox) :

ptlText.x - (rcl .xRight - aptlTextBox[TXTBOX_CONCAT].x) I 2
ptlText.y = (rel .yTop - aptlTextBox[TXTBOX_TOPLEFT].y -

aptlTextBox[TXTBOX_BOTTOMLEFT].y) 2

ptlShadow.x = ptlText.x + fm.1AveCharWidth / 3
ptlShadow.y - ptlText.y - tm.1MaxBaselineExt I 8

// Display text shadow in black. and text in white

GpiSetColor (hps. CLR_BLACK) ;
GpiCharStringAt (hps. &ptlShadow. (LONG) fstrlen (pSqBtn-)pszText).

pSqBtn->pszText) ;
GpiSetColor (hps. CLR-WHITE) ;
GpiCharStringAt (hps. &ptlText. (LONG) fstrlen (pSqBtn->pszText).

pSqBtn-)pszText) ;

// X out button if the window is not enabled

if (!WinIsWindowEnabled (hwnd»
{

GpiMove (hps. aptl +1)

GpiL i ne (hps. aptl + 5)
GpiMove (hps. aptl + 2)
GpiL i ne (hps. aptl + 6)
}

/1 Clean up

if (pSqBtn-)fHaveFoeus)
{

GpiSetCharSet (hps. LCID_DEFAULT)
GpiDeleteSetld (hps. LCID_ITALIC)
}

Figure 11-7. The SQBTN.C file.

SECTION THREE: GETTING INPUT
,-
I

I

I'
I

This file contains several functions. Two functions are called from outside
the module: RegisterSqBtnClass registers a window class called "SqBtn"
that uses the window procedure SqBtnWndProc, another function in
SQBTN.C. RegisterSqBtnClass also saves the process's anchor block handle
in a global variable for later use in the window procedure.

Often a program creates more than one child window based on the same
window class. This means that you cannot use static variables to store infor
mation unique to each child window: These static variables would be
shared by all windows based on that class that are created within the same
process. For this reason, only automatic variables (used during the course of
processing a single message) are defined within SqBtnWndProc.

Information unique to each window is stored in a structure of type SQBTN,
defined in the SQBTN.C file. When RegisterSqBtnClass registers the window
class, the last parameter of WinRegisterClass is set to the size of a far pointer
to the SQBTN structure. This reserves some memory space that is unique to
each window. During the WM_CREATE message, SqBtnWndProc calls
_/maUoc (a version of maUoc that returns a far pointer) to £lllocate a block of
memory the size of the SQBTN structure. The pointer returned by _/maUoc
is stored in the variable pSqBtn. After the fields of this structure are initial
ized, the pointer is saved in the memory reserved by the WinRegisterClass
function:

WinSetWindowPtr (hwnd. O. pSqBtn) ;

The WM_CREATE message is the first message the window procedure
processes when creating a new window. For all other messages, the pointer
stored in the reserved area will be valid. SqBtnWndProc obtains that pointer
before processing any specific message:

pSqBtn = WinQueryWindowPtr (hwnd. 0) ;

This allows the window procedure to use the window-specific information
stored in the structure.

Some windows have a "window text" that the window displays. For ex
ample, push buttons display their window text in the center of the button.
Windows that have a window text must save the text themselves. This re
quires some additional processing in the WM_ CREATE message. During
WM_CREATE, a pointer to the initial window text of the window (which is
the string passed as the window text parameter to WinCreateWindow) is
stored in the pszText field of a CREATESTRUCT structure for the window.

CHAPTER ELEVEN: CONTROL WINDOWS 517

The mp2 message parameter contains a pointer to this structure. SqBtn
WndProc must determine the length of this text, allocate memory for storing
the text by calling -.fmalloc, copy the text into this memory, and save the
pointer returned from _fmalloc in the SQBTN structure.

Now we have a little problem because we're compiling for small model but
the pointer to this text in the CREATESTRUCT structure is a far pointer.
This means that we cannot use t~e normal C strlen and strcpy functions for
working with this string. For this reason, the SQBTN.C file has two func
tions namedfstrlen andfstrcpy, which are equivalent to strlen and strcpy but
which use far pointers. (Another way around this problem is to compile for
medium or large model.)

The window text can be changed by a call to WinSetWindowT ext and queried
by a call to WinQueryWindowText. These functions send WM_SETWIN
DOWPARAMS and WM_QUERYWINDOWPARAMS messages, respectively,
to the window procedure. This requires that SqBtnWndProc also process
these two messages. Again the fstrlen and fstrcpy functions are used in
working with the text string.

During the WM_BUTTONIDOWN message, SqBtnWndProc captures the
mouse and sets the fHaveCapture field in the SQBTN structure to TRUE. The
window procedure tests this field during the WM_MOUSEMOVE and
WM_BUTTONIUP message to determine if it can ignore the message. For
both of these messages, SqBtnWndProc uses the WinPtlnRect to determine if
the mouse pointer is still within the area occupied by the control window. If
the mouse pointer is within the window during a WM_BUTTONIUP mes
sage, SqBtnWndProc posts a WM_COMMAND message to its owner.

The WM_COMMAND message can also be posted during the WM_CHAR
message. The window procedure posts this message when the Spacebar is
released. Because SqBtnWndProc will receive WM_CHAR messages only
when the control has the input focus, it need not check that it has the input
focus when processing the keystrokes.

During the WM_PAINT message, SqBtnWndProc calls DrawButton to draw
the button. The processing is lengthy but does nothing we didn't see in
Chapter 5 when exploring the GPI functions. Rather than outlining text to
indicate the button's input focus, I decided to display italic text instead.

Creating the Square Buttons
To test this new window class, we need a program that creates a couple of
square 3-D buttons. This is BUTTONS2, shown in Figure 11-8.

518 SECTION THREE: GETTING INPUT

I

1-

1,1

The BUTTONS2 File

fl- - - - - - - - - - - - - - - - - - - -
BUTTONS2 make file
fl- - - - - - - - - - - - - - - - - - - -

buttons2.obj : buttons2.c
cl -c -G2sw -W3 buttons2.c

sqbtn.obj : sqbtn.c
cl -c -G2sw -W3 sqbtn.c

buttons2.exe : buttons2.obj sqbtn.obj buttons2.def
link buttons2 sqbtn. lalign:16, NUL, 052. buttons2

The BUTTONS2.C File

1*---
BUTTONS2.C -- Square Button Demonstration

---*/

#define INCL_WIN
Hdefine INCL_GPI
flinclude <os2.h>

BOOl RegisterSqBtnClass (HAS) ; II In SQBTN.C

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

HAS hab

int main (void)
{

static CHAR szClientClass[] - "Buttons2" :
static ULONG flFrameFlags - FCF_TITLEBAR

HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPDSITION

HWND hwndFrame, hwndClient :
OMSG qmsg :

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU l
FCF_MINMAX :
FCF_TASKLIST ;

WinRegisterClass (hab. 5zClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 519

Figure 11-8. The BUTTONS2.C File. continued

hwndFrame ~ WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. 0, &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPo;nter (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szSqBtnClass[] - "SqBtn".
*szButtonLabel[] - { "Smaller". "Larger"

static HWND hwndFrame. hwndButton[2] :
static SHORT cxClient, cyClient. cxChar. cyChar :
FONTMETRICS fm:
HPS nps ;
SHORT id ;
RECTL rcl :

switch (msg)

case WM_CREATE
hwndFrame = WinQueryWindow (hwnd. OW_PARENT. FALSE)

hps = WinGetPS (hwnd) :
GpiQueryFontMetrics (hps, (LONG) sizeof fm. &fm)
cxChar - (SHORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps)

RegisterSqBtnClass (hab)

for (i d - 0 ; ; d < 2 ; i d++)
hwndButton[id] - WinCreateWindow

520 SECTION THREE: GETTING INPUT

(continued)

Figure 11-8. The BUTTONS2.C File. continued

return 0 ;

case WM_SIZE :

hwnd.
"SqBtn",
szButtonLabel[id],
WS_VISIBLE.
O. 0,
12 * cxChar.
2 * cyChar,
hwnd.
HWND_BOTTOM,
i d.

NULL.
NULl)

cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

for (id .. 0 ; id < 2 ; id++)

WinSetWindowPos (hwndButton[idJ, NULL.

II Parent
II Class
II Text
II Style
II Position
II Width
/I Hei ght
/I Owner
II Placement
II ID
/I Ctrl data
II Pres params

cxClient I 2 + (14 * id - 13) * cxChar.
(cyClient - 2 * cyChar) I 2.
0, 0, SWP_MOVE) ;

return 0 ;

case WM_COMMAND:
WinQueryWindowRect (hwnd. &rcl) :
WinMapWindowPoints (hwnd. HWND_DESKTOP, (PPOINTL) &rcl. 2)

switch (COMMANDMSG(&msg)->cmd)
{

case 0:
rcl.xLeft +- cxClient I 20
rcl.xRight -= cxClient 20
rcl.yBottom +- cyClient I 20
rcl.yTop -- cyClient I 20
break

/I Child 10

II "Smaller"

case 1: II "Larger"
rcl.xLeft -- cxClient I 20
rcl.xRight +- cxClient 20

rcl.yBottom -- cyClient 20
rcl.yTop +- cyClient 20
break ;

(continued)

CHAPTER ELEVEN: CONTROL WINDOWS 521

Figure U-S. The BUTTONS2.C File. continued

WinCalcFrameRect (hwndFrame. &rcl. FALSE)

WinSetWindowPos (hwndFrame. NULL.

return 0 ;

(SHORT) rcl.xLeft. (SHORT) rcl.yBottom.
(SHORT) rcl.xR1ght - (SHORT) rcl.xLeft.
(SHORT) rcl.yTop - (SHORT) rcl.yBottom.
SWP_MOVE : SWP_SIZE)

case WM_ERASEBACKGROUND:
return 1 :

return WinDefWindowProc (hwnd. msg, mpl. mp2)
}

The BUTTONS2.DEF File

; BUTTONS2.DEF module definition file

NAME BUTTONS2 WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Square Button Demo (e) Charles Petzold. 1988'

1024
8192
ClientWndProc
SQBtnWndProc

522

Figure 11-S. The BUTTONS2 program.

You'll notice that the BUTTONS2 make file compiles both SQBTN.C and
BUTTONS2.C and links them. The BUTTONS2.DEF file lists both Client
WndProc and SqBtnWndProc in the EXPORTS section.

BUTTONS2 is almost identical to BUTTONS 1. The only real difference is
that ClientWndProc calls RegisterSqBtnClass during the WM_CREATE mes
sage. This is the routine in SQBTN.C. The two push buttons are created
based on the "SqBtn" class.

Figure 11-9 shows BUTTONS2 running under the Presentation Manager.

SECTION THREE: GETTING INPUT I

I'

~ BUnONS2 EXE HI!]

I'''!'~

Figure 11-9. The BUTTONS2 display.

You might like the look of square 3-D push buttons and wonder if you could
somehow use them in dialog boxes. We'll do exactly that in Chapter 14.

CHAPTER ELEVEN: CONTROL WINDOWS 523

I'

SECTION FOUR

I

USING
RESOURCES

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •
·
·
• • • • •

CHAPTER TWELVE

BITMAPS, ICONS,
POINTERS, AND
STRINGS

Until now, our Presentation Manager programs have been missing a few
features. The programs haven't included a menu bar across the top of the
window, or dialog boxes invoked from menu items, or even a customized
icon displayed when the program's window is minimized.

Icons, menus, and dialog boxes are all examples of program "resources."
Resources are read-only data segments that are stored in a program's .EXE
file but that are not part of the program's normal code and data segments. In
most cases, resources aren't loaded into memory when OS/2 runs the pro
gram - the resources reside on disk in the .EXE file until specifically
needed. When resources are loaded into memory, the memory blocks they
occupy are read-only segments. Thus OS/2 can allow the resources in
memory to be shared by multiple instances of the same program. OS/2 can
also discard resources if memory space is needed and then later reload them
from the .EXE file.

The Presentation Manager BSEDOS.H header file defines 15 resource types,
but only the first 10 are commonly used by programs. The identifiers for
these resource types begin with the letters RT (as listed in the table on the
following page). You can also define your own resource types. This chapter
covers bitmaps, icons and pointers, text strings, and programmer-defined
resources. Menus and keyboard accelerator tables are covered in Chapter 13
and dialog boxes in Chapter 14.

U sing resources in your Presentation Manager programs is an option rather
than a requirement. If you want, you can instead define menus, dialog
boxes, icons, and so forth in the program's normal data segment. However,

527

you'll find that using resources is easier, because the OS/2 Software Devel
opment Kit includes several tools to help you create and edit resources.
We'll examine one of these tools (the ICONEDIT program) in this chapter.

Resource Type

RT_POINTER
RT_BITMAP
RT_MENU
RT_DIALOG
RT_STRING
RT_FONTDIR
RT_FONT
RT_ACCELTABLE
RT_RCDATA
RT_MESSAGE

Basic Concepts

Description

Icon or mouse pointer
Bitmap
Menu template
Dialog box template
Text string
Font directory
Font
Keyboard accelerator table
Programmer-defined data
Message string

A program's .EXE file (or a dynamic link library's .DLL file) is divided into
several sections, as shown in Figure 12-1. Following the new .EXE header,
each of the program's code and data segments occupies a separate block in
the .EXE file. Tables in the header allow OS/2 to identify the beginning of
each segment in the .EXE file, the size of the segment, and characteristics of
the segment. Resources are organized similarly. They follow the normal
code and data segments in the .EXE file and likewise are identified by tables
in the header section. You can thus think of an OS/2 program as comprising
code segments, data segments, and resource segments.

Old. EXE header

Optional MS-DOS
.EXE program

New .EXE header

Program
code and data

segments

Resource segments

Figure 12-1. The OS/2 .EXE and .DLL file format.

528 SECTION FOUR: USING RESOURCES

I

I

I

Each resource (with the exception of the RT_STRING and RT_MESSAGE
types) occupies a separate segment in the .EXE file. Text and message
strings are stored with multiple strings in each segment. Most of the
resources are stored in a special format that is unique for that resource type.
Your program doesn't need to know the format of the resource in the .EXE
file, because the Presentation Manager usually loads the resource and takes
care of any translation necessary to put it into a format suitable for use with
other Presentation Manager functions.

OS/2 Kernel Support of Resources
Each resource in the program's .EXE file is identified by a "type ID" and a
"name ID," both of which are 16-bit numbers. The identifiers beginning
with RT ("resource type") correspond to type IDs of 1 through 15. The Pre
sentation Manager reserves type ID numbers up through 255 for its own use.
You are free to use resource type IDs of 256 and above for programmer
defined resource types. The name ID uniquely identifies a particular
resource of a particular type. For example, a .EXE file can have several bit
map resources, each of which occupies a different segment in the .EXE file.
They all have a type ID of RT _BITMAP, but each bitmap has a different
nameID.

The OS/2 kernel includes a function called DosGetResource that allows a
program to load resources from the .EXE file into memory. (For the mo
ment, let's ignore the problem of how the resources get into the .EXE file in
the first place.) Generally, a Presentation Manager program needs to use
DosGetResource only for the programmer-defined resources. For the pre
defined resource types, the Presentation Manager includes other functions
to load resources. But given that these Presentation Manager functions ulti
mately use the DosGetResource function to load the resource into memory,
it's worthwhile to understand this function.

Before calling DosGetResource, you need several variables:

USHORT idType, idName
SEL selResource
PVQID pResource ;

Based on the values of idType and idName, DosGetResource loads a resource
from the program's .EXE file into memory and returns the segment selector
of the memory block containing the resource:

DosGetResource (NULL, idType. idName. &selResource)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 529

530

You then convert the segment selector to a long (or far) address with the
MAKEP macro:

pResource - MAKEP (selResource, 0) ;

The memory segment belongs to your process. You can use pResource as a
normal far pointer to access the resource. But because the memory segment
is read-only, you can't write to it. Otherwise, it's a normal memory
segment. You can use DosSizeSeg to find the size of the segment and
DosFreeSeg to free the segment from memory.

When the first parameter of DosGetResource is NULL, OS/2 loads the
resource from the program's .EXE file. You can also load a resource from a
dynamic link library. Let's assume the dynamic link library containing the
resource is named MYLIB.DLL. You first need to define a variable of type
HMODULE to hold the module handle:

HMODULE hmod ;

You then call DosLoadModule to obtain the module handle:

DosLoadModule (NULL, 0, "MYLIB", &hmod) ;

The first parameter of DosLoadModule can optionally be set to the address
of a buf.fer area that OS/2 uses if it can't obtain the module handle. Gener
ally, OS/2 will fill this buffer by using the name of the module that con
tributed to the failure of the function. The second parameter is the length of
this buffer.

After you obtain the module handle, you can us.e it as the first parameter to
DosGetResource to load a resource from the dynamic link library:

DosGetResource (hmod, usTypeID, usNameID, &selResource) ;

After you free the resource segment and no longer need it, you can free the
module handle:

DosFreeModule (hmod)

I'll discuss the use of dynamic link libraries in more depth in Chapter 16.

SECTION FOUR: USING RESOURCES i~

I

II

The OS/2 Kernel Message Facility
Although the DosGetResource function allows you to load resources of any
type into memory, the only use of resources within the OS/2 kernel is for
"message strings." These are text strings that contain replaceable parame
ters to display messages from OS/2 and the various OS/2 commands. The
MKMSGF.EXE program creates a binary file with the extension .MSG based
on an ASCII file containing message texts and codes. The MSGBIND.EXE
program then adds these messages as resources to a program's .EXE file. An
OS/2 program can either access a message from the .MSG file or load the
message from its own .EXE file using the DosGetMessage function. If the
message text has replaceable parameters (indicated by %1, %2, and so
forth), the DosGetMessage function can insert other text (such as filenames)
into the message text. Because the messages aren't in the program's normal
data segments, OS/2 programs that use this messaging facility can be cus
tomized more easily for foreign-language markets.

The Resource Script
Although Presentation Manager programs can use the OS/2 message
facility, they also need resources of other types. To add these resources to a
program's .EXE file, the programmer first prepares an ASCII file called a
"resource script." By convention, this file has the extension .RC. The
resource script file includes some resources in an ASCII format and can also
reference other files that contain binary resources, such as icons, mouse
pointers, and bitmaps. Figure 12-2 on the following page shows a sample
resource script named SAMPLE.RC that contains a reference to an icon file,
a menu template, a keyboard accelerator table, and a string table. It's not
important right now that you understand the format of the statements in this
file. We'll cover the details as we study each resource in depth.

The keywords POINTER, MENU, ACCELTABLE, and STRINGTABLE all
correspond to predefined resource types. The SAMPLE.ICO file referenced
by the POINTER statement is a separate binary file containing a bitmap of
the program's icon. You'll also note that the file contains several identifiers
beginning with the letters ID, IDM, IDS, and IDD. Some of these are
resource name IDs. They are all constants defined in a separate header file,
SAMPLE.H, shown in Figure 12-3 on page 533. This header file must also be
included in the program's C source code file so that the program can refer to
these resources using the identifiers.

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 531

/* -

SAMPLE.RC -- Sample Resource Script File
- -*/

#include <os2.h>
#include "sample.h"

POINTER ID_RESOURCE sample.ico

MENU IO_RESOURCE
{

SUBMENU "-Fi 1 e" • I DM_FI LE
{

MENUITEM "-New", 10M_NEW
MENUITEM "-Open...... 10M_OPEN
MENUITEM "-Save", 10M_SAVE
MENU ITEM "Save -As ... ", IOM_SAVEAS
MENU ITEM SEPARATOR
MENU ITEM "E-xit". 10M_EXIT
MENU ITEM "A-bout Sample ... ", 10M_ABOUT
}

SUBMENU "-Edit",
{

MENU ITEM "-Undo\tAlt+BkSp". 10M_UNDO
MENU ITEM SEPARATOR
MENU ITEM "Cu-t\tDel", 10M_CUT
MENU ITEM "-Copy\tCtrl+lns". IDM_COPY
MENU ITEM "-Paste\tShift+Ins". IDM_PASTE
MENU ITEM "C-lear\tShift+Oel", IDM_CLEAR
}

MENUITEM "FI-Help",
}

10M_HELP. MIS_HELP: MIS_BUTTONSEPARATOR

ACCELTABLE IO_RESOURCE
{

VILBACKSPACE. IDM_UNDO, VIRTUALKEY, ALT
VILOELETE, 10M_CUT, VIRTUALKEY
VILINSERT, 10M_COPY. V I RTUA LKEY , CONTROL
VILINSERT. 10M_PASTE, VIRTlJALKEY, SHIFT
VILOELETE. 10M_CLEAR, VIRTUALKEY, SHI FT
}

STRINGTABLE

"Sample"
{

IDS_APPNAME,
IDS_TITLEBAR.
}

"Sample Titlebar Text"

Figure 12-2. The SA MPLE.RC file.

532 SECTION FOUR: USING RESOURCES

I

/* -

SAMPLE.H -- Sample Header File for Resource IDs
- -- - - - - -- - - - - - - - -- - -- - - -- - -- - - - --- -- -- - - - - - - -- - - -* /

#define 10_RESOURCE 1

/*- - - - - - - - - - - - - - - --

10M -- Menu IDs
-----------------*/

!Idefi ne 10M_FILE 10
/Idefi ne IDM_NEW 11
#define 10M_OPEN 12
!Idefi ne 10M_SAVE 13
/Idefi ne IOM_SAVEAS 14
!Idefi ne 10M_EXIT 15
#define 10M_ABOUT 16

!Idefi ne 10M_EDIT 20
fldefi ne 10M_UNDO 21
/ldefine 10M_CUT 22
/ldefine 10M_COPY 23
fldefi ne 10M_PASTE 24
#define IDM_CLEAR 25

/ldefine 10M_HELP 30

/* - - - - - - - - - - - - - - - - - - -

IDS -- String lOs
- - - - - - - - - - - - - - - - - - -*/

/ldefine IOS_APPNAME 1
/ldefine IDS_TITLEBAR 2

Figure 12-3. The SA MPLE.H file.

The Resource Compiler
The ASCII resource script must be compiled to a binary form. By conven
tion, the extension of the compiled resource file is .RES. The compiled
resources must then be added to the program's .EXE file or to the dynamic
link library's .DLL file. Both of these jobs - compiling the resources and
adding them to the .EXE file - are handled by the RC.EXE resource com
piler. You can do them separately or in a single step.

CHAPTER TWELVE: BITMAPS. ICONS. POINTERS. AND STRINGS 533

Compiling the Resources
To compile the ASCII .RC file into a binary .RES file without adding the
resources to a .EXE file, use the command

RC -r SAMPLE

The .RC extension on SAMPLE is assumed. This command creates a
SAMPLE.RES file.

Adding the Resources to .EXE
To add the compiled resources to the .EXE file, use the command

RC SAMPLE.RES

This adds the compiled resources in SAMPLE.RES to the SAMPLE.EXE file.
(If the .EXE file contains any resources already, they are replaced with the
new resources.) Optionally, you can include the name of the .EXE file if it's
different from the .RES file:

RC SAMPLE. RES MYEXE.EXE

The .RES extension is required in this form of the command to differentiate
it from the next form of the command.

Compiling and Adding as a Single Step
You can do both jobs in one step with the command

RC SAMPLE

The .RC extension on SAMPLE is assumed. This command compiles the
resources to create a SAMPLE.RES file and then adds the resources to the
SAMPLE.EXE file. If the name of the .EXE file is different from the .RC file,
you can use

RC SAMPLE MYEXE.EXE

Presentation Manager programmers usually set up their make files to com
pile the resources and add them to the .EXE file in two separate steps. This
results in a faster edit-make-run cycle because compiling the resources
often takes much longer than adding them to the .EXE file. During develop
ment of a program, you'll generally make more changes to the C source
code file than to the resource script file. You don't need to recompile the
resources. Instead, you want to compile the C source code file, link it, and
add the compiled resources. Typically, a make file for a program containing
resources looks like SAMPLE, shown in Figure 12-4.

534 SECTION FOUR: USING RESnURCES

jl

;i

1/~ •.. - .. - - - - - - - - ~ - ~ --
SAMPLE make file
/I~ - - ~ - - -- - - - ~ - - ~ -- - --

sample.obj : sample.c sample.h
c1 -c -G2sw -W2 sample.c

sample. res : sample.rc sample.h samp1e.ico
rc -r sample

sample.exe : sample.obj sample.def sample.res
link sample. /align:16. NUL, os2, sample
rc sample. res

Figure 12·4. The SAMPLE make file.

The first compile step indicates that SAMPLE.C and SAMPLE.H are depen
dent files for the creation of SAMPLE.OBI. The header file defines constants
used by the program to reference the resources. The second step in the make
file runs RC.EXE with the -r parameter to compile the ASCII SAMPLE.RC

file into a binary SAMPLE.RES file. This step also requires both SAMPLE.H

and SAMPLE.lCO. The third step is executed if SAMPLE.OBI, SAM

PLE.DEF, or SAMPLE.RES is updated. This links the program and then adds
the resources to the .EXE file using RC.EXE again.

If you make a lot of changes to the resource script file, you'll probably want
to avoid re-linking each time. Adding a couple of extra lines to the make
file (shown in Figure 12-5) will speed'things up.

11- - - - - - - - - - - - - - - - - - - -
SAMPLE make file
11- - - - - - - - - - - - - - - -- - - -

sample.obj : sample.c sample.h
c1 -c -G2sw -W2 sample.c

sample. res : sample.rc sample.h sample.ico
rc -r sample

sample.exe : sample.obj sample.def
link sample. /align:16. NUL, os2. sample
rc sample. res

sample.exe : sample.res
rc sample. res

Figure 12·5. A better SAMPLE make file for a program with resources.

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 535

Note that the LINK step is not run if only SAMPLE.RES has changed. In
stead, the resources in the .EXE file are replaced in the last RC step .

. DEF
module

definition file

1
LlNK.EXE

linker

.EXE
without

resources

I

.C
source

file

1
CL.EXE
compiler

1
.OBJ
object

file

I

.H
header

file

I

RC.EXE
resource
compiler

1
.EXE
with

resources

.RC
resource

script

RC.EXE
resource
compiler
(with -r)

.RES
compiled
resources

I

.ICO, .CUR,

.BMP, .DLG
files

I

Figure 12·6. The process of creating a Presentation Manager program that uses
resources.

536 SECTION FOUR: USING RESOURCES

I

Figure 12-6 shows the general procedure for creating a Presentation Man
ager program that uses resources. You create the source code files listed in
the five boxes across the top of the diagram. The rest of the process is
handled by the make file.

Bitmap Resources
We learned about bitmaps in Chapter 6. A bitmap is a block of memory
organized by rows and columns where the bits represent a graphical image.
In a monochrome bitmap, each bit in the bitmap corresponds to a display
pixel. A color bitmap requires two or more bits per pixel to contain color
information. The Presentation Manager and Graphics Programming Inter
face include several functions for creating, manipulating, and displaying
bitmaps. Although we were able to define a bitmap in a program by a series
of bytes in Chapter 6, it's usually much easier to create the bitmap in the
Presentation Manager ICONEDIT program.

Creating a Bitmap in ICONEDIT
ICON EDIT is a Presentation Manager program that lets you create icons,
mouse pointers, and monochrome bitmaps. You draw the image using the
mouse. To create a new bitmap in ICONEDIT, choose New from the File
menu, choose Bitmap from the dialog box, and enter a width and height
in pixels.

The bitmap is initially all white, which means that every bit is set to 1. You
use the mouse buttons to color the pixels. From the menu you can display a
grid and select different pen sizes. When you're finished, choose Save As
from the File menu and enter a filename. ICONEDIT adds a .BMP extension,
which is standard for a bitmap. A header section in the .BMP file contains
the height and width of the bitmap, the number of color planes (which
equals 1 for a monochrome bitmap), the number of color bits per pixel (also
1), and the color table. More complete documentation on using ICONEDIT is
included in the OS/2 Programmer's Toolkit.

Using the Bitmap Resource in a Program
After you create a bitmap file, you need to reference the bitmap filename in
a resource script and assign the bitmap a name ID. In the program you use
that name ID to load the bitmap into memory. Assuming the program's
name is SAMPLE and the bitmap file is SAMPLE.BMP, the SAMPLE.RC
resource script file contains the following statement to reference the
bitmap file:

BITMAP idName sample.bmp

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 537

The idName value is simply an unsigned 16-bit number or an identifier de
fined in a header file #define statement. BITMAP is a resource compiler key
word. When you compile the resource script and add the resources to the
program's .EXE file, the .EXE file contains a resource with a type ID of
RT _BITMAP and a name ID of idName.

A program loads a bitmap resource into memory using the GpiLoadBitmap
function. First, the program must define a variable of type HBITMAP:

HB ITMAP hbm ;

The GpiLoadBitmap function returns a handle to the bitmap:

hbm = GpiLoadBitmap (hps. hmod. idName. lWidth. lHeight) ;

The GpiLoadBitmap function works only with resources of the RT _BITMAP
type. The name ID identifies the particular RT _BITMAP resource.

The hps parameter to GpiLoadBitmap is a handle to a presentation space.
The Presentation Manager uses this handle for two purposes. The first is to
convert the colors of the bitmap into a form suitable for the device context.
(Because we're working with a monochrome bitmap in this example, the
bitmap can be loaded without any color conversion.) The second purpose of
the presentation space handle is to allow GPI to store the bitmap in part of
the device's memory. For example, the Enhanced Graphics Adapter has a
maximum of 256 KB of memory, but only 112 KB are used for display pur
poses. The Presentation Manager can store the bitmap in free display
memory. Graphics coprocessors on some video boards can more efficiently
display bitmaps if they are stored in an unused region of display memory.
For a monochrome bitmap, you can set the hps parameter to NULL, and the
Presentation Manager will store the bitmap in normal memory.

The hmod parameter is set to NULL if you're loading the bitmap from the
program's .EXE file. Otherwise, this is the module handle of a dynamic link
library file. The idName is the ID number of the bitmap you want to load.
The IWidth and IHeight parameters indicate the resultant size of the bitmap
when the Presentation Manager loads it into memory. The bitmap can be
compressed or stretched. If you set both parameters to OL, the bitmap will
retain the size you specified when you created the bitmap file in ICONEDIT.

Before the program terminates, you delete the bitmap from memory:

GpiDeleteBitmap (hbm) ;

538 SECTION FOUR: USING RESOURCES

A Sample Program
The LOADBMPI program, shown in Figure 12-7, demonstrates how to in
clude a bitmap as a resource in a program, load the bitmap into memory,
and display it on the client window. The LOADBMP.BMP file is a 64-by-32-
pixel bitmap file that was created in ICONEDIT in about 10 seconds (and
looks it).

The LOADBMP1 File

11- - - - - - - - - - - - - - - - - - --
II LOADBMP1 make file
/j- - - - - - - - - - - - - - - - - - --

loadbmp1.obj ! 10adbmp1.c loadbmp.h
c1 -c -G2sw -W3 1 oadbmp1. c

loadbmp.res : loadbmp.rc loadbmp.h loadbmp.bmp
rc -r loadbmp

loadbmp1.exe : loadbmp1.obj loadbmp1.def
link loadbmp1. la1ign:16. NUL. os2. loadbmpl
rc loadbmp.res loadbmp1.exe

loadbmpl.exe : loadbmp.res
rc loadbmp.res loadbmp1.exe

The LOADBMP1.C File

/* -
LOADBMP1.C -- Loads a Bitmap Resource and Draws it

--*/

#define INCL_WIN
Ih nc 1 ude <os2. h>
lIinclude "loadbmp.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "LoadBmpl"
static ULONG f1FrameFlags = FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX :
FCF_TASKLIST ;

(continued)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 539

Figure 12-7. The LOADBMPl.C File. continued

HAB hab ;
HMO hmq :
HWND hwndFrame, hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq = WinCreateMsgQueue (hab. 0) :

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrameFlags, szClientClass. NULL,
OL. NULL. O. &hwndClient) :

while (WinGetMsg (hab. &qmsg. NULL. 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

static SHORT cxClient, cyClient
HBITMAP hbm
HPS hps
POINTL ptl

switch (msg)
{

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 :

case WM_PAINT:
hps = WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps) ;

hbm - GpiLoadBitmap (hps, NULL, lOB_HELLO,
(LONG) cxClient. (LONG) cyClient)

if (hbm)

540 SECTION FOUR: USING RESOURCES

(continued)

Figure 12-7. The LOADBMP1.C File. continued

ptl.x - 0
ptl.y - 0

WinDrawBitmap (hps, hbm. NULL. &ptl,
CLR_NEUTRAL. CLR-BACKGROUND. DBM_NORMAL)

GpiDeleteBitmap (hbm) :
}

WinEndPaint (hps) ;
return 0 :

return WinDefWindowProc (hwnd. msg, mpl, mp2)
}

The LOADBMP.H File

1* -
LOAOBMP.H header file

-----------------------*1

#define lOB_HELLO 55

The LOADBMP.RC File

1* -
LOADBMP.RC resource script file

- -* 1

#include "loadbmp.h«

BITMAP lOB_HELLO loadbmp.bmp

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS. AND STRINGS 541

The LOADBMP.BMP File

The LOADBMP1.DEF File

; LOADBMPl.DEF module definition file

NAME LOADBMPI WINDOWAPI

DESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Loads Bitmap Resource and Draws it (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 12-7. The LOADBMPI program.

I decided to give the bitmap a name ID of 55. The identifier IDB_HELLO is
defined in LOADBMP.H for this purpose:

#define lOB_HELLO 55

The IDB prefix stands for' 'ID for a bitmap."

This statement in the LOADBMP.RC resource script file references the file
containing the bitmap:

BITMAP lOB_HELLO loadbmp.bmp

The LOADBMP.RC resource script is compiled by the following command
in the make file:

rc -r loadbmp

542 SECTION FOUR: USING RESOURCES

!'

The resource compiler creates a binary LOADBMP.RES file that contains
the entire LOADBMP.BMP file. When RC.EXE is run the second time in
the make file, the bitmap resource in LOADBMP.RES is added to the
LOADBMP1.EXE file:

rc loadbmp.res loadbmpl.exe

Following this step, the LOADBMP1.EXE file includes a resource segment
containing the entire bitmap. The header section of the .EXE file identifies
the resource type ID (RT _BITMAP) and name ID (55). The program can
then get access to that resource.

During the WM_PAINT message in LOADBMPl.C, the bitmap resource is
loaded into memory and stretched to fill the size of the client window:

hbm - GpiLoadBitmap (hps. NULL. lOB_HELLO.
(LONG) cxClient. (LONG) cyClient) :

Note that the second parameter is set to NULL to indicate that the resource
is part of the program's .EXE file. The IDB_HELLO identifier is the name
ID of the resource defined in LOADBMP.H. (Obviously, I could have
dispensed with the LOADBMP.H file in this example and used 55 in place of
IDB_HELLO in both the resource script and the program. But for more
complex resources such as menus and dialog boxes, the header file becomes
very important, so we might as well get accustomed to using it.)

GpiLoadBitmap returns NULL if the bitmap can't be loaded into memory.
The rest of the WM_PAINT logic continues only if hbm isn't NULL:

if (hbm)
{

ptl.x - 0
ptl .y - 0

WinDrawBitmap (hps. hbm. NULL, &ptl.
CLR-NEUTRAL. CLR-BACKGROUND. DBM_NORMAL)

GpiOeleteBitmap (hbm) ;
}

This draws the bitmap on the client window and then deletes it from
memory. The LOADBMPI window is shown in Figure 12-8 on the follow
ing page.

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 543

~ LOADBMP1 EXE HI!)

•
Figure 12-8. The LOADBMP 1 display.

An Alternative Approach to Loading Bitmaps
LOADBMP1 loads the bitmap and then deletes it whenever it needs to re
paint the client window. Another approach is to load the bitmap during the
WM_CREATE message, keep it in memory for the duration of the program,
and then delete it during the WM_DESTROY message.

The LOADBMP2 program, shown in Figure 12-9, illustrates this approach.
The LOADBMP.H, LOADBMP.RC, and LOADBMP.BMP files from Figure
12-7 are also required to compile the program.

The LOADBMP2 File

It -
LOADBMP2 make file
It- - - - - - - - - - - - - - - - - - - -

loadbmp2.obj : loadbmp2.c loadbmp.h
cl -c -G2sw -W3 1 oadbmp2. c

loadbmp.res : loadbmp.rc loadbmp.h loadbmp.bmp
rc - r loadbmp

544 SECTION FOUR: USING RESOURCES

(continued)

Figure U-9. The LOADBMP2 File. continued

10adbmp2.exe : 10adbmp2.obj 10adbmp2.def
link loadbmp2. /align:16. NUL. 052. loadbmp2
rc loadbmp.res 10adbmp2.exe

loadbmp2.exe : loadbmp.res
rc loadbmp.res 10adbmp2.exe

The LOADBMP2.C File

/* -
lOADBMP2.C -- loads a Bitmap Resource and Draws it

- -*/

1fdefine INCl_WIN
#include <os2.h>
#include "loadbmp.h"

MRESUlT EXPENTRY ClientWndProc (HWNO. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] - "LoadBmp2"
static UlONG flFrameFlags - FCF_TITlEBAR

HAB hab ;
HMO hmq ;

FCF _$ IZEBOROER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
OMSG qmsg ;

hab • Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) :

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST :

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBlE,
&flFrameFlags, szClientClass. NULL.
OL. NULL, O. &hwndClient) ;

while (WinGetMsg (hab, &qms9. NULL. O. 0»
WinOispatchMsg (hab. &qmsg) ;

(continued)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 545

Figure 12-9. The LOADBMP2.C File. continued

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static HBITMAP hbm
HPS hps
RECTL rcl

switch (msg)
{

case WM_CREATE:
hps - WinGetPS (hwnd) :
hbm - GpiloadBitmap (hps. NULL. IDB_HELLO. OL, OL)
WinReleasePS (hps) :
return 0 ;

case W!-LPAINT:
hps = WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps) :

WinQueryWindowRect (hwnd. &rcl)

if (hbm)
WinDrawBitmap (hps. hbm, NULL. (PPOINTl) &rcl.

WinEndPaint (hps)
return 0 ;

case WM_DESTROY:
if (hbm)

CLR_NEUTRAL. ClR_BACKGROUND. DBM_S1RETCH)

GpiDeleteBitmap (hbm)
return 0 ;

return WinDefWindowProc (hwnd. msg. mpl, mp2)

546 SECTION FOUR: USING RESOURCES

The LOADBMP2.DEF File

.... _----_ ... - ... _ _--- ... _------------------.
: LOADBMP2.DEF module definition file
--------------------------------------,

NAME LOADBMP2 WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Loads Bitmap Resource and Draws it (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 12-9. The LOADBMP2 program.

In LOADBMP2.C, the last two parameters of GpiLoadBitmap are set to 0, so
the bitmap isn't stretched when loaded into memory:

case WM_CREATE:
hps - WinGetPS (hwnd) ;
hbm - GpiLoadBitmap (hps. NULL, lOB_HELLO. OL, OL)
WinReleasePS (hps) ;
return 0 :

The WM_PAINT logic stretches the bitmap in the WinDrawBitmap function:

WinQueryWindowRect (hwnd, &rcl) ;

if (hbm)
WinDrawBitmap (hps, hbm. NULL, (PPOINTL) &rcl,

CLR-NEUTRAL, CLR-BACKGROUND, DBM_STRETCH)

LOADBMP2 deletes the bitmap while processing the WM_DESTROY
message:

case WM_DESTROY:
if (hbm)

GpiDeleteBitmap (hbm)
return 0 ;

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 547

It's OK to handle small bitmaps in this way, but you should be leery of
keeping large bitmaps in memory for long periods. Although the Presenta
tion Manager can discard bitmaps from memory and reload them from the
program's .EXE file, common courtesy requires that you not be piggy with
memory space.

Icons and Mouse 'Pointers
Icons and customized mouse pointers are identical in structure and are
often interchangeable. In fact, both icon and pointer resources are stored in
the program's .EXE file with a resource type of RT _POINTER. Some Pre
sentation Manager functions that seemingly apply to pointers (WinLoad

Pointer and WinDestroyPointer, for example) can also be used with icons.

You can use icons in your program in two ways: as a symbolic representa
tion of the program when the program's top-level window is minimized,
and as little pictures you can draw on the program's client window. You can
create and use a customized mouse pointer in your program to substitute for
the default mouse pointer. For example, the ICONEDIT program itself has a
customized mouse pointer that looks like a paintbrush.

Designing Icons and Pointers
You use ICONEDIT to create icons and pointers. ICONEDIT saves icon files
with a .lCO extension and pointer files with a .PTR extension. When you
create an icon or pointer in ICONEDIT, it's important that you understand
how these images are used by the Presentation Manager.

The first issue is resolution. The Presentation Manager always displays an
icon or pointer in a pixel dimension that is appropriate for the video display
adapter on which the Presentation Manager is running. A program can ob
tain this dimension by calling the WinQuerySysValue function with parame
ters of SV_CXICON, SV_CYICON, SV_CXPOINTER, and SV_CYPOINTER.
For most video display adapters, the Presentation Manager uses the same
dimensions for both icons and pointers. The following table shows these
dimensions for the most common display adapters:

Width Height Display Adapter

32 16 Color Graphics Adapter (640 x 200)
Enhanced Graphics Adapter (640 x 200)

32 32 Enhanced Graphics Adapter (640 x 350)
Video Graphics Array (640 x 480)

64 64 Future high-resolution adapters

548 SECTION FOUR: USING RESOURCES

When you create a new icon or pointer, you can pick one of these three
resolutions in which to edit the image. ICONEDIT saves the image in the
.ICO or .PTR file in the editing dimension you choose. A 64-by-64 .ICO file
is about eight times as large as a 32-by-16 .ICO file. When your program
loads an icon or pointer into memory, the Presentation Manager adjusts the
size of the image to match the video display adapter. For example, if the
icon resource in your program's .EXE file is 32 by 32, the Presentation Man
ager eliminates every other row when displaying the icon on a Color
Graphics Adapter and duplicates every row and column for a future high
resolution adapter.

If you want to create icons and pointers that look satisfactory on every type
of adapter and that take up the least amount of space in the .EXE file, use the
32-by-16 resolution. But be aware that they may appear grainy on an EGA or
a high-resolution adapter. The other extreme is to create 64-by-64 icons and
pointers. These will look great on a future high-resolution adapter, but they
may not do so well on the video adapters most commonly used today. Edit
ing icons and pointers in a 32-by-32 resolution is a good compromise be
tween these extremes, particularly considering that the Color Graphics
Adapter is quickly becoming obsolete.

The second major consideration when designing icons and pointers is color.
Icons and pointers are made up of a pair of monochrome bitmaps. When
you design an icon or pointer in ICONEDIT, you can color pixels in either
black, white, "screen," or "inverse screen." The "screen" color is trans
parent. When the Presentation Manager displays the icon or pointer, what
ever was originally behind it shows through. The "inverse screen" color
inverts the background behind the image. A black background becomes
white, white becomes black, and green becomes magenta.

These four colors correspond to the bits in the two bitmaps that make up an
icon or pointer, as shown in the following table:

BitmapJ Bitmap 2 Resultant Color

0 0 Black
0 White

0 Screen
Inverse screen

When the Presentation Manager displays the icon or pointer, it first draws
Bitmap 2 on the screen using a bitwise AND operation (the raster operation
ROP_SRCAND). The 1 bits in Bitmap 2 preserve the color bits on the screen;

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 549

the 0 bits in Bitmap 2 set the screen bits to 0 (black). The Presentation Man
ager then draws Bitmap 1 on the screen using an exclusive OR operation
(the raster operation ROP_SRCINVERT). The 0 bits in Bitmap 1 preserve the
screen image, and the 1 bits invert the screen image. Using C notation for
the logical operations, the display is altered by the following formula:

Display = (Display & Bitmap2) /\ Bitmapl

Because an icon or pointer can be displayed against a background of almost
any color, a few simple rules apply in designing the images:

• If the icon or pointer is mostly black, give it a white outline.

• If the icon or pointer is mostly white, give it a black outline.

• Use the "screen" color to make the icon or pointer nonrectangular (such
as the common arrow pointer).

• Use "inverse screen" to add a dash of inverted color when the icon or
pointer is displayed against a color background.

Referencing the File in the Resource Script
The statements in your resource script that reference the icon and pointer
files are very similar to the statement used for bitmaps. You reference an
icon file as a resource with the following statement:

POINTER idNamesample.ico

You reference a pointer file with the following statement:

POINTER idName sample.ptr

POINTER is a keyword recognized by RC.EXE.

The use of the POINTER keyword for both icons and pointers may seem a
little strange. As I mentioned earlier, icons and pointers are identical in
structure and are in many ways interchangeable. Both icons and pointers
are stored in a program's .EXE file with a resource type ofRT_POINTER. If
a different keyword (for example, ICON) were used to identify icons in a
resource script, you might be tempted to use the same name ID for an icon
resource and a pointer resource. The name IDs for any icons and pointers in
a resource script must be unique.

550 SECTION FOUR: USING RESOURCES

Six Steps to Adding an Icon to a Program
By far the most common use of an icon is for a symbolic representation of a
program when the window is minimized. You can add such an icon to a pro
gram through these six steps:

1. Create an icon in ICONEDIT. Give the file the same name as your pro
gram but with a .ICO extension; for example, SAMPLE.lCO.

2. Create a SAMPLE.RC resource script file containing a POINTER state
ment. For example:

POINTER 555 samp1e.ico

This statement defines a pointer resource (which is actually an icon)
with a name ID of 555.

3. Change your program's make file so that it looks like this:

sample.obj : samp1e.c
c1 -c -G2sw -W2 sample.c

sample. res : sample.rc sample.ico
rc -r sample

sample.exe : sample.obj samp1e.def
link sample. lalign:16. NUL. 052, sample
rc sample. res

samp1e.exe : sample. res
rc sample.res

4. Change the definition of flFrameFlags to include the FCF _ICON style:

static ULONG f1FrameF1ags - FCF_TITLEBAR FCF_SYSMENU
FCF_SIZEBORDER FCF~INMAX

FCF_SHELLPOSITION FCF_TASKLIST
FCF_ICON ;

5. Change the call to WinCreateStdWindow so the second-to-Iast parameter
is the name ID of the bitmap:

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szC1ientC1ass. NULL.
Ol. NULL. 555, &hwndClient) ;

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 551

6. If you have a WinSendMsg call to send the frame window a
WM_SETICON message, remove it.

You're done. Remake the program.

As you'll see in the next chapter, the second-to-Iast parameter to
WinCreateStdWindow is actually the name ID of three different resources.
If you include the frame creation flag FCF _MENU, the Presentation Man
ager uses that same name ID to load the program's menu. If you include
FCF_ACCELTABLE, the same name ID references the program's keyboard
accelerator table.

You might want to use an identifier defined in a header file for the name ID
of these three resources. In the programs in this chapter and the next two
chapters, I use the identifier ID _RESOURCE for this purpose and define it
to be equal to 1. In this case, a SAMPLE.H header file has the following
statement:

Hdefine ID_RESOURCE

The SAMPLE.RC resource script looks like this:

'include "sample.h"

POINTER ID_R~SOURCE sample.ico

The SAMPLE make file is changed so that it recompiles the source code file
and resource script file if the header file changes:

sample.obj : sample.c sample.h
cl -c -G2sw -W2 sample.c

sample.res : sample.rc sample.ico sample.h
rc -r sample

sample.exe : ~ample.obj sample.def
link sample. /align:16. NUL. 052. sample
rc sample. res

sample.exe : sample.res
rc sample. res

552 SECTION FOUR: USING RESOURCES

The SAMPLE.C file includes the header file near the top of the program:

'include "sample.h"

and the second to last parameter of the WinCreateStdWindow function uses
the defined name rather than a number:

hwndFrame - WinCreateStdWindow (HWNO_OESKTOP, WS_VISIBLE
&flFrameFlags. szClientClass. NULL.
OL. NULL. IO_RESOURCE. &hwndClient ;

Drawing Icons and Setting Pointers
Besides using an icon as a symbolic representation of a program, you can
also draw an icon on your client window. Because of the similarity between
icons and pointers, the functions for loading and destroying icons are the
same as those used for pointers.

You first define a handle of type HPOINTER to store a handle to the icon:

HPOINTER hlcon ;

You then load the icon into memory using the WinLoadPointer function:

hIcon = WinLoadPointer (HWNO_OESKTOP. hmod. idName) ;

The hmod parameter is NULL if the icon is stored in the program's .EXE
file. You can then display the icon on a presentation space using the follow
ing function:

WinOrawPointer (hps. x, y, hIcon. sFlags) ;

where x and yare the coordinates of the presentation space corresponding
to the lower-left corner of the icon. The sFlags parameter can be
DP_NORMAL to draw the icon normally, DP_INVERTED to invert the icon,
and DP _HALFTONED to draw only every other bit of the icon. You might
want to use icons in this way in a menu that you create and manage. You use
the inverted icon when the user selects an option and the "half toned" icon
when a menu option is disabled.

Before your program terminates, you destroy the icon:

WinDestroyPointer (hIcon) ;

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS. AND STRINGS 553

You can also use the WinLoadPointer and WinDestroyPointer functions with
mouse pointers. If you create a customized mouse pointer and include it in
your resource script, you can get a handle to the pointer in your program
like this:

hptr = WinLoadPointer (HWND_DESKTOP, hmod, idName) :

You'll probably do this during the WM_CREATE message. The hptr variable
is defined as type HPOINTER.

The easiest way for your program to use this new pointer is to set the pointer
. during the WM_MOUSEMOVE message:

case WM_MOUSEMOVE:
WinSetPointer (HWND_OESKTOP, hptr)

[other program lines 1

You can also test the coordinates of the mouse pointer during the
WM_MOUSEMOVE message and set a different pointer depending on where
the pointer is located in the client area. If you divide your client area into
several areas with the use of child windows, each child window might set its
own pointer.

During processing of the WM_DESTROY message, you destroy the pointer:

WinDestroyPointer (hptr) :

The RESOURCE program, shown in Figure 12-10, contains an icon and a
pointer resource. The icon is a square pattern that shows the four colors
(black, white, "screen," and "inverse screen"). The program references
the icon name ID in the WinCreateStdWindow call and while processing the
WM_CREATE message. RESOURCE draws the icon on the four corners of
its client window and shows what the "half toned" and inverted icons look
like. The customized pointer is displayed whenever the mouse is within
RESOURCE's client window.

554 SECTION FOUR: USING RESOURCES

The RESOURCE File

Ii- - -- - -- - - - -- - - -- - - - -
Ii RESOURCE make file
fl- - - - - - - - - - - - - - - - - - - -

resource.obj : resource.c resource.h
cl -c -G2sw -W3 resource.c

resource.res : resource.rc resource.h resource.ico resource.ptr
rc -r resource

resource.exe : resource.obj resource.def
link resource, la11gn:16, NUL, 052, resource
rc resource. res

resource.exe : resource.res
rc resource.res

The RESOURCE.C File

1* -
RESQURCE.C -- Uses an Icon and Pointer Resource

- -*/

#define INCL_WIN
#define INCL_GPI
#inc1ude <os2.h>
#include "resource.h"

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "Resource"
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

HAB hab :
HMO hmq :

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF _ICON ;

HWND hwndFrame, hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab, 0)

(continued)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 555

Figure 12-10. The RESOURCE.C File. continued

WinReg;sterClass '(hab. szClientClass. ClientWndProc, CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass, NULL,
OL. NULL, ID_RESOURCE. &hwndClient)

while (WinGetMsg (hab, &qmsg. NULL. O. 0»
WlnDispatehMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
(

static HPOINTER hIeon. hptr ;
static SHORT
HPS

cxClient. cyClient. cxlcon. eyleon
hps

RECTL rel ;

swi tch (msg)
{

case WM_CREATE:
hIeon - WinLoadPointer (HWND_DESKTOP. NULL, ID_RESOURCE) ;
hptr - WinLoadPointer (HWNO_DESKTOP. NULL. lOP_CIRCLE) ;

cxIcon - (SHORT) WinQuerySysValue (HWNO_DESKTOP. SV_CXICON)
cylcon - (SHORT) WinQuerySysValue (HWND_DESKTOP, SV_CYICON)
return 0

case WM_SIZE:
exClient - SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)
return 0 :

case WM_MOUSEMOVE:
WinSetPointer (HWNO_DESKTOP, hptr)
return 1 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)

556 SECTION FOUR: USING RESOURCES

(continued)

Figure 12-10. The RESOURCE.C File. continued

WinQueryWindowRect (hwnd. &rcl) :
WinFillRect (hps. &rcl. CLiLCYAN)

WinDrawPo;nter (hps. O. O. hIcon. DP_NORMAl)
WinDrawPointer (hps. O. cyClient - cyIcon. hIeon. DP_NORMAl)
WinDrawPointer (hps. cxClient - cyIcon. O. hIcon, DP_NORMAl)
WinDrawPointer (hps. cxClient - cxIcon. cyClient - eyIcon.

hIcon. DP_NORMAl) ;

WinDrawPointer (hps. cxClient / 3, cyClient / 2. hIeon.
DP_HALFTONED) ;

WinDrawPointer (hps. 2 * cxClient / 3, cyClient 1 2. hIcon.

WinEndPaint (hps) :
return 0 ;

case WM_DESTROY:
WinDestroyPointer (hIcon) ;
WinDestroyPointer (hptr) :
return 0 ;

return WinDefWindowProc (hwnd, msg. mpl. mp2)

The RESOURCE.H File

1*- - - - -- - - -- - - -- - -- - - - -- --
RESOURCE.H header file

------------------------*1

#define ID_RESOURCE 1
#define IDP_CIRCLE 2

The RESOURCE.RC File

1*----------------------------------
RESOURCE.RC resource script file

----------------------------------*/

#include "resource.h"

POINTER ID_RESOURCE resource.ico
POINTER lOP_CIRCLE resource.ptr

DP_INVERTED)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 557

The RESOURCE.ICO File

The RESOURCE.PTR File
/

The RESOURCE.DEF File

; RESOURCE.DEF module definition file

NAME

DESeR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

RESOURCE WINDOWAPI

'Icon and Pointer Resources (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 12-10. The RESOURCE program.

558 SECTION FOUR: USING RESOURCES

The String Resource
For bitmaps, icons, and pointers, there are some clear advantages to using
resources rather than defining the images in your program's source code
file. The ICONEDIT utility lets you draw the image and save it as a binary
file-you don't have to worry about the format of the bits and bytes. So the
next type of resource - the text string - may initially seem a little strange.
Rather than put text strings in your C source code file, you can instead in
clude them in the program's resource script. But why on earth would you
want to do this?

As you'll see in the next two chapters, a program's resource script also con
tains the program's menu and dialog box templates. If the resource script
also contains all the text strings used by the program, converting the pro
gram to a foreign language requires that only the resource script (or files
referenced by the resource script) be changed. The .C source code t,ile
doesn't even have to be recompiled. Of course, if your programs are in
tended only for yourself, a few friends, your corporation, or a domestic
market, then using string resources provides no benefit, except perhaps - if
the strings are handled properly - a slight saving in memory space when
the program is running under the Presentation Manager.

Defining and Loading String Resources
You include strings in a resource script using the STRINGTABLE block:

STRINGTABLE
{

idStringl. "This little string went to market"
idString2. "This little string stayed home"

[other string definitions}

A resource script can have only one string table that contains all the pro
gram's strings. Each string is one line long, with a maximum of 255 charac
ters. You can use the keywords BEGIN and END rather than the curly
brackets if you're nostalgic for Pascal syntax.

In your program you load a particular string into a character array with the
following function:

WinLoadString Chab. hmod. idString. sBufferLen. achBuffer)

CHAPTER TWELVE: BITMAPS. ICONS. POINTERS. AND STRINGS 559

As in the previous resource-loading functions, hmod is NULL if the strings
are resources in the program's .EXE file. The function copies up to
(sBufferLen - 1) characters into the character array addressed by achBuffer
and appends a 0 character.

To use the WinLoadString function, you need a character array in your pro
gram large enough to hold the string:

CHAR achString [256] ;
[other program lines I

WinLoadString (hab. NULL. idString. sizeof achStr~ng. achString) ;

Following this statement, achString contains the NULL-terminated string
that was identified by idString in the resource script.

You probably want to load strings only when you need them for display pur
poses. In that case, make the string arrays local variables in functions so
that the space is freed up when the function ends.

Using Strings for Error Messages
Here's an example of how a program can use strings to display error mes
sages in a message box. Suppose your program works with files and has
three error messages: "File is not found," "File is too large to edit," and
"File is read-only." You first define three identifiers in the program's
header file:

#define IDS_FILENOTFOUND 1
#define IDS_FILETOOBIG 2
#define IOS_FILEREADONLY 3

The string table in the resource script looks like this:

STRINGTABLE
{

IDS_FILENOTFOUND. "File %s not found."
IDS_FILETOOBIG. "File %s too large to edit."
IDS_FILEREADONLY. "File %5 is read-only."
}

560 SECTION FOUR: USING RESOURCES

I

In your program you define a function that displays one of these messages
with a particular filename:

VOID ErrorMessage (HWND hwnd. USHORT usErrorNum. CHAR * szFileName)
{

CHAR achString [40] ;
CHAR achFormattedString [60] ;

WinLoadString (hab. NULL. usErrorNum. sizeof achString. achString)

sprintf (achFormattedString. achString, szFileName) ;

WinMessageBox (HWND_DESKTOP. hwnd, achFormattedString,
NULL, 0, MB_OK : MB_ICONEXCLAMATION) ;

When the program needs to display the "File is not found" message, it calls
the ErrorMessage function with the IDS_FILENOTFOUND identifier and
the filename:

ErrorMessage (hwnd, IDS_FILENOTFOUND, szFileName)

String Resource Storage
The string IDs in the STRINGTABLE block aren't treated the same way as
the name IDs for bitmaps, icons, and cursors. Up to 16 strings are consoli
dated in the same resource segment in the program's .EXE file. All the
strings with string IDs. of 0 through 15 are in the same segment. The name
ID for that segment is 1. The string IDs of 16 through 31 are in another seg
ment with a name ID of 2.

When you. call WinLoadString, the Presentation Manager loads an entire
resource segment into memory (containing up to 16 strings) and then copies
the particular string you want into the array in your program's data seg
ment. For this reason, you can conserve memory space if you assign string
IDs in logical groups. For example, if one section of your program uses five
strings and another section uses four strings, make the IDs of the first five
strings 0 through 4 and the IDs of the other four strings 16 through 19.

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 561

Programmer-defined Resources
The programmer-defined resource provides a way for you to attach arbi
trary data to your program's .EXE file and load it into memory during pro
gram execution. Perhaps this data is in a binary form, and it's inconvenient
to make it part of the program's source code file. Or perhaps you have a
large text file (for example, a file that contains reams of "help" text) that
your program must access. Make it a programmer-defined resource.

The POEPOEM program, shown in Figure 12-11, shows how this is done.
This program displays the text of Edgar Allan Poe's "Annabel Lee" in its
client window. The text of the poem is a programmer-defined resource. The
program's resource script also defines the text strings used in the program
in a string table, as well as the program's icon.

The POEPOEM File

11- - -- - - -- -- -- - - - - - - -
POFPOFM make file
If- - - - - - - - - - - - - - - - - --

poepoem.obj : poepoem.c poepoem.h
cl -c -G2sw -W3 poepoem.c

poepoem.res : poepoem.rc poepoem.ico poepoem.asc poepoem.h
rc -r poepoem

poepoem.exe : poepoem.obj poepoem.def
link poepoem, lalign:16. NUL, os2, poepoem
rc poepoem.res

poepoem.exe : poepoem.res
rc poepoem.res

The POEPOEM.C File

1*- --

POEPOEM.C -- Demonstrates Programmer-defined Resources
--*/

#define INCL_WIN
#define INCL-GPI
f/defi ne INCL-DOS
#include <os2.h>

562 SECTION FOUR: USING RESOURCES

(continued)

I

!

Figure 12-11. The POEPOEM.C File. continued

#include <stdlib.h>
#include "poepoem.h"

MRESULT EXPENTRY ClientWndProc (HWNO. USHORT, MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [10] ;

static CHAR szTitleBar [40] ;
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBOROER
FCF_SHElLPOSITION
FCF_VERTSCROLL

HAB hab ;
HMO hmq ;
HWNO hwndFrame. hwndClient
QMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU
FCF_MINMAX
FCF_TASKlIST
FCf_ICON ;

WinLoadString (hab. NULL. IDS_CLASS, sizeof 5zClientClass. szClientClass);
WinLoadString (hab, NULL, IDS_TITLE, sizeof szTitleBar, szTitleBar)

WinRegisterClass (hab, szClientClass, ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags, szClientClass. szTitleBar.
OL, NULL, ID_RESOURCE, &hwndClient) ;

while (WinGetMsg (hab. &qmsg, NULL, 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRF~ULT EXPENTRY ClientWndProc (HWNO hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

stati c HWNO hwndScroll;
static PCHAR pResource ;

(cominued)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 563

Figure 12-11. The POEPOEM.C File. continued

static $EL
static SHORT

selResource ;
cxClient, cyClient, exChar, eyChar, eyOesc.
sScrollPos. sNumLines :

FONTMETRICS
HPS

fm ;
hps ;

PCHAR
POINTL
SHORT
ULONG

pText
ptl ;
sLineLength. sLine
ulSegSize ;

switch (msg)

1* -
Load the resource, get size and address

-- ---------- --- - --------- -- --- -- --- ------* /

Dos Get Resource (NULL. lOT_TEXT, IDT_POEM. &selResource)
DosSizeSeg (selResouree, &ulSegSize)
pResouree - MAKEP (selResource, 0) ;

1* --
Determine how many text lines are in resource

- -* /

pText = pResouree ;

while (pText - pResource < (USHORT) ulSegSize)
{

if (*pText =- . \0' :: *pText == • \xlA')
break ;

if (';'pText = \r')
sNumLines ++ ;

pText++
}

/* -
Initialize scroll bar range and position

--*/

hwndScroll = WinWindowFromIO (
WinQueryWindow (hwnd. OW_PARENT, FALSE).
FID_VERTSCROLL) ;

564 SECTION FOUR: USING RESOURCES

(continued)

Figure U-ll. The POEPOEM.C File. continued

WinSendMsg (hwndScroll. SBM_SETSCROLLBAR.
MPFROM2SHORT (sScrollPos. 0),
MPFROM2SHORT (0. sNumLines - 1»

1*----------------------
Query character size

----------------------* 1

hps - WinGetPS (hwnd) ;

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm)
cxChar - (SHORT) fm.1AveCharWidth ;
cyChar - (SHORT) fm.1MaxBaselineExt
cyDesc - (SHORT) fm.1MaxDescender

WinReleasePS (hps) ;
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0

case WM_CHAR:
return WinSendMsg (hwndScroll. msg. mpl. mp2)

case WM_VSCROLL:
switch (SHORT2FROMMP (mp2»

{

case SB_LINEUP:
sScrollPos -- 1
break ;

case SB_LINEDOWN:
sScrollPos +-
break ;

case SB_PAGEUP:
sScrollPos -= cyClient 1 cyChar
break ;

case SB_PAGEDOWN:
sScrollPos += cyClient I cyChar
break :

(continued)

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 565

Figure 12-11. The POEPOEM.C File. continued

case SB_$LIDERPOSITION:
s$crollPos - SHORTIFROMMP (mp2)
break ;

s$crollPos - max (0. min (s$crollPos. sNumLines - 1»

if (s$crollPos 1- (SHORT) WinSendMsg (hwndScroll,
SBM-QUERYPOS. OL. OL»

WinSendMsg (hwndScroll. SBM-SETPOS,
MPFROM2SHORT (s$crollPos. 0), NULL)

WinlnvalidateRect (hwnd. NULL. FALSE)
}

return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) ;

pText = pResource

for (sLine - 0 : sLine < sNumLines sline++)
{

sLineLength = 0 ;

while (pText [sLineLength] !- '\r')
sLineLength ++

ptl.x - cxChar ;
ptl.y = cyClient - cyChar * (sLine + 1 - sScrollPos)

+ cyOesc

GpiCharStringAt (hps. &ptl. (LONG) sLineLength. pText)

pText +- sLineLength + 2 ;
}

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
DosFreeSeg (selResource)
return 0 ;

return WinDefWindowProc (hwnd, msg. mpl. mp2)

566 SECTION FOUR: USING RESOURCES

The POEPOEM.H File

/* -
POEPOEM.H header file

- -*/

Ildefi ne ID_RESOURCE

/Idefi ne lOT_TEXT 1024
#define lOT_POEM

Iidefi ne IDS_CLASS 0
Ifdefi ne IDS_TITLE 1

The POEPOEM.RC File

/* -
POEPOEM.RC resource script file

- -*/

#include "poepoem.h"

POINTER IO_RESOURCE poepoem.ico

RESOURCE lOT_TEXT lOT_POEM poepoem.asc

STRINGTABLE
{

IDS_CLASS, "PoePoem"
I~S-TITLE ... - ''''Annabel Lee"" by Edgar Allan Poe"
}

The POEPOEM.ICO File

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 567

The POEPOEM.ASC File

It was many and many a year ago,
In a kingdom by the sea,

That a maiden there lived whom you may know
By the name of Annabel lee;

And this maiden she lived with no other thought
Than to love and be loved by me.

was a child and she was a child
In this kingdom by the sea.

But we loved with a love that was more than love
I and my Annabel Lee -~

With a love that the winged seraphs of Heaven
Coveted her and me.

And this was the reason that. long ago,
In this kingdom by the sea,

A wind blew out of a cloud. chilling
My beautiful Annabel lee;

So that her highborn kinsmen came
And bore her away from me.

To shut her up in a sepulchre
In this kingdom by the sea.

The angels. not half so happy in Heaven,
Went envying her and me -~

Yes! that was the reason (as all men know,
In this kingdom by the sea)

That the wind came out of the cloud by night,
Chilling and killing my Annabel Lee.

But our love it was stronger by far than the love
Of those who were older than we --
Of many far wiser than we --

And neither the angels in Heaven above
Nor the demons down under the sea

Can ever dissever my soul from the soul
Of the beautiful Annabel Lee:

For the moon never beams, without bringing
Of the beautiful Annabel Lee:

me dreams

And the stars never rise, but I feel the bright eyes
Of the bea ut ifu 1 Annabel Lee:

And so. all the night-tide, I lie down by the side

568 SECTION FOUR: USING RESOURCES

(continued)

Figure U-ll. The POEPOEM.ASC File. continued

Of my darling -- my darling -- my life and my bride,
In her sepulchre there by the sea
In her tomb by the sounding sea.

[May, 1849]

The POEPOEM.DEF File

; POEPOEM.OEF module definition file

NAME POEPOEM WINDOWAPI

OESCRI PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

'Programmer-defined Resource (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure U-ll. The POEPOEM program.

The POEPOEM.ASC file contains the text of the poem. This text is made a
programmer-defined resource by referencing it in the resource script with
this statement:

RESOURCE lOT_TEXT lOT_POEM poepoem.asc

The IDT _TEXT and IDT _POEM identifiers are defined in POEPOEM.H:

#define lOT_TEXT 1024
fldefine lOT_POEM

IDT _TEXT is the resource type ID. Programmer-defined resources must
have type IDs of 256 or greater. IDT _POEM is the name ID.

During processing of the WM_CREATE message, POEPOEM obtains a seg
ment selector to the resource by calling the OS/2 DosGetResource function:

OosGetResource (NULL, lOT_TEXT, lOT_POEM, &selResource) ;

When OS/2 loads the resource into memory, it allocates a memory block
and returns the selector to the memory block in the selResource variable,

CHAPTER TWELVE: BITMAPS, ICONS, POINTERS, AND STRINGS 569

570

which is defined as type SEL. POEPOEM converts this selector to a far
pointer using the MAKEP macro:

pResource = MAKEP (selResource, 0)

A program can also use other OS/2 functions with this memory block, such
as DosSizeSeg to find the size of the segment:

DosSizeSeg (selResource, &ulSegSize) ;

The only action that a program can't take is to write on this memory block.
Resources loaded into memory using DosGetResource are always read-only.
However, a program can allocate another memory block using DosAllocSeg
and copy the data for later modification.

During the WM_CREATE message, POEPOEM determines the number of
lines of text in the poem and sets the range of a scroll bar accordingly. All
WM_CHAR messages to the client window are sent to the scroll bar to give
the program a complete keyboard interface. POEPOEM displays the text dur
ing the WM_PAINT message. The only assumption it makes is that each line
of text is terminated by a carriage return and a linefeed.

During the WM_DESTROY message, POEPOEM frees the memory block:

DosFreeSeg (selResource) ;

You'll notice that POEPOEM.C itself contains no displayable text. The text
used in the title bar is defined in the resource script. We've thus made it
easier for translators to convert the program to a foreign-language version.
Of course, they would also need to translate the text of "Annabel Lee,"
which is a far more challenging job.

SECTION FOUR: USING RESOURCES
i"
I

i I

CHAPTER THIRTEEN

MENUS AND
KEYBOARD
ACCELERATORS

The menu is an important part of the consistent user interface in Presenta
tion Manager programs. Users learn a new program more quickly if the pro
gram has a menu that works like the menus in other Presentation Manager
programs.

In one sense, putting a menu in a Presentation Manager program is fairly
easy. You define the menu template in a resource script file, and you process
WM_COMMAND messages from the menu in your client window pro
cedure. The Presentation Manager takes care of all the keyboard and mouse
processing involved with the menu. However, menus are also one of the
more complex aspects of the Presentation Manager's windowing environ
ment because they can be extensively tailored to the program's needs.

Let's nail down some terminology first. A "menu" is a control window cre
ated by WinCreateStdWindow as part of the standard window. A menu con
tains several items, each of which can be selected using either the mouse or
the keyboard. The horizontal menu that appears below the window's title
bar is called the program's "main menu" or "top-level menu" or the "ac
tion bar." I've generally used the term top-level menu for this.

Some menu items invoke another menu called a "popup menu" or a "drop
down menu" or a "pull-down menu" or a "submenu." I'll use the term
submenu because that's the word used in several identifiers defined in the
Presentation Manager header files. From the perspective of a program, each
submenu is a separate window. Thus, when you create a top-level menu that
invokes three submenus, you're actually creating four menu-control
windows.

571

A Presentation Manager program also usually contains three other menu
control windows. One is the system menu, which contains one item - a
little bitmapped picture to the left of the title bar. The system menu invokes
a submenu. The minimize/maximize icon to the right of the title bar is also
a menu. It contains two items, both of which are bitmaps.

Menu items can be "enabled" or "disabled." A disabled menu item ap
pears in gray text. Although the user can click on a disabled menu item or
use the keyboard to move a reverse-video bar to the menu item, the menu
beeps and does not send a WM_COMMAND message to the program.

Conventional Menus
The CONVMENU program, shown in Figure 13 -1, contains a conventional
menu and demonstrates some sample menu processing. This program and
the discussion that follows cover just about everything you'll need to know
to implement a menu in most of your programs. The CONVMENU program
also contains a keyboard accelerator table. Keyboard accelerators are key
combinations that usually duplicate some menu items.

The CONVMENU File

if- - - - - - - - - - - - - - - - - - --
if CONVMENU make file
/1- - - - - - - - - - - - - - - - - - --

convmenu.obj : convmenu.c convmenu.h
cl -c -G2sw -W3 convmenu.c

convmenu.res : convmenu.rc convmenu.h
rc -r convmenu

convmenu.exe : convmenu.obj convmenu.def
link convmenu. /a11gn:16. NUL. os2. convmenu
rc convmenu.res

convmenu.exe : convmenu.res
rc convmenu.res

572 SECTION FOUR: USING RESOURCES

The CONVMENU.C File

1*- - -- -- - - - - -- ---- - - -- - -- -- - - - -- - - - - - --
CONVMENU.C -- Conventional Menu Use

-------------------------------------*1

Iidefine INCLWIN
/!define INCL_GPI
#include <os2.h>
#include "convmenu.h"

#define ID_TIMER

MRESULT EXPENTRY ClientWndProc (HWND, USHORT. MPARAM. MPARAM)

CHAR szClientClass[] - "ConvMenu" :
HAS hab

int main (void)

static ULONG flFrameFlags - FCF_TITLEBAR
FCF_SlZEBORDER

FCF_SHELLPOSITION
FCF_MENU

HMQ hmq ;
HWND hwndFrame. hwndClient :
OMSG qmsg ;

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU
FCF_MINMAX
FCF_TASKLIST
FCF_ACCELTABLE

WinRegisterClass (hab. szClientClass. ClientWndProc, OL. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass. NULL,
Ol, NULL, ID_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON,

whil e (TRUE)
{

WinOuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl)

while (WinGetMsg (hab, &qmsg, NUll, 0, 0»
WinDispatchMsg (hab, &qmsg) ;

(cominued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 573

Figure 13-1. The CONVMENU.C File. continued

if (MBID_OK == WinMessageBox (HWND_DFSKTOP, hwndClient.

break ;

WinCancelShutdown (hmq, FALSE)
}

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 :

"Really want to end program?".
szClientClass, 0,
MB_OKCANCEL : MB_ICONQUESTION»

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl, MPARAM mp2)
{

static BOOl fTimerGoing - FALSE;
static COLOR colBaekground [] - {

OxFFFFFFl, OxCOCOCOL, OxB08080L,
Ox404040l. OxOOOOOOl
} ;

static HWND hwndMenu;
static SHORT sCurrentBackground - 10M_WHITE
HPS hps
RECTL rel ;

swi tch (msg)

case WM_CREATE:
hwndMenu = WinWindowFromID

WinQueryWindow (hwnd, OW_PARENT. FALSE),
FI O-MENU) :

return 0 ;

case WM_INITMENU:
switch (SHORTIFROMMP (mpl»

{

case 10M_TIMER:
WinSendMsg (hwndMenu. MM_SETITEMATTR,

MPFROM2SHORT (10M_START, TRUE),
MPFROM2SHORT (MIA_DISABLED,

! fTimerGoi n9 &&

574 SECTION FOUR: USING RESOURCES

(continued)

Figure 13-1. The CONVMENU.C File. continued

break ;

WinOuerySysValue (HWND_DESKTOP. SV_CTIMERS) ?
o : MIA_DISABLED»

WinSendMsg (hwndMenu. MM_SETITEMATTR.

return 0

MPFROM2SHORT (10M_STOP. TRUE).
MPFROM2SHORT (MIA_DISABLED.

fTimerGoing ? 0 : MIA_DISABLED»

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case 10M_NEW:
WinMessageBox (HWND_OESKTOP. hwnd.

"Bogus \"New\" Dialog",
szClientClass. 0, MB_OK : MB_ICONASTERISK)

return 0

case IDM_OPEN:
WinMessageBox (HWND_DESKTOP. hwnd.

"Bogus \"Open\" Dialog",
szClientClass. O. MB_OK : MB_ICONASTERISK)

return 0

case 10M_SAVE:
WinMessageBox (HWND_DESKTOP, hwnd,

"Bogus \"Save\" Dialog".
szClientClass. 0, MB_OK : MB_ICONASTERISK)

return 0

case IOM_SAVEAS:
WinMessageBox (HWND_DESKTOP. hwnd.

"Bogus \"Save As\" Dialog".
szClientClass. O. MB_OK : MB_ICONASTERISK)

return 0

ca se 10M_EX IT:
WinSendMsg (hwnd. WM_CLOSE. OL. OL)
return 0 ;

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 575

Figure 13-1. The CONVMENU.C File. continued

case 10M_ABOUT:
WinMessageBox (HWNO_DESKTOP. hwnd.

"Bogus \"About\" Dialog",
szClientClass. 0, MB_OK : MB_ICONASTERISK)

return 0

case 10M_START:
if (WinStartTimer (hab. hwnd. IO_TIMER. 1000»

fTimerGoing - TRUE
else

WinMessageBox (HWNO_OESKTOP. hwnd.

return 0

case 10M_STOP:

"Too many clocks or timers".
szClientClass, O.
MB_OK : MB_ICONEXCLAMATION) :

WinStopTimer (hab. hwnd. IO_TIMER)
fTimerGoing = FALSE:
return 0 ;

casE' IDM_ WHITE:
case IDM_LTGRAY:
case 10M_GRAY:
case IOM_OKGRAY:
case IDM_BLACK:

WinSendMsg (hwndMenu, MM_SETITEMATTR.
MPFROM2SHORT (sCurrentBackground. TRUE),
MPFROM2SHORT (MIA_CHECKED, 0»

}

break ;

sCurrentBackground = COMMANOMSG(&msg)->cmd

WinSendMsg (hwndMenu, MM_SETITEMATTR.
MPFROM2SHORT (sCurrentBackground. TRUE),
MPFROM2SHORT (MIA_CHECKED. MIA_CHECKED»

WinlnvalidateRect (hwnd. NULL, FALSE) ;
return 0 ;

(continued)

576 SECTION FOUR: USING RESOURCES

Figure 13-1. The CONVMENU.C File. continued

case WM-HELP:
WinMessageBox (HWND_DESKTOP. hwnd.

"Help not yet implemented".
szClientClass, 0, MB_OK : MB_ICONEXCLAMATION)

return 0 ;

case WM_TIMER:
WinAlarm (HWND_DESKTOP. WA_NOTE)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL. NULL)
GpiSavePS (hps) :

GpiCreateLogColorTable (hps. OL. lCOlF_RGB. OL. Ol. NULL)

WinQueryWindowRect (hwnd. &rcl) ;

WinFillRect (hps. &rcl,
col Backg round [sCurrentBackg round - I DM_WIBTE])

GpiRestorePS (hps. -ll)
WinEndPaint (hps) ;
return 0 ;

case WM-DESTROY:
if (fTimerGoing)

(

WinStopTimer (hab, hwnd. IO_TIMER)
fTimerGoing - FALSE:
}

return 0 :

return WinDefWindowProc (hwnd. msg. mpl. mp2)
}

The CONVMENU.H File

1*------------------------
CONVMtNU.H header file

- ---- - - --- -- -- - - -- - - -- - -*1

#define ID_RESOURCE

#define 10M_FILE II Top-level items

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 577

Figure 13-1. The CONVMENU.H File. continued

#define 10M_TIMER 2
#define 10M_BACKGROUND 3
f/define IDM_TOPEXIT 4

f/defi ne 10M_HElP 5

f/define 10M_NEW 10 II "File" submenu
#definE' 10M_OPEN 11
fldefi ne 10M_SAVE 12
fldefi ne IOM_SAVEAS 13
#define 10M_ABOUT 14

fldefi ne 10M_START 20 II "Timer" submenu
f/defi ne 10M_STOP 21

IIdefine 10M_WHITE 30 II "Background" submenu
#define IOM_LTGRAY 31
//defi ne 10M_GRAY 32 II Program logic assumes these
IIdefine IOM_DKGRAY 33 II five numbers are consecutive
#define 10M_BLACK 34

/ldefine 10M_EXIT 40 II "Exit" submenu
/fdefine IDM_RESUME 41

The CONVMENU.RC File

1* -
CONVMENU.RC resource script file

- -*1

/finclude <os2.h>
'include "convmenu.h"

MENU IO_RESOURCE
{

SUBMENU "-File",
{

MENU ITEM "-New",
MENU ITEM "-Open ... ",
MENU ITEM "-Save\tShift+F3",
MENU ITEM "Save -As ... ".
MENU ITEM SEPARATOR
MENU ITEM "A-bout ConvMenu ... ",
}

578 SECTION FOUR: USING RESOURCES

10M_NEW
10M_OPEN
10M-SAVE
IOM_SAVEAS

10M_ABOUT

(continued)

Figure 13-1. The CONVMENU.RC File. continued

SUBMENU "-Timer",
{

MENU ITEM "-Start",
MENUITEM "S-top".
}

10M_START
10M_STOP •• MIA_DISABLED

SUBMENU "-Background".
{

10M_BACKGROUND

MENU ITEM "-White\tCtrl+W".
MENU ITEM "-Light Gray\tCtrl+L".
MENU ITEM "-Gray\tCtrl+G".
MENUITEM "-Dark Gray\tCtrl+D".
MENUITEM "-Black\tCtrl+B".
}

IDM_WHITE., MIA_CHECKED
IOM_LTGRAY
10M-GRAY
IDM_OKGRAY
10M_BLACK

SUBMENU "E-xit".
{

I DM_ TOPEX IT

MENUITEM "E-xit ConvMenu ... \tF3".
MENU ITEM "-Resume ConvMenu".
}

10M_EX IT
IDM_RESUME

MENU ITEM "Fl-Help".
}

10M_HELP. MIS_HELP: MIS_BUTTONSEPARATOR

ACCELTABLE IO_RESOURCE
(

VK....F3. 10M_SAVE. VIRTUALKEY. SHIFT
VK....F3. 10M_EXIT • VIRTUALKEY
""W". 10M_WHITE
""L" • IOM_LTGRAY
nAG". 10M_GRAY
"AD" .. IDM_OKGRAY
"AB"., 10M_BLACK

The CONVMENU.DEF File

._------------------------------------.
: CONVMENU.OEF module definition file
,. -- ----- --- --- - -----_ ... -- -- - --- -- - - - ---.
NAME

DESCRIPTION
PROTMOOE
HEAPSIZE
STACKSIZE.
EXPORTS

CONVMENU WINOOWAPI

'Conventional Menu Demo (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 13-1. The CONVMENU program.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 579

The File submenu in CONVMENU contains standard options that don't do
anything in this program except display some message boxes. (In the next
chapter you'll see how to invoke dialog boxes from menu items.) The Timer
menu starts and stops the timer. The timer causes the program to beep once
a second. When the timer is active, the Start option is disabled; when the
timer is inactive, the Stop option is disabled. The Background menu
changes the background color of the client window. This menu ~ses check
marks to indicate the current color.

Defining the Menu
You define a menu template in a resource script file. The menu template
begins with the MENU statement, which indicates the resource name ID
of the menu. The menu in CONVMENU.RC has a resource name ID of
ID_RESOURCE, which is defined in CONVMENU.H. The actual definition
of the menu is enclosed within a pair of curly brackets:

MENU 10_RESOURCE
{

[menu definition]

If you want, you can use the BEGIN and END keywords rather than the
curly brackets.

Between the curly brackets, you specify the items on the top-level menu by
one or more MENUITEM or SUBMENU statements. The SUBMENU state
ment indicates a menu item that invokes a submenu, and the MENUITEM
statement indicates a menu item that doesn't:

MENU ID_RESOURCE
{

SUBMFNU "-File",
{

{definition of submenu]

SUBMENU "-Timer",
{

{definition of submenu]

}

SUBMENU "-Background". IDM_BACKGROUND
{

[ckfinition of suhmellu]

}

580 SECTION FOUR: USING RESOURCES

(continued)

continued

SUBMENU "E-xit",
{

[definition of submenu]

MENUITEM "Fl-Help".
}

IDM_HELP, MIS_HELP MIS_BUTTONSEPARATOR

Thus the top-level menu in CONVMENU contains the options "'File,"
"Timer," "Background," and "Fl=Help.',

The syntax of the MENUITEM and SUBMENU statements is the same. Each
statement contains a text string and a menu item ID followed by optional
style and attribute identifiers:

MENU ITEM "Text", idMenultem [.[style flags][, attribute flags]]
SUBMENU "Text". idMenultem [.[style flags][. attribute flags]]

The text string is the text that appears in the menu. A tilde (-) character
causes the letter that follows the tilde to be underlined when the text is dis
played. A user can type that letter in combination with the Alt key to select
the menu item from the keyboard. The underlined letters within the top
level menu and each submenu should be unique. It's recommended that you
use the first letter, the first consonant, or a subsequent consonant.

The menu item ID is a 16-bit number that the Presentation Manager uses to
identify the menu item in messages from the menu to your client window.
You also use the menu item ID to send messages to the menu. The menu
definition in CONVMENU .RC uses identifiers that are defined in CONV
MENU.H and begin with the letters IDM ("ID for a menu item").

The optional styles and attributes are one or more identifiers beginning
with the letters MIS ("menu item style") or MIA ("menu item attribute").
I'll describe these styles and attributes shortly.

The SUBMENU statement indicates a menu item that invokes a submenu.
The submenu is defined by one or more MENUITEM statements within a
pair of curly brackets that follow the SUBMENU statement, like this:

SUBMENU "-Timer",
{

MENU ITEM "-Start".
MENUITEM "S-top".
}

IDM_START
IDM_STOP.. MIA_DISABLED

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 581

This indicates that the Timer item on the top-level menu invokes a submenu
containing the items Start and Stop. Multiple levels of submenu nesting are
supported but not often used.

The text in submenu items can contain a tab character indicated by "\t."
The text that follows the tab character appears to the right when the sub
menu is displayed. You generally use this to indicate the keyboard accelera
tor for the menu item, as in the submenu invoked by File:

SUBMENU "-File",
{

MENU ITEM "-New",
MENU ITEM "-Open , IOM_OPEN
MENU ITEM "-Save\tShift+F3". 10M_SAVE
MENU ITEM "Save -As · IDM-SAVEAS
MENUITEM SEPARATOR
MENUITEM "A-bout ConvMenu ... ".IDM_ABOUT
}

The F3 key in combination with the Shift key is a keyboard accelerator for
Save. This text only indicates to the user what the keyboard accelerators are.
I'll discuss later how you make these key combinations function as key
board accelerators.

The ellipsis (...) in some text strings indicates that the item invokes a dia
log box. The File submenu also includes the following line, which draws a
horizontal line between the Save As and the About menu items:

MENU ITEM SEPARATOR

ID Confusion
We first worked with IDs in connection with child windows. A child win
dow ID is assigned by the program when it creates a child window. The
child window uses this ID to identify itself to its parent. In the last chapter
we began working with resource type IDs and resource name IDs. These
IDs identify unique resources within a program.

Now we have menu item IDs. Don't confuse these with resource name IDs
or child window IDs. The menu item ID identifies a particular menu item
within a top-level menu or a submenu. (However, the menu item IDs are
sometimes related to child window IDs. For example, IDM_FILE is the
menu item ID of the File item on CONVMENU's top-level menu. It is also

582 SECTION FOUR: USING RESOURCES

the child window ID of the submenu invoked by the File item. But the sub
menu isn't a child window of the top-level menu. This is obvious, because
the submenu is displayed outside the area occupied by the top-level menu.)

The Styles and Attributes
Every menu item has a style and an attribute, each of which is represented
within the Presentation Manager by bit flags within a 16-bit integer. You can
override the default style and attribute using identifiers beginning with MIS
and MIA in the menu definition.

Styles
Styles fall into several groups of mutually exclusive options. The first four
style bits determine the contents of the visible part of the menu item:

Style Bit

MIS_TEXT
MIS_BITMAP
MIS_SEPARATOR
MIS_OWNERDRAW

Description

Text string
Bitmap
Horizontal dividing line in submenu
Item that will be drawn by program

When you omit a style identifier for a menu item, RC.EXE uses the
MIS_STRING style as a default. In CONVMENU's menu, all menu items
(except the separator bar in the File menu) have the MIS_STRING style. In
the GRAFMENU program shown later in this chapter, we'll use the
MIS_BITMAP style. The MIS_SEPARATOR style serves as an alternative to
using the MENUITEM SEPARATOR statement. The MIS_OWNERDRAW
style requires that your program itself draw the item whenever the menu is
displayed. The Presentation Manager sends the client window procedure
WM_MEASUREITEM and WM_DRAWITEM messages when the item must
be drawn.

The next group of style bits determines the organization of the menu items
in rows and columns:

Style Bit

MIS_BREAK
MIS_BREAKSEPARATOR

MIS_BUTTONSEPARATOR

Description

Menu item starts in a new row or column
Menu item starts in a new row or column

with a line drawn between the rows or
columns

Menu item is separated by a bar - the user
can't use the cursor movement keys to
move to the item

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 583

The MIS_BREAK and MIS_BREAKSEPARATOR styles are used most often
in submenus that contain a large number of items. These styles aren't re
quired in top-level menus because the Presentation Manager automatically
breaks the menu into multiple lines when the window is too narrow to dis
play the menu as a single line. The menu in CONVMENU uses the
MIS_BUTTONSEPARATOR style for the "Fl=Help'" item. This places the
item at the far right of the top-level menu. ©

The next set of style bits determines the message that the Presentation Man
ager sends the program when a menu item has been chosen by the user. Nor
mally, the message is WM_COMMAND. These two bits override that:

Style Bit

MIS_SYSCOMMAND

Description

Choosing menu item generates a WM_SYSCOMMAND
message

Choosing menu item generates a WM_HELP message

The WM_SYSCOMMAND message is usually reserved for system menu
items. Because these items generate WM_SYSCOMMAND messages, you
can process WM_COMMAND messages from the menu without worrying
about receiving system menu messages. The "Fl=Help" item in CONV
MENU's menu has the MIS_HELP style to generate a WM_HELP message.

Although these last two menu item styles have little to do with each other, in
a practical sense they are mutually exclusive. In a resource script menu
template, the MIS_SUBMENU style is assumed when you use the SUB
MENU statement rather than a MENUITEM statement.

Style Bit

MIS_SUBMENU
MIS_STATIC

Attributes

Description

Item invokes a submenu
Item can't be chosen

These five identifiers determine the attribute of the menu item:

Attribute Bit

MIA_NODISMISS
MIA_FRAMED

MIA_CHECKED
MIA_DISABLED
MIA_HILITED

Description

If item in submenu is chosen, the submenu remains down
Item is enclosed in a box (top-level menu only; used by

Presentation Manager when item is selected)
Check mark appears to left of item (submenu only)
Item is shown in gray text and can't be chosen
Item is shown in reverse video (used by Presentation

Manager when item is selected)

584 SECTION FOUR: USING RESOURCES

The difference between a menu style and a menu attribute is fairly simple:
A program can change an item's attribute but not its style (unless the entire
item is replaced).

The MIA_CHECKED and MIA_DISABLED attributes are used in CONV
MENU.RC for the White and Stop menu items respectively. You'll see
shortly how a program can change these attributes.

Including the Menu in the Standard Window
You make the menu part of the standard window by including the
FCF _MENU frame creation flag in the definition of flFrameFlags, just as
you include the FCF _ICON flag discussed in the last chapter.

When the frame flags include FCF _MENU, the second to last parameter of
WinCreateStdWindow must be set to the resource name ID of the menu,
which, in CONVMENU.RC, is ID_RESOURCE. The Presentation Manager
uses this same resource name ID for loading the program's icon when the
frame flags include FCF _ICON and for loading the program's keyboard ac
celerator table when the frame flags include FCF _ACCELTABLE.

After the WinCreateStdWindow function returns, you can obtain the handle
of the top-level menu by using the following function:

hwndMenu = WinWindowFromlD (hwndFrame. FID_MENU) ;

Or, within the client window procedure, you can use

hwndMenu - WinWindowFromID (
WinOueryWindow (hwnd. OW_PARENT. FALSE).
FID_MENU) :

Often the client window procedure obtains the window handle of the menu
during the WM_CREATE message and stores it in a static variable for
later use.

Receiving Menu Messages
The Presentation Manager sends the frame window procedure WM_COM

MAND messages when the user chooses an enabled menu item from the
menu. (This message will be WM_SYSCOMMAND or WM_HELP if the
menu item style includes the MIS_SYSCOMMAND or MIS_HELP style bit.)
The frame window passes the messages to the client window procedure. If a
disabled menu item is chosen, no WM_COMMAND message is generated.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 585

The mpJ and mp2 parameters that accompany a WM_COMMAND message
are shown below:

WM_COMMAND Parameters

SHORTIFROMMP (mpJ)
SHORTIFROMMP (mp2)
SHORT2FROMMP (mp2)

Description

Menu item ID
CMDSRC_MENU
Nonzero if selected by mouse, 0 if selected

by keyboard

WM_COMMAND is the same message that a push button window sends its
owner. For a push button, the low USHORT of mpJ is the child window ID,
and the low USHORT of mp2 is CMDSRC_PUSHBUTTON. Keyboard ac
celerators send WM_COMMAND messages with the low USHORT of mpJ
equal to CMDSRC_ACCELERATOR. If you're receiving WM_COMMAND
messages from menus, accelerators, and push buttons, it's easiest to ignore
mp2 and test only the low USHORT of mpJ. You should thus make all ID
numbers unique unless you deliberately want the program to process
WM_COMMAND messages from two or more different sources in the same
way. (This is often the case with keyboard accelerators, because you use
them to duplicate menu items.) As you learned in Chapter 11, you can also
use the COMMANDMSG macro for decoding the message parameters of a
WM_COMMAND message. For example, the expression

COMMANDMSG (&msg) -> cmd

is the menu item ID.

In ClientWndProc, the processing of the WM_COMMAND message looks
like this:

case WM_COMMAND:
switch (COMMANDMSG (&msg) -> cmd)

[case statements/or menu item IDs1

break ;

You'll note that the switch and case construction includes case statements
only for IDs associated with menu items in the menu's MENUITEM state
ments. The window procedure never receives WM_COMMAND messages
for the menu item IDs in SUBMENU statements because these items invoke
submenus and aren't commands in themselves. The WM_COMMAND

586 SECTION FOUR: 'uSING RESOURCES

processing in CONVMENU.C also lacks a case statement for IDM_HELP be
cause that menu item generates a WM_HELP message. In the WM_COM
MAND message processing, the IDM_NEW, IDM_OPEN, IDM_SAVE,
IDM_SAVEAS, and IDM_ABOUT items cause the program to display mes
sage boxes. Normally, these items would cause the program to create and
display a dialog box.

Working with Checked Menu Items
The submenu invoked by the Background item on CONVMENU's top-level
menu allows the user to choose one of five colors that the program uses to
color the background of the client window:

SUBMENU "-Background", 10M_BACKGROUND
{

MENUITEM "-White\tCtrl+W", 10M_WHITE" MIA_CHECKED
MENUITEM "-Light Gray\tCtrl+L", IoM_LTGRAY
MENUITEM "-Gray\tCtrl+G", 10M_GRAY
MENUITEM "-Dark Gray\tCtrl+D", IDM_OKGRAY
MENU ITEM "-Black\tCtrl+B", 10M_BLACK
}

When the Presentation Manager first creates the window, the White item
appears with a check mark to the left of the text. Check marks are used
most often for mutually exclusive menu options, as is the case here.

Within ClientWndProc, the sCurrentBackground variable is initialized with
the menu item ID of the checked item:

static SHORT sCurrentBackground = 10M_WHITE

When ClientWndProc receives a WM_COMMAND message for one of the
five items in this submenu, it must remove the check mark from the item
currently checked, add a check mark to the item that the user has chosen,
and change the color of the client window.

Processing of the WM_COMMAND message is the same for all five items in
this submenu:

case WM_COMMAND:
switch (COMMANDMSG (&msg) -> cmd)

[other program lines]

case I DM_WH ITE:

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 587

continued

case IDM_LTGRAY:
case IDM-GRAY:
case IDM_DKGRAY:
case IDM_BLACK:

To process these commands, CONVMENU first removes the check mark
from the menu item that is currently checked. The ID of that menu item is
stored in sCurrentBackground. The program can remove the check mark by
sending the menu window a MM_SETITEMATTR message:

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (sCurrentBackground. TRUE).
MPFROM2SHORT (MIA_CHECKED. 0» ;

The mpJ parameter of this message contains two USHORT values. The low
USHORT of mpJ has the ID of the menu item to be changed. However,
you're sending this message to the window whose handle is hwndMenu.
That's the window handle of the top-level window, not the submenu that
contains the five color items. The high USHORT of mpJ must be set to TRUE
to tell the window procedure for the top-level menu to search through the
submenus for a menu item with an ID equal to sCurrentBackground.

The low USHORT of mp2 contains the attribute bit (or bits) to be changed.
In this case, we want to change the MIA_CHECKED attribute bit. The high
USHORT of mp2 is set to the new value of these attribute bits - in this case
O. This removes the MIA_CHECKED attribute from the menu item.

CONVMENU sets sCurrentBackground equal to the item the user has chosen
from the menu:

sCurrentBackground = COMMANDMSG (&msg) -> cmd ;

The program then sends the menu another MM_SETITEMATTR message.
This is identical to the first message except that the high USHORT of mp2 is
set to MIA_CHECKED:

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (sCurrentBackground. TRUE),
MPFROM2SHORT (MIA_CHECKED. MIA_CHECKED»

The menu item chosen by the user now has the MIA_CHECKED attribute,
and a check mark is drawn to the left of the item.

588 SECTION FOUR: USING RESOURCES

Most WM_COMMAND processing of mutually exclusive check-marked
menu items requires little more than these three statements. Structurally,
the code is very similar to that used in the DRA WLINE program in Chapter
11 to check and uncheck radio buttons. In CONVMENU, the only job left is
to repaint the client window with the new color. This is accomplished by in
validating the window to generate a WM_PAINT message:

WinlnvalidateRect (hwnd. NULL. FALSE) ;

During the WM_PAINT message, CONVMENU calls GpiCreateLogColor
Table to use RGB color indices, obtains the dimensions of the client window,
and uses WinFillRect to color it:

WinQueryWindowRect (hwnd. &rcl) ;

Wi nFi 11 Rect (hps. &rcl.
col Background [sCurrentBackground - 10M_WHITE]) ;

The colBackground array is initialized in ClientWndProc to contain the five
color values corresponding to the five menu items:

static COLOR col Background [] - {
OxFFFFFFL. OxCOCOCOL. Ox808080L.
Ox404040L. OxOOOOOOL
} ;

The only assumption the program logic makes is that the five menu item ID
numbers are consecutive. The CONVMENU.H file contains a little note to
this effect.

#define 10M_WHITE 30
#define IOM_LTGRAY 31
#define 10M_GRAY
#define IUM_OKGRAY

32 II Program logic assumes these
33 II five numbers are consecutive

#define 10M_BLACK 34

Enabling and Disabling Menu Items
Another useful attribute of menu items is MIA_DISABLED. When a menu
item is disabled, it appears in gray text. A disabled menu item doesn't gen
erate a WM_COMMAND message.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 589

CONVMENU uses disabled menu items on its Timer submenu. When the
program begins, the Stop item is disabled, as indicated in the menu defini
tion in CONVMENU.RC:

SUBMENU "-Timer",
{

MENUITEM "-Start",
MENUITEM "S-top",
}

10M_TIMER

10M_START
10M_STOP. , MIA_OISABLED

It makes no sense to stop the timer when it hasn't been started yet. When
you choose Start from the menu, CONVMENU disables the Start item and
enables Stop.

We could handle this enabling and disabling in the same way that we re
moved and added the check mark, with some additional logic required for
starting and stopping the timer. However, in CONVMENU, the processing
of WM_COMMAND messages for IDM_START and IDM_STOP doesn't al
ter the menu item attributes. Instead, IDM_START simply starts the timer,
and IDM_STOP stops it:

case 10M_START:
if (WinStartTimer (hab, hwnd, IO_TIMER. 1000»)

fTimerGoing - TRUE;
else

WinMessageBox (HWNO_DESKTOP, hwnd,
"Too many clocks or timers",
szClientClass, O.
MB_OK : MB_ICONEXCLAMATION) ;

return 0

case 10M_STOP:
WinStopTimer (hab. hwnd, ID_TIMER)
fTimerGoing = FALSE
return 0 :

CONVMENU enables and disables the menu items while processing the
WM.: .. JNITMENU message. The Presentation Manager sends a window pro
cedure a WM_INITMENU message when it's about to display a submenu.
The low USHORT of mpJ is the ID of the top-level menu item that invokes
the submenu. The program can take this opportunity to change the sub
menu. CONVMENU processes the WM_INITMENU message as shown on
the next page.

590 SECTION FOUR: USING RESOURCES

case WM_INITMENU:
switch (SHORTIFROMMP (mpl»

{

case I OM_TIMER:

break ;

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (10M_START. TRUE).
MPFROM2SHORT (MIA-DISABLED.

!fTimerGoing &&
WinQuerySysValue (HWND_DESKTOP, SV_CTIMERS) ?

o : MIA-DISABLED»

WinSendMsg (hwndMenu. MM_SETITEMATTR,
MPFROM2SHORT (10M_STOP. TRUE),
MPFROM2SHORT (MIA_DISABLED,

fTimerGoing? 0 : MIA_DISABLED»
return 0

CONVMENU ignores WM_INITMENU messages unless they involve the
Timer submenu.

The first WinSendMsg call sets the MIA_DISABLED bit on the Start item if
the timer is already active (indicated by a TRUE value of[I'imerGoing) or if
no timers are available (which you can determine from the WinQuerySys
Value function). The second WinSendMsg call sets the MIA_DISABLED bit
on the Stop item if the timer isn't currently active.

Handling the Exit Command
When ClientWndProc receives a WM_COMMAND message with the
IDM_EXIT menu item ID, it ·sends itself a WM_CLOSE message:

case 10M_EXIT:
WinSendMsg (hwnd. WM_CLOSE, OL. OL)
return 0 ;

WM_CLOSE is the same message the system menu sends the window ~ro
cedure when the user chooses Close from the system menu. Most of the
programs I've written so far have not processed the WM_CLOSE message
but simply have passed it on to WinDefWindowProc. WinDefWindowProc
responds to the WM_CLOSE message by posting a WM_QUIT message to
the program's message queue, which causes the message loop in main to end
and the program to terminate.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 591

Some programs (those that work with files, for example) will want confir
mation that the user really wants to end the program.

A program can be terminated not only from an Exit item on the pr~gram' s
menu or from the Close item on the system menu, but from the Task Man
ager as well. The user can select the Close option on the Task Manager's
Task menu or the Shutdown option. In both of these cases, the Task Man
ager posts a WM_ QUIT message to the program's message queue.

To handle all of these cases, a program that needs to request confirmation
from the user before terminating must do so after receiving a WM_QUIT
message. This requires that you add some logic to the message loop. Here's
how CONVMENU does it:

while (TRUE)
{

while (WinGetMsg (hab. &qmsg, NULL, O. 0»
WinOispatchMsg (hab, &qmsg) ;

if (MBIO_OK -= WinMessageBox (HWNO_OESKTOP, hwndClient.

break :
WinCancelShutdown (hmq, FALSE)
}

WinOestroyWindow (hwndFrame)

"Really want to end program?",
szClientClass, 0,
MB_0KCANCEL : MB_ICONQUESTION»

The WM_QUIT message causes WinGetMsg to return 0 and drop out of the
message loop. CONVMENU then displays a message box with OK and
Cancel buttons and asks if the user really wants to end the program. If the
user answers by pressing OK, the break statement is executed and termina
tion begins with WinDestroyWindow.

Otherwise, the program calls WinCancelShutdown (which halts any system
shutdown that might have been initiated by the Task Manager), ignores the
WM_QUIT message, and goes back to the message loop.

In CONVMENU.RC, the Exit menu item is defined like this:

MENUITEM "E-xit ConvMenu\tF3", 10M_EXIT

It could have been defined like this:

MENU ITEM "E-xit ConvMenu\tF3", SC_CLOSE, MIS_SYSCOMMANO

592 SECTION FOUR: USING RESOURCES

This causes the Exit item to generate a WM_SYSCOMMAND message with
the low USHORT of mpJ equal to SC_CLOSE. This is the same message gen
erated from the system menu when the user selects Close. WinDef
WindowProc processes this message by sending the window procedure a
WM_CLOSE message. If I had used this, I wouldn't have required the
IDM_EXIT identifier or the code to send the window procedure a
WM_CLOSE message.

The WM_HELP Message
The menu template in CONVMENU.RC includes this menu item:

MENUITEM "FI-Help", IDM_HELP, MIS_HELP: MIS_BUTTONSEPARATOR

The MIS_BUTTONSEPARATOR style puts the text at the far right of the top
level menu. The MIS_HELP style indicates that the menu item generates a
WM_HELP message.

The mpJ and mp2 parameters that accompany the WM_HELP message are
the same as those for WM_COMMAND messages:

WM_HELP Parameters

SHORTIFROMMP (mpJ)
SHORTIFROMMP (mp2)
SHORT2FROMMP (mp2)

Description

Menu item ID
CMDSRC_MENU
Nonzero if selected by mouse, ° if selected

by keyboard

A push button can also generate a WM_HELP message if it's given the style
BS_HELP. For push buttons, the low USHORT of mpJ is the child ID, and the
low USHORT of mp2 is CMDSRC_PUSHBUTTON. The WM_HELP message
helps you consolidate all your help processing in one place. Regardless of
the presence of a menu item for Help, pressing the Fl key always generates
a WM_HELP message. Fl is a built-in keyboard accelerator. The mpJ
parameter is 0, and the low USHORT of mp2 is CMDSRC_ACCELERATOR.

CONVMENU responds to the WM_HELP message by reporting that "Help
is not yet implemented." In a real program, you can create a window that
reads help text (probably from a programmer-defined resource) and
display it.

The Keyboard Accelerator Table
CONVMENU.RC also includes a keyboard accelerator table, which lets the
user duplicate menu items from the keyboard. The accelerator table is de
fined as shown on the next page.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 593

ACCELTABLE IO_RESOURCE
{

VIC-F3, 10M_SAVE.
VIC-F3, 10M_EXIT .
""wn. 10M_WHITE
"AL"~ I OM_LTG RAY
""Gft

,. 10M_GRAY
""D", IOM_OKGRAY
"AB". 10M_BLACK

VIRTUALKEY. SHIFT
VIRTUALKEY

Note that the resource name ID of the accelerator table is ID_RESOURCE,
which is the same ID as the menu. The resource is loaded by the Presenta
tion Manager because the window frame style bit of FCF_ACCELTABLE is
included in the definition offlFrameFlags.

The first field in each line is the key, which is either a virtual key code or an
ASCII code in quotes. The caret (A) indicates a Ctrl key combination. These
keys generate WM_COMMAND messages. The second field specifies the ID
that accompanies the WM_COMMAND message. These are the same IDs
used in the menu. Following the IDs are some options. The VIRTUALKEY
keyword is required if the first field is a virtual key code. SHIFT specifies
that the Shift key must be used. Defining this table and including
FCF_ACCELTABLE in the definition of flFrameFlags frame style is all
that's required for keyboard accelerators that duplicate menu items.

Other Approaches to Menus
Now that we've studied the most common form of the Presentation Manager
menu, let's look at a few unusual approaches and then complete this chapter
with a Presentation Manager version of the famous game of Life.

Altering the System Menu
Small programs often need a menu for only one or two items - an About
box and a help screen, perhaps. If you would rather not give such programs
their own menu, you can add the required menu items to the system menu.
Although this practice isn't recommended, it illustrates some useful con
cepts involved with menu handling. The "poor person's menu" technique
is shown in the POORMENU program in Figure 13-2.

594 SECTION FOUR: USING RESOURCES

The POORMENU File

/I~ • - - - - - - - - - - - - - - - - - -
POORMENU make file
#- - - - - - - - - - - - - - - - - - - -

poormenu.obj : poormenu.c
cl -c -G2sw -W3 poorrnenu. c

poorrnenu.exe : poorrnenu.obj poorrnenu.def
link poorrnenu, /a11gn:16, NUL, os2. poorrnenu

The POORMENU.C File

/* -
POORMENU.C -- Poor Person's Menu

- -*/

#define INCL_WIN
#include <os2.h>

#define IDM_ABOUT 10
#define IDM_HELP 11

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

CHAR szCaption [] - "Poor Person\'s Menu" ;

int main (void)
{

static CHAR szClientClass[] - "PoorMenu" :
static ULONG flFrarneFlags - FCF_TITLEBAR

HAB hab ;
HMO hrnq :

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrarne, hwndClient
OMSG qrnsg ;

hab - WinInitialize (0)
hrnq = WinCreateMsgQueue (hab, 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. OL. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrarnerlags. szClientClass, NULL.
OL. NULL, 0, &hwndClient) ;

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 595

Figure 13-2. The POORMENU.C File. continued

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) :

while (WinGetMsg (hab. &qms9. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) :
return 0 ;

MRESULT EXPENTRY ClientWndProc CHWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR *szMenuText [3] - { NULL.
"A-bout PoorMenu ... ".
"-Help ... " }

static MENU ITEM mi [3] -{
MIT_END. MIS_SEPARATOR.
MIT_END. MIS_TEXT.
MIT_END. MIS_TEXT,
} :

HWNO
MENU ITEM
SHORT

hwndSysMenu. hwndSysSubMenu
mi SysMenu ;

switch (msg)
{

sItem. idSysMenu :

case WM_CREATE:
hwndSysMenu - WinWindowFromIO

O. O.
O. 10M_ABOUT.
O. 10M_HELP.

NULL.
NULL.
NULl.

WinQueryWindow (hwnd. OW_PARENT. FALSE).
FID-SYSMENU) ;

idSysMenu - SHORTlFROMMR (WinSendMsg (hwndSysMenu.

NULL.
NULL.
NULL

MM_ITEMIDFROMPOSITION.
NUll, NULl» ;

WinSendMsg (hwndSysMenu. MM_QUERYITEM.
MPFROM2SHORT (idSysMenu. FALSE),
MPFROMP (&miSysMenu» ;

hwndSysSubMenu - miSysMenu.hwndSubMenu

596 SECTION FOUR: USING RESOURCES

(continued)

Figure 13-2. The POORMENU.C File. continued

for (sItem - 0 ; sItem < 3 ; sltem++)
WinSendMsg (hwndSysSubMenu, MM_INSERTITEM.

MPFROMP (mi + sltem).
MPFROMP (szMenuText [sltem]» ;

return 0 :

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case IDM_ABOUT:
WinMessageBox (HWND_DESKTOP. hwnd.

return 0

"(e) Charles Petzold. 1988".
szCaption. 0, MB_OK : MB_ICONASTERISK)

case 10M_HELP:

break ;

WinMessageBox (HWND_DESKTOP, hwnd,
"Help not yet implemented",
szCaption. 0, MB_OK : MB_ICONEXCLAMATION)

return 0

case WM_ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd, msg. mpl. mp2)

The POORMENU.DEF File

; POORMENU.DEF module definition file

NAME

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

POORMENU WINDOWAPI

'The Poor Person's Menu (C) Charles Petzold, 1988'

10211
8192
ClientWndProc

Figure 13-2. The POOR MENU program.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 597

During processing of the WM_CREATE message in ClientWndProc, POOR
MENU obtains the window handle of the system menu:

hwndSysMenu = WinWindowFromID (
WinOueryWipdow (hwnd, OW_PARENT, FALSE),
FID_SYSMENU) :

This is actually the handle to the top-level system menu - the single bitmap
that is displayed to the left of the title bar. What we need is the handle to the
system submenu.

Sending the system menu an MM_ITEMIDFROMPOSITION message ob
tains the menu item ID of the system menu bitmap. Because this bitmap is
the only item in the system top-level menu, it's located at position 0:

idSysMenu = SHORT1FROMMR (WinSendMsg (hwndSysMenu.
MM_ITEMIDFROMPOSITION,
NUll, NULl» ;

POORMENU then sends the system menu an MM_QUERYITEM message to
fill in a MENUITEM structure with the characteristics of this menu item:

WinSendMsg (hwndSysMenu. MM_QUERYITEM.
MPFROM2SHORT (idSysMenu. FALSE).
MPFROMP (&miSysMenu» :

The MENUITEM structure is defined in PMWIN.H like this:

typedef struct _MENUITEM
{

SHORT i Posit ion :
USHORT afStyle :
USHORT afAttribute
USHORT i d ;
HWND hwndSubMenu
ULONG hItem
}

MENU ITEM ;

This contains all of the information about the particular menu item. The
hwndSubMenu field has the window handle of the submenu:

hwndSysSubMenu = miSysMenu.hwndSubMenu ;

598 SECTION FOUR: USING RESOURCES

POORMENU then sends this submenu three MM_INSERTITEM messages to
add three items to the system menu - a separator bar and two text strings:

for (sItem - 0 : sItem < 3 ; sItem++)
WinSendMsg (hwndSysSubMenu. MM_INSERTITEM.

MPFROMP (mi + sItem),
MPFROMP (szMenuText [sItem)) ;

The mi and szMenuText arrays are defined near the top of ClientWndProc.

Figure 13-3 shows the new system menu in POORMENU.

~ POORMENU EXE ml!1
.t!ove Alt+F7
~ize
Minimize
Ma!imize

Qlose

Iask Manager

A.!!out PoorMenu ...
Help ...

Alt+F8
Alt+FS
Alt+Fl0

Alt+F4

ctrl+Esc

Figure 13-3. The POORMENU system menu.

Using Graphics in Menus
You needn't always use text strings in menus; you can also use bitmaps.
You either define these bitmaps as resources or create them right in the pro
gram. The GRAFMENU program, shown in Figure 13-4 on the following
pages, takes the former approach.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 599

The GRAFMENU File

ff- - - - - - - - - - - - - - - - - - - -
GRAFMENU make file
#- - - - - - - -- - - - - - - - - - --

grafmenu.obj : grafmenu.c grafmenu.h
cl -c -G2sw -W3 grafmenu.c

grafmenu.res : grafmenu.rc grafmenu.h bfghelp.bmp
rc -r grafmenu

grafmenu.exe : grafmenu.obj grafmenu.def
link grafmenu. /al1gn:16. NUL. os2. grafrnenu
rc grafmenu.res

grafrnenu.exe : grafmenu.res
rc grafmenu.res

The GRAFMENU.C File

/* -

GRAFMENU.C -- A Menu with Graphics
- -* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include "grafrnenu.h"

MRESULT EXPENTRY ClientWndProc (HWND. USIIORT. MPARAM. MPARAM)

CHAR szClientClass[] = "GrafMenu" :

int main (void)
{

static ULONG flFrarneFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF _SIZEBORDER
FCF_SHELLPOSITION
FCF_MENU ;

HWND hwndFrame. hwndClient
QMSG qrnsg ;

600 SECTION FOUR: USING RESOURCES

FCF_SYSMENU
FCF_MINMAX
FCF_TASKLIST

(continued)

Figure 13-4. The GRAFMENU.C File. continued

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab, szClientClass, ClientWndProc, OL, 0)

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP, WS_VISIBLE.
&flFrameFlags, szClientClass, NULL.
OL, NULL. IO_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame, WM_SETICON.
WinQuerySysPointer (HWNO_OESKTOP. SPTR_APPICON, FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg, NULL, 0, 0»
WinOispatchMsg (hab. &qmsg)

WinOestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWNO hwnd, USHORT msg, MPARAM mpl. MPARAM mp2)
{

static MENU ITEM miBigHelp - { O.

FONTMETRICS
HBITMAP
HPS
HWNO

switch (msg)

fm ;
hbm ;
hps :
hwndMenu

MIS_BITMAP MIS_HELP.
O.
10M_HELP,
NULL,
NULL } ;

case WM_CREATE:

1* -
Load bitrrap resource

- -*1

I I i Pos it ion
II afStyle
II afAttribute
II id
II hwndSubMenu
I I hItem

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 601

Figure 13-4. The GRAFMENU.C File. continued

hps = WinGetPS (hwnd) ;
GpiQueryFontMetrics (hps, (LONG) sizeof fm. &fm)
hbm = GpiLoadBitmap (hps, NULL, IOB_BIGHELP,

WinReleasePS (hps) ;

64 * fm.1AveCharWidth / 3,
64 * fm.1MaxBaselineExt I 8)

/*-----------------------
Attach bitmap to menu

- -* I

miBigHelp.hltem = (ULONG) hbm

hwndMenu - WinWindowFromIO (
WinOueryWindow (hwnd, OW_PARENT. FALSE),
FlO_MENU) ;

WinSendMsg (hwndMenu, MM_SETITFM,
MPFROM2SHORT (0. TRUE). MPFROMP (&miBigHelp»

return 0 ;

case WM_COMMAND:
switch (COMMANOMSGC&msg)-)cmd)

{

case IDM_NEW:
case TOM_OPEN:
case 10M_SAVE:
case IOM_SAVEAS:
case 10M_ABOUT:

break ;

case WM_HELP:

WinAlarm (HWNO_DESKTOP, WA-NOTE)
return 0 ;

WinMessageBox (HWND_DESKTOP, hwnd,
"Help not yet implemented",
szClientClass, O. MB_OK : MB_ICONEXCLAMATION)

return 0 ;

case WM_ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd, msg, mpl, mp2)

602 SECTION FOUR: USING RESOURCES

The GRAFMENU.H File

/*------------------------
GRAFMENU.H header file

------------------------*/

/ldefine

f/defi ne

/ldefine

f/defi ne
Iidefine
fldefine
f/defi ne
#define
fJdefi ne

IO_RESOURCE

IOB_BIGHELP

10M_FILE

10M_NEW
10M_OPEN
10M_SAVE
IOM_SAVEAS
10M_ABOUT
10M_HELP

1

10
11
12
13
14
15

The GRAFMENU.RC File

1*----------------------------------
GRAFMENU.RC resource script file

- - -- - -- - - - -- - - -- -- - - -- -- - - - - -- -- - -*1

#include <os2.h>
/lfnclude "grafmenu.h"

BITMAP IOB_BIGHELP bighelp.bmp

MENU IO_RESOURCE
{

SUBMENU "-File", 10M_FILE
{

MENU ITEM "-New", 10M_NEW
MENU ITEM "-Open ... ", 10M-OPEN
MENU ITEM "-Save", 10M_SAVE
MENU ITEM "Save -As ... ",
MENU ITEM SEPARATOR
MENUITEM "A-bout GrafMenu IOM_ABOUT
MENUITEM "", 10M_HELP
}

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 603

The BIGHELP. BMP File

... ,. •••.•.••••..•••••••••.••.• ..tI....... . .•••.••••.••••• · ·" · · · · · · · · · · •• •••••• ••• • ••••••••• a. •••• ••• ••••• • •••.

The GRAFMENU.DEF File

; GRAFMENU.OEF module definition file

NAME GRAFMENU WINDOWAPI

OEseR I PTION 'Graphics Menu (C) Charles
PROTMODE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 13-4. The GRAFMENU program.

Petzold. 1985'

The BIGHELP.BMP file is a 64-by-64 bitmap created in ICONEDIT. In
designing the bitmap, I attempted to capture the frazzled emotions of a per
son attempting to learn a new program. The bitmap is included as a
resource in GRAFMENU.RC and is given the resource name ID of
IDB_BIGHELP. The definition of GRAFMENU's menu has an empty string
as the last menu item:

MENU ID_RESOURCE
(

SUBMENU "-Fil e". 10M_FILE
{

MENUITEM "-New". 10M_NEW
MENU ITEM "-Open ... ". 10M_OPEN
MENU ITEM "-Save", 10M_SAVE

604 SECTION FOUR: USING RESOURCES

(continued)

continued

MENUITEM "Save -As ... ",
MENUITEM SEPARATOR
MENU ITEM "A-bout GrafMenu ... ",IDM_ABOUT
MENUITEM "", IDM_HELP
}

This is the menu item that will use the bitmap.

During the WM_CREATE message, GRAFMENU calls WinQueryFontMetrics
to obtain the size of a system font character. When the bitmap is loaded into
memory, it is stretched in proportion to the character size:

hbm - GpiLoadBitmap (hps, NUll, IOB_BIGHELP.
64 * fm.1AveCharWidth / 3,
64 * fm.1MaxBaselineExt / 8)

Thus, regardless of the video display resolution, the bitmap will appear in a
size relative to the other text in the menu.

GRAFMENU defines a structure named miBigHelp of type MENUITEM that
is already initialized with everything except the handle of the bitmap. Set
ting the hltem field to the bitmap handle requires an assignment statement:

miBigHelp.hItem - (ULONG) hbm ;

The program then obtains the window handle of its menu:

hwndMenu - WinWindowFromIO (
WinQueryWindow (hwnd, OW_PARENT. FALSE),
flO_MENU) ;

and sends the menu an MM_SETITEM message:

WinSendMsg (hwndMenu, MM_SETITEM,
MPFROM2SHORT (0, TRUE), MPFROMP (&miBigHelp») ;

When the user now pulls down the File menu, the big bitmapped "Help"
offers a comforting beacon of hope, as shown in Figure 13-5 on the next
page.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 605

~ .. '(}Il}
File I

Qpen ...
Save
Save As ...

~t~

Figure 13-5. The modified File menu.

In desperation the user chooses that option, and GRAFMENU responds by
displaying the message box: "Help not yet implemented."

A Life Program
It's time for a game. The game of Life was invented by Cambridge
mathematician John Conway and popularized by Martin Gardner in his
Scientific American "Mathematical Games" columns beginning in October
1970. It has been a favorite of programmers ever since. Gardner's columns
on Life are collected in his book Wheels, Life and Other Mathematical
Amusements (W. H. Freeman and Co., 1983). "Some Facts of Life," by
David J. Buckingham (Byte, December 1978), is one of the best articles on
the subject. Hackers, by Steven Levy (Anchor Press!Doubleday, 1984), has
some good stories on early addictions to Life at MIT.

The Life playing board is a grid. Each cell in the grid can be either "alive"
or "empty." You begin by defining a pattern of live cells. Then you take
(or rather, the Life program takes) the grid through successive generations.
For each new generation, a cell can die (change from alive to empty) or be
born (change from empty to alive) based on the contents of the cell's eight
immediate neighbors:

• If a live cell has one or no neighbors, it dies from loneliness.

• If a live cell has four or more neighbors, it dies from overpopulation.

• If an empty cell has exactly three neighbors, a new cell is born.

606 SECTION FOUR: USING RESOURCES

The Presentation Manager version of Life is shown in Figure 13 -6.

The LIFE File

,----------------
, LIFE make file
1/- - - - - - - - - - - - -- - -

life.obj : life.c life.h
c1 -c -G2sw -W3 1 ife.c

life. res : life.rc life.h life.ico
rc -r life

life.exe : life.obj life.def
link life. /align:16. NUL. os2. life
rc life.res

life.exe : life. res
rc 1 ife. res

The LIFE.C File

/* -
LIFE.C -- John Conway's Game of Life

- -*/

Ifdefine INCLWIN
'define INCL_GPI
,include <os2.h>
#include <stdlib.h)
#include <string.h>
'include "life.h"

'define ID_TIMER 1

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

CHAR szClientClass [] - "Life"
HAB hab

int main (void)

static ULONG flFrameFlags FCF_TITLEBAR FCF_SYSMENU
FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU FCF_ICON ;

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 607

Figure 13-6. The LIFE.C File. continued

HMO hmq ;
HWND hwndFrame. hwndClient
QMSG qmsg ;

hab = Winlnitialize (0)
hmq = WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags, 5zClientClass. NULL,
OL. NULL, IO_RESOURCE. &hwndClient)

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;
}

VOID EnableMenuItem (HWND hwndMenu. SHORT idMenultem. BOOl fEnable)
{

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (idMenultem. TRUE),
MPFROM2SHORT (MIA_DISABLED. fEnable ? 0 MIA_DISABLED»

VOID ErrorMsg (HWND hwnd. CHAR *szMessage)
{

WinMessageBox (HWND_OESKTOP. hwnd. szMessage. szClientClass. 0,
MB_OK : MB_ICONEXCLAMATION) ;

VOID DrawCell (HPS hps. SHORT x. SHORT y. SHORT exCell. SHORT eyCell,
BYTE bCell)

RECTL rcl

rcl.xLeft = x If. exCell
rcl .yBottom = y * cyCell
rcl . xRi ght rel . xleft + exCell - 1
rcl.yTop = rel.yBottom + cyCell - 1

WinF-illRect (hps. &rcl. bCell & 1 ? CLiLNEUTRAL CLR..:-BACKGROUNO)
)

608 SECTION FOUR: USING RESOURCES

(cominued)

Figure 13-6. The LIFE.C File. continued

VOID DoGeneration (HPS hps, PBYTE pbGrid. SHORT xNumCells, SHORT yNumCells.
SHORT exCell, SHORT eyCell)

SHORT x, y, sSum :

for (y - 0 : Y < yNumCel1s . 1 : y++)
for (x - 0 : x < xNumCells ; x++)

{

if (x - 0 :: x - xNumCel1s - 1 :: y - 0)
~pbGrid :- *pbGrid « 4 ;

else

sSum - (*(pbGrid - 1) +
*(pbGrid - xNumCe 11 5 - 1) +
*(pbGrid - xNumCell s) +
*(pbGrid - xNumCells + 1))

» 4 :

sSum +- *(pbGrid + 1) +
*(pbGrid + xNumCells + 1) +
*(pbGrid + xNumCells) +
*(pbGrid + xNumCel1s - 1)

sSum - (sSum : *pbGrid) & OxOF

*pbGri d «- 4 ;

if (sSum - 3)
*pbGrid :- 1

if «*pbGrid & 1) 1- *pbGrid » 4)

II Left
/I Lower Left
II Lower
II Lower Right

II Right
II Upper Right
II Upper
II Upper Left

DrawCe 11 (hps. x. y. cxCe 11. eyCell. *pbGri d)

pbGrid++
}

VOID OisplayGenerationNum (HPS hps. SHORT xGen. SHORT yGen. LONG lGeneration)
{

static CHAR szBuffer [24] - "Generation" ;
POINTl ptl

ptl.x - xGen
ptl.y - yGen

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 609

Figure 13-6. The LIFE.C File. continued

ltoa (lGeneration. szBuffer + 11. 10)

GpiSavePS (hps) :

GpiSetBackMix (hps. BM_OVERPAINT) ;
GpiCharStringAt (hps. &ptl. (LONG) strlen (szBuffer), szBuffer)

GpiRestorePS (hps, -lL) ;
}

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mp1. MPARAM mp2)
{

static BOOl fTimerGoing
static HWND hwndMenu:
static LONG lGeneration
static SEl selGrid
static SHORT exChar. cyChar, cyOesc, cxClient, cyClient, xGenNum, yGenNum.

exCell. cyeell. xNumCells. yNumCells, sCellScale = 1 ;
FONTMETRICS
HPS

fm ;
hps ;
pbGrid
ptl ;
x. y ;

PBYTE
POINTL
SHORT

switeh (msg)

case WM_CREATE:
hps - WinGetPS (hwnd) :
GpiOueryFontMetrics (hps. (LONG) sizeof fm, &fm)
exChar = (SHORT) fm.1AveCharWidth ;
cyChar ~ (SHORT) fm.1MaxBaselineExt
cyDesc - (SHORT) fm.1MaxOescender
WinReleasePS (hps) ;

hwndMenu - WinWindowFromIO

return 0

case WM_SIZE:
if (selGrid)

{

WinOueryWindow (hwnd. OW_PARENT. FALSE).
FlD_MENU) ;

DosFreeSeg (selGrid)
selGrid = 0
}

610 SECTION FOUR: USING RESOURCES

(continued)

Figure 13-6. The LIFE.C File. continued

if (fTimerGoing)
{

WinStopTimer (hab, hwnd. ID_TIMER)
fTimerGoing - FALSE:
}

cxClient - SHORTIFROMMP (mp2)
eyClient - SHORT2FROMMP (mp2)

xGenNum - exChar ;
yGenNum - eyClient - eyChar + cyDesc

exCell - cxChar * 2 / sCellScale
cyCell - cyChar / sCellScale ;

xNumCells - cxClient / exCell ;
yNumCells = (cyClient - cyChar) / cyeell

if (xNumCells <- 0 :: yNumCells <= 0)
{

ErrorMsg (hwnd. "Not enough room for even one cell.")
}

else if «LONG) xNumCells * yNumCells > 65536L)

ErrorMsg (hwnd. "More than 64K cells not supported.")
}

else if (DosAllocSeg (xNumCells * yNumCells. &selGrid. 0»
{

ErrorMsg (hwnd. "Not enough memory for this many cells.")
selGrid ... 0 ;

else

}

pbGrid - MAKEP (selGrid. 0) ;

for (y = 0 ; Y < yNumCells ; y++)
for (x - 0 ; x < xNumCells x++)

*pbGrid++ =- 0 ;

EnableMenuItem (hwndMenu. IDM_SIZE. TRUE):
EnableMenultem (hwndMenu. 10M_START, selGrid 1= 0)

(cominued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 611

Figure 13-6. The LIFE.C File. continued

EnableMenuItem (hwndMenu, 10M_STOP, FALSE);
EnableMenultem (hwndMenu, 10M_STEP. selGrid 1= 0)
EnableMenultem (hwndMenu. 10M_CLEAR. selGrid !- 0)

1 Generati on = 0
return 0 ;

case WM_BUTTON100WN:
x = MOUSEMSG(&msg)->x I exCell
y = MOUSEMSG(&msg)->y I cyCell

if (selGrid && IfTimerGoing && x < xNumCells && y < yNumCe11s)
{

else

pbGrid - MAKEP (selGrid. 0)

hps = WinGetPS (hwnd) ;

OrawCe 11 (hps. x. y. exCe 11. cyee 11 ,
*(pbGrid + y * xNumCells + x) A= 1)

WinReleasePS (hps) ;
}

WinAlarm (HWND_DESKTOP, WA_WARNING)
brea k ;

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case 10M_LARGE:
case 10M_SMALL:
case 10M_TINY:

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (sCellScale, TRUE).
MPFROM2SHORT (MIA_CHECKED. 0» ;

sCellSeale = COMMANDMSG(&msg)-)cmd :

WinSendMsg (hwndMenu, MM_SETITEMATTR,
MPFROM2SHORT (sCel1Seale. TRUE),
MPFROM2SHORT (MIA_CHECKED. MIA_CHECKED»

WinSendMsg (hwnd, WM_SIZE, NULL,
MPFROM2SHORT (cxClient, cyClient»

612 SECTION FOUR: USING RESOURCES

(continued)

Figure 13-6. The LIFE.C File. continued

WinlnvalidateRect (hwnd. NULL, FALSE)
return 0 ;

case 10M_START:
if (!WinStartTimer (hab, hwnd. IO_TIMER. 1»

{

ErrorMsg (hwnd. "Too many clocks or timers.")
}

else

fTimerGoing - TRUE

Enabl eMenuItem (hwndMenu, 10M_SIZE, FALSE)
EnableMenultem (hwndMenu. 10M_START. FALSE)
[nableMenultem (hwndMenu. IDM_STOP. TRUE)
EnableMenultem (hwndMenu, 10M_STEP, FALSE)
EnableMenuItem (hwndMenu. 10M_CLEAR. FALSE)
}

return 0 ;

case 10M _STOP:
WinStopTimer (hab. hwnd. I D_TI MER)
fTimerGoing - FALSE ;

Enab 1 eMenu Item (hwndMenu. 10M_SIZE, TRUE) ;

EnableMenuItem (hwndMenu, 10M_START. TRUE) ;

Ena b 1 eMenu Item (hwndMenu. IDM __ STOP. FALSE) :
EnableMenuItem (hwndMenu, rOM_STEP, TRUE)
Enabl eMenultem (hwndMenu, 10M_CLEAR, TRUE)
return 0 ;

case 10M_STEP:
WinSendMsg (hwnd. WM_TIMER. NULL. NULL)
return 0 ;

case 10M_CLEAR:
lGeneration - OL

pbGrid - MAKEP (selGrid. 0) ;

for (y - 0 ; Y < yNumCells ; y++)
for (x = 0 ; x < xNumCells x++)

*pbGrid++ - 0 ;

;

;

;

;

:

(continued)

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 613

Figure 13-6. The LIFE.C File. continued

break ;

case WM_TIMER:

Winlnval;dateRect (hwnd, NULL, FALSE)
return 0 :

hps - WinGetPS (hwnd) ;

DisplayGenerationNum (hps. xGenNum, yGenNum. ++lGeneration)

pbGrid - MAKEP (selGrid. 0) ;

DoGeneration (hps, pbGrid. xNumCel1s, yNumCells. exCell. cyCell);

WinReleasePS (hps)
return 0 ;

ease WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps)

if (selGrid)
(

for (x - 1 ; x <- xNumCel1s x++)
(

ptl.x - exCell * x-I
ptl.y - 0 ;
GpiMove (hps. &ptl) ;

ptl.y = cyCell * yNumCells - 1
GpiLine (hps. &ptl) ;
}

for (y - 1 ; y <- yNumCells y++)
{

ptl.x'" a
ptl.y - cyCell * y - 1
GpiMove (hps. &ptl) ;

ptl.x = exCel 1 * xNumCells - 1
GpiLine (hps. &ptl) ;
}

pbGrid - MAKEP (selGrid, 0)

614 SECTION FOUR: USING RESOURCES

(continued)

Figure 13-6. The LIFE.C File. continued

for (y - 0 ; Y < yNumCells ; y++)
for (x - 0 ; x < xNumCells ; x++)

if (*pbGrid++)
Drawee 11 (hps. x, y, cxCe 11, cyCe 11 •

*(pbGrid - 1» ;

DisplayGenerationNum (hps. xGenNum. yGenNum. lGeneration)
}

WinEndPaint (hps) ;
return 0 ;

case WM_OESTROY:
if (fTimerGoing)

WinStopTimer (hab, hwnd. ID_TIMER)

if (selGrid)
DosFreeSeg (selGrid)

return 0 ;
}

return WinDefWindowProc (hwnd. msg, mp1. mp2)
}

The LlFE.H File

/* -

LIFE.H header file
- - - - - - - - - - - - - - - - - -- -*/

#define ID_RESOURCE

#define IDM_SIZE 10

ffdefi ne IDM_LARGE 1 /* Values used in
ftdefi ne IDM_SMALL 2 /* program logic
fFdefi ne 10M_TINY 4 /* for cell size

ftdefi ne IDM_CLEAR 20
/Idefi ne 10M_START 21
#define 10M_STOP 22
#define IDM_STEP 23

*/
*/
*/

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 615

The LlFE.RC File

/*------------------------------
LIFE.RC resource script file

------------------------------*/

#include <os2.h>
#include "life.h"

POINTER ID_RESOURCE life.ico

MENU 10_RESOURCE
(

SUBMENU "-Cell-Size". IDM_SIZE
(

MENUITEM "-Large", 10M_LARGE., MIA_CHECKED
MENUITEM "-Small", 10M_SMALL
MENU ITEM "-Tiny", 10M_TINY
}

MENUITEM "-Start!", 10M_START
MENUITEM "S-top!". 10M_STOP .. MIA-DISABLEO
MENUITEM "Ste-p!", 10M_STEP
MENUITEM "C-lear!", 10M_CLEAR
}

The LIFE.ICO File

•••••• • ••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• •••••• • ••••• • ••••• • •••••
•••••• • ••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• •••••• • ••••• • ••••• • •••••
•••••• • ••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• • • •••••• • ••••• • ••••• •••••• • ••••• • ••••• • •••••
•••••• • ••••• R~ •••• • ••••• •••••• • ••••• • ••••• • •••••

616 SECTION FOUR: USING RESOURCES

The LIFE.DEF File

._--------------------------------,
; LIFE.DEF module definition file

NAME LIFE WINOOWAPI

DESCRI PTION
PROTMOOE
HEAPSIZE
STACKSIZE
EXPORTS

'Game of Life Program (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 13-6. The LIFE program.

The LIFE.RC resource script defines one submenu that specifies the size of
the cells and four top-level items without submenus: Start, Stop, Step, and
Clear. I made these items part of the top-level menu so you can more easily
choose them with the mouse. By convention, items on the top-level menu
that don't invoke submenus are followed by exclamation points.

You can use the mouse to toggle cells between an alive and an empty state.
You start the program by choosing Start from the top-level menu. LIFE uses
a timer to advance through the generations. You stop the timer by choosing
Stop. You can advance through the generations manually with Step. The
grid is cleared when you choose Clear from the top-level menu or when you
change the cell size. Changing the size of the window also clears the. grid.

I won't describe the workings of this program because little of the logic is
related to menu processing. However, note that the program often enables
and disables some menu items when the user chooses a menu item. The pro
gram can then avoid extensive testing during processing of the WM_COM
MAND message. For example, when LIFE gets a WM_COMMAND message
indicating that Start has been chosen from the menu, it doesn't have to
check to see if the timer is already going, because once the timer is going,
the Start option is disabled. I think of this technique as an active rather than
a passive approach to testing the validity of menu items. At the time a menu
item becomes invalid, you send the menu a message to disable the item. You
then don't have to worry about getting WM_COMMAND messages for that
menu item.

CHAPTER THIRTEEN: MENUS AND KEYBOARD ACCELERATORS 617

C HAP T E R F 0 U R TEE N

DIALOG BOXES

We have already looked at several ways a Presentation Manager program
can obtain input from the user. The most rudimentary is the direct process
ing of keyboard and mouse input to the program's client window. But we
have also seen how a program can create child control windows (such as
buttons, scroll bars, and menus) either implicitly as part of the standard
window or explicitly with WinCreateWindow calls. These control windows
provide a layer of processing between user input and the program.

Now we'll go one step further and create dialog boxes. A "dialog box" is a
window that contains various child control windows. Programs generally
use dialog boxes to obtain user input beyond that which can be easily
handled in a menu. A menu item indicates with an ellipsis (...) that it in
vokes a dialog box.

You define the layout of control windows in a dialog box by creating a dia
log box template as part of the resource script file. In your program you
create a dialog box window based on this template. You're essentially farm
ing out to the Presentation Manager the job of creating, sizing, and posi
tioning all control windows within the dialog box window.

In Chapter 11 we created control windows on the surface of the program's
client window, and we encountered some difficulties in handling the key
board interface. When you create a dialog box, these problems go away.
The dialog box logic within the Presentation Manager implements a key
board interface that allows the user to move the input focus between con
trols using the Tab key and the cursor movement keys.

Dialog boxes come in two flavors: modal and modeless. The modal dialog
box is the most common. When a program creates a modal dialog box, the
user can switch control to another window in the program only after the dia
log box is destroyed. A modeless dialog box is more akin to a normal top
level window that you might create in your program (such as those in the

619

WELCOME2 program in Chapter 3). The user can switch control between
the dialog box and the program's client window. With one exception (the
HEXCALC program), all of the dialog boxes in this chapter are modal
dialog boxes.

The Simple "About" Box
One simple modal dialog box is often called an "About" box. This dialog
box is invoked when a user chooses the menu option "About This Pro
gram ... " The dialog box usually contains a one-line or two-line description
of the program, a copyright notice, the program's icon, and a single push
button labeled "OK." Pressing the Spacebar or the Enter key destroys the
dialog box. The ABOUTBOX program, shown in Figure 14-1, does little but
display a standard About box.

The ABOUTBOX File

If- - - - - - - - - - - - - - - - - - --
If ABOUTBOX make file
fI- - - - - - - - - - - - - - - - - - --

aboutbox.obj : aboutbox.c aboutbox.h
cl -c -G2sw -W3 aboutbox.c

aboutbox.res : aboutbox.rc aboutbox.h aboutbox.ico
rc -r aboutbox

aboutbox.exe : aboutbox.obj aboutbox.def
link aboutbox. ialign:16, NUL, 052. aboutbox
rc aboutbox.res

aboutbox.exe : aboutbox.res
rc aboutbox.res

The ABOUTBOX.C File

/*---
ABOUTBOX.C -- Demonstration of About Box Dialog Procedure

- - - - - - - - - - - - - - - - - _. - - - - - - - - _. -*/

fldefine INCL_WIN
#include <os2.h>
#include "aboutbox.h"

620 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-1. The ABOUTBOX.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)
MRESULT EXPENTRY AboutDlgProc (HWND. USHORT. MPARAM. MPARAM)

i n t rna i n (v 0 i d)
(

static CHAR szClientClass[] - "AboutBox" ;
static ULONG flFrameFlags - FCF_TITLEBAR

HAS hab ;
HMO hrnq ;

FCF _SIZEBOROER
FCF_SHELLPOSITION
FCF_MENU

HWND hwndFrarne. hwndClient
QMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST
FCF_ICON

WinRegisterClass (hab, szClientClass. ClientWndProc. OL. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
OL. NULL. IO_RESOURCE. &hwndClient)

while (WinGetMsg (hab, &qrnsg. NULL. O. 0»
WinOispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWNO hwnd, USHORT rnsg, MPARAM mpl. MPARAM mp2)
{

swi tch (msg)
{

case WM_COMMANO:
switch (COMMANOMSG(&rnsg)->crnd)

{

case 10M_NEW:
case 10M_OPEN:
case 10M_SAVE:
case IDM_SAVEAS:

WinAlarm (HWNO_OESKTOP, WA_NOTE)
return 0 ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 621

Figure 14-1. The ABOUTBOX.C File. continued

case 10M_ABOUT:
WinDlgBox (HWND_OESKTOP. hwnd. AboutDlgProc.

return 0 :

break ;

case WM_ERASEBACKGROUND:
return 1 ;

NULL. IDD-ABOUT. NULL) ;

return WinDefWindowProc (hwnd. msg. mpl. mp2)

MRESULT EXPENTRY AboutDlgProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

switch (msg)
{

case WM_COMMAND:
switch (COMMANDMSG(&msg)-)cmd)

{

case DID_OK:
case DID_CANCEL:

break :

WinOismissOlg (hwnd. TRUE)
return 0 ;

return WinOefOlgProc (hwnd. msg. mpl. mp2)

The ABOUTBOX.H File

/*- --

ABOUTBOX.H header file
- ----- ---- --- ----- --- ---* /

/fdefine IO_RESOURCE

:/fdefine 10M_FILE 1

:/fdefine 10M_NEW 10
:/fdefine 10M_OPEN 11
ttdefi ne 10M_SAVE 12
fldefi ne IDM .SAVEAS 13

622 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-1. The ABOUTBOX.H File. continued

#define 10M_ABOUT 14

#define IOO-ABOUT

The ABOUTBOX.RC File

/*----------------------------------
ABOUTBOX.RC resource script file

------ --------- -------- -------- ---* /

f~i ncl ude <os2. h)
#include "aboutbox.h"

POINTER IO_RESOURCE aboutbox.ico

MENU IO_RESOURCE
{

SUBMENU "-File",
{

MENU ITEM "-New",
MENUITEM "-Open ... ",
MENUITEM "-Save".
MENU ITEM "Save -As ... ",
MENU ITEM SEPARATOR

10M_NEW
10M_OPEN
10M_SAVE
IOM_SAVEAS

MENlJITEM "A-bout AboutBox ... ". 10M_ABOUT
}

OlGTEMPLATE IDO_ABOUT
{

DIALOG "", O. 32. 32. 200. 88" FCF_OLGBORDER
{

CTEXT "AboutBox"
ICON IO_RESOURCE

-1,

'1,
CTEXT "Sample ""About"" Dialog Box" -1,
CTEXT "Copyright (C) Charles Petzold, 1988" -1,
OEFPUSHBUTTON "OK" DID_OK.
}

10, 64. 180, 8
8, 56. O. 0

10, 40, 180, 8
10, 32. 180. S

80. 8, 40. 16, WS_GROUP

CHAPTER FOURTEEN: DIALOG BOXES 623

The ABOUTBOX.ICO File

..•..•.................................

The ABOUTBOX.DEF File

; ABOUTBOX.DEF module definition file

NAME ABOUTBOX WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Sample About Box Dialog Procedure (C) Charles Petzold. 1988'

1024
8192
ClientWndProc
AboutDlgProc

Figure 14-1. The ABOUTBOX program.

Figure 14-2 shows the ABOUTBOX dialog box.

~ AboutBox
~

Sample "Abouf' Dialog Box
Copyright (C) Charles Petzold. 1988

Figure 14-2. The ABOUTBOX display.

624 SECTION FOUR: USING RESOURCES

The Dialog Box Template
The first step in adding a dialog box to a program is to create a template that
describes the layout of child control windows within the dialog box win
dow. You create a dialog box template in one of two ways. The easiest way
is to use the DLGBOX program supplied as part of the OS/2 Programmer's
Toolkit. This program saves a dialog box template as an ASCII file with the
extension .DLG. You then include the .DLG file in your .RC resource script
file using the following statement:

rcinclude mydialog.dlg

However, because .DLG file output from DLGBOX is ugly and nearly un
readable, I've taken a more primitive approach in creating the dialog box
templates shown in this chapter. I've created them manually, right in the
resource script file. The dialog box template in ABOUTBOX.RC looks
like this:

DLGTEMPLATE IDD_ABOUT
{

DIALOG ~~. O. 32. 32. 200. 88 •• FCF_DLGBORDER
{

CTEXT "ABOUTBOX" -1. 10. 64. 180. 8
ICON ID_RESOURCE -1. 8. 56, o. a
CTEXT "Sample About Dialog Box" -1, 10. 40. 180, 8
CTEXT "Copyright (C) Charles Petzold, 1988" -1. 10, 32. 180. 8
DEFPUSHBUTTON "OK" DID_OK. 80. 8, 40. 16. WS_GROUP
}

The keyword DLGTEMPLATE identifies this resource as a dialog box tem
plate. (You can use the keyword WINDOWTEMPLATE as a synonym for
DLGTEMPLATE.) The resource compiler converts this template to a binary
form and stores it in the program's .EXE file with a resource type ID of
RT _DIALOG. The IDD_ABOUT identifier, which is defined in ABOUT

BOX.H as 1, is the resource name ID.

The definition of the dialog box is enclosed in a pair of curly brackets or be
tween BEGIN and END statements. Within this first set of curly brackets
you define one (and only one) main window. In the ABOUTBOX dialog box
template, this window is specified by the DIALOG statement. The various
child control windows within this dialog box are then nested in another set
of curly brackets following the DIALOG statement.

CHAPTER FOURTEEN: DIALOG BOXES 625

U sing the DIALOG statement implies that the dialog box window is to be
based on the WC_FRAME window class, the same window class used to
create a standard frame window. The general format of the DIALOG state
ment is as follows:

DIALOG "text". ChildID. x. y. width. height [.window style] [.creation flags]

The "text" field is the text that would appear in the dialog box's title bar if
it had one. (Most modal dialog boxes do not.) Because the dialog box win
dow will be a top-level window, the Chi/dID field isn't important, so in this
example it's set to o.
The next four fields specify the position and size of the dialog box window.
The x and y values are the position of the lower-left corner of the dialog box
window relative to the lower-left corner of its owner, which is usually the
program's client window. These coordinates and sizes are not in units of
pixels-they're in special units used only in dialog box templates. I'll de
scribe the dialog box coordinate system in the next section.

The optional window style field of the DIALOG statement is a combination
of identifiers beginning with WS ("window style"), just like the window
style used in the WinCreateStdWindow function. WS_ VISIBLE is not re
quired for a modal dialog box. This is followed by creation flags beginning
with FCF, like the flFrameFlags parameter passed to the WinCreateStd
Window function. The FCF _DLGBORDER flag is normal for a modal dialog
box and causes the dialog box to have a normal dialog box border.

Following the DIALOG statement is a set of curly brackets enclosing other
statements that define all child control windows to be created on the surface
of the dialog box window. In the ABOUTBOX dialog box template, these
statements begin with CTEXT, ICON, and DEFPUSHBUTTON, all of which
are keywords recognized by the resource compiler. The CTEXT keyword
stands for "centered text." CTEXT specifies a control window based on the
WC_STATIC window class with the following window style:

This should look somewhat familiar, because we used the WC_STATIC
class and the SS_TEXT window style in the COLORSCR program in Chapter
11. (I'll discuss the WS_GROUP identifier later in this chapter.) Our dialog
box template has three CTEXT statements for the dialog box's three lines of
centered text.

626 SECTION FOUR: USING RESOURCES

The CTEXT statement has a format similar to that of the DIALOG

statement:

CTEXT "text", ChildID, x, y, width, height [, window style]

The "text" field is the window's text. In the ABOUTBOX dialog box tem
plate, the ChildID field for the CTEXT control windows is set to -1 because
the child ID isn't used by the program. The x and y fields specify the posi
tion of the lower-left corner of the control window relative to the lower-left
corner of the dialog box window. For the optional window style field, you
can use WS ("window style") or SS ("static style") identifiers to alter the
default sty Ie of the control window.

The ICON statement specifies another window based on the WC_STATIC

class, this one with a window style of

The ICON statement has a format similar to the CTEXT statement, except
that the first field is the resource name ID of an icon. The height and width
fields are ignored because icons have a standard size based on the resolution
of the display.

The DEFPUSHBUTTON statement specifies a push button based on the win
dow class WC_BUTTON with the window style

BS_PUSHBUTTON : BS_DEFAULT : WS_TABSTOP

The BS_DEFAULT style makes this a default push button, which has a wider
border than a normal button. I'll discuss the WS_TABSTOP style later in this
chapter. The child ID of this push button is set to DID_OK. This is an iden
tifier defined in PMWIN.H that is often used for default push buttons in
dialog boxes.

The dialog box template in ABOUTBOX.RC thus defines six windows. The
parent is based on the WC_DIALOG window class and has five children.
Four of the children are based on the WC_STATIC window class, and the
fifth is based on WC_BUTTON.

Dialog Box Coordinates
The coordinates and sizes specified in the DIALOG, CTEXT, ICON, and
DEFPUSHBUTTON statements are in special units used only within dialog
box templates. The horizontal (x) coordinates and sizes are in units of 1j4 the
average width of a system font character; the vertical (y) coordinates and
sizes are in units of 1js the height of a system font character. Thus the

CHAPTER FOURTEEN: DIALOG BOXES 627

ABOUTBOX dialog box has a width of 50 characters (200 units) and a height
of 11 characters (88 un,its). These special dialog box coordinates allow you
to design dialog box templates that retain the same general appearance
regardless of the resolution of the video display. Because a system font char
acter is roughly twice as high as it is wide, the horizontal and vertical coor
dinates are about the same.

For the dialog box window itself, the position of the window is relative to
the lower-left corner of its owner (which is generally the client window in
the program that displays the dialog box). The positions of the control win
dows are relative to the lower-left corner of their parent, which is the dialog
box window.

You'll note that the height of the CTEXT window controls in ABOUTBOX is
8 units. That's one character. The height of the push button is 16 units (two
characters) because the height must include the border of the button. For
static text controls, the minimum width of the window in dialog box units
must be 4 times the number of characters. To determine the minimum
width of a push button, add 2 to the number of characters and then mUltiply
by 4.

The Dialog Procedure
A program that includes a dialog box must have a dialog procedure that
processes messages to the dialog window. This dialog procedure looks a lot
like a normal window procedure. The AboutDlgProc dialog procedure in
ABOUTBOX.C looks like this:

MRESULT EXPENTRY AboutDlgProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

swi tch (msg)
{

case WM_COMMAND:
switch (COMMANDMSG(&msg)-)cmd)

{

case DID_OK:
case DID_CANCEL:

break ;

WinDismissDlg (hwnd. TRUE)
return 0 ;

return WinDefDlgProc (hwnd. msg. mpl. mp2)
}

628 SECTION FOUR: USING RESOURCES

Within AboutDlgProc, the hwnd parameter is the window handle of the dia
log box window. (Some programmers prefer to use the name hdlg.)

Dialog procedures are often much simpler than client window procedures
because they needn't worry about painting the window or processing key
board or mouse input Aside from possible initialization, a dialog procedure
does little but process messages from child window controls on the dialog
box window. AboutDlgProc processes only the WM_COMMAND message
that the push button sends to its owner when the button is clicked.

The dialog procedure calls WinDefDlgProc rather than WinDefWindowProc
for all messages it doesn't process. This is one major difference between a
dialog procedure and a window procedure. There are some other differ
ences that I'll discuss in more detail later in this chapter. (For example, a
dialog procedure doesn't receive a WM_CREATE message. Instead, you
must do initialization during the 'special WM_INITDLG message.)

The dialog box destroys itself by calling WinDismissDlg. In AboutDlgProc, it
does this when it receives a WM_COMMAND message with the low
USHORT of mpJ (the child window ID or cmd field when using the COM
MANDMSG macro) equal to DID_OK or DID_CANCEL.

The push button window sends a WM_COMMAND message to its owner
(the dialog box window) when the user clicks the push button or presses the
Spacebar when the push button has the input focus. The low USHORT of mpJ
is the push button's child ID, which is DID_OK.

AboutDlgProc also calls WinDismissDlg when it receives a WM_COMMAND
message with the low USHORT of mpJ equal to DID_CANCEL. This mes
sage is generated by WinDefDlgProc when the user presses the Escape key.
Thus we're also allowing the user to get rid of the dialog box by pressing
Escape. When the user presses the Enter key, WinDefDlgProc generates a
WM_COMMAND message with the low USHORT of mpJ equal to the child
ID of the default push button in the dialog box. This is another part of the
keyboard interface that the Presentation Manager adds to control windows
organized in a dialog box. When this dialog box is displayed, the user can
make it go away by pressing the Spacebar, Enter key, or Escape key or by
clicking the button.

Like window procedures, dialog procedures must be listed in the EXPORTS
section of the module definition file. This is the EXPORTS section of
ABOUTBOX.DEF:

EXPORTS ClientWndProc
AboutDlgProc

CHAPTER FOURTEEN: DIALOG BOXES 629

Creating the Dialog Box Window
A program can create a modal dialog box window by calling WinDIgBox.
ABOUTBOX calls WinDIgBox from ClientWndProc when the user selects
"About AboutBox ... " from the program's menu:

WinDlgSox (HWND_DESKTOP, hwnd, AboutDlgProc.
NULL, IDD_ABOUT, NULL) ;

The parameter AboutDlgProc is the address of the dialog procedure;
IDD_ABOUT is the resource name ID of the dialog box template. The
WinDIgBox function creates the dialog box window and the child control
windows based on the template and displays the dialog box. AboutDlgProc
then processes messages to the dialog box window. When AboutDlgProc
calls WinDismissDIg, the dialog box window is destroyed. Only then does
the WinDIgBox function return control to ClientWndProc.

The general syntax of the WinDIgBox function is

usResult = WinDlgBox (hwndParent, hwndOwner, lpfnDlgProc,
hmod. idResource, pCreateParams) ;

Dialog boxes are usually top-level windows, so hwndParent is set to
HWND_DESKTOP. The dialog box is positioned relative to the lower-left
corner of the window indicated by the hwndOwner parameter; this is usually
the client window.

The hmod parameter is the module containing the dialog box template
resource, and idResource is the resource name ID. As with all resources,
specifying NULL for hmod directs the Presentation Manager to load the
resource from the program's .EXE file. The pCreateParams parameter is a
far (or long) pointer passed to the dialog procedure in the WM_INITDLG
message. (I'll explain how this works when we get to the PATTERNS pro
gram later in this chapter.)

The value returned from WinDIgBox is the second parameter passed to
WinDismissDlg when the dialog window is destroyed. ABOUTBOX doesn't
check this value, but many dialog boxes contain two push buttons labeled
OK and Cancel. Customarily, the dialog box procedure passes TRUE to Win
DismissDlg when OK is clicked and FALSE when Cancel is clicked. Thus the
client window procedure can determine from the return value of
WinDIgProc whether the dialog box was exited with OK or Cancel. (We'll
find a use for this in the PATTERNS program.) Note also that the second

630 SECTION FOUR: USING RESOURCES

parameter to WinDismissDlg and the return value from WinDlgBox are
USHORTs, so this value need not be limited to a simple BOOL variable.

The WinDlgBox function doesn't return until WinDismissDlg is called
within the dialog procedure. During the time the dialog box is displayed,
the program's other windows are disabled and can't receive user input.
However, the client window procedure can still receive other messages such
as WM_PAINT or WM_TIMER, so be alert to possible reentrancy problems
when you call WinDlgBox.

The "Square Button" About Box
You'll recall that in Chapter 11 we created our own window class for a push
button control with a square outline and a three-dimensional appearance.
Let's use that square push button in a dialog box.

The statements in the ABOUTBOX.RC dialog box template beginning with
the words CTEXT, ICON, and DEFPUSHBUTTON are simply convenient
ways of defining what classes and styles of child window controls you want
in the dialog box. Rather than use these keywords, you can use statements
beginning with the keyword CONTROL or WINDOW instead. (The two key
words are synonymous.) The general syntax of a CONTROL statement is

CONTROL "text", ChildID, x, y, width, height, class [, style]

The second-to-Iast field is a window class. The last field (which is optional
but almost always present) specifies the window style.

For example, rather than use

DEFPUSHBUTTON "OK", DID_OK, 80, 8, 40, 16, WS_GROUP

you can use

CONTROL "OK", DID_OK, 80, 8, 40, 16, we_BUTTON,
BS_PUSHBUTTON : BS_DEFAULT WS_VISIBLE: WS_TABSTOP : WS_GROUP

These two statements are equivalent. With the exception of the
WS_TABSTOP and WS_GROUP window styles (which I'll explain later in
this chapter), the information in the CONTROL statement might clarify
what the Presentation Manager does when it creates a dialog box. The
various fields of the CONTROL statement translate into parameters used
in a WinCreateWindow call: WC_BUTTON specifies the window class,
BS_PUSHBUTTON and BS_DEFPUSHBUTTON are button styles, and
WS_ VISIBLE is a window style.

CHAPTER FOURTEEN: DIALOG BOXES 631

The DEFPUSHBUTTON keyword is recognized only by the resource com
piler. The resource compiler constructs an entry in the binary .RES file that
contains all information explicitly indicated in the equivalent CONTROL
statement. But one advantage of the CONTROL statement is that it lets you
go beyond the predefined types of control keywords that the resource com
piler recognizes.

For example, suppose you define a window class in your program with the
name "SqBtn", just as we did in Chapter 11. In that case you can use a
CONTROL statement in a dialog box template like this:

CONTROL "OK", DID_OK, 80. 8, 40. 16. "SqBtn".
WS_VISIBLE : WS_TABSTOP : WS_GROUP

Note that the "SqBtn" window class has replaced the WC_BUTTON iden
tifier and that the BS_PUSHBUTTON and BS_DEFAULT identifiers have
been removed. The only requirement is that you register the "SqBtn" class
in the program before you call WinDlgBox for the first time.

To prove that this works, the SQABOUTprogram shown in Figure 14-3
creates an About box with a square push button.

The SQABOUT File

/t- - - - - - - - - - - - - - - - - --
SQABOUT make file
if- - - - - - - - - - - - - - - - - --

sqabout.obj : sqabout.c aboutbox.h
cl -c -G2sw -W3 sqabout.c

sqbtn.obj : sqbtn.c
c1 ·c -G2sw -W3 sqbtn.c

sqabout.res : sqabout.rc aboutbox.h aboutbox.ico
rc -r sqabout

sqabout.exe : sqabout.obj sqbtn.obj sqabout.def
link sqabout sqbtn. lalign:16, NUL, os2, sqabout
rc sqabout.res

sqabout.exe : sqabout.res
rc sqabout.res

632 SECTION FOUR: USING RESOURCES

The SQA80UT.C File

1*-- -----------
SOABOUT.C -- Demonstration of About Box with Square 3D Button

- - - - -- - -- - - - -- - - -- - -- - - -- - -- - -- - - -- - - - -- - -- - -- - -- --- - - - - - -- - -- -*1

41define INCL_WIN
41include <os2.h>
41include "aboutbox.h"

VOID RegisterSqBtnClass (HAB) ; II In SOBTN.C

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM, MPARAM)
MRESULT EXPENTRY AboutDlgProc (HWND, USHORT, MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass[] - "SqAbout" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU FCF_ICON ;

HAB hab ;
HMO hmq ;
HWND hwndFrame. hwndClient
OMSG qmsg ;

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab, 0)

RegisterSqBtnClass (hab) ;

WinRegisterClass (hab, szClientClass, ClientWndProc, OL, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags, szClientClass, NULL,
OL. NULL, IO_RESOURCE, &hwndClient)

while (WinGetMsg (hab, &qmsg, NULL, 0, 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 633

Figure 14-3. The SQABOUT.C File. continued

MRESULT EXPENTRV ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl, MPARAM mp2)
(

switch (msg)
{

case WM-COMMAND:
switch (COMMANDMSG(&msg)-)cmd)

{

case 10M_NEW:
case IDM_OPEN:
case IDM_SAVE:
case IOM_SAVEAS:

WinAlarm (HWND_DESKTOP. WA_NOTE)
return 0 ;

case IDM_ABOUT:
WinDlgBox (HWND_DESKTOP. hwnd, AboutDlgProc,

NULL, IOD_ABOUT, NULL) ;
return 0 ;

break ;

case WM_ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd, msg, mpl. mp2)

MRESULT EXPENTRY AboutDlgProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

switch (msg)
(

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case DID_OK:
case DID_CANCEL:

break ;

WinDismissDlg (hwnd. TRUE)
return 0 ;

return WinDefDlgProc (hwnd. msg, mpl. mp2)

634 SECTION FOUR: USING RESOURCES

The SQA80UT.RC File

1* -
SQABOUT.RC resource script file

- -*/

Iii ncl ude <os2. h>
'include "aboutbox.h"

POINTER IO_RESOURCE aboutbox.ico

MENU IO_RESOURCE
{

SUBMENU "-File",
{

MENU ITEM "-New",
MENU ITEM "-Open ... ",
MENUITEM "-Save",
MENU ITEM "Save -As ... ",
MENU ITEM SEPARATOR

10M_NEW
10M_OPEN
10M_SAVE
IoM_SAVEAS

MENU ITEM "A-bout AboutBox ... ", 10M_ABOUT
}

oLGTEMPLATE Ioo_ABOUT
{

OIALOG "",0, 32, 32. 200. 88" FCF_DLGBOROER
{

CTEXT "AboutBox"
ICON IO_RESOURCE
CTEXT "Sample ""About"" Dialog Box"
CTEXT "Copyright (C) Charles Petzold. 1988"

-1,
-1.
-1.
-1.

10, 64, 180,
8, 56, 0,

10, 40. 180.
10. 32, 180.

CONTROL "OK" OID_OK. 80. 8, 40.
"SqBtn", WS_VISIBLE I WS_TABSTOP I WS_GROUP I I

The SQA80UT.DEF File

: SQABOUT.OEF module definition file
---------------------------- .. ----- ... --,

NAME SQABOUT WINoOWAPI

8

o
8
8

16.

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 635

Figure 14-3. The SQABOUT.DEF File. continued

OESCR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'About Box with Square Button (C) Charles Petzold. 1988'

1024
8192
ClientWndProc
AboutDlgProc
SqBtnWndProc

Figure 14-3. The SQABOUT program.

Compiling this program requires the SQBTN.C file from Chapter 11 and the
ABOUTBOX.H and ABOUTBOX.lCO files from Figure 14-1.

The SQABOUT.RC resource script file IS the same as ABOUTBOX.RC except
that a CONTROL statement specifying the "SqBtn" window class replaces
the DEFPUSHBUTTON statement in ABOUTBOX.RC. The SQABOUT.C pro
gram is nearly the same as ABOUTBOX.C except that SQABOUT calls the
RegisterSqBtnClass function (in SQBTN.C) from main. Figure 14-4 shows the
dialog box created by SQABOUT.

Iiioffi1 AboutBox
~

Sample "About" Dialog Box
Copyright (C) Charles Petzold, 1988

Figure 14-4. The SQABOUT display.

A More Complex Dialog Box
Now that you've mastered all the basics, you're ready to create dialog boxes
with more than just a single button. In Chapter 11 we wrote a program
called DRAWLINE that created some radio buttons on its client window and
drew a line based on a specified line pattern and color. The PATTDLG pro
gram, shown in Figure 14-5, is similar except that it uses a dialog box.

636 SECTION FOUR: USING RESOURCES

The PATTDLG File

n-------------------
PATTDLG make file
#-------------------

pattdlg.obj : pattdlg.c pattdlg.h
cl -c -G2sw -W3 pattdlg.c

pattdlg.res : pattdlg.rc pattdlg.h
rc -r pattdlg

pattdlg.exe : pattdlg.obj pattdlg.def
link pattdlg, /a11gn:16. NUL, os2. pattdlg
rc pattdlg.res

pattdlg.exe : pattdlg.res
rc pattdlg.res

The PATTDLG.C File

1*--
PATTDlG.C -- Select GPI Patterns from D1alog Box

- _. - - - - - _.* /

/fdefine INCLWIN
!ldef1ne INCl_GPI
#include <os2.h>
#include "pattdlg.h"

typedef struct
{

SHORT sPattern
SHORT sColor :
BOOl fBorder ;
}

PATTERNSDATA ;

typedef PATTERNSDATA FAR *PPATTERNSDATA ;

MRESUlT EXPENTRV ClientWndProc
MRESULT EXPENTRY AboutDlgProc

(HWND. USHORT. MPARAM. MPARAM)
(HWND. USHORT. MPARAM. MPARAM)

MRESUlT EXPENTRV PatternDlgProc (HWND, USHORT, MPARAM, MPARAM)

HAB hab:

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 637

Figure 14-5. The PATTDLG.C File. continued

int main (void)
{

static CHAR szClientClass[] - "PattDlg" :
static UlONG flFrameFlags - FCF_TITLEBAR

HMO hmq ;

FCF_SIZEBORDER
FCF_SHEllPOSITION
FCF_MENU

HWND hwndFrame. hwndClient :
QMSG qmsg ;

hab - Winlni~ialize (0)
hmq = WinCreateMsgQueue (hab, 0) ;

FCF_SYSMENU
FCF_MINMAX
FCF_TASKLIST

WinRegisterClass (hab. szClientClass. ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL,
OL. NULL, ID_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWNO_OESKTOP, SPTR-APPICON. FALSE),
NULl) :

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinOispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szAppName [] - "PATTDLG" :
static CHAR szKeyName [] - "SETTINGS"
static PATTERNSDATA pdCurrent = { IDD_DENSEl, IDD_BKGRND. TRUE}
static SHORT
HPS
POINTl
SHORT

cxClient. cyClient ;
hps ;
ptl ;
sDataLength

638 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-5. The PATTDLG.C File. continued

switch (msg)
{

case WM_CREATE:
sDataLength - sizeof pdCurrent ;

WinQueryProfileData (hab. szAppName, szKeyName. &pdCurrent.
&sOataLength) ;

return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case 10M_PATTERNS:
if (WinDlgBox (HWND_DESKTOP, hwnd. PatternDlgProc.

NULL. IDD_PATTERNS. &pdCurrent»

WinlnvalidateRect (hwnd. NULL. FALSE) ;
return 0 :

case IDM_ABOUT:
WinDlgBox (HWND_DESKTOP, hwnd. AboutDlgProc.

NULL. IOO_ABOUT, NULL) ;
return 0 ;

break ;

case WM-PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps) :

GpiSetColor (hps, pdCurrent.sColor -
IDD_BKGRND + CLR-BACKGROUND)

GpiSetPattern (hps, pdCurrent.sPattern -
IDD_DENSEl + PATSYM_DENSEl)

ptl.x - cxClient / 4 :
ptl.y - cyClient / 4 ;
GpiMove (hps. &ptl) ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 639

Figure 14-5. The PATTDLG.C File. continued

ptl.x * ... 3 ;
ptl.y *- 3 ;
GpiBox (hps. pdCurrent.fBorder ? DRO_OUTlINEFIll ORO_FIll,

&ptl, Ol, OU ;

WinEndPaint (hps) ;
return 0 ;

case WM_OESTROY:
if (MBID_YES -- WinMessageBox (HWNO_DESKTOP. hwnd,

"Save current settings?", szAppName, 0,
MB_YESNO : MB_ICONQUESTION)

WinWriteProfileData (hab. szAppName, szKeyName, &pdCurrent,
sizeof pdCurrent) ;

break :

return WinOefWindowProc (hwnd, msg, mp!, mp2)

MRESUlT EXPENTRY AboutOlgProc (HWNO hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

switch (msg)
{

case WM_COMMAND:
switch (COMMANDMSG(&msg)-)cmd)

{

case DID_OK:
case DID_CANCEL:

break ;

WinDismissDlg (hwnd, TRUE)
return 0 ;

return WinDefOlgProc (hwnd. msg. mpl. mp2)

MRESUlT EXPENTRY PatternDlgProc (HWND hwnd, USHORT msg. MPARAM mp!, MPARAM mp2)
{

static PATTERNSOATA pdlocal ;
static PPATTERNSDATA ppdCurrent

640 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-5. The PATTDLG.C File. continued

switch (msg)
{

case WM-INITDLG:
ppdCurrent - MPFROMP (mp2)
pdlocal - *ppdCurrent :

W1nSendDlgltemMsg (hwnd. pdLocal.sPattern. BM_SETCHECK.
MPFROM2SHORT (TRUE. 0). NULL) ;

W1nSendD1gItemMsg (hwnd. pdLocal.sColor, BM_SETCHECK.
MPFROM2SHORT (TRUE. 0). NULL) ;

WinSendDlgltemMsg (hwnd. IOD_BORDER. BM_SETCHECK,
MPFROM2SHORT (pdLocal.fBorder. 0). NULL)

WinSetFoeus (HWND_DESKTOP.
WinWindowFromID (hwnd. pdLocal.sPattern»

return 1 :

case WM_CONTROL:
if (SHORTlFROMMP (mpl))- IDO_DENSEl &&

SHORTIFROMMP (mpl) <- IOD_HALFTONE)
{

WinSendDlgltemMsg (hwnd. pdLocal.sPattern. BM_SETCHECK.
MPFROM2SHORT (FALSE. 0). NULL) :

pdLocal .sPattern - SHORTlFROMMP (mpl) ;

WinSendDlgltemMsg (hwnd. pdLocal.sPattern, BM_SETCHECK.
MPFROM2SHORT (TRUE. 0). NULL) ;

else if (SHORTlFROMMP (mpl) >- IDD_BKGRNO &&
SHORTIFROMMP (mpl) <- IOD_PALEGRAY)

WinSendDlgltemMsg (hwnd. pdLocal.sColor. BM_SETCHECK.
MPFROM2SHORT (FALSE. 0), NULL) ;

pdlocal.sColor - SHORTIFROMMP (mpl) ;

WinSendOlgItemMsg (hwnd. pdLocal.sColor. BM_SETCHECK.
MPFROM2SHORT (TRUE. 0). NULL)

return 0

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 641

Figure 14-5. The PATTDLG.C File. continued

case WM_COMMAND:
switch (COMMANDMSG(&msg)-)cmd)

{

case DID_OK:
pdlocal .fBorder - (BOOl) WinSendDlgltemMsg (hwnd,

IDD_BORDER, BM_OUERYCHECK, NUll, NULL) ;

*ppdCurrent - pdlocal

WinDismissDlg (hwnd. TRUE)
return 0 ;

case DID_CANCEL:

brea k ;

WinDismissDlg (hwnd. FALSE)
return 0 ;

return WinDefDlgProc (hwnd, msg, mpl. mp2)
}

The PATTDLG.H File

/*-----------------------
PATTDLG.H header file

- -* /

#define ID_RESOURCE

Ildefi ne IDM_SELECT

fldefi ne IDM_PATTERNS 10
4/define IDM_ABOUT 11

#define IDD_ABOUT 1
ffdefi ne IDD_PATTERNS 2

Ildefi ne TDD_DENSE! 10
Ifdefi ne IDD_HALFTONE (IDD_DENSEl + 16)
Ildefi ne IDD_BKGRND 30
#define IDD_PALEGRAY (IDD_BKGRND + 15)
tfdefi ne IDD_BORDER 50

642 SECTION FOUR: USING RESOURCES

The PATTDLG. RC File

/*---------------------------------
PATTOlG.RC resource script file

---------------------------------*/

#include <os2.h>
'include ~pattdlg,h"

MENU ID_RESOURCE
{

SUBMENU "-Select",
{

MENUITEM "-Pattern and Color ... ". 10M_PATTERNS
M£NUITEM SEPARATOR
MENU ITEM "A-bout Patterns...... IOM..ABOUT
}

DLGTEMPLATE IOD_ABOUT
{

DIALOG "", O. 32. 32. 200. 88 •• FCF_DlGBORDER
{

CTEXT "PattDlg" -1, 10. 64. 180. 8
10. 40. 180, 8
10. 32, 180, 8

CTEXT "Select Patterns from Dialog Box" -1.
CTEXT "Copyright (C) Charles Petzold. 1988~ -1,
DEFPUSHBUTTON "OK" DID_OK.
}

80. 8. 40, 16. W$_GROUP

DLGTEMPLATE IDD_PATTERNS
{

DIALOG O. 8. 8. 280. 180 •. FCF_DLGBORDER
{

GROUPBOX "Pattern" -1. 8. 30. 128. 144
RADIOBUTTON "Dense 1" IDD_DENSE1 + 0. 12. 148. 56. 12. WS_GROUP
RADIOBUTTON "Dense 2" rDD_DENSE! + 1. 12. 134. 56. 12
RADIOBUTTON "Dense 3" IDD_DENSE! + 2, 12. 120. 56, 12
RADIOBUTTON "Dense 4" I DO_DENSE! + 3, 12. 106. 56. 12
RADIOBUTTON "Dense 5" I DD_DENSE! + 4. 12, 92. 56. 12
RADIOBUTTON "Dense 6" I DD_DENSE! + 5. 12. 78. 56. 12
RADIOBUTTON "Dense 7" I DO_DENSE! + 6. 12. 64. 56. 12
RADIOBUTTON "Dense 8" I DD_DENSE! + 7. 12. 50. 56. 12
RADIOBUTTON "Vert" IDD_DENSE! + 8. 12. 36, 56. 12
RAOIOBUTTON "Horiz" IDD_DENSEI + 9. 76. 148. 56. 12

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 643

Figure 14-5. The PATTDLG.RC File. continued

RADIOBUTTON "Diag 1" IOD_DENSEI + 10, 76, 134. 56. 12
RADIOBUTTON "Diag 2" IDD_DENSEI + 11, 76. 120. 56, 12
RADIOBUTTON "Diag 3" IDD_DENSEl + 12. 76. 106. 56. 12
RADIOBUTTON "Diag 4" IDD_DENSE! + 13. 76. 92, 56. 12
RADIOBUTTON "No Shade" IDD_DENSE! + 14. 76. 78. 56. 12
RADIOBUTTON "Solid" IOD_DENSEI + 15. 76. 64. 56. 12
RADIOBUTTON "Halftone" I DD_DENSEl + 16, 76. 50. 56, 12
GROUPBOX "Color" -1, 144, 44, 128. 130
RAOIOBUTTON "Backgrnd" IDD_BKGRNO + O. 148. 148. 56, 12. WS_GROUP
RAD I OBUTTON "Blue" IDD_BKGRND + 1. 148, 134, 56. 12
RADIOBUTTON "Red" IDD_BKGRNO + 2, 148, 120. 56, 12
RADIOBUTTON "Pink" IOO_BKGRND + 3, 148. 106. 56. 12
RADIOBUTTON "Green" IDO_BKGRNO + 4, 148. 92. 56, 12
RAD I OBUTTON "Cyan" IOD_BKGRNO + 5. 148. 78, 56, 12
RADIOBUTTON "Yellow" IOD_BKGRNO + 6. 148. 64, 56. 12
RADIOBUTTON "Neutral" IOD_BKGRNO + 7. 148, 50, 56, 12
RADIOBUTTON "Ok Gray" IOO_BKGRNO + 8. 212. 148. 56. 12
RADIOBUTTON "Dk Blue" IDD_BKGRNO + 9. 212. 134. 56, 12
RADIOBUTTON "Ok Red" IOO_BKGRNO + 10. 212. 120, 56. 12
RADIOBUTTON "Ok Pink" IDD_BKGRNO + 11. 212, 106. 56. 12
RADIOBUTTON "Dk Green" IDD_BKGRNO + 12, 212, 92. 56. 12
RADIOBUTTON "Ok Cyan" IDD_BKGRND + 13. 212. 78, 56, 12
RADIOBUTTON "Brown" IDD_BKGRND + 14, 212, 64. 56. 12
RADIOBUTTON "Pl Gray" IDD_BKGRNO + 15, 212, 50. 56, 12
AUTOCHECKBOX "Border" IOD_BORDER, 148. 30, 56, 12, WS_GROUP
DEFPUSHBUTTON "OK" DID_OK, 66, 8. 52, 16. WS_GROUP
PUSHBUTTON "Cancel" DID_CANCEL, 162, 8. 52. 16. WS_GROUP
}

The PATTDLG.DEF File

; PATTDlG.DEF module definition file

NAME PATTDLG WINDOWAPI

DEseRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Select GPI Pattterns from Dialog Box (C) Charles Petzold. 1988'

1024
8192
ClientWndProc
PatternOlgProc
AboutOlgProc

Figure 14-5. The PATTDLG program.

644 SECTION FOUR: USING RESOURCES

PATTDLG draws a filled rectangle in its client window using the GpiBox
function. You use the dialog box to select the fill pattern and color and to
choose whether you want a border. The dialog box (shown in Figure 14-6)
contains one group of radio buttons for the pattern and another group for the
color, one check box for the border, and two push buttons labeled "OK"
and "Cancel." Clicking the Cancel button destroys the dialog box without
changing PATTERNS's client window.

Pattern Color

o Dense 1 o Horiz o Backgrnd o Ok Gray

o Dense 2 o Diag 1 OBlue ODkBlue

o Dense 3 o Diag 2 ORed ODkRed

o Dense 4 o Diag 3 o Pink ODkPink

o Dense 5 @rp.I~:'iAj o Green ODkGreen

o Dense 6 o No Shade o Cyan o Ok Cyan

o Dense 7 o Solid o Yellow o Brown

o Dense 8 o Halftone @Neutral OPI Gray

OVert
IZI Border

(OK) (Cancel)

Figure 14-6. The PATTDLG display.

Creation Parameters
PATTDLG draws a box within its client window based on a pattern and color
you select within the dialog box. Let's examine first how ClientWndProc
and the PatternDlgProc dialog box procedure pass data between each other.

Near the top of PATTDLG.C is the definition of a structure named PAT
TERNSDATA. This structure contains three fields (sPa ttern , sColor, and
fBorder) that provide all the information ClientWndProc needs to draw the
patterned box in the client window. Within ClientWndProc, a static variable
of type PATTERNSDATA is defined and initialized:

static PATTERNSDATA pdCurrent = { IDD_DENSEI. IDD_BKGRND. TRUE} ;

The IDD_DENSE1 and IDD_BKGRND identifiers are defined in PATTDLG.H
and used in PATTDLG.RC for child window IDs of the radio buttons. These
are the default values when you first run the program. During the
WM_PAINT message, ClientWndProc uses the three fields of pdCurrent to
set the color (shown on the next page).

CHAPTER FOURTEEN: DIALOG BOXES 645

GpiSetColor (hps. pdCurrent.sColor -
IDD_BKGRND + CLR-BACKGROUND)

and the pattern:

GpiSetPattern (hps. pdCurrent.sPattern -
rDD_DENSEl + PATSYM_DENSEl)

and to determine whether a border should be drawn:

GpiBox (hps. pdCurrent.fBorder ? DRO_OUTlINEFIll : ORO_FIll.
&ptl. Ol. OU :

When you select the "Pattern and Color" option from the menu, Client
WndProe receives a WM_COMMAND message that has a emd field of
IDM_PATTERNS. Here's how it's processed:

case rOM_PATTERNS:
if (WinDlgBox (HWND_DESKTOP. hwnd. PatternOlgProc.

NULL. IDD_PATTERNS. &pdCurrent))

WinlnvalidateRect (hwnd. NULL. FALSE) ;
return 0 ;

A pointer to the pdCurrent structure is passed as the last parameter to
WinDlgBox when you invoke the dialog box. This is the "creation parame
ters" (pCreateParams) field of WinDlgBox. You use this field to pass initial
data to the dialog box procedure.

Within PatternDlgProe, both a structure of type PATTERNSDATA and a
pointer to a PATTERNSDATA structure are defined:

static PATTERNSOATA pdlocal :
static PPATTERNSOATA ppdCurrent

During the WM_INITDLG message, mp2 is set equal to the last parameter of
the WinDlgBox call that invoked the dialog box procedure. In Pattern
DlgProe the pointer is saved in ppdCurrent:

ppdCurrent = MPFROMP (mp2) ;

646 SECTION FOUR: USING RESOURCES

The entire structure is also copied to pdLocal with a simple assignment
statement:

pdLocal - *ppdCurrent

I'll discuss the remainder of the WM_INITDLG message shortly.

As the dialog box is displayed and the user clicks the various radio buttons
and so forth, PatternDlgProc uses pdLocal to store the selected values. How
ever, if the ClientWndProc needs to repaint its client window while the dia
log box is still displayed, it continues to use the values stored in pdCurrent.

You can exit the dialog box by selecting the "OK" or "Cancel" button.
When you select the "OK" button, PatternDlgProc copies the pdLocal
structure back to the structure referenced by the pointer it obtained during
the WM_INITDLG message:

*ppdCurrent == pdLocal ;

The ppdCurrent pointer points to the pdCurrent structure within Client
WndProc. PatternDlgProc then calls WinDismissDlg with a second parameter
of TRUE:

WinDismissDlg (hwnd. TRUE) ;

If you select "Cancel" from the dialog box, the structure is not copied, and
the second paramter of WinDismissDlg is set to FALSE:

WinDismissDlg (hwnd. FALSE) ;

In either case, the dialog box is destroyed, and the second parameter of
WinDismissDlg is returned from the original call to WinDlgBox within
ClientWndProc. If WinDlgBox returns TRUE, ClientWndProc invalidates
the window:

if (WinDlgBox (HWND_DFSKTOP. hwnd. PatternDlgProc.
NULL. IDD_PATTERNS. &pdCurrent»)

WinlnvalidateRect (hwnd. NULL. FALSE) :

This generates a WM_PAINT message and the client window is repainted
with the new fields of pd.Current.

CHAPTER FOURTEEN: DIALOG BOXES 647

You can simplify some of this logic somewhat by eliminating the PAT
TERNSDATA structure and by using global variables to store the cur
rent pattern, color, and border used within ClientWndProc. During the
WM_INITDLG message, PatternDlgProc would copy these variables to local
static variables for use within the dialog box procedure. When you select
"OK", PatternDlgProc then assigns the global variables from the final
values of the local variables.

This alternative using global variables may be simpler, but the approach
used in PATTDLG is more structured. If you want to use the same dialog
box procedure for more than one purpose (for example, if ClientWndProc
displayed both a box and an ellipse and allowed you to change either from
menu options), then using the creation parameters is obviously preferable.

Working with Radio Buttons
Each group of radio buttons in PATTDLG is enclosed in a group box, which
is a We_STATIC window that we also used in the DRAWLINE program in
Chapter 11. In the dialog box template, this window style is indicated by the
GROUPBOX statements. The first GROUPBOX statement in the dialog box
template is followed by 17 RADIOBUTTON statements, which specify
control windows based on the WC_BUTTON window class and the
BS_RADIOBUTTON button style. The text fields of the 17 radio buttons cor
respond to the 17 GPI fill patterns.

A radio button width must accommodate the text plus two characters for the
button itself. A height of 12 units is adequate for displaying the text and but
ton along with a dotted line that surrounds the radio button text when it has
the input focus. I use 14 units for spacing the radio buttons vertically.

The 17 radio buttons have child IDs ranging from IDD_DENSEI to
(IDD_DENSEI + 16). In PATTERNS.H I've defined identifiers for the first
and last child IDs of these 17 controls:

#define IDD_DENSE1
#define IDD_HALFTONE

10
(IOO_DENSE1 + 16)

Painting logic in ClientWndProc requires that the child IDs of the push but
tons be consecutive and in the same order as the corresponding PATSYM
identifiers.

After PatternDlgProc copies the current settings to the pdLocal structure in
the WM_INITDLG message, it must initialize the radio buttons. Because the

648 SECTION FOUR: USING RESOURCES

sPattern field of pdLocal is a child ID of one of the radio buttons, Pattern
DlgProc can use it to send a BM_SETCHECK message to the radio button to
turn the check mark on:

WinSendOlgItemMsg (hwnd. pdLocal.sPattern. BM_SETCHECK.
MPFROM2SHORT (TRUE. 0). NULL) ;

The WinSendDlgltemMsg sends a message to a child window based on
the handle of its parent (hwnd) and the child ID of the control
(pdLocal.sPattern). Normally, if you want to send a message to a child win
dow and you don't know the window handle, you first must call
WinWindowFromID to get the window handle and then call WinSendMsg:

hwndChild - WinWindowFromID (hwnd. pdLocal.sPattern)

WinSendMsg (hwndChild. BM_SETCHECK.
MPfROM2SHORT (TRUE. 0). NULL) ;

The WinSendDlgltemMsg function does this for you.

This first time the dialog box is displayed, pdLocal.sPattern equals
IDD_DENSEI, so the first button in the Patterns group is checked. When the
user clicks a radio button, the button window sends its owner (in this case,
the dialog box window) a WM_CONTROL message. The low USHORT of
mpJ is the child ID.

PatternDlgProc first determines if the child ID is within the range for the
first 17 radio buttons:

case WM_CONTROL:
if (SHORTIFROMMP (mpl) >- IOO_DENSE! &&

SHORT!FROMMP (mpl) <= IDD_HALFTONE)
{

The function then sends the button a BM_SETCHECK message to uncheck
the currently checked button:

WinSendDlgItemMsg (hwnd. pdLocal.sPattern. BM_SETCHECK.
MPFROM2SHORT (FALSE. 0). NULL;

The pdLocal.sPattern variable is then set to the child ID of the button just
pressed, and that button is sent a BM_SETCHECK message to turn the
check on, as shown on the next page.

CHAPTER FOURTEEN: DIALOG BOXES 649

pdLocal.sPattern = SHORTIFROMMP (mpl) :
WinSendDlgltemMsg (hwnd, pdLocal.sPattern, BM_SETCHECK.

MPFROM2SHORT (TRUE, 0), NULL) :

This is similar to the way we handled radio buttons in the DRAWLINE pro
gram in Chapter 11.

Thus, pdLocal.sPattern always has the ID of the currently checked radio but
ton. But only when the user selects "OK" is this copied to the pdCurrent
structure in ClientWndProc:

*ppdCurrent = pdLocal :

The AUTORADIOBUTTON Alternative
The processing of the WM_CONTROL messages from the radio buttons in
PATTDLG is quite similar to that shown in the DRAWLINE program in
Chapter 11. But for radio buttons in dialog boxes, you have an alternative
that makes the processing easier.

First, replace all the RADIOBUTTON keywords in PATTDLG with
AUTORADIOBUTTON. The radio buttons in the dialog box are then created
with a style of BS_AUTORADIOBUTTON rather than BS_RADIOBUTTON.

These buttons check themselves automatically when clicked and also
uncheck all other radio buttons in the same group. Thus the processing of
the WM_CONTROL message is reduced to this:

case WM_CONTROL:
if (SHORTIFROMMP (mpl) >- IDO_DENSEI &&

SHORTIFROMMP (mpl) <- IOO_HALFTONE)
{

pdLocal .sPattern = SHORTIFROMMP (mpl)
}

else if (SHORTIFROMMP (mpl))= IDD_BKGRND &&
SHORTIFROMMP (mpl) <- IDD_LIGHTGRAY)

pdLocal.sColor = SHORTIFROMMP (mpl) :
}

return 0 ;

This logic simply keeps track of the most recent button checked.

650 SECTION FOUR: USING RESOURCES

Working with Check Boxes
In addition to the radio buttons, the dialog box in PATTDLG contains a
"check box." This is a style of button that programs use to indicate an op
tion that can be checked on or off. The check box in PATTDLG determines
whether the rectangle drawn in the client window should include a border.

The child ID of the check box is IDD _BORDER. During processing of the
WN_INITDLG message in PatternsWndProc, the state of the button (checked
or unchecked) is set based on the value of the fBorder field of pdLocal:

WinSendDlgltemMsg (hwnd. IOD_BORDER. BM_SETCHECK,
MPFROM2SHORT (pdlocal.fBorder. 0). NUll) ;

This check box has the window style BS_AUTOCHECKBOX, which means
that the check box window itself toggles the check mark on and off when
clicked. Although the check box sends its owner WM_CONTROL messages,
PatternDlgProc doesn't do anything with them. Instead, when the OK button
is clicked, PatternWndProc obtains the current state of the check box by
sending it a BM_QUERYCHECK message:

pdlocal.fBorder - (BOOl) WinSendOlgltemMsg (hwnd.
IDD_BORDER. BM_OUERYCHECK, NUll. NUll) ;

Tab Stops and Groups
The dialog box in PATTDLG has a complete keyboard interface without any
apparent effort on our part. You can use the Tab key to jump between the
radio buttons, check box, and push buttons. Within each group of radio but
tons, you can use the cursor movement keys to change the checked button.
These two aspects of the keyboard interface are governed by the window
styles called WS_TABSTOP and WS_GROUP. Some of the control windows
have these styles by default; some don't. Sometimes it's necessary for you
to include one of these window styles in the definition for the control win
dow. For example, in the dialog box template in PATTDLG.RC, the check
box and push buttons are explicitly given the WS_GROUP style.

The WS_TABSTOP style determines how the input focus is transferred be
tween control windows when the user presses the Tab key. Initially, the in
put focus is set to the first control in the dialog box (based on the order in
which you define the controls in the template) that has the WS_TABSTOP

style. When the user presses the Tab key, the input focus is transferred to
the very next control that has the WS_TABSTOP style. After the last

CHAPTER FOURTEEN: DIALOG BOXES 651

WS_TABSTOP control is reached, pressing the Tab key transfers the input
focus to the first WS_TABSTOP control. PUSHBUTTON, DEFPUSHBUT
TON, CHECKBOX, and AUTOCHECKBOX control windows all have a
WS_TABSTOP style by default, as do the ENTRYFIELD and LISTBOX con
trol windows used in the HEAD program shown later in this chapter.

The WS_GROUP style governs the way the input focus is transferred be
tween controls when the user presses the Up and Down cursor movement
keys. A range of controls in which the cursor movement keys transfer the
input focus is called a "group." The group ranges from the first control that
has a WS_GROUP style up to (but not including) the next control that has a
WS_GROUP style. Static control windows defined with CTEXT, LTEXT,
RTEXT, ICON, and GROUPBOX have a WS_GROUP style by default. How
ever, these controls can't themselves receive the input focus, so the group
really begins with the next control.

This is how the cursor movement keys work in the two groups of radio but
tons in PATTDLG. The first radio button after each GROUPBOX window
begins a group. The first group of radio buttons ends with the other GROUP
BOX window that precedes the second group. The second group of radio
buttons ends with the CHECKBOX window, which is explicitly given a
WS_GROUP style. The buttons and check boxes in PATTDLG must be ex
plicitly given a WS_GROUP style to prevent the cursor movement keys from
doing anything when these windows have the input focus. If you remove the
WS_GROUP style from the check box control window, you'll find that you
can use the cursor movement keys to move between the check box and the
radio buttons in the second group because the check box is no longer func
tioning as the end of the group.

Although radio buttons don't normally have a WM_TABSTOP style, a
checked radio button functions as if it does. Thus, when you press the Tab
key, the input focus transfers to the radio button that is currently checked in
each group.

The WM_INITDLG Message
The WM_INITDLG message is the first message the dialog procedure
receives. You've already seen how the dialog procedure can use mpJ to ref
erence a pointer passed to WinDIgBox and perform initialization during the
WM_INITDLG message. However, this message also has another function.
The mpJ parameter that accompanies the WM_INITDLG message contains
the window handle of the control window that initially receives the input
focus. This is generally the first control in the dialog box that has the
WS_TABSTOP style. If this is satisfactory, you can either return OL from the

652 SECTION FOUR: USING RESOURCES

dialog procedure after processing WM_INITDLG or call WinDefDlgProc in
lieu of processing WM_INITDLG.

In PATTDLG, the first control that has the WS_TABSTOP style is the check
box. But it makes more sense for a radio button in the first group to get the
input focus. When you want to set the input focus during WM_INITDLG,

call WinSetFocus and return lL from the dialog procedure. In Pattern
DlgProc the code looks like this:

WinSetFocus (HWND_DESKTOP.
WinWindowFromID (hwnd. pdLocal.sPattern»

return 1 ;

If you don't return lL after setting the input focus, the Presentation Man
ager will set the focus to the window indicated by the mpJ parameter.

Saving the Values
When you end PATTDLG, a message box is displayed that asks "Save cur
rent settings?" If you check "Yes" on this message box, PATTDLG will use
the last values of the pattern and color that you selected the next time you
run the program.

The first question that you might ask is: Where is this information being
saved? The Presentation Manager maintains a file named OS2.INI that pro
grams can use for storing configuration data. For example, a user of a Pre
sentation Manager word-processing program might prefer that the program
be started with left margins of 1 inch and "insert mode" turned off.
OS2.INI is an excellent place to store information like that. The Presentation
Manager Control Panel uses OS2.INI to store your color and mouse
preferences and your printer setups.

What makes this even better is that programs do not access OS2.1NI di
rectly. Instead they use Presentation Manager function calls to write to and
read from the file.

Information in OS2.1NI is accessed using two text strings: an "application"
name, which is generally the same name as the program, and a "key"
name, which identifies a particular piece of information that the program
stores. For example, suppose the Presentation Manager word-processing
program I mentioned is called WORDPROC. To store the user's preference
for insert mode and left margins, the program would use an application
name of WORDPROC and key names of INSERT MODE and LEFTMARGIN.

CHAPTER FOURTEEN: DIALOG BOXES 653

For PATTDLG, the application name is PATTDLG, which is stored in the
szAppName variable in ClientWndProc. To store the current settings, the
program uses the key name SETTINGS, stored in szKeyName.

When you end PATTDLG and answer "Yes" to the message box displayed
during the WM_DESTROY message, PATTDLG writes the current settings to
OS2.INI by calling

WinWriteProfileData (hab. szAppName, szKeyName. &pdCurrent.
sizeof pdCurrent) ;

You use this function to write binary data of any length to OS2.1NI. In this
case, PATTDLG writes the entire pdCurrent structure to the file. The last
parameter is the size of this structure. You can also use WinWrite
ProfileString to write a zero-terminated string.

During the WM_CREATE message, PATTDLG attempts to read the data from
OS2.INI:

WinQueryProfileData (hab. szAppName. szKeyName. &pdCurrent.
&sDataLength) ;

If the Presentation Manager does not find a matching application and key
name in OS2.1NI, WinQueryProfileData returns FALSE, but PATTDLG
doesn't check for this. The pdCurrent structure already contains initialized
default values, and these will not be altered by the WinQueryProfileData
function call.

You can read text strings from OS2.1NI using WinQueryProfileString. If the
information you store using WinWriteProfileData is a single integer, you can
read it using WinQueryProfilelnt. The WinQueryProfileSize function returns
the size of the stored data for a particular application and key name.

The File Open Dialog Box
One of the most complex, yet essential, modal dialog boxes is invoked by
the menu's File Open option. The HEAD program, shown in Figure 14-7, is
a Presentation Manager version of the UNIX head utility. The program
shows the beginning of the file in its client window. To specify a filename,
you can use the HEAD command line or the File Open dialog box.

654 SECTION FOUR: USING RESOURCES

The HEAD File

11- - - - - - - - - - - - - - - -
/I HEAD rna ke fil e
#----------------

head.obj : head.c head.h
cl -c -G2sw -W3 head.c

easyfont.obj : easyfont.c
cl -c -G2sw -W3 easyfont.c

head.res : head.rc head.h
rc -r head

head.exe : head.obj easyfont.obj head.def
link head easyfont. lalign:16, NUL. os2, hedd
rc head.res

head.exe : head. res
rc head. res

The HEAD.C File

1* -
HEAD.C -- Displays File Head

- -*/

Iidefine INCL_WIN
#define INCLGPI
#include <os2.h>
#include <malloc.h>
Iii ncl ude <stdio.h>
#include <string.h>
Ilinclude "easyfont.h"
1;; ncl ude "head.h"

1/defi ne LCID_FIXEDFONT 1L
11defi ne LCID_BOLDFONT 2L

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)
MRESULT EXPENTRY AboutDlgProc (HWND, USHORT. MPARAM. MPARAM)
MRESULT EXPtNTRY OpenDlgProc (HWND, USHORT. MPARAM, MPARAM)
SHORT ParseFileName (CHAR *, CHAR *) ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 655

Figure 14-7. The HEAD.C File. continued

CHAR szClientClass [] - "Head" :
CHAR szFileName [80] :
HAB hab

int main (int argc, char *argv[])

static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU
FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF _MENU

HMO hmq :
HWND hwndFrame, hwndClient ;
OMSG qmsg :

II Check for filename parameter and copy to szFileName

if (argc > 1)

ParseFileName (szFileName, argv [1])

II Continue normally

hab = Winlnitialize (0)
hmq = WinCreateMsgOueue (hab, 0) :

WinRegisterClass (hab. szClientClass, ClientWndProc, CS_SIZEREDRAW. 0)

hwndFrame = WinCreateStdWindow (HWNO_DESKTOP. WS_VISIBLE,
&flFrameFlags, szClientClass. NULL.
OL. NULL, IO_RESOURCE. &hwndClient)

if (hwndFrame != NULL)
{

WinSendMsg (hwndFrame, WM_SETICON,
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON, FALSE),
NULL) ;

while (WinGetMsg (hab, &qmsg, NULL. O. 0))
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
}

WinDestroyMsgQueue (hmq)
WinTermindte (hab)
return 0 :

656 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-7. The HEAD.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szErrorMsg [] - "File not found or could not be opened" ;
static SHORT cxClient, cyClient, cxChar, cyChar. cyDesc ;
CHAR *pcReadBuffer
FILE
FONTMETRI CS
HPS
POINTL
SHORT

swi tch (msg)
{

*filelnput
fm ;
hps ;
ptl ;
sLength

case WM_CREATE:
hps = WinGetPS (hwnd)
EzfQueryFonts (hps) ;

if (!fzfCreateLogFont (hps, LCID_FIXEDFONT, FONTFACE_COUR.
FONTSIZE_IO. 0»

WinReleasePS (hps) ;

WinMessageBox (HWND_DESKTOP. HWND_DESKTOP,
"Cannot find a fixed-pitch font. Load the Courier"
"fonts from the Control Panel and try again.",
szClientClass. O. MB_OK : MB_ICONEXCLAMATION) :

return 1 ;
}

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm)
cxChar = (SHORT) fm.1AveCharWidth :
cyChar - (S~ORT) fm.1MaxBaselineExt
cyDesc = (SHORT) fm.1MaxDescender

GpiSetCharSet (hps. LCID_DEFAULT)
GpiOeleteSetld (hps, LCID_FIXEDFONT)
WinReleasePS (hps) ;
return 0

case WM_SIZE:
cxClient - SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 657

Figure 14-7. The HEAD.C File. continued

case WM_COMMAND:
switch (COMMANOMSG(&msg)->cmd)

{

case 10M_OPEN:
if (WinDlgBox (HWND_DESKTOP. hwnd, OpenDlgProc.

NULL, IDD_OPEN, NULL»
WinlnvalidateRect (hwnd, NULL, FALSE) ;

return 0 ;

case 10M_ABOUT:
WinDlgBox (HWND_DESKTOP, hwnd, AboutOlgProc.

NULL, IOD_ABOUT. NULL) ;
return 0 ;

break :

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL, NULL)
GpiErase (hps)

if (szFileName [0] !- • \0')
{

EzfCreateLogFont (hps, LCIO_FIXEDFONT.
FONTSIZE_IO,

EzfCreateLogFont (hps, LCIO_BOLDFONT,
FONTSIZE-IO,

GpiSetCharSet (hps, LCIO_BOLDFONT)
ptl.x - cxChar ;
ptl.y - cyClient - cyChar + cyDesc

FONTFACE_COUR.
0) ;

FONTFACE_COUR.
FATT!LSELBOLD)

GpiCharStringAt (hps, &ptl. (LONG) strlen (szFileName),
szFileName) ;

ptl.y -= cyChar

if «filelnput - fop en (szFileName. "r"» !- NULL)
{

GpiSetCharSet (hps. LCIO_FIXEOFONr) ;
pcReadBuffer - malloc (cxClient / cxChar)

while «ptl.y -- cyChar) > 0 &&
fgets (pcReadBuffer. cxClient / cxChar - 2.

filelnput) 1- NULL)

sLength - strlen (pcReadBuffer)

658 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-7. The HEAD.C File. continued

if (pcReadBuffer [sLength - 1] -- '\n')
sLength-- :

if (sLength > 0)
GpiCharStringAt (hps. &ptl. (LONG) sLength,

pcReadBuffer) ;

else

free (pcReadBuffer)
fclose (filelnput) ;
}

II file cannot be opened

ptl.y -- cyChar
GpiCharStringAt (hps. &ptl.

(LONG) strlen (szErrorMsg).
szErrorMsg)

GpiSetCharSet (hps. LeID_DEFAULT)
GpiOeleteSetId (hps. LCID_FIXEDFONT)
GpiDeleteSetId (hps. LCID_BOLDFONT) ;
}

WinEndPaint (hps) ;
return 0 :

return WinOefWindowProc (hwnd. msg. mpl. mp2)

MRESULT EXPENTRY AboutDlgProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

switch (msg)
{

case WM-COMMAND:
switch (COMMANDMSG(&msg)->cmd)

(

case DID_OK:
case DID_CANCEL:

}

break ;

WinDismissDlg (hwnd. TRUE)
return 0 ;

return WinDefDlgProc (hwnd. msg. mpl. mp2)

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 659

Figure 14-7. The HEAD.C File. continued

VOID FillDirListBox (HWND hwnd, CHAR *pcCurrentPath)
{

static CHAR szDrive [] -" :"
FILEFINDBUF findbuf :
HDIR
SHORT
USHORT
ULONG

hOir - 1 :
sDrive :
usDriveNum, usCurPathLen. us$earchCount "'" 1
ulDriveMap ;

DosOCurDisk (&usDriveNum, &ulDriveMap) ;
pcCurrentPath [0] = (CHAR) usDriveNum + '@'

pcCurrentPath [1] "'" '.' .
pcCurrentPath [2] = '\ \' ;

usCurPathLen - 64 ;
DosQCurOir (0, pcCurrentPath + 3, &usCurPathLen) ;

WinSetOlgltemText (hwnd, IDD_PATH, pcCurrentPath) :
WinSendDlgltemMsg (hwnd, IDD_DIRLIST, LM_DELETEALL, NULL, NULL)

for (sDrive = 0 ; sDrive < 26 ; sDrive++)
if (ulDriveMap & lL « sDrive)

{

szDrive [1] = (CHAR) sDrive + 'A' :

WinSendDlgItemMsg (hwnd, IDO_DIRLIST, LM_INSERTITEM,
MPFROM2SHORT (LIT_END, 0),
MPFROMP (szDrive» ;

DosFindFirst ("*.*", &hDir, Ox001l, &findbuf, sizeof findbuf,
&usSearchCount, OL) :

while (usSearchCount)
{

if (findbuf.attrFile & Ox0010 &&
(findbuf.achName [0] !- '.' :: findbuf.achName [1]»

WinSendDlgltemMsg (hwnd. IDD_DIRLIST, LM_INSERTITEM,
MPFROM2SHORT (LIT_SORTASCENDING, 0),
MPFROMP (findbuf.achName» :

DosFindNext (hOir, &findbuf, sizeof findbuf, &usSearchCount)

660 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-7. The HEAD.C File. continued

VOID FillFileL1stBox (HWND hwnd)
{

FILEFINDBUF findbuf ;
HDIR
USHORT

hDir - 1 :
usSearchCount - 1

WinSendDlgItemMsg (hwnd. IDD_FIlElIST. lM_DELETEALL. NULL. NULL)

DosFindFirst ("*.*". &hDir. Ox0007. &findbuf. sizeof findbuf.
&usSearchCount. Ol) :

while (usSearchCount)
{

WinSendDlgItemMsg (hwnd. IDD_FILELIST. LM_INSERTITEM.
MPFROM2SHORT (LIT_SORTASCENDING. 0).
MPFROMP (findbuf.achName» :

DosFindNext (hOir. &findbuf. sizeof findbuf. &usSearchCount)
}

MRESULT EXPENTRY OpenDlgProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szCurrentPath [80]. szBuffer [80] :
SHORT sSelect

swi tch (msg)

case WM_INITDLG:
Fil10irlistBox (hwnd. szCurrentPath)
FillFileListBox (hwnd) :

WinSendDlgItemMsg (hwnd. IDO_FILEEOIT. EM_SETTEXTLIMIT.

return 0 :

case WM_CONTROL:
if (SHORTIFROMMP (mpl)

SHORTIFROMMP (mpl)
{

MPFROM2SHORT (80. 0). NULL) ;

IDD_DIRLIST ::
IDD_FI LEU ST)

sSelect - (USHORT) WinSendDlgItemMsg (hwnd.
SHORTIFROMMP (mpl).
LM_OUERYSELECTION. OL. Ol) ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 661

Figure 14-7. The HEAD.C File. continued

WinSendDlgltemMsg (hwnd, SHORTIFROMMP (mpl),
LM_QUERYITEMTEXT,
MPFROM2SHORT (sSelect, sizeof szBuffer).
MPFROMP (szBuffer» ;

switch (SHORTIFROMMP (mpl» II Control 10

case IDD_DIRLIST:
switch (SHORT2FROMMP (mpl» II notification code

{

case LN_ENTER:
if (szBuffer [0] == ' .)

OosSelectDisk (szBuffer [1] . '@')

else
DosChDir (szBuffer, OL) ;

FillDirListBox (hwnd, szCurrentPath)
Fil1FileListBox (hwnd) :

WinSetDlgltemText (hwnd. IDD_FILEEDIT. "")
return 0 ;

break ;

case IDD_FILELIST:

break ;

switch (SHORT2FROMMP (mpl» II notification code
{

case LN_SELECT:
WinSetOlgltemText (hwnd. IDD_FILEEDIT,

szBuffer) ;
return 0 ;

case LN_ENTER:

break ;

ParseFileName (szFileName. szBuffer)
WinDismissDlg (hwnd, TRUE)
return 0 ;

662 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-7. The HEAD.C File. continued

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case DID_OK:
WinQueryDlgItemText (hwnd. IDD_FILEEDIT.

sizeof szBuffer. szBuffer)

switch (ParseFileName (szCurrentPath. szBuffer»
{

case 0:
WinAlarm (HWND_DESKTOP. WA_ERROR) ;
FillDirListBox (hwnd. szCurrentPath)
FillFileListBox (hwnd) :
return 0 ;

case 1:
FillDirListBox (hwnd. szCurrentPath) ;
FillFileListBox (hwnd) ;
WinSetDlgItemText (hwnd. IDD_FILEEOIT, "H)

return 0 :

case 2:

break ;

strcpy (szFileName. szCurrentPath)
WinDismissDlg (hwnd. TRUE) :
return 0 :

case DID_CANCEL:

break ;

WinDismissDlg (hwnd. FALSE)
return 0 ;

return WinDefDlgProc (hwnd. msg. mp1. mp2)

SHORT ParseFileName (CHAR *pcOut. CHAR *pcln)
{

1* - - - - - - • - w -

Input: pcOut Pointer to parsed file specification.
pcln -- POinter to raw file specification.

Returns: 0
1

peln had invalid drive or directory.
peln was empty or had no filename.

2 pcOut pOints to drive. full dir. and file ndme.

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 663

Figure 14-7. The HEAD.C File. continued

Changes current drive and directory per pcln string.
-----~------~--- ----------*1

CHAR *peLastSlash. *pcFileOnly :
UlONG ulDriveMap;
USHORT usDriveNum. usDirlen - 64 ;

strupr (pcln) ;

II If input string is empty. return 1

if (pcIn [0] == '\0')
return 1 ;

II Get drive from input string or current drive

if (pcln [1] =- ';')

{

if (DosSelectDisk (pcln [0] - '@'»
return 0 ;

peIn +- 2 ;
}

DosQCurDisk (&usDriveNum, &ulDriveMap)

*pcOut++ = (CHAR) usDriveNum + '@' ;
*pcOut++ = ';' ;
*pcOut++ - • \ \ '

II If rest of string is empty. return 1

if (peln [0] -- '\0')
return 1 ;

II Search for last backslash. If none, could be directory.

if (NULL == (pcLastSlash = strrchr (pcIn. '\\'»)
{

if (!DosChDir (pcln. OL»
return 1 ;

II Otherwise, get current dir & attach input filename

DosQCurDir (0. pcOut. &usDirLen) ;

664 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-7. The HEAD.C File. continued

if (strlen (pcln) > 12)
return 0

if (*(pcOut + strlen (pcOut) ~ 1) 1- '\\'}
strcat (pcOut++, "\\")

strcat (pcOut, pcln) ;
return 2 ;

II If the only backslash is at beginning. change to root

if (pcln -- pcLastSlash)
{

DosChDir ("\\", OU :

if (pcln (1] '\0')
return 1 ;

strcpy (pcOut, pcln + 1)
return 2 ;

II Attempt to change directory -- Get current dir if OK

*pclastSlash = '\0'

if (OosChDir (peln. OU)
return 0 ;

DosOCurDir (0. pcOut, &usDirLen) ;

II Append input filename. if any

pcFileOnly - pcLastSlash + 1 ;

if (*pcFileOnly == '\0')
return 1 ;

if (strlen (pcFileOnly) > 12)
return 0

if (*(pcOut + strlen (pcOut) - 1) !- '\\')
strcat (pcOut++, "\\") ;

strcat (pcOut, pcFileOnly) ;
return 2 ;

CHAPTER FOURTEEN: DIALOG BOXES 665

The HEAD.H File

/*- - - - - - - - - - - - - - - - - - --
HEAD.H header file

--------------------*/

I/defi ne IO_RESOURCE

f/define 10M_FILE 1
IIdefine 10M_OPEN 10
IIdefine 10M_ABOUT 11

IIdefine IDO_OPEN
/ldefine IOD-ABOUT 2

Ildefi ne IOD_PATH 10
ffdefi ne IDD_FI LEEDIT 11
/Idefi ne IOO_DIRLIST 12
/Idefi ne IDD_FILELIST 13

The HEAD.RC File

1* -

HEAD.RC resource script file
- -*/

/linclude <os2.h>
/linclude "head.h"

MENU ID_RESOURCE
{

SUBMENU "-File",
{

MENU ITEM .. -Open
MENU ITEM SEPARATOR

10M_FILE

IDM _OPEN

MENU ITEM "A-bout Head
}

IDM-ABOUT

DLGTEMPLATE IOD_ABOUT
{

DIALOG O. 32. 32. 200.88 •. FCF_DLGBORDER
(

CTEXT "Head"
CTEXT "Fil e Head Display"
CTEXT "Copyright (C) Charles Petzold, 1988"

-1.

-1.
-l,

DEFPUSHBUTTON "OK" DID_OK,
}

666 SECTION FOUR: USING RESOURCES

10. 64. 180. 8
10. 40, 180. S
10, 32, 180, 8
80. 8, 40. 16. WS_GROUP

(continued)

Figure 14-7. The HEAD.RC File. continued

DLGTEMPLATE IOO_OPEN
{

DIALOG "", 0, 8. 8, 240. 170,. FCF_OLGBOROER
{

CTEXT "Open File" -1, 8. 154. 224, 8

LTEXT "Use mouse to choose file. or type filename." -1. 8, 138.
LTEXT "Current Directory:" -1. 8. 126. 80.
LTEXT IOD_PATH. 88. 126. 144.
LTEXT "Fil ename:" -1. 8. 110. 48.
ENTRYFIELD IDD_FI LEEDIT, 56. 110. 176.
CTEXT "Directories" -1. 16. 96. 92,
CTEXT "Files" -1. 134. 96. 92.
LlSTBOX IOD_DIRLIST. 16. 32. 92.
LISTBOX IDD_FILELIST. 134, 32. 92.
DEFPUSHBUTTON "Open" DID_OK. 32. 8. 64,
PUSHBUTTON "Esc-Cancel" DID_CANCEL. 144. 8. 64.
}

The HEAD.DEF File

· - - --- -- --- -_ ... ----- -_ ... -- -...... _ ... -_ · : HEAD.OEF module definition file
....... - -_ ... - -_ -- ---_ -- -- --- ---·
NAME HEAD WINDOWAPI

DESCR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Displays File Head (C) Charles Petzold, 1988'

1024
8192
ClientWndProc
OpenOlgProc
AboutDlgProc

Figure 14-7. The HEAD program.

8
8
8
8.
8
8

64
64
16.
16,

224. 8

ELMARGIN

WS_GROUP
WLGROUP

You'll also need the EASYFONT.C and EASYFONT.H files from Chapter 5
to compile HEAD.

As I said, the File Open dialog box is one of the most complex you'll en
counter and requires some messy code. To handle the box logic properly,
you have to parse file specifications, separating the drive, directory, and
filenames. The ParseFileName function (the last function in HEAD.C) does a
lot of the dirty work. You supply a file specification and ParseFileName de
termines the fully qualified filename with disk drive and directory. It
returns a code indicating a possible error.

CHAPTER FOURTEEN: DIALOG BOXES 667

HEAD must retain this fully qualified filename because the File Open dia
log box procedure often changes the current disk drive and directory. If you,
used HEAD to look at a file and then wanted to look at another .file, you
would invoke the File Open dialog box. After you changed the drive and
directory, you might change your mind and decide to cancel the dialog box.
If HEAD did not save the fully qualified filename or the original file, it
might not be able to find the file again.

The Overall Structure
One way to use HEAD is to specify a filename parameter when you run the
program, like this:

HEAD filename

The main function in HEAD declares the normal argc and argv parameters.
If argc is greater than 1, argv[l] is passed to the ParseFileName function,
which creates a fully qualified filename and stores it in the global variable
szFileName.

During the WM_PAINT message in ClientWndProc, HEAD attempts to open
this file (using normal C file I/O functions) and display as much of the file
as can fit in the window. If this fails, HEAD displays the message "File not
found or could not be opened" at the top of the client window. HEAD closes
the file at the end of the WM_PAINT message. The file is opened and read
only during the WM_PAINT message.

You can also select a file through HEAD's File Open dialog box, which uses
the IDD_OPEN template in HEAD.RC and the OpenDlgProc function in
HEAD.C. The dialog box is shown in Figure 14-8.

Open File

Use mouse to choose file. or type filename.

Current Directory: D:\PMBOOK\RESOURCE\DIALOG

Filename: IABOUTBOX

Directories
A:
B:
C:
D:
E:

SHOTS

Open

Files
• ;1IJ1 .. ;II:t~_ t
ABOUTBOX.C
ABOUTBOKDEF
ABOUTBOX.EXE
ABOUTBOX.H
ABOUTBOX.lCO
ABOUTBOX.OBJ
ABOUTBOX.RC ~

(Esc=Cancel)

Figure 14-8. The HEAD display.

668 SECTION FOUR: USING RESOURCES

The dialog box contains several static text fields, one of which displays the
current drive and directory. You can change the drive or directory - or
select a file- by typing directly in a text entry field (the box following the
text string "Filename"). The dialog box also contains two list boxes. The
first displays all the disk drives and subdirectories of the current directory.
You can change the drive or directory using this list box. The second list
box lists all the files in the current directory. You can select a file by choos
ing it from the list box. Much of the complexity of the File Open dialog box
stems from the interaction between the list boxes and the text entry field.

Static Text Fields
The File Open dialog box template in HEAD.RC has three static text fields
of type CTEXT ("centered text") and four of type LTEXT ("left-justified
text"). You'll notice that the third LTEXT statement in the dialog box tem
plate has a blank text field and a child ID of IDD_PATH. This is used to dis
play the current disk drive and directory.

The text for this control is set in the FillDirListBox function. This function
obtains the current disk drive by calling the OS/2 kernel function DosQCur
Disk and the current directory by calling DosQCurDir. The composite drive
and directory is stored in the text string pcCurrentPath. The WinSetDlgltem
Text function sets the text for the IDD_PATH control:

WinSetOlgItemText (hwnd. IOO_PATH. pcCurrentPath) :

This function is similar to the WinSetWindowText function we used in the
COLORSCR program in Chapter 11 to set the text of a control window.

List Boxes
List boxes list text strings. The File Open dialog box template has two list
boxes with child IDs of IDD_DIRLIST and IDD_FILELIST. The first lists
disk drives and subdirectories; the second lists files in the current directory.

You can scroll through a list box using the cursor movement keys or a scroll
bar. In the File Open dialog box you change the current disk drive or direc
tory by double-clicking an entry in the first list box or by pressing Enter
when the list box has the input focus. You can select a file from the second
list box in a similar fashion.

The FillDirListBox and FillFileListBox functions in HEAD.Cfill the list
boxes with text entries. These functions first delete all entries in the list box
by sending the list box an LM_DELETEALL message. Here's the call in
FillDirListBox:

WinSendOlgItemMsg (hwnd. IOO_OIRLIST. LM_OELETEALL. NULL. NULL)

CHAPTER FOURTEEN: DIALOG BOXES 669

The first list box is filled with all the valid disk drives and the subdirecto
ries of the current directory. The FillDirListBox function uses the DosQCur
Disk to obtain the valid disk drives and the DosFindFirst and DosFindNext
functions for the directories. To put a text string in a list box, you send the
list box an LM_INSERTITEM message. The mp2 parameter is a pointer to
the text string. The FillDirListBox function sets the low USHORT of mpJ to
LIT _END to put the disk drives at the end of the list and LIT_SORT

ASCENDING to put the subdirectories in the list box in alphabetic order.

The FillFileListBox function works similarly for the second list box. It finds
all the files in the current directory using the OS/2 DosFindFirst and Dos
FindNext functions and sends the list box an LM_INSERTITEM message for
each file.

OpenDlgProc first calls the FillDirListBox and FillFileListBox functions dur
ing the WM_INITDLG message and then awaits messages from the list
boxes. A list box sends its owner a WM_CONTROL message. The low
USHORT of mpJ is the child ID; the high USHORT of mpJ is a notification
code. This notification code is either LN_SELECT (which means that the
user has clicked an entry in the list box or moved the cursor to it) or
LN _ENTER, which means the user has double-clicked an entry or pressed
the Enter key.

OpenDlgProc processes the WM_CONTROL message by first sending the list
box an LM_QUERYSELECTION message. This returns a number indicating
the current list box selection. Sending the list box an LM_QUERYITEM

TEXT message with this selection number obtains the text string of the
selection.

For the first list box, an LN_ENTER notification code during a
WM_CONTROL message indicates that the user wants to change the current
drive or directory. OpenDlgProc changes the drive or directory and then
calls FillDirListBox and FillFileListBox again to reflect this new selection.
For the second list box, an LN_ENTER notification code indicates that the
user is finished. OpenDlgProc calls ParseFileName for the current selection
and ends the dialog box by calling WinDismissDlg.

Text Entry Fields
The File Open dialog box template also contains a text entry control in
which the user can type a drive, directory, filename, or some combination
of the three. The text entry field has a child ID of IDD _FILEEDIT. During
the WM_INITDLG message, OpenDlgProc sends the text entry control an
EM_SETTEXTLIMIT message with the low USHORT of mpJ set to 80. This
limits the amount of text the user can type in the field to 80 characters.

670 SECTION FOUR: USING RESOURCES

If you simply type something in this field and press Enter, OpenDlgProc
receives a WM_COMMAND message with the cmd field set to DID_OK.
This is not a message from the text entry control-when you press Enter,
the WinDefDlgProc function generates a WM_COMMAND message that
contains the child window ID of the default push button in the dialog box.

For a WM_COMMAND message of DID_OK, OpenDlgProc obtains the cur
rent text in the text entry field by calling WinQueryDlgltemText and passes
the string to ParseFileName. The return value of ParseFileName is tested to
determine whether the string is invalid (a 0 value), contains a new disk
drive or directory (a 1 value), or a valid filename (a 2 value). In the last
case, the dialog box is ended by calling WinDismissDlg.

The text entry control is also kept updated with the current file selected in
the second list box. For a WM_CONTROL message with a child ID of
IDD_FILELIST and notification code of LN_SELECT, OpenDlgProc calls
WinSetDlgltemText to set the text in the text entry control.

Modeless Dialog Boxes
So far, the programs shown in this chapter have created "modal" dialog
boxes. Although you can switch to other programs while a modal dialog box
is displayed, you cannot switch to another window in the same program.
However, a "modeless" dialog box works a little differently and is similar
to a window that you create with WinCreateStdWindow. You can switch be
tween the dialog box and other top-level windows in the program.

To create a modal dialog box, you call WinDlgBox. The function does not
return until the dialog box destroys itself by calling WinD ism issDlg. The
WinDlgBox returns the second parameter passed to WinDismissDlg. To
create a modeless dialog box, you call WinLoadDlg. The function returns
after the dialog box is created, returning the handle of the dialog box
window.

Perhaps the most interesting application of a modeless dialog box is to
create a main window for your program. You create your program's win
dow with WinLoadDlg rather than WinCreateStdWindow. Why would you
want to do this? Simple: If you want to create a lot of child windows on
your client, it's much easier to define them in a dialog template than it is to
call WinCreateWindow in your program.

The HEXCALC Program
To demonstrate this, let's look at the HEXCALC program, which is shown in
Figure 14-9 on the following pages.

CHAPTER FOURTEEN: DIALOG BOXES 671

The HEXCALC File

ft- - - - - - - - - - - - - - - - - --
HEXCALC make file
ft- - - - - - - - - - - - - - - - - --

hexcalc.obj : hexcalc.c hexcalc.h
c1 -c -G2sw -W3 hexca1c.c

hexca1c.res : hexcalc.rc hexca1c.h
rc -r hexca1c.rc

hexca1c.exe : hexcalc.obj hexcalc.def
link hexcalc. /a1ign:16. NUL. os2. hexcalc
rc hexcalc.res

hexcalc.exe : hexcalc.res
rc hexcalc.res

The HEXCALC.C File

1* -
HEXCALC.C -- Hexadecimal Calculator

-------------------------------------*/

#define INCL_WIN
#inc1ude <os2.h>
#include <ctype.h)
#include <limits.h>
#inc1ude <stdlib.h>
#include <string.h)
#include "hexcalc.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

i n t rna i n (v 0 i d)

HAB hab;
HMQ hmq;
HWND hwndFrarne
QMSG qmsg ;

hab = Winlnitialize (0)
hrnq - WinCreateMsgQueue (hab. 0) ;

WinRegisterC1ass (hab. CLIENTCLASS. ClientWndProc. OL, 0)

672 SECTION FOUR: USING RESOURCES

(continued)

Figure 14-9. The HEXCALC.C File. continued

hwndFrame - WinloadOlg (HWNO_DESKTOP. HWNO_OESKTOP.
NULL. NULL, IO_HEXCAlC. NULL)

WinSendMsg (hwndFrame, WM_SETICON.
WinLoadPOlnter (HWND_DESKTOP. NULL, ID_ICON), NULL) ;

WinSetFocus (HWNO_DESKTOP. WinW1ndowFromIO (hwndFrame. FlO_CLIENT»

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

void ShowNumber (HWND hwnd. ULONG ulNumber)
{

CHAR szBuffer [20] :

WinSetWindowText (WinWindowFromID (hwnd. ESCAPf).
strupr (ltoa (ulNumber. szBuffer, 16»)

ULONG Calclt (ULONG ulFirstNum. SHORT sOperation. ULONG ulNum)
{

switch (sOperat1on)
{

case '-'
case '+'
case , -,

case '*'

case '& '

case ,I,
I

case '1\'

case ' ('

case .)'

case ' /'
case '%'
default
}

return ulNum ;
return ulFirstNum +
return ulFirstNum .
return ulFirstNum *
return ulFirstNum &
return ulFirstNum
return ulFirstNum 1\

ulNum ;
ulNum ;
ulNum :
ulNum
ulNum
ulNum

return ulFirstNum « ulNum
return ulFirstNum » ulNum
return ulNum ? ulFirstNum I ulNum ULONG-MAX
return ulNum ? ulFirstNum % ulNum ULONG_MAX
return OL ;

(continued)

CHAPTER FOURTEEN: DIALOG BOXES 673

Figure 14-9. The HEXCALC.C File. continued

MRESUlT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

static
static
static
HWND
SHORT

Baal
UlONG
SHORT

fNewNumber - TRUE ;
ulNumber, ulFirstNum
sOperation - '-'
hwndButton
idButton ;

switch (msg)

case WM_CHAR:
if (CHARMSG(&msg)-)fs & KC_KEYUP)

return 0 ;

if (CHARMSG(&msg)-)fs & KC_VIRTUAlKEY)
switch (CHARMSG(&msg)->vkey)

{

case VILLEFT:
if (!(CHARMSG(&msg)-)fs & KC_CHAR»

{

CHARMSG(&msg)->chr = '\b' ;
CHARMSG(&msg)-)fs :- KC_CHAR
}

break ;

case VICESC:
CHARMSG(&msg)->chr - ESCAPE;
CHARMSG(&msg)-)fs :- KC_CHAR ;
break ;

case VILNEWLINE:
case VICENTER:

CHARMSG(&msg)-)chr - '-' ;
CHARMSG(&msg)-)fs :- KC_CHAR
break ;

if (CHARMSG(&msg)->fs & KC_CHAR)
{

CHARMSG(&msg)->chr - toupper (CHARMSG(&msg)-)chr) ;

if (hwndButton = WinWindowFromID (hwnd,CHAR~SG(&msg)->chr»

WinSendMsg (hwndButton, BM_CLICK, NUll, NULL) ;
else

WinAlarm (HWND_DESKTOP, WA-ERROR)

(continued)

674 SECTION FOUR: USING RESOURCES

Figure 14-9. The HEXCALC.C File. continued

return 1 :

case WM_COMMAND:
idButton - COMMANDMSG(&msg)-)cmd

if (idButton -- '\b')
ShowNumber (hwnd. ulNumber 1- 16)

else if (idButton -- ESCAPE)
ShowNumber (hwnd. ulNumber - Ol)

else if (isxdigit (idButton»
{

if (fNewNumber)
{

ulFirstNum - ulNumber
ulNumber - Ol
}

fNewNumber - FALSE

if (ulNumber <- UlONG_MAX » 4)
ShowNumber (hwnd.

II backspace

II escape

/I hex digit

ulNumber - 16 * ulNumber + idButton -
(isdigit (idButton) ? '0' : 'A' - 10»

else
WinAlarm (HWND_DESKTOP. WA_ERROR)

else II operation

if (!fNewNumber)
ShowNumber (hwnd. ulNumber =

Calclt (ulFirstNum. sOperation. ulNumber»
fNewNumber = TRUE ;
sOperation - idButton ;
}

return 0 ;

case WM_BUTTONIDOWN:
WinAlarm (HWNO_OESKTOP. WA-ERROR)
break ;

case WM-ERASEBACKGROUND:
return 1 ;

return WinDefWindowProc (hwnd. m~g. mpl. mp2)

CHAPTER FOURTEEN: DIALOG BOXES 675

The HEXCALC.H File

1* -
HEXCALC.H header file

- -* /

#define ID_HEXCALC 1
#define IO_ICON 1

#define CLIENTCLASS "HexCalc"

#define ESCAPE 27

The HEXCALC.RC File

1* -
HEXCALC.RC resource script

- -* /

1fi nc 1 ude <os2. h>
#include "hexcalc.h"

POINTER ID_ICON hexcalc.ico

WINOOWTEMPLATE ID_HEXCALC
{

FRAME NULL. 0, 100. 40, 132. 122. WS_VISIBLE.
FCF_TITLEBAR : FCF_SYSMENU : FCF_MINBUTTON I FCF_BORDER : FCF_TASKLIST I

WINDOW"", FID_CLIfNT, 0, 0. 140, 122, CLIENTCLASS, WS_VISIBLE
{

PUSHBUTTON "D", 68, 8, 84, 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON ·'An. 65, 8, 68, 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "7", 55. 8, 52. 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "4" • 52, 8, 36, 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "1", 49, 8, 20, 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "0", 48, 8. 4. 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "0", ESCAPE, 32, 104, 68, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "E", 69, 32, 84, 20, 14. BS_NOPOINTERFOCUS
PUSHBUTTON "B", 66, 32, 68. 20, 14, BS_NOPOINTERFOCUS
PUSHBUTTON "8"~ 56, 32, 52, 20, 14, BS_NOPOINTER~OCUS

PUSHBUTTON "5", 53, 32, 36, 20, 14. BS_NOPOINTERFOCUS
PUSHBUTTON "2u, 50. 32. 20. 20. 14, BS_NOPOINTERFOCUS
PUSHBUTTON "Back", 8. 32, 4. 44. 14. BS_NOPOINTERFOCUS

(continued)

676 SECTION FOUR: USING RESOURCES

Figure 14·9. The HEXCALC.RC File. continued

PUSHBUTTON "F",
PUSHBUTTON "c".
PUSHBUTTON "9",
PUSHBUTTON "6",
PUSHBUTTON "3",
PUSHBUTTON "+".
PUSHBUTTON "-"

PUSHBUTTON "*"
PUSHBUTTON "/",
PUSHBUTTON "%" ,

PUSHBUTTON "Equals".
PUSHBUTTON "&",
PUSHBUTTON ":".
PUSHBUTTON "An

PUSHBUTTON "(",

PUSHBUTTON ">",
}

The HEXCALC.ICO File
..
uu uu
.......

70, 56,
67, 56.
57. 56.
54. 56,
51, 56,
43, 80.
45. 80,
42, 80.
47. 80,
37. 80.
61, 80.
38. 104,

124. 104.
94. 104.
60. 104,
62. 104.

84, 20, 14, BS_NOPOINTERFOCUS
68, 20. 14, BS_NOPOINTERFOCUS
52. 20. 14. BS_NOPOINTERFOCUS
36. 20, 14, BS_NOPOINTERFOCUS
20, 20, 14, BS_NOPOINTERFOCUS
84, 20. 14. BS_NOPOINTERFOCUS
68, 20, 14, BS_NOPOINTERFOCUS
52, 20. 14. BS_NOPOINTERFOCUS
36, 20. 14. BS_NOPOINTERFOCUS
20. 20. 14. BS_NOPOINTERFOCUS
4. 44. 14. BS_NOPOINTERFOCUS

84. 20, 14. BS_NOPOINTERFOCUS
68. 20. 14. BS_NOPOINTERFOCUS
52. 20. 14, BS_NOPOINTERFOCUS
36. 20, 14, BS_NOPOINTERFOCUS
20. 20. 14. BS_NOPOINTERFOCUS

CHAPTER FOURTEEN: DIALOG BOXES 677

The HEXCALC.DEF File

; HEXCALC module definition file

NAME HEXCALC WINDOWAPI

OEseR I PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Hexadecimal Calculator (C) Charles Petzold 1988'

1024
8192
ClientWndProc

Figure 14·9. The HEXCALC program.

HEXCALC is a hexadecimal calculator with a complete keyboard and
mouse interface. You can add, subtract, multiply, and divide 32-bit hexa
decimal numbers, as well as perform the C remainder (%), left shift «<),
right shift (»), and bitwise AND (&), OR (:), and exclusive-OR (1\)
operations.

The HEXCALC window is shown in Figure 14-10.

~ HEXCALC EXE If)

EB786

Figure 14·10. The HEXCALC display.

To use HEXCALC, type or clickin the first number (up to eight hexadecimal
digits) followed by the operation and then the second number. You can
show the result by clicking the "Equals" button or by pressing either the
keyboard equal key or the Enter key. To correct your entries, you can use
either the Backspace key, the left arrow cursor movement key, or the
"Back" button. Pressing Escape or clicking the result box clears the cur
rent entry.

678 SECTION FOUR: USING RESOURCES

Results are always truncated to 32 bits, just as if you were performing the
operation on two unsigned long integers in a C program. The only special
handling is a check for division by zero before doing division or a re
mainder operation. In this case, HEXCALC sets the result to FFFFFFFF.

The client window of HEXCALC contains 29 push button controls, yet the
program has not one call to WinCreateStdWindow or WinCreateWindow.
Everything is defined in the dialog box template in HEXCALC.RC. All the
windows are created by one call to WinLoadDlg.

The HEXCALC Template
The dialog box template shown in the HEXCALC.RC resource script de
scribes the size, appearance, and structure of HEXCALC's main window.
The template begins with the WINDOWTEMPLATE keyword, which is
equivalent to the DLGTEMPLATE keyword used in the other templates
shown in this chapter. The top-level window is denoted by a FRAME
statement. The statement contains a window style of WS_ VISIBLE
and frame creation flags of FCF _TITLEBAR, FCF _SYSMENU, FCF _MIN
BUTTON, FCF_BORDER, and FCF_TASKLIST, such as you might use in a
WinCreateStdWindow function.

The WINDOW statement that follows specifies a child of the frame window.
This is the client window of HEXCALC. The child window ID is set to
FID_CLIENT, and the class name is set to the identifier CLIENTCLASS, de
fined in HEXCALC.H as "HexCalc." This window class is registered in
HEXCALC.C before the call to WinLoadDlg.

The template then defines 29 children of the client window with 29
PUSHBUTTON statements. The push buttons are given the style of
BS_NOPOINTERFOCUS, which causes the push button not to get the input
focus when clicked. I'll discuss the push button child window IDs shortly.

Creating the Windows
The main function in HEXCALC.C looks as though it's missing something,
and it is - it doesn't have a call to WinCreateStdWindow. Instead, the
WinLoadDlg function creates a frame window, client window, and 29 push
buttons based on the template in HEXCALC.RC. The frame window also
creates a title bar, system menu, and minimize box based on the frame crea
tion flags specified in the template.

Look at the call to WinLoadDlg:

hwndFrame = WinLoadDlg (HWND_DESKTOP. HWND_DESKTOP.
NULL. NULL. ID_HF.XCALC. NULL)

CHAPTER FOURTEEN: DIALOG BOXES 679

It doesn't even specify a window procedure for the dialog box. The only
window procedure in HEXCALC is ClientWndProc, which is the window
procedure for the "Hex Calc" class registered in main and specified in the
WINDOW statement in the template.

Following the call to WinLoadDlg, the windows in HEXCALC function as if
they were created with a call to WinCreateStdWindow and 29 calls to
WinCreateWindow. ClientWndProc gets WM_COMMAND messages from the
push buttons and WM_CHAR messages from the keyboard.

Creative Use of Control IDs
The programs developed so far in this chapter have used identifiers defined
in a header file as the child window IDs of controls within a dialog box. The
child window IDs of the push buttons in HEXCALC appear to be random,
but they're not. The IDs have been set to the ASCII codes of the correspond
ing number, letter, or symbol that appears inside the push button.

This is an easy way to add a keyboard interface to the calculator. When the
user clicks a child window button, the child window sends ClientWndProc a
WM_COMMAND message with the cmd field equal to the control ID. When
the user presses a character key on the keyboard, HEXCALC's main window
receives a WM_CHAR message with the ASCII code of the character.

When ClientWndProc receives a WM_CHAR message, it first makes a few
adjustments for the left cursor key, the Escape key, and the two Enter keys.
Then it checks to see if a button exists with an ID equal to the typed charac
ter. If so, ClientWndProc sends the button a BM_CLICK message:

if (hwndButton - WinWindowFromID (hwnd. CHARMSG(&msg)-)chr»
WinSendMsg (hwndButton. BM-CLICK. NULL, NULL) ;

The BM_CLICK message causes the button to do two things: First, the
button inverts itself briefly to appear as if it had been clicked. This gives
the user visual feedback. Secondly, the button sends ClientWndProc a
WM_COMMAND message - again - just as if it had been clicked with the
mouse. This allows ClientWndProc to process both keyboard and mouse in
put as WM_COMMAND messages.

Windows and Dialog Boxes
We've come full circle. We began creating standard windows in Chapter 2.
Since Chapter 8 we've been looking at different ways that windows get in
put, first by processing keyboard and mouse input directly, then by using
child window controls, and finally by moving to dialog boxes.

680 SECTION FOUR: USING RESOURCES

Now we've created a dialog box that seems to function just like a standard
window! Of course, dialog boxes are normal windows, so it shouldn't be too
surprising that we can do this.

CHAPTER FOURTEEN: DIALOG BOXES 681

• • • • •
SECTION FIVE • • • • •

I • • • • •

• • • • •

• • • • •

• • • • •
·
• • • • •

MISCELLANEOUS
TOPICS

CHAPTER FIFTEEN

CUT, COPy,
AND PASTE:
THE CLIPBOARD

The clipboard is a mechanism for transferring data between Presentation
Manager applications. A program that makes use of the clipboard usually
has an Edit menu with the options Cut, Copy, and Paste. The Cut and Copy
options direct the program to transfer data to the clipboard, and the Paste
option directs the program to transfer data from the clipboard to the
program.

The clipboard is also useful for some operations that do not involve trans
ferring data between applications. These operations most commonly occur
in programs that work with documents - word-processing programs, for
example. Such programs use the clipboard as a storage area when moving
text from one part of the document to another.

To move text within a word-processing document, the user first selects part
of the document to be moved. The user then selects Cut or Copy from the
menu. Both commands copy the selection to the clipboard; the Cut com
mand also deletes the selection from the document.

To use the Paste command in a word-processing program, the user first
moves the cursor to the point in the document where the text from the
clipboard should be inserted. The user then selects the Paste command. The
program copies the text from the clipboard to the document. In traditional
word-processing terminology, a "block copy" is a clipboard Copy com
mand followed by a Paste command. A "block move" is a clipboard Cut
command followed by a Paste command.

685

Of course, word-processing programs have included block copy and block
move operations for years without any help from a clipboard. But a Presen
tation Manager program should use the clipboard for these operations rather
than its own internal logic: Because all Presentation Manager programs
have access to the same clipboard, a user can cut or copy data from one pro
gram and paste it into another program. The clipboard makes use of shared
memory segments to allow these interprocess transfers.

But the clipboard is really for the convenience of the user. The user controls
what is copied to the clipboard by selecting menu commands from Presen
tation Manager programs. A program should copy data to the clipboard only
on a Cut or Copy command; it should not use the clipboard as a form of
temporary storage apart from these two commands.

Three standard data formats can be stored in the clipboard: text, bitmaps,
and metafiles. (A metafile is a collection of GPI drawing commands.) This
chapter discusses the text and bitmap formats.

Transferring Text with the Clipboard
A program that makes use of the clipboard generally has an Edit option on
its top-level menu. The standard commands on the Edit submenu (in the
order they usually appear) are as follows:

Menu
Command

Cut

Copy

Paste
Clear

Keyboard
Accelerator

Shift+Del

Ctrl+lns

Shift+lns
Del

Operation

Copy selection to clipboard. Delete selection from
document.

Copy selection to clipboard. Do not delete selection
from document.

Copy clipboard contents to document.
Delete selection from document. Do not copy

selection to clipboard.

In some cases, you may not have all of these commands, but you'll probably
include at least Copy and Paste. As you can see, the Clear option doesn't in
volve the clipboard at all. However, you'll want to write your Clear logic at
the same time you write your Cut logic because Cut does the same thing as
a Copy followed by a Clear.

The most common format of clipboard data is a block of text in normal
ASCII format. Each text line is terminated by a carriage return (\r) and
linefeed (\n) control characters. The text can contain tab characters (\t).
The entire block is terminated by a zero byte.

686 SECTION FIVE: MISCELLANEOUS TOPICS

A block of text that your program copies into the clipboard must be stored
in a shared memory segment allocated specifically for this purpose. To
allocate this memory segment you use the OS/2 DosAllocSeg function with
the SEG_GIVEABLE option. This allows the Presentation Manager to call
DosGiveSeg within its clipboard logic to give access rights to other pro
grams that need to copy the text from the clipboard.

Preparing the Shared Memory Segment
Let's suppose that the user of your program has selected a block of text in a
document and selects the Copy or Cut command to copy it to the clipboard.
I'll assume your program has two variables named pchText (a pointer to the
beginning of the character string to be copied to the clipboard) and
usTextLen (the length of this string). In the general case, pchText is a pointer
to a text string within a larger document, and the selected block of text will
not itself be terminated by a zero byte.

In your program you define variables of type SEL (selector) and PCHAR (a
far pointer to a character string):

SEL selClipText
PCHAR pchClipText

You first allocate a block of memory that is the length of the selected text
string plus 1 byte (for the terminating zero). To do this, use the DosAllocSeg
function with a parameter of SEG_GIVEABLE:

DosAllocSeg (usTextLen + 1. &selClipText. SEG_GIVEABLE)

The DosAllocSeg function allocates a segment of shareable memory and
stores the selector to this segment in selClipText. You can convert the selec
tor to a far pointer by using the MAKEP macro:

pchClipText - MAKEP (selClipText. 0) ;

Now copy the text addressed by pchText to the memory block addressed by
pchClipText. If your progr~m is compiled for compact or large model, you
can use the C memcpy function for this:

memcpy (pchClipText. pchText, usTextLen)
pchCliplext[usTextLen] - '\0'

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 687

Don't forget to add the zero byte that terminates the text. If you're compil
ing for small or medium model, it's easy enough to write some code that
mimics the memcpy function:

USHORT uslndex :
[other program lines]

for (uslndex = 0 ; uslndex < usTextLen ; uslndex++)
pchClipText[uslndex] = pchText[uslndex]

pchClipText[usTextLen] - '\0' ;

Putting Text in the Clipboard
Now that you've prepared the shared memory segment, you're ready to put
the text in the clipboard. You use four Presentation Manager clipboard func
tion calls to put text into the clipboard: WinOpenClipbrd, WinEmptyClipbrd,
WinSetClipbrdData, and WinCloseClipbrd. First you open the clipboard and
empty it of all data:

WinOpenClipbrd (hab) ;
WinEmptyClipbrd (hab) :

Call WinSetClipbrdData to set the text string referenced by selClipText into
the clipboard:

WinSetClipbrdData (hab. (ULONG) selClipText.
CF_TEXT. CFI_SELECTOR) ;

Note that the second parameter is the selector rather than the far pointer.
This parameter is declared as a ULONG in the PMWIN.H header file, so you
should cast the selector to a ULONG to prevent compiler warning messages.
The third parameter indicates the format of this data. In this case the format
is CF _TEXT. (The CF prefix stands for "clipboard format.") The last
parameter is the clipboard format information flag. You set this to
CFI_SELECTOR to indicate that the second parameter is a selector. Finally,
close the clipboard:

WinCloseClipbrd (hab)

You're done.

688 SECTION FIVE: MISCELLANEOUS TOPICS

Do not call DosFreeSeg to free the block of memory you allocated using
DosAllocSeg. (Nothing bad will happen if you do, but the DosFreeSeg func
tion will fail because the segment has already been freed for your process
by the Presentation Manager.) After you call WinSetClipbrdData, do not at
tempt to reference the text stored in this shared memory block. You allo
cated this block specifically for transferring the text to the clipboard; once
you call WinSetClipbrdData, the text no longer belongs to your program.

Getting Text from the Clipboard
When transferring data from the clipboard to your program (the Paste
operation), you use three functions: WinOpenClipbrd, WinQueryClipbrd~
Data, and WinCloseClipbrd. The WinQueryClipbrdData function gives your
program temporary access to the shared memory block containing the data
stored by the clipboard. As with the Cut and Copy operations, the most
difficult part of a Paste operation is the code involved in using this shared
memory segment.

Again, you should define two variables of type SEL and PCHAR:

SEl selClipText
PCHAR pchClipText

You begin by opening the clipboard:

WinOpenClipbrd (hab) ;

You then obtain a selector to the text block stored in the clipboard by call
ing WinQueryClipbrdData:

selClipText = (SEL) WinQueryClipbrdData (hab. CF_TEXT) ;

The return value of WinQueryClipbrdData is declared as a ULONO. To pre
vent compiler warning messages, you must cast this value to a SEL before
assigning it to selClipText. If there is no text in the clipboard, Win
QueryClipbrdData returns a OL. In that case, you simply call Win
CloseClipbrd. If selClipText is nonzero, you can continue by converting the
selector to a far pointer:

pchClipText = MAKEP (selClipText. 0) ;

The pchClipText pointer points to the shared memory block containing clip
board text contents. During the WinQueryClipbrdData call, the Presentation
Manager calls DosGiveSeg to give your program access to this segment.

CHAPTER FIFTEEN: CUT, COPY. AND PASTE 689

You can reference this shared memory block only while the clipboard is
still open. Do not alter the text in the clipboard.

The block of text is terminated by a zero byte. If your program is compiled
for compact or large model, you can use the strlen function to determine the
length of the string:

usLen = strlen (pchClipText)

Otherwise, you can use some simple code for this:

for (usLen = 0 ; pchClipbrdText[usLen] ; usLen++)

What you do with this text depends on the program. For example, you may
want to allocate a block of local memory using mal/oc and copy the text into
that local block:

pchText = malloc (usLen + 1)

for (uslndex = 0 ; uslndex < usLen + 1 : uslndex++)
pchText[uslndex] - pchClipText[uslndex] ;

When you finish referencing the clipboard text, you close the clipboard:

WinCloseClipbrd (hab) ;

Do not attempt to use the pchClipText pointer after the clipboard is closed,
because the segment is freed for use by your process.

The Open Clipboard
Only one process can have the clipboard open at a time. If one program has
the clipboard open and another program calls WinOpenClipbrd, the function
will not return until the first program calls WinCloseClipbrd. For this
reason, you should call WinOpenClipbrd and WinCloseClipbrd within the
course of a single message.

You can also obtain information about the current contents of the clipboard
without opening the clipboard. The following function call returns TRUE if
the clipboard contains data in the CF _TEXT format and FALSE otherwise:

WinQueryClipbrdFmtInfo (hab, CF_TEXT, &usf Info)

On return from the function, the usflnfo variable is set to CFLSELECTOR if
the clipboard contains data in the CF _TEXT format.

690 SECTION FIVE: MISCELLANEOUS TOPICS

The WinQueryClipbrdFmtlnfo function is also very handy during processing
of the WM_INITMENU message. When the Edit submenu is invoked, the
Presentation Manager sends your program a WM_INITMENU message with
the low USHORT of mpJ set to the menu ID of the Edit menu. You can take
this opportunity to enable or disable the Cut, Copy, Paste, and Clear op
tions. You disable the Cut, Copy, and Clear options if the user has not
selected any text in the document. You disable the Paste option if Win
QueryClipbrdFmtlnfo returns FALSE. However, to be on the safe side, you
should still check for a zero return value from WinQueryClipbrdData when
you carry out the Paste command.

The TYPECLIP Program
The TYPECLIP program shown in Figure 15-1 illustrates the use of the clip
board for text transfer.

The TYPECLIP File

11- - - - - - - - - - - - - - - - - - - -
TYPlCLIP make file
1!- - - - - - - - - - - - - - - - - - - -

typeclip.obj : typeclip.c typec11p.h
c1 -c -G2sw -W3 typeclip.c

typeclip.res : typeclip.rc typeclip.h
rc -r typeclip

typeclip.exe : typec1ip.obj typeclip.def
link typec11p. /a1ign:16. NUL, os2. typec1ip
rc typeclip.res

typeclip.exe : typeclip.res
rc typeclip.res

The TYPECLIP. C File

/*--
TYPECLIP.C -- Clipboard Text Demonstration

- -*/

#define INCL_WIN
#define INCL_VIO
#define INCL_AVIO
#include <os2.h>

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 691

Figure 15-1. The TYPECLIP.C File. continued

Uinclude <stdlib.h>
Uinclude "typeclip.h"

Udefine WM-ADJUST_ORG
Udefine WM_SET_BLOCKOUT (WM_USER + 1)
Udefine WM_CLEAR-BLOCKOUT (WM_USER + 2)

MRESULT EXPENTRY ClientWndProc (HWND, USHORT, MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] - "TypeClip"
static ULONG flFrameFlags - FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION
FCF_MENU

HMO hmq ;
HWND hwndFrame. hwndClient ;
OMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab. 0) :

FCF_SYSMENU
FCF_MINMAX
FCF _ TASKLIST
FCF_ACCELTABLE

WinReg;sterClass (hab. szClientClass. ClientWndProc. OL. 0)

hwndFrame - WinCreateStdWindow (HWND_OESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass. NULL,
OL. NULL, IO_RESOURCE, &hwndClient)

WinSendMsg (hwndFrame, WM_SETICON.
WinOuery$ysPointer (HWND_DESKTOP, SPTR_APPICON, FALSE).
NULL) :

while (WinGetMsg (hab. &qmsg. NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

692 SECTION FIVE: MISCELLANEOUS TOPICS

(cominued)

Figure 15-1. The TVPECLIP.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg, MPARAM mpl. MPARAM mp2)
{

static BOOL
static HPS
static HVPS
static HWND
static LONG
static SHORT

CHAR
HOC
PCHAR
RECTL
SEL
SHORT

SIZEL
USHORT

fCapture. fValidBlock
hps :
hvps :
hwndMenu
cxChar. cyChar
cxClient. cyClient, cxVioSize, cyVioSize,
xBlockBeg, yBlockBeg. xBlockEnd, yBlockEnd,
xBeg. yBeg, xEnd, yEnd :
*pchText :
hdc :
pchClipText
rcl :
selClipText
s Rep, s Len, x, y, s,
xCursor, yCursor, xOrigin, yOrigin
sizl :
usflnfo ;

swi tch (msg)
(

/*- - - - - - - - -. --
Create. paint, and destroy processing

---------------------------------------*/
case WM_CREATE:

hdc - WinOpenWindowDC (hwnd) ;

DevOueryCaps (hdc, CAPS_CHAR_WIOTH, IL, &cxChar)
OevOueryCaps (hdc. CAPS_CHAR_HEIGHT, IL. &cyChar)

cxVioSize - (SHORT) (WinQuerySysValue (HWND_OESKTOP,
SV_CXFULLSCREEN) / cxChar) ;

cyVioSize - (SHORT) (WinOuerySysValue (HWND_DESKTOP,
SV_CYFULLSCREEN) / cyChar) ;

sizl .cx = sizl.cy - a ;
hps = GpiCreatePS (hab, hdc, &sizl, PU_PELS

GPIT_MICRO
GPIF_DEFAULT :
GPIA_ASSOC)

VioCreatePS (&hvps, cyVio$ize, cxVioSize, O. 1, NULL) ;
VioAssociate (hdc, hvps) ;

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 693

Figure 15-1. The TYPECLIP.C File. continued

hwndMenu - WinWindowFromlD

return 0 ;

case WM_PAINT:

WinQueryWindow (hwnd. OW_PARENT. FALSE).
FID_MENU) ;

WinBeginPaint (hwnd. hps, NULL)

WinQueryWindowRect (hwnd. &rcl)
WinFillRect (hps. &rcl. CLR_BLACK)

VioShowBuf (0. cxVioSize * cyVioSize * 2. hvps)

WinEndPaint (hps) :
return 0 :

case WM_DESTROY:
VioAssociate (NULL. hvps)
VioDestroyPS (hvps) ;
GpiDestroyPS (hps) ;
return 0 ;

/*---
Window size. keyboard and origin handling

- -* I
case WM_SIZE:

WinDefAVioWindowProc (hwnd. msg. mpl. mp2) ;

cxClient = SHORTIFROMMP (mp2)
cyClient = SHORT2FROMMP (mp2)

VioSetOrg (0. O. hvps) ;
WinSendMsg (hwnd. WM_ADJUST_ORG. NULL. NULL)
return 0

case WM_CHAR:
if (!(CHARMSG(&msg)->fs & KC_CHAR) ::

(CHARMSG(&msg)->fs & KC_KEYUP) : :
(CHARMSG(&msg)-)fs & KC_INVALIOCHAR) ::
(CHARMSG(&msg)->fs & KC_DEAOKEY»

return 0 ;

for (sRep - 0 ; sRep < CHARMSG(&msg)->cRepeat ; sRep++)
{

VioWrtTTY «PCHAR) & CHARMSG(&msg)->chr, 1. hvps) ;

694 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15·1. The TYPECLIP.C File. continued

switch (CHARMSG(&msg)->chr)
{

case '\b':
VioWrtTTY (" \b". 2, hvps)
break

case '\r':

}

VioWrtTTY ("\n", 1, hvps)
break ;

WinSendMsg (hwnd. WM_AOJUST_ORG, NULL, NULL)
return 1 ;

VioGetOrg (&yOrigin, &xOrigin, hvps)
VioGetCurPos (&yCursor, &xCursor, hvps)

if (xCursor < xOrigin)
xOrigin - xCursor

II Backspace

II Return

else if (xCursor >- xOrigin + cxClient I (SHORT) cxChar)
xOrigin - xCursor - cxClient I (SHORT) cxChar + 1 ;

if (yCursor < yOrigin)
yOrigin - yCursor

else if (yCursor >- yOrigin + cyClient I (SHORT) cyChar)
yOrigin - yCursor - cyClient / (SHORT) cyChar + 1 ;

VioSetOrg (yOrigin, xOrigin, hvps) ;
return 0 ;

1*-----------------------------
Mouse and blockout handling

-----------------------------*1
Cdse WM-BUTTON1DOWN:

x - MOUSEMSG(&msg)->x I (SHORT) cxChar ;
y - (cyClient - MOUSEMSG(&msg)->y) / (SHORT) cyChar

WinSendMsg (hwnd. WM_CLEAR-BLOCKOUT, NULL, NULL) :

WinSetCapture (HWND_DESKTOP. hwnd) ;
fCapture = TRUE ;
fValidBlock - FALSE;

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 695

Figure 15-1. The TYPECLIP.C File. continued

VioGetOrg (&yOrigin. &xOrigin. hvps)

xBlockBeg = xOrigin + x
yBlockBeg - yOrigin + y

Wi nSendMsg (hwnd. WM_SET_BLOCKOUT. mp!. mp2)
break ;

case WM-MOUSEMOVE:
if (fCapture)

WinSendMsg (hwnd. WM_SET_BLOCKOUT. mpl. mp2)
break ;

case WM_BUTTONIUP:
if (fCapture)

{

WinSetCapture (HWND_DESKTOP. NULL)
fCapture = FALSE ;
fValidBlock = TRUE:

WinSendMsg (hwnd. WM_SET_BLOCKOUT. mpl. mp2)
}

return 1 ;

case WM_SET_BLOCKOUT:
x - MOUSEMSG(&msg)->x I (SHORT) cxChar ;
y - (cyClient - MOUSEMSG(&msg)->y) / (SHORT) cyChar

VioGetOrg (&yOrigin. &xOrigin. hvps)

xBlockEnd - xOrigin + x
yBlockEnd - yOrigin + y

if (cxVioSize * yBlockBeg + xBlockBeg <
cxVioSize * yBlockEnd + xBlockEnd)

{

xBeg -= xBlockBeg
yBeg - yBlockBeg
xEnd = xBlockEnd
yEnd = yBlockEnd
}

696 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-1. The TYPECLIP.C File. continued

else

xBeg .. xBlockEnd
yBeg - yBlockEnd
xEnd - xBlockBeg
yEnd - yBlockBeg
}

VioWrtNAttr ("\x07". cxVioSize * yBeg + xBeg. O. O. hvps)

VioWrtNAttr ("\x70". cxVioSize * yEnd + xEnd -
(cxVioSize * yBeg + xBeg) + 1.
yBeg, xBeg. hvps) :

VioWrtNAttr ("\x07". cxVioSize * cyVioSize -
(cxVioSize * yEnd + xEnd) - 1.
yEnd. xEnd + 1. hvps) :

break ;

case WM_CLEAR-BLOCKOUT:
VioWrtNAttr ("\x07". cxVioSize * cyVioSize. O. O. hvps)
fValidBlock - FALSE;
break ;

/* -

Clipboard handling
- - - - - - - - - - - - - - - - - - - -*/

case WM_INITMENU:
switch (SHORTIFROMMP (mpl»

{

case 10M_EDIT:
WinSendMsg (hwndMenu. MM_SETITEMATTR.

MPFROM2SHORT (10M_CUT. TRUE).
MPFROM2SHORT (MIA_DISABLED.

fValidBlock ? 0 : MIA_DISABLED»

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (10M_COPY. TRUE).
MPFROM2SHORT (MIA_DISABLED.

fValidBlock ? 0 : MIA_DISABLED»

WinSendMsg (hwndMenu, MM_SETITEMATTR.
MPFROM2SHORT (IDM_CLEAR. TRUE).
MPFROM2SHORT (MIA_DISABLED.

fValidBlock ? 0 : MIA_DISABLED»

(continued)

CHAPTER FIFTEEN: CUT, COpy. AND PASTE 697

Figure 15-1. The TYPECLIP.C File. continued

WinSendMsg (hwndMenu. MM_SETITEMAT1R.
MPFROM2SHORT (10M_PASTE, TRUE),
MPFROM2SHORT (MIA-DISABLED,

WinQueryClipbrdFmtlnfo (hab, CF_TEXT, &usflnfo)
? 0 : MIA_DISABLED» ;

return 0 ;

break ;

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case IDM_CUT:
case IDM_COPY:

if (!fValidBlock)
return 0 ;

II Copy text to
II malloc'ed memory

sLen - (cxVioSize + 2) * (yEnd - yBeg + 1) + 1 :
pchText = malloc (sLen) ;

for (s - O. y '"' yBeg ; y <- yEnd y++)
{

x - (y == yBeg ? xBeg : 0)
sLen - (y == yEnd xEnd + 1 : cxVioSize)

VioReadCharStr (pchText + s, &sLen.
y. x, hvps) :

S += sLen ;
while (--s >- 0 && pchText[s] -- ' ')

s++ ;
pchText[s++] - '\r'
pchText[s++] - '\n'
}

- x

pchText[s++] - '\0' II s is string length

II Allocate memory block

DosAllocSeg (5. &selClipText, SEG_GIVEABLE)
pchClipText = MAKEP (selClipText, 0) :

II Copy to giveable seg

(continued)

698 SECTION FIVE: MISCELLANEOUS TOPICS

Figure 15-1. The TVPECLIP.C File. continued

for (s - a ; pchClipText[s] - pchText[s] ; s++) ;
free (pchText)

WinOpenClipbrd (hab)
WinEmptyClipbrd (hab) ;

II Set clipboard data

WinSetClipbrdData (hab. (ULONG) selClipText.
CF_TEXT. CFI_SELECTOR)

WinCloseClipbrd (hab) ;
II Clear blockout

if (COMMANDMSG{&msg)-)cmd -- IDM_COPY)
{

WinSendMsg (hwnd. WM_CLEAR_BLOCKOUT. NULL. NULL);
return 0 ;

case 10M_CLEAR:
if (!fValidBlock)

return 0 ;

II fall through for 10M_CUT

II Clear selection

VioWrtNCell (" \x07". cxVioSize * yEnd + xEnd -
(cxVioSize * yBeg + xBeg) + 1.
yBeg. xBeg. hvps) ;

fValidBlock - FALSE
return a ;

case rOM_PASTE:
II Get text selector from clipboard

WinOpenClipbrd (hab) ;
selClipText - (SEL) WinQueryClipbrdData (hab.

II Display to screen

if (selClipText !- 0)
{

CF_TEXT)

pchClipText = MAKEP (selClipText. 0) ;

for (sLen - 0 ; pchClipText[sLen] sLen++)

VioWrtTTY (pchClipText. sLen. hvps)
}

WinCloseClipbrd (hab) ;

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 699

Figure 15-1. The TYPECLIP.C File. continued

break :

WinSendMsg (hwnd. WM_AOJUST_ORG, NULL. NULl)
return 0 ;

return WinOefWindowProc (hwnd. msg. mpl. mp2)
}

The TYPECLIP. H File

/*- --

TVPECLIP.H header file
- --- ---------- ----------* /

#define ID_RESOURCE

ffdefi ne 1DM_EOIT 10
#define 10M_CUT 11
Itdefi ne 10M_COPY 12
Ifdefine 10M_PASTE 13
/ldefine 10M_CLEAR 14

The TYPECLIP. RC File

/* -

TYPECLIP.RC resource script file
- -- - -- - -- -- - -- - - - - --- - - - - - - - -- - - - -* /

#include <os2.h>
/linclude "typeclip.h"

MENU IO_RESOURCE
{

SUBMENU "-Edit",
{

MENU ITEM "Cu-t \ tShift+Oel". 10M_CUT
MENU ITEM "-Copy\tCtrl+Ins". IDM_COPY
MENUITEM "-Paste\tShift+lns". 10M_PASTE
MENUITEM "C-lear\tOel". IDM_CLEAR
}

700 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-1. The TYPECLIP.RC File. continued

ACCELTABLE IO_RESOURCE
{

VLDELETE. 10M_CUT. VIRTUALKEY. SHIFT
VLINSERT. 10M_COPY, VIRTUALKEY. CONTROL
VLINSERT. 10M_PASTE. VIRTUALKEY, SHIFT
VLDELETE • 10M_CLEAR. VIRTUALKEY
}

The TYPECLIP. DEF File

; TYPECLIP.DEF module definition file
._----------- ... ------------_ ... _--------,

NAME TYPECLIP WINOOWAPl

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Clipboard Text Demonstration (e) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 15-1. The TYPECLIP program.

To keep the non-clipboard logic of TYPECLIP to a minimum (but still
allow the program to do something), the program uses Advanced VIO and
displays typed text in a simple teletype manner using VioWriteTTY. You can
use only character keys, Enter, Backspace, and Tab when typing text.
TYPECLIP doesn't interpret the cursor movement keys as the TYPEAWAY
program shown in Chapter 8 does.

You use the mouse to select a block of text from the text displayed in the
window. Press the mouse button at the beginning of the text you want to
select, move the mouse pointer to the end of the text, and release the button.
The selected text appears in reverse colors.

You can then select Cut, Copy, or Clear from the Edit menu to perform the
standard clipboard options. Cut and Copy copy the selection to the clip
board; Cut and Clear delete the selection from the document. You can also
select Paste from the Edit menu to insert the ·contents of the clipboard at the
cursor position.

TYPECLIP's ClientWndProc window procedure is divided into four major
sections, delimited by comments in TYPECLIP.C. The following text de
scribes each· of these four sections.

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 701

Handling the via Presentation Space
The first section of the program handles the WM_CREATE, WM_PAINT,
and WM_DESTROY messages. This section of the program is mostly
devoted to creating, maintaining, and destroying the VIO presentation
space, as discussed in Chapter 7. TYPECLIP calls DevQueryCaps to obtain
the size of the Advanced VIO character and creates a VIO presentation
space the size of the maximized client window. The WM_PAINT processing
simply erases the background to black and updates the window using
VioShowBuf

Handling Window Sizing and the Keyboard
The second section of the program handles window sizing and the key
board. If the window is not maximized, the cursor can be moved outside the
visible part of the VIO presentation space. In this case, TYPECLIP uses
VioSetOrg to set the presentation space origin (the character cell appearing
in the upper-left corner of the client window) so that the cursor is always
visible. This little job must be done during both the WM_SIZE and
WM_CHAR messages.

Rather than use a subroutine for changing the origin, I've defined a new
message called WM_ADJUST _ORO. ClientWndProc calls WinSendMsg
during the WM_SIZE and WM_CHAR messages to send itself a
WM_ADJUST _ORO message. During the WM_ADJUST _ORO message,
ClientWndProc checks to see if the cursor is positioned within the visible
area of the client window and sets a different origin if it is not.

The keyboard processing is very simple. The program processes only
WM_CHAR messages with the KC_CHAR flag set and ignores dead keys.
The characters are displayed on the window using the VioWrtTTY function.
Only for the Enter and Backspace keys does TYPECLIP need a little extra
logic: When the Enter key is pressed, a linefeed (\n) character must also be
written to the presentation space. Normally, a Backspace (\b) character
written through VioWrtTTY does not erase characters; it simply moves the
cursor back one space. TYPECLIP writes a space and another Backspace
(after the first Backspace) to fix this.

Handling the Mouse
The tl;lird section of ClientWndProc handles the mouse. Two other defined
messages - WM_CLEAR_BLOCKOUT and WM_SET _BLOCKOUT - help
out with the mouse logic. During the WM_BUTTONIDOWN message the
mouse is captured, and the position of the mouse (in terms of the character
column and row) is stored in xBlockBeg and yBlockBeg.

702 SECTION FIVE: MISCELLANEOUS TOPICS

ClientWndProe sends a WM_SET _BLOCKOUT message to itself as part of
the WM_MOUSEMOVE and WM_BUTTON1UP messages if the mouse is
currently captured. During the WM_SET _BLOCKOUT message, Client
WndProe inverts the selected text. This inversion requires three calls to
VioWrtNAttr. The normal attribute is \x07 (light gray text on a black
background). The selected text is displayed with attribute \x70 (black on
light gray).

Handling the Clipboard
The fourth section of ClientWndProe is responsible for clipboard handling.
ClientWndProe processes the WM_INITMENU message to enable and dis
able the menu options when the Edit submenu is displayed. The Cut, Copy,
and Clear options are enabled if the variable fValidBloek (which indicates
that an area of the text has been selected) is TRUE. The Paste option is
enabled if WinQueryClipbrdFmtlnfo with a CF _TEXT parameter returns a
value of TRUE.

The WM_COMMAND processing checks for menu IDs of IDM_CUT,
IDM_COPY, IDM_PASTE, and IDM_CLEAR. The Cut and Copy commands
start out the same. Both of these commands require the program to copy the
selected text to the clipboard. TYPECLIP uses maUoe to get some temporary
memory for this job. The program uses VioReadCharStr to read each
selected line of text from the VIO virtual display buffer into this local
memory block. Trailing blanks at the end of each line are discarded, and
each line is terminated by a carriage return and linefeed character. The
whole block is terminated with a zero byte.

TYPECLIP then allocates a block of shareable memory by calling Dos
AlloeSeg, copies the prepared block into the shared memory segment, and
moves the segment into the clipboard by calling the four standard clipboard
functions. The Copy logic is now finished. But the WM_COMMAND mes
sage for a Cut continues with the same logic used for a Clear command.
This deletes the selection from the virtual display buffer.

The Paste logic is fairly simple. Because TYPECLIP pastes text at the cursor
position, it need only find the length of the string and write it to the window
by calling VioWrtTTY.

The Clipboard and HEXCALC2
Now that we can copy text into the clipboard with TYPECLIP, let's put that
clipboard text to use. You'll recall the HEXCALC program from Chapter 14.
A revised version, called HEXCALC2 (Figure 15-2 on the following page),
uses the clipboard to read a string of hexadecimal numbers and symbols
(such as + and -) and calculate the result.

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 703

The HEXCALC2 File

11- - - - - . - - - - - - - - - - - - - -
HEXCALC2 make file
11- - - - - - - - - - - - - - - - - - --

hexcalc2.obj: hexcalc2.c hexcalc.h
cl -c -G2sw -W3 hexcalc2.c

hexcalc.res : hexcalc.rc hexcalc.h
rc -r hexcalc.rc

hexcalc2.exe : hexcalc2.obj hexcalc2.def
link hexcalc2, lalign:16. NUL. os2. hexcalc2
rc hexcalc.res hexcalc2.exe

hexcalc2.exe : hexcalc.res
rc hexcalc.res hexcalc2.exe

The HEXCALC2.C File

1* - - - . -
HEXCALC2.C -- Hexadecimal Calculator with Clipboard Cut and Paste

- _. - - - - - - - - - - - - - - - _. - - - - - - - - - - - - - - - -*1

#define INCL_WIN
#include <os2.h>
#include (ctype.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "hexcalc.h"

#define 10M_COPY 256
#define 10M_PASTE 257

MRESULT EXPENTRY ClientWndProc (HWND. USHCRT. MPARAM, MPARAM)

HAB hab

int main (void)

HMQ hmq ;
HWNO hwndFrame
QMSG qrnsg ;

704 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-2. The HEXCALC2.C File. continued

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. CLIENTCLASS. ClientWndProc. OL, 0)

hwndFrame - WinLoadDlg (HWND_DESKTOP, HWND_DESKTOP.
NULL. NULL. IO_HEXCALC. NULL)

WinSendMsg (hwndFrame. WM_SETICON.
WinLoadPointer (HWND_DESKTOP. NULL, ID_ICON). NULL) ;

WinSetFocus (HWND_DESKTOP. W1nWindowFromID (hwndFrame, FlO_CLIENT»

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

HACCEL AddItemsToSysMenu (HWND hwndFrame)
{

static CHAR *szMenuText [3] - { NUll. "-Copy\tCtrl+lns".
"-Paste\tShift+lns" } ;

static MENU ITEM mi [3] - {

ACCELTABLE
HACCEL
HWND
MENU ITEM
SHORT

*pacct ;
haccel ;

MIT_END,
MIT_END.
MIT_END,
} :

MIS_SEPARATOR.
MIS_TEXT.
MIS_TEXT ,

hwndSysMenu. hwndSysSubMenu
miSysMenu ;
idSysMenu. sItem ;

0,

O.
0,

II Add items to system menu

0,
10M_COPY.
IDM_PASTE.

hwndSysMenu - WinWindowFromID (hwndFrame, FID_SYSMENU)
idSys~enu - SHORTIFROMMR (WinSendMsg (hwndSysMenu.

MM_ITEMIDFROMPOSITION.
NULL. NULL) ;

NULL,
NULL,
NULL,

NULL.
NULL.
NULL

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 705

Figure 15-2. The HEXCALC2.C File. continued

WinSendMsg (hwndSysMenu. MM_OUERYITEM.
MPFROM2SHORT (idSysMenu, FALSE),
MPFROMP (&miSysMenu» :

hwndSysSubMenu - miSysMenu.hwndSubMenu

for (sItem = 0 ; sItem (3 ; sltem++)
WinSendMsg (hwndSysSubMenu. MM_INSERTITEM.

MPFROMP (mi + sItem).
MPFROMP (szMenuText [sItem]» ;

/1 Create and set accelerator table

paeet = malloc (sizeof (ACCELTABLE) + sizeof (ACCEL» ;

pacct->cAccel
pacet-)codepage

... 2

- 0
II Number of accelerators
1/ Not used

pacct->aaccel[O].fs = AF_VIRTUALKEY : AF_CONTROL
paect-)aaccel[O].key - VK_INSERT :
pacct->aaceel[O].cmd - 10M_COPY;

pacct-)aaccel[l].fs - AF_VIRrUALKEY AF_SHIFT
paect->aaccel[l].key - VK_INSERT
pacct->aaccel[l].cmd - 10M_PASTE;

haceel = WinCreateAccelTable (hab. paeet)
WinSetAccelTable (hab. haecel. hwndFrame)

free (pacet) ;

return haccel :

VOID EnableSysMenultem (HWND hwnd. USHORT idltem. BOOL fEnable)
{

HWNO hwndSysMenu ;

hwndSysMenu - WinWindowFromID (WinQueryWindow (hwnd. OW_PARENT, FALSE).
FID_SYSMENU)

WinSendMsg (hwndSysMenu. MM_SETITEMATTR.
MPFROM2SHORT (idltem. TRUE),
MPFROM2SHORT (MIA_DISABLED. fEnable ? 0 MIA_DISABLED»

706 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-2. The HEXCALC2.C File. continued

void ShowNumber (HWND hwnd. ULONG ulNumber)
{

CHAR szBuffer [20] :

WinSetWindowText (WinWindowFromIO (hwnd. ESCAPE),
strupr (ltoa (ulNumber. szBuffer. 16»)

ULONG Calclt (ULONG ulFirstNum, SHORT sOperatlon, ULONG ulNum)
{

switch (sOperation)
{

case '-' return
case '+' return
case . - , return

ulNum :
ulFirstNum + ulNum :
ulFirstNum - ulNum :

case '* ' return ulFirstNum * ulNum ;
case '&' return ulFirstNum & ulNum
case " , return ulFirstNum ulNum I

case '''' return u1 Fi rstNum " ulNum
case '<' return u1 Fi rstNum « u1Num
case ')' return ulFirstNum » u1Num
case ' /' return u1Num ? u1FirstNum / ulNum
case '%' return u1Num ? ulFirstNum % ulNum
default return OL ;
}

ULONG_MAX
ULONG_MAX

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1. MPARAM mp2)
{

static BOOL fNewNumber - TRUE
static HACCEL haccel ;

static ULONG ulNumber, ulFirstNum
static SHORT sOperation - '-'
HWND hwndButton ;
PCHAR pchClipText
OMSG qmsg ;
SEL selClipText
SHORT s. sLen. idButton

switch (msg)

case WM_CREATE:
haccel = AddltemsToSysMenu

WinQueryWindow (hwnd. OW_PARENT. FALSE»
return 0 ;

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 707

Figure 15-2. The HEXCALC2.C File. continued

case WM_CHAR:
if (CHARMSG(&msg)-)fs & KC_KEYUP)

return 0 :

if (CHARMSG(&msg)-)fs & KC_VIRTUALKEY)
switch (CHARMSG(&msg)-)vkey)

{

case VLLEFT:
if (!(CHARMSG(&msg)->fs & KC_CHAR»

{

CHARMSG(&msg)-)chr - '\b' :
CHARMSG(&msg)-)fs l- KC_CHAR
}

break ;

case VILESC:
CHARMSG(&msg)-)chr - ESCAPE;
CHARMSG(&msg)-)fs :- KC_CHAR :
break :

case VILNEWLINE:
case VLENTER:

CHARMSG(&msg)->chr = '-' ;

CHARMSG(&msg)-)fs :- KC_CHAR
break ;

if (CHARMSG(&msg)-)fs & KC_CHAR)
{

CHARMSG(&msg)-)chr = toupper (CHARMSG(&msg)->chr) ;

if (hwndButton = WinWindowFromIO (hwnd.CHARMSG(&msg)->chr»
WinSendMsg (hwndButton. BM_CLICK, NULL, NULL) :

else
WinAlarm (HWNO_OESKTOP. WA_ERROR)

return

case WM_COMMANO:
idButton = COMMANDMSG(&msg)-)cmd

if (idButton == 10M_COPY)
{

II "Copy"

hwndButton = WinWindowFromID (hwnd. ESCAPE) :
sLen - WinQueryWindowTextLength (hwndButton) +

708 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-2. The HEXCALC2.C File. continued

OosAllocSeg (sLen. &selClipText. SEG_GIVEABLE) ;
pchClipText - MAKEP (selClipText, 0) ;
WinOueryWindowText (hwndButton, sLen, pchClipText)

WinOpenClipbrd (hab) ;
WinEmptyClipbrd (hab) ;
WinSetClipbrdData (hab. (ULONG) selClipText, CF_TEXT,

CFI_SELECTOR)
WinCloseClipbrd (hab) ;
}

else if (idButton - 10M_PASTE) 1/ "Paste"
{

EnableSysMenultem (hwnd. 10M_COPY. FALSE)
EnableSY5Menultem (hwnd, 10M_PASTE, FALSE)

WinOpenClipbrd (hab) ;

selClipText - (SEL) WinOueryClipbrdData (hab, CF_TEXT)

if (selClipText !- 0)
{

pchClipText - MAKEP (selClipText. 0)

for (5 - 0 ; pchClipText[s] ; s++)
{

if (pchClipText[s] =- '\r')
WinSendMsg (hwnd, WM_CHAR.

MPFROM2SHORT (KC_CHAR, I),

MPFROM2SHORT ('-', 0»

else if (pchClipText[s] !- '\n' &&
pchCl i pText[s] !- ' ')

WinSendMsg (hwnd. WM_CHAR,
MPFROM2SHORT (KC_CHAR, I),

MPFROM2SHORT (pchClipText[s],
0» ;

while (WinPeekMsg (hab, &qmsg. NULL, 0, 0,
PM_NOREMOVE»

if (qrnsg.msg -= WM_OUIT)
{

WinCloseClipbrd (hab)

(continued)

CHAPTER FIFTEEN: CUT. COPY. AND PASTE 709

Figure 15-2. The HEXCALC2.C File. continued

else

else

else

else

return 0

else

WinGetMsg (hab. &qmsg. NULL, O. 0)
WinOispatchMsg (hab, &qmsg) ;
}

}

WinCloseClipbrd (hab) :

EnableSysMenultem (hwnd. 10M_COPY. TRUE)
EnableSysMenultem (hwnd. 10M_PASTE. TRUE)
}

if (idButton -- '\b') // backspace
ShowNumber (hwnd, ulNumber /- 16)

if (idButton -- ESCAPE) // escape
ShowNumber (hwnd. ulNumber -OU

if (isxdigit (idButton» /I hex di git
{

if (fNewNumber)
{

ulFirstNum - ulNumber
ulNumber - OL
}

fNewNumber ... FALSE

if (ulNumber <= ULONG_MAX » 4)

ShowNumber (hwnd.
ulNumber - 16 * ulNumber + idButton -

(isdigit (idButton) ? '0' : 'A' - 10»
else

WinAlarm (HWNO_OESKTOP. WA_ERROR)

/I operation

if (!fNewNumber)
ShowNumber (hwnd. ulNumber =

CaleIt (ulFirstNum, sOperation. ulNumber»
fNewNumber = TRUE :

710 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-2. The HEXCALC2.C File. continued

sOperation - idButton
}

return 0 ;

case WM_BUTTONIDOWN:
WinAlarm (HWND_DESKTOP, WA_ERROR)
break ;

case WM_ERASEBACKGROUND:
return 1 ;

case WM_DESTROY:
WinDestroyAccelTable (haccel)
return 0 ;

return WinDefWindowProc (hwnd, msg, mpl. mp2)
}

The HEXCALC2.DEF File

; HEXCALC2 module definition file

NAME HEXCALC2 WINDOWAPI

DEseRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Hexadecimal Calculator With Clipboard (C) Charles Petzold 1988'

1024
8192
ClientWndProc

123
+ 234

* 8

Figure 15-2. The HEXCALC2 program.

Compiling HEXCALC2 also requires the HEXCALC.H, HEXCALC.RC, and
HEXCALC.lCO files from Chapter 14.

The Copy and Paste options are located on HEXCALC2's System menu. You
can copy the current result in HEXCALC2 (the number appearing in the top
most button) to the clipboard using Copy. But it is the Paste command that
makes HEXCALC2 most useful. First enter the following text in TYPECLIP:

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 711

Select the text, and use the TYPECLIP Copy command to copy it to the clip
board. Now invoke the Paste command in HEXCALC2. The buttons will
quickly flash as the characters are entered. The result then appears: lAB8.

We've gone from a manual calculator to an automated one.

The AddltemsToSysMenu function in HEXCALC2.C adds the Copy and Paste
options to the program's System menu using a technique discussed in Chap
ter 13. As you'll recall, both menus and buttons use WM_COMMAND mes
sages to inform their owner of user input. HEXCALC2 makes use of buttons
with IDs set to the ASCII codes of the button text. For this reason, the
IDM_COPY and IDM_PASTE commands are given IDs of 256 and 257 - out
of the range of the ASCII codes.

The AddltemsToSysMenu function also defines an accelerator table for the
two new menu items. First, it uses malloc to allocate storage for a structure
of type ACCELTABLE. One field of the ACCELTABLE structure is an array
of structures of type ACCEL. An ACCEL structure exists for each item in
the accelerator table. (The definition of ACCELTABLE in PMWIN.H allo
cates space for an array of only one ACCEL structure; this is why memory
for a larger ACCELTABLE structure must be allocated using malloc.)

After the fields of the structure are initialized, the accelerator table is cre
ated by a call to WinCreateAccelTable, which returns a handle to the table.
The WinSetAccelTable function causes the frame window to use this ac
celerator table. The handle to the accelerator table is returned from WinAdd
ItemsToSysMenu back to ClientWndProc so that the accelerator table can be
destroyed during processing of the WM_DESTROY message.

The WM_COMMAND processing in HEXCALC2 is expanded to include the
Copy and Paste commands; the processing is quite different from that used
in the TYPECLIP program.

For Copy, HEXCALC2 needs to retrieve the text displayed in the result but
ton and make a copy for the clipboard. The ID of this button is the ASCII
Escape code, so the button handle can be obtained by calling

hwndButton - WinWindowFromID (hwnd. ESCAPE) ;

HEXCALC2 obtains the length of the button text by calling

sLen = WinQueryWindowTextLength (hwndButton) + 1 ;

Because this statement adds 1 to the window text length, sLen is large
enough to accommodate a terminating zero byte. As in TYPECLIP, a block
of shareable memory is allocated, and a pointer is obtained:

712 SECTION FIVE: MISCELLANEOUS TOPICS

DosAllocSeg (sLen. &selClipText. SEG_GIVEABLE)
pchClipText - MAKEP (selClipText. 0) :

But HEXCALC2 need only call WinQueryWindowTextto copy the button text
into the shareable memory:

WinQueryWindowText (hwndButton. sLen. pchClipText) :

Finally, HEXCALC2 calls the four standard clipboard functions:

WinOpenClipbrd (hab) ;
WinEmptyClipbrd (hab) ;
WinSetClipbrdData (hab. (ULONG) selClipText. CF_TEXT.

CFLSELECTOR)
WinCloseClipbrd (hab) ;

Processing of the Paste command is also quite different from the earlier ex
amples. It starts out in a fairly normal fashion. HEXCALC2 opens the clip
board and obtains a selector to the clipboard memory:

WinOpenClipbrd (hab) ;
selClipText - (SEL) WinQueryClipbrdData (hab. CF_TEXT) ;

But ClientWndProc doesn't need to store this text in local memory. Instead,
the window procedure uses a for loop to go through the memory block and
send the individual characters as WM_CHAR messages to itself. Any
linefeed characters or space characters are ignored (normally HEXCALC2
would beep at these invalid characters), and carriage returns are translated
into equal signs, but otherwise the characters are translated directly into
WM_CHAR messages:

WinSendMsg (hwnd. WM_CHAR.
MPFROM2SHORT (KC_CHAR. 1).
MPFROM2SHORT (pchClipText[sJ. 0» ;

This is why the buttons in HEXCALC2 flash when you paste a numeric
calculation from the clipboard into the program: This Paste logic mimics
your fingers.

Think about the message traffic for a moment. ClientWndProc receives a
WM_COMMAND message for IDM_PASTE when you select Paste from the
System menu. The window procedure processes this message by sending
itself WM_CHAR messages of the characters from the clipboard. The

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 713

WM_CHAR processing in ClientWndProc obtains the window handle of
the button that corresponds to the ASCII code in the WM_CHAR message
and sends the button a BM_CLICK message. The button responds by flash
ing and posting a WM_COMMAND message to ClientWndProc with the
button ID.

In response to the original WM_COMMAND message, the WM_CHAR and
BM_CLICK messages are sent directly to the appropriate window pro
cedure. But the WM_COMMAND message from the button (the final result
of the Paste operation) is posted to the message queue. This is a problem be
cause the message queue can store only a limited number of messages; it is
quite possible that the queue will fill up with unprocessed WM_COMMAND
messages from the buttons.

For this reason, the Paste processing in HEXCALC2 contains the following
code, which is executed after each WM_CHAR message is sent:

while (WinPeekMsg (hab. &qmsg. NULL. O. O.
PM_NOREMOVE»

if (qmsg.msg -- WM_QUIT)
{

else

WinCloseClipbrd (hab)
return 0 ;

WinGetMsg (hab, &qmsg. NULL, O. 0)
WinDispatchMsg (hab. &qmsg) ;
}

The WinPeekMsg function is similar to WinGetMsg but with two important
differences. First, the last parameter to WinPeekMsg can be set to either
PM_REMOVE or PM_NOREMOVE to remove or not remove the next mes
sage from the message queue. Second, if no message exists in the message
queue, WinGetMsg will wait for one. WinPeekMsg returns immediately if
there are no pending messages. The return value of WinPeekMsg is TRUE if
a message was retrieved from the queue and FALSE otherwise.

In HEXCALC2, WinPeekMsg uses the PM_NOREMOVE option. If Win
PeekMsg returns TRUE, then for all messages except WM_QUIT (a case I'll
discuss shortly) the message is retrieved from the queue with WinGetMsg
and dispatched to the window procedure with WinDispatchMsg.

714 SECTION FIVE: MISCELLANEOUS TOPICS

The primary purpose of the WinPeekMsg function in HEXCALC2 is to
retrieve WM_COMMAND messages posted by the buttons and prevent the
message queue from overflowing. But this code also has some interesting
side effects. If you paste a lengthy calculation into HEXCALC2, you can
continue to use the mouse and keyboard with the program. For example,
you can use the mouse to move the HEXCALC2 window in the middle of the
paste operation. These mouse messages are queued, so WinPeekMsg returns
TRUE when it encounters one, and the messages are retrieved and dis
patched as usual.

You can also select Close from the System menu in the middle of the Paste
operation. For this reason, the WM_ QUIT command is checked explicitly
following the WinPeekMsg call. The WM_QUIT message is not removed
from the message queue. HEXCALC2 simply closes the clipboard and stops
the Paste operation by returning from the window procedure.

Of course, if you can select Close from the System menu while a Paste
operation is in progress, you could also select Copy or Paste. For this
reason, HEXCALC2 calls the EnableSysMenultem function to disable these
two items before the Paste operation. When Paste is finished, HEXCALC2
calls the function again to enable the items.

I'll have more to say about the WinPeekMsg function in Chapter 17.

Transferring Bitmaps with the Clipboard
In some ways, transferring bitmaps to and from the clipboard is easier than
transferring text. The only hard part is that you generally must make a copy
of any bitmap you put in the clipboard if you want to continue using the bit
map in your program. You must also make a copy of a bitmap you get from
the clipboard if you want to use the bitmap after the clipboard is closed. In
the sample BLOWUP program used in this section, I have a function called
CopyBitmap that does this.

Transferring from Program to Clipboard
Suppose you have a handle to a bitmap, and it is stored in the variable hbm
of type HBITMAP. You want to keep this handle, but you want to transfer a
copy of the bitmap to the clipboard.

First, you make a copy of the bitmap and store the handle in another vari
able (named hbmClip, for example) of type HBITMAP:

hbmClip = CopyBitmap (hbm)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 715

If the copy operation is successful, you call the same four functions you use
to transfer text into the clipboard:

WinOpenClipbrd (hab) ;
WinEmptyClipbrd (hab) :
WinSetClipbrdData (hab, (ULONG) hbmClip, CF_BITMAP. CFI_HANDLE)
WinCloseClipbrd ;

Notice that the second parameter to WinSetClipbrdData is the handle of the
bitmap copy rather than a selector to shareable memory. This parameter is
followed by the identifiers CF _BITMAP to indicate bitmap format and
CFI_HANDLE to indicate that a handle is being passed as the second
parameter.

Following the WinSetClipbrdData call, do not use or delete hbmClip. This
copy of the bitmap is specifically for the clipboard.

Transferring from Clipboard to Program
To transfer a bitmap from the clipboard into your program, first open the
clipboard and obtain the bitmap handle:

WinOpenClipbrd (hab) ;
hbmClip - WinQueryClipbrdData (hab, CF_BITMAP) ;

The WinQueryClipbrdData function returns OL if the clipboard does not con
tain a bitmap. Thus hbmClip will be NULL. The hbmClip handle will be
valid only when the clipboard is open. You'll probably want to make a copy
of the bitmap and then close the clipboard:

if (hbmClip !- NULL)
hbm - CopyBitmap (hbmClip)

WinCloseClipbrd (hab)

I told you this was easy. Now all we need is that CopyBitmap function.

The BLOWUP Program
The CopyBitmap function, as well as some other goodies, is shown in the
BLOWUP program in Figure 15-3.

716 SECTION FIVE: MISCELLANEOUS TOPICS

The BLOWUP File

11- -- - - - - - - - --- - - ---
BLOWUP make file
tf- - - - - - - - - - - - - - - - --

blowup.obj : blowup.c blowup.h
cl -c -G2sw -W3 blowup.c

blowup. res : blowup.rc blowup.h
rc -r blowup

blowup.exe : blowup.obj blowup.def
link blowup, /align:16, NUL. os2, blowup
rc blowup. res

blowup.exe : blowup. res
rc blowup. res

The BLOWUP.C File

/* -

BLOWUP.C -- Screen Capture Program
---------- --- ---- ------- ---- -- ------* /

#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include "blowup.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT, MPARAM, MPARAM)

CHAR szClientClass [] = "BlowUp" :
HAB hab

int main (void)

static ULONG flFrameFlags - FCF_TITLEBAR
FCF_SIZEBORDER
FCF_SHELLPOSITION
FCF_MENU

HMO hmq ;
HWND hwndFrame. hwndClient :
QMSG qmsg ;

FCF_SYSMENU
FCF_MINMAX
FCLTASKLI ST
FCF_ACCELTABLE

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 717

Figure 15·3. The BLOWUP.C File. continued

hab = WinInitialize (0)
hmq = WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass. NULL.
Ole NULL. ID_RESOURCE, &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

BOOL BeginTracking (RECTL *prclTrack)
{

LONG cxScreen. cyScreen. cxPointer. cyPointer
TRACKINFO ti ;

cxScreen = WinOuerySysValue (HWND_DESKTOP, SV_CXSCREEN) :
cyScreen - WinOuerySysValue (HWND_DESKTOP. SV_CYSCREEN) :
cxPointer - WinQuerySysValue (HWND_DESKTOP, SV_CXPOINTER)
cyPointer = WinQuerySysValue (HWND_DESKTOP, SV_CYPOINTER) :

II Set up track rectangle for moving

ti.cxBorder = 1
ti .cyBorder -
ti.cxGrid - 0
ti .cyGrid = 0
ti .cxKeyboard - 4
ti .cyKeyboard - 4

ti .rclBoundary.xLeft - 0 :
ti.rclBoundary.yBottom - 0 ;
ti.rclBoundary.xRight = cxScreen
ti.rclBoundary.yTop - cyScreen

718 SECTION FIVE: MISCELLANEOUS TOPICS

II Border width

II Not used

II Pixel increment for keyboard

II Area for tracking rectangle

(continued)

Figure 15-3. The BLOWUP.C File. continued

ti.ptlM1nTrackSize.x -
ti.ptlMinTrackSize.y -

II Minimum rectangle size

t1.ptlMaxTrackS1ze.x - cxScreen
ti.ptlMaxTrackSize.y - cyScreen

II Maximum rectangle size

II Initial position

ti.rclTrack.xLeft - (cxScreen - cxPointer) I 2
ti.rclTrack.yBottom - (cyScreen - cyPointer) / 2
ti.rclTrack.xRight - (cxScreen + cxPointer) I 2
ti.rclTrack.yTop - (cyScreen + cyPointer) I 2

t1.fs - TF_MOVE : TF_STANDARD : TF_SETPOINTERPOS

if (!WinTrackRect (HWND_DESKTOP. NULL, &ti»
return FALSE

II Flags

II Switch to "sizing" pOinter
WinSetPointer (HWND_DESKTOP,

WinQuerySysPointer (HWND_DESKTOP, SPTR-SIZENESW, FALSE»

1/ Track rectangle for sizing

ti.fS - TF_RIGHT : TF_TOP : TF_STANDARD : TF_SETPOINTERPOS

if (!WinTrackRect (HWND_DESKTOP, NULL, &ti»
return FALSE

*prclTrack - ti.rclTrack /1 Final rectangle

return TRUE ;

HBITMAP CopyScreenToB1tmap (RECTL *prclTrack)
{

BITMAPINFOHEADER bmp ;
HBITMAP hbm :
HOC hdcMemory
HPS hps, hpsMemory
LONG alBmpFormats[2]
POINTL aptl[3]
SIZEL si zl ;

II Create memory DC and PS

hdcMemory - DevOpenDC (hab, OD_MEMORY, "*", Ol, NULL. NUll)

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 719

Figure 15·3. The BLOWUP.C File. continued

sizl .ex - sizl .ey = 0 :
hpsMemory = G~iCreatePS (hab, hdeMemory. &sizl.

PU_PELS GPIF_OEFAUlT
GPIT_MICRO : GPIA_ASSOC) ;

II Create bitmap for destination

GpiQueryDeviceBitmapFormats (hpsMemory. 2L, alBmpFormats) ;

bmp.cbFix = sizeof bmp ;
bmp.ex - (USHORT) (prclTrack-)xRight - prclTraek->xleft) ;
bmp.ey (USHORT) (prelTrack->yTop - prelTraek->yBottom)
bmp.ePlanes - (USHORT) alBmpFormats[O]
bmp.eBitCount - (USHORT) alBmpFormats[l] :

hbm - GpiCreateBitmap (hpsMemory, &bmp, Ol. NUll, NULL) :

if (hbm != NUll)
{

II Copy from screen to bitmap

GpiSetBitmap (hpsMemory, hbm) ;
hps = WinGetScreenPS (HWNO_DESKTOP)

aptl[O].x - 0 ;
aptl[O].y = 0 ;
aptl[l].x = bmp.ex
aptl[l].y = bmp.cy
aptl[2].x - prelTrack-)xLeft
aptl[2].y = prclTrack->yBottom

WinLoekVisRegions (HWND_OESKTOP, TRUE) ;

GpiBitBlt (hpsMemory. hps, 3L, aptl, ROP_SRCCOPY, BBO_IGNORE);

WinLockVisRegions (HWNO_DESKTOP, FALSE) :

WinReleasePS (hps) ;
}

GpiDestroyPS (hpsMemory)
DevCloseDC (hdcMemory)

return hbm

II Clean up

720 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-3. The BLOWUP.C File. continued

HBITMAP CopyBitmap (HBITMAP hbmSrc)
{

BITMAPINFOHEADER bmp :
HBITMAP hbmDst
HDC
HPS
POINTl
SIZEl

hdcSrc. hdcDst
hpsSrc, hpsDst
aptl[3]
s i zl ;

II Create memory DC's and PS's

hdcSrc - DevOpenDC (hab. OD_MEMORY,
hdcDst - DevOpenDC (hab. OD_MEMORY,

n*" Ol, NUll. NULl)
Ol, NULl. NULl)

sizl .ex - sizl .cy - 0 :
hpsSrc = GpiCreatePS (hab. hdcSrc, &siz1. PU_PElS

GPIT_MICRO

hpsDst - GpiCreatePS (hab. hdcDst, &sizl. PU_PElS
GPIT_MICRO

II Create bitmap

GpiQueryBitmapParameters (hbmSrc, &bmp)

GPILDEFAUlT :
GPIA_ASSOC) ;

GPIF_DEFAUlT :
GPIA-ASSOC) :

hbmDst - GpiCreateBitmap (hpsDst. &bmp. OL, NULL, NULL) ;

if (hbmOst != NULL)
{

II Copy from source to destination

GpiSetBitmap (hpsSrc. hbmSrc)
GpiSetBitmap (hpsDst, hbmDst)

aptl[O].x = apt1[O].y - 0
aptl[l].x = bmp.cx ;
aptl[l].y - bmp.cy ;
aptl[2] - aptl[O] ;

GpiBitBlt (hpsDst, hpsSrc. 3L. aptl. ROP_SRCCOPY, BBO_IGNORE)
}

GpiDestroyPS (hpsSrc)
GpiOestroyPS (hpsOst)
OevCloseDC (hdcSrc)
DevCloseDC (hdcDst) ;

II Clean up

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 721

Figure 15-3. The BLOWUP.C File. continued

return hbmDst ;

VOID BitmapCreationError (HWND hwnd)
{

WinMessageBox (HWND_DESK10P, hwnd. "Cannot create bitmap
szClientClass. 0, MB_OK : MB_ICONEXCLAMATION)

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static HBITMAP hbm ;
static HWNO hwndMenu
static SHORT sDisplay ... IDM_ACTUAL
HBITMAP hbmClip ;
HPS hps :
RECTL rclTrack. rclClient
USHORT usfInfo ;

switch (msg)
{

case WM_CREATE:
hwndMenu - WinWindowFromlD

return 0 ;

WinQueryWindow (hwnd. OW_PARENT. FALSE).
FlD_MENU) :

case WM_INITMENU:
switch (SHORTlFROMMP (mpl»

{

case 10M_EDIT:
WinSendMsg (hwndMenu. MM_SETITEMATTR.

MPFROM2SHORT (10M_COPY. TRUE).
MPFROM2SHORT (MIA_DISABLED.

hbm 1- NULL? 0 : MIA_DISABLED»

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (IDM_PASTE. TRUE).
MPFROM2SHORT (MIA_DISABLED.

WinQueryClipbrdFmtlnfo (hab. CF_BITMAP. &usflnfo)
? 0 : MIA_DISABLED» ;

return 0 ;

break ;

(continued)

722 SECTION FIVE: MISCELLANEOUS TOPICS

Figure 15-3. The BLOWUP.c File. continued

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case IDM_COPY:
II Make copy of stored bitmap

hbmClip - CopyBitmap (hbm) ;

II Set clipboard data to copy of bitmap

if (hbmClip !- NULL)
{

else

WinOpenClipbrd (hab)
WinEmptyClipbrd (hab) ;
WinSetClipbrdData (hab. (ULONG) hbmClip.

CF_BITMAP, CFI_HANDLE)
WinCloseClipbrd (hab) ;
}

BitmapCreat1onError (hwnd)
return 0 ;

case 10M_PASTE:
II Get bitmap from clipboard

WinOpenClipbrd (hab) :
hbmClip - WinQueryClipbrdData (hab. CF_BITMAP)

if (hbmClip !- NULL)
{

if (hbm !- NULL)
GpiDeleteBitmap (hbm) ;

II Make copy of it

hbm - CopyBitmdp (hbmClip) ;

if (hbm - NULl)
BitmapCreationError (hwnd)

WinCloseClipbrd (hab) ;
WinInvalidateRect (hwnd, NULL. FALSE)
return 0 :

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 723

Figure 15·3. The BLOWUP.C File. continued

case IDM_CAPTURE:
if (BeginTracking (&rclTrack»

{

if (hbm !- NULL)
GpiDeleteBitmap (hbm) :

hbm = CopyScreenToBitmap (&rclTrack)

if (hbm = NULl)
BitmapCreationError (hwnd) ;

WinlnvalidateRect (hwnd. NULL. FALSE)
}

return 0 :

case IDM_ACTUAL:
case IDM_STRETCH:

case WM_PAINT:

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (sDisplay. TRUE).
MPFROM2SHORT (MIA_CHECKED. 0»

sDisplay - COMMANDMSG(&msg)-)cmd ;

WinSendMsg (hwndMenu. MM_SETITfMATTR.
MPFROM2SHORT (sDisplay. TRUE).
MPFROM2SHORT (MIA-CHECKED. MIA_CHECKED»

WinlnvalidateRect (hwnd, NULL. FALSE) ;
return 0 ;

hps = WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps) ;

if (hbm 1- NULL)
{

WinQueryWindowRect (hwnd. &rclClient) ;

WinDrawBitmap (hps. hbm. NULL, (PPOINTL) &rclClient,
CLR-NEUTRAL. CLR_BACKGROUND.

WinEndPaint (hps)
return 0 ;

sDisplay -- 10M_STRETCH?
DBM_STRETCH : DBM_NORMAL)

724 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 15-3. The BLOWUP.C File. continued

case WM-OESTROY:
if (hbm 1- NULL)

GpiOeleteBitmap (hbm)
return 0 :

return WinOefWindowProc (hwnd, msg, mp1, mp2)

The BLOWUP.H File

/*- --

BLOWUP.H header file
- -*/

#define IO_RESOURCE

#define IOM_EOIT 10
4/defi ne IDM_COPY 11
41defi ne 10M_PASTE 12

Iidefi ne 10M_CAPTURE 20

4/defi ne 10M_DISPLAY 30
#define IDM_ACTUAL 31
#define 10M_STRETCH 32

The BLOWUP.RC File

/* -

BLOWUP.RC resource script file
- -*/

#include <os2.h>
#include "blowup.h"

MENU ID_RESOURCE
{

SUBMENU "-Edit",
{

MENU ITEM "-Copy\tCtrl+lns". IDM_COPY
MENUITEM "-Paste\tShift+lns". IDM_PASTE
}

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 725

Figure 15-3. The BLOWUP.RC File. continued

MENUITEM "-Capture!",

SUBMENU "-Display".
{

10M_CAPTURE

IOM_OISPLAY

MENUITEM "-Actual size". 10M_ACTUAL., MIA_CHECKED
MENU ITEM "-Stretch to window", 10M_STRETCH
}

ACCELTABLE ID_RESOURCE
{

VK-INSERT. 10M_COPY, VIRTUALKEY. CONTROL
VK-INSERT, 10M_PASTE, VIRTUALKEY. SHIFT
}

The BLOWUP.DEF File

------------------------------------.
; BLOWUP.DEF module definition file

NAME BLOWUP WINDOWAPI

DESCRIPTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Bitmap Blowup Clipboard Program (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 15-3. The BLOWUP program.

You can use BLOWUP like a magnifying glass to explore areas of the Pre
sentation Manager screen. First select Capture from the menu. A little rect
angle about the size of a mouse pointer appears in the middle of the screen.
You can move it around with the mouse or the cursor movement keys. Move
it to an area of the screen you want to blow up in size, and press Enter or
click the mouse button. You can then use the mouse or keyboard to adjust
the upper-right corner of the rectangle. Press Enter or click the mouse
button again.

BLOWUP then displays that area of the screen on its client window. By
default, it is displayed at actual size. But you can select "Stretch to Win
dow" from BLOWUP's Display menu to stretch the bitmap to the size of the
client window. For example, Figure 15-4 shows the results after you use
BLOWUP to look at the minimize/maximize menu.

726 SECTION FIVE: MISCELLANEOUS TOPICS

~ BLOWUP EXE 111m

Figure 15-4. The BLOWUP display.

BLOWUP has an Edit menu with Copy and Paste options. You can copy the
bitmap to the clipboard or paste a bitmap from the clipboard.

BLOWUP maintains a bitmap handle named hbm for displaying the bitmap
on its client window. The clipboard logic in BLOWUP is almost exactly as I

just described it. The only substantial difference is that BLOWUP deletes the
hbm handle it already has before pasting a bitmap from the clipboard.

Case IDM_PASTE:

II Get bftmap from clipboard

WinOpenClipbrd (hab) :
hbm - WinQueryClipbrdData (hab. CF_BITMAP)

if (hbmClip 1- NULL)
{

if (hbm 1- NULL>
GpiDeleteBitmap (hbm) :

II Make copy of new bitmap

hbm - CopyBitmap (hbmClip) :

(continued)

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 727

continued

if (hbm == NULl)
BitmapCreationError (hwnd)

WinCloseClipbrd (hab) ;

BLOWUP also processes the WM_INITMENU message to enable or disable
the Copy and Paste options. The Copy option is enabled only if BLOWUP
has a bitmap handle stored in hbm. Paste is enabled if the clipboard cur
rently contains a bitmap.

The CopyBitmap function is fairly straightforward. The function opens two
memory device contexts and creates two presentation spaces associated
with these device contexts. WinQueryBitmapParameters obtains the BIT
MAPINFOHEADER structure that describes the original bitmap. This struc
ture is passed to GpiCreateBitmap to create a new bitmap of the same size
and color organization. The two bitmaps are set into the two presentation
spaces, and GpiBitBlt copies the contents of the original bitmap to the new
bitmap.

In its BeginTracking function, BLOWUP uses the powerful WinTrackRect
function for capturing an area of the screen when you select the Capture
option from the menu. WinTrackRect is the same function that the title bar
window uses when you move a window on the screen and the same function
that the frame window uses when you resize a window. The function has its
own keyboard and mOllse interface.

To use WinTrackRect, you need to define a structure of type TRACKINFO:

TRACKINFO ti ;

The hard part of the job is setting all the fields of this structure. But once
they're set, you just pass the structure to WinTrackRect:

WinTrackRect (HWND_DESKTOP, NULL, &ti) ;

The second parameter to WinTrackRect is usually a handle to a presentation
space, but the function can obtain a presentation space handle using the
window handle passed as the first parameter. Because we want to capture
anything on the screen, the first parameter is set to HWND_DESKTOP.

WinTrackRect displays a rectangle on the screen and allows it to be moved
or sized with the keyboard or mouse. The function has its own message loop
and will not return until the user presses the mouse button, presses the Enter

728 SECTION FIVE: MISCELLANEOUS TOPICS

key, or presses the Escape key. WinTrackRect returns FALSE if the user
aborts the tracking operation by pressing Escape and returns TRUE
otherwise.

BLOWUP calls WinTrackRect twice in its BeginTracking function, which is
called from ClientWndProc when the Capture menu option is selected. The
first call to WinTrackRect lets you move the tracking rectangle to any area
of the screen; the second call lets you change the size of the rectangle.

The TRACKINFO structure contains two fields that are RECTL structures.
The first (called rclBoundary) indicates the area in which the rectangle can
be moved. For BLOWUP, this is the entire screen. The second RECTL struc
ture (called rclTrack) specifies the initial position and size of the rectangle
when the function is called and specifies the final position and size of the
rectangle when the function returns. (For the first call to WinTrackRect,
BLOWUP makes the rectangle the size of a mouse pointer and places it in
the center of the screen.) Two POINTL structures in the TRACKINFO struc
ture specify the minimium and maximum allowable sizes of the rectangle.
For BLOWUP, the minimum size is 1 pixel high and 1 pixel wide, and the
maximum size is the dimension of the entire screen.

The Is field of the TRACKINFO structure specifies how the tracking is to
work. For the first call to WinTrackRect, the Is field is set like this:

ti .fs = TF_MOVE : TF_STANDARD : TF_SETPOINTERPOS ;

The TF _MOVE flag indicates that the user can move the rectangle. The
TF _STANDARD field indicates that the dimensions of the border given in
the cxBorder and cyBorder fields are multiples of the standard border width.
The TF _SETPOINTERPOS flag puts the mouse pointer in the center of the
rectangle.

On the second call to WinTrackRect, the flags are set differently:

ti .fs = TF_RIGHT : TF_TOP : TF_STANDARD : TF_SETPOINTERPOS ;

The TF _RIGHT and TF _TOP flags allow the user to move the upper-right
corner of the rectangle. The mouse pointer is positioned on that corner.
Before this second call to WinTrackRect, BLOWUP sets the mouse pointer to
the system pointer known as SPTR_SIZENESW:

WinSetPointer CHWND_DESKTOP, WinQuerySysPointer
(HWND_DESKTOP. SPTR_SIZENESW. FALSE»

CHAPTER FIFTEEN: CUT, COPY, AND PASTE 729

The letters "NESW" stand for "north-east south-west." The pointer is a
double-headed arrow that points to the upper-right and lower-left corners.
This is the mouse pointer that appears when you resize a window by grab
bing the upper-right or lower-left corner of the sizing border.

BLOWUP calls its BeginTracking function when the user selects Capture
from the menu. The BeginTracking function returns the final tracking rect
angle. BLOWUP then calls CopyScreenToBitmap with this rectangle to create
a bitmap and to copy the selected area of the screen. In CopyScreenTo
Bitmap, the GpiQueryDeviceBitmapFormats function obtains the number of
color planes and number of color bits per pixel used for the video display.
This is required to create the bitmap. The bitmap is selected into a presenta
tion space associated with a memory device context, and GpiBitBlt does the
copy. Before and after the GpiBitBlt call, CopyScreenToBitmap makes calls
to WinLockVisRegions to prevent the screen from changing while the copy is
in progress.

If you have the CLOCK or DIGCLOCK program running when you use
BLOWUP, you'll notice also that the screen is not updated during the calls
to WinTrackRect. If the Presentation Manager allowed screen updates, an
other program might draw over the tracking rectangle or imprint part of the
rectangle in its window when drawing in exclusive OR mode. This is one
big advantage of using WinTrackRect rather than your own logic for tracking
areas of the screen outside your window.

730 SECTION FIVE: MISCELLANEOUS TOPICS

CHAPTER SIXTEEN

DYNAMIC LINK
LIBRARIES

Dynamic linking is a process that lets your programs use functions or
resources outside of their own .EXE files. Dynamic linking is one of the
most interesting features of OS/2 and is very important to the overall struc
ture of the operating system. Its degree of importance is reflected by the
number of .DLL files you'll find on your hard disk. These files are
"dynamic link libraries" (or DLLs). They contain code, data, and resource
segments just as executable files do. However, a dynamic link library is not
directly executed but is used by OS/2 executables or other dynamic link
libraries.

The Presentation Manager itself is primarily a collection of dynamic link
libraries. These libraries extend the functionality of OS/2 to include a win
dowing user interface and graphics. Every Presentation Manager function
your program calls is in a dynamic link library. The two most important
Presentation Manager libraries are PMWIN.DLL (which contains most func
tions with the Win prefix) and PMGPI.DLL (which contains most functions
with the Gpi prefix).

When you use LINK to create a Presentation Manager program, the pro
gram's .EXE file contains no code for the various OS/2 and Presentation
Manager functions called by the program. Instead, LINK builds tables in the
.EXE file that identify these functions and the names of the dynamic link li
brarl~s where they are located. In the program itself, the actual calls to
these functions contain dummy addresses.

When you run the program, OS/2

• determines from the .EXE file which dynamic link libraries are required
by the program

731

• maps the code and data segments from the dynamic link library into the
process's memory space

• replaces the dummy addresses in the program's code segment with the
addresses of the functions in the DLL code segment

This is the process known as "dynamic linking."

You can also write your own dynamic link libraries, which is what I'll show
you how to do in this chapter.

Code segments, read-only data segments, and resource segments in
dynamic link libraries can be shared among all processes running under
OS/2. Read-write data segments associated with dynamic link libraries are
usually private to each process. However, you can specify that some read
write data segments in a dynamic link library be shared among all
processes. This allows dynamic link libraries to assist in interprocess com
munication (IPC).

Because dynamic linking is a facility of the OS/2 kernel rather than the Pre
sentation Manager, I won't discuss it in detail here. Instead, I'll concentrate
on those aspects of dynamic linking that are most important to Presentation
Manager programming.

locating .Dll Files-A Tip
Before we begin, here's a tip to help you more easily develop programs that
use dynamic link libraries. When you run a program that requires linking
to a dynamic link library, OS/2 uses the directory paths specified in the
LIBPATH statement in your CONFIG.SYS file to locate the library files. For
example, your LIBPATH statement may look like this:

LIBPATH-C:\OS2\OLL;C:\

This tells OS/2 that all of the dynamic link libraries are located in the
C:\OS2\DLL or C:\ directories. Normally when you create a dynamic link
library you must copy it into the C:\OS2\DLL directory or root directory to
use it. However, you can add a semicolon and period to the end of the LIB
PATH string:

LIBPATH-C:\OS2\DLL;C:\;.

This causes OS/2 to also search the current directory when a program re
quires a dynamic link library. This makes developing and testing the li
brary somewhat easier. After you change your CONFIG.SYS file, you'll
have to reboot to make the change effective. In the following discussions
and examples, I'll assume you've done this.

732 SECTION FIVE: MISCELLANEOUS TOPICS

Dynamic Link Library Basics
The word "library" is used in several different ways in OS/2 programming,
so let's take a minute to examine them.

Object and Import Libraries
Normally when you use LINK to link a program, you make use of "object
libraries. " These are files with a .LIB extension that contain code and data.
(For example, SLIBCE.LIB is an object library for the small-model C run
time library functions such as sprint! and strlen.) Linking with an object
library is sometimes known as "static linking" to differentiate it from
dynamic linking.

However, some files with a .LIB extension are not object libraries but "im
port libraries." Import libraries are similar to object libraries because they
contain information that LINK uses to construct a program's .EXE file.
However, import libraries usually contain no code or data. Instead, LINK
uses the import libraries to set up tables within the .EXE file that identify
the dynamic link library functions used by the program.

For example, most Presentation Manager programs call the function
WinCreateStdWindow. When you compile a Presentation Manager program,
the .OBJ file produced by the compiler contains an unresolved reference to
this function. When LINK links the program to create a .EXE file, it finds
the WinCreateStdWindow function in OS2.LIB. The OS2.LIB file indicates
that this function is located in the PMWIN.DLL dynamic link library mod
ule and has an "ordinal number" (a concept discussed later in this chapter)
of 140. LINK then stores this information in the program's .EXE file. When
OS/2 loads the program into memory, it can then determine both the name
of the dynamic link library and the ordinal number within that library of
the unresolved call to WinCreateStdWindow.

I'll show you how to create your own import libraries later in this chapter.

The object libraries and import libraries need be present on the hard disk
only when you link the program. The dynamic link library used by a pro
gram must be present when you run the program.

Modules
Both programs (files with a .EXE extension) and dynamic link libraries
(files with a .DLL extension) are sometimes called "modules." The .EXE
files are "program modules" and the .DLL files are "library modules."
Each module has a module name, which you must specify in the NAME
statement (for program modules) or the LIBRARY statement (for library
modules) of the module definition (.DEF) file.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 733

A library module name must be the same as the filename, but without the
.DLL extension; a program module name is generally the same as the file
name (without the .EXE extension), but can differ.

Exported Functions
Most dynamic link libraries contain functions that can be called from exe
cutables or other dynamic link libraries. Such functions are said to be "ex
ported" from the library. For example, the WinCreateStdWindow function is
exported from the PMWIN.DLL dynamic link library. A function in a
dynamic link library must be exported if it is to be used by another module.

You can get a list of functions exported from a particular dynamic link li
brary by running the EXEHDR program (included with the OS/2 Program
mer's Toolkit) like this:

EXEHDR C:\OS2\DLL\PMWIN.DLL

After displaying information stored in the .EXE file headers, EXEHDR lists
all of the code and data segments in the module, followed by the exported
functions. The "seg" and "offset" columns indicate the segment number
and the offset within that segment where the function begins. The "ord"
column contains the ordinal number of the function. Each exported func.,.
tion has a unique positive ordinal number.

We have been exporting functions since Chapter 2-all window pro
cedures in a program must be exported from the program module. Window
procedures are called from the PMWIN dynamic link library. The general
rule is this: Any function in a program or library module that can be called
from another module must be exported.

Imported Functions
When a program or library module makes use of functions in a library
module, the functions are said to be "imported" to the module making the
function call. You can get"a list of the functions imported to a module by
running EXEHDR with the -V (verbose) switch. This displays a list of all ad
dresses within the module that OS/2 must patch when loading the program
into memory. Many of these are calls to functions in dynamic link library
modules. You'll notice that imported functions are referred to by the mod
ule name (such as PMWIN and PMGPI) followed by a period and either a
function name or an ordinal number. For example, PMWIN.l40 refers to the
WinCreateStdWindow function.

734 SECTION FIVE: MISCELLANEOUS TOPICS

Thus, dynamic linking is the process of connecting calls to functions im
ported to a program module with the functions exported from a dynamic
link library module. Very often a library module imports functions from it
self or from another library module, so OS/2 must also be able to
dynamically link library modules.

Same Process, Different Module
It's important to remember that a dynamic link library is not a process.
Only an OS/2 executable file can become a process. Code that is executed in
a dynamic link library (as a result of a call to a function within the library),
is executed within the process that makes the call. As you may know, each
process running under OS/2 has a "local descriptor table" (or LDT) that the
80286 or 80386 microprocessor uses to reference the process's code and data
segments. When a process uses a library module, the code and data seg
ments in that module are also included in the process's LDT.

In this sense, when a program calls a routine in a dynamic link library, it's
no different from the program calling a routine in the program itself. The
dynamic link library is an extension of the process. Everything the library
does is done on behalf of the process. For example, a function in a dynamic
link library can open a file or allocate a memory segment. The open file
or memory segment belongs to the process that called the function in
the library.

This is quite interesting when you think about it. We are accustomed to
thinking about operating system code and program code as separate and
distinct entities. A function such as WinCreateStdWindow is an operating
system function call. Yet, when a Presentation Manager program calls
WinCreateStdWindow, the function really executes as part of the process.

Is PMWIN.DLL an extension of the OS/2 operating system or an extension
of a program running under Presentation Manager? It's both. Dynamic link
libraries bridge the gap between program and operating system. Under
OS/2, the concept of one module calling code located in another module is
generalized. There is no real separation between program code and operat
ing system code.

When you write your own dynamic link libraries, you may think of them as
extensions of your programs. But you can also view them as extensions of
the operating system. This explains why people say that OS/2 is easily and
almost infinitely extensible.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 735

Why Use Dynamic link libraries?
Of course, the idea of writing an "extension" to OS/2 may be enough of a
thrill to induce you to write dynamic link libraries. But there are more prac
tical benefits.

Suppose you were developing an OS/2 accounting package that consisted of
several programs. These programs would probably use a lot of the same
code. In fact, under DOS you would probably isolate these common routines
in separate source code files and put them in object libraries.

But if you did this, each program in the package would contain a copy of
these common routines, increasing the total disk space required by the
package. Moreover, if someone ran two or more of these programs under
OS/2 at the same time, the common routines would also be duplicated in
memory.

If you instead put these routines in a dynamic link library, the disk space re
quired by the package would be reduced because only one copy of the rou
tines is required. (And that copy is in the library module.) If two or more of
the programs were run at the same time, the code in the library module
would be shared among the programs that required it.

Moreover, when compiling and linking the separate programs, link time
would be improved because LINK would no longer have to pull the routines
from the object library and include them in the program's .EXE file. You
could also someday improve the performance of the whole package by
upgrading only the routines in the dynamic link library. The programs
themselves would not even have to be rei inked.

Dynamic link libraries can also be products in themselves. For example,
suppose you write a collection of three-dimensional extensions to GPI

graphics, put the functions in a dynamic link library, and call it GPI3D.DLL.

You might be able to interest other software manufacturers in licensing this
library from you for inclusion in their products. Users who own several
products that use GPI3D.DLL would need only one copy of the library on
their hard disks.

DS != SS and Other Dll Quirks
I mentioned earlier that, in one sense, calling a function in a dynamic link
library is no different from calling a function in the program itself. But this
is not entirely true. Dynamic link libraries have a few quirks that result
from the segmented architecture of the 80286 microprocessor.

The code segments in a program and the code segments in a dynamic link
library are different. Any call from a program to a dynamic link library

736 SECTION FIVE: MISCELLANEOUS TOPICS

function must be a far call (that is, the call must use both a segment and an
offset address). Thus the exported functions in a dynamic link library must
be compiled as far functions.

Any pointer passed as a parameter to a function in a dynamic link library
must be a far pointer. A dynamic link library usually includes its own data
segment, so it requires a far pointer to access data in the program's data seg
ment. Because most DLL functions use the library's data segment, dynamic
link libraries must be compiled a little differently than programs. I'll
discuss this shortly.

A program includes a segment group called DGROUP. This group contains
both the program's default data segment and the program's stack segment.
The default data segment is referenced by the DS register, and the stack seg
ment is referenced by the SS register. Because these two segments are
grouped in DGROUP, DS and SS are the same. Symbolically,

os -- ss

Dynamic link . libraries usually have their own default data segment, but
they have no stack segment. When a program makes a call to a function in a
dynamic link library, the function switches to a DS that references its own
data segment. But SS still references the calling program's stack segment.
In other words,

OS 1= ss

By default, the C compiler generates code under the assumption that DS
equals SS. When compiling a dynamic link library, you must tell the com
piler not to assume this.

The LLIBCDLL Library
The DS != SS quirk of dynamic link libraries is primarily a problem when
you compile the library code using small or medium model. Small-model
or medium-model modules have only one data segment. By default, refer
ences to data use only 16-bit offsets. But if DS is not equal to SS, in some
cases the compiler will not know whether a particular pointer to a variable
references a variable in the data segment or the stack segment. To make the
problem worse, some C library functions assume that DS equals SS.

These problems are greatly alleviated by the inclusion in Microsoft C 5.1 of
a C runtime library called LLIBCDLL.LIB. This object library is specifi
cally designed for use in dynamic link libraries. It is a large-model library
(and hence uses both segment and offset addresses for referencing code and
data), and the C functions do not assume that DS equals SS.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 737

For this reason, we will compile our dynamic link libraries using large
model and linking them with LLIBCDLL.LIB. The major disadvantage is
that floating-point math functions in LLIBCDLL use the "alternate" math
library and will not use a math coprocessor chip if installed. (There is no
easy way to prevent a program and a dynamic link library from interfering
with each other if each is using the math coprocessor or the same
coprocessor emulation routines.)

Another disadvantage of LLIBCDLL is that it cannot be used in dynamic
link library functions that are called from separate threads of a single
process. (Multithread Presentation Manager programming is discussed in
Chapter 17.) To link such functions, you must create a dynamic link library
that contains all of the C runtime library functions. Microsoft C 5.1 in
cludes everything you need to do this.

Compile and Link Mechanics
Most of the difficulties in using dynamic link libraries involve the
mechanics of compiling and linking. There are several requirements, as
well as several possible ways to satisfy each of them:

Requirement One: Use Far Calls and Pointers.
All functions exported from a dynamic link library must be defined as far.
In addition, any pointer passed as a parameter to an exported function must
also be defined as far.

Compiling the dynamic link library for large model satisfies this require
ment. We'll be using the -Alf switch to compile dynamic link libraries. (The
"1" directs the compiler to "long" code pointers, and the "f" means to use
"far" data pointers.)

When you write a program that uses functions in a dynamic link library,
you must also write the library function declarations to indicate that they
are far functions with far pointers as parameters. You can use the FAR iden
tifier defined in OS2DEF.H for this, and use the PSZ, PSHORT, PLONO, and
other data types to indicate far pointers. Use the Presentation Manager
headernles as a guide in writing the function declarations.

Requirement Two: Decide on a Calling Sequence.
By default, when the C compiler generates code for a function call, the code
pushes parameters on the stack from right to left. After the function call
returns to the caller, the parameters are removed from the stack. This is the
normal C calling sequence.

The Microsoft C compiler also supports a Pascal calling sequence. The
parameters are pushed on the stack from left to right and the function itself

738 SECTION FIVE: MISCELLANEOUS TOPICS

removes the parameters from the stack before the function returns. The Pas
cal calling sequence is slightly more efficient when code is generated for the
80286 microprocessor. All OS/2 and Presentation Manager functions use the
Pascal calling sequence. However, a function that uses a variable number of
parameters must use the C calling sequence.

You can specify a function as using the Pascal calling sequence by specify
ing the pascal keyword or PASCAL identifier. If you use both PASCAL and
FAR to define a function, you can use APIENTRY instead. An alternative is
to use the -Gc switch when compiling the dynamic link library code. This
causes the compiler to generate code for the Pascal calling sequence for all
functions in the file. In this case, you can use the cdecl keyword for func
tions that must use the C calling sequence.

Requirement Three: Load DS.
Functions in dynamic link libraries most often use the library module's
DGROUP for the default data segment. When an exported function is called
from a program, however, DS is set to the program's default data segment.
The function must save DS and set DS to its own data segment on entry to
an exported function and restore DS (the program's DS) on exit from the
function.

There are a few ways to do this:

• Use the -Gw compiler switch when you compile the dynamic link li
brary. (This is the same switch that we've been using to compile our
Presentation Manager programs.) This switch causes the compiler to
insert a special "window procedure" prologue and epilogue on all
far functions.

• Use the -Au compiler switch when compiling the dynamic link library.
This adds a "load DS" prologue and epilogue to functions in the mod
ule. This prologue and epilogue is slightly simpler than the one you get
with the -Gw switch, but it's added to all functions in the module rather
than just all far functions. (This switch also causes the compiler to
assume that DS is not equal to SS.) The -Au and -Gw switches cannot be
used together. When you use the -Au switch, you combine it with the -Alf
switch by using -Alfu.

• Use the _loadds keyword for the function definitions of all exported
functions. This adds the same prologue and epilogue as the -Au switch,
but only for selected functions.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 739

Requirement Four: Compile for DS != SS.
You can tell the C compiler that DS is not equal to SS in one of two ways:

• Use the -Aw switch (which you can combine with -Alfby using -Alfw).

• Use the -Au switch. The -Au switch also adds a "load DS" prologue and
epilogue to all functions in the module, as previously described.

Requirement Five: Inhibit Stack Checks.
Because the dynamic link library uses the stack of the calling program,
you'll want to inhibit stack checks on entry to functions in the library. The
easiest way to do this is with the -Gs compiler switch. This is the same
switch we've used since Chapter 2 to inhibit stack checks in our Presenta
tion Manager programs.

Requirement Six: Export the Functions.
All functions in a dynamic link library that can be called from outside the
library module must be exported. You can do this in one of two ways:

• List the functions explicitly in the EXPORTS section of the module
definition file. This is the method we've been using for window pro
cedures in our programs.

• Use the _export keyword on the function definition.

Requirement Seven: Link with LLlBCDLL.LlB.
When you link the dynamic link library, you must link only with the
LLIBCDLL.LIB object library, the OS2.LIB import library, and any other
import libraries you may create. You must use the Inod ("no default
library search") switch on LINK when specifying these libraries in the li
brary field.

These requirements pertain to the compilation and linking of the library
module only. The program module can be compiled and linked in the nor
mal way. The only requirement for programs using functions from dynamic
link libraries is that the library functions must be properly declared within
the program.

Creating a Dynamic Link Library
So let's get down to business and write a dynamic link library. Our first
library is called HDRLIB ("Handy Drawing Routines Library") and is
shown in Figure 16-1.

740 SECTION FIVE: MISCELLANEOUS TOPICS

The HORUB File

ft- - - - - - - - - - - - - - - - - -
HORLIB make file
It- - - - - - - - - - - - - - - - - -

hdrlib.obj : hdrlib.c hdrlib.h
cl -c -Alfu -G2s -W3 hdrlib.c

hdrlib.dll : hdrlib.obj hdrlib.def
link hdrlib. hdrlib.dll lalign:16. NUL. Inod llibcdll os2. hdrlib

The HORUB. H File

1* -
HDRLIB.H -- "Handy Drawing Routines" Header File

- -* I

SHORT APIENTRY HdrPuts (HPS hps, PPOINTL pptl. PCHAR szText)
SHORT cdecl FAR HdrPrintf (HPS hps, PPOINTL pptl. PCHAR szFormat)
LONG APIENTRY HdrEllipse (HPS hps. LONG lOption. PPOINTL pptl) :

The HORUB. C File

1* --
HORLIB.C -- "Handy Drawing Routines" Dynamic Link Library

- -* I

#define INCLGPI
#include <os2.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "hdrlib.h"

SHORT APIENTRY HdrPuts (HPS hps. PPOINTL pptl, PCHAR szText)
{

SHORT sLength = strlen (szText) ;

if (pptl == NULL)
GpiCharString (hps, (LONG) sLength, szText)

else
GpiCharStringAt (hps, pptl, (LONG) sLength. szText)

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 741

Figure 16-1. The HDRLIB.C File. continued

return sLength :

SHORT cdecl FAR HdrPrintf (HPS hps. PPOINTl pptl. PCHAR szFormat)
{

static CHAR chBuffer [1024]
SHORT sLength ;
VLlist pArguments ;

va_start (pArguments. szFormat)
sLength - vsprintf (chBuffer. szFormat. pArguments)

if (pptl -= NULL)
GpiCharString (hps. (LONG) sLength. chBuffer) ;

else
GpiCharStringAt (hps. pptl. (LONG) sLength. chBuffer)

va_end (pArguments)
return sLength :

LONG APIENTRY HdrEllipse (HP$ hps, LONG lOption. PPOINTL pptl)
{

POINTL ptlCurrent :

GpiQueryCurrentPosition (hps. &ptlCurrent) :

return GpiBox (hps. lOption. pptl. labs (pptl->x - ptlCurrent.x).
labs (pptl->y - ptlCurrent.y»

}

The HDRUB. DEF File

; HDRLIB.DEF module definition file

LIBRARY

DESCRIPTION
PROTMODE
DATA
HEAPSIZE
EXPORTS

HORUB INITINSTANCE

'"Handy Drawing Routines" DLl (e) Charles Petzold, 1988'

NONSHARED
1024
HdrPuts
_HdrPrintf
HdrEllipse

Figure 16-1. The HDRLIB library.

742 SECTION FIVE: MISCELLANEOUS TOPICS

This library contains three functions that perform some common GPI tasks
that would otherwise take more than one call to complete. HdrPuts displays
a string starting at a specified position (or starting at the current position if
the second parameter is set to NULL). The HdrPrintf function uses a tech
nique shown in the cprintf function in Chapter 7 to let you write formatted
text to your window. The HdrEllipse function is a version of the Ellipse func
tion shown in Chapter 5. The function uses GpiBox to draw an ellipse.

The HDRLIB make file takes care of requirements 1, 3, 4, 5, and 7, as dis
cussed in the Compile and Link Mechanics section:

• The -Alfu compiler switch causes the HDRLIB.C source code file to be
compiled for large model assuming DS 1= SS.

• The compiler inserts a "load DS" prologue and epilogue in all
functions.

• The -G2s switch inhibits stack checks.

• In the LINK step, HDRLIB.OBJ is linked with the LLIBCDLL.LIB object
library and the OS2.LIB import library.

The three functions are declared in HDRLIB.H. (This header file will also
be used in a program that calls the three functions in HDRLIB.DLL.) The
HdrPuts and HdrEllipse functions are defined as APIENTRY functions.
(OS2DEF.H defines APIENTRY as pascal/ar.) The HdrPrintffunction is de
fined as cdecl FAR. Because HdrPrintfhas a variable number of parameters,
the Pascal calling sequence cannot be used. This satisfies requirement 2.
Several parameters to these functions are far pointers. They are specified in
HDRLIB.H as using the PPOINTL and PCHAR data types, which are defined
in OS2DEF.H as far pointers.

HDRLIB.C contains the three functions. You'll notice that the HDRLIB.C
file contains no main function. Although dynamic link libraries often do
some initialization on the assembly language level, this is taken care of in
startup code stored in the LLIBCDLL.LIB that is linked into the .DLL file.

The Module Definition File
The HDRLIB.DEF module definition file is significantly different from
module definition files used to create program modules. The first statement
is not a NAME statement but a LIBRARY statement:

LIBRARY HORLIB INITINSTANCE

A NAME statement indicates that the module is a program; a LIBRARY in
dicates a dynamic link library. This keyword is followed by the module

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 743

name and INITINSTANCE. The INITINSTANCE keyword means that ini
tialization code in the dynamic link library is executed for each process that
links to the library. Use INITINSTANCE when you use the LLIBCDLL.LIB
runtime library.

This module definition file also contains a data statement:

DATA NON SHARED

This indicates that the data segments in the dynamic link library will not
be shared among processes. Every time a process using HDRLIB.DLL
begins, OS/2 creates a new set of data segments for the dynamic link library.

There is no STACKSIZE statement. A dynamic link library has no stack.

The EXPORTS list names the three exported functions. This satisfies re
quirement 6. These are the three functions in HDRLIB.DLL that are avail
able to programs or other dynamic link libraries. The HdrPrintf function
in HDRLIB.C appears in HDRLIB.DEF with a preceding underline:
_HdrPrintf. Because the C compiler prepends an underscore to the names of
all functions defined as using the C calling sequence, these functions must
be specified in the module definition file in this manner as well. The under
score is not used for Pascal functions.

Using the Dynamic Link Library
We can test the dynamic link library with a program that calls the library
functions. The HDRTEST program shown in Figure 16-2 does just that.

The HDRTEST File

D-------------------
D HDRTEST make file
11- - - - -- - - - - - - - - - - - - -

hdrtest.obj : hdrtest.c hdrlib.h
c1 -c -G2sw -W3 hdrtest.c

hdrtest.exe : hdrtest.obj hdrtest.def
link hdrtest. lalign:16, NUL, os2. hdrtest

744 SECTION FIVE: MISCELLANEOUS TOPICS

The HDRTEST.C File

/* -
HDRTEST.C -- Program to Test HDRLIB.Dll Dynamic link library

--*/

ffdefi ne INC l_W IN
#include <os2.h>
#include "hdrlib.h"

MRESUlT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM, MPARAM)

int main (void)
{

static CHAR szClientClass [] - "HdrTest" ;
static ULONG flFrameFlags - FCF_TITlEBAR

HAB
HMQ
HWND
QMSG

hab ;
hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

hwndFrame, hwndClient
qmsg

hab - WinInitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

FCF_SYSMENU :
FCF_MINMAX
FCF_TASKLIST ;

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISIBLE,
&flFrameFlags. szClientClass. NULL,
OL. NULL. 0, &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWNO_DESKTOP. SPTILAPPICON. FALSO.
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab, &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 745

Figure 16-2. The HDRTEST.C File. continued

MRESULT EXPENTRY ClientWndProc (HWND hwnd, U$HORT msg, MPARAM mpl. MPARAM mp2)
{

static SHORT cxClient. cyClient
HPS hps;
POINTL ptl ;

switch (msg)

case WM_SIZE:
cxClient = SHORTIFROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NULL)
GpiErase (hps) ;

ptl.x = cxClient / 8 ;
ptl.y - 3 * cyClient /4;
HdrPrintf (hps. &ptl. "Welcome to the %s",

(PCHAR) "OS/2 Presentation Manager")

ptl.x - cxClient / 8 ;
ptl.y - cyClient / 4 ;
HdrPuts (hps. &ptl. "This line was displayed by a ") ;
HdrPuts (hps, NULL, "routine in a dynamic link library.")

ptl .x - 0 ;
ptl.y = 0 ;
Gpi Move (hps, &ptl) ;

ptl.x = exClient - 1 ;
ptl.y - eyCl ient - 1 ;
HdrEllipse (hps. ORO_OUTLINE. &ptl)

WinEndPaint (hps) ;
return 0 ;

return WinDefWindowProc (hwnd, msg. mpl. mp2)

746 SECTION FIVE: MISCELLANEOUS TOPICS

The HDRTEST.DEF File

; HDRTEST.DEF module definition file

NAME HDRTEST WINDOWAPI

OESeR! PTION
PROTMODE
HEAPSIZE
STAeKSIZE
EXPORTS
IMPORTS

'Test Program for HDRLIB.DLL (e) Charles Petzold, 1988'

1024
8192
ClientWndProc
HDRLI B. HdrPuts
HDRLIB._HdrPrintf
HORLIB.HdrEllipse

Figure 16-2. The HDRTEST program.

You'll also need the HDRLIB.H header file from Figure 16-1 to compile this
program. The function declarations in this header file tell the C compiler
that the functions are far and require far pointers as parameters.

And it works! Figure 16-3 shows the HDRTEST program running under the
Presentation Manager.

Welcome to the OS/2 Presentation Manager

This line was displayed by a routine in a dynamic link library.

Figure 16-3. The HDRTEST display.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 747

One warning when using HDRLIB.DLL: You notice that the call to
HdrPrintfin HDRTEST.C looks like this:

HdrPrintf (hps. &ptl. "Welcome to the %5",

(PCHAR) "OS/2 Presentation Manager")

The second and third parameters to H drPrintf are declared as far pointers in
HDRLIB.H. However, HdrPrintfhas a variable number of parameters. Some
of these parameters may also be pointers. Because HDRLIB.C is compiled
using large model, it expects all pointers to be far pointers. Thus the string
passed as a the last parameter to HdrPrintf must be cast to a far pointer.
(Functions with a variable number of parameters are rarely used in
dynamic link libraries; this problem is one reason why.)

The HDRTEST.DEF module definition file explicitly lists the three imported
functions in an IMPORTS section:

IMPORTS HDRLIB.HdrPuts
HDRLIB._HdrPrintf
HDRLIB.HdrEllipse

Once again, HdrPrintf must be preceded by an underscore. (If listing the
imported functions in the module definition file annoys you, you'll be
happy to know that we'll eliminate the IMPORTS list shortly.)

Alternate IMPORTS and EXPORTS Lists
The HDRLIB.DEF module definition file lists the functions exported from
HDRLIB.DLL:

EXPORTS HdrPuts
_HdrPrintf
HdrEll ipse

The HDRTEST.DEF module definition file also lists the functions in
HDRLIB.DLL that are imported to HDRTEST:

IMPORTS HDRLIB.HdrPuts
HDRLIB._HdrPrintf
HDRLIB.HdrEllipse

Notice that each function in the IMPORTS list is identified by a module
name and a function name. LINK uses this information in constructing the
HDRTEST.EXE file.

748 SECTION FIVE: MISCELLANEOUS TOPICS

This is not the only way to specify EXPORTS and IMPORTS. Another ap
proach is to assign "ordinals" to each of the functions. Ordinals are unique
positive integers that you assign in the module definition file for the library.
You do this by preceding the number with an @ sign. You must change both
module definition files. Here's the new EXPORTS list in HDRLIB.DEF:

EXPORTS HdrPuts @1
_HdrPrintf @2
HdrEll ipse @3

The IMPORTS list in HDRTEST.DEF then references these functions by
specifying the ordinal numbers (without the @):

IMPORTS HdrPuts - HDRLIB.l
_HdrPrintf - HDRLIB.2
HdrEllipse - HORLIB.3

The advantage of this approach is that it makes the HDRTEST.EXE file
smaller: The .EXE file needs to contain only the ordinal numbers - not the
names - of the three imported functions.

The big disadvantage to ordinals is that it's easy to mistakenly use the
wrong number in the IMPORTS list. (This problem disappears when you use
import libraries, as described in the next section.)

You can also use different function names within HDRTEST.C. For ex
ample, suppose you want to refer to these three functions as Puts, Print[, and
Ellipse. You'd first have to use these new names to declare the functions
when compiling HDRTEST.C. You change HDRLIB.DEF to reference the
functions by their real names:

IMPORTS Puts - HDRLIB.HdrPuts
_Printf = HDRLIB._HdrPrintf
Ellipse - HDRLIB.HdrEllipse

Or, if you use ordinals in the EXPORTS list of HDRLIB.DEF, you refer to the
ordinals:

IMPORTS Puts - HDRLIB.l
_Printf = HDRLIB.2
Ellipse - HDRLIB.3

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 749

Creating an Import Library
But why do we need an IMPORTS section at all in HDRTEST.DEF? After
all, we've been using functions in PMWIN.DLL since Chapter 2, and this is
the first time we've had to write an IMPORTS statement.

You can eliminate the need for the IMPORTS section by creating an import
library. You'll use this import library in the same way you use OS2.LIB,
which is an import library for all the OS/2 and Presentation Manager func
tion calls. The import library provides the same information to LINK as the
IMPORTS section of a module definition file.

To create an import library for HDRLIB, you add the following two lines to
the HDRLIB make file:

hdrlib.lib : hdrlib.def
implib hdrlib.lib hdrlib.def

The IMPLIB.EXE program is included with the Microsoft C compiler. This
program reads the module definition file used to create the library. From
that file, IMPLIB obtains the module name and the names of the exported
functions. (The EXPORTS section of HDRLIB.DEF can use either the names
or ordinal numbers.) The IMPLIB.EXE program creates an import library
called HDRLIB.LIB. If you want, you can use the LIB program included
with the Microsoft C compiler to combine several different import libraries
into one. This is how OS2.LIB was created.

To use this import library when creating HDRTEST.EXE, first remove the
IMPORTS list from HDRTEST.DEF. Then change the LINK step in the
HDRTEST make file to be

hdrtest.exe : hdrtest.obj hdrtest.def hdrlib.lib
link hdrtest, /align:16. NUL. os2 hdrlib. hdrtest

Notice the two changes: The HDRLIB.LIB file is now a dependent file for
the LINK step. HDRLIB.LIB is also listed in the library field of LINK along
with OS2.LIB. (In both cases the .LIB extension is assumed.) You can now
create HDRLIB.LIB by running

MAKE HORUB

and remake HDRTEST.EXE by running

MAKE HORTEST

750 SECTION FIVE: MISCELLANEOUS TOPICS

For just a few functions, using an explicit IMPORTS list in the program's
.DEF file is satisfactory, but for a dynamic link library with lots of func
tions, the import library is definitely preferable. You'll want to specify ordi
nal numbers in the EXPORTS section of the library's .DEF file to save space
in any .EXE file that uses the library.

Libraries and Window Procedures·
What makes Presentation Manager programs different from conventional
programs is the messaging system. Window procedures send and receive
messages. But is it possible for you to put a window procedure in a dynamic
link library?

Of course! All window classes that are predefined by the Presentation Man
ager (such as those for title bar windows and scroll-bar windows) have win
dow procedures in PMWIN.DLL. There's no reason why we can't also put a
window procedure in a library module. Let's try it.

The DLL Version of Square Button
In Chapter 11 we wrote a window procedure for a square 3-D push button
and used this button in the BUTTONS2 program. Figure 16-4 shows four
source code files to create SQBTNLIB.DLL, a dynamic link library that con
tains the square button window procedure.

The SQBTNLlB File

fl- - - - - - - - - - - - . - - - - - - -
SOBTNLIB make file
fl- - - - - - - - - - - - - - - - - - --

sqbtn1ib.obj : sqbtn1ib.c sqbtnlib.h
c1 -c -Alfw -G2sw -W3 sqbtnlib.c

sqbtnlib.dll : sqbtnlib.obj sqbtnlib.def
link sqbtnlib. sqbtn1ib.dll lalign:16, NUL, Inod llibcdll os2. sqbtnlib

sqbtnlib.lib : sqbtnlib.def
implib sqbtnlib.lib sqbtnlib.def

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 751

TheSQBTNLlB.H File

/*------------------------
SOBTNlIB.H header file

------------------------*/

BOOl APIENTRY RegisterSqBtnClass (HAB hab)

The SQBTNLlB.C File

/* -

SOBTNlIB.C -- Dynamic link library version of square 3D push button
- -*/

#define INCl_WIN
#define INCl_GPI
Iii ncl ude <os2. h>
#include <malloc.h>
#include <string.h>
#include "sqbtnlib.h"

#define lCID_ITAlIC II

/* -

typedef struct
{

PSZ pszText

Structure for storing data unique to each window
- -*/

BOOl fHaveCapture
BOOl fHaveFocus :
BOOl flnsideRect ;
BOOl fSpaceDown
}

SOBTN ;

typedef SOBTN *PSOBTN ;

MRESULT EXPENTRY SqBtnWndProc (HWND. USHORT, MPARAM, MPARAM)
VOID DrawButton (HWND. HPS. PSOBTN) :

HAB hab

752 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-4. The SQBTNLIB.C File. continued

1* - •• - . - - - - - - - - - -

RegisterSqBtnClass function available to other modules
- -*1

BOOl APIENTRY RegisterSqBtnClass (HAB habln)
{

hab - habIn ;

return WinRegisterClass (hab. "SqBtn". SqBtnWndProc.
CS_SIZEREDRAW. sizeof (PSQBTN»

1* -

SqBtnWndProc window procedure
- -*1

MRESUlT EXPENTRY SqBtnWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

BOOl fTestlnsideRect
HPS hps ;
PCREATESTRUCT pcrst ;
POINTl ptl ;

PSQBTN pSqBtn ;
PWNDPARAMS pwprm
RECTL rcl ;

pSqBtn - WinOueryWindowPtr (hwnd. 0)

switch (msg)
{

case WM_CREATE:
pSqBtn - malloc (sizeof (SOBTN») :

II Initialize structure

pSqBtn->fHaveCapture = FALSE
pSqBtn->fHaveFocus = FALSE
pSqBtn->fInsideRect - FALSE
pSqBtn->fSpaceDown = FALSE

II Get window text from creation structure

pcrst = (PCREATESTRUCT) PVOIDFROMMP (mp2) :

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 753

Figure 16-4. The SQBTNLIB.C File. continued

pSqBtn->pszText - malloc (1 + strlen (pcrst->pszText»
strcpy (pSqBtn->pszText. pcrst->pszText)

WinSetWindowPtr (hwnd. O. pSqBtn) :
return 0 :

case WM_SETWINDOWPARAMS:
pwprm - (PWNDPARAMS) PVOIDFROMMP (mp1) ;

II Get window text from window parameter structure

if (pwprm->fsStatus & WPM_TEXT)
{

free (pSqBtn->pszText) ;
pSqBtn-)pszText - malloc (1 + pwprm->cchText)
strcpy (pSqBtn->pszText. pwprm->pszText) :
}

return 1 ;

case WM_QUERYWINDOWPARAMS:
pwprm ~- (PWNDPARAMS) PVOIDFROMMP (mpl) ;

II Set window parameter structure fields

if (pwprm->fsStatus & WPM_CCHTEXT)
pwprm->cchText = strlen (pSqBtn->pszText)

if (pwprm->fsStatus & WPM_TEXT)
strcpy (pwprm->pszText. pSqBtn->pszText)

if (pwprm->fsStatus & WPM_CBPRESPARAMS)
pwprm->cbPresParams - 0 :

if (pwprm->fsStatus & WPM_PRESPARAMS)
pwprm->pPresParams - NULL :

if (pwprm->fsStatus & WPM_CBCTLDATA)
pwprm->cbCtlOata - 0 :

if (pwprm-)fsStatus & WPM_CTLDATA)
pwprm->pCtlOata - NULL;

return 1 :

754 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-4. The SQBTNLIB.C File. continued

case WM_BUTTONIDOWN:
WinSetFocus (HWND_DESKTOP. hwnd) ;
WinSetCapture (HWND_DESKTOP. hwnd)
pSqBtn->fHaveCapture - TRUE ;
pSqBtn->flns1deRect - TRUE :
WinInvalidateRect (hwnd. NULL. FALSE)
return 0 :

case WM_MOUSEMOVE:
if (!pSqBtn->fHaveCapture)

break :

WinOueryWindowRect (hwnd. &rcl)
ptl.x - MOUSEMSG(&msg)->x
ptl.y - MOUSEMSG(&msg)->y

II Test if mouse pointer is still in window

fTestInsideRect - WinPtlnRect (hab. &rcl. &ptl)

if (pSqBtn->flnsideRect !- fTestlnsideRect)
{

pSqBtn->flnsideRect - fTestInsideRect
WinJnvalidateRect (hwnd, NULL. FALSE)
}

break ;

case WM_BUTTONIUP:
if (!pSqBtn->fHaveCapture)

break ;

WinSetCapture (HWND_DESKTOP. NULL)
pSqBtn-)fHaveCapture - FALSE
pSqBtn-)flnsideRect = FALSE

WinQueryWindowRect (hwnd. &rcl)
ptl.x - MOUSEMSG(&msg)-)x
ptl.y - MOUSEMSG(&msg)->y

II Post WM_COMMAND if mouse pointer is in window

if (Wi nPtlnRect (hab. &rcl. &ptl»
WinPostMsg (WinOueryWindow (hwnd. OW_OWNER. FALSE).

WM_COMMAND.
MPFROMSHORT (WinQueryWindowUShort (hwnd. OWS_ID».
MPFROM2SHORT (CMDSRC_OTHER. TRUE» ;

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 755

Figure 16-4. The SQBTNLIB.C File. continued

WinlnvalidateRect (hwnd, NULL, FALSE)
return 0 :

case WM_ENABLE:
WinInvalidateRect (hwnd, NULL, FALSE)
return 0 ;

case WM_SETFOCUS:
pSqBtn-)fHaveFocus - SHORTIFROMMP (mp2)
WinlnvalidateRect (hwnd, NULL, FALSE) ;
return 0

case WM_CHAR:
if (!(CHARMSGC&msg)-)fs & KC_VIRTUALKEY) ::

CHARMSG(&msg)->vkey 1- VK_SPACE : :
CHARMSG(&msg)->fs & KC_PREVDOWN)

brea k ;

II Post WM_COMMAND when space bar is released

if (!(CHARMSG(&msg)-)fs & KC_KEYUP»
pSqBtn->fSpaceOown - TRUE

else

pSqBtn->fSpaceDown - FALSE
WinPostMsg (WinOueryWindow (hwnd. OW_OWNER. FALSE),

WM_COMMAND,
MPFROMSHORT (WinQueryWindowUShort (hwnd, QWS_IO».
MPFROM2SHORT (CMDSRC_OTHER, FALSE»

WinlnvalidateRect (hwnd. NULL, FALSE)
return 0 ;

case WM_PAINT:
hps - WinBeginPaint (hwnd, NULL, NULL)
DrawButton (hwnd. hps. pSqBtn) ;
WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
free (pSqBtn->pszText)
free (pSqBtn)
return 0 ;

756 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-4. The SQBTNLIB.C File. continued

return WinDefWindowProc (hwnd, msg. mpl. mp2)
}

1*- --
Draws filled and outlined polygon (used by DrawButton)

- -*1

VOID Polygon (HPS hps. LONG lPoints, POINTL aptl[]. LONG lColor)
{

II Draw interior in specified color

GpiSavePS (hps) :
GpiSetColor (hps. lColor) ;

GpiBeginArea (hps. BA_NOBOUNDARY : BA-ALTERNATE)
GpiMove (hps. aptl) ;
GpiPolyLine (hps. lPoints - 1. aptl + 1) ;
GpiEndArea (hps) ;

GpiRestorePS (hps, -IL) ;

II Draw boundary in default color

GpiMove (hps. aptl + lPoints - 1) ;
GpiPolyLine (hps. lPoints, aptl) ;
}

/*---------------------
Draws Square Button

-- -------- ------ -----* /

VOID DrawButton (HWNO hwnd. HPS hps. PSQBTN pSqBtn)
{

FATTRS fat ;
FONTMETRICS fm ;
HOC hdc ;
LONG
POINTL
RECTL

lColor, lHorzRes. lVertRes. cxEdge. cyEdge ;
aptl[10]. aptlTextBox[TXTBOX_COUNTJ. ptlShadow, ptlText
rcl ;

// Find 2 millimeter edge width in pixels

hdc - GpiQueryDevice (hps) ;
DevQueryCaps (hdc. CAPS_HORIZONTAL_RESOLUTION, lL. &lHorzRes)
DevOueryCaps (hdc. CAPS_VERTICAL_RESOLUTION, lL. &lVertRes)

(continued)

CHAPTER SIXTEEN': DYNAMIC LINK LIBRARIES 757

Figure 16-4. The SQBTNLIB.C File. continued

cxEdge = lHorzRes I 500
cyEdge - lVertRes I 500 ;

II Set up coordinates for drawing the button

WinOueryWindowRect (hwnd, &rcl)

aptl[O].x - 0 ; aptl[O].y - 0 :
aptl[1].x = cxEdge aptl[l].y = cyEdge
aptl[2].x - rcl.xRight - cxEdge aptl[2].y - cyEdge
aptl[3].x - rcl.xRight - 1 ; aptl[3].y - 0 :
aptl[4].x ... rcl.xRight - 1 ; aptl[4].y = rcl.yTop -
aptl[5].x = rcl.xRight - cxEdge aptl[5].y - rcl.yTop -
aptl[6].x - cxEdge aptl[6].y = rcl.yTop -
aptl[7].x = 0 ; aptl[7].y - rcl.yTop -
aptl[8].x = 0 ; aptl[8].y - 0 ;

aptl[9].x - cxEdge aptl[9].y - cyEdge

II Paint edges at bottom and right side

GpiSetColor (hps, CLR-BLACK) ;
lColor - (pSqBtn-)fInsideRect :: pSqBtn-)fSpaceOown) ?

CLR-PALEGRAY : CLR-OARKGRAY
Polygon (hps, 4L, aptl + 0, lColor)
Polygon (hps, 4L. aptl + 2, lColor)

II Paint edges at top and left side

lColor - (pSqBtn->flnsideRect :: pSqBtn-)fSpaceOown) ?
CLR-OARKGRAY : CLR-WHITE ;

Polygon (hps, 4L, aptl + 4, lColor)
Polygon (hps, 4L, aptl + 6, lColor)

II Paint interior area

GpiSavePS (hps) ;

1 :
cyEdge
cyEdge
1 ;

GpiSetColor (hps, (pSqBtn->fInsideRect :: pSqBtn->fSpaceOown) ?
CLR_OARKGRAY : CLR-PALEGRAY)

GpiMove (hps, aptl + 1) ;
GpiBox (hps, ORO_FILL, aptl + 5. Ol. Ol) :
Gpi RestorePS (hps, -1 L) ;

GplBox (hps. ORO_OUTLINE. aptl + 5. OL. Ol)

II If button has focus. use italic font

758 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-4. The SQBTNLIB.C File. continued

GpiQueryFontMetrics (hps, (LONG) sizeof fm, &fm)

if (pSqBtn->fHaveFocus)
{

fat.usRecordLength
fat.fsSelection
fat.1Match
fat. ; dRegi stry
fat.usCodePage

- sizeof fat;
- FATTR-SEL-ITALIC
- 0 ;
- fm.idRegistry :
- fm.usCodePage ;

fat.1MaxBaselineExt - fm.1MaxBaselineExt
fat.1AveCharWidth - fm.1AveCharWidth
fat.fsType - 0
fat.fsFontUse - 0
strcpy (fat.szFacename, fm.szFacename)

GpiCreateLogFont (hps, NULL, LCID_ITALIC, &fat)
GpiSetCharSet (hps, LCID_ITALIC)
}

II Calculate text position

GpiQueryTextBox (hps, (LONG) strlen (pSqBtn-)pszText). pSqBtn->pszText.
TXTBOX_COUNT, aptlTextBox) :

ptlText.x - (rcl.xRight - aptlTextBox[TXTBOX_CONCAT].x) I 2
ptlText.y - (rcl.yTop - aptlTextBox[TXTBOX_TOPLEFT).y -

aptlTextBox[TXTBOX_BOTTOMLEFT].y) / 2

ptlShadow.x - ptlText.x + fm.1AveCharWidth I 3
ptlShadow.y - ptlText.y - fm.1MaxBaselineExt I 8

II Display text shadow in black, and text in white

GpiSetColor (hps, CLR-BLACK) ;
GpiCharStringAt (hps. &ptlShadow, (LONG) strlen (pSqBtn->pszText),

pSqBtn->pszText) ;
GpiSetColor (hps, CLR-WHITE) :
GpiCharStringAt (hps. &ptlText. (LONG) strlen (pSqBtn->pszText),

pSqBtn->pszText) ;

II X out button if the window is not enabled

if (!WinIsWindowEnabled (hwnd»
{

GpiMove (hps, aptl + 1)
GpiLine (hps, aptl + 5)

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 759

Figure 16-4. The SQBTNLIB.C File. continued

GpiMove (hps. aptl + 2)
GpiLine (hps. aptl + 6) ;
}

/1 Clean up

if (pSqBtn-)fHaveFocus)
{

GpiSetCharSet (hps. LCID_DEFAULT)
GpiDeleteSetld (hps, LCID_ITALIC)
}

The SQBTNLlB.DEF File

: SOBTNLIB.DEF module definition file

LIBRARY

DESCRIPTION
PROTMODE
DATA
HEAPSIZE
EXPORTS

SOBTNLIB INITINSTANCE

'Square Button Dynamic link Library (C) Charles Petzold, 1988'

NONSHAREO
1024
RegisterSqBtnClass
SqBtnWndProc

Figure 16-4. The SQBTNLIB library.

The SQBTNLIB make file compiles SQBTNLIB.C with the -Alfw and -G2sw
switches. The -Aw switch causes the compiler to assume that DS != SS. The
-Gw switch inserts the "window procedure" prologue and epilogue in all
far functions. The EXPORTS section of the SQBTNLIB.DEF file lists both
RegisterSqBtnClass (which is the function that· a program calls to register the
window class) and SqBtnWndProc, which must be exported because it is a
window procedure. The make file reads SQBTNLIB.DEF to create an 'import
library called SQBTNLIB.LIB.

SQBTNLIB.C is mostly the same as the SQBTN.C file shown in Chapter 11.
The only changes are as follows:

• RegisterSqBtnClass is now defined as an APIENTRY function because it
must be called from outside the dynamic link library. The declaration of
this function has been moved to SQBNTLIB.H, a header file that will be
used in a program that creates a square push button.

760 SECTION FIVE: MISCELLANEOUS TOPICS

• Calls to _/maUoc and _ffree have been replaced with the more standard
maUoc andfree. This is not really necessary because the two pairs of
functions are identical in large model.

• The fstrlen and fstrcpy functions have been removed. Calls to these func
tions have been replaced with strlen and strcpy. Because we compile the
dynamic link library for large model, the normal C library functions can
handle far pointers.

The New BUTTONS Program
The BUTTONS3 program is shown in Figure 16-5.

The BUTTONS3 File

fl- - - - - - - - - - - - - - - - - - - -
BUTTONS3 make file
fl- - - - - - - - - - - - - - - - - - - -

buttons3.obj : buttons3.c sqbtnlib.h
c1 -c -G2sw -W3 buttons3.c

buttons3.exe : buttons3.obj buttons3.def sqbtn1ib.lib
link buttons3. lalign:16. NUL. os2 sqbtnlib. buttons3

The BUTTONS3.C File

1* -
BUTTONS3.C -- Square Button Demonstration with DLL

--- ---- ------- ----------- ----------------- ----- -----* I

#define INCL_WIN
lldefine INCLGPI
#include <os2.h>
#include "sqbtnlib.h"

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

HAB hab

int main (void)

static CHAR szClientClass[] - "Buttons3" ;
static ULONG flFrameFlags = FCF_TITLEBAR

FCF_SIZEBORDER
FCF_SHELLPOSITION

FCF_SYSMENU :
FCF_MINMAX :
FCF_TASKLIST :

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 761

Figure 16-5. The BUTTONS3.C File. continued

HMO hmq ;
HWND hwndFrame. hwndClient
OMSG qmsg ;

hab = WinInitialize (0)
hmq = W1nCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREDRAW. 0)

hwndFrame - WinCreateStdWindow (IIWND_DESKTOP. WS_VISIBLE,
&flFrameFlags. szClientClass. NULL,
OL. NULL. O. &hwndClient) ;

WinSendMsg (hwndFrame. WM_SETICON,
WinQuerySysPointer (HWNO_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRE$ULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl. MPARAM mp2)
{

static CHAR szSqBtnClass [] - "SqBtn".
*szButtonLabel [] = { "Small ern. "Larger"

static HWND hwndFrame. hwndButton [2] ;
static SHORT cxClient. cyClient. cxChar. cyChar ;
FONTMETRICS fm;
HPS hps ;
SHORT id ;
RECTL rcl ;

switch (msg)

case WM_CREATE
hwndFrame = WinOueryWindow (hwnd. OW_PARENT, FALSE)

hps = WinGetPS (hwnd) ;
GpiOueryFontMetrics (hps. (LONG) sizeof fm. &fm)

762 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-5. The BUTTONS3.C File. continued

cxChar - (SHORT) fm.1AveCharWidth
cyChar - (SHORT) fm.1MaxBaselineExt
WinReleasePS (hps)

RegisterSqBtnClass (hab)

for (i d - 0 ; i d < 2 ; i d++)
hwndButton [id] - WinCreateWindow

return 0 ;

case WM_SIZE :

hwnd,
"SqBtn",
szButtonLabel [idJ,
WS_V1SIBLE,
0, 0,

12 * cxChar.
2 * cyChar.
hwnd.
HWNO_BOTTOM.
id.
NULL.
NULL)

cxClient - SHORT1FROMMP (mp2)
cyClient - SHORT2FROMMP (mp2)

for (i d - 0 ; i d < 2 ; i d++)
WinSetWindowPos (hwndButton [idJ. NULL.

II Parent
II Class
II Text
/I Style
II Positi on
/I Wi dth
II Height
II Owner
II Placement
II 10
II Ctrl data
II Pres params

cxClient I 2 + (14 * id - 13) * cxChar.
(cyClient - 2 * cyChar) I 2.
O. O. SWP_MOVE) ;

return 0 ;

case WM_COMMAND:
WinQueryWindowRect (hwnd. &rcl) ;
WinMapWindowPoints (hwnd. HWND_OESKTOP. (PPOINTL) &rcl. 2)

switch (COMMANOMSG(&msg)->cmd)
{

case 0:
rcl.xLeft += cxClient I 20
rcl.xRight -= cxClient 20
rcl.yBottom +- cyClient 20
rcl.yTop -- cyClient 20

II Child 10

II "Smaller"

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 763

Figure 16-5. The BUTTONS3.C File. continued

break

case 1:
rcl.xleft -- cxClient I 20
rcl.xRight +- cxClient I 20
rcl.yBottom -- cyClient I 20
rcl.yTop += cyClient I 20
break ;

WinCalcFrameRect (hwndFrame. &rcl. FALSE)

WinSetWindowPos (hwndFrame. NULL.

II "Larger"

(SHORT) rcl.xLeft. (SHORT) rcl.yBottom.
(SHORT) rcl.xRight - (SHORT) rcl.xLeft.
(SHORT) rcl.yTop - (SHORT) rcl.yBottom,
SWP_MOVE : SWP_SIZE)

return 0 ;

case WM_ERASEBACKGROUNO:
return 1 ;

return WinDefWindowProc (hwnd. msg. mp1. mp2)

The BUTTONS3.DEF File

; BUTTONS3.DEF module definition file

NAME BUTTONS3 WINDOWAPI

OESCR! PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Square Button Demo with DLL (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 16·5. The BUTTONS3 program.

You'11 also need the SQBTNLIB.H header file from Figure 16-4 to compile
BUTTONS3.

These three files are nearly identical to those used for the BUTTONS2 pro
gram except that the make file lists SQBTNLIB.LIB in the library field of the
LINK step, and the declaration of RegisterSqBtnClass (which indicates that
it's an APIENTRY function) is provided by the SQBTNLIB.H header file.

764 SECTION FIVE: MISCELLANEOUS TOPICS

Resource-only Libraries
You can also store resources in dynamic link libraries and access them from
a program. The library module that contains these resources can also con
tain code and data segments. But it's also possible to create a library mod
ule containing nothing but resources.

Why would you want to do this? As we saw in Chapter 12, you can create
bitmaps in ICONEDIT and store them as resources in a program. However,
bitmaps are very dependent on the resolution of the device for which they
are designed. If your program uses bitmaps within its client window, you
might want to customize a set of bitmaps for each of the most common
video display adapters (for example, the EGA, the VGA, and the IBM
8514/A). Each of these sets of bitmaps would be stored in a different
resource-only dynamic link library. You could design an installation rou
tine for your program to copy only the resource library for the user's video
adapter to the user's hard disk.

Creating a Bitmap Library
The files shown in Figure 16-6 are used. to create a resource-only library
called BITLIB.DLL. This dynamic link library contains nine 32-by-32 bit
maps created in ICONEDIT.

The BITLIB File

11- - - - - - - - - - - - - - - - - - - -
II BITLIB make file
11- - -- - - - -- - - -- - - - -- --

bitlib.obj : bitlib.a~m,
masm bitlib ;

bitlib.res : bitlib.rc b1tmapl.bmp bitmap2.bmp bltmap3.bmp
bitmap4.bmp bitmapS.bmp bitmap6.bmp \
bitmap7.bmp bitmap8.bmp bitmap9.bmp

rc -r bitlib

bitlib.dll : bitlib.obj bitlib.def
link bitlib, bitlib.dll lalign:16. NUL •• bitlib
rc bitlib.res bitlib.dll

bitlib.dll : bitlib.res
rc bitlib.res bitlib.dl1

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 765

The BITLlB.ASM File

; BITLIB.ASM assembly language module for resource-only library

end

The BITLlB.RC File

/*- . - --

BITLIB.RC resource script file
- - - --- -- - - -- - - - ~- -- - - - -- - - -- - - --* /

BITMAP 1 bitmapl.bmp
BITMAP 2 bitmap2.bmp
BITMAP 3 bitmap3.bmp
BITMAP 4 bitmap4.bmp
BITMAP 5 bitmap5.bmp
BITMAP 6 bitmap6.bmp
BITMAP 7 bitmap7.bmp
BITMAP 8 bitmap8.bmp
BITMAP 9 bitmap9.bmp

The BITMAP1. BMP File

766 SECTION FIVE: MISCELLANEOUS TOPICS

The BITMAP2.BMP File

The BITMAP3.BMP File

The BITMAP4.BMP File

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 767

The BITMAP5.BMP File

The BITMAPS.BMP File

The BITMAP7.BMP File.

768 SECTION FIVE: MISCELLANEOUS TOPICS

The BITMAPS.BMP File

The BITMAPS.BMP File

The BITLlB.DEF File

; BITlIB.DEF module definition file

LIBRARY BITLIB

DESCRIPTION 'Bitmap Library for SHOWBIT (C) Charles Petzold, 1988'

Figure 16-6. The BITLIB library.

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 769

The hard part of this job is persuading LINK to create a dynamic link li
brary that contains no code or data segments. But it's actually simpler than
it seems. The BITLIB.ASM file is the simplest assembly language source
code file possible. It contains only an end statement. But this is enough to
create BITLIB.OBJ. All LINK needs is BITLIB.OBJ and BITLIB.DEF. The
BITLIB.DEF file is equally simple - it contains only LIBRARY and DE
SCRIPTION statements. The BITLIB.RC resource script file lists the nine
bitmap files and assigns them IDs of 1 through 9.

Dlls and Module Handles
After you create BITLIB.DLL, you may wonder again whether loading
resources from a library module into a program is possible. When you load
a bitmap using GpiLoadBitmap, how does OS/2 know whether you want to
load the bitmap from your .EXE file or from a library module? And how
does OS/2 know which library module to load the bitmap from?

If you look again at the various functions that load resources into memory
(such as DosGetResource, WinCreateStdWindow, WinLoadString, WinLoad
Message, WinLoadDlg, WinDlgBox, WinLoadMenu, WinLoadAccelTable,
WinLoadPointer, and GpiLoadBitmap) , you'll discover that each function
has a parameter called the "module handle." When a program wants to
load a resource from its .EXE file, the program sets this parameter to NULL.
When the program wants to load a resource from a dynamic link library,
the parameter must be set to the module handle of the library.

To obtain a module handle, you first define a variable of type HMODULE:

HMODULE hmod ;

Then you call DosLoadModule:

DosLoadModule (NULL, 0, szModuleName, &hmod) ;

The first two parameters can be set to a character string and a length of the
string to receive information if an error occurs, in which case DosLoad
Module returns a nonzero value. The third parameter is the name of the
dynamic link library file without the .DLL extension.

Besides making the dynamic link library available for use, the DosLoad
Module function increments the "reference count" of the module. You
should free the module before the program terminates:

DosFreeModule (hmod) ;

770 SECTION FIVE: MISCELLANEOUS TOPICS

This decreases the reference count. When the reference count of a library
module is zero, OS/2 can free the module from memory.

loading Bitmaps from the Dll
With this ability to obtain a module handle, we're ready to load the bitmaps
from BITLIB.DLL into memory and display them. The SHOWBIT program
in Figure 16-7 shows how this is done.

The SHOWBIT File

/1- - - - - - - - - - - - - - - - - --
SHOWBIT make file
11- - - - - - - - - - - - - - - - - --

showbit.obj : showbit.c
cl -c -G2sw -W3 showbiLc

showbit.exe : showbit.obj showbit.def
link showbit, /align:16. NUL. os2. showbit

The SHOWBIT.C File

/* -

SHOWBIT.C -- Loads Bitmap Resources from BITLIB.DLL and Draws Them
- -*/

#define INCL-DOS
11define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY ClientWndProc (HWND. USHORT. MPARAM. MPARAM)

int main (void)
{

static CHAR szClientClass [] = "ShowBit" :
static ULONG flFrameFlags - FCF_TITLEBAR

HAB hab ;
HMO hmq ;

FCF_SIZEBORDER
FCF_SHELLPOSITION

HWND hwndFrame. hwndClient
QMSG qmsg ;

hab - Winlnitialize (0)
hmq = WinCreateMsgQueue (hab. 0)

FCF_SYSMENU :
FCF_MINMAX :
FCF_TASKUST :

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 771

Figure 16-7. The SHOWBIT.C File. continued

WinRegisterClass (hab. szClientClass, ClientWndProc. CS_SIZEREORAW, 0)

hwndFrame - WinCreateStdWindow (HWND_DESKTOP. WS_VISTBLE.
&flFrameFlags, szClientClass,

if (hwndFrame 1- NULL)
{

" (Space bar or mouse click for next)",
Ol, NUll. O. &hwndClient) ;

while (WinGetMsg (hab, &qmsg. NULL. 0, 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
}

WinDestroyMsgQueue (hmq)
WinTerminate (hab)
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static HMODULE hmodBitLib
static USHORT
HBITMAP

idBitmap =

hbm
HPS hps
RECTl rcl

swi tch (msg)

case WM_CREATE:
if (DosLoadModule (NUll. O. "BITLIB", &hmodBitLib»

{

WinMessageBox (HWND_DESKTOP. HWND_DESKTOP,

return

return 0

case WM_CHAR:

"Cannot load BITlIB.DlL library".
"ShowBit". 0, MB_OK : MB_ICONEXClAMATION)

if (CHAR~SG(&msg)· >fs & KC_KEYUP ::
!(CHARMSG(&msg)->fs & KC_VIRTUALKEY) ::
!(CHARMSG(&msg)->vkey -= VK-SPACE»

break :

if (++idBitmap =- 10)
i dBitmap = 1

772 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 16-7. The SHOWBIT.C File. continued

WinlnvalidateRect (hwnd. NUll, FALSE)
return 0 ;

case WM_BUTTON1DOWN:
if (++idBitmap -- 10)

i dBitmap - 1

WinInvalidateRect (hwnd. NULL, FALSE)
break ;

case WM_PAINT:
hps - WinBeginPaint (hwnd. NULL. NULL)
GpiErase (hps) :

hbm - GpiLoadBitmap (hps. hmodBitLib, idBitmap. Ol. Ol)

if (hbm !- NULL)
{

WinQueryWindowRect (hwnd. &rcl) ;

WinDrawBitmap (hps. hbm. NULL. (PPOINTL) &rcl.
CLR-NEUTRAL. CLR_BACKGROUND. DBM_STRETCH)

GpiDeleteBitmap (hbm) ;
}

WinEndPaint (hps) ;
return 0 ;

case WM_DESTROY:
DosFreeModule (hmodBitLib)
return 0 :

return WinDefWindowProc (hwnd. msg. mp1. mp2) ;

The SHOWBIT.DEF File

; SHOWBIT.DEF module definition file

NAME SHOWBIT WINDOWAPI

(continued)

CHAPTER SIXTEEN: DYNAMIC LINK LIBRARIES 773

Figure 16-7. The SHOWBIT.DEF File. continued

OESCRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'Loads bitmap resources from BITLIB (C) Charles Petzold. 1988'

1024
8192
ClientWndProc

Figure 16-7. The SHOWBIT program.

SHOWBIT calls DosLoadModule during the WM_CREATE message. If the
function fails (probably because BITLIB.DLL is not in one of the directories
listed in the user's LIBPATH), SHOWBIT displays a message box and returns
1 from the WM_CREATE message, which then causes the program to
terminate.

If DosLoadModule is successful, GpiLoadBitmap loads the bitmap during
the WM_PAINT message. The function requires the module handle and the
bitmap ID. The module is freed during the WM_DESTROY message.

774 SECTION F!VE: M!SCELLANEOUS TOPICS

C HAP T E R S EVE N TEE N

MULTITHREAD
PROGRAMMING
TECHNIQUES

OS/2 is a "preemptive multitasking operating system." This means that
OS/2 can run multiple programs concurrently and uses a priority-based
scheduler to allocate time slices among them. The Presentation Manager is
part of OS/2, so the programs running in the Presentation Manager session
are also multitasked.

This is probably the most significant difference between the OS/2 Presenta
tion Manager and Microsoft Windows. Windows is a nonpreemptive multi
tasking environment. It does not perform the preemptive time-slicing we
normally associate with a multitasking system. Instead, Windows
multitasks programs based on the presence of messages in the programs'
message queues.

When a Windows program calls the Get Message function (equivalent to the
Presentation Manager WinGetMsg function) to retrieve the next message
from its message queue, and the message queue is empty, Windows sus
pends the program. Windows then switches to another program with a non
empty message queue. This causes that other program to return from its
own Get Message call to process the message. At any time, only one Win
dows program is running. The rest are suspended in the GetMessage
function.

Windows programmers are well aware of the problems associated with this
form of nonpreemptive multitasking. If a Windows program requires a long
period of time to process a message, other programs running under Win
dows are effectively halted for the duration. Windows programmers must

775

use special techniques when doing lengthy processing in order to prevent
the program from suspending the rest of the system.

At first, the preemptive multitasking of OS/2 would seemingly eliminate the
problems associated with the nonpreemptive nature of Windows. You might
conclude that Presentation Manager programs can spend as much time as
they need processing messages without worrying about suspending other
programs.

But this is not so. As you'll see, a Presentation Manager program cannot
spend a long time processing a message without affecting the environment
as a whole. This problem results more from message-based architecture
than from the preemptive or nonpreemptive nature of the multitasking sys
tem. The real difference between Microsoft Windows and the OS/2 Presen
tation Manager is that OS/2 provides a better solution to the problem of
lengthy processing, specifically through the creation of multiple threads of
execution.

Before we attempt to write a multithread Presentation Manager program,
we'll examine the problem of lengthy processing jobs and explore some
solutions that require only a single execution thread.

The "Big-Job" Problem

776

Presentation Manager programs can usually process most keyboard and
mouse input very quickly. In a word-processing program, for example, a
character typed from the keyboard need only be inserted into the stored
document and displayed on the screen. But many programs must also carry
out commands that require more lengthy processing. Let's call this lengthy
processing a "big job. "

In a spreadsheet program, the big job is a recalculation of a large spread
sheet or the execution of a long macro. In a database program, the big job is
a file sort or indexing. In a word-processing program, it's a pagination or
spelling check. In a CAD program, it's redrawing the screen. In a communi
cations program, it's reading the serial port when an incoming character is
not immediately available. And in almost any Presentation Manager pro
gram, printing is a big job.

CCr'Tlnl\l CI\/C. I\IIICr'CI I I\l\lcnl IC' Tnnlr'C'"
VL.W I lUI" I I V L.. IVII.:JWI::LLHI "I::UUCI I urll..JCI

The 1/10 Second Rule
It is recommended that Presentation Manager programs take no more than
lf10 second to process a message. When a message is passed to a window pro
cedure in your program, the window procedure should return control to the
Presentation Manager within lf10 second. (You'll see the reason for this
shortly.) Hence, the definition of a big job is simple: It is anything your pro
gram needs to do that requires more than 1/10 second.

I'll be referring to this as the "lf1O second rule," but it's really a guideline
rather than a hard-and-fast rule. It is OK if a program violates this rule once
in a while. For example, when a word-processing program loads a docu
ment file into memory, it's not a serious problem if this requires a few
seconds.

In fact, several of the programs shown in this book violate the lflO second
rule. The WELCOME 1 program in Chapter 2 spends 8/10 second processing
the WM_CREATE and WM_DESTROY messages because it plays a little
tune by calling the DosBeep function. On a 6 or 8 MHz 80286-based ma
chine, the MINMAX2 program in Chapter 6 might take more than lflO second
in the GpiBitBlt function. The HEAD program in Chapter 14 might take
more than lf10 second to load part of a file into memory if the file is in a large
subdirectory on a floppy diskette.

Don't get overly paranoid about violating the lf10 second rule. On the other
hand, if your program frequently violates this rule, you'll have to do some
thing about it. For example, if a spreadsheet program spends more than 1/10
second in recalculations every time the user presses the Enter key, that's a
problem. If the violation of the rule is infrequent (for example, if it occurs
only when the program begins executing), then you can probably ignore the
problem. But if you're spending 30 seconds or so initializing your program,
you'll want to seek a solution.

Also keep in mind that it will be apparent when your program has a prob
lem, because it will affect the performance of the entire Presentation Man
ager environment. Users will not look kindly on this type of behavior.

The Rule Violated
To examine the big-job problem, let's write a Presentation Manager pro
gram that does some lengthy processing in response to a WM_COMMAND
message from a menu. This program is called BIGJOBI and is shown in
Figure 17-1 on the following pages.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 777

The BIGJOB1 File

1t- - - - - - - - - - - - - - - - - - -
BIGJOBI make file
#-------------------

bigjobl.obj : bigjobl.c bigjob.h
e1 -c -G2sw -W3 bigjob1.c

bigjob.obj : bigjob.c
c1 -e -G2sw -W3 bigjob.c

bigjob.res : bigjob.rc bigjob.h
rc -r bigjob

bigjobl.exe : bigjobl.obj bigjob.obj bigjobl.def
link bigjobl bigjob. /align:16, NUL. os2. bigjobl
rc bigjob.res bigjobl.exe

bigjobl.exe : bigjob.res
rc bigjob.res bigjobl.exe

The BIGJOB1.C File

1* -
BIGJOBl.C -- Naive approach to lengthy processing job

____________________________________ w _____ w ___________ -_*/

#define INCL_WIN
ifi ncl ude <os2. h>
#include "bigjob.h"

HAB hab

int main (void)

static CHAR szClientClass [] - "BigJobl" ;
static UlONG flFrameFlags - FCF_TITLEBAR

FCF_SIIFBORDER
FCF_SHELlPOSITION
FCF_MENU

HMO
HWND
OMSG

hmq ;
hwndFrame. hwndClient
qmsg ;

778 SECTION FIVE: MISCELLANEOUS TOP!CS

FCF_SYSMENU
FCF_MINMAX
FCF_TASKLIST

(continued)

Figure 17-1. The BIGJOB1.C File. continued

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab, 0)

WinRegisterClass (hab, szClientClass, ClientWndProc.
CS_SYNCPAINT : CS_SIZEREDRAW, 0) ;

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass.

- The Bad Program".
OL. NULL. ID_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab, &qmsg, NULL, O. 0»
WinDispatchMsg (hab. &qmsg)

W;nDestroyWindow (hwndFrame)
WinDestroyMsgOueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1. MPARAM mp2)
{

static LONG lCalcRep. lRepAmts [] - { 10. 100. 1000. 10000, 100000 } ;
static SHORT sCurrentRep = IDM_IO ;
static SHORT sStatus = STATUS_READY
static ULONG ulElapsedTime
double A ;
LONG lRep ;

switch (msg)

case WM_COMMANO:
switch (COMMANDMSG(&msg)->cmd)

{

case IOM_IO:
case IDM_IOO:
case IOM_IOOO:
case IOM_IOOOO:

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 779

Figure 17-1. The BIGJOB1.C File. continued

780

case IOM_lOOOOO:
CheckMenultem (hwnd. sCurrentRep, FALSE) ;
sCurrentRep - COMMANOMSG(&msg)->cmd ;
CheckMenultem (hwnd, sCurrentRep. TRUE) ;
return 0 ;

case 10M_START:
EnableMenuItem (hwnd. 10M_START. FALSE) ;
EnableMenuItem (hwnd, 10M_ABORT, TRUE) ;

sStatus = STATUS_WORKING
WinlnvalidateRect (hwnd. NULL, FALSE)

WinSetPointer (HWNO_OESKTOP.
WinOuerySysPointer (HWNO_OESKTOP.

SPTR_WAIT. FALSE»

if (WinOuerySysValue (HWNO_OESKTOP. SV_MOUSEPRESENT)
-= 0)

WinShowPointer (HWND_OESKTOP, TRUE) ;

lCalcRep = lRepAmts [sCurrentRep - IOM_IO]
ulElapsedTime - WinGetCurrentTime (hab) ;

for (A = 1.0. lRep = 0 : lRep < lCalcRep ; 1 Rep++)
A - Savage (A) ;

ulElapsedTime = WinGetCurrentTime (hab) -
ulElapsedTime ;

if (WinQuerySysValue (HWNO_DESKTOP, SV_MOUSEPRESENT)
== 0)

WinShowPointer (HWND_OESKTOP. FALSE) ;

WinSetPointer (HWND_DESKTOP.
WinQuerySysPointer (HWNO_OESKTOP,

SPTR-ARROW. FALSE»
sStatus = STATUS_DONE ;
WinlnvalidateRect (hwnd. NULL. FALSE) ;

EnableMenultem (hwnd. IDM_START, TRUE) ;
EnableMenultem (hwnd. 10M_ABORT. FALSE)
return 0 ;

,.... ~"T'"" • ..,.I\ I 1\ I , 1\ 111(""..,. 1\ 1\ .en. 'C' Tnnl(""lC'
UCL." I lUI'\! rlVC. IVlluL..oCLLHI'III::UUu I urn "'"

(continued)

Figure 17-1. The BIGJOB1.C File. continued

case 10M_ABORT:
return 0 ;

break ;

case WM_PAINT:

II Not much we can do here

PaintWindow (hwnd. sStatus. lCalcRep. ulElapsedTime)
return 0 ;

return WinOefWindowProc (hwnd. msg, mpl. mp2)

The BIGJOB.C File

1*-- ----------------
BIGJOB.C -- Common functions used in BIGJOB1. BIGJOB2. and BIGJOB3

--- --------- -------------------------- ---- ---- ---------------- ------* I

#define INCL_WIN
#include <os2.h>
#include <math.h>
#include <stdio.h>

double Savage (double A)
{

return tan (atan (exp (log (sqrt (A * A»») + 1.0

VOID CheckMenuItem (HWNO hwnd, SHORT sMenuItem. BOOl fCheck)
{

HWNO hwndParent - WinQueryWindow (hwnd, OW_PARENT. FALSE)
HWNO hwndMenu = WinWindowFromID (hwndParent. FlO_MENU) ;

WinSendMsg (hwndMenu. MM_SETITEMATTR.
MPFROM2SHORT (sMenuItem, TRUE),
MPFROM2SHORT (MIA_CHECKED, fCheck MIA-CHECKED 0»

VOID EnableMenuItem (HWND hwnd, SHORT sMenultem. BOOL fEnable)
{

HWND hwndParent - WinQueryWindow (hwnd, OW_PARENT, FALSE)
HWND hwndMenu = WinWindowFromID (hwndParent, FlO_MENU) ;

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 781

Figure 17-1. The BIGJOB.C File. continued

WinSendMsg (hwndMenu, MM_SETITEMATTR.
MPFROM2SHORT (sMenultem, TRUE),
MPFROM2SHORT (MIA-DISABLED, fEnable ? 0 MIA_DISABLED»

VOID PaintWindow (HWND hwnd. SHORT sStatus. LONG lCalcRep. ULONG ulTime)
{

static CHAR *szMessage [3] - "Ready". "Working ... ",
"%ld repetitions in %lu msec." }

CHAR szBuffer [60] ;
HPS hps
RECTL rcl :

hps = WinBeginPaint (hwnd. NULL, NULL)
WinQueryWindowRect (hwnd. &rcl) ;

sprintf (szBuffer. szMessage [sStatusJ. lCalcRep, ulTime) ;
WinDrawText (hps, -I, szBuffer. &rcl. CLR-NEUTRAL, CLR_BACKGROUND,

OT_CENTER : DT_VCENTER I DT_ERASERECT) ;

WinEndPaint (hps) ;
}

The BIGJOB.H File

/*----------------------
BIGJOB.H header file

- -*/

fldefi ne ID_RESOURCE

/fdefine 10M_REPS 1
/fdefi ne 10M_ACTION 2
ffdefi ne IOM_lO 10
ffdefi ne IOM_IOO 11
ffdefi ne 10M_lOOO 12
ffdefi ne IOM_lOOOO 13
ffdefi ne 10M_lOOOOa 14
Iidefi ne 10M_START 20
1fdefine 10M_ABORT 21

ffdefine STATUS_READY 0
ffdefi ne STATUS_WORKING

782 SECTION FIVE: MISCELLANEOUS TOPiCS

(continued)

Figure 17·1. The BIGJOB.H File. continued

Hdefine STATUS_DONE 2

#define WM_CALC_OONE (WM_USER + 0) II Used in BIGJOB4 and BIGJOB5
#define WM_CAlC_ABORTED (WM_USER + 1)

#define STACKSIZE 4096

typedef struct
{

HWND hwnd
lONG 1 Ca 1 cRep
BOOl fContinueCalc
UlONG ulSemTrigger
}

CAlCPARAM ;

typedef CALCPARAM FAR *PCAlCPARAM

double Savage (double A) ;

II Used in BIGJ084 and BIGJOB5

II Used in BIGJOB4 and BIGJOB5

II Used in BIGJOB5

VOID CheckMenultem (HWND hwnd. SHORT sMenultem. Baal fCheck) ;
VOID EnableMenuItem (HWND hwnd. SHORT sMenultem. BOOl fEnable)
VOID PaintWindow (HWNO hwnd. SHORT sStatus. lONG lCalcRep. ULONG ulTime)
MRESUlT EXPENTRY ClientWndProc (HWNO. USHORT, MPARAM, MPARAM) ;

The BIGJOB.RC File

1* -

BIGJOB.RC resource script file
- - - - - - - - - _. -*1

/fi ncl ude <os2. h)
#include "b;gjob.h"

MENU IO_RESOURCE
{

SUBMENU "-Repetitions", 10M_REPS
{

MENUITEM "-I.\aIO",
MENUITEM "-?\aIOO", 10M_lOa
MENUITEM "-3.\al,OOO", IOM_IOOO
MENU ITEM "-4. \aIO. 000" , IOM-IOOOO
MENU ITEM "-5.\aIOO,OOO", IOM_IOOOOO
}

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 783

Figure 17-1. The BIGJOB.RC File. continued

SUBMENU "-Action", 10M_ACTION
{

MENUITEM "-Start", 10M_START
MENUITEM "-Abort",
}

MIA_DISABLED

The BIGJOB1. DEF File

; BIGJOB1.0EF module definition file

NAME BIGJOB1 WINDOWAPI

DESCRIPTION 'BIGJOB Program No. 1 (C) Charles Petzold, 1988'
PROTMODE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 17-1. The BIGJOBl program.

I've separated the source code for this program into two files, BIGJOB1.C

and BIGJOB.C. The BIGJOB.C file contains subroutines that are used in the
next two programs in the BIGJOB series.

The BIGJOB.C file contains a function called Savage. This function per
forms a floating-point calculation called the "savage" benchmark, which is
sometimes used to test floating-point speed. The function increments its
parameter in a roundabout way: It squares the parameter, then takes the
square root, applies the log and then exp functions (which cancel each other
out), then the atan and tan functions (which do the same), and finally adds 1.

The BIGJOBI program allows you to repeat this calculation 10, 100, 1000,
10,000, or 100,000 times based on a selection from the program's Repetitions
menu. The time required for this job will depend on the speed of your ma
chine and on whether you have a math coprocessor chip installed. An 8
MHz IBM PC/AT with an 80287 math coprocessor requires about three min
utes to execute the savage calculation 100,000 times - a clear violation of
the ljlO second rule.

784 SECTION FIVE: MISCELLANEOUS TOPICS

You start the calculation from the Start option on the Action menu. When
the calculation has finished, BIGJOBI displays the number of repetitions and
the calculation time in the client window. The program uses the WinGetCur
rentTime function to calculate the elapsed time in milliseconds. The Action
menu also has an Abort option to abort a calculation before it has finished.
(This is not possible in BIGJOBl.)

Most of the code in BIGJOBI 's client window procedure handles WM_COM
MAND messages from the program's menu. When you select an option
from the Repetitions menu, BIGJOBI unchecks the currently selected option
and checks the option you choose. When you select "Start" from the menu,
BIGJOBI disables the Start option, enables the Abort option, and begins the
calculation. After ClientWndProc is finished with the big job, the program
reenables the Start option and exits the window procedure.

BIGJOBI is a bad program because it spends several minutes processing a
single WM_COMMAND message. If you run BIGJOBI in the Presentation
Manager, you'll easily see what's wrong with it.

Stop the World, I'm Working
While doing its big job, BIGJOBI clogs up the rest of the Presentation Man
ager. You cannot switch to another program using the keyboard or the
mouse. The whole system seemingly ignores all keyboard and mouse input
until the calculation is finished. Although the Abort option is present on
BIGJOBl's menu, you can't use the keyboard or mouse to select that option.
Once you begin the big job, you have to wait until it's finished to do
anything else.

At first, this is troubling. Aren't OS/2 and the Presentation Manager sup
posed to be multitasking? And if so, why does one program apparently
cause the whole system to grind to a halt?

OS/2 is a multitasking operating system. What is happening with BIGJOBI is
a predictable result of the message-based architecture of the Presentation
Manager.

Message-based Architecture: A Review
BIGJOBI creates a normal collection of windows in its call to WinCreate
StdWindow. Each window in the collection has a window procedure that
processes messages to these windows. The window procedure for BIGJOBI 's
client window is in the BIGJOBI program; the other window procedures
(such as those for the frame window, the title bar window, and the menu
window) are contained in the Presentation Manager PMWIN.DLL dynamic
link library.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 785

BIGJOBI also creates a message queue. Some of the messages for a window
are stored in the program's message queue. (These messages are called
"queued messages" and are said to be "posted to the queue.") Most of the
queued messages report user input from the keyboard and mouse, such as
WM_CHAR and WM_MOUSEMOVE. The queued messages are retrieved
from the message queue when the program calls WinGetMsg and are dis-
patched to the window procedure by lVinDispatchl,,1sg.

Other messages are sent directly to the window procedure, bypassing the
program's message queue. These "unqueued messages" result from calls to
certain Presentation Manager functions. For example, WinCreateStdWindow
sends WM_CREATE messages to window procedures of the windows it
creates; WinDestroyWindow sends a WM_DESTROY message. A message
can be sent directly to a window procedure by a call to WinSendMsg. The
menu window uses WinSendMsg to send a WM_COMMAND message.

For most of the time that a typical Presentation Manager program is run
ning, the program is suspended in the WinGetMsg function awaiting a mes
sage. Usually, the WinGetMsg function will return with a message that
reports keyboard or mouse input. Sometimes the processing of this message
will result in other messages being sent to the window procedure. For ex
ample, a WM_COMMAND message from a menu is the result of keyboard
or mouse input. While a program is awaiting a message in the WinGetMsg
function, one of its window procedures can also be sent a message. In this
case, the Presentation Manager will call the window procedure so that the
window procedure can process the message.

Processes and Threads
Multitasking in OS/2 is based on processes and threads within processes.
An OS/2 program can consist of one or more processes, although most pro
grams consist of only one process. A process is started by a call to the
DosExecPgm or DosStartSession function. Each process currently running
under OS/2 is denoted by a unique process ID number. When a process allo
cates resources, such as open files and memory blocks, the resources are
private to the process; that is, the process owns the resources.

A process running under OS/2 consists of one or more threads of execution.
Each thread has a thread ID number that uniquely identifies the thread
within the process. The thread that begins execution in the process always
has an ID number of 1. A thread can create additional threads in the process
by a call to DosCreateThread. All threads within a process share the
process's resources (such as open files and memory blocks), but each thread
has its own stack and its own set of CPU registers, including the instruction
pointer. OS/2 multitasks among threads using a priority-based scheduler.

786 SECTiON FiVE: MiSCEllANEOUS TOPICS

So far, all the programs shown in this book have consisted of a single
process with a single execution thread. BIGJOBI is no exception. When a
thread running under the Presentation Manager program creates some win
dows, the messages for those windows must be processed by the thread that
created them. This is true whether a message is posted to a message queue
or sent directly to a window procedure, or whether the window's window
procedure is contained in the program or in a dynamic link library.

A particular thread of execution can do only one task at a time. A thread
cannot be multitasked with itself. While BIGJOBI is busy doing its big job,
no other code in BIGJOBI can execute.

So here's the problem: When you select "Start" from BIGJOBI's menu,
ClientWndProc begins the big job on response from the WM_COMMAND
message. Now you try to use the Alt-Esc key combination to switch to an
other program. The window that must process this key combination is BIG
JOBI's frame window. But the window procedure for the frame window
runs in the same thread as the client window, and the client window is busy
doing the big job. This means the Alt-Esc keyboard message cannot be
processed until BIGJOBI finishes the calculation, exits ClientWndProc, and
calls WinGetMsg to retrieve the message from the queue. This is why the
Presentation Manager seemingly ignores keyboard input while BIGJOBI is
calculating.

Serialization of Input
But maybe there's another way to switch programs while BIGJOBI is doing
its big job-a way that doesn't require window procedures in BIGJOBI to
process a message. As you know, you can use the mouse to make another
window active. Maybe that will work.

To test this out, you first position the mouse pointer on top of another pro
gram's window and then use the keyboard to select "Start" from BIG
JOBI 's menu. While BIGJOBI is calculating, you press the mouse button on
this other window and ... nothing happens.

Again, this is initially disturbing. Because the Presentation Manager is a
true multitasking system, the other program should be able to read that
mouse click even while BIGJOBI is calculating. The Presentation Manager
should also be able to change the active window from BIGJOBI to the other
program. But this does not happen.

This behavior results from the serialization of user input: All keyboard and
mouse input is stored first in a system message queue. Keyboard and mouse
messages are then passed - one message at a time - to an application's

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 787

message queue. For keyboard messages, the destination of the message de
pends on which window has the input focus; for mouse messages, it's based
on which window is underneath the mouse pointer or which window has
captured the mouse.

The serialization of mouse and keyboard input in a system message queue is
required to correctly handle "type ahead" and "mouse ahead" input from
the user-input that occurs faster than it can be processed. One of the key
strokes or mouse clicks in the system message queue could have the effect
of changing the active window and the focus window. Subsequent keyboard
input must then go to that new window. Thus a keyboard or mouse message
cannot be posted to a particular application's message queue until the pre
vious keyboard or mouse message has been entirely processed.

In this particular example (pressing the mouse button over another window
while BIGJOB! is working), another application cannot read a mouse mes
sage until BIGJOB! processes all of its keyboard input. And BIGJOB! has not
processed the release of the key that caused the menu to send the WM_COM
MAND message that started the calculation.

Thus, because BIGJOB! renders itself resistant to keyboard or mouse input,
it also prevents all other programs running under the Presentation Manager
from receiving keyboard or mouse input.

But even if another program could read a mouse click, the Presentation
Manager cannot change the input focus from BIGJOB! to another program
while BIGJOB! is busy doing the calculation. To change the input focus, the
Presentation Manager must send a WM_SETFOCUS message to the window
losing the input focus. That WM_SETFOCUS message is blocked because
the window that must receive the message is part of BIGJOB! 's thread, and
BIGJOB! is busy doing the big job.

Messages are not like hardware interrupts! Although a window procedure
can be sent a message as a result of calling WinDefWindowProc, and a win
dow procedure can be sent a message as a result of calling some other Pre
sentation Manager functions, these are examples of recursion in window
procedures. Messages do not preemptively interrupt a thread and start exe
cution someplace else in the same thread.

You'll note that BIGJOB! uses the CS_SYNCPAINT flag when registering its
window class. Normally, WM_PAINT messages are posted to the message
queue :rather than sent directly to the window procedure. This posting
allows the Presentation Manager to consolidate multiple WM_PAINT mes
sages into one message that encompasses the entire invalid rectangle of the
window. With the CS_SYNCPAINT class style, a WM_PAINT message is
sent directly to the window procedure whenever part of the window
becomes invalid.

788 SECTION FIVE: MISCELLANEOUS TOPICS

The CS_SYNCPAINT style is necessary in BIGJOBI because it calls Win
InvalidateRect to invalidate the client window before beginning the big job.
This enables the PaintWindow routine in BIGJOB.C to display the text
"Working ... " while the big job is executing. Without the CS_SYNCPAINT
style, the window would not be updated until the big job was completed.
(Alternatively, BIGJOBI could have called the WinUpdateWindow function
after WinlnvalidateRect.)

Now that we've seen how BIGJOBI effectively disables keyboard and mouse
input in the Presentation Manager, the reason for the IjlO second rule should
be obvious. Presentation Manager programs must continually interact with
the system, retrieving and processing their messages promptly.

But Still There Is Multitasking
As bad as BIGJOBI is, however, OS/2 can still multitask Presentation Man
ager programs while BIGJOBI is running. If you have the CLOCK or
DIGCLOCK program from Chapter 10 running when you begin the big job,
you'll find that these programs continue to update the time every second.
The WM_TIMER message is a queued message, but it does not need to be
serialized like the keyboard and mouse messages. CLOCK or DIGCLOCK
can continue to receive WM_TIMER messages even if BIGJOBI has clogged
up keyboard and mouse input. Threads can also process WM_PAINT mes
sages during this time.

But keep in mind that most messages are user input messages (such as
WM_CHAR and WM_MOUSEMOVE), result directly from user input mes
sages (such as WM_COMMAND and WM_CONTROL), or are sent from
functions that are called in response to these messages. Most message traffic
is initiated by user input. A program doing a big job is a program that's
holding up traffic and preventing the user from getting to work.

The Hourglass Pointer
Before BIGJOBI begins its big job, it calls WinQuerySysPointer to obtain a
handle to the SPTR_WAIT system mouse pointer and uses this handle in a
call to WinSetPointer. (The program also displays the pointer by calling
WinShowPointer if a mouse is not installed.) After the calculation is fin
ished, it calls WinQuerySysPointer and WinSetPointer to display the normal
SPTR_ARROW mouse pointer.

The SPTR_WAIT pointer looks like an hourglass. This signals to the user
that a big job is in progress and that the keyboard and mouse are effectively
disabled. You should display the SPTR_WAIT pointer whenever you do a big
job that requires more than a second or so.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 789

As you probably know, users despise the hourglass pointer. It means they
must wait for a piggy program to finish some work. None of the other pro
grams in this chapter will require the hourglass pointer because these pro
grams solve the big-job problem.

Single-Thread Solutions
Before we explore multithread Presentation Manager programs, let's look at
two solutions that work with only a single thread: multitasking with the
timer and peeking at messages.

Multitasking with the Timer
I noted earlier in this chapter that CLOCK and DIGCLOCK continue to
function normally while BIGJOBI is working. This might have suggested
the Presentation Manager timer as a possible solution. The Presentation
Manager timer allows a program to break a big job into little pieces that are
performed on receipt of a WM_TIMER message. This is the approach taken
in the BIGJOB2 program shown in Figure 17-2.

The BIGJOB2 File

1/- - - - - - - - - - - - - - - - - --
1/ BIGJOB2 make file
jf- - - - - - - - - - - - - - - - - - -

bigjob2.obj : bigjob2.c bigjob.h
c1 -c -G2sw -W3 bigjob2.c

bigjob.obj : bigjob.c
cl -c -G2sw -W3 bigjob.c

bigjob.res : bigjob.rc bigjob.h
rc -r bigjob

bigjob2.exe : bigjob2.obj bigjob.obj bigjob2.def
link bigjob2 bigjob. /a1ign:16. NUL, os2, bigjob2
rc bigjob.res bigjob2.exe

bigjob2.exe : bigjob.res
rc bigjob.res bigjob2.exe

790 SECTION F!VE: M!SCELLANEOUS TOP!CS

The BIGJOB2.C File

/*---
SIGJOB2.C -- Timer approach to lengthy processing job

- -*/

#define INCL_WIN
I/include <os2.h>
I/include "bigjob.h"

I/define ID_TIMER

HAS hab

int main (void)

static CHAR szCl1entClass [] - "BigJob2" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

HMO hmq :

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU

HWND hwndFrame. hwndClient ;
QMSG qmsg ;

hab - Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass. ClientWndProc,
CS_SYNCPAINT : CS_SIZEREDRAW. 0) ;

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP. WS_VISIBLE.
&flFrameFlags, szClientClass.

The Timer".
OL. NULL, IO_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.
WinQuerySysPointer (HWND_DESKTOP. SPTR-APPICON. FALSE),
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq) ;

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 791

Figure 17-2. The BIGJOB2.C File. continued

WinTerminate (hab) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mpl, MPARAM mp2)
{

static double A :
static LONG lRep. lCalcRep.

lRepAmts [] - { 10. 100. 1000. 10000. 100000 }
static SHORT sCurrentRep'" IOM __ lO ;
static SHORT sStatus - STATUS_READY
static ULONGr ulElapsedTime

switch (msg)

case WM_COMMANO:
switch (COMMANOMSG(&msg)->cmd)

(

case IOM_lO:
case IDM_lOO:
case IOM_lOOO:
case IOM_lOOOD:
case IOM_lOOOOO:

CheckMenuItem (hwnd. sCurrentRep. FALSE) ;
sCurrentRep = COMMANOMSG(&msg)->cmd :
CheckMenultem (hwnd. sCurrentRep. TRUE) ;
return 0 ;

case 10M_START:
if (!WinStartTimer (hab, hwnd. IO_TIMER, 0»

WinAlarm (HWNO_DESKTOP. WA_ERROR) ;
return a

EnableMenultem (hwnd. 10M_START. FALSE) ;
EnableMenultem (hwnd. 10M_ABORT. TRUE) :

sStatus - STATUS_WORKING
WinInvalidateRect (hwnd. NULL. FALSE) ;

lCalcRep - lRepAmts [sCurrentRep - 10M_lO]
ulElapsedTime - WinGetCurrentTime (hab) ;
A - 1.0 ;

1 Rep = 0 ;

792 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 17-2. The BIGJOB2.C File. continued

return 0 ;

case 10M_ABORT:

break ;

case WM_TIMER:

WinStopTimer (hab. hwnd. IO_TIMER)

sStatus - STATUS_READY ;
WinlnvalidateRect (hwnd. NULL. FALSE) ;

EnableMenultem (hwnd. 10M_START, TRUE) ;
EnableMenuItem (hwnd. 10M_ABORT. FALSE) ;
return 0 :

A - Savage (A) ;

if (++1 Rep -- lCalcRep)
{

ulElapsedTime - WinGetCurrentTime (hab) -
ul E1 apsedTi me

WinStopTimer (hab. hwnd, IO_TIMER) ;

sStatus - STATUS_DONE ;
WinlnvalidateRect (hwnd. NULL. FALSE) ;

Enab1eMenultem <hwnd, 10M_START. TRUE) ;
Enab1eMenultem (hwnd. 10M_ABORT. FALSE) ;
}

return 0 ;

case WM_PAINT:
PaintWindow (hwnd. sStatus. lCalcRep. u1ElapsedTime)
return 0 :

case WM_DESTROY:
if (sStatus -- STATUS_WORKING)

WinStopTimer (hab. hwnd. IO_TIMER)
return 0 ;

return WinDefWindowProc (hwnd. msg. mp!. mp2)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 793

The BIGJOB2.DEF File

; BIGJOB2.0EF module definition file

NAME BIGJOB2 WINOOWAPI

OESeRI PTION 'BIGJOB Program No. 2 (C) Charles Petzold, 1988'
PROTMOOE
HEAPSIZE 1024
STACKSIZE 8192
EXPORTS ClientWndProc

Figure 17-2. The BIGJOB2 program.

Compiling BIGJOB2 also requires the BIGJOB.C, BIGJOB.H, and BIGJOB.RC
files shown in Figure 17-1.

When you select the Start option from BIGJOB2' s menu, BIGJOB2 calls
WinStartTimer to start the timer. It disables the Start option, enables the
Abort option, and initializes the A and lRep variables. The Savage function
is called once for each WM_TIMER message. Thus, for 100 repetitions, the
big job is finished after 100 WM_TIMER messages.

WM_TIMER messages are low-priority queued messages: Keyboard or
mouse messages are retrieved from the queue and processed before a
WM_TIMER message. Thus BIGJOB2 continues to read keyboard and mouse
input and allows the user to select "Abort" from BIGJOB2's menu, move or
resize BIGJOB2's window, or shift control to another program. The entire
system - including BIGJOB2 - continues to function normally while BIG
JOB2 is doing the calculation. The timer is stopped when the calculation is
finished or when you select "Abort" from the menu.

Timer Problems
Although the timer approach is feasible for BIGJOB2, it's easy to imagine
cases where the timer would be inadequate.

A program using the timer for a big job must enter and exit the processing
loop with every WM_TIMER message. This is easy to structure when a
single loop is involved (as in BIGJOB2), but it becomes a nightmare for
more complex jobs with lots of nested loops.

"7r.A ~C""Tlnl\l CI\/C. I\III~""CI I I\l\lcnl It:' Tnnl""~
I :::1Lt ,:11:.'-' I lUI'll ,I VI:.. IVllu'-'I:.LLHI'III:.UUu I url'-'u

The timer also slows down the big job. It simply isn't possible to receive
WM_TIMER messages at a rate faster than that of the hardware clock. Under
OS/2, this means the program receives a WM_TIMER message only once
every 31.25 msec. But on most machines that run OS/2, BIGJOB2 spends
only a fraction of this time processing the message. Because the calculation
is paced by the timer, the calculation won't finish any faster on a faster
computer!

Although the Presentation Manager timer can be of help in some big-job
problems, as a general solution it must clearly be rejected.

Peeking at Messages
The second solution involves the WinPeekMsg function. This function is
similar in syntax and functionality to WinGetMsg. However, when a pro
gram calls WinGetMsg, the function does not return until it has a message
from the message queue. If the message queue is empty, the WinGetMsg
function waits. WinPeekMsg, on the other hand, always returns immedi
ately. Thus, while doing the big job, a Presentation Manager program can
periodically check for messages in the queue. These messages can be re
moved from the queue and be processed normally.

This approach is used quite often in programs written for Microsoft Win
dows, where the function is called PeekMessage. Windows is entirely a
single-thread system - it multitasks among programs only when they call
Get Message or PeekMessage. Calling PeekMessage under Windows effec
tively yields control to other programs that might have messages in their
message queues.

The syntax of WinPeekMsg is the same as that of WinGetMsg except that it
has an options parameter:

Wi nPeekmsg (hab. &qmsg. hwnd. msgFi rst. msgLast. fOpti ons) ;

The fOptions parameter can be either PM_REMOVE to remove the next mes
sage from the queue or PM_NOREMOVE to leave the message in the queue.
WinPeekMsg returns FALSE if the message queue is empty and TRUE other
wise. (This is where it differs from WinGetMsg, which returns FALSE if the
message retrieved from the queue is WM_QUIT and returns TRUE other
wise.) Thus WinPeekMsg will not wait for a message; if no message is avail
able, the function returns FALSE.

The BIGJOB3 program in Figure 17-3 on the following pages shows how a
program can use WinPeekMsg to retrieve and process messages while doing
a big job.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 795

The BIGJOB3 File

If- - - - - - - - - - - - - - - - - - -
BIGJOB3 make file
11- - - - - - - - - - - - - - - - - - -

bigjob3.obj : bigjob3.c bigjob.h
c1 -c -G2sw -W3 bigjob3.c

bigjob.obj : bigjob.c
c1 -c -G2sw -W3 bigjob.c

bigjob.res : bigjob.rc bigjob.h
rc -r bigjob

bigjob3.exe : bigjob3.obj bigjob.obj bigjob3.def
link bigjob3 bigjob, /a1ign:16. NUL. os2. bigjob3
rc bigjob.res bigjob3.exe

bigjob3.exe : bigjob.res
rc bigjob.res bigjob3.exe

The BIGJOB3.C File

/* -

BIGJOB3.C -- Peek Message approach to lengthy processing job
- _. - */

#define INCL_WIN
#include <os2.h>
#include "bigjob.h"

HAS hab

int main (void)

static CHAR szClientClass [] - "BigJob3" ;
static ULONG f1FrameFlags - FCF_TITLEBAR FCF_SYSMENU

HMO hmq ;

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU

HWND hwndFrame, hwndC1ient ;
OMSG qmsg ;

796 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 17-3. The BIGJOB3.C File. continued

hab - Winlnitialize (0)
hmq - WinCreateMsgOueue (hab. 0)

WinRegisterClass (hab. szClientClass. ClientWndProc. CS_SIZEREORAW. 0)

hwndFrame - WinCreateStdWindow (HWNO_DESKTOP. WS_VISIBLE.
&flFrameFlags. szClientClass.

Message Peeking".
OL, NULL. ID_RESOURCE, &hwndClient)

WinSendMsg (hwndFrame, WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP, SPTR_APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinDispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;

MRESUlT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg, MPARAM mpl. MPARAM mp2)
{

static BOOl fContinueCalc - FALSE;
static LONG lCalcRep, lRepAmts [] - 10. 100. 1000. 10000. 100000 }
static SHORT s$tatus - STATUS_READY
static SHORT sCurrentRep - IDM_IO
static UlONG
double
lONG
OMSG

swi tch (msg)

ulElapsedTirne
A ;
1 Rep
qrnsg

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case IOM_IO:
case IOM_IOO:
case 10M_IOOO:
case 10M_lOOOO:

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 797

Figure 17-3. The BIGJOB3.C File. continued

case IOM_lOOOOO:
CheckMenuItem (hwnd. sCurrentRep. ~ALSE) ;
sCurrentRep - COMMANDMSG(&msg)->cmd ;
CheckMenultem (hwnd. sCurrentRep, TRUE) ;
return 0 ;

case IDM_START:
EnableMenultem (hwnd, 10M_START, FALSE) :
EnableMenultem (hwnd, 10M_ABORT, TRUE) ;

sStatus - STATUS_WORKING
WinInvalidateRect (hwnd, NULL, FALSE) ;

lCalcRep - lRepAmts [sCurrentRep - 10M_lO)
fContinueCalc - TRUE;
ulElapsedTime = WinGetCurrentTime (hab) ;

qmsg.msg - WM_NULL :

for (A = 1.0, lRep = 0 lRep < lCalcRep 1 Rep++)
{

A - Savage (A) :

while (WinPeekMsg (hab, &qmsg. NULL, 0, 0,
PM_NOREMOVE»

if (qmsg.msg == WM_QUIT)
break ;

WinGetMsg (hab, &qmsg, NULL, 0, 0)
WinOispatchMsg (hab. &qmsg) :

if (!fContinueCalc)
break :

if (!fContinueCalc :: qmsg.msg -- WM_QUIT)
break ;

ulElapsedTime - WinGetCurrentTime (hab) -
ulElapsedTime ;

if (!fContinueCalc :: qmsg.msg -= WM_QUIT)
sStatus - STATUS_READY ;

else
sStatus = STATUS_DONE :

798 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 17-3. The BIGJOB3.C File. continued

WinlnvalidateRect (hwnd, NULL, FALSE) :

EnableMenultem (hwnd. 10M_START, TRUE) ;
EnableMenultem (hwnd, 10M_ABORT, FALSE) ;
return 0 ;

case IOM-ABORT:
fContinueCalc - FALSE
return 0 ;

break ;

case WM_PAINT:
PaintWindow (hwnd, sStatus. lCalcRep. ulElapsedTime)
return 0 :

return WinOefWindowProc (hwnd, msg, mp1, mp2)

The BIGJOB3.DEF File

; BIGJOB3.DEF module definition file

NAME BIGJOB3 WINOOWAPI

OESCRI PTION
PROTMOOE
HEAPSIZE
STACKSlZE
EXPORTS

'BigJob Program No.3 (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 17-3. The BIGJOB3 program.

BIGJOB3 also requires the BIGJOB.C, BIGJOB.H, and BIGJOB.RC files shown
in Figure 17-1.

Like BIGJOBl, BIGJOB3 does the entire calculation in response to a
WM_COMMAND message. However, within the calculation loop, BIGJOB3
calls WinPeekMsg to check for messages in the message queue. BIGJOB3
first removes such messages with WinGetMsg and then dispatches them to a
window procedure with WinDispatchMsg, just as in the normal message
loop in main.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 799

for (A - 1.0, lRep - 0 lRep < lCalcRep
{

A = Savage (A) ;

while (WinPeekMsg (hab. &qmsg, NULL,
PM_NOREMOVE»

if (qmsg.msg == WM_QUIT)
break ;

1 Rep++)

0, o.

WinGetMsg (hab, &qmsg, NULL, 0, 0)
WinDispatchMsg (hab, &qmsg) :

if (lfContinueCalc)
break :

if (lfContinueCalc :: qmsg.msg"'" WM_QUIT)

break ;

Notice that after the WinGetMsg and WinDispatchMsg calls, the value of
fContinueCalc is checked. BIGJOB3 sets this to FALSE when it receives a
WM_COMMAND message indicating that the user has selected "Abort"
from the menu.

You'll notice that special processing is required for the WM_QUIT message.
This message is posted to the message queue by the Presentation Manager
as a default response when the user selects "Close" from the system menu
or when the program is terminated from the Presentation Manager Task
Manager. The WM_QUIT message should not be removed from the queue
within the window procedure. Instead, BIGJOB3 exits the window pro
cedure so that the WM_QUIT message can be retrieved from the message
queue in the main function.

Receiving Unqueued Messages
If you've been thinking about queued and unqueued messages, the preced
ing code may have seemed incomplete. WinPeekMsg returns TRUE only
when the message queue contains a message. Only then does BIGJOB3
retrieve the message from the queue and dispatch it.

But what happens when the user selects "Abort" from the menu? The menu
window sends the WM_COMMAND message by calling WinSendMsg. The
message is not posted to the queue. How, then, is BIGJOB3 able to process
this message while doing its big job?

800 SECTION F!VE: M!SCELLANEOUS·TOPICS

The answer is fairly simple. The WM_COMMAND message is initiated by
user input through the keyboard or mouse. The keyboard and mouse mes
sages are queued. WinPeekMsg detects their presence and allows WinGetMsg
to retrieve them and WinDispatchMsg to send them to the appropriate win
dow procedure. When the menu window determines that the user has
selected the "Abort" option, it sends the WM_COMMAND message that
ClientWndProc processes. Thus ClientWndProc receives this unqueued
WM_COMMAND message while calling the WinDispatchMsg function for a
queued mouse or keyboard message.

Here's a stickier problem: Let's assume you start BIGJOB3 calculating and
you move the mouse pointer over the window of another program. You
press the mouse button and the active window changes to the other program.
The other program is processing this mouse input, not BIGJOB3. Yet, when
the Presentation Manager changes the active window and the input focus, it
must send BIGJOB3 a WM_SETFOCUS message. BIGJOB3 's frame window
responds by changing the color of the title bar window. But how can BIG
JOB3 process an unqueued message initiated by a queued message outside
BIGJOB3's message queue?

Although the purpose of WinGetMsg and WinPeekMsg is to retrieve mes
sages from the message queue, these functions also allow a window pro
cedure in the thread to process an unqueued message.

If another thread tries to send a message to BIGJOB3 by calling Win
SendMsg (as happens with the WM_SETFOCUS message), and the recipient
of the message is busy (doing a big job, for example), the WinSendMsg func
tion is blocked until the recipient thread is free. But when the thread calls
WinGetMsg or WinPeekMsg, the Presentation Manager checks to see if
another thread is trying to send that thread a message. If so, the Presenta
tion Manager lets that unqueued message be processed by calling the mes
sage procedure with the message. This happens before the Presentation
Manager even checks the contents of the thread's message queue.

A window procedure can also receive an unqueued message while calling
WinSendMsg. This is how the Presentation Manager prevents message
deadlocks. For example, suppose a window procedure in thread 1 calls Win
SendMsg to send a message to a window procedure in thread 2. Thread 2 is
doing something in its window procedure, so the WinSendMsg function is
blocked. But then the window procedure in thread 2 calls WinSendMsg to
send a message to the window procedure in thread 1. Vh-oh - deadlock.
The Presentation Manager resolves the deadlock by letting the message
from thread 1 be sent to thread 2 and by then allowing the message from
thread 2 to be sent to thread 1.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 801

A Different Message Loop in main
In BIGJOB3 I used a normal message loop in main but called WinPeekMsg,
WinGetMsg, and WinDispatchMsg in the window procedure. You can also
alter the message loop in main, basing the loop on the WinPeekMsg function
rather than on WinGetMsg. The normal message loop looks like this:

while (WinGetMsg (hab. &qmsg. NULL. O. 0»
WinDispatchMsg (hab. &qmsg) :

Here's the alternate message loop:

whil e (TRUE)
{

802

if (WinPeekMsg (hab. &qmsg. NULL. O. O. PM_REMOVE»
{

else

if (qmsg.msg -- WM_OUIT)
break ;

else
WinDispatchMsg (hab. &qmsg)

WinSendMsg (hwndClient. WM_DO_SOMETHING. NULL, NULL)

Whenever WinPeekMsg returns FALSE (indicating that the message queue is
empty), WinSendMsg is called to send a WM_DO_SOMETHING message to
the client window. Note that the WM_QUIT message requires special
handling.

This approach is good for demonstration programs that seemingly run
"forever." (One example is a program that displays a series of randomly
sized and colored rectangles.) The client window procedure handles the
WM_DO_SOMETHING message in the same way it handles a WM_TIMER
message. The advantage is that the WM_DO_SOMETHING messages come
faster than 32 times per second.

This alternate message . loop is not quite appropriate for handling the big
job problem in general. Although the client window could ignore the
WM_DO_SOMETHING messages when it's not doing the big job, you prob
ably want a normal message loop in that case. This would require making

CCI'""Tlnl\l CI\/C. 1\J1ICI'""CI 1 AI\ICnl 1("" ,nnl("'\(""
uL..\....I I lUI '\I ,I VI::. IVII.:J\....II::LLHI '\ICUU.:J I urll.J.:J

the sStatus variable used in the BIGJOB programs (or its equivalent) a global
variable and using the alternate message loop only when the value of sStatus
is STATUS_WORKING.

Peeking Problems
The most serious challenge you face with a program structured like BIG
JOB3 is preventing reentrancy. You don't want to reenter the big-job calcu
lation loop when you call WinPeekMsg or WinDispatchMsg from within that
loop. BIGJOB3 prevents reentrancy by disabling the Start option on the
menu before doing the big job.

Although message peeking usually works well in Presentation Manager
programs, it's always a little messy for the programmer. Because the Win
PeekMsg functions must be called frequently enough to give the system a
good response time, an inordinate amount of code is required. If the big job
must be aborted, it's sometimes difficult to get out of a calculation loop in a
structured manner.

Multithread Solutions
Let's now attack the big-job problem by creating a second thread of execu
tion. When an OS/2 process contains multiple threads of execution, the
threads run concurrently. All threads in a process share the program's
resources (such as open files, memory, and semaphores), but each thread
has its own CPU state, dispatching priority, and stack.

Within a program, the code used by a second thread of execution looks like
a function. All local automatic variables in the thread function (or functions
called from a thread) are private to each thread because they are stored on
the thread's stack. Local static variables in the thread function (or functions
called from each thread) can be shared by all threads that use the function.

The Two Categories of Threads
Threads used in Presentation Manager programs fall into two categories:
"message queue threads" and "non-message queue threads." A thread
becomes a message queue thread when it calls WinCreateMsgQueue. The
thread. reverts to being a non-message queue thread upon a call to
WinDestroyMsgQueue.

A Presentation Manager program always creates a message queue in at least
one thread. A thread must create a message queue before it can create win
dows. The message queue is used to store messages for all windows created
in the thread. Other threads in a Presentation Manager program need to
create message queues only if they create windows.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 803

Although non-message queue threads have some advantages over message
queue threads, they also have some disadvantages.

The good news: A non-message queue thread is not bound by the ljlO second
rule. Because the thread does not receive or process messages, it needn't
worry about clogging up the processing of messages in message queue
threads. Thus a non-message queue thread is often ideal for doing a big job.

The bad news: Non-message queue threads are restricted in the type of Pre
sentation Manager functions they can call. Non-message queue threads

• Cannot create windows

• Cannot send messages to window procedures in a message queue thread

• Cannot call functions that cause messages to be sent to a window
procedure

Some of these restrictions are obvious: A non-message queue thread cannot
create a window because it has no queue to store messages for that window.
However, a non-message queue thread can call some functions that affect
windows created in message queue threads. For example, a non-message
queue thread can obtain a presentation space handle for a window created in
a message queue thread and is able to paint something on the surface
of that window.

But non-message queue threads cannot send messages to message queue
threads. The WinSendMsg function is not allowed. Nor can they call func
tions that send messages. For example, WinDestroyWindow cannot be called
from a non-message queue thread because it sends a window procedure a
WM_DESTROY message.

Although a non-message queue thread cannot send a message using
WinSendMsg, the thread· can post a message by calling WinPostMsg.
The WinPostMsg function places the message in a thread's message queue
and returns immediately. The non-message queue thread uses the Win
PostMsg function to signal a message queue thread when it has completed
the big job.

The Multithread Run-Time Library
Writing multithread programs in C involves some additional problems
caused by the C run-time library. Although many C functions are reentrant
(that is, they can be called from multiple threads concurrently), not all of
them are. Calling one of the non-reentrant functions from two threads con
currently could cause the threads to interfere with each other.

804 SECTION FIVE: MISCELLANEOUS TOPICS

Fortunately, Microsoft eversion 5.1 has a special multithread run-time li
brary called LLIBCMT.LIB. The "L" prefix stands for "large model"
(which means that all library functions require far calls and must be passed
as far pointers), and the "MT" suffix stands for "multithread." During in
stallation of Microsoft C 5.1, header files that contain templates for these
multithread functions are stored in the MT subdirectory of the directory
you specify for the normal header files. The #include statements in a
multithread program can indicate the header files in the MT subdirectory by
preceding the file name with MT\. You can link your program with
LLIBCMT.LIB by listing it as a parameter to LINK in the make file.

A program that uses this multithread library must use the _beginthread
function rather than DosCreateThread to create a new thread of execution.
The code used by the thread looks like a function in the program. The
_beginthread function allows a far pointer to be passed as a parameter to
this function. If this is a far pointer to a structure, the function that creates
the thread and the thread function can share nonglobal data.

The BIGJOB4 program in Figure 17-4 uses this multithread run-time library.

The BIGJOB4 File

11- - - - - - - - - - - - - - - - - - -
BIGJOB4 make file
#- - - - - - - - - - - - - - - - - - -

bigjob4.obj : bigjob4.c bigjob.h
cl -c -Alfw -G2sw -W3 bigjob4.c

bigjobmt.obj : bigjobmt.c
cl -c -Alfw -G2sw -W3 bigjobmt.c

bigjob.res : bigjob.rc bigjob.h
rc -r bigjob

bigjob4.exe : bigjob4.obj bigjobmt.obj bigjob4.def
link bigjob4 bigjobmt, lalign:16. NUL. Inod llibcmt os2. bigjob4
rc bigjob.res bigjob4.exe

bigjob4.exe : bigjob.res
rc bigjob.res bigjob4.exe

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES. 805

The BIGJOB4.C File

1* --
BIGJOB4.C -- Second thread approach to lengthy processing job

---- -- ----- --- --------- --------- -----_. --- --- ---- --------- ------* I

#define INCL_WIN
#define INCL_DOS
#include <os2.h>
#include <mt\process.h>
#include <mt\stdlib.h>
#include "bigjob.h"

VOID _COECL FAR CalcThread (PCALCPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] - "BigJob4" ;
static ULONG flFrameFlags - FCF_TITLEBAR FCF_SYSMENU

HMO hmq ;

FCF_SIZEBOROER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU

HWND hwndFrame, hwndClient ;
QMSG qmsg ;

hab = WinInitialize (0)
hmq = WinCreateMsgOueue (hab, 0) ;

WinRegisterClass (hab, szClientClass. ClientWndProc. CS_SIZEREDRAW, 0)

hwndFrame - WinCreateStdWindow (HWND_OESKTOP, WS_VISIBLE.
&flFrameFlags. szClientClass.

A Second Thread".
OL, NULL. ID_RESOURCE, &hwndClient)

WinSendMsg (hwndFrame. WM_SETICON.
WinOuerySysPointer (HWNO_DESKTOP, SPTR_APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg. NULL, 0, 0»
WinDispalchMsg (hab, &qmsg) ;

806 SECTION F!VE: M!SCELLANEOUS TOP!CS

(continued)

Figure 17-4. The BIGJOB4.C File. continued

WinDestroyWindow (hwndFrame)
WinDestroyMsgQueue (hmq)
WinTerminate (hab) ;
return 0 ;
}

MRESULT EXPENTRY ClientWndProc (HWND hwnd, USHORT msg. MPARAM mp1, MPARAM mp2)
{

static CALCPARAM cp :
static LONG 1 RepAmts [] - { la, 100. 1000, 10000, 100000 }
static SHORT sCurrentRep - 10M_IO ;
static SHORT sStatus - STATUS_READY
static TID tidCalc ;
static ULONG ulElapsedTime
static VOID *pThreadStack

switch (msg)

case WM_COMMAND:
switch (COMMANDMSG(&msg)->cmd)

{

case IDM_IO:
case IOM_lOO:
case IOM_IOOO:
case IDM_IOOOO:
case IOM_lOOOOO:

CheckMenultem (hwnd, sCurrentRep. FALSE) ;
sCurrentRep - COMMANDMSG(&msg)->cmd ;
CheckMenuItem (hwnd. sCurrentRep. TRUE) ;
return 0 :

case 10M_START:
if (NULL =- (pThreadStack = malloc (STACKSIZE»)

{

WinAlarm (HWND_DESKTOP. WA_ERROR) ;
return 0

cp.hwnd - hwnd ;
cp.1CalcRep - lRepAmts [sCurrentRep - IDM_IO]
cp.fContinueCalc = TRUE;

if (-1 =- (tidCalc - _beginthread (CalcThread,
pThreadStack, STACKSIZE. &cp»)

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 807

Figure 17-4. The BIGJOB4.C File. continued

{

free (pThreadStack) ;
WinAlarm (HWND_OESKTOP. WA_ERROR)
return 0 ;

sStatus - STATUS_WORKING ;
WinlnvalidateRect (hwnd. NULL, FALSE) ;
EnableMenultem (hwnd. 10M_START, FALSE)
EnableMenultem (hwnd, 10M_ABORT. TRUE) ;
return 0 ;

case 10M_ABORT:

break ;

cp.fContinueCalc - FALSE;
EnableMenultem (hwnd. 10M_ABORT. FALSE)
return 0 ;

case WM_CALC_DONE:
sStatus - STATUS_DONE
ulElapsedTime = LONGFROMMP (mpl) ;
WinInvalidateRect (hwnd. NULL. FALSE)
EnableMenultem (hwnd. IDM_START. TRUE) ;
EnableMenuitem (hwnd. IDM-ABORT. FALSE) ;
free (pThreadStack)
return 0 ;

case WM_CAlC_ABORTED:
sStatus = STATUS_READY
WinlnvalidateRect (hwnd. NULL. FALSE) ;
EnableMenultem (hwnd. 10M_START. TRUE) ;
free (pThreadStack)
return 0 ;

case WM_PAINT:
PaintWindow (hwnd. sStatus. cp.1CalcRep. ulElapsedTime)
return 0 :

case WM_OESTROY:
if (sStat~s = STATUS_WORKING)

OosSuspendThread (tidCalc)
reLurn 0 ;

return WinOefWindowProc (hwnd, msg. mpl. mp2)

808 SECTiON FiVE: iviiSCELLAi-JEOUS TOPiCS

(continued)

Figure 17-4. The BIGJOB4.C File. continued

VOID _CDECl FAR CalcThread (PCALCPARAM pcp)
{

double A ;
lONG 1 Rep. Hi me ;

lTime - WinGetCurrentTime (hab)

for (A - 1.0. lRep - 0 lRep < pcp->lCalcRep &&
pcp->fContinueCalc ; 1 Rep++)

A - Savage (A) :

DosEnterCritSec () :

if (pcp->fContinueCalc)
{

// So thread is dead when message retrieved

lTime = WinGetCurrentTime (hab) - lTime :

else

WinPostMsg (pcp->hwnd. WM_CAlC_DONE. MPFROMlONG (lTime). NULL)
}

WinPostMsg (pcp->hwnd. WM_CAlC_ABORTED. NUll. NUll)

_endthread () ;
}

The BIGJOBMT.C File

/*--
BIGJOBMT.C -- Common functions used in BIGJOB4 and BIGJOB5

- -*/

#define INCl_WIN
#include <os2.h>
#include <mt\math.h>
#include <mt\stdio.h>

double Savage (double A)
{

return tan (atan (exp (log (sqrt (A * A»») + 1.0

VOID CheckMenuItem (HWND hwnd. SHORT sMenultem. BOOl fCheck)
{

HWND hwndParent = WinQueryWindow (hwnd. OW_PARENT. FALSE)

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 809

Figure 17-4. The BIGJOBMT.C File. continued

HWND hwndMenu - WinWindowFromID (hwndParent. FlO_MENU)

WinSendMsg (hwndMenu, MM_SETITEMATTR.
MPFROM2SHORT (sMenuItem. TRUE),
MPFROM2SHORT (MIA_CHECKED. fCheck ? MIA_CHECKED 0»

VOID EnableMenultem (HWND hwnd, SHORT sMenuItem, BaaL fEnable)
{

HWND hwndParent - WinQueryWindow (hwnd. QW_PARENT, FALSE)
HWND hwndMenu = WinWindowFromID (hwndParent, FlO_MENU) ;

WinSendMsg (hwndMenu, MM-SETITEMATTR.
MPFROM2SHORT (sMenultem. TRUE),
MPFROM2SHORT (MIA_DISABLED. fEnable ? 0 MIA_DISABLED»

VOID PaintWindow (HWND hwnd, SHORT sStatus. LONG lCalcRep. ULONG ulTime)

static CHAR *szMessage [3] - "Ready", "Working .. ,",

CHAR
HPS
RECTL

szBuffer [60] ;

hps ;~'

rcl ;

"%ld repetitions in %lu msec." }

hps - WinBeginPaint (hwnd, NULL, NULL)
WinQueryWindowRect (hwnd, &rcl) :

sprintf (szBuffer, szMessage [sStatus], lCalcRep, ulTime) ;
WinDrawText (hps, -1, szBuffer, &rcl. CLR-NEUTRAL, ClR-BACKGROUND,

OT_CENTER : DT_VCENTER : DT_ERASERECT) :

WinEndPaint (hps) ;
}

The BIGJOB4.DEF File

; BIGJOB4.DEF module definition file

NAME BIGJOB4 WINOOWAPI

DESCRIPTION 'BigJob Program No.4 (C) Charles Petzold. 1988'

810 CCrTln1\1 CI\lC. I\JllcrCI I J\l\lcnl IC TnOlrc
UL.U I lUI'll I I V L.. IVIIUUL.L.L.I-\I'IIL.UUU I ur~ IUU

(continued)

Figure 17-4. The BIGJOB4.DEF File. continued

PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

1024
8192
ClientWndProc

Figure 17-4. The BIGJOB4 program.

As you can see, a few changes are required in the make file. First, the
source code files are compiled with the -Alfw switch. This makes a large
model program ("1" stands for long code pointers and "f" for far data
pointers). The -Aw switch tells the compiler to assume that the data segment
is not the same as the stack segment (or DS != SS). For the main thread, DS
will equal SS, but this might not be true for other threads, depending on how
you allocate memory for the thread's stack.

The second change to the make file is that LLIBCMT is specified in the
library field of the LINK step. The /NOD switch stands for' 'no default li
brary search."

The BIGJOB.C file used in BIGJOB1, BIGJOB2, and BIGJOB3 is not used with
BIGJOB4. The BIGJOBMT.C file takes its place. The functions in BIG
JOBMT.C are identical to those in BIGJOB.C, but the header information is
different. The header files must be those in the MT directory. However,
the BIGJOB.H and BIGJOB.RC files from Figure 17-1 are required to
create BIGJOB4.EXE.

When compiling BIGJOBMT.C, you might receive a warning message from
the compiler that says "address of frame variable taken, DS != SS." This
message normally indicates a problem, but you can ignore it here, where it's
related to how the floating-point functions used in the Savage function
return values on the stack.

Putting the Thread to Work
The function used for the second thread in BIGJOB4 is called CaleThread
and is located near the bottom of BIGJOB4.C. The parameter to this function
is a pointer of type CALCPARAM, which is defined in BIGJOB.H. This is a
structure that ClientWndProe uses in order to pass information to the
thread function.

When you select "Start" from BIGJOB4's menu, the program first attempts
to allocate a stack for the second thread by calling maUoe. If this fails, the
program beeps and exits the window procedure. If the allocation is success
ful, ClientWndProe sets the first three fields of the CALCPARAM structure
and creates the thread by calling _begin thread. The _beginthread call

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 811

requires the thread function (CalcThread), the address of the bottom of the
newly created stack, the stack size, and a pointer to a parameter to pass to
the thread function. The _beginthread function returns the thread ID. If this
is -1, the thread could not be created. If _begin thread is successful, Client
WndProc disables the Start menu option and enables the Abort option.

After the second thread is created, the code in CalcThread runs concurrently
with the code in the rest of the program. CalcThread gets the current time
and then enters its calculation loop. Note that the for statement checks the
fContinueCalc field of the CALCPARAM structure before each call to
Savage. This field was initialized by ClientWndProc to TRUE. But when
"Abort" is selected from the menu, ClientWndProc disables the Abort op
tion and sets fContinueCalc to FALSE.

When CalcThread drops out of the for loop (because the calculation either is
finished or has been aborted), it calls DosEnterCritSec (more on this
shortly) and uses WinPostMsg to post either a WM_CALC_DONE or a
WM_CALC_ABORTED message to the client window. (These two messages
are defined in BIOJOB.H.) CalcThread obtains the handle of the client win
dow from the hwnd field of the CALCPARAM structure. When CalcThread
posts a WM_CALC_DONE message, it sets the mpJ message parameter to
the elapsed time. CalcThread then calls the _endthread function and is
terminated.

The ClientWndProc function responds to the WM_CALC_DONE and the
WM_CALC_ABORTED messages by enabling the Start menu option and
freeing the memory allocated for the thread's stack.

A Few Precautions
Threads within a single process must often communicate with each other in
various ways. The execution of threads must be coordinated so that the
threads don't step on each other's toes. Threads must also often signal each
other and pass data among themselves. This requires some handshaking.

The handshaking is important. Don't make any assumptions about one
thread being able to execute a certain block of code in its time slice before
another thread does something to affect the first thread.

For example, the CalcThread function posts a WM_CALC_DONE or a
WM_CALC_ABORTED message to ClientWndProc and then calls
_endthread. You can't assume that CalcThread will finish processing
the _endthread function and will be destroyed by the time ClientWndProc
processes the posted message. ClientWndProc responds to either of these two
messages by freeing the data allocated for the thread's stack. If the thread is

812 SECTION FIVE: MISCELLANEOUS TOPICS

not completely finished when the stack is freed, the entire program will ter
minate with a protection exception.

This is why CalcThread calls DosEnterCritSec ("enter critical section")
before posting the message. DosEnterCritSec causes all other threads
in the process to be suspended until the thread calls DosExitCritSec or
until the thread terminates. CalcThread doesn't call DosExitCritSec, so
the main thread in BIGJOB4 won't execute any code until the thread is
terminated. When ClientWndProc processes the WM_CALC_DONE
or WM_CALC_ABORTED message, it knows that it's safe to free the
thread's stack.

During processing of the WM_DESTROY message, ClientWndProc suspends
the second thread by calling DosSuspendThread. ClientWndProc receives the
WM_DESTROY message when BIGJOB4 calls WinDestroyWindow from
main. The next call, after WinDestroyWindow, is to WinDestroyMsgQueue.
You don't want CalcThread attempting to post a message to ClientWndProc
after the window and the message queue have been destroyed.

Using Semaphores to Trigger Threads
BIGJOB4 creates a thread each time it needs to do the big job. After the
thread is finished, the thread terminates itself. This is a good approach for
some big jobs, but other big jobs might benefit from a somewhat different
structure.

For example, in a spreadsheet program you might want a second thread to
perform the spreadsheet recalculation. Because this recalculation occurs
quite frequently, it might be best to create the thread initially when the pro
gram first begins executing and trigger it whenever you need to do a
recalculation.

This is the approach taken in the BIGJOB5 program shown in Figure 17-5.

The BIGJOB5 File

/1- - - - - - - - - - - - - - - - - --
/I BIGJOB5 make file
/1- - - - - - - - - - - - - - - - - - -

bigjob5.obj : bigjob5.c bigjob.h

cl -c -Alfw -G2sw -W3 bigjob5.c

bigjobmt.obj : bigjobmt.c

c1 -c -Alfw -G2sw -W3 bigjobmLc

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 813

Figure 17-5. The BIGJOB5 File. continued

bigjob.res : bigjob.rc bigjob.h
rc -r bigjob

bigjob5.exe : bigjob5.obj bigjobmt.obj bigjob5.def
link bigjob5 bigjobmt. lalign:16. NUL. Inod llibcmt os2. bigjob5
rc bigjob.res bigjob5.exe

bigjob5.exe : bigjob.res
rc bigjob.res bigjob5.exe

The BIGJOB5.C File

1* - - --- - -- - - - -- - -- -- - - - - - - -- - - - -- - - -- - -- - - -- - - --- - --
BIGJOB5.C -- Second thread and semaphore trigger

---*1

#define INCL_WIN
#define INCL_DOS
Itinclude <os2.h>
#include <mt\process.h)
#include <mt\stdlib.h>
ttinclude "bigjob.h"

VOID _CDECL FAR CalcThread (PCALCPARAM)

HAB hab

int main (void)

static CHAR szClientClass [] = "BigJob5" ;
static ULONG flFrameFlags = FCF_TITLEBAR FCF_SYSMENU

HMO hmq ;

FCF_SIZEBORDER FCF_MINMAX
FCF_SHELLPOSITION FCF_TASKLIST
FCF_MENU

HWND hwndFrame, hwndClient :
QMSG qmsg ;

hab = Winlnitialize (0)
hmq - WinCreateMsgQueue (hab. 0) ;

WinRegisterClass (hab. szClientClass, ClientWndProc, CS_SIZEREDRAW, 0)

814 SECTION F!VE: !\I!!SCELLANEOUS TOP!CS

(continued)

Figure 17-5. The BIGJOB5.C File. continued

hwndFrame - WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flFrameFlags. szClientClass,

Second Thread with Semaphore".
OL, NULL. IO_RESOURCE. &hwndClient)

WinSendMsg (hwndFrame, WM_SETICON.
WinOuerySysPointer (HWND_DESKTOP, SPTR-APPICON. FALSE).
NULl) ;

while (WinGetMsg (hab. &qmsg, NULL. O. 0»
WinOispatchMsg (hab. &qmsg)

WinDestroyWindow (hwndFrame)
WinOestroyMsgQueue (hmq)
WinTerminate (hab) ;
return a ;

MRESULT EXPENTRY ClientWndProc (HWND hwnd. USHORT msg. MPARAM mp1. MPARAM mp2)
{

static CALCPARAM cp ;
static INT iThreadStack [STACKSIZE / 2] ;

static LONG
static SHORT
static SHORT
static TID
static ULONG

switch (msg)
{

lRepAmts [] - { 10. 100,
sCurrentRep - IOM_I0 ;
sStatus - STATUS_READY
tidCalc ;
ulEl apsedTime ;

case WM_CREATE:
cp.hwnd = hwnd
DosSemSet (&cp.ulSemTrigger)

1000. 10000. 100000 }

tidCalc = _beginthread (CalcThread. iThreadStack.
STACKSIZE. &cp) ;

return 0 ;

case WM_INITMENU:
if (tidCalc -= -1 && SHORTIFROMMP (mpl) == IDM_ACTION)

EnableMenultem (hwnd, 10M_START. FALSE) ;
return a ;

(continued)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 815

Figure 17-5. The BIGJOB5.C File. continued

case WM_COMMANO:
switch (COMMANOMSG(&msg)-)cmd)

{

case IOM_IO:
case 10M_laO:
case 10M_IOaO:
case IOM_IOOOO:
case IDM_IOaOOO:

CheckMenultem (hwnd. sCurrentRep. FALSE) ;
sCurrentRep = COMMANDMSG(&msg)->cmd ;
CheckMenultem (hwnd. sCurrentRep. TRUE) ;
return 0 ;

case IDM_START:
cp.1CalcRep = lRepAmts [sCurrentRep - IOM_IO]
cp.fContinueCalc = TRUE;
OosSemClear (&cp.ulSemTrigger)

sStatus = STATUS_WORKING ;
WinlnvalidateRect (hwnd. NULL. FALSE) ;
EnableMenultem (hwnd. 10M_START. FALSE)
EnableMenultem (hwnd. IOM-A~ORT. TRUE) ;
return 0 ;

case 10M_ABORT:

break ;

cp.fContinueCalc - FALSE;
EnableMenultem (hwnd. 10M_ABORT. FALSE)
return a ;

case WM_CALC_OONE:
sStatus = STATUS_DONE
ulElapsedTime = LONGFROMMP (mpl) ;
WinlnvalidateRect (hwnd. NULL. FALSE)
EnableMenultem (hwnd. 10M_START, TRUE) ;
EnableMenultem (hwnd, 10M_ABORT. FALSE) ;
return a ;

case WM_CALC_ABORTED:
sStatus - STATUS_READY
WinInvalidateRect (hwnd. NULL. FALSE) ;
EnableMenultem (hwnd. IDM_START. TRUE) ;
return 0 ;

8 i 6 SECTION FIVE: MISCELLANEOUS TOPICS

(continued)

Figure 17-5. The BIGJOB5.C File. continued

case WM_PAINT:
PaintWindow (hwnd. sStatus. cp.1CalcRep. ulElapsedTime)
return 0 ;

case WM_DESTROY:
if (sStatus - STATUS_WORKING)

DosSuspendThread (tidCalc)
return 0 ;

return WinDefWindowProc (hwnd, msg, mpl, mp2)

VOID _CDECL FAR CalcThread (PCALCPARAM pcp)
{

double A ;
LONG lRep,lTime

whil e (TRUE)
{

DosSemWait (&pcp->ulSemTrigger. SEM_INDEFINITE_WAIT)

lTime = WinGetCurrentTime (hab)

for (A = 1.0, lRep = 0 lRep < pcp->lCalcRep &&
pcp-)fContinueCalc ; 1 Rep++)

A - Savage (A) ;

DosSemSet (&pcp->ulSemTrigger)

if (pcp->fContinueCalc)
{

else

lTime - WinGetCurrentTime (hab) - lTime ;
WinPostMsg (pcp-)hwnd. WM_CALC_DONE, MPFROMLONG (lTime), NULL)
}

WinPostMsg (pcp-)hwnd. WM_CALC_ABORTED, NULL, NULL)

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 817

The BIGJOB5. DEF File

: BIGJOB5.0EF module definition file

NAME BIGJOB5 WINDOWAPI

OEseRI PTION
PROTMODE
HEAPSIZE
STACKSIZE
EXPORTS

'BigJob Program No.5 (C) Charles Petzold, 1988'

1024
8192
ClientWndProc

Figure 17-5. The BIGJOB5 program.

This program requires the BIGJOB.H and BIGJOB.RC files from Figure 17-1
and the BIGJOBMT.C file from Figure 17-4.

During the WM_CREATE message, ClientWndProc calls DosSemSet to set
the ulSemTrigger field of the CALCPARAM structure. This field is a RAM
semaphore used to trigger the calculation thread into action. ClientWndProc
then calls _beginthread to create the thread. In BIGJOB4, memory for the
stack thread was allocated using maUoc; in BIGJOB5, the stack is simply a
static array defined in ClientWndProc.

BIGJOB5 also processes the WM_INITMENU message. If the Action menu
is being displayed, it checks to see if the thread ID originally returned from
_beginthread is -1. If so, the Start option is disabled.

BIGJOB5 uses the RAM semaphore as a signaling mechanism. The sema
phore can be either set (by calling the DosSemSet function) or cleared (by
calling the DosSemClear function). When a thread calls DosSemWait and the
semaphore is set, the thread is blocked until the semaphore is cleared by an
other thread. That is, the DosSemWait function will not return until the
semaphore is cleared. The thread is effectively suspended. If the semaphore
is already cleared when DosSemWait is called, the thread returns from the
function immediately and can continue. Actually, DosSemWait has a second
parameter that indicates a time-out value. If the semaphore is set, DosSem
Wait can return when the specified time elapses. However, this parameter is
set to the identifier SEM_INDEFINITE_WAIT (equal to -1) in BIGJOB5 to
indicate an infinite wait.

CalcParam begins by entering an infinite loop. The first function it calls in
this loop is DosSemWait on the ulSemTrigger semaphore. Because Client
WndProc set this semaphore before creating the thread, CalcParam will be
suspended in the DosSemWait function until the semaphore is cleared.

818 SECTION FIVE: MISCELLANEOUS TOPICS

When you select "Start" from the menu, ClientWndProc sets the sCalcRep
and fContinueCalc fields of the CALCPARAM structure and clears the sema
phore. This allows CalcThread to start the calculation. As in BIGJOB4,
CalcThread checks the value off Continue Calc before each call to Savage.

After exiting the for loop, CalcThread calls DosSemSet to set the semaphore
again and then posts the WM_CALC_DONE or WM_CALC_ABORTED

message. It need not suspend the main thread because the main thread
doesn't need to free CalcThread's stack. When CalcThread returns to the
top of the while loop, it again calls DosSemWait. The semaphore is already
set, so CalcThread can't proceed with a new calculation until "Start" is
chosen again.

Note that the semaphore is used only for blocking and unblocking the non
message queue thread. A message queue thread should not be made to wait
on a semaphore because of the possibility of violating the ljlO second rule. If
absolutely necessary, a non-message queue thread could suspend a message
queue thread for very short periods of time by calling DosSuspendThread or
DosEnterCritSec, as in BIGJOB4. This is sometimes helpful when both
threads access common variables. (It's not necessary in BIGJOB4 or BIG
JOB5 when the threads access fContinueCalc because this variable can be
accessed in one machine code instruction.)

In general, a message queue thread communicates to a non-message queue
thread using semaphores. A non-message queue thread communicates to a
message queue thread using posted messages. The two threads can also ac
cess common variables.

Message Ordering
The CalcThread function in BIGJOB4 and BIGJOB5 used two "user
defined" messages called WM_CALC_DONE and WM_CALC_ABORTED to
notify ClientWndProc that the job was completed or aborted. User-defined
messages can be any value from WM_VSER (defined in PMWIN.H as
OxlOOO and above).

You might want a little more control over the priority of messages in the
message queue. I've mentioned in earlier chapters that WM_PAINT and
WM_TIMER messages are low-priority messages: If other messages appear
in the message queue, they will be retrieved before WM_PAINT and
WM_TIMER.

Four other messages have specific priorities in the message queue. These
are WM_SEMl, WM_SEM2, WM_SEM3, and WM_SEM4. The priority of
these messages is shown in the table on the next page.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 819

Message

WM_SEM4
WM_PAINT
WM_SEM3
WM_TIMER
WM_SEM2
All other messages
WM_SEMI

Priority

Lowest

Highest

For example, if you post a WM_SEMI message to a message queue, it will
be retrieved before any other message in the queue.

Only one of each of the four WM_SEM messages is allowed in the message
queue at any time. If you post another, the Presentation Manager will per
form a bitwise OR of the mpJ parameter of the message already in the queue
with the mpJ parameter of the message you're posting. You can thus use the
mpJ parameter as a series of flags that combine messages in whatever way
you want.

Thinking Threads
A non-message queue thread is almost essential in Presentation Manager
programs that must read input other than keyboard and mouse input.

For example, a communications program might have a client window in the
message queue thread that processes keyboard messages, writes the charac
ters to the communications port using DosWrite, and (if local echo is in
effect) also writes the characters to the surface of the window.

The non-message queue thread reads the communications port with the
DosRead function. Used most efficiently, this function returns only if a
character has been read from the serial port. A message queue thread should
not call DosRead to get input from the serial port because it might violate
the IjlO second rule. When the non-message queue thread reads a character, it
can post either a user-defined message to the window containing that char
acter or a pointer to a string of characters. The client window processes the
message by displaying the character to the window.

A Presentation Manager program using queues (not Presentation Manager
message queues, but the queues supported by the OS/2 kernel) for in
terprocess communication should also create a non-message queue thread
for reading the queue. The non-message queue thread calls the DosRead
Queue function with the "no wait" flag set to 0, thus blocking the thread
until something is in the queue.

820 SECTION F!VE: M!SCELLANEOUS TOPICS

No More Hourglasses!
We started out looking at BIGJOBl, a program that did the job it was meant
to do but did it in a way that was not advantageous for the user. Our immedi
ate rejection of this program and our search for better ways of doing big
jobs indicate some major changes in our perception of proper behavior in
application programs.

In a traditional single-tasking, non-windowed environment, you accept the
fact that you have to wait while your database program is sorting a file.
When you start a file sort, it's time to take a coffee break.

In a traditional multitasking operating environment, you might be able to
run the database program sort in the background while you work on another
program.

However, in a multitasking windowing environment like the Presentation
Manager, we are satisfied only when the user can continue to interact with a
program even when it's doing a big job. Obviously, the complexities in
volved with structuring a program in this way require some extra work on
the part of the programmer. But that makes the program better for the user.

Just as we can no longer tolerate programs that require the user to memorize
scores of commands, we can no longer tolerate programs that display an
hourglass pointer and require a user to wait until the program has finished
its big job.

CHAPTER SEVENTEEN: MULTITHREAD PROGRAMMING TECHNIQUES 821

Index

Note: Italicized page numbers refer to figures
and illustrations.

Special Characters
@ 749
A 594
{} 625
- 581

A
ABOUT BOX modal dialog box program

620-36
code 620-24
coordinates 627-28
display 624
procedure 628-29
square buttons 631-36
template 625-27
window creation 630-31

AboutDlgProc function 628-29
accelerator tables, frame creation flag bits for

83,84
ACCELTABLE keyword 531
active window(s) 354-55
AddItemsToSysMenu function 712
Advanced VIO (video input/output) functions

291-332
AVIO version of SYSVALS program

326-32
code pages and character sets used by 375
functions, VIO and AVIO 311

ANSI control sequences 316-20
cell size 323-24
cursor position and size 312-14
input 320-21
miscellaneous 325-26
origin 323-24
output 314-16
scrolling 321-22
virtual display buffer 324-25

mechanics of 292-96
presentation space and 300-310

character attributes 301-3
create/destroy 296-98
other data retained 310
virtual display buffer 300-301, 303-10
writing to 298

in TYPECLIP program 701, 702
updating the window 299

-Alfu compiler switch 743
-Alfw switch 811
alternate vs winding modes, filling areas with

197-205
Alt key 336, 354
ALTWIND program 202-4

display 205
anchor block handles, obtaining 18-24, 26
AND operator 255,549
ANSI control sequences, AVIO/VIO

functions for 316-20
setting attributes using ANSI 317-18
using C output functions 318-20

APIENTRY identifier 20, 21, 743, 760
application program interface (API)

functions 3
area bracket 195, 196
area filling 195-97

alternate vs winding modes for 197-205
with GpiBox 189-90, 211

ASCII character code 336, 338
code pages and 375
escape character 317
extended 336, 337

-Au compiler switch 739, 740
AUTORADIOBUTTON statement 650
AVIOI program 292-96

code 292-95
display 295

AVI02 program 304-8
-Aw switch 740, 760, 811

B
BA_ALTERNATE identifier 197
BA_BOUNDARY identifier 197
background color 206, 214, 587
Backspace key 337, 351
BA_NOBOUNDARY identifier 197
BA_WINDING identifier 197
BBO_AND 255
BBO_IGNORE 255
BBO_OR 255
BEEPERI program 428-42

code 438-40
imprecision in 442
WinStartTimer syntax 441-42

823

BEEPER2 program 447-51
code 448-50

_beginthread function 805, 811-12, 818
BeginTracking function 728, 730
BIGHELP.BMP file 604
BIGJOB1 program 777-85

code 778-84
functions and messages in 784-85

BIGJOB2 program 790-95
code 790-94
functions and messages 794
timer inadequacy in 794-95

BIGJOB3 program 795-803
altered message loop in main 802-3
code 796-99
messages and functions 795, 799-800
receiving unqueued messages 800-801

BIGJOB4 program 804-11
code 805-11

BIGJOB5 program 813-19
code 813-18
functions and messages 818-19

bites), array storage of 262-64. See also
bitmap(s)

bitblt (bit-block transfer) 236-55
compression of 255
different presentation spaces 248-49
flipping bitmaps 246-48
raster operations 249-54
simple use of GpiBitBlt 237-42
stretching bitmaps 242-46

BITCAT1 program 267-71
code 267-69
display 271
header file 270 -

BITCAT2 program 273-78
code 272-77
display 277

BITLIB program 765-70
code 765-69
module handles and 770-71

bitmap(s) 153, 235-36. See also bitmap
resources

bit array 262-64
BITCAT program 267-71
color index for 206
compression 255
copying with GpiBitBlt 236-42
creating and initializing 264-67
creating customized patterns with 283-89
drawing 257-61
flipping 246-48

bitmap(s) (continued)
getting information on 261-62
memory device context and 272-78

drawing on 278-83
in menus 599-606
raster operations 249-54

color and 254-55
shadow 283, 435
source, destination, and pattern 250-51
stretching 242-46
system 256
transferring with Clipboard 715-30

bitmaps to Clipboard 715-16
BLOWUP demonstration program

716-30
from Clipboard to program 716

using different presentation spaces 248-49
BITMAPINFOHEADER structure 261-62,

264-67
BITMAPINFO structure 264-67
bitmap resources 537-48

alternative method for loading in
LOADBMP2 544-48

creating in ICON EDIT 537
in dynamic link libraries 765-74

loading bitmaps from DLLs 771-74
module handles and 770-71

loading bitmaps in LOADBMPI program
539-44

using in programs 537-38
BLOKOUT1 program 419-24

code 419-22
display 423
message processing in 423-24

BLOKOUT2 program 424-29
code 425-28

BLOWUP program 716-30
code 717-26
display 727
functions and messages 727-30

.BMP files 537. See also bitmap(s); bitmap
resources

BM_QUERYCHECK message 651
BM_SETCHECK message 491-92,649
BN_CLICKED notification code 493
BN_DBLCLICKED notification code 493
BOOL data type 20, 21
boxes, drawing with GpiBox 172-74
BRICKS program 283-89

code 284-87
display 288

BS_CHECKBOX class style 478

824 PROGRAM~lIING THE OS/2 PRESENT.LU!ON MANAGER

BSEDOS.H header file 9, 527
BSEERR.H header file 9
BSE.H header file 9
BSESUB.H header file 9, 296, 304
BS_PUSHBUTTON class style 90, 478
BS_RADIOBUTTON class style 478
button(s) 478-94. See also mouse buttons

check box 478
push 90, 478

controls and keyboard input focus 486
demonstration program 479-86

radio 478-79
indicating choices with, in DRAWLINE

program 486-94
square

creating 518-23
in dialog boxes 631-36
SQBTN.C window procedure file

508-18,523
BUTTONSI program 479-86

code 479-82
display 483
push buttons created in 483-84
WM_COMMAND messages/processing in

484-85
BUTTONS2 program 518-23

code 519-23
display 523

BUTTONS3 program 761-64
code 761-64

C
cached micro-PS 109-10

default coordinate system 111,112
device context 175
obtain handle to 111

CalcParam function 818
CalcThread function 811-12, 819
calculator program. See HEXCALC2

program; HEXCALC program
CAPS_CHAR_HEIGHT identifier 324
CAPS_CHAR_WIDTH identifier 324
CAPS_HEIGHT identifier 181, 182
CAPS_HORIZONTAL_FONT _RES

identifier 218
CAPS_HORIZONTAL_RESOLUTION

identifier 182
CAPS identifiers 176,180,181
Caps Lock key 336, 354
CAPS_ VERTICAL_FONT_RES

identifier 218

CAPS_VERTICAL_RESOLUTION
identifier 182

CAPS_WIDTH identifier 181, 182
capture window(s) 425
capturing the mouse 424-29
caret, vs pointers and cursors 356
CFLSELECTOR 688, 690
CF _TEXT 688, 690
CHAR3FROMMP macro 339, 353
CHAR4FROMMP macro 347
character cells 292, 300

attribute bytes 297, 301-3
color values in AVIO 302
extended 303

organization of 301
size functions 323-24

character code, keyboard 348-49
generation of 336-38

character display. See also Advanced VIO
(video input/output) functions; text
output, AVIO and VIO functions for

buffer 117
foreign language 372-75
height 113-14
interline spacing 114-15
size 112-13
width 113

Character keys 337
character strings, reading from keyboard 375
CHARMSG macro 145, 339, 340, 347, 353
check boxes 651
CHECKER1 program 401-5

code 401-4
display 404

CHECKER2 program 405-12
code 405-10
pointer converted to client window

coordinates 411-12
pointer level in 410-11

CHECKER3 program 412-19, 474-75,
476,507

child windows created by 416-17
code 412-16

child window(s)
creating child control windows 86-94 (see

also control window(s))
creating, for client windows 69-77
effects of parent windows on 60-61
of frame windows 60-62
IDs 93-94, 95, 477-78

vs menu item IDs 582-83
in modeless dialog box 680

INDEX 825

child window(s) (continued)
processing WM_BUTTON messages (hit-

testing) with 412-19
ChildWndProc function 417-18
_chkstk 26
CHS_CLIP option 216
CHS_LEAVEPOS option 216
CHS_OPAQUE option 216, 217
CHS_ VECTOR option 216
C language

multithread run-time library in 804-5
output functions of, and AVIO functions

318-20
programming Presentation Manager in

8-10 (see also header files; program
listings)

class style 56
class sty Ie bits 79
clicking the mouse 388
client window(s) 11, 59

creating 43-50
creating child windows for 69-77
displaying different text in 76
messages sent to each other 67
painting 50-57
size of 57,90, 106-8
writing text to, with GpiCharStringAt

115-17
ClientWndProc window procedure

client messages received by 47
declared before main 46
exchanging data with PatternDlgPro dialog

box procedure 645-48
four tasks of, in TYPECLIP Clipboard

program 701-3
role in message processing 54

Clipboard 685-730
transferring bitmaps with 715-30
transferring text with 686-715

CLOCK program 464-72, 789
code 464-70
display 470
message processing 471-72

clock programs
analog 464-72
digital 457-64

CLR_BACKGROUND identifier 57, 206,
254,260

CLR_ (color) identifiers 205-7, 254
CLR_NEUTRAL identifier 57, 206, 254,260
CMDSRC_ACCELERATOR identifier 484,

586

CMDSRC_MENU identifier 484
CMDSRC_PUSHBUTTON identifier 484
codepage 336
code segments 528

in dynamic link libraries 736-37
color

icons and mouse pointers 549-50
inverting bitmap 249-50
mix in windows 205-14

background color and mix 214
color index 205-7
COLORS file 207-11
foreground mix mode 212-13
text 217
window background color 206
window text color 206

values used in AVIO ANSI attributes 317
values used in AVIO attributes 302

COLORSCR program 494-507
changing keyboard input focus 505-7
code 495-501
display 501
processing scroll-bar messages 503-5

COLORS program 207-11
COMMANDMSG macro 484-85, 586
compiling and linking mechanics used with

dynamic link libraries 738-40
calling sequence 738-39
compiling for DS!=SS required 740
exporting functions required 740
far calls and far pointers required 738
link with LLIBCDLL.LIB 740
loading DS required 739

compiling files 15-16, 26
window procedures while 50

compiling resources (.RES) 533-37
composite keys 372-75
ConstructDefaultAttribute function 332
control window(s) 77-78, 473-530

basics of 474-78
child window IDs 93-94, 95, 477-78
creating 86-94, 474, 475
notification messages sent in 92,

475,493
owner and parent 477
predefined window classes 476
window sty Ie 476-77

button class of 478-94
push button demonstration program

479-86
radio buttons to indicate choices 486-94

menus as 571

826 PROGRAMMING THE OS/2 PRESENTATION MANAGER

control window(s) (continued)
scroll-bar class of 494-507

changing keyboard input focus in 505-7
demonstration program 495-502
processing messages 503-5

user-created 507-23
creating square buttons 518-23
mouse capture and input focus 507-18

CONVMENU program 572-94
code 572-80

coordinate system
for text display 111-15

character height 113-14
character size 112-13
character width 113
interline spacing 114-15

world vs model 189
CopyBitmap function 715, 716, 728
Copy function, Clipboard 711-13
CopyScreenToBitmap function 730
COURIER.FON font file 218
cprintjC function 319, 320, 743
cputs C function 319
CREATESTRUCT structure 517-18
CS_SIZEREDRAW class style bit 56, 79
CS_SIZEREPAINT class style bit 79
CS_SYNCPAINT class style bit 79, 80, 397,

788, 789
-c switch 15
CTEXT keyword 626, 627
Ctrl key 336, 354
Ctrl-Ietter keys 348-49
cursor

blinking (see TYPEAWAY program)
creating, to indicate position of next

character 356-58
VIO control of position and size 312-14

CURSOR_ identifiers 357, 358
cursor movemenrkeys 337, 350

scrolling with 144-51
in TYPEAWAY program 369-70

curves
drawing with GpiPolyLine 162
parametric equations and 163-67

D
data segments 528
DBM_ (draw bitmap) identifiers 261
DBM_IMAGEATTRS 260, 261
DBM_STRETCH 260, 261
dead keys 354, 372-75
DEFPUSHBUTTON keyword 626, 627

Delete key 337, 350
dependent file(s) 15
DESCRIPTION statement, .DEF file 17
desktop window(s) 60

determining handle of 62
DEVCAPS program 176-82

code 176-81
display 181
header file with identifiers 179-89

DevCloseDC function 283
device context

capabilities of, and device independence
175-82

memory 272-83
presentation space and 56-57, 109-10

device independence
graphics 7-8
pixels and 174-89
programming for text output 105-19

DevOpenDC function 272
DevQueryCaps function 218, 324, 471, 702

drawing graphics with 175-76, 182
DGROUP segment group 737, 739
diacritic marks, characters containing 372-73
dialog boxes 619-81

complex modal program PATTDLG
636-54

control windows in 474
File Open modal program HEAD 654-71
modal vs modeless 619-20
modeless dialog box in HEXCALC

program 671-81
simple modal program ABOUTBOX

620-36
DIALOG statement 625, 626
DIGCLOCK program 457-64, 789

code 458-63
display 464

display. See video display
DLGBOX program 625
DLGTEMPLATE keyword 625
DosAllocSeg function 570, 687, 703
DosBeep function 54, 385, 777
DosClose function 22
DosCreateThread function 786
DosEnterCritSec function 812, 813, 819
DosExecPgm function 786
DosExitCritSec function 813
DosFindFirst function 669
DosFindNext function 669
DosFreeModule function 530
DosFreeSeg function 530, 570, 689

INDEX 827

828

DosGetCtrylnJo function 463
DosGetDateTime function 444, 463
DosGetMessage function 531
DosGetResource function 529-30, 531,

569,570
DosLoadModule function 530, 770, 774
DosMemAvail function 456
DosOpen function 22
DosQCurDir function 669
DosQCurDisk function 669
DosRead function 820
DosReadQueue function 820
DosSemClear function 818
DosSemSet function 818, 819
DosSemSetWait function 438
DosSemWait function 818, 819
DosSizeSeg function 530, 570
DosSleep function 437-48
DosStartSession function 786
DosSuspendThread function 813, 819
DosWrite function 820
double-clicking the mouse 388
DrawBoxOutline function 423
DrawIJutton function 518
DrawHand function 472
drawing program 429-35
DrawKey function 386
DRAWLINE program 486-94

code 486-91
display 492
radio buttons in 491-92
WM_CONTROL message parameters

492-93
DrawWeb function 396
DRO_FILL option 173, 190,288
DRO_OUTLINEFILL option 173, 190, +88
DRO_OUTLINE option 173, 204
DS register 736-37, 740
DT _CENTER parameter 57
DT _ERAS ERECT parameter 57
DT _ VCENTER parameter 57
dynamic link libraries (DLLs) 5, 731-74

basics 733-51
code segments 736-37
compiling and linking 738-40
creating 740-44
creating import libraries 750-51
exported functions 734, 740
imported functions 734-35
as library modules 733......:34
LLIBCDLL library 737-38
modules 733-34, 770-71

dynamic link libraries (DLLs) (continued)
object and import libraries 733

E

processes and 735 '"
reasons for using 736
use of 744-50

file format 528
loading resources from 530
locating 732
resource-only DLLs 765-74

creating bitmap library 765-70
loading bitmaps from DILs 771-74
module handles 770-71

window procedures in 751-64
new BUTTONS program 761-64
square buttons 751-61

EASYFONT program 219-23, 667
code 219-21

EBCDIC (Extended Binary Coded Decimal
Interchange Code) character code 336

Edit option standard commands 686-87
ellipse

drawing boxes and 173-74
setting width, height of 163-64

EM_SETTEXTLIMIT message 670
EnableSysMenultem function 715
_endthread function 812
Enter key 337, 351
ErrorMessage function 561
error messages, using string resources as

560-61
ES_AUTOSCROLL style bit 92
Escape key 337, 351
ES_MARGIN style bit 92
Excel 6-7
executable files (.EXE)

adding resources to 534-37
format 528
as program modules 733-34
role of import libraries in constructing 733

EXEHDR program 734
EXPENTRY (exported entry point) 46
exported functions 734, 740

to HDRTEST program 748-49
EXPORTS statement 50, 740, 744

dialog box procedures in 629
EzJCreateLogFont function 221-23
EzJQueryFonts function 221, 223

r---.r-\t""'\r"'\r"""\ It. 1\ 111\ .ftll\.'-"""
t-'HUbH~IVIIVIII\lb I HE OS/2 PRESENTATION MANAGER

F
family trees

WELCOMEI 60, 61
WELCOME266
WELCOME374
WELCOME4 92, 93

far functions 20-21, 737
far keyword 22
FATTR_ identifiers 222
FCF_ACCELTAaLE flag 82, 83,84,594
FCF _BORDER flag 83, 84, 90, 456, 679
FCF_DLGBORDER flag 83, 84, 626
FCF _HORZSCROLL flag 83, 84, 120-21
FCF _ICON flag 83, 84, 551
FCF _MAXBUTTON flag 35, 82,83,84,456
FCF _MENU flag 83, 84, 585
FCF _MIN BUTTON flag 35, 82, 83, 84,

456,679
FCF _MOUSE flag 83
FCF _NOBYTEALIGN flag 83
FCF _NOMOVEWITHOWNER flag 83
FCF _SCREENALIGN 83
FCF _SHELLPOSITION flag 83, 456
FCF _SIZEBORDER flag 82, 83, 84,456
FCF _SYSMENU flag 35, 82,83, 84,

456,679
FCF _SYSMODAL flag 83
FCF _TASKLIST flag 68, 76, 83, 456, 679
FCF _TITLEBAR flag 35,82,83,84,456,

679
FCF _ VERTSCROLL flag 83, 84, 120-21, 130
FID_CLIENT identifier 94,679
FID_HORTSCROLL identifier 94, 124, 503
FID_MENU identifier 94
FID_MINMAX identifier 94
FID_SYSMENU identifier 94
FID_TITLEBAR identifier 94
FID_ VERTSCROLL identifier 94,123,503
File Open option, modal dialog box invoked

by 654-71
FillDirListBox function 669, 670
FillFileListBox function 669, 670
floating-point speed 784
flood fi11189
_fmalloc C command 517, 518
FM_ (foreground mix) identifiers 212
FM_INVERT identifier 396
FM_OVERPAINT identifier 396
focus window. See input focus
font

files 217-18
image 218

font (continued)
obtaining character dimensions of current

112,113
resolution 218
system 106, 109, 112, 175
Tms Rmn italic 228, 229
vector 218

FONTMETRICS structure 112, 113, 115
FONTS program 223-27
foreground mix mode 212-13
frame creation flags 30, 35, 82-84, 95
frame window(s) 59

creating 29-30, 34-35
displaying icons with 42
as owners of windows 77-78
as parent windows 60-62

free C command 761
FREEMEM program 451-57

code 452-55
display 457

fstrcpy function 518
fstrlen function 518
function(s) 10, 11. See also application

program interface (API) functions;
names of individual functions

handles required by 22
function keys 337, 350

G
-G2s switch 26, 743
-G2 switch 15
GetMessage function, Microsoft Windows

775
GpiBeginArea function 195-96
GpiBitBlt function, bit-block transfer with

236-55, 728
compressing bitblt with 255
drawing bitmaps on memory device context

271,272-83
flipping bitmaps with 246-48
raster operations 249-54

color and 254-55
simple use of 237-42
specifying presentation space 248-49
stretching bitmaps with 242-46

GpiBox function 646, 743
drawing boxes with 173-74
filling boxes with 189-90, 211

GpiCharStringAt function, text output with
107, 112, 115-17, 133, 215, 282-83

GpiC harString function 215
GpiCharStringPosAt function 216-17

INDEX 829

GpiCharStringPos function 216-17
GpiConvert function 189
GpiCreateBitmap function 264-67, 728
GpiCreateLogColorTable function 505, 589
GpiCreatePS function 272, 298
GpiDeleteBitmap function 256, 267, 538
GpiDeleteSetID function 222, 288
GpiDestroyPS function 283, 298
GpiEndArea function 195-96
GpiErase function 211
GpiFullArc function 174
Gpilmage function 230-34
GpiLine function 155-57, 396
GpiLoadBitmap function 538, 543, 770, 774
GpiMarker function 229
GpiMove function 196, 396,472

setting current line position with 155-57
GpiPartialArc function 174
GpiPointArc function 174
GpiPolyFillet function 174
GpiPolyFilletSharp function 174
GpiPolyLine function 472

drawing curves with 162
drawing multiple lines with 157-61

GpiPolyMarker function 229
GpiPolySpline function 174
GpiQueryBitmapHandle function 289
GpiQueryDeviceBitmapFormats function 730
GpiQueryDevice function 176
GpiQueryFontMetrics function 112, 113, 188,

222,223,323
GpiQueryLineType function 168
GpiQueryPel function 289
GpiQueryTextBox function 282, 456
GpiRestorePS function 211
GpiSavePS function 211
GpiSetArcParams function 174
GpiSetBackColor function 214
GpiSetBackMix function 214
GpiSetBitmap function 272
GpiSetBitmapID function 287
GpiSetCharSet function 222
GpiSetColor function 205-7,211,494,646
GpiSetCurrentPosition function 156
GpiSetDeJaultViewMatrix function 189
GpiSetLineType function 168, 494
GpiSetMix function 212-13, 396
GpiSetModelTransJormMatrix function 189
GpiSetPattern function 190-95, 196,249,

288,646
GpiSetPatternSet function 287-88

GpiSetPel function 289
GpiSetPS function 183-89
GpiWCBitBlt function 278
GRAFMENU program 599-606

code 600-604
File menu with bitmap display 606
message processing 604-6

graphics. See bitmap(s); bitmap resources;
raster graphics; vector graphics

Graphics Control Program (GCP) 3
Graphics Data Display (GDD) 3
Graphics Programming Interface (GPI) 3, 8,

56,153-54 '
creating text output 215-28
drawing images 230-34
drawing lines 154-74
drawing marker symbols 228-30
drawing patterned areas 189-214
with raster graphics 235-55
writing text with 99 (see also

GpiCharStringAt function)
group box 491, 648
GROUPBOX statement 648
group controls, transfer of input focus with

651-52
-Gs compiler switch 740
-Gw switch 50, 739, 760

H
HAB data type 20
handle(s) 22-24. See also anchor block

handles, obtaining
to pointers 42
to presentation space 108, 110-11

hardware scan code 337, 347
use of, in ORGAN program 375, 384-85

HBITMAP type 256, 264, 538, 715
HdrEllipse function 743, 749
HDRLIB program 740-44

code 741-42
module definition file in 742, 743-44

HdrPrintjfunction 743, 744, 749
HdrPuts function 743, 749
HDRTEST program 744-51

code 744-47
creating import library for 750-51
display 747
IMPORTS and EXPORTS lists for 748-49

header files 9-10
effect on file compilation 19-22

830 PROGRAMMiNG THE OS/2 PRESENTATiON MANAGER

HEAD modal dialog box program 654-71,
777

code 655-67
display 668
list boxes 668, 669-70
overall structure 668-69
static text fields 669
text entry fields 670-71

HEAPSIZE statement, .DEF file 17
HELLOBIT program 278-83

code 278-82
display 282

HELV.FON font file 218
HEXCALC program 671-81

code 672-78
control ID use 680
display 678
template 679
window creation in 679-80

HEXCALC2 program 703-15
code 704-11
message processing 712-15

High English metric units 182-83
hit-testing

with child windows 412-19
defined 400-401
emulating the mouse with keyboard 405-12
simple, in CHECKERI program 401-5

HMODULE type 770
hourglass pointer 789-90, 821
HPOINTER type 553
Hungarian notation 9,30
HWND_BOTTOM parameter 477
HWND data type 29
HWND_DESKTOP parameter 29, 42, 62, 66,

630
HWND_TOP parameter 477

IBM Color/Graphics Adapter (CGA) 105, 174,
'297,388

resolution 548, 549
IBM Corporation 8
IBM Enhanced Graphics Adapter (EGA) 236,

388,538
resolution 548, 549

IBM Video Graphics Array (VGA) 235, 297
resolution 548, 549

ICON EDIT 256
creating bitmaps in 537, 765
creating icons and mouse pointers in

548,549

ICON keyword 626, 627
icons (.ICO) 548-58

designing 548-50
drawing 553-58
frame creation flag bits for 84
referencing resource script files for 550
six steps for adding, to programs 551-53
standard, creating and adding 40-42

ID_BUTTON identifier 93
IDD_BKGRND identifier 645
IDD_BORDER identifier 651
IDD_DENSEI identifier 645, 648
IDD_DIRLIST identifier 669
IDD_FILEEDIT identifier 670
IDD_FILELIST identifier 669,671
IDD_OPEN identifier 668
IDD_PATH identifier 669
ID_ENTRY identifier 93
IDM_EXIT identifier 591
10M_FILE identifier 582
10M_PASTE identifier 727-28
10M_START identifier 590
10M_STOP identifier 590
ID_RESOURCE identifier 580-81,594
IO_SCROLL identifier 93
IO_TIMER identifier 441
lOT_POEM identifier 569
lOT_TEXT identifier 569
image(s), drawing with GPI primitives

230-34
IMAGECAT program 231-34

display 235
image fonts 218
IMPLIB.EXE program 750
imported functions 734-35

to HORTEST program 748-49
import libraries 733

creating 750-51
INCL_AVIO identifier 296
INCL_ VIO identifier 296
INITINSTANCE keyword 744
input

AVIO and VIO functions for 320-21
keyboard (see keyboard input)
mouse (see mouse input)
serialization of 787-89

input focus 788
keyboard 144, 354-55, 788

changing, in scroll bars 505-7
cursor movement key transfer of 651-52

mouse capture and 507-8
push button controls and 486

INDEX 831

Insert key 337, 350
interline spacing of text output 114-15
inverse screen 550
IOPL segments, accessing hardware with, in

ORGAN program 385-86
IRGB (lntensity-Red-Green-Blue) color

encoding 206,207 (table), 254
AVIO attribute byte color values 302

K
KbdCharIn function 31
Kbd functions 10
KbdStringln function 375
KC_ALT identifier 354
KC_CHAR identifier 348, 374
KC_COMPOSITE identifier 354, 373, 374
KC_CTRL identifier 354
KC_DEADKEY identifier 354, 373, 374
KC_identifiers 339,340
KC_INVALIDCOMP identifier 354,

373, 374
KC_KEYUP identifier 352, 353
KC_LOANKEY identifier 354
KC_PREVDOWN identifier 353
KC_SCANCODE identifier 347
KC_SHIFT identifier 354
KC_TOGGLE identifier 354
KC_ VIRTUALKEY identifier 348
keyboard

codes identifying keys/characters 347-49
emulating mouse with 405-12
examining specific keys 340-47
functions not provided in OS/2 kernel 31

keyboard accelerator 582, 593-94, 712
keyboard input 335-86

active windows and focus windows 354-55
cursor use 356-58
dead keys and foreign language keyboards

372-75
foreign keyboards 335-36
getting keyboard states 355-56
input focus (see input focus)
keyboard numeric codes 336-37
ORGAN program using scan code 375-86
OS/2 kernel and 338
pre-OS/2 processing of 337-38
Presentation Manager processing of 338
reading character strings 375
sample processing (TYPEAWAY program)

358-72
serialization of 787-89

keyboard input (continued)
WM_CHAR message and 339-54

key-up, key-down!>processing 352-54
looking at keys when calling 340-47
processing virtual keys and characters in

349-51
shift status 354
three parameter codes accompanying

347-49
keyboard interface

with calculator 680
with dialog box 651-52
scrolling with keyboard keys 144-51

KEYLOOK program 340-47
code 341-45
display 346
information abbreviated in display 346-47

L
laser printer 235
LCID_BRICKS BITMAP identifier 287
LCID_DEFAULT identifier 288
LHANDLE data type 20
LIBPATH statement, locating .DLL files

with 732
LIBRARY statement, .DEF files 743-44
LIFE game program 606, 607-17
line(s), drawing with GPI primitives 154-77

boxes and simple ellipses 173-74
curves 162-67
line type attributes 168-72
multiple lines 157-61
POINTL structure for 154-55
simple straight lines 155-57

LINETYPE program 168-72
LINK 15,16
linking files 16

window procedures while 50
list boxes 668, 669-70
LLIBCDLL library 737-38

linking with 740
LLIBCMT.LIB library 805
LM_DELETEALL message 669
LM_INSERTITEM message 670
LM_QUERYSELECTION message 670
LN_ENTER message 670
LOADBMPI program 539-44

code 539-42
display 544

LOADBMP2 program 544-47, 548
_loadds keyword 739

832 PROGRAMMiNG THE OS/2 PRESENTATiON MANAGER

local descriptor table (LDT) 735
Low English metric units 182-83

setting with GpiSetPS 184

M
MAKEEXE program 14-15
make file 14-16. See also program listings
MAKEP macro 167, 530, 687
malloc C function 370, 712, 761, 811
marker symbols 228-30

drawing 228
selecting different 230

MARKSYM_ identifiers 230
memcpy C function 687-88
memory, displaying free 451-57
memory device context 272-78

drawing on 278-83
MENUITEM statement 580-82,598
MENU keyword 531
menus 571-93

conventional 572-94
checked menu items 587-89
CONVMENU program 572-80
defining 580-82
enabling/disabling menu items 589-91
handling Exit command 591-93
including menus in the standard

window 585
menu item IDs 582-83
receiving menu messages 585-87
styles and attributes in 581, 583-85
WM_HELP message and 593

frame creation flag bits for 83, 84
keyboard accelerator table 593-94
nonconventional approaches to 594-617

altering system menu 594-99
bitmap graphics in menus 599-606
Life game program 606-17

submenu 571
system 34, 59, 572

altering 594-99
as control window 77

top-level 571
message(s) 10-11, 35-36. See also message

queue; WinCreateStdWindow function
tho-second processing rule and multitasking

problems 777-85
getting presentation space handle while

processing 110-11
notification (see notification messages)
parameters and structure of 36

message(s) (continued)
peeking at, and multitasking problems

795-803
processing 54
processing of keyboard character 338

active windows and focus windows in
354-55

character strings 375
cursor use 356-58
dead keys and foreign language keys

372-75
getting keyboard state 355-56
sample 358-72
shift states 354
WM_CHAR message 339-54

queued vs nonqueued 48-49
review of architecture based on 785-86
sending vs posting 49
user-defined 67-68

message loop 31, 37-38
message queue 36

creating 24, 25-26
priority 819-20
queued vs nonqueued messages 48-49, 786
WM_MOUSEMOVE as 396-98

message string 531
metric units, drawing graphic objects in

182-83
MIA_DISABLED attribute bit 584 585

589-91 ' ,
MIA_ menu item attributes 584-85
Microsoft Windows 3

carets, cursors, and pointers 356
multitasking in Presentation Manager vs

775-76, 795
programming in Presentation Manager vs

programming in 11-12
minimize/maximize window 34, 59

as control window 77
copying with GpiBitBlt 237-42

MINMAXI program 237-42
code 237-39
display 240
POINTL aptl array coordinates 241

MINMAX2 program 242-46, 777
code 242-45
display 245
display with different raster operation 250
POINTL aptl array coordinates 246

MINMAX3 program 257-60
code 257-59
display 259

INDEX 833

MIS_ menu item style bits 583-84
MKMSGF.EXE program 531
MM_INSERTITEM message 599
MM_ITEMIDFROMPOSITION message

598
MM_QUERYITEM message 598
MM_SETITEMATTR message 588
MM_SETITEM message 605
modal dialog box programs

ABOUTBOX 620-36
HEAD 654-71
PATTDLG 636-54

modeless dialog box HEXCALC program
671-81

model space 189
module(s)

.DLL and .EXE files as 733-34
handles for 770
reference count 770-71

module definition file 17. See also program
listings

Mou functions 10
mouse buttons

button messages 399-400
hit-testing and 400-412
identifiers 398-99
virtual key codes for 351

mouse input 387-435
buttons and hit-testing 398-419
mouse pointers (.PTR) 548-58

designing 548-50
referencing resource script file 550
setting 553-58

pointers and 388-92
erasing and redrawing 396
mouse vs pointer 388
processing WM_MOUSEMOVE 392-95

serialization 787-89
SKETCH drawing program 429-35
tracking and capturing the mouse 419-29

input focus and mouse capture 507-8
MOUSEMSG macro 390
MS-DOS operating system 4-5

device dependence in 7
programs ported to OS/2 from 6

Multiple Document Interface (MD) 75
multitasking 775-821

big jobs, problems presented by 776-90
I/IO-second rule 777-85
hourglass pointer 789-90
processes and threads 786-87

multitasking (continued)
review of message-based architecture

785-86
serialization of user input 787-89

multithread solutions 803-21
coordinated thread execution 812-13
eliminating hourglass pointer 821
message ordering 819-20
non-message queue thread 820-21
putting threads to work 811-12
run-time library 804-11
semaphores used to trigger threads

813-19
two categories of threads 803-4

single-thread solutions 790-803
different message loop in main 802-3
peeking at messages 795-803
peeking problems 803
receiving unqueued messages 800-801
timer utilized 790-95 .

N
NAME statement, .DEF file 17
noncharacter keys 337, 338
notification messages

receiving, from scroll bar 123-25
send by control window 92, 475, 493

NULL handle 23
numeric formatting of text 117-19
Num Lock key 336, 350, 354

o
object libraries (.LIB) 733
object window(s) 60
OD_MEMORY identifier 272
OpenDIgProc function 668, 670, 671
ordinal number of functions 733, 734, 749
ORGAN program 375-86

code 376-83
header file 380-82
SPEAKER.ASM file 382-83

display 384
IOPL segments used in 385-86
scan codes used in 384-85

OR operator (:) 30, 81, 217, 357, 550
OS2DEF.H header file 9 (table), 20
OS2.H header file 9 (table), 19
OS2.1NI file, storing configuration data

in 653

834 PROGRAMMiNG THE OS/2 PRESENTATiON MANAGER

OS/2 kernel 5
developing applications in, vs Presentation

Manager 6
message facility 531
support for resources 529-30

OS2.LIB file 733, 750
OS/2 operating system 4-5

.EXE and .DLL file formats 528
version 1.0 (see OS/2 kernel)
version 1.1 5 (see also Presentation

Manager)
owner relationship 77-78, 477

p
PageMaker 6-7
parent window(s) .

determining, with WinQueryWmdow 61
of frame window 29
frame window as 60-62
relationship to child windows 60-61, 477

ParseFileName function 667, 668, 671
Pascal calling sequence 738-39
pascal keyword 22
Paste function, Clipboard 689, 703, 713
PATSYM_HALFTONE 249, 253, 261
PATSYM_HORIZ identifier 253
PATSYM_ (pattern symbol) identifiers

190,288
PATSYM_ VERT 253, 255
PATTDLG modal dialog box program 636-54

check boxes 651
code 636-44
creation parameters 645-48
display 645
radio buttons 648-50

AUTORADIOBUTTON alternative 650
saving values in 653-54
tab stops and groups 651-52
WM_INITDLG message 652-53

PatternDIgProc function, exchanging data
with ClientWndProc 645-48

patterned areas 189-214 . .
alternative and winding modes for fIllIng

197-205
background color and mix in 214
color and mix in 205-14
customized with bitmaps 283-89
defining 195-97
selecting 190-95

PATTERNSDATA structure 645-48

PATTERNS program 191-95
code 191-94
display 194

Pause key 337
PC BIOS, character codes functioning with

337-38
PeekMessage function, Microsoft

Windows 795
pixel(s) 153. See also bitmap(s)

bitwise combinations of
in background mix 214
in foreground mix 212

GPI functions operating on 235,236
drawing pixels 289

programming for device independence
174-89

device context capabilities 175-82
drawing in metric units 182-83
drawing in presentation page units

183-89
simple techniques 175

PMAVIO.H header file 9 (table)
PMDEV.H header file 9 (table), 176
PMGPI.DLL file 731
PMGPI.H header file 9 (table), 168, 251
PM.H header file 9 (table)
PM_REMOVEandPM_NOREMOVE

714, 795
PMSHL.H header file 9 (table)
PMSPL.H header file 9 (table)
PMWIN.DLL file 731, 733, 734, 735

window classes and 45, 46
PMWIN.H header file 9 (table), 20, 21

child window IDs in 93-94
class style bits defined in 79
frame creation flags defined in 30
message data structure defined in 35-36
mouse button functions in 398
window class identifiers in 85
window procedures located in 38
WM_CHAR flags defined in 339

POEPOEM program 562-70
code 562-69
text in .ASC file 568-69

pointer(s) 388-92
vs carets and cursors 356
conversions 10
handle to 42
hot spot 388
mouse 548-58
pointer level value 410

INDEX 835

pointer(s) (continued)
position 388-90
system 42

POINTER keyword 531, 550
POINTL structure 116

in bit-block transfers 240, 243, 246, 247
conversion to page units 189
drawing lines with 154-55, 167

point size 218 .
POORMENU program 594-99

code 595-97
message processing 598
system menu generated by 599

PPOINTL structure, drawing lines with 167
Presentation Manager 3-12. See also client

window(s); message(s); standard
window(s)

multithread programming (see
multitasking)

overview 4-8
programming fundamentals 8-11

adding standard icons 40-42
basic program files 13-17
creating client windows 43-50
creating message queues 24-27
creating standard windows 27-31
looping through messages 31-39
obtaining anchor block handles 18-24
painting client windows 50-57

programming Windows vs programming
11-12, 775-76

program processing stream 47-48
program termination 69

presentation page units 218
device-independent drawing in 183-89

presentation space 34, 56-57. See also cached
micro-PS .

AVIO 300-310
creating and destroying 296-98
updating 299
writing to 298

default 109
device context associated with 56-57,

109-10
memory device context 278-83

getting a handle to 110-11
role in text output 108-11
using different, in bit-block transfers

248-49
processes and threads 786-87
ProcessKey 386

program listings
ABOUTBOX 620-24
ALTWIND 202-4
AVI01292-95
AVI02304-8
BEEPERI 438-40
BIGJOBI778-84
BIGJOB2 790-94
BIGJOB3 796-99
BIGJOB4805-11
BIGJOB5813-18
BITCATI 267-70
BITCAT2 273-77
BITLIB 765-69
BLOKOUTI 419-22
BLOKOUT2425-28
BLOWUP 717-26
BRICKS 284-87
BUTTONSI 479-82
BUTTONS2 519-23
CHECKERl401-4
CHECKER2405-10
CHECKER3 412-16
CLOCK 464-70
COLORS 207-11
COLORSCR 495-501
CONMENU 572-80
DIGCLOCK 458-63
DRAWLINE 486-91
EASYFONT 219-21
FONTS 223-27
FREEMEM 452-55
GRAFMENU 600-604
HDRLIB 741-42
HDRTEST 744-47
HEAD 655-67
HELLOBIT 278-82
HEXCALC 672-78
HEXCALC2 704-11
IMAGECAT 231-34
LIFE 607-17
LINETYPE 168-72
LOADBMPI 539-42
LOADBMP2 544-47
MINMAXl 237-39
MINMAX2 242-45
MINMAX3 257-59
ORGAN 376-83
PATTDLG 636-44
PATTERNS 191-95
POE POEM 562-69

836 PROGRAMMiNG THE OS/2 PRESENTATiON MANAGER

program listings (continued)
POORMENU 595-97
RESOURCE 555-58
RULER 184-87
SAMPLE.RC 532-33
SHOWBIT 771-74
SKETCH 429-34
SPIRAL 164-66
SQABOUT 632-36
SQBTN.C 508-16
SQBTNLIB 751-60
STAR5158-60
STARFILL 197-200
SYSVALS 145-51
SYSVALSI100-104
SYSVALS2126-29
SYSVALS3 134-39
SYSVALS4326-32
TYPEAWAY 358-69
TYPECLIP 691-701
W 14
WE 18-19
WEB 392-95
WEL24-25
WELC27-28
WELCO 31-32
WELCOM 40-41
WELCOME 43-45
WELCOMEI 51-53
WELCOME262-66
WELCOME3 69-73
WELCOME4 86-89

PROT MODE statement, .DEF file 17
PU_ page unit identifiers 184
push buttons 90, 478-86
putch C function 318-19
PVIDEO data type 308

Q
QMSG data structure 35-36, 37, 389

R
radio buttons 478-79

AUTORADIOBUTTON alternative to
RADIOBUTTON 650

creating two, in DRAWLINE program
486-94

WM_CONTROL parameters for 492
working with, in PATTDLG program

648-50

RADIOBUTTON statement 648, 650
raster graphics 235-89

bit-block transfer in 236-55
bitmap handles and bitmap drawing

255-62
color and 254-55
GpiBitBlt raster operations 249-54
vs vector graphics 153-54
working with bitmaps 262-89

RECTL structure 57, 456-57
reference count, module 770-71
RegisterSqBtnClass function 517, 760, 764
resolution, video 548-49
RESOURCE program 555-58
resources 527-70. See also accelerator tables,

frame creation flag bits for; dialog
boxes; icons (.ICO); menus

basic concepts 528-37
.EXE and .DLL file format 528
OS/2 kernel message facility 531
OS/2 kernel support for resources

529-30
resource compiler 533-37
resource script (.RC) 531-33, 550

bitmap resources 537-48
defined 527
in dynamic link libraries 765-74
icons and mouse pointers 548-58
identifiers for 528, 529

vs child IDs and menu item IDs 582-83
procedure for creating programs using 536
programmer-defined resources 562-70
resource segments 528-29
string resources 559-61

reverse video 321
RgbToVioColor function 332
right-justified text 140-41
ROP _NEUTRAL 251, 261
ROP _NOTSRCCOPY 249, 251, 261
ROP _ONE 249, 252
ROP _PATCOPY 251, 252, 288
ROP _PATPAINT 251, 252
ROP _ raster operation identifiers 251 (table)
ROP _SRCAND 549
ROP _SRCCOPY 249, 250
ROP _SRCPAINT 251, 254
ROP _ZERO 249, 252
RotatePoint function 472
RT_ACCELTABLE identifier 528
RT_BITMAP identifier 528, 529, 538
RT _DIALOG identifier 528

INDEX 837

RT FONTDIR identifier 528
RT - FONT identifier 528
RT- identifiers 527,528, 529
RtJ~stCharStringAt function 140-41
RT MENU identifier 528
RT - MESSAGE identifier 528, 529
RT -POINTER identifier 528, 548
RT - RCDATA identifier 528
RT=STRING identifier 528,529
RULER program 184-89

S

code 184-87
display 188

SAMPLE.RC file 532
header file 533
make files 535

Savage function 784, 794
SB_ENDSCROLL identifier 123, 124,

125,132
SB LINEDOWN identifier 123, 124, 125, 132
SB -LINEUP identifier 123, 124, 132
SBMP _MAXBUTTON identifier 257
SBMP _MINBUTTON identifier 257
SBM_QUERYPOS message 125, 132
SBM_QUERYRANGE message 122
SBM SETPOS message 125, 132, 504
SBM=SETSCROLLBAR message 122,

130,502
SB PAGEDOWN identifier 123, 124, 125, 132
SB - PAGEUP identifier 123, 124, 125, 132
SBS_HORZ class style 476
SB_SLIDERPOSITION identifier 123,124,

125,132
SB_SLIDERTRACK identifier 123, 124, 125,

132, 142
SBS_ VERT class style 91,476, 502
ScalePoint function 471,472
screen. See video display
screen color 549-50. See also color
screen groups 5
script, resource 531-33

referencing icon and pointers in 550
scroll bares) 91, 119-25

as class of control window 494-507
changing keyboard input focus 505-7
COLORSCR demonstration program

495-502
processing scroll-bar messages 503-5

creating 120-21

scroll bares) (continued)
horizontal 494

action identifiers 124
messages from 124

range and position of 122
change range based on window size 141

receiving notification messages from
123-25

message processing 124-25
slider 121

default position 122
position and line at top of client window

131
resetting position 125

vertical 119, 494
action identifiers 123
actions performed by 120
messages from 123-24

scrolling
AVIO and VIO functions for 321-22
overscrolling 353-54

Scroll Lock key 336, 354
ScroliProc function 505-7
SEGMENTS statement 385
semaphores, triggering threads with 813-19
SEMLINDEFINITE_ WAIT identifier 818
sessions, OS/2 5
SETTINGS keyword 654
shadow bitmap 283, 435
shared memory segment, preparing for text

storage 687-88
Shift key 336, 350

states 354
SHORTIFROMMP macro 107-8, 122, 123,

339,340,484,503
SHORT2FROMMP macro 107-8, 122, 348,

484,503
SHOWBIT program 771-74
sibling window(s) 60, 61, 74
Simonyi, Charles 9
SizeTheWindow function 456
SKETCH program 429-35

code 429-34
display 434
monochrome (shadow) bitmap in 435

SLIBCE.LIB library file 15, 16
source code files. See program listings
Spacebar 337,351
SPEAKER.ASM file 382-83,385-86
SPIRAL program 164-67

code 164-66
display 167

838 PROGRAMMING THE OS/2 PRESENTATION MANAGER

spirals, drawing 164-67
sprint statement 463

formatting text and numbers with 117-19
SPTR_APPICON identifier 42
SPTR_SIZENESW identifier 729
SPTR_ WAIT identifier 789-90
SQABOUT program 632-36

display 636
SQBTNLIB window procedure program

751-61
code 751-60

SQBTN structure 517, 518
SQBTN window procedure program 508-18

code 508-16
functions and messages 517-18

SqBtnWndProc function 517-18, 760
square button(s)

creating 518-23
BUTTONS2 code 519-23
display 523

in dialog boxes 631-36
dynamic link library version of

(SQBTNLIB.DLL) 751-64
SQBTN.C window procedure for

508-18,523
SS register 736-37, 740
SS_TEXT identifier 502
stack checks, inhibiting 26-27, 740
STACKSIZE statement, .DEF file 17, 30
standard icon, creating 40-42
standard window(s) 59-77. See also frame

window(s)
anatomy of 34-35
creating 27-31,80-84
creating multiple top-level 62-68
creating multiple, with children of client

windows 69-77
including menu in 585
terminating programs and 69
title bar text in 68
window family 60-62

ST AR5 program 158-61
code 158-60
display 160
lines drawn by GpiPolyLine 161

ST ARFILL program 197-200
display 200

Start Programs window 17
static linking 733
static text fields 669
STDARG.H header file 320

STDIO.H header file 117
string resources 559-61

defining and loading 559-60
storage 561
using for error messages 560-61

STRINGTABLE keyword 531, 559
submenu 571
SUBMENU statement 581-83
SV _CXICON parameter 548
SV _CXPOINTER parameter 388, 548
SV _CXVSCROLL parameter 502
SV _CYHSCROLL parameter 502
SV _CYICON parameter 548
SV _CYPOINTER parameter 388, 548
SV _MOUSEPRESENT parameter 398, 411
SV_SWAPBUTTON parameter 399
switch and case construction, processing

messages with 38-39, 54, 350, 446,
503,586

system bitmaps 256
system font 106, 109, 112, 175, 218
system menu 572

altering 594-99
window 34, 59, 77

system pointer 42
Systems Application Architecture (SAA)

8,22
system values display structure file 100-102
SYSVALSI program 99-105

code 100-104
header file 100-102

scroll bars needed in 119-25
text output with 105-19

SYSVALS2 program 126-33
code 126-29
display 130
WM_PAINT processing in 133

SYSVALS3 program 134-44
code 134-39
display 140
painting only invalid rectangles in 143-44
range changes based on window size 141
right-justified text in 140-41
window scrolling in 142-43

SYSVALS4 program 326-32
SYSVALS program 145-51
szClientClass 46

INDEX 839

T
tabes)

as keyboard interface with dialog box
651-52

in submenu text 582
Tab key 337, 351
target file 15
template(s), dialog box 625-27
text

color 206, 217
dialog box entry fields 670-71
entry window field 92
right-justified 140-41
static text fields 669

text, transferring with Clipboard 686-715
Edit submenu standard commands 686-87
getting text from Clipboard 689-90
open Clipboard 690-91
putting text in Clipboard 688-89
reading hexadecimal number and symbol

strings with Clipboard in HEXCALC2
703-15

shared memory segment preparation
687-88

TYPECLIP demonstration program
691-703

text output 99-151. See also Advanced VIO
(video input/output) functions

AVIO and VIO functions for 314-16
device-independent programming and

105-19
coordinate system 111-15
GpiChar function 115-17
numeric formatting 117..,.19
presentation space 108-11
size of client window 106-8
WM_PAINT message and 115

displaying on client windows 99-105
different types of 76

GPI primitives and 215-28
color 217
EASY FONT system program 219-23
font files 217-18
FONTS program 223-27
output functions 215-17

keyboard interface added in SYSVALS4
144-51

scroll bars
adding to text output 119-23
keyboard controlled 144-51
optimizing 134-44

text output (continued)
SYSVALSI program 101-104
SYSVALS2 program 126-33
SYSVALS3 program 134-44
SYSVALS program 144-51
in title bar windows 68

text string resource. See string resources
TF _MOVE flag 729
TF _RIGHT flag 729
TF _SETPOINTERPOS flag 729
TF _STANDARD flag 729
TF _TOP flag 729
thread(s)

coordinated execution of 812-13
creating windows using message loop

37-38
execution of 811-12
message ordering and 819..:...20
message queues within multiple 26
non-message queue thread 803-4, 821-21
within processes 786-87
two categories of 803-4
using semaphores to trigger 813-19

TID CURSOR identifier 447
TID=FLASHWINDOW identifier 447
TID_SCROLL identifier 447
timer 437-72

analog clock in CLOCK program 464-72
common method of using, in BEEPER 1

program 438-40
digital clock in DIGCLOCK program

457-64
free memory display in FREEMEM

program 451-57
immediate processing of timer message in

BEEPER2 program 447-51
imprecision in 442
intervals over 65 1/2 seconds 444-45
limited availability of 443
multiple 445-46
multitasking with 790-95
one-time message from 443-44
resetting timer 445
timers not set by the user 446-47
WinStartTimer syntax 441-42

TIMES.FON font file 218
title bar window(s) 34, 38, 59

as control window 77
text in 68

Tms Rmn italic font 228, 229
toggle keys 336

840 PROGRAMMING THE OS/2 PRESENTATION MANAGER

top-level menu 571
top-level window(s) 60

creating multiple 62-68, 75
TRACKINFO structure type 728-29
tracking the mouse 419-24
TranslatePoint function 471, 472
TXTBOX_CONCAT identifier 140-41
TXTBOX_COUNT identifier 140-41
type-ahead input 788
TYPEAWAYprogram 358-72

code 358-69
cursor movement in 369-70
keys processed in 370
message processing in 370-72

TYPECLIP Copy command 711-12
TYPECLIP program 691-703

clipboard and 703
code 691-701
mouse 702-3
VIO presentation space in 702
window sizing and keyboard 702

type ID, resource 529

U
ULONG data type 30
UNIX head utility 654
U pdateTime function 463
user interface 7
USHORT data type 20

v
va_arg macro 320
va_end macro 320
va_start macro 320
vector fonts 218
vector graphics

images 230-34
lines 154-74
marker symbols 228-30
patterned areas 189-214
pixels and device independence 174-89
vs raster graphics 153-54
text 215-28

VIDEO data type 308
video display. See also Advanced VIO (video

input/output) functions; color; raster
graphics; vector graphics

determine size of, with VioGetMode 35
determine width, height of, with

WinQuerySysValue 106

video display (continued)
device independence 105-6
resolution 548-49

VioAssociate function 297
VIOCONFIGINFO structure type 325-26
VioCreatePS function 296-98, 300
VIOCURSORINFO structure type 312-13
VioDestroyPS function 298
Vio functions 10, 291-92,311. See also

Advanced VIO (video input/output)
functions

ANSI control sequence 316-20
cell size 323-24
cursor position and size 312-14
input 320-21
miscellaneous 325-26
origin 323
output 314-16
scrolling 321-22
virtual display 324-25

VioGetANSI function 318
VioGetBuJfunction 303-4, 308, 324
VioGetConJig function 325-26
VioGetCurPos function 312
VioGetCurType function 313
VioGetDeviceCellSize function 310, 313,323
VioGetMode function 35
VioGetOrg function 323
VioReadCellStr function 315, 320-21
VioReadCharStr function 320-21, 703
VioScrollDn function 322
VioScrollLJfunction 322
VioScrollRt function 322
VioScrollUp function 321-22
VioSetAnsi function 318
VioSetCurPos function 312
VioSetCurType function 312, 313
VioSetDeviceCellSize function 323
VioSetOrg function 322, 323, 702
VioShowBuJ function 299, 324-25
VioShowPS function 299,324-25
VioWrtCharStrAtt function 315
VioWrtCharStr function 298, 314
VioWrtNAttr function 315, 703
VioWrtNCell function 315
VioWrtNChar function 315
VioWrtTTY function 312, 315,701, 702

ANSI control sequences 316,317,318
C output functions and 318-20
five control codes 316

INDEX 841

virtual display buffer 300-310
AVIO and VIO functions for 324-25
character and attributes in 301-3
creating 296-97
size of 309-10
updating window from 299
writing directly to 303-9

virtual key code 145, 338, 348
processing 349-51

VIRTUALKEY keyword 594
VK_BACKTAB identifier 506, 507
VK_ (virtual key) identifiers 350, 351
VK_ TAB identifier 506, 507

W,X
-W3 switch 16
WC_BUTTON class identifier 85 90

476,478 ' ,
WC_ class identifiers 85, 476
WC_ENTRYFIELD class identifier 85,

92,375
WC_FRAME class identifier 476,626
WC_LISTBOX class identifier 476
WC_MENU class identifier 476
WC_SCROLLBAR class identifier 85, 91,

476,502
WC_STATIC class identifier 476,491,502,

626,627
WC_TITLEBAR class identifier 45,85,476
WEB program

code 392-95
display 395
erasing and redrawing in 396-98

WELCOMEI program 50-57, 777
code 51-53
display 54
family tree 60, 61
message processing in 54
painting the client window in 57
WM_PAINT message in 55-57

WELCOME2 program 62-68
code 62-66 .
display 67
family tree 66

WELCOME3 program 69-77
code 69-73
display 75
family tree 74

WELCOME4 program 86-94,473-74
child window IDs 93-94
code 86-89

WELCOME4 program (continued)
display 91
family tree 93
push button 90
text entry field window 92
vertical scroll bar 91

WELCOME program 43-'-50
code 43-45
creating client window with

WinCreateStdWindow 46-47
processing messages in 47-48
queued and nonqueued messages 48-49
registering window class 45-46
window procedures 50

WELCOM program 40-42
code 40-41

WELCO program 31-39
code 31-32
message loops in 37-38
messages in 35-36
window anatomy in 33,34-35
window procedure 38-39

WELC program 27-31
code 27-28
creating a standard window 27, 29-30
larger stack size in 30-31

WEL program 24-27
code 24-25

WE program 18-24
code 18-19
header files 19-22
obtaining anchor block handles in 18-19
proper handling of handles 22-24
running WE.EXE 24

WinAlarm function 92, 385
WinBeginPaint function 56-57, 110-11,299

invalid rectangle only 143-44
WinCalcFrameRect function 457, 485
WinCancelShutdown function 592
WinCloseClipbrd function 688, 689, 690,

713, 716
Win Compare Strings function 375
WinCreateAccelTable function 712
Win Create Cursor function 356-58, 372
WinCreateMsgQueue function 26, 47, 803
WinCreateStdWindow function

children of client windows created with 74
client windows created with 45,46-47
frame creation flags 82-84
frame window created with 29-30, 34,

35,~2

842 PROGRAMMING THE OS/2 PRESENTATION MANAGER

WinCreateStdWindow function (continued)
HWND_DESKTOP parameter 29
import and export libraries and 733
including menus in standard window

with 585
menus created by 571
multiple top-level windows created with

62,66
role of, in standard windows 29-30, 80-84
scroll bar created with 120-21
window style bit parameters 80,81
window types created by 34-35
WS_ VISIBLE parameter 29

WinCreateWindow function 84-95
child IDs 93-94, 95, 477-78
creating child windows for mouse

processing 416-17
creating control windows with 86-94, 474,

475-78
parameters 84, 85
predefined window classes in 85, 476
window style parameter 476-77

WinDefAVioWindowProc function 300
WinDefDlgProc function 629
WinDefWindowProc function 39, 47, 48,

56, 788
default message processing by 49
processing mouse messages 390-91, 400
terminating programs with 69
timer messages passed to 446-47

WinDesktopWndProc function 60
WinDestroyCursor function 358
WinDestroyMsgQueue function 47, 803
WinDestroyPointer function 548, 553-54
WinDestroyWindow function 29, 47, 48,54,

61, 77, 804
WinDismissDlg function 629, 630, 647, 670
WinDispatchMsg function 37, 38,47,49,391,

786, 801
WinDlgBox function 630-31,646
window(s). See also active window(s);

capture window(s); child window(s);
client window(s); control window(s);
desktop window(s); frame window(s);
object window(s); parent window(s);
presentation space; sibling window(s);
standard window(s); top-level
window(s); window class

anatomy of 34-35
color (see color)
default 206

window(s) (continued)
defined 27
family of 60-62
painting on 55-56

WINDOWAPI keyword 26
window class. See also button(s); scroll bar(s)

child identifiers 95
predefined 85, 476
public vs private 46
registering 45-46, 78-80
style bits 79

WINDOWCOMPAT keyword, .DEF file
17,26

window procedure(s) 38-39,47-48. See also
ClientWndProc window procedure;
message(s)

dialog box 628-29
in dynamic link libraries 751-64
recursive use of 49, 788
special treatment of 50

Windows. See Microsoft Windows
window style 80, 476-77

high style bits 81
window subclassing 505-7
WINDOWTEMPLATE keyword 679
window text 517-18

color 206
WinDrawBitmap function 260-61
WinDrawPointer function 553
WinDrawText function 57, 76, 107, 463
WinEmptyC/ipboard function 688, 713, 716
WinEnableWindow function 82, 141
WinEndPaint function 56, 110-11, 289, 299
WinFillRect function 211, 309, 494, 505, 589
WinGetCurrentTime function 444-45, 785
WinGetKeyState function 354, 355-56, 399,

424
WinGetMsg function 37, 38, 47, 786, 801
WinGetPhysKeyState function 356
WinGetPS function 111, 248, 442
WinGetSysBitmap function 256
Winlnitialize function 18-19, 20, 23-24, 47
WinlnvalidateRect function 132-33, 504, 589,

647, 789
WinLoadDlg function 679-80
WinLoadPointer function 548, 553-54
WinLoadString function 559-60,561
WinLockVisRegions function 730
WinMapWindowPoints function 397, 411,

412,485

INDEX 843

WinOpenClipboard function 688, 689,
690-91, 713, 716

WinOpenWindowDC function 175-76
WinPeekMsg function 714-15

multitasking and 795-803
WinPostMsg function 49,804
WinPtlnRect function 518
WinQueryBitmapParameters function 728
WinQueryClipbrdData function 689
WinQueryClipbrdFmtInfo function

690-91,703
WinQueryDesktopWindow function 62
WinQueryDlgltemText function 671
WinQueryFocus function 355, 371
WinQueryFontMetrics function 605
WinQueryMsgPos function 388, 389
WinQueryPointerPos function 388-89,

397,410
WinQueryProfileData function 654
WinQueryProfilelnt function 654
WinQueryProfileSize function 654
WinQueryProfileString function 654
WinQuerySysColor function 332
WinQuerySysPointer function 42, 391, 789
WinQuerySysValue function 106, 310, 388,

548
determining availability of timers with 443
obtaining information on mouse buttons

with 398,399,411
Win Query Window function

determining owner of a window with 78
determining parent window with 61, 77,

248
WinQueryWindowPtr function 80, 94, 517
WinQueryWindowRect function 57, 90, 106,

441,485
WinQueryWindowText function 713
WinQueryWindowTextLength function 712
WinQueryWindowULong function 80, 94
WinQueryWindowUShort function 80, 94,

417,478
WinRegisterClass function 397

displaying different text in client windows
and 76

registering window class with 45-46,47,
56, 78-80

WinReleasePS function 111,249,289,371
WinScroliWindow function 143
WinSendDlgltemMsg function 649, 651, 669
WinSendMsg function 49

Clipboard 713

WinSendMsg function (continued)
creating icons with 42
from menus 588
peeking at messages with 801, 802, 804
sending messages to control windows 475
to/from window procedures 68

WinSetActiveWindow function 400
WinSetCapture function 424-25
WinSetClipbrdData function 688, 689,

713, 716
WinSetDlgltemText function 669, 671
WinSetFocus function 507, 653
WinSetOwner function 78
WinSetPointer function 391, 729, 789
WinSetPointerPos function 410, 412
WinSetWindowPos function 457, 474,

477,484
WinSetWindowPtr function 76, 80, 517
WinSetWindowText function 476,504,518
WinSetWindowULong function 80
WinSetWindowUShort function 80, 417
WinShowCursor function 357,371
WinShowPointer function 410-11, 789
WinShowWindow function 476
WinStartTimer function 794

determining timer availability with 443
syntax 441-42

WinStopTimer function 442, 444
WinTerminate function 18,47

terminating anchor block handle with 18,
20,21

WinTitlebarWndProc function 38
WinTrackRect function 429, 728-29
WinUpdateWindow function 143
WinUpperChar function 375
WinUpper function 375
WinWindowFromID function 94, 248, 478,

585,598,605,649,712
Win WriteProfileData function 654
WinWriteProfileString function 654
WM_BUTTON messages 399-400

assuring reception of, by capturing the
mouse 424-29

processing (hit-testing) in child windows
412-19

WM_CALC_ABORTED message 812,
813,819

WM_CALC_DONE message 812, 813, 819
WM_CHAR message 36, 48, 339-54

key up/down and window procedures
352-54

844 PROGRAMMING THE OS/2 PRESENTATION MANAGER

WM_CHAR message (continued)
looking at keys 340-47
parameters 339-40

flags defined in mpl parameter 340
shift states 354
three keyboard codes contained in 347-49
virtual key and character processing

349-51
WM_CLOSE message 69,77

exiting menus with 591-93
WM_COMMAND message 92

from menus 584, 585-88
in push button program 484-85

WM_CONTROL message, parameters for
radio buttons 492-93

WM_CREATE message 36, 48, 54
character size, obtaining during processing

of 114
creating child windows for mouse button

processing 417-18
WM_DESTROY message 36,48,54,61
WM_DO_SOMETHING message 802
WM_HELP message 585

menu generation of, and parameters 593
WM_HSCROLL message 124,125,332

parameters 503
WM_INITDLG message, dialog boxes and

646-47,652-53,670,818
WM_INITMENU message 590-91, 691,

703, 728
WM_MOUSEMOVE message 36

determining pointer position with 389-90
processing 392-95

default 390-92
erasing and redrawing during 396-98

WM_PAINT message 36, 54, 55-56
AVIO window update during processing

of 299
with CS_SYNCPAINT set 80
getting presentation space handle during

processing of 110-11
painting invalid rectangle only 143-44
passing message to WinDrawText 76
processing 56-57

priority of 820
in SYSVALS2 program 133

role in text output 115, 118
WM_QUERYWINDOWPARAMS message

518
WM_QUIT message 36, 37,69,591, 802
WM_SEMI message 820

WM_SEM3 message 820
WM_SEM4 message 820
WM_SETFOCUS message 355, 370-71,

411, 788
WM_SETICON message 42
WM_SETWINDOWPARAMS message 518
WM_SIZE message 36

AVIO processing of 300
changing scroll-bar range and slider

position with 141
obtaining client window size with 107-8

WM_SYSCOMMAND message 77-78, 584,
585, 593

WM_TIMER message 441-42, 789, 794-95
changing intervals in 445
immediate processing of, in BEEPER2

447-50
one-time 443-44
posting, without call to WinS tart Timer

446-47
priority 820
timer over 65 1/2 seconds 444-45
using multiple timers 445-46

WM_ USER, defining private messages using
67-68

WM_ VSCROLL message 124, 125, 332
new scroll-bar slide position processed in

142-43
parameters 503
processing 131-32,503

world space 189
W program 13-17

make file W 14-16
module definition file W.DEF 14,17
running W.EXE 17
source code file W.C 14

WS_CLIPCHILDREN style parameter bit 81
WS_CLIPSIBLINGS style parameter bit 81
WS_DISABLED style parameter bit 81,82
WS_GROUP style parameter bit 81,650-51
WS_MAXIMIZED style parameter bit 81,82
WS_MINIMIZED style parameter bit 81
WS_PARENTCLIP style parameter bit 81
WS_SAVEBITS style parameter bit 81
WS_SYNCPAINT style parameter bit 81
WS_TABSTOP style parameter bit 81,

651-52,653
WS_ VISIBLE style parameter bit 29, 81, 90,

476,502,679
Xerox Palo Alto Research Center (PARC)

3,236

INDEX 845

Charles Petzold

Charles Petzold is a full-time freelance writer and a contributing editor to
PC Magazine, in which he writes about OS/2 in the "Environments"
column. He has written articles about Microsoft Windows and OS/2

programming for the Microsoft Systems Journal and is the author, of Pro
gramming Windows, also from Microsoft Press.

The manuscript for this book was prepared and submitted to Microsoft Press in elec
tronic form. Text files were processed and formatted using Microsoft Word.

Cover design by Thomas A. Draper
Interior text design by Darcie S. Furlan
Illustrations by Becky Geisler-Johnson
Principal typography by Ruth Pettis

Text composition by Microsoft Press in Times Roman with display in Eurostile Demi,
using the Magna composition system and the Linotronic 300 laser imagesetter.

Invest in CD-ROM Technology!

Microsoft Programmer's Library is the ultimate programmer's refer
ence on a single CD-ROM disc. It contains full text of the MS-DOS
Encyclopedia, the OS/2 Software Development Kit (SDK) manuals,
the Windows SDK manuals, most Microsoft Language manuals, and
several Microsoft Press books written for the serious programmer.
Plus 20 floppies' worth of "clip art" sample code. Navigate through
this mass of programming knowledge with boolean searches and hy
pertextuallinks between related data. The price is $395 suggested
retail - a fraction of the price for this material in print form.

CD-ROM Demo Disc: This CD Disc contains the self running demo of Program
mer's Library, as well as a full interactive demo with three portions of the actual Pro
grammer's Library database.

1.2 MB floppy Demo Disk: Contains the self running demo as well as self-guided
and interactive demos of the features of Programmer's Library. Also includes a
portion of the actual Programmer's Library database.

360K floppy Demo Disk: The self running demo showing the
impressive features of Programmer's Library.

Print your name and address:
Name
Company Name (if applicable)
Street Address
City State ZIP
Daytime telephone (in case we have questions about your order)

Check the appropriate box:
[] CD-ROM disc. 098-078-201
[] 1.2 MB disk. 098-125-611
[] 360K disk. 098-125-203

$ 5 per disc X __ ordered $
$ 3 per disk X __ ordered $
$ 3 per disk X ordered $

Subtotal $
Shipping and handling $ 2.50

TOTAL $

Please send this card with check or money order to the following address:
Microsoft Programmer's Library
Demo Disk Offer
Box 3011
Bothell, W A 98041-3011

(Programming Presentation Manager by Charles Petzold Feb '89)

o S / 2 PROGRAMMER'S LIBRARY

PROGRAMMING THE OS/2
PRESENTATION MANAGER

Cl

Cl

r-.J

I-

0....

PROGRAMMING THE OS/2 PRESENTATION MANAGER is the first full discussion
of the features and operation of the OS/2 1.1 Presentation Manager- the primary
application environment under OS/2 systems. It is designed to get the OS/2 application
programmer- one with a background in Windows or with strong C experience
through the Presentation Manager system of windows, messages, and function calls.

Endorsed by the Microsoft<ll Systems Software group, this book is unparalleled for its
clari.ty, detail, and comprehensiveness. Charles Petzold covers key topics:

managing windows _ handling input and output _ working with the keyboard , mouse,
and timer _ controlling child windows _ using bitmaps, icons, pointers, and strings _
accessing menus _ using keyboard accelerators _ working with dialog boxes _
mastering the clipboard _ understanding dynamic linking _ using multithread
programming techniques

Petzold also includes scores of valuable Presentation Manager programs and utilities
written in C; these programs are unsurpassed for their breadth and depth .

Charles Petzold, a contributing editor to PC Magazine, is the author of Programming Windows.

The OS/2 Programmer's Library provides in-depth coverage of a wide range of topics for
programmers and application developers. Other titles in the series include:

Advanced OS/2 Programming. Ray Duncan.

Other Microsoft Press books for the OS/2 programmer:

Inside OS/2. Gordon Letwin.
Essential OS/2 Functions: Programmer's

Quick Reference. Ray Duncan.
Programming Windows. Charles Petzold.

COlORSCR.EXE 1<Jo I l)-

A .. Gfeen Blue

HEXCALC.EXE

~ ~ ~ ~
00080
0000GJ ". 00(iFtFi
o CD ~ SV_ CXDLGFRAME 8 01 SV_ CYOLGFRAME

1 2 SV CYnTLEBAR
I ~ SY- CVVSUDER o But SV = CXHS UOER

SV _ C>O.4INMAXBUTTON

1m

U.S.A.
U.K.
Austral.

SV CYNIHMAXBUTTOH
SV: CYNENU
SV CXFULLSCREEH
SV: CYFUUSCREEN ..

I.!. ~

829.95
£27.95
$44.95

(recommended)

.0 112

Dialog window frame width
Dialog windO\of hame he ight
Title bar height
Vertical s croll s lider height
Horlzont.1 s croll s lider width
Minlml zeIMaximlzc button width
Minlmlz eIMuimizc button height
Menu bar height
Full screen clh:nt wlndO\oof width
Full screen client window height

FREEt.lEM.EXE

541 .568bytu

1<Jo i
5 •
5 ,. I.

2.
52 I. I.

••• .. ,
• ..

~~

•

ISBN 1-55615-170-5

52995

9 781556 15 1705

